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Preface

This volume contains selected contributions delivered at the 7th International
Meeting on Computational Intelligence Methods for Bioinformatics and Bio-
statistics (CIBB 2010) held in Palermo, Palazzo Comitini, during September
16–18, 2010.

The CIBB meeting series is organized by the Special Interest Group on Bioin-
formatics of the International Neural Networks Society (INNS) to provide a
forum open to researchers from different disciplines to present and discuss prob-
lems concerning computational techniques in bioinformatics, system biology and
medical informatics with a particular focus on neural networks, machine learn-
ing, fuzzy logic, and evolutionary computational methods. From 2004 to 2007,
CIBB meetings were held with an increasing number of participants in the for-
mat of a special session of bigger conferences, namely, WIRN 2004 in Perugia,
WILF 2005 in Crema, FLINS 2006 in Genoa, and WILF 2007 in Camogli. With
the great success of the special session at WILF 2007 that included 26 strongly
rated papers, we launched the first autonomous CIBB conference edition starting
with the 2008 conference in Vietri.

CIBB 2010 attracted 24 papers submissions from all over the world. A rigor-
ous peer-reviewed selection process was applied to ultimately select the papers
included in the program of the conference. This volume collects the best con-
tributions presented at the conference. Moreover, the volume also includes two
presentations from keynote speakers and one tutorial presentation.

The success of CIBB 2010 is to be credited to the contribution of many
people. First, we would like to thank the organizers of the special sessions for
attracting so many good papers which extended the focus of the main topics
of CIBB. Second, special thanks are due to the Program Committee members
and reviewers for providing high-quality reviews. Last but not least, we would
like to thank the keynote speakers Raffaele Giancarlo (University of Palermo,
Italy), Paulo J.G. Lisboa (John Moores University, UK), and Gianluca Pollastri
(University College of Dublin, Ireland).

April 2011 Paulo J.G. Lisboa
Riccardo Rizzo
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Management and Analysis of Protein-to-Protein

Interaction Data

Mario Cannataro� and Pietro Hiram Guzzi

Department of Experimental Medicine and Clinic,
University Magna Græcia of Catanzaro, Italy

{cannataro,hguzzi}@unicz.it

Abstract. This paper introduces technologies, standards and databases
for generating, representing and storing Protein-to-Protein Interaction
(PPI) data. Emerging algorithms for the analysis, comparison and knowl-
edge extraction from Protein-to-Protein Interaction Networks (PINs)
are also presented. Finally, the paper presents a methodology for the
ontology-based analysis of Protein-to-Protein Interaction data by dis-
cussing a real case study.

Keywords: Protein-to-Protein Interaction Data, Protein-to-Protein In-
teraction Networks, Protein Complex Prediction, Motifs Extraction, Net-
work Alignment, Gene Ontology.

1 Introduction

A recent trend in biology and medicine tries to elucidate the behaviour of com-
plex systems looking at their elementary building blocks and the relationships
among them.

For instance, the study of complex biological systems, such as the cells, may
be faced by studying both their basic components, e.g. their proteins, and the
way they interact each other, e.g. protein interactions. Interactomics is a new
discipline in the omics world that studies the interactome, i.e. the set of all
interactions among biological molecules taking place in an organism. In this
multidisciplinary scenario wet lab experiments are used to produce data that are
examined in silico with computational methods that try to explain the behaviour
of biological systems.

Considering the analysis of interactions among proteins that take place in liv-
ing organisms, we have four main tasks: (i) experimental assays to produce PPI
data, (ii) representation, storage, querying and analysis of PPI data, (iii) bioin-
formatics methods for the analysis of PINs, (iv) mathematics models to describe
PINs. Consequently the flow of data in interactomics can be schematized as de-
picted in Figure 1. Wet-lab technologies are used to produce data that are stored
in different databases. Then data are modelled by using graphs and usually the

� Corresponding author.

R. Rizzo and P.J.G. Lisboa (Eds.): CIBB 2010, LNBI 6685, pp. 1–12, 2011.
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2 M. Cannataro and P.H. Guzzi

whole set of interactions of an organism is merged together in a comprehen-
sive protein interaction network represented as a graph. Finally, computational
methods mine such graphs producing biological meaningful knowledge [7].

Fig. 1. Protein interactions are discovered through wet lab experiments and stored
in Experimental Databases. Prediction algorithms produce derived data stored in
Databases of predicted interactions. The combination of both data forms PPI net-
works that are further analysed by graph-based algorithms that extract knowledge
from PPI data and PINs.

Following this flow of information, this paper describes the main data man-
agement and analysis approaches regarding protein-to-protein interactions us-
ing a bottom-up approach: from data generation, performed through wet lab
technologies, to data representation, mainly based on XML-based standards, to
data storage and querying, offered by a large set of protein-to-protein interaction
databases, and finally to protein-to-protein interaction networks representation,
analysis and visualization, offered by specialized algorithms and sophisticated
visualization tools.

The rest of the paper is organised as follows: Section 2 summarises experi-
mental methods for PPI data generation and standards for data representation
and exchange. Section 3 presents PPI databases. Section 4 describes main al-
gorithms for analysing and comparing PINs, while Section 5 presents tools for
their visualisation. Finally, Section 6 presents an ontology-based methodology
for the analysis of PPI data produced in Mass Spectrometry (MS) experiments.
Section 7 concludes the paper and outlines future work.
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2 Generation and Management of Protein-to-Protein
Interaction Data

2.1 Experimental Methods for PPI Data Generation

The accumulation of protein interaction data for building a comprehensive net-
work is an iterative process that requires many different experiments. Each
experiment may reveal a binary or a multiple interaction, i.e. an interaction re-
garding three or more proteins, so a complete investigation requires the planning
of a set of assays. Each determined interaction moreover has a given probability
to really exist in real organism.

Considering the experimental techniques we here report two main procedures:
(i) the yeast-two-hybrid (Y2H) technique, and (ii) mass-spectrometry. These
experimental platforms share a general schema in which a so called bait protein
is used as test to demonstrate its relations with one or more proteins said preys.
Both single interactions and exhaustive screenings have been realized following
this schema [18].

With respect to the quality of produced data, each assay can be evaluated
on the basis of the number of false positives, i.e. the number of false interac-
tions that are determined. Such parameter is usually referred to as reliability in
literature. Usually reliability is calculated on the basis of complex mathemat-
ical models that takes into account many different parameters. Consequently
reliability is defined as the fraction of real interactions with respect to the in-
teractions reported in previous datasets and measurements are based mainly on
the correlation of gene expression data. Three parameters are evaluated: (i) the
distribution of gene expression correlation coefficients, (ii) the reliability based
on gene expression correlation coefficients, and (iii) the accuracy of function
predictions [10].

2.2 Standards for PPI Data

As a consequence of many experiments performed using different techniques,
the amount of data and information regarding protein-protein interactions at the
proteomic level is increasing in a constant way. This increase results hence in two
main effects: (i) an accumulation of a large amount of data in existing databases,
(ii) the introduction of new databases focusing, for instance, on a single organism,
or on the integration with other sources of biological information.

As a consequence, researchers that need to retrieve data about interactions
have to face not only with different data but also with different data sources and
formats. The scenario is made more complicated by the absence of a common
accepted systems of identifiers for interactions that are identified using the iden-
tifiers of the interactors that may be encoded using different database identifiers.

In order to standardize the representation of interactions, different standards
have been proposed: the HUPO PSI-MI [20], the main emerging standard for
storing and exchanging PPI data, and IMEx [27], an ongoing effort based on
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HUPO PSI-MI, that aims to standardize the process of data curation and ex-
change between interaction databases, as happened in genomics.

The former, referred to as PSI-MI XML 1.0, has represented the first step
towards the introduction of a standard for representing molecular interaction
data but focused only on protein interaction data. It has been based on the use
of XML as encoding language and on the use of controlled vocabularies for rep-
resenting concepts. Successively, it has been extended to capture also interaction
among other molecules (e.g. enzymes and nucleic acids) and recently the 2.5 ver-
sion (namely PSI-MI XML2.5) has been released. Successively, a tabular version
of this format, for allowing a more efficient way to exchange data has been in-
troduced and implemented by the PSI-MI organization. This format, referred to
as MITAB 2.5 [20], is a tabular format and provides a simple representation of a
dataset. Both standards are used for data exchange and download but they lack
in the definition of a workflow for data sharing and curation among interaction
databases.

The International Molecular Exchange (IMEx) Consortium is a project that
aims to develop both standards and tools to manage the process of data curation
and exchange between interaction databases. It is based on the HUPO PSI-
MI format for data encoding. Databases that participate in this consortium
accept the deposition of interaction data from authors, helping the researcher
to annotate the dataset through a set of ad hoc developed tools. Partners of
IMEX produce separately their data and maintain them at first, then by using
an ad hoc realized network structure, they make available all the data following
the IMEx rules. Finally, the end user can retrieve such data by using a single
interface available through the IMEx webserver.

3 Protein-to-Protein Interaction Databases

The accumulation of protein interaction data caused the introduction of several
databases. Here we distinct on databases of experimental determined in-
teractions, that include all the databases storing interactions extracted from
both literature and high-throughput experiments, and databases of predicted
interactions that store data obtained by in silico prediction. Another impor-
tant class that we report is constituted by integrated databases or meta-
databases, i.e. databases that aim to integrate data stored in other publicly
available datasets. Currently, there exist many databases that differ on biological
and information science criteria: the covered organism, the kind of interactions,
the kind of interface, the query language, the file format and the visualization
of results.

Data produced in low or high-throughput experiments are stored in databases
of experimental determined interactions after a successive verification by
a committee of database curators. Researchers can submit directly their own
data to the databases, e.g. to Intact [16], or they can publish data as happens
in the literature and then the database curators will extract them, e.g. MINT
database [35]. Table 1 summarizes main existing databases, for a more complete
description see the annual issue of the Nucleic Acid Research Journal [29].
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For simpler organisms, such as yeast, worm or fly, the process of the whole
coverage of the interaction network seems to be almost completed. This process
caused the introduction of a huge amount of data that may be mined for many
objectives. Conversely, the complexity of the interactomes of higher eukaryotes
has prevented these experiments for humans. From this scenario the need for the
introduction of algorithms and tools able to use the experimental data to pre-
dict protein-interactions arose. Thus, starting from existing databases of verified
interactions, a number of algorithms have been developed to predict putative
interactions that are accumulated into databases of predicted interactions.
The common approach is based on the consideration that the interaction mech-
anisms are conserved through the evolution, i.e. if two protein A and B interact
in a simple organism, then the corresponding orthologs proteins A1, and B1 may
interact in a complex organism. Thus, starting from the interacting proteins in
a simple organism, prediction are made for other organisms.

Although the existence of many databases the resulting amount of data presents
three main problems [9]: the low overlap among databases, the resulting lack of
completeness with respect to the real interactome and the absence of integra-
tion. Consequently, in order to perform an exhaustive data collection, (e.g. for
an experiment), researchers should query manually different data sources. This
problem is faced with the introduction of databases based on the integration of
existing ones. Nevertheless, in the interactomics field, the integration of existing
databases is not easy to solve.

The integration of data from different laboratories and sources can be done
through the adoption of an accepted interaction identifiers system. It should
be noted that while in other biological database systems, such as the sequence
databases, there exists a common system of identifiers, and cross-reference is used
to retrieve the same biological entity from different databases, PPI interactions
are currently not identified by a unique identifier, but through the names of
corresponding partners.

Although the existence of these problems, different approaches for data in-
tegration and the building of larger interaction maps have been proposed. The
rationale of these approaches is based on a three-step process: (i) collection
of data from different datasources; (ii) transformation of data into a common
model; (iii) annotation and scoring of the resulting dataset.

All the existing databases go beyond the storing of the interactions, but in-
tegrate them with functional annotations, sequence information and references
to corresponding genes. Finally, they generally provide some visualization that
presents a subset of interactions in a comprehensive graph.

Nevertheless, the current scenario has some common problems and character-
istics that are shared from almost all the databases: (i) errors in the databases,
(ii) lack of naming standards, and (iii) little overlap among interactions.

Any published dataset may contain errors so any database may contain false
interactions, often called false positives, i.e. proteins erroneously reported as
interacting. This may be due, for instance, to technical, (i.e. false positives that
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are due to the detection method), and biological problems, (i.e. proteins that
are reported to be interacting in vitro but they are never co-located).

In other biological database communities, such as those storing protein se-
quences or structures, there exist many projects providing common accepted
identifiers for biological object, or at least a system for the cross-references of
the same object in almost all the databases. In interactomics there is not a com-
mon identifier, and in general interaction are not identified by a single code but
using the identifiers of interacting proteins.

It has been noted [9] that existing databases present little overlap with respect
to the dimension of the interactomes. Despite this, the integration of databases
is still an open problem due to the difficulties resulting from the absence of a
naming standard.

Conversely, common aspects of existing datasets are: (i) simple web-based
interface for querying, (ii) simple visualization of results in both tabular and
graphical way, (iii) data are available for download in different format. It should
be noted that almost all the databases offer the user the possibility of retrieving
data and some annotations through a simple web-based interface. Despite this,
the querying of protein networks aims to go beyond the simple retrieval of a set
of interactions stored in databases. Databases can actually be queried through
simple key-based searches, e.g. by inserting one or more protein identifiers.

The output of such a query is in general a list of interacting protein pairs.
These pairs share a protein, the query one. Such an approach, despite the con-
ceptual simplicity and the easy practical use, presents some limitations. Let us
consider, for instance, a researcher that would compare patterns of interactions
among species or a researcher that would search interactions related to a given
biological compartment or a biological process. The existing query interfaces, in
general, do not enables such queries.

Thus a more powerful querying system should provide a semantically more
expressive language, e.g. retrieve all the interaction patterns that share the
same structure. Then the query system should map the query, expressed in an
high-level language (e.g., using a graph formalism), into suitable graph struc-
tures and should search for them by applying appropriate algorithms. Unfor-
tunately this problem is not easy from a computational point of view, and
it requires: (i) the modeling of the PPI network in a suitable data structure;
(ii) the existence of appropriate algorithms for mapping, that is, the identifi-
cation of the correspondence of nodes in a subnetwork and those stored in the
database [36].

Table 1. Main Databases and Support of PSI-MI standard

Databases

Supporting PSI-MI Non supporting PSI-MI

DIP [30], MINT [8] BIND [1] I2D [6]
MIPS [7], INTACT [2] IntNetDB [34] STRING [33]
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4 Analysis and Comparison of Protein-to-Protein
Interaction Networks

PPI data can be represented by using graphs [12,14], where nodes are associated
to proteins, and edges represent interactions among proteins. The most simple
representation uses undirected graph, while more refined models use directed
and labeled edges to integrate the information about the kind of biochemical
association and its direction. Starting from a dataset of binary interactions a
graph is easily built in an iterative way. As starting point, the global topology
of an interaction network, i.e. the study of the clustering coefficient or of the
diameter, can reveal main properties of the network. In addition to analysis
of global properties, the study of recurring local topological features and the
extraction of relevant modules, i.e. cliques, has found an increasing interest. For
instance, it has been demonstrated that dense subgraphs as well as cliques may
be associated to protein complexes, a set of mutually interacting proteins that
play important biological roles [4].

For the purposes of this work, we categorize these studies in two main classes:
(i) algorithms that mine a single interaction network, and (ii) algorithms for the
comparison of two or more networks, also referred to as network alignment algo-
rithms. Methods belonging to the first class try to extract motifs, i.e. recurrent
regions in a graph, under the hypothesis that they could encode biological mean-
ingful objects. In this case the structure of the motif, i.e. clique, quasi-clique,
linear path, and stars determine the nature of biological knowledge. Differently,
algorithms belonging to the second class compare two or more networks evidenc-
ing conserved substructures, (local alignment algorithms), or global similarities,
(global alignment algorithms). Tables 2 and 3 summarize, respectively, main al-
gorithms for network analysis and comparison.

The interest in finding motifs in networks resides on two main reason: (i) indi-
viduating small subnetworks that play important roles, and (ii) unravelling the
evolutionary mechanism. The approach for studying protein networks is similar
to biological sequence analysis in which the motif analysis has determined the
existence of particular subsequences playing important biological roles [24]. For
instance an important class of algorithms is deputed to the prediction of protein
complexes, i.e. set of mutually interacting proteins. Starting from a PPI network,
complexes may be identified by searching for small and highly interconnected
regions, said cliques. Predicted complexes can be already known, i.e. their com-
position are known, or can denote a new protein complex. In this case, if the
experiments confirm this relation, the algorithms can be used as predictors.

Finally, algorithms belonging to the second class investigate conservation and
divergence of interactions between different species [5], so they usually receive
in input two or more PPI networks (i.e. two or more graphs) and produce as
output a set of conserved subgraphs among them. We can organize the existing
algorithms on the basis of different criteria, considering for instance the num-
ber of the input networks (pairwise or multiple), the topology of the revealed
structure (linear paths or dense subnetworks), the alignment strategy (local
or global), or the goal (prediction of orthologs or identification of conserved
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Table 2. Network Analysis Algorithms

Algorithm Task Method
MCODE [4] Complex Prediction Clustering

MCL [11] Complex Prediction Clustering

RNSC [21] Complex Prediction Clustering

Table 3. Network Alignment Algorithms

Name Description

PathBlast[19] Pairwise Local Alignmnent

Mawish [22] Pairwise Local Alignmnent

Graemlin [13] Pairwise and Multiple Local Alignmnent

ISORANK [23] Multiple Global Alignmnent

subnetworks). The local alignment strategy aims to find many correspon-
dences among small subnetworks of the input ones. Such subnetworks correspond
to conserved patterns of interaction that can represent conserved functional com-
ponents, e.g. complexes or pathways.

For instance, PathBlast [19] is a pairwise alignment algorithm that aims to
extract conserved linear paths among two species, while MaWish [22] aims to
find locally high similar subgraphs, and Graemlin [13], generalizes the previous
approaches allowing the search of more general topologies with respect to linear
paths and dense subnetworks in two or more organisms. ISORANK [31] is a
global alignment algorithm used to find global similarities among networks that
reveal functional orthologs across the input networks.

5 Visualization of Large Protein-to-Protein Interaction
Networks

Although graphs are well known and studied data structures, a main complexity
in the visualization of protein interaction networks is related to the high num-
ber of nodes and connections. Another issue regards the heterogeneity of nodes
(proteins) and edges (interactions), since in many applications may be useful to
represent different classes of proteins/interactions with different colours. Finally,
annotation of proteins and interactions enriches the protein interaction networks
with functional information, thus complicating their visualization.

Many software tools for the visualization of protein interaction networks have
been developed. They offer basic visualisation of PINs and recently they have
been enriched with new functions for PPI data management and PIN analysis.
A current trend is the deployment of open, extensible visualization tools (e.g.
Cytoscape), that may be incrementally enriched by the interactomics community
through the development of plugins [28].



PPI Data Management 9

6 Ontology-Based Analysis of Protein-to-Protein
Interaction Data

A typical experimental workflow of interactomics starts in the wet lab with the
determination of one or more interactions among proteins. Then such interac-
tions can be integrated with interactions already known stored in databases.
This process causes the formation of protein interaction networks. Finally, pro-
tein interaction networks modelled as graphs can be mined to obtain biological
relevant information. This case study describes a typical workflow of analysis
of an interaction network obtained from a proteomic experiment. It starts dis-
cussing the technological platform that has produced such data. Then it explains
the reconstruction of the networks through the integration of experimental data
and databases. The whole process of analysis can be structured as depicted in
Figure 2 (see [25,26] for more details).

The experiment starts with the data production by using, for instance, Tan-
dem Affinity Purification coupled to Mass Spectrometry (MS-TAP) [32]. The
results of a MS-TAP experiment is a set of identified proteins organized in a list,
the Dataset hereafter. Starting from the Dataset, a network can be iteratively
built by querying publicly available databases. The search can be delimited only
to the interactions involving proteins within Dataset, or can be expanded to
the interactions regarding a pair of proteins where one belongs to Dataset. After
the identification of the interaction a network can be built and visualized, for
example in Cytoscape. At this point, the interaction network can be analysed
to extract main topological parameters. Common measurements are, but are
not limited to, the following parameters: number of nodes (N) and edges (E),
average clustering coefficient (cc), node-degree (k) and its distribution among
nodes, average node degree avk, diameter (d) and closeness centrality of each
node (ccl) [3].

Finally, the network can be mined in order to individuate the biological mecha-
nisms and processes that are related to the Dataset. Such analysis, often referred

Fig. 2. Workflow of analysis of a PIN reconstructed from a proteomic experiment
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to as functional enrichment analysis, aims to individuate a set of shared an-
notations among selected proteins, in order to assign a biological meaning to the
selected genes/proteins. Annotations are often stored as controlled vocabularies
or organized in taxonomies, e.g. Gene Ontology is a controlled-vocabulary of the
molecular-biology domain to describe and organize hierarchically concepts [15].
There exists more than 60 bioinformatics tool that perform such analysis that
can be cathegorized on the basis of different criteria [17]: the kind of statistical
model, the annotation databases, or the kind of biological data in input.

7 Conclusion and Future Work

Analysis of protein interaction network is becoming a wide research area. This
paper surveyed the whole workflow of analysis of interaction networks, from
wet lab to knowledge. Paper initially introduced technologies, standards and
databases for generating, representing and storing Protein-to-Protein Interaction
Data. Then main algorithms of analysis are discussed, evidencing open issues and
future challenges. Finally, the paper presented a methodology for the ontology-
based analysis of Protein-to-Protein Interaction data.

Acknowledgments. We wish to thank Pierangelo Veltri, who shared with us
many discussions and work, Concettina Guerra and Alessandro Weisz who col-
laborated with us on some research activities in interactomics.
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Abstract. Clustering is one of the most well known activities in scien-
tific investigation and the object of research in many disciplines, ranging
from Statistics to Computer Science. Following Handl et al., it can be
summarized as a three step process: (a) choice of a distance function; (b)
choice of a clustering algorithm; (c) choice of a validation method. Al-
though such a purist approach to clustering is hardly seen in many areas
of science, genomic data require that level of attention, if inferences made
from cluster analysis have to be of some relevance to biomedical research.
Unfortunately, the high dimensionality of the data and their noisy nature
makes cluster analysis of genomic data particularly difficult. This paper
highlights new findings that seem to address a few relevant problems in
each of the three mentioned steps, both in regard to the intrinsic pre-
dictive power of methods and algorithms and their time performance.
Inclusion of this latter aspect into the evaluation process is quite novel,
since it is hardly considered in genomic data analysis.

1 Introduction

In recent years, the advent of high density arrays of oligonucleotides and cDNAs
has had a deep impact on biological and medical research. Indeed, the new
technology enables the acquisition of data that is proving to be fundamental in
many areas of the biological sciences, ranging from the understanding of complex
biological systems to diagnosis (e.g. [3]).

Although clustering microarray expression data is by now a fundamental as-
pect of microarray data analysis [10,32], the application of such a powerful and
well established methodology to post-genomic data seems to be rather ad hoc.
Motivated by such an observation, Handl et al. [20] have produced a key paper,
with the intent to bring to the attention of both bioinformatics researchers and
end-users some of the fundamental aspects of the methodology. In order to place
this paper in the proper context, it is useful to recall from Handl et al. that
clustering can be seen as a three step process: (1) choice of a distance function;
(2) choice of a clustering algorithm and (3) choice of a methodology to assess the
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statistical significance of clustering solutions. Points (2) and (3) lead into two
well established and rich research areas in data analysis. Unfortunately, point (1)
has been hardly investigated regarding this new type of data. Indeed, there are
very few results on this topic (see [10,16,30] and references therein). Although
computational methods for the analysis of microarray data have witnessed an
exponential growth, very little has been done in trying to assess their merits [28].
Consequently, the need for a through evaluation of the entire analysis process
for microarray data is being recognized and a few benchmarking studies start to
appear, i.e., [15,17]. Following that novel research trend, we consider all the three
steps of clustering, devoting a separate section to each of them. In particular,
this paper is organized as follows.

The experimental set-up we have used for the results reported here is presented
in Section 2. Those results are simply highlighted here since space limitation do
not allow to report the entire set of experiments and results, which will be
presented in more extended form elsewhere.

Section 3 describes in detail a new approach to assess both the intrinsic sepa-
ration ability of many standard distance functions and their use in conjunction
with clustering algorithms. The main results are: (a) a qualitative visualization
method to describe the interplay between distances and clustering algorithms
and (b) a quantitative method to assess the performance of a clustering algo-
rithm and the intrinsic separability of a distance function via a new external
validation index.

Section 4 is devoted to clustering algorithms, in particular to Non-negative
Matrix Factorization (NMF for short) [27]. Indeed, following the work by Brunet
et al. [7] on molecular pattern discovery, NMF has become a reference pattern
discovery method in bioinformatics [8]. Although it is well known that it is quite
demanding in terms of computer time, its worthiness compared to other cluster-
ing algorithms has not been studied. It involves the assessment of the method
with respect to both its ability to cluster data and the time it takes for that
task, as well as comparison with other clustering algorithms. Unfortunately, our
experiments show that NMF is not competitive with respect to classic clustering
algorithms, both in terms of prediction power and of time performance. There-
fore, the power of the method seems to be mostly for pattern discovery tasks
and its use as a clustering algorithm is inappropriate.

Section 5 discusses the assessment of the statistical significance of a clustering
solution. Here we concentrate on a particular aspect of this rather general ques-
tion [24]: the identification of the correct number of clusters in a given dataset.
We refer to this class of statistical methods as internal validation measures.
Moreover, we focus on data-driven internal validation measures, particularly on
those designed for and tested on microarray data. Measures in this class as-
sume nothing about the structure of the dataset, which is inferred directly from
the data. The main result in this section is a highlight of Fast Consensus (FC
for short), a speed-up of Consensus Clustering (Consensus for short) [29]. This
latter measure turns out to be the one of choice, among a set of quite repre-
sentative measures recently benchmarked on microarray data [17]. Since it has
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also a paradigmatic nature for stability-based validation measures, it is a natural
candidate for a speed-up. The new method FC has the same predictive power
as Consensus, but it is at least one order of magnitude faster in time. Even
more remarkably, it reduces to one order of magnitude the time gap between the
fastest and most precise internal validation measures available in the literature.

The last section offers some conclusions and some directions of future research.

2 Experimental Set-Up

2.1 Datasets

Technically speaking, a gold solution for a dataset is a partition of the data in
a number of classes known a priori. Membership of a class is established by
assigning the appropriate class label to each element. In less formal terms, the
partition of the dataset in classes is based on external knowledge that leaves no
ambiguity on the actual number of classes and on the membership of elements to
classes. Although there exist real microarray datasets for which such an a priori
division is known, in a few previous studies of relevance here, a more relaxed
criterion has been adopted to allow also datasets with high quality partitions that
have been inferred by analyzing the data, i.e., by the use of internal knowledge
via data analysis tools such as clustering algorithms. In strict technical terms,
there is a difference between the two types of gold solutions. For their datasets,
Dudoit and Fridlyand [12] elegantly make clear that difference in a related study
and we closely follow their approach here.

Each dataset is a matrix, in which each row corresponds to an element to
be clustered and each column to an experimental condition. The four datasets,
together with the acronyms used in this paper, are reported next. For conciseness,
we mention only some relevant facts about them. The interested reader can find
additional information in Dudoit and Fridlyand [12] for the Lymphoma and
NCI60 datasets, Monti et al. for the Normal Tissue dataset [29] and in Di Gesú
et al. [11], for the remaining ones.

Lymphoma: The dataset comes from the study of Alizadeh et al. [4] on the three
most common adult lymphoma tumors. It is an 80 × 100 matrix, where each
row corresponds to a tissue sample and each column to a gene. There is an a
priori partition into three classes and we take that as the gold solution. The
dataset has been obtained from the original microarray experiments as described
by Dudoit and Fridlyand [12].

NCI60: This dataset originates from a microarray study in gene expression vari-
ation among the sixty cell lines of the National Cancer Institute anti-cancer drug
screen [2]. It is a 57 × 200 data matrix, where each row corresponds to a cell line
and each column to a gene. There is an a priori partition of the dataset into eight
classes and we take that as the gold solution. The dataset has been obtained from
the original microarray experiments as described by Dudoit and Fridlyand [12].

Normal Tissue: It is a 90 × 1277 data matrix, where each row corresponds to
a tissue sample and each column to a gene. The dataset comes from the study
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of Su et al. [33] on the four distinct cancer types. There is a partition into four
classes and we take that as the gold solution.

PBM: The dataset contains 2329 cDNAs with a fingerprint of 139 oligos. This
gives a 2329×139 data matrix. According to Hartuv et al. [21], the cDNAs in the
dataset originated from 18 distinct genes, i.e., the a priori classes are known.
The partition of the dataset into 18 groups was obtained by lab experiments at
Novartis in Vienna. Following that study, we take those classes and the class
labels assigned to the elements as the gold solution. It was used by Hartuv et
al. to test their clustering algorithm.

2.2 Distances

For our experiments, among the plethora of distance functions available in the
mathematical literature [9], we have used Euclidean distance, Pearson correlation
and Mutual Information (MI for short), since they have been shown to be the
most suitable for microarray data [16]. In what follows, we refer to distance,
similarity and dissimilarity functions with the generic term distance functions.

2.3 Algorithms and Hardware

For our experiments, we have used our own C/C++ implementation of NMF,
which is based on the Matlab script available at the Broad institute [1]. Indeed, it
has been converted to a C/C++ version, then validated by ensuring it produces
the same results as for the Matlab version in a number of simulations. In addition
to NMF, we have chosen a suite of algorithms, i.e., K-means among Partitional
Methods, Average Link among the Hierarchical Methods. Since they are standard
and well known clustering algorithm, they are not described here. The interested
reader, however, will find a detailed description of them in a classic book on the
subject by Jain and Dubes [23]. It goes without saying that each of the above algo-
rithms has already been used for data analysis of microarray data, e.g. [11,18,36].
All experiments were performed in part on several state-of-the-art PCs and in part
on a 64-bit AMD Athlon 2.2 GHz bi-processor with 1 GB of main memory run-
ning Windows Server 2003. All the timing experiments reported were performed
on the bi-processor, using one processor per run. The use of several machines for
the experimentation was deemed necessary in order to complete the full set of ex-
periments in a reasonable amount of time. Indeed, as detailed later, some exper-
iments would require weeks to complete execution on Normal Tissue and PBM,
the largest dataset we have used. We also point out that all the Operating Systems
supervising the computations have a 32 bits precision.

3 Evaluating Distance-Clustering Performance via ROC
Analysis

There are very few studies in the specialistic literature that shed light on the
proper choice of a distance function for clustering of microarray data. That
involves addressing the following points:
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(A) Assessment of the intrinsic separation ability of a distance. That is, how
well a distance discriminates independently of its use within a clustering
algorithm.

(B) Assessment of the predictive clustering algorithm ability of a distance. That
is, which distance function grants the best performance when used within
a clustering algorithm.

(C) The interplay between (A) and (B).

Points (A) and (B) have been studied before (see [16] and references therein)
with some useful insights. Unfortunately, very little is known about (C), one of
the difficulties being a fair comparison between the performance of a distance
function and a clustering algorithm measured in terms of classification ability.
Here we address this latter problem by extending techniques in [16].

We need to introduce some terminology and recall some definitions. Given a
clustering solution C = {c1, . . . , cr}, it can be represented by a binary matrix J ,
referred to as connectivity matrix, where each entry of J is defined as follows:

J(i, j) =

{
1 if xi and xj belongs to the same cluster,
0 otherwise.

(1)

A useful tool to assesses the performance of a classifier, not necessarily binary, is
the confusion matrix, which is a matrix where each row represents the instances
in a predicted class, while each column represents the instances in an actual class.
In the case of a binary classification, the 2×2 confusion matrix stores the number
of elements of class 0 classified as 0, denoted T0, and the number of elements of
class 0 classified as 1, denoted F1. One defines T1 and F0 analogously. In this
context, the Sensitivity TPR and Specificity TNR are defined as follows:

TPR =
T0

T 0 + F1

TNR =
T1

T 1 + F0

A ROC plane [22] is a plane where y = TPR and x = FPR = 1−TNR, and it is
useful to measure a classification in terms of TPR and FPR rates, once having
established to represent with 0 the positive class. Note that, since a classifier
assigns data items to classes, the TPR represents the percentage of item pairs
correctly assigned to different classes, while the FPR is the percentage of item
pairs incorrectly assigned to different classes. In the ROC plane, it is possible
to define a particular curve, which is referred to as ROC curve, that allows to
assess the performance of a classifier. Indeed, the area under this curve (AUC
for short) is defined in the range [0, 1], where a value of 0.5 corresponds to the
performance of a classifier with a random assignment rule, while the closer is
AUC to one, the better is the performance of the classifier.

We address point (C) by:

(C.1) showing how to map a clustering solution into the ROC plane (see Sec-
tion 3.2);
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(C.2) introducing a distance between a clustering solution and the gold solution
(see Section 3.2);

(C.3) showing how (C.1) and (C.2) can be used to fairly compare the intrinsic
ability of distance function and a clustering algorithms (see Section 3.3).

3.1 Clustering Solutions and ROC Plane

Given a gold solution GS, it is possible to map a clustering solution s into the
ROC plane as follows:

1. Compute the connectivity matrix Js for s.
2. Starting from Js, compute the confusion matrix with respect to GS using

the definition of confusion matrix stated at the beginning of this section.
3. Use this confusion matrix to compute TPR and FPR for s. Those two

variables naturally identify a point into the ROC plane, associated to s.

A few remarks are in order. The above approach naturally leads to measure a
clustering solution in terms of TPR and FPR rates. The point into the ROC
plane associated with GS is PGS = (0, 1) (see the square marker in Figures 1-3).
Finally, each point in the ROC plane can be obtained via a clustering solution.

3.2 The Distance between Clustering Solutions in ROC Plane

We now provide a method to assess the relative merits of different clustering
algorithms using a given distance function. Given a clustering solution s, let
Ps = (x, y) be the point in the ROC plane corresponding to it.

The performance of s is proportional to the proximity of Ps to PGS , as we now
explain. Let Em be the Misclassification error rate defined as the sum between
FPR (x) and False negative rate (FNR = 1− y). That is, Em is the L1 metric
(d1) computed between Ps and PGS , i.e., d1(PGS , Ps) = |x + 1 − y|. Then, the
closer Ps and PGS with respect to d1 are, the better the clustering solution with
respect to Em.

It is worth pointing out that Ps gives a measure on the agglomerative and
divisive tendency of a generic clustering algorithm. Indeed, the greater the x
value, the more divisive the clustering algorithm is. Analogously, the smaller
the y value, the more agglomerative the clustering algorithm is. Indeed, we can
actually devise an index that measures such a tendency.

Let Eb be the Balancing error rate defined as the measures of how much
FPR and FNR are unbalanced. The Balanced Misclassification Index (BMI
for short) for a generic clustering solution is:

BMI = α × (Em)2 + β × (Eb)2 (2)

where the weights α and β allow to tune the importance between balance and
misclassification.
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It is of interest and relevance here to notice that by setting α = β = 0.5,
BMI corresponds to d2(PGS , Ps). That is, the L2 (Euclidean) metric between
the points PGS and Ps. This means that the closer Ps and PGS are with respect
to d2, the better the clustering solution, in equal measure (α = β = 0.5) between
misclassification error rate Em and balancing error rate Eb.

Operationally, once fixed α = β = 0.5, if we want to compute the BMI of
a clustering algorithm producing a clustering solution with x = FPR and y =
TPR, respectively, one needs only to compute the Euclidean distance between
the points Ps and PGS in the ROC plane. It is obvious that such a technique
can also be used to compare the performances of several clustering solutions by
considering the Euclidean distances between the associated points into the ROC
plane and PGS .

3.3 A Procedure to Compare Distance Functions and Clustering
Algorithms Via ROC Analysis

We recall from [16] that starting from a distance matrix D and a gold solution
GS, it is possible to derive a ROC curve into the ROC plane, as we now briefly
outline. Given a threshold value φ ∈ [0, 1] and the distance matrix D, let Jφ be
a matrix in which each entry is defined as follows:

Jφ(i, j) =

{
1 if D(i, j) ≤ φ,

0 otherwise.
(3)

As for the connectivity matrix defined in (1) it is possible also for Jφ to compute
a confusion matrix. Therefore, by considering all the points corresponding to
different threshold values, we obtain the ROC curve for the distance function d.
If each point in the ROC curve so obtained corresponded to a proper partition of
the items, i.e., a clustering solution, we could use it to address (C). Unfortunately,
that is not the case, as we now argue. In fact, Jφ does not correspond to a
partition of the dataset since there could be three items i, j, k such that (i, j)
and (j, k) belong to different clusters, that is two clusters could have a non-empty
intersection. Therefore, in order to properly compare a distance function with
a clustering algorithm, via ROC analysis, we need to “convert” the matrix Jφ

into a matrix J ′
φ representing a clustering solution. This can be done in several

ways: here we have adopted an approach based on the connected components
induced by the matrix Jφ. Intuitively, the process is the following: if Jφ does
not correspond to a partition, i.e., at least two sets a and b have non-empty
intersection, then they are merged into a new set c = a ∪ b. This allows to
transform the ROC curve associated to a distance function into a new curve in
which each point corresponds to a proper clustering solution. We refer to this
curve as the corrected ROC curve (CROC for short) of a distance, useful to
measure the intrinsic separation ability of a distance function with respect to
clustering.

Using the CROC curve, one can find the best clustering solution associated
to a distance function with respect to BMI, as the closest point to PGS into the
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CROC curve (see the ∗ marker in Figures 1-3 as an example). One can now fairly
compare a distance function and a clustering solution produced by an algorithm,
in terms of their classification ability:

1. Compute the ROC curve for a distance function d.
2. Calculate the CROC curve starting from the ROC curve computed in the

previous point.
3. Find the best point into the CROC curve, i.e., the point with the lowest

value of BMI, and mark it.
4. Map one ore more clustering solutions in the ROC plane (as described in

Section 3.1) and mark the corresponding points.
5. Rank the performance of each marked points in the ROC plane, as described

in Section 3.2.

3.4 Results

Figures 1-3 show the results of the experiments. In particular, each figure re-
ports the performance of the clustering algorithms with the use of the same
distance function for each dataset. Such analysis shows that the K-means and
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Fig. 1. The CROC curve and plot of the clustering solutions for each dataset in the
case of the Euclidean distance. The markers show TPR versus FPR of each clustering
solution. The area in gray represents the set of points that has a better performance
with respect to the best distance point for BMI , while the dotted line represents set
of points with the same performance.
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Fig. 2. The CROC curve and plot of the clustering solutions for each dataset in the
case of Mutual Information. The markers show TPR versus FPR of each clustering
solution.
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Fig. 3. The CROC curve and plot of the clustering solutions for each dataset in the
case of Pearson Correlation. The markers show TPR versus FPR of each clustering
solution.
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Table 1. The BMI value for the best point distance and each clustering algorithm for
all datasets for the Euclidean distance. The numbers in bold show BMI values lower
than the best distance point into the CROC curve, i.e., when the performance of the
algorithm is better then of the performance of the distance alone.

Euclidean
NCI60 Lymphoma PBM Normal Tissue

Average Link 0.321903637 0.419453466 0.597614387 0.242813873
K-means 0.538007588 0.334160756 0.704107566 0.2937045
Best distance Point 0.469881192 0.488040102 0.411447355 0.170227836

Table 2. The BMI value for the best point distance and each clustering algorithm for
all datasets for the Mutual Information. The legend is as in Table 1.

Mutual Information
NCI60 Lymphoma PBM Normal Tissue

Average Link 0.446332725 0.968440209 0.54845816 0.385645494
K-means 0.409391975 0.73217916 0.44437129 0.578532332
Best distance Point 0.564302857 0.809560795 0.515610657 0.478981757

Table 3. The BMI value for the best point distance and each clustering algorithm for
all datasets for the Pearson correlation. The legend is as in Table 1.

Pearson Correlation
NCI60 Lymphoma PBM Normal Tissue

Average Link 0.321903637 0.438963921 0.3415215 0.242813873
K-means 0.581929376 0.336156536 0.619121891 0.221943924
Best distance Point 0.469881192 0.488040102 0.441733534 0.515610657

Average Link clustering algorithms are both able to improve the intrinsic sepa-
ration ability of a distance function with respect to clustering. In particular, the
BMI values of Average Link is 8/12 greater then the BMI of the correspond-
ing best point for the distance in the CROC curve (see also Tables 1-3). It is
worth pointing out that the intrinsic separation ability of the MI and Pearson
correlation are improved by K-means and Average Link in most of the cases.

4 Clustering Algorithms

The second step of the clustering process is to compute a partition of X via a
clustering algorithm. Recall that a choice of a distance function may be required.
In the general data mining literature, there is a great proliferation of research
on clustering algorithms, in particular for gene expression data [10]. Some of
those studies concentrate both on the ability of an algorithm to obtain a high
quality partition of the data and on its performance in terms of computational
resources, mainly CPU time. For instance, hierarchical clustering and K-means
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algorithms [24] have been the object of several speed-ups (see [6,14,31] and ref-
erences therein). Moreover, the need for computational performance in the area
of clustering for microarray data is so acute that implementations of well known
algorithms, such as K-means, specific for multi-core architectures, are being pro-
posed [26]. It is worth recalling that, putting together the study by D’haeseleer
[10] and a more recent one by Freyhult et al. [15], hierarchical algorithms (with
the exception of Single Link) and K-means seem to be the most appropriate for
microarray clustering.

Here we consider NMF as a clustering algorithm. One of the main differ-
ences between NMF and the already mentioned algorithms is that it produces a
partition of X without the use of a distance function. Another difference is its
generality as a pattern discovery tool in bioinformatics.

In what follows, we limit ourselves giving a brief description of NMF. The
interested reader can find relevant references for a more in-depth description in
[7,8,27]. Assume that one is given m n-dimensional non-negative data vectors,
organized in an n × m matrix V . Assume also that one is given an integer r,
usually chosen such that (n + m)r < nm. NMF computes two matrices W and
H such that V � WH , where the first is of dimension n × r and the second of
dimension r×m. Notice that each data vector can be written as v � Wh, where
v and h are homologous columns in V and H . That is, each data vector can be
seen as a linear combination of the columns of W weighted by the components
of h. Following such an observation, W is considered the basis of a new space of
size r, describing the data, and H contains the coefficients. Following the same
notation as in Brunet et al. [7] and Devarajan [8], assume that V represents the
outcome of a microarray experiment, where we have m samples and each of them
is composed of measurements of n genes (e.g. V would be the transpose of the
datasets we use here-see Section 2.1). In this case, W and H assume two very
intuitive roles. W is a matrix whose columns are “metagenes” and H is a matrix
whose rows are “meta expression patterns”. If one is interested in clustering the
samples in r groups, as we do here, then one can place sample i in cluster j if
the expression level of sample i is the maximum in metagene j. That is, hi,j is
maximum in the i-th column of H .

As for methods implementing NMF, the most popular follow at least one of the
following principles and techniques: alternating direction iterations, projected
Newton, reduced quadratic approximation, and descent search. The interested
reader is referred to [35] for a compendium on the state of the art, including
available software.

Recall from Section 2.1 that all of our datasets have a gold solution and from
[18] that an external index measures how well a clustering solution computed
by an algorithm agrees with the gold solution for a given dataset. In particular,
we use the Adjusted Rand index (RA for short) for our experiments. It is worth
recalling that it has a maximum value of one, indicating a perfect agreement
between the two partitions, while it has an expected value of zero indicating a
level of agreement due to chance. Note that RA may be negative [13,37]. So, for
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Fig. 4. The RA index curves, for each dataset. In each figure, the plot of each algorithm
is drawn according to the legend. For Normal Tissue and PBM, the experiments with
NMF were terminated due to their high computational demand and the corresponding
partial plots are not reported here. It is worth recalling that Lymphoma and NCI60
have 3 and 9 classes in the gold solution.

two partitions to be in significant agreement, RA must assume a non-negative
value substantially away from zero.

In order to evaluate the precision of a clustering algorithm, i.e., its ability to
identify a good partition of the data, we use the following methodology for our
experiments. With the use of a given clustering algorithm, a partition of X into
i clusters is generated, for i ∈ [2, 30], and its agreement with the gold solution
is measured via RA. Then, all those values are plotted to obtain a curve. For a
good algorithm, one expects that curve to have a maximum in the proximity of
the number of clusters in the gold solution and to decrease sharply after that
point. We also record the time, in milliseconds, that the algorithm takes in order
to generate all of those solutions.

The results corresponding to our experiments are reported in Fig. 4 for the
precision part (plots of RA) and in Table 4 for the timing results. For precision,
all algorithms perform very well on the NCI60 dataset, while their performance
is somewhat mixed on the Lymphoma dataset. Those results highlight that the
predictive power of NMF does not seem to be superior to that of the other two
classic algorithms. Moreover, it is from two to four orders of magnitude slower in
time. A full set of experiments on nine benchmark microarray datasets, including
the four reported here, are presented in [35] and they provide strong evidence

Table 4. Timing results in milliseconds for all the algorithms on all datasets. For
NMF on PBM and Normal Tisue, the experiments were terminated due to their high
computational demand (weeks to complete).

NCI60 Lymphoma PBM Normal Tissue

Average Link 500 921 4.4 × 105 2.0 × 103

K-means 3.2 × 103 7.2 × 103 1.1 × 106 7.5 × 104

NMF 3.9 × 105 5.2 × 105 - -
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that NMF does not seem to be competitive with respect to the other two classic
algorithms.

Therefore, the use of NMF as a clustering algorithm is not suggested, in
particular for large datasets. Indeed, given the steep computational price one
has to afford, its use does not seem to be justified since Average Link is at least
four orders of magnitude faster and with a better precision. In fact, the main
power of NMF rests on its pattern discovery ability, and its use as a clustering
algorithm seems to be very limiting of the technique.

5 Internal Validation Measures

The last step of the clustering process is to assess the statistical significance of
a clustering solution via a validation measure. As stated in the Introduction, we
concentrate on data-driven internal measures that predict the correct number of
clusters in a given dataset. Giancarlo et al. [17] have recently proposed an exten-
sive comparative analysis of measures taken from the most relevant paradigms
in the area: (a) hypothesis testing in statistics, e.g., [34]; (b) stability-based tech-
niques, e.g., [5,12,29] and (c) jackknife techniques, e.g., [38]. These benchmarks
consider both the ability of a measure to predict the correct number of clusters
in a dataset and, departing from the current state of the art in that area, the
computer time it takes for a measure to complete its task. Since the findings of
that study are essential to place this research in a proper context, we highlight
them next:

(1) There is a very natural hierarchy of internal validation measures, with the
fastest and less precise at the top. In terms of time, there is a gap of at least
two orders of magnitude between the fastest, Within Cluster Sum of Squares
(WCSS for short) [34], and the slowest ones.

(2) All measures considered in that study have severe limitations on large datasets
with a large number of clusters, either in their ability to predict the correct
number of clusters or to finish their execution in a reasonable amount of
time, e.g, a few days.

(3) Although among the slowest, Consensus displays some quite remarkable
properties that, accounting for (1) and (2), make it the measure of choice for
small and medium sized datasets. Indeed, it is very reliable in terms of its
ability to predict the correct number of clusters in a dataset, in particular
when used in conjunction with hierarchical clustering algorithms. Moreover,
such a performance is stable across the choice of basic clustering algorithms,
i.e., various versions of hierarchical clustering and K-means, used to produce
clustering solutions.

5.1 FC and Consensus Validation Measures

Since validation procedures are the computational bottleneck in many data anal-
ysis processes involving microarrays, more efficient ones would be a substantial
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contribution to this area [25]. One way to tackle such an admittedly difficult
question is to design “approximation” algorithms, i.e., algorithms that provide
essentially the same precision of a measure, while being substantially faster in
time. Giancarlo et al. [17] have proved the validity of such an approach and they
have also started a systematic investigation of its potentiality. Here we contribute
FC, an “approximation” of Consensus, to that line of research.

In what follows, we limit ourselves to an intuitive description of both Consensus
and FC, referring the reader to [29] and [19,35] for a description of each, respec-
tively. Indeed, a large number of clustering solutions, each obtained via a sample
of the original dataset, seem to be required in order to identify the correct number
of clusters. However, there is no theoretic reason indicating that those clustering
solutions must each be generated from a different sample of the input dataset,
as Consensus does. Such an independent set of “sampling and clustering steps”
generates duplications in the computation and therefore loss of efficiency. Based
on this observation, FC performs, first, a sampling step to generate a data matrix,
which is then used to generate all the required clustering solutions. This allows
to obtain a speed-up since costly computational duplications are avoided when
the clustering algorithm is hierarchical. Indeed, it becomes possible to interleave
the computation of the measure with the level bottom-up construction of the hi-
erarchical tree underlying the clustering algorithms. Specifically, only one dendo-
gram construction is required rather than the repeated and partial construction
of dendograms as in the Consensus procedure. Therefore, we use, in full, the main
characteristic of agglomerative algorithms.

Tables 5 and 6 report the precision and timing results regarding FC and
Consensus on all datasets and clustering algorithms, respectively. Note that,
in terms of precision, FC and Consensus provide nearly identical predictions on
all the datasets. Moreover, in terms of time, note that FC is faster then Consensus
by at least one order of magnitude on hierarchical algorithm. In particular, FC
is able to complete execution on the PBM dataset, as opposed to Consensus,
with all algorithms.

Moreover, in order to compare FC with other internal validation measures
proposed in the literature, we take into account the benchmarking proposed by
Giancarlo et al. [17]. From that study we extract and report, in Tables 7 and
8, the fastest and best performing measures, with the addition of FC. The inter-
ested reader can find in [17] a more in-depth description of the measures used
in that study and reported here. As is self-evident from that latter table, FC
with Average Link is within a one order of magnitude difference in speed with
respect to the fastest measures, i.e., WCSS and G-Gap [17] (an approximation of
the Gap Statistics). Quite remarkably, it grants a better precision in terms of its
ability to identify the underlying structure in each of the benchmark datasets.
It is also of relevance to point out that FC with Average Link has a time per-
formance comparable to that of FOM [38], but again it has a better precision
performance. Notice that, none of the three just-mentioned measures depends
on any parameter setting, implying that no speed-up will result from a tuning
of the algorithms.



The Three Steps of Clustering in the Post-Genomic Era 27

Table 5. A summary of the precision results of Consensus and FC on all datasets
and clustering algorithms. A number in a circle with a black background indicates a
prediction in agreement with the number of classes in the dataset; while a number in a
circle with a white background indicates a prediction that differs, in absolute value, by
1 from the number of classes in the dataset; a number not in a circle/square indicates
the remaining predictions; a dash indicates that the experiments were terminated due
to their high computational demand.

Precision
Lymphoma NCI60 Normal Tissue PBM

FC-Average Link � � 10 2
FC-K-means � � 10 16

Consensus-Average Link � � 10 -
Consensus-K-means � � 10 -

Gold solution 3 8 13 18

Table 6. A summary of the timing results of Consensus and FC on all datasets and
clustering algorithms. Each cell reports timing in milliseconds, while a dash indicates
that the experiments were terminated due to their high computational demand.

Timing
Lymphoma NCI60 Normal Tissue PBM

FC-Average Link 6.8 × 104 7.0 × 104 3.4 × 105 4.2 × 107

FC-K-means 1.1 × 106 1.2 × 106 2.0 × 106 1.6 × 108

Consensus-Average Link 1.3 × 106 1.4 × 106 9.5 × 106 -
Consensus-K-means 1.1 × 106 1.2 × 106 6.3 × 106 -

Table 7. A summary of the fastest performing measures taken into account by Gian-
carlo et al., with the addition FC. The table legend is as in Table 5.

Precision

CNS Rat Leukemia NCI60 Lymphoma Yeast

WCSS-R-R0 � � � � �
G-Gap-K-means � � 4 � �
G-Gap-R-R5 � � 2 � �
FOM-R-R5 � � � 5 �
FOM-Average Link � � � 6 �
FC-Average Link � � � � �
FC-K-means � � � � �
Gold solution 6 3 8 3 5

The results outlined above are particularly significant since (i) FOM is one of
the most established and highly-referenced measures specifically designed for mi-
croarray data; (ii) in purely algorithmic terms, WCSS and G-Gap, are so simple as
to represent a “lower bound” in terms of the time performance that is achievable
by any data-driven internal validation measure. In conclusion, our experiments
show that FC is quite close in time performance to three of the fastest data-
driven validation measures available in the Literature, while also granting better
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Table 8. A summary of the timing results for the fastest performing measures taken
into account by Giancarlo et al., with the addition FC. The table legend is as in Table 6.

Timing

CNS Rat Leukemia NCI60 Lymphoma

WCSS-R-R0 1.2× 103 8.0× 102 4.1× 103 3.0× 103

G-Gap-K-means 2.4× 103 2.0× 103 8.3× 104 8.4× 103

G-Gap-R-R5 1.2× 103 8.0× 102 4.5× 104 3.2× 103

FOM-R-R5 3.9× 103 3.7× 104 2.1× 105 7.6× 104

FOM-Average Link 1.6× 103 7.5× 103 5.1× 104 1.8× 104

FC-Average Link 4.7× 104 3.5× 104 5.2× 104 1.3× 105

FC-K-means 7.2× 105 7.7× 105 2.5× 106 2.3× 106

precision results. In view of the fact that the former measures are considered
reference points in this area, the speed-up of Consensus proposed here seems
to be a non-trivial step forward in the area of data-driven internal validation
measures.

6 Conclusions

The results in this paper extend the ones reported in the literature in several
ways. Namely:

– A new approach is proposed for the assessment of the relationship between
the classification ability of a distance function and of a clustering algorithm.
That is achieved via the introduction of BMI, a new validation index. More-
over, the comparative methodology associated to BMI is able to establish
that K-means and Average Link clustering are able to improve upon the
intrinsic separation ability of a distance with respect to clustering. That is,
they amplify the discriminative ability of a distance function.

– NMF is a computationally expensive procedure, even on datasets of moder-
ate size and quite manageable by other algorithms. Its use as a clustering
algorithm is discouraged.

– FC is perceived as a non-trivial step forward in the identification of a vali-
dation measure for microarray data analysis that is both fast in execution
time and accurate in its prediction of the number of clusters in a dataset.
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Abstract. Knowledge of the subcellular location of a protein provides
valuable information about its function and possible interaction with
other proteins. In the post-genomic era, fast and accurate predictors of
subcellular location are required if this abundance of sequence data is to
be fully exploited. We have developed a subcellular localization predictor
(SCL pred) which predicts the location of a protein into four classes for
animals and fungi and five classes for plants (secretory pathway, cyto-
plasm, nucleus, mitochondrion and chloroplast) using high throughput
machine learning techniques trained on large non-redundant sets of pro-
tein sequences. The algorithm powering SCL pred is a novel Neural Net-
work (N-to-1 Neural Network, or N1-NN) which is capable of mapping
whole sequences into single properties (a functional class, in this work)
without resorting to predefined transformations, but rather by adaptively
compressing the sequence into a hidden feature vector. We benchmark
SCL pred against other publicly available predictors using two bench-
marks including a new subset of Swiss-Prot release 57. We show that
SCL pred compares favourably to the other state-of-the-art predictors.
Moreover, the N1-NN algorithm is fully general and may be applied to
a host of problems of similar shape, that is, in which a whole sequence
needs to be mapped into a fixed-size array of properties, and the adap-
tive compression it operates may even shed light on the space of protein
sequences. The predictive systems described in this paper are publicly
available at http://distill.ucd.ie/distill/.

1 Introduction

With the recent advances in high throughput sequencing technology there has
been a rapid increase in the availability of sequence information. To fully exploit
this information sequences need to be annotated quickly and accurately, which
has led to the development of automated annotation systems. A major step
towards determining the function of a protein is determining its Subcellular
Localization (SCL). Knowledge of the location of the protein sheds light not only
on where it might function but also what other proteins it might interact with,
as, in order to interact, proteins must inhabit the same location or physically
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adjacent compartments, at least temporarily. At present there is a growing gap
between the number of proteins that have reliable SCL annotations and the
number of known protein sequences. Experimental approaches to SCL prediction
are time-consuming and expensive, whereas computational methods can provide
fast and increasingly more accurate localization predictions.

There are various different mechanisms by which a protein is directed to a
particular location in the cell and there are many possible compartments in
which eukaryotics protein may be located. Here we consider four for animals
and fungi and five for plants: nucleus, cytoplasm, mitochondria, chloroplast and
the secretory pathway. Some nuclear proteins have a nuclear localisation signal
(NLS) which may occur anywhere in the sequence. Most secretory pathway,
mitochondrial and chloroplastic proteins have N-terminal peptides (SP, mTP
and cTP respectively) but many proteins have no known motif [8,16]. However,
it would appear that for most proteins the sequence of the protein alone has
sufficient information to predict the protein’s location in the cell.

There are many methods for the prediction of SCL which can be roughly
divided into two groups: homology-based, that rely on similarity to another se-
quence of known location; and de novo or ab initio, sequence-based methods,
which may use evolutionary information in the form of multiple sequence align-
ments (MSA), but do not depend on sequences of known location. The method
we describe in this article falls into this latter category.

We predict SCL for eukaryotes only, which we divide into animals, plants and
fungi. In a first series of tests we adopt essentially the same experimental setting
and 4/5 location classes as in [6,18], to which we compare our predictor. We
then take a further step by developing new, redundancy reduced training and
testing sets starting from Swiss Prot 57 [5], and benchmark SCL pred on these
sets against five state-of-the-art, publicly available predictors of SCL: BaCelLo,
LOCtree, Protein Prowler, TARGETp and WoLF PSORT.

BaCelLo. BaCelLo [18] uses a hierarchy of binary SVMs to predict SCL for
three eukaryotic kingdoms into four classes for animals and fungi and five classes
for plants: secreted, cytoplasm, nucleus, mitochondrion and chloroplast. The pre-
dictor is trained on a non-redundant set of experimentally annotated sequences
from release 48 of Swiss-Prot. Predictions are made from the full protein se-
quence, from the N- and C-terminal regions and evolutionary information in
the form of a MSA. In [6] the performance of BaCelLo is benchmarked against
LOCtree, Protein Prowler, TARGETp and WoLF PSORT with a test set of pro-
tein sequences derived from a subset of Swiss-Prot 54. BaCelLo is available at
http://gpcr.biocomp.unibo.it/bacello/

LOCtree. Similarly to BaCelLo, LOCtree [16] uses binary SVMs to predict
SCL. Three versions of the predictor are available, trained specifically for plants,
non-plants and prokaryotes. For prokaryotes predictions are into three classes:
secreted, periplasm and cytoplasm. In the case of eukaryotes predictions are into
six classes: extracellular space, nucleus, cytoplasm, chloroplast, mitochondrion
and other organelles. LOCtree is trained on a redundancy reduced subset of
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release 40 of Swiss-Prot. Predictions are made from the full sequence of the
protein, a 50-residue N-terminal region, predicted secondary structure and the
output of SIGNALp (for eukaryotes). LOCtree is available at http://cubic.
bioc.columbia.edu/services/loctree/

Protein Prowler. Protein Prowler [4,10] is based on the ideas behind TargetP
and trained on the same datasets, a redundancy reduced subset of Swiss-Prot
releases 37 and 38. The predictor uses a series of neural networks and SVMs spe-
cialised for the prediction of plants or non-plants and predicts into the following
classes: secretory pathway (presence of a signal peptide), mitochondrion (pres-
ence of a mitochondrial targeting peptide), chloroplast (presence of a chloroplast
transit peptide) and other. Protein Prowler is available at http://pprowler.
itee.uq.edu.au/

TargetP. TargetP [7] uses a feed-forward neural network specialised for the
prediction of plant and non-plant SCL into three and four classes respectively
based on the N-terminal amino acid sequence. The prediction is based on the
presence of a chloroplast transit peptide (cTP), a mitochondrial targeting pep-
tide (mTP) or a secretory pathway signal peptide (SP). TargetP is available at
http://www.cbs.dtu.dk/services/TargetP/

WoLF PSORT. WoLF PSORT [11] is a version of the PSORT family of SCL
predictors for the prediction of eukaryotic proteins based on their amino acid
sequence. Based on a number of features (amino acid composition, the pres-
ence of known sorting signal and target peptides etc, with different features for
animals, fungi and plants) WoLF PSORT uses a k-nearest neighbour classifier,
comparing these features to other Swiss-Prot annotated proteins, resulting in
a ranked list of up to 12 possible locations: chloroplast, cytosol, cytoskeleton,
endoplasmic reticulum, extracellular, Golgi apparatus, lysosome, mitochondria,
nuclear, peroxisome, plasma membrane, vacuolar membrane. WoLF PSORT is
available at http://wolfpsort.org/

2 Materials and Methods

2.1 Datasets

The first dataset which we use to train and test SCL pred is the dataset used
by [18] to train BaCelLo in ten-fold cross validation, for a direct comparison
with this predictor. We call this set the BaCelLo set. We also test this version
of SCL pred on the test datasets used in [6] (BaCelLo 2008 set), which is based
on Swiss-Prot 54. Next we combine the BaCelLo and BaCelLo 2008 sets and
redundancy reduce the union by an all-against-all PSI-BLAST [1] search (with
e = 10−3) removing any sequence with a hit with more than 30% sequence
identity to any other sequence in the set. Table 1 shows the number of sequences
per class for each of the three kingdoms in this new set (BaCelLo union set).
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Using the BaCelLo union set we re-train SCL pred in ten-fold cross vali-
dation and test it on a independent set extracted from Swiss-Prot 57 (SP 57
set). To create this we first remove from Swiss-Prot 57 any protein present in
Swiss-Prot 54 (from which BaCelLo union is obtained), which leaves 203,860
sequences out of the original 462,764 entries. We then search for metazoa, fungi
and viridiplante with an appropriate SCL, that is entries with the keywords “nu-
cleus”, “cytoplasm”,“mitochondrion”, “Plastid, chloroplast” or “secreted” in the
SUBCELLULAR LOCATION subfield. We exclude membrane proteins, entries
with multiple keywords and non-experimental qualifiers (Potential, Probable,
By similarity) and sequences with fewer than 30 residues. Then we PSI-BLAST
the remaining sequences against Swiss-Prot 54 with e = 10−3 and remove any
sequences with a hit with more than 30% sequence identity to any sequence in
Swiss-Prot 54. Finally we run an internal redundancy reduction on the remaining
sequences, removing any entry with more than 90% sequence identity to another
sequence in the set. Table 2 shows the number of sequences per class for each of
the three kingdoms.

All the BaCelLo datasets are publicly available on the BaCelLo website:
http://gpcr.biocomp.unibo.it/bacello/dataset.htm

Table 1. Number of sequences per class for each of the three kingdoms in the Ba-
CelLo union set. See text for details.

Animals Fungi Plants

Cytoplasm 689 466 89
Mitochondrion 263 271 72
Nucleus 1488 884 155
Secreted 881 881 48
Chloroplast 277

Total 3321 1717 641

Table 2. Number of sequences per class for each of the three kingdoms in the SP 57
set. See text for details.

Animals Fungi Plants

Cytoplasm 29 82 1
Mitochondrion 6 55 9
Nucleus 78 84 65
Secreted 107 2 3
Chloroplast 18

Total 220 223 96

MSA. Multiple sequence alignments are extracted from a redundancy reduced,
2004 version of the NR dataset containing over 1 million sequences. The align-
ments are generated by three runs of PSI-BLAST with parameters b = 3000
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(maximum number of hits), e = 10−3 (expectation of a random hit) and h =
10−10 (expectation of a random hit for sequences used to generate the PSSM).

Input coding. Similarly to in [20] the input at each residue is coded as a letter
out of an alphabet of 25. Beside the 20 standard amino acids, B (aspartic acid or
asparagine), U (selenocysteine), X (unknown), Z (glutamic acid or glutamine)
and . (gap) are considered. The input presented to the networks is the frequency
of each of the 24 non-gap symbols, plus the total frequency of gaps in each
column of the alignment.

2.2 Predictive Architecture: N1-NN

We will operationally call the model we describe in this work N-to-1 Neural
Network, or N1-NN. The model is loosely based on previous models we have
developed (e.g. [21]) and on our framework to design Neural Networks for struc-
tured data [2,23]. In this case, instead of compressing all the information of a
sequence into a handful of predefined features (e.g. k-mer frequencies, sequence
length, etc.), we decide beforehand only how many features we want to compress
a sequence into. If these features are stored in a vector f = (f1, . . . , fh), and if
we represent the i-th residue in the sequence as ri, then f is obtained as:

f = k

N∑
i=1

N (h)(ri−c, . . . , ri+c) (1)

where N (h) is a non-linear function, which we implement by a two-layered feed-
forward Neural Network with h non-linear output units. N (h) is replicated N
times (N being the sequence length), and k is a normalisation constant. Notice
that the feature vector f is obtained by combining information coming directly
from all windows of 2c + 1 residues in the protein, and is based on motifs that
may be fairly long (e.g. if c = 10, as in all the tests in this article, the motifs
have a length of 21 residues). The feature vector f thus obtained, is mapped into
the property of interest o (for instance, cellular component class), as follows:

o = N (o)(f) (2)

where N (o) is a non linear function which we implement by another 2-layered
feed-forward neural network. The whole, compound neural network (the cas-
cade of N sequence to feature vector networks and one feature vector to output
network) is itself a feed-forward neural network, thus can trained by gradient
descent via the back-propagation algorithm. As there are N copies of N (h) for
a sequence of length N , there will be N contributions to the gradient for this
network, which are simply added together. Notice that the feature vector f is
not a predefined transformation/compression of the sequence, but instead is au-
tomatically learned in order to minimise the output error, hence to be most
informative to predict the property of interest. Although there is a daunting
number of possible motifs of length 2c + 1, the model has only a relatively small
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number of free parameters to represent them, hence does not suffer from over-
parametrisation problems that arise when one counts frequencies of k-mers as
soon as k > 2−3. If training is successful, only (soft) motifs relevant to the task
at hand will be represented in f . Thus f is effectively a compressed version of
the sequence into a fixed-size array, and the compression is property-driven.

The number of free parameters in the overall N1-NN can be controlled by: the
number of units in the hidden layer of the sequence-to-feature network N (h)(),
NH

f ; the number of hidden units in the feature-to-output network N (o)(), NH
o ;

the number of hidden states in the feature vector f , which is also the number
of output units in the sequence-to-feature network, Nf . Given that only one
instance of the sequence-to-feature network (i.e. only one set of free parameters)
is replicated for all positions in the sequence, and there is only one feature-to-
output network, the overall number of free parameters Np of the N1-NN is:

Np = (Ni + 1)NH
f + (NH

f + 1)Nf + (Nf + 1)NH
f + (NH

f + 1)No (3)

where Ni is the size of the input vector representing one residue and No is the
number of output classes.

Training, Ensembling. For each training experiment (i.e. training on the Ba-
CelLo set and training on the BaCelLo union set) we implement three predictors,
one for each of the three kingdoms of animals, fungi and plants. Each training
is conducted by 10 fold-cross validation, i.e. 10 different sets of training runs are
performed in which a different tenth of the overall set is reserved for testing. The
10 tenths are roughly equally sized, disjoint, and their union covers the whole
set. For each training the 9/10 of the set that are not reserved for testing are
further split into a validation set (1/10 of the overall set) and a proper train-
ing set. The training set is used to learn the free parameters of the network
by gradient descent, while the validation set is used to choose model and hy-
perparameters (network size and architecture, i.e. NH

f , Nf and NH
o ). For each

different architecture we run three trainings, which differ only in the training vs.
validation split. We choose the architecture which performs best on validation.
For each fold the three networks for the best architecture are ensemble averaged
and evaluated on the corresponding test set. The final results for each 10-cross
validation (different kingdoms, BaCelLo and BaCelLo union sets) are the av-
erage of the results on each test set. When testing on an entirely different set
from the one used during training (BaCelLo for training and BaCelLo 2008 for
testing, BaCelLo union for training and SP 57 for testing) we ensemble-combine
all the models from all cross-validation folds of the best architecture. Table 3
shows details of network size and training times for each of the three predictors.

Training is performed by gradient descent on the error, which we model as
the relative entropy between the target class and the output of the network.
The overall output of the network (output layer of N (o)()) is implemented as
a softmax function, while all internal squashing functions are implemented as
hyperbolic tangents. Training terminates when either the walltime on the server
is reached (6 days for fungi and plants, 10 days for animals) or the epoch limit is
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reached (40k for fungi and plants and 20k for animals). The gradient is updated
360 times for each epoch (or once every 2-6 examples, depending on the set),
and the examples are shuffled between epochs. The learning rate is halved every
time a reduction of the error is not observed for more than 50 epochs. Models
are saved at regular intervals (every 100 epochs) during training. When training
is complete the model with the best performance on the validation set is chosen
to be part of the final ensemble for each predictor.

Table 3. Network size and training times for the three network architectures. Nf : size
of the feature vector; NH

o : number of hidden units in the feature-to-output network;
NH

f : number of hidden units in the sequence-to-feature network.

Animals Fungi Plants

Nf 12 10 8
NH

o 11 7 4

NH
f 13 11 9

Epochs limit 20k 40k 40k
Walltime 10 days 6 days 6 days

2.3 Evaluating Performance

We measure accuracy/specificity (Cov) and coverage/sensitivity (Acc) per class
as in [16,4,7,18] and the geometric average (GAv) as in [16,18]:

Cov = 100
TP

TP + FP

Acc = 100
TP

TP + FN

GAv =
√

Acc.Cov

(4)
where:

– True positives (TP): the number of sequences predicted in a class that are
observed in that class.

– False positives (FP): the number of sequences predicted in a class that are
not observed in that class.

– False negatives (FN): the number of sequences predicted not to be in a class
that are observed in that class.

The overall accuracy of the predictors is measured by Q%:

Q% = 100
number of proteins correctly predicted

number of proteins in data set
(5)
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3 Results and Discussion

In previous tests BaCelLo [18] was shown to outperform the following publicly
available methods for the prediction of the subcellular localization: Loctree [16],
Psort II [17], SubLoc [12], ESLpred [3], LOCSVMpsi [24], SLP-local [13], Protein
Prowler [4], TARGETp [7], PredoTar [22] and pTARGET [9]. In Table 4 we show
the performance of SCL pred compared to BaCelLo on the BaCelLo sets [18].
Both predictors are assessed by ten-fold cross-validation. Overall SCL pred is
more accurate for animals (77.7% versus 73.8%) and fungi (76% versus 70.1%)
while the accuracy for plants is similar (68% versus 68.2%). The accuracy per
class differs somewhat, with BaCelLo being more accurate for mitochondrial
proteins, especially in the case of plants where the SCL pred prediction is poor
(16.4% versus 54%). However SCL pred is more accurate for secreted proteins in
fungi and plants by 9.5% and 20.6% respectively. Prediction accuracy is similar
for proteins in the cytoplasm and nucleus and SCL pred is again more accurate
for chloroplastic proteins by 7%.

Table 5 shows the accuracy of the same version of SCL pred tested on the two
test datasets from [6] compared with the other five SCL predictors tested on the
same dataset (results from [6]). SCL pred performs well for animals and plants
(better than all the other servers in 5 out of 8 cases), however it performs less

Table 4. Q% for BaCelLo and SCL pred, trained and tested in ten-fold cross validation
on the BaCelLo set [18], extracted from Swiss-Prot 48

Animals Fungi Plants

BaCelLo SCL pred BaCelLo SCL pred BaCelLo SCL pred

Cytoplasm 41.4 44.4 39.4 36.0 46.9 46.6
Mitochondrion 66.2 58.5 69.5 67.6 54.0 16.4
Nucleus 84.9 84.8 87.0 88.8 75.7 75.2
Secreted 90.7 90.1 76.9 86.4 64.8 85.4
Chloroplast 76.4 83.4

Q 73.8 77.7 70.1 76.0 68.2 68.0

Table 5. Q% for SCL pred compared to BaCelLo [18], LOCtree [16], WoLF PSORT
[11], Protein Prowler [10] and TARGETp [7]. Tested on the full and reduced (in brack-
ets) BaCelLo 2008 dataset (from Swiss-Prot 54) (see [6] for details). Results for the
predictors other than SCL pred taken from [6].

Animals Fungi Plants

Predictor 3 Class 4 Class 3 Class 4 Class 4 Class 5 Class

SCL pred 92 (89) 82 (74) 78 (79) 55 (52) 85 (69) 84 (67)
BaCelLo 89 (91) 75 (64) 82 (84) 59 (57) 77 (76) 76 (69)
LOCtree 90 (81) 78 (62) 81 (75) 57 (47) 53 (76) 52 (70)
WoLF PSORT 91 (88) 81 (71) 86 (82) 58 (51) 25 (69) 24 (57)
PProwler 89 (91) 89 (86) 19 (63)
TARGETp 86 (88) 84 (82) 24 (67)
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well on fungi. We interpret these mixed results as a consequence of the small size
of the sets: given we take into account the whole, unprocessed sequence, rather
than a handful of features extracted from it, the networks we use have at least a
few thousand adjustable parameters and SCL pred is more prone to overfitting
the training set than the other systems.

To check whether larger datasets may alleviate the problem, we repeat the
experiments on the BaCelLo union set, which is approximately 30% larger than
the BaCelLo set (3321 proteins for Animals, 1717 for fungi, 641 for plants). The
accuracy of this new version of SCL pred is shown in Table 6. We then retest
this version of SCL pred on the SP 57 (a subset of Swiss-Prot 57, described in
the dataset section) and again compare its accuracy with BaCelLo, LOCtree,
WoLF PSORT, Protein Prowler and TARGETp (Table 7). We obtained results
for WoLF PSORT and Protein Prowler through their respective web servers, and
results for TARGETp were obtained by downloading the stand alone version of
TARGETp available from the TARGETp website, which we then ran locally,
hence we have no control on the sequence identity cutoffs between the training
sets of these predictors and SP 57. BaCelLo results were kindly provided by Dr
Pierleoni. We could not obtain results for LOCtree in this case. In five out of
the six cases SCL pred is the most accurate predictor overall (Table 7).

In Table 8 we show a more detailed analysis of these results for SCL pred,
BaCelLo and WoLF PSORT. It is important to note that due to efforts to reduce

Table 6. Coverage (Cov), accuracy (Acc) and geometric average (GAv) per class
for SCL pred, trained and tested in ten-fold cross validation on the combined and
redundancy reduced datasets from [18] and [6] (Swiss-Prot 48 and 54)

Animals Fungi Plants

Cov Acc GAv Cov Acc GAv Cov Acc GAv

Cytoplasm 53.1 50.5 51.8 60.5 47.0 53.3 46.9 42.7 44.8
Mitochondrion 65.6 64.6 65.1 69.2 66.4 67.8 46.7 19.4 30.1
Nucleus 79.2 81.5 80.3 72.8 82.4 77.4 77.6 78.1 77.8
Secreted 88.8 88.1 88.4 88.4 87.5 88.0 72.7 66.7 69.6
Chloroplast 66.7 79.4 72.8

Q 75.5 70.5 66.3

Table 7. Q(%) for SCL pred compared to BaCelLo [18], WoLF PSORT [11], Protein
Prowler [10] and TARGETp [7] tested on the SP 57 set

Animals Fungi Plants

Predictor 3 Class 4 Class 3 Class 4 Class 4 Class 5 Class

SCL pred 84.5 68.6 89.2 68.6 82.3 82.3
BaCelLo 90.0 66.8 87.9 57.4 76.0 76.0
WoLF PSORT 83.6 68.2 75.8 52.9 71.9 67.7
PProwler 70.5 82.5 77.1
TARGETp 65.0 80.7 71.9
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Table 8. Coverage (Cov), accuracy (Acc) and geometric average (GAv) per class for
the three four-class animal and fungus predictors and the five-class plant predictors
tested on the new subset of Swiss-Prot 57

Animals

Cytoplasm Mitochondrion Nucleus Secreted Q

Predictor Cov Acc GAv Cov Acc GAv Cov Acc GAv Cov Acc GAv

SCL pred 25.0 27.6 26.3 25.0 16.7 20.4 65.3 62.8 64.1 85.3 86.9 86.1 68.6
BaCelLo 17.7 31.0 23.4 30.0 50.0 38.7 67.3 47.4 56.5 94.2 91.6 92.9 66.8
WoLF PSORT 18.9 24.1 21.4 16.7 33.3 23.6 72.2 66.7 69.4 95.7 83.2 89.2 68.2

Consensus 21.2 24.1 22.6 50.0 50.0 50.0 68.5 64.1 66.3 89.8 90.7 90.2 71.4

Fungi

Cytoplasm Mitochondrion Nucleus Secreted Q

Predictor Cov Acc GAv Cov Acc GAv Cov Acc GAv Cov Acc GAv

SCL pred 75.6 41.5 56.0 84.0 76.4 80.1 61.1 91.7 74.8 0 0 0 68.6
BaCelLo 48.2 32.9 39.8 78.9 81.8 80.4 52.9 64.3 58.3 25.0 100 50.0 57.4
WoLF PSORT 46.8 26.8 35.4 77.3 61.8 69.1 57.5 72.6 64.6 12.5 50.0 25.0 52.9

Consensus 73.0 32.9 49.0 81.4 87.3 84.3 60.7 88.1 73.1 20.0 50.0 31.6 67.3

Plants

Cytoplasm Mitochondrion Nucleus Secreted Chloroplast Q

Predictor Cov Acc GAv Cov Acc GAv Cov Acc GAv Cov Acc GAv Cov Acc GAv

SCL pred 0.0 0.0 0.0 0.0 0.0 0.0 96.9 95.4 96.1 100 66.7 81.6 53.6 83.3 66.8 82.3
BaCelLo 0.0 0.0 0.0 0.0 0.0 0.0 88.1 90.8 89.4 50.0 66.7 57.7 50.0 66.7 57.7 76.0
WoLF PSORT 0.0 0.0 0.0 50.0 22.2 33.3 93.3 86.1 89.7 0.0 0.0 0.0 33.3 38.9 36.0 67.7

Consensus 0.0 0.0 0.0 0.0 0.0 0.0 96.8 92.3 94.5 100.0 66.7 81.6 50.0 83.3 64.5 80.2

redundancy between this new subset of Swiss-Prot 57 and Swiss-Prot 54 (used
in training) the number of samples per class is very small in some instances
(only one sequence for plant cytoplasm, two for secreted proteins in fungi and
three in plants and only six and nine animal and plant mitochondrial proteins
respectively).

The most accurately predicted classes for each predictor are the classes with
the greatest number of examples: nucleus and secreted in animals; cytoplasm,
mitochondrion and nucleus in fungi; and nucleus and chloroplast in plants. Over-
all SCL pred continues to perform well, comfortably outperforming BaCelLo
and WoLF PSORT in the most densely populated classes for plants and fungi
(nucleus and chloroplast, and nucleus and cytoplasm respectively) and also per-
forming well for mitochondrial proteins in fungi. Performance of the animal
predictor is more mixed, with none of the three predictors performing well in
the less densely populated classes of cytoplasm and mitochondrion. In the other
two classes of nuclear and secreted proteins the performance of the three predic-
tors for coverage, accuracy and geometric average is the same for SCL pred and
BaCelLo (75%) when averaged across these three measures for the two classes
and 79% for WoLF PSORT. The overall Q performance is slightly better for
SCL pred (68.6%) than for WoLF PSORT (68.2%) and BaCelLo (66.8%). Given
the small size (96-223 proteins) of these sets, and their unbalanced nature, fur-
ther testing on larger, more balanced sets would be desirable when such sets
become available.

We also test the accuracy of a consensus prediction between SCL pred, Ba-
CelLo and WoLF PSORT. The combination of several prediction methods has
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been used successfully in many cases, for instance for structure predictions at
CASP [15]. Here we take a majority vote between the three predictors, and where
there is a tie (i.e. each of the three predictors predicts a different class) we trust
SCL pred. The consensus predictor is more accurate for the animal predictor
but SCL pred is more accurate than the consensus for fungi and plants. We do
consider that this is an area worth further investigation and a SCL meta-server
may be of use to the community of biologists.

4 Conclusion and Future Work

As the amount of sequence information churned out by experimental methods
keeps expanding at an ever-increasing pace, it is crucial to develop and make
available fast and accurate computational methods to make sense of it. SCL
prediction is a step towards bridging the gap between a protein sequence and the
protein’s function and can provide information about potential protein-protein
interactions and insight into possible drug targets and disease processes. As
more SCL predictors become available predictions may be combined through
the development of meta servers or consensus prediction methods similar to
those developed for protein structure prediction and which have been shown to
be successful at CASP. As different SCL predictors are specialised for prediction
into different classes and number of classes, and as some predictors are more
accurate than others at prediction into any one class, this information can be
exploited to lead to more accurate overall predictions, especially if the predictors
are diverse in their behaviour.

In this article we have developed a new method for SCL prediction (SCL pred)
based on a novel Neural Network architecture (N1-NN). The architecture can
map a sequence of any length into a set of individual properties for the whole se-
quence. We have developed three kingdom specific predictors for animals, fungi
and plants and predict into four classes for animals and fungi (nucleus, cyto-
plasm, mitochondria and the secretory pathway) and an additional fifth class
for plants (chloroplast). We have trained SCL pred in ten-fold cross-validation
on two large non-redundant subsets of annotated proteins from Swiss-Prot re-
leases 48 and 54 and benchmarked them against five other state-of-the-art SCL
prediction servers on independent sets. SCL pred performs favourably on these
benchmarks and we expect that its prediction accuracy will continue to improve
with frequent re-trainings to take advantage of larger, more diverse, datasets
of annotated proteins as they become available, and as our understanding of
the underlying biological mechanisms improves. We expect larger datasets to be
especially beneficial to our models, as these incorporate information from the
whole sequence and normally have a higher number of free parameters than the
alternatives.

Although here we have only used as input to the network information about
the primary sequence and multiple sequence alignments, other residue-level in-
formation may be input to the model, such as predicted secondary structure,
solvent accessibility, location of predicted binding sites, etc. Incorporating di-
verse information into the input to SCL pred is one of our future directions
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of investigation, as it is the inclusion of putative homology to “templates”, or
proteins of known localisation/structure (e.g. by techniques similar to those we
have developed in [19,14]). A further direction of research is studying the space
of f vectors (i.e. compressed, property-driven representations of whole proteins
as fixed-size arrays) induced by different output targets (functional classes, pro-
tein folds/families), to determine whether they are satisfactory representations
towards protein comparison, and whether they yield insights into the structure
of the protein space.

SCL pred is available as part of our webservers for protein sequence anno-
tation. Our server is designed to allow fast and reliable annotation of protein
sequences on a genomic-scale: up to 32,768 residues can be handled in a sin-
gle submission. The servers are freely available for academic users at http://
distill.ucd.ie/distill/. Linux binaries and the benchmarking sets are freely
available for academic users upon request.
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Abstract. Environmental stresses such as drought and salinity limit
crop productivity in worldwide level. These stresses often lead to the
accumulation of osmoprotectants in most organisms, including plants.
In the present work, a search of known osmoprotectants (P5CS, P5CR,
INPS1, BADH, CMO, TPS, TPP, OASTL and SAT) was carried out
in the sugarcane transcriptome (237,954 expressed sequence tags) us-
ing in silico procedures. Alignments revealed that sugarcane presents a
high number of osmoprotectant candidate genes, with 56 clusters found.
In silico expression revealed higher expression in stressed callus tissues
and those infected by Herbaspirilum rubrisubalbicans (HR), confirming
the multi-function character of the osmoprotectants. As expected, the
phylogenetic analysis revealed distinct groups among angiosperms, al-
gae, animals, fungi and bacteria, in almost all dendrograms, with high
degree of sequence conservation among angiosperms. As observed in com-
parative analysis between the ORFs of sugarcane and other organisms,
the genic structure of these plants was relatively conserved suggesting
that the accumulation of compatible solutes is an ancient metabolic
adaptation.

Keywords: data mining, salt stress, drought stress, crop evolution,
differential expression.

1 Introduction

Among several abiotic stresses, drought and salinity are the most important
factors influencing the growth, survival, yield and natural distribution of plants
worldwide [1]. Plants have developed mechanisms like stress avoidance to cope
with low water content and the synthesis of compatible osmolytes, being one
of the main mechanisms that organisms, including plants, have to prevent the
harmful effects caused by abiotic stresses [2]. Osmoprotectants are also termed
compatible solutes because they are accumulated by the plants without distur-
bance or interference in the cellular metabolism, besides their protective prop-
erties. Proline (Pro), glycinebetaine (GB), myo-inositol, trehalose and cysteine
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(Cys) are important osmoprotectants that in a general way stabilize proteins
and membranes against the denaturing effects of high salt concentrations and
other harmful solutes, facilitating the retention of water in the cytoplasm, rais-
ing cellular osmotic pressure, and allowing the protection of membranes, protein
complexes and cellular constituents [3].

A key to progress towards breeding better crops under abiotic stress has been
to understand the changes in cellular, biochemical and molecular machinery of
the plants. It is believed that osmoregulation would be the best strategy for
abiotic stress tolerance, especially if osmoregulatory genes could be triggered
in response to drought, salinity and high temperature [4]. To date, various ap-
proaches in genetic engineering have allowed the introduction of new pathways
for the biosynthesis of various compatible solutes in plants [3].

The present work performed a data-mining based identification of osmopro-
tectant genes in the sugarcane database (SUCEST project) [5], using well know
rice sequences as templates, and comparing the obtained clusters with sequences
from public databases and literature data. Furthermore, the expression profile of
the different osmoprotectant categories was evaluated, aiming to identify their
role under different conditions in this crop. An in silico routine for this purpose
is also presented, being applicable for the search of osmoprotectants in monocots
in general. As little information is available about these molecules from sugar-
cane, that is cultived mainly in tropical and subtropical areas and considered
one of the world’s most important crop plants, it is believed that this research
may contribute for breeding purposes in pulse crops like sugarcane.

2 Material and Methods

Protein seed sequences of P5CS, P5CR, TPP, TPS, BADH, CMO and INPS1
from rice were obtained at TIGR (The Institute for Genomic Research) database
[6]. Each sequence was compared against the SUCEST database using tBLASTn
tool and sequences with e-value equal to e−05 or less were annotated. After that
a reverse alignment with BLASTx at NCBI was made to confirm de identity
of the sequences. Sugarcane clusters were translated using the ORF Finder tool
at NCBI and screened for conserved domains using RPS-BLAST CD-search
tool [7]. Multiple alignments with proteins from sugarcane and other organisms
that presented complete domains were generated at the CLUSTALx program [8].
To avoid influence of sequence sizes in the alignments, the non aligned 5’ and 3’
extremities were excluded, as well as autapomorphic, non informative internal
sequence regions.

A phylogenetic maximum parsimony analysis using bootstrap function (2,000
replications) was performed, generating a consensus tree with a cut-off of 50
using the program MEGA Version 4 for Windows [9]. For each cladogram the
most basal organisms have been manually settled as outgroup, in all cases non
angiosperms.

The prevalence of sugarcane clusters were verified by direct counting of the
reads that composed each cluster, followed by data normalization (considering
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the total number of reads sequenced in each library) and calculation of the
relative frequency (reads per library). A hierarchical clustering approach was
applied using normalized data, from all identified osmoprotectant transcripts,
allowing the generation of a graphic representation with aid of the CLUSTER
program [10]. The resulting dendrograms including both axes (using the weighted
pair group for each gene class and library) were generated using the TreeView
program for Windows [11].

3 Results

3.1 Sugarcane Orthologs

Results for all gene categories are summarized in Table 1. The analysis of P5CS
and P5CR osmoprotectant candidates revealed four and one clusters with high
sequence conservation, respectively. The clusters for P5CS had high degree of
similarity with e-values ranging from 0.0 to e−49, while the single P5CR candi-
date identified presented an e-value of e−93 (Tab. 1). Considering the searched
CDs, the best hit from P5CS presented both complete CDs (AA kinase and
ProA) while the other candidates presented partial CDs. Regarding the P5CR
candidate the ProC domain was complete.

Table 1. Clusters of sugarcane (best hits) in the SUCEST database as compared with
osmoprotectants known from rice, including sugarcane candidates as well as data from
best matches from other species. Abbreviations: nt, nucleotide; aa, amino-acid; Suc ,
sugarcane candidates.

After tBLASTn with the BADH seed sequence the results revealed 24 se-
quences (e-values from 0.0 to e−11), however after reverse alignment the results
revealed five BADH candidates, that presented similarity to Poaceae organisms
(Tab. 1). With respect to the CMO candidates (Tab. 1), the results indicated
two candidates, with the best hit presenting high similarity to maize (e−119).
Considering the searched CDs, the BADH candidates presented complete CDs
while the CMO clusters presented only a partial HcaE domain.
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The search for orthologous to TPS and TPP genes revealed the presence of
several clusters with high similarity (Tab. 1); 17 and 11 candidates (respectively)
were obtained with e-values ranging from e−114 to e−20. After reverse alignment
most clusters showed similarity to the respective protein from O. sativa. Re-
garding the CD analysis only one TPS sequence had both domains, although
the Glico transferase was incomplete, while all other five sequences had the com-
plete HAD CD. The search for TPP revealed three candidates with the complete
HAD-like domain.

The search for OASTL in sugarcane database revealed 10 candidates, while
the search for SAT showed four (Tab. 1). The tBLASTn results for OASTL
revealed in most cases great similarity with the used seed sequence (OASTL:
12003.m06618, e-values from e−138 to e e−06). After BLASTx analysis the iden-
tity of all obtained sequences from OASTL and SAT clusters was confirmed,
associating them with proteins mainly from O. sativa. Considering the CDs in
OASTL candidates, four clusters beard the complete PALP domain, while in two
sequences no CD was found. Regarding SAT, two clusters had both complete
procured domains (Satase N and LbetaH).

After tBLASTn in SUCEST two INPS1 candidates were identified with the
best hit presenting an e-value of 0.0. The reverse alignments revealed that these
two sequences were similar to myo-inositol 1-phosphate synthase protein from
Z. mays. After RPS-BLAST the procured domain Inos 1-P synth was complete
in the best hit, being absent at the other sequence.

3.2 Expression Pattern Analysis of Sugarcane Orthologous

After evaluation of the 483 reads identified, it was possible to observe that all
SUCEST libraries presented at least one osmoprotectant representative. Con-
sidering their distribution, higher prevalence was observed in flower tissues
(FL=20%), roots and stem-root transition (RZ and RT=12%, each) (Fig. 1A).
Regarding correlation of the distribution among reads and osmoprotectant cat-
egories, it was clear that reads involved in the trehalose pathway (TPS+TPP)
were most abundant in the SUCEST libraries, followed by OASTL+SAT, and
by BADH+CMO (Fig. 1B). After data normalization, a higher expression in
calli tissues (CL3 and CL4 libraries) submitted to light/dark and tempera-
ture (4oC and 37oC) stresses was observed. Regarding the spatial co-expression
among libraries (gray upper dendrogram) it was possible to detect a stronger
relation among RZ1/LV1 and CL4/AD1 with LB2 (Fig. 1C). Concerning the
co-expression of genes the analysis revealed two groups [INPS1/P5CS] and
[SAT/OASTL + BADH + TPS] (Fig. 1C).

3.3 Phylogenetic Analysis

The multiple alignments revealed a considerable degree of conservation among
bacteria, fungi, protozoan, algae, plants and animals, considering each osmo-
protectant gene category, positioning these groups in distinct branches in most
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Fig. 1. (A) General distribution of all osmoprotectant transcripts (number of reads) in
the SUCEST libraries. (B) Prevalence of reads per osmoprotectant category. Numbers
outside the columns refer to the absolute number of reads found in each gene. (C)
Differential display of standard sugarcane transcripts representing selected osmopro-
tectant genes. Graphic represents the expression in P5CS, P5CR, BADH, CMO, TPS,
TPP, OASTL, SAT and INPS1 clusters. White means no expression and black to gray
mean all levels of expression. Library codes: AD/AD1: tissues infected by Gluconaceto-
bacter diazotroficans, AM: Apical meristem from mature plants (AM1) and immature
plants (AM2); CL: Calli tissues treated for 12h at 4 to 37oC in the dark or light (CL3,
CL4 and CL6); FL: Flowers harvested at different developmental stages (FL1, FL3,
FL4, FL5 and FL8); HR: tissues infected with Herbaspirillum rubrisubalbicans; and
LB: Lateral buds from mature plants (LB1+2); LR: Leaf Roll from immature plants,
large insert (LR1) and small insert (LR2); LV/LV1: Etiolated leaves from plantlets
grown in vitro; RT: Roots from 0.3 cm length (RT1) to mature plants (RT2) and root
apex (RT3); RZ Root to shoot transition of young plants zone 1, 2 and 3 (RZ1, RZ2
and RZ3); SB/SB1: Stalk bark from mature plants; SD: Seeds in different stages (SD1
and 2); ST: Stem first internodes (ST1) and fourth internodes (ST3).

generated dendrograms, as expected. For P5CR dendrogram (Fig. 2A) the an-
giosperms remained as an isolated group (clade V), where the Magnoliopsida
(VA) and Liliopsida (VB) formed subgroups. Furthermore, Chlamydomonas rein-
hardtii (Clorophyta) was separated in clade IV, with animals in clade III, while
fungi and bacteria remained in the clades II and I, respectively.

Regarding the INPS1 dendrogram (Fig. 2B) the bacteria members were de-
termined as an outgroup (branch I), with remaining organisms positioned in four
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Fig. 2. Dendrograms generated after maximum parsimony analysis illustrating rela-
tionships revealed by conserved domains similarity in (A) P5CR-like, (B) INPS1-like,
(D) OASTL-like, (E) SAT-like, (F) TPP-like, (G) TPS-like and (H) BADH-like se-
quences and putative sugarcane orthologous. The numbers in the base of clades regard
bootstrap values (2,000 replications).

clades, with two of these subdivided with grouping and subgrouping following a
clear segregation according to their classical taxonomic grouping. The subclade
VB grouped the monocots, VA and VA’ the dicots, IV the amoeba Dictyostelium
discoideum and III the animals, being this last one subdivided in two subclades:
IIIA with the class Insecta and IIIB with Vertevrata class, while the group II
comprised only Fungi representative. The other dendrograms for P5SC, OASTL,
SAT, TPP, TPS and BADH are available in the figures 3C, 3D, 3E, 3F, 3G and
3H, respectively.
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4 Discussion

4.1 Sugarcane Osmoprotectants

Amino acids and their derivatives are the dominant compatible solutes in phy-
logenetically distant taxa [12]. Among these, almost all plants accumulate high
concentrations of proline in response to the imposition of a wide range of biotic
and abiotic stresses [13] this is also the case of sugarcane where 56 genes of this
category could be uncovered in the present approach. The great similarity of
P5CS and P5CR sugarcane candidates was in accordance to the classic taxo-
nomic relationships, since all significant alignments occurred within the Poaceae
family. The presence of proline pathway can be supported by the fact that its
accumulation was previously reported for rice [14], maize [15] and sugarcane cul-
tivars [16] subjected to abiotic stress without exogenous proline supply to the
medium.

Despite of the fact that no CMO candidates had the complete CD, the high
similarity of the identified sequences to the same genes of maize supports the
existence of this gene in sugarcane. The low number of CMO candidates can be
explained since (I) the rigidity in choline utilization is not uncommon in plant
metabolism and (II) the main factor that limits the accumulation of GB is the
availability of choline to allow the oxidation reaction [17]. Many studies have
proved that the number of BADH transcripts is higher than CMO in almost all
organisms [18], a fact also confirmed by our results.

Orthologues of TPS and TPP, both involved in trehalose synthesis, were found
in sugarcane transcriptome. In fact, the trehalose pathway may be activated
in many organisms after some type of stress or serving as an accumulation of
storage carbohydrates [19]. In angiosperms the trehalose accumulation may occur
in plants with diseases or colonized by microorganisms.

According to Hesse et al. (2004) [20] cysteine is required for the production
of diverse key metabolites in different pathways: protein synthesis, glutathione,
phytochelatins, etc. SAT and OASTL are directly involved in the cysteine biosyn-
thesis, that in plants takes place in cytosol, plastids and mitochondria. A great
amount of OASTL transcripts was found in sugarcane, more than SAT can-
didates, a result supported by evidences from Ruffet et al. (1994) [21], which
concluded that in plants endogenous levels of OASTL are far in excess as com-
pared to SAT products, an occurrence explained by the fact that SAT is gener-
ally found in association with OASTL, forming the Cysteine Synthase Complex
(CSC), while OASTL may also be found in its free form in the cell [22].

Compounds containing inositol are abundant in plant cells [23]. Among these,
the myo-inositol has a crucial role in plant physiology and development be-
ing involved in signal transduction, phytic acid biosynthesis, auxin storage and
transport, cell wall biosynthesis and osmoprotection under salt-water stress [24].
Despite of the absence of induced conditions, 41 candidates could be identified,
revealing the presence and diversity of this gene category in sugarcane.
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Together these results point to the presence of all important gene categories for
the synthesis of compatible osmolytes in sugarcane transcriptome, considering
the available knowledge from rice model plant.

4.2 Expression Pattern

The results from SUCEST database revealed the existence of a higher osmo-
protectant expression in two callus libraries (CL3 and CL4 = calli submitted
to light/dark and temperature stress) indicating that these genes are recruited
under additional adverse conditions such as absence of light and temperature
changes. Moreover, it is important to highlight that the in vitro environment is
largely known as an abiotic stress condition [25]. Errabi et al. (2006) [26] have
reported higher amounts of proline in sugarcane calli exposed to different os-
motic stress intensities. In callus of wheat, increased amounts of glycine betaine
were reported in tolerant as well as in sensitive cultivars in response to water
stress [27]. The second sugarcane library that had high number of transcripts
was HR1, a library constructed with plantlets inoculated with H. rubrisubal-
bicans [28]. In the SUCEST project the infection with this bacteria occurred
during in vitro cultivation, so the environmental stress cannot be discarded as
an inductive factor of compatible osmolytes expression.

Some studies using the hierarquical clustering for expression pattern analysis
suggested that genes active in the same pathways are expect to have similar
patterns of gene expression and could also be physically clustered in the chro-
mosomes [29] [30]. In A. thaliana genome, for example, genes that participate
of the same pathway (as TPS-TPP and SAT-OASTL) are localized in the same
chromosome [31]. In contrast, at the rice genome the CMO gene is localized
on chromosome 6, and two copies of a gene for BADH on chromosomes 4 and
8 [32]. It is interesting to note that our results demonstrated co-expression of
some libraries and closer co-expression of SAT/OASTL sequences, while CMO
and BADH stayed at different branches, in accordance to their distribution in
model plants.

4.3 Dendrograms/Phylogenetic Analysis

According to Benko-Iseppon et al. (2005) [33] dendrograms made with genes re-
lated to abiotic stress often show groups of sequences in functional arrangements,
with common signatures probably reflecting adaptation or selection driven by en-
vironmental pressure. The fact that phylogenetically diverse organisms, as bacte-
ria, unicellular algae, fungi, vascular plants, invertebrates and vertebrates utilize
the same families of organic osmolytes suggests that these genes are ancient and
suffered strong selective pressures associated with convergent evolution [12] [34].
The here generated dendrograms revealed high degree of conservation among
sequences of sugarcane and other organisms. As expected, almost all dendro-
grams reflected the evolutionary history of the analyzed taxa. For example, the
P5CR dendrogram (see Fig. 2A) also revealed high conservation among pro-
tein sequences of different eukaryotic groups divided in distinct monophyletic



52 P. Barros dos Santos et al.

branches. Regarding angiosperms it was possible to note that monocots and di-
cots formed a monophyletic group, subdivided into two groups with the legumes
together in the VA subbranch.

The dendrogram based on the INPS1 multiple alignment showed a clear segre-
gation of these proteins into five different monophyletic groups (Fig. 2B) follow-
ing their phylogenetic position (bacteria, fungi, vertebrates, invertebrates and
plants). The subclade VA included legume species, possibly reflecting ancestral
characters shared by Fabaceae. Besides, medicago (a salt sensitive plant [35])
grouped with Trifolium pratense, a plant affected by moderate salt levels [36],
while legumes grouped also together, as expected, since they are more tolerant
to water deficit [37].

Concerning the P5CS dendrogram (Fig. 2C) the presence of a symplesiomor-
phic character among the monophyletic clades of plants and animals was de-
tected. In fact, Fujita et al. (1998) [38] revealed that P5CS proteins from higher
eukaryotes are clearly monophyletic. The observed topology for the plants clade
clearly showed the existence of two groups, separating the P5CS proteins from
monocots and dicots. In bacteria two genes are responsible for proline biosynthe-
sis (proB and proA), with the two enzymatic domains of P5CS corresponding to
the ProB and ProA proteins of Escherichia coli [39]. It has been proposed that
the corresponding plant genes may have fused and originated the bifunctional
enzyme present nowadays in plant genomes [40]. In animal systems, a similar
event of domain fusion must have occurred since P5CS activity has been de-
tected in mammalian cells and a single-gene encodes both functional enzymatic
activities [41].

Regarding OASTL dendrogram (Fig. 2D) the sequences from bacteria were
placed as an outgroup (I), sharing synarcheomorphic characters with the re-
maining organisms. The Chlorophyta and Embryophyta presented a common
archeomorphyc character, as expected, since they belong to the Archaeplastida,
the major line of eukaryotes. Concerning the angiosperms, it is clear that dif-
ferent OASTL isoforms were represented in two distinct groups (IVA+IVB and
IVA’+IVB’), both formed by Liliopsida and Magnoliopsida species. Considering
the monocots subgroup IVB’, the OASTL SUC 1 sequence grouped with the cy-
tosolic OASTL isoform from Z. mays (gi:758353), as well as the IVA’ subgroup
that included also sequences from the cytosolic isoform. The second group of
monocots (IVB) included the OASTL SUC 2 sequence with the OASTL plastid
isoform from O. sativa (gi:57899533), which was also the best match in the re-
verse alignment. Finally, the IVA subgroup included sequences from S. oleracea
(gi:303902) as well as from Knorringia sibirica (gi:186688080) that are described
as a plastid isoform of OASTL. Thus, it is interesting to note that the organ-
isms from the Angiospermae division were grouped according to their expression
sites, showing the divergent evolution of such isoforms.

The multiple alignments with SAT proteins showed great degree of conserva-
tion among different organisms, revealing its ancestral character. The allosteric
feedback inhibition of SATase activity by L-Cys is a important regulatory mech-
anism for OAS levels. Other mechanism is the modulation os SATase activity
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through reversible formation of protein complex with Cys synthase [42] [43]. The
presence of feedback regulation in SATase isoforms differs within plant species
and subcellular compartments and has been reported in watermelon (Citrul-
lus vulgaris [44]; arabidopsis [45]; S. oleracea [46]; and Glycine max [47]). It is
noteworthy that all these organisms grouped together in the dendrogram, clade
IIIA’ (Fig. 2E). In contrast, Droux (2003) [48] showed that the cytosolic and
mitochondrial isoforms from pea presented insensitivity to Cys inhibition, an
interesting feature considering that Cicer arietinum (chickpea) stayed in a basal
position (IIIA) possibly reflecting these features.

In the TPP dendrogram (Fig. 2F) two distinct groups were formed regarding
the flowering plants (both including dicot and monocot representatives), prob-
ably due to the different TPP isoforms, in accordance with the data of Lunn
(2007) [49] that described up to 10 types of TPP isoforms in plants as ara-
bidopsis, rice and poplar. Moreover in phylogenetic analyses using plant TPP
protein sequences, the same authors found that the angiosperm sequences were
consistently divided into two major groups, providing robust support for a fun-
damental dichotomy within the angiosperm TPP family. In the branch IIIB,
separated groupings could be observed in the monocot subbranch: the Saccha-
rum sp. 1 sequence presented higher similarity with Eragrostis tef sequence,
while Saccharum sp. 2 shared a larger number of characters with a sequence
from maize; it is important to stick out that both E. tef and maize are rec-
ognized by their active TPP enzyme (designated as Ramosa3) that is involved
in the control of inflorescence branching by modification of a sugar signal that
moves into axillary meristems [50]. Comparing the sequences within branch IIIA
it was possible to identify similarities among sugarcane and rice (gi: 45544517)
sequences justifying their position in the same branch. According to Pramanik
and Imai (2005) [51], this rice TPP isoform is highly induced by chilling stress in
shoot and root tissues of seedlings and also by salt and drought stress. Looking
for the reads that composed the cluster where Saccharum sp. 3 aligned, it was
evident that two of the four reads came from root to shoot zone transition of
young plants (RZ3 library) a tissue very sensitive to abiotic factors, in consis-
tence with the information given by the authors. Thus, it is possible to infer
that these two branches represented two distinct isoforms, the first (IIIB) with
proteins involved with inflorescence architecture and the second (IIIA) involved
in stress responses.

Regarding the TPP from the Mycobacterium tuberculosis, it was observed that
it stayed as an out-group, presenting less common traits with the remaining taxa
(Fig. 2F). Lunn (2007) [49] suggested that the plant TPP sequences were most
closely related to those from bacteria, in consonance with Brown et al. (2001) [52]
that proposed that plant TPP genes may have originated from the endosymbiotic
ancestor of mitochondria, which is thought to be similar to the actual gene
present in some bacteria. With respect to the branch II, it is interesting to note
that the group included Physcomitrella patens and Selaginella moellendorffii,
two species strongly resistant to adverse environmental conditions. According
Frank et al. (2005) [53], studies with P. patens (Bryophyta) showed that this
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species presents a high salt and drought tolerance, while the Selaginella species
(Lycopodiophyta) is known as resurrection fern that can recover from almost
complete desiccation.

The complete sequencing of the arabidopsis genome revealed 11 genes
(AtTPS111) encoding TPS enzymes [31], which are formed by the
glucosyltransferase-like and HAD-like domains. In contrast with the other an-
alyzed osmoprotectant genes the generated TPS dendrogram (Fig. 2G) using
sequences bearing these two domains did not follow the current phylogenetic
systematic. Avonce et al (2006) [54] explained that these inconsistencies are ev-
ident only for genes displaying multiple paralogs copies in a single organism,
probably due to either lateral gene transfer or differential loss of paralogs. They
also showed that all plant TPS genes are under selection pressure suggesting
that each of them have a particular function, which could probably be related
to other processes, not necessarily related to osmoprotection.

In the BADH dendrogram (Fig. 2H) monocots and dicots were positioned in
distinct branches with a high bootstrap value (99). Regarding the dicots, the
subclades IIIA and IIIA’ comprised members of the Rosidae subclass (Brassi-
caceae and Fabaceae families) and only members of the Caryophyllidae subclass
(respectively), which is known to accumulate far more GB than do other plants
in response to osmotic stresses [55]. With respect to the monocots, previous
studies suggested that BADH is localized in peroxisomes [56] while, differently,
in the dicots the BADH is localized in the chloroplasts [57]. Another difference
between monocots and dicots regards the RNA processing pattern. The sequenc-
ing data from cDNA clones from diverse monocots demonstrated that all tested
sequences had an unusual posttranscriptional processing resulting in deletion(s)
of the 5’ exonic sequences [58].

5 Concluding Remarks

Together these results point to the presence of all important gene categories
for the synthesis of compatible osmolytes in sugarcane transcriptome, consid-
ering available knowledge from rice model plant. Many crops lack the ability
to efficiently synthesize some types of osmoprotectants that are naturally accu-
mulated by stress-tolerant plants. The production of transgenic plants that can
accumulate osmoprotectants will allow the transference of this defense mecha-
nism to important crop plants, such as sugarcane. Therefore, additional stud-
ies involving transgenic plants tolerant to stress conditions will help to verify
their utility potential in crop-breeding programs. In conclusion, this survey of
osmoprotectant-related genes in the sugarcane transcriptome can provide new
insights into the study of the genetic and also synthetic pathways of compatible
osmolytes, biosynthesis regulation of these compounds and phylogenetic relation-
ship among their natural producers, continuing to expand our knowledge on the
evolution and adaptations of flowering-plants to abiotic stresses and providing a
framework on which future studies into the function(s) of the osmoprotectants
in the plants metabolism may be based.
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Abstract. IP6 Kinases (IP6Ks) are important mammalian enzymes in-
volved in inositol phosphates metabolism. Although IP6Ks have not yet
been identified in plant chromosomes, there are many clues suggesting
that the corresponding gene might be found in plant mtDNA, encrypted
and hidden by virtue of editing and/or trans-splicing processes. In this
paper, we propose an approach to search for the gene IP6K and ap-
plied it on mitocondrial DNA (mtDNA) of plants. To search for the gene
IP6K, we applied a technique based on motif discovery by considering
the nucleotide sequence corresponding to a specific tag of the IP6K fam-
ily. Such a tag has been found in all IP6K genes identified up to now,
as well as in all genes belonging to the Inositol Polyphosphates Kinases
(IPK) superfamily. IPK tag sequence corresponds to the catalytic site of
the enzyme and it can be considered as an identifier of IPK genes.

The analysis we conducted provided the relevant negative answer that
IP6K does not actually occur in vegetable mtDNA.

Finally, we also validated our approach by searching for the known
Ipk1 gene in Arabidopsis thaliana genome.

1 Introduction

In the last few years several genomes of different organisms have been completely
sequenced. Despite the availability of many sequence data, much of their informa-
tional content still remains undiscovered. Many genes are not yet been identified,
and the gene number contained in sequenced genomes is still unclear. Computa-
tional methods for gene discovering are based on “ab-initio” gene finding (de-
tecting genes by looking for distinct patterns that define where a gene begins
and ends), or on comparative gene finding (looking for genes by comparing seg-
ments of sequence with those of known genes and proteins). Even if several genes
have been discovered by computational genome analysis, many challenges still
remain open. Indeed, although such computational methods are very helpful in
finding canonic genes, there are situations in which they fail in discovering genes
encrypted in the genome due to several complications that may possibly arise.
For instance, it is known that from the same gene several proteins can be gener-
ated, that two genes can partially overlap, and so on. Furthermore, there are some
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mechanisms at RNA level, like RNA editing and trans-splicing, that increase the
complexity of a gene thus expanding the diversity of proteins of the organism.

Very intriguing is the case of genes whose existence is supposed on the ba-
sis of biological considerations, but they are not yet been discovered. One of
these genes is IP6 Kinase (IP6K) in plants, the gene that encodes the enzyme
converting inositol hexakisphosphate (IP6 or phitic acid) in diphosphoinositol
pentakisphosphate (IP7 or PP-IP5). Although IP6K has not yet been identified
in plant chromosomes, there are many clues suggesting its presence in plant
cells. Inositol polyphosphates are an important class of regulatory molecules in-
volved in a variety of intracellular signaling pathways, and IP6 Kinases are the
mammalian enzymes responsible of their synthesis.

IP6K is the most abundant inositol polyphosphate in eukaryotic cells. It is the
precursor of a class of more anionic inositol polyphosphate, the inositol pyrophos-
phates, in which the fully phosphorylated IP6 ring is further phosphorylated to
create high-energy pyrophosphate group. The best characterized inositol py-
rophosphates are the diphosphoinositol pentakisphosphate (IP7 or PP-IP5) and
the bis-diphosphoinositol tetrakisphosphate (IP8 or [PP]2-IP4), with one and
two pyrophosphate group, respectively [3].

Inositol pyrophosphates are important cellular messengers that control a wide
range of cellular function, including endocytosis [31], apoptosis [22], telomere
length [30], and have been argued to be able to drive a new kind of protein post-
trasductional modification (protein pyro-phosphorylation) [5]. Since their discov-
ery in the early 1990s, inositol pyrophosphates have been found in all analyzed
eukaryotic cells, from yeast to mammalian neuron, along with the widespread
conservation of the enzymes responsible for their synthesis. The mammalian en-
zymes responsible for IP7 synthesis are called IP6 Kinases (IP6Ks); they are
able to convert IP6 plus ATP to IP7 [28]. It is now known that IP6Ks belong
to a superfamily of Inositol Polyphosphates Kinase (PFAM accession num-
ber PF03770), that evolved from a common ancestor, comprising IP6Ks, Inos-
itol Polyphosphate Multikinase (IPMK) and IP3-3Ks that specifically convert
I(1,4,5)P3 to I(1,3,4,5)P4. Interestingly, the presence of pyrophosphate IP7 has
been demonstrated also in vegetable organisms, both in monocotyledonous and
in dycotiledonous plants [12,7]. Furthermore, the conversion of IP6 to IP7 has
been detected in Arabidopsis cells and leaf tissue in the presence of ATP, demon-
strating IP6-kinase activity in plant extracts1. These findings, together with the
observed high conservation through the evolution of IP6K, strongly suggest the
presence of this enzyme in vegetable cells.

Therefore, IP6K enzyme was searched in plant genomes by homology based
methods, but all studies have failed to reveal its presence. Only two IPMK proteins
(called AtIPK2a and AtIPK2b in Arabidopsis thaliana) have been identified so
far [34,40]. These two enzymes contribute to inositol 1,3,4,5,6-pentakisphosphate
(IP5) production in Arabidopsis, but do not show any inositol pyrophosphate en-
zymatic activity [34,40].

1 Adolfo Saiardi and Cristina Azavedo unpublished manuscript.
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However, there are many clues connecting IP6K to cell mitochondria. It was
shown that human IP6K2 moves from nuclei to mitochondria and provides physi-
ologic regulation of apoptotic process by generating IP7 [23]. Furthermore, yeasts
deficient in KCS1 (yeast IP6-Kinase), kcslΔmutants, do not survive if they are
grown in conditions in which survival is dependent from mitochondrial function,
thus demonstrating the importance of IP6K2. Summarizing, to date IP6K has
not been identified in plant chromosomes, but there are many clues suggesting
its presence in vegetable cells. Some further observations could suggest that the
corresponding gene might be found in plant mtDNA, probably encrypted and
hidden by virtue of editing and/or trans-splicing processes.

It is known that most of mtDNA information concerns genic products act-
ing inside the mitochondrion itself. Plant mitochondrial genomes have several
peculiar characteristics with respect to the mammalian ones such as the larger
size (from 200Kb to 2400Kb), the presence of introns and genetic material of
chloroplast or nuclear origin [25].

Also, mitochondrial genome is characterized by occurrence of phenomena (like
RNA editing) enlarging protein variability [36].

On the basis of the above considerations, we decided to search IP6K in mtDNA
of plants. Because of the considerable sequence heterogeneity among the several
IPKs known, common homology search programs are not useful to this aim.
Thus, we decided to use a new approach, looking not for the gene sequence as
whole, but for a specific tag sequence, characterizing IPK gene family.

In order to search for the IPK family tag in mtDNA sequences, we exploited
L-SME [11], a software for motif extraction which allows for the motif structure
to be only partially specified by the user. As the main result of our analysis,
we can conclude that IP6K does not actually occur in vegetable mtDNA. The
negative answer that IP6K gene does not actually occur in vegetable mtDNA
is an important result that restricts the search of the gene to plant nuclear
DNA. Moreover, to show the goodness of our method, we tested it searching a
known gene, already identified by biological techniques. Such a gene is the one
coding for inositol 1,3,4,5,6-pentakisphosphate2-kinase (InsP5 2-kinase or Ipk1),
the enzyme responsible for the production of inositol hexakisphosphate (IP6).
Ipk1s are unique among inositol phosphate kinases in that they phosphorylate
the axial 2-position of the inositide ring, whereas other enzymes act on equatorial
position of the ring [14].

The family of enzymes responsible for the synthesis of IP6 from IP5 are known
as Ipk1. The first Ipk1 gene was identified in yeast [15] and in other different
fungal species. Although functionally conserved, IPK genes present very low
sequence homology in different organisms, with less than 24% identity in pairwise
combinations across the fungal proteins [9]. The sequence identity is limited to a
few small regions with high homology. This lack of significant homology initially
disallowed the discovery of non-fungal Ipk1. After characterization of human Ipk1
[16], the gene was cloned in Arabidopsis thaliana using molecular strategy based
on the presence of specific tags in the protein [35]. As a consequence, in this

2 Adolfo Saiardi unpublished manuscript.
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paper, we searched Ipk1 in Arabidopsis thaliana genome with L-SME software,
exploiting the presence of specific tag in Ipk1 gene family. This approach leads us
to easily find the gene, allowing us to validate the method, that appears general
and very useful when homology search strategies cannot be used.

The paper is organized as follows. In Section 2 we describe our approach and
the tuning settings of DLME that we exploited for our purposes. In Section 3
we illustrate the main results of our analysis, while in Section 4 we discuss their
biological relevance. Finally, in Section 5, we draw our conclusion.

2 Methods

Common software for sequence search is based on sequence homology, but it is
not very useful when the expected homology between the gene searched for and
the known sequences is low. Furthermore, this software cannot detect possible
changes in nucleotide sequences due to RNA editing mechanisms. The intuition
behind our work is that all IPK genes are characterized by the presence of spe-
cific tags, short sequences of few amino acids corresponding to enzyme functional
regions. The most important one is the P-XXX-D-X-K-X-G domain, correspond-
ing to the catalytic site of the enzyme. For the identification of IP6K gene in
plant mtDNA, we focused on the nucleotide sequence corresponding to this spe-
cific IPK tag. In particular, we analyzed all the published mtDNA sequences
(available at http://www.ncbi.nlm.nih.gov/sites/ entrez) and performed
motif extraction from them, since a tag can be viewed as a subsequence whose
structure is not completely specified a priori, that is, a special kind of motif.
Among the different algorithms and tools available for motif discovery (e.g.,
see [6,39,21,10,2,27]), we chose L-SME [11] since it is able to handle different
complex kinds of pattern variabilities, as will be better recalled in the following.

For each identified tag, we extracted a sequence of about 1200 nucleotides
surrounding the consensus sequence and examined it as a candidate IP6K gene.
Nucleotidic sequences were translated into amino acid sequences by using the
Transeq [26] software. Then, in order to detect possible homologies, we per-
formed sequence alignments using ClustalW [17] and BLAST [1]. Finally, using
the TBLASTX and TBALSTN algorithms, we screened expressed sequence tag
(EST) databases for proteins containing the mitochondrial sequences identified
by our tag search.

In the following, we briefly describe the L-SME systems, the methodology to
perform the tag search and the settings we exploited for our goals.

2.1 L-SME

L-SME [11] is a system designed to mine general kinds of motifs where several
“exceptions” may be tolerated; that is, it is able to handle different complex
kinds of pattern variabilities. In particular, L-SME is able to search for patterns
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composed of any number of short subsequences (boxes, in the following), where
both the region lengths and the distances between regions can be specified by
the user as an interval ranging from a minimum to a maximum value. Moreover,
mismatches are taken into, as well as “skips” (deletions) and box “swaps” (box
invertions), that possibly affect box occurrences. Furthermore, in L-SME, it is
possible to specify boxes where some symbols are “anchored” to get a fixed value.
Despite the complexity of the addressed pattern variabilities, the system is able
to exhibit very good performances.

The flexibility of the method in specifying variable distances between two
boxes, easily allows possible introns to be taken into account.

In order to limit the great variability introduced by considering introns, we
adopted an incremental approach consisting in iteratively increasing the number
of introns. In particular, we did not take care of any intron at the beginning
and, then, we considered the presence of n introns by incrementing the distance
between n pair of boxes of the typically maximum length of an intron (e.g., 100
bases for Arabidopsis thaliana).

The adopted method is illustrated in Figure 1.

Sequence Database
NCBI

TAG
Definition

Post-Processing
BLAST
ClustalW
Transeq

TAG
Enriched

Intron
Definition

TAG Search
L-SME

Fig. 1. Summary of the Method

2.2 L-SME Settings

For the purposes of this research, we looked for the pattern:

[CC{T,C,A,G}] --------- [GA{T,C}] --- [AA{A,G}] --- [GG{T,C,A,G}] ,

where the square brackets delimite the boxes and the hyphens denote the dis-
tances between boxes. The configuration parameters of L-SME are reported in
Figure 2.
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Distance: Hamming
Number of skips: 0

Number of swaps: 0
Number of boxes: 4

First box length: 3 Second box length : 3
Distance from second box : 9 Distance from third box : 3

First box anchors: CCT Second box anchors: GAT
CCC GAC
CCA
CCG

Third box length: 3 Fourth box length: 3
Distance from fourth box : 3 Fourth box anchors: GGT

Third box anchors: AAA GGC
AAG GGA

GGG

Fig. 2. L-SME parameters configuration

As for the validation carried on the Ipk1 gene, we looked for the pattern com-
posed by the two regions EIKPK and R-XX-MHQ-X-LK characterizing the searched
gene. Such regions typically occur at a distance ranging from 9 to 19 amino
acids. Then, the corresponding pattern in the genome sequence is:

GA{A,C}AT{T,C,A}AA{A,G}CC{T,C,A,G}AA{A,G}-- . . . --

{AGA,AGG,CGT,CGC,CGA,CGG}------{ATG}CA{T,C}CA{A,G}---
{TTA,TTG,CTT,CTC,CTA,CTG}AA{A,G}

where the number of boxes is 11 and the length of each box is 3. The distance
between the fifth and the sixth box, corresponding to the distance between the
region EIKPK and the region R-XX-MHQ-X-LK, is set to the interval [27 − 57]. As
for the distances between the other boxes, they are set according to the above
described method.

3 Results

The full mitochondrial genome sequence is known for 39 different vegetable
organisms, belonging to various Phyla, even very distant from an evolution-
ary point of view. The specific IP6Ks tag (P-XXX-D-X-K-X-G) search was per-
formed over all sequenced mitochondrial genomes available to date and both
DNA strands were analyzed. Twentythree genomes out of 46 gave at least one
positive match. Interestingly, we noted that some tag sequences (all 9 amino
acids) were identical among different organisms. For each identified tag we ex-
tracted a sequence of about 1200 nucleotides surrounding it. To find out possible
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relevant homologies, we performed alignments among the sequences found in dif-
ferent vegetable organisms. All the sequences sharing the same tag showed high
homology in the region surrounding the consensus sequence, while alignment
with IP6K known genes (yeast KCS1 or human IP6K1) showed only a weak
similarity. Furthermore, in order to confirm the identity of our putative hit, we
looked for other IP6Ks conserved domains in the identified putative amino acid
sequences. These domains comprise the ATP binding site, first characterized in
IP3-3K [8], the C-terminal domain (last 19 amino acids), important for the cat-
alytic activity [37], and the ”SSLL” domain, required for enzymatic activity of
IP6K [29]. These preliminary analysis led us to focus on the sequence PVGTDRKGG,
that was found in mtDNA of Tripsacum dactyloides, Sorghum bicolour, and three
different species of Zea genus (Zea mays, Zea perennis and Zea luxurians). Align-
ment between the 410 amino acids around the PVGTDRKGG sequence of Tripsacum
dactyloides and the human IP6K gene showed an interesting correspondence of
the consensus region (see Figure 3). Furthermore, in the sequence around the
tag, there are many identitical and conserved or semiconserved amino acids.
With regard to other conserved domains, we did not find a good correspondence
between Tripsacum sequence and known IP6K genes, but these regions are not
as conserved as the P-XXX-D-X-K-X-G tag.

In order to confirm the goodness of our method, we applied it on nuclear
DNA of Arabidopsis thaliana, searching Ipk1 gene. We looked for the EIKPK
motif (box A) and the R-XX-MHQ-X-LK motif, both present in all Ipk1 genes
discovered up to now; they are separated each other from a variable number of
amino acids (19 amino acids in human and rat Ipk1, 9 in yeast Ipk1 ). We found
the conserved sequence on chromosome 5 of Arabidopsis thaliana genome. In
particular we had only one positive match when we considered the possibility
of occurrence of an intron between the third and fourth amino acid of EIKPK
motif. The intron length resulted to be 82 nucleotides and distance between two
EIKPK and R-XX-MHQ-X-LK motifs 63bp. We extracted a sequence of about 2000
nucleotides around the tags. BLAST allignements showed that the sequence was
Arabidopsis thaliana Ipk1 gene.

To verify if the Tripsacum dactyloides sequence is an actively transcribed gene,
we analyzed the Expressed Sequence Tags (ESTs) databases. These databases
include short fragment of DNA derived from a longer cDNA sequence and repre-
senting part of the expressed genome. In order to confirm the expression of the
considered mtDNA sequence, we screened EST databases using the region sur-
rounding the PVGTDRKGG tag of Tripsacum dactyloides. This search failed to find
any EST matching indicating that our putative hit is unlikely to be transcribed
in mtRNA. Finally, we used a region of 50 amino acids of Tripsacum dactyloides
mtDNA surrounding the consensus sequence to perform a multiple alignment
with corresponding regions of inositol phosphate kinase (IPMK, IP6K, IP3-3K)
from different organism using ClustalW2. As shown in Figure 4, the found se-
quence resulted to be an outsider, thus that it does not belong to any subgroup
of kinase composing the IPK gene family.



66 F. Fassetti et al.

SeqA Name Len(aa) SeqB Name Len(aa) Score

1 Tripsacum 410 2 Human 410 6

CLUSTAL 2.0.12 multiple sequence alignment

Tripsacum -PTEILSEY-K--KAISLWWYTSRQFWNFQFQSEHIDPSMDLYV-PLQSCSSFLATSSIF 55
Human MVVQNSADAGDMRAGVQLEPFLHQVGGHMSVMKYDEHTVCKPLVSREQRFYESLPQAMKR 60

.: :: . .:.* : : ::.. . . .. . * * . *. :

Tripsacum FLGTC--TRNSYVRDSSSENLPVFHSHMR--QESLWATGRHEVIHHVQT-TFRSLGTVYK 110
Human FTPQYKGTVTVHLWKDSTGHLSLVANPVKESQEPFKVSTESAAVAIWQT-LQQTTGSNGS 119

* * . :: ..*: :*.:. . :: **.: .: . .: ** :: *: .

Tripsacum S-NSHKWNEKWVHVNDRDLANNNVPSPYGVRDPKAIVE-TVSYSY-LT-AAPLLQGWG-S 165
Human DCTLAQWPHAQLARSPKESPAKALLRSEPHLNTPAFSLVEDTNGNQVE--RKSFNPWGLQ 177

. . :* . : . :: . : : . :. *: : . : :: ** .

Tripsacum ASEPYVGRVSASYSSGRRPGKLRRD--GETQLLPVGTDRKGG------GDKLVKKQAYCP 217
Human CHQAHLTRLCSEYPENKRHRFLLLENVVSQYTHPCVLDLKMGTRQHGDDASEEKKARHMR 237

. :.:: *:.:.*...:* * : . * * * * . . ** :

Tripsacum TPKKQTKKTYAL-QQSAHPLLVASRFHPSP--FRDRRLI-YVQ-SSSDQSARTPDRLCPP 272
Human KCAQSTSACLGVRICGMQVYQTDKKYFLCKDKYYGRKLSVEGFRQALYQFLHNGSHLRRE 297

. :.*. .: . : . .::. . : .*:* .: * :. .:*

Tripsacum ILSRTKWNGSLILVTLCPDPSPHVRFYPPATRPTQH-GRPPPHSMLTRAGARFLGSPFPP 331
Human LLEPILHQLRALLSVIRSQSS--YRFYSSSLLVIYD-GQEPPE--------RAPGSPHPH 346

:*. : :* .: .:.* ***..: . *: **. * ***.*

Tripsacum RS-RPGWPACGSGNSPVPW-KKGWLDAGSTPRGAVRT-MISSRPLFAYR-GCLTPLRQLA 387
Human EAPQAAHGSSPGGLTKVDIRMIDFAHTTYKGYWNEHTTYDGPDPGYIFG---LENLIRIL 403

.: :.. :. .* : * .: .: . :* .. * : : * * ::

Tripsacum LPALSCL 394
Human QDIQEGE 410

.

Fig. 3. Alignment between the 410 amino acids around the PVGTDRKGG sequence
of Tripsacum dactyloides and the human IP6K gene (Clustal W)
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Fig. 4. Multiple alignment of a 50 aa region of Tripsacum dactyloides mtDNA sur-
rounding the tag with corresponding regions of inositol phosphate kinase (IPMK, IP6K,
IP3-3K) from different organism (ClustalW2)

4 Discussion

IP6K is a gene found in many different organisms but it has not yet been identi-
fied in plant genomes. The enzyme catalyzes the conversion of IP6 to IP7 using
ATP as phosphate donor. It belongs to an inositol polyphosphate kinase super-
family, the IPKs (Pfam PF03770), that evolved from a common ancestor. It is
thought that a primordial IPMK may have been the evolutionary precursor of
the IP3-3Ks and the IP6Ks, all of which contain the P-XXX-D-X-K-X-G domain
[32]. Thus this domain represents a unique consensus sequence for the IPK fam-
ily, with four key amino acids very conserved among different inositol phosphate
kinases, despite their considerable sequence heterogeneity. This domain modu-
lates the catalytic site for phosphate transfer from ATP to the inositol ring [4].
The inositol pyrophosphate IP7 is present in all eukaryotic cells analyzed thus
far, from amoeba to human; it is not surprising that the enzyme responsible for
its synthesis is highly conserved through evolution. Indeed, after the first IP6K
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purification from rat brain [38], the enzyme was cloned in other mammalians,
and its high evolutionary conservation was regularly observed, thus facilitating
the identification and cloning of IP6K enzymes from distant organisms, including
yeast and the amoeba Dictyostelium [20]. It is notable that Dictyiostelium di-
verted from the evolutionary mainstream after the diversion of yeast but before
the splitting between animals and plants [19]. Furthermore, the only IPK gene
present in the ancient eukaryote diplomate Giardia lamblia has been demon-
strated to be IP6K [18]. Thus, on the basis of evolutionary considerations, IP6K
is expected to be found also in vegetable organisms.

Moreover, pyrophosphate IP7 is present in vegetable organisms, and IP6-
kinase activity has been demonstrated in plants. However, bioinformatics analy-
sis failed to identify any IP6 kinase in the complete Arabidopsis thaliana nuclear
genome. We hypothesized that IP6K gene actually occurs nested in vegetable
mtDNA, where phenomena enlarging protein variability occur more frequently.
Tags identification in mtDNA could indicate the presence of IP6K gene, even
if not in a canonic form. Indeed there are some mechanisms that can alter the
linearity of genetic information transport from DNA to protein. Most of them
occur at RNA level and the most known is RNA editing. Trans-splicing is a
further process generating genetic variability, in which two RNA molecules, pro-
duced by different DNA regions (even very distant from each other), are joined
in a single RNA molecule able to produce a protein. Indeed, trans-splicing mech-
anisms could compact a gene consisting of more segments dislocated in different
mtDNA regions, and editing phenomena could account for the failure of homol-
ogy searches. Indeed mechanisms altering the linearity of genetic information
transport, like RNA editing and trans-splicing, can generate RNA molecules
much different from DNA producing them, so that DNA sequence can be not
immediately referable to IP6K gene in its transcript. The occurrence of these
phenomena could account for the failure of homology searches. Thus, the search
of a gene starting from its characterizing consensus sequence represents a promis-
ing approach to find an encrypted gene.

To confirm the goodness of our method we searched Ipk1 gene in Arabidopsis
thaliana genome. We found both the EIKPK and the R-XX-MHQ-X-LK region, sep-
arated from 21 amino acids on Arabidpsis thaliana chromosome 5. Surprisingly
we found an intron of 82 nucleotides between the third and the fourth amino
acid of the region EIKPK. The presence of introns inside a tag is very unlikely
because tags are very short sequence, usually less then ten amino acids. Further-
more, the most reliable theory about the function of introns is that they separate
gene segments that code functional domains of proteins [33]. This organization
of discontinuous genes provides insights on the evolution of complex eukaryotic
genes. According to the model of Gilbert [13], exons represent protein domains
that were “marshalled” together during evolution [24]. Consequently, introns can
exist between tags, but the presence of a intron inside one single tag is highly
improbable. Thus, even if the EIKPK region is very conserved and it has been
proposed to be functionally important, the presence of an intron inside it could
indicate that the domain is actually restricted to the first three amino acids.
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5 Conclusion

There are many suggestions, both theoretical and experimental, indicating the
presence of IP6K gene in plant cells. Furthermore several clues connect IP6K
to cell mitochondria, like the experimental observation that IP6K2 moves from
nuclei to mitochondria and the demonstration that IP6K is essential for these
organelles. Thus, we decided to perform the IP6K gene search on mitochondrial
DNA of plants, where we argue it could have been contained in an encrypted
form.

We searched for a specific IP6K tag within all available plant mtDNA se-
quences using L-SME, a very flexible system for motif discovery, allowing us to
deal with genetic code degeneration and possible occurrences of editing events.
The search we performed pointed out the presence of several tags in mtDNA
of examined plants, but an accurate analysis of sequences surrounding the con-
sensus motifs led us to conclude that our hits do not belong to the IPK gene
family. The P-XXX-D-X-K-X-G consensus sequence is a characterizing motif of IP
kinases, and it was found in all members of the family. Thus, the presence of the
tag is essential to assign a gene to IPK family, but a sequence containing the tag
is not necessarily an IPK gene. Our search discovered several tags in mtDNA of
plants, but any sequence containing the tag was not ascribable to IP6K gene and
therefore we are led to conclude that IP6K gene is not present in plant mtDNA.
We finally validated the effectiveness of our approach by searching for the known
Ipk1 gene in Arabidopsis thaliana genome.

As the future work, we plan to extend the search of the IP6K tag on the
nuclear genome of plants.

References

1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database
search programs. NAR 25(17), 3389–3402 (1997)

2. Apostolico, A., Gong, F.-C., Lonardi, S.: Verbumculus and the discovery of unusual
words. Journal of Computer Science and Technology 19(1), 22–41 (2004)

3. Bennett, M., Onnebo, S.M., Azevedo, C., Saiardi, A.: Inositol pyrophosphates:
metabolism and signaling. Cell Mol. Life Sci. 63, 552–564 (2006)

4. Bertsch, U., Deschermeier, C., Fanick, W., Girkontaite, I., Hillemeier, K., Johnen,
H., Weglhner, W., Emmrich, F., Mayr, G.W.: The second messenger binding site of
inositol 1,4,5-trisphosphate 3-kinase is centered in the catalytic domain and related
to the inositol trisphosphate receptor site. J. Biol. Chem. 275, 1557–1564 (2000)

5. Bhandari, R., Saiardi, A., Ahmadibeni, Y., Snowman, A.M., Resnick, A.C., Kris-
tiansen, T.Z., Molina, H., Pandey, A., Werner, J.K., Juluri, K.R., Xu, Y., Prest-
wich, G.D., Parang, K., Snyder, S.H.: Protein pyrophosphorylation by inositol py-
rophosphates is a posttranslational event. Proc. Natl. Acad. Sci. U S A 104(39),
15305–15310 (2007)

6. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic
discovery of patterns in biosequences. Journal of Computational Biology 5(2), 277–
304 (1998)



70 F. Fassetti et al.

7. Brearley, C.A., Hanke, D.E.: Inositol phosphates in barley (hordeum vul. l.) aleu-
rone tissue are stereochemically similar to the products of breakdown of insp6 in
vitro by wheat-bran phytase. Bioch. J. 318(1), 279–286 (1996)

8. Communi, D., Takazawa, K., Erneux, C.: Lys-197 and asp-414 are critical residues
for binding of atp/mg2+ by rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem
J. 291, 811–816 (1993)

9. Ives, E.B., Nichols, J., Wente, S.R., York, J.D.: Biochemical and functional char-
acterization of inositol 1,3,4,5,6-pentakiphosphate 2-kinases. The Journal of Bio-
logical Chemistry 275, 36575–36583 (2000)

10. Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in DNA sequences.
Bioinformatics 18, S354–S363 (2002)

11. Fassetti, F., Greco, G., Terracina, G.: Mining loosely structured motifs from bio-
logical data. IEEE Trans. Knowl. Data Eng. 20(11), 1472–1489 (2008)

12. Flores, S., Smart, C.C.: Abscisic acid-induced changes in inositol metabolism in
spirodela polyrrhiza. Planta. 211, 823–832 (2000)

13. Gilbert, P.: Why genes in pieces? Nature 271(5645), 501 (1978)

14. Gonzales, B., Banos-Sanz, J.I., Villate, M., Brearley, C.A., Sanz-Aparicio, J.: In-
ositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant ipk member with a singular
inosite binding site for axial 2-oh recognition. Proc. Natl. Acad. Sci. U S A 107(21),
9608–9613 (2010)

15. York, J.D., Odom, A.R., Murphy, R., Ives, E.B., Wente, S.R.: A phospholipase c-
dependent inositol polyphosphate kinase pathway required for efficient messanger
rna export. Science 285, 96–100 (1999)

16. Verbsky, J.W., Wilson, M.P., Kisseleva, M.V., Majerus, P.W., Wenter, S.R.: The
synthesis of inositol hexakiphosphate. characterization of human inositol 1,3,4,5,6-
pentakiphosphate 2-kinase. The Journal of Biological Chemistry 277, 31857–31862
(2002)

17. Larkin, M.A., Blackshields, G., Brown, N.P.: ClustalW and ClustalX version 2.
Bioinf. 23(21), 2947–2948 (2007)

18. Letcher, A.J., Schell, M.J., Irvine, R.F.: Do mammals make all their own inositol
hexakisphosphate? Biochem. J. 416(2), 263–270 (2008)

19. Loomis, W.F., Smith, D.W.: Consensus phylogeny of Dictyostelium. Experien-
tia. 51(12), 1110–1115 (1995)

20. Luo, H.R., Huang, Y.E., Chen, J.C., Saiardi, A., Iijima, M., Ye, K., Huang, Y.,
Nagata, E., Devreotes, P., Snyder, S.H.: Inositol pyrophosphates mediate chemo-
taxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interac-
tions. Cell 114(5), 559–572 (2003)

21. Marsan, L., Sagot, M.-F.: Algorithms for extracting structured motifs using a suffix
tree with application to promoter and regulatory site consensus identification. J.
of Comput. Biol. 7, 345–360 (2000)

22. Morrison, B.H., Bauer, J.A., Hu, J., Grane, R.W., Ozdemir, A.M., Chawla-Sarkar,
M., Gong, B., Almasan, A., Kalvakolanu, D.V., Lindner, D.J.: Inositol hexakispho-
sphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics.
Oncogene 21(12), 1882–1889 (2002)

23. Nagata, E., Luo, H.R., Saiardi, A., Bae, B., Suzuki, N., Snyder, S.H.: Inositol hex-
akisphosphate kinase-2, a physiologic mediator of cell death. J. Biol. Chem. 280(2),
1634–1640 (2005)

24. OMalley, B.W., Stein, J.P., Means, A.R.: The evolution of a complex eukaryotic
gene. Metabolism 31(7), 646–653 (1982)



IP6K Gene Discovery in Plant mtDNA 71

25. Palmer, J.D., Adams, K.L., Cho, Y., Parkinson, C.L., Qiu, Y.L., Song, K.: Dynamic
evolution of plant mitochondrial genomes: mobile genes and introns and highly
variable mutation rates. Proc. Natl. Acad. Sci. U S A 97(13), 6960–6966 (2000)

26. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European Molecular Biology Open
Software Suite. Trends in Genetics 16(6), 276–277 (2000)

27. Rombo, S.E., Palopoli, L.: Pattern discovery in biosequences: From simple to com-
plex patterns. In: Masseglia, F., Poncelet, P., Teisseire, M. (eds.) Data Mining
Patterns: New Methods and Applications. IGI Global (2007)

28. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., Snyder, S.H.:
Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of
higher inositol polyphosphate kinases. Curr. Biol. 9(22), 1323–1326 (1999)

29. Saiardi, A., Nagata, E., Luo, H.R., Sawa, A., Luo, X., Snowman, A.M., Snyder,
S.H.: Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-
trisphosphate and an inositol pyrophosphate. Proc. Natl. Acad. Sci. U S A 98(5),
2306–2311 (2001)

30. Saiardi, A., Resnick, A.C., Snowman, A.M.: Inositol pyrophosphates regulate cell
death and telomere length through phosphoinositide 3-kinase-related protein ki-
nases. Proc. Natl. Acad. Sci. U S A 102, 1911–1914 (2005)

31. Saiardi, A., Sciambi, C., McCaffery, J.M.: Inositol pyrophosphates regulate endo-
cytic trafficking. Proc. Natl. Acad. Sci. U S A 99, 14206–14211 (2002)

32. Shears, S.B.: How versatile are inositol phosphate kinases? Biochem. J. 377, 265–
280 (2004)

33. Stein, J.P., Catterall, J.F., Kisto, P., Means, A.R., O’Malley, B.W.: Ovomucoid
intervening sequences specify functional domains and generate protein polymor-
phism. Cell 21, 681–687 (1980)

34. Stevenson-Paulik, J., Odom, A., York, J.: Molecular and biochemical character-
ization of two plant inositol polyposphate 6-/3-5- kinases. J. Biol. Chem. 277,
42711–42718 (2002)

35. Sweetman, D., Johnson, S., Caddick, S.E., Hanke, D.E., Brearley, C.A.: Charac-
teryzation of an arabidopsis inositol 1,3,4,5,6-pentakisphosphate 2-kinase (atipk1).
Biochem. J. 394, 95–103 (2006)

36. Takenaka, M., Verbitskiya, D., van der Merwea, J.A., Zehrmanna, A., Brennickea,
A.: The process of rna editing in plant mitochondria. Mitochondrion 8, 35–46 (2008)

37. Togashi, S., Takazawa, K., Endo, T., Erneux, C., Onaya, T.: Structural identifi-
cation of the myo-inositol 1,4,5-trisphosphate-binding domain in rat brain inositol
1,4,5-trisphosphate 3-kinase. Biochem. J. 326, 221–225 (1997)

38. Voglmaier, S.M., Bembenek, M.E., Kaplin, A.I., Dorman, G., Olszewski, J.D.,
Prestwich, G.D., Snyder, S.H.: Purified inositol hexakisphosphate kinase is an atp
synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor.
Proc. Natl. Acad. Sci. U S A 15, 4305–4310 (1996)

39. Wang, J., Shapiro, B., Shasha, D.: Pattern DiscoVery in Biomolecular Data: Tools,
Techniques and Applications. Oxford University Press, NY (1999)

40. Xia, H.J., Brearley, C., Elge, S., Kaplan, B., Fromm, H., Mueller-Roeber, B.: Ara-
bidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a
yeast mutant lacking a functional argr-mcm1 transcription complex. Plant Cell 15,
449–463 (2003)



Identification and Expression of Early

Nodulin in Sugarcane Transcriptome
Revealed by in Silico Analysis

Gabriela Souto Vieira-de-Mello, Petra Barros dos Santos,
Nina da Mota Soares-Cavalcanti, and Ana Maria Benko-Iseppon

Universidade Federal de Pernambuco, Center of Biological Sciences,
Department of Genetics, Laboratory of Plant Genetics and Biotechnology,
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Abstract. Nodulin genes have been defined as plant genes that are in-
duced during nodule formation in legumes. Many studies, however, re-
vealed a number of nodulins in non-legumes, including monocot plants,
suggesting that these genes play additional roles besides nodulation.
The presence and expression profile of the early nodulin genes (An-
nexin, DMI3, NIN, NORK, CCS52A, and ENOD8) was evaluated in
the sugarcane transcriptome (237,954 ESTs) using in silico procedures.
129 sugarcane clusters were identified (out of 1,476 transcripts) and
their expression profile was evaluated. Higher expression was observed
in libraries of flowers, roots and normalized mix of tissues, confirming
their multi-function character besides the plant-bacteria endophytic in-
teraction in sugarcane. The multiple alignments revealed high homology
among sugarcane sequences and respective proteins from other plants,
mainly monocots, revealing a relatively conserved genetic structure
among species, probably regarding ancient genetic processes.

Keywords: early nodulins, nitrogen fixation, expression pattern.

1 Introduction

Sugarcane is one of the most important sources of sugar and alcohol in the
world and is cultivated in tropical and subtropical areas in more than 80 coun-
tries around the globe. Several sugarcane varieties have the ability to grow with
low nitrogen fertilizer inputs, being selected for high yields with low inputs
of inorganic nitrogen fertilizer [1]. This important crop establishes association
with endophytic diazotrophic bacteria, including Gluconacetobacter diazotrophi-
cus, Herbaspirillum seropedicae and H. rubrisubalbicans, showing unique features
when compared with other nitrogen-fixing associations. Bacteria colonizes the
intercellular spaces and vascular tissues of most organs of the infected symbiont
promoting plant growth, without causing visible disease symptoms [1] [2]. It is
still unclear which mechanisms are involved in the establishment of this partic-
ular type of interaction and what kind of molecules mediate signaling between
plant and bacteria [1].
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Nodulins have been defined as plant genes that are exclusively induced during
nodule formation in legume plants. Many studies, however, revealed a number of
nodulin-related sequences in non-legumes, as ENOD40 [3]. Moreover some non
leguminous plants, including rice, have the ability to perceive lipochitooligosac-
charide nodulation signal molecules (nod factors) produced by the rhizobia, sug-
gesting that nodulation related processes are present in non legumes [4]. Recent
evaluations indicated that the molecular communication between sugarcane and
the microbes might involve lipopolysaccharides present in the outer membrane
of these gram-negative bacteria [2]. In addition, some sugarcane genes involved
in plant-bacteria signalization during the association and nitrogen metabolism
are probably activated by the endophytic bacteria in the early steps of plant col-
onization, allowing the plant to assimilate the nitrogen fixed by the bacteria [5].
These genes also seem to act as nodule activators, once they present homology
with some legume nodulins [1].

No previous evaluation of early nodulin genes was carried out in the sugarcane
transcriptome, despite of the potential application of these genes in increasing
the efficiency of the association between this plant and diazotrophic bacteria. In
this context the present work aimed to perform an in silico identification and
characterization of early nodulins in the sugarcane transcriptome, using known
legume nodulin sequences as templates, evaluating also the expression profiles
of nodulin-related sequences in this organism.

2 Material and Methods

For the annotation routine (Fig. 1) known full length cDNA sequences of early
nodulin genes (Annexin, DMI3, NIN, NORK, CCS52A and ENOD8) from
legumes (Tab. 1) were used as seed sequences against the SUCEST database
with aid of a local tBLASTn search tool. Only sequences with e-value up to
e−10 or less were used for a homology screening in Genbank using the BLASTx
tool [6]. The cluster frame of the tBLASTn alignment was used to predict the
Open Reading Frames (ORFs) for each selected cluster. Sugarcane clusters were
translated using the ORF-finder tool at NCBI and screened for conserved motifs
with aid of the RPS-BLAST CD-search tool.

The prevalence of sugarcane early nodulins was based on the number of reads
that composed each cluster, followed by data normalization and calculation of
the relative frequency (reads per library). A hierarchical clustering approach
was applied using normalized data, from all identified nodulins transcripts, al-
lowing the generation of a graphic representation with aid of the CLUSTER
program [7]. The resulting dendrograms including both axes (using the weighted
pair group for each gene class and library) were generated using the TreeView
program for Windows [8]. Multiple alignments (CLUSTALx program) were gen-
erated using sugarcane complete sequences together with sequences from other
organisms, searched NCBI. The phylogenetic analysis was performed using the
MEGA program (Version 4 for Windows [9]) using maximum parsimony method,
with bootstrap of 2,000 replications and pairwise deletion for the treatment of
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Fig. 1. Schematic representation of the routine application. Annotation was accom-
plished using seed sequences of NIN, ENOD8, NORK, CCS52A, ENOD40, DMI3 and
Annexin from legumes, followed by identification of sugarcane candidates, confirmation
of identity, sequence characterization, differential expression profiling and phylogenetic
analyses.

GAPs during the alignments, generating a consensus tree with a cut-off of 50
(50% more parsimonious trees).

3 Results

3.1 Sugarcane Orthologs

129 candidate clusters (from 1,476 reads) could be identified in the SUCEST
database, with e-values ranging from 0.0 to e−10 (Tab. 1). Annexin: a high
degree of similarity was found (e-value up to 4e−83). All nine clusters presented
best matches with their respective proteins after BLASTx (seven with monocots
- Z. mays and O. sativa - and two with dicots - A. thaliana and Cicer arietinum).
The searched annexin domain was found in two clusters, being structurally con-
served. DMI3: 25 sugarcane clusters were identified (e-values from 8e−65 to
e−10) of which seven presented the complete S TKc domain. After reverse align-
ments 19 sugarcane sequences exhibited best similarity with monocots, including
Z. mays (five) and O. sativa (14 alignments), and six were similar to dicots (Cu-
curbitaceae, Rosaceae, Fabaceae and Brassicaceae). CCS52A: 12 clusters were
identified (2e−130 to 3e−11). After reverse alignment 83.3% presented similarity
with O. sativa while 16.7% were similar to Lotus japonicus and A. thaliana. The
WD40 conserved domain was found in three Saccharum officinarum orthologs.
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NIN: search revealed five clusters with high degree of similarity; two with the
searched RWP-RK domain complete, one incomplete and two with no domain.
After BLASTx the clusters showed similarity with O. sativa and L. japonicus
(e-values from 7e−147 to 8e−23). NORK: 46 representatives were found. After
BLASTx 93.5% showed similarity with monocots (mainly O. sativa) while 6.5%
were similar to A. thaliana. Regarding the integrity of the PKc Tyr conserved
domains, in 28 and 18 clusters they were complete and incomplete, respectively.
ENOD8: the 28 sequences obtained using BLASTn showed high degree of con-
servation with O. sativa proteins after BLASTx, with more than 75% of the
selected clusters similar to this monocot. The procured SGNH plant lipase like
domain was detected in 12 clusters. ENOD40: four clusters were selected in the
SUCEST database, three showing high similarity with a respective protein from
O. sativa. The procured RRM domain was found complete and incomplete in
three and one clusters, respectively.

Table 1. Main sugarcane clusters similar to nodulins genes. tBLASTn results and
sequence evaluation of sugarcane nodulins genes including the best match of each
gene: (I) Features and evaluation results with sugarcane cluster size in nucleotides
(nt), ORF (Open Reading Frame) size in amino-acids (aa), e-value; numbers (#) of
matched clusters. (II) Data about BLASTx best alignment: NCBI GI number and plant
species.

3.2 Expression Pattern

Regarding the prevalence of early nodulins (Fig. 2A), it was clear that NORK
reads were most abundant, with 612 reads (representing 42% of nodulins tran-
scripts), followed by DMI3 with 320 reads (22% of the total number). The lowest
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Fig. 2. (A) Prevalence of early nodulin transcripts in the SUCEST database. Num-
bers above refer to the absolute number of reads found and the numbers below re-
fer to the percentage of reads that compose each nodulin class. (B) Occurrence of
sugarcane early nodulins in the SUCEST libraries. Numbers refer to the percentage
of reads in each library. (C) Heat map representing expression pattern of sugarcane
early nodulin genes. White means no expression and black means all levels of ex-
pression. Library codes: AD/AD1: tissues infected by Gluconacetobacter diazotrofi-
cans, AM: Apical meristems (AM1/AM2); CL: Calli treated for 12 h at 4 to 37oC
in the dark or light (CL3/CL4/CL6); FL: Flowers at different developmental stages
(FL1/FL3/FL4/FL5/FL8); HR: tissues infected with Herbaspirillum rubrisubalbicans;
LB: Lateral buds from mature plants (LB12); LR: Leaf Roll from immature plants
(LR1/, LR2); LV/LV1: Etiolated leaves from plantlets grown in vitro; NR: All normal-
ized tissues; RT: Roots (RT1/,RT2) and root apex (RT3); RZ Root to shoot transition
(RZ1/RZ2/RZ3); SB/SB1: Stalk bark; SD: Seeds (SD1/SD2); ST: Stem (ST1/ST3).

number was observed for NIN and ENOD40, representing 2% each. Considering
the distribution of the 1,476 nodulin transcripts in the 14 analyzed libraries, in
general a higher prevalence could be observed in flower (FL= 25%) and stem-root
transition (RZ=13%; Fig. 2B) tissues.

It is interesting that all 29 analyzed libraries from SUCEST database com-
prised at least one read. The heat map (Fig. 2C) revealed a higher expression in
flower (FL2) and in Stem-Root transition (RZ1/RZ3).
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Fig. 3. Dendrograms generated after maximum parsimony analysis illustrating rela-
tionships revealed by conserved domains similarity among (A) ENOD8 and (B) An-
nexin sequences and putative sugarcane orthologs. The numbers in the base of clades
regard to bootstrap values (2,000 replications).

3.3 Dendrograms

The multiple alignments generated using Annexin and ENOD8 sequences
showed a high degree of conservation among the nodulin orthologs from di-
verse organisms. In the resulted dendrograms (Fig. 3A-B) it was possible to
observe the placement of different organisms (fungi, protists, plants and ani-
mals) in separated clades according their kingdom classification. For ENOD8
they were distributed into two groups; the first one (outgroup) comprising the
protozoans (I) and the other including plants species (II). The group II showed
two subclades, grouping dicots and sugarcane (sister group IIa, bootstrap 84)
and monocots (sister group IIb) in different branches. In the annexin dendro-
gram (Fig. 3B) fungi figured as an outgroup (branch I), while animals and plants
were positioned in two clades (II and III, respectively) according to their higher
taxonomic classification. In group III the Fabaceae family (IIIa) was segregated
from the remaining dicots (IIIb), which were placed together with the monocots
(IIIc).
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4 Discussion

4.1 Sugarcane Orthologs

Annexins comprise a multigene and multifunctional family of amphipathic pro-
teins presenting a broad taxonomic distribution covering prokaryotes, fungi,
protists, plants and higher vertebrates. Regarding Magnoliophyta this proteins
are conserved in both dicots and monocots [10]. Concerning their functions,
legume annexins are upregulated by Nod factors and play a role in nodulation
signaling [11]. Besides the role in the symbioses, annexins from non-legumes
are associated with different cellular processes. For example in maize, annex-
ins are considered to be multifunctional proteins capable of peroxidase activ-
ity, elevation of cytosolic calcium and direct formation of a passive Ca2+- and
K+-permeable conductance [12]. As expected, the sugarcane Annexin orthologs
showed higher sequence conservation with Poaceae organisms following the taxo-
nomic proximity, as expected. In addition two sequences presented the conserved
domain complete, indicating the existence and conservation of Annexin genes in
sugarcane.

Another early nodulin, DMI3, is a plant-specific protein that belongs to the
CCaMK group of serine-threonine protein kinases present from the moss
Physcomitrella patens to higher plants, including dicots and monocots [13]. Many
plant-specific DMI3 orthologs were found in sugarcane transcriptome bearing
high similarity with known genes. Most sugarcane CCaMKs presented high
similarity with rice sequences. Regarding this resemblance, it is suggested that
legume DMI3 also beard high similarity to rice and lily. Little is known about
the biological role of CCaMKs in plants, and it is suggested that a CCaMK is
required by mycorrhized plants to interpret a complex calcium signature elicited
in response to fungus signals [14]. This could be also the case of sugarcane that
besides the interaction with endophytic bacteria is able to establish mycorrhizal
associations [5].

Regarding CCS52A, our findings confirm that this gene is present in sugar-
cane, since we found clusters with complete domains and best hits with high
degree of similarity with rice, a organism with well characterized CCS52A [15].
These findings can be supported by Foucher and Kondorosi [16] that proposed
that CCS52A is an ubiquitous regulator of cell cycle transition to differentiation
in non legume plants cells. Moreover, orthologs of this protein have been also
found in various other plant species like medicago, arabidopsis, tomato, wheat
and rice, indicating a strong conservation of the CCS52A proteins in the plant
kingdom [17].

With respect to the NIN family, the results indicated the presence of at least
five isoforms with high similarity with rice NIN-like proteins (NLPs), what can
reinforce the findings of Riechman et al. [18], which theorized that there are no
close relatives to the legume NIN proteins in rice or arabidopsis. Instead, these
non-legumes presented NLPs regarding the closest relatives of legume NINs. In
addition, the NLPs are multidomain proteins with a high degree of conservation;
the phylogenetic tree inferred from the NLP alignment suggested that there
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are at least three variants of this gene in the common ancestor of mono- and
eudicots [19].

Sugarcane’s most abundant nodulin regarded the NORK gene class, with
46 clusters. The extracellular domain of NORK protein presented three LRR
(Leucine Rich Repeat) domains, which are required for perception of a liposac-
charide nodulation signal in legumes. Proteins that possess similarity to the
unique NORK extracellular domain are found in monocots and dicots, suggest-
ing that this region may have a biological role that is not limited to nodula-
tion [20]. The RLKs (Receptor Like Kinases) comprise the largest gene family
of receptors in plants, with more than 600 homologs in arabidopsis and 1,100 in
rice [21]. In both organisms these RLKs might have roles in plant development
and in signal transduction during interactions with endophytic organisms and
pathogens [22]. In addition Vinagre et al. [23] identified in sugarcane a LRR-
RLK whose expression is regulated in response to interactions with beneficial
bacteria. Together, these facts confirm our findings in sugarcane transcriptome
and explain the high number of clusters found.

ENOD8 is a member of the GDSL family of lipolytic enzymes present in plant
and bacteria that have the putative active serine site, which is not perfectly con-
served in all members of the GDSL gene family [24]. In plants, GDSL lipase can-
didates of species like arabidopsis, Rauvolfia serpentina, Medicago sativa, Hevea
brasiliensis and Alopecurus myosuroides have been isolated, cloned and char-
acterized, revealing that they are conserved among these species [25]. Studying
infected libraries of SUCEST, Nogueira et al. [1] found that sugarcane ENOD8 is
similar to myrosinase-associated protein (MyAP) related with the plant defense
responses. In our differential expression results, sequences of ENOD8 protein
were also found in non-infected tissues, suggesting that this protein plays a role
in other functions besides the interaction with endophytic organisms; however,
in monocots these functions remain unknown. In addition, the similarity with
rice and arabidopsis sequences found in our alignments can be explained by the
fact that few sequences from other non-legumes are available in NCBI database.

The occurrence of ENOD40 sequences in monocots and different clades within
the core eudicots is indicative that ENOD40 is an ancient gene that has been
maintained in these plants after divergent evolution [26]. This gene was also
functionally characterized in Z. mays [27]; in addition, previous studies have
identified isoforms in the sugarcane genome, using southern analysis [4], a fact
confirmed by our findings. Additionally, the low number of clusters found can be
explained by evidences presented by Compaan et al. [27] that suggested that this
gene category is expressed in low levels in most non-legume plants. In legumes
the ENOD40 is a critical gene responsible for cortical cell divisions leading to the
initiation of nodule development in rhizobial association [28]; playing a role in the
interaction with arbuscular mycorrhiza in the fungal growth in the root cortex,
increasing the frequency of arbuscule formation [29]. ENOD40 genes present
regions that are highly conserved among distantly related plant species [27].
In accordance to this fact ENOD40 from O. sativa encodes peptides that are
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homologous to proteins encoded by the corresponding genes in legumes, even
thought their expression is not associated with symbiotic interactions [4].

4.2 Expression Pattern

In legumes, transcripts of the ENOD-like genes were identified in roots, stems
and flowers, suggesting that these genes might have roles in the development
of different organs involved principally in the regulation of plant development,
morphogenesis, secondary metabolites synthesis and defense responses [30]. In
addition, functional evaluations showed that many of these genes are in fact
expressed in nonsymbiotic tissues and/or during nonsymbiotic conditions also
presenting a number of homologs in non-legume plants, as arabidopsis and rice
that are unable to form nodules [31].

Thus, it is hypothesized that nodulin genes have arisen as a result of the re-
cruitment of pre-existing non-symbiotic genes which might have roles in other
physiological processes, common to all plants, like controlling growth and devel-
opment [32]. In fact, the presence of nodulin transcripts in non-infected tissues
in the SUCEST libraries confirms this hypothesis. In sugarcane several genes
possibly involved in nitrogen metabolism and plant-bacteria signaling during
endophytic diazotrophic associations seem to act as nodule-enhanced genes [1].
Regarding the expression pattern of early nodulins, the observed majority of
nodulin transcripts was found in flower libraries, an expected result, since this is
the largest SUCEST library, as compared with other tissues. Regarding NORK
results, a significant expression could be detected in most SUCEST libraries;
what is in agreement with the fact that genes encoding RLKs isoforms, besides
their roles in organism interactions, are very closely related to plant develop-
mental processes, being present in tissues under growth and differentiation, like
seeds, plantlets in different stages of development, in flowers, leaves and root-to-
shoot transition regions, confirming the crucial importance of these proteins for
plants [22].

Our results have shown that the sugarcane ENOD40 gene presented a similar
expression pattern as previously found in rice, where the expression in the de-
veloping vascular bundles of the stem prevailed [33]. In legumes the expression
of ENOD40 is induced within hours of Rhizobium inoculation and it appears to
be critical for proper nodule development; however, transcripts are also localized
in the stem, lateral roots and other tissues in these plants [28].

The occurrence of annexin transcripts in almost all SUCEST libraries oc-
curred in accordance to Proust et al. [34] that using northern-blotting analysis
revealed that annexins from plants have a fairly widespread expression. Con-
cerning monocot annexins, Smallwood et al. [35] showed that the transcripts
were found in root tissues, stem and young expanding leaves of barley, while
Carroll et al. (1998) [38] reported that the maize annexin was expressed in root
cap cells and differentiating vascular tissues in roots [36], both similar to the
annexin expression in sugarcane found in our analysis.
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Besides the nodulins described above, many early nodulins presented an ex-
pression related to organ differentiation in monocots, like DMI3, ENOD8, and
CCS52A [13] [16] [37]. Based on the distribution and prevalence of these early
nodulins in sugarcane transcriptome, we suggest that these genes also play a
role in organ development, at least, in this monocot. In a general view, the fact
that different nodulins are expressed in most SUCEST libraries support the as-
sumption that these genes are expressed not only in plant-microbe interactions,
revealing their importance for all angiosperms.

4.3 Dendrograms

The multiple alignments with sugarcane orthologs and nodulin from other species
showed a relative degree of conservation among sequences as expected, confirm-
ing that a significant proportion of nodule-specific functions are performed by
recruiting preexisting genes common to non-legume plants. Additionally it is
now known that many of the nodulation genes have been acquired following
duplication of those with related functions [38].

In ENOD8 dendrogram (Fig. 1A) a clear segregation of the bacteria (clade I)
and plant (clade II) in monophyletic groups was evident. Regarding the plant
kingdom, the separation of the dicots (IIa) and monocots (IIb), except for the
sugarcane, was expected, since numerous ENOD8 sequences were found in plants
that are not able to fix nitrogen, being all probably induced by exogenous sig-
nals or regulated in a tissue specific manner. Regarding the group IIa, exclusive
synapomorphies characterized the sugarcane and the legumes (IIb) clade, as ex-
pected, since both organisms establish symbiotic relationships with microorgan-
isms. In addition, the legumes were grouped together, as expected, since these
proteins are strongly involved in nitrogen fixation processes, being associated
with the symbiosome membrane in root nodules [39].

The generated annexin dendrogram reflected the evolutionary history of the
plants. Both legumes sequences (V. unguiculata and M. truncatula) stayed as
separated subclades within the dicots clade, confirming the hypothesis of Doyle
and Luckow [40] that nodulation specific genes arose within the legume family
already among the earliest lineages. In a general view, members of the annexin
family are composed by a variable N-terminal region and a highly conserved
C-terminal core [41]. However, plant annexins share common biological activi-
ties and functions with their animal counterparts, such as the ability to stim-
ulate Ca2+-dependent exocytosis [36]. The here obtained annexin dendrogram
(Fig. 1B) is in accordance to this divergent evolution, showing animal annex-
ins (branch II) as a monophyletic group and also as a sister-group of plants,
probably sharing synarcheomorphic characters.

According to Moss [42] plant annexins make up a monophyletic cluster whose
members generally lack amino-terminal domains and functional calcium-binding
sites in their second and third repeats. As seen in the present results, the
non-legume families (Brassicaceae and Malvaceae) formed a paraphyletic mero-
phyletic group. In addition, the presence of specific features in annexins from
monocots and dicots could be seen in the aligments, which resulted in the
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separation of these classes in smaller clades. In reports regarding non legume
plants annexins have been associated with different cellular processes. Annexins
purified from plant species such as maize, cotton and celery presented differ-
ent characteristics [43]; for example, a cotton annexin was associated with the
modulation of callose synthase activity located in plasma membrane [44], while
maize annexins are capable of peroxidase activity, elevation of cytosolic calcium
and direct formation of a passive Ca2+- and K+-permeable conductance [12].
These functional differences could justify the diverging positions among legume
and non legume annexins, also here observed.

5 Concluding Remarks

With aid of bioinformatic tools it was possible to identify all seven early nodulin
gene categories out of 195 sugarcane contigs and 1,746 transcripts, allowing also
inferences regarding their expression pattern. All nodulin candidates bearing
the respective conserved domains could be identified in sugarcane, most of them
putatively involved in tissue development and growth, besides plant-host interac-
tions. Considering the low amount of previously described nodulins in monocots,
the identified sequences represent valuable resources for structural and functional
evaluations including expression assays and may lead to significant benefits for
sugarcane production.
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Abstract. We consider the problem of statistical analysis of gene ex-
pression in a mouse brain during cognitive processes. In particular we
focus on the problems of anatomical segmentation of a histological brain
slice and estimation of slice’s gene expression level. The first problem is
solved by interactive registration of an experimental brain slice into 3D
brain model constructed using Allen Brain Atlas. The second problem is
solved by special image filtering and further smart resolution reduction.
We also describe the procedure of non-linear correction of atlas slices
which improves the quality of the 3D-model significantly.

Keywords: mouse brain studies, gene expression detection, image seg-
mentation, morphing, Allen Brain Atlas.

1 Introduction

The analysis of gene expression in a brain is extremely important for cognitive
research. Many cognitive functions (e.g. memory consolidation) are regulated by
specific genes whose expression starts during some intellectual activity, e.g. train-
ing. On the other hand it is known that changes in activity in specific anatom-
ical brain zones reflect the cognitive processes. The combination of anatomical
brain map with gene expression patterns and its further statistical processing
would allow researchers to discover new genes that are responsible for cogni-
tive processes and new anatomical structures where the functional activity takes
place.

Up to the current moment gene expression in animal brains is measured using
the following technique. A brain is extracted, frozen and then cut into slices. Each
slice is double-stained by Nissl method to highlight histology (see Fig. 1a) and by
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(a) (b)

Fig. 1. An example of an experimental slice in Nissl stain (a) and an example of brain
slice from Allen Brain Atlas with both histological and anatomical views (b)

ISH1 method which reveals the neurons with expression of corresponding genes
(see Fig. 2)2. The main problem is to determine brain structures where active
genes are located. This problem is difficult even for human experts especially
when the slices are obtained using a non-standard section-plane. However there
are several atlases for various animals which contain both histological images and
the corresponding images where all brain structures are marked by experts [1].
Here we use Allen Mouse Brain Atlas (ABA) [7], which contains a set of 2D
coronal mouse brain slices (see Fig. 1b).

In the paper we address the problem of semi-automatic segmentation of a
brain slice (given by Nissl image, ISH image, or both) into anatomical struc-
tures. For this reason we propose the following procedure. First a 3D-model of a
mouse brain is constructed using 2D ABA slices. Hence this model contains both
histological and anatomical views. Then for the experimental slice we obtain the
most similar slice from the constructed 3D model (hereinafter we denote it as
a virtual slice) manually by means of special software BrainTravel. At last we
transfer the anatomic segmentation of the virtual slice to the experimental slice
using a non-linear transformation. For the 3D model we update our previous
result [5] by adding a non-linear correction of atlas slices (section 2.1). This
correction improves the quality of the 3D model significantly. The virtual slice
search process is described in section 2.2 while anatomical segmentation of an
experimental slice is given in section 2.3.

In the paper we also consider the problem of numerical estimation of ex-
pression level for ISH slices. This is done by a series of filters and detailed in
section 3. Finally the paper finishes with a discussion of further work in the area
of statistical analysis of gene expression in the brain during cognitive activity.

1 In Situ Hybridization.
2 In practice it is usually difficult to make a double-stain of one slice and hence the

neighboring slices are stained by different methods.
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(a) (b)

(c) (d)

Fig. 2. An example of an experimental slice with gene expression in ISH stain. (a) —
initial experimental slice; (b) — enlarged part of slice (a); (c) — processed slice (a)
using the method from section 3; (d) — enlarged part of image (c).

2 Anatomical Segmentation

The procedure of anatomical segmentation of an experimental brain slice consists
of several steps. First we register a 2D experimental slice into the 3D-model of
mouse brain with information about anatomical structures. During the registra-
tion we obtain a virtual slice from the 3D-model that is similar to the experimen-
tal one. The virtual slice can be seen in both histological and anatomical modes.
Afterwords we find a non-linear deformation of the virtual slice by putting pairs
of corresponding keypoints on the histological virtual slice and the experimental
slice. Finally we apply the non-linear deformation to the anatomical virtual slice.

2.1 Non-linear Correction of Atlas Slices

As a 3D-model of a mouse brain we use the one from [5]. It was constructed from
the set of images from Allen Brain Atlas (ABA). Those images contain informa-
tion about histology (Nissl stain) and anatomy and are available on-line.3 At first
the slices were aligned linearly, afterwords pairwise deformations were found be-
tween all the neighboring slices using cubic B-splines. Finally these deformations
3 http://mouse.brain-map.org/atlas/ARA/Coronal/browser.html
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison of different 3D brain models, constructed from 2D ABA slices. (a)-
(c) – standard 3D model (simple concatenation of all slices with morphing); (d)-(f) –
3D model, constructed by method from [5] plus the non-linear correction of atlas slices.

were used to fill in the gaps between the atlas slices using morphing transform.
The details of the algorithm are given in [5]. Here we have modified the algo-
rithm by adding one more step – a non-linear correction of atlas slices. This step
is necessary because all the slices from the atlas are independently distorted due
to the peculiarities of technological process of their cutting and staining. The
application of morphing to uncorrected atlas slices leads to non-smooth histo-
logical and anatomical structures which are clearly seen in sagittal projection
(see fig. 3a-c). To overcome this problem we used the following approach.

Consider the kth uncorrected slice of the atlas fk : R × R → R. Our goal
is to obtain a corrected slice Fk that is harmonized with its neighbors. First
we compute non-linear deformations gk,i between it and its d previous and d
following slices so that

fk ◦ gk,i ≈ fi, ∀i = k − d, . . . , k + d.

The distance between neighboring slices in ABA is 100 μm, and so the slices lying
at the distance of several hundred microns may differ significantly and direct
deformation between them may appear inadequate. In the paper we follow [9]
and establish the recurrent scheme

gk,i =

⎧⎪⎨
⎪⎩

gk,i+1 ◦ gi+1,i, k − d ≤ i < k;
gk,k, i = k;
gk,i−1 ◦ gi−1,i, k < i ≤ k + d.

(1)

The non-linear correction of atlas slices is performed by application of weighted
deformation to each slice

Fk = fk ◦
k+d∑

i=k−d

γigk,i,
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where γi = Ci−k+d
2d

22d . Such non-linear correction of atlas slices before morphing
transform yields a much better spatial interpolation (see fig. 3,d-f).

2.2 Registration of an Experimental Slice into the 3D Model of
Mouse Brain

Suppose we have only ISH experimental slice. Evidently it is impossible to find
the correspondent virtual slice in the 3D model automatically, since Nissl and
ISH stains differ significantly. Note that Nissl stained slices obtained by different
research groups could also differ significantly (e.g. in our case Nissl experimental
slice differs from Nissl ABA slice). Therefore we developed a special software
BrainTravel which allows to navigate through the 3D model and find the corre-
spondent virtual slice manually. We did not expect any difficulties with manual
registration of experimental slices using BrainTravel. It usually took us about
2-3 minutes per slice. Note that after registration is finished the virtual and
experimental slices are not identical due to the variability of individual brains.
Direct transfer of anatomical segmentation to the experimental slice is hence
unsuitable (see. fig. 4).

Fig. 4. Example of anatomical segmentation of an ISH experimental slice. (c) – an
ISH experimental slice, (a) – the corresponding to (c) virtual slice, (b) – a result of
segmentation by direct transfer of anatomical map from the virtual slice, (d) – a result
of segmentation with non-linear transform of the virtual slice using keypoints.
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2.3 Deformation of Virtual Slice with the Aid of Keypoints

In order to obtain a valid anatomical segmentation of the experimental slice we
have to deform the virtual slice which was found during the registration pro-
cess. The difference in stains makes it impossible to apply any method which
minimizes the pixel-wise difference between the two images. A possible way out
could be the use of information-based methods [4] which are capable to match
images of different modalities. In the paper we focused on an alternative ap-
proach which seems to be more reliable and is based on the keypoints location.
The user assigns keypoints to the corresponding positions in both images. Let{
(x1

k, y1
k)
}K

k=1
and

{
(x2

k, y2
k)
}K

k=1
be the sets of keypoints on the experimental

and virtual slices respectively (see fig. 4a,c). We are looking for the deformation
g : R

2 → R
2 of the virtual slice such that it minimizes the following criterion

E(g) =
K∑

k=1

d
(
(x1

k, y1
k), g(x2

k, y2
k)
)→ min

g(.,.)∈G
,

where d((x1, y1), (x2, y2)) stands for Euclidean distance between the two points.
As before we use the family of cubic B-spline4 deformations

G =

{
g(x, y) =

K∑
k=1

M∑
m=1

wkmβ3(x/h − k)β3(y/h− m)

}
.

After the deformation is found it is applied to the anatomical segmentation of
the virtual slice and the deformed segmentation is treated as an anatomical
segmentation of experimental slice. An example of such segmentation is shown
in figure 4.

3 Expression Detection and Image Resolution Reduction

The detection of expressing cells on ISH slices and the reduction of expression
map resolution consists of the following steps:

– image preprocessing;
– extraction of the high-resolution expression map:

◦ evaluating the measures of expression presence or absence;
◦ combining of expression presence or absence measures into one integral

characteristic to create a high resolution expression map;
– reducing expression map resolution.

There is also an additional (optional) step that includes automated quality con-
trol of the resulting map and the evaluation of integral characteristics of the
resulting expression map.
4 Cubic B-spline is a function

β3(x) =

⎧⎪⎨
⎪⎩

2/3 − (1 − |x|/2)x2, 0 < |x| ≤ 1,

(2 − |x|)3/6, 1 < |x| < 2,

0, |x| ≥ 2.
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Fig. 5. Examples of slice images. Left: an image from experiments carried out in
Anokhin Institute of Normal Physiology (The Russian Academy of Medical Sciences);
middle and right: images from Allen Mouse Brain Atlas [6,7].

3.1 Image Preprocessing

Image preprocessing is an optional step that is performed in a fully automated
or semi-automated mode. Formally, this step can be omitted, but in this case
manual tuning of parameters may be required in order to achieve good quality
of expression map extraction.

The main goal of image preprocessing is color and intensity normalization.
Due to technical reasons (different illuminance conditions, non-identical coloring
agents, etc.) slice images may differ (see Fig. 5), and hence different thresholds
and other parameters are required in order to find expression map of good quality
for different slice images. Individual estimation of parameters can be replaced
by preprocessing that unifies global characteristics of an image.

The preprocessing is based on the analysis of color intensity histograms. At
first we construct the grey-scale intensity histogram, separate out the back-
ground and recolor it into the fixed color (e.g. white) and in fact exclude it from
the further analysis. Then, we perform the intensity/color normalization using
affine transformation applied to the intensities of red, green and blue color com-
ponents (r, g, b). The transformation Aopt that minimizes the difference between
smoothed color histograms with the predefined “standard” ones is used.

The deviation of the transformation Aopt from the identity transformation
(in other words, the deviation of transformation matrix from the identity matrix
and shift vector from zero one) can be treated as an indirect image quality
control characteristic that shows the difference between “standard” experiment
conditions (such as illuminance, color-agent properties, etc.) and the conditions
of the studied experiment. This deviation can be measured with the discrete
analogue of the following formula:

1∫
0

1∫
0

1∫
0

‖(r, g, b) − A−1
opt(r, g, b)‖w p(r, g, b) dr dg db,

where p(r, g, b) is the probability density of observed color (r, g, b) in “standard”
slice images and ‖ · ‖w is a weighted l1-norm with weights w = (wr , wg, wb) (all
color intensities are assumed to be in [0; 1]).
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3.2 Extraction of the High-Resolution Expression Map

The high-resolution expression map is an image of the same size as the initial
image whose pixels show the probabilistic measure of the fact that the corre-
sponding pixel in the initial image is located in the expressing nucleus. Instead
of using discrete categories (expression presence / expression absence, or high
/ moderate / low / no expression), we use continuous (probabilistic) expression
measure. In particular, it allows to deal with intermediate categories in a more
correct way and hence to achieve better quality after resolution reduction.

To obtain the final expression measure we combine several rough measures.
Two types of rough measures are used: “pointwise measures” and “neighborhood
measures”.

Pointwise measures evaluate the level of expression presence or absence based
on the color intensities of the studied pixel only. In order to reduce computational
expenses (such reduction is important due to very high image resolution) we use
the point-wise measure: σ(c · r) = σ(wrr + wgg + wbb), where c = (r, g, b) stands
for the color of the pyxel, w = (wr , wg, wb) are some coefficients, and σ is a
sigmoid-type function. A sigmoid-type function is a non-decreasing continuous
function which equals zero if the argument is less than a threshold and equals
one if the argument is greater than another threshold. In the simplest case it is
a piecewise-linear (first degree spline) function:

σ(x) =

⎧⎨
⎩

0, x ≤ Tmin,
x−Tmin

Tmax−Tmin
, x ∈ (Tmin, Tmax),

1, x ≥ Tmax.

In this paper we use more smooth sigmoid-type functions that are second and
third degree splines.

The usage of several pointwise measures is explained by the fact that the
projections of regions in the three-dimensional color cube corresponding to color
intensities typical for the expression presence and absence on a one-dimensional
subspace are partially mixed. Projecting the data to several one-dimensional sub-
spaces helps to reduce the number of cases when expression presence or absence
is unclear. In [3], e.g., two projections (or, equivalently, two pointwise measures)
are used: the first one allows to determine the pixels where the expression pres-
ence is clear, and the second one — the pixels where the expression absence is
clear.

Neighborhood measures are also based on the one-dimensional (grey-scale)
color (wrr+wgg+wbb) instead of the three-dimensional color intensities (r, g, b).
Neighborhood measures are evaluated based on the neighborhood of the analyzed
point: the sigmoid-type functions are applied either to the difference between the
color of the analyzed pixel and the mean color of the neighborhood, or to the
mean color of the neighborhood (it allows to detect and shadow certain types of
the artifacts).

After individual measures are evaluated, they are combined into the resulting
measure in the following way:

P = exp(α1 lnP1 + α2 lnP2 + . . . + αN lnPN ) = Pα1
1 · Pα2

2 · . . . · PαN

N ,
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where N is the number of individual measures, P1, P2, . . . , PN are the values of
individual measures, and α1, α2, . . . , αN are the weights (αj ≥ 0). By default,
all weights αj are equal to 1/N , and the resulting measure is the geometrical
mean. Such averaging is more efficient in comparison to the (weighted) arith-
metical mean due to the probabilistic nature of measures. If required, in the
semi-automated mode user can adjust the weights of individual measures. For
example, user may turn off the measure that mainly shadows the artifacts in
case of high-quality images with no artifacts, and, on the contrary, increase the
weight of this measure in case of poor-quality images. Note that adjustment of
weights can be replaced by changing sigmoid-type functions used for the eval-
uation of individual measures as a positive power of a sigmoid-type function is
also a sigmoid-type function.

3.3 Reduction of the Expression Map Resolution

Shortly speaking, the reduction of expression map resolution is performed by the
convolution with an appropriate kernel and rescaling by sigmoid-type function.
The initial (high-resolution) expression map is divided into rectangles corre-
sponding to the pixels of low-resolution expression field, and for each rectangle
Δj,k the measure of expression is calculated as an integral of the product of the
high-resolution expression field Exprhighres(x, y) and the kernel function:

Exprlowres(j, k) = σ

(∫ ∫
(x,y)∈ suppKj,k

Exprhighres(x, y)Kj,k(x, y) dx dy

)
,

where σ is a sigmoid-type function, suppKj,k is the support of the kernel Kj,k

or, in other words, the neighborhood of the rectangle Δj,k. We used kernel Kj,k

given by formula Kj,k(x, y) = C(1 − σ(dist{Δj,k; (x, y})). This measure equals
a constant C inside the rectangle Δj,k, equals zero outside the neighborhood of
this rectangle, and continuously goes to zero in the middle zone.

Note that in the low-resolution expression field the value in each pixel is not
the probabilistic measure of expression presence or absence, but a characteristic
of total expression in the corresponding region. For a certain kernel and sigmoid-
type function this characteristic is a total area of expressing nuclei in the region.
Under certain assumptions on the cells comprising the region this characteristic
can be easily converted to the approximate number of expressing nuclei of this
region.

The results of the reduction of the expression map resolution are illustrated
in Fig. 6.

3.4 Postprocessing Using Anatomical Segmentation

In case if anatomical segmentation is available, this segmentation can be used for
postprocessing that includes the evaluation of integral characteristics, automated
quality control and the correction of expression fields.
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Fig. 6. Examples of expression map resolution reduction. Upper–left: a fragment of a
high-resolution ISH slice image; upper–right: the result of expression map extraction;
lower–left: the results of expression field extraction from the low-resolution slice image;
lower–right: low-resolution expression field.

Fig. 7. Example of different properties of expression fields for different structures. Left:
ISH image of hippocampal region (source: [8]) — individual expressing nuclei are not
separated; right: thalamus region (source: Allen Mouse Brain Atlas [6,7]) — expressing
nuclei are separated.

The main integral characteristics that can be evaluated at this step are the
total expression characteristics of regions corresponding to individual anatomical
structures and substructures. If images of similar slices are available for several
representatives of different groups (e.g., “experiment” and “control” groups),
these values can be used for rough statistical analysis that determines anatomical
structures in which the activity (expression) differs significantly for different
groups.

The automated quality control is based on the analysis of connectivity com-
ponents of high-resolution expression map. For certain anatomical structures
these components satisfy certain limitations on size and shape, but these limita-
tions are different for different structures. For example, in many structures ex-
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pressing nuclei are comparatively small and always separated by non-expressing
(non-nucleic) zones, but this property is violated for several structures including
hippocampus and olfactory bulb [8] (see Fig. 7). If the anatomical segmenta-
tion is available, the compliance of the properties of high-resolution expression
map connectivity components with theoretical limitations that hold for the corre-
sponding anatomical structure can be tested. The quality control module reports
cases of violations of the limitations and optionally shadows the corresponding
connectivity component in the expression map because generally violations are
explained by incorrect expression extraction caused by image artifacts.

4 Discussion

We have presented algorithms for anatomical segmentation of Nissl/ISH exper-
imental brain slices and for estimation of gene expression level on them. The
solution of the first problem involved the exploitation of the 3D-model of mouse
brain which we had built earlier [5] based on Allen mouse brain atlas. The Brain-
Travel software which we developed allows us to register an experimental slice
within the model by finding the most similar virtual slice, and to deform the
anatomical structures on the virtual slice from the model so that it matches the
experimental slice. Thus we obtain a valid anatomical segmentation of the ex-
perimental slice. Note that despite the alternative methods based on the use of
Markov Random Fields [2] this method is not limited by the number of anatomi-
cal structures it may discover. The estimation of expression level is performed in
a separate procedure and the results can be loaded into the BrainTravel. Finally
we can unite the results of segmentation with the expression level (see fig. 4d).
This union opens vast perspectives for further cognitive research since it becomes
possible to include the knowledge about anatomical structures in the statistical
analysis of gene expression. Potentially this should lead to more elaborate bio-
experimental design and the discovery of new genes and anatomical zones which
are activated during cognitive activity of an animal.
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Abstract. In this paper we evaluate the performance of machine learn-
ing methods in the task of predicting the bonding state of cysteines
starting from protein sequences. This task is the first step for the iden-
tification of disulfide bonds in proteins. We score the performance of
three different approaches: 1) Hidden Support Vector Machines (HSVMs)
which integrate the SVM predictions with a Hidden Markov Model; 2)
SVM-HMMs which discriminatively train models that are isomorphic to
a kth-order hidden Markov model; 3) Grammatical-Restrained Hidden
Conditional Random Fields (GRHCRFs) that we recently introduced.
We evaluate two different encoding schemes based on sequence profile
and position specific scoring matrix (PSSM) as computed with the PSI-
BLAST program and we show that when the evolutionary information
is encoded with PSSM all the methods perform better than with se-
quence profile. Among the different methods it appears that GRHCRFs
perform slightly better than the others achieving a per protein accuracy
of 87% with a Matthews correlation coefficient (C) of 0.73. Finally, we
investigate the difference between disulfide bonding state predictions in
Eukaryotes and Prokaryotes. Our analysis shows that the per-protein
accuracy in Prokaryotic proteins is higher than that in Eukaryotes (0.88
vs 0.83). However, given the paucity of bonded cysteines in Prokary-
otes as compared to Eukaryotes the Matthews correlation coefficient is
drastically reduced (0.48 vs 0.80).

Keywords: Machine Learning, Conditional Random Fields, Disulfide
Prediction, Disulfide Bonding State, Protein Structure Prediction, Pro-
tein Folding.

1 Introduction

Disulfide bonds may link the thiol groups of cysteine residues in membrane and
globular proteins [8]. Their formation is reversible and can be modulated by the
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redox ambient potential and mediated by specific proteins [8]. The bonding state
of cysteines plays a relevant role in stabilizing the tertiary folds of proteins, in
defining protein functions and in triggering functionally relevant conformational
changes [8,16].

In recent years, the prediction of the bonding state of cysteine residues has
emerged as an increasingly important task due to its relevance in constraining
the structure and function of proteins. By this, cysteines likely to make disul-
fide bonds in the folded protein structure starting from its sequence can be
highlighted. In recent years a variety of computational approaches has been pro-
posed to address this problem. The first advancement was the introduction of
evolutionary information to train a neural-network based predictor [10]. Fiser
and Simon [13] observing that the great majority of the proteins tend to have
cysteines all-bonded or all-free, introduced an ”all-or-none” rule. This however
hampers the applicability of the method to proteins containing cysteines of both
types. Methods based on local residue and global protein descriptors were also
developed and indicate that protein composition is a relevant piece of informa-
tion [18,21]. Based on the observation that the number of bonded cysteines is
even, Martelli et al. [17] first introduced a Hidden Neural Network approach
that takes advantage of both local and global characteristics of the protein.
Other machine learning methods were also described [7,3,5,23].

A comparison among different machine learning approaches is difficult since
authors reported different scoring indices on different datasets and also they of-
ten do not specify if the training data set comprises or not trivial cases (proteins
with only one cysteine in the sequence that obviously cannot contain disul-
fide bridges). This can bias the scoring values. Here we compare three different
state-of-the-art machine-learning methods on a newly generated non redundant
dataset specifically built for the purpose of predicting the cysteine bonding state.

2 Materials and Methods

2.1 Dataset Description

Our dataset is derived from September 2009 PDB release. We selected all pro-
teins whose structure resolution was higher than 2.5 Angstrom with at least two
cysteines. We ended up with a dataset of 3940 sequences whose details are re-
ported in Table 1. Since our selected proteins may contain some local sequence
similarity we further clustered the remaining protein chains using the transitive
closure algorithm by defining a graph whose nodes represent the proteins. An
edge connects two nodes if and only if sequence identity between the correspond-
ing protein sequences is > 25% (according to an all-against-all protein BLAST
search). The transitive closure algorithm defines clusters as the connected com-
ponents of the graph. Thus, clusters can contain proteins whose pairwise se-
quence identity is very low. With these clusters we created 20 different balanced
sets to perform 20-fold cross validation tests.
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Table 1. Dataset description

Type Number

Protein sequences 3940
Total cysteine residues 18918
Bonded cysteine residues 4110
Free cysteine residues 14808

2.2 Machine-Learning Based Predictors

The prediction of the disulfide bonding state of cysteines can be formulated
as a sequence labeling task. Protein cysteine residues were extracted and only
the list of ordered cysteines (with their neighboring residues) was considered. A
machine learning technique for sequence labeling was applied in order to label
each cysteine as bonded or free.

In this paper, we considered three different approaches that for convenience
are named as:

– Hidden Support Vector Machines (HSVMs)
– Hidden Markov Support Vector Machines (SVM-HMMs)
– Grammatical-Restrained Hidden Conditional Random Fields (GRHCRFs)

HSVMs. HSVMs are a natural extension of the previously described Hidden
Neural Networks [17] that were based on the combination of two popular machine
learning algorithms, Neural Networks and Hidden Markov Models. In this hybrid
system, a standard feed-forward NN is firstly trained in order to estimate the
probability of each cysteine of being in the bonding or free state. The output
of NN is then used as state emission probability of a HMM. The probabilistic
state model assures that only meaningful predictions (an even number of bonding
cysteines) are provided by means of the Viterbi decoding. Here NNs are replaced
by SVMs. In order to obtain probabilistic output from SVMs, we adopted the
LIBSVM package [6]. We report results obtained with a RBF kernel, the best
performing kernel function among those tested.

SVM-HMMs. Hidden Markov Support Vector Machines [2] have been devel-
oped within the emerging framework of large margin methods for structured
output learning [22]. To implement these models we use the package SVM-
HMM [15] and we refer to them with this name. SVM-HMMs combine the
maximum margin principle typical of SVMs with a HMM as kernel and by this
is possible to run efficient dynamic programming algorithms and probabilistic
dependency between adjacent labels. In addition, SVM-HMMs follow the dis-
criminative learning approach and they discriminatively train models that are
isomorphic to a kth-order hidden Markov model using the Structural Support
Vector Machine (SVM) formulation. Although in principle SVM-HMM can learn
a non-ambiguous grammar, the current implementation sometimes fails and the
final predictions are not always biologically meaningful.
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Given an observation sequence x = (x1,x2, . . . ,xT ), SVM-HMM predicts a
label sequence y = (y1, y2, . . . , yT ) by means of the following linear discriminant
function:

y∗ = argmaxy

∑T
i=1

∑k
j=1〈xi,we

yi−j ,...,yi
〉 +

∑T−1
i=1 wt

yi−j ,...,yi
(1)

where k is the order of the HMM. The model learns one emission weight vec-
tor we

yi−j ,...,yi
for each kth-order label sequence yi−j , . . . , yi and one transition

weight wt
yi−j ,...,yi

for each sequence of adjacent labels.
In the training phase, given a set of training examples D = {(xn,yn) ∈ X×Y |

n = 1, . . . , m}, SVM-HMM solves the following quadratic optimization problem:

minw,ξ
1
2 ||w||2 + C

n

∑m
n=1 ξn

s.t.
∑T

i=1

∑k
j=1〈xn

i ,we
yn

i−j,...,yn
i
〉 +

∑T−1
i=1 wt

yn
i−j ,...,yn

i
≥∑T

i=1

∑k
j=1〈xn

i ,we
y′

i−j,...,y′
i
〉 +

∑T−1
i=1 wt

y′
i−j ,...,y′

i
+ Δ(yn,y′) − ξn

∀n, ∀y′ �= yn, ξn ≥ 0

(2)

where C is a parameter that governs the trade-off between training error and
margin size, ξn is a slack variable and Δ(yn,y′) is a loss function that computes
the per label loss for each individual label sequence y′ (Hamming loss).

Since the number of constraints in the above optimization problem exponen-
tially increases with the leangth of the sequence (the length of y), the cutting-
plane algorithm is used to solve it up to a precision of ε in polynomial time [22].

GRHCRFs. We also benchmark our recently developed Grammatical-Restrain-
ed Hidden Conditional Random Field (GRHCRFs) [12]. GRHCRFs can incorpo-
rate regular grammar production rules in order to consider, during both training
and prediction phases, only those labeling that are in agreement with the user
defined grammar. In addition, the discriminative nature of GRHCRFs offers
several advantages over generative approaches such as Hidden Markov Models
(HMMs), including the relaxation of the strong independence assumptions [12].

Like HMMs, GRHCRFs can be represented through Finite State Machines
(FSMs). The structure of FSMs is determined by the specific grammar used for
the problem at hand. In a typical sequence labeling task, given an observation
sequence x, we want to obtain the most probable label sequence y. In order to
better generalize, GRHCRFs (as well as HMMs) define a one-to-many mapping
between labels and FSM states and, at the same time, restrict the accepted
predictions to only those corresponding to an allowed path.

Let x be the random variable over observation sequences to be labelled, y
the random variable over label sequences and s the random variable over state
sequences. A function Λ(s) = y is defined to map each state s to a given label
y. In a first order model, explicit feature functions f(sj−1, sj,x) unrolled over
each sequence position j are considered. The probability of a label sequence y,
given an observation sequence x, is obtained as:

p(y|x) =
Z(y,x)
Z(x)

(3)
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where

Z(y,x) =
∑

s

∏
j exp(

∑
k λkfk(sj−1, sj ,x))) · Γ (sj−1, sj) · Ω(sj , yj) (4)

Z(x) =
∑

y

∑
s

∏
j exp(

∑
k λkfk(sj−1, sj ,x))) · Γ (sj−1, sj) · Ω(sj , yj) (5)

are normalization factors (partition functions) that can be computed using a
standard Forward-Backward procedure. The constraints

Γ (s, s′)
{

1 if (s, s′) is a valid transition
0 otherwise (6)

Ω(s, y)
{

1 if Δ(s) = y
0 otherwise (7)

have been introduced in order to consider only valid state paths in the FSM.
Given training data D = {(xn,yn) ∈ X × Y | n = 1, . . . , m}, parameters

Θ = {λk} associated to each feature fk, are learned via maximization of the
conditional log-likelihood:

L(D; Θ) = log
∏m

n=1 p(yn|xn; Θ)
=

∑m
n=1 log(Z(yn,xn)) − log(Z(xn)) .

(8)

The maximization is carried out using the Limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) quasi-Newton optimization algorithm [4]. For fur-
ther details about GRHCRFs we refer to [12].

3 Input Description

To assign the bonding state of cysteines we encode each cysteine with a “local
vector” representing the sequence neighbors. The neighborhood is based on a
residue-window w (w = 2n + 1 residues) centered into the cysteine to be pre-
dicted. Then, the local encoding of each cysteine consists of a vector of dimension
20 · w, where the number 20 elements is the number of residue types. We used
two different kinds of local encoding, both based on evolutionary information as
computed by PSI-BLAST [1]: the sequence profile (frequency of the residues in
the alignment positions) and the position substitution score matrix (PSSM) as
internally computed by PSI-BLAST with the BLOSUM62 matrix. Furthermore,
we tested several window dimensions to determine how the local encoding affects
the method accuracies.

In order to obtain the profiles and the corresponding PSSMs, for each protein
sequence in our dataset we run PSI-BLAST locally against the Uniref90 dataset
with eight iterations (-j 8) and with an expectation equal to 0.001 (-e 0.001).
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3.1 Scoring Indices

To evaluate the accuracy we define the classical label-based indices, such as:

Q2 =
p

N
(9)

where p and N are the total number of correct predictions and total number
of examples, respectively. The Matthews correlation coefficient (C) for a given
class s is defined as:

C(s) =
[p(s)n(s) − u(s)o(s)]

[(p(s) + u(s))(p(s) + o(s))(n(s) + u(s))(n(s) + o(s))]1/2
. (10)

p(s) and n(s) are respectively the true positive and true negative predictions for
class s, while o(s) and u(s) are the numbers of false positives and false negatives
with respect to that class. The Precision (coverage, Pr) for each class s is defined
as

Pr(s) =
p(s)

[p(s) + u(s)]
. (11)

The Recall (accuracy, Re) is the probability of correct predictions and it is
defined as follows:

Re(s) =
p(s)

[p(s) + o(s)]
. (12)

The F1-Score is defined as the harmonic mean between Precision and Recall:

F1(s) =
2 · Pr(s) · Rc(s)
Pr(s) + Re(s)

. (13)

Finally, the Qp is defined as the number of correctly predicted proteins Ncp

divided by the total number of proteins Np:

Qp =
Ncp

Np
. (14)

4 Results and Discussion

4.1 Evaluation of the Different Methods

We evaluate the three different methods as a function of the window amplitude
centered on the cysteine residue and adopting different models. While SVM-
HMM and GRHCRF are single methods, HSVM consists of a cascade of two
algorithms and we trained and tested it in two steps. In the first step we train
and test a standard Support Vector Machine to assign bonding state probabilities
to each cysteine of our dataset. We tested several standard kernel functions and
different parameters using a 20-fold cross-validation split. It turned out that
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the best performing SVM is based on the RBF kernel, so that only the results
obtained with this kernel are shown below. In the second step for each learning
set we trained a HMM model where the emission probabilities are defined by
the SVM predictions (fore more details see [17]). HSVM is then evaluated as a
single method. Two different models were tested: a 4-state model (Figure 1) and
a 7-state model (Figure 2). The basic idea behind the two models is to generate
predictions that are consistent with the notion that only an even number of
bonding cysteines can be assigned, since each disulfide bond requires two of them.
The 4-state model (Figure 1) is the simplest automaton that fulfills the disulfide
bond constraints. However, it was previously noted that the vast majority of
the protein sequences tend to have cysteines all-bonded or all-free and very few
protein sequences have a mixture of both states [13]. For this reason, in order
to capture the different priors (and maybe different local propensities) we also
test a 7-state model (Figure 2) for which the three different protein classes (all-
bonded , all-free and mixed) are made explicit by three different possible paths
through the automaton (Figure 2).

Figure 3 shows that the per protein accuracy (Qp) of the HSVM models in-
creases as the input window increases and achieves a maximum value when the
window length comprises 25 residues. It is worth noticing that the PSSM en-
coding (black curves) performs better than the sequence profile encoding (gray
curves), indicating that BLOSUM62 weighted with position specific residue fre-
quency is better for the task at hands. Finally from Figure 3 it appears that the
4-state HMM performs slightly better than the 7-state one.

SVM-HMM is a single method that optimizes the labeling assignment with a
maximal margin approach [22]. The implementation allows the usage of hidden
Markov models of different order from 0 to 3. We evaluate the accuracy for
Markov models of order two and three (see Figure 4). We tested two different

Fe

FoBe

Bo

Begin

End

Fig. 1. Four state automaton describing the grammar of the cysteine residue in protein
sequences (Begin and End states are silent and are not counted). The states Bo and
Be define bonding labels while the states Fo and Fe indicate free cysteine labels.
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Fe

FoBe

Bo

Begin

End

Fe’

Be’

Bo’

Fig. 2. Seven state automaton describing the grammar of the cysteine residue in protein
sequences. The paths generated with the leftmost part of the automaton (Bo′,Be′)
describe the proteins that contain only bonded cysteines. The paths generated with the
rightmost states of the automaton (Fe′) represent the proteins that contain only free
cysteines. The paths generated with the central part of the automaton (Bo,B2,Fo,Fe)
defines the proteins that contain both types of cysteines.
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Fig. 3. HSVM cross-validation performance as a function of the cysteine local environ-
ment (window size). Two different input encoding (PSSM-based and profile-based) and
two different automata (with 4-states and 7 states) are tested. Error bars are computed
using the binomial standard deviation.
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Fig. 4. SVM-HMM cross-validation performance as a function of the cysteine local
environment (window size). Two different input encodings (PSSM-based and profile-
based) and two different Markov chain orders (2 and 3 step back) are tested. Error
bars are computed as in Figure 3.

labeling schemes for the SVM-HMM. The first one uses only two labels, Free
and Bonded. However, since this labeling produced poor results we adopted the
automaton of Figure 1 to assign the labels, namely: Fo-Fe (as free) and Bo-
Be (as bonded). Furthermore to add information about the stating and ending
probabilities we added two “dummy” cysteines at the beginnings and at the
ends. In this case the performance is higher as indicated by the results shown
in Figure 4 as a function of the dimension of the input window. It is worth
noticing that even in this case some SVM-HMM predictions do not fulfill the
parity constraints. In Figure 4 it appears that for the predictive performance
the input encoding is more relevant than the Markov model order and that the
PSSM encodes more information than the sequence profile also for SVM-HMM.

Figure 5 shows the per protein accuracy (Qp) of the GRHCRFs as a function
of the input window size. Also in this case the PSSM-based input performs
better than the profile-based one. Differently from HSVMs, the performance of
the 7-state model is comparable with that of the 4-state model or even slightly
better, achieving the maximal per protein accuracy with a window of 17 residues
(Figure 5).

In Table 2, for each method we show detailed accuracy indices obtained with
the best performing window (Figures 3, 4, 5). For sake of comparison we also
report the results achieved with the best SVM to highlight that the introduction
of an automaton significantly increases the performance (compare SVM with the
other methods, especially HSVM). Furthermore, it appears that the GRHCRF
model tends to give more balanced predictions as indicated by the C and F1
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Fig. 5. GRHCRF cross-validation performance as a function of the cysteine local envi-
ronment (window size). Two different input encodings (PSSM-based and profile-based)
and two different automata (with 4-states and 7-states) are tested. Error bars are com-
puted as in Figure 3.

Table 2. Cross-validation performance of the different best models

Method Pr(b) Re(b) F1(b) Pr(f) Re(f) F1(f) Q2† CC† Qp†

SVM* 0.78 0.56 0.65 0.89 0.96 0.92 0.87 0.59 0.75
HSVM 0.92 0.56 0.69 0.89 0.98 0.94 0.89 0.66 0.86

SVM-HMM 0.86 0.64 0.73 0.91 0.97 0.94 0.90 0.69 0.85
GRHCRF 0.88 0.69 0.77 0.92 0.97 0.95 0.91 0.73 0.87

* SVM is presented here to show the improvement when it is coupled with a HMM

(HSVM). † Mann-Whitney test is performed on these global indexes using the best

and the second best methods to evaluate if the differences are statistically significant.

The 20-fold cross-validation values are used to evaluate the Mann-Whitney scores

and P-values are 0.004, 0.002 and 0.115 for Q2, CC and Qp, respectively.

indices. This is very important since the two classes are unbalanced (roughly 30%
bonded and 70% free cysteines, Table 1) and all methods tend to overpredict
the more abundant Free class.

4.2 Organism-Based Prediction: Eukaryotes vs. Prokaryotes

Disulfide bond stability depends on the redox properties of the environment in
which the protein is located. For this reason, the proteins that contain stable
disulfide bonds are usually secreted and are rarely found in the cytoplasmic
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Table 3. The distribution of free and bonded cysteines in Eukariotic and Prokaryotic
proteins

number of bonds
Eukaryotes Prokaryotes

Bonded Free Bonded Free

0 0 7116 0 6925
1 288 304 474 233
2 400 81 184 22
3 510 55 114 5
4 328 15 88 4
≥5 1668 48 56 0
All 3194 7619 916 7189

Table 4. Cross-validation performance of GRHCRF trained on chains from Eukaryotes
and Prokaryotes

Set Input Pr(b) Re(b) F1(b) Pr(f) Re(f) F1(f) Q2 CC Qp

Eukaryotes PSSM 0.91 0.83 0.87 0.93 0.96 0.94 0.91 0.80 0.83
Eukaryotes Profile 0.88 0.77 0.82 0.91 0.96 0.93 0.90 0.76 0.81
Prokaryotes PSSM 0.64 0.43 0.51 0.93 0.97 0.95 0.90 0.48 0.88
Prokaryotes Profile 0.73 0.19 0.30 0.91 0.99 0.95 0.90 0.34 0.86

For the indices see the subsection “Scoring indices”. b=bonded cysteines, f=free

cysteines.

compartments [9,14]. There is also a difference between Prokaryotes and Eu-
karyotes organisms. If proteins are from Prokaryotes the formation of disulfide
bonds commonly take place in extracytoplasmatic compartments [14,19], while
in Eukaryotic cells the bond formation occurs in the lumen of the endoplas-
mic reticulum [20]. For these reasons, it is interesting to evaluate if there are
differences between cysteine-containing proteins sorted out with respect to the
distinction in Eukaryotic and Prokaryotic chains. This can affect the predic-
tion capability of our method. Starting from our dataset, in Table 3 we report
the distribution of the proteins sorted out by Eukaryote/Prokaryote organisms.
From the data it is evident that the distribution of disulfide bonded cysteines is
very different in the two types of subsets. In Prokaryotes proteins that contain
cysteine residues not only tend to have far less disulfide bonds than Eukary-
otic proteins, but also the number of distinct disulfide patterns is far lower
as indicated by the fact that proteins with more than 4 disulfide bonds are
presently absent (Table 3). With this picture, it is clear that the prediction of
disulfide bonds may be different in the two subgroups. In Table 4 we report
the results obtained with the Grammatical Restrained Hidden Conditional Ran-
dom Field models as a function of the cell organism type. The results shown
in Table 4 indicate that the disproportion between free and bonded cysteine in
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Prokaryotes generates unbalanced predictions and that this leads to a dominance
of free state predictions. However, this effect leads to an increase of Qp, the
overall per-protein accuracy (Table 4). The Qp is the most relevant measure for
the evaluation of the prediction capability of the methods with respect to the
entire protein sequence [11]. As noted before, the adoption of a PSSM-based
input increases the method performance independently of the organism type.

5 Conclusions

In this paper we evaluate the performance of different machine-learning methods
on the task of predicting the disulfide bonding state of cysteines using different
input encodings. We show that when evolutionary information is encoded with
PSSM all the methods perform better than with sequence profile (Figures 3-5).
All the machine learning models are well performing. In particular, the newly de-
veloped GRHCRF can correctly predict 87% of the proteins of our (non trivial)
dataset with C equal to 0.73. The C values of GRHCRF is significantly different
from that obtained by the second best SVM-HMM method (0.69), since accord-
ingly to the Mann-Whitney test the equality hypothesis scores with a P-value
of 0.002. Furthermore, we investigated the differences between disulfide bonding
state prediction in classifying protein chain in relation to their Prokaryotic or
Eukaryotic origin. Our analysis shows that the per-protein accuracy in Prokary-
otic proteins is higher than those in Eukaryotes. This corresponds however to a
large decrease of the Matthews Correlation Coefficient due to an unbalanced pre-
diction of free state cysteines with respect to the bonded state ones. This effect
is mirroring the paucity of bonding state examples present in the Prokaryotic
proteins.

Summing up, our results indicate that when the different approaches are tested
on a non redundant, abundant, updated and non trivial data set of proteins,
the performance of GRHCRF is slightly better than that of the state of the
art predictors. GRHCRF is therefore proposed as a good candidate method for
filtering genomes and predicting disulfide proteomes in the different platforms
for large-scale automated annotation processes.
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Abstract. Discrimination of different cell types is very important in
many medical and biological applications. Existing methodologies are
based on cost inefficient technologies or tedious one-by-one empirical ex-
amination of the cells. Recently, Raman spectroscopy, a inexpensive and
efficient method, has been employed for cell discrimination. Nevertheless,
the traditional protocols for analyzing Raman spectra require preprocess-
ing and peak fitting analysis which does not allow simultaneous exam-
ination of many spectra. In this paper we examine the applicability of
supervised learning algorithms in the cell differentiation problem. Five
different methods are presented and tested on two different datasets.
Computational results show that machine learning algorithms can be
employed in order to automate cell discrimination tasks.abstract

Keywords: Raman spectroscopy, Cell discrimination, Supervised
classification.

1 Introduction

The discrimination of cells has widespread use in biomedical and biological ap-
plications. Cells can undergo different death types (e.g. apoptotic, necrotic), due
to the action of a toxic substance or shock. In the case of cancer cell death, the
quantity of cells subject to necrotic death, compared with those going through
apoptotic death, is an indicator of the treatment effect. Another application of
cell discrimination is cell line characterization, that is to confirm the identity and
the purity of a group of cells that will be used for an experiment. The standard
solution is either to use microarray technologies, or to relay on the knowledge
of an expert. In the first case, analysis takes a long time, is subject to errors,
and requires specialized equipments [1]. On the other hand, when the analysis
is based only on observations, results can be highly subjective and difficult to
reproduce.

R. Rizzo and P.J.G. Lisboa (Eds.): CIBB 2010, LNBI 6685, pp. 112–122, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Pictorial view or Raman spectrometer

Recently, Raman spectroscopy has been applied to the analysis of cells. This
method is based on a diffraction principle, called the Raman shift, that permits
to estimate the quantity and quality of enzymes, proteins and DNA present in
a single cell. A microscope focuses the laser through the objective lens on the
sample and the scattered photons are collected by the same objective lens and
travel to the Raman spectrometer, where they are analyzed by a grating and a
CCD detector, as depicted in Figure 1.

Since low energy lasers do not deteriorate or kill cells, it is used in vitro and
it can be used in vivo. Furthermore, Raman spectra are not affected by changes
in water, which makes the results robust with respect to the natural changes in
size and shape of cells. Finally, the spectrometer scan accomplish the experiment
in less than a minute, and can even be brought outside a biological laboratory,
which can make it potentially useful in many other applications, as in the case
of biological threat detection in airports or battlefields.

Raman spectrum is usually analyzed to find peaks at specific wavelengths,
which reveals the presence and abundance of a specific cell component. This in
turn can be used as a biomarker for cell discrimination or cell death classifica-
tion [2]. This strategy is highly dependent on the experiment and spectroscope
tuning, thus giving rise to questions regarding normalization of spectra and peak
detection.

In this work, we explore and compare alternative data mining algorithms that
can analyze the whole spectrum. These techniques have been successfully applied
to other biological and biomedical problems, and and are de facto standard
methods for supervised data classification [3,4]. Methods are tested through
numerical experiments on real data and their efficiency with respect to their
overall classification accuracy is reported.

In this article we use the following notation: all vectors will be column vectors
and for a vector x in the m-dimensional input space R

m, its components will be
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Fig. 2. The mean Raman spectra for each class: a) cells from A459 and MCF7 cell
line and b) A549 cells treated with Etoposide (apoptotic), Triton-X (necrotic) and
control cells. All spectra have been normalized so that they have zero mean and unitary
standard deviation and then they were shifted for clarity.

denoted as xi, for i = 1, . . . , m. A column vector of 1s of arbitrary dimension
will be denoted by e. Matrices are indicated with capital letters.

The rest of the paper is organized as follows. In Section 2 we discuss about
the data sets used to test the different algorithms, in Section 3 we present the
computational results and in Section 4 we discuss some further extensions and
challenges.

2 Materials

2.1 Dataset

For evaluating the data mining algorithms, we used two different data sets. The
first contains cells from two different cell lines: 30 cells from the A549 cell line
and 60 from MCF7 cell line. The first are breast cancer cells, whereas the later
are cancer epithelia cells. All 90 cells of this class were not treated with any
substance. The aim of this experiment is to evaluate the ability of various data
mining techniques in discriminating between different cell lines.

The second dataset consists uniquely of A549 cancer epithelial cells. The first
28 cells are untreated cancer cells (control), the next 27 cells were treated with
Etoposide and the last 28 cells were treated with Triton-X, so that they undergo
apoptotic and necrotic death correspondingly. The detailed protocols followed
for the biological experiments were standard and can be found at [5]. The mean
spectrum of each class for the two datasets are shown in Fig1 (a & b).

2.2 Raman Spectroscope

The Raman microscope is an InVia system by Renishaw. It consists of a Leica
microscope connected to a Renishaw 2000 spectrometer. The high power diode



Supervised Classification for Raman Spectroscopy 115

laser (250 mW) produces laser light of 785 nm. Both data sets were acquired by
Particle engineering Research Center (P.E.R.C.) at the University of Florida.

2.3 Data Preprocessing

For peak analysis Raman spectra can be preprocessed in many ways. Once they
have been acquired by the instrument, the first step consists in subtracting the
background noise. This is usually done subtracting to each spectrum the value of
a spectrum obtained without the biological sample. Then spectra are normalized
subtracting a mean spectrum obtained with a polynomial approximation of fixed
order. Other techniques are used to detect peaks and to delete spikes.

In the present work, we only normalized the data along the features of the
training set, to obtain features with zero mean and unit variance. Those values
of mean and variance are then used to normalize the test spectra.

2.4 Methods

2.5 Support Vector Machines

Support Vector Machines (SVM) [6] are state of the art supervised classification
methods, widely used in many application areas. Let us consider a dataset com-
posed of n pairs (xi, yi) where xi ∈ R

m is the feature vector, and yi ∈ {−1, 1}
is the class label. SVM find a hyperplane wT x + b = 0 with the objective to
separate the elements belonging to the two different classes. To this extend they
determine two parallel hyperplanes wT x + b = ±1, of maximum distance, leav-
ing all points of the two classes on different sides. Elements with the minimum
distance from both classes are called support vectors and are the only elements
needed to train the classifier. This is equivalent to the solution of the following
mathematical program:

minw �=0
1
2
wT w

s.t.
yi(wT xi + b) ≥ 1.

(1)

The optimal hyperplane is the solution to the above quadratic linearly con-
strained problem. The advantage of this method is that a very small number
of support vectors are sufficient to define the optimal separating hyperplane.
The problem has a solution if exist a line which separates all points of the two
classes in different half spaces. When this is not the case, then we need to allow
for some errors and let some of the points to be between the two hyperplanes
wTx + b = ±1. For this purpose, we introduce a slack variable ξi for each point
xi, and we search for the hyperplane minimizing the following problem:

minw �=0
1
2
wTw + C

∑N
i=1 ξi

s.t.
yi(wT xi + b) ≥ 1 − ξi

ξi ≥ 0 i = 1, . . . , N

(2)
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where C is the capacity constant, w is again the coefficient vector of the sepa-
rating hyperplane, and b the intercept.

One generalization for the multiclass case is obtained with a one against all
strategy, in which a binary classifier is built for each class against all other points.
For each new test point, the class label is assigned voting on the labels assigned
by the single classifiers.

2.6 Regularized Generalized Eigenvalue Classifier

Mangasarian et al. [7] proposed to generalize the previous technique and to
classify these two classes of points using two non parallel hyperplanes, each the
closest to one set of points, and the furthest from the other. We indicate with
A ∈ R

n×m and B ∈ R
k×m the matrices containing the points of the data set,

one point of each class on each row. Let xT w − γ = 0 be a hyperplane in R
m.

In order to satisfy the previous condition for all points in A, the hyperplane can
be obtained by solving the following optimization problem:

min
w,γ �=0

‖Aw − eγ‖2

‖Bw − eγ‖2
. (3)

The hyperplane for cases in B can be obtained by minimizing the inverse of
the objective function in (3). Now, let

G = [A − e]T [A − e],
H = [B − e]T [B − e], (4)

z = [wT γ]T ,

where [A − e] is the matrix obtained from A adding the column vector −e.
Using (4), equation (3) becomes:

min
z∈Rm

zT Gz
zT Hz

. (5)

The expression in (5) is the Raleigh quotient of the generalized eigenvalue
problem Gx = λHx. The stationary points occur at, and only at, the eigenvec-
tors of (5), and the value of the objective function (3) are given by the respective
eigenvalues. When H is positive definite, the Raleigh quotient is bounded and it
ranges over the interval determined by minimum and maximum eigenvalues [8].
Matrix H is positive definite under the assumption that the columns of [B −e]
are linearly independent. This is actually the case, since the number of features
(wavelengths) is much higher than the number of spectra. The inverse of the
objective function in (5) has the same eigenvectors and reciprocal eigenvalues.
Let zmin = [wT

1 γ1]T and zmax = [wT
2 γ2]T be the eigenvectors related to the

eigenvalues of smallest and largest modulo, respectively. Then, xT w1 − γ1 = 0
is the closest hyperplane to the set of points in A and the furthest from those
in B, and xT w2 − γ2 = 0 is the closest hyperplane to the set of points in B and
the furthest from those in A.
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For the multiclass problem, a strategy similar to the one used for SVM is
applied. Suppose the problem is to build a classification model for a linearly
separable data set, described by two features and divided in three classes Class
i, i = 1, 2, 3. Following the ReGEC idea, to separate the Class 1 from the other
two classes, it is possible to build two hyperplanes wT

l x − γl = 0, l = 2, 3. The
average of these hyperplanes is then evaluated as the average w̃ of the normal
vectors of coefficients wi. The average hyperplane is obtained computing the
principal components of the two normal vectors, and using the solution as the
normal vector of the resulting hyperplane.

2.7 k-Nearest Neighboor

The key idea of the algorithm is to assign a new point to the class that belongs
to the majority of the k closest neighbors in the training set. This is a majority
voting on the class labels for every test point. When k = 1, the point is simply as-
signed to the same class of its closest neighbor. To measure the distance between
two points, different distance functions can be used. In our experiments, we de-
cided to use an Euclidean distance, in accordance with the other classification
methods, and a fixed value of k = 3.

2.8 Linear Discriminant Analysis

Linear Discriminant analysis (LDA) provides an elegant way for classification
using discriminant features [9]. We first discuss about the two-class LDA.
LDA’s idea is to transform multivariate observations x to univariate observations
y such that new observations derived from the two classes are separated as much
as possible. Let x1, . . . ,xp ∈ R

m be a set of p samples belonging to two different
classes A and B. We define the scatter matrices, with respect to A and B, as

SA =
∑

x∈A(x− x̄A)(x − x̄A)T ,
SB =

∑
x∈B(x − x̄B)(x− x̄B)T (6)

where x̄A = 1
pA

∑
x∈A x and x̄B = 1

pB

∑
x∈B x, and pA, pB are the number of

samples in A and B respectively. The total intra-class scatter matrix is given by
the sum of SA and SB:

S = SA + SB. (7)

Beside this, the inter-class scatter matrix is given by

SAB = (x̄A − x̄B)(x̄A − x̄B)T . (8)

We can find the linear transformation φ which minimizes the following ratio,
using the Fisher’s criterion

�(φ) =

∣∣φT SABφ
∣∣

|φT Sφ| . (9)
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If the matrix S is non singular then Eq. (9) can be solved as a simple eigenvalue
problem and φ is given by the eigenvectors of matrix S−1SAB .

Multi-class LDA is a natural extension of the previous case. Given n classes,
we need to redefine the scatter matrices: the intra-class matrix becomes

S = S1 + S2 + · · · + Sn (10)

while the inter-class scatter matrix is given by

S1,...,n =
n∑

i=1

pi(x̄i − x̄)(x̄i − x̄)T (11)

where pi is the number of samples in the i-th class, x̄i is the mean for each class,
and x̄ is the total mean vector calculated with

x̄ =
1
p

n∑
i=1

pix̄i.

The linear transformation φ we wish to find can be obtained by solving the
following generalized eigenvalue problem:

S1,...,nφ = λSφ.

Once the transformation φ is given, the classification can be performed in the
transformed space based on some distance measures d. The class of a new point
z is determined by

class(z) = argmin
n

{d(zφ, x̄nφ)} (12)

where x̄n is the centroid of n-th class.

2.9 Software

For the computational experiments Matlab arsenal toolbox was used for LDA,
IIS, k-NN [10], whereas for SVM, libsvm was employed [11]. For ReGEC classi-
fication, the author’s implementation was used [12,13].

2.10 Improved Iterative Scaling

Given a random process which produces, at each time step, some output value
y which is a member of the set of possible outputs, IIS [14] computes the prob-
ability of the event y influenced by a conditioning information x. In this way
we can consider, for example, in a text sequence, the probability p(y|x) of the
event that given a word x, the next word will be y. This leads to the following
exponential model:

pΛ(y|x) =
1

ZΛ(x)
exp(

m∑
i=1

λifi(x, y)), (13)
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where fi(x, y) is a binary valued function called feature function, λi ∈ R is the
Lagrange multiplier corresponding to fi and |λi| is a measure of the importance of
the feature fi, ZΛ(x) is a normalizing factor and finally we put Λ = {λ1, . . . , λm}.

Given a joint empirical distribution p̄(x, y), the log-likelihood of p̄ according
to a conditional model pΛ(y|x), is defined as

L(̄p)(Λ) =
∑
x,y

p̄(x, y) log pΛ(y|x). (14)

This can be regarded as a measure of the quality of the model pΛ. Clearly we
have that L(̄p)(Λ) ≤ 0 and L(̄p)(Λ) = 0 if and only if pΛ is perfect with respect
to p̄, i.e. pΛ(y|x) = 1 ⇔ p̄(x, y) > 0.

Given the set {f1, . . . , fm}, the exponential form 13 and the distribution p̄,
IIS solves the maximum likelihood problem computing

Λ∗ = arg max
Λ

Lp̄(Λ) ∈ Rm.

3 Results and Discussion

3.1 Classification and Model Selection

We applied the following supervised learning algorithms on both datasets: a)
soft margin SVM b) Regularized generalized eigenvalue classification and c) k
nearest neighbor classification (k-NN with k = 3), d) Linear Discriminant Anal-
ysis and e) Improved Iterative Scaling (IIS) classification. No kernel was applied
in the classifiers. In particular, for soft margin SVM classifier the parameter C
was chosen to be 10 for the first dataset and 100 for the second. For ReGEC
the regularization parameter δ was chosen 0.01. The tuning was done through
a grid search on the on the parameter space. At every repetition 90% of the
samples were used for training and 10% for testing. The average cross validation
accuracies are reported on Table 1.

We can see that for both datasets only C-SVM and ReGEC achieve classi-
fication higher that 95%. Nearest neighbor classification although it performs

Table 1. Average classification accuracy for hold out cross validation (100 repetitions).
With bold is the highest accuracy achieved for each dataset.

Classification accuracy (%)

Cell line discrimination Cell death discrimination
(two class) (three class)

C-SVM 95.33 97.33
ReGEC 96.66 98.44
3-NNR 79.22 95.44

IIS 95.67 87.44
LDA 100 91.00



120 P. Xanthopoulos et al.

20 30 40 50 60 70 80 90
60

65

70

75

80

85

90

95

100

Training set size (%)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

 

 

C−SVM
ReGEC
k−NN
IIS
LDA

Fig. 3. Classification accuracy versus size of the training set for the binary classification
task. Accuracy is evaluated for 100 cross validation runs.
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Fig. 4. Classification accuracy versus size of the training set for the multiclass classi-
fication task. Accuracy is evaluated for 100 cross validation runs.
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very well for the three class problem it has poor results in the two class. This
is related to the generic drawback of this method which makes it very sensitive
to outliers. Linear Discriminant analysis also achieves high classification results
(> 90% in both cases) justifying its use in the literature [15,16].

3.2 Impact of Training Set Dimension

Next we examined the robustness of each classifier with respect to the size of
the training dataset. For this we fixed the training size dataset and we repeated
the cross validation process for different sizes of the training dataset. The results
were evaluated through hold out cross validation (100 repetitions). Results are
shown in Fig 3 & 4. We notice that ReGEC is considerably robust to the size
of the training dataset maintaining classification accuracy higher that 95% for
all the cases. Overall algorithms demonstrated a smooth performance meaning
that the change os the classification accuracy was proportional to the change of
the classification dataset size.

4 Concluding Remarks

In this paper we compared the performance of five supervised classification al-
gorithms in two different Raman spectra cell discrimination problems. Another
very important aspect of Raman spectra analysis is to determine which area of
the spectrum is responsible for the different cell discrimination. Such information
will provide more insight in the biological part of cell discrimination since indi-
vidual groups of features correspond to different cell compounds (DNA, RNA,
lipids and proteins). This can be achieved by applying classification strategies
in combination with feature selection techniques in order to determine the fea-
tures that maximize the classification accuracy. Such techniques will boost the
analysis and interpretation of Raman spectroscopy and will serve as a research
assisting tool for biologist and clinical scientists.
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partially funded by PRIN 20078MHYS4. In addition, this work was also sup-
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Abstract. Microarrays are widely used to study expression profiles for
thousand of transcripts simultaneously and to explore inter-relationships
between sets of genes.

Visualization techniques and Partial Least Squares (PLS) regression
have thus gained relevance in genomic. Biplots provide an aid to under-
stand relationships between genes and samples and among genes, whereas
passive projections of variables are helpful for understanding conditional
relationships between sets of genes to be quantitatively evaluated via
PLS regression.

62 genes involved in loss of cell polarity and 8 involved in Epithelial-
Mesenchymal Transition (EMT), were selected from a study on 49
mesothelioma samples, and analysis considered EMT genes as condition-
ing and polarity genes as conditioned variables. PLS regression results
are consistent with the PCA-based biplot of EMT genes and with passive
projections of polarity genes.

Future work will address sparsity in PCA and PLS regression. PLS
path modeling will be considered after specification of a detailed depen-
dency network.

1 Introduction

Microarrays are a technology developed in the early 90’s, that has now become
a standard tool for analyzing expression and patterns of co-regulation of thou-
sand of genes simultaneously [1]. Since their first appearance there has been a
considerable effort to develop statistical up-to-date methods for analyzing data
from genomic experiments, and several well-known techniques such as cluster
analysis and Principal Components Analysis (PCA) have been widely applied
for evaluating associations between genes and samples and among genes them-
selves [1,2,3,4]. Graphical instruments such as the PCA-based biplots proposed
by Gabriel [5] are now used often in genomic research for exploring structures
of association in the data.
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Another multivariate technique which is now used in several fields of applica-
tion is Partial Least Squares (PLS). PLS was first introduced by Herman and
Svante Wold in chemometrics [6,7], and are now becoming a widespread tech-
nique for dealing with genomic data for purposes of regression, classification
and survival analysis [8]. In a nutshell, PLS is a dimension reduction approach
coupled with a multivariate regression model. Both these features are extremely
relevant in the context of microarrays since (1) it is common to have a data
matrix containing much more genes than samples, and (2) researchers are often
interested in understanding how expression of some genes influences patterns of
regulation in other genes.

In recent studies the focus shifted from gene profiling to the investigation of
how genes interact with each other. To address this specific issue, we compared
PCA-related visualization methods and PLS regression, applying them to a sub-
set of genes from a previously published microarray experiment. We considered
only genes involved in two specific pathways, Epithelial-to-Mesenchymal tran-
sition (EMT) and loss of cell polarity, evaluating whether expression of EMT-
related genes could influence expression profile for polarity genes. Specifically,
associations among genes involved in different pathways were visualized by pas-
sively projecting the set of dependent genes (polarity pathway) on the PCA-
based biplot of the set of independent genes (EMT pathway). Moreover, the
associations were quantitatively evaluated by means of coefficients from a PLS
regression.

This is the outline of the paper: in Section 2 we briefly describe mathematical
details of both passive projections and PLS framework, in Section 3 application
of these methods on a real subset of a microarray experiment is presented. Dis-
cussion of results and comparison between methods is discussed in Section 4 and
conclusions and future perspectives are the main point of Section 5.

2 Methods

2.1 PCA-Based Biplots and Passive Projection

Principal Components Analysis is an exploratory multivariate technique which
allows to reduce high-dimensional data to a lower dimensional space accounting
for most of the variability of the original data [9]. This technique offers a great
advantage, allowing to visualize in a bi-dimensional space higher-dimensional
datasets through a PCA-based biplot.

In particular, given an n × p matrix X, the goal of PCA is to find m < p
uncorrelated linear combinations of the variables which “explain” most of the
variation in X. These linear combinations will have the form

α
′
kx=αk1x1 + αk2x2 + · · · + αkpxp =

p∑
j=1

αkjxj . (1)

where k indicates the general principal components and j the general variable.
If columns of X have been centered to have zero mean, it can be shown that
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the αk vectors of parameters, which we will refer to as loadings, correspond to
the eigenvectors of Σ, the sample covariance matrix of X, defined as X

′
X

n
. The

number of components that can be estimated is equal to the minimun between n
and p, but in practice only those explaining the most variance will be considered:
this translates in relevant reduction of the space of the variables.

Gabriel suggested to use the biplot, a technique which allows to show variables
and samples simultaneously on the same plot by means of a suitable rescaling,
for visualizing results from such an analysis [5]. Specifically, using the Singular
Value Decomposition (SVD) it is possible to write the X matrix as

X = USV
′
. (2)

where, U is a n×r matrix, V is a p×r matrix, both with orthonormal columns,
S is an r×r diagonal matrix with elements s

1/2
1 ≥ s

1/2
2 ≥ · · · ≥ s

1/2
r and r is

the rank of matrix X. If we define Sα for 0 ≤ α ≤ 1 as the diagonal matrix
whose elements are s

α/2
1 , s

α/2
2 , . . . , s

α/2
r and similarly for matrix S1−α, and let

G = USα, H
′
= S1−αV

′
, then

GH
′
= USα S1−αV

′
= USV

′
= X . (3)

So, the (i, j) − th element of X can be written as

xij = g
′
ihj =

r∑
k=1

uikS
1/2
k vjk . (4)

where g
′
i, i = 1, 2, . . . , n and h

′
j, j = 1, 2, . . . , p are the rows of G and H, respec-

tively. Equation 4 can be approximated by

mx̃ij =
m∑

k=1

uiks
1/2
k vjk =

m∑
k=1

gikhjk = g∗
i h∗

j . (5)

where g∗i , h∗
j contain first m elements of gi and hj respectively. This means that

by plotting g∗
i and h∗

j on the same graphic one can deduce several informations
about relationships between variables and subjects and among variables them-
selves [9]. Since our interest mainly lied in interpreting the biplot here described,
no rotation of principal components was performed.

Sometimes one can possibly be interested also in evaluating associations be-
tween different sets of genes that are supposed (or known) to be related to one
another, that is evaluating how does the expression profile for a defined set of
genes influence patterns of expression for a different set of genes measured on
the same samples. This task can be addressed graphically by passively projecting
the new set of conditioned genes on the PCA-based biplot of the conditioning
ones, by exploiting properties of the Singular Value Decomposition described in
equation 2. Specifically, since matrix U from the SVD has orthonormal columns,
equation 2 can be written as

U
′
X = U

′
USV

′
=⇒ U

′
X = SV

′
. (6)
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This means that we can project a new set of variables measured on the same
subjects onto the space of the first two principal components of the X matrix by
computing U

′
Y, where Y is an n × q matrix of new q variables. The resulting

matrix is an r× q which contains passive projections of Y variables on the space
of X’s PCs; for matters of comparison, this matrix will have to be properly scaled
by

√
n before plotting, as suggested by Venables and Ripley [10].

2.2 Partial Least Squares Regression

Partial Least Squares regression is a technique which can be very useful to eval-
uate inter-relations between two distinct large sets of variables, X and Y. Unlike
Principal Component Regression [11], which uses PCs of X to predict Y thus
implicitly assuming that what is relevant to X (the principal components) are
relevant also to Y, PLS regression searches for some latent components that
simultaneously decompose X and Y, with the constraint that these components
maximize covariance between X and Y themselves.

Specifically, X and Y are decomposed as

X = TPT and Y = TQT . (7)

where T represents the common score matrix whose columns represent the latent
vectors and P and Q, by analogy with PCA, are the p × r and q × r loadings
matrices, with p and q being respectively the number of predictors and response
variables, and r the number of components estimated. These loadings represent
the association between each variable and each latent component, and are ex-
tremely useful for understanding which variables contribute to each of the latent
components estimated. To obtain columns of T one has to compute a pair of
vectors t and u, such that

t = Xw and u = Y c . (8)

where w and c are two sets of weights that create a linear combination of the
columns of X and Y such that their covariance is maximized, that is tT u = b
is maximal. Matrix QT can be factorized as QT = BCT , where B is a diagonal
matrix containing the b values previously described and columns of C are the
c weights introduced in equation 8. First formula in equation 7 can thus be
rewritten as

Y = TBCT = X
(
PT+

)
BCT = XBPLS . (9)

where PT+ is the Moore-Penrose pseudo-inverse of PT . BPLS are the coefficients
of the model, and can then be used to evaluate strength of associations between
variables [12]. Moreover, it is possible to graphically evaluate association between
dependent and independent variables using graphical displays similar to those
used in PCA.
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3 Results

3.1 Description of Dataset

The dataset used for analysis is publicly available at the ArrayExpress web-
site, and is composed by 40 human tissues of malignant pleural mesothelioma
characterized by different histotype (23 epithelial, 16 mixed and 1 not charac-
terized)and by 9 normal tissues (4 lungs and 5 pleuras) [13]. Of about 22000
genes measured in this study only 70 were taken into account, 62 involved in the
loss of cell polarity pathway, and 8 associated with epithelial-to-mesenchymal
transition (EMT). Since EMT is supposed to play a role in determining different
polarity profiles, our goal is to investigate levels of expression of polarity genes
conditionally to the expression of EMT genes.

3.2 Biplots and Passive Projections

Summary of PCA for genes involved in EMT pathway is reported in table 1. It
is possible to note that the first two components explain almost half of the total
variability. Passively projecting polarity genes, according to equation (6) gives
biplot shown in figure 1.

Table 1. Explained variability of Principal Components of EMT

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 1.596 1.191 0.994 0.937 0.846 0.769 0.683 0.630
Proportion of Variance 0.319 0.177 0.123 0.110 0.089 0.074 0.058 0.050
Cumulative Proportion 0.319 0.496 0.619 0.729 0.818 0.892 0.950 1.000

From this figure one can possibly note that EMT genes, represented by solid
arrows, are negatively associated with most of epithelial mesotheliomas, and that
no clear association is seen with mixed mesotheliomas. Moreover, healthy tissues
seem to be weakly positively associated with SNAI1, FOXC1 and FOXC2.

As far as gene associations are considered, EMT-related genes SNAI1 and
FOXC1 show positive association with polarity genes CDC42, CLDN9, JAM2,
CLDN5, CLDN17 and CLDN14, whereas the same EMT genes are negatively
associated with another set of polarity genes, reported in table 2.

3.3 PLS Regression

As described before in Section 2, PLS regression aims at finding a set of compo-
nents decomposing simultaneously both matrix X of predictors variables (genes)
and matrix Y of responses, so that latent components extracted maximize both
the predictors and responses explained variance. However, whereas cumulative
explained variance of these components sum to 1 for the predictors, this gen-
erally is not true for the dependent variables, and it is not verified in this case
neither, as one can see from table 3.
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Fig. 1. PCA-based biplot of EMT genes (solid arrows and bold italic font) and passive
projections of polarity genes (dashed arrows and plain font). Samples labels have been
characterized by different type of points according to the histoype reported in the
original dataset. For the line MPM2 no classification was available, so it was labelled
as missing (NA).

Table 2. Polarity genes negatively associated with EMT-related genes SNAI1 and
FOXC1, conditioning to the association structure depicted from Principal Components
Analysis on EMT genes

ACTN1 CTNNA1 PRKCI
CDH2 CTNND1 PVRL3
CDH3 DLG1 RAC1
CDH4 DLG5 SCRIB

CLDN15 MPP5 TJP1
CLDN7 PFN2 TJP2

Using all possible components we are able to explain less than a half of the
total response variability, so using all the components extracted can be a good
choice. Moreover, the 8th component seems to be the one explaining more vari-
ance among all, so it is advisable to retain it in following analysis.

To understand what’s the meaning of the latent components estimated, it
is useful to look at the matrices of loadings for both the X and the Y, so to
evaluate which associations between X or Y and the latent components are likely
to be the most relevant, and thus which model coefficients should be given more
attention. Loadings above a pre-defined threshold of ±0.5 are reported in tables
4 and 5 for both X and Y. Such a threshold was chosen to focus attention only
on strong associations, retaining the most relevant information.

When considering the first latent component, it is possible to see from table
4 that the only predictor gene relevantly correlated with it is ZEB2, which is
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Table 3. Explained variability of components extracted with PLS regression for the
Y matrix of responses

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

SS Loadings 3.714 1.787 4.335 2.154 2.118 2.605 3.364 4.896
Proportion of Variance 0.060 0.029 0.070 0.035 0.0.034 0.042 0.054 0.079
Cumulative Proportion 0.060 0.089 0.159 0.193 0.228 0270 0.324 0.403

Table 4. PLS regression loadings for matrix X; only loadings larger than ±0.5 are
reported

Gene Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8

SNAI1 0.6621
SNAI2 0.6496
TWIST1 -0.7048
ZEB1 0.7951
ZEB2 -0.5518 0.7562
FOXC1 -0.7373
FOXC2 0.5758 0.5354 -0.6571

negatively correlated. From table 5 we can note that CLDN15, PRKCI and
CDH3 are all positively associated with the first component. Thus, it is possible
to say that ZEB1 is negatively associated with these 3 polarity genes, and this
result is consistent with that depicted in figure 1, where it can be seen that
ZEB1 lies on opposite side of the plot with respect to CLDN15, CDH3 and
PRKCI. Similarly, also SNAI2 (positively associated to the third component)
and CLDN15,CDH3 and CDH2 (all negatively related to the third component)
are negatively associated in the biplot of figure 1.

Since no polarity gene was relevantly associated with the second component
(i.e. no loading was larger than the specified threshold of ±0.5) the column
referring to the second component in table 5 is empty, and no consideration
on TWIST1 and FOXC2 (both relevantly associated to this component) can be
made.

With regard to the fourth component, FOXC1-CDH2 and FOXC2-CLDN7
are actually negatively associated (see figure 1), whereas positive associations
between FOXC1-CLDN7 and FOXC2-CDH2 are not graphically evident. It has
however to be pointed out that this pattern of association is hardly evident
from the biplot because only the first two components were plotted, and these
components account only for half of the total variability associated with EMT
genes (see table 1). For such reason, degree of concordance between tables 4-5
and figure 1 for higher components is quite low.

According to relevant association described above, the largest absolute coef-
ficient is the one depicting negative association between ZEB2 and CDH3 (see
table 6) that lie almost perfectly on opposite sides of the biplot. Similarly, it is
possible to see that also PRKCI and CLDN15 are negatively influenced by the
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Table 5. PLS regression loadings for matrix Y; only loadings larger than ±0.5 are
reported

Gene Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8

CLDN1 -0.6836
CLDN4 -0.5730
CLDN5 0.7622
CLDN7 -0.5378
CLDN8 -0.7461
CLDN11 -0.7301
CLDN15 0.8526 -1.0144
CLDN17 0.6425
INADL 0.5466
PRKCI 0.5568
ACTN3 -0.5313
CDH2 -0.7405 0.6743 -0.5798
CDH3 0.7749 -0.8992 0.7924
JUP -0.6440
DLG2 -0.5743
DLG4 -0.6292

Table 6. PLS regression relevant coefficients. A coefficient is reported if for any of the
9 components both genes x and y had a loading larger than ±0.5.

PREDICTORS

Gene SNAI1 SNAI2 ZEB1 ZEB2 FOXC1 FOXC2

CLDN1 -0.423 0.190
CLDN4 -0.320
CLDN5 0.856
CLDN7 0.394 -0.498
CLDN11 -0.564
CLDN15 -1.020 -0.648
CLDN17 0.613
PRKCI -0.420
CDH2 -0.005 -0.598 -0.507 0.226
CDH3 -0.665 -1.134
JUP -0.563

DLG2 -0.374
DLG4 -0.620

specific EMT-related gene ZEB2 (coefficients equal to -0.420 and -0.648 respec-
tively), whereas CLDN5 shows a positive association with it (confirmed by the
biplot). CDH2, a polarity gene with patterns of conditional polarity expression
similar to CDH3, CLDN15 and PRKCI is relevantly influenced by gene ZEB1,
with a coefficient of -0.598, and by FOXC1, with a coefficient of -0.507.
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Fig. 2. PCA-based biplot of EMT genes (solid line and italic bold font) and passive
projections of polarity genes (dashed lines and plain font) including only genes of
table 6

Since biplot of figure 1 is quite overloaded, and for better evaluating concor-
dance between PCA-based biplot and the “filtered” PLS coefficients, a reduced
biplot including only those genes showing relevant associations has been drawn
(see figure 2). It is of interest to note that the polarity genes that better project
over the first principal component of EMT genes, that is CDH3, CLDN15 and
PRKCI, are those for which PLS regression “consistently” identifies a negative
influence with specific genes EMT-related. On the contrary, if we consider gene
ZEB1 it is possible to see that biplot and PLS provide only partially overlapping
results. In fact, whereas CLDN4, CLDN11 and DLG2 have a negative PLS coef-
ficient with respect to ZEB1, meaning a negative association possibly related to
down-regulation, these genes seem positively associated to ZEB1 in the biplot of
figure 1. On the contrary, coefficients for CDH2 and DLG4, genes with a good
projection on the second axis, confirm PCA-based visualization results.

Overall, of the 19 coefficients associated to relevant loadings for both predic-
tors and response genes 6 were not confirmed by graphical evaluation via the
biplot. Of these, 3 referred to gene ZEB1 (with CLDN4, CLDN11 and DLG2), 2
to gene FOXC2 (with CLDN1 and CDH2) and 1 to gene FOXC1 (with CLDN7).

4 Discussion

Both methods described in section 2 have been used at length in a variety of
real-life problems ranging from chemometrics to gene expression [3,7,8], but their
complementary use to discover conditional patterns of expression can provide
additional useful information when used with genes involved in specific pathways.
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The use of PCA-based biplot with the addition of passive projection of addi-
tional genes gave us useful insights on the conditional association structure be-
tween genes and samples and among genes themselves. The classical PCA-based
biplot on EMT genes showed that most of epithelial samples were characterized
by negative association with these genes, whereas no clear positive association
could be found with both the mixed mesotheliomas (another histotype) and the
healthy tissues.

When conditioning to the expression profile of Epithelial to Mesenchymal tran-
sition pathway genes, passive projections of cell polarity genes showed that specific
EMT-related genes were differently associated with specific sets of polarity-related
genes, as discussed in section 3.2.

For quantifying the relationships visualized in figure 1, we resorted to the
approach suggested by Datta [12]. The author first suggested a partial least
squares approach to circumvent dimensional problems affecting microarray ex-
periments and to identify potential gene relationships requiring further biological
investigation.

In this work the method is applied to preselected genes, namely EMT genes,
as predictors, and polarity genes, as response. As seen in section 3.3, the as-
sociations found after filtering for a cut-off on the loadings of both matrices X
(EMT genes) and Y (polarity genes) were mostly confirmed by the passive pro-
jections in figure 1, indicating that EMT influences expression profiles for genes
polarity-related according to different mesothelioma histotype.

Our dataset contained information only on 8 predictors, for which 8 latent
components could be estimated; since our goal was not to reduce dimensionality
of the datasets, we retained all these components to explore all of the possible
associations between X and Y. As a matter of fact, response genes are relevantly
associated with the last component (see table 5), so this choice seems to be the
best possible in this specific setting

The use of these methods is particularly useful when attention is focused on
set of genes involved in specific pathways for which it is possible to hypothesize
a set of dependencies of the kind X ⇒ Y .

5 Conclusions and Future Work

In the context of microarrays experiment one simultaneously obtains information
on thousand of genes involved in different biological pathways. A goal of such
experiments is to identify group of genes with similar biological functions, a task
which is commonly addressed via cluster analysis. Such methods however can
not help in understanding how these genes interact with each other, and how
specific patterns of up-and-down regulation for a set of genes are associated with
up-and-down regulation in another set.

We applied PCA-related visualization methods and PLS regression to a subset
of a microarray experiment considering only genes involved in two specific path-
ways, EMT and cell polarity, and evaluated whether expression of genes involved
in EMT could possibly influence expression profile of cell polarity genes.
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PCA-based biplot and passive projections showed the pattern of associa-
tion between EMT and polarity-related genes; PLS regression mostly confirmed
this pattern, providing quantitative information for better understanding the
strength of the association.

One of the great advantages of these methods is the simplicity of interpreta-
tion: whereas the biplot can be directly interpreted in terms of between-genes
correlation and gene-sample association, coefficients of the PLS regression can
be thought of as measures of how much predictor gene x influences expression
values of gene y.

The main drawback with the graphical procedures presented (PCA-based bi-
plot and passive projection) is that they can actually handle only a limited
number of genes and samples, since a too much large dimensionality will result
in an onverloaded biplot. This method is thus well suitable to experiment where
attention of researcher is focused on specific pathways interest more than on the
whole information one can usually obtain in genomic context.

Sparse PCA as described, for instance, by Zou et al. [14] and Shen et al.
[15] will be evaluated as a method for dealing with dimensionality problems
relevant to this kind of experiments. Future work will also address the differential
pattern of expression according to histotype of subjects in the PLS framework.
Moreover, PLS path modeling will be considered after the specification of a
detailed dependency network.
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Abstract. Observations of systematic gene perturbation experiments
have been proven the most informative for the identification of regu-
latory relations between genes. For this purpose, we present a novel
Qualitative Reasoning approach, based on a qualitative abstraction of
DNA-microarray data and on a set of IF-THEN inference rules. Our
algorithm exhibits an extremely low rate of false positives, competitive
with the state-of-the-art, on both noise-free and noisy simulated data.
This, together with the polynomial running time, makes our algorithm
an useful tool for systematic gene perturbation experiments, able to iden-
tify a subset of the oriented regulatory relations with high reliability and
to provide valuable insights on the amount of information conveyed by
a set of experiments.

Introduction

Genes of the DNA are the basic blocks which code all the information necessary
for an organism to live. A protein coding gene is said to be expressed at a
particular time instant if its sequence is being transcribed into messenger RNA
(mRNA); mRNA is then translated into a protein and some proteins, possibly
in combination with each other, have the role of activating or inhibiting the
expression of other genes. This self-control mechanism of transcription is known
as gene regulation and induces a set of causal relations among gene transcripts
[4].

Causal relations among genes can be explored by means of the technology
of DNA microarray experiments, which allows the simultaneous observation of
the rate of transcription of all the genes at particular time instants and under
different biological conditions [6]. Identified relations can be represented in a
Gene Regulatory Network, a graph in which nodes represent genes and edges
represent causal relations between them.

Among all the various types of microarray experiments, steady-state experi-
ments of systematic gene perturbation have been proven the most informative
for the purpose of reconstructing Gene Regulatory Networks [8]: a typical exper-
imental design consists in the systematic suppression of each gene (gene knock-
out) followed by a single microarray observation, sampled when the system has
reached a steady state. In parallel, a wild type experiment is carried out, sampling
the steady state of the system when no genes are perturbed.

R. Rizzo and P.J.G. Lisboa (Eds.): CIBB 2010, LNBI 6685, pp. 135–146, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper, we present a novel qualitative reasoning approach to infer
regulatory relations between genes from systematic gene perturbation experi-
ments. Our algorithm automates the process of examining the effects of each
gene perturbation through a set of inference rules in the form ”IF a certain
condition is observed in the data, THEN a causal relation between two genes is
hypothesized”.

The performance of our algorithm is tested on two simulated datasets of sys-
tematic gene knock-out experiments, to assess the average behaviour on a rich
set of test cases and with complete information on network topologies. The first
dataset is generated with the Netsim simulator [2], while the second is extracted
from the ”Dialogue on Reverse Engineering Assessment Methods” (DREAM4)
In Silico Network Challenge [5] [10] [9]: the main goal of the DREAM project is
to try to achieve a fair comparison of the strengths and weaknesses of Reverse
Engineering methods. On both datasets our approach exhibits an extremely low
rate of false positives and provides meaningful insights on the amount of useful
information conveyed by steady state perturbations.

The rest of the paper is organized as follows: Section 1 presents the Quali-
tative Reasoning algorithm, Section 2 describes the two datasets and shows the
experimental results and Section 3 draws some conclusions and presents related
works and possible future directions.

1 Methods

Figure 1 shows a graphical representation of the measurement of a set of system-
atic gene knock-out experiments on a simulated network of 20 genes, flanked with
the measurement of the wild type experiment (the rightmost column), generated
with the NetSim simulator. Rows of the grid correspond to genes and columns to
experiments, and the level of gray in each box is proportional to the normalized
value of gene expression, from white (no expression) to black (maximum expres-
sion). One can observe that, in the majority of the experiments, the expression
of most of the genes does not differ much from the wild type: just in a small set
of cases a knock-out of a gene has visible effects on a large number of genes. This
behaviour is possibly related to the fact that regulatory networks belong to the
class of scale-free networks [1], thus exhibiting few highly connected nodes and
a large number of loosely connected nodes. Moreover, knocking out genes that
reach a low expression value in the wild type experiment has no visible effects
on the other genes.

To extract qualitative information contained in a set of knock-out experi-
ments, one can subtract the wild type from all the other experiments and con-
sider the differentially expressed genes, i.e. the genes for which the absolute
value of the difference lies above a threshold θ; for each knock-out experiment,
we define these genes as the observed effects of the experiment. The result of
such an operation on the example dataset is shown in Figure 2, where the effects
of the knock-out of each gene are clearly readable in its corresponding column.
On top of each column, we reported the number of observed effects for each gene
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Fig. 1. Graphical representation of a set of 20 gene knock-out experiments, plus the
wild type, obtained with the NetSim simulator. Each row corresponds to a gene and
each column to an experiment. The level of gray is proportional to the relative expres-
sion value of the gene, from white (no expression) to black (maximum expression).

knock-out experiment. Moreover, we define as not observed the genes for which
the corresponding element on the diagonal exhibits an absolute value smaller
than the threshold θ. In Figure 2, the corresponding columns are marked with
∅. Notice that this is different from having no observed effects, as in the case of
genes 2, 3, 6, 9 and 20 in the example. In this work, we chose not to consider
the sign of differential expression, i.e. we do not distinguish between activatory
and inhibitory relations, leaving the task as a possible future extension of our
qualitative framework.

With the aim of extracting direct regulatory relations in the form

y ⇒ x ,

where y is one of the regulators of x and x is one of its regulated genes, we
take into account for each gene the binary qualitative feature of being or not
being an observed effect of a particular knock-out experiment (thus leaving aside
the quantitative values of expression). All the observed effects of each gene are
mapped to a string representation, as the one in Table 1: each row contains
the list of the observed effects of the knock-out of the corresponding gene (or
not observed if the gene was not observed in the particular experiment). For
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Fig. 2. Graphical representation of the qualitative information contained in the same
set of 20 knock-out experiments, obtained by subtracting the wild type from each
column and taking absolute values. The number of elements whose value is larger than
a fixed threshold θ is reported on top of each column.

convenience, we denote eff (x) the set of observed effects of the knock-out of
gene x.

The following considerations can be drawn from the string representation:

– No inference can be carried out on the effects of not observed genes, because
the information is not present in the particular set of experiments.

– For knock-out experiments with only one observed effect, a causal relation
between the knocked out gene and its observed effect can always be inferred.
We name these inferred relations single effect rules. Table 1, for example,
reveals the causal relation 11 ⇒ 8.

– When more than one observed effect is present for a single knock-out ex-
periment, one has to separate direct effects from indirect effects, i.e. effects
originated by the propagation of the perturbation through the network: from
this idea derive the two following considerations.

– If there exist x and y such that eff (y) = {x, eff (x)}, the causal relation
y ⇒ x can be inferred. The motivation for this rule is the propagation
of the perturbation originating from the knock-out of y to all and only the
observed effects of the knock-out of x. We name this type of inferred relations
strict inclusion rules. Two examples from Table 1 are 17 ⇒ 11 and 7 ⇒ 5.
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Table 1. String representation of the observed effects for each gene

10: not observed
12: not observed
13: not observed
15: not observed
16: not observed
18: not observed
19: not observed
2:
3:
6:
9:

20:
11: 8
14: 9 19
17: 8 11
4: 12 13 15
5: 8 11 17 19
7: 5 8 11 17 19
8: 5 7 11 17 19
1: 2 3 4 6 9 10 12 13 14 15 16 18 19 20

– If there exist x and y such that eff (y) = {x, eff (x), K}, with K an additional
set of genes, to infer the causal relation y ⇒ x one has to exclude that none
of the genes in K interposes in the path between y and x (i.e. none of them
is a direct or indirect cause for x). The latter condition is verified if each
k ∈ K satisfies either of the two following conditions:
• k is observable and x is not an observable effect of k,
• there exists a z such that k is an observable effect of z and x is not.

We name this type of inferred relations simple inclusion rules. An example
from Table 1 is the rule 5 ⇒ 17: the effect list of gene 5 contains gene 17,
the effect list of 17 and gene 19. However, 19 is an observed effect of 14 and
17 is not, thus 19 can not be a cause for 17 and the rule holds.

Strict inclusion and simple inclusion rules have an exception: they cannot be
applied to infer the causes of a gene x if there exists at least a gene y such that
{x, eff (x)} ≡ {y, eff (y)}. This behaviour is in fact the evidence of the presence
in the regulatory network of a non-terminal oriented closed loop to which both
x and y belong. For the strict inclusion and simple inclusion rules the two genes
are thus indistinguishable in this qualitative framework. An example of genes
for which this situation holds in Table 1 is the pair 7 and 8.

A Qualitative Reasoning algorithm can thus be designed to infer single effect
rules, simple inclusion rules and strict inclusion rules from a set of systematic
gene knock-out experiments; its pseudocode is presented in what follows.
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Qualitative(An×n,wn×1, θ)
1 Subtract w from each column of A, and store the absolute value in Dn×n

2 For each element in D, if abs(D[i, j]) < θ then D[i, j] = 0
3 For each x, eff (x) = indices of nonzero elements of the x-th column of D.

// Single effect rules
4 for x = 1 to n
5 if length(eff (x)) = 1
6 C[eff (x), x] = 1
7 for l = 1 to argmax

x
[length(eff (x)) − 1]

8 for all x | length(eff (x)) = l
// Strict inclusion rules

9 if ∃ y | eff (y) = {x, eff (x)}
10 C[x, y] = 1

// Simple inclusion rules
11 else if ∃ y | eff (y) = {x, eff (x), K}
12 if for each k ∈ K:
13 k observable and x /∈ eff (k)
14 or
15 ∃ z | k ∈ eff (z) and x /∈ eff (z )
16 C[x, y] = 1
17 return C

The algorithm receives as input the squared matrix of knock-out experiments
An×n, the column vector of the wild type experiment wn×1 and the threshold θ;
it returns as output the inferred connectivity matrix Cn×n, in which C[x, y] = 1
if the rule y ⇒ x was inferred.

Analyzing the computational complexity, one can observe that the prepro-
cessing phase (rows 1−3) take O

(
n2

)
operations. Searching for single effect

rules takes O (n) operations (rows 4−6); then, the two for loops at rows 7 and 8
scan totally O (n) elements, searching for simple inclusion rules takes O (n) and
searching for strict inclusion rules can take O

(
n3

)
in the worst case, i.e. if the

condition on line 15 has to be verified for every k. Thus, the algorithm has a
total worst case complexity of O

(
n4

)
.

The rationale we followed while designing the algorithm was to identify a higly
reliable subset of all causal relations. The resulting algorithm is thus rather
conservative: it is designed to infer at most one regulatory relation for each
line of the string representation, with the gene corresponding to the line as
the regulator. Thus, even in the case of all observable genes, no rule can be
inferred for nodes wich are leaves in the graph, i.e. which have no outgoing
edges. Altogether, the maximum possible number of inferred relations is n − l,
where l is the number of leaves in the graph.
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2 Results

To assess the performance of Reverse Engineering algorithms one needs a per-
fectly known benchmark network. A few regulatory networks are known in the
literature with sufficient confidence and, even when some information on a real
network is known, it is still impossible to exclude the effect of unknown regula-
tors [8]; moreover, a large set of completely known test instances is needed to
robustly test the average behaviour of the algorithm. For these reasons, we chose
to rely on simulation to assess the performance of our Qualitative Reasoning al-
gorithm. As perfomance measures, we chose the widely adopted Precision (P)
and Recall (R), defined as:

P =
tp

tp + fp

R =
tp

tp + fn

where tp is the number of true positives, i.e. the number of causal relations
correctly identified by the algorithm, fp is the number of false positives, i.e. the
number of relations identified by the algorithm which are not correct, and fn is
the number of false negatives, i.e. the number of relations present in the real
network but not identified.

We first run our qualitative inference algorithm on a gene knock-out simu-
lated dataset generated as described in [2] (the NetSim dataset, from now on),
composed of four groups of 20 networks each, with network size 10, 20, 50 and
100 nodes, respectively. For each network, we generated noise-free knock-out ex-
periments initializing gene expression at random, fixing to zero the expression
of each gene in turn and letting the system evolve to a steady state. For further
details on the adopted simulator, please refer to [2].

A separate training set of 4 groups of 5 networks each, of size 10, 20, 50 and
100 nodes, was used to tune the threshold θ, which was then fixed at the 0.5%
of the maximum expression value. Boxplots for Precision and Recall on the four
test sets of networks are showed in Figure 3.

As it is clear from the figure, Precision is 1 in the vast majority of cases even
for large networks, meaning that the number of false positives is extremely low.
Average Recall, on the other hand, is low: on average, the method is able to infer
approximately the 10% of the real regulatory relations.

We compared the performance of our algorithm with Graphical Gaussian
Models (GGMs, [7]), the approach which achieved the best performance on sys-
tematic perturbation data in the benchmark paper [8]. GGMs try to estimate
the partial correlation between each pair of genes conditioned on all the other
genes, combining bootstrap and pseudo-inverse of the correlation matrix, and
use it as a proxy of the presence of regulatory relations between gene pairs; cor-
relation is, however, a symmetric measure, thus GGMs provide no information
on the direction of the regulation (conversely to our approach). The procedure
is implemented in the publicly available R package GeneNet1.
1 http://strimmerlab.org/software/genenet/
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Fig. 3. Boxplots of Precision (left) and Recall (right) of the qualitative inference algo-
rithm, on 20 networks of sizes 10, 20, 50 and 100

The output of the GGMs algorithm is a symmetric matrix reporting confi-
dence levels for regulatory relations between each gene pair. For a comparison
with our algorithm, we sorted the returned confidence levels for each network in
decreasing order of confidence and computed the Precision of the k topmost reg-
ulatory relations, where k is the number of relations identified by our algorithm
for the same network; this approach allows us to compare the Precision of the
two algorithms at the same level of network complexity (i.e. number of edges).
Precision of our algorithm is significantly higher than the one of GGMs for net-
works of sizes 20, 50 and 100, whereas no significant differences are observed for
networks of 10 genes (p-values 0.25, 0.016, 0.017 and 0.0023 for networks of sizes
10, 20, 50 and 100, respectively2). Our algorithm, thus, when compared to a
state-of-the art algorithm exibits equal or higher performance in terms of Preci-
sion, while returning also additional information on the direction of regulations.

The two algorithms were then run on a set of simulated knock-out experiments
extracted from the DREAM4 In Silico Network Challenge: the current dataset
consists of the systematic knock-out of each gene, plus a wild type experiment,
for five networks of ten genes. Data, in this case, contain noise both inherent in
the dynamical model (a system of stochastic differential equations) and added
in a second step to simulate experimental variability.

Given the noisy nature of the dataset and the lack of a separate training set,
we fixed a significance level α and computed, for each gene in each experiment,
a corresponding confidence threshold θ based on a noise model.

More specifically, we defined the variable

δij = xij − wti,

2 Scores were compared using exact Wilcoxon two-sample tests: we considered as sig-
nificant differences corresponding to a p-value < 0.05.
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Fig. 4. Boxplots of Precision and Recall of the qualitative inference algorithm, on the
5 networks of size 10 from the DREAM4 In Silico Network Challenge

where xij is the intensity of the expression of gene xi measured during the
knock-out of gene xj and wti is the intensity of the expression of the same gene
measured in the wild type experiment, and we normalized each δij by its standard
deviation, learned as an intensity dependent parameter [3]. Assuming Gaussian
noise, under the Null hypothesis the normalized δij is distributed as a standard
Gaussian, thus we fixed a significance level α and computed the threshold θ
directly from the inverse of the normal cumulative distribution function. The
significance level α was set to 0.0005, which corresponds to a significance level of
5%, corrected for the number of tests (10 genes × 10 KO experiments) according
to Bonferroni correction for multiple testing.

The results on the DREAM4 data, in terms of Precision and Recall, are shown
in Figure 4. As one can observe, the Precision of the qualitative algorithm is
rather high even in the presence of noise, with an average of 0.93, and the
average Recall, 0.21, is doubled with respect to the one obtained on the previous
dataset. No significant differences were observed with the results of GGMs, in
terms of Precision at the same level of complexity, but additional information is
returned by our algorithm in terms of orientation of the causal relations.

To further assess the robustness of our algorithm to variations of the threshold
θ in the noise-free case or, correspondingly, of the significance level α in the noisy
case, we observed Precision and Recall of the output of our algorithm at different
values of the two parameters for the NetSim and DREAM4 datasets. Figure 5
shows Precision and Recall for the NetSim dataset obtained by directly varying
the threshold θ, while Figure 6 shows Precision and Recall for the DREAM4
dataset for different values of the significance level α.

As it is clear from the two figures, Precision and Recall of our algorithm
remain in the same range even for variations of the thresholds of several orders
of magnitude. Our algorithm can thus be considered robust to che choice of the
threshold.
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Fig. 5. Average Precision (left) and Recall (right) of the qualitative inference algo-
rithm, on 20 networks of sizes 10, 20, 50 and 100 obtained with the NetSim simulator,
for different levels of the threshold θ
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Fig. 6. Average Precision (left) and Recall (right) of the qualitative inference algo-
rithm, on 5 networks of size 10 from the DREAM4 challenge, for different values of the
significance level α

The high level of Precision reached by our Qualitative Reasoning algorithm,
together with the polynomial running time, makes it a good preprocessing tool
for a general inference algorithm, able to provide valuable and reliable informa-
tion on a subset of the oriented regulatory relations.

3 Discussion

We described in this paper a novel Qualitative Reasoning algorithm for the in-
ference of directed causal relations between genes from steady state experiments
of systematic gene perturbation. The algorithm extracts from the data a qual-
itative description of the observable effects of each perturbation and it is both
able to infer three kinds of regulatory rules and to explictly point out which parts
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of the network are impossible for it to infer, given the outcome of the pertur-
bation experiment. In the example presented in Table 1 it is in fact clear that,
being genes 10, 12, 13, 15, 16, 18 and 19 not observed in the particular set of
experiments, little information can be gained on their possible regulatory role.
Information on unobserved genes is thus valuable and can be exploited when
choosing on which genes to focus in possible subsequent experiments.

In the literature, automated processing of steady state perturbation experi-
ments is usually accomplished by means of quantitative methods; an exception is
the GenePath software [11], which exploits an IF-THEN rule inference approach
to analyze qualitative differences between single and double mutants of the same
organism. GenePath, however, is designed to process qualitative variations of
phenotypic variables, whereas our approach directly analyzes gene expression
data.

As concerns future directions, a first remark can be that the qualitative ab-
straction of our algorithm is based on a fixed numerical threshold θ, used to
select the observed effects of each experiment. A possible future direction would
be to make the threshold adaptive to data, relating it to either the expression
of the same gene through all the experiments (gene-specific threshold) or to all
the genes in each experiment (experiment-specific threshold).

Another possible future direction would be to extend the qualitative frame-
work to consider also the sign of the observed effects of each perturbation, clas-
sifying them as overexpressed or underexpressed with respect to the wild type,
and to study both how this affects the three rule inference procedures and if new
procedures can be defined in the new framework.
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Abstract. The search for similarities in large data sets has a very im-
portant role in many scientific fields. It permits to classify several types of
data without an explicit information about it. In many cases researchers
use analysis methodologies such as clustering to classify data with re-
spect to the patterns and conditions together. But in the last few years
new analysis tool such as a biclustering were proposed and applied to
the many specific problems. Biclustering algorithms permit not only to
classify data with respect to selected conditions, but also to find the
conditions that permit to classify data with a better precision. Recently
we proposed a biclustering technique based on the Possibilistic Cluster-
ing paradigm (PBC algorithm) [1] that is able to find one bicluster at
a time. In this paper we propose an improvement to the Possibilistic
Biclustering algorithm (PBC Bagging) that permits to find find several
biclusters by using the statistical method of Bootstrap aggregation. We
applied the algorithm to a synthetic data and to the Yeast dataset, ob-
taining fast convergence and good quality solutions. A comparison with
original PBC method is also presented.

Keywords: data mining, biclustering, clustering, Possibilistic C-Means,
bagging, genomic data analysis.

1 Introduction

The simultaneous analysis of the expession of large sets of genes gives a great
opportunity of studying genomic information. Data sets are provided, for ex-
ample, by the DNA Microarray technology, and the results of the experiments
carried out on genes under different conditions are the expression levels of their
transcribed mRNA stored in DNA chips. Our task is to find a subset of genes
that shows similarity under a subset of conditions. Therefore we use the tech-
nique of biclustering, that was firstly proposed in 1972 by Hartigan [2]. The
method finds the submatrices with the minimum variance. A “perfect bicluster”
is a submatrix with zero variance.
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Cheng and Church [3] gave a more precise definition of bicluster and intro-
duced a measure, the mean squared residue (MSR), that computes the similarity
among the expression values within the bicluster. The definition of the Cheng &
Church bicluster and the measure of MSR are normally used to date for mea-
suring bicluster quality.

Many further biclustering algorithms are based on the method by Cheng and
Church. A different biclustering technique based on Multiobjective Optimization
has been employed by Mitra et al. [4]. It used local search strategy for identifying
overlapped biclusters in gene expression data.

The Possibilistic Biclustering algorithm, proposed by M. Filippone et al. [1],
is based on the Possibilistic Clustering paradigm [5], and finds one bicluster at
a time, assigning a membership to the bicluster for each gene and for each con-
dition. The biclustering problem, in which one would maximize the size of the
bicluster and minimizing the residual, is faced as the optimization of a proper
functional. This algorithm obtains fast convergence and good quality solutions.
PBC finds only one bicluster at time. We propose an improved PBC algorithm
based on data resampling, specificaly Bootstrap aggregation, for finding all pos-
sible biclusters together, including overlapped so lutions.

2 The Biclustering Problem

Let X be the M × N data matrix and xij be the i-th input variable of j-th
observation (e.g., the expression level of the i-th gene in the j-th condition). A
m × n bicluster [3] is a pair (g, c), where g ∈ {1, ..., m} is a subset of variables
(genes) and c ∈ {1, ..., n} is a subset of observations (conditions). We are inter-
ested in all the largest biclusters with the minimal value of the MSR from the
data matrix.

The size (or volume) n of a bicluster is usually defined as the number of
cells in the gene expression matrix X belonging to it, that is the product of the
cardinalities ng = |g| and nc = |c|:

n = ng · nc.

Let

d2
ij =

(xij + xIJ − xiJ − xIj)2

n
, (1)

be the residual for data item xij , where the elements xIJ , xiJ and xIj are
respectively the bicluster mean, the row mean and the column mean of X for
the selected genes and conditions:

xIJ =
1
n

∑
i∈g

∑
j∈c

xij , (2)

xiJ =
1
nc

∑
j∈c

xij , (3)
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xIj =
1
ng

∑
i∈g

xij . (4)

The mean square residual MSR measures the bicluster homogeneity:

MSR =
1
n

∑
i∈g

∑
j∈c

d2
ij .

The mean square residual quantifies the mean (square) difference between the
actual value of an element xij and its expected value as predicted from the
corresponding row mean, column mean, and bicluster mean.

We want to find large biclusters, optimizing a functional that maximizes the
bicluster cardinality n and at the same time minimizes the residual MSR. This
is known to be an NP-complete task [6]. The high complexity of this problem
has motivated researchers to apply various approximation techniques to generate
near optimal solutions. As Filippone et al., we take the approach to combine the
criteria in a single objective function.

3 Possibilistic Clustering Paradigm

The possibilistic approach to clustering firstly was proposed by Keller and Kr-
ishnapuram [5], [7]. They discussed about the membership function of a cluster
(or data point in a fuzzy set) as an absolute, i.e. it is an evaluation of a degree
of typicality not depending on the membership values of the same point in other
clusters.

Let K be the number of clusters, nc be the number of conditions in the cluster.
Then we consider the membership upq, p ∈ nc, q ∈ K that shows the possibility
of every condition p to enter in the cluster q. This approach assumes that the
membership function of a data point in a fuzzy set (or cluster) is absolute, i.e. it
is an evaluation of a degree of typicality upq not depending on the membership
values of the same point in other clusters. So, following Keller and Krishnapuram
we assume:

upq ∈ [0, 1],∀p, q;

0 <
∑
q∈c

upq < nc, ∀p;

∨
p

upq > 0,∀q.

The task of the objective function is to find the highest memberships for rep-
resentative feature points, while unrepresentative points should have low mem-
bership in all clusters. In the following function the distance from the features
to prototypes is made as low as possible while uij is as large as possible.

J(U, Y ) =
∑
p∈K

∑
q∈c

upqE
2
pq +

∑
p∈K

1
βp

∑
p∈c

(upq log upq − upq),
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where Epq = ||kq − yp||2 is the squared Euclidean distance, and the parameter
βp (that we can term scale) depends on the average size of the p-th cluster, and
must be assigned before the clustering procedure. Note that (upq log upq − upq)
is a monotonically decreasing function in [0,1], similar to (1 − upq)m. Thanks
to the regularizing term, points with a high degree of typicality have high upq

values, and points not very representative have low upq values in all the clusters.
Note that if we take βp → ∞ ∀p (i.e., the second term of Jm(U, Y ) is omitted),
we obtain a trivial solution of the minimization of the remaining cost function
(i.e., upq = 0 ∀p, q), as no probabilistic constraint is assumed.

The pair (U, Y ) minimizes Jm, under our constraints only if:

upq = e−Epq/βp , ∀p, q,

and

yp =

∑r
q=1 xqupq∑r

q=1 upq
,∀p.

These conditions can be interpreted as formulas for recalculating the membership
functions and the cluster centers (Picard iteration technique), as shown, e.g., in
[8].

A good initialization of centroids must be performed before applying PCM
(using, e.g., Fuzzy C-Means [5], [7], or Capture Effect Neural Network [8]). The
PCM works as a refinement algorithm, allowing us to interpret the membership
to clusters as cluster typicality degree, moreover PCM shows a high outliers
rejection capability as it makes their membership very low.

4 The Possibilistic Approach to Biclustering

In this section following Filippone et al. [8] we represent the concept of biclus-
tering in a fuzzy set theoretical approach. For each bicluster they assign two
vectors of membership, one for the rows and one for the columns, denoting them
a and b respectively. Such that if ai and bj equal to one(zero) then row i and
column j belong(or not) to the bicluster. For an element xij of X we assign its
membership uij such that:

uij = and(ai, bj).

The cardinality of the bicluster is then defined as:

n =
∑

i

∑
j

uij .

The membership uij can be obtained like:

uij = aibj , (product)

or
uij =

ai + bj

2
, (average).
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So the equations ( 1- 4) can be generalized as:

d2
ij =

(xij + xIJ − xiJ − xIj)2

n
, (5)

where:

xIJ =

∑
i

∑
j uijxij∑

i

∑
j uij

, (6)

xiJ =

∑
j uijxij∑

j uij
, (7)

xIj =
∑

i uijxij∑
i uij

, (8)

G =
∑

i

∑
j

uijd
2
ij . (9)

To maximize the bicluster cardinality n and minimize the residual G using the
fuzzy possibilistic paradigm Filippone et al. make the following assumptions:

1. one bicluster at a time is considered;
2. the fuzzy memberships ai and bj are interpreted as typicality degrees of gene

i and condition j with respect to the bicluster;
3. the membership uij is computed.

All these requirements are fulfilled by minimizing the following functional JB

with respect to a and b:

JB =
∑

i

∑
j

(
ai + bj

2
)d2

ij + λ
∑

i

(ai ln(ai) − ai) + μ
∑

j

(bj ln(bj) − bj).

As in the Possibilistic C-means model, the parameters λ and μ control the size
of the bicluster by penalizing too small values of the memberships. Their values
can be estimated by simple statistics over the training set, and then possibly
hand-tuned, for instanced to incorporate a-priori knowledge.

Setting the derivatives of JB with respect to the memberships ai and bj to
zero:

∂J

∂ai
=

∑
j

d2
ij

2
+ λ ln(ai) = 0,

∂J

∂bj
=

∑
i

d2
ij

2
+ μ ln(bj) = 0,

the following solutions can be obtained:

ai = exp

(
−

∑
j d2

ij

2λ

)
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bj = exp

(
−

∑
i d2

ij

2μ

)
.

The Possibilistic Biclustering (PBC) algorithm is the following:

1. Initialize the memberships a and b
2. Compute d2

ij for all i, j
3. Update ai for all i
4. Update bj for all j
5. if ||a′ − a|| < ε and ||b′ − b|| < ε then stop
6. else jump to step 2.

The parameter ε is a threshold controlling the convergence of the algorithm.
The memberships initialization can be made randomly or using some a priori
information about relevant genes and conditions.

4.1 Bootstrap Aggregating (Bagging)

In this section we follow L. Breiman [9] about the Bootstrap aggregating (Bag-
ging) technique. A learning set L consists of data (yn,xn), n = 1, ..., N where
the y’s are either class labels or a numerical response. We have a procedure for
using this learning set to form a predictor (in our case a bicluster) ϕ(x, L) - if
the input is x we predict y by ϕ(x, L). Now, suppose that we have a sequence of
learning sets Lk each consisting of N independent observations from the same
underlying distribution as L. Our aim is to use the Lk to get a better predic-
tor then the single learning set predictor ϕ(x, L). The restriction is that we are
allowed to work with the sequence of predictors ϕ(x, Lk).

If y is numerical, an obvious procedure is to replace ϕ(x, L) by the average of
ϕ(x, Lk) over k. i.e. by ϕA(x) = ELϕ(x, L) where EL denotes the expectation
over L, and the subscript A in ϕA denotes aggregation. If ϕ(x, L) predicts a class
j ∈ 1, ..., J , then one method of aggregating the ϕ(x, Lk) is by voting.

We have a single learning set L without the luxury of replicates of L. Still,
an imitation of the process leading to ϕA can be done. Taking repeated boot-
strap samples L(B) from L form a ϕ(x, L(B)). Breiman [9] call this procedure
”bootstrap aggregating” or bagging.

L(B) forms replicate data sets, each consisting of N cases, drawn at random,
but with replacement, from L. Each (yn,xn) may appear repeated some times
or not at all in any particular L(B). The L(B) is a replicate data set drawn from
the bootstrap distribution approximating the distribution underlying L.

5 Improved Possibilistic Clustering Algorithm

As shown in [1], the PBC algorithm finds the larger bicluster of the data matrix
with small MSR, when compared with other methods.
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Different runs of the PCB algoritm on the same data matrix find very similar
biclusters whith high overlapping.

In order to find further biclusters, in this paper we study the effect of resam-
pling techniques. In particular, we use Bootstrap for generating new versions of a
data matrix and after that we apply the PBC model. The new multiple versions
of data matrix are obtained by making bootstrap replicates of the biclustering
set. In such a way all possible biclusters we can found.

5.1 Applying Bootstrap Aggregating to a PBC Model

Let X be the data matrix M ×N with elements xij , i ∈ M , j ∈ N . As first step,
following the Bootstrap aggregating [9], we create l new data matrices Mbag.
Every matrix Mbag has a random number of column copies from X , such that
the dimension of the matrices Mbag is M × N .

Then, for every Bagging matrix we apply the PBC algorithm and analyze the
result by F , MSR, and the value of enrichment S, that can be seen follow, i.e. the
a-priori information on the data or the GO term data base information which
is useful to identify if some agglomeration of genes in a cluster is significant
with respect to a specific annotation [10]. We analyze the biclusters relatively
to genes (rows), and consider them as clusters.

5.2 Validating Biclusters

Definition: Let us denote K known a-priori classes (annotations) of the data
matrix as Ck, k = 1, ..., K and T biclusters that was found as Dt, t = 1, ..., T .
The intersection of the a-priori classes and the found biclusters we call matrix
F, so:

F = C ∩D.

More precisely, one element qtk of the matrix F shows the number of elements
in the intersection of a priori class Ck and found bicluster Dt.

Definition: For each known a-priori class (annotation) i and each found cluster
j we define the enrichment S as:

Sij =
aij

aij + bij

Ai + Bi

Ai

where aij is the number of positive annotations in the cluster j, bij is the number
of negative annotations in the cluster j, Ai =

∑
j aij and Bi =

∑
j bij .

6 Results

6.1 The Analysis of the Synthetic Data Matrix

First, we apply our algorithm to the synthetic data matrix X M × N , that
consists of 100×50 whose elements values are from 1 to 10 (Fig.1 A) . There are
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A B C

Fig. 1. A) The synthetic data matrix X. B) Number of the elements from A on the
ordinate respect to number of the elements from B on the abscissa. C) Number of the
elements from B on the ordinate respect to number of the elements from A on the
abscissa.

two biclusters A and B of size 30 × 18 each one. The MSR value of the matrix
M is 6.8. We choose the value of the coefficients λ and μ such that:

λ =
∑N

i=1 λi

N × 1.5
,

μ =
∑N

i=1 μi

N × 1.3
.

The threshold ε is defined as 0.001.

PBC. We apply the PBC method for separating our data. As the result we find
one bicluster (49×37) that contains (25×17) elements from the bicluster A and
(22 × 16) elements from B, MSR = 3.8198.

PBC Bagging algorithm. We run this algorithm 200 times and find 200
Bagging Matrices Mbag; then we apply PBC to these matrices and find the MSR
and the value of S for every bicluster. After that we cancel all biclusters that
have the MSR value more than 3.39 (half of the MSR of the data matrix X).
Then for the remaining biclusters we analyze their matrix F (the first and the
second columns of this matrix show how many elements from the biclusters A
and B, respectively, enter in the current bicluster). As a result we obtained in
many cases the separation to the biclusters as in the first case (PBC).

However, we also obtained separated biclusters A and B. For separating the
bicluster A we choose the biclusters with rows that have a value in the first
column of F greater than the value of the rows in the second column (size of
A > size of B). And viceversa for the bicluster B. In Fig.1 B) we show the number
of the elements from A on the ordinate respect to number of the elements from
B on the abscissa. In Fig.1 C) we show the number of the elements from B on
the ordinate respect to number of the elements from A on the abscissa.
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A B C D

Fig. 2. The Heatmaps of the result of the biclusters A and B separation (cases A and
B, C and D respectively)

In the both cases we choose only biclusters that have large size. We can see
from the graphics that in the first case the jump of the size values is from 189
to 299 while in the second case the jump is from 182 to 252. So we take all the
biclusters with entry size of A greater than 299 in the first case and with entry
size of B greater than 252 in the second case. As a result we have:

1. We found two best cases of the separation of the bicluster A (Fig. 2 A and
B ):
(a) MSR = 3.2401 size = 920 (40× 23), 330 elements from A, 156 elements

from B;
(b) MSR = 2.4048 size = 546 (42 × 13), 300 elements from A, 30 elements

from B;
2. Two best cases for the separation of the bicluster B (Fig. 2 C and D):

(a) MSR = 2.9643 size = 644 (46 × 14), 252 elements from B, 75 elements
from A;

(b) MSR = 2.8298 size = 891 (33 × 27), 432 elements from B, 81 elements
from A;

6.2 Analysis with the PBC Bagging Method of the Real Data
(Yeast)

We consider the real data set Yeast (Fig. 3 A), created by Kenta Nakai, Institute
of Molecular and Cellular Biology, Japan, available on: http://archive.ics.uci.edu/
ml/datasets/Yeast. This data matrix consists of 8 attributes and 1484 instances,
containing the following classes: The matrix has a MSR = 0.0089. There are 10
classes with number of rows of (463, 5, 35, 44, 51, 163, 244, 429, 20, 30 respec-
tively); for the PBC and PBC Bagging analysis we consider the initial conditions:

λ =
∑N

i=1 λi

N × 3
,

μ =
∑N

i=1 μi

N
.

For each of these four cases for PBC Bagging we made 300 runs and built F .
We also made an analysis by calculating the enrichment S. For every bicluster
we kept the cases with S ≥ 1.1. We have the follow results (see table 2):



156 E. Nosova et al.

Table 1. Yeast data

class class definition number of elements

CYT (cytosolic or cytoskeletal) 463
NUC (nuclear) 429
MIT (mitochondrial) 244
ME3 (membrane protein, no N-terminal signal) 163
ME2 (membrane protein, uncleaved signal) 51
ME1 (membrane protein, cleaved signal) 44
EXC (extracellular) 37
VAC (vacuolar) 30
POX (peroxisomal) 20
ERL (endoplasmic reticulum lumen) 5

A B C D

Fig. 3. The Heatmap of data matrix Yeast A) and Heatmaps of some resulting biclus-
ters B)-D)

PBC. MSR = 0.0019, size: 631×6, we found the good separation of the first
bicluster.

PBC Bagging. The next three classes were found(results for the average for
all the cases):

1. Msr = 0.0024, size: 612×6 - the separation of the bicluster 1.
2. MSR = 0.0029, size: 276×5 - the separation of the Bicluster 6.
3. MSR = 0.0015, size: 269×5 - the separation of the Bicluster 8.

Together with this results the biclusters that contain some classes together
were found. Some of them are:

4. MSR = 0.0028, size: 239×5 - the separation of the Biclusters 1 and 6 together.
5. MSR = 0.0034, size: 622×6 - the separation of the Biclusters 1, 6 and 10

together.

The results for the average of enrichment (e) and the matrix F (in %) can be
seen in the table 2. Heatmaps of some biclusters can bee seen in the Fig 3
(C - D).
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Table 2. Results of the analysis on Yeast data

Case 1 bic 2 bic 3 bic 4 bic 5 bic 6 bic 7 bic 8 bic 9 bic 10 bic

1. F 60 0 10 0 15 41 28 44 30 40
e 1.4 0 0.23 0 0.4 0.96 0.66 1.04 0.7 0.94

2. i. F 60 0 10 0 10 40 30 40 20 40
e 1.45 0 0.2 0 0.24 0.96 0.7 0.96 0.5 0.96

2. ii. F 20 0 10 0 9 35 10 20 10 20
e 1.07 0 0.53 0 0.5 1.88 0.53 1.07 0.53 1.07

2. iii. F 20 0 1 0 4 7 7 33 7 8
e 1.1 0 0.06 0 0.22 0.38 0.38 1.82 0.38 0.44

2. iv. F 20 0 3 0 5 21 12 17 8 17
e 1.24 0 0.18 0 0.31 1.3 0.74 1.05 0.49 1.05

2. v. F 50 0 10 03 15 49 36 45 20 48
e 1.19 0 0.24 0.007 0.35 1.16 0.85 1.07 0.47 1.15

7 Conclusion

In this paper we presented a new method for the biclustering analysis. Our PBC
Bagging algorithm is a very fast algorithm, gives a good separation of the data
set with respect to the value of MSR and enrichment and permits to find all the
possible biclusters of the desired size (overlapped or not), that can be seen from
the results. We decided to calculate the λ and μ values as the mean of the values
in the method of Krishnapuram [7], and found a very good separation. Finally,
further analysis and biological validation of the obtained results is under study.
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Abstract. Supervised learning methods have been recently exploited
to learn gene regulatory networks from gene expression data. The basic
approach consists into building a binary classifier from feature vectors
composed by expression levels of a set of known regulatory connections,
available in public databases or known in literature. Such a classifier is
then used to predict new unknown connections.

The quality of the training set plays a crucial role in such an inference
scheme. In binary classification the training set should be composed of
positive and negative examples, but in Biology literature the only col-
lected information is whether two genes interact. Instead, the counterpart
information is usually not reported, as Biologists are not aware to state
whether two genes are not interacting.

The over presence of topology motifs in currently known gene regu-
latory networks, such as, feed–forward loops, bi–fan clusters, and single
input modules, could drive the selection of reliable negative examples. We
introduce, discuss, and evaluate a number of negative selection heuristics
that exploits the known gene network topology of Escherichia coli and
Saccharomyces cerevisiae.

Keywords: reverse engineering gene regulatory networks, supervised
learning, positive only.

1 Introduction

One of main aims of Molecular Biology is the gain of knowledge about how molec-
ular components interact each other and to understand gene function regulations.
Many important biological processes (e.g., cellular differentiation during develop-
ment, aging, disease aetiology etc.) are very unlikely controlled by a single gene
instead by the underlying complex regulatory interactions between thousands
of genes within a four-dimensional space. In silico methods revealed promising
results allowing the inference of Biological networks from available genomic and

R. Rizzo and P.J.G. Lisboa (Eds.): CIBB 2010, LNBI 6685, pp. 159–173, 2011.
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post-genomic data. Such networks are usually modeled as directed graphs where
nodes represent elements of interactions, eg. genes, proteins, metabolites, and di-
rected edges represent interaction activities between such network components,
eg. regulation or inhibition. Approaches proposed in literature falls mainly in
the unsupervised category, which are able to extract biological network inter-
actions from experimental data, such as microarray experiments, without any
knowledge about the structure of the network to be inferred. Those methods
can be distinguished in: i) information theory models, which correlate two genes
by means of a correlation coefficient and a threshold, such as ARACNE [1] and
CLR [2] that infer the network structure with a statistical score derived from the
mutual information and a set of pruning heuristics; ii) boolean network mod-
els, which use a binary variable to represent the state of a gene activity and a
directed graph, where edges are represented by boolean functions, to represent
the interaction between genes (eg. REVEAL [3]); iii) differential and difference
equation models, which describe gene expression changes as a function of the ex-
pression level of other genes usually with a set of ordinary differential equations
(ODE) [4]; and iv) Bayesian models, or more generally graphical models, which
make use of Bayes rules and consider gene expressions as random variables [5].
Supervised learning methods have been exploited to reconstruct gene regulatory
networks from gene expression data. The reconstruction of a network is modeled
as a binary classification problem for each pair of genes. A classifier is trained
to recognize the relationships between the activation profiles of gene pairs. The
basic principle consists to use the natural inductive reasoning to predict new reg-
ulations: if a gene g1 having expression profile e(g1) is known to regulate a gene
g2 with expression profile e(g2), then all other couples of genes gx and gy, having
expression profiles similar to e(g1) and e(g2) are likely to interact. Expression
profiles play the role of feature vectors in the machine learning algorithm, while
the output is a binary variable representing whether two genes interact or not.
Similarly, the prediction of protein–protein interaction [6,7] and metabolic net-
works [8] make use of a feature vector built upon the sequence representation of
proteine and metabolites. A large variety of machine learning algorithms have
been proposed in literature and are available as working tools [9]. In the context
of gene regulatory networks a first attempt has been made with Bayesian Net-
works, Linear Regression, Decision Trees, and Support Vector Machines (SVM)
[10]. Among all the Support Vector Machine algorithm have attracted the atten-
tion of the bio-informatics community. SIRENE [11] is currently the state-of-the-
art method for the reconstruction of gene regulatory networks with a Support
Vector Machine algorithm, that have reported promising results in the inference
of new regulatory connection of Escherichia coli genes. Compared to unsuper-
vised methods for gene network inference, supervised methods are potentially
more accurate, but for training they need a complete set of known regulatory
connections. The need to know some regulations is not a serious restriction as
many regulations are progressively discovered. Public regulatory databases are
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continuously upgraded with new discovered interactions and shared among re-
searchers: RegulonDB1, KEGG2, TRRD3, Transfac4, IPA5.

However, the supervised approach raises some open questions. In particular,
although known regulatory connections can safely be assumed to be positive
training examples, obtaining negative examples is not straightforward, because
definite knowledge is typically not available that a given pair of genes do not in-
teract. In fact, the only available information are a partial set of gene regulations,
i.e. positive examples, and unlabeled data which could include both positive and
negative examples. Recently, in the data mining literature some methods capable
of learning a classifier from only positive and unlabeled examples appeared. A
class of approaches does not need labeled negative examples [12]. Such approach
has been adopted in the context of gene regulatory networks by some author of
this paper in a recent paper [13].

In this paper we adopt a method that depends on a starting selection of reli-
able negatives examples [14,15] which is used to iteratively refine the prediction
of a binary classifier. The heuristic adopted to build such a starting negative
selection is crucial for the final classification performance. The work stem from
an initial attempt made by some of the authors of this paper [16]. In particu-
lar we introduce an heuristics that could drive the selection of reliable negative
examples by exploiting the over presence of topology motifs in currently known
gene regulatory networks, such as, feed–forward loops, bi–fan clusters, and sin-
gle input modules. Network motifs are small connected subnetworks that a net-
work exhibits in significantly higher occurrences than would be expected for a
random connected network. Recently gathered attention especially in biological
context [17]. To test our approach we considered the known regulatory networks
of Escherichia coli and Saccharomyces cerevisiae (Yeast) and a set of random
microarray experiment artificially generated.

The paper is organized as follows. Section 2 introduces the heuristics to select
negative examples from unlabeled gene interaction networks. Section 3 intro-
duces the research questions aimed at evaluating the performance of the proposed
heuristic and outlines the process followed to answer such questions. Section 4
describes the context where the process is applied, reports and discusses the
results obtained. Finally, Section 5 concludes the paper and outlines directions
for future work.

2 Approach

A gene interaction network can be modeled as a directed graph < G, E > where
G represents the set of genes, i.e. nodes of the graph, and E represents the set
of directed interactions between genes, i.e. edges of the graph. Let P ⊆ E be
1 http://regulondb.ccg.unam.mx
2 http://www.genome.jp/kegg/
3 http://wwwmgs.bionet.nsc.ru/mgs/gnw
4 http://www.gene-regulation.com
5 http://www.ingenuity.com
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the known gene–gene interactions, Q = E − P the unknown regulatory links,
and N = Complement(E) the edges not contained in E. The unknown gene
regulatory connections Q can be inferred by a machine learning scheme trained
with the set of known regulatory connections. Precisely, P is the set of known
positive examples, N is the set of all unknown negative examples and Q is the
set of unknown positive examples. The set N ∪Q is also known as the unlabeled
set.

A binary classifier should be trained with both positive and negative examples
in order to work properly. Anyway, in the context of gene regulatory networks,
it is more likely to have knowledge about positive examples (i.e. two interact-
ing genes) rather than the negative ones (i.e. two genes that do not interact).
Public databases of known regulatory interactions usually report only the first
information. An approach to overcome such an issue with ordinary classifier is
to select, from the unlabeled set N ∪ Q of unknown connections, a sub set of
reliable negative examples S which should be as much as possible composed of
negative examples, i.e. S � N and S ∩ Q � �.

The approach proposed in this paper tries to overcome such a limitation by
exploiting the known topology of the network model in order to limit the presence
of positive examples in the selected set of negatives. In particular, we make use of
the over presence of network motifs such as, feed-forward loops, bi-fan clusters,
and single input modules, to drive the selection of reliable negative examples from
the set of unknown interactions. Knowing the over presence of network motifs
could enhance the task of negative selection, because they can successfully be
used to lower the probability of picking up unknown positives, improving the
classification learning process [16].

Network motifs are small connected subnetworks that a network exhibits in
significantly higher occurrences than would be expected just by chance in a net-
work with the same number of edges [18]. Recently, they have gathered much
attention from the bioinformatics community as a tool to uncover structural pat-
terns of complex biological networks [17]. The analysis of network motifs has led
to interesting results, e.g. in the areas of protein-protein interaction prediction
[19], hierarchical network decomposition [20] and the analysis of temporal gene
expression patterns [21]. An over presence of a network motif means a higher
significance in the functionality of that motif in the system represented by the
examined network.

Finding network motifs is a computationally expensive task. We adopted the
results of 3 nodes subgraphs reported in [22,23], shown in Table 1. Those mo-
tifs have been extracted from the known gene regulatory networks collected in
the following databases: RegulonDB6 for Escherichia coli and YoungLab7 for
Saccharomyces cerevisiae.

For each pattern the frequency in percentage, the p-value and the Z-score are
shown. A positive Z-score means that the network motif is more recurrent than
in a random connected network. A null Z-score means that the motif is recurrent

6 http://regulondb.ccg.unam.mx
7 http://web.wi.mit.edu/young/regulator network
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Table 1. Patterns and motifs with 3 nodes in the gene networks of E. coli and S.
cerevisiae as reported in [22,23]

E. coli S. cerevisiae

Motif Z-score Freq. Z-score Freq.

� �

�

� ��� 20.343 97.467% 16.918 93.82%

� �

�

���� ��� 13.295 0.318% 10.827 0.298%

� �

�

����� ��� 14.401 0.105% 27.202 0.032%

� �

�

�������� ��� 2.058 <0.001% 4.233 <0.001%

� �

�

������� ��� 4.533 0.004% 4.068 <0.001%

as in the random case, while a negative Z-score means a lower recurrence. The
table shows only the most recurrent motifs with a p-value < 0.05 in at least one
organism. The frequency shows which of them appeared more frequently.

We aim to compare three negative selection heuristics that are based on the
known topology of the network. The rationale behind such heuristics is that gene
connected as the most frequent motifs are unlikely to have other connections.
Those connections could then be considered as negative examples. The following
section refines this assertion.

2.1 Candidate Negative Selection Heuristics

Heuristic 0: Random (RANDOM). This is the most straightforward heuristic,
currently adopted in literature [11]. The selected set, SRANDOM , consists of a
random selection without replacement from the unlabeled set Q∪N of a number
of negative examples candidate.

Heuristic 1: Complement of 3 gene Motifs (MOTIF). This heuristic is based on
the assumption that the most recurrent network motif is an important structure
in the system represented by the graph. Let’s call the most recurrent 3 nodes
motifs over represented in a gene regulatory network as: {M (3)

0 , M
(3)
1 , . . . , M

(3)
n }.

If we find in a regulatory network that 3 genes interacts in a way that their graph
representation matches one of those 3 gene motifs M

(3)
i , then, it is unlikely that

they are going to form different interactions because of still unknown connections
between them. Of course such an assumption could be wrong, but, as shown in
the empirical results, the probability that it can occur is low. Thus, we can
assume that all the connections not present in M

(3)
i are negatives examples.

From such an assumption we define the selected set, SMOTIF , as follows: for
each triples of genes, g1, g2, and g3 belonging to the known regulatory network
of an organism, let Tg1,g2,g3 be the sub network composed by those genes. If such
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a sub network matches one of the most recurrent motif, {M (3)
0 , M

(3)
1 , . . . , M

(3)
n },

then the selected set of negative examples, SMOTIF , is populated with the con-
nections of Complement(Tg1,g2,g3).

Heuristic 2: Transitive Closure (TRANS). This heuristic has been introduced
in [16] but not empirically evaluated. It is built over the assumption that a
regulatory network has no or few cycles and that it has a tree like structure.
This leads to an heuristic that selects as candidate negatives those given by the
union of the transitive closure of the known network and its transpose. Figure 1
summarizes such an heuristic as:

STRANS = TC(P ) ∪ Transpose(TC(P )) ∪ Transpose(P )

where TC(P ) is the transitive closure of P , i.e. the graph composed by the same
nodes of P and the set of edges (gi,gj) such that there is a non-null path from gi

to gj in P ; while, Transpose(X) is the graph containing the edges of X reversed.

��� ������ �� 	 
 ��� ����� � ���� ��

� � � �� ������ 
� �� 	


 ������� � � 
� �� 	 
 ������� � � �

Fig. 1. Transitive closure heuristic example [16]

3 Methods

In this section we introduce the research questions we aim at answering and
the methods we followed to pursue such an aim. The main goal is to evaluate,
by means of benchmark experiments, the performance of the proposed negative
selection heuristics and how they can improve the performance of a Support
Vector Machine classifier trained to infer new regulatory connections in synthetic
datasets generated over the known gene regulatory networks of Escherichia Coli
and Saccharomyces cerevisiae.

– RQ1: How does the precision/recall of positives, and the precision/recall of
negatives of the selected set S, vary with the adopted heuristic and with the
percentage of known positives? In particular, this research question aims to
measure the quality of the selected set S built with different heuristics and
when the percentage of known positives varies. A high quality of the selected
set S depends directly on the precision/recall of negatives and inversely on
the precision/recall of positives.
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– RQ2: Which is the performance of a classifier trained with the selected set
S and the set of known positives? Specifically, it investigates whether the
reliable negative selection heuristics, introduced in Section 2.1, improve the
training of a classifier in terms of accuracy of prediction. For such a purpose
an SVM (Support Vector Machine) [24] classifier is used.

The quality measures, the datasets used, and the benchmark process to an-
swer the above mentioned research questions are introduced in the following. To
perform an assessment a gold standard of the regulatory network is necessary.
Simulated regulatory networks are widely used to test gene network inference
algorithms as the complete set of gene–gene interactions is available. The process
to answer both RQ1 and RQ2 consists of the following five steps:

3.1 Random Generation of a Gene–Gene Regulatory Network of G
Genes

We generated simulated data with GeneNetWeaver8, a tool used to gener-
ate in silico benchmarks in the DREAM3 challenge initiative [25,26]. The
GeneNetWeaver tool is able to obtain network topologies of a given size G by
extracting randomly sub-networks from the gene-to-gene interaction network of
Escherichia Coli and Saccharomyces cerevisiae.

We generated for both Escherichia Coli and Saccharomyces cerevisiae ten
random gene interactions networks composed by 10, 50, and 100 number of
genes.

3.2 Generation of Synthetic Microarray Experiments

For each random network of size G, with the GeneNetWeaver tool we generated
steady state levels for the wild-type and the null–mutant knock-down strains for
each gene. This means that for a network of G genes there are G+1 experiments
(wild-type and knock-down of every gene) leading to a feature vector composed of
2×(G+1) attributes. The data corresponds to noisy measurements mRNA levels
which have been normalized such that the maximum value in a given dataset
is one. Auto-regulatory interactions were removed, i.e. no self-interactions are
considered in the networks. As reported in the DREAM3 documentation, the
tool takes great care to generate both network structure and dynamics that are
biologically plausible.

3.3 Random Selection of P Non–self Interactions Which Are
Assumed to be Known

This leads to a set Q of non–self interactions and a set N of all non–interactions,
both assumed to be unknown. The fraction of P with respect to Q is assumed
to vary as: F = |P |

|P∪Q| ∈ {0.1, 0.2, . . . , 1.0}. In a learning scheme, P is the set of

8 http://gnw.sourceforge.net
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labeled, and positive, examples, and Q∪N is the set of unlabeled examples. The
main goal is to select reliable negative examples from Q ∪N in order to train a
classifier with both positive and negative examples. For each network of size G,
this step is repeated among ten random selection of P positives.

3.4 Selection of Candidate Negative Examples

Let SH be the set of potentially negative examples, selected with a negative
selection heuristic, H ∈ {RANDOM, MOTIF, TRANS}, from the unlabeled set
Q ∪ N . To measure the quality of the selected set, and then answer RQ1, we
used the metrics proposed in [16]:

Precision of Negatives(SH) =
|SH ∩ N |

|SH |
Precision of Positives(SH) =

|SH ∩ Q|
|SH |

Recall of Negatives(SH) =
|SH ∩ N |

|N |
Recall of Positives(SH) =

|SH ∩ QF |
|QH |

which in the case of a random selection heuristic becomes:

Precision of Negatives(SRND) =
|N |

|N | + |Q| =
1 − ρ

1 − ρF

Precision of Positives(SRND) =
|Q|

|Q| + |N | =
ρ(1 − F )
1 − ρF

Recall of Negatives(SRND) =
|SRND ∩ N |

|N | =
|SRND|
|Q| + |N |

Recall of Positives(SRND) =
|SRND ∩ Q|

|Q| =
|SRND|
|Q| + |N |

where ρ = |P |+|Q|
|P |+|Q|+|N | is the percentage fraction of positive examples in the

network. It can be noticed that such precision/recall quantities depend only from
ρ, F and the size of Srnd, therefore we consider a random selection heuristic as
reference limit. It is important to specify that a random selection from a set
assumes that each element of the set have the same probability to be chosen.
A new selection heuristic should have a precision/recall of negatives higher and
a precision/recall of positives lower that those exhibited by a random selection
heuristic.

3.5 Cross Validation of Classification Performance.

The validation consists of a ten-fold cross validation and proceeds as follow.
Partition P, Q, and N randomly into ten subsets each of roughly the same
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size (P1, Q1, N1), . . . , (P10, Q10, N10). For each i-th partition a trial is per-
formed with one subset reserved for testing (Pi, Qi, Ni), while the other nine
subsets for building the training set of the classifier. The training set is com-
posed by the set of known positive data, Ptrain =

⋃
k �=i Pk, and the set of

candidate negative examples, SH ∩ ⋃
k �=i Qk ∪ Nk, selected with the heuristic

H ∈ {RANDOM,MOTIF,TRANS}. The i-th trial yields a confusion matrix
where TPi and TNi are, respectively, the number of positives and negatives cor-
rectly predicted by the classifier in the i-th trial; whereas FPi and FNi are, the
number of false positives and false negatives in the i-th trial. The Precision (PRi)
of positives, i.e. Positive Predictive Value, and the Recall of positives (RCi), i.e.
Sensitivity, of the i-th trial are computed as:

PRi =
TPi

TPi + FPi
; RCi =

TPi

TPi + FNi

The average indexes are computed among the ten trials as: PR =
10∑

PRi/10 and

RC =
10∑

RCi/10. To measure the effectiveness of a classifier, and then answer
RQ2, we considered the weighted harmonic mean of precision and recall, i.e.
F-measure, as a measure that combines Precision and Recall:

FM =
2 · PR · RC

PR + RC

The number of observations for a network of size G and for a selection of P
positives is 10 × 10 = 100.

3.6 Learning Scheme

We used the SVM implementation provided by LIBSVM, one of the most popular
available tool [27]. The basic element of an SVM algorithm is a kernel function
K(x1, x2), where x1 and x2 are feature vectors of two objects to be classified.
In our case an object to be classified is a couple of genes, (A,B), represented
with a feature vector composed by the concatenation of e(A) and e(B), i.e.,
(e(A), e(B)) ∈ R

2n, the n-dimensional vectors of expression levels, standardized
to zero mean and unit standard deviation, respectively of gene A and B. The
idea is to construct an optimal hyperplane between two classes, +1 and -1, such
that the distance of the hyperplane to the point closest to it is maximized.
The kernel function implicitly map the original data into some high dimensional
feature space, in which the optimal hyperplane can be found. A couple of genes,
(A, B), classified as +1 means that gene A regulates gene B, instead, classified
as -1 means that gene A does not regulate gene B.

4 Discussion

In this section we discuss the empirical results answering RQ1 and RQ2. Due
to space limitation only the most significant results are shown, the complete
empirical results will be available as supplemental material.



168 L. Cerulo et al.

% P 908070605040302010

1.0

0.8

0.6

0.4

0.2

0.0

MOTIF

RANDOM

TRANS

Heuristic

(a) Precision of Negatives

% P 908070605040302010

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

MOTIF

TRANS

Heuristic

(b) Recall of Negatives

% P 908070605040302010

0.05

0.04

0.03

0.02

0.01

0.00

MOTIF

RANDOM

TRANS

Heuristic

(c) Precision of Positives

% P 908070605040302010

0.30

0.25

0.20

0.15

0.10

0.05

0.00

MOTIF

TRANS

Heuristic

(d) Recall of Positives

Fig. 2. Average Precision and Recall of Negatives/Positives in Escherichia coli 50 gene
simulated networks

The aim of this study is to analyze to what extent the negative selection
heuristics introduced in this paper could improve the performance of a classifier
adopted to predict new gene–gene regulations within an organism. To allow
replicability, raw data are available at the following url:

https://www.scoda.unisannio.it/rawdata/motifs0110.tgz.

4.1 Quality of the Selected Set SH of Negative Examples

Figures 2 and 3 show the results—answering RQ1—in the case of simulated reg-
ulatory network of 50 genes of respectively Escherichia coli and Saccharomyces
cerevisiae. On the x–axis the percentage of known positives is shown, while on
the y–axis the average of Precision or Recall for each heuristic, Complement
of Motif (MOTIF), Transitive Closure (TRANS), and Random (RANDOM), is
shown with a confidence interval of 95%.

Results regarding the other networks, 10 and 100, were omitted as they exhibit
similar behavior and do not depend on the number of gene of the regulatory
network. Moreover Positive and Negative Recall of the RANDOM heuristic is
not reported as it does not depend on the percentage of known positives (see
Section 3.4).

Recall of both negatives and positives increase with the percentage of known
positives. This is because the heuristics relies on an increasing number of known
positives and then are able to infer more negative examples. Each organism
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Fig. 3. Average Precision and Recall of Negatives/Positives in Saccharomyces cere-
visiae 50 gene simulated networks

has a different increasing Recall trend. In Escherichia coli the MOTIF heuristic
exhibits a negative recall that is higher than the negative recall of the TRANS
heuristic. Inversely, the positive recall of MOTIF is lower that the positive recall
of TRANS. The difference at each percentage of known positives is statistical
significative with a p-value < 0.01 obtained with a t-test. In Saccharomyces
cerevisiae the behavior of recall is inverted. Recall of negatives are in absolute
low for both MOTIF and TRANS heuristics. Instead, the value of positive recall
of the MOTIF heuristic is significantly higher that the recall of positives of the
TRANS heuristic.

The trend of precision does not depend on the considered organism. Each
organism exhibit similar precision trends of both positives and negatives. All
considered heuristics exhibit a very high precision of negatives reaching a value
that is very near to 1 at every percentage of known positives. This is because
of unbalanced data, as the number of negatives are much more that the number
of negatives. Instead, the trend of precision of positives depends on the adopted
heuristic: MOTIF and RANDOM have a decreasing trend with the percentage
of known positives, TRANS has an increasing trend between 10% and 50% fol-
lowed by a decreasing trend between 50% and 100%. In Escherichia coli the
RANDOM precision of positives is significantly higher than the MOTIF preci-
sion of positives at every percentage of known positives. Instead, the TRANS
heuristic exhibit a higher precision of positives than both RANDOM and MOTIF
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(b) S. cerevisiae - 10 genes
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Fig. 4. Average F–Measure of an SVM classifier trained with different selection of
negatives

when the percentage of known positives is higher that 30%. In Saccharomyces
cerevisiae the RANDOM precision of positives is significantly higher than both
MOTIF and TRANS precision of positives at every percentage of known posi-
tives. Instead the precision of positives of both MOTIF and TRANS is very low
and does not higher than 0.005.

Such results suggest that the MOTIF heuristic outperforms the other two
heuristics in Escherichia coli. In such an organism, the MOTIF heuristic
exhibits, with respect to RANDOM and TRANS, a high precision and recall
of negatives and a low precision and recall of positives, two requisites for a
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negative selection of good quality. Instead, in Saccharomyces cerevisiae, the
TRANS heuristic exhibits the best behavior, although the recall of negatives
is overall not high.

4.2 Performance of an SVM Classifier Trained with SH

Figure 4 shows the results—answering RQ2—in the case of simulated regulatory
network of 10, 50, and 100 genes of Escherichia coli and Saccharomyces cere-
visiae. On the x–axis the percentage of known positives is shown, while on the
y–axis the average of F–Measure for each heuristic, Complement of Motif (MO-
TIF), Transitive Closure (TRANS), and Random (RANDOM), is shown with a
confidence interval of 95%.

Each heuristic exhibits a similar trend among different organisms and among
different percentage of known positives: for each heuristic the F-Measure in-
creases with the percentage of known positives because of the more quality of
the selected set of negatives. Moreover, while the percentage of known pos-
itives increases, i.e. the percentage of unlabeled examples decreases, the F-
Measure of each heuristic tend to coincide, reaching an almost convergent value
at P = 100%. The reason is that when all examples are labeled there is no need
for an heuristic to select reliable negative examples.

Instead, when the percentage of known positives is low (P < 70%) the per-
formances of both MOTIF and TRANS are significantly higher than RANDOM
(t-test p-value < 0.01). This confirms that selecting reliable negative examples
is crucial to build an efficient classifier to predict new gene regulations.

No significant differences between MOTIF and TRANS can be observed, even
if the quality of the selected negative set is not the same in both organisms. We
suppose that the reason could be the different topology of Escherichia coli and
Saccharomyces cerevisiae gene networks that may compensate different aspects
of the heuristic. Further investigation could clarify such an aspect and the combi-
nation of two or more heuristics could improve the overall quality of the selected
negative set.

5 Conclusion

This paper introduced and examined systematically a number of heuristics to
select negative examples from unlabeled data to learn gene regulatory networks
from expression data. In particular we found that heuristics based on the known
network topology of the gene regulatory network are able to improve the quality
of a training set, and then the performance of a classifier. Such an increment
of the training set quality can be noticed in terms of precision/recall of posi-
tives (false negatives) and precision/recall of negatives (true negatives). We are
aware that results presented in this paper are partial and no general conclusions
can be drawn. Threats to validity can affect the results reported in Section 4. In
particular, our results can be affected by the limitations of the synthetic gene ex-
pressions generation tool. Threats to external validity, concerning the possibility
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to generalize our findings, affect the study although we evaluated the heuristics
on two model organisms, Escherichia coli and Saccharomyces cerevisiae, and on a
statistically significant sample of random regulatory sub networks extracted from
the current known gene regulatory connection of such organisms. Nevertheless,
analyses on further organisms are desirable, as well as the use of different syn-
thetic gene network generation tools and experimental gene expression datasets.
Instead, the study can be replicated as the tools are available for downloading,
as well as all simulated datasets. The benchmark process is detailed in Section 3
and we made raw data available for replication purposes. We believe that the
issues presented in this paper could have an important role in the application of
machine learning algorithms in gene regulatory networks discovery.
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Abstract. Microarray experiments generate a large amount of data
which is used to discover the genetic background of diseases and to know
the characteristics of genes. Clustering the tissue samples according to
their co-expressed behavior and characteristics is an important tool for
partitioning the dataset. Finding the clusters of a given dataset is a dif-
ficult task. This task of clustering is even more difficult when we try to
find the rank of each gene, which is known as Gene Ranking, according to
their abilities to distinguish different classes of samples. In the literature,
many algorithms are available for sample clustering and gene ranking or
selection, separately. A few algorithms are also available for simultaneous
clustering and feature selection. In this article, we have proposed a new
approach for clustering the samples and ranking the genes, simultane-
ously. A novel encoding technique for the chromosomes is proposed for
this purpose and the work is accompleshed using a multi-objective evo-
lutionary technique. Results have been demonstrated for both artificial
and real-life gene expression data sets.

Keywords: Multi-objective Evolutionary Algorithm, Gene Ranking,
Clustering, Gene Expression Data.

1 Introduction

The microarray technology generates the global and simultaneous view of expres-
sion levels for thousands of genes over different time points of different biological
experiments. This is an important tool in the research area of Molecular Biology
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and Bio-Technology [20]. The biological information of a gene is described by the
microarray expression pattern, also called as gene expression data. In microarray
data, each gene corresponds to each row/column and each tissue sample corre-
sponds to each column/row, respectively. Each row or column is identified as
gene or sample expression profile. Each element or the expression in each profile
is represented by a real number which denotes the expression level of a specific
gene under a specific condition. Analysis of such data finds the relationships
among the patterns present in the data, grouping genes/conditions according
to their expression pattern and analysis of characteristics for new genes. This
data analysis has two parts: forming the gene expression matrix from raw data
generated by microarray technology and analysis of these matrices.

Appropriate mining strategies, e.g. clustering [2] and gene selection [3] are
needed for analysis of such information. Clustering of co-expressed genes into
biologically meaningful groups, helps in inferring the biological role of an un-
known gene that is co-expressed with the known gene(s). Clustering is a pro-
cess for organizing the objects from an object set into set of subsets of objects
where the objects of a subset are similar but objects from different subsets are
dissimilar in some ways. The clustering process is sometimes also called the un-
supervised learning process. Clustering helps to partition the input space into
K regions, C1, C2, · · · , CK , on the basis of some similarity/dissimilarity met-
rics, where the value of K may or may not be known previously. One frequently
used such measure is called distance functions (dist(x, y) for x = (x1, x2, · · · , xd)
and y = (y1, y2, · · · , yd)). This distance function mainly depends on the type
of applications where it is used, i.e., in numerical data, categorical data or in
text document. Examples of such kind of useful distance functions are Euclidean
distance, Manhattan distance, Mahalanobis distance, Minkowski Distance, Ham-
ming distance and Maximum norm. One important issue in cluster analysis is
the evaluation of clustering results to find the partitioning that best fit the un-
derlying data. The process of evaluating cluster is known as cluster validity [6].
Several clustering algorithms are proposed in the literature. These algorithms
are divided into different types according to their nature of operation (e.g. Hi-
erarchical, Partitional, Density-Based, Grid-Based, etc).

Another important subject of matter is the gene ranking [4]. Gene Selection is
a combinatorial problem. So, instead of selecting a subset of genes, we can give
the weight or rank depending on the relevance, which is called gene weighting or
gene ranking [16,18,19]. Gene ranking is used because of its simplicity, scalability,
and good empirical success. Most of the gene ranking methods are based on the
wrapper approaches or filter methods. Two well-known heuristic methods for
gene weighting are: a) Gradient descent on the input space [21] and b) AdaBoost
when each model is trained on one feature only [22].

In this article, we have proposed a multi-objective approach for simultane-
ous clustering and gene ranking. To the best of our knowledge, the process of
simultaneous clustering and gene ranking by using multi-objective optimization
is new in this area. The rest of the article is organized as follows: In Section 2,
we present an overview on multi-objective Evolutionary paradigm with different
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concepts of MOO (Multi-objective Optimization). Section 3 presents a detailed
discussion of our proposed algorithm with different components used in the algo-
rithm. Section 4 presents the experimental design methods and results obtained
during the experiments with a small discussion on them. Section 5 concludes the
article and gives some future direction for further improvement of the proposed
method.

2 Multi-objective Optimization

Genetic Algorithms (GAs) are very popular meta-heuristic optimization method
but could not apply directly for multi-objective problems. Traditional GA are
modified to reuse for multi-objective problems by using specialized fitness func-
tions and introducing methods to promote solution diversity. Two general ap-
proaches are available for optimizing multiple objective. The first method is to
combine every objective function into a single composite function (e.g., utility
theory, weighted sum method). The second solution is to move all but one by one
objective to the constraint set, a constraining value must be established for each
of these former objectives. In all cases, the optimization method would return a
single solution rather than a set of solutions that can be examined for trade-offs.
For this reason, decision-makers often prefer a set of good solutions considering
all the multiple objectives.

Most of the real world engineering problems are generally have multiple con-
flicting objectives, e.g., minimize cost, maximize performance, etc.. So, another
solution for solving such multi-objective problem is to determine an entire Pareto
Optimal Solution Set or a representative subset. In the Pareto optimal solu-
tion set, while moving from one solution to another, there is always a certain
amount of sacrifice in some objective(s) to achieve a certain amount of gain in
the other(s).

Consider that we want to optimize k objectives that are non-commensurable
and equally important. Without loss of generality, we consider that all objectives
are of the minimization type.

We also assume that the solution of this problem can be expressed by decision
variable vector {x1, x2, · · · , xn}. The solution space X is generally restricted by
a series of constraints, such as gj(x) = bj for j = 1, · · ·, m and bounds on
the decision variables. A function f :X → Y evaluates the quality of a specific
solution by assigning it an objective vector (y1, y2, · · · , yk) in the objective space
Y. Our aim is to find a vector x∗ that minimizes a given set of k objective
functions y(x∗) = y1(x∗), · · · , yk(x∗).

A formal definition of Pareto optimality from the viewpoint of the minimiza-
tion problem may be given as follows: A decision vector x∗ is called Pareto
optimal if and only if there is no x that dominates x∗, i.e., there is no x such
that ∀i ∈ {1, 2, . . . , k}, yi(x) ≤ yi(x∗) and ∃i ∈ {1, 2, . . . , k}, yi(x) < yi(x∗). In
words, x∗ is Pareto optimal if there exists no feasible vector x which causes a re-
duction on some criterion without a simultaneous increase in at least another. In
general, Pareto optimum usually admits a set of solutions called non-dominated
solutions.
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In multi-objective problem, our aim is to investigate a set of solutions, where
each of which satisfies the objectives at an acceptable level without being dom-
inated by any other solution. A solution is said to be Pareto optimal if it is
not dominated by any other solution in the solution space. The Pareto optimal
solution set in the decision space X is denoted as the (Pareto set) X∗ ⊆ X,
and we will denote its image in objective space as Pareto front Y ∗ = f(X∗) ⊆
Y. With many multi-objective optimization problems, knowledge about this set
helps the decision maker in choosing the best compromise solution. For most
of the multi-objective problems, entire Pareto optimal set identification is prac-
tically almost impossible for its size. For many problems, especially for combi-
natorial optimization problems, proof of solution optimality is computationally
infeasible. Therefore, a practical approach is to investigate a set of solutions or
the best-known Pareto set for multi-objective optimization that represent the
Pareto optimal set as well as possible. Therefore, the goal of the optimization
problem is to find or approximate the Pareto set. The outcome of a MOEA is
considered to be a set of mutually non-dominated solutions also called Pareto
set approximation.

2.1 Non-dominated Sorting Genetic Algorithm-II

For most of the multi-objective problems, entire Pareto optimal set identifica-
tion is practically impossible for its size. Therefore, the goal of the optimization
is to find an approximate Pareto set. The outcome of a Multi-Objective Evolu-
tionary Algorithm (MOEA) is considered to be a set of mutually non-dominated
solutions. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [5], a
popular MOEA method, is used here as the underlying optimization strategy.
Other very popular optimization methods like PAES [1], AMOSA [15]etc can
also be used instead of NSGA-II.

In NSGA-II [5], a random population P0 is created with N chromosome and
known as the initial parent population. According to their non-domination level,
they are sorted and give a rank to each one solution under the population equal
to their non-domination level. At first, they create a child population Qt of the
same size as parent by using selection, crossover and mutation operations. Then
combine the parent and child population and create a population of size Rt and
sort according to their non-domination level. Now the next parent population
Pt+1 is created by selecting the chromosome from Rt one by one according to
their level. But it is not necessary that L1 (the population of level 1) to Li (the
last level of the selected population for Pt+1) be the exact size of the popu-
lation. So, here a crowded comparison method in descending order is included
for selecting population from level Li to choose the best solutions needed to fill
all population slots. This crowded comparison operator is used to introduce the
diversity among the non-dominated solutions (called Diversity Preservation), in
selection phase and also in population reduction phase.
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3 Clustering

Clustering is a process of grouping the objects from an object set into set of
subsets of objects where the objects from a group are similar but objects from
different groups are dissimilar in some ways. The number of groups/clusters and
the size of each groups are different depending on the criterion on which the
clustering process is done. Their is no uniform criterion that group the objects
into same number of clusters or divided into same size or anything else. These
clustering criterion is supplied by the user in such a way that the clustering
result is suite their needs. The clustering is an unsupervised learning process or
unsupervised classification process because, there are no previously known classes
are present and the kind of relation exist between the data are also unknown.

3.1 Cluster Validity Index

Evaluation of the result found from the experiments that best fits the underly-
ing data is one of the most important task in cluster analysis. This process of
evaluation is called the cluster validation. Several cluster validity approaches are
proposed in the literature. There are three main approaches are used to inves-
tigate cluster validity [6]. The first one is called external criteria. That means,
evaluation of the results of a clustering algorithm based on a pre-specified struc-
ture. Next approach is known as internal criteria, where the evaluation of the
results of a clustering algorithm is based the quantities that involve the vectors
of the data set themselves (e.g. proximity matrix). The last approach for clus-
ter validity is said as relative criteria. Here the basic idea is the evaluation of
a clustering structure by comparing it with other clustering schemes, resulting
by the same algorithm but with different parameter values. Cluster analysis or
clustering is a common technique for statistical data analysis, for examples, Data
reduction, hypothesis generation, hypothesis testing, prediction based on groups.
A number of validity indices have been defined and proposed in the literature
([7], [8], [9], [6], [10], [13], [12]). Here we discussed mainly two indices, DB and
XB index [11,10], which we used for our experiments. But one can use other
validity indices like I index [13], Dunn index [12] etc.

XB Index: The Xie-Beni index [10], XB, also called the compactness and
separation validity function, is a representative index in the category of Indices
involving the membership values and the dataset. Consider a fuzzy partition
of the data set X = xj ; j = 1, · · · , n with vi(i = 1, · · · , nc) the centers of each
cluster and uij the membership of data point j to cluster i.

The fuzzy deviation, dij , of xj form cluster i is defined as the distance between
xj and the center of cluster weighted by the fuzzy membership of data point
j belonging to cluster i. Here, we used the crisp version of XB index where
membership values are either 0 or 1.

dij = uij ||xj − vi|| (1)
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Also, for a cluster i, the sum of the squares of deviation of the data point in
X, denoted σi, is called variation of cluster i. The sum of the variations of all
clusters, σ, is called total variation π = (

∑K
i=1 σi).

Also, the separation of the partitions is defined as the minimum distance
between cluster centers, i.e., Dmin = mini,j=1 to K,i�=j ||vi − vj ||.

Then XB index is defined as

XB =
π

(n × Dmin)
(2)

where n is the number of points in the data set. It is clear that small values of
XB are expected for compact and well-separated clusters.

DB Index: In Davies-Bouldin (DB) index [11], the similarity measure Rij be-
tween the clusters Ci and Cj is defined based on a measure of dispersion of a
cluster Ci and a dissimilarity measure between two clusters dij . The Rij is a
non-negative and symmetric. That is, Rij = (si + sj)/dij and value of each s for
each cluster is calculated as si = 1

|Ci|
∑

x∈Ci
||vi − x||.

Then the DB index is defined as

DBn =
1
n

n∑
i=1

Ri (3)

Ri = maxi,j=1 to n,i�=jRij (4)

4 Proposed Technique

We propose a novel approach that simultaneously identify the cluster of each
sample and rank of each feature (gene) according to their participation to cre-
ate clusters of samples. Here we identify the clusters of the samples and rank
the genes, simultaneously. A novel encoding technique is proposed here for the
problem to fit into multi-objective frame work. Since, the Multi-objective Evo-
lutionary Algorithms (MOEA) are known as the global search heuristics pri-
marily used for optimization tasks. We use this process for our simultaneous
optimization.

Here, our aim is to propose a method to simultaneously optimize the fea-
ture ranking and clustering. To optimize the task of finding the cluster and
rank the feature according to their ability to create clusters by maintaining the
competing constraints is an NP-complete problem [17]. Due to this high com-
plexity, researchers are motivated to use various approximation techniques to
generate near optimal solutions. Since, the MOEA is known as the global search
heuristics primarily used for optimization tasks, we use this for our simultaneous
optimization. The NSGA-II(Non-dominated Sorting Genetic Algorithm-II) [5] is
used here as an important MOEA to optimize the chromosomes under popu-
lation. Also it is used as a baseline algorithm to compare with other methods.
NSGA-II is computationally efficient algorithm for implementing our idea but
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one can use other MOEA like PAES [1], AMOSA [15]. Another important point,
the number of cluster is fixed, so the chromosome length is also fixed. Here we
also present the representation and the general framework of MOEA for our
simultaneous clustering and gene ranking task.

The Multi-objective Simultaneous Clustering and Feature Ranking Algorithm
(MOSCFRA) is summarized as follows:

1. Initialize the chromosome under population as represented bellow.
2. Execute the NSGA-II algorithm with some terminating criteria to optimize

the rank as well as cluster center through crossover, mutation, selection,
elitism as described bellow.

3. Choose the appropriate solution from the Pareto set solutions for the
problem.

The description of each component of our proposed technique are given in the
subsequent subsections.

4.1 Chromosome Representation and Initial Population

A gene expression matrix is represented by rows and columns corresponding
to samples (experimental biological conditions) and genes. Consider, a gene ex-
pression matrix D has d genes and s samples. The samples will be partitioned
into K clusters and each cluster has a center which is represented by d dimen-
sions. One solution is represented by one chromosome and each chromosome has
(d + (K × d)) bits to represent rank of each gene and K cluster center with d
dimensions. The first d bit represents the weight of each gene and are used to
encode the rank of the genes. The remaining bits are used for cluster centers. The
one population is composed of several such chromosomes. The initial population
is generated randomly.

4.2 Fitness Computation

Two validity indices, Xie-Beni(XB) [10] and Davis-Bouldin(DB) [11] are used as
two objective functions to validate the generated cluster centers. Both of these
objective functions are of minimization type. Small values of XB are expected
for compact and well-separated clusters.

Another important idea, Weighted Distance Method, is used in our algorithm
for computing the validity index. We give a weight to each gene and rank them
according to their weight. The weight is also used to calculate the distance be-
tween two samples. In our algorithm, we use the Euclidean Distance in weighted
form as the distance measure. The equation of Weighted Euclidean Distance is:

D(x, y) =

√√√√ d∑
l=1

w2
l (xl − yl)2 (5)

For each chromosome, first we assign the sample in each cluster center present
in the chromosome based on nearest center criterion. After assigning the samples,
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we update the cluster centers according to their sample values by taking the
means. The new cluster centers are used to update the chromosome.

4.3 Crossover

In this algorithm, each chromosome in the population has two parts, the gene
weight part and the cluster center part. The Uniform Crossover is used for the
feature part of the chromosome and Single Point Crossover is used in the cluster
center part of the chromosome. In both cases, the same Cp (Crossover Probabil-
ity) value is used.

After crossover, a pair of parent chromosomes generates a pair of offspring
chromosomes. So, the parent population generates the same size of offspring
population. This offspring population is used in the mutation process.

4.4 Mutation

Here, a very small mutation probability (Mp) is used. Each time, if mutation is
possible the actual value of the mutated bit is replaced by a random value. The
range of the random value is between [0,1], since our data sets are normalized.
The same technique is used for both part of the chromosome, i.e., gene weight
and cluster center part.

4.5 Selection, Elitism and Termination

In our method, we use binary tournament selection with crowded and rank com-
parison method [5]. After successful completion of the crossover and mutation
operation of a generation, the child population is combined with the parent pop-
ulation of that generation. From this combined population, the non-dominated
chromosomes are selected and a new population of the same size is created for
the next generation. This property of NSGA-II is called the Elitism. This tech-
nique ensures faster convergence of the process by keeping track of the best
solutions generated so far. The NSGA-II has been executed for a fixed number
of generations. This fixed number is supplied by the user for terminating the
process. After terminating, the process gives a set of non-dominated solutions in
the last generation.

4.6 Final Solution Selection

The final solution from the last non-dominated solution set is selected through
the CP index and the R index. Both indices are described in the next section.
For artificial data, the maximum value of CP index and R index of the solutions
are selected but in case of real life micro-array gene expression cancer data, only
maximum value of CP index is used. Our approach for simultaneous clustering
and gene ranking is unsupervised but the process which is used here for selecting
the best solution from the non-dominated set is supervised process. Rank of each
genes in a chromosome is evaluated from the first d bits. The highest rank is
given to that gene whose weight value is maximum.
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5 Experiments and Results

In this section, we present the experimental design procedure and the results
of the method with small discussion. For this task, two artificial data sets and
two real data sets are used to measure the performance of our proposed method.
Two performance measures, CP Index and R Index, are used for this purpose.
After that, we compare the performance of the proposed method with several
other important methods in this area.

5.1 Experimental Design

Here, we have given the information about the datasets of both real and artificial.
Then, the required steps are given for the preprocessing of data sets.

Artificial Datasets
For our experiments, we create two artificial datasets viz., Arda25 30 3 and
Arda50 75 5. Arda25 30 3 have 25 genes and 30 samples with 3 classes and
Arda50 75 5 have 50 genes and 75 samples with 5 classes. In both the data
sets, the genes are artificially generated so that they have different abilities in
distinguishing the sample clusters.

Real Life Datasets
From several publicly available real life cancer datasets, two bench mark datasets,
viz., Brain tumor and Lung tumor data sets, available at http://algorithmics.mol-
gen.mpg.de/Static/Supplements/CompCancer/datasets.htm, are used for our
experiments. The descriptions and their pre-processing are given here.

Brain tumor: This data set contains 42 tissue samples divided in 5 clusters (prim-
itive neuroectodermal tumours (PNETs) (8 samples), atypical teratoid/rhabdoid
tumours (Rhab) (10 samples), malignant gliomas (Mglio) (10 samples), medul-
loblastomas (MD) (10 samples) and normal tissues (Ncer) (4 samples)). There
are total 1379 genes in the data set. Depending on the maximum variation of
genes across the sample, the numbers of genes are reduced to 100. Therefore,
after pre-processing the data size is 42 × 100.

Lung tumor: Using oligonucleotide microarrays, mRNA expression levels corre-
sponding transcript sequences in 186 lung tumor samples and 17 normal lung
tissues (NL) has been analyzed. The lung tumors included adenocarcinoma (AD)
(139 samples), small-cell lung cancer (SCLC) (6 samples), pulmonary carcinoids
(COID) (20 samples) and squamous cell lung carcinomas (SQ) (21 samples).
The number of genes in the data set is 1543. Here also the same maximum
variations of genes across the samples are used as a preprocessing step. After
pre-processing, the size is reduced to 203 × 100.

Both the artificial and real datasets are normalized along the column. So, the
value of all the data ranges from 0 to 1.
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Parameter Settings
Our experiments are used to measure the quality of our proposed method for
identifying the cluster and rank of genes. To compare with the different methods
along these lines, we therefore performed the experiments with 100 generations.
In each case, twenty trial runs were performed on each expression datasets and
the average of the best solution of each run is given in the result. The number
of clusters parameter is fixed for particular datasets, the number of clusters for
Arda25 30 3 is 3 for instance, and set to 5 for other artificial & real datasets.
The crossover rate is 0.8, mutation rate is 0.01 and population size is 50.

Performance Measures
The performance of the algorithm is measured in terms of both clustering and
gene ranking ability. These are measured in terms of CP index and a newly de-
fined R index. Only for artificial data sets, these indices calculation are possible,
since class label and rank of the features are known. But in the case of real life
data sets, since no rank information is available for the genes, the performance
of clustering ability is calculated based on the CP index only.

Percentage of CP Index (correctly Classified Pairs) has been used to find
the quality of the clustering results. CP index is used to compare a clustering
solution with it actual clustering present in the data set. Say for a gene expression
data set, the true clustering is C based on domain knowledge and c is a clustering
result given by any clustering algorithm. Also assume that, s, d and t be the
same, different and total number of pairs that belong to clusters in C and c,
respectively. The percentage of CP index is defined as:

CP (C, c) =
s + d

t
× 100 (6)

From the above equation, we can say, higher value of CP means better clus-
tering solution given by the algorithm. So, for CP(C,C) = 100%.

To find the quality of the ranking for a solution, a newly defined index, R index
(Rank index) is used. In R index, we compare the generated ranking with true
ranking. For this, we first sort the genes according to their ranks in both true and
generated rankings. Thereafter, for first g genes, g = 1, . . . , d, the intersection
and union of the genes between true set and generated set are calculated and we
divide the number of genes in intersection with that in union.

The plot of the corresponding R index is called the R plot. Since the maximum
value of R index is 1, the R curve of better solution in the R plot will be nearer
to 1.

Competitive Methods
The performance of MOSCFRA is determined by comparing the algorithm with
its single objective counter parts that minimizes the objective function DB × XB
(SOSCFRA DX), only DB (SOSCFRA DB) and only XB (SOSCFRA XB). All
the parameters are exactly same as that of multi-objective method MOSCFRA.
Except these, two partitional clustering methods, viz., K-means clustering, fuzzy
C-means (FCM) clustering, and five hierarchical clustering methods, viz.,
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single linkage (HICSIL), average linkage (HICAL), complete linkage (HICCOL),
centroid linkage (HICCEL), ward linkage (HICWAL) are used.

5.2 Result and Discussion

In table 1 and 2, the average value of the CP index over 20 runs on each artificial
data set and real life gene expression data set are given, respectively. In brackets,
the standard deviation of CP index is also shown. Moreover, higher value of CP
index and lower value of standard deviation in all artificial data sets indicate
that each time MOSCFRA outperforms other algorithms in terms of clustering.

Fig. 1. R plot for the artificial data sets: (above) Arda25 30 3 data, (below)
Arda50 75 5 data
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The values of performance index generated from the other algorithms are
inferior to those generated from MOSCFRA. Because, these methods find cluster
from the data set by considering the same weight of the features which affect the
clustering results. Through this, we can show the significance of the importance
of feature ranking. By comparing all the results generated from all the data sets,
it is clear that MOSCFRA technique gives the best clustering performance for
these data sets.

Since the actual ranks of the features are available for the artificial data
sets and it is absent in case of real data sets, we can compute the R index
as described above only for the two artificial data sets. The Figure 1 shows
the R plot of the R index for the highest CP index of all the runs on each
algorithm (MOSCFRA, SOSCFRA DX, SOSCFRA DB, SOSCFRA XB) for the
two artificial data sets, respectively. Since the other algorithms does not generate
ranks of the features, they are not shown in the figures. From these figures, we
can say that the proposed multiobjective algorithm produces the good ranking
result.

Another important thing is that, when the DB index and XB index are merged
into our single objective counter part, SOSCFRA DX, it gives the same result
as given in the SOSCFRA DB. So, from this result, we can say the DB index
is affecting the goodness of XB index and also DB index is not a good index in
such cases.

Table 1. Experimental Result on Artificial Data Sets

CP index for Artificial Data Sets.
Algorithm Arda25 30 3 Arda50 75 5

MOSCFRA 100.00(±0.000) 86.6036(±3.428)

SOSCFRA DX 31.0345(±0.000) 18.9189(±0.000)
SOSCFRA DB 31.0315(±0.000) 18.9189(±0.000)

SOSCFRA XB 76.5977(±0.925) 84.8649(±0.680)

K-means 96.0115(±9.800) 84.3532(±2.371)

FCM 95.6322(±0.000) 80.5045(±0.388)

HICSIL 35.8621(±0.000) 25.3333(±0.000)

HICCOL 71.7241(±0.000) 81.6577(±0.000)

HICAL 91.7241(±0.000) 81.5495(±0.000)

HICCEL 77.2414(±0.000) 66.8468(±0.000)

HICWAL 91.7241(±0.000) 85.2973(±0.000)

From the brain tumor genes, the most frequently ranked top ten genes that
are responsible for that clustering through our proposed MOSCFRA algorithm
are: S81957 at, D38500 at, K02268 at, X64072 s at, M58297 at, J04132 at, M93
119 at, J04444 at, L36847 at, HG3141-HT3317 f at.

From the lung tumor genes, the most frequently ranked top ten genes that
are responsible for that clustering through our proposed MOSCFRA algorithm
are: 39022 at, 939 at, 32251 at, 33373 at, 37849 at, 40195 at, 32034 at, 40647 at,
33273 f at, 34335 at.
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Table 2. Experimental Result on real-life Data Sets

CP index for Real Life Data Sets.
Algorithm Brain Tumor Lung Tumor

MOSCFRA 82.0209(±8.515) 78.4193(±3.618)

SOSCFRA DX 19.6283(±0.000) 49.4659(±0.000)

SOSCFRA DB 19.6283(±0.000) 49.4659(±0.000)

SOSCFRA XB 81.9698(±0.878) 76.7605(±0.555)

K-means 73.8850(±11.458) 65.5229(±6.531)

FCM 69.1347(±4.047) 60.4251(±4.052)

HICSIL 30.3136(±0.000) 56.5381(±0.000)

HICCOL 44.0186(±0.000) 71.6919(±0.000)

HICAL 30.3136(±0.000) 57.4111(±0.000)

HICCEL 30.3136(±0.000) 57.4111(±0.000)

HICWAL 67.0151(±0.000) 77.1237(±0.000)

6 Conclusion and Future Scope

In this work, we have described a new algorithmic solution for the problem of
simultaneous clustering and gene ranking. Finding the rank corresponding to the
weight is an important task in clustering as well as in the data analysis. In this
work, we address the problem of unsupervised gene ranking and unsupervised
clustering. Here we have used a well-known multiobjective framework (NSGA-II)
for simultaneous clustering and gene ranking of gene expression dataset. A novel
encoding technique is developed for our problem and XB and DB index are used
as optimization criteria which are minimized simultaneously. The performance
is demonstrated on two artificial data sets as well as two real-life data sets.

As a scope of future work, other indices like Dunn [12] or I index [13] can also
be used for studying the improvement of the result instead of XB and DB. The
algorithm can be extended for unknown number of clusters. Also, other impor-
tant multiobjective algorithms can be applied and more statistical comparison
method can be used. Furthermore, choice of objective functions and selection of
final solution from Pareto optimal set need closer look. The authors are working
in these directions.
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Abstract. The definition of tools able to extract knowledge from struc-
tured biological data in order to support scientists research is increas-
ing as shown by the popularity reached in the field of bioinformatics.
In particular we focus our attention on the domain of assisted repro-
duction techniques with particular interest on the field of intracytoplas-
mic sperm injection. In this paper we would provide a multi-relational
learning framework able to discover hidden relationships between entities
involved in this application domain. Our approach is based on a multi-
relational partitional clustering algorithm followed by a multi-relational
rule induction. Furthermore, the obtained rules can be represented in a
easily comprehensible form and can be used as an advisor to the clinicians
during their work in order to help them in determining what knowledge
sources are relevant for a treatment plan.

1 Introduction

Machine learning has become a rapidly developing and increasingly aspect of
many biomedical applications involving clinical information systems and clinical
decision support systems. In the field of assisted reproductive technologies, ICSI
(IntraCytoplasmic Sperm Injection) fertilization is a medically-assisted repro-
duction technique, enabling infertile couples to achieve successful pregnancy. In
this field crucial points are: the analysis of clinical data of the patient, aimed at
adopting an appropriate stimulation protocol to obtain an adequate number of
oocytes, and the selection of the best oocytes to fertilize. The main goal is the
identification of some factors useful to prognostic a pregnancy.

Generally this analysis is manually performed by the clinicians and is based on
the subjective experience. Thus a learning system able to exploit past experiences
to suggest possible modifications to an ICSI treatment plan could be useful to aid
clinicians in making decisions, for example, about the stimulation protocol to be
carried out in order to obtain good quality oocytes. Once the system’s knowledge
base is populated with a sufficient number of past cases, it can be used to explore
and discover interesting relationships among data, thereby achieving a form of
knowledge mining.

In this work we present a multi-relational learning approach able to deal with
clinical data and relevant features extracted from oocyte images.The aim is to
discover new information useful to support the clinicians both in the definition of
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the stimulation protocol for new unseen patients and in the selection of oocytes
from new unseen oocytes. Due to the presence of strong relationships among
different stages of the process, multi-relational learning techniques that are able
to take into account the relationships existing among all the entities involved in
the process seem to be the most suitable approaches in this and similar medi-
cal application domains. The approach consists of a multi-relational clustering,
based on APAM algorithm [1], followed by a multi-relational rule induction. Fur-
thermore, the obtained rules can be represented in a easily comprehensible form
and can be used as an advisor to the clinicians during their work in order to help
them in determining what knowledge sources are relevant for a treatment plan.

In the following the ICSI application domain is presented along with its
features. Then Section 3 and Section 4 present the multi-relational learning
techniques exploited in such domain and the framework for image analysis and
knowledge extraction from data. Finally Section 5 reports the preliminary ex-
perimental results on real data.

2 Problem Description

Infertility is becoming a frequent problem in the last decades and many as-
sisted reproductive techniques have been designed to overcome it. One of these
techniques is the intracytoplasmic sperm injection (ICSI) technique in which a
single sperm is directly injected into an oocyte. After the procedure, the oocyte
is placed into cell culture and checked on the following day for signs of fertiliza-
tion. The fertilized oocyte grows in a laboratory for one to five days, then it is
placed in the woman’s uterus.

Due to ethical and medical reasons a specified number of embryos have to be
selected and hence transferred in woman’s uterus. As a consequence, even the
number of oocytes to fertilize could be under such a restriction and clinicians
prefer to appropriately select the most promising oocytes among all the oocytes
taken from the woman. Fig. 1 shows a complete overview of the procedure.

The oocytes selection is manually done by non-invasive examination based
on simple methods and observation focused on morphology and dynamics of the
oocyte. A set of morphological parameters to be examined are present in medical
literature such as oocyte/cytoplasm dimension, perivitelline space and zona pel-
lucida thickness, first polar body conformation, and more subtle abnormalities
of cytoplasm.

However, these variables are not the unique and independent parameters in-
volved in the process (see Fig. 2). Indeed, in general, before the ICSI procedure,
an hormone stimulation protocol on the female patient, consisting of a set of
pharmacological treatments, is carried out in order to ensure the development
of multiple preovulatory follicles to obtain multiple oocytes to aspire. In this
phase, the couples’ health conditions and characteristics have to be taken into
account as well.

Some works faced the problem of introducing systems to support clinicians in
their work. Some approaches work with low level features extracted from oocyte
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Fig. 1. ICSI procedure under the restriction of oocyte selection

Fig. 2. Entity and relationships involved in the application domain

images to assess their quality, such as [5] that proposes a method to evaluate the
oocyte diameter, [7] that presents an approach to evaluate the quantification
of oocyte cytoplasm morphology or [8] that defines a quantitative evaluation
of birefringence properties of the zona pellucida. Other approaches work with
higher level characteristics such as the clinical data of the patients with the aim
of grasping structural patterns that define the peculiarities of the patient.

Few approaches are presented in literature that work with both these kinds of
information, but they assume that all the information on both features extracted
from the images and the clinical data are available [10,16,9]. Furthermore, they
exploit an attribute-value description of the data thus losing the relationships
existing between oocytes and patients data. Indeed, an important aspect and
commonly neglected by these approaches is that each set of variables, i.e. clinical
patient data and image features cannot be considered as a stand-alone set since



A Multi-relational Learning Framework to Support Biomedical Applications 191

relationships between such sets of data can occur [12]. For example, clinical data
of the patient are related both to the oocyte quality and to the implantation
success rate; the oocyte quality, intended as its maturity, plays a fundamental
role in the embryo development; finally the correct embryo development is crucial
for the successive transfer and implantation success [13,14]. For these reasons,
multi-relational learning techniques seem to be the most suitable approaches in
this application domain.

3 Multi-relational Learning Approach

The learning approach we consider to tackle the knowledge extraction task in the
ICSI application domain is based on relational clustering followed by relational
rule induction. The representation language used in this work is Datalog [15], a
first-order logic language. The first-order alphabet consists of a set of constants
C, a set of variables V , a set of function symbols F , and a non-empty set of pred-
icate symbols P . A multi-relational description is made up of a set of predicate
symbols p ∈ P applied to n terms ti, (ti ∈ {C∪V}): p(t1, . . . , tn). Multi-relational
descriptions are said to be ground whenever they do not contain variables. A
Datalog description is a multi-relational description in which only variables and
constants are used as predicate arguments.

3.1 Multi-relational Clustering

Clustering is an unsupervised learning technique used to find a partition of a set
of objects into clusters so that the objects within each cluster are similar to each
other. The similarity between objects can be determined using various distance
measures.

Relational clustering works on relational data (i.e., objects with a first-order
description as representation language) and uses distance measures that are gen-
erally more complex than those used in the case of attribute-value representa-
tions. Indeed, the generic Euclidean distance cannot be applied to relational
representations of the data as they are not represented by a feature vector of a
fixed number of measurements.

Here we use the distance function and the modification of a partitional clus-
tering algorithm, named Approximate Partition Around Medoids (APAM) both
introduced in [1], and here briefly reported.

As to the distance function an adaptation of the Tanimoto metric [2] to the
case of relational descriptions is exploited. Specifically, the Tanimoto metric
adaptation to define the distance between two multi-relational descriptions D1

and D2 is as follows:

dT∩(D1, D2, α) =
|D1| + |D2| − 2s∩(D1, D2, α)
|D1| + |D2| − s∩(D1, D2, α)

,

where |Di| is the number of components (literals) in the multi-relational descrip-
tion Di and the number of literals in common between D1 and D2 is approxi-
mated by:
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s∩(D1, D2, α) =
∑α

i=1 |RD1 ∩RD2i|
α

,

where RD1 = ren(1, D1, C) is a fixed renaming of the multi-relational description
D1, RD2i ∈ ren(α, D1, C) is a renaming of the multi-relational description D2,
C = max(C1, C2) (Ci is the set of constants in Di) and α > 0 is the parameter
governing the approximation. In other words, s∩(D1, D2, α) is the mean of the
number of common literals in D1 and D2 for each of the α renamings of D2.
In this setting a renaming of D, indicated by R(D), is a ground description
obtained by firstly turning constants into variables in D and then applying a
substitution (i.e., a mapping from variables onto a new set of constants) to the
result. The set of renamings S = ren(k, D, C) are generated randomly choosing
k renamings of D onto the set of constants C:

ren(k, D, C) = Si = Si−1 ∪ {R(D){C}} i = 1, . . . , k and S0 = ∅
As the partitional clustering algorithms, the following generic schema is
considered:

1. randomly choose k representatives for clusters;
2. iteratively improve these initial representatives until the change in the ob-

jective function from one iteration to the next drops below a given threshold:
– (a) assign each object to the cluster it “fits best” in the current clustering
– (b) compute new cluster representatives using these new assignments

One of the most well-known and commonly used partitioning method is the k-
medoids clustering algorithm. Traditional k-medoids clustering algorithm seeks
to find k medoids among the objects in the data set minimizing, for a given
clustering solution C, the following objective function:

tightness(C) = 1
n

∑
i=1,...,n d(xi, μi)),

where μi is the medoid of the cluster the object xi belongs to and d(·, ·) is the
distance.

The k-medoids clustering algorithm PAM on which APAM is based starts with
a set of clusters containing the medoids of the complete data set, and greedily
inserts new objects into this set of clusters while minimizing the above objective
function. Then, it tries to improve the previously obtained clustering by explor-
ing all possible replacements of medoids by non-medoids picking the replacement
that enhances the fitness function. If no such fitness improving replacement can
be found, the procedure terminates.

APAM, the approximate relational clustering variant of PAM, uses the following
objective function:

Jtightness(C, α) = 1
n

∑
i=1,...,n dT∩(xi, μi, α).

Similarly to PAM, it starts by randomly selecting k medoids and finding the
first clustering solution C by associating each non-medoid instance to the cluster
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whose medoid is more similar. Then, it iteratively tries to swap a medoid with
a non-medoid object, exploring all possible replacements, in order to minimize
the value of the objective function Jtightness(·, ·). It terminates if no replacement
can be found that leads to a clustering with a better (lower) objective value with
respect to Jtightness(·, ·).

3.2 Multi-relational Rule Induction

Rule induction is a supervised learning technique concerning the extraction of
a set of formal rules from a set of labelled observations. One of the rule in-
duction paradigms able to deal with multi-relational representation language is
the Inductive Logic Programming (ILP) framework [11]. In this setting, given a
background knowledge and a set of labelled (positive and negative) observations
represented as a logical database of facts, the aim is to derive a hypothesised logic
program (set of rules or theory in the following) which entails all the positive
and none of the negative observations. The derivation of the rules is performed
by exploring the lattice-based concepts by means of some operators such as
refinement, least general generalisation and inverse resolution.

In this work we adopted the ILP system INTHELEX [3] that here we briefly
describe, to process the results obtained by the multi-relational clustering tech-
nique. It is a learning system for the induction of theories from positive and
negative observations which focuses the search for refinements by exploiting the
Object Identity bias on the generalization model. It is fully and inherently in-
cremental: this means that, in addition to the possibility of taking as input a
previously generated version of the theory, learning can also start from an empty
theory and from the first available observation; moreover, at any moment the
theory is guaranteed to be correct with respect to all of the observations encoun-
tered thus far.

The system can learn simultaneously various concepts, possibly interrelated,
and is based on a closed loop architecture, i.e. correctness is checked on any new
example and, in case of failure, a revision process is activated on it, in order to re-
store the correctness. The system deals with theories expressed as sets of Datalog
descriptions. It adopts a full memory storage strategy, i.e. it retains all the obser-
vations in order to guarantee correctness of the learned theories on all of them. The
process of theory refinement, as performed by the system, is now briefly summa-
rized. The system exploits a previous theory (if any) and a memory of all the past
(positive and negative) observations that led to the current theory. The new ob-
servations are exploited incrementally to modify incorrect hypotheses according
to a data-driven strategy. In particular, when a positive observation is not cov-
ered, a revision of the theory to restore its completeness is performed as follows:

- replacing a rule in the theory with one of its least general generalizations against
the problematic observation;
- adding a new rule to the theory, obtained by properly turning constants into
variables in the problematic example;
- adding the problematic observation as a positive exception.
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Fig. 3. Schematic representation of the proposed framework

When, on the other hand, a negative observation is covered, the system outputs
a revised theory that restores consistency by performing one of the following
actions:

- adding positive information able to characterize all the past positive observa-
tions (and exclude the problematic one) to the rules that concur to the example
coverage;
- adding negative information to discriminate the problematic observation from
all the past positive ones to rule in the theory that covers the problematic ob-
servation;
- adding the problematic observation as a negative exception.

4 The Framework

The general framework we propose, depicted in Fig. 3, is made up of a module
devoted to image-based features extraction - based on mathematical morphology
- and a module for knowledge extraction from both clinical and image features
data - based on multi-relational learning techniques.

4.1 Image-Based Features Extraction

The features extraction module is oriented to extract some relevant morpho-
structural features from oocyte images, such as the measures of oocyte and
cytoplasm diameters. This can be addressed as an image segmentation problem.
Since we are interested in extracting the shape of the oocyte from the image, we
employ a segmentation method better suited for shape analysis, that is mainly
based on mathematical morphology [6].

Basic concept of mathematical morphology is the structuring element: given
a two-dimensional binary image X ⊂ Z2, a structuring element is a particular
set B ⊂ Z2, that gets translated over X and whose relations with X are studied
at each location. In the following, we denote Bx the translation of B by x:
Bx = {b + x | b ∈ B}.

The basic operations of mathematical morphology are dilation and erosion.
The dilation of an image X ⊂ Z2 by a structuring element B, denoted by ⊕, is
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(a) (b) (c) (d)

Fig. 4. Preprocessing of an oocyte image: (a) Original. (b) Edge. (c) Binary. (d) After
killing borders.

the set of points x ∈ Z2 such that the translation of B by x has a non-empty
intersection with set X : X ⊕B = {x ∈ Z2 | X ∩Bx �= 0}. The erosion of X by a
structuring element B, denoted by 	, is the set of points x ∈ Z2 such that the
translation of B by x is included in X : X 	 B = {x ∈ Z2 | Bx ⊆ X}.

From the erosion and dilation operators, two fundamental morphological op-
erations can be derived as follows: the opening of X by B, denoted by ◦, is the
union of all the translations of the structuring element that fit inside the image
X , i.e. X ◦ B =

⋃{Bx | Bx ⊂ X} = ((X 	 B) ⊕ B). The dual operation of the
opening is the closing, denoted by •, which is defined as: X •B = ((X ⊕B)	B).

On such operators we designed a procedure able to extract the region contain-
ing the oocyte, and its diameter, taking out elements which are not of interest
(e.g. the holding/injection pipettes, that are visible in many images), along with
a good approximation of the cytoplasm diameter. Specifically, the proposed pro-
cedure works as follows.

Preprocessing. The preprocessing consists of finding edges in the image, by
means of Sobel operator [4], and successively binarize the result (see Fig. 4). After
the binarization, elements that are not of interest surrounding the image borders,
such as the holding pipette and the injection pipette, have to be taken out. This
can be done by firstly selecting a point p in the region of the border and, starting
form it, by finding the connected components1. This step uses an extraction of
connected components algorithm [4] based on dilation and intersection of the set
of pixels of the binary image.

Oocyte region detection. After preprocessing, the binary image shows seg-
ments of high contrast that do not quite delineate the outline of the object
of interest (Fig. 4d). Indeed gaps in the segments surrounding the object are
evident. These gaps will disappear as soon as the image is dilated twice using
circular structuring elements.

The dilated image shows the outline of the object quite nicely, but there are
still holes in the interior of the object. The filling of these holes is performed
by starting from a point p in the region to fill and iteratively dilating it and
intersecting the resulting dilation with the complement of the image to fill [4].

1 Two pixels are connected in S ⊆ A if there exists a path between them made up of
pixels belonging to S. The set of pixels connected to the pixel p ∈ S is known as
connected component of S.
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(a) (b) (c) (d)

Fig. 5. Oocyte region detection. (a) Detected region (b) Oocyte Diameter (c) Oocyte
region extraction (d) Cytoplasm detection

Finally, in order to make the segmented object look natural, the corresponding
region is smoothed by an opening-closing operation with a circular structuring
element.

Now, by subtracting the obtained image from the original one, the region of
the oocyte on a black-background is achieved (see Fig. 5a).

Finally, in order to obtain the smallest rectangle that contains every point of
the object, the center of mass of the oocyte region is calculated and, starting from
it, the 4-directional Euclidean distances, until a pixel background is encountered,
are computed (Fig. 5b). The mean of these values represents the diameter of the
oocyte region and the minimum and maximum x and y coordinates of the 4-
directional Euclidean distances are the starting points from which to extract the
bounding rectangular region containing the oocyte (Fig. 5c).

Cytoplasm region detection. As according to medical literature the cyto-
plasm dimension is about the 66% of the oocyte dimension [17], this value can
be used to approximate the cytoplasm diameter. A more accurate measure of the
diameter of the cytoplasm has been obtained by considering that the shape of
the cytoplasm can be approximated by a circumference. To this aim the Hough
transform is applied to the binary image so as to detect the best circle fitting
the shape of the oocyte cytoplasm. This has been done by searching for circles
of radius r, varying from (OD/2 − δ) to (OD/2 + δ), where δ has been chosen
equal the 10% of the oocyte dimension OD. The resulting cytoplasm detection
is shown in Fig. 5d.

4.2 Knowledge Extraction

The knowledge extraction step involves the representation of both clinical and
image-based data, extracted from oocyte images, and the application of the
multi-relational learning approach to build a model able to solve the issues con-
cerning the identification of similarities among situations such as stimulation
protocols under specific patients’health conditions and, hence, the predictivity
of the goodness of the oocytes to choose as the most promising for the specific
task of fertilization.

As to the data representation, the general information on a patient and the
clinical data about the couple diseases, before the ICSI procedure starts, is fol-
lowed by the data describing the ovarian stimulation protocol and by the clinical
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data of the patient observed after the therapeutic plan has been taken place. Suc-
cessively, the data about the oocyte aspiration phase are introduced. For each
patient a set of n (a value varying form one patient to another) oocytes is ob-
tained and each oocyte is described according to the own features extracted from
the images. Hence, once the images are elaborated, the information extracted
along with the clinical data are represented in a multi-relational description lan-
guage as reported in Table 1: for each entity involved in the domain, i.e. patient,
ovaric stimulation protocol, hormone pharmacological treatment, oocyte aspired
and oocyte components, a set of descriptive attributes are reported along with
the existing relationships (italic font in the table).

As to the knowledge extraction phase, we apply two submodules devoted to
specific tasks to solve. The first one concerns the application of clustering tech-
niques to identify similarities among patients. Indeed, the aggregation of patients
that show a similar behavior could be useful to better understand the conditions
under which a pregnancy could be obtained. Once the clustering has been taken
place, for each cluster a set of rules are inducted, able to identify relationships be-
tween stimulation protocol and health conditions or between number and quality
of oocytes obtained. Thus the model can support the clinicians in the stimula-
tion protocol definition for new unseen patients that show a similarity degree
with a cluster. On the other hand, the induction mechanism would infer a set
of rules to automatically classify unseen oocytes for similar patients in order to
support oocyte selection.

Due to the complexity of data in our application domain, the multi-relational
techniques previously presented were exploited. In particular, we use (APAM) [1]
as it is very robust with respect to the existence of outliers (i.e., data points
that are very far away from the rest of the data points). This is a fundamental
characteristic for our application domain as clinicians can adopt very different
stimulation protocols according to their experience and, more importantly, ac-
cording to the patients’health problems and characteristics. Furthermore, the
APAM algorithm is based on an approximate evaluation of the clustering mem-
bership thus allowing to tackle the uncertainty in the data.

As to concern the inference process, the incremental multi-relational inductive
logic system [3] was exploited as its incremental capability makes it able to learn
a satisfiable model even with few examples and, more importantly, to revise the
learned rules as new examples are provided without restart the learning step
from scratch.

5 Evaluation and Discussion

The overall framework was tested on a preliminary set of data collected by
the Department of Endocrinology and Molecular and Clinical Oncology of the
University Federico II of Naples including clinical data of the patients along with
the corresponding light microscope images of the oocytes. The dataset consisted
of about 50 patients and 200 oocytes images.

The image processing devoted to the extraction of morpho-structural features
from the oocyte images was able to correctly extract the measures of the oocyte
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Table 1. Attributes and Relations (italic font) used to describe the entities (patient,
protocol, hormone, oocyte, component) involved in the application domain

Predicate Domain

age(patient,val) val: integer

bmi(patient,val) val: real

basal FSH(patient, val) val: real

basal LH(patient, val) val: real

male infertility(patient,inf) inf: none, oligospermia, azoospermia, teratospermia

female infertility(patient,inf) inf: tubaric,thyroid,prolactin,uterine,endometrial

stimulation protocol(patient,IP) IP: nominal (performed protocol identification)

hormone stimulation(IP, h) h: agoGnRH, antagoGnRH,rFH,rLH,HMG, uFSH

dose(h,val) val: real (provided dose)

timing(h,val) val: real (duration of the stimulation type)

duration of stimulation(IP,val) val: real (duration of the stimulation protocol)

estradiol level(IP,val) val: real (estradiol level at the HCG injection day)

HCG dose(IP,val) val: real

aspiration timing(IP,val) val: real (HCG injection to oocyte aspiration)

part of(patient,oocyte id) oocyte id: nominal (oocyte identification)

dimension(oocyte id, val) val: real (µm)

part of(oocyte id, component) cytoplasm

dimension(component, val) val: real (µm)

and cytoplasm diameters in the 90% of the cases with a good approximation
with respect to the real diameters manually extracted. This is a good result if
we consider that the available images are affected by some noise and low contrast,
which make quite difficult the detection of the oocyte. Indeed, just in few cases
the method failed to extract correctly the oocyte region, due to the poor quality
of the original images. An example of problematic image is given in Fig. 6a
where a very low contrast between the oocyte and the background is present,
leading to a poor segmentation result, as shown in Fig. 6c. In all other cases,
the features extraction step worked quite well, providing a good approximation
of the oocyte radius. Indeed, in cases when the procedure correctly was able to
extract the oocyte dimension, the standard deviation of the difference between
the measured and the real diameter was about 11 μm, i.e. it represents the 0.06%
of the real measure.

Oocyte region identification is a very crucial step of the proposed approach
since it affects the successive measurements of the oocyte and cytoplasm diame-
ters. For this reason, an automatic evaluation method able to identify such cases
has been introduced. It is based on the definition of a threshold value for the
oocyte diameter size taken from medical literature. Indeed, it is known that for
a good quality oocyte the diameter can range in the interval [115μm− 165μm].
Thus, a value greater/smaller than this threshold indicates that the procedure
has failed the detection goal. At this moment, the cytoplasm region detection
step based on the Hough transform is always able to detect the cytoplasm region
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(a) (b) (c)

Fig. 6. (a) A problematic image (b) after the pre-processing step and (c) the final
oocyte region detection result

but with a major effort in computational time since it works with no a priori
knowledge on the oocyte dimension.

As to concern the application of the multi-relational techniques, the experi-
mental outcomes revealed some interesting features correlating health conditions
to the stimulation protocol, that could confirm the medical literature. In partic-
ular the clustering was setted so to generate two clusters in order to differentiate
good from not good practice.

The data aggregation step results in a first clustering joining couples charac-
terized by few female infertility conditions and many and severe male infertility
ones. For such couples mainly long stimulation protocol was carried out result-
ing in a production of a mean of 6 oocytes for patient, then this can be labelled
as protocol stimulation practice in order to obtain a greater number of oocytes.
This cluster characterization was confirmed by the rule induction step that ex-
actly was able to grasp the concept by inferring rules such the ones reported in
Fig. 7. Specifically Rule 1 and Rule 3, say that couples with some female in-
fertility factors and severe male infertility factors, for which the patients were
subjected to a long stimulation protocol with respect to the other patients, a
great number of oocytes was obtained. Furthermore, this rules give further infor-
mation characterizing the obtained oocytes, i.e. that in such conditions almost
all of them have medium oocyte/cytoplasm dimension.

On the other hand, the other cluster result aggregated couples characterized
by many female infertility conditions and male infertility conditions of different
seriousness. For such couples prevalently short stimulation protocols were carried
out and a lesser number of oocytes were obtained (3 in average). This can be
labelled as protocol stimulation practice in order to obtain a lesser number of
oocytes. Even in this case, the rule induction phase was able to learn the concept
as reported in Fig. 7, Rule 2. It is worth to note the human understandability of
the learning rules as shown in the interpretation reported in Fig. 7 for Rule 2.
Hence, the rules reported in Fig. 7 can be exploited as a classifier on new unseen
patients and a validation on the fly of obtained rules is planned to be performed
as soon as new available data will be available.

An in deep analysis of the oocytes quality in the clustered data was performed
according to the further information provided by the clinicians about the oocyte
fertilization and growing. This analysis revealed that most of the data about
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Fig. 7. Sample learned rules

oocytes in the first cluster concern poor quality oocytes as they do not grown
in the following days after fertilization or they present an high fragmentation
rate (> 10) at the embryo stage (fragmentation is a process where portions of
the embryo’s cells have broken off and are separate from the nucleated portion
of the cell. According to the medical literature, little or no fragmentation are
preferable as embryos with more than 25% fragmentation have a low implan-
tation potential). On the contrary, the data in the second cluster regard good
quality oocytes that in almost all of case grows in embryos and with a low rate
of fragmentation (≤ 10) at embryo stage.

This preliminary experiments showed that multi-relational techniques could
be able to grasp hidden relationships in data. Better results could be obtained
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by extending and considering the set of clinical data with more parameters in
both the stimulation protocol and in the definition of health conditions, and by
extending the image processing module in order to extract more features from
the oocyte images and from other images that follow the oocyte development
after fertilization, i.e. zygote and embryo images.

6 Conclusion and Future Work

In this paper a tool to support bio-medical applications is presented. The existing
approaches work at different level according to the data starting point, i.e. images
or clinical data. The proposed framework involves both data with the aim of put
together the automatically extracted morpho-structural data of the image and
the clinical data with the aim of further elaboration steps devoted to discovery
relationships among data.

Future work will concern the extension of the clinical data by considering
more parameters in both the stimulation protocol and in the definition of health
conditions, and the extension of the image processing module in order to extract
more features from the cell images. Finally, an exhaustive experimental phase is
planned to be carried out.
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Abstract. The detection of diseases often can be formalized as a deci-
sion problem that typically has to be solved merging uncertain informa-
tion; diagnostic tools, intended to aid the physician in interpreting the
data, besides attaining the best possible correct classification rate, should
furnish some insight into how the problem has been decided. Fuzzy logic
is a well known successful attempt to automatize the human capability
to reason with imperfect information; fuzzy systems are rule-based so
that they can easily provide motivations for their decisions, after having
verified some additional conditions.

In this paper we describe a six-steps data driven methodology to auto-
matically build fuzzy systems with a user defined number of rules; almost
each step can be approached using several strategies and we thus describe
an implementation of the proposed solution. Then, we test our systems
on a well known and widely used data set of features of images of breast
masses and, having the number of rules varying, we show results both in
terms of correct classification rates and in terms of systems’ confidence
in the obtained decisions. Finally, we select the number of rules that
produces the most interpretable and trustworthy system; such a system
is described in details and tested.

1 Introduction

To increase the change of successful treatments, early detection of almost any dis-
ease is a key factor and the detection can be often formulated as a binary decision
making problem; uncertainty in form of information incompleteness, imprecise-
ness, fragmentariness, not fully reliability, vagueness and contradictoriness often
affects these problems [7] so that the ultimate diagnosis can be difficult to ob-
tain even for a medical expert. As a consequence, many computerized diagnostic
tools intended to aid the physician in interpreting the data have been developed
in the past few decades.
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It is widely accepted that a diagnostic tool should possess three characteris-
tics [4]; first, it must attain the best possible performance in terms of correct
classification rate (CR) while it would be desirable the system not only provides
a diagnosis but also a numerical value (the confidence χ) representing the de-
gree to which the system is confident in the solution. It would be also useful
if the physician is not faced with a black box that simply outputs answers but
the system should provide some insight into how the solution has been derived
(interpretability). These requirements are often in contrast. Diagnostic tools,
however, typically have unequal classification error costs so that straight CR
cannot be assumed as a careful measure of the goodness of the classifier; a Re-
ceiver Operating Characteristic (ROC) graph [3] has been showed to be a more
accurate technique for selecting classifiers based on their performance. We guess
that also χ can be used for selecting classifier; in facts, a good classifier should
be highly confident with correctly classified examples while it should be doubtful
with misclassified data points.

Fuzzy logic (a precise logic of imprecision and approximate reasoning [16]) is
an attempt at the formalization and mechanization of two remarkable human
capabilities: the capability to converse, reason, and make rational decisions in
an environment of imperfect information, and the capability to perform a wide
variety of physical and mental tasks without any measurement and any compu-
tation [16]. Fuzzy logic is a multi-valued logic based on fuzzy set theory [15];
a fuzzy set is a set whose elements have a continuum of grades of membership
described using membership functions.

A Fuzzy Inference System (FIS) is a system that (tries to) solve a (typically
complex and nonlinear) problem by utilizing fuzzy logic methodologies and it is
composed (see figure 1) of a fuzzifier (which translates real-valued inputs into
fuzzy values), of an inference engine (that applies a fuzzy reasoning mechanism
to obtain a fuzzy output), of a defuzzifier (to translate this latter output into
a crisp value), and of a knowledge base (containing both rules and membership
functions).

Fig. 1. The basic components of a fuzzy inference system



Data Driven Generation of Fuzzy Systems 205

The inference process is performed by the engine using the rules contained in
the rule base, each rule being in the form:

if antecedent then consequent

where the antecedent is a fuzzy-logic expression composed of one or more simple
fuzzy expressions connected by fuzzy operators (the fuzzy equivalent of the clas-
sical and, or and not), and the consequent is an expression that assigns fuzzy
values to the output variables (Mamdani systems [8]), i.e.:

if service is good then tip is average

Differently, in Takagi-Sugeno(TS) systems [11], the consequent expresses out-
put variables as a function that maps the input space into the output space, for
example:

if service is good then tip = f(service)

where f (typically) is a first order linear function that becomes a constant in
zero-order TS systems.

Fuzzy modeling is the task of identifying the parameters of a FIS so that a
desired behavior is attained. When the available knowledge is complete and the
problem space is not very large the system can be constructed directly (knowledge
driven approach) using knowledge elicited from human experts. Alternatively,
an emerging solution is represented by data driven fuzzy modeling, that is being
more and more applied in a wide variety of fields even if the rule base generated
automatically from data may not be fully interpretable especially because of
redundancy in the rules and in the fuzzy sets. Three conditions can be defined [5]
to obtain an interpretable fuzzy model: (i) the fuzzy partition must be readable
(the fuzzy sets can be interpreted as linguistic labels), (ii) the set of rules must
be as small as possible, and (iii) the if-part of the rules should be derived from
a subset of independent variables rather than from the full set.

In this work we describe a methodology to automatically extract the knowl-
edge base and we show some of the results obtained with reference to a well
known and widely used data set of features of images of breast masses. In our
approach, the number of rules selected is user-defined and the optimal number
of rules for the dataset under test has been defined by exploiting not only the
correct classification rate but also a confidence based criterion with the final
aim of obtaining an highly understandable system with an interesting overall
performance.

The paper is organized as follows. Some relevant related approaches available
in the literature are reviewed in section 2 while the proposed method is described
in section 3. Experimental conditions and results are discussed in section 4,
conclusions and open problems being the concerns of section 5.
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2 Related Works

The method proposed in [10] to generate TS fuzzy models firstly assumes that
fuzzy sets are described by Gaussian membership functions for which centers
and widths have to be estimated; the rules are then generated iteratively until a
user defined maximum number of rules (Rmax) is reached or a performance index
(usually MSE) is achieved. The fuzzy antecedents of the first rule are evaluated
as the mean and the standard deviation of training data while the consequent
is evaluated using least squares techniques; rules are iteratively added selecting
as center the vector with the worse error (some conditions are introduced to
exclude the change of an outlier data point to be considered as a new rule’s
center). Parameters are also tuned using an hybrid learning algorithm. Even
if the presented results show the goodness of the method for problems with a
low number of independent variables, the antecedent of each rule is based on the
whole set of variables so making the obtained fuzzy model not really interpretable
when problems with many independent variables are considered [5].

In [4], 11 feature selection methods and 3 fuzzy modeling methods are com-
bined and tested using two well known medical binary datasets (namely the
Wisconsin breast cancer data [14] and the PIMA Indians diabetes data, both
available at UCI Repository) and an industrial dataset (welding flaw data). Re-
sults for a single run of a stratified fivefold cross validation are presented in terms
of average accuracy, also highlighting the top five combinations. Then, only for
the best combination, the results are also reported in terms of area under the
ROC curve, sensitivity and specificity (among others parameters). With refer-
ence to the WBCD, the best average accuracy obtained is 97.17% using three
variables (x28, x21, x22); no details are given for the rules in the first rank system
while, for the second rank, we have that for each variable (the same as the first
rank system) 5 membership functions have been used and 250 rules have been
generated so deriving a not fully understandable system.

Since in rule based systems built starting from numerical data redundancy
often exists in form of redundant rules and similar fuzzy sets generating unnec-
essary structural complexity and decreasing the interpretability of the system,
in [1] a simplification method is proposed after rules’ extraction (by means of
fuzzy clustering associated with a fuzzy partition validity index) and parame-
ters’ estimation (by means of a gradient descent algorithm). Results are shown
with reference to function approximation, dynamical system identification and
mechanical property prediction for hot rolled steels. No result are reported for
problems with an high number of variables.

Hierarchical TS fuzzy systems have the advantage that both the number of
rules and the number of fuzzy operations involved can be reduced significantly
when compared with those requested by single level systems. An automatic way
of evolving hierarchical TS fuzzy system using probabilistic incremental program
evolution is the concern of [2]; interesting results are shown for some non lin-
ear system identification problems (Makey-Glass chaotic time series prediction
problem, and the Iris and Wine classification problems).
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In [13] it is presented a fuzzy rule based decision support systems for the diag-
nosis of coronary artery disease (CAD) automatically generated from an initial
annotated dataset, by means of a four stage methodology. A set of crisp rules
(obtained from a postpruned induction tree based on the well known C4.5 algo-
rithm) are fuzzified using two sigmoidal membership functions (a decreasing one
expressing the linguistic term LOW and an increasing one expressing HIGH ).
Rules are then weighted using a likelihood ratio and parameters are optimized
using the healed topographical multilevel single linkage algorithm. The reported
results clarify that fuzzification and optimization significantly improve the per-
formance of the pruned tree. No information is shown on the obtained rules, so
that the overall interpretability of the obtained system cannot be judged.

Genetic algorithms are used in [9] to produce fuzzy systems for an older version
of WBCD (444 benign cases and 239 malignant cases, 9 variables) using a fitness
function that tries to combine classification performance, the interpretability of
the system and a term adding pressure towards systems with low quadratic error.
For each variable there are two orthogonal trapezoidal membership functions and
the number of rules is assumed to be a user-configurable parameter (limited to
be between 1 and 5). After 120 evolutionary runs, the best system has 3 rules
for benign cases (one of them is found to be never triggered by any of the input
case) and shows a CR = 98% on the whole data set. Cross validation has been
also performed but the choice of learning-set and test-set is performed anew at
the outset of every evolutionary run, so deriving not fully generalizable results.

Last, it is worth citing the three stages generic methodology (crisp rules ex-
traction, fuzzification and optimization) proposed in [12] that is able to integrate
alternative techniques in each stage. Specific implementations (using decision
trees for crisp rules extractions and four optimization strategies) are tested on
several well known datasets; on WBCD, the best solution obtains, in a single run
of a ten-fold cross validation, a CR = 95.15. The number of rules used equals
the number of classes, but each rule is not really interpretable since it combines
all the crisp rules of a given class.

3 The Proposed Approach

The main components of the implemented system are sketched in figure 2. First,
the available data are used to extract crisp rules; since in the current imple-
mentation a decision tree is used, each leaf node can be easily translated into a
crisp rule parsing the tree from the root to the leaf itself and assuming the tests
encountered along the path form the conjunctions of the rule’s antecedent, while
the class label of the leaf node is clearly assumed to be the rule consequent (zero
order TS FIS will be so used).

Here, having in mind to implement a general methodology, we do not adopt
any pruning technique, so that we obtain several rules that are likely to over
fit the data; for such a reason, we use a well defined stage (the Selector) that
using some heuristics selects a proper subset of rules for each class (we choose
the same number of rules for each class).
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Fig. 2. The proposed approach

The antecedent of the selected ith rule (in the current implementation it clearly
corresponds to the path path from the root node to a given leaf) we obtain is in
the form of conjunction of conditions:

Ai = (x1iθ1ic1i) ∧ (x2iθ2ic2i) ∧ . . . ∧ (xkiθkicki) (1)

where each xji is the feature used in the node, θji is a standard comparison
operator (<,≤, >,≥) and cji is a crisp threshold.

Depending on the strategy used to extract the rules, each antecedent Ai is
generated with some characteristics. For example, when a decision tree is used,
as in the current implementation, we have that, in an antecedent, the same
feature could appear several times (see figure 3), and, consequently, we have
implemented a Reductor that translates each antecedent Ci in an antecedent
we have named in standard form Ãi: an antecedent is in standard form if each
feature appears at most one time. Given the form of the antecedent (equation
1), and ∀i, we act as follows. We collect the terms that refer to the same feature
and with the same operator; because of the conjunctions among conditions, these
sets can be easily simplified as follows (we assume, without loss of generality and
for the sake of simplicity, that just two conditions share the same feature):

(xmiθmicmi) ∧ (xmiθnicni) → xmi > max(cmi, cni) (2)

if θni ∈ {>,≥}, or

(xmiθmicmi) ∧ (xmiθnicni) → xmi < min(cmi, cni) (3)

if θni ∈ {<,≤}.
After this step we have that the ith condition is already in standard form or

some features appear in two conditions (greater than a threshold and less than
another threshold, i.e. between two thresholds); if this is the case we apply:

(xji > cmi) ∧ (xji < cni) → xmi ∈ [cmi, cni] (4)

if cmi < cni, otherwise we simply delete the rule.
Once rules are expressed with antecedents in standard form, they can be

easily expressed in fuzzy terms; we have chosen to partition the universe of each
feature into three intervals: low, medium and high. Then, each condition for each
antecedent is obviously translated as follows:
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Fig. 3. A decision tree

(xji < cmi) → xji is low (5)
(xji ∈ [cmi, cni]) → xji is medium (6)

(xji > cmi) → xji is high (7)

the consequent being the class associated with the leaf node.
In the last step, membership functions have to be adjusted and tuned; a

plethora of methods for such a task have been proposed, so here it is just worth
to be noted that a back-propagation algorithm is used in the current implemen-
tation.

4 Experimental Results

4.1 The Wisconsin Breast Cancer Dataset

Breast cancer is one of the most common cancer among women; the presence of
a breast mass is an alert sign, but it does not always indicate a malignant cancer.
Fine needle aspiration (FNA) of breast masses is a cost-effective, non-traumatic,
and mostly non-invasive diagnostic test that obtains information needed to eval-
uate malignancy.

The Wisconsin breast cancer diagnosis (WBCD) database [14] is the result
of the efforts made at the University of Wisconsin Hospital for accurately diag-
nosing breast masses based solely on an FNA test. Features computed describe
characteristics of the cell nuclei present in the image, and ten visually assessed
characteristics of an FNA sample considered relevant for diagnosis were identified
(see table 1).

The mean, standard error, and ”worst” or largest (mean of the three largest
values) of these features were computed for each image, resulting in 30 features.
The diagnostics in the WBCD database were furnished by specialists in the field;
the used version of the database consists of 357 benign cases and 212 malignant
cases. Having in mind to obtain highly understandable systems, we decided to
use just the first 10 variables that can be easily estimated simply having a look
at the image.
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Table 1. The variables of the Wisconsin dataset

1 radius mean of distances from center to points on the perimeter
2 texture standard deviation of gray-scale values
3 perimeter
4 area
5 smoothness local variation in radius lengths
6 compactness perimeter2 / (area - 1.0)
7 concavity severity of concave portions of the contour
8 concave points number of concave portions of the contour
9 symmetry
10 fractal dimension ”coastline approximation” - 1

4.2 Experimental Parameters

The proposed approach has been implemented using functions available in the
standard version of the R2007a 64-bit version of MATLAB.

In the current implementation, to extract crisp rules we use a full decision
tree (without pruning) with a Gini’s diversity index as split criterion and a split
minimum factor equal to 1. Given a user defined number of rules R (assumed
to be even), we select, for each class, the R

2 most covering leaf nodes. For each
selected node, we derive a standard if-then rule that is then fuzzified.

The outcoming FIS is finally trained using the well know ANFIS [6] algorithm
with back-propagation and assuming 500 as the maximum number of epochs and
0.1 as the training error goal. For each FIS we compare the defuzzified output
with a threshold τ to classify the sample; the chosen τ is the one that maximizes
the CR on the learning set.

4.3 Numerical Results

To test the system we use a ten-fold cross validation that is repeated 100 times
and we measure the CR on the learning set (LS), on the test set (TS), and on the
full set (FS) for both unadapted FISs (UFIS) and adapted ones (AFIS); averaged
correct classification rates (CR) as the number of rules varies are reported in
table 2.

First, it should be noted that also unadapted FISs show an interesting per-
formance (CR > 90% on the TS). An interesting feature is that, with some
approximation, CR on TS (clearly the most interesting one) increases with the
number of rules for unadapted systems while it decreases for adapted systems.
The best result we obtained is with 4 rules where we have a CR ≈ 93% on the
TS. We also show the average number of variables used (V ) that increases as
the number of rules does.

For each FIS we evaluate the ROC graphs (on the test sets) that are then
vertically averaged [3] to compute the area under the curve (AUC, equivalent to
the probability that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance) as the number of rules varies.
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Table 2. Averaged correct classification rate as the number of rules varies. Last column
shows the average number of variables used.

UFIS AFIS

R LS TS FS LS TS FS V

2 92.01 90.63 91.32 93.15 92.22 92.69 5.21
4 92.14 90.95 91.54 93.48 92.66 93.07 6.23
6 91.77 90.45 91.11 93.22 92.34 92.78 7.19
8 92.12 90.81 91.46 92.62 91.68 92.15 7.70
10 92.19 91.00 91.59 92.22 91.13 91.68 8.10
12 92.27 91.13 91.70 92.09 91.02 91.55 8.26

Table 3. The area under the ROC graph as the number of rules varies

R 2 4 6 8 10 12

AUC 0.965 0.969 0.972 0.970 0.969 0.967

Results (table 3) show that the number of rules does not significantly affects the
AUC.

At each iteration, and for each sample in TS, we define the confidence χ as:

χ =
|D − τ |

α
(8)

D being the defuzzified output of the FIS and α a normalizing factor so that
χ ∈ [0, 1].

Starting from the confusion matrix on the training set of each system, we
measure the cases correctly classified (NTP and NTN ) with χ > 0.7 and the
number of instances incorrectly classified (NFP and NFN ) with χ < 0.3.
Table 4 shows the results we obtained (in percentage) as the number of rules
varies on the test sets. The most trustworthy system (on average, and also in
detecting both false positives cases and true negatives ones) is the system with
just two rules while, for example, a system with six rules is highly confident in
detecting true positives samples.

Table 4. Number of cases (in percentage) with an appropriate χ

R NTP NF P NF N NTN AVG
2 64.16 44.32 51.21 70.92 57.65
4 77.09 34.75 58.54 55.45 56.46
6 81.98 32.08 61.53 31.82 51.85
8 64.78 34.55 49.68 31.85 45.22
10 54.33 37.29 41.25 44.81 44.42
12 50.62 37.35 40.51 46.15 43.66
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4.4 The Selected FIS

The best classification rate is obtained with four rules while, with just two rules,
we have the most trustworthy (on average) system; here we decide to favor both
the interpretability and the overall confidence of the system and so, as a result,
we chose the system with two rules. This system, moreover, shows the best
confidence in detecting true negative and false positive cases; figure 4 shows the
confidences’ distribution obtained on the test sets in the experiments.

Fig. 4. The distribution of the confidences on the test sets in the experiments by the
two rules systems

We then apply our methodology using the full data set and we and obtain the
following two rules:

– Rule 1. If (texture is low) and (area is low) and (concave points is low) then
(Class is Benign)

– Rule 2. If (texture is high) and (perimeter is high) and (smoothness is high)
and (concavity is high) and (concave points is high) then (Class is Malignant)

that use just six variables and at most two linguistic terms (low and high).
Membership functions are then adapted; figure 5 (left) shows the root mean
square errors obtained, showing that the training process converges quickly and
the adapted membership functions are shown in figure 6. The trained system
uses a threshold value τ = 3.038 (benign cases are represented with 2 while
malignant ones with 4), has the ROC curve shown in figure 5 (right), its area
under the curve is 0.972 and the correct classification rate is 93.85 (both on the
full data set).
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Fig. 5. The training error for the selected system (left) and the ROC curve (right)

Fig. 6. Themembership functions of the selected system

5 Conclusions and Future Directions

Data driven methodologies in fuzzy modeling are being applied in a wide variety
of fields even if attention must be paid when the aim is to obtain interpretable
systems. In this paper we describe a six steps general methodology aimed at
producing FISs with an user defined number of rules where each step could be
carried out in several ways. We test an implementation of the proposed method-
ology on a well known data set of features of images of breast masses and, having
the number of rules varying, we show results both in terms of correct classifi-
cation rates and in terms of systems confidence in the obtained decisions. Last,
using the number of rules able to produce the most interpretable and trustworthy
systems, we derive our best system that is described in details.

Concerning our future directions, several questions remain open. First, our
methodology needs to be tested with other data sets to be fully considered
valuable; we are also planning to test different strategies for extracting rules.
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Different techniques to determine the correct thresholds for the FISs (for
example choosing the τ that minimizes the mean square error)are also being
considered. More promisingly, the optimal threshold could be chosen optimizing
an appropriate function that takes into account the unequal classification error
costs.

Finally, it is in our opinion worth probing the possibility of using in parallel
FISs with different numbers of rules; their predictions could be combined using
several strategies based on the confidence showed by each system.
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Abstract. In this paper, we present a new Decision Support System
for Bioinformatics and System Biology issues. Our system is based on
a Knowledge base, representing the expertise about the application do-
main, and a Reasoner. The Reasoner, consulting the Knowledge base and
according to the user’s request, is able to suggest one or more strategies in
order to resolve the selected problem. Moreover, the system can build, at
different abstraction layers, a workflow for the current problem on the ba-
sis of the user’s choices, freeing the user from implementation details and
assisting him in the correct configuration of the algorithms. Two possible
application scenarios will be introduced: the analysis of protein-protein
interaction networks and the inference of gene regulatory networks.

Keywords: Decision Support System, Knowledge Base, Meta Reason-
ing, Workflow Management.

1 Introduction

In recent years, the scientific community has put its focus on bioinformatics
and computational approaches to the analysis of biological data. That because
of the continuous growing amount of high throughput technologies, which have
provided huge quantity of different biological data, like DNA sequence, proteomic
sequences and structures, protein-protein interaction data, gene expression data
and so on.

In this contest, researchers have begun to develop computational techniques
in order to analyse these data, applying well established artificial intelligence
approaches and machine learning algorithms and adapting them to the biolog-
ical evidences. Their purpose is to discover and explain biological phenomena
in silico, rather than in vitro, helping this way the experimentalists in their
activities.

Given a biological issue, there are potentially plenty of different tools that
could be used, none of them providing the best possible results. Just to make a
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quick example, for the identification of the tridimensional structure of a protein
from its amminoacid sequence, there exist more than 70 softwares [1], called
structure predictors, that offer different performances on the basis of the partic-
ular analysed protein. It means there is not just one predictor that always gives
the best result, but each software has its own strengths and weaknesses.

Our work is focused on the aforementioned situation: we, in fact, are develop-
ing a decision support system that can help the experimentalists to choose and
run the proper algorithms and services in order to accomplish a given task. In
Section 6 we will see how our system can be applied in order to handle two pos-
sible scenarios in bioinformatics: analysis of protein-protein interaction networks
and inference of gene regulatory networks.

The goal of the system is twofold:

1. To separate the user from the details of the tools or the on-line services used
in research work in analysis of data.

2. To build a cognitive path that takes the user from raw data to knowledge
and helps him to navigate this path.

The path is based on the knowledge, that is the heuristics and strategies that
can be extracted from bioinformatics papers and experiments representing the
expertise on the application domain.

The basic idea of our system is, then, to provide to the researcher, or experi-
mentalist, not only the tools able to resolve a problem, but also the knowledge
used in order to justify the choice of those specific tools and strategies. This way,
we want to highlight not only the workflow, seen as a simple succession of tasks,
but also what is the conceptual scheme at the basis of that workflow.

From this point of view, our system can be seen as a crossover between classi-
cal decision support systems (DSS) and the most recent workflow management
systems (WFMS).

2 Background

Generally speaking, a decision support system (DSS) [2] is a class of interactive
computer-based systems that support decision-making activities. Its main fea-
tures are the chance to deal with semi-structured problems [3]; the extendibility
and the adaptability to different domains [4]; combination of models or analytical
techniques with data access functions [5].

A typical application of DSS are clinical decision support systems (CDSS) for
medical diagnosis: MYCIN [6] is one of the most famous CDSS, developed in
70s for the diagnosis of bacterial diseases; ONCOCIN [7] is a rule-based expert
system that aims at giving support about the timing and dosing of chemother-
apy; Kon3 [8] is based on a dedicate ontology and rules built upon unstructured
databases of medical records and a set of clinical guidelines, used to get recom-
mendations for care process patient.

In recent years Workflow Management Systems (WFMS) [9] have begun to
give a valuable support to biologists. WFMS provide an accessible way to build
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a pipeline of different services using the most common bioinformatics resources,
such as online databases and application tools. Then these workflows can be be
stored or shared with other users.

Two of the most used WFMS are Taverna [10] and Biowep [11].
Taverna is probably the most known and used WFMS in biological domain.

Taverna is able to automatically integrate tools an databases available both
locally and on the web in order to build workflows of complex tasks; to run the
workflows and to show results in different formats. The system works by means
of a Graphical User Interface (GUI) or a script language.

Biowep allows the user to search and run a predefined set of workflows, already
tested, validated and annotated. These workflows are annotated on the basis of
the application domain, the type of processing, the type of input data and the
type of output format.

As already said, our system can be considered as a merger of DSS an WFMS:
in fact it offers support, as a DSS, in decision making process through a reason-
ing component; on the other hand, it allows to build, edit and run a workflow
of operations that can be seen at different abstraction levels, according to the
complexity of the main request. This kind of workflow is the final output of our
system.

3 System Structure

The layered architecture of the proposed system, shown in Figure 1, is inspired
by its main goal: separate the researcher from the tools in order to let him focus
on the problem. Sometimes researchers do not have a precise idea of the workflow
to use and just want to explore many available options. They are not interested
in the details of the algorithms or in the configuration of the web services: this is
the reason why these objects are buried in the Object layer: the system decides
how to use them in order to accomplish the user’s goal. The components of the
Object layer are not part of the system and can change in time (an algorithm
can be substituted by a more efficient one, a web service can be unavailable) so
that are represented as cloud.

The Object Layer is accessed by the Controller layer that is the system core.
In this layer it is contained the reasoner and the knowledge base of the system:
the former decides which operations to perform on the basis of the available
knowledge and the user’s request. This knowledge is organized by means of an
ontology, that encapsulates all the facts representing single pieces of information.
The ontology allows to connect the tasks and operations with the problems of a
domain (the application domain); and the same tasks with the actual algorithms
and services that implements them.

In particular facts are obtained from bioinformatics papers, experimental pa-
pers and, in case, from domain experts. At present the core of the facts are
extracted from bioinformatics and experimental papers.

The knowledge base also contains a set of rules that describe which are the
conditions that should be satisfied in order to run a specific task or algorithm
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Fig. 1. System Architecture

present in the Object layer: in other words rules code the strategies and heuristics
that the system can provide to the user. As facts, the rules can be extracted
from different sources, right now the core of the rule set is composed of a large
collection of scientific papers.

In the Controller layer there is also the executor module that is the part of the
Controller layer that runs the tools in the Object level according to the input
data. The executor is controlled by the reasoner and updates the knowledge base
with the intermediate results, moreover it will send the final results to the user.

The user looks at the system operation using the GUI and the wrapper that
are in the interface layer. The wrapper is the module that manages the commu-
nication between the executor in the Controller layer and and the GUI that is
the last interface level. The user interacts with the GUI that sends message to
the wrapper, the wrapper formats this messages in the right way for the executor
module, and sends query to the reasoner. This allows to easily change the GUI
without interferences to the other parts of the system.

4 Decision-Making Modules

In order to make the system more efficient and structured, facts and rules of the
KB are organized into a set of decision-making modules.

A decision-making module, from now on simply module, is a collection of
specific facts and rules with common features. We can assign to each module a
well defined scope and purpose, a specific slice of the decision-making process.

For example, we can have modules suited for taking decisions about pre-
processing operations, visualization, clustering and so on that can be used in
different application domain.
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Fig. 2. Meta-Levels Architecture

All the modules are organized in a tree, representing the relationships of
specialization or generalization that exist between modules. Modules can have
one or more children and the parent module is responsible for the activation
of its sub-modules. Each level in the tree represents a different meta-reasoning
level. We define it a meta-reasoning because a parent module makes decision on
the activation of one of its child module, that in turn has the expertise to take
decisions on more specialized activities: so we can say that there is a high level
reasoning whose results is another kind of reasoning at a lower level.

The mechanism of modules activation, also called focusing, is managed by
special rules: when the preconditions of these rules, the IF part, are satisfied,
their action, the THEN part, is to give the focus to a child module. A parent
module activates a child module when it needs specialized knowledge, i.e. more
specific facts and rules, in order to complete its decision-making activity.

When the module ends its job, the focus is automatically returned to the par-
ent module. The tree representation of modules can be converted in a clearer one
using a treemap [12], as in Fig. 2. The treemap allows to immediately visualize
the topology of the tree using a set of nested boxes: the parent nodes “englobe”
their own children nodes.

In the figure is reported also a four step analysis. In order to solve a specific
request, the module A is enabled: at step 1 it call module A.1 to solve a sub-task.
At step 2 the module A.1 complete its reasoning and module A takes the control
back. At step 3 the module A calls module A.2 to solve another sub-task. At
step 4 the module A.2 has not enough knowledge about the sub-task and sends
a sub-request to module A.2.1 to resolve a sub-sub-task.

The treemap visualization can be included into a workflow representation, as
shown in Fig. 3. The decision making modules, in their treemap organization,
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Fig. 3. General Workflow

are in the central part. The horizontal and vertical axis are respectively the
abstraction axis and the time axis. The rectangles that intersects the decision-
making modules at the various abstraction layers are the executed tools and
services, if they are at the bottom layer, or the strategies and heuristics that use
them, if they are at higher abstraction layers. The highest abstraction layer is the
main goal of the running experiment. Since this scheme includes the temporal
dimension, the treemap used for the modules is a bit different from the classic
one. The entire tree structure of the modules is not converted into the treemap
and projected into the workflow, but only the modules activated during the
execution of the experiment are shown.

Module A is the main module, responsible for the supervision of the entire
process. Following the time axis, it gives the focus to Module A.1, which decides,
through its facts and rules, to launch Task A.1 and Task A.2 done by means of
Algo 1 and Algo 2 (for Task A.1), and Algo 3 (for Task A.2). After that, the
focus goes back to Module A that pass it to Module A.2 and so on.

This type of multi-layer workflow representation is the actual output of our
system.

5 Implementation Details

The different parts of the proposed system, see Section 3, have been implemented
using the proper instruments.

The knowledge base and the underlying ontology have been implemented with
Protegé [13], that is one of the largest adopted tool for building an ontology
and populate it with pieces of information that represent the knowledge of the
system.
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Fig. 4. Focus shifting mechanism for Decision-Making modules

As for the Reasoning part of our system, we made it by means of Jess [14],
the Rule Engine for the Java Platform. Using Jess, we were able to implement
the different meta-level reasoners through a set of decision-making modules.

The information belonging to the knowledge base is translated in a set of
facts, while the reasoning on these facts is done by means of a set of rules. The
rules can be combined using logical operators (AND, OR,...). Each rule is in the
form IF precondition on facts is true THEN execute action and is activated
when some constraints on the facts are verified.

Each module is activated, or in other words is given the “focus”, by a parent
module, and the current module can give the focus to other sub-modules. There
can be only an active module at a time, and only the module with the focus can
execute the actions of its activated rules.

This mechanism is managed by a stack, with the active module on the top
and the other modules below, according to the order of the shift of focus. This
way, when a module ends its job, the focus is automatically returned to its direct
parent.

Following the same scheme adopted for the meta-level reasoners described in
Section 4, each module has its own set of facts and rules, and it takes care of
different kind of decisions, according to its complexity level. For example, high
level modules, will have rules to decide what are the main phases to solve a re-
quest, and then will give the focus to lower level modules that will be responsible,
thanks to their facts and rules, to select and suggest a specific strategy, and so
on until the lowest level modules whose job is to choose the proper algorithms
and services that will be actually run. In Figure 4 is shown a sample view of the
decision-making modules and the mechanism of focus shifting described in this
Section.
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6 Application Scenarios

In this Section we present two possible application scenarios. Thanks to the
presence of a knowledge base, the system can be easily extended to handle other
bioinformatics problems, such as protein structure prediction or protein function
prediction, adding the proper expertise in the form of facts and rules.

6.1 PPI Networks

Proteins represent the working molecules of a cell and, as it is well known, they
can provide many biological activities by interacting with other proteins.

Analysis of protein-protein interaction (PPI) in silico is a hot topic in current
bioinformatics researches. A large amounts of PPI data have been identified
by using high throughput proteomic technologies, but only a few of them have
been verified with small scale experiments (in vitro) as real interaction with an
emerging function. At biological pathway level, emerging function is not linked
to a simple pair of proteins, but arises with protein complex, that is a collection
of PPIs.

Protein complexes are implicated as essential components in major biological
mechanisms of a cellular process such as DNA transcription, translation, cell
cycle control, signal transduction, and so on. Nowadays experimentalists can take
advantage of using different online available databases containing a list of PPIs
for each species (DIP [15], MIPS [16], etc..), but each DB uses a proper set of

Fig. 5. PPI Modules
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features. In addiction, there are a lot of strategies to identify protein complexes
(soft-clustering, greedy heuristics, probabilistic approaches, etc..), but each of
them has proper pros and cons. For this reason, our system can help the user
both to choose the best model representing a specific PPI Network and to run a
right technique among available strategies and, if it is necessary, it can combine
more than one model.

More in details, we analyse a scenario where the user requires an extraction
of protein complexes from a file containing a list of PPIs.

As previously said, the proposed system turns on a module of the meta-
reasoning, responsible of this problem: in this scenario, it focuses on the module
Complex Extraction. This module have to analyse the input file to build a pro-
tein network representation and, then, can suggest next operations. Figure 5
shows that this module is able to trigger two modules at lower meta-levels: “pre-
processing module” and “clustering module”. Each of them can be suggested if
almost one of the given conditions, highlighted on the connection line, is satis-
fied. For instance, since both the input file can be modelled as a network without
a scale-free topology and the user has selected the profile “Careful Analysis”,
then the system can activate the rule “propose complex preprocessing”; if the
user accepts suggestion, then the preprocessing module will focus and all the
rules it contains will be runnable.

Figure 6 shows a workflow generated by the proposed system. In this figure
are depicted four abstraction layers: the highest abstraction layer contains the
contest of the required problem; the intermediate abstraction layer shows two
macro-strategies used to solve the required problem; the lower abstraction layer
emphasizes strategies adopted to solve each macro-strategies; the execution layer
reports instances of tools used for implementing strategies at lower abstraction
layer. Obviously, it exists more than a strategy that solves a macro-strategy, and

Fig. 6. PPI sample workflow
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user could use several strategy in cascade. For instance the macro-strategy “PPI
Network Preprocessing” was resolved at lower layer deleting some false positive
Interactions (“Delete FP PPI ”) and adding calculated true negative interactions
(“Add TN PPI ”).

The former substrategy is implemented by Closeness Centrality [17] and Be-
tweenness Centrality [18] algorithms; the latter substrategy is executed through
Defective Cliques [19] algorithm.

6.2 GRN Inference

The biological mechanism that, inside the cells, controls the gene expression, i.e
the activation or suppression of the transcription of genes into mRNA, is gene
regulation [20]. mRNA will then be translated into a protein. Gene regulation is a
very complex biological phenomenon and it is not well understood yet. In system
biology, gene regulation is studied and modelled by means of Gene Regulatory
Networks (GRN): a GRN is a graph whose nodes are biological elements and
edges represent regulatory relationships among them. The elements involved in
gene regulation are genes, Transcription Factors (TFs), Protein Complex, etc...

From a computational point of view, modelling a GRN is a reverse engineer-
ing problem, since from the output of gene regulation, that is gene expression
measured through microarray technology, we want to infer the network, with its
topology and parameters, that provided those outputs.

Inferring a GRN is an ideal application scenario for our system: looking at
the state-of-the-art, in fact, a wide set of algorithms and methods are used
for this purpose [21,22,23]. All of these techniques present pros and cons, and

Fig. 7. GRN Modules
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Fig. 8. GRN Submodules for Preprocessing Module

Fig. 9. GRN sample workflow

differ each other according to the type of input data (microarray, gene sequences,
protein-protein interactions), the applied algorithm, the desired output, the need
of specific data format, the accuracy level of the inferred model, the computa-
tional time and resources. Moreover the process of modelling a GRN often needs
preprocessing steps, like filtering and clustering, and/or postprocessing steps,
like simulation and visualization.

Among the most used methodologies there are static and Dynamic Bayesian
Networks [24,25], Factor Graph [26], Boolean Networks [27], correlation methods
[28], Ordinary Differential Equations (ODE) [29,30].

Following the same mechanism described in the previous SubSection, in Figs.
7 and 8 are shown the decision-making modules for this scenario and some of the
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rules that can shift the focus from one module to another one. It is interesting
to note that “preprocessing module” is responsible for the activation of three
other decision-making modules, that are able to take decision for the filtering,
clustering and preparation of input data. “Microarray” facts represents, in the
knowledge base, the properties of input dataset, that for the scenario of inferring
a GRN is a file of gene-expression values.

Figure 9 shows a possible workflow for the current scenario. The preprocess-
ing of microarray input dataset is done by a filtering, using threshold cut-off,
and then by a clustering algorithm, with K-Means [31]; then the GRN is mod-
elled using a Probabilistic Model, a Dynamic Bayesian Network, and finally the
inferred network is visualized by means of Graph-Viz [32].

7 Conclusions

In this paper we presented a Decision Support System for Bioinformatics and
System Biology experiments. The core of our system is a Knowledge Base,
containing the expertise of the system about the application domain, and a
Reasoner. The Reasoner allows the introduction of a meta-reasoning level for
decision-making process. With this decision-making activity, implemented using
Jess and a set of decision-making modules, the system is able to suggest and
support the user with an advice about the strategies and tools to use in order
to resolve the selected problem. Moreover, the system itself manages the proper
running of all the selected algorithms, building a workflow for the experiment,
assisting the user in the configuration of algorithm’s input parameters, when
necessary.

Focusing on these two main features, i.e. the decision-making process and the
workflow building, our system is an ideal joint between classical decision support
system and more recent workflow management system.
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On the biochemical level [1,2], we may consider a normally differentiated cell
as a network of pathways, and we can interpret recent progress in molecular
oncology [3,4,5,6] as a description of a cancer cell bearing in the order of two
dozen mutated pathways. Potential mutations belonging to the same pathway
are hypothesized as being mutually exclusive. Each pathway might contain 10-20
signaling-molecules. In principle, one of them could be mutated / altered through
gain or loss of function. The conclusion of these considerations is in agreement
with the Vogelstein group’s observation that about 20-40 different alterations
that are present in an individual tumor are fished out of a pool containing about
200-400 potential oncogenes. In our work, signaling-network molecular patholo-
gies move to the front stage. We have primarily considered Breast Cancer (BC),
and a fraction of the G0 -G1 cell cycle transition. The signaling-network to which
this parameter-space analysis makes reference was described in detail in [7]. We
adopted the approach of reconstructing the molecular anatomy of our network
through a Molecular Interaction Map (MIM). We simulated the attainment of
a stationary state in our biochemical network through hundreds of ordinary
differential equations (ODEs). This approach belongs to a subfield of Systems
Biology [8]. The opportunity, even the necessity, for this dynamic simulation
approach is the consequence of the fact that the behavior of a 30-40 molecules
signaling-network is not easily intuitive a priori for the naked-mind. With some
effort the mind of a cancer researcher is however capable of understanding ”a
posteriori” the suggestions coming from the computational approach.

In BC, along the pathway [ErbB-family receptors - PI3K - PTEN - Akt -
GSK3β - APC - β-catenin - TCF/LEF] (PI3K - Akt - β-catenin pathway for
short), ErbB2 is amplified in 20-30% of cases [9], PI3KCA is mutated in ≈ 26%
of cases [10], PTEN is hypo-expressed or inactivated in ≈ 40% of cases [11],
APC is mutated in ≈ 4% of cases, and β-catenin is mutated in ≈ 2% of cases
[10]. As also suggested by the Vogelstein group [5], mutations along a given
pathway tend to be mutually exclusive. During cancer progression, not much
will happen by adding two adjacent or close mutations within the same pathway
to the same cell. At the same time, and as a consequence of the above considera-
tions, the addition of all the mutually exclusive alterations along a given pathway
represents the overall pathway alteration frequency for BC. It would appear that
in BC, the PI3K - Akt - β-catenin pathway is altered (excess of function) in ≈
100% of cases (by summing each of the individual, mutually exclusive mutation
frequencies). It must be pointed out that along a given pathway even the loss of
function of the gene product of a recessive oncogene (for instance PTEN) can
contribute to the excess of function of the overall pathway. Nuclear β-catenin is
a co-transcription factor for the transcription factor TCF/LEF. Cyclin D1 and
c-myc (both transcribed by TCF/LEF) are among the genes that are important
for the G1 - S transition. At one point or another of the pathway, the PI3K -
Akt - β-catenin pathway, is almost always hyper-activated, even in colon cancer
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and in Non Small Cell Lung Cancer (NSCLC) [10] (and very likely also in many
other cancers). Downstream of the ErbB-family of receptors, there is another
pathway which is largely, but not completely, independent of the previous one:
[ErbB-family receptors - Grb2 - Shc - SOS (an exchange factor for KRAS) - GAP
(a GTP-ase for KRAS) - KRAS - BRAF - MEK - ERK - transcription factors
activated by the MAP-kinases] (KRAS - ERK for short). It is tempting to be-
lieve that even this pathway is almost always hyper-activated in BC and in other
cancers. Looking at different tissue types in the COSMIC database [10], KRAS
is very frequently mutated in large intestine cancer (≈32%) and also in NSCLC
(≈16%). Mutation frequency in BC is about 5% (+ 1% of HRAS mutations
and 1% of NRAS mutations). However, in triple negative BC tumors (Estrogen
Receptor-; Progesterone Receptor-; ErbB2-), the combined mutation frequency
of the three RAS is about 40%. RAS mutations probably play a more impor-
tant role in this type of aggressive and poorly responsive BC tumor. A smaller
pathway (one that we explored less extensively) downstream of the ErbB-family
receptors is represented by an activated, mutated, amplified EGFR receptor
which can phosphorylate β-catenin in Y-654 and make it independent from E-
Cadherin, thus making β-catenin able to migrate to the nucleus and co-operate
with the transcription factor TCF/LEF [12]. E-Cadherin is mutated in ≈ 22%
of BC and is then incapable of binding β-catenin [10], even in the absence of
any EGFR stimulation.

The study of molecular-network alterations in cancer, in the presence of onco-
protein mutations and onco-protein inhibitors, is a quite modern strategy of cru-
cial importance, and in order to perform this type of research a computational
approach is essential. Even for intensively explored network regions, parameter
knowledge is often incomplete. To study the degree of tolerance of a network to
parameter uncertainty, becomes a prerequisite task. This was the intent of the
present study, obviously it is a work in progress.

1 Methods

The MIM that was the object of our simulations is shown in Fig. 1. The syn-
tactic rules for drawing our MIM are described in [13], and are briefly reported
in Fig. 1, insert. Table 1SM (Supplementary Material of [7]) shows an An-
notation List of the reference sources of the interactions reconstructed in our
MIM. Corresponding numbers appear in Fig. 1 and in the Annotation List.
Table 2SM of [7] includes a short Glossary. The Glossary not only includes
the 39 molecular species we utilized in our simulations, but it also includes 8
additional molecules that are present in the MIM (white cartouches), which,
however, are not part of the simulation (Axin; TCF/LEF; pre-enhanceosome;
elongation complex RNAPol II; c-myc mRNA; c-myc transcription factors bind-
ing sites, promoter proximal region (P2); c-myc DNA coding region). Our MIM
describes a network downstream of the ErbB-family receptors that is relevant
for BC. Similar networks are also operative in colon cancer, in NSCLC and per-
haps in most tumors. Two major and two minor pathways have been described
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in our MIM (see Introduction). Stationary, temporary equilibrium is assured by
a growth factor (EGF), 10 kinases (ErbB1, ErbB2, ErbB3 counted separately),
14 phosphatases (including GAP), 10 signaling / adaptor proteins, and 4 small
signaling-molecules, for a total of 39 basic molecular species. Following the sug-
gestion of [14,15] we introduced in our simulation a phenomenon of ’piggyback’
binding of SOS and GAP to an activated ErbB receptor in the sub-membrane re-
gion where KRAS is also anchored. This was equivalent to local association rate
increases of about 250 times (Table 3SM of [7]). Table 3SM shows a list of 279
reversible reactions and 110 catalytic reactions, rate-constants included, which
represent the complete set of our dynamic simulations. Table 3SM also reports
the concentrations of the 39 basic species. It is accompanied by the references
source of the data. Some numerical values have been interpolated by taking into
account the constraints imposed by: existing values, molecular anatomy of the
network, indirect evidence at the molecular, cellular and clinical level. Narrow
ranges of the interpolated values were practically imposed by the rest of the net-
work system. The GDP and GTP species, as well as the cytoskeleton-protein,
were considered in large excess (non-consumable).

Fig. 1. A heuristic MIM downstream of [ligand - ErbB-family receptors], which is rel-
evant in BC. Pathways that were taken into consideration include: [PI3K - PTEN -
Akt - GSK3β - APC - β-catenin]; [Grb2 - Shc - SOS (an exchange factor for KRAS)
- GAP (a GTP-ase for KRAS) - KRAS - BRAF - MEK - ERK]. An activated ErbB-
family receptor induces a P-Y654-β-catenin, making it independent of E-Cadherin,
[Cadherin/Catenin adhesive complex]. The small [ErbB-family - PLCγ - P-ase2 -
cytoskeleton-protein] pathway is also shown.
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1.1 Simulations Using ODEs

In our simulations, we started from a situation out of equilibrium. The total
concentration, relative to a given basic species and all its complexes and post-
translational modifications, is initially entirely attributed to the corresponding
free molecule. We bring the reactions to a stationary equilibrium, which causes
redistribution of each total concentration among all its components. We verified
that if we start from different out of equilibrium conditions we can have different
provisional transitory peaks or curves, but then we converge, typically within
a virtual time of 7-10 hours (residual differences in the order of 5%), toward
the same stationary equilibrium, provided that total concentrations and rates
remain unchanged. In this paper we do not provide a detailed analysis, but
when the system is already in a stationary state and we vary only the EGF
concentration, for instance from a physiological EGF concentration (.1 nM) to a
pharmacological EGF concentration (10 nM), a new stationary state is reached
within a virtual time of ≈ 20 minutes. The parameters that are the focus of our
present analysis are the stationary states reached in the presence of variations of
the concentrations of the 34 basic species. To simulate the signaling-network we
considered in this paper, we mathematically formalized the reaction scheme of
Table 3SM of [7], in terms of the reactions’ kinetic laws [16]. The kinetic laws of
a reaction describe the velocity at which the reactants are transformed into the
products of the reaction. More specifically, we assumed that all reactions followed
a mass action kinetic law (a consequence of the IInd law of thermodynamics).
According to this kinetic law, the velocity of the reaction is directly proportional
to the concentration of the reactants multiplied by the reaction rate. As an
example, given the reversible reaction

[A] + [B] ↔ [A-B]

the velocity of the [A-B] formation reaction is:

k1[A][B] - k−1[A-B];

where each [X] indicates the concentration of a given reactant, k1 and k−1 are
forward (association) and backward (dissociation) rates, respectively, of the re-
versible reaction. At equilibrium

◦ k1·[A][B] = k−1·[A-B]
◦ ([A][B])/[A-B] = k−1/k1 = Kd (equilibrium constant K)

We can also have an irreversible catalytic reaction of the type:

[XP-Phosphatase] → [X] + [Phosphatase] + P (P goes into the phosphates
pool)

v = kcat[XP-Phosphatase]

where kcat is a catalytic rate (a turnover number).
In turn, knowledge of the kinetic laws of the reactions has allowed us to

describe the rate of change of each complex concentration by means of an ordi-
nary differential equation in which the velocities of the reactions that produce
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or consume the reactant are algebraically summed. The collection of this type
of differential equations for all 242 complexes + 39 basic species included in
the signaling-network fully describes the dynamic behavior of our biologic sys-
tem. Unfortunately, the non linear nature of the above differential equations has
prevented us from determining the analytical expressions for the system evo-
lution over time. Nevertheless, we have been able to numerically simulate the
system evolution with the help of dedicated software, such as the SimBiology
toolbox of Matlab (http://www.mathworks.com/products/simbiology/?BB=1).
This kind of numerical approach has been pursued by different authors, among
them [2,15,17,18,19,20], and all the other authors whose models are available in
the BioModels Database [21].

1.2 Sensitivity / Robustness of Our Network to Perturbations

We implemented perturbations of the concentrations introduced at the very
beginning of our simulations (see Table 3SM of [7]), concerning 34 consum-
able basic molecular species. EGF, GDP, GTP, PIP3 and cytoskeleton-protein
were not considered. All PLCγ-P can convert to a [cytoskeleton-protein:PLCγ-
P] complex (cytoskeleton-protein was implicitly considered in large excess). We
introduced combinations of 10x and 10/ perturbations in one, or two, or three
or four of the n = 34 consumable total molecular concentrations. Perturbed
species were always not coincident with the perturbing species. Only perturba-
tions on basic species are reported herein, while perturbation effects on modified
species and complexes are not reported. For the moment we have not reported
perturbation of rates either. We examined concentration levels of the 34 basic
molecular species individually, always in the presence of the physiologic .1 nM
EGF concentration. We sorted all of them for one or two combinations of per-
turbations or a random subset of the combinations of three or four perturbing
species, and we examined the effects induced on the (n - 1), or (n - 2), or (n -
3), or (n - 4) remaining species. Because one perturbing species can have effects
on the remaining (n - 1) perturbed species, for the 34 consumable basic species
considered in our case we have 34x33 = 1,122 combinations. In our computa-
tional approach each of the 34 simulations (in terms of perturbing species) gives
information about all the remaining 33 perturbed species. The computing time
on our pc (Dell Optiplex 960, Intel Core 2 Duo processors @3.00 GHz, 4.00GB
of Ram ) was 22x34 seconds, approximately ≡ 12.5 minutes. The computational
time becomes 25 minutes considering both 34x and 34/ perturbations. Consider-
ing again both 34x and 34/ perturbations, in the case of two perturbing species
the number of perturbing combinations is (34x2)x(33x2)/2 = 2,244. The com-
puting time on our pc was 22x2,244 seconds, approximately ≡ 13.7 hours, a
still acceptable computing time. The total number of combinations of perturbed
species was 2,244x32 = 71,808. In the case of three perturbing species the num-
ber of perturbing combinations is 68x66x64/6 = 47,872. The computing time on
our pc would have been 22x47,872 seconds, approximately ≡ 293 hours ≡ 12.2
days. We considered this computing time too long for our pc and we preferred
to sort out randomly 1,000 of 47,872 combinations. This implies a computer
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time of 22x1,000 seconds, approximately equivalent to 6.1 - 6.2 hours, a still
acceptable length of computing time. Notice that sorting randomly 1,000 (per-
turbing x perturbed) combinations we generate a subset of 1,000x31 = 31,000
perturbed species. From the previous subset, we decided to sort out randomly
only 1,000 (perturbing x perturbed) combinations. In the case of four perturbing
species the number of perturbing combinations is 68x66x64x62/24 = 742,016.
The computing time on our pc would have been 22x742,016 seconds, approx-
imately ≡ 4,534.5 hours ≡ 189 days. We considered a fortiori this computing
time too long for our pc and we preferred to sort randomly 1,000 (perturbing x
perturbed) combinations out of a total of 742,016 combinations. Notice that in
this case sorting randomly 1,000 perturbing combinations we generate a subset
of 1,000x30 = 30,000 perturbed species. We decided again to sort out randomly
only 1,000 of them. The strategy of randomly sorting 1,000 samples from an
entire population of possible perturbations can be applied to even larger sets of
combinations of perturbing species. We could miss singularities / outliers, but we
will still capture the general trend of the perturbation. A perturbed species will
present a molecular concentration deviated from the concentration presented at
the end of a simulation performed in physiological conditions (a virtual time of
20-30 minutes to come close to a stationary state).

Deviations from the physiological conditions were measured according to the
following formula:∣∣∣∣∣

(value of perturbation in the species concentration)[EGF .1 nM]
(physiological value)[EGF .1 nM]

∣∣∣∣∣ (1)

We clustered these results into 8 classes: (e0 < Ratio < e1), (e1 < Ratio < e2),
(e2 < Ratio < e3), (e3 < Ratio < e4), (e4 < Ratio < e5), (e5 < Ratio < e6),
(e6 < Ratio < e7), (Ratio > e7). The 8 classes cover the following intervals: 1 -
2.72 - 7.39 - 20.09 - 54.60 - 148.41 - 403.43 - 1,096.63 - > 1,096.63.

The molecules depicted in our MIM in Fig. 1 may be considered nodes con-
nected by edges [22]. We counted the number of edges as follows:

[total number of edges] = Σ (for each of the 1,2,3,4 perturbing species,
distance in terms of edges from the perturbed species)

We obtained significant indications about sensitivity / robustness of the net-
work described in our MIM. In this article we only report the case of the four
perturbing species combination (1,000 randomly selected perturbed species), see
Fig. 2.

2 Results

In our work we reconstructed the four pathways mentioned in the Introduc-
tion section and that are drawn in our MIM. All four pathways are joined be-
cause they are downstream of the ErbB-family of receptors. Based on a careful



236 L. Tortolina et al.

search through literature data [2,15,17,18,19,20], we inserted quantitative param-
eters related to concentrations, association rates, dissociation rates and catalytic
turnover numbers (Table 3SM of [7]). Interpolation of some values is explained
in the Materials and Methods Section of [7]. Additional comments are given
in Table 3SM of [7]. We simulated the attainment of a stationary state by
representing all our reactions through ordinary differential equations (ODEs).
Our network reaches a stationary state because it describes a relatively short
period (in the order of 20 - 30 min) of the G0 - G1 transition. During this time
interval we only introduced post-translational modifications and formation of
new complexes, but not protein neo-synthesis or degradation. Our network not
only can simulate a ”physiological” condition, but we can also introduce sev-
eral oncogenic virtual mutations as well as the activity of virtual inhibitors of
onco-proteins affected by an excess of function.

2.1 Molecular Interaction Map Supporting Our Simulations

The MIM which represents the molecular network anatomy supporting our dy-
namic simulations is shown in Fig. 1. The molecular anatomy of the network
was reconstructed from a large number of literature reports describing a given
protein-protein interaction that became an edge between two nodes of the MIM.
These reports are quoted in the annotation list of our previous work [7]. MIMs
are based on a system of symbols and syntactic conventions (Fig. 1, insert): re-
actions operate on molecular species; contingencies operate on reactions or on
other contingencies. A complete description of how to draw a MIM, with ex-
amples, is provided in [13]. As a suggestion for the cancer researcher reader,
becoming familiar with the network described in our MIM will make it easier to
understand the comments explaining the results of our simulations.

2.2 Sensitivity / Robustness of Our Simulations

We calculated deviations from the standard behavior, obtained according to best
parameters assignment (see Table 3SM of [7]). We examined the behavior of our
network at the EGF concentration .1 nM. For each of the 34 perturbing basic
molecular species, we observed the effects on the (n-1) perturbed basic species.
The fluctuations introduced around the standard basic species concentration
(sbsc) were as follows: sbsc x 10; sbsc/10. Deviations were measured as ratios
(absolute values) with respect to the corresponding physiological concentration
value.

Deviations from the corresponding physiological point were measured and
classified as a function of the number of edges separating the perturbing from
the perturbed species. For more than one perturbation we computed the global
number edges as follows:

[total number of edges] = Σ (for each of the 1,2,3,4 perturbing species, distance
in terms of edges from the perturbed species)
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Table 1. 1) One perturbation 10x, 2) One perturbation 10/, 3) Two perturbations; 4)
Three perturbations, 5) Four Perturbations. In cases 3), 4) and 5) only 1000 samples
were randomly selected.

e0<R<e1 e1<R<e2 e2<R<e3 e3 <R<e4 e4<R<e5 e5<R<e6 e6<R<e7 R>e7

1 1085 25 7 3 0 1 1 0
2 1101 15 4 1 1 0 0 0
3 965 20 6 4 0 4 0 1
4 947 34 15 3 0 1 0 0
5 924 42 25 4 0 3 2 0

We report the following results:

1. One perturbation: effects on the 34x33 (perturbing x perturbed) combina-
tions, for each of the 34 perturbing species deviating 10x. Results are re-
ported in Tab. 1.

2. One perturbation: effects on the 34x33 (perturbing x perturbed) combina-
tions, for each of the 34 perturbing species deviating 10/. Results are re-
ported in Tab. 1.

3. Twoperturbations: the number of perturbing combinations is (34x2)x(33x2)/2
= 2,244. The computing time on our pc was 22x2,244 seconds, approximately
≡ 13.7 hours, a still acceptable computing time. The complete set of perturbed
species comprised 71,808 perturbations but we randomly sorted only 1,000
cases of perturbations from the entire population. Results are reported in
Tab. 1. At point 3, 4 and 5 we considered both 10x and 10/ perturbations.

4. Three perturbations: for reasons of computing time we randomly sorted 1,000
cases of perturbations from the entire population of 47,872 cases. 1,000 ran-
domly sorted perturbing combinations generate in this case 31,000 combina-
tions of perturbed combinations. As for point 3., we randomly sorted only
1,000 of them. Results are reported in Tab. 1.

5. Four perturbations: for reasons of computing time we randomly sorted 1,000
cases of perturbations from the entire population of 742,016 cases. 1,000
randomly sorted perturbing combinations generate in this case 30,000 com-
binations of perturbed combinations. As for point 3., we randomly sorted
only 1,000 of them. Results are reported in Tab. 1 and Fig. 2.

6. From the whole of the two-perturbation set we sorted out a subset of 20 most
deviating perturbations (ratio > e7). We combined them with 31x2 (10x +
10/) different perturbations, in order to explore if there was a third perturba-
tion increasing significantly the deviation from the physiological condition.
In alternative, the two initial perturbations could be the most important
ones for the final deviation. Results are reported in Tab. 2 and in Fig. 3, A.

7. From the whole of the two-perturbation set it was possible to sort out a
subset of 20 least deviating perturbations. We combined them with (31x2)
different perturbations, in order to explore the opposite condition in respect
to point 6. Results are reported in Tab. 2 and in Fig. 3, B.

If, for most perturbing species, we consider (see Fig. 17 and 18 of [7]) the one
edge distance major fluctuations as being the most typical, we see that they
are, in general, direct protein-protein interactions. In this case, if one of the two
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Fig. 2. Four perturbations. Notice that in this sorting the interval ”ratio > e7” is an
empty class.

Table 2. Two-perturbation subset: 20 most deviating or least deviating perturbations,
combined with a third (31x + 31/) perturbation

e0<R<e1 e1<R<e2 e2<R<e3 e3 <R<e4 e4<R<e5 e5<R<e6 e6<R<e7 R>e7

6 84 17 13 5 30 21 46 1024
7 1177 11 44 6 0 2 0 0

Fig. 3. 20 most (A) or least (B) deviating perturbations from the two-perturbation
set, combined with (n-3) 10x+10/ perturbations (31x20x2=1240 perturbations)

components has a 10x concentration and their affinity is relatively high (Kd ≈
10−8 M), the protein in excess will eat up the less abundant protein, leaving
very little of the free species of the invariant-concentration protein concerned.
As an example, we carried out an in-depth examination to see what happens to
the strongest deviations and we confirmed our hypothesis. The situation is more
intuitive in the cases in which there is a one edge distance. When two molecules
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are separated by two, and especially by three edges, the situation is much less
intuitive, and requires careful study of the network, and above all, simulations
must be carried out. With regards to the largest class with minimum deviation
(e0 < Ratio < e1), always for one perturbing species, the modal value of the
number of edges is not 1 (as in the most deviating classes) but 4, and there
is a long tail up to 13 edges. This upper value reflects the molecular anatomy
(number of molecule-molecule interactions) of our MIM.

3 Discussion

A preliminary overall comparison of the results of this exploration of parameter
space, with the variations induced by mutations and onco-protein inhibitors [7],
suggests that these are in general larger than most of the random perturbations.
We analyzed our network from a stability point of view. Tab. 1 and Fig. 2 show
that only rare combinations of perturbing and perturbed species are sensitive to
a perturbation. Furthermore, these larger perturbations are closely linked to di-
rect reversible protein-protein interactions, where the perturbing protein which
is now in vast excess is ”eating up” the less concentrated perturbed protein (or
the other way around). These disproportions can sometimes reverberate their
effect at a distance of two - three edges, because all the interactions are con-
nected, but progressively more weakly as the number of edges increases.

Both Tab. 2 and Fig. 3 clearly show the strong bi-directional effect of a
previous two-perturbation condition on the subsequent addition of a new
perturbation.

These explorations of network stability will have to be extended to complexes
and rates. In a previous work we noticed that the perturbation of rates has
smaller effects than the perturbation of concentrations [23]. Parameter space
can also be explored more systematically using different strategies [2], there-
fore, we are considering strategies of the type used by these authors for a future
study. Computations shared in a grid may be useful to decrease computational
time and allow a more extensive exploration of parameter space. The overall
robustness of our network increases the relevance of the large and reasonable
changes we observed in the presence of mutations and inhibitors.
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Abstract. The evolution of the gene expression levels of Drosophila 
melanogaster, from the embryonic to adult development phases, has been stud-
ied on the basis of a microarray time series involving the expression levels of 
more than 4000 genes over 67 time-points, and has been modeled by a system 
of linear differential equations with constant coefficients. Here we investigate 
the robustness of this model against perturbations of its parameters and of the 
initial data values. We found that the model is not robust at all for fully con-
nected networks, but that the robustness significantly increases after parameter 
reduction. This puts some limits to the biological relevance of linear models for 
gene expression evolution. 

Keywords: gene regulatory networks, mathematical modeling, model  
robustness. 

1   Introduction 

Some of us have recently developed a linear model capable of reproducing the time 
evolution of gene expression across the embryonic-to-adult development phases of 
Drosophila melanogaster [1]. The transcript concentration profiles that were modeled 
were taken from a 67-point DNA microarray time series involving 4028 genes [2]. To 
reduce the dimensionality of the problem, the genes having similar expression profiles 
were grouped into 17 clusters [3]. This simple linear model was shown to be able to 
reproduce the experimental data with very good accuracy. Remarkably, the parameter 
reduction allowed the elimination of up to 80–85% of these connections while keep-
ing fairly good fit between data and simulation. This result supports the low-
connectivity hypothesis of gene expression networks, with about three connections 
per cluster, without introducing a priori hypotheses such as an upper limit on the 
number of connections per gene [4, 5, 6]. This is in accordance with experimental 
evidence about gene regulatory networks [7]. 

However, for our model to have some biological relevance, its performance in 
mimicking data is not sufficient. It has also to be reasonably robust against parameter 
perturbations and changes in initial conditions. In particular, a model of gene regula-
tory network in which a slight perturbation of some connections, i.e. of some interac-
tions between genes and gene products, would lead to totally different expression 
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profiles, with possibly unstable behaviors, is irrelevant. Similarly, a slight perturba-
tion of some expression levels, due to the stochastic nature of these interactions, 
should not affect the profiles too strongly. Linear models are of course expected to 
yield divergent behaviors, but the question is whether these occur for biologically 
expected perturbations and over biologically relevant times. With this in mind, we 
tested the robustness of the linear model of Drosophila gene expression by perturbing 
its parameters and initial values and compared the estimated expression curves before 
and after perturbation. This procedure was performed before and after parameter 
reduction, so as to analyze the effect of the connectivity on the robustness. 

2   Background: The Model 

We briefly recall our model of Drosophila gene expression. Details can be found in 
[1]. The expression profiles xi(t)=log2(Ii(t)/IiR) for the 4028 Drosophila genes labeled 
by i are expressed in terms of the intensities Ii(t) and IiR measured by DNA microarray 
techniques [2] where Ii(t) was measured at v=67 time-points denoted by τk. The four 
developmental phases, i.e. embryonic, larva, pupal, and adult phases, contained 31, 
10, 18, and 8 time-points respectively. IiR is a reference intensity independent of the 
development stage. These 4028 genes were grouped into 17 clusters containing genes 
with similar expression profiles [3]. Each cluster was represented by the average ex-
pression profile xc(t), where the index c labels the clusters. 

To reproduce these profiles, a linear model with constant coefficients was chosen, 
in which the time derivative of the gene expression level xc only depends on the evo-
lution of the gene expression levels xd of all clusters d [8]. Defining the vector 

1 2( , ,..., )T
nx x x=x , where n=17 is the number of clusters, the model takes the form  

,xM
x =
td

d
  (1)

where t is the (real) time and M a nxn matrix with constant elements.   
To estimate the n² elements of M, a two step procedure was used. The first step in-

volved an estimation of the time derivatives dxc(t)/dt followed by a least square esti-

mation of M, denoted LSM̂ . To have an objective quantification of the quality of the 

modeling, we defined the cost function or score ˆ( )S x , which corresponds to the 

standard deviation of experimental and modeled profiles ( )tx  and ˆ ( )tx , weighted 

by the inverse of the variance 2( )c kσ τ  of the experimental data: 
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σ τ= =

−
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The weighting by 2( )c kσ τ  ensures that the lower the disparity of the data at a cer-

tain time-point τk, the larger the weight in the cost function and thus, the more impor-
tant the quality of reproduction at that point.  



244 A. Haye, J. Albert, and M. Rooman 

In the second step, a nonlinear parameter estimation was performed, using as initial 
parameter values those obtained by the linear identification procedure. The algorithm 
used is a simplex search method [9]. This procedure yielded the OptM̂  matrix and the 

initial values Opt
0ˆ ( )τx  that minimize a cost function Opt ˆ( )S x . 

The estimated matrix OptM̂  that encodes the mutual influence of the gene clusters 
has no vanishing parameters, whereas other parameter sets, with some vanishing pa-
rameters, could possibly model the expression profiles almost as well. In order to find 
such sets, a parameter reduction of the model was performed, with the aim of deter-
mining the connections that are necessary to keep a good profile modeling, and which 
can be viewed as biologically relevant.  

The reduction procedure used is iterative and draws a unique trajectory among the 
parameters to eliminate. At each iteration, the parameter that, when cancelled, induces 
the smallest LSˆ( )S x  was permanently set to zero, yielding the reduced parameter 

matrix LSˆ
NM , where N is the number of eliminated parameters. A nonlinear parameter 

optimization was then performed so as to minimize Optˆ( )S x  while maintaining the 

eliminated parameters in LSˆ
NM  equal to zero; this yields the parameter matrix OptM̂ . 

The value Optˆ( )S x was shown to remain roughly constant or to increase very slowly 

until the number of eliminated parameters N reaches 227. At this point, Optˆ( )S x =0.44 

and 62 parameters remained, which amounts to an average of 3.65 connection per 
gene cluster. Further parameter reduction led to a significant jump in Optˆ( )S x .  

3   Methods 

3.1   Robustness of the Model against Perturbations of the Parameters 

We analyzed the robustness of the full and reduced gene expression networks defined 
by OptM̂  and Optˆ

NM  against two types of perturbations: individual (P1) and collective 

(PAll). In the first case the elements of OptM̂  or Optˆ
NM  were modified one at a time by 

adding or subtracting a given percentage of its original value, which we chose to be 
P1=±1% or P1=±5%. The expression profile 1ˆ ( )P p

N t=x , estimated with these perturbed 

parameters, and the associated cost function 1ˆ( )P p
NS =x  were then computed. For each 

perturbation P1=p of a given parameter Mcd, the cluster and time-point τk for which 
the deviation between the unperturbed and perturbed estimated profiles Optˆ ( )kτx  and 

1ˆ ( )P p
kN τ=x  is maximum was identified. Finally, the minimum ( 1ˆ[ ( )]P p

NMin S =x ) and 

maximum ( 1ˆ[ ( )]P p
NMax S =x ) values of these deviations, obtained when perturbing each 

of the parameters Mcd individually, were considered for interpretation. 
In the second type of perturbation, all parameters Mcd of the network were modi-

fied at the same time. This was done by adding to each Mcd a (different) random per-
centage of its value, where these random percentages are contained in [-p, +p], with 
p=1% or p=10%. The expression profiles ˆ ( )AllP p

N t=x  and the scores ˆ( )AllP p
NS =x   
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estimated with these perturbed parameters were then computed. This procedure was 
repeated 50 times for different random perturbations. The average value of ˆ( )AllP p

NS =x  

was then computed along with the standard deviation. Given that the score is always 
positive and deviates from a normal distribution, a left and a right standard deviation 
was computed, σL and σR. These were defined by considering either all scores that are 
smaller than the mean (σL) or all scores that are larger than the mean (σR). 

3.2   Robustness of the Model against Perturbation of the Initial Conditions 

Another type of perturbation we considered involves the modification of the estimated 

initial conditions Opt
0ˆ ( )τx  or Opt

0ˆ ( )N τx , rather than the network parameters OptM̂  or  
Optˆ
NM . Here also we consider two types of perturbations, the individual and collective 

parameter perturbations, noted Pin1 and PinAll, which are defined in exactly the same 
way as P1 and PAll. 

4   Results and Discussion 

4.1   Robustness against Network Perturbations 

Single Parameter Perturbations 
The evolution of the scores before and after single parameter perturbation, i.e. 

Opt
Nˆ( )S x  and 1P =p

Nˆ( )S x  with p=±1% and p=±5%, is given as a function of the number 

of eliminated parameters (N) in Figure 1. More precisely, for each value of N, the 
smallest ( 1ˆ[ ( )]P p

NMin S =x )) and largest ( 1ˆ[ ( )]P p
NMax S =x ) scores among those obtained by 

perturbing one of the parameters (see Methods section) are depicted. For clarity, we 
used the log10 of the scores instead of the scores themselves in all the figures. 

In Figure 1, the green dashed lines are identical to the blue dotted line; this means 
that, whatever the number of parameters in the network, there is always at least one 
parameter that can be perturbed without changing significantly the mean score. In 
contrast, it can be seen that when N<215 (that is, when up to 74% of the parameters 
are set to zero), the model is always very sensitive to the perturbation of at least one 
parameter. The model remains sensitive up to N=241 (when 83% of the parameters 
vanish) for larger perturbations of ±5%.   

As a consequence, the linear model is always robust against the perturbation of 
some particular connections, but only becomes robust against all single parameter 
perturbations when the network is reduced to about 3 connections per gene cluster. 

Collective Parameter Perturbations 
The behavior of the score Optˆ( )S x  as a function of N, when all parameters are modi-

fied at the same time (PAll), is shown in Fig. 2, for p=1% or p=10%. The mean value 
< ˆ( )AllP p

NS =x > computed over 50 random perturbations is indicated as well as the con-

fidence interval [< ˆ( )AllP p
NS =x >-σL, ˆ( )AllP p

NS =x >+σR] (see Methods).  
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Fig. 1. Log10 of the scores S before and after single parameter perturbations P1 = ±1% (a) and 
P1 =± 5% (b), as a function of the parameter reduction N. The vertical grey line indicates the 
optimal reduction N=227. Blue dotted line: log10 of the score Opt

Nˆ( )S x  without perturbation; 

green dashed line and red solid line: log10 of the scores 1P =p
Nˆ[ ( )]Min S x  and in1P =pˆ[ ( )]NMax S x , 

respectively. 

 

The first observation is that on the left hand side of the Fig. 2b, that is, when the 
model still contains more than 74 parameters (N<215), the score after parameter per-
turbation is significantly higher than before perturbation: on average these scores are 
approximately equal to 1060 and 0.5, respectively. This implies that, in this range of N, 
our linear model is totally unstable with respect to even small perturbations of all 
parameters at the same time. Nevertheless, when the number of parameters decreases 
below 48 (N=241), the mean score before and after perturbation become close. How-
ever this threshold is much below the N=227 threshold of optimal reduction, above 
which the estimated and experimental profiles are considered to be insufficiently 
similar [1]. 

(a)

(b) 
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Fig. 2. Log10 of the scores S before and after collective parameter perturbations PAll = 1% (a) 
and PAll = 10% (b), as a function of the parameter reduction N. The vertical grey line corre-
sponds to the optimal reduction N=227. Blue dotted line: log10 of the score )ˆ( OptxS  before per-

turbation; black dashed line: log10 of the mean values 1ˆ( )P p
NS =< >x  of the scores after 50 differ-

ent random perturbations; green asterisk-line and red solid line: log10 of ( )1
Lˆ( )P p

NS σ=< > −x  and 

( )1
Rˆ( )P p

NS σ=< > +x , respectively. 

Robustness of Particular Reduced Solutions 
Let us now focus on the optimal reduced parameter network, with N=227, obtained 
previously as described in Section 2 [1]. In this case, 62 parameters remain in the 
network, and the mean connectivity is thus 3 to 4 connections per cluster. Typical 

estimated curves 1ˆ ( )P p
N t=x  and ˆ ( )AllP p

N t=x obtained by perturbing all parameters indi-

vidually and together are shown in Fig. 3 and are compared to the reduced unper-

turbed profile Optˆ ( )N tx  and to the data.  

 

(a) 

(b) 
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Fig. 3. Real and estimated expression profiles for cluster 11 after optimal reduction and before 
and after single-parameter and collective perturbations. Blue points: experimental data ( )kτx ; 

blue solid line: unperturbed estimated profiles Optˆ ( )kN τx ; green asterisk-line and red dashed 

line: two reduced profiles 1ˆ ( )P p
kN τ=x  corresponding to the single-parameter perturbation P1 

leading to 1P =p
Nˆ[ ( )]Min S x  and 1P =pˆ[ ( )]NMax S x , respectively; black dotted line : estimated profile 

ˆ ( )AllP p
N t=x  of one particular set of collective perturbations PAll. (a) P1=±1% and PAll=1%. Note 

that the curves in blue (solid), green (asterisk), black (dotted) and red (dashed) almost coincide.  
(b) P1=±5% and PAll=10%. 

As shown in Fig. 3a, the estimated expression profiles after parameter reduction up 
to N=227 are largely insensitive to both single-parameter and collective perturbations, 
when these perturbations remain small, i.e. P1=±1% and PAll=1%.  The results are 
similar for all tested random perturbations with PAll=1% and for the other clusters. 
However, as seen in Fig. 3b, when the parameters of the network are more strongly 
perturbed, i.e. when P1=±5% and even more when PAll=10%, we observe large 
changes in the estimated profiles with a tendency to unstable behavior. Note that this 

(a)

(b) 
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does not happen for all tested random perturbations with PAll=10%, because some 
parameters are less sensitive to noise and moreover in some random realizations many 
perturbation values can be close to zero.  

This figure shows that the expression profiles obtained after optimal parameter re-
duction are robust against parameter perturbations as long as these perturbations re-
main small. In contrast, the profiles resulting from less (or not) reduced networks are 
not robust at all (Figs. 1-2). 

4.2   Robustness against Perturbation of the Initial Conditions 

Perturbation of Individual Initial Gene Expression Values 
The behavior of the score before and after perturbation of one of the initial conditions, 
with Pin1=1% or Pin1=5%, is shown in Fig. 5. The linear model appears to be not very  
 
 

 

 

Fig. 4. Log10 of the scores S before and after single parameter perturbations Pin1 = ±1% (a) and 
Pin1 =± 5% (b), as a function of the parameter reduction N. The vertical grey line indicates the 
optimal reduction N=227. Blue dotted line: log10 of the score )ˆ( OptxS  before perturbation; green 

dashed line and red solid lines: log10 of the scores 1P =p
Nˆ[ ( )]Min S x  and in1P =pˆ[ ( )]NMax S x ,  

respectively. 
 

(b) 

(a) 
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sensitive to the perturbation of any of the initial conditions. Moreover, the model’s 
robustness against such perturbations appears to be much less dependent on the num-
ber of parameters in the network than on the parameters of the network themselves. 
Note that the peak around N=160 may correspond to poorly optimized unperturbed 
solutions, which become even less optimal upon perturbation. 

Perturbation of all Initial Gene Expression Values 
Figure 5 shows the behavior, as a function of N, of the mean scores before and after 
collective perturbations PinAll=1% and PinAll=10% of the initial values. Clearly, the 
small random collective perturbations PinAll=1% almost do not change the score, 
which remains below the unperturbed score at the optimal reduction level of N=227.  
 

 

 

 

Fig. 5. Log10 of the scores S before and after collective perturbations of the initial values Pi-
nAll = 1% (a) and PinAll = 10% (b), as a function of the parameter reduction N. The vertical 
grey line corresponds to the optimal reduction N=227. Blue dotted line: log10 of the score 

)ˆ( OptxS  before perturbation; black dashed line: log10 of the mean values <
1ˆ( )P p

NS =x > of the 
scores after 50 different random perturbations; green asterisk-line and red solid line: log10 of 
(< 1ˆ( )P p

NS =x > - σL) and (< 1ˆ( )P p
NS =x > + σR), respectively.  

(a) 

(b)
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Moreover, the standard deviations are very small and, whatever the random perturba-
tion, the new score increases by roughly the same amount. When PinAll =5%, the 
scores as well as their standard deviations increase somewhat more, but they remain 
close to the score of the N=227 reduction level.   
 
Robustness of the Particular Reduced Solutions 
We focus on the optimal reduced parameter set with N= 227. As seen in Fig. 6, even 
when the perturbations are larger (Pin1=±5% or PinAll=10%), the data is well repro-
duced by the model with the perturbed initial conditions. The results for the other 
clusters are similar. This shows that with this particular parameter set, our linear 
model is robust against perturbations of the initial conditions. 
 

 

Fig. 6. Estimated expression profiles for cluster 11 after optimal reduction and before and after 
perturbations Pin1=±5% and PinAll=10%. Blue points: experimental data ( )tx ; blue solid line : 

unperturbed estimated profile Optˆ ( )kτx ; green asterisk-line and red dashed line : two profiles 

1ˆ ( )P p
kN τ=x  corresponding to the individual perturbation P1 = ±5% of the parameter leading to 

1P =p
Nˆ[ ( )]Min S x  and 1P =pˆ[ ( )]NMax S x , respectively; black dotted line: estimated profile ˆ ( )AllP p

N t=x  of 

one particular set of collective perturbations PAll = 10%. Note that the curves in blue (solid), 
green (asterisk) and red (dashed) coincide.  

5   Conclusion and Outlook 

The present analysis of the robustness of the gene expression model for Drosophila 
development proposed in [1] highlights the strengths and limitations of linear models. 

A first conclusion is that the fully connected linear model is very sensitive to even 
small perturbations of the parameters. This tendency remains true for reduced net-
works with vanishing parameters, as long as the number of connections is higher than 
3 to 4 per gene cluster.  At this point, the model starts being robust against some per-
turbations, but not against all. It only becomes really robust when the model stops 
reproducing the data correctly, that is when about 2.5 connections per cluster remain. 
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It has to be noted that the model is much more robust against perturbations of the 
initial conditions than it is with respect to the network parameters. 

We may thus conclude that linear models appear to gain robustness as the number 
of connections decreases, but never become sufficiently robust while maintaining a 
good modeling capacity. Moreover, the estimated expression profiles sometimes tend 
to diverge after perturbation, which removes all biological relevance to the model. 
Therefore, nonlinear models will have to be considered to reach the biologically re-
quired robustness characteristics. In particular, nonlinear models that describe the 
transcription activation or repression as well as the gene product degradation [10], and 
present attractive stationary points during the Drosophila lifetime, will be considered. 
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Abstract. The aim of this study was to find the set of biomarkers based
on plasma microRNAs which can predict in a noninvasive way the di-
agnosis of bladder cancer. We presented here a methodology and the
related concepts to develop intelligent molecular biomarkers using knowl-
edge discovery in data and artificial intelligence methods. To the best of
our knowledge, this is the first time when plasma miRNAs are combined
using artificial intelligence and the prediction accuracy of the developed
systems for medical decision support is the best published by now, some
of them having even 100%.

Keywords: bladder cancer diagnosis, noninvasive, microRNA, artificial
intelligence.

1 Introduction

Bladder cancer was the fourth most common cancer diagnosis in men in the
United States in 2009 and it affected nearly 71,000 people. Over fourteen thou-
sand people succumbed to the disease during the same time frame [8]. From a
traditional clinical perspective, bladder cancer is classified as either superficial
(stages Ta or T1) or invasive (stages T2, T3 and T4). The invasive disease often
requires multi-modal therapies combining surgery as well as chemotherapeutic
approaches, while most cases with a superficial disease have long-recurrence free
episodes. To the present day, there is no screening method recommended for
individuals at average risk. The diagnostic is determined by microscopic exami-
nation of cells from urine or bladder tissue and examination of the bladder wall
with a cystoscope. The 5-year relative survival rate is 80% for all the stages.

R. Rizzo and P.J.G. Lisboa (Eds.): CIBB 2010, LNBI 6685, pp. 253–262, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



254 A.G. Floares et al.

Starting from bladder cancer discovered while the tumor is in situ (97% 5-year
survival) it decreases down to 6% for distant stage disease (6% 5-year survival),
making it very important to discover the cancer in time. [1]

As Rabiya S. Tuma pointed out [14], personalized medicine is the ultimate goal
of modern cancer treatment, and its success depends on the availability of tumor
biomarkers that can be used to guide treatment. Molecular biomarkers represent
alterations in gene sequences, expression levels, protein structure or function
which can be used to detect cancers at an early stage, determine prognosis, and
monitor disease progression or therapeutic response [13].

They are invaluable tools for both cancer research and clinical practice, yet
few biomarkers are in clinical use despite decades of intense effort. This is because
”It is a hard statistical problem, it is a hard clinical problem, and it is a hard
biological problem.”, as Marc Buyse emphasized (cited in [14]).

In our opinion, there are some general paradigm shifts in medicine affecting
biomarkers field too. One is from the search for a single molecule, functioning
like an ideal biomarker, to the search for panels of biomarkers. This is a natural
consequence of the (gen)omics enterprize. Another one is from a reductionistic to
a systemic view, placing these molecules on functional networks and pathways.
There is also a general trend to favor non-invasive biomarkers, usually from
serum, urine, and other body fluids.

Usually, in high-throughput experiments one investigates thousands of
molecules in parallel. Statistical and bioinformatics tools must be used to se-
lect and rank a subset of molecules, hundreds or preferably tens, capable to
discriminate between two or more medical situations. Most studies end up with
such lists of ranked molecules and p-value is the most common ranking crite-
rion. One can also place these molecular alterations on networks and pathways,
entering in the realm of systems biology. These systems have a completely or
partially known structure but no dynamics. While this is a real scientific progress
of the last decade, it does not help too much our understanding of the complex
molecular dynamical systems, nor is very helpful in clinical practice. Important
questions are:1) Can artificial/computational intelligence help our understand-
ing of complex molecular dynamical systems? 2) Can artificial/computational
intelligence help developing clinically useful tools?

Our answer to the first question is yes. We developed RODES [6], a class of
algorithms based on artificial intelligence to automatically extract mathematical
models, in the form of systems of differential equations (dynamical systems),
from high-throughput time-series data. It is based on a combination of knowledge
discovery in data and knowledge mining, making use of genetic programming
(GP), when all the variables of the system are available, and neural networks
control when some variables are missing.

In this paper we will focus mainly on the second question. More precisely, the
question is: Can we use artificial intelligence to transform, an interesting but
not very useful list of ranked genes, in an intelligent system, based on the most
relevant subset(s) of these genes, capable to predict a diagnosis or any other
important clinical outcome, and supporting in this way clinical decisions?
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The answer to this challenging biomedical informatics question is yes too,
and we will illustrate this with our investigations on non-invasive bladder cancer
diagnosis (BCa).

There is no reported study where free, circulating miRNAs were measured in
bladder cancer. Tumor-derived miRNAs are not the same as circulating miRNAs,
as the latter may also include other tissue/cells that release these microRNAs,
representing the result between tumor and the host interactions. The idea of
using circulating miRNAs is not new, however, this is the first study using such
a comprehensive array of miRNA probes and is the first to be used in bladder
cancer as a diagnostic screening tool.

The goal of this paper was to develop intelligent molecular biomarkers, for
the non-invasive diagnosis of bladder cancer, based on plasma microRNAs (or
miRNAs), via a knowledge discovery in data approach, using computational
intelligence methods.

To the best of our knowledge, this is the first time when plasma miRNAs
are combined, using artificial intelligence, to predict in a non-invasive way, the
bladder cancer diagnosis. The prediction accuracy of the systems was between
91.67% and 100%.

2 Methods

In [5] we proposed a general methodology for developing i-Biomarkers, a basic
taxonomy, and some relationships with other intelligent (the prefix ”i-” comes
from intelligent) clinical decision support systems (i-CDDSs), we have developed.
These are illustrated here presenting the main steps for developing non-invasive
bladder cancer diagnosis i-Biomarkers. i-Biomarkers are a subset of i-CDSS, a
concept first introduced by us in [7]. Stated briefly, these are clinical decision
systems [2] based on artificial intelligence. Generally, i-CDSSs are the result of
a knowledge discovery in data approach:

1. Extracting and integration information from various biomedical data sources,
after a careful preprocessing consisting mainly in:
(a) cleaning features and patients,
(b) various treating of missing data,
(c) background correction
(d) normalization
(e) various transformations
(f) ranking features
(g) selecting features
(h) balancing data, etc.

2. Testing various classifiers.
3. Testing various ensemble methods.

The dataset used to develop the non-invasive BCa i-biomarkers was acquired us-
ing customized microRNA array [9]. It was clean and without missing data. The
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first steps consist in exploratory data analysis and data pre-processing. Back-
ground correction aims to adjust the intensity readings for technical variability
between arrays due to subtle differences in handling labeling, hybridization and
scanning. It is essential to use background correction in order to obtain good
sensitivity from the data. The background correction was done by subtracting
”B635 Median” from ”F635 Median” and the resulted values represent the gene
expression data. The F635 Median values represent the median feature pixel in-
tensity for the 635 nm channel and the B635 values represent the median feature
background intensity for the same channel.

The next step was to transform the raw data into log2 scale and normalize it
with the quantile normalization method. The quality of the data was assessed
using density plots (not shown), boxplots and unsupervised hierarchical clus-
tering (based on Pearson correlation and the Ward linkage rule), and principal
components analysis (PCA). The replicates of each probe were averaged after
normalization and the non-human microRNA probes were filtered.

After preprocessing and filtering out all non-human microRNA we tried to find
the miRNAs that are differentially expressed between two sample groups. A two-
sample t-test was used for this purpose. For all these pre-processing steps we used
the freely available bioinformatics collection of software packages Bioconductor
(http://www.bioconductor.org).

We initially performed a set of experiments choosing the first N miRNAs,
with N = 5, 10, 15, 20, 25, etc., in the decreasing order of their p-values. The
results (not shown) were not as good as we expected and we decided to continue
the feature selection.

For ranking the features, we used a simple but effective method which con-
siders one feature at a time, to see how well each feature alone predicts the
target variable. For each feature, the value of its importance is calculated as (1
- p), where p is the p value of the corresponding statistical test of association
between the candidate feature and the target variable. The target variable was
categorical with two categories for all investigated problems and all inputs were
continuous.

A number of artificial intelligence methods were tested for developing intelli-
gent clinical decision support systems for diagnosis prediction:

1. Artificial Neural Networks (ANN) [3]
2. Support Vector Machines (SVM) [12]
3. Shrinkage Discriminant Analysis (SHRINKLDA)
4. Penalized Logistic Regression (PLR) [15]
5. K nearest neighbors (KNN)
6. Random Forest [4]
7. Partial Least Squares combined with Linear Discriminant Analysis (PLSLDA)
8. Fisher’s Linear Discriminant Analysis (FDA)

For creating the training sets, the chosen method was leave one out cross valida-
tion due to the small number of cases. For each training set was performed feature
selection using t-test, f-test, Wilcox test, Welch test, Random Forest Variable
Importance Measure, Lasso. The classification methods presented above were
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applied using a number of 25 genes. The results are presented in the following
section. (see Table 2)

Neural Networks were chosen in our study in order to predict the diagnosis
BCa or Normal, for each patient. Due to the fact that the output is categorical
we used neural networks for classification. The type of neural network with
which we performed the experiments was Multilayer Perceptron (MLP), because
the results obtained with other types of networks were not satisfactory and
they tended to be slower than MLP. The preparatory steps for conducting the
experiments consisted in determining: a) the size of the training and testing set;
b) the error function; c) the number of hidden units; d) the activation functions
for the hidden and the output neurons; e) the minimum and maximum values
for weight decay.

For the hidden neurons were used as activation functions identity, logistic,
tanh and exponential and the same ones were chosen for the output neurons. The
error functions used were sum of squares and cross entropy. The minimum and
the maximum number of hidden units were chosen differently for each experiment
because we conducted several experiments which had different number of inputs.
The larger the number of hidden units in a neural network model the stronger
the model is, the more capable the network is to model complex relationships
between the inputs and the target variables. Due to the small number of cases
the number of hidden units was not large. The optimal number of hidden units is
minimum 1/10 of the number of training cases and maximum 1/5, but we have
varied this interval [10]. The use of decay weights for hidden layer and output
layer was preferred in order to prevent overfitting, thereby potentially improving
generalization performance of the network. Weight decay or weight elimination
are often used in MLP training and aim to minimize a cost function which
penalizes large weights. These techniques tend to result in networks with smaller
weights. The minimum chosen weight decay was 0.0001 and the maximum 0.001.

3 Results

3.1 Patients Data

This study is based on a lot of 38 individuals, which has 20 (52%) patients
with bladder cancer, 5 females and 15 males, 10 (26%) with invasive BCa, and
10 (26%) with superficial BCa, and 18 (48%) individuals without any known
cancer. The BCa patients were 7 (35%) with stage Ta, 3 (15%) with stage T1, 7
(35%) with stage T2, 1 (5%) with stage T3 and 2 (10%) with stage T4, 2 (5%)
with grade 1, 5 (25%) with grade 2, and 14 (70%) with grade 3. The molecular
biology data consists in 38 samples of microRNAs isolated from plasma of these
individuals. There where measured 19200 miRNAs from blood plasma.

3.2 Preprocessing Results

The results of the preprocessing steps performed to find the differentially ex-
pressed miRNAs are summarized in the following figures and tables:
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1) Figure 1 shows the distributions of p-values from the feature-by-feature two
sample T-test, 2) Table 1 summarizes the numbers of significant features using
different false discovery rates (FDR) cutoff values from the feature-by-feature
two sample T-test, and 3) Figure 2 shows a heatmap of the most differentially
expressed features selected at an FDR level of 0.20.

Because of the multiple testing involved in this approach (feature-by-feature),
the individual p-values are not particularly meaningful. However, when we look
across the entire set of tests, the distribution of p-values (under the null hypoth-
esis that no miRNAs were differentially expressed) should be uniform (indicated
by the black line in Figure 1). If, on the other hand, some features are differen-
tially expressed, we would expect an overabundance of small p-values. We can
capture this situation by modeling the distribution of the p-values as a beta-
uniform mixture (BUM) described by Pounds and Morris in [11].

Table 1. Summary of significant miRNAs by different FDR cutoff values

FDR #sign P-value cutoff

0.20 18 1.74e-03
0.25 23 2.60e-03
0.30 30 3.70e-03
0.35 31 5.09e-03
0.40 34 6.85e-03
0.45 45 9.11e-03
0.50 55 1.20e-02

Using Bioconductor we obtained a list of features that are differentially ex-
pressed among samples by performing feature-by-feature two-sample t-tests. The
list contained 2247 genes ordered by their p-value and we retained the first 252.
We have applied feature selection on the remaining genes in order to obtain
the most significant genes that influence the output, normal or BCa. We have
chosen for further testing the variables with the p value, based on Pearsons Chi-
square, larger then 0.97 (a value we chose arbitrarily to keep a good proportion
of miRNAs vs patients: 63 miRNAs measured for 38 patients).

The methods presented in the previous section were applied after the pre-
processing step and the differential analysis. The best results were provided by
the Support Vector Machines (SVM) which misclassified only one case and the
accuracy was 97.4%. This model was applied on the training sets after using
leaving one out method and performing gene selection using Wilcox test. Other
settings that were used are the linear kernel due to that fact that we have a
small sample (38 cases) and a relative large number of predictors (25 genes) and
the cost parameter to allow some flexibility in separating the categories (BCa
and normal), having values between 0.1 and 100.
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Fig. 1. Histogram showing the distribution of p-values from the feature-by-feature two
sample t-test

The next experiments involved the usage of neural networks. Two approaches
were used. We began the experiments with a small number of genes, 5 in the
beginning, and this number was increased with each experiment. The other ap-
proach was to do the experiments with all the selected genes and decrease their
number with each performed experiment. We obtained neural networks with
100% accuracy. To perform the experiments the data were split in a training (67
%) and a testing dataset (33 %). As error functions, we tested the cross entropy
and the sum of squares. The weight decays in both the hidden and the output
layer varied between 0.0001 and 0.001. The list of genes we used in the neural
networks experiments are presented in Table 3. The output of the experiments
had two categorical values BCa and Normal. We trained a large number of neu-
ral networks and we retained the best 20 ones. Training more neural networks
allowed us to explore various combinations of options.

Due to the fact that a different number of inputs was used at each experiment,
the amount of hidden units varied. The minimum and the maximum number of
hidden units with which we obtained the best results can be seen in Table 4.

For the first experiment we used a set of 5 genes. We obtained 100% accuracy
for training and 91.67% accuracy for testing, which means than one case was
incorrectly classified. The case was BCa and it was classified as Normal. We
removed the value of this output and we used the K-Nearest Neighbors (KNN)
to see which value it will take. The previous value was BCa and after applying
this method was Normal. The experiment was done once again without this case
and the results had 100% accuracy.
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Fig. 2. Heatmap of the most differentially expressed miRNAs selected at an FDR level
of 0.2

Table 2. Best six algorithms compared

Model Misclassification rate No. misclassifications

NN 0 0
SVM 0.026 1

SHRINKLDA 0.079 3
KNN 0.105 4
PLR 0.105 4

PLSLDA 0.105 4
RF 0.105 4

The second experiment had as inputs the first 10 genes resulted from the
feature selection process. The results were the same as in the experiment with
the first 5 genes and the same case was incorrectly classified. We found one
neural network that classified correctly that case. We eliminated again this case
and the results had 100% accuracy.

The number of genes was increased to 15 and we have proceeded like in
the previously presented experiments. There were neural networks with 100%
accuracy for the training sample and with 91,67% for the testing sample, but we
confronted with some cases of overfitting for the training sample, even after we
removed the case which was always incorrectly classified.
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Table 3. The list of genes used in neural networks experiments

Genes in neural networks experiments

hsa-miR-923-P hsa-miR-33b hsa-miR-1826
hsa-miR-92b hsa-miR-1246 hsa-miR-337-5p-AS

hsa-miR-1268-AS hsa-miR-1290 hsa-miR-92b*-AS
hsa-mir-1914 hsa-miR-1181 hsa-mir-603-P
hsa-miR-937 hsa-miR-1302-5-P hsa-mir-410-P

hsa-mir-1469-AS hsa-miR-923 hsa-miR-1201
hsa-miR-16-AS hsa-miR-487a hsa-miR-219-1-3p

hsa-miR-1290-AS hsa-miR-96* hsa-miR-638
hsa-miR-629*

Table 4. Number of hidden units

5 genes 10 genes 15 genes 20 genes 25 genes

3 - 11 4 -13 5 - 16 6 - 18 6 - 20

The last two experiments with 20 and 25 genes as inputs had the best results.
All the retained neural networks had 100% accuracy and even the case incor-
rectly classified in the previous experiments was classified as being BCa and not
Normal. Increasing the number of hidden units lead to a correct classification of
all the cases.

The Neural Network based clinical decision support system has 100% accu-
racy. As it was previously stated, they are molecular i-Biomarkers which can be
used as i-CDSS for noninvasive bladder cancer diagnosis. This is an important
step toward bladder biopsy replacement in bladder cancer suspicion or at least
a mean for reducing the number of necessary biopsy.

4 Conclusions

We proposed intelligent clinical decision support systems for a noninvasive diag-
nosis in bladder cancer. The systems are based on artificial intelligence methods
and a set of newly discovered biomarkers that can distinguish between the two
medical outcomes. This is an important step toward bladder biopsy replacement
when diagnosing bladder cancer.

References

1. ACS: American Cancer Society. Cancer Facts and Figures 2010. American Cancer
Society, Atlanta (2010),
http://www.cancer.org/acs/groups/content/@nho/

documents/document/acspc-024113.pdf

2. Berner, E.S.: Clinical Decision Support Systems: Theory and Practice. Springer,
New York (1998)



262 A.G. Floares et al.

3. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Inc., New York (1995)

4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
5. Floares, A., Balacescu, O., Floares, C., Balacescu, L., Popa, T., Vermesan, O.:

Mining knowledge and data to discover intelligent molecular biomarkers: prostate
cancer i-biomarkers. In: Proceedings of the 4th International Workshop on Soft
Computing Applications, July 15–17 (2010)

6. Floares, A.G.: Toward Personalized Therapy Using Artificial Intelligence Tools to
Understand and Control Drug Gene Networks. In: New Trends in Technologies.
INTECH (2010),
http://sciyo.com/articles/show/title/toward-personalized-therapy-using-

artificial-intelligence-tools-to-understand-and-control-drug-gene-

7. Floares, A.G.: Using computational intelligence to develop intelligent clinical de-
cision support systems. In: Masulli, F., Peterson, L.E., Tagliaferri, R. (eds.) CIBB
2009. LNCS, vol. 6160, pp. 266–275. Springer, Heidelberg (2010)

8. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Thun, M.: Cancer statistics. CA
Cancer J. Clin. 4(59), 225–249 (2009)

9. Liu, C.G., Calin, G.A., Volinia, S., Croce, C.M.: Microrna expression profiling using
microarrays. Nature Protocols 3, 563–578 (2008)

10. Nisbet, R., Elder, J., Miner, G.: Handbook of Statistical Analysis and Data Mining
Applications. Academic Press, London (2009)

11. Pounds, S., Morris, S.W.: Estimating the occurrence of false positives and false
negatives in microarray studies by approximating and partitioning the empirical
distribution of p-values. Bioinformatics 19(10), 1236–1242 (2003),
http://bioinformatics.oxfordjournals.org/

cgi/content/abstract/19/10/1236

12. Schlkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond (Adaptive Computation and Machine Learn-
ing), 1st edn. The MIT Press, Cambridge (2001)

13. Sidransky, D.: Emerging molecular markers of cancer. Nat. Rev. Cancer 2(3), 210–
219 (2002)

14. Tuma, R.S.: Biomarker developers face big hurdles. J. Natl. Cancer Inst. 100(7),
456–461 (2008), http://jnci.oxfordjournals.org

15. Zhu, J., Hastie, T.: Classification of gene microarrays by penalized logistic regres-
sion. Biostat. 5(3), 427–443 (2004)



Automatic Unsupervised Segmentation of Retinal
Vessels Using Self-Organizing Maps

and K-Means Clustering
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Abstract. In this paper an automatic unsupervised method for the segmentation
of retinal vessels is proposed. A Self-Organizing Map is trained on a portion of
the same image that is tested and K-means clustering algorithm is used to divide
the map units in 2 classes. The entire image is again input for the Self-Organizing
Map, and the class of each pixel will be the class of the best matching unit on the
Self-Organizing Map. Finally, the vessel network is post-processed using a hill
climbing strategy on the connected components of the segmented image.

The experimental evaluation on the publicly available DRIVE database shows
accurate extraction of vessels network and a good agreement between our seg-
mentation and the ground truth. The mean accuracy, 0.9459 with a standard de-
viation of 0.0094, is outperforming the manual segmentation rates obtained by
other widely used unsupervised methods. A good kappa value of 0.6562 is inline
with state-of-the-art supervised and unsupervised approaches.

Keywords: Retinal Vessels, Self-Organizing Map, K-means.

1 Introduction

Automatic analysis of retinal vasculature is important in the diagnosis of many eye
pathologies. Once the vessel tree is extracted from retinal images, it is useful not only
for diagnosis purposes, but also in the registration of retinal images. Branching and
crossover points in the vasculature structure are used as landmarks for image registra-
tion. Image registration is needed to integrate information from several images, but also
to observe the progression of diseases over time. Finally, automatically generated vessel
maps have been used to guide the identification of retinal landmarks like the optic disc
and the fovea.

1.1 Related Work

Many different approaches for automated vessel segmentation have been proposed.
Some of them are rule-based methods (those based on vessel tracking ([4]), those based
on matched filter responses ([3], [6]) and other ones are based on mathematical mor-
phology ([14], [22])). The methods listed above are unsupervised.

R. Rizzo and P.J.G. Lisboa (Eds.): CIBB 2010, LNBI 6685, pp. 263–274, 2011.
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In addition to the rule-based methods, supervised methods have also been used for
vessel segmentation. Sinthanayothin et al. in [16] classify pixels using a multilayer
perceptron neural net, for which the inputs were derived from a principal component
analysis (PCA) of the image and edge detection of the first component of PCA. In [15]
a simple feature vector is extracted for each pixel from the green plane and then a K-
nearest neighbor (kNN) is used to distinguish vessel and non-vessel pixels. Another su-
pervised method, called primitive-based method, was proposed in [19]. This algorithm
is based on the extraction of image ridges (expected to coincide with vessel centerlines)
used as primitives for describing linear segments, named line elements. Consequently,
each pixel is assigned to the nearest line element to form image patches and then clas-
sified using a set of features from the corresponding line and image patch. The feature
vectors are classified using a kNN-classifier. The method presented by Soares et al.
in [17] produces also segmentation using a supervised classification. Each image pixel
is classified as vessel or non vessel based on the pixel feature vector, which is composed
of the pixel intensity and two-dimensional Gabor wavelet transform responses taken at
multiple scales. A Gaussian mixture model classifier is then applied to obtain a final
segmentation.

Pixel classification based on supervised methods requires hand-labeled ground truth
images for training. Supervised learning assumes that the training samples are classified
by an expert as either vessel or non-vessel. The operation of classification of pixel
as either vessel or non-vessel is time consuming, as the supervised training process
itself. The lack of experts and the time consuming processes involved in the automatic
supervised methods described in the literature determined us to search for an automatic
unsupervised method for classification of the pixels from a retinal image as vessel or
non-vessel. We found that self-organizing maps combined with K-means for clustering
map units give good results in clustering pixels (especially when the number of classes
is small, like in our case, the number of classes equals to 2) and is also very fast. This
method is attractive also because training is performed on a portion of the same image
we want to segment, hence there is no need to develop a separate training set like in
other supervised or unsupervised methods.

1.2 Dataset

The database we use is one public database: the DRIVE database (Digital Retinal Im-
ages for Vessel Extraction). The photographs for the DRIVE database were obtained
from a diabetic retinopathy screening program in The Netherlands. Each image has
been JPG compressed. The images were acquired using a Canon CR5 non-mydriatic
3CCD camera with a 45 degree field of view (FOV). Each image was captured us-
ing 8 bits per color plane at 768 by 584 pixels. The FOV of each image is circular
with a diameter of approximately 540 pixels. For this database, the images have been
cropped around the FOV. For each image, a mask image is provided that delineates
the FOV. The data set includes 40 584x565 fundus images. We use only the 20 images
from the test set for testing our methodology. All images are available for download at
http://www.isi.uu.nl/Research/Databases/DRIVE/download.php
(the web site of Image Sciences Institute).
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2 Methodology

Recently, we have developed a new supervised method for retinal vessel segmentation
called FABC. The method was based on computing feature vectors for every pixel in
the image and training an AdaBoost classifier with manually labeled images. In ([12]),
the feature vector is a collection of measurements at different scales taken from the
output of filters (the Gaussian and its derivatives up to the 2 order, matched filters and
two-dimensional Gabor wavelet transform responses), from the identification of edge
and ridge pixels and from other local information which are extracted after computing
the Hessian of the image for each pixel. The basic idea is to encode in the feature vector
as well local information (pixel’s intensity, Hessian-based measures), spatial properties
(the gray-level profile of the cross-section of a vessel can be approximated by a Gaus-
sian curve) and structural information (vessels are geometrical structures which can be
seen as tubular). We used an AdaBoost classifier to divide pixels into two classes, i.e.,
vessels and non vessel pixels.

2.1 Pixel Features

Features are extracted from the green plane of the retinal images, because in the green
plane the contrast between vessel and background is higher than in the blue or red
plane. The feature vector consisted of the output of filters (features 1 and 2 in the list
below) plus vesselness and ridgeness measures based on eigen-decomposition of the
Hessian computed at each image pixel (features 3, 4 and 5) and a two-dimensional
Gabor wavelet transform response taken at multiple scales (feature 6 below). Moreover
the feature vector was augmented with the principal curvatures, the mean curvature,
the values of principal directions, but also the value of the gradient and the intensity
value within the green plane of each pixel (features 7 and 8). We give below the list
of components of the feature vector (the computation method of each component is
described better in [12]).

1. The Gaussian and its derivatives up to order 2.
2. The green channel intensity of each pixel.
3. A multiscale matched filter for vessels using a Gaussian vessel profile. ([18])
4. Frangi’s vesselness measure. ([5])
5. Lindeberg’s ridge strengths. ([10])
6. Staal’s ridges. ([19])
7. Two-dimensional Gabor wavelet transform response taken at multiple scales. ([17])
8. Values of the principal curvatures, of the mean curvature, of the principal directions

and of the gradient of the image.

The scales used in order that vessels with various dimensions could be detected were
4:
√

2, 2, 2 ∗ √2 and 4, hence the total number of features is 41.
In order to establish which features play the most important role in the vessel/non-

vessel classification task, we performed a comparative study on feature selection meth-
ods applied as a preprocessing step to the AdaBoost classification. In [11] we presented
five feature selection heuristics designed to evaluate the usefulness of features through
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feature subsets. Experiments showed that the features that seemed to play the most im-
portant discriminatory role, i.e., the ones that were selected by all the heuristics, were
the 2nd-order derivative of the Gaussian in the y direction at scale 2

√
2, the maximum

response of a multiscale matched filter using a Gaussian vessel profile, and the feature
containing information about Staal’s ridges. We use only these 3 features for the feature
vectors used for clustering with self-organizing maps and K-means.

2.2 Self-Organizing Maps and K-Means Clustering

A Self-Organizing Map (SOM) is a neural network that is trained, using unsupervised
learning, to build a map of the input space of the training samples. A new input vector
will be automatically classified using the map built in the training phase. SOM was de-
veloped by Teuvo Kohonen in 1980 [8]. It consists of m neurons organized on a regular
low-dimensional grid. Each neuron i is a d-dimensional weight vector (w1i, ..., wdi)
called prototype vector or codebook vector, where d is equal to the dimension of the in-
put vectors. Usually, before the training phase, the prototype vectors are linearly initial-
ized. It has been suggested by Kohonen et al. [9] to use rectangular (but non quadratic)
maps and the number of neurons of the map is computed as 5 times the square root of
the number of training samples. The SOM is trained on a part of the image (we choose
the training sample as half of the FOV pixels, selected randomly), hence we have around
106800 training pixels. The number of map units is about 5

√
106800 = 1634 neurons.

After the number of map units has been determined, the map size is determined by
setting the ratio between column number and row number of map units equal to the
ratio of two biggest eigenvalues of the training data. The product of the column and
row numbers must be as close to the number of map units as possible. ([20]) Following
these rules, a 86 × 19 map has been used for training.

The SOM training algorithm is based on competitive learning which is a particular
case of neural network unsupervised learning. At each training iteration, a sample vector
x is randomly chosen from the training set. Euclidean distances between x and all the
prototype vectors are computed, in order to find the best matching neuron unit (BMU).
The BMU is selected as the unit that is the nearest to the input vector at an iteration t,
using

‖x(t) − wc(t)‖ = min
i

‖x(t) − wi(t)‖, (1)

where wc is the weight of the winner neuron. After finding the BMU, the prototype
vectors of the BMU and its neighbors are moved closer to the input vector using the
following update rule for a neuron i:

wi(t + 1) = wi(t) + α(t)[x(t) − wi(t)], for i ∈ Nc (2)

wi(t + 1) = wi(t), for i /∈ Nc (3)

where α(t) is the learning rate and Nc is the neighborhood of the winning neuron.
After training the map, clusters may be visualized using the U-matrix (Unified dis-

tance matrix), which represents the distance of the neurons to their adjacent. To inspect
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(a) (b) (c) (d)

(e)

Fig. 1. Clustering of map units using K-means with K=2. a),b),c),d) U-matrix and component
planes. e) Clustered map.

the clustering structure of the map, components plane may be used also. Each compo-
nent plane shows the values of one variable in each map unit. On the U-matrix lighter
regions indicate cluster boundary and darker regions indicate cluster itself. Separating
clusters by visually inspecting the U-matrix is very difficult as we may see in Figure 1.
For this reason K-means clustering algorithm is usually used.



268 C.A. Lupaşcu and D. Tegolo

K-means clustering tries to find a partition that minimizes the sums of squared errors
about the cluster means as described by the equation:

n∑
k=1

∑
x∈qi

‖x − ci‖2, (4)

where n is the number of clusters, ci is the centroid of the i-th cluster qi. It was proved
that SOM and K-means algorithms have the same results when the radius of the neigh-
borhood function in the SOM equals zero [2].

After the neurons from the SOM were classified, the class of a new input pixel will
be the class of its BMU.

We postprocess the segmented images, trying to eliminate small connected compo-
nents in order to remove noisy pixels and to improve in this way the segmentation accu-
racy and the agreement between our segmentation and the ground truth. A hill climbing
strategy was used in order to determine the connected components to be removed from
the segmentation.

If CC = {c1, ..., cn} is the set of n connected components ordered in ascending
order by the number of pixels in the connected component, the algorithm starts with the
set Toberemoved = {c1, c2}. The mean of the cardinalities of the connected compo-
nents included in the set Toberemoved is computed, as well as their standard deviation.
Connected component c3 is added to the set Toberemoved if

|c3| < mean(Toberemoved) + 3std(Toberemoved).

The algorithm stops when a successive connected component from the set CC can not
be added to the set of connected components to be removed.

3 Experimental Results

Performance is given mainly as accuracy and kappa value.
The sensitivity (SE) is computed also, by dividing the number of pixels correctly

classified as vessel pixels (TP) by the total number of vessel pixels in the gold standard
segmentation,

sensitivity =
TP

P
=

TP

TP + FN
,

where FN is the number of pixels incorrectly classified as non-vessel pixels. The speci-
ficity (SP) is computed as the number of pixels correctly classified as non-vessel pixels
(TN) divided by the total number of non-vessel pixels in the gold standard:

specificity =
TN

N
=

TN

FP + TN
.

Here, FP is the number of pixels incorrectly classified as vessel pixels.
An important quality parameter is the accuracy. The accuracy (ACC) for one image

is the fraction of pixels correctly classified

ACC =
TP + TN

P + N
=

TP + TN

TP + FN + FP + TN
.
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Fig. 2. Evolution of kappa values during ten runs for each of the 20 test images

Table 1. Results for the 20 test images from the DRIVE database. SE indicates sensitivity, SP
indicates specificity, ACC indicates the accuracy and Kappa indicates the kappa value.

Image SE SP ACC Kappa
1 82.71 96.47 0.9525 0.7291
2 54.77 99.60 0.9505 0.6671
3 71.08 96.16 0.9367 0.6551
4 51.42 99.66 0.9526 0.6410
5 70.43 97.63 0.9509 0.7012
6 66.77 97.72 0.9472 0.6813
7 74.80 95.38 0.9351 0.6411
8 27.53 99.81 0.9366 0.4015
9 55.00 98.32 0.9482 0.6046

10 74.64 97.03 0.9519 0.6915
11 53.80 99.49 0.9541 0.6537
12 76.08 96.20 0.9447 0.6731
13 71.46 96.75 0.9429 0.6771
14 80.56 94.75 0.9361 0.6347
15 84.30 92.48 0.9190 0.5563
16 77.74 96.61 0.9491 0.7053
17 71.34 96.59 0.9446 0.6541
18 80.54 96.41 0.9516 0.6980
19 87.85 96.17 0.9548 0.7381
20 79.65 97.21 0.9592 0.7194
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Table 2. Overview of the performance of different methods. Kappa indicates the kappa value
and ACC indicates the accuracy.

Segmentation method Drive set

Kappa ACC

FABC (training and test confined to

the dedicated sets from the database)
[12] 0.7200 0.9597 (0.0054)

FABC (leave-one-out tests) [12] - 0.9575

Human observer 0.7589 0.9473 (0.0048)

Soares et al. [17] - 0.9466

SOM and K-means 0.6562 0.9459(0.0094)

Staal et al. [19] 0.7345 0.9442 (0.0065)

Niemeijer et al. [15] 0.7145 0.9416 (0.0065)

Zana et al. [22] 0.6971 0.9377 (0.0077)

Al-Diri et al. [1] 0.6716 0.9258 (0.0126)

Jiang et al. [7] 0.6399 0.9212 (0.0076)

Martinez et al. [13] 0.6389 0.9181 (0.0240)

Chaudhuri et al. [3] 0.3357 0.8773 (0.0232)

All background 0 0.8727 (0.0123)

We compute also the kappa value (a measure for observer agreement, where the two
observers are the gold standard and the segmentation method)

kappa =
P (A) − P (E)

1 − P (E)
,

where P (A) = TP+TN
P+N

is the proportion of times the 2 observers agree, while P (E) =
TP+FP

P+N ∗ TP+FN
P+N + (1 − TP+FP

P+N )(1 − TP+FN
P+N ) is the proportion of times the 2

observers are expected to agree by chance alone.
As the training samples are selected randomly, we performed ten runs for each of

the 20 test images from the database (Figure 2). We noticed that kappa values are vari-
able, because of the randomness of the training samples. Hence, we produced a soft
classification by summing the ten images resulted in the ten runs. After that a hard
classification is obtained by thresholding (at half of the maximum gray level).

In Table 1 we see the results for the 20 test images from the DRIVE database.

(a) soft classification (b) our segmentation (c) ground truth

Fig. 3. Best segmentation in terms of ACC (Image 20 test.tif from DRIVE database)
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(a) soft classification (b) our segmentation (c) ground truth

Fig. 4. Worst segmentation in terms of ACC (Image 15 test.tif from DRIVE database)

(a) soft classification (b) our segmentation (c) ground truth

Fig. 5. Best segmentation in terms of Kappa value (Image 19 test.tif from DRIVE database)

(a) soft classification (b) our segmentation (c) ground truth

Fig. 6. Worst segmentation in terms of Kappa value (Image 08 test.tif from DRIVE database)
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4 Conclusions

We have presented an automatic unsupervised method for retinal vessel segmenta-
tion based on Self-Organizing Maps and K-means clustering. The choice to use Self-
Organizing Maps instead of a simple K-means is based upon the fact that a SOM
provides a direct means to visualize relations among different clusters (represented by
the prototype vectors in the input space and by the map’s neurons in the output space).
Moreover, a prototype vector of the SOM is adjusted according to not only the data
points that are associated with it, but also to data points that are assigned to other pro-
totype vectors, hence the results of clustering the prototype vectors are more accurate
than clustering directly the data points.

Overall the 20 test images, the mean accuracy is 0.9459 with a standard deviation of
0.0094. The mean Kappa value is 0.6562. As we may see also from [21] and Table 2, the
mean ACC of our proposed method outperforms the mean ACC of any of unsupervised
methods used for comparison. In Figures 3 and 4 we show the best and the worst seg-
mentation in terms of accuracy produced by our method, together with their respective
ground truths. In the same time, in Figure 5 and 6 we may see the best and the worst
result in terms of agreement between our automatic segmentation and the observer’s
manual segmentation. The worst result is obtained on a pathological image and as in
[21], the proposed method enhances all region-of-interest, i.e. both vessel network and
pathological findings in the soft classification. This effect is desired in computer-aided
diagnosis tools.

The method we used have the advantage that it uses knowledge about the vessel
network morphology like the most accurate supervised methods, but is completely un-
supervised as we do not have any a priori knowledge about the labels of the pixels we
want to classify as vessel or non-vessel. Another advantage of the proposed method is
its fast computational time, compared to supervised methods which are computationally
more expensive.

Although the vessel network produced before the post-processing in most cases was
acceptable, post-processing methods removed efficiently false positives and improved
the accuracy.

In the future we aim to extend this work and to conduct a qualitative analysis of
the improvements that the post-processing step brought to the initial vessel map. In the
same time, using sampling techniques, we would like to analyze how does the size of
the sample used for training the SOM influences the results. We would like to study
also the influence on the results of the choice of some parameters of the SOM map
(like the number of iterations, the size of the initial radius of the neighborhood and
the choice of distance measure). Finally, we would like to compare the performances
of the SOM combined with K-means with the performances of simple K-means and
fuzzy C-means with the goal to prove that SOM combined with K-means is a better
choice.



Automatic Unsupervised Segmentation of Retinal Vessels 273

References

1. Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring
retinal vessels. IEEE Transactions on Medical Imaging 28(9), 1488–1497 (2009)

2. Bodt, E.d., Verleysen, M., Cottrell, M.: Kohonen maps versus vector quantization for data
analysis. In ESANN 1997, Bruges (1997)

3. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood ves-
sels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical
Imaging 8(3), 263–269 (1989)

4. Chutatape, O., Zheng, L., Krishnan, S.M.: Retinal blood vessel detection and tracking by
matched gaussian and kalman filters. In: Proceeding of IEEE Int. Conf. Emg. and Bio. Soci-
ety, vol. 20(6), pp. 3144–3149 (1998)

5. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhance-
ment filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS,
vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

6. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by
piece-wise threshold probing of a matched filter response. IEEE Transactions on Medical
Imaging 19(3), 203–210 (2000)

7. Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold prob-
ing with application to vessel detection in retinal images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 25(1), 131–137 (2003)

8. Kohonen, T.: Self-organization and associative memory. Springer, Berlin (1989)
9. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: Som pak: The self-organizing map

program package. Report A31, Helsinki University of Technology, Laboratory of Computer
and Information Science (January 1996)

10. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J.
Comp. Vis. 30, 117–156 (1998)
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Abstract. With the recent advances in microarray technology, the expression
levels of genes with respect to samples can be monitored over a series of time
points. Such three-dimensional microarray data, termed gene-sample-time (GST)
microarray data, are gene expression matrices measured as a time-series. They
have not yet received considerable attention, and analysis methods need to be
devised specifically to tackle the complexity of GST datasets. We propose meth-
ods that are based on tensor decomposition for the sample classification. We use
tensor decomposition in order to extract discriminative features as well as mul-
tilinearly reducing high dimensionality. We then classify the test samples in the
reduced spaces. We have tested and compared our approaches on a real GST
dataset. We show that our methods are at least comparable in prediction accuracy
to recent methods devised for GST data. Most importantly, our methods run much
faster than current approaches.

Keywords: Gene-Sample-Time Data, Tensor Decomposition, HOSVD, HOOI,
HONMF.

1 Introduction

DNA microarray technology can monitor thousands of genes in parallel, dramatically
accelerating molecular biology experiments and providing a huge amount of data to
find co-regulated genes, functions of genes, genetic networks, and marker genes, for
instance. There are two types of microarray data: gene-sample data sets, which compile
the expression levels of various genes over a set of biological samples; and gene-time
data sets, which record the expression levels of various genes over a series of time-
points. Both types of data are represented by a two-dimensional (2D) gene expression
matrix, where genes correspond to rows in the matrix and each matrix entry contains
the expression level of a given gene for some sample or at certain time-point. The gene-
sample data are static data, while the gene-time data are dynamic data. The gene-sample
data are typically analyzed in clinical research, while the gene-time data are usually
obtained to investigate the gene regulations. Since genes regulations and expressions
are temporally different, and a snap-shot is insufficient to capture the activities of genes,
which may lead some false discovery when using this sort of static data.
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Within the last few years in medical research, the expression levels of genes with
respect to biological samples have been monitored over a series of time-points [1]. At
each time point, the genes activities of each sample are are captured as a snap-short.
This corresponds to a three-dimensional (3D) data set, termed gene-sample-time (GST)
microarray data [2]; which can be viewed as a collection of gene-sample data over a
series of time-points, or a collection of gene-time data across some samples.

GST data can be used to develop models to diagnose diseases much more precisely
than with static microarray data, or to monitor dose or drug treatment responses of
patients over time in pharmacogenomics studies [3], or to determine genes or samples
patterns, or to find regulatory pathways [2]. There are many problems associated with
the analysis of GST data. Genes or samples may contain missing values at some time
points. The expression measurements may contain noise due to technical issues in the
measuring process. The expressions of large number of genes are measured from a
small number of samples across a small set of time points. Unlike in two-dimensional
microarrays, a gene or sample in a GST array is a matrix rather than a vector, and
therefore GST data require special methods for its analysis. Computational analysis of
GST data are therefore much more difficult than their two-dimensional counterparts.
All these problems, among many other problems, substantially affect the effectiveness
and efficiency of analysis algorithms devised for GST data.

In multilinear algebra, a tensor of order d [4] is d-dimensional array, and tensor al-
gebra is the extension of vector and matrix algebra to order d tensors. In this sense, a
vector an order-1 tensor; and a matrix is of order 2. Since a GST microarray data is
naturally an order-3 tensor, therefore, known theories and operations from tensor al-
gebra can be of benefit and used directly to analyze such data rather than performing
matrix operations on a matricized representation of the GST data (as it is currently done
in literature, see [5]). Fig. 1 shows an example of such GST data. As far as we know,
this paper is the first attempt at using tensor methods for analyzing GST data. Our ap-
proach is to perform multilinear dimensionality reduction methods in order to extract a
small sets of discriminative features from the initial GST data, and then perform sam-
ple classification in the reduced space. We use tensor decomposition approaches in the
dimensionality reduction phase of the GST data classification.

Tensor decomposition is an extension of matrix factorization to tensor data and at-
tempt to find a smaller representation describing the initial tensor data. Matrix factoriza-
tion methods such as, singular value decomposition (SVD) [6], independent component
analysis (ICA) [7], non-negative matrix factorization (NMF) [8] have been extended to
tensor data, such as higher-order SVD (HOSVD) [9], multilinear ICA (MICA) [10], and
higher-order NMF (HONMF) [11]. Uncorrelated features can be generated by SVD,
while independent features with non-Gaussianity can be extracted by ICA. NMF aims
to extract non-negative and independent features. These three matrix decomposition
methods are well-known linear dimensionality reduction methods that have been ap-
plied successfully to the analysis of two-dimensional (2D) microarray data [12,13,14].
Inspired by these methods for 2D data, in this paper, we devise approaches based on
tensor decomposition methods to classify GST microarray sample data.

This paper is organized as follows. In section 2, we survey currently known methods
for GST data classification. Tensor-decomposition-based analysis in other fields is also



Classification of Gene-Sample-Time Data 277

Fig. 1. An Example of a GST Dataset. This example shows that the GST data can be represented
by a tensor. This example contains 4 genes, 4 samples, and 8 time points. The number of genes
in real data is much larger than the number of samples time points.

reviewed. Our approaches are described in section 3. Section 4 shows our computational
experiment results.

2 Related Works

Ref. [15] proposed an integrated Bayesian inference system (IBIS) to select triplets of
genes for classifying INFβ samples (a GST microarray data) but using only the first
time point, and thus did not benefit from (nor consider) the full GST data. Ref. [3]
used support vector machines based on dynamical systems kernels (denoted by dsSVM
in this paper) to classify INFβ samples. Since each GST data sample is represented
by a matrix, it is not appropriate to use the kernels which take vectorial inputs, such
as, the radial basis functions (rbf). Dynamical systems kernels accept matrix inputs
and take into account the temporal information. Ref. [16] devised generative hidden
Markov models (GenHMMs) and discriminative HMMs (DiscHMMs) approaches for
classifying INFβ samples. Samples from the same class are used to train a GenHMM
whereas samples from all classes are used to train a DiscHMM, for each class, then a test
sample is assigned to a class based on maximum conditional likelihood. Baum-Welch
algorithm is used to estimate the parameters of the models. For DiscHMMs, backward
gene selection method is first performed to find a small number of discriminative genes
before training the models.

[17] propose a robust constrained mixture estimation approach to classify the INFβ
data. This approach combines the constrained clustering method with a mixture esti-
mation classification framework. Subdivision of classes and mislabeled samples can be
investigated by this approach. During training, negative constraints were restricted on
pairs of samples. The constrained mixture model, with linear HMMs, as components, is
optimized by an EM algorithm. The supervised version of this approach (HMMConst)
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only uses training set in the estimation of parameters, while the semi-supervised ver-
sion (HMMConstAll) uses all data. The emission probability for each state is modeled
by mixtures of multivariate Gaussians for patient expression values, noise, and miss-
ing values, respectively. In order to select genes contribute to classification, a HMMs
based gene ranking method is used. Each component of the mixture model is assigned
to a class. When testing, a test sample is assigned to a class according to the maximum
entry in their posterior distribution.

Ref. [18] applied HOSVD on an order-5 tensor data for face recognition. In the
training phase, a basis tensor for a certain view, illumination, and expression is ob-
tained through HOSVD and then matricized to a basis matrix in order to obtain vector
of each training sample. In the testing, the coefficient vector of a testing sample is ob-
tained through a linear projection approach using the basis matrix. A 1-nearest neighbor
(1-NN) classifier is used to determine the class labels of the testing samples. It is not
clear in the original paper that if L1 or L2 distance is used by the classifier. Ref. [19]
used HOSVD to analyze the integration of DNA microarray data from different studies.
They create a tensor data of order 3 by combining three gene time-series microarray
datasets from yeast cell-cycles, and then decompose the tensor by HOSVD. The result-
ing core tensor obtained from the decomposition contains the significant features repre-
senting important biological experimental phenomena. Ref. [20] devised two different
approaches based on HOSVD decomposition to classify a dataset of handwritten digits
represented as a tensor data of order 3. HOSVD is used to extract small feature sets
that explained the original data but the methods differ in how the core basis tensors are
obtained (i.e., either from each class separately, or from the whole data) and in how the
class of a test sample is predicted (i.e, either by regression or by projection). Ref. [10]
generalized ICA to MICA, and used it for extracting features to be used in face recog-
nition. Initially, facial images are vectorized then represented as tensor data of order 3.
MICA is employed to decompose this tensor into factors containing important facial
features. A test sample is then multilinearly (rather than linearly, as in [18]) projected
into the space spanned by the obtained core basis tensor and a nearest-neighbor clas-
sifier using cosine similarity measure employed to predict the class of the test sample.
Ref. [21] also applied MICA decomposition to classify integrated tumor gene expres-
sion data from different studies. Their working order-3 tensor is a combination of three
gene-sample tumors datasets. Two core basis tensors are obtained via MICA decom-
position, separately over training samples and test samples. A SVM classifier is then
trained on the matricized version of the core tensor obtained from the training sample
and validated using the core tensor generated from the test data.

3 Methods

Hereafter, we use the following notations unless otherwise noted:

– A matrix is denoted by a bold capital letter, e.g. A.
– A (column) vector is denoted by a bold lowercase letter, e.g. a.
– A bold lowercase letter with a subscript ai denotes the i-th column vector in matrix

A.



Classification of Gene-Sample-Time Data 279

– The italic lowercase letter with two subscripts aij is the (i, j)-th scalar element of
matrix A.

– A boldface Euler script, e.g. X, denotes an order-3 tensor. That is X ∈ R
I×J×K .

– X(1)p denotes the p-th frontal slice of X, of size I × J .
– X(n) denotes the matrix obtained through the mode-n matricization of the tensor

X. Columns of X(n) are the mode-n fibers of tensor X. A mode-n fiber is a vector
defined through fixing every index but the nth index. This is the extension of matrix
row and column in tensor algebra. X(1) therefore denotes the matrix of size I×JK ,
unfolded in mode-1 of X, that is X(1) = [X(1)1, X(1)2, · · · , X(1)K ]. See Fig. 2
as an example.

– The (i, j, k)-th scalar element of X is denoted by xijk .

Fig. 2. The Mode-1 Matricization of the Order-3 Tensor in Fig. 1. The tensor is of size 4 × 8 ×
4. The unfolded matrix, in mode 1, is of size 4 × 32.

Also, A ⊗ B denotes the Kronecker tensor product [4] of matrices A and B.
The mode n product of a tensor X and a matrix A, written as X ×n A, is:

X ×n A =
In∑

in=1

xi1i2···iN ajin , (1)

where X ∈ R
I1×I2×···×IN and A ∈ R

J×In . This results in a tensor
Y ∈ R

I1×···In−1×J×In+1×···×IN .
X can be matricized into matrices in different modes. For example,

X(1) = [X(1)1, X(1)2, · · · , X(1)K ] is matricized in the first mode (see Fig. 2).
Tensor decomposition methods mainly include PARAFAC and Tucker decomposi-

tions [4]. Tucker3 is the most well-known among the Tucker decompositions and fac-
torizes a tensor X into a core tensor C and 3 mode matrices G, T , and S as follows:

X ≈ C ×1 G ×2 T ×3 S =
P∑

p=1

Q∑
q=1

R∑
r=1

cpqrgp ◦ tq ◦ sr = �C; G, T , S� . (2)

The decomposition is illustrated in Fig. 3. In light of Eq. 2, it is clear that an element of
core tensor C indicates the degree of interaction among the corresponding mode vectors
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Fig. 3. Tucker3 Decomposition

from different mode matrices. For instance, cpqr reflects the interaction between gp, tq,
and sr.

Generally speaking, there are no constraints on the core tensor and mode matrices
in Tucker3 decomposition. However, constraints such as orthogonality, non-negativity,
and non-Gaussianity can be enforced by the decomposition algorithm. For instance,
HOSVD enforces the orthogonality constraints on the mode matrices and is among
the most popular Tucker3 algorithms. It calculates the left singular matrices for differ-
ent matrices in different modes as factors. The core tensor is obtained through C =
X ×1 GT ×2 T T ×3 ST . Interested readers can refer to [9] for more details. Higher-
order orthogonal iterations (HOOI) is an alternating least squares (ALS) algorithm
initialized by HOSVD which give better decomposition than HOSVD itself (see [22]
and [4] for details). HOOI also generates orthogonal mode matrices. HONMF imposes
non-negativity constraints on the core tensor and mode matrices. Multiplicative updates
rules corresponding to core and mode matrices are extended by [11] and inspired by
NMF [8]. The core tensor and mode matrices are alternatively updated until the con-
vergence criteria are met. Ref. [8] have observed that good interpretation and learning
performance can be benefited by adding non-negativity and sparsity constraints on ma-
trix factorization. Even though the sparsity can be imposed and controlled, sparsity is
sometimes a by-product of non-negativity constrained matrix (maybe tensor also) fac-
torization without explicit sparsity constraint.

Next, we describe our unsupervised dimension reduction approaches based on
HOSVD, HOOI, and HONMF. Linear dimension reduction (LDR) [23] techniques have
received considerable attention for decades. A few new features can be extracted by
LDR methods to capture useful information for specific analysis. Each of the new fea-
ture is a linear combination of the original features. A transformation matrix projects
the original samples into a new space, termed feature space. A sample in the feature
space is a representation of the corresponding original sample. Take NMF for example,
a non-negative training set X train with m genes and p samples of a gene-sample data
can be decomposed into non-negative basis matrix Atrain and non-negative coefficient
matrix Y train, that is

X train
m×p ≈ Atrain

m×rY
train
r×p, X train, Atrain, Y train ≥ 0 . (3)

each column of Y train is a representation of the corresponding original sample in the
feature space spanned by columns of Atrain. In the feature space, a new feature is a linear
combination of the original p genes. A sample in the original sample can be mapped
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into the feature space by the transformation matrix (Atrain)T . The feature space has
much less dimensions than the original space, which solves the curse of dimensionality.
LDR methods extends into multilinear dimension reduction (MLDR) methods in tensor
algebra. Let X be a training set, from a GST dataset, with I genes, J time points, and
K samples. Through The Tucker3 model defined in Eq. 2, we can obtain

X ≈ B ×3 S = �B; IG, IT , S� , (4)

where B = C ×1 G ×2 T , IG and IT are identity matrices of sizes I × I and J × J ,
respectively.

Making use of multilinear operations, we have

X(1) ≈ IGB(1)(S ⊗ IT )T

= IG[B1, B2, · · · , BR][s1 ⊗ IT , s2 ⊗ IT , · · · , sR ⊗ IT ]T

=
R∑

r=1

IGBr(sr ⊗ IT )T , (5)

where Br = B(:, :, r) is the r-th frontal slice of B(:, :, r), and sr is the r-th column
vector of S. Via tensorization, we have

X ≈
R∑

r=1

Br ×3 sr , (6)

which approximates the GST data, X, by the summation of R tensors. More clearly,

X(1) ≈ IGB(1)(S ⊗ IT )T

= [B1, B2, · · · , BR]

⎡
⎢⎣

s11IT · · · sk1IT

...
...

...
s1RIT · · · skRIT

⎤
⎥⎦ . (7)

Thus k-th frontal slice of X, that is, the k-th sample, can be fitted by the summation of
the frontal slices of B:

X(1)k ≈
R∑

i=1

Brskr , (8)

where the coefficients are in the k-th row of S.
Thus, B is the basis matrix for the samples and S is the encoding matrix. We can

define the matrix space spanned by B feature space, and sk the representation of the
k-th sample in the feature space. In the sense of feature extraction, these matrix slices
of B are the features. This reduces the original sample slice to a vector sk in the feature
space. Additionally, it is noted that C ×2 T ×3 S and C ×1 G ×3 S are the basis
matrices for the genes and time points, respectively. If the training set is decomposed
by HONMF, the extracted non-negative features would be interpretable, and a sample
will be an additive summation of the features.
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In the test phase, each test sample Y l is projected into the feature space. Y l is a
linear combination of the basis matrices in B:

Y l =
R∑

r=1

Brαr , (9)

where α = [α1, α2, · · · , αR]T is the representation of Y l in the feature space. Finding
α is equivalent to solve the following generalized least squares problem:

min
α

‖Y l −
R∑

r=1

Brαr‖2
F , (10)

where ‖ • ‖F is Frobenius norm of a matrix. The general solution to this problem is
αr = <Y l,Br>

<Br ,Br>
[24], where < •, • > is the inner product of two matrices. For different

test samples, we put α’s in the corresponding rows of a coefficient matrix A. The above
HOSVD, HOOI, and HONMF based unsupervised MLDR methods are referred to as
uHOSVDls, uHOOIls, and uHONMFls.

Alternatively, given the test samples Y, we can fix C, G, and T to calculate the
coefficient matrix A of Y. We need to find A that satisfies

Y ≈ C ×1 G ×2 T ×3 A . (11)

For HOSVD and HOOI, the mode matrices are orthogonal and A is the R leading left
singular vectors of Z(3). Z(3) is matricized from Z which is calculated by the following
equation:

Z = Y ×1 GT ×2 T T . (12)

For HONMF, the constraint on the mode matrices is non-negativity rather than orthog-
onality. Instead of solving the non-negativity constrained equation similar to Eq. 12,
A can be rapidly obtained using the update rules of the HONMF algorithm. We can
iteratively only update A, while keeping C, G, and T constant. If this method is used
for HONMF and Eq. 12 is used for HOSVD and HOOI, then the resulting algorithms
are denoted by uHONMFtf, uHOSVDtf, and uHOOItf, respectively.

Once A is obtained, we do not need to learn on the training samples and classify the
test samples represented by the matrices. Instead, any classifier can be trained on S and
classify the rows of A. That is the classification is conducted in the feature space.

The decomposition methods described above are unsupervised dimensionality re-
duction techniques but they can be modified to perform in a supervised manner, i.e.
such that class information is taken into account during decomposition. Let m be the
number of distinct class labels in the data. The idea is to first partition the training set
into m subsets X1, X2, · · · , Xm, where each subset Xi contains only samples of class
i. Next, m core tensors B1, B2, · · · , Bm are obtained through decomposition using
Eq. 4. The resulting basis matrices are then normalized using the Frobenius norm. For a
normalized test sample, we fit it using these basis tensors, respectively, through Eq. 10.
This sample is assigned to the class where the minimal fitting residual is obtained. For
simplicity, we denote the supervised version of HOSVD, HOOI, and HONMF based
classification methods by sHOSVD, sHOOI, sHONMF. This supervised decomposition
approach is described in [20] for hand written recognition using HOSVD.
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4 Experiments

We used our approaches to predict good or bad responders to Interferon beta (INFβ)
treatments. INFβ is a protein used for treating patients afflicted with multiple-sclerosis
(MS), among other diseases. Some MS patients who received INFβ therapy do not
respond well to the drug and the reasons are still not clear [1]. Medical researchers
are seeking reasons at the levels biological molecules. Baranzini et al. [15], among
others researchers, applied Bayesian learning methods on a clinical microarray dataset
to determine pairs or triplets of genes that can discriminate between bad and good INFβ
responders. This dataset is online available as the supplemental material of [15]. The
initial dataset is a GST data sampled from 53 MS patients who were initially treated
with equal dose of INFβ over a time period. This initial dataset contains the expression
measurements for 76 genes at 7 time points (0, 3, 6, 9, 12, 18 and 24 months) for each
patient, with 31 patients responding well and the remaining 22 responding bad to the
treatment. This dataset contains genes with missing expression measurements at some
time points. Those genes and corresponding samples were removed from our analysis,
and hence, the resulting ”complete” data contains 53 genes and 27 samples (18 good
responders and 9 bad responders).

We implemented our tensor-based approaches using Matlab, applied them to the
INFβ data, and compared them with rbfSVM, dsSVM, GenHMMs, and DiscHMMs ap-
proaches (described in the related work section). rbfSVM is the method that vectorized
samples are classified by SVM classifier using rbf kernel function. Our implementa-
tion is based on The N-way toolbox for MATLAB [25] and Algorithms for SN-TUCKER
(Higher-Order Non-Negative Matrix Factorization) [11] [26]. We used k-nearest neigh-
bor classifier with Euclidean distance in the classification phase of our unsupervised
methods. Training with 9-fold cross-validation is employed. All our methods are per-
formed for 20 runs, and the means and standard deviations of specificity, sensitivity,
and accuracy are reported in Table 1. Specificity is the prediction accuracy of the good
responders, while sensitivity is that of the bad responders. The parameter of rbfSVM is
the value of λ in the rbf function. The first parameter of dsSVM is the number of hidden
states, and the second one is the parameter of the dynamical systems kernel function.
The parameter for GenHMMs and DiscHMMs is the number of selected genes; absence
of such parameter means gene selection is not used. The parameter of the tensor decom-
position based approaches are rank-(P, Q, R) and grid search is performed to find the
values of P , Q, R that give best classification performance.

As show in Table 1, uHONMFtf obtains the highest mean prediction accuracy
(0.8148). This is significantly better than dsSVM, GenHMMs, and DiscHMMs without
and with gene selection (0.7593 and 0.7611, respectively). uHOSVDls, uHOOIls, and
uHOOItf obtains similar accuracies which are competitive with dsSVM, GenHMMs,
and DiscHMMs. This means that the tensor-decomposition based unsupervised meth-
ods can capture the discriminative information. The poor result of rbfSVM implies
that vectorizing GST samples makes the temporal information lost, and therefore the
powerful pattern recognition methods for 2D data may not appropriate for tensor data.
uHONMFtf outperforms the HOSVD and HOOI based methods due to non-negativity.
The reasons why uHONMFls and uHOOItf do not performed well needs further inves-
tigation. The supervised sHOSVD, sHOOI and sHONMF did not achieve good results.
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Table 1. Comparison of Classification Performance on Complete INF-Beta Data

Methods Param. Specificity Sensitivity Accuracy
rbfSVM 1 1.000±0.000 0.000±0.000 0.667±0.000
dsSVM 1,5 0.972±0.082 0.422±0.013 0.789±0.023

GenHMMs - 0.8611±0.036 0.5556±0.000 0.7593±0.044
DiscHMMs - 0.8611±0.036 0.5556±0.000 0.7593±0.044
GenHMMs 7 0.8611±0.063 0.5611±0.008 0.7611±0.047
DiscHMMs 7 0.8611±0.063 0.5611±0.008 0.7611±0.047
uHOSVDls 7,3,3 0.8389±0.039 0.5944±0.020 0.7574±0.050
uHOOIls 4,3,10 0.9000±0.031 0.5000±0.012 0.7667±0.035

uHONMFls 3,5,3 0.8972±0.079 0.3056±0.034 0.7000±0.052
uHOSVDtf 4,2,3 0.7639±0.053 0.5500±0.041 0.6926±0.046
uHOOItf 3,7,3 0.8111±0.048 0.6611±0.055 0.7611±0.050

uHONMFtf 3,5,3 0.7889±0.029 0.8667±0.154 0.8148±0.040
sHOSVD 4,3,8 0.8306±0.054 0.6333±0.012 0.7648±0.044
sHOOI 3,4,4 0.7611±0.045 0.6667±0.000 0.7296±0.039

sHONMF 3,4,6 0.9583±0.110 0.0056±0.069 0.6407±0.075

This may be because the same parameter is used when learning from the training sub-
sets of good responders and bad responders, separately. Different classes should have
different structures, which requires different parameters, however, it is expensive to
search the best parameters corresponding to different classes.

The multi-dimensional reduction techniques are able to dramatically reduce the di-
mension of the original dataset and transform the sample matrices into new ”equivalent”
short vectors which are used for classification. In uHONMFtf for example, a 53 by 7
test sample can be represented by a vector of size 1 by 3 in the new feature space; thus
reducing the data by 99.19% while preserving discriminative information.

In order to compare our proposed methods with dsSVM, GenHMMs and DiscHMMs
in time complexity, the execution times (in seconds) are recorded for each method. Ta-
ble 2 shows the time results. The number of selected genes is parameterized to 7 for Dis-
cHMMs. The tensor decomposition based approaches use the same parameter (3, 5, 3).
It can be seen that the tensor based methods, in particular HOSVD and HOOI methods,
are much faster than the HMMs based method while giving at least comparable classifi-
cation results. The uHOSVDls and uHOOIls methods run much faster than the dsSVM
methods.

Table 2. Comparison of Running Time on Complete INF-Beta Data

Methods dsSVM DiscHMMs uHOSVDls uHOOIls uHONMFtf
Time (s.) 93.474 2.117 × 103 1.321 1.057 1.662 × 103

5 Conclusion

Methods devised specifically for the analysis of GST data will be very useful in the
near future, as many recent clinical and biological data are given in the form of tensor
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data of order 3 or more. In this regards, we have implemented a number of tensor-based
methods for classifying sample GST data from INFβ dataset. We have shown that our
approaches are faster and still comparable in classification performances to three recent
methods developed for analyzing the same dataset. Our methods should be also suitable
for other types of microarray data which are represented by tensors. More research need
to be done, however, to test the scalability proposed approach on more real data, to
improve the classification performances of the tensor-based methods, and in particular
to devise methods that can deal with missing values. We also plan to investigate gene
selection methods such as gene-pairs or gene-triplets search algorithms for bio-marker
selection. Beside classification, bi-clustering and tri-clustering approaches for GST data
will be studied for determining pattern of genes or samples given certain doses (in dose-
response GST data) or time intervals (in drug-response GST data).
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