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Preface

The crisis happened in the world in the last few years, describing a whole of
interdependencies and interactions, highlighted fundamental flaws of neoclassical
economic theory: its unedifying focus on prediction and, above all, its inability to
explain how the economy really works. The reductionist approach, applied by this
theory, too often overlooks the dependencies or interconnections among elements
and their influence upon macroeconomic behaviour. Its focus is not to study the
unfolding of the patterns its agents create, but rather to simplify its questions in
order to make it easy and seek closed. These principles, imposed by the Cartesian
paradigm of simplification, have created a separation between reality and its
formal representation.

Economic scientists relying on seeing the social system as a static system-with
linear relationships, equilibrium, and connections that fit relatively simple equa-
tions have to turn to new economic theories in order to understand how the
economy really works and how governments might manage the economic system
more effectively.

One of fundamental assumptions of many economic models is that the system is
in equilibrium or at least, if disturbed, has a tendency to move back. Now, if we
assume equilibrium, as essential status of an economy, we place a very strong filter
on what we can see in it. Under equilibrium there is no improvement or further
adjustment, no exploration, no creation, so anything in the economy that takes
adjustment—adaptation, innovation, structural change, history itself—must be
bypassed or dropped (Arthur 2013). The result may be a beautiful structure, but it
is one that lacks authenticity, aliveness, and creation. Economics is viewed as a
discipline that is mainly concerned with ‘‘simplistic’’ theorizing, centred upon
constrained optimization. As such, it is ahistorical and it does not deal with eco-
nomic processes.

A more natural picture of our economic system rather seems to be that of a
complex dynamical system with many nonlinearly interacting components. So it is
time to explore new ways of managing our economy, oriented at evolution and
change rather than only at pursuit of competition, efficiency, and growth.

Economies are complex systems composed of a large number of interacting
components and of the relationships between them. The goal of complex systems
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research is to explain, in a multidisciplinary way, how complex and adaptive
behaviour can arise in systems composed of large numbers of relatively simple
components, with no central control and with complicated interactions. Not more
aggregate reduced to the analysis of a single, representative, individual agent
ignoring by construction any form of heterogeneity and interaction, but the
aggregate emerging from the local interactions of heterogeneity agents.

The Complexity Theory challenges these fundamental orthodox assumptions
and seeks to move beyond market transactions, static equilibrium analysis and
homo oeconomicus, emphasising the power of networks, feedback mechanisms,
and the heterogeneity of individual. Not more by simplifying, linearizing and
dividing, but observing the relevance of interrelationships among the components
of systems—as well as their relationships with the environment and vice versa—in
determining collective behaviours.

This approach is not just an extension of standard economics, nor does it consist
of adding agent-based behaviour to standard models. It is a different way of seeing
the economy. It gives a different view, one where actions and strategies constantly
evolve, where time becomes important, where structures constantly form and
reform, itself where phenomena appear not visible to standard equilibrium anal-
ysis, and where a meso-layer between the micro and the macro becomes important.

Complexity theory describes how people and organizations respond to the
chaos around them. Within complexity theory, chaos does not mean disarray or
being out of order; rather, it means order emerging. In fact, chaos means order with
no predictability. Events appear to be random; hence, confusion is erroneously
inferred.

Other than chaos its main concepts include emergence, adaptation, self-
organization, patterns, agents, networks, wholeness, and interdependent interactions
among divergent yet connected parts. Other concepts include learning and memory,
change and evolution, surrounding environments, relationships between entities,
internal system substructures, and holism and synergy (Manson 2001).

This book starts from the premise that there is a lot wrong with conventional
economics and that insights from new economic thinking need to be taken
seriously.

It focusing the attention on innovative components of Complexity Theory in
economics, results from the idea to investigate economic phenomena not as
derived from deterministic, predictable, and mechanistic dynamics, but as history-
dependent, organic, and always evolving processes.

The volume by exploring such perspectives, with an emphasis on the more
recent view of what Economic Complexity is, contains papers regarding meth-
odological, theoretical and applied aspects of various research fields such as
Non-linear Dynamics, Chaos Theory, Network Theory, Fractal Analysis, Neural
Network.

By casting light on a variety of topics in the field, it will provide an ideal
platform for researchers wishing to deepen their understanding and identify areas
for further investigation.

vi Preface



The contributions offer a set of tools and techniques of a cutting-edge research
that is highlighting the potential of complexity approach in economic fields by
overcoming the limitations of last researches, offering new insights, to bring
together into a coherent picture of the different light that are lighted in science so
any researcher can observe them and deepen them.

Marisa Faggini
Anna Parziale
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Chapter 1
Applications of Methods and Algorithms
of Nonlinear Dynamics in Economics
and Finance

Abdol S. Soofi, Andreas Galka, Zhe Li, Yuqin Zhang and Xiaofeng Hui

Abstract The traditional financial econometric studies presume the underlying data
generating processes (DGP) of the time series observations to be linear and stochastic.
These assumptions were taken face value for a long time; however, recent advances
in dynamical systems theory and algorithms have enabled researchers to observe
complicated dynamics of time series data, and test for validity of these assumptions.
These developments include theory of time delay embedding and state space recon-
struction of the dynamical system from a scalar time series, methods in detecting
chaotic dynamics by computation of invariants such as Lyapunov exponents and cor-
relation dimension, surrogate data analysis as well as the other methods of testing
for nonlinearity, and mutual prediction as a method of testing for synchronization
of oscillating systems. In this chapter, we will discuss the methods, and review the
empirical results of the studies the authors of this chapter have undertaken over
the last decade and half. Given the methodological and computational advances
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2 A. S. Soofi et al.

of the recent decades, the authors of this chapter have explored the possibility of
detecting nonlinear, deterministic dynamics in the data generating processes of the
financial time series that were examined. We have conjectured that the presence of
nonlinear deterministic dynamics may have been blurred by strong noise in the time
series, which could give the appearance of the randomness of the series. Accord-
ingly, by using methods of nonlinear dynamics, we have aimed to tackle a set of
lingering problems that the traditional linear, stochastic time series approaches to
financial econometrics were unable to address successfully. We believe our methods
have successfully addressed some, if not all, such lingering issues. We present our
methods and empirical results of many of our studies in this chapter.

Keywords Nonlinear deterministic dynamics · Financial integration · Nonlinear
prediction · Synchronization of stock markets · Correlation dimension · Time-delay
embedding

Introduction

The traditional empirical financial and economic studies presume the underlying data
generating processes (DGP) of the time series observations to be linear and stochas-
tic. However, recent advances in statistical physics, probability theory, and ergodic
theory, which are summarized under the rubric of dynamical systems theory and
algorithms have enabled researchers to observe complicated dynamics of time series
data, and test for validity of these assumptions. These developments include theory of
time delay embedding and state space reconstruction of the dynamical system from
a scalar time series (Takens 1981; Sauer et al. 1991), methods in detecting chaotic
dynamics by computation of invariants such as Lyapunov exponents (Pesin 1977;
Wolf et al. 1985) and correlation dimension (Grassberger and Procaccia 1983), sur-
rogate data analysis (Schreiber and Schmitz 1996) and the other methods of testing
for nonlinearity (McLeod and Li 1983; Tsay 1986; Brock et al. 1996), and mutual
prediction as a method of testing for synchronization of oscillating systems (Fujisaka
and Yamada 1983; Afraimovich et al. 1986; Pecora and Carroll 1990).

Traditionally, the numerical algorithms of nonlinear dynamical systems aremostly
used in analyses of experimental data of physics and other physical and natural
sciences; however, over the last two decades, these methods and algorithms have
found extensive use in finance and economics also (Scheinkman and LeBaron 1989;
Soofi and Cao 2002a; Soofi and Galka 2003; Das and Das 2007; Zhang et al. 2011;
Soofi et al. 2012).

These advances have opened up possibilities of gaining further insights into the
dynamics of financial/economic data. Even though from a theoretical point of view
these methods are as applicable to economic data as they are to financial data, in
practice one observes more frequent applications of these methods to financial data
compared to economic data. The reason for this mismatch in applications is low
frequency nature of most economic time series data (most economic time series
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observations are monthly, quarterly, or annual), which leads to limited observations.
The algorithms of nonlinear dynamical systems require very large set of time series
observations. The financial time series with adequate number of observations for use
in nonlinear dynamical analysis could be obtained from the financial markets.

At the outset, we should point out that applicability of these methods and algo-
rithms and the validity of the empirical results hinge on nonlinearity of time series
observations. The name nonlinear deterministic dynamics, which is known chaos
theory also, should make this requirement absolutely clear. Accordingly, tests for
nonlinearity of the series under investigation assume a paramount importance in
nonlinear data analyses, and are an absolute requirement before applying any of
the above mentioned methods to the data. Nonlinearity is a necessary condition for
nonlinear deterministic (chaotic) as well as nonlinear stochastic dynamics.

In this chapter, we will discuss the methods, and review the empirical results of
the studies the authors of this chapter have undertaken over the last decade and half.
Given the methodological and computational advances of the recent decades, the
authors of this chapter have explored the possibility of detecting nonlinear, deter-
ministic dynamics in the data generating processes of the financial time series that
were examined. We have conjectured that the presence of nonlinear deterministic
dynamics may have been blurred by strong noise in the time series, which could give
the appearance of the randomness of the series. Accordingly, by using methods of
nonlinear dynamics, we have aimed to tackle a set of lingering problems that the
traditional linear, stochastic time series approaches to financial econometrics were
unable to address successfully. We believe our methods have successfully addressed
some, if not all, such lingering issues. We present our methods and empirical results
of many of our studies in this chapter and leave the judgment of how successful we
have been in resolving the lingering issues in the financial econometrics to reader.

Specifically, section “Defining Chaotic or Nonlinear Deterministic Dynamics”
gives an overview of concepts and definitions of nonlinear dynamical systems. In
section “Surrogate Data Analysis and Testing for Nonlinearity”, we discuss surro-
gate data analysis as a test for nonlinearity. Section “Determining Time Delay and
Embedding Dimension” reviews time-delay and embedding dimension methods that
are used in phase space reconstruction of nonlinear dynamical systems from a single
set of observations of the dynamics. In section “Nonlinear Prediction”, we discuss
the use of nonlinear deterministic method in predictions of the financial time series.
Section “Discriminate Statistics for Hypothesis Testing in Surrogate Data Analysis”
discusses discriminate statistics that are often used in surrogate data analysis and in
tests for detection of chaotic systems. Section “Nonlinear Predictions of Financial
Time Series: The Empirical Results” reviews the empirical results of nonlinear pre-
diction of financial time series. In section “Noise Reduction and Increased Prediction
Accuracy” the effect of noise reduction on prediction accuracy is examined. Section
“Mutual Prediction as aTest for Integration of the FinancialMarkets” reviewsmethod
of mutual prediction as a test for integration of financial markets. Finally, section
“Summary and Conclusion” concludes the chapter.
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Defining Chaotic or Nonlinear Deterministic Dynamics

It is useful for our subsequent analyses to start with concise definitions of some of the
terminologies of nonlinear dynamical systems theory. However, before giving formal
definitions of these terms, we give a general description of nonlinear dynamical
systems.

Economies (andfinancialmarkets), like population biology and statistical physics,
consist of large numbers of agents (elements), which are organized into dynamic,
volatile, complex, and adaptive systems. These systems are sensitive to the environ-
mental constraints and evolve according to their internal structures that are generated
by the relationships among the individual members of the systems. Of course, each
of these disciplines has its own peculiarities, the knowledge of which necessitates
development of expertise in the respective discipline. However, synthetic microan-
alytic approach to study the systems is their common characteristic. This implies
that one could aim to understand the behavior of the system as a whole by relating
the system’s behavior to the conducts of its constituent parts on one hand, and by
considering interactions among the parts on the other.

For example, in finance one might be interested in learning how trading by thou-
sands of investors in the stock market determines the daily fluctuations in the stock
indexes; or in physics, one might be interested to explain how interactions among
countless number of atoms result in transformation of a liquid into solid.

Given the evolutionary nature of economic (financial) systems, dynamical sys-
tems theory is the method of choice in studying these complex, adaptive systems.
A dynamical system is a system whose state evolves over time according to some
dynamical laws. The evolution of the system is in accord with working of a determin-
istic evolution operator. The evolution operator, which can assume a differential or a
difference equation form, a matrix form, or a graph form provides a correspondence
between the initial state of the system and a unique state at each subsequent period.
In real dynamical systems random events are present, however, in modeling these
real systems the random events are neglected.

Let the state of the dynamical system be described by a set of d state variables,
such that each state of the system corresponds to a point ξ ∈ M, where M is a
compact, differentiable d-dimensional manifold. M is called the true state space and
d is called the true state space dimension.

The states of dynamical systems change over time, hence the state is a function
of time, i.e., ξ(t).

In continuous cases a curve or a trajectory depicts the evolutionary path of ξ(t).
If the current state of system ξ(0), where one arbitrarily defines the current time
t = 0, uniquely determines the future states ξ(t), t > 0, the system is a deterministic
dynamical system. If such unique correspondence between the current state and the
future states does not exist, the system is called a stochastic dynamical system. The
completely uncorrelated states are called white noise.

In practice, it is not feasible to observe ξ(t), the true states of the dynamical
systems. However, measurement of one or several components of the system might
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be possible. Therefore, using a measurement function h : Rd → Rd ∼
on the true

state ξ, we measure a time series x(t) = h(ξ(t))+ η(t), where η(t) is measurement
error (noise) and d ∼ < d.

The properties of the evolution operator define the characteristics of the system.
A dynamical system is linear if its evolution operator is linear; otherwise the system
is nonlinear.

We need to define attractor of a dynamical system before further discussions of
the possible forms of behavior of the dynamical systems. To do so, we start with a
formal re-statement of deterministic dynamical systems.

Start with a system in the initial state of ξ(0). If the system is deterministic, a
unique function f t maps the state at time 0 to state at time t : ξ(t) = f t (ξ(0)).
We assume the f t to be differentiable function, which has a smooth inverse. Such a
function is a diffeomorphism.

Depending on the structure of f t , the behavior of ξ(t) for t → ∞ (after the
transient states) varies. In a dissipative dynamical system,where energy of the system
is not conserved, all volumes in the state space shrink over time and evolve into a
reduced set A called attractor. Accordingly, we define an attractor as a set of points
in the state space which are invariant to flows of f t . The transient state is the state in
which the process of convergence of the neighboring trajectories to a set of points A
of attractor is taking place.

Four types of attractors are observed, which are defined below.

• Fixed points
The initial state converges into a single point. The time series of such system is
given by x(t) = x(0), implying a constant set of observations.

• Limit cycles
The initial state converges to a set of states, which are visited periodically. The
time series corresponding to limit cycles is defined by x(t) = x(t + T ), where T
is the period of periodicity.

• Limit tori
A limit torus is the limit cycle with more than one incommensurable frequency in
the periodic trajectory.

• Strange attractors
Strange attractors are characterized by the property of attracting initial stateswithin
a certain basin of attraction, while at the same time neighboring initial states on
the attractor itself are propagated on the attractor in a way such that their distance
will, initially, grow exponentially. When the distance approaches the size of the
attractor, this growth will stop due to back-folding effects.
The time series representing the dynamical systems with strange attractors appear
to be stochastic, even though they are completely deterministic. These dynamical
systems are called chaotic or nonlinear deterministic dynamics.

We defined nonlinear systems in the context of evolution operators above. How-
ever, an intuitive way to gain an understanding of the difference between linear and
nonlinear systems is described below.
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Perturb the system by x1 and record its response y1. Next perturb the system by
x2 and record its response y2. Then perturb the system by (x1 + x2) and record its
response y3. Finally compare (y1 + y2) and y3. If they are equal for any x1 and x2
then the system is linear. Otherwise it is nonlinear (Balanov et al. 2009).

Many models depicting chaotic behavior have been developed. Among these
models we name the most widely used ones such as the Lorenz attractor (Lorenz
1963), Henon map (Henon 1976), tent map (Devany 1989), and logistic map
(May 1976).

Surrogate Data Analysis and Testing for Nonlinearity

As stated above, an extensive literature dealing with different methods for testing
for nonlinearity in time series observations has evolved over the last two decades.
These methods were used in a number of studies that point to possible nonlinearity
in certain financial and economic time series1 (e.g. Scheinkman and LeBaron 1989;
Hsieh 1991; Yang and Brorsen 1993; Kohzadi and Boyd 1995; Soofi andGalka 2003;
Zhang et al. 2011; Soofi et al. 2012).

The dynamics of short, noisy financial and economic time series could be the
outcome of working of nonlinear determinism in its varieties (periodic, limit tori, and
chaotic), stochastic linearity and nonlinearity, and randomnoise emerging fromeither
or both the dynamics itself and from measurement. Accordingly, in applications of
methods and algorithms of nonlinear dynamical systems the first task is to delineate
and disentangle all these influences on the observed data set. Given the daunting
task of accounting for above listed influences, in practice most analysts focus on
determining the role nonlinearity plays in the observed series.

One of the most popular methods of testing for nonlinearity of time series is the
surrogate data technique (Theiler et al. 1992). In the surrogate data method of testing
for nonlinearity of the series one postulates the null hypothesis that the data are
linearly correlated in the temporal domain, but are random otherwise. Among the
most popular test statistics for hypothesis testing we mention correlation dimension
and somemeasures of prediction accuracy. We have used both correlation dimension
as well as root mean square errors as test statistics for hypothesis testing within the
framework of surrogate data analysis on a number of exchange rates and stockmarket
time series studies. We will discuss these quantities below in section “Discriminate
Statistics for Hypothesis Testing in Surrogate Data Analysis” after introduction of
the method of phase space reconstruction by time-delay embedding.

Presence of noise in the data and insufficient number of observations may point to
nonlinearity of a stochastic time series even though the series might be linear (see for
example, Osborne and Provencale 1989). To exclude the possibility of receiving such

1 As it will become clear in the discussion of surrogate analysis below, nonlinearity is not a property
of a series; it is the absence of the property of linearity that is often detected. However, it is more
straightforward, even though less accurate, to speak of presence of nonlinearity in a series throughout
this chapter.
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misleading signals, surrogate data analysis is often used for testing for nonlinearity
of a series. One of the methods used in surrogate data analysis generates a number
of surrogates for the original series by preserving all the linear correlations within
the original data while destroying any nonlinear structure by randomizing the phases
of the Fourier transform of the data. Alternatively one might wish to describe the
linear correlations within the original data by generating the linear surrogates from
an autoregressive model of order p model, AR(p), and then using the surrogates for
estimation of the autocorrelation function (see Galka 2000).

In many practical cases of data analysis, one is faced with a single set of short,
noisy, and often non-stationary observations. In such cases, the application of the
nonlinear dynamical methods leads to point estimates leaving the analyst without
measures of statistical certainty regarding the estimated statistics. One approach to
overcome this problem is artificial generation of many time series which by design
contain the relevant properties of the original time series, which are obtained through
the estimated statistics.

The strategy in surrogate data analysis is to take a contrarian view. The analyst
should choose a null hypothesis that contradicts his/her intuition about the nature
of the time series under investigation. For example, if one is testing for presence
of nonlinear deterministic dynamics in the series, one should select a model that
directly contradicts these properties and use a linear, stochastic model to generate
the surrogate data, which are different realizations of the hypothesized linear model.
Using the surrogate, the quantity of interest, for example, correlation dimension
as a discriminating statistics, is estimated for each realization. The next step in
this strategy is formation of a distribution using the estimates of the discriminating
statistics from the surrogates. The resulting distribution is then used in a statistical
test, which might show that the observed data are highly unlikely to have been
generated by a linear process.

By estimating the test statistics for both the original series and the surrogates, the
null hypothesis that the original time series was linear is tested. If the null is true,
then procedure for generating the surrogates will not affect measures of suspected
nonlinearity. However, if the measure of nonlinearity is significantly changed by the
procedure, then the null of linearity of the original series is rejected.

An alternative approach in determining the unknown probability distribution of
measures of nonlinearity is the parametric bootstrap method (Efron 1982), which
aims to extract explicit parametricmodels from the data. The validity of this approach
hinges on successful extraction of the models from the data. The main shortcoming
of parametric bootstrap methods is that one cannot be sure about the true processes
underlying the data. The surrogate data method, which can been characterized as
a constrained realization method, overcomes the weakness of parametric bootstrap
method, which can be characterized as a typical realization method, by directly
imposing the desired structure onto the randomized time series.

To avoid spurious results it is essential that the correct structure (according to
the null hypothesis) is imposed on the original series. One approach in ensuring
validity of statistical test is determining the most likely linear model that might have
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generated the data, fitting the model, and then testing for the null hypothesis that the
data have been generated by the specified model (Screiber 1999, pp. 42–43).

The number of surrogates to be generated depends on the rate of false rejections
of the null hypothesis one is willing to accept (i.e., on the size of the test). In most
practical applications generating 35 surrogate data series should suffice. A set of
values of the discriminating statistics q1, q2, . . . q35, is then computed from the
surrogates.

Rejection of the null hypothesis may be based either on rank ordering or signif-
icance testing. Rank ordering involves deciding whether q0 of the original series
appears as the first or last item in the sorted list of all values of the discriminating
statistics q0, q1, q2, . . . q35.

If the qs are fairly normally distributed we may use significance testing. Under
this method rejection of the null requires a t value of about 2, at the 95% confidence
level, where t is defined as:

t = |q0 − ≡q√|
σq

(1.1)

where ≡q√ and σq are the mean and standard deviation, respectively, of the series
q1, q2, . . . q35 (for an in-depth discussion of surrogate data analysis see Kugiumtzis
2002 and Theiler et al. 1992).

Note that a software for generating phase-randomization surrogate data, fftsurr
(fast Fourier transform surrogates) has been made available by Kaplan (2004); it is
written in MATLAB. Phase-randomized surrogate data generated by fftsurr have the
same spectral density function as the original time series. A further improvement
of phase-randomization surrogates can be achieved by creating improved amplitude-
adjusted phase-randomization (IAAPR) surrogates (sometimes also known as
polished surrogates). These surrogates have a distribution of amplitudes which is
identical to that of the original data, in addition to the preservation of the spectral
density function. This is achieved by reordering the original series in a way such that
the power spectrum of the surrogates and the original series are (almost) identical.

For data with non-Gaussian distribution, phase-randomized surrogates without
amplitude adjustment may result in spurious rejection of the null hypothesis. This
result is due to difference between the distributions of the surrogates and the original
series. To remedy this problem one should distort the original data so that it is
transformed to a series with Gaussian distribution. Then from the distorted original
series, now a Gaussian series, a set of surrogates is created by phase-randomization.
Finally, the surrogates are transformed back to the same non-Gaussian distribution
as the original data (for further details see Galka 2000, Chap.11).

Soofi and Galka (2003) employed the algorithm of Schreiber and Schmitz (1996)
for the generation of IAAPR surrogates in the context of the estimation of the cor-
relation dimension of the dollar/pound and dollar/yen exchange rates. They found
evidence of presence of nonlinear structure in the dollar/pound rate, however, no
such evidence was found for dollar/yen exchange rate.

Zhang et al. (2011) using the IAAPR algorithm generated 30 surrogate series for
4 daily dollar exchange rates data including Japanese yen, Malaysian ringgit, Thai
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baht, and British pound for testing for presence of nonlinear structure in the exchange
rate series. They found evidence of nonlinear structure in dollar/pound rate. However,
it was observed that all the exchange rate series go through periods of linearity and
nonlinearity intermittently, a characteristic that was not observed for the simulated
data generated from the chaotic Lorenz system.

Testing for nonlinearity of the Chinese stock markets data (Soofi et al. 2012) used
algorithms that generate phase-randomization surrogates and amplitude-adjusted sur-
rogates (Kaplan 2004), and found evidence of nonlinearity in all three stock market
indices in China: Hong Kong stock Index (HSI), Shanghai Stock Index (SSI), and
Shenzhen Stock Index (SZI).

Determining Time Delay and Embedding Dimension

Advances in mathematical theory of time-delay embedding by Takens (1981) and
later by Sauer et al. (1991) allow understanding of the dynamics of the nonlinear
system through observed time series. These algorithms have had a large number
of applications in detecting nonlinear determinism from observed time series, e.g.,
economic and financial time series (Soofi and Galka 2003; Soofi and Cao 2002a;
Cao and Soofi 1999; Bajo-Rubio et al. 1992; Larsen and Lam 1992) .

Given the significance of methods of time-delay embedding and phase space
reconstruction in nonlinear dynamical time series analyses, we will discuss these
techniques in detail below.

Choosing Optimal Model Dimension

Before a discussion of method of determining the optimal embedding dimension,
let us define the dimension of a set of points. Geometrically speaking a point has
no dimension, a line or a smooth curve has a single dimension, planes and smooth
surfaces have two dimensions, and solids are three-dimensional. However, a con-
cise, institutive definition is given by Strogatz (1994, p. 404) who stated that “...the
dimension is the minimum number of coordinates needed to describe every point in
the set.”

Given a scalar time series, x1, x2, . . . , xN , one can make a time-delay reconstruc-
tion of the phase-space with the reconstructed vectors:

Vn = (xn, xn−τ , . . . , xn−(d−1)τ ), (1.2)

where τ is time-delay, d is embedding dimension, and n = (d − 1)τ + 1, . . . , N .
d represents the dimension of the state space in which to view the dynam-

ics of the underlying system. The time-delay (time lag), τ , represents the time
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interval between the successively sampled observations used in constructing the
d-dimensional embedding vectors.2

According to the embedding theorems (Takens 1981; Sauer et al. 1991) if the time
series is generated by a deterministic system, then there generically exists a function
(a map) F : Rd �→ Rd such that

Vn+1 = F(Vn), (1.3)

if the observation function of the time series is smooth, has a differentiable inverse,
and d is sufficiently large. The mapping has the same dynamic behavior as that of
the original unknown system in the sense of topological equivalence.

In practical applications, we usually use a scalar mapping rather than the mapping
in (1.3), that is,

xn+1 = f (Vn), (1.4)

which is equivalent to (1.3).
In reconstructing the phase space, the remaining problem is how to select the τ

and d, i.e., time-delay and embedding dimension, in a way that guarantees existence
of the above mapping. But in practice, because we have only a finite number of
observations with finite measurement precision, a good choice of τ is important in
phase space reconstructions. Moreover, determining a good embedding dimension d
depends on a judicious choice of τ . The importance of choosing a good time-delay is
that it could make minimal embedding dimension possible. This implies that optimal
determination of embedding-dimension and time-delay are mutually interdependent.

There are several methods to choose a time delay τ from a scalar time series,
such as mutual information (Fraser and Swinney 1986) and autocorrelation function
methods.

The more interesting issue is the choice of the embedding dimension from a
time series. Generally there are three basic methods used in the literature, which
include computing some invariant (e.g., correlation dimension, Lyapunov exponents)
on the attractor (e.g., Grassberger and Procaccia 1983), singular value decomposi-
tion (Broomhead and King 1986; Vautard and Ghil 1989), and the method of false
neighbors (Kennel et al. 1992). However, all these methods contain some subjective
parameters or need subjective judgment to choose the embedding dimension.

Dealing with the problem of subjective choice of embedding dimension Cao
(1997) modified the method of false neighbors and developed a method of the aver-
aged false neighbors, which does not contain any subjective parameter provided the
time-delay has been chosen. Amore general method based on zero-order approxima-
tions has been developed by Cao and Mees (1998), which can be used to determine
the embedding dimension from any dimensional time series including scalar and
multivariate time series.

2 For details, see an excellent introductory book by Hilborn (1994).
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For an unfolding of a time series into a representative state space of a dynamical
system, optimal embedding dimension d and time delay τ are required. The meth-
ods of computing embedding dimension and time delay, however, presuppose prior
knowledge of one parameter before estimation of the other. Accordingly, calculating
one parameter requires exogenous determination of the other.

Soofi et al. (2012) adopted the method of simultaneous estimation of embedding
dimensions and time delays.3 They selected that combination of the embedding
dimension and time delay in generation of the dynamics that would lead to the
minimum prediction error using nonlinear prediction method.

Specifically, let ζi = f (d j , τk, ηi ), [i = 1, . . . , N ; j = k = 1, . . . , M], where
ζi , d j , τk , and ηi are the ith prediction error, the jth embedding dimension, the kth
time delay, and the ith nearest neighbors, respectively. Then one would search for
that combination of d j , τk , and ηi that minimizes ζi .

Below we briefly describe the Cao method. Note that the method takes τ as
given, however, the method estimates an embedding dimension that minimizes the
prediction error.

For a given dimension d, we can get a series of delay vectors Vn defined in (1.2).
For each Vn we find its nearest neighbor Vη(n), i.e.,

Vη(n) = argmin{||Vn − V j || : j = (d − 1)τ + 1, . . . , N , j ≈= n} (1.5)

Note, η(n) is an integer such that

||Vη(n) − Vn|| = min{||Vn − V j || : j = (d − 1)τ + 1, . . . , N , j ≈= n}

where the norm

||Vn − V j || = ||(xn, xn−τ , . . . , xn−(d−1)τ ) − (x j , x j−τ , . . . , x j−(d−1)τ )||

= [
d−1∑

i=0

(xn−iτ − x j−iτ )
2]1/2.

Then we define:

E(d) = 1

N − J0

N−1∑

n=J0

|xn+1 − xη(n)+1|, J0 = (d − 1)τ + 1. (1.6)

where E(d) is the average absolute prediction error of a zero-order approximation
predictor for a given d. Note that a zero order predictor f is x̂n+1 = f (Vn) and
x̂n+1 = xη(n)+1, where η(n) is an integer such that Vη(n) is the nearest neighbor of
Vn . Furthermore, note that the N in (1.6) represents only the number of available

3 The method was suggested by Liangyue Cao.
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data points for fitting, which does not include the data points for out-of-sample
forecasting.

To choose the embedding dimension de, we simply minimize the E ,
i.e.,

de = argmin{E(d) : d ∈ Z and d ≥ 1}. (1.7)

The embedding dimension de we choose gives the minimum prediction error if
we use a zero-order approximation predictor. It is reasonable to infer that this de will
also give good predictions if we use a high-order (e.g., local-linear) approximation
predictor, since a high-order predictor is more efficient than a zero-order predictor
when making out-of-sample predictions.

In practical computations, it is certainly impossible to minimize the E over all
positive integers. So in real calculations we replace (1.7) with

de = argmin{E(d) : 1 ≤ d ≤ Dmax}, (1.8)

where Dmax is the maximum dimension with which one would like to search the
minimum value of E(d).

In summary, the above method is to find the embedding dimension by minimizing
the 1-step prediction errors using a zero-order approximation predictive model. For
details about this method, see Cao et al. (1998a).

Nonlinear Prediction

Reconstruction of phase space from a scalar time series allows prediction of the
series. The reconstructed phase space allows approximation of a function represent-
ing the dynamics that could be used for prediction. Below we discuss the local-linear
prediction method as one of the methods used in function approximation.

Local-Linear Prediction

Having solved the problem of choosing embedding dimension and time-delay for
the vectors Vn defined in (1.2) we now use model (1.4) for prediction.

The next problem is how to approximate function f . Several approximation tech-
niques, such as local-linear approximation, polynomial approximation, neural net-
works, radial basis function, and wavelet decomposition are available. One of the
more straight forward method is local-linear approximation, because it requires a
lower computational time.

Suppose we have N f samples of time series data available for fitting the function,
i.e., we have x1, x2, . . . , xN f .

Therefore we have time-delay vectors Vn, n = J0, J0 + 1, . . . , N f
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and J0 = (d − 1)τ + 1. We want to predict xN f +1.

Steps in the local-linear approximation method are listed below:

1. Impose a metric on the delay-vector space, denoted by || ||. An example is the
root-square norm, i.e, ||a|| = ||(a1, a2, . . . , ad)|| = (

∑d
i=1 a2

i )
1/2.

2. Find the l nearest neighbors of VN f , denote them by V j1 ,V j2 , . . . ,V jl , J0 ≤
jk < N f , (k = 1, 2, . . . , l), then for any k = 1, 2, . . . , l, ||V jk − VN f || ≤
||Vn − VN f || (J0 ≤ n < N f and n ≈= jk for any k = 1, . . . , l).

3. Construct a local-linear predictor, regarding each neighbor V jk as a point in the
domain and x jk+1 as the corresponding point in the range. That is, fitting a linear
function to the l pairs (V jk , x jk+1) (k = 1, 2, . . . , l).
We use the least-squares method to fit this linear function. Denote it by F̂ , then
we have

∑
k |x jk+1 − F̂(V jk )| minimized.

4. The predicted value of xN f +1 is F̂(VN f ), i.e.,

x̂N f +1 = F̂(VN f ).

Discriminate Statistics for Hypothesis Testing in Surrogate
Data Analysis

In this section we will discuss two quantities that we have used in various empirical
studies as a discriminating statistics in hypothesis testing for nonlinearity of the
financial data that were under consideration.

Correlation Sum and Correlation Dimension

One could select from a set of measures as the test statistics in surrogate data analysis
as the first step in determining the behavior of the time series. One of themore popular
discriminating statistics in nonlinear dynamical system analysis is correlation dimen-
sion. Moreover, in addition to being used as a discriminating statistics in hypothesis
testing for presence of nonlinearity in the data, correlation dimension may point to
the chaotic nature of the nonlinear dynamical system. This is due to the observation
that stochastic processes always use all available dimensions of the state space, while
deterministic processes may evolve on a manifold of much lower dimension. This
results in the observation that the fractal dimensions are substantially smaller than
d-degree of freedom of the dynamical system leading to the evidence of determinism.
Below, we give a formal definition of correlation dimension.

Starting with a scalar time series, x1, x2, . . . , xN ,which might describe the states
of a system or may be the result of a time delay embedding of a univariate time series
described by
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xi = (x1, xi−τ , xi−2τ , . . . , xi−(d−1)τ ), (1.9)

where τ and d are the time delay and the embedding dimension, respectively.
From these vectors the correlation sum4 is defined by:

C(r) =
(

n

2

)−1 n−1∑

i=1

n∑

j=i+1

I (r − ∩xi − x j∩), (1.10)

where I (.) is an indicator function, such that I (x) = 1 for positive x and I (x) = 0
otherwise. ∩.∩ denotes maximum norm, though other norms could also be employed.
C(r) estimates the probability of finding two vectors in the set which are separated
by a distance not larger than a radius r (in d-dimensional state space).

To avoid spurious results due to unwanted dynamic correlations in the set of
vectors xi it is advisable to omit all those distances ∩xi − x j∩ from the correlation
sum for which xi and x j are too close together in time, i. e. for which i − j < W
with a fixed integer parameter W (Theiler 1986). The absence of this correction
corresponds to W = 1. The choice of W is not critical, provided a sufficiently large
value is chosen.

For sufficiently small radius r the correlation sum is expected to display a scaling

C(r) = a rdc (1.11)

a is a constant. Hence the correlation dimension dc can be obtained by

dc = lim
r→0

dc(r) = lim
r→0

∂ logC(r)

∂ log r
. (1.12)

The derivative is carried out numerically and yields a dimension estimate dc(r,m),
which still depends on radius r and embedding dimension m.

An Information Theoretic Approach in Estimating a Test Statistics

Anumber of existingmethods for direct testing of nonlinearity such as highly popular
residual-basedmethods, andbispectrum (Hinich1982) exists.However, noneof these
methods provide an efficient test statistics that is based on a discrete parametric
model. The discrete parametric modeling or information theoretic method of testing
for nonlinearity provides such an efficient test statistics (Galka and Ozaki 2001).

Given a time series xi , i = 1, . . . , N , with zero mean and unit variance (this can
be realized by simple linear transformation), we can get an autoregressive model

xi = f (xi−1, . . . , xi−p) + ηi , (1.13)

4 We use the term correlation sum because we are dealing with discrete time series. In cases that
deal with continuous time series, the term correlation integral is used.
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where p is the model order and ηi is the dynamical noise. Take f (·) to be a linear
function, we get an AR(p) model

xi =
p∑

j=1

a j xi− j + ηi =: x̂i + βi , (1.14)

where x̂i is the prediction value or conditional mean of xi .
An exponential autoregressive (ExpAR) model is defined as follows:

xi =
q∑

j=1

(a j + b jexp(
−x2i−1

h
))xi− j + ηi =: x̂i + ηi , (1.15)

where the bandwidth h for each time series can be estimated by

h = −max x2i−1

log c
, (1.16)

and c is a small number selected in advance. The choice is based on the idea of
selection of a bandwidth, h, such that the exponential term becomes essentially
zero for large amplitude. Since the exponential function is always positive it never
becomes exactly zero. Therefore, wemust assign a very small positive number for the
exponential term and we call this small constant c. If we choose log(c) = −30, this
corresponds to c = 9.3576e − 014. This is a number close to the machine precision
of computers.

Based on the two models represented in Eqs. (1.2) and (1.3), the test statistic is
constructed as follows:

δ(p) := 1

N
(AIC(AR(p)) − AIC(ExpAR(q))) (1.17)

where AIC is the Akaike Information Criterion (Akaike 1974) and is defined as

AIC = N log[ 1

N − p

N∑

i=p+1

(xi − x̂i )
2] + 2(P + 1) (1.18)

where p is model order, and P denotes the number of the parameters ai and b j in
the model.

Model (1.17) uses AIC as a measure of the quality of fitted model. Note that the
smaller the value of AIC, the better the selected model for the data that is being
modeled. Accordingly, δ > 0 implies that the nonlinear ExpAR(p) model is a better
model compared to the linear AR(p) in fitting the data. For δ < 0, the models reverse
role.
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The Empirical Results Based on the Information Theoretic Model
Using the Exchange Rates

Zhang et al. (2011) tested for nonlinearity of the daily dollar exchange rates time
series. They used the discrete parametric modeling approach (Galka andOzaki 2001)
to compute an efficient test statistic for nonlinearity of daily dollar exchange rates
for 3 Asian currencies and British pound series.

To explore whether the underlying dynamics of Asian financial systems went
through changes during the Asian Crisis of 1997–1998, they examined the non-
linear properties of currencies of Thailand and Malaysia before, during, and after
Asian financial crises, and obtain highly interesting results. They performed the same
analysis using yen and pound rates also. They used yen as the currency of an Asian
industrialized country that was immune to the Asian Contagion. They used the pound
rate because of observed nonlinear structure in the series by other researchers (Soofi
and Galka 2003) as a non-Asian currency for the purpose of a control time series in
the study.

According to the results of nonlinearity test, Thai baht shows a nonlinear struc-
ture for pre-crisis period. However, the nonlinearity is totally absent for crisis and
post crisis periods. For Malaysian ringgit, they observe a mild nonlinearity which
corresponds to a period of time close to the early July of 1997, when the monetary
authorities in Thailand abandoned the pegging of baht to the dollar this may imply
cross-country contagion effect. Again, the data support no nonlinearity of the cur-
rency during and after the crisis periods. For Japanese yen, they find no evidence of
nonlinearity for any period under study here. Finally, for British pound, they observe
a very mild nonlinearity in pre-crisis period, observe no evidence of non-linearity
during the crisis period, and detect evidence of a very weak nonlinearity immediately
after the first post-crisis period. For the remaining post-crisis periods no evidence of
nonlinearity is present. Based on these observations one may conclude that a period
of high nonlinearity of the exchange rate may be a prelude to a major financial crisis.
Constant monitoring of the behavior of an exchange rate using the present method
may be a highly effective early warning system for financial crisis and collapse of
currency value.

Nonlinear Predictions of Financial Time Series: The Empirical
Results

Soofi and Cao in several works (1999, 2002a) used the nonlinear prediction (local
linear approximation) method discussed in section“Nonlinear Prediction” for out-
of-sample forecasting of several foreign exchange rates. In all of these prediction
exercises the nonlinear prediction method out-performed the competing predictors.

Specifically Cao and Soofi (1999) predicted five daily dollar exchange rates time
series:Canadian dollar (Ca$),British pound,Germanmark, Japanese yen, andFrench
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franc, from October 1, 1993 to October 3, 1997. In that study they found evidence
that the exchange rate data tested have some deterministic dynamics. In fact, from
the theoretical patterns of embedding dimensions for different systems showed that it
is very unlikely that the above exchange rate return data are generated by purely ran-
dom processes. They may be generated by high dimensional systems contaminated
by (measurement) noise or nonlinear deterministic systems with stochastic driving
forces, i.e., dynamic noise and measurement noise.

Furthermore they tested out-of-sample prediction of the above five exchange rate
return time series using the local linear method. They evaluated the prediction by
local-linear method with mean value predictor, and calculated the root-mean-square
error. The results showed their predictions outperform the mean value predictor for
the pound/dollar and the yen/dollar rate returns, but not for the three remaining
exchange rate returns.

Soofi and Cao (2002a) used the same prediction method in prediction of monthly
black market renminbi/dollar (Feb. 1955–June-1989), monthly black market
rial/dollar (Jan. 1957–May 1988), and daily fixed renminbi/dollar (4 Jan. 1993–29
Dec. 2000) exchange rates. They found that in all cases the nonlinear prediction
method out-performed the benchmark mean predictor.

Finally, Soofi and Cao (1999) performed out-of-sample predictions on daily
peseta/dollar spot exchange rates using a simple nonlinear deterministic technique of
local linear predictor. They compared the predictions based on local-linear method
with those by two simple benchmark predictors: randomwalkmodel andmean-value
predictor. The results on the differenced time series indicate that their predictions are
better than those by the random walk model, and marginally better than the results
from the mean-value predictor.

Noise Reduction and Increased Prediction Accuracy

It is well known that noise can seriously limit the performance of prediction tech-
niques on time series. Effective methods are currently still lacking on noisy time
series forecasting. The main difficulty is the absence of prior knowledge on what is
noise and what is determinism in real time series, especially when the noise takes
part in dynamical evolution of the systems, that is, so-called dynamic noise.

There are obviously two possible approaches to predict noisy time series. One
is, ignoring the presence of noise, to fit a predictive model directly from noisy data
with the faith on possibility to extract the underlying deterministic dynamics from
the noisy data. It seems that the technique of neural networks is helpful in doing such
kind of fitting (e.g., Albano et al. (1992)). The other is, filtering the noise beforehand,
to fit a predictivemodel from the filtered or noise-reduced data of the noisy time series
with the hope that the noise level in the noisy time series has been reduced. We may
need to mention that the latter approach should be more effective than the former
one at least in the case of short-term predictions (e.g., see Cao et al. (1998b)).

Suppose a noisy time series {xn} is generated in the following way:
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xn = h(yn) + ηn,

yn = f(yn−1),
(1.19)

where h is a measurement function (observable); ηn is additive noise; yn and the
iterative equation(s) defined by the function f are the unknown underlying dynamic
variable(s) and dynamic equation(s), respectively.

In the former approach, one should fit a predictive model,

xn+1 = G(xn, xn−τ , . . . , xn−(d−1)τ ) (1.20)

basedon theobserved time series data using some techniques such as neural networks,
where d and τ are the so-called embedding dimension and time-delay, respectively.

Obviously the function G in (1.20) changes the additive noise contained in
xn, xn−τ , . . . , xn−(d−1)τ to dynamic noise. In this sense the predictions must be
inaccurate if the noise level is relatively high, as the dynamic noise destroys the
determinism of the future dynamic behavior completely.

In the latter approach, on the other hand, one should first obtain the noise-reduced
data from the observed noisy time series. Assume the noise-reduced time series
having been obtained by some noise reduction method, e.g., local projective and
singular value decomposition methods (Grassberger et al. 1993), and denote it by
z1, z2, . . . , zn, . . . . So,

xn = zn + ϕn, n = 1, 2, . . . , (1.21)

where the term ϕn is the noise which was removed by the noise reduction method.
The ideal result of noise reduction is zn = h(yn) or ηn = ϕn for each n, see (1.19)
for how the {xn} was generated.

Then a predictive model is fitted based on the noise-reduced time series, that is,

zn+1 = H(zn, zn−τ , . . . , zn−(d−1)τ ). (1.22)

Using this predictive model, the future zn+1 can be predicted, and the value predicted
can then be regarded as the predicted value of the future xn+1, i.e, the actual data to
be observed. In fact, the predicted value ẑn+1 at the time n +1 should be the optimal
predicted value of xn+1 because the noise term ϕn+1 can never be predicted, see
(1.21). If the noise has been significantly reduced in the noisy time series, then the
latter approach is expected to give much better predictions than the former one.

Given that most financial time series contain noise: measurement noise, dynamic
noise or both of them together, prediction of financial time series is certainly very
challenging. It has attracted much attention on development of methods to improve
the predictions. Besides traditional linear methods such as autoregression method,
some nonlinear methods have also been applied to forecast financial time series (e.g.,
Cao et al. 1996; Lisi and Medio 1997; Cao and Soofi 1999). These studies are based
on Takens’ embedding theorem (Takens 1981). In these applications of nonlinear
methods or linear methods, however, the predictive models were generally fitted
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directly from the original noisy data, i.e., the first approach on prediction of noisy
time series mentioned above, see the Eq. (1.20). Not much work has been done using
the second approach (see the Eq. (1.22) in prediction of financial time series, although
it is expected that the second approach should provide better prediction than the first
approach in forecasting of noisy time series as explained earlier.

In Soofi and Cao (2002a) both approaches are applied and compared on pre-
dicting two real financial time series- daily mark/dollar exchange rate and monthly
U.S. Consumer Price Index(CPI), to see how the noise reduction could improve the
predictions.

Nonlinear Noise Reduction

Power spectrum is traditionally used in separating noise with a flat or broad band
spectrum from the periodic or quasi-periodic signals with sharp spectral lines. This
method, however, has been shown inapplicable in dealingwith noise in nonlinear time
series, particularly chaotic time series, because the method is unable to differentiate
between broad-band spectra from signals of chaotic systems and from signals of
purely random noise (Grassberger et al. 1993). Therefore, some newly nonlinear
noise reduction methods should be used when dealing with noisy nonlinear time
series or noisy chaotic time series; for a review of nonlinear noise reductionmethods,
see e.g., Kantz and Schreiber (1997) and Ott et al. (1994).

The methods of local projective (LP), singular value decomposition (SVD)
(Grassberger et al. 1993), and ‘simple’ nonlinear noise reduction (SNL) (Schreiber
1993) were adopted by Soofi and Cao (Soofi and Cao 2002a) to reduce the noise in
the time series tested in the study.

The LP method rests on the hypothesis that the deterministic part of a noisy
time series lies on a low-dimensional manifold in a high-dimensional state space
reconstructed by the time-delay embedding, while the effect of noise is to distribute
the data in the immediate surroundings of the manifold. The method is designed
to identify the low-dimensional manifold and project the time series data onto it.
Interested readers are referred to Schreiber (1998) for a detailed description of the
method and relevant discussions.

Applying SVD to a time series tends to optimize the signal to noise ratio. In
filtering data with SVD, the singular vectors of the covariance matrix of the time
series are first computed; then the reconstructed m dimensional vectors are projected
to a q dimensional space, where q (< m) is the number of singular values computed
(see Grassberger et al. (1993) for details).

The idea of the ‘simple’ nonlinear noise reduction method is to locally approxi-
mate the dynamics of the underlying system. Unlike the LP and the SVD methods,
this method does not require to project the system to a lower dimensional system.
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Mark-Dollar Exchange Rates

Soofi and Cao (2002a) used daily mark-dollar exchange rate time series, for sample
observations for the period from October 1, 1993 to October 3, 1997.

Non-filtered data
Prediction test is first conducted on the time series without filtering. That is, no

noise reduction is made on the differenced-log time series of mark/dollar exchange
rates. This test was done in our earlier work (Cao and Soofi 1999). The RMSE
between the out-of-sample predicted and the actual data was 1.08.

The finding that RMSE in the prediction was greater than 1 implies that the
prediction by the local linear method is not better than the prediction by a mean
value predictor. This negative result was actually expected because the behavior of
exchange rates is so complicated that any deterministic predictions may not lead to
better performance than the prediction by a simple mean value predictor. High level
of noise in the exchange rate time series is also commonly regarded as one of the
reasons for the failure of nonlinear deterministic prediction.

Filtered data
Given that one noise reduction methodmay work well in some cases, while it may

not in the others , three sets of filtered data were generated using the simple nonlinear
noise reduction (SNL), local projective (LP), and the SVD methods. The last two
methods require a prior projection dimension (q). This q is generally not known for
real time series (interested readers may consult the literature in noise reduction, e.g.,
Grassberger et al. (1993), for the selection of q).

The RMSE for the case with LP method for mark/dollar exchange rate was less
than1,which implies that the prediction by the local linearmethodwas better than that
by amean value predictor. Thismeans that noise reduction improves prediction of the
exchange rate time series provided that an appropriate noise reductionmethod aswell
as suitable parameter values for the method is used. At this stage, the improvement is
not statistically significant based on the statistic provided by Harvey et al. (1997) at
a 10% nominal level; however, the improvement is statistically significant at a 20%
nominal level.

U.S. Consumer Price Index

Monthly US consumer price index (CPI) time series was also used by Soofi and Cao
(2002b) for out-of-sample prediction exercises. The reason they chose the CPI time
serieswas that it is believed deterministic dynamics should be stronger in theCPI time
series than that in the exchange rate time series. Therefore, nonlinear deterministic
techniques should have a better chance to provide good prediction on the CPI time
series than on the exchange rate time series.

Following the same procedures as for the exchange rate time series, the results for
the CPI time series showed that the RMSE (=0.87) for the non-filtered data was less
than 1, which means that the local linear deterministic prediction is better than the
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mean value prediction. Comparing with the corresponding results of the exchange
rate time series, the much smaller RMSE for the CPI time series indicates that the
deterministic dynamics in the CPI time series should be stronger than that in the
exchange rate time series as we mentioned earlier.

For all other cases, the predictions with noise reduction are even worse than
the prediction without noise reduction. This means that noise reduction may have
distorted the deterministic dynamics in the CPI time series, therefore, the prediction
on the filtered data becomes evenmore difficult. This could be often the case given it is
not knownwhat is the noise andwhat is the determinism in a real time series.However,
this should not be taken as discouragement to use noise reduction in prediction of
real time series. It implies that one should carefully select which noise reduction
method as well as its related parameter values should be used for a particular time
series, because a noise reduction method may work better in some cases, while it
may not in other cases.

Mutual Prediction as a Test for integration of the Financial
Markets

Another application of themethods of nonlinear dynamics is in testing for integration
of economies and financial markets. There exists a vast literature on the subject
of financial integration, which uses terms such as integration, globalization, and
interdependence interchangeably. However, none of these terms is given a concise,
quantitative definition. Soofi et al. (2012), however, using methods from science of
nonlinear dynamical systems provided an exact quantitative definition of financial
integration and treated terms such as financial integration and interdependence of
financial markets synonymously.

The basis for the quantitative definition is the notion that interdependence of two
or more financial markets implies that the observed time series of these systems
originate from the different parts of the same dynamical system. The rational for
this argument is that the equity markets are the subsystems of the global economic
or financial system. Specifically, presence of dynamical interdependence among the
subsystems (the individual equity markets) implies that:

1. The subsystems communicate, that is, they are coupled together and information
flows between them (news arrival in the financial markets), and/or

2. They are coupled to a common driver, where in the case of the stock markets the
driving force is profit motive.

It should be noted that even for coupled, but otherwise independent dynamical
systems, it is possible that their temporal evolutionsmight become “synchronized" as
one adjusts the coupling strength between them, even though their temporal evolution
might not be identical.

The study of dynamical interdependence of nonlinear systems, commonly known
as synchronization in physics literature, has its origin in the works of Fujisaka and
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Yamada (1983), Afraimovich et al. (1986) and Pecora and Carroll (1990). A variety
of approaches to synchronization studies, including system-subsystem synchroniza-
tion, synchronization in unidirectional and bidirectional coupled systems, anti-phase
synchronization, partial synchronization, pulse-coupled synchronization, and gener-
alized synchronization have been developed.

Oscillating systems evolve along their attractors. In certain situations where
the oscillators are asymmetrically coupled, there may exist a one-to-one mapping
between each attractor. In presence of suchmapping, it is possible to predict behavior
of one system given the attractor of another one.

Dynamical interdependence, as described in Rulkov et al. (1995), which adopts
a generalized synchronization approach, implies predictability of the response sys-
tem’s behavior by the driving system. This is the starting point for testing for inter-
dependence of two systems which assumes existence of function φ that projects
values from the trajectories of the driving system D space into the trajectories in the
response system R space. In practice, however, when the degrees and directions of
the coupling between the systems are unknown, one aims to reconstruct the dynamics
of the two systems by time-delay embedding method, and then estimates statistics
for testing for dynamical interdependence between the reconstructed systems. This
is the basis for the mutual prediction method for testing for interdependence of two
dynamical systems (Pecora and Carroll 1990; Schiff et al. 1996; Breakspear and
Terry 2002), a method used by Soofi et al. (2012).

Mutual prediction is a method for testing for synchronization of completely inde-
pendent, but coupled oscillating systems. Examples of synchronization of completely
independent, yet coupled, oscillating systems from biological and physical realms
include synchronized intermittent emissions of light by tens of thousand fireflies to
random openings of ion channels in cell membranes, to organ pipes, just to name
a few. In short, synchronization is interaction among different systems or subsys-
tems, which at the times before or after synchronization, operate independently
from each other. This means that these coupled, different, and independent sys-
tems or subsystems adjust the time scales of their oscillations due to the interaction
(Balanov et al. 2009).

We search for evidence of coupling between these markets by considering their
dynamics that are represented by the following differential equations:

dX
dt

= f (X(t) + f̄ (X) ξ1(t)) (1.23)

dY
dt

= g[(Y(t) + ḡ(Y)ξ2), hc(X(t) + f̄ (X)ξ1(t),Y(t) + ḡ(Y)ξ2)] (1.24)

where functions f and g generate local dynamics, function h transmits the influ-
ence of X(t) to Y(t), and constant c measures the strength of coupling. Moreover,
ξ1(t) and ξ2(t) are random dynamical noise reflecting random decisions of traders
in the two markets. These random terms, not to be confused by the measurement
noise of equations (1.25) and (1.26) below, may induce oscillatory dynamics in the
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model, opening up the possibility that the markets meet the self-sustaining oscilla-
tions requirement for synchronization.

Let X and Y be two potentially coupled dynamical systems with the time series
observations of xi and yi (i = 1, . . . , N ), respectively. Often, in practice, the state
variables are not directly observable, and one has no a priori knowledge of their
individual dynamics or their dynamical interdependence. Instead, their evolutions
are measured by the scalar variables

xi (t) = h(X(t)) + η1(t) (1.25)

yi (t) = k(Y(t)) + η2(t) (1.26)

where h and k are the measurement functions (possibly nonlinear), and η1 and η2
are the error terms representing noise in the data.

On many occasions one might have to analyze time series data that have values
in a wide range. In such cases one should standardize the series by the following
transformations:

x̂i = xi − x̄

σx
(1.27)

ŷi = yi − ȳ

σy
(1.28)

where x̄ , ȳ, σx , and σy are the mean and standard deviation of the xi and yi series,
respectively.

Next using the time-delay embedding of section“Determining Time Delay and
Embedding Dimension” we would reconstruct the phase spaces for both X and Y.

Surrogate data analysis is the method of choice in physics and nonlinear dynam-
ical systems analysis. Hence, the mutual prediction method of test for nonlinear
interdependence uses this approach also. See section“Surrogate Data Analysis and
Testing for Nonlinearity” above for a discussion of this method.

The algorithm of computing the time delay τ with mutual information technique
in Soofi et al. (2012) is Shannon’s entropy method, and consists of first constructing
a histogram for the probability distribution of the data. For details see Soofi et al.
(2012).

Algorithm for Mutual Prediction Method

One starts with a possible functional relationship between X and Y as

Y ?= φ(X) (1.29)

and aims at empirically verifying existence of the functional relationship φ between
the two reconstructed systems X and Y. If such a relationship exists, then two close
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states in the phase space of the X system correspond to two close states in the phase
space of the Y system.

It does not matter which state variable we choose as autonomous or response
variable. For measuring nonlinear interdependence what counts is hc function, and
coupling strength coefficient c. Existence of a continuous, differentiable map φ,
where in presence of synchronization creates a one-to-one correspondence between
the orbits of X onto the orbits of Y in case of Y = φ(X), and maps Y onto X in case
of X = φ(Y) is the important consideration.

Select an arbitrary point x0 in the X space. Suppose the nearest neighbor of x0 has
a time index of nnnd . Then if function φ exists, that is, if the two systems are coupled,
then point y0 in theY space will have point ynnnd as a close neighbor also. This means
that the nearest neighbors of both points x0 and y0 share the same time indexes.5 For
example, if the nearest neighbor of point x0 is a three-dimensional vector with time
indexes (1, 5, 8), then the vector that is the nearest neighbor of point y0 has the same
time indexes (1, 5, 8).

In implementing themutual predictionmethod of testing for nonlinear interdepen-
dence of Chinese stock markets, Soofi et al. (2012) followed the method discussed
by Breakspear and Terry (2002) which is a modified, improved version of Schiff et
al. (1996) as discussed below.

• Construct in X a simplex around an arbitrary selected point x(ti ) in time t = ti
with 2dx

1 vertices each consisting of another vector in X. dx
1 is the embedding

dimension of X.
• Choose these embedding vectors (vertices) such that the size of the simplex is
minimized.

• Denote the points satisfying the criteria of being a vertex in the minimized simplex
as x j (ti j ), j = 1, . . . , 2dx

1 . Also denote the time indices of the vertices as ti j ,
j = 1, . . . , 2dx

1 .• Use the time indices ti j of x j (ti j ) to construct a simplex in the state space Y with
vertices y(ti j ), j = 1, . . . , 2dx

1 .• Take the weighted average of the vertices in y(ti j ) to locate the vector y(ti j ) that
was predicted by the vector x(ti )

ypred.(ti ) =
∑2dx

1
k=1 ωik y(tik)
∑2dx

1
k=1 ωik

(1.30)

where the weighting factors ωik , are determined by the distances of the vertices in
X from x(ti ), giving

ωik = (|x(tik) − x(ti )|)−1. (1.31)

• To calculate the mutual prediction error, take the difference of the predicted vector
and the actual vector

5 Note that we have unfolded the time series into d-dimensional space.



1 Applications of Methods and Algorithms 25

βy(x) = |ypred(ti ) − y(ti )|. (1.32)

• To compare the prediction error βy(x) with a prediction error based on a randomly
selected element of the time series observations calculate

βrand = |yrand − y(ti )|, (1.33)

where yrand is calculated using the same procedure used in prediction of ypred.(ti ),
except that the simplex in X is a random combination of points on the orbit X
weighted with respect to another randomly selected point. This corresponds to the
null hypothesis of no interdependence between the markets.

• The normalized predicted y, ∇y(x), as predicted by x , is calculated by

∇y(x) = ≡βy(x)√rms

≡βrand√rms
(1.34)

where ≡√rms is the root mean square.
∇y(x) = 1 implies no interdependence (no synchronization). ∇y(x) = 0 implies
complete synchronization.

• Calculate the vertices of simplex in Y as above and then iterate them H -step ahead
on their respective orbits to obtain the vertices y(ti j + H), j = 1, . . . , 2d y

i
• Compare the weighted predicted vector ypred.(ti + H), j = 1, . . . , 2y

i to the actual
forward iterate y(ti + H) to obtain future prediction errors.

• Normalize the H -step ahead prediction errors by a vector generated from random
vertices in X to yield the normalized future prediction error:

∇H
y(x) = ≡βH

y(x)√rms

≡βrand√rms
(1.35)

∇H
y(x) = 1 implies no interdependence between the systems at H-step prediction.

Note that in presence of generalized synchronization the error grows at a rate
determined by the Lyapunov exponents, and is less than one for some time steps into
the future.

After generating a number of surrogates,which share the spectral density functions
with the original time series use one-step ahead mutual prediction method described
above, and conduct H forecasts of the original time series and the surrogate time
series separately. If the one-step ahead nonlinear prediction errors of the original
series are smaller than those for any of the surrogates, predictions are significant.

A plot of H prediction errors as well as prediction interval for the original and
surrogate series based on the above mentioned algorithm would aid in determining
nonlinear interdependence of the markets.



26 A. S. Soofi et al.

The deterministic interdependence is detected if the graph of the cross-prediction
errors of the original series is below the graphs of cross-prediction errors for the
surrogate sets, but above the lower bound of the 95% confidence interval.

Synchronization of Chinese Stock Markets

Soofi et al. (2012) considered threeChinese stockmarkets: Shanghai (SSI), Shenzhen
(SZI) andHongKong (HSI), as nonlinear dynamical oscillating systems. They further
considered two indexes at a time for testing and took X(t) as the driver system and
Y(t) as the response system. Furthermore, they reconstructed the phase space of
each stock market as a dynamical system using time series observations of the daily
average stock prices.

We note that synchronization can be bi-directional or unidirectional. In a forced
synchronization one system influences the second one without being influenced by it.
One has bidirectional synchronization where both systems are mutually interacting
and influencing each other. Hence, in the forced synchronization case, if X is not
influencing Y, it does not necessarily mean that Y is not influencing X. (for excellent
discussions of synchronization, see Balanov et al. (2009)).

They constructed 19 bivariate surrogate data with the same amplitude distribution,
auto correlation function, and cross-spectral density function as the original data.
However, non-linear structure contained within and between the surrogate series are
destroyed. Thus the surrogate algorithm allows testing of the null hypothesis that the
time series are produced by a cross-correlated stochastic system.

The results of Soofi et al. (2012) show that there is nonlinear mutual (bidirec-
tional) predictability between SSI and SZI. Moreover, there exists unidirectional
predictability from SSI to HSI and from SZI to HSI. However, the results don’t
provide statistically significant evidence that Hong Kong market predicts the stock
markets in mainland China.

In sum, the study concluded that Shanghai, Shenzhen, and Hong Kong stock mar-
ket data are nonlinear, and are nonlinearly dependent on each other. This implies that
the stock index observations of the three stock markets are originated from different
parts of the same dynamical system, and hence the markets are well integrated.

Comparing the Results with the Results Based on a Traditional
Linear Method

Comparing the results for synchronization of the Chinese stock markets based on
mutual predictionmethodwith the results based on a linearmethod of testing for inte-
gration of financial markets, Soofi et al. (2012) used results from Zhu et al. (2003).
Zhu et al. (2003) have used cointegration, fractional cointegration, and Granger
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causality methods in testing for integration of Chinese stock markets. The tests in
Zhu et al. (2003) show no evidence of cointegration (either integrated or fractionally
integrated) among the stock markets. They could not find any evidence for presence
of causality among the markets either. Hence, the mutual prediction method of test-
ing for interdependence of Chinese stock markets data shows completely different
results from those obtained by the traditional linear stochastic methods used in Zhu
et al. (2003) study. The evidence pointing to nonlinearity of the stock markets as
dynamical systems, should support the conclusion that the linear models have failed
to detect interdependence, while the mutual prediction method succeeded in finding
the evidence of dynamical interdependence between the markets.

Summary and Conclusion

Advances in nonlinear dynamical system theories and methods have opened up new
possibilities for applying them in finance and economics. The authors of the present
chapter have applied a number of these methods in testing for nonlinearity, pre-
dictions, and calculation of invariants such as correlation dimension of the some
exchange rate data. They have used these methods in testing for synchronization
(interdependence) of the stock markets also.

Even though tests uniformly show presence of nonlinearity in many financial
data that were analyzed, determination of whether the data generating processes are
deterministic is inconclusive because of the short sample observations and presence
of noise in the observed data. Further advances in theory of nonlinear stochastic
dynamical systems in the last decades promises to be useful in further applications
on the financial data. Applications of these methods, specially mutual prediction
method as warning system for imminent emergence of financial contagion is very
promising also. Hitherto, the methods of nonlinear dynamic systems unravel the
dynamics in many financial time series observations that could not be detected by
the tradition linear stochastic methods.
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Chapter 2
Kaldorian Assumptions and Endogenous
Fluctuations in the Dynamic Fixed-Price
IS-LM Model

Giovanni Bella, Paolo Mattana and Beatrice Venturi

Abstract With the aim of better understanding the conditions which determine
endogenous fluctuations at business cycle frequencies, recent literature has revived
interest in the Schinasi’s variant of the dynamic, intermediate-run, IS-LM model
(Schinasi 1981, 1982). Results, however, remain confined to Kaldorian-type econo-
mies, namely to those economieswhichpresent a greater-than-unitymarginal propen-
sity to spend out of income. This paper contributes to the debate by showing that, in
the case of a negative interest rate sensitivity of savings, stable endogenous cycles
can actually emerge as equilibrium solutions of the model also in the case of non
Kaldorian-type economies. To this end, we combine the instruments of the global
analysis, specifically the homoclinic bifurcation Theorem of Kopell and Howard
(1975), with numerical methods.

Keywords Multiple steady states · Homoclinic bifurcation · Oscillating solutions
JEL classification C61 · C62 · E32

Introduction

Fixed-price, dynamic IS-LM models of Schinasi’s type (1981, 1982) have recently
re-gained centrality in the literature regarding deterministic fluctuations at business
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feedbacks in the tax collection function to obtain or suppress endogenous fluctuations
(cf inter al., Cai 2005; de Cesare and Sportelli 2005; Fanti and Mandredi 2007;
Neantu, Opris and Chilarescu 2007). Other scholars (cf, inter al., Gandolfo 1997;
Makovinyiova 2011; Neri and Venturi 2007, Sasakura 1994; Zimka 1999) remain
more in line with the original structure of the model, and look for the existence of
oscillating solutions in specific regions of the parameters space mainly by the use
of the Hopf bifurcation Theorem. In general terms, it is important to point out that
the interest for the model is largely undermined by the severe functional restrictions
needed to generate the required oscillating behavior of the variables. In particular,
a Kaldorian S-shaped investment function, in turn implying the possibility of an
upward sloping IS curve, is appealed by this literature to show that the model can
originate endogenous fluctuations.

This paper contributes to the debate by showing that, provided that the interest
elasticity of savings is negative, stable endogenous cycles can emerge as equilibrium
solutions of the model also in the case of non Kaldorian-type economies. To prove
this, we combine the instruments of the global analysis, specifically the homoclinic
bifurcation Theorem of Kopell andHoward, 1975,1 with numerical methods, to show
that a trajectory, starting in the vicinity of a saddle steady state (where the economy
is of non Kaldorian-type) can approach from outside a limit cycle enclosing a non
saddle steady state (where the economy is of Kaldorian-type).

The paper develops as follows. The second section introduces the model and stud-
ies the long-run equilibrium. The third section establishes some stability properties
of the long-run equilibrium from the perspective of the local analysis. In particular,
we provide here confirmation that stable limit cycles can only emerge if the economy
is of a Kaldorian type. The fourth section shows that the more powerful instruments
of the global analysis allow us to prove the possibility of stable limit cycles also for a
non-Kaldorian economy. The fifth section discusses an example. A brief conclusive
section reassesses the main findings of the paper. All necessary proofs are provided
in a specific Appendix.

The Model

Schinasi, in a series of different papers, revises "classical" Kaldor’s (1940) business
cycle model by replacing the capital stock with the interest rate and taking into
account financial markets and a Government budget constraint in which both money
and bond financing are alternative means of financing budget gaps. A non linearity
in the income variable is assumed in the investment function. The shape of the
investment function, crucial for the derivation of feasible oscillating solutions, is

1 The Theorem is largely used in mathematics, physics and biology, but has found a surprisingly
limited application in economics: to the best of our knowledge, the only applications in R

2 planar
systems is in Benhabib et al. (2001) for a Taylor-rule monetary model, and in Benhabib et al. (2008)
for a growth model. An application in the R3 dimension is in Mattana et al. (2009).
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originally postulated by Kaldor (1940) as a way to model a non-linear reaction of
investors to changes in market conditions such as excess demand and excess supply.
More formally, Kaldor’s view assumes that

IY > 0; IY Y

{
> 0, for Y < Y ∈
< 0, for Y > Y ∈

⎧

where I is investment and Y income. IY and IY Y represents first and second-order
partial derivatives of the investment function with regard to income, respectively.
Finally, Y ∈ is the "normal" level of output.2 What is crucial for us is that:

Remark 1 Since the investment function is not constrained to be linear, the IS curve
needs not be linear too.

In a formal perspective, let S(R, Y D) represent savings as a function of the interest
rate and disposable income, with Y D = Y − T (Y ) where T (Y ) is the tax collection
function.Given the non-linearity in the investment function, as output increases above
expected levels, firms will increase investment but less than they would have in a
linearmodel, since they expect Government to be "active" in stabilizing economic ac-
tivity. Therefore, it could be the case that the crucial quantity IY −⎪

S→(1 − T →) − T →⎨

be negative. Notice that, as it will become clearer below, the quantity above presented
connected with the slope of the IS curve in a (R, Y ) space, with regard to which
presents an opposite sign (cf. Schinasi 1981, for a detailed discussion).

After this preparatory discussion, we are ready to present the system of differential
equations originated by Schinasi’s variant of the IS-LMmodel. Referring to Sasakura
(1994) for a detailed derivation, in the case of an instantaneous adjustment in the
money market, the following planar system of first order differential equations is
implied

Ṙ = G−T (Y )
L R(R,Y )

− α LY (R,Y )
L R(R,Y )

⎩
I (R, Y ) − S(R, Y D) + G − T (Y )

]
(M)

Ẏ = α
⎩

I (R, Y ) − S(R, Y D) + G − T (Y )
]

where Ṙ = d R/dt and Ẏ = dY/dt . It is assumed that all functions are contin-
uously differentiable at a suitable order. L (·) is the liquidity preference function,
relating the demand for money to R, the (real) interest rate, and Y , the income level.
It follows that LY (R, Y ) and L R(R, Y ) are partial derivatives of the liquidity prefer-
ence function with respect to income and the interest rate, respectively. I (R, Y ) is the
investment function which is assumed to depend on income and on the interest rate.
Finally G > 0 is the (constant) government expenditure and α is a scale parameter.
Notice that system M is a crucially extended variant of standard Schinasi’s model

2 The idea has been derived from a dynamic theory of the firm in which agents expect aggregate
demand to fluctuate around a trend and believe Government attempts to stabilize output around the
trend.
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(1981) and (1982) where the S (·) function takes into account the interest rate as
a further argument (cf., inter al., Cai 2005; and Makovinyiova 2011, for similarly
augmented models).

For the sake of a simple representation, we shall assume that the tax raising
function is linear in Y , so that we have T (Y ) = τY . Thus Y D = Y − T (Y ) =
(1 − τ ) Y is disposable income. The signs of the derivatives are crucial for the scopes
of the paper. Consider first the liquidity preference and the tax raising functions, for
which the literature assumes

LY (·) > 0; L R (·) < 0

Less clear is the case of the investment and savings functions; whereas there is no
theoretical and empirical disagreement on the following

IR (·) < 0; IY (·) > 0; SY (·) > 0

the sign of SR (·) remains ambiguous (cf. inter al. Abrar 1989). Basic economic
courses show that the interest elasticity of saving can be decomposed into a (positive)
“substitution” effect and an “income” effect, which works in opposite directions.
Which effect prevails depends on the specificmodel and/or parameter configurations.
We shall assume, in the rest of the paper, that it is possible for the savings interest
rate sensitivity SR (·) to be negative.

Steady State

We obtain now some information on the long-run properties of system M. Let
(R∈, Y ∈) be values of (R, Y ) such that Ṙ = Ẏ = 0. To simplify notation, and
considering Y D = (1 − τ ) Y , we define the following

H(R, Y ) = I (R, Y ) − S(R, Y )

Simple algebra shows that, at the steady-state, we have

Y ∈ = G

τ
(2.1)

H(R∈, Y ∈) = 0 (2.2)

We now study conditions for existence and uniqueness of the steady state. Let
φ ∼ R be defined as:

φ(R) = H(R, Y ∈) (2.3)
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with φ conveniently smooth in all its arguments. Let also φ→(R) and φ→→(R) be the
first and second-order derivative of φ(R) with respect to R. If φ→(R) is negative
(positive) in the domain D = {(R) : R > 0}, the function φ(R) monotonically
decreases (increases) with the interest rate and we can only have one intersection
with the R-axis (one steady state). Conversely, if it changes sign, for specific values
of the interest rate, it can have multiple intersections with the R-axis (multiple steady
states). To simplify the analysis, without loosing generality, consider the following
regularity condition

Assumption 1 φ→→(R) does not change sign in the domain D = {(R) : R > 0}.
Assumption 1 implies that, if φ→(R) changes sign in D, φ(R) is unimodal, and the
maximum number of possible intersections with the R-axis is limited to two. Let
now ω ∞ β represent the set of all parameters. Let also β̄ ≡ {ω ∞ β := R∈ ∞ D}.
Then

Lemma 1 Recall Assumption 1. Let β̂ ≡ {ω ∞ β̄ := φ→(R) is positive or negative}
and, complementarily, β̌ ≡ {ω ∞ β̄ := φ→(R) changes sign at R = R̂} = β̄ − β̂.
Then, if ω ∞ β̂, the steady state is always unique. Consider now ω ∞ β̌ and assume
φ→→(R) > 0. Then, if

φ(R̂) < 0 there are two steady states, one with a low interest rate
(
R∈−, Y ∈) and

one with a high interest rate
(
R∈+, Y ∈) ;

φ(R̂) = 0 there is one steady state;
φ(R̂) > 0 there are no steady states.

The statements are inverted if φ→→(R) < 0.

Proof Let ω ∞ β̂. Since, by assumption, the first derivative does not vanish in D,
the function φ(R) is always monotonically decreasing/increasing in D and only one
steady state is possible. Let now ω ∞ β̌. Then φ(R) is unimodal. Assume first
φ→→(R) > 0. Assume, furthermore, there is a (generic) parameter with the properties
in Proposition. Then, the three intersection possibilities with the φ(R) = 0 axis must
apply. Inverse statements apply in the case of φ→→(R) < 0.

Some numerical applications will be provided in Section“Some Numerical Sim-
ulations”, for specific functional forms.3

Local Stability Analysis

Consider trajectories in which R and Y remain bounded in a small neighborhood
of the steady state. In Appendix A, we show that the linearization matrix associated
with system M evaluated at the steady state, is

3 Notice that Lemma 1 is also of notable interest for related fields. For instance, the possibility of
conceputalizing via multiple steady states some paradoxical features of real world time series is
of considerable importance in the monetary economics literature (cf., inter al., Bullard and Russel
1999; Bullard 2009).
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J∈
M =

[
−α

L∈
Y

L∈
R

H∈
R −α

L∈
Y

L∈
R

H∈
Y +

(
α

L∈
Y

L∈
R

− 1
L∈

R

)
τ

αH∈
R α(H∈

Y − τ )

]
(2.4)

where, for the sake of a simple notation, the arguments of the partial derivatives have
been dropped. Consider the characteristic polynomial associated with J∈

M

Det
(
λI − J∈

M
) = λ2 − Tr(J∈

M)λ + Det(J∈
M) (2.5)

where I is the identity matrix. Tr(J∈
M) and Det(J∈

M) are Trace and Determinant of
J∈
M, respectively. In Appendix A, they are shown to be

Det(J∈
M) = α

τ

L∈
R

H∈
R

Tr(J∈
M) = α

(
H∈

Y − L∈
Y

L∈
R

H∈
R − τ

)

To study the stability properties in a planar system from the local analysis per-
spective, it is crucial to establish the signs of Det(J∈

M) and Tr(J∈
M). Simple algebra

shows that necessary conditions for the birth of attracting orbits, from the perspective
of the local analysis, are the following

H∈
R < 0 (2.6)

H∈
Y − L∈

Y

L∈
R

H∈
R − τ > 0 (2.7)

which guarantee that the steady state is an unstable node or focus. More precisely

Proposition 1 Recall Lemma 1. Let ω ∞ β̂ and first assume H∈
R < 0. Then, the

(unique) steady state is an unstable node or focus if (2.7) is satisfied. Conversely, if
H∈

R > 0, the steady state is a saddle.
Let now ω ∞ β̌ and assume first φ→→(R) > 0. As shown in Lemma 1, we can either

have a dual steady state, one steady state or no steady states at all. In the former
case, at

(
R∈−, Y ∈), H∈

R < 0, so that the low interest rate equilibrium is an unstable
node or focus if (2.7) is satisfied. The other steady state

(
R∈+, Y ∈) has H∈

R > 0 and
is therefore a saddle. The low interest rate steady state and the high interest rate
steady state interchange their stability properties if φ→→(R) < 0.

Proof To exclude a saddle we need Det(J∈
M) > 0, which happens if (2.6) applies.

Furthermore if (2.7) is satisfied, Tr (J∈
M) > 0 and the steady state is an unstable

node or focus.

Recall that



2 Kaldorian Assumptions and Endogenous Fluctuations 37

Remark 2 Conditions in (2.6), imply an upwards sloping IS curve. As above dis-
cussed, this property can be justified in a Kaldorian perspective, namely with the
assumption of an S-shaped investment function.

We find it useful, for a clear presentation of the main results of the paper, to give
the following

Definition 1 Let an economy (not) satisfying conditions in (2.6) be called a (non)
Kaldorian-type economy.

Thus

Corollary 1 Recall Lemma 1. Then, from the perspective of the local analysis, only
a Kaldorian-type economy can give rise to stable deterministic cycles.

Proof From the local analysis point of view, only in the neighborhood of the non-
saddle steady state we can have oscillating solutions. Therefore the case H∈

R > 0
must be discarded. We are only left therefore with the H∈

R < 0 possibility. In this

case, since L∈
R < 0, Tr (J∈

M) = H∈
Y − L∈

Y
L∈

R
H∈

R − τ is positive only if H∈
Y − τ > 0.

As above discussed this implies a positively sloping IS curve which, in turn, can be
justified with an S-shaped Investment function.

Remarkably, it is interesting to point out here that a negative interest elasticity
of savings is also crucial for the emergence of endogenous cycles in discrete-time
overlapping generations models (cf. inter al. Azariadis and Guesnerie 1986; and
Grandmond 1985).

Global Analysis

In contrast with the conclusion of Section. “Steady State”, the global bifurcation
analysis will allow us to prove that, when systemM admits a dual steady state, a non
Kaldorian-type economy can undergo endogenous fluctuations. What we actually do
is to show that there exist trajectories originating in the neighborhood of the saddle
steady state (the one at which the economy is of a non-Kaldorian type) which are
bound to converge to a limit cycle around the non-saddle steady state (the one at
which the economy is of a Kaldorian type). To obtain this result, we make use of the
homoclinic bifurcation Theorem of Kopell-Howard, 1975, which allows to locate
the regions in the parameter space implying the existence of a closed orbit or of a
saddle connection. The application of the Theorem is not trivial and requires several
steps to be accomplished (cf Appendix C).

In any case, before proceeding, we need first to assume some specific functional
forms. Therefore, with regard to the original systemM:

1. the liquidity preference function L(R, Y ) is assumed linear in its two arguments
(cf. Cai, 2005, for a similar approach). Therefore, L(R, Y ) = −βR +γY where
(γ,β) > 0 measure the sensitivity of L (·) to the interest rate and income,
respectively;
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2. a convenient explicit form for the H (·) = I (·)− S (·) function is harder to pro-
pose. InMakovinyiova (2011) the investment and savings functions are assumed
to have the following form

I = ε1
√

Y 3 − ε2R

S = ε3

(
Y D

)2 + ε4R + ε5

tomatch the characteristics of theSlovakian economy,where (ε1, ε2, ε3, ε4, ε5)∞
R

++ and R (the real interest rate) is expressed in percentage terms. However, to
account for a dual steady state,4 we need the H (·) function to be non-linear in
R. Therefore, we propose the following generalization of the H (·) function

H (R, Y ) = ε1
√

Y 3 − ε2R − ε3

(
Y D

)2 − ε4R − ε5 − δ Y
R (2.8)

with δ > 0. Notice that we can interpret the factor Y/R as a proxy for wealth.
This makes it easier to introduce a negative savings sensitivity to the interest
rate. It is useful to point out that parameters lie in the β̌ set and that Assumption
1 is satisfied; consequently, recalling Lemma 1, system S can give rise to two
steady states.

With Eq. (2.8), and recalling Y D = (1 − τ )Y , systemM becomes

Ṙ = − 1−γα
β (G − τY ) + γα

β

⎩
ε1

√
Y 3 − ε2R − ε3(1 − τ )2Y 2 − ε4R − ε5 − δ Y

R

]

Ẏ = α
⎩
ε1

√
Y 3 − ε2R − ε3(1 − τ )2Y 2 − ε4R − ε5 − δY

R + G − τY
]

(S)

As shown in Appendix B, the linearization matrix associated with system S is

J∈
S=

[
γα
β H∈

R
γα
β H∈

Y − γα−1
β τ

αH∈
R α(H∈

Y − τ )

]

where

H∈
R = −(ε2 + ε4) + δ

Y ∈

R∈2 (2.9)

H∈
Y = 3

2
ε1

√
G

τ
− 2ε3(1 − τ )2

G

τ
− δ

R∈ (2.10)

Simple algebra leads to the following

4 Recall that we need φ→→(R) �= 0 to account for multiple steady states.
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Det(J∈
S) = −ατ H∈

R
β

Tr(J∈
S) = α

(
H∈

Y + γ
β H∈

R − τ
)

Afirst requirement of the Kopell Howard Theorem is that there exist regions in the
parameter space at which the linearizationmatrix J∈

S has a double-zero eigenvalue. In
the two-dimensional case, this happens if Det(J∈

S) and Tr(J∈
S) vanish simultaneously.

Taking δ and τ as bifurcation parameters, we can state the following

Lemma 2 Let
(
R̄∈, Ȳ ∈) be the levels of the interest rate at the bifurcation point.

Let furthermore δ̄ and τ̄ be the values of δ and τ which solve Det(J∈
S) = 0 and

Tr(J∈
S) = 0, respectively. Then, if δ = δ̄ and τ = τ̄ , J∈

S has a zero eigenvalue of
multiplicity 2. Considering (2.9) and (2.10), simple algebra shows

δ̄ = (ε2 + ε4)R̄∈2

G
τ̄

and
3

2
ε1

√
G

τ̄
− 2ε3(1 − τ̄ )2

G

τ̄
− δ̄

R̄∈ − τ̄ = 0.

where

R̄∈ =
ε1

√
( G

τ )3 − ε3(1 − τ )2( G
τ )2 − ε5

2δ̄

Proof To have a linearization matrix with a zero eigenvalue with multiplicity 2 at
the bifurcation, we need to make sure that the determinant and the trace vanish
simultaneously. Since Det(J∈

S) and Tr(J∈
S) vanish, respectively, when δ = δ̄ and

τ = τ̄ the statement in Lemma 2 is implied.

We are now ready to prove the main proposition.

Proposition 2 Recall Lemma 2. Assume H(R, Y ) be approximated by the expres-
sion in (2.8). Then, for δ and τ close to the bifurcation values (δ̄, τ̄ ), there exist
trajectories originating in a close neighborhood of the saddle steady state which
either spiral towards the non-saddle steady state or converge to a limit cycle around
it. By Proposition 1, the saddle steady state is

(
R∈−, Y ∈) whereas the non-saddle

steady state is
(
R∈+, Y ∈).

Proof To prove the Proposition, we show in Appendix C that system S satisfies, for
specific parameter values, the Kopell-Howard’s homoclinic bifurcation Theorem.
Since in our case φ→→(R) = −2δ Y ∈

R∈3 < 0, by Proposition 1,
(
R∈−, Y ∈) is a saddle

while
(
R∈+, Y ∈) is non-saddle. In the case of a saddle connection, spiralling towards

the non-saddle steady state requires Tr(J∈
S)|(R∈+,Y ∈) < 0. Convergence of trajectories

starting in the neighborhood of the saddle steady state to a limit cycle requires the
orbit to be attractive. We will show in the next section, by means of numerical
simulations, that this ordinarily happens for system S.
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Table 2.1 Baseline
parameter

α β γ G ε1 ε2 ε3 ε4 ε5

0.1 0.8 0.1 0.78 0.06̄ 0.04 0.00132 0.03 0.381773̄

Proposition 2 immediately implies the following

Corollary 2 Recall Definition 1. Then, a non Kaldorian-type economy can give rise
to stable deterministic fluctuations.

Proof Since there exist trajectories originating in the neighborhood of the saddle
steady state (where conditions in 2.6 and 2.7 do not apply) which approach a limit
cycle, then non-Kaldorian type economies can exhibit deterministic fluctuations (also
cf Definition 1).

Interestingly, a negative interest elasticity of savings is also crucial for the emer-
gence of endogenous cycles in discrete-time overlapping generations models (cf.
inter al. Azariadis and Guesnerie 1986; and Grandmond 1985). We conjecture that
the result is also likely to arise in models with alternative specifications of the non
linearity in the interest rate in both the investment and savings functions.

Although the existence of a limit cycle approached by trajectories originating
in the neighborhood of the saddle steady state is our main result, it must not be
underestimated the possibility of a saddle connection between the two steady states
which, in the case of a low decay factor, is not inconsistent with the observation of
a fluctuating behavior of real economies.

In Section“Some Numerical Simulations” we provide an extensive simulation
study based on system S.

Some Numerical Simulations

Let now β̌M ≡ (α,β, γ, G, ε1, ε2, ε3, ε4, ε5) be set as in Table 2.1.5

At thebifurcation, there is a unique steady state such that
(
R̄∈, Ȳ ∈) ≈ (1.36,4.39).6

The parameter values are essentially taken from Makovinyiova with some crucial
differences. First of all, to obtain a reasonable amplitude of the cycle, in the case of
an economy starting close to the saddle steady state (in the case of a large distance
between the two steady state values of the interest rate), we found it necessary to
lower the parameter α to 0.1. Furthermore, γ, the elasticity of the demand for money

5 Notice that, for system S, since φ→ (R) can change sign in the domain D, the parameters lie in the
β̌ sub-sector.
6 Notice that, with these parameter values, the saving sensitivity to the interest rate equals, at the
bifurcation

S∈
R = ε4 − δ̄

Y ∈

R̄∈2 = −0.040733821

which is consistent with the simulations in Abrar (1989).
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Fig. 2.1 A non-Kaldorian type economy (slowly) converging to a cycle

with respect to Y , is set to 0.1 instead of 0.2. Finally ε3 is set to 0.00132 instead of
0.001. These further changes are necessary to allow for a positive Tr(J∈

S)|(R∈+,Y ∈),
and therefore for the most interesting case of an attracting orbit to be obtained.

The implied critical values of the bifurcation parameters in the baseline simulation
are respectively

(
δ̄, τ̄

) ≈ (0.03787, 0.17732). Notice that the critical value of the
tax rate is very close to the value of the tax rate reported in Makovinyiova for the
Slovakian economy in 2007.

Consider now the following example. Set β̌M as in Table2.1. Assume further-
more δ = 0.03 < δ̄ and τ = 0.1801 > τ̄ . Then, a dual steady state emerges.
We have (R∈−, Y ∈) ≈ (0.9613, 4.331) and (R∈+, Y ∈) ≈ (1.9309, 4.331). We also
obtain Det(J∈

S)|(R∈−,Y ∈) > 0, Det(J∈
S |)(R∈+,Y ∈) < 0, Tr(J∈

S)|(R∈−,Y ∈) < 0 and
T r(J∈

S)|(R∈+,Y ∈) > 0. Therefore, the low interest rate steady state is a saddle and
the high interest rate steady state is a source.

The following Fig. 2.1 shows, for the above reported parameter values, the con-
vergence to a limit cycle of a non Kaldorian-type economy starting at (1.2,4.33). It
is interesting to observe that for these parameter values, the high interest rate steady
state is virtually a center, since the trajectory approaches the orbit from outside at a
very slow speed.
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Fig. 2.2 Solution trajectories for varying parameters

We have also conducted a sensitivity analysis by changing some crucial parame-
ters. As it appears clear in Fig. 2.2, what we find is that raising (decreasing) β and
γ with respect to their baseline values stabilizes (destabilizes) the non saddle steady
state. Moreover, we find that small variations of G, measuring the "size" of public



2 Kaldorian Assumptions and Endogenous Fluctuations 43

expenditure, cause the double steady state to disappear. In Fig. 2.2, therefore, we
report trajectories obtained for very small variations of G with respect to its baseline
value.

Conclusions

This paper innovates the literature regarding dynamic IS-LM models of Schinasi’s
type (1981) and (1982). First of all, we find that, if the interest rate sensitivity of
savings is negative, the model admits a dual steady state, characterized by the same
long-run level of income but by different interest rates. One of these steady states is
a saddle and the other is a non-saddle equilibrium. From the local analysis perspec-
tive, our results remain in line with the “Kaldorian tradition”, namely endogenous
fluctuation can only arise if the IS curve is upward sloping.

However, the global analysis provides a different perspective. By means of the
homoclinic bifurcation Theorem of Kopell and Howard (1975) we are able to prove
that (for specific functional forms and parameter configurations) there exist trajecto-
ries originating in the neighborhood of the non-Kaldorian steady state which spiral
towards the other steady state, or to a limit cycle around it. This implies that an
economy not satisfying the Kaldorian assumptions can start, at some point in time,
to exhibit oscillating behavior.

We conclude the paper by proposing the results of an extensive sensitivity analysis.

Appendix A

Linearization matrix associated with system M.
As shown in the text, Schinasi’s model (1981) and (1982) gives rise to the follow-

ing system of first-order differential equations

Ṙ = G−τY
L R(R,Y )

− α LY (R,Y )
L R(R,Y )

[H(R, Y ) + G − τY ]

Ẏ = α [H(R, Y ) + G − τY ] (M)

Let J∈
M be the Jacobian of the right hand side of system M evaluated at the steady

state. The single elements of J∈
M are

j∈11 =∂ Ṙ/∂R|ss = −α
L∈

Y

L∈
R

H∈
R

j∈12 =∂ Ṙ/∂Y |ss = −α
L∈

Y

L∈
R

H∈
Y + αL∈

Y −1
L∈

R
τ

j∈21 =∂Ẏ/∂R|ss = αH∈
R
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j∈22 =∂Ẏ/∂Y |ss = α(H∈
Y − τ )

where, for the sake of a simple representation, the arguments of the functions have
been dropped. Therefore, we have

J∈
M=

[
−α

L∈
Y

L∈
R

H∈
R −α

L∈
Y

L∈
R

H∈
Y + αL∈

Y −1
L∈

R
τ

αH∈
R α(H∈

Y − τ )

]
(A.1)

The eigenvalues of (A.1) are the solutions of the characteristic equation

det
(
λI − J∈

M
) = λ2 − Tr(J∈

M)λ + Det(J∈
M)

where I is the identity matrix. Tr(J∈
M) and Det(J∈

M) are Trace and Determinant of
J∈
M, respectively. We obtain

Tr(J∈
M) = α

(
H∈

Y − τ − L∈
Y

L∈
R

H∈
R

)

Det(J∈
M) = ατ

H∈
R

L∈
R

Appendix B

Linearization matrix associated with system S.
Consider now system S in the text

Ṙ = − 1−γα
β (G − τY ) + γα

β

⎩
ε1

√
Y 3 − ε2R − ε3(1 − τ )2Y 2 − ε4R − ε5 − δY

R

]

(S)

Ẏ = α
⎩
ε1

√
Y 3 − ε2R − ε3(1 − τ )2Y 2 − ε4R − ε5 − δY

R + G − τY
]

Let J∈
S be the Jacobian of the right hand side of system S evaluated at the steady

state. The single elements of J∈
S are the following

j∈11 =∂ Ṙ/∂R|ss = − γα
β

(
−ε2 − ε4 + δ

R∈2
)

j∈12 =∂ Ṙ/∂Y |ss = − γα
β

(
3

2
ε1

√
G
τ − 2ε3(1 − τ )2 G

τ

)
− γα−1

β τ

j∈21 =∂Ẏ/∂R|ss = α
⎩
−ε2 − ε4 + δ

R∈2
]
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j∈22 =∂Ẏ/∂Y |ss = α

(
3

2
ε1

√
G
τ − 2ε3(1 − τ )2

G

τ
− τ

)

where, for the sake of a simple representation, the arguments of the functions have
been dropped. Therefore, we have

J∈
S=

[
γα
β H∈

R
γα
β H∈

Y − γα−1
β τ

αH∈
R α(H∈

Y − τ )

]
(B.1)

where H∈
R = −ε2 − ε4 + δY ∈

R∈2 and H∈
Y = 3

2ε1

√
G
τ − 2ε3(1 − τ )2 G

τ − τ . Therefore,

Tr(J∈
S ) = α(H∈

Y − τ ) + γα
β H∈

R

Det(J∈
S ) = −ατ H∈

R
β

Appendix C

For the sake of a simple discussion, we shall refer to the original version of the two-
parameter homoclinic bifurcation Theorem in Kopell and Howard (1975) (Theorem
7.1, p. 334).

Let (δ, τ ) be our control parameters. Posit μ = δ − δ̄ and ν = τ − τ̄ where δ̄
and τ̄ be the critical values of our bifurcation parameters. Let also R̄∈ and Ȳ ∈ be the
particular steady state values of the interest rate and income implied by μ = ν = 0.

Preliminarily, we translate our system of differential equation to the origin and
provide a second-order Taylor expansion.

Let R̃ = R − R̄∈ and Ỹ = Y − Ȳ ∈. We have, from system S
·
R̃ = γα

β H̃
(
(Ȳ ∈ + Ỹ ), (R̄∈ + R̃), (δ̄ + v), (τ̄ + μ)

)
(C.1)

+ γα−1
β

⎩
G − (τ̄ + μ)(Ȳ ∈ + Ỹ )

]

·
Ỹ = αH̃

(
(Ȳ ∈ + Ỹ ), (R̄∈ + R̃), (δ̄ + v), (τ̄ + μ)

)
+ α[G − (τ̄ + μ)(Ȳ ∈ + Ỹ ))]

where

H̃ = ε1

√
(Ȳ ∈ + Ỹ )3 − ε2(R̄∈ + R̃) − ε3(1 − τ̄ − μ)2

(
Ȳ ∈ + Ỹ

)2

− ε4(R̄∈ + R̃) − ε5 −
(
δ̄+v

)(
Ȳ ∈+Ỹ

)

(R̄∈+R̃)
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System C.1 corresponds to the generic two-parameter family of ordinary differential
equations Ẋ = Fμ,v (X) in Kopell-Howard’s original Theorem. We present now, in
sequence, the computation necessary to apply the homoclinic bifurcation Theorem
7.1 in Kopell and Howard to system C.1.

1. Computation of d Fμ,ν (0). We obtain

d Fμ,ν (0) =
[

2αγ
β ε3(1 − τ̄ − μ)Ȳ ∈2 − αγ−1

β Ȳ ∈ −αγ
β

Ȳ ∈
R̄∈

2αε3(1 − τ̄ − μ)Ȳ ∈2 − αȲ ∈ −αȲ ∈
R̄∈

]
(C.2)

Simple algebra gives

T r d Fμ,v(0) = 2αγ
β ε3(1 − τ̄ − μ)Ȳ ∈2 − αγ−1

β Ȳ ∈ − αȲ ∈
R̄∈

det d Fμ,v(0) = −αȲ ∈2
β R̄∈

At (μ, v) = (0, 0) (C.2) becomes

d F0,0(0) =
[

2γα
β ε3(1 − τ̄ )Ȳ ∈2 − γα−1

β Ȳ ∈ − γα
β

Ȳ ∈
R̄∈

2αε3(1 − τ̄ )Ȳ ∈2 − αȲ ∈ −αȲ ∈
R̄∈

]

Since d F0,0(0) has a double zero eigenvalue, the first requirement of the Theorem
is satisfied.

2. Computation of the mapping (μ, v) ∼ (
det d Fμ,v(0), Tr d Fμ,v(0)

)
.

We have [
∂
∂μ det d Fμv(0) ∂

∂v
det d Fμv(0)

∂
∂μTrd Fμv(0) ∂

∂v
Trd Fμv(0)

]

which reduces to [
0 0

−2αγ
β ε3Ȳ ∈2 0

]
�= 0

Therefore the second requirement of the Theorem is satisfied.

H̃ = ε1

√
(Ȳ ∈ + Ỹ )3 − ε2(R̄∈ + R̃) − ε3(1 − τ̄ − μ)2

(
Ȳ ∈ + Ỹ

)2

− ε4(R̄∈ + R̃) − ε5 −
(
δ̄+v

)(
Ȳ ∈+Ỹ

)

R̄∈+R̃

3. Computation of the Q(e, e) matrix.

Let Pi , i = 1, 2 be the matrices of the second order derivatives of system C.1
evaluated at (μ, v) = (0, 0). We have
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P1 = αγ
β

⎡

⎣
− 2δ̄Ȳ ∈

R̄∈3
δ̄

R̄∈2
δ̄

R̄∈2 ε1
3
4

1√
Ȳ ∈ − 2ε3(1 − τ̄ )2

⎤

⎦

P2 = α

⎡

⎣
− 2δ̄Ȳ ∈

R̄∈3
δ̄

R̄∈2
δ̄

R̄∈2
3ε1
4

1√
Ȳ ∈ − 2ε3(1 − τ̄ )2

⎤

⎦

Let us now compute the right eigenvector e = (e1, e2)T of J∈
S . A possible can-

didate is

e =
[

e1
e2

]
=

⎡

⎢⎣−
αγ
β

(
3
2 ε1

√
Ȳ ∈−2ε3(1−τ )2Ȳ ∈− δ

R̄∈
)
− αγ−1

β τ̄

γα
β

(
−(ε2+ε4)+δ Ȳ∈

R̄∈2
)

1

⎤

⎥⎦

Therefore

Q(e, e) = 1

2

(
eT P1e
eT P2e

)
= α

2

⎛

⎜⎝
−

(
j∈12
j∈11

)2
γ
β
2δ̄Ȳ ∈
R̄∈3 + γ

β

(
3ε1
4

1√
Ȳ ∈ − 2ε3(1 − τ̄ )2

)

−
(

j∈12
j∈11

)2
2δ̄Ȳ ∈
R̄∈3 + 3ε1

4
1√
Ȳ ∈ − 2ε3(1 − τ̄ )2

⎞

⎟⎠

Finally

⎪
d F0,0(0), Q(e, e)

⎨ =

⎡

⎢⎢⎢⎢⎢⎢⎣

2αγ
β ε3(1 − τ̄ )Ȳ ∈2 − αγ−1

β Ȳ ∈ −
(

j∈12
j∈11

)2
γ
β
2δ̄Ȳ ∈
R̄∈3

+ γ
β

(
3ε1
4

1√
Ȳ ∈ − 2ε3(1 − τ̄ )2

)

2αε3(1 − τ̄ )Ȳ ∈2 − αȲ ∈ −
(

j∈12
j∈11

)2
2δ̄Ȳ ∈
R̄∈3

+ε1
3
4

1√
Ȳ ∈ − 2ε3(1 − τ̄ )2

⎤

⎥⎥⎥⎥⎥⎥⎦
(C.3)

where j∈11 = γα
β

(
−(ε2 + ε4) + δ Ȳ ∈

R̄∈2
)
and j∈12 = γα

β

(
3
2ε1

√
Ȳ ∈ − 2ε3(1 − τ )2Ȳ ∈

− δ
R̄∈

)
− αγ−1

β τ . Since (C.3) has rank 2, the third requirement of the Theorem is

satisfied.

References

Abrar, M.: The interest elasticity of saving and the functional form of the utility function. South.
Econ. J. 55, 594–600 (1989)

Azariadis, C., Guesnerie, R.: Sunspot and cycles. Rev. Econ. Stud. 53, 725–736 (1986)
Benhabib, J., Nishimura, K., Shigoka, T.: Bifurcation and sunspots in the continuous time equilib-
rium model with capacity utilization. Int. J. Econo. Theory 4, 337–355 (2008)

Benhabib, J., Schmitt-Grohé, S., Uribe, M.: The perils of taylor rules. J. Econ. Theory 96, 40–69
(2001)



48 G. Bella et al.

Bullard, J.B.: A two-headed dragon for monetary policy. Bus. Econo. 44, 73–79 (2009)
Bullard, J.B., Russel, S.H.: An empirically plausible model of low real interest rates and unbaked
government debt. J. Monet. Econ. 44, 477–508 (1999)

Cai, J.: Hopf bifurcation in the is-lm business cycle model with time delay. Electronic J. Diff. Equat.
15, 1–6 (2005)

DeCesare, L., Sportelli,M.: A dynamic is-lmmodel with delayed taxation revenues. Chaos Solitons
Fractals 25, 233–244 (2005)

Fanti, L., Manfredi, P.: Chaotic business cycles and fiscal policy: an is-lm model with distributed
tax collection lags. Chaos Solitons Fractals 32, 736–744 (2007)

Gandolfo, G.: Economic Dynamics. Springer, Berlin (1997)
Grandmond, J.M.: On endogenous business cycles. Econometrica 53, 995–1046 (1985)
Kaldor, N.: A model of the trade cycle. Econ. J. 50, 78–92 (1940)
Kopell, N., Howard, L.N.: Bifurcations and trajectories joining critical points. Adv. Math. 18,
306–358 (1975)

Makovinyiova, K.: On the existence and stability of business cycles in a dynamic model of a closed
economy. Nonlinear Anal. Real World Appl. 12, 1213–1222 (2011)

Mattana, P., Nishimura, K., Shigoka, T.: Homoclinic bifurcation and global indeterminacy of equi-
librium in a two-sector endogenous growth model. Int. J. Econ. Theory 5, 1–23 (2009)

Neamtu, M., Opris, D., Chilarescu, C.: Hopf bifurcation in a dynamic is-lm model with time delay.
Chaos Solitons Fractals 34, 519–530 (2007)

Neri, U., Venturi, B.: Stability and bifurcations in is-lm economic models. Int. Rev. Econ. 54, 53–65
(2007)

Sasakura, K.: On the dynamic behavior of schinasi’s business cycle model. J. Macroecon. 16,
423–444 (1994)

Schinasi, G.J.: A nonlinear dynamic model of short run fluctuations. Rev. Econ. Stud. 48, 649–653
(1981)

Schinasi, G.J.: Fluctuations in a dynamic, intermediate-run is-lm model: applications of the
poincaré-bendixon theorem. J. Econ. Theory 28, 369–375 (1982)

Zimka, R.: Existence of Hopf bifurcation in IS-LM model depending on more-dimensional
parameter. In: Proceedings of International Scientific Conference on Mathematics, pp. 176–182.
Herlany, Slovak Republic (1999)



Chapter 3
Determining the Relationship Between
Co-creation and Innovation by Neural
Networks

Giacomo di Tollo, Stoyan Tanev, Kassis Mohamed Slim
and Davide De March

Abstract The growing complexity of markets, business development and
administrationhas fostered the applicationofmore sophisticatedquantitativemethods
aiming at the analysis of common features and differences amongst different
businesses. Amongst those quantitative methods, Neural Networks are gaining
support of both practitioners and scholars. This is due to their generalisation capa-
bilities which make them apt to be used without any preliminary assumptions about
the variables at hand or about the specific types of the corresponding models. To this
extent, we are using them to classify firms w.r.t. the relationship between the percep-
tion of their innovativeness and the degree of their involvement in value co-creation
activities—the extent to which they involve end users in the definition of their final
products and services. We will show that businesses from specific sectors could have
a higher degree of involvement in value co-creation. The mapping between the type
of firms and the degree of their involvement in value co-creation is of particular
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interest since they describe attributes and activities and a completely different
heuristic level.We have also studied businesses belonging to stockExchange indexes,
which are regarded as the specimen of the economic and financial situation of a
Country. Our main contribution will be in translating the applicability of ANN in
innovation research.

Keywords Innovation complexity · Value co-creation · Artificial Neural
Networks (ANN)

Introduction

The concept of Value Co-creation (Chesbrough 2011; Ramaswamy and Gouillart
2010; Tanev et al. 2009; Mindgley 2009) is nowadays well established in the mar-
keting and innovation communities (Prahalad and Krishnan 2008; Lusch and Vargo
2006; Prahalad and Ramaswamy 2004), describing how customers and end users
could be involved as active participants in the process of value creation (Prahalad
and Ramaswamy 2004; Etgar 2008; Payne et al. 2008). It refers to the situation in
which businesses enable users to become an active part in the different stages of the
production process, by letting them define the main components of the market offer
and thus shape specific personalized products, services and experiences. The focus
on the relationship between production and customer emphasizes the collaborative
nature of the interaction between firms and consumers (Hoyer et al. 2010). There is
a growing emergence of participatory platforms and co-creation practices focusing
on further enhancing the opportunities for user innovation, in particular when they
are enabled by a broader and more systematic positioning of customers and end
users across the entire innovation lifecycle. Individual co-creation experiences are
becoming essential for the emergence of innovation networks through the develop-
ment, access and dynamic reconfiguration of appropriately designed technological,
business process and human resource infrastructures (Prahalad and Krishnan 2008).
In this sense, the co-creation paradigm can be described as a market-driven approach
based on an open innovation business philosophy.

The participation of customers in co-creation activities should impact the inno-
vation outcomes (Kristenson et al. 2008; Prahalad and Krishnan 2008; Nambisan
and Baron 2009; Bowonder et al. 2010; Ramaswamy and Gouillart 2010). Literature
about value co-creation is predominantly qualitative-oriented, and most of the works
emphasize the role of the customer in both co-creating the innovation outcomes
and contributing to the reduction of innovation cost and time-to-market as well as
to better quality and capacity to address emerging market needs (Kristenson et al.
2008; Prahalad and Krishnan 2008; Nambisan and Baron 2009; Nambisan 2009;
Midgley 2009; Romero and Molina 2009; Bowonder et al. 2010; Ramaswamy and
Gouillart 2010). Furthermore, co-creation practices tend to be assessed from innova-
tion and cooperation perspectives alone, neglecting collateral effects such as brand
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perception, customer satisfaction, or customer relationship quality (Nambisan and
Baron 2009; Nambisan 2009).

In our work instead we want to carry a quantitative analysis of the relationship
between co-creation and innovation, showing that there is a positive association
between the intensity of the co-creation activities of a business and its innovation
potential. A first hint in this direction has been given by Tanev et al. (2011), who use
linear regression and neural networks in order to examine the relationship between
the degree of firms’ involvement in value co-creation activities and the frequency of
their online comments about their new products, processes and services. This work
has focused on a dataset composed of OSS oriented businesses. We want to improve
this approach by applying the analysis provided therein to other datasets, which are
not focused to OSS business only, and which represent more closely the reality of the
economic and financial situation of a country, in order to see whether the conclusions
about innovation and co-creation drawn by Tanev et al. (2011) hold without loss of
generalisation. The aforementioned previous study has shown that firmswith a higher
degree of involvement in co-creation activities have a better opportunity to articulate
the innovative features of their new products, processes and services. We want to see
whether this assertion can be generalised to broader business categories.

Value Co-creation and Innovation

As stated in the Introduction, co-creation makes economic subjects to re-think their
concept of innovation (Prahalad and Krishnan 2008; Kristenson et al. 2008; Tanev et
al. 2009), by stressing two points: first, the customer-driven aspect of the value co-
creation activities; then, the focus on a balance between cooperation and competition,
called co-opetition.

As for the first point, we can say that value co-creation platforms can be seen as
a natural extension of some key aspects of user-driven innovation initiatives (von
Hippel 2006a,b) by focusing on the development of participation platforms (von
Hippel 2001; Nambisan and Nambisan 2008; Nambisan and Baron 2009), which
enables a broader andmore systematic positioning of customers and end users across
the entire innovation lifecycle. For this reson, the development of value co-creation
platforms is increasingly recognised as a promising innovation strategy (Prahalad
and Ramaswamy 2003; Nambisan and Baron 2009; Nambisan 2009; Romero and
Molina 2009; Midgley 2009; Bowonder et al. 2010) leading firms to adopt adaptive
leadership and adaptive management practices (Prahalad and Ramaswamy 2004;
Desai 2010).

As for the second point, the balance between cooperation and competition have
us think more dynamic scenarios of the innovation processes: the economic mech-
anisms which trigger innovation are based on complex relationships an transac-
tions amongst customers, partners, and suppliers, at all points on the value network.
In those scenarios, a key role is played by customers and end users, since in this
way they are eventually capable to control the relationship between price and user
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experience (Etgar 2006; Prahalad and Ramaswamy 2004), to create specific value
chain configurations, and to determine new ways of using existing products.

These two points are of the utmost relevance, expecially because the traditional
innovation and marketing literature has been so far predominantly focused on the
firms’ activities,making customers unapt to become part of the value creation process
(Vargo and Lusch 2004, 2008).

Instead, in a co-creation context, end user (which are referred to as innovators or
co-creators) are rather active stakeholders who can define the type of interaction and
the specific personal context of the encountering event (Prahalad and Ramaswamy
2003): this new paradigm could lead to a disruptive innovation business models
(Christensen 2006), in which firms have to change their approaches to reach cus-
tomers (Payne et al. 2008), by re-defining their understanding of the value chain
into a dynamic value network, producing complex relationships between producers,
suppliers, customers and end users.

Research Methodology

Our research is focused on analysing public data available on the Internet to under-
stand the importance given by firms to the concepts and to the activities represented
by some given regular expression.

This kind of analysis has already been used by (Hicks et al. 2006; Ferrier 2001),
and applied to co-creation and innovation matters by (Allen et al. 2009; Tanev et al.
2011). The rationale behind the latter approaches is that such methodology could
be used to classify value co-creation practices, and one need to formalise the key
steps of the data gathering and analysis work flow, showing that the frequencies of a
specific set of regular expressions can be used to extract the key components of value
co-creation activities, and using those ideas to outline a detailed research process.
This process can be summarised as follows:

• To construct a set of regular expressions in order to represent the different value
co-creation constitutive dimensions and to measure the frequency of use of each
of those regular expressions on companies’ websites;

• To construct a set of regular expressions in order to represent the perception of
firms’ innovativeness and to measure the frequency of use of each of the regular
expressions on companies’ websites;

• To use Principal Component Analysis (PCA) to identify emerging groups of
regular expressions that could be associated with specific self-consisting groups
of activities (components);

• To apply correlation analysis andANNapproach tomodel the relationship between
co-creation and innovation (if any).
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Benchmarks

We will apply the procedure outlined in the section“Research Methodology” to
the same research sample used by (Tanev et al. 2011) (which represents a set
of innovation-oriented firms) and to firms that are included in the FTSE and
DOWJONES indexes (which represent instead a global image of the economic and
financial situation of two different countries). Our goal is to understand whether co-
creation and innovation are nowadays considered as an important asset by large part
of the firms, or just by a small subset of them, whose interest for these paradigms
is justified by their main activity (i.e., the product and services they supply). The
choice of Stock Exchange Indexes from the USA and from the UK is justified by
the fact that regular expressions have been defined in English. Further work will be
devoted to define regular expressions in several different languages in order to assess
the specific situation of several countries.

The sample used by (Tanev et al. 2011) relies mainly on OSS firms, which are
good representatives of firmsmastering themain building blocks of value co-creation
(Prahalad and Ramaswamy 2004) since they actively contribute to the development
of OSS participation platforms and engage in dialogue with multiple external con-
tributors who are most often the end users. They also provide access to their source
code, to their internal resources and development processes. In addition, they share
IP management and development risk with external contributors and end users as
well as enable a high degree of transparency through development forums and news-
groups. In this category we have also selected, amongst firms belonging to Eclipse
OSFoundation, Open Source Experts—www.opensourceexperts.com, andCanadian
Companies Capabilities Directory of OS Companies—http://strategis.ic.gc.ca/epic/
site/ict-tic.nsf/en/h_it07356e.html, 271 firms whose revenue relies on OSS.

FTSE and DOWJONES barely need explaination since they are representatives
of the markets of two amongst the most industrialised country of the world. They
include businesses from several sectors, carrying out (purportedly) different policies
of innovation and co-creation (if any). Up to the authors knowledge, this is the first
time that businesses belonging to those indexes are analysed w.r.t. their focus on
innovation and co-creation. Both indexes contain 100 firms. In our dataset we have
selected 98 firms from the DOWNJONES index and 95 from the FTSE one since
some website was not working properly. In sections “Value Co-creation Compo-
nents” and “Innovation Variable” we are going to describe the metrics used to model
co-creation and innovation. These metrics will be used for the experimental analysis
in what follows.

Value Co-creation Components

The first step of the research process consists on measuring the frequency of the
specific regular expressions on the several businesses websites. This step was
repeated for each of the three benchmarks. This has been made by mean of a

www.opensourceexperts.com
http://strategis.ic.gc.ca/epic/site/ict-tic.nsf/en/h_it07356e.html
http://strategis.ic.gc.ca/epic/site/ict-tic.nsf/en/h_it07356e.html
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tool developed by Giacomo di Tollo and available at http://lisibox.univ-littoral.fr/
CoCreation.

The next step consisted in the application of Principal Component Analysis (PCA)
Landau and Everitt 2004 to the three datasets collected in the previous step. The goal
is to identify independent groups (PCA components) of regular expressions (and the
co-creation activities associated with these regular expressions) that tend to appear
together on firms websites.1

The number of components in each of the instances was determined by a classical
of the Scree plot analysis (see (Field 2005, p. 633)). The application of this analysis
resulted in 3 co-creation components for the OS related benchmark, 4 components
for the NASDAQ firms and 2 components for the FTSE firms. The meaning of the
components has been interpreted on the basis of the relevance (loading values) of each
of the regular expression within a given component (Field 2005). The keywords with
the highest loading values were given higher priority in the interpretation. Hence,
for the OSS related benchmark, the 3 components have been interpreted as:

1. Using information about customer preferences and insights from tests and beta
trials to shape design solutions;

2. Cooperation and partnerships with customers focusing on using their experiences
as a basis for the evolution of existing products, processes and services;

3. Addressing IP issues with customers using companys integrated online services
to disclose and reveal relevant information.

For the NASDAQ related benchmark, the 4 components have been interpreted as:

1. Providing integrated online services to reduce customers cost and exposure to
risk;

2. Using customer partnerships anduser forums to learn about customer experiences;
3. Using/providing internal resources to help customer reveal and disclose relevant

information by taking care of all emerging IP issues;
4. Using product and process modularity to provide users with simulation and mod-

eling toolkits, virtual world applications, and software development kits.

For the FTSE related benchmark, the 2 components have been interpreted as:

1. Using information revealed by customers to enable cost reduction by providing
a variety of resources aiming at design and process flexibility;

2. Using customer forums and user networks to enable cooperation and partnerships
focusing on learning from customer experiences and risk management.

The regular expressions’ composition of each of the components has been used to
determine the co-creation variables for each of the firms in the three samples by
summing up the rating of each of the regular expressions weighted by their specific
loadings.

1 As for the Principal Component Analysis we have used the Vari-max rotation method. Parameters
for accepting the PCA analysis were: correlation table determinant > 10

−5 , K aiser −Meyer −
Olkinmeasure > 0.5, Bartletts signi f icance level < 0.05.

http://lisibox.univ-littoral.fr/CoCreation
http://lisibox.univ-littoral.fr/CoCreation
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Table 3.1 Main statistics of
the co-creation variables

Component Mean STD Skewness Kurtosis

OSS 1 0,398 0,359 2,202 9,794
OSS 2 0,357 1,642 10,072 104,752
OSS 3 0,403 1,831 6,711 49,357
NASDAQ1 0,111 0,159 3,434 16,724
NASDAQ2 0,508 0,410 1,117 1,259
NASDAQ3 0,069 0,121 3,667 15,496
NASDAQ4 0,142 0,169 2,529 7,761
FTSE1 0,419 0,299 1,619 4,075
FTSE2 0,442 0,356 1,816 5,290

Table 3.2 Main statistics of
the innovation variable

Innovation Metric Mean STD Skewness Kurtosis

OSS 0,270 0,1819 1,130 1,734
NASDAQ 0,270 0,166 0,549 0.003
FTSE 0,342 0,276 3,064 12,301

Table3.1 shows the main descriptive statistics all co-creation variables for all
instances that were constructed by adding up the ratings of each keyword weighted
by its loading (see (Tanev et al. 2011) for further details about this procedure).

Innovation Variable

As for the innovation metric, we have used the firm’s own perception of innovative-
ness, defined by (Tanev et al. 2011) by measuring the frequency of firms’ online
comments about new products, services and processes by looking for the following
regular expression: new ∧( product ∨ service ∨ process ∨ application ∨ solution
∨ feature ∨ release ∨ version ∨ launch ∨ introduction ∨ introduce ∨ “new prod-
uct” ∨ “new service” ∨ “new process” ∨ “new solution” ∨ “product launch”). The
frequency of this regular expression has been searched for on the three instances
at hand by mean of a tool developed by Giacomo di Tollo and available at http://
lisibox.univ-littoral.fr/CoCreation. Please notice that, only one regular expression
is used, so no Principal Components Analysis is needed. Table 3.2 shows the main
descriptive statistics of the innovation variable for all instances.

Correlation Analysis

After having defined the co-creation and innovation variables, the next step of the
procedure outlined in (Tanev et al. 2011) is to find the correlation between the
value co-creation component variables and the degree of firms articulation of their

http://lisibox.univ-littoral.fr/CoCreation
http://lisibox.univ-littoral.fr/CoCreation
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Table 3.3 Rank Based Correlation, OSS instance

Innovation Co-creation 1 Co-creation 2 Co-creation 3
Metric

Innovation Metric 1,000 0,662 0,564 0,451
Co-creation 1 0,662 1,000 0,632 0,591
Co-creation 2 0,564 0,632 1,000 0,515
Co-creation 3 0,451 0,591 0,515 1,000

Table 3.4 Rank Based Correlation, NASDAQ instance

Innovation Co-creation 1 Co-creation 2 Co-creation 3 Co-creation 4
Metric

Innovation Metric 1,000 0,622 0,649 0,575 0,300
Co-creation 1 0,622 1,000 0,584 0,695 0,505
Co-creation 2 0,649 0,584 1,000 0,644 0,533
Co-creation 3 0,575 0,695 0,644 1,000 0,464
Co-creation 4 0,300 0,505 0,533 0,464 1,000

Table 3.5 Rank Based
Correlation, FTSE instance

Innovation Co-creation 1 Co-creation 2
Metric

Innovation 1,000 0,355 0,488
Metric
Co-creation 1 0,355 1,000 0,588
Co-creation 2 0,488 0,588 1,000

innovativeness. (Tanev et al. 2011) uses linear regression to this extent. We have
considered the hypotesis of performing linear regression, but the analysis of the
descriptive variables’ statistics for each of the three instances indicated an high
degree of skewness. Hence, instead of linear regression, we have used the Spearman
ranked-based correlation coefficients, which are reported in Tables3.3, 3.4 and 3.5.

The analysis of the data shows that, on average, the sample of firms dominated
by the OSS firms manifests the highest degree of correlation between the value co-
creation components and the online innovation metric. This result is not surprising
since firms related to OSS development tend to use their web pages as participation
platforms which allows for a better articulation of the innovativeness of their prod-
ucts and services. Please notice that all paiswise correlations but the innovation VS
NASDAQ components 4 are statistically significant accordingly to the Rank Based
analysis. Combining these results with the ones shown in Table 3.2, we can already
draw an interesting conclusion: the FTSE benchmark shows higher innovation values
than NASDAQ and OSS business, even if with an higher standard deviation. This is
quite an interesting consideration, since our hypotesis was that OSS business would
have shown the highest values. It apparently shows a concrete feature of the British
companies, for which the focus on innovation represents an asset.
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A Neural Network Approach to Model Innovation
Based Outcomes

In this section we will apply a neural network approach to determine whether a
relationship between the innovation and co-creation variables exists, on the three
instance setswehavedefined in section “ResearchMethodology”.A similar approach
has been introduced by (Tanev et al. 2011), but just focused on the first instance
set. Instead, we want to see whether such a relationship holds over more generical
dataset, in order to understand if innovation and co-creation are important features
of the actual economic and financial context or not.

Artificial Neural networks (ANN) (Hykin 1999; Angelini et al. 2008) are algo-
rithms whose behavior mimics the human brain, which are composed of elementary
units (neurons) that are connected to create a network capable of solve complex
problems, especially when the problem model is unknown in advance and when
the relationships amongst the different components are non-linear. Neurons are con-
nected by synapses, which represent the parameters of the neural network: each
synapses is associated a numerical value that (can) changes over time by means of a
learning procedure, by which the network better fit with the observed output.

The most common ANN model is the feed-forward neural network, which is
regarded to as a general function approximator and which is composed of neurons
which are partitioned in layers, in which no neuron belonging to a layer can have con-
nections with other neurons belonging to the same layer. Given an ordinal sequence
of layers 1 · · · n, every neuron belonging to layer l (0 ≤ l ≤ n) is allowed to have
only unidirectional synapses to layer l + 1. In this framework, a layer h (0 < h < n)
is referred to as hidden layers. Generally, one hidden layer only can approximate
any function with a finite number of discontinuities, arbitrarily well, given sufficient
neurons in the hidden layer (Hagan et al. 1996). We have to remark that Neural
Networks are robust with respect to noisy and missing data, which do not hinder
the network operations (but of course trigger some degree of tolerable performance
degradation). All those requirements make their use appropriate for our problem.
We forward the interested reader to (Bishop 1996; Rumelhart et al. 1986) for more
insight about Neural Networks.

In this research we consider the three value co-creation components, defined in
section“Value Co-creation Components”, as the input variables and the perception
of innovation, as defined above.

Neural Networks to Determine the Correlation Between
Co-creation and Innovation

The results obtained by ANN clearly indicate that there is a relationship between the
actual and desired outputs, and this assertion is of the utmost importance, since it is
observed over the test set. It suggests that, since the network has been trained using
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Fig. 3.1 Relationship between desired and actual output for two different train-test partitions. The
x-axis corresponds to the expected output value (perception); the y-axis corresponds to the actual
network value

the co-creation component values, the variation of the co-creation components is able
to explain firms’ perception of innovation. This could be seen on Fig. 3.1, where the
expected output (innovation) for the test examples is shown along the x-axis, and the
actual network output (innovation) for the same dataset is shown along the y-axis.
Just results obtained by tackling two different partitions of data are reported. Other
partitionings lead to comparable behaviors.

In order to verify if there is a generalised trend of correlation between the current
network output and the desired output (innovationmetric) found over the 30 different
training-test partition, we plot, in Fig. 3.2, the cumulative empirical distribution of
Spearman’s rank based correlation (Spearman 1904) value between desired and cur-
rent network’s output values. We decided to introduce a correlation analysis instead
of to define an error measure due to the lack of such an error measure in previous
research. In order to assess an error measure, we should have introduced a subjective
threshold, without no guarantee on the soundness of this threshold. A correlation
analysis instead, just relies on data, without further manipulation and without taking
into account the variable scale. Furthermore we decided to use the rank-based corre-
lation rather than, i.e., Pearson correlation, in order to evidence non-linear features
between variables. It is nonetheless worthwhile to notice that rank based correlation
and Pearson indicator lead to comparable results.

We can see that there exists a positive rank-based correlation on the variables under
examination, and even in the cases where this relationship appears to be weaker, it is
never smaller than 0.5. The correlation measure is greater than 0.85 in 70% of the
cases, i.e. the positive relationship between variables appears to be robust. Hence, we
can conclude that Neural Networks can be used to examine the relationship between
the co-creation component and firms perception of innovation (see section“Neural
Networks to Determine the Correlation Between Co-creation and Innovation”). This
result is in agreement with the results from the linear regression analysis provided by
(Tanev et al. 2011), which shows that there is a statistically significant positive asso-
ciation between the perception of innovation and the value co-creation components
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Fig. 3.2 CumulativeDistributionof theSpearman’sRankBasedCorrelation values betweendesired
output (perception) and actual output over 30 train-test partitions

“Customer relationships enabled through partnerships and cooperation” and “Mutual
learning mechanisms”. The agreement and the high explanatory power of the linear
regressionmodel (49.0%, assessed by the adjustedR square value) suggest that linear
models are quite adequate in describing the relationship between value co-creation
and the perception of innovation, also showing with the additional advantages of
being less time consuming as well as being able to identify the dominant role of
specific co-creation components. The combination of the results from the ANN and
linear regression analysis provides evidence in support of one of initial hypothesys
that more co-creative firms are in a better position to differentiate themselves by
emphasising the innovative aspects of their new products, processes and services.

The good agreement between the ANN and linear regression does not address the
question of how good the online innovation metric is in describing the innovative
capacity of firms. The answer to this question requires the additional research focus-
ing on the relationship between the three value co-creation components and some
traditional innovation metrics based on the number of new products, processes and
services.

Conclusions

The present study provided an ANN analysis to examine the relationship between the
degree of value co-creation activities andfirms’ innovativeness.Although, it is impos-
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sible to claim the existence of a causal relationship, the results suggest that value
co-creation practices could be considered good indicators of the firms innovation-
related outcomes such as the degree of online articulation of the innovative aspects of
their new products, processes and services. The advantage of such approach can be
found in the opportunity to test the existence of this relationship without any prelim-
inary assumption about its specific functional form. This opportunity appears to be
highly relevant given the early stage of quantitative value co-creation research and the
still limited knowledge about the relationship between co-creation and innovation.

The main contributions of this work should be seen in the specific methodological
setting, since it could open the way for applications of ANNmodeling to co-creative
innovation research.

Up to the authors knowledge, this is the first application of these connection-
ists approaches to innovation and co-creation. These connectionist approaches have
shown a high degree of flexibility and performance in adaptation and prediction.

We could however suggest as a subject of future research the development and
the comparison of different neural networks in terms of topologies and connections
in order to generate reliable and robust models to predict more complex innovation
activities.One should also compare our approachwith other unsupervised appraoches
to determine, whether or not, a neural network model platform could be suited to
simultaneously model and classify such kind of data sets. The potential value of such
modeling could be found in their ability to take into account the inherent complexity
and the emerging nature of value co-creation networks.

We stress out the fact that the results shown here were based on an online inno-
vation metric that was introduced recently in the literature.

Such an approach will provide an opportunity for future research to focus on the
development of specific online innovation metrics to overcome the limits of more
traditional ones, such as the ones suggested in theOSLOmanual: this could open new
research areas focusing on the development of business intelligence and innovation
research tools that would increase the utility of both managers and researchers.
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Chapter 4
On the Fractal Characterization of a System
for Tradings on Eurozone Stocks

Marina Resta

Abstract It is a common habit among practitioners to maintain under strong control
the behavior of a bunch of indexes that are known to capture the movements of
Eurozone stocks. Baltic Dry Index (BDI), RJ/CRB Commodity Price Index (CRB),
Chicago Board Options Exchange Volatility Index (VIX) and Deutsche Bank G10
Currency Future Harvest Index (DBHI), in fact, are supposed to exhibit a kind of
anticipatory behavior with respect to that of Eurozone economy: understanding their
dynamics should therefore imply to know in advance how the economic system will
behave. The rationale of this chapter is to verify to what extent the use of tools relying
on chaos theory and complexity studies (in our case: multiscaling analysis) can be
of any help to capture such anticipatory movements. To do this, we performed two
separate tasks: we evaluated the Hurst exponent of the aforementioned indexes using
a set of techniques, to give robustness to the results; we then moved to compute
for each of them the Hölderian function values. The results suggested us the track
along which developing a trading system based on the fractal characterization of the
Eurostoxx 50 index whose performance will be provided and discussed as well.

Keywords Hurst exponent · Hölderian function · Trading system

Introduction

Studying financial indexes is generally acknowledged as a method (a) to provide
a robust explanation (in mathematical sense) of how does the market work, and
(b) to assure proper room for profit. With this spirit, during the past decades a huge
literature apparatus bloomedwith focus on the challenging issue to develop quantum-
based trading strategies: i.e. a set of rules (generally automated into a programming
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language code) that suggest the investor the position to assume into the market: long
(buy), short (sell), or null (doing nothing). Contributions include neural networks-
based strategies (Azoff 1994; Fernandez-Rodriguez et al. 2000; Resta 2009), systems
based on genetic algorithms (Allen and Karjalainen 1999; Arifovic and Gencay
2001; Bauer 1994), and hybrid solutions (Dourra and Siy 2002), coping together
soft computing and technical analysis (Murphy 1999). However, a common aspect
of the existing literature relies in the poor compliance of the suggested techniques
to the very features of observable markets: models are good enough in theory, but
they are rarely applied by either operators or investors. On the other hand, tools
employed by practitioners like candlesticks (Nison 1994), and technical analysis can
seem satisfactory, but generally suffer for severe drawbacks due to poor statistical
soundness.

The point of our contribution is to offer a different approach to the problem, trying
to define a common ground where practice meets academia: instead of suggesting
a new technique to operate in the market, we move from an existing technique,
commonly applied by operators, and we suggest a way to improve its performances
based on the idea of the Hurst exponent (Hurst 1951), and more generally on multi-
scaling analysis (Mandelbrot et al. 1997).

Going deepest into the detail, we examined the so called Ghost Index1 (GI),
which is supposed to exhibit a kind of anticipatory behavior with respect to that of
the Eurozone economy. Studying GI under both the practitioner and the econome-
trician’s points of view, we indicate the path towards which improving its financial
performances as well as its statistical robustness. This way implies the use of the
Hurst exponent to characterize the GI index components and then the estimation of
the correspondent Hölderian function values (Ayache and Lévy Véhel 2004).

The chapter structure is therefore as follows. Section “Lights and Shadows on the
Ghost Index” after a brief description of the Ghost Index (GI) and its components,
examines the financial performance of GI and its statistical coherence; this will
lead us in search of a better characterization of GI. This is provided in section
“H-Characterization of the Ghost Index”, where we denote as H-characterization
the analysis of both GI and its components by way of the Hurst exponent first, and
the Hölderian function later. The task is performed by way of various techniques, in
order to give more robustness to the results. Moving from this renewed version of
GI, in section “Tradings with Time-Dependent H” we tested its anticipatory features
on the Eurostoxx 50 index. Section “Conclusion” concludes.

Lights and Shadows on the Ghost Index

From the mathematical viewpoint, the Ghost Index (GI from now on) is defined as
follows:

1 See http://www.finanzaonline.com/forum/25986512-post23.html

http://www.finanzaonline.com/forum/25986512-post23.html
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Gl(t) = logBDI(t)

2
+ 30

VIX(t)
+ logCRB(t) + logDBHI(t)

3

where BDI is the Baltic Dry Index2, VIX is the Chicago Board Options Exchange
Volatility Index3 (Brenner and Galai 1989), CRB stands for Thomson Reuters/
Jefferies Commodity Price Index4, and DBHI is the Deutsche Bank Currency Future
Harvest Index5.

The capability of GI to provide operative signals is entirely contained in its com-
ponents: whereas BDI gives an assessment of the price of moving the major raw
materials by sea, VIX measures the implied volatility of S&P 500 index options, and
as such, it is generally acknowledged to represent a measure of the market’s expec-
tation of stock market volatility over the next 30 day period. Finally, while CRB
provides a dynamic representation of broad trends in overall commodity prices, on
the other hand DBHI reflects the return from investing long in currency futures, for
currencies with relatively high yielding interest rates, and going short for currencies
with relatively low yielding interest rates. In practice, combining those components
into a single index assures the investor with a broad range coverage of various market
aspects. Moreover, GI is claimed to have a kind of anticipatory behavior with respect
to the Eurostoxx 50 (EXX50), Europe’s leading Blue-chip index for the Eurozone6,
so that it is often employed for active speculation on that market.

Figure 4.1 provides a view on the behavior of the logarithm of GI and EXX50,
respectively, observed in the period 28 July 2009–31 January 2012, from which the
reader may take an idea of how (apparently) the two indexes seem to co-move.

However, in order to be sure whether the goodness of results can be due either to
the index, or to the trader’s skill, we regressed the log returns of EXX50 on those of
GI in the period of observation; early 70% records (from 28 July 2009 to 28 April
2011) were employed as training set, the remaining 30% (from 29 April 2011 to 31
January 2012) as test set:

rExx50(t) = β0 +
l0∑

k=1

βkrGI(t − k) + ε(t)

where rExx50(t) is the log-return7 of EXX50 at time t, β0 is the constant term, βk
(k = 1, . . ., 10) is the coefficient associated to the k-th regression term rGl(t k),

2 http://www.balticexchange.com/
3 http://www.cboe.com/
4 http://www.jefferies.com/
5 https://index.db.com/staticPages/DBCFH.html
6 http://www.stoxx.com/indices/index_information.html?symbol=SX5E
7 Remember that the log-return r(t) between times t−1 and t can be derived from the corresponding
prices levels p(t − 1) and p(t) as:

r(t) = logp(t)
p(t−1)

http://www.balticexchange.com/
http://www.cboe.com/
http://www.jefferies.com/
https://index.db.com/staticPages/DBCFH.html
http://www.stoxx.com/indices/index_information.html?symbol=SX5E
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Fig. 4.1 From left to right: the behavior of the GI index in the period July 2009–31 January 2012
(left), compared to that of EXX50 (right). On x axes we reported the days, being 1 = 28 July 2009.
On y axis we provided the log value of the examined indexes

Table 4.1 Results for the regression of log EXX50 on log GI

Coefficient Value SE t-statistics p-value

β0 0.000271 0.000321 0.7837 0.4333
β1 0.281472 0.011412 0.1741 0.0024
β2 −0.02218 0.010001 −0.8871 0.1233
β3 0.000072 0.012362 0.1989 0.1517
β4 0.003259 0.017847 0.1798 0.1771
β5 −0.02880 0.016845 −0.0845 0.0321
β6 −0.00349 0.026787 −0.091 0.0329
β7 0.003478 0.015325 0.9987 0.7058
β8 0.005677 0.015587 0.5335 0.3554
β9 0.007440 0.016530 0.9122 0.2597
β10 0.000203 0.016974 0.9154 0.3480

Estimated coefficients values are in Column 2, corresponding Standard Error (SE), t-statistics and
p-value are provided in Columns 3–5

and ε(t) is the normally distributed error term. Table 4.1 shows the results of the
regression up to the 10th lag.

Looking at the values in Columns 4–5, one might conclude that by combining
the pure first and fifth terms of the regression, it is possible to get a proper forecast
of the desired variable. More simply, those results suggest that a good forecast of
rExx50(t) may be given by combining rGl(t − 1) with rGl(t − 5):

r̂Exx50(t) = 0.281472 rGl(t − 1) − 0.02880rGl(t − 5)

It is a matter of fact that using this GI-based system to anticipate the movements
on the EXX50, i.e. taking long (buying) positions when GI log returns started to
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Fig. 4.2 Quantile–Quantile plot opposing theoretical quantiles to standardized residuals

Table 4.2 White’s test for residual heteroscedasticity

Coefficient Value t-statistics p-value

α0 0.000341 7.959 4.17e-015
α1 0.090574 5.054 5.12e-05
α2 0.105976 7.590 1.19e-017
α3 0.123914 9.435 3.47e-025
α4 0.140179 8.534 2.86e-021
α5 0.167898 12.921 3.13e-032

In order to reject the presence of ARCH effects, the p-value = Pr(Chi-square(5) > LM) is asked to
stay beneath 1.811005e-186

become positive, and going short (selling) when they began to be negative, made
possible to maintain a 59% of successfully trades in the test set.

Nevertheless, the model residuals are far to be normally distributed, as shown by
the quantile-quantile plot (Chambers et al. 1983) in Fig. 4.2.

This first glance impression is confirmed by the results of the White test (White
1980) for heteroscedasticity in residuals, as shown in Table 4.2.

This lead us to preliminary conclude that while it is possible to build an anticipa-
tory model of the EXX50 based on the GI, the resulting system is of poor statistical
soundness. The very key issue is therefore to verify if it is possible to improve the
statistical robustness of the GI index: in next section we are going to provide some
evidence in such sense.
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H-Characterization of the Ghost Index

A Brief Guideline on the H Value

By the symbol H we conventionally denote a dimensionless statistical index, known
either as Hurst exponent (in honor of the hydrologist Harold Edwin Hurst) or Hölder
exponent (in honor of the mathematician Ludwig Otto Hölder).

The H value is generally employed to characterize the memory features of a
process: roughly speaking, claiming a process to have long memory implies that
its past realizations may have a significant effect on the present; this, in turn, if we
refer to financial data, means to have a key to understand the current behavior of the
market by way of past prices, and it would imply a strong predictability of the price
return, and hence room for profits.

From a formal viewpoint, it is possible to define H in several ways. Assume, for
instance, a stationary process with finite second order statistics: we say it has long-
range correlations if its covariance function C(n) decays slowly as n ∈ →, i.e., for
0 < q < 1:

limn∈+→
C(n)

n−q
= c

where c is a finite positive constant. The parameter q is related to the Hurst exponent
via the equation: q = 2 − 2H. Alternatively, in the frequency domain, the weakly
stationary time-series Xt is said to exhibit long range dependence if:

f (λ) ∼ Cf |λ|−η,

asλ ∈ 0, for someCf >0, and some real parameterη ∞ (0, 1), f (λ)being the spectral
density of the time-series. In this case (Clegg and Dodson 2005) the parameter η is
related to the Hurst exponent by the relation: H = (1 + η)/2 .

Note that H can also vary over time: depending from H being either a constant
function, or a (continuous) function, the related process is said to be either monofrac-
tal or multifractal.

Starting from monofractals, it is possible to estimate the Hölder exponent in
various ways: the oldest method is known as Rescaled Range (R/S) Analysis, and
it was developed by Hurst himself (Hurst 1951, 1955). In order to recall Hurst’s
original procedure, we may consider the observed time-series X and turn it into the
series of log-returns R, hence going on as follows (Peters 1994).

Step 1 Divide R into d sub-series of length n.
Step 2 For each sub-series m = 1, . . ., d, evaluate the corresponding mean value

(Em) and standard deviation (Sm).
Step 3 Normalize the data by subtracting the sample mean:

Zi,m = Ri,m − Em, for i = 1, . . ., n.
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Step 4 Create the cumulative time-series Yi,m :

Yi,m =
i∑

j−1

Zi,m

for i = 1, . . ., n.
Step 5 Find the range:

Rm = max{Y1,m, Y2,m, . . . , Yi,m} − min{Y1,m, Y2,m, . . . , Yi,m}

Step 6 Rescale the range dividing Rm by Sm:Rm/Sm. Averaging over the whole
set of sub-samples d, the mean value of the rescaled range for sub-series
of length n is then:

(R/S)n = 1

d

d∑

m−1

Rm

Sm

After the analysis is conducted for all possible divisors of N, one can plot the
(R/S)n statistics against n on a double-logarithmic scale. If the returns process is
white noise, then the plot will be roughly a straight line with slope 0.5. If the process
is persistent (i.e. it exhibits long memory), the slope will be greater than 0.5; if it is
anti-persistent (and hence it has short-term memory), then the slope will be lower
than 0.5.

In general, since for small n values there is a significant deviation from the 0.5
slope, the theoretical values of the R/S statistics are approximated by (Weron and
Przybylowicz 2000):

E(R/S)n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n− 1
2

n

�
(

n−1
2

)

≡
π�( n

2 )

n−1∑
i=1

√
n−i

i , n √ 340

n− 1
2

n
1≡
n π
2

n−1∑
i=1

√
n−i

i , n > 340

where � is the Euler gamma function (Abramowitz and Stegun 1972).
In order to put more light on this concept, we are going to discuss an example on

close prices of theVIX index, observed in the time range: 2 January19907–31 January
2012, for an overall number of 5565 records. Let us consider latest 101 observations,
we will denote them by: x1, x2, . . ., x101. Now, we turn them into the corresponding
log-returns: R = {r1, r2, . . ., r100}, and we compute their mean value E: E=(1/100)
[r1 + r2+, · · ·,+r100]. We move to calculate the deviations from the mean zi, and
the cumulative time-series yi, (i = 1, . . ., 100). Now we find the maximum and the
minimum Y values: by subtracting one to each other we get the range R. Finally, we
calculate the standard deviation over the log-returns’ time-series. Nowwe can repeat
the above scheme for 110 points, then for 120 points, and so on: each time we will
generate a point on our chart, as we have shown in Fig. 4.3.
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Fig. 4.3 R/S statistics for the VIX index

The slope of the interpolating line joining together the points (log(n), log(R/Sn))

provides an estimation of the H value. In particular, in the examined case we got
H = 0.250, that means that VIX seems to exhibit short term memory.

The accuracy of the R/S statistics, however, has been widely questioned (Taqqu
et al. 1995; Lo AW and MacKinlay 1999). The main objection moved to the
technique is that it cannot properly work with smaller datasets, with the possibil-
ity of finding long memory in random series, or viceversa by rejecting the evidence
of longmemorywhere effectively it is present. For this reason, in order to give robust-
ness to our analysis, we estimated the Hurst exponent for both GI, its components,
and the EXX50 index by a battery of techniques, including: the Aggregate Variance
method (Taqqu et al. 1995), the Aggregated Absolute Value Moments (Taqqu et al.
1995), Higuchi’s method (Higuchi 1988), Peng’s method (Peng et al. 1994), the peri-
odogram (Liu et al. 2009) technique, and the wavelet estimation (Abry and Veitch
1998): a short description for each of them will be provided in Appendix A. The
results in Table 4.3 refer to EXX50 index, whose case is going to be discussed in full
details.

The estimations sensitively vary according to the technique in use: the Peng’s
value corresponds to the best estimation, in terms of standard error (SE); moreover
the reader can easily note that six methods over nine agree on the (weak) anti-
persistence of the index, whereas the R/S completely fails by reporting evidence of
long-term memory.

In general, the method of Peng provided the best performance in the H character-
ization of all examined indexes: Table 4.4 shows the estimations computed by way
of this technique for all the indexes under examination.

Looking at the results suggests a number of observations. The first one concerns
CRB (the commodities index), which is the sole index whose H value is greater
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Table 4.3 Results of H estimation for the EXX50 index by way of various techniques:

H a Hurst exponent diagnostic

SE t-value Pr (> | t |)
AVM 0.534662 −0.93068 0.004492 119.0217 3.094809e-313
AbsMOM 0.576600 −0.42340 0.005916 97.46108 7.67e-280
Higuchi 0.532467 −1.46750 0.010028 53.09664 1.04e-182
Peng 0.461704 0.92340 0.002562 180.1803 2.203e-321
RS 0.603274 0.60327 0.012911 46.72461 1.71e-101
Pgram 0.482502 0.03499 0.025633 18.82343 2.21e-63
Wav 0.471145 −0.05771 0.018089 26.04521 2.11e-07

Aggregate Variance method (AVM), Aggregated Absolute Moment method (AbsMOM), Higuchi
and Peng’s methods, R/S analysis (RS), Periodogram (Pgram) and wavelet method (Wav)

Table 4.4 Estimated H values via the Peng’s method for GI, BDI, VIX, CRB, DBHI and EXX50

H a Hurst exponent diagnostic

SE t-value Pr (> | t |)
GI 0.406846 0.933693 0.024409 19.1257 4.08e-51
BDI 0.489342 0.978684 0.009063 53.9911 1.01e-148
VIX 0.357680 0.715360 0.004139 86.4155 6.05e-221
CRB 0.522505 1.045010 0.011943 43.7495 2.88e-120
DBHI 0.419948 0.839895 0.008118 51.7289 1.40e-146
EXX50 0.461704 0.923400 0.002562 180.1803 2.203e-321

than 0.5. However, in this case it would be exceeding to say it exhibits long memory,
as well as in the case of BDI it could be inappropriate to report a short memory effect:
in both cases, in fact, the evidence is rather that log-returns are really close to be
truly independent and uncorrelated, and there is no trend effect in the index levels. A
second remark concerns the indexes whose H value is lower than 0.5, evidencing a
short memory (mean-reverting) effect. Unlike as it makes sound, this information is
as precious as that of long memory: a mean-reverting process, in fact, can be used for
active speculations, because, in general, when the current market price is lower than
the average price, the stock is considered attractive for purchase, with the expectation
that the price will rise; conversely, when the current market price is above the average
price, the market price is expected to fall and hence attractive for selling.

A conclusive remark concerns the relations existing between the H values of
EXX50 and GI. As already highlighted, the H value for EXX50 is lower than 0.5,
and the same applies for GI, VIX and DBHI. The fact that the H value of GI is closer
to those of VIX and DBHI raises doubts about its real effectiveness as information
source: as an index mimicking the behavior of EXX50, one could straightforwardly
expect the correspondent H values to be more similar one to each other than as
appearing. The present difference is undoubtedly a consequence of the construction
principle underlying the Ghost Index. However, a method to assure the significance
of the estimated H value (and hence of previous conclusions) could be that of testing
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Fig. 4.4 Behavior of H(t) for the GI index (HGI) and the EXX50 (HEXX50): lighter gray line denotes
HEXX50, while HGI is represented by black line

whether it fluctuates over time or not. This shifts the focus to the estimation of
the H value in a dynamic fashion, i.e. the Hölderian function values H(t) that we
estimated with the wavelet transform modulus maxima (WTMM) method (Mallat
1989; Yalamova 2006).

Figure 4.4 shows the behavior of H(t) estimated for both GI and EXX50 indexes,
while Fig. 4.5 compares the behavior of H(t) of EXX50 to the log-behavior of the
index itself.

From Fig. 4.4 it immediately sticks out to eyes that (a) HGI has an anticipatory
behavior with respect to HEXX50, but (b) it maintains sensitively beneath HEXX50. On
the other hand, looking at Fig. 4.5, one can observe that rises in HEXX50 correspond
to volatility bursts in EXX50.

Joining together the observations exploited by the comparison of HGIversus
HEXX50, and by the analysis of the dynamics of EXX50 in the light of the behavior
of HEXX50suggests the possibility to interpret the variations of EXX50 by means of
the bursts and blazes in the values of H(t). Moreover, if it were possible to assure
a better tuning of HGI, it could be possible to exploit its fluctuations to anticipate
HEXX50and hence EXX50, making room for profit.

Next section will focus on some models to improve the performance of the GI
towards this direction.

Tradings with Time-Dependent H

We have already higlighted that speculating on the EXX50 by way of the Ghost
Index can be effective from a financial point of view, but not from the statistical per-
spective. By examining the scaling features of both GI, its components and EXX50
(H characterization) we found out that the lower statistical robustness of GI might
be imputed to the fact that by construction GI is made more similar to some of its
components (namely the VIX and CRB indexes), enhancing its mean reverting fea-
tures more than necessary. We turned then the attention to the multiscaling features
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Fig. 4.5 From top to bottom: the behavior of HEXX50(t) and the logarithm of EXX50

of the above indexes, discovering that booms and burst on EXX50 seem to be antic-
ipated in the behavior of the Hölderian function.

Now we are facing the challenging issue to exploit such information in order to
make the Ghost Index more effective.

Let us assume to denote by HBDI,HVIX,HCRB,HDBHI, the time-series corre-
sponding to the estimated Hölderian function for the indexes: BDI, VIX, CRB and
DBHI, observed in the period: 28 July 2009–31 January 2012. As usual, earlier 70%
of records data will serve as learning set, while the remaining 30% will be use for
backtesting purposes.

The first model we studied is based on the regression of HGI on HBDI, HVIX,
HCRB, and HDBHI:
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Table 4.5 Results for the regression of HGI on HBDI, HVIX, HCRB, and HDBHI

Coefficient Value SE t-statistics p-value

β0 0.0818 0.0250 3.2747 0.0011
β1 0.2009 0.0451 4.4523 0.0000
β2 0.1916 0.0538 3.5581 0.0004
β3 −0.3066 0.0486 −6.3048 0.0000
β4 0.3425 0.0528 6.4917 0.0000

Notational conventions are the same as discussed in Table 4.1

Table 4.6 White’s test for residuals heteroscedasticity

Coefficient Value t-statistics p-value

α1 0.0726 4.2189 0.0841
α2 0.0030 4.2415 0.0499
α3 0.0018 4.2376 0.0378
α4 0.0043 4.2525 0.0487
α5 0.0042 4.2574 0. 0107

Notational conventions are the same as discussed in Table 4.2

HGI (t) = [β0 β1 β2 β3 β4]





1
HBDI (t − 1)
HVIX(t − 1)
HCRD(t − 1)
HDBHI (t − 1)




+ ε(t)

whereβ0, ldots, β4 are the regression coefficients, and ε(t) is the normally distributed
residual at time t. The results are provided in Table 4.5.

The second step was then to apply the values found by the regression to build the
estimated HGI index:

̂HGI (t) = [0.0818 0.2009 0.1916 − 0.3066 0.3425]





1
HBDI (t − 1)
HVIX(t − 1)
HCRD(t − 1)
HDBHI (t − 1)





Table 4.6 shows the results for theWhite’s test in search of residuals heteroscedas-
ticity. The analysis, performed up to the lag 5, highlights only a violation, a sensitive
enhancement, with respect to what observed in section “Lights and Shadows on the
Ghost Index”.

In this case we chose to directly emploŷHGI (t) to develop operative signals on
EXX50. In particular, every timêHGI(t) felt down the value 0.5, this was assumed
as a reverting signal, i.e. either to sell, if previous action was buying, or to buy if we
had gone short at previous time. On the contrary, every timêHGI (t) went up 0.5, we
hold the position (either selling or buying) that have been previously assumed.
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Table 4.7 Results for the regression of HEXX50 on HGII

Coefficient Value SE t-statistics p-value

β0 0.5853 0.0089 5.8258 0.0001
β1 −0.1139 0.0567 −2.0071 0.0452
β2 0.0190 0.0889 0.2142 0.8305
β3 0.0222 0.0890 0.2496 0.8030
β4 −0.0263 0.0568 −0.4639 0.6429
β5 0.0254 0.0312 0.7584 0.6121

Notational conventions are the same as discussed in Table 4.1

Table 4.8 White’s test for residuals heteroskedasticity

Coefficient Value t-statistics p-value

α1 0.0267 5.1995 0.0384
α2 0.0387 5.2118 0.0499
α3 0.0289 5.2065 0.0078
α4 0.0053 5.1938 0.0094
α5 0.0088 5.1955 0.0110

Notational conventions are the same as discussed in Table 4.2

By applying this strategy to the test set we get a 58% of successful trades: a
percentage aligned to the one of practitioners’ GI we discussed in section “Lights
and shadows on the Ghost Index”. However, the results of the new trading system
are better than those examined in section “Lights and Shadows on the Ghost Index”
from the statistical point of view, as the heteroscedasticity of residuals is now limited
to the lag 1.

We then developed a second model, where the HEXX50 is regressed on HGI and
estimated values are used to create signals to anticipate the behavior of EXX50.
Regressions coefficients are provided in Table 4.7, while Table 4.8 shows the results
of White’s test for ARCH effects.

Searching for ARCH effects on residuals gave affirmative feedbacks in one over
five cases, but this time financial performances lowered to 54%.

Conclusion

In this chapter we examined the fractal features of a number of indexes that practi-
tioners maintain under strict control to trade on Eurozone stocks. In particular, we
focused our attention to the so-called Ghost Index (GI) that by construction assures
a broad range coverage of various market aspects, and it is therefore employed for
active speculation on the Eurostoxx 50 (EXX50), and, more generally, on the Euro-
zone market.



76 M. Resta

The starting point for our analysis was the observation that while GI, as built by
practitioners, can proficiently work from a financial point of view, nevertheless is
statistically weaker.

We then moved in search of a way to give more robustness to the index, and we
found out that analyzing what we have called the H-characterization of both GI, its
components and EXX50 can be of help. In practice, this involved the estimation of
the Hurst exponent H of the indexes; this task was performed by way of a bunch of
techniques letting us to give robustness to our conclusions. We then moved to test
whether such H values maintain constant (monofractal process) or vary (multifractal
process) along time. In this waywewere able to verify that (a) the Hölderian function
values of GI (HGI) tends to anticipatemovements in HEXX50, and (b) booms and burst
in the EXX50 behavior are mirrored, generally at least one day in advance, by the
Hölderian function values HEXX50.

As final actwe developed twomodels that implement such information to generate
active trading signals. The results we obtained are aligned to those of the original
Ghost Index from a financial point of view, but are statistically more robust in both
examined models. In this way we provided evidence that multiscaling analysis is
very important not only at theoretical level, but also in practice, where it can be of
aid to practitioners to tune existing techniques to give them more financial results
coped to statistical soundness. This, in turn, highlights that tools relying on chaos
theory and complexity studies may be employed to develop practical applications
achieving successful tradings on financial markets.

Appendix A: Estimation Techniques of the Hurst Exponent

Starting from the original technique suggested by Hurst, several methods have been
developed to estimate the parameter H, which operates both in time and frequency
domain.

The aggregate variance is a time domain method useful for non-stationary time
series. Using the same notational conventions adopted in section “H-Characterization
of the Ghost Index”, assume that R is the series of returns derived from the original
time-series X. Then:

Step 1 Aggregate R into d sub-series of length n, with n = 2, . . ., [N]/2, where
N is the original length of R, and [.] indicates the integer part.

Step 2 For each sub-series consider the related sample variance.
Step 3 Graph the variances of such aggregate time-series in a log–log plot versus

the different levels of aggregation and provide a least square line to fit the
data. The slope of such line gives the estimation for H.

The modulus of the aggregate series works in a similar fashion, but uses the
modulus of the aggregate time series variance instead of its variance.

The periodogram method, on the other hand, is a technique working in the fre-
quencies domain. The periodogram for the returns series R is defined as:
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I(λ) = 1

2πN

∣∣∣∣∣∣

N∑

j=1

R
jeijλ

∣∣∣∣∣∣

2

where λ is the frequency. For a series with finite variance, I(λ)( is an estimate of the
time-series spectral density. Fitting a log-log plot of I(λ)( with a least square line,
one should obtain a slope of 1 − 2H close to the origin.

Turning back to time-domainmodels, the Higuchi estimator is based on the fractal
dimension D of a time series. Starting from the original time-series R, the procedure
works as follows.

Step 1 Create sample sequences:

Zm
k =

{
Y(m), Y(m + k), Y(m + 2k), . . . , Y

(
m +

⎡
(N − m)

k

⎣
k

⎤⎦

where Y(m) = r1 + r2 + · · · + rm are partial sums, k = 1, 2, . . ., N; m =
1, 2, . . ., k, and the operator [.] stands, as already seen in previous rows,
for the integer part.

Step 2 For each sequence Zm
k the normalized curve length is computed as:

Lm(k) = N − 1

K2
⎢N−m

k

⎥

⎛
N−m

k

⎜

∑

i=1

|Y(m + ik) − Y(m + (i − 1)k)|

and the curve length L(k) for each lag k is:

L(k) = 1

k

m=1∑

k

Lm(k)

Hence, E(L(k)) ≈ C−D
2k for k ∈ →, where D = 2− H. The H parameter is then

estimated by classical regression techniques with logL(k) opposed to log(k).
The Peng’s method, also known as Detrended Fluctuation Analysis (DFA) makes

possible to estimate H in case of non-stationary time-series.
At first, one should divide the sequence R of length N into [N]/s non-overlapping

boxes, each containing s points. The linear local trend z(t) = at + b in each box
is the standard linear least-square fit of the data points belonging to that box. The
detrended fluctuation function F is then defined by:

F2
k (s) =

(k+1)s∑

t=ks+1

|r(t) − z(t)|2
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Averaging F2
k (s) over the [N]/s intervals gives the fluctuation E(F2(s)) as a func-

tion of s , being:

E(F2(s)) = s

N

[N]
s −1∑

k=0

F2
k (s)

If the observable returns are realizations of random uncorrelated variables or
short-range correlated variables, the behavior of E(F2(s)) is expected to be a power
law: ⎝

E(F2(s)) ∼ SH

The value H can be then easily derived.
To conclude, an interesting estimationmethod has been introduced at the eve of the

new century based on the wavelet approach. The wavelet transform is amathematical
tool for representing signals as sum of “small waves”. It is a better substitute of the
Fourier transform: while this latter is used to transform a signal from the time domain
to the frequency domain, the wavelet transform, on the other hand, is capable of
providing the time and frequency information of a signal simultaneously.

The input signal is represented in terms of dilated versions of a prototype of high-
pass wavelet function ψij and shifted version of a low-pass scaling function (φij),
based on the scaling function φ0 and the mother wavelet basis function (ψ0), being:

φij(t) = 2−i/2φ0(2
−it − j), i ∞ Z

ψij(t) = 2−j/2ψ0(2
−jt − j), j ∞ Z

The approximation information of sequence R is then given by:

approxi(t) =
∑

j

ar(i, j)φij(t)

where the coefficient ar(i, j) is given by calculating the inner product:

ar(i, j) = ≈R, φij≥

The detail information (detaili) of sequence R is given by:

detaili(t) =
∑

j

dr(i, j)ψij(t)

where the coefficient dr(i, j) is given by calculating the inner product of R:

dr(i, j) = ≈R, ψij≥
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Multi Resolution Analysis (MRA) represents the information about the sequence
X as a collection of details and a low resolution approximation:

r(t) = approxN (t) +
N∑

i=1

detaili(t)

=
∑

j

ar(N, j)φNj(t) +
N∑

i=1

∑

j

dr(i, j)ψij(t)

The function φ0 produces an approximation of signal R and it must be a low-pass
filter. The mother wavelet function ψ0 must be high-pass filter, and it performs a
differential operation on the input signal to produce the detail version.

The wavelet-based Hurst parameter estimator is based on a spectral estimator
obtained by performing a time average of the wavelet detail coefficients |dr(i, j)|2 at
a given scale:

Sr = 1

Ni

∑

j

|dr(i, j)|2

where Ni is the number of wavelet coefficients at scale i, i.e., Ni = 2−iN , and N
is number of data points. The estimator first performs Discrete Wavelet Transform
(DWT) on the input signal, employing wavelets from the Daubechies family. After
computing the DWT, the estimator calculates the estimates of log2E[d(i, j)]2 and
variance of these estimates and performs a linear regression hence finding the slope γ .
H is then calculated as: H = 0.5(1 + γ ), 0 < γ < 1.
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Chapter 5
Managing Uncertainty in Complex Projects

Giancarlo Nota and Rossella Aiello

Abstract The need for complex systems has grown in recent years to react to the
different requirements arisen in an increasingly interconnected and interdependent
environment. Examples range from air traffic control systems, systems manag-
ing transactions on the stock exchange or environmental monitoring systems. The
increasing complexity of such systems brings to the higher complexity of project
management activities, which requires the review of commonly used methodologies
to provide a better response to expectations of success for the planned projects. In
this work we present a method for project monitoring and control based on the idea
of a project view: given an analysis dimension such as time, cost and quality, each
participant in the project has its own view on the project execution. The unavoid-
able differences between the views of various stakeholders have been formalized
in the function gap that can be interpreted as an inverse measure of the degree of
consonance between two participants with respect to the dimension of considered
analysis. The method can leverage on the consonance seeking among stakeholders
as a reduction factor of project risks.

Keywords Project views · Uncertainty management · Consonance · Complex
projects

Introduction

In the last years, both dimension and complexity of projects managed by public or
private organizations have greatly grown. Williams (2002) indicates that the causes
can be attributed to the complexity growth of the products to be developed and to

G. Nota (B) · R. Aiello
Department of Computer Science, University of Salerno, 84084 Fisciano, SA, Italy
e-mail: nota@unisa.it

R. Aiello
e-mail: raiello@unisa.it

M. Faggini and A. Parziale (eds.), Complexity in Economics: Cutting Edge Research, 81
New Economic Windows, DOI: 10.1007/978-3-319-05185-7_5,
© Springer International Publishing Switzerland 2014



82 G. Nota and R. Aiello

the containment of development times. Projects are increasingly managed with a
very rapid pace, contributing to add difficulties and reduce the ability of achieving
objectives such as on-time delivery, costs within budget, the expected quality.

Statistical evaluations made by Standish Group (2009), or Gartner Group in Bloch
et al. (2012) on project execution show that projects fail at an alarming rate. Common
causes are vague project objectives and specifications as well as inadequate solutions
deriving frompoor design orwrong implementations, but also the lack of involvement
in the project of the various stakeholders, especially when their points of view are
not consistent.

The traditional approach of project management assumes that the project context
remains unchanged and the key factors for the success of a project are attributable to
unambiguous elements for management and control. Many project plans are based
on a static view of the world, set at the project start time; as a result, the plan remains
valid until what has been planned as amodel for the future continues to hold.Actually,
the project environment rarely remains static, and the planning assumptions change
over time.

Due to this increasing complexity, projects are nowconsidered as complex systems
and both researchers and practitioners, such as Crawford et al. (2011), Remington
and Pollack (2008), Thomas and Mengel (2008), have started to apply complexity
theory also in thefield of projectmanagement.Ahugenumber of studies and scientific
works like Holland (1998), Waldrop (1993), Miller and Page (2007), Senge (1996)
can be found in literature about complexity theory in many different areas, such
as physics, economics, biology, ecology and so on. Complex adaptive systems are
characterized by a large number of entities with a high level of nonlinear interactivity;
they exhibit some different characteristics and multiple kinds of systemicity such as
hierarchy, interconnectedness, control, communication, emergence, adaptiveness.
Complex Adaptive Systems learn and evolve by adapting and thereby surviving by
processing information and building schemas based on experience. According to
Barile and Saviano (2011) “..complexity manifests itself as the incapacity to orient
and act using criteria and rules that were previously deemed useful; consequently,
the indications to bring about change in lieu of recovery of stability cannot be directly
and immediately inferred from past method”; moreover different observers perceive
a different level of complexity but also the “same” observer, at different moments,
perceives different levels of complexity.

In these cases, implementing a strategic action becomes a serious challenge to
managers of organizations. The process becomes more and more difficult to handle
because of characteristics like unpredictability, uncertainty, and the wide variety
of interactions among multiple autonomous agents. Strategies become the results
of a collaboration process in which thinking and acting go together. The relation
between creation and implementation of strategies is a continuous process in which
the strategist gives form to the strategy by personal touch as discussed by Remington
andPollack (2008).Barile andSaviano (2011) states that in a complex context, human
beings take decision strongly based on psychological factors: decisions are made on
the basis of value categories. In Holmdahl (2005), the author points out that culture
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and the view of the world determine the strategies to perceive and, consequently, the
plans and techniques to apply.

Noone approach toprojectmanagement is appropriate for every situation.Accord-
ing to Pich et al. (2002) two fundamental strategies become necessary when the
project information is inadequate: learning and selectionism that is pursuing multi-
ple approaches and choosing the best one ex post. In Hurtado (2006) a conceptual
framework for the strategy management process is proposed: “when complexity is
irreducible, the traditional planning has to be complemented by additional tech-
niques, shifting the focus from the full-fledged intended strategies towards interac-
tive organizational learning, scenario planning and organizational mindfulness: this
means to operate considering the evolution not only of the organization-environment
ensemble but also of interrelated groups of organizations”.

A highly topical issue in the management of complex projects is the handling of
uncertainty, as shown in Atkinson et al. (2006), Cleden (2009), Curlee and Gordon
(2010), Meyer et al. (2002), Perminova et al. (2008), Ward and Chapman (2003).
A common management of uncertainty is a necessary condition for an effective
project management, but this requires more attention together with the use of more
sophisticated methods and techniques than those of current common practice. In
order to cope effectively with complex projects managers must adopt a pluralistic
approach to practice. They must be able to draw from a wide range of tools and
ways of thinking to develop their own methods, their own patterns of practice, freely,
according to the exigencies of the particular project.

If the projects become more complex for a number of reasons ranging from the
size of the technical complexity, or environmental conflicts or political constraints,
then the usual project management methodologies need to be adapted as well as man-
agers must be able to analyze situations from different perspectives and work using
a larger number of models. Therefore, planning uncertainty implies a willingness to
review the project plan whenever the situation demands it. Atkinson et al. (2006)
says that uncertaint may also arise from gaps in different areas of knowledge, con-
cerning,e.g., contextual information on the project, or the degree of understanding
of basic processes, or an underestimation of specific past events. When the world
is complex, the agile adaption to circumstances and latest gained knowledge allow
to obtain successful actions in handling uncertainty Holmdahl (2005). Some other
works, such as Montoya-Weiss and Calantone (1994) and Verganti (2001) focus
on the principle of anticipation or based on the ability to anticipate the knowledge
generation to the early stages of project planning, and thus to reduce uncertainty
on contextual factors as quickly as possible. However, there are certain types of
uncertainty that are difficult to assess by an analytical approach: events or unknown
causalities can play a role or the evaluation of the effects of actions could not be
possible due to a large number of interacting variables. In other cases, it may happen
that a series of random events in combination with each other cause an unexpected
result that could be a risk or an opportunity as Hillson (2002), Olsson (2007). Meyer
et al. (2002) show the example of pharmaceutical companies that invest extensive
resources in the drugs testing; on one hand there always exists the risk that some
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Fig. 5.1 Project Uncertainty in dependence of the environmental influences

unforeseen combination of environmental events (such as the intake of other drugs
by the patient) may create dangerous side effects. On the other hand, for Pfizer a
great opportunity was obtained with the Viagra: it was created as a heart medication
to improve blood flow by relaxing the arteries, but when clinical studies found that
it also increased sexual performance, the company with huge success changed the
marketing approach midway through the original project.

Figure 5.1 illustrates how the environment can affect the curve of project uncer-
tainty positively or negatively, by applying forces that either make tend uncertainty
to zero (influences of convergence) or make diverge it (influence of divergence) caus-
ing sudden increases in the trend. As an example, a force that acts as influence of
convergence at time t0, when a project starts, could be the act of defining and signing
of a contract by stakeholders. Conversely, the delay with which a public authority
grants an authorization to build a structure represents an influence of divergence
which increases uncertainty concerning the prediction of execution times estimated
in the project planning.

In this work, the focus will be on management of complex projects and, specifi-
cally, on the monitoring and controlling tools for the foreseen execution of activities
necessary for achieving a set of project goals. In particular, the chapter introduces
a method for the management of complex projects, where contract management
together with dispute management act as a regulatory instruments to maintain ade-
quate levels of consonance and resonance among vital systems cooperating for the
achievement of a commongoal.According toViable SystemApproach considered by
Barile (2008) and Golinelli (2010), consonance is considered as a potential compati-
bility between systems that facilitates their connection. The result of a virtuous inter-
action (harmonizing) between the two drivers is the resonance. While consonance
concerns structural concepts, resonance is a systemic concept. The consonance repre-
sents a situation aiming at the reaching of a harmony or agreement among twoormore
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systems, but they become resonant when an effective harmonic interaction between
components exists. Resonance can be also considered as the “variation in time of
the consonance as a result of the activation frequency of the relations and quality of
the information exchanges among systemic entities”. To achieve resonance, decision
makers must have visions of future scenarios, not as linearly determined outcomes of
past facts (causality), but as emotionally anticipated desired future events. Then, by
acting upon common feeling and desiderata, they create conditions of consonance,
so being able to involve all relevant components and stakeholders into the achieve-
ment of a shared goal. The chapter structure is therefore as follows. Section“The
Searching of the Consonance as Reduction Factor of Project Risks” introduces the
concept of consonance in a project management environment. In Sect. “The Formal
Method” some basic definitions about the concepts of view and gap are provided;
Sect. “Monitoring and Control Loop of Stakeholder Views” discusses a process to
reduce the dispute management will be discussed. Finally, Sect. “The case study”
closes the chapter.

The Searching of the Consonance as Reduction Factor
of Project Risks

Contract is one of the most valuable tools for planning and managing the interactions
among the project stakeholders. It defines a certain number of clauses in the form
of obligations, permissions and prohibitions, which regulate the implementation of
project activities. The contract between two parties involves the identification of
operational guidelines aimed at achieving a particular goal: it is desirable that, in this
case, decision makers analyze some possible situations verifiable in the future and
they take them into account in the operational planning of activities bound by the
contract.

However, even if a contract imposes constraints and delineates the guidelines
towards the achievement of the project objectives, usually it is not enough as a
control tool. Uncertainty of an unforeseeable event or the lack of information can
produce negative effects on the smooth running of the project; violations of contrac-
tual obligations, e.g. delays in delivery or quality level not compliant with expected
deliverables quality also contribute to the project failure and to the loss of trust among
stakeholders that affects the future business relations. In community and international
legal order, the award for the provision of works, goods and services is governed by
specific rules. What is interesting, for the purposes of this chapter, is to emphasize
how the agreement on a contractual basis for a project realization creates a situation
of consonance among the parties that appears to be the minimum necessary to enable
the resonance. The stakeholders will to contract indicates that exists a relationship
of trust and harmony that comes from sharing the same design goals. When strategy,
mutual commitments, values and goals are shared, from the system composed of
stakeholders emerges a cooperative behaviour Dietrich et al. (2010). Franco et al.
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(2008) stated that if some conflict of interest arise, each stakeholder (and, in general,
each system) must identify the best possible way to cooperate, possibly changing
its behavior and to reach the convergence of individual perspectives. However, pre-
cisely because of the complexity and external factors related to the influences of
other systems in the operative context, it is not always possible to predict in advance
and manage the risks of adverse events to the project realization; in addition, due to
the conflicting and opportunistic roles that stakeholders hold, different views on one
or more project activities often emerge. In these cases, the balance achieved in the
degree of initial system consonance is disturbed and some corrective actions need to
be provided, by one or both parties, to try to restore consonance to initial levels or at
levels considered necessary in the project continuation.

Themethod that will be introduced below acts as a tool trying to restore stakehold-
ers harmony to a sufficient value for entering into resonance again and triggering the
processes necessary to reach the shared objectives. To limit the impact of the forces
of divergence operating in the context of which a project is proposed, the result of
the work is a method that integrates aspects of the disputes handling with the project
and contract management.

The Formal Method

In this section we give some basic definitions related to the project plan and to the
different stakeholders perceptions on the state of project realization. The unifying
aspect of these definitions is the concept of activity, understood as the unit of work
that can be allocated and analyzed in order to monitor and control project progress.
Let be defined a project P at time t0 as a set of quadruple:

P = {[a1, c1, s1, q1], [a2, c2, s2, q2], . . . , [am, cm, sm, qm]} (5.1)

where the set represents the project activities a1, . . . , am in which

• c1, . . . , cm are the planned costs for such activities,
• s1, . . . , sm are the scheduled times with si=[tstart , tend, state] i = 1, . . . , m where

state ∈ {started,not started,in progress,completed} and
• q1, . . . , qm define output specifications constrained by quality requirements.

We assume that two contractorsA andB have signed a contract at time t0. At a generic
time instant t > t0, each contractor x ∈ {A, B} has a point of view with respect to the
execution of P:

Viewx(P, t) = {[ai, cit, sit, qit]}, i = 1, . . . , m (5.2)

where

• cit represents costs assigned by x at time t with respect to ai;
• sit are the observed times for the realization of ai until t;
• qit indicates the quality degree according to x at observation time.
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Note that, at time t0, ViewA =ViewB because all values in the project are intended as
planned values, that is, expected values on which the parties have already reached
a contractual agreement. Consonance, at time t0, is the minimum necessary for the
entry into resonance of stakeholders; with a contract the foundation for the project
realization has started and from then on, the necessary conditions for the activation
of the processes are created. As time goes by, a view contains the “observed values”
deriving from the perception that a contractor has on the execution of the project
activities. Since the point of view is a subjective value, it frequently happens that
the stakeholder perceptions tend to vary over time. The function defined below is
intended to formalize this idea of divergence obtained from the values of the project
variables.

Suppose that project milestone M is observed at the time tk ; the function Δ

represents the gap between the views perceived at time tk by two observers A and B:

Δ(ViewA, ViewB, tk) = {[ai,Δ
c
i ,Δ

s
i ,Δ

q
i ]} i = 1, . . . , m (5.3)

whereΔc
i ,Δ

s
i ,Δ

q
i can be considered as the projections of the distance betweenViewA

and ViewB to the dimension of cost, time and quality respectively. A more detailed
description of these measures is given in the following.

The total gap on the project P at time tk according a dimension d (such as cost,
time or quality) can be computed as the sum of the gaps on all the activities:

TΔd(tk) =
m∑

i=1

Δd
i (5.4)

The analysis of the TΔd trend also gives us an idea of how the project consonance
between A and B changes, with respect to the considered dimension (Fig. 5.2). If the
views diverge at the observation time, the harmony among the stakeholders tends to
decrease. In case of irreconcilable points of viewadispute can arise that slowsdownor
possibly stopping the project. The launch of a series of informal negotiations among
stakeholders can be necessary to re-establish an acceptable level of consonance or,
the initiation of a formal process of dispute resolution governed by a mediator.

By setting the time as required dimension, the analysis of time schedule and their
difference, allow to answer questions like:

• Is the project taking longer than scheduled?
• Could the project be completed in time?
• Is the supplier able to deliver the products before the deadline?

Resuming the project definition, the duration dur at time t of a schedule si for an
activity ai can be described as:

dur(si,t) =
⎧
⎪

⎨

tend − tstart if state = completed
t − tstart if state = started
undefined if state = not_started

(5.5)
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Fig. 5.2 Trend of the total gap between two project views with respect to a dimension d

Now, considering the time dimension, a possible gap between ViewA and ViewB on
activity ai can be selected among the following measures:

Δstart
i,t = |tA

start − tB
start | (5.6)

Δend
i,t = |tA

end − tB
end | (5.7)

Δdur
i,t =

⎩
undefined if →x ∈ {A, B} ∼∞ dur(sx

i,t) = undefined
|dur(sA

i,t) − dur(sB
i,t)| otherwise

(5.8)

If the result is equal to undefined, the stakeholder behavior is driven by the following
cases:

1. both parties agree that the activity has not yet started and the measures are post-
poned to a future time;

2. only one stakeholder considers the activity as already started; the consonance
degree related to the activity decreases.

For other methods of gap computation relatively to the other dimensions of cost and
quality, we refer to what is defined in Nota et al. (2011a).
Assuming for example, that the beginning of the project occurs at time t = 0, and
considering two stakeholders A and B that express their views on the project at time
t = 50, Table5.1 lists some examples of gap calculation of three activities. As can
be seen from the table, it is possible to calculate three distinct gaps: one that is
obtained by comparing the view of A with that of B, while the other two gaps arise
by comparing respectively, views of A and B with planned values for the project. For
example, the value Δdur

2,50(A, B) for the activity a2 is computed as follows:

Δdur
2,50(A, B) = |dur(sA

2,50)−dur(sB
2,50)| = |(48−12)− (50−12)| = |36−38| = 2.
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Table 5.1 Examples of gap computation on time dimension

Attribute Plan ViewA ViewB Δdur
i,50(A, B) Δdur

i,50(Plan, A) Δdur
i,50(Plan, B)

a1 Start 5 10 5
End 30 45 35 5 10 5
State Completed Completed Completed

a2 Start 10 12 12
End 40 48 − 2 6 8
State Completed Completed Running

a3 Start 45 − 45
End 60 − − Undefined Undefined 0
State Running Not started Running

The implementation of projects involving different stakeholders is generally gov-
erned by contracts. A contract on the basis of an agreement among the parties,
establishes the purpose of the provision, the role of the stakeholder, the period of
validity. In the written contracts, the agreement is defined as a set of clauses for-
malizing the full coincidence between the declarations of intent of each stakeholder
(consonance). For the purposes of the monitoring and control method described in
the following paragraph, a clause is defined as:

clause = (id, type, role, description, result, validity) (5.9)

where:

• id is the unique identifier of the clause within a contract;
• type is one of the deontic concepts of obligation, permission or prohibition. For
more details on deontic logic see von Wright (1967), Governatori and Milosevic
(2006), Governatori (2010);

• role indicates who is the recipient of the clause or who is responsible for its
satisfaction;

• description indicates what the role should (or should not) do, depending on the
clause type;

• result expresses the satisfaction or violation of the clause. At time t0 the value is
undefined;

• validity is the time interval in which the clause should be applied.

An example of obligation between two contractorsA andB is when theGantt attached
to the project/offer is considered as integral part of the contract:

c1 = (3,obligation,[A, B], “Gantt is part of the contract”-, [datesignedContract, −]);
A similar formulation has the following clauses: A requires that the contractor B
does not disclose confidential information that have been learned during the contract
execution, while the second allows A the right to request further valid documentation
for the project, at any time before the end of the contract:
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Fig. 5.3 Examples of application of the monitoring cycle on a single task or a milestone

c2 = (5,prohibition,B, “donot disclose confidential information”−, [datesignContract,−]);
c3 = (9,right,A, “require additional documentation”−, [datesignContract, dateendContract]);

Monitoring and Control Loop of Stakeholder Views

The model of monitoring and control of project views borrows by Senge (1996) the
concept of balancing loop. This is a balancing process aiming at the reduction of a
gap between a current state and a desired state. Starting from the concepts shown in
Sect. “The Formal Method”, in Nota et al. (2011a) was defined a cycle model for the
dispute management in which:

• the current state of the system represents the contractors points of view;
• in the desired state divergent points of view converge towards a shared vision;
• the gap is the distance from a point of view to another, and its presence is symp-
tomatic of a potential dispute;

• an action can be taken by one or more stakeholders to try to reduce the divergent
views. A negotiation between the parties may be required to seek for a reconcili-
ation and to promote the natural project continuation; see also Nota et al. (2011b)
for more details.

Figure 5.3 shows the application of the balancing loop in different points of the
project:

• on a single task if the project manager chooses, for example, to focus the attention
on the monitoring of activities that have a great impact on the whole project. This
approach tries to avoid a high gap to manage near the project deadline;



5 Managing Uncertainty in Complex Projects 91

• at the milestone: the gap evaluation may be periodically performed, e.g. at the
project milestones when the release of deliverables happens and there is a greater
exchange of information among stakeholders.

So far, the discussed method was focused on project management and, in particular,
on an activity or set of activities relevant to the entire project. Since, in general, the
project becomes an integral part of a contract, its definition in terms of activities
(each with time, cost and quality planned) is a subset of the clauses specified in the
contract.

However, a contract contains other clauses (in the formof obligations, permissions
or prohibitions) that also need to be regularly observed and evaluated in order to detect
possible violations. The method here discussed can be generalized by defining a
metalevel for the monitoring and controlling of contractual clauses in which each
stakeholder expresses an opinion with respect to the fulfillment or violation of the
observed clause. In this case, itmaybehelpful to plan “proactive” control loops that, at
predefined time interval before a deadline, check that a clause has been fulfilled or not.
This also contributes to avoid incurring additional requirements (such as. applicable
penalties) in the event of violations (Contrary-to-Duty) Prakken and Sergot (1996).

The Case Study

The case study here presented considers issues related to the project named “e-
Territory” for the realization of an integrated system whose main purpose is the
ground surveillance and automatic fire detection in specific areas of “UFITA Moun-
tain Community” (UCM or UFITA, in the following) located in a region of South of
Italy, Campania.

The goal of “e-Territory” is the creation of a distributed system, composed of some
stations for detection of environmental variables installed on a regional territory (in
the geographical areas of Casalbore, Greci, Trevico, Frigento, Savignano and S.
Sossio Baronia) and a centralized structure for data collection located at the data
processing center (DPC) in Ariano Irpino.

Stations on the territory continuously measure the environmental variables and
transmit them to the DPCwith the main purpose to carry out the environmental mon-
itoring, both for the automatic detection of forest fires and also of other variables
concerning the health status of the territory (quality of air and water, electromagnetic
pollution and seismic monitoring). In addition, a mobile station was also accom-
plished with the possibility to use the vehicle not only for the fire control but also to
perform withdrawals of physical quantities of territory areas not covered by the fixed
stations. Data collected from fixed and mobile stations converge in the databases of
the collection centre located in Ariano Irpino where they are processed and displayed
on the information portal. Finally, e-Territory project also implemented a Geograph-
ical Information System (GIS) for the management of cartographic databases.
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Fig. 5.4 The seven clusters of the e-Territory project

To simplify the project implementation, UMC was decomposed into seven areas
(Fig. 5.4), each with the task of monitoring a specific part of the territory. A cluster is
a focusing unit with the same territory characteristics for the purposes of monitoring.
Each cluster was equipped with a peripheral station for fire monitoring, completed
with the necessary sensors and awireless communication network for the information
transmission to the DPC.

A typical installation for a cluster comprises the weather station made by a set of
sensors for the detection of environmental variables, such as temperature, humidity,
wind direction; similarly, the supervisory and fire detection system includes cameras
for detections both in the visible and infrared.

Having specified, albeit briefly, the object of the realization of e-Territory project,
we are in presence of a complex system consisting of a relatively large number of
elements with multiple relationships between them, a variety of elements and rela-
tionships, and a variability of the structure over time. However, project management
does not cover only aspects related to the complexity of the “technological” system,
but it is necessary to take into account other factors that increase the complexity
degree of systems, such as the needs and expectations of stakeholders and the influ-
ences that suprasystems thrust upon the system under observation.1

1 In this context, “UMC territorial system” stands for “the set of tangible and intangible values such
as such people, culture, the historical legacy, heritage and urban art, infrastructure, location and
any other kind of situation that will maximize the total value of the various elements”. Kotler et al.
(1993).
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According to Barile and Golinelli (2008) definition,2 a possible approach to ter-
ritorial analysis identifies the following logical levels of local government:

• the administration of Campania represented the authorizing officer subject that,
first with the publication of Operational Programme Campania 2000–2006 Mea-
sure 6.2 “Information Society”, has established guidelines to promote the devel-
opment of the information society in Campania, and support the dissemination of
Information and Communication Technology (ICT) in public administrations and
in production systems; then, with Rural Development Programme (RDP) Cam-
pania 2007–2013 Size 226 Action C, has prepared a series of economic aids to
comply with preventive actions and reconstitution of forestry potentially damaged
by natural disasters;

• funding operations by Campania represent for UMC government an opportunity
to pursue the goal of improving the management of the territory. On such premise,
UMC assumed the role of coordinator subject that adopted the guidelines and the
time limit dictated by the officer for completion of e-Territory project;

• finally, companies have responded by offering a commitment to implement the
project, as defined in the tender notice, played the role of the proponent subjects.

These logical levels can be analyzed from different perspectives such as the decision-
making territorial process, the administrative procedure aimed at the project realiza-
tion, the monitoring process and ex-post analysis of the benefits arising from the
investment, and so on. Figure 5.5 shows the BPMN (Business Process Modeling
Notation)3 high-level administrative procedure aimed at the realization of e-Territory.
BPMN provides visual tools for:

a. the focusing, through the clarification of activities and sub-processes that make
up the process to define;

b. the abstraction concerned instead the relationships that occur between organiza-
tions in terms of exchange of data and information without the need to explain
the internal processes.

2 “VSA provides interpretive schemes congenial to the representation and analysis of the dynam-
ics of the territorial governments formation, through the identification of three logical levels of
government:

• the officer subject (OS), responsible for identifying action lines derived from a subjective inter-
pretation of the environment that, through the identification of vocations, leads to the extraction
of one or more contexts to be submitted to any subject coordinators;

• one or more coordinators (CS), able to develop proposals within the context identified by the
OS;

• oneormore proponents (PS), involved in implementation of projects connectedwith the proposals
made by the CS.”

3 BPMN was developed by Business Process Management Initiative (BPMI) and is currently man-
aged by the Object Management Group (OMG). Further information on BPMN can be found on
the organization’s website at: http://www.bpmn.org/.

http://www.bpmn.org/
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Fig. 5.5 High level process and interaction among subjects

In the representation of Fig. 5.5 the interest of the observer4 is assumed to be
focused on the process inside the CS and the main relationships with the OS and PS.

Dashed arrows represent the relationships among subjects on which the interac-
tions are defined mainly through the exchange of messages or data (e.g., documents,
emails, phone calls). Solid arrows represent the control flow governing the execution
order of activities and sub-processes.

In the following, the focuswill be onobservation of the emergent systembehaviour
obtained by the union of UMC and a set of proponents.

The high-level process shows the different macroactivities: the call for funding of
Campania represents the input to theUMCfor promoting the creation of a newproject
(Definition of project idea). By identifying the objectives to achieve and the defini-
tion of the call, the subprocess Tender Management can start; at this stage, interested
companies interact with UMC by submitting the required documentation in the man-
ner and terms specified in the notice. After the choice of the winner proposal, the real
project implementation phase begins. The contract, signed by UMC and the winning
company, represents the tool used to protect the parties and regulate the execution
phases of the project. The activity Contract Management defines the subprocess in
charge of implementation and monitoring of project activities and, eventually, of the
management of contractual disputes arising among the parties. Finally, last activity
(Closure) defines the obligations to be performed to end the project; in this phase,
UMC interacts with Campania to report the final project documentation and the result
of system inspection.

4 In Golinelli (2010) (Introduction to Chap.3): “A system as such does not exist in reality. It is
the result of a cognitive operation that an observer performs distinguishing a particular entity and
assigning it a meaning of its own.”

http://dx.doi.org/10.1007/978-3-319-05185-7_3
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Table 5.2 Some summary data about e-Territory project

e-Territory project Core project Extension

Start date June 2003 September 2010
End date July 2010 October 2012
Expected duration 12 months 10 months
Project cost e1.5M e1M
no. of management meetings ≡ 100 14
no. of informal disputes 12 3
no. of formal disputes 2 0
no. of competitive tenders 3 1

Table 5.2 shows some data summary of e-Territory, comparing the two project
realizations: the core project started in June 2003 and extension started in September
2010.

Some kinds of significant events acted on the project negatively resulting in a
greater uncertainty as well as in a longer execution time and project failure risk:

• the insufficient skill to realize some activities critical to the success of the project;
• delays in authorizations or building permits from the local authorities;
• delays in payments by the authorizing officer subject;
• differences and conflicts within the stakeholders;
• the change of the governance of the coordinator during the period of project devel-
opment;

• the failure of one proponent company.

The increase of uncertainty is inevitably reverberated on the consonance level
between authorizing officer and proponents, but also among the own partners compo-
nents causing, on several occasions, informal and formal disputes designed to unlock
a stalemate. The use of monitoring and control loop was only introduced in the sec-
ond version of the project: whenever an influence of divergence (Fig. 5.1) occurred,
a monitoring loop was executed to restore acceptable levels of consonance among
stakeholders. This approach helped to provide practical support to both project man-
ager and the principal contractors allowing them to identify some problems more
quickly and encouraging the quick resolution of some disputes in an informal man-
ner. The coordinator has been able to apply more control about work in progress and
the proponent was able to demonstrate the goodness of what has been achieved (for
some activities in dispute) making use of the potential offered by an open source
document management system (KnowledgeTree) shared with the UMC.
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Conclusion

The proposed method addresses to the uncertainty management in complex projects
and it can make a contribution in reduction of risks about project failure or uncon-
trolled increase in project times and costs, maintaining a watchful attention on
planned quality.

The set of measurements made on a project activity allows us to estimate the
degree of consonance between the participants in all the activities.When the total gap
continuously raises, the consonance among stakeholders decreases and the potential
of disputes grows. The proposed method provides the continuous monitoring of
the project and identifies the guidelines for the resolution of disputes. Divergent
views concern both the implementation of project activities and, in general, the
fulfillment of contractual clauses governing the conduct of the parties in the project.
The realignment of views allows to restore the level of consonance to acceptable
levels and to reactivate the resonance for achieving a common goal.

The case study presented has allowed a first validation of the proposed method.
The results in terms of reducing the time of project completion for the e-Territory
extension, compared to the first project to implement, have benefited from themethod
of continuousmonitoring and dispute resolution, especiallywhen influences of diver-
gence due to the context caused uncertainty that was unforeseen at the project begin-
ning.
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Chapter 6
On the Concept of Endogenous Volatility

Orlando Gomes

Abstract Most financial and economic time-series display a strong volatility around
their trends. The difficulty in explaining this volatility has led economists to inter-
pret it as exogenous, i.e., as the result of forces that lie outside the scope of the
assumed economic relations. Consequently, it becomes hard or impossible to for-
mulate short-run forecasts on asset prices or on values of macroeconomic variables.
However, many random looking economic and financial series may, in fact, be sub-
ject to deterministic irregular behavior, which can be measured and modelled. We
address the notion of endogenous volatility and exemplify the concept with a simple
business-cycles model.

Keywords Endogenous volatility · Volatility clustering · Nonlinear dynamics ·
Chartists and fundamentalists · Periodicity and chaos · Business cycles

Introduction

The forces that shape the evolution of a price or the motion in time of a given real
variable are so many that economists are often faced with a sentiment of frustration.
No matter how much we know about the way markets are organized, or about the
relative weight of each market participant, or even about the intrinsic complexity
governing the relations between agents, we will never be able to accurately under-
standhoweconomic andfinancial variableswill evolve in the near future. This implies
that there is a random component underlying this evolution. The future always brings
unexpected events, introducing uncertainty into the economic environment and an
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impossibility of exactly knowing what the next movement of, e.g., an asset price or
an interest rate, will be.

A fundamental question is whether the observed volatility is entirely associated to
unpredictable events or if there is a more or less significant part of this volatility that
is endogenous, emerging from the type of relation that is established between the rel-
evant economic or financial variables. The answer to this question has huge practical
implications—endogenous volatility will correspond to the predictable component
of the observed fluctuations; if we can discern this, we will be able to isolate a
smaller component of true unpredictability and, in this way, mitigate the uncertainty
associated with the time trajectory of the variable(s) under consideration.

The observation of the behavior over time of some economic aggregates provides
an indication that, effectively, some of the displayed volatility is endogenous. For
instance, Mandelbrot (1963) has identified the presence of ‘volatility clustering’ in
the evolution of prices. Under volatility clustering, periods of large volatility alternate
with periods of small changes in prices of commodities and assets. The existence
of this type of phenomena was pervasively recognized in the academic profession
and it begun to be modelled resorting to statistical models of the ARCH type (Engle
1982; Bollerslev 1986).1 From the statistical analysis one infers that the volatility
displayed by financial and economic time series must be associated with some kind
of endogeneity, in the sense that if the volatility was purely random, it would not
display any type of regularity, as the one described.

As Adrangi et al. (2010) refer, many random looking time series may contain
deterministic fluctuations and the state of the scientific knowledge allows, at the
present, to conduct some analyses in order to distinguish what is endogenous from
what is purely random or ‘noise’. Unfortunately, many of the undertaken studies so
far are not completely conclusive; we will get back to this idea in the beginning of
section “Making Sense of Theoretical Nonlinearities”.

We will be concerned with endogenous volatility essentially at two levels: pol-
icy implications and possible theoretical approaches. If we accept the intuition that
observed fluctuations are, at least partially, endogenous, we can open the door to
short-run predictability. A stochastic / random time series is completely unpre-
dictable; if the fluctuations are deterministic, on the other hand, even when they
are irregular the possibility to forecast future values with accuracy exists if one is
able to fully understand the law of motion governing the relation between endoge-
nous variables. Deterministic cycles may be periodic, of any possible periodicity, or
completely a-periodic, i.e., we may have endogenous irregular fluctuations which
can be associated with the notion of chaos. Chaotic time series, that we will address
with some detail in section “The Theory of Nonlinear Dynamics”, are characterized

1 These statistical models became sufficiently sophisticated in order to be possible to search for
the reason of volatility clustering, namely when the ARCH analysis is combined with models for
the conditional mean, giving place to TAR-ARCH models (see Tong 1990). Other variants of the
ARCH class also provide relevant insights on what determines the type of observed volatility (see
Bollerslev et al. 1992; Engle 2002 and Bollerslev 2010). I thank the referee for suggesting these
references on the subject.
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by being deterministic (and, thus, full predictability exists) but also by being subject
to sensitive dependence on initial conditions (SDIC), what means that even if we are
in the possession of the actual law of motion governing the economic or financial
relation, we can radically fail in providing good forecasts on future values of the
series, namely if an error occurs in understanding the initial state of the system; even
the slightest difference in initial conditions leads to a complete divergence of the
considered orbits.

On the theoretical perspective, we will be concerned with emphasizing the idea
that a simple nonlinear dynamic relation is capable of generating endogenous cycles.
The only pre-requisite for these cycles to emerge is, in fact, the lack of linearity.
Noticing that the reality is complex and that most of the relations in the financial
and economic realms are necessarily nonlinear, we infer that endogenous volatility
is not difficult to explain from a theoretical point of view. This is the strong idea that
this manuscript explores, first by surveying theory and applications in this field of
study and, in a second stage, by illustrating the presence of endogenous cycles in a
macroeconomic business cycles model.

The remainder of the text is organized as follows. Section “The Theory of Nonlin-
ear Dynamics” reviews the most meaningful notions on nonlinear dynamics. Section
“Making Sense of Theoretical Nonlinearities” describes some of the recent appli-
cations on economics and finance. In section “An Illustration: Inflation Dynamics”,
an illustration is explored; this illustration relates to a business cycles macro model,
relatively to which we can address the dynamics of the inflation rate. Section “Con-
clusion” concludes.

The Theory of Nonlinear Dynamics

Economic relations are typically addressed in a multi-period framework. What has
happened in the past has an impact on today’s economic activity and current events
shape future time paths.Moreover, past expectations on today’s outcomes and current
expectations about future outcomes are, most of the times, present in this dynamic
interpretation of the observed reality. The dynamics can be formally addressed
through models involving differential equations (in continuous time) or difference
equations (in discrete time). These equations reflect the kind of relations one expects
to exist between economic variables; most of the times these are not just ad-hoc
relations but the outcome of the optimizing behavior of rational agents.

If the referred relations take a nonlinear form, the dynamic process characterizing
the evolution in time of the assumed variables may depart from the trivial results
of pure convergence to a fixed-point steady-state (stability) or pure divergence from
such point (instability). Cycles of any periodicity or even completely a-periodic
motion might arise; in this case, we will be in the presence of bounded instability
or endogenous volatility: there will be a perpetual fluctuation around the steady-
state point without ever occurring a complete convergence or a complete divergence
relatively to that point.
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As referred in the introduction, the discovery of fluctuations determined by the
type of connection between variables has significant impact over the way we under-
stand the evolution of financial and economic time series—irregular behavior is not
necessarily synonymous of stochastic behavior and we can find some type of pre-
dictability in a series with apparent erratic behavior.

In this section, we address themost significant notions and results on deterministic
nonlinear dynamics. Our intention is not to be thorough in the presentation of the
theory but rather to highlight the most important tools and intuition at this level.
A more detailed presentation of concepts and mechanisms can be found in Medio
and Lines (2001), Lines (2005), Barnett et al. (2006), Gomes (2006) and Grandmont
(2008).

Our starting point is a difference equation defined in some m dimension (we shall
proceed the presentation assuming that time is discrete):

Xt+1 = G(Xt ), X0 given.

Function G is a map from an open subsetU ofRm intoRm , i.e., G : U ⊂ R
m → R

m ,
and Xt is a vector with m variables xi , i = 1, 2, ...,m. The evolution of the set of
variables xi in time will depend on the particular shape of function G.

If G is linear, only two outcomes are possible: the elements of Xt converge from
X0 towards a fixed-point X∗ or, alternatively, theywill (at least some of them) diverge
from X0 relatively to X∗. Let G(Xt ) = A + B Xt , with A a vector of parameters of
length m and B a m ×m square matrix also of parameters. Defining the steady-state,
balanced growth path or long-term equilibrium as the point in which the system
remains at Xt+1 = Xt := X∗, the system’s steady-state will be X∗ = (I − B)−1A
with I a m × m identity matrix. Transitional dynamics (the behavior of the system
from t = 0 to t → ∞) will be determined by the properties of matrix B; more
accurately, the dynamics will depend on the values assumed by the m eigenvalues
of the matrix. The number of eigenvalues for which |λi | < 1, i.e. the number of
eigenvalues inside the unit circle, determine the dimension of the stable arm; the
number of eigenvalues such that |λi | > 1, i.e. the number of eigenvalues that fall
outside the unit circle, correspond to the unstable dimension of the system. For
instance, a three dimensional system with two eigenvalues lower than 1 in absolute
value has a stability dimension of order 2.

In contrast, when nonlinearities are present, we will possibly encounter long-term
outcomes that differ from the simple convergence or divergence behavior.Anonlinear
system can be linearized in the vicinity of the steady-state and addressed as explained
above. Such a procedure may be helpful in order to understand what occurs in a local
perspective, i.e. when the initial locus of the system is located nearby the long-term
fixed-point result. However, such an approach may hide global dynamics involving
much more sophisticated intertemporal behavior. Typically, the local analysis of a
nonlinear system is able to separate a region of stability, in the space of the system’s
parameters, from a region of divergence relatively to the fixed-point. The frontier
between these two regions is a bifurcation line. The consequences of passing through
this bifurcation line become clear once we look at global dynamics: as we abandon
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the stability area, the bifurcation may trigger the formation of low-periodicity cycles,
that may degenerate in more complex long-run outcomes before plain instability sets
in. This eventual process of formation of irregular cyclical behavior is the outcome
of varying the values of the key parameters of the model.2

In a systematic form, we present quick and straightforward definitions of the
several types of long-term outcomes we can find when analyzing nonlinear maps
(i.e., nonlinear systems in discrete time):

1. Fixed-point: X∗ is a fixed-point of Xt if X∗ = G(X∗);
2. Cycle of n-order periodicity: X∗ is a periodic-point of order n of Xt if there is a

constant n = 2, 3, ... such that X∗ = G(n)(X∗), where G(n)(Xt ) represents the
nth iterate of Xt ;

3. A-periodicity: long-term dynamic outcome of a system for which it is not possible
to identify the existence of a fixed-point or of a cycle of a defined periodicity;

4. Chaos: particular form of a-periodicity, which can be defined through the Li and
Yorke (1975) theorem—a continuous system Xt+1 = G(Xt ) exhibits chaos if it
is possible to identify a periodic point of a period that is not a power of 2.

Some examples are trivial in this literature. The most frequently addressed are the
logistic map and the tent map. They are both defined in one dimension and are good
examples of how one evolves from stability to chaos by varying some parameter’s
value. Their analytical representations are as follows:

• Logistic map:
xt+1 = axt (1 − xt ), x0 given, a > 1

• Tent map:

xt+1 =
{

(1/b)xt , 0 ≤ xt ≤ b
(1/b)(1 − xt ), b < xt ≤ 1

, x0 given, b ∈ (0, 1)

Figures 6.1 and 6.2 present, for each one of themaps, the corresponding long-term
trajectories for values of parameters in which the chaotic zone is reached; Fig. 6.1
also includes a panelwith the bifurcation diagramof the logisticmap. The trajectories
show that the variables evolve around the corresponding fixed-points, but they will
never stabilize in order to rest forever in that specific point. Such behavior is just
the result of the shape of the considered nonlinear relation. In the second case, the
tent map, we realize that a discontinuity is a possible cause of bounded instability in
deterministic dynamics.

There are several ways in which we can define nonlinear results and particularly
chaos. The developments in nonlinear dynamic theory along the past few decades
have allowed to develop important tools tomeasure chaos in theoretical and empirical

2 Furthermore, we should note that the local stability analysis may not be sufficient to take a
defnitive conclusion about stability, since in certain circumstances a locally unstable system may
be globally stable.
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Fig. 6.1 Logistic map: bifurcation diagram and long-term time series

terms. It is not the purpose here to deal with these in further detail, but we should
stress again the relevance of encountering nonlinear deterministic processes that
look random. The property of SDIC implies that, although deterministic, a chaotic
system positioned at slightly different states will rapidly evolve towards dramatically
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Fig. 6.2 Tent map: long-term time series

different trajectories, which turn forecasting difficult but not impossible. Knowing
with accuracy the underlying dynamic process associated with some financial or
economic relation and accurately perceiving, as well, the state the system is in, at a
precise moment, may allow, at least in the short-run, to predict part of the observed
time series volatility.

Making Sense of Theoretical Nonlinearities

The usefulness of nonlinear dynamic models in addressing financial and economic
phenomenawasmade clear in the previous sections. Interpreting all observed volatil-
ity as ‘noise’ or ‘unexplainable shocks’ is a recognition of the incapacity of the
researcher in explaining one of the two components of any time series: although
the forces shaping long-run trends are relatively easy to address, fluctuations around
such trends are typically associated with random events that no theory should ever
dare to approach if one wants to keep scientific knowledge as an objective and non-
speculative entity.

Although tests exist to measure the possible presence of chaos in observable time
series, the results so far are far from conclusive. Tests on chaos for stock prices,
interest rates or exchange rates (Barnett and Chen 1988; Serletis and Gogas 1997)
point to a possible affirmative answer, but even if we agree that observed fluctuations
are chaotic more than they are random, we will have to face a second challenge: to
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discern where can we find the source of deterministic fluctuations, i.e., what kind
of nonlinear relation effectively exists in order to generate such type of volatility.
This is the main question we place in this section—if chaos explains at least partially
observed fluctuations, how should we look at economic relations in order to explain
the existence of this phenomenon?

The raised question should be approached taking into account the strength of
the evidence on chaos, but also under the more philosophical notion, that Ruelle
(1994) emphasizes, that ‘noise’ is only ‘noise’ as long as we are unable to find some
relation that explains it and, thus, a full understanding of how the world works could
hypothetically give us a model where all volatility could be endogenously explained.

One of the most influential models in economics and finance involving an inter-
pretation for deterministic randomness is the heterogeneous beliefs model of Brock
and Hommes (1997, 1998). In this model, two types of agents are considered: fun-
damentalists, who are well informed agents that formulate rational expectations,
and chartists or trend followers, who rely on past information in order to predict
future values. These two types of agents will exist both in financial markets and in
commodity markets, and the relevant expectations are typically associated to asset
prices or prices of goods and services. By combining agents’ heterogeneity with a
mechanism of discrete choice and evolutionary selection, this kind of framework is
able to generate endogenous fluctuations and, therefore, to provide an endogenous
explanation for part of the observed volatility.

The mechanism of discrete choice, developed by McFadden (1973), is based on
a concept of bounded rationality. Under rational expectations, agents’ heterogeneity
would not persist; agents with expectations other than the ones involving the fun-
damental outcome would be expelled from the market because they would be sys-
tematically wrong. This notion, when applied to financial markets, is known as the
efficient market hypothesis (EMH): only the fundamental outcome matters, because
any expectations other than rational ones imply incurring in systematic mistakes and,
thus, lead to an irrational behavior. In this case, markets should be efficient and past
prices must not be used to predict future prices. In other words, there is no place in
an efficient market for chartists or technical traders; an efficient market is a market
of homogeneous and rational traders. A corollary of this reasoning is that an efficient
market is also a market where all observed volatility is necessarily exogenous.

Empirical results pointing to phenomena of excess volatility (Shiller 1981) or
to the notion of volatility clustering, already referred in the introduction, indicate
that markets are not efficient, rationality may be bounded and technical traders that
extrapolate future outcomes from past performance are able to remain on the market
without incurring in systematic losses. While fundamentalists believe that prices
return to their fundamental value (the discounted sum of future dividends, in the case
of asset prices), technical traders exploit particular episodes of more or less strong
market activity. This second type of traders works as a destabilizing force, while
fundamentalists have the role of stabilizing the market. It is the interplay between
these two types of agents that gives rise, at least partially, to the kind of bounded
instability price dynamics one observes in practice.
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The popularity of the Brock-Hommes framework relates to its capacity of offering
a simple but convincing explanation for observed market volatility. This interpreta-
tion is associated to the idea that price movements are driven by endogenous laws of
motion which can be discovered only if we relax the notion of market efficiency. Het-
erogeneity of beliefs and bounded rationality (supported on a mechanism of gradual
evolutionary selection) seem to be the required ingredients to build a mechanism
that is able to support the stylized facts of financial series: excess volatility, volatility
clustering, speculative bubbles, crashes and fat tails for the distribution of returns.

In the last few years, the Brock-Hommes framework has been extended in several
directions. Some are relatively straightforward, as the work developed by Brock et al.
(2005), who generalize the original framework to include many trader types; in this
case, the authors introduce the notion of large type limit in order to show that inde-
pendently of the degree of heterogeneity, an adaptive evolutionary system is capable
of generating endogenous volatility. Boswijk, Hommes and Manzan (2007) resort to
the same kind of setting of heterogeneous agents that are boundedly rational; again,
the evolutionary selection mechanism is considered and the emphasis is placed on
the incentives to change strategy—relative past profits determine investment deci-
sions. Gaunersdorfer et al. (2008) address, as well, the fundamentalist-chartist setup
in financial markets; the technical analysis of bifurcations in this paper allows adding
some important insights concerning the issue of volatility clustering. Other studies
on complex evolutionary systems involving competing boundedly rational trading
strategies in financial markets include Manzan and Westerhoff (2007) and Dieci and
Westerhoff (2010), who extend the benchmark framework to the foreign exchange
market or, more precisely, to the interaction of stock markets of different countries
through the exchange rate market. Many other studies follow the referred approach
to address price fluctuations.

The presence of chaos in the mentioned type of model is particularly relevant,
as highlighted by Wieland and Westerhoff (2005), because if fluctuations are, even
partially, chaotic, then chaos control methods can be applied by central authorities
in order to reduce observed volatility. Chaos control may be a fundamental tool in
order to solve problems of excess volatility in the markets.

Hommes et al. (2005, 2008) conduct laboratory experiments to test the empirical
plausibility of the fundamentalist-chartist framework. Markets are simulated from a
pre-defined adaptive evolutionary system and results seem to concurwithwhat theory
predicts and with what reality shows: bubbles emerge endogenously and, thus, the
advanced explanation can be accepted as successful in replicating the stylized facts
of financial environments.

The fundamentalist-chartist approach to endogenous fluctuations has been applied
also outside the realm of financial markets. Branch and Evans (2007), Branch and
McGough (2009) and Lines and Westerhoff (2010) apply the adaptive evolutionary
setup to economic relations and, in particular, to macro relations involving the time
paths of output and inflation. Volatility clustering is also found in macroeconomic
time series (namely, in what concerns the ‘Great Moderation’ of the 1980s, period
in which inflation and output volatility has fallen dramatically). To explain this phe-
nomenon, the cited authors build frameworks where agents either use a sophisticated
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costly predictor or a simple cheap predictor. Evolutionary competition concerning
the performance of these two predictors will, also in this case, determine a scenario
of deterministic long-term cycles, in which there will be a systematic change on
the shares of agents that choose to remain with one rule or switch to the other rule.
Economic time series are also exposed to changes in the intensity of volatility and
the same setup used for the financial analysis can have here a decisive role in order
to encounter a reasonable explanation for observed behavior.

A brief inspection of the economic literature allows to find many other sources
of endogenous volatility that help explaining relevant stylized facts. Some recent
examples include: Chen et al. (2008), who apply different types of expectations
(perfect foresight, myopic expectations and adaptive expectations) to an overlapping
generations model; they conclude that dynamics are simple under perfect foresight,
but myopic and adaptive expectations may induce cycles and chaotic motion. In
Fanti and Manfredi (2007), a standard neoclassical labor market is studied; in this
case, cycles and chaos are the result of a setting where consumption and leisure are
considered sufficiently low substitutes.

In Hallegatte et al. (2008), a growth model under the absence of market clearing is
explored; the authors call it non-equilibriumdynamicmodel (NEDyM). TheNEDyM
might generate endogenous business cycles under peculiar conditions. These condi-
tions involve two types of inertia: delays in the mutual adjustment between produc-
tion and demand and a delayed dependence of investment on past profits. Thus, part
of the observed volatility associated to business cycles can, in this perspective, be
associated with these two inertia effects. Chaotic motion is also found and explored
by Sushko et al. (2010) in a growth setting where investment decisions are central:
investment will be delimited from above and from below given capacity limits and
capital depreciation, respectively. The ceiling and the floor are ingredients that are
likely to generate cycles and chaos for reasonable combinations of parameter values.
Many other studies, involving different types of explanations explore endogenous
fluctuations in macroeconomic environments. Just to give two additional references,
we cite the work of Yokoo and Ishida (2008), who find an explanation for endoge-
nous business cycles on deficiencies on the access to and interpretation of relevant
information (what they call misperceptions), and Kikuchi and Stachurski (2009),
who study international growth and attribute fluctuations to the interaction through
credit markets when countries have asymmetric economic conditions.

An Illustration: Inflation Dynamics

In this section, we present our own illustration on how endogenous volatility might
arise once we take some acceptable changes over a benchmark macroeconomic
model.

We follow Mankiw and Reis (2002) and consider a monopolistically competitive
market environment, where firms want to set an optimal or desired price, that is
obtained by taking a trivial profit maximization problem.We define the desired price
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as p∗
t ; the aggregate price level is given by pt and yt represents the output gap (the

relation between effective and potential output). All these variables are expressed
in logarithms of the corresponding original values. The firms’ optimization problem
leads to the desired price

p∗
t = pt + αyt (6.1)

with α ∈ (0, 1) a measure of real rigidities (this parameter translates the degree of
substitutability between different varieties of the assumed good; α = 0 brings us
back to perfect competition). The equation states that the price firms intend to set at
some period t will be larger than the observed price level in periods of expansion
(yt > 0) and smaller than the observed price level in periods of recession (yt < 0 ).

Wewill assume that a shareλ of firms collects information on the state of the econ-
omy at the current period, while the remaining share 1−λ resorts to old information,
obtained one period in the past. Thus, the observed price level will be

pt = λp0t + (1 − λ)p1t (6.2)

with p0t = p∗
t and p1t = Et−1(p∗

t ). We also assume that if expectations are formed
at t − 1, firms will perceive the current period as the long-run steady-state and the
expectation will correspond to the observed desired price at t − 1 plus the rate of
growth to t ; as itwill becomeclear at a later stage, the growth rate of the output gapwill
be zero in the steady-state and inflation will grow at some rate π∗ that we will be able
to present in explicit form. The expectation is, then, Et−1(p∗

t ) = pt−1+π∗ +αyt−1.
We define the inflation rate as πt := pt − pt−1. Putting together the previous

information, we arrive to a supply side relation or Phillips curve that establishes a
link between the output gap and the inflation rate:

πt = αλ

1 − λ
yt + αyt−1 + π∗ (6.3)

On the demand side of the economy, we will have to take a trivial utility maxi-
mization problem.We also consider information stickiness on the part of households.
As for firms, stickiness will translate on a share λ of consumers that set their con-
sumption plans at t and a share 1− λ that has updated their information set at t − 1.
Thus,

ct = λct,0 + (1 − λ)ct,1 (6.4)

Variable ct represents the logarithm of aggregate consumption and ct,0, ct,1
are, respectively, the consumption levels (in logs) of each one of the two types of
assumed households. According to Mankiw and Reis (2006), ct, j = −θEt− j (Rt ),
j = 0, 1, with θ > 0 the intertemporal elasticity of substitution of consumption and

Rt = Et

( ∞∑
i=0

rt+i

)
the long real interest rate. If the real interest rate, rt , is expected
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to converge to its long-run value, which is zero, at a rate a ∈ (0, 1), then, we can

simplify the expression: Rt =
∞∑

i=0
(1 − a)i rt = 1

a rt .

Assuming market clearing, i.e., yt = ct , expression (6.4) will be equivalent to:

yt = − θ

a

[
λrt + (1 − λ)rt−1

]
(6.5)

Equation (6.5) can be further rearranged by taking the Fisher equation, it =
rt + Et (πt+1), where it stands for the nominal interest rate. We must consider as
well a monetary policy rule; here, the assumption is that the central bank reacts to
deviations of the expected inflation rate relatively to a target value π, when setting
the nominal interest rate,

it = φ
[
Et (πt+1) − π

]
(6.6)

The monetary policy is considered active, in the sense that the monetary authority
responds aggressively to changes on the inflation rate, that is, φ > 1.

Assuming households exhibit perfect foresight when predicting future inflation,
the demand side equation takes the form,

yt = −θ(φ − 1)

a

[
λπt+1 + (1 − λ)πt − π∗] (6.7)

The behavior of this economy is fully described by the supply and demand rela-
tions (6.3) and (6.7). Combining the two, we can suppress the output-gap from the
analysis and arrive to a system that explains the evolution of the inflation rate in time.
This system is:

{
πt+1 = −

[
a(1−λ)

αλ2θ(φ−1)
+ 2(1−λ)

λ

]
(πt − π∗) −

(
1−λ
λ

)2
(zt − π∗) + π∗

zt+1 = πt

(6.8)

with π∗ = φ
φ−1π the steady-state inflation level. Note that the steady-state inflation

rate is larger than the target that is set by the central bank; this is the result of
considering a non-optimal monetary policy rule.

The dynamics of system (6.8) can be addressed under a local perspective, i.e.,
in the vicinity of the steady-state and under a global analysis. The first typically
allows for separating regions of stability and instability; the global analysis confirms
the location of the stability area and allows to perceive if the region of instability
involves some kind of cyclical motion.

To address the model’s dynamics, we consider an additional assumption: we
assume that λ is not constant; this degree of attentiveness will respond to the inflation
observed in the previous period, i.e., λ = λ(zt ). The idea is that agents will be
more attentive if they have previously observed a larger inflation level; low levels of
inflation would not require such an attentive behavior. Thus, λ will be an increasing
function of zt . If we define a floor λ ∈ (0, 1) that corresponds to the lowest possible
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Fig. 6.3 λ(zt ) function

zt

λ(zt)

1

level of attention of firms and households and an attentiveness share λ0 ∈ (λ, 1) such
that λ0 = λ(0), the function that translates the behavior of the degree of attentiveness
will be something as presented in Fig. 6.3, where large levels of past inflation imply
full attentiveness (i.e., all agents will be attentive to relevant news); in other words,
as zt → +∞, λ converges asymptotically to 1.

The function in Fig. 6.3 can be analytically represented in the following form3:

λ(zt ) = 1 + λ

2
− 1 − λ

π
arctan

[
tan

(
π

2

1 + λ − 2λ0

1 − λ

)
− zt

]
(6.9)

Local dynamics are similar with a constant and with an increasing degree of
attentiveness. The linearized system is:

[
πt+1 − π∗
zt+1 − π∗

]
=

[
−

[
a(1−λ∗)

αλ∗2θ(φ−1)
+ 2(1−λ∗)

λ∗
]

−
(
1−λ∗
λ∗

)2

1 0

] [
πt − π∗
zt − π∗

]
(6.10)

withλ∗ the steady-state level ofλ(zt ). Applying stability conditions 1−Det (J ) > 0,
1−T r(J )+Det (J ) > 0 and 1+T r(J )+Det (J ) > 0, with J the Jacobianmatrix of
the above system, we conclude that only the second condition is universally satisfied.
The first and the third conditions imply the following inequalities, respectively,

λ∗ > 1/2; φ > 1 + a(1 − λ∗)
αθ [1 − 4λ∗(1 − λ∗)]

That is, stability requires a relatively highdegree of attentiveness and, simultaneously,
a relatively aggressive monetary policy.

Through a global dynamic analysis we can confirm that the region of stabil-
ity is bounded according to the found inequalities and that endogenous volatility
exists for specific combinations of parameter values. Take the following set of rea-
sonable values: a = 0.01, α = 0.1, θ = 1, λ = 0.1, π = 0.02 and φ = 1.5.
Figure 6.4 presents a bifurcation diagram that allows to perceive that different values

3 Note that the π in the expression is not the inflation rate but the value 3.14159...
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Fig. 6.4 Bifurcation diagram (πt ; λ0)

Fig. 6.5 Chaotic attractor (πt , zt ); λ0 = 0.538

of λ0 generate qualitatively different outcomes in terms of dynamics. Chaotic motion
exists for specific values of the referred parameter; for instance, for λ0 = 0.538 there
is chaos, as one observes by looking at the strange attractor in Fig. 6.5 and to the
long-run time series of inflation in Fig. 6.6.
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Fig. 6.6 Long-term time trajectory of πt ; λ0 = 0.538

The above illustration shows how a conventional benchmark macroeconomic
model, that takes as structural elements a Phillips curve and an aggregate demand
equation, can be slightly modified in order to provide for the existence of endoge-
nous volatility: in this case, the volatility is simply the result of how one approaches
attentiveness relatively to the relevant information.

Conclusion

Time series of economic and financial variables display volatility and this volatility
presents features that indicate that fluctuations do not correspond to pure noise.
Being able to identify the reasons why volatility assumes some specific patterns
may be helpful in understanding aggregate phenomena. A popular interpretation,
namely in finance, considers a setting of heterogeneous boundedly rational agents.
The interaction between fundamentalists and chartists in an evolutionary setting tends
to generate endogenous fluctuations. Many other candidates to justify deterministic
volatility exist, as discussed along the text.

We have presented our own illustration, where varying degrees of attentiveness
trigger the formation of endogenous cycles for the inflation rate (and also for the out-
put gap, because these two variables are correlated). The main lesson we withdraw
is that endogenous volatility is a frequently obtainable result in any dynamic system
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involving nonlinearities. If we have the possibility of translating complex observable
phenomena into nonlinear mathematical relations, we might be able to find convinc-
ing explanations on why observed fluctuations are not completely stochastic.
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Chapter 7
Chaotic Order: A Consequence of Economic
Relativity

Rongqing Dai

Abstract A philosophical analysis on economic relativity is provided by philos-
ophizing the dynamic reasons behind the coexistence of global disorder and local
order in any sizeable economic system. The examples of economic development in
China and Eurozone are discussed to demonstrate how economic relativity would
affect economies in apparently very different situations. The vital and subtle role of
fairness in economy is also discussed in this writing.

Keywords Economic relativity · Fairness · Communism · Capitalism · China ·
Eurozone

Introduction

For the past decades there have been many writings on the topic of chaos and or-
der, and thus it is necessary for me to clarify the meaning of chaotic order in this
context before any further discussion. Around 30 years ago when I took the “Chaos
and Nonlinear Dynamics” course, the first class was about the Baker’s transforma-
tion. Although much mathematical complexity has been attached to this issue as the
name itself might attest, the so called Baker’s transformation has a simple and clear
practical background from our daily life. When a Baker works on a dough in a tradi-
tional handy way, after a few times of repeated rolling (stretching) and folding, the
flour of the dough would be irreversibly very well self-mixed (Tél and Gruiz 2006).
A good indication of this is that if he add a teaspoon of salt at one spot of the dough at
the very beginning, after quite a limited number of above mentioned operations, the
whole dough would become equally salty everywhere. Here what is relevant to the
sense of chaos in everyday life is the disorder or randomness in the sense that after
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a few handy operations the distribution of salt completely loses its initially recog-
nizable spatial orderliness. But what draws special interests of scientists about this
chaotic issue is the fact that it only takes very limited (instead of unlimited as might
be previously conceived a few centuries ago) number of well defined operations to
make an ordered system into a completely disordered system, which they call as de-
terministic chaos. To add a little more scientifically salty flavor to this deterministic
chaos, we might want to point out that as we could not predict the exact position of
each salt particulate in a dough during the baker’s operation, in general, determin-
istic chaos is referring to processes that are the deterministically generated but with
unpredictable details. Furthermore, although the final salty equilibrium of the dough
is obviously foreseeable, in general, the end state of a nonlinear dynamic system that
exhibits some chaotic behavior could be very sensitive to the initial condition and
thus unpredictable.

Almost thirty years passed, the writing of this article brought me back to the
subject of deterministic chaos again. While it might sound much closer to everyday
life (especially to nominally random and unpredictable economic events all over the
world) than some othermind changing scientific discoveries fashioned in last century,
such as relativity and quantum physics, chaos theory seems still very much remain
as a fancy ivory decoration in scientist possessions. Even though chaos theory does
unarguably provide valuable insights into the dynamics of Nature, after countless
number of new literatures have been added to those familiar jargons such as strange
attractor, bifurcation, fractal and so on (Grebogi and Yorke 1997), it is somehow a
disappointment that not much practical fruits have been reaped from this golden tree
(Bau and Shachrnurove 2003; Bayar 2005).

This practical futility of chaos theory brings up an interesting philosophical
issue. As Wittgenstein stated (Philosophical Investigations 1953), “Philosophy is
a battle against the bewitchment of our intelligence by means of our language.” The
philosophical issue behind this practical futility of chaos theory is indeed a language
issue in the first place; and thus we might first look into this issue from its language
perspective.

Regardless its sophisticated academic meaning, the strict scientific term chaos
obviously has its origin from the casual usage of chaos in our daily life. The fun-
damental reason that people did not choose harmony or order or anything else but
choose chaos instead as it is used in chaos theory is clearly related to the ordinary
meaning of the word. More specifically, the reason that makes scientists believe that
they could help to solve social issues including financial or more general economic
problems clearly has its linguistic cause: one would describe social issues as chaotic
for its highly disorderliness and unpredictability, without the need to know anything
about chaos theory. But on the other hand, in their scientific contexts, professional
scientists have been constructing the so called chaos theory by using the word chaos
in a much narrower sense with some quite strict restrictions which might involve
some mathematical measurement.

Now we see the clash: the temptation of applying chaos theory to solve com-
plicated real life problems and the limited applicability of the theory itself. The
temptation is largely due to the linguistic implication that this (ordinary) chaos is
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that (scientific) chaos; but whenever people wants to apply the theory to real life
issues, they would clash with the incompatibility between the real life chaos and
their theoretical chaos with some strict mathematical specification. Nonetheless, the
temptation is extremely high, not only because so many great names of scientists
have been attached to the theory, but also because of the astonishing mathematical
beauty that has been displayed from the works that could be titled as chaos theory. As
a result of this great temptation, we have witnessed a very interesting phenomenon
that people have spent decades not for applying the chaos theory to solve problems
but for finding problems that could be a good fit for the chaos theory. However,
the intrinsic linguistic mismatch between the real life chaos and the scientifically
canonized chaos has led to a huge disappointment so far for people who have been
struggling to bring up some practical fruits of theory.

If we have enough faith in the unity of truth, then we might need to believe that
the beauty we have seen so far from chaos theory should be a reflection of something
deep in the general nonlinear world, which warrants some continuous efforts on
bridging the theoretical beauty with everyday life reality. But on the other hand, we
should also take the hitherto practical futility of chaos theory and the knowledge
about the related linguistic mismatch discussed above as an alert that we might not
have a good enough understanding about what is behind the word chaos for its most
fundamental meaning as perceived by human beings throughout the history.

As a matter of fact, since the pioneer work of Edward Lorenz (Lorenz 1963) on
butterfly effect, the philosophical impact of the chaos theory upon human civiliza-
tion has much exceeded its mathematical advantages for practical problems. The
general nonlinear nature of this world and its long term unpredictability due to its
sensitivity upon initial conditions has become a common knowledge even for high
school students. This common knowledge, like relativity and quantum physics, has
fundamentally altered the world view of average people, and is an important reason
for many to stop choosing the reductionism, which was once the norm in western
philosophy, as the only way of thinking. Similarly, people would no longer consider
the stochastic process as the only reason for the disorderliness in nature.

Nevertheless, philosophy and specific sciences are functioning in quite differ-
ent ways. Philosophy changes the way of thinking, no matter for grand ontological
questions or for detailed personal life management concerns. Therefore, even though
throughout history people have witnessed countless cases when profound philosoph-
ical thinking could bring up direct solutions to practical problems, in general, phi-
losophy aims to directing the thinking in a more efficient and profound way instead
of laying out the specific protocols to get things done. But on the contrary, verifiable
protocols for verifiable outcome are generally the basic requirement of any specific
science, including the science of applying the mathematical utility of chaos theory
to solve social or natural problems.

Moreover, even though philosophy could also be characterized for the preciseness
and subtlety in its conceptual expressions, compared to the utilitarian goals of specific
sciences, philosophy is more interested in acquiring profundity and extensiveness
about the nature of being(s). This is indeed where the true power of philosophy lies
and this is why and how the development of specific sciences could get help from
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philosophy. In this sense philosophy is more realistic than sciences since it could
always reach certain type of goals while sciences, as we have witnessed in the case
of chaos theory, might be over idealistic when constructing the theory but lack of
applicability in reality.

The difficulty of making practical use of chaos theory due to the linguistic clash
between ordinary meaning of chaos and the professional scientific term of determin-
istic chaos could tell that we might need deeper and wider understanding about the
real life chaotic issues before we could more efficiently bring chaos theory to reality,
which further suggests more philosophical thinking on the side of real life problems
instead of the side of chaos theory.

On the other hand, even though persistence on theoretical endeavor might bring
up great achievement in the future, we should never confuse ourselves by losing our
vision on the end value of any theoretical endeavor: the real world issues. While
the knowledge of scientifically identified deterministic chaos might lead to some
potential solutions for economic problems, we should never forget that the real world
common sense chaos is what makes all those theoretical endeavor meaningful.

For all the reasons discussed hitherto, the goal of this writing would not be another
scientific discourse on how to apply chaos theory to economic events; instead this
writing would be a writing to demonstrate some dynamic nature behind the real life
economic phenomena by philosophizing through some logic involved in economic
systems. In other words, this writing is aiming at helping solving real life economic
issues instead of providing more thoughts of how to develop chaos theory. While I
do believe in the long run a better understanding of the general chaotic phenomenon
would definitely benefit the effort of applying the chaos theory to real problems, this
writing itself is not coupled with any chaos theory conclusion.

Correspondently, hereafter in this writing, the term chaos or its adjective version
chaotic would be used in its most common sense, or we may say in its phenom-
enological sense, without regard to its scientific specification or dynamic reasons
according to the chaos theory. For further clarity, when it comes to economy, the
word chaos would be referring to the status (phenomenon) that the intentions, prod-
ucts or consequences of economic activities of different parties, sectors, or areas are
not in synch with each other. In this sense, we might say the economy is in chaos
when the general market demand could not be satisfied by the general supply, or the
general supply could not be consumed by the general demand, and when there are
enormous waste of human and material resources as a result of daily activities in the
economic system, or when many people could not have a chance to work for living.
As a synonym to chaos, economic disorder might also be used in the text for the
same purpose, and the opposite to the chaos or disorder might be described as order
in the text.

One of the key parameters behind the degree of economic disorder and order is
what we called as interest, collective interest or personal interest. The pursuit of
interest could set the local economy into order and the conflict of interests might
drive the global economy into chaos. This is the economic relativity discussed in
this writing and the adjectives local and global in this context are of relative sense
as well. This economic relativity determines that the meaning of a good economy



7 Chaotic Order: A Consequence of Economic Relativity 121

would be very relative when judged from different social positions and domains.
For this very reason, a general solution to the question like “When the economy
would be good?” would not be intended to answer by this writing, not only because
the idea of getting a literal answer for such question is too much idealistic for any
academic writing for today (since for otherwise we would not have to face the global
economic crises that we are still facing to this moment given that so many Nobel
prize winning economists as well as professional bankers and politicians are trying
to resolve the issue), but also because that would be against the central theme of this
writing: economic relativity.

Although the main interest of this writing is to philosophize the dynamics behind
the realworld economy in away similar to themethodological nominalism postulated
by Karl Popper (Popper 1945), it is understood that a relatively clear definition could
be helpful for readers to understand the discourse in the text. Therefore, herein I
would lay out the meaning of a good economy to an individual as the capacity to
access and dispose resources (includingmaterial and human resources). Accordingly
if everyone in a society could enjoy a good capacity to access and dispose resources
then the people in that society are enjoy a good societal economy.

The chapter structure is therefore as follows.
Section “Chaotic Order of Economy” introduces and discusses the fundamental

dynamics behind the economic relativity. It is further divided into four subsections:
“Interest Based Economic Relativity” in which economic relativity is introduced
and discussed in terms of the idea of conflicted interests; “Economic Wellbeing and
Fairness” in which the relationship between economic wellbeing and fairness is dis-
cussed; “Economic Relativity Examples” in which the example of Chinese economic
development and Eurozone crisis issue are discussed to demonstrate the universality
of economic relativity; and “The Challenge” in which the ethic and economic chal-
lenges brought up by economic relativity is discussed. This is followed by Section
“A Myth” in which a common linear way thinking that might mislead people to
ignore the economic relativity is criticized. And finally the Section “Conclusion”
concludes the whole writing by reiterating the importance of philosophical thinking
in dealing with the economic challenges we are facing today globally.

Chaotic Order of Economy

Economic system of any sizeable region, nomatter what type of economy, is virtually
a chaotic system and the only difference from one system to another is the chaotic
degree. This has been proved by historical practices around the world as we will see
from the discussion in this text. There are some common factors behind the chaotic
nature of economy and the most essential one is the conflicted interests, which is the
key point for understanding all economically disorder phenomena. In everyday life,
the expression conflicted interests might sound very personal to people; however,
it is indeed more logical or mathematical than personal in the sense that given the
limited natural and social resources available to a social system it is mathematically
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impossible for anyone to be always mutually equal-benefiting with everyone else. In
general, people would care more and act accordingly for their own interests, which
might not necessarily always be a positive contribution to the interests of others or
the interest of the common community. Based on the empirical knowledge we all
know that the increase of the order of the societal economy could imply an increase
of mutual interest and thus a decrease of conflict of interests. Accordingly a better
understanding of the interest-based economic relativity could help a better grasp of
the art of reducing conflict of interests for the sake of a better economy.

Interest Based Economic Relativity

The conflicted interests factor has a dual-sided effect upon the chaotic order of an
economic system: each economic unit (e.g. a private corporation) would manage to
set forth its agenda and resources in good order within its own by absorbing energy
from outside, while the competitions or irresponsible attitudes and actions between
different economic units would increase the degree of disorder (chaos) at the societal
level. Similarly, within each economic unit, there could be various subunits, and each
subunit would tend to manage around the central interests of its own in competition
with other subunits. Down to the smallest subunit of any economic unit—a single
person, he might effort to best arrange his own agenda and resources to serve his
own best interests. As a result, an economic systemmight behave similar to the water
system when a river flow passing an obstacle, which is a turbulent mass of vortices
of different sizes, and within a big vortex, there might be even smaller vortices. This
would create a process in which the energy of the main stream flow is dissipated to
the energy of vortices from the big ones down to the smallest ones. Each vortex is an
ordered dynamic structure, but the whole mass of flow is a disordered turbulence.

This chaotic assembly of ordered units is a general picture of any sizeable eco-
nomic system. Any serious study of economic dynamics should take this general
picture into consideration; otherwise it might be misleading when attempting to de-
fine or understand the health or the wellbeing of an economic system since from
different stand points of view we might get very different ideas about what is a good
economy or what is a bad economy, which has been the central topic of political and
economical debates.

Human beings are socialized creatures. Based on archaeological data and histor-
ical literatures presented to us in public domain, we could easily see that the very
reason for human beings to have survived the natural selections to prosper was be-
cause of the advance of social collaboration during prehistorical and early historical
ages. However, because of the conflicted interests between different social units, the
existences of others are not always viewed as beneficial to everyone in this world.
As a matter of fact, human beings have always lived a complicated interrelationship
of mutual reliance and mutual competition or even mutual threat with each other.
The fear of mutual competition is not necessarily always about the threat from any
nominal enemy who might physically hurt someone, but rather is profoundly rooted
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in the scare of the lack of basic supplies of living. In ancient Sparta, people would
consider those physically weak as their burden to discard. Even though the moral
system of any modern society would prohibit the same practices of ancient Spartans,
modern people are still living in the shadow of the fear of mutual competition from
our own species all the time.

Today team work has become a popular political jargon because more and more
people are realizing that their work could not be accomplished without the functional
support of others; however, when it comes to job security, promotion vacancies,
bonus shares, and business opportunities, people would very naturally view others
who might potentially reduce their chances to benefit as rivals for survival. This
dual attitudes of human beings towards other people in their endeavor to survive is
indeed a psychological reflection of the logic possibility regards the values of others.
Metaphysically speaking, for anyone in this world every single other co-living person
has dual values: the value as a personwhom can be count on for survival and the value
as a person who could take away good things for survival. We might conceptually
express the dual values as a duplet of positive and negative values, where the positive
value refers to a beneficial contribution to one’s survival and the negative value
refers to a competition or threat to one’s survival. Then we might say that in terms of
the impact upon one’s survival, every other co-living person is logically a duplet of
positive and negative values, and themagnitudes of these valueswould be determined
by many complicated factors such as mutual relationship and relative social status.
Obviously, for a given person not everyone is of the same values. The negative value
of a loving person might be close to zero, and the positive value of a savage enemy
might be close to zero. When a friend turns to an enemy, his positive value would
decrease drastically and his negative value would jump up greatly.

Very often what people consider to be good for them might not be truly good
for them, and what they consider to be bad for them might be potentially very good
for them; and thus when we talk about personal interest we might need to be aware
that there is a difference between true interest and nominal interest, and the latter is
what people consider to be good for themselves. There are many factors that would
affect the nominal interest such as knowledge, emotional feeling, loyalty, empathy,
altruism, cultural influence, political and religious faith, jealousy, greed, and more.
However, although the difference between nominal interest and true interest might
be significant for particular events, it will not change the general relative nature of
economy as discussed in this context. This is because that even though true interest
would make real difference in life, people would normally only be aware of the
nominal interest before, during and after the presence of the interest; they might
adjust their views about the nominal interest from time to time but those views would
normally be always different from the true interest. Therefore, people would think
and act according to what they consider as their own interest, not what hypothetically
the true interests are. Even if there is no conflict at all between the true interests of two
persons they would still view each other as a competitor as long as they subjectively
think their interests are in conflict. Only if every person would view the interests
of others as his own, the nominal interests of different people would no longer be
in conflict and the conflicted interests would no longer be a psychological issue.
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That would be the case of a fully altruist society which is impossible to exist due to
the paradox of altruism that if everyone only cares about others then all people are
counting on others to care about themselves.

Conflict of interests is a universal issue among individuals all over the world.
However, the interests of different people might be closely related to each other
through various social relations. A simple example is that people in the same family
would often share many common interests even though conflict of interests within
any family is not a rare thing. As another example, personal interests are closely
related to personal social status and wealth, and personal social status and wealth
is grouped into classes in any society around the world; consequently people in
like social status or same economic classes might share many common patterns of
personal interests, which means that the so called personal interest could be a social
attribute labeling the social position of each person. Accordingly conflict of interests
could also exhibit various social marks in the sense that the interests of different
socially related groups could be in conflict with each other.

Since conflict of interests basically means that people are competing with each
other for acquiring benefits or avoiding detriments, fairness becomes a fundamental
issue for dealing with any social problems impacted by conflict of interests. At
the social macroscopic level, the issue of fairness is closely related to the issue of
social distribution of wealth. Production (various types of services could be viewed
as production in a broad sense) and distribution of wealth in a society as a whole
have always been two essential factors to determine the general quality of life in a
society. If we could have an ideal distribution that is perfectly fair (if this kind of
distribution could be defined) then undoubtedly the increase of production would
benefit each individual as well as the society as a whole. But in real life with unfair
distribution, productivity alone could not be used to determine the wellbeing of
people in general. The reason is mathematically simple if we could ignore the mutual
influences between the social effects of production and distribution and also ignore
the relationship betweenproduction andnatural resources plus environmental quality.
With this linear assumption, we could have a very simple reasoning: in order to have
a good life for everyone, we need to have a good supply for everyone; but in order
to have a good supply for everyone, we first need to have a good total supply since
if there is none in total there would not be any for anyone; however, even if we have
a good total supply it does not mean that we could have a good supply for everyone
since a good total supply might be taken by a very few people without sharing with
others. If the distribution is not perfectly fair, especially when the distribution is
extremely unfair, which means that very few people could be getting most of the
products but the majority would be only getting very little, then even the increase
of total production would not necessarily result in the improvement of life for many
disfavored people.

In the above simple analysis we ignored the mutual influences between the social
effects of production and distribution, as well as environmental resources. In real
life, the social effect of distribution might be impacted by production and vice versa.
A good production itself could become the weapon for certain group of people to
take advantages of others in the game of distribution, and severely unfair distribution
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could also potentially ruin the general production in the society. Besides, since over-
production could hurt environment and natural resource reservation, the meaning of
fair distribution would also infer the fair consumption of environmental and natural
resources. Because of the imperfect distribution, not only the meaning of economic
wellbeing is ultimately relative, but the moral meaning of a good production also
becomes very relative. Therefore, a good understanding of the impact of demand
of fairness upon the distribution rule in an economic system would be critical for a
good understanding of the economy itself.

Economic Wellbeing and Fairness

I was growing up in a non-market economic system. Like all other traditional non-
market economic systems, during the time of my childhood, good production was
almost of the same meaning as good life in the society because the distribution rule
was simply determined by non-economic concerns (e.g. ideological and political
concerns). In market economic system, production is no longer the most important
concern for the wellbeing of economy; not only the demand and supply takes the
place of traditional production in an economy because of the importance of interper-
sonal transaction, but also many other factors such as the employment rate become
important indexes of the economy.

The so called market is some physical or virtual places where people could sell
what they have and buy what they need. The term market is almost equivalent to
the term trading because without trading there would not be any meaningful market.
Forceful deprivation, looting, systematically enforced submission of wealth by some
groups of people to some other groups of people are examples of interest transfer-
ring ways that are very different from trading. What is special about trading is its
implication of voluntariness and accordingly the fairness behind the trading, even
though in reality trading is frequently not fair and not truly voluntary. Compared to
other forms of interest transfer, trading establishes at least a nominal requirement
for fair exchange of interests between different parties involved. Any violation of
this fairness requirement for trading could provoke explicit or disguised protest and
resistance. Therefore, the idea of fair trading would promote fairness in an economy
and accordingly set up an ideal goal of improving general fairness in trading.

However, like many other moral concepts, the meaning of fairness itself is very
relative. People might claim that an apparent unfairness in a particular short term
issue might bring more fairness in the long run or at a large scale, which is virtually
true no matter we like it or not. This uncertainty in fairness is often exploited for
denying the fairness to some people by the excuse of some other more meaningful
fairness. Owing to the ultimate connection between the idea of market economy
and the demand of fairness, the uncertainty in the judgment of fairness would be
inevitably reflected in the systematical practices of market economy. The judgment
about social needs by makers of governmental economic policies or makers of real
markets would in general be far short of the ideal fairness. This, in addition to the



126 R. Dai

fairness paradox which will be discussed later, would lead to practical unfairness
in any real life economy. Accordingly, even though fairness is the fundamental idea
behind themarket economy and thus the selling point for anyonewhowould promote
market economy on this globe, the deviation from fairness in economy is a key point
for a good appreciation of the relativity of economy, which is an important source
to many problems that people have been facing to in any economy including market
economy.

The demand of fairness from the public has always been such a social force that
could not be completely ignored and severe unfairness would hurt general market.
Consequently there have been different theories and correspondent practices around
the world in history to solve the problem of unfair distribution. Communism and
capitalism provide two extreme examples for this type of efforts. Communists at-
tempted to reduce the chaotic dissipation by suppressing social competitions through
centrally controlling and planning the economy; but they ended up with global eco-
nomic bankruptcy among communist countries, basically because while centralizing
the control over the system throughout the social hierarchy, they undervalued or even
ignored the values and wills of the majority of individuals within the system. As a
result, all communist governments not only failed to reasonably foresee many poten-
tial needs for running a good economy, but even failed to mobilize social resources
for positive economic construction among the majority of their people from the very
grass root to the top educated elite class.

On the other hand, capitalists attempted to build up the global economic order by
fully mobilizing social resources through so called free market competition. How-
ever, they could not prevent the economy from going chaotic either. The reason is
simple: the benefit of any individual person or company in an economic system is
not necessarily in line with the benefit of the whole system by and large, and thus the
best interest of any individual person or company is to pursue the benefit of his/its
own, instead of the benefit of the whole system. Besides, we would encounter the
fairness paradox whenever the so called fair competition is going on. Herein the
paradox is a consequence of the conflict between the desired precondition of the
competition and the goal of the competition. While it is always desired or demanded
that any competition should be performed under fair condition, ironically, the end
goal of the competition would normally be the unequal positions among the original
competitors. As a result, the so called (pure) free market competition would not only
generate huge amount of waste of natural and social resources but also lead to a
polarization of wealth distribution among the people in the economic system.

Economic Relativity Examples: China and Eurozone

The relativity of economic wellbeing that I have discussed so far is by no means
limited to theoretical speculation, but a very realistic issue when it comes to gov-
ernmental spending and political decisions. No matter it is a democratic government
or a non-democratic government, to ordinary people, the most important common
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nature of any government is its supreme power to access, collect, control, use, and
distribute material and social resources. Therefore, governmental policies on how to
collect and spend or distribute wealth among the people are of essential importance
for the wellbeing or even survival of many people in a society. But by any means,
governmental collection and spending could never be perfectly fair; as a matter of
fact, there is even no any formula to tell the government what a perfectly fair col-
lection and spending would be. Consequently there are always certain groups of
people who receive the most benefits from the governmental operations and certain
groups of people who are not much taken care or even sacrificed by the governmental
operations. Similarly, the invisible hand (Smith 1776) of self-interests oriented free
market could not change the relative nature of economic wellbeing either, but in fact
would be very much under the influence of the economic relativity.

Because of the economic relativity, what people see as a good economy from
outside an economic system might be quite different from what many people or
sometimes even a majority of the people inside the system could personally sense
day to day. What most impress people from outside might be the magnificence of
infrastructure, the supply of goods and services available in the market, as well as the
large amount of cash owned by the state or by individual citizenswhich could be spent
inside and outside the country. However, even if the economy has been developed to
such a stage that the purchasing power of the state and individual citizens could be
on the top of the list in the world, it does not necessarily mean that the everyday life
of average people has already been on the top of the list in the world.

Example of China. The rise of Chinese economy since the end of last millen-
nium provides a very good example of how economic relativity would affect the
wellbeing of the economy of a country. The Chinese political system turned into
a hybrid of communism and capitalism in 1990s. Since late 1990s we have heard
many predictions by many western economic experts that Chinese economy would
crash very soon. However, over the past quarter a century, while western economy
has gone into deep trouble as we are still experiencing now, Chinese economy has
grown at a quite steady pace and become one of the top economic bodies in the world.
Obviously, the wrong predictions tell us that the Chinese economic growth does not
fit into the existing western economic models, just like what people have recently
found that even the Eurozone crisis does not fit into the classic western economic
models. It is obvious that Chinese economic success could not be explained with a
flat economic view of equal opportunities in the market or the fully rational mindset
of buyers and sellers etc. Actually since its taking off in 1990s, Chinese economy
might be characterized by its disequilibrium or even polarization among its people.

For people outside China, themost important reason of Chinese economic success
is its cheap labor plus low exchange rate of currency. With this advantage, China did
have accumulated huge amount cash during the past quarter a century, which enables
them to transfer China from the world factory into a mixture of world factory plus
world market. This co-status of world factory and world market itself implies the
coexistence of two opposite variables: a relatively low labor prices and a relatively
high collective purchase power. This peculiar phenomenon is a great manifestation
of economic relativity. In fact, even though the cheap labor plus low exchange rate
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of currency was one of the most important driving forces for the booming of Chinese
economy back to 1990s, if we look fromwithin China, neither the cheap labor nor the
low exchange rate could completely represent the whole picture of economic status
of its people since not everyone was cheap and not everyone was doing exportation.
InsideChina, the distribution of income and costs has never beenflat among its people
during the development. Not everyone could enjoy the sense of a good economy at
the same time. As a matter of fact, at each stage of the development the interests
of certain group of people could be the cost of the interests of some other benefited
people. This is typical of economic relativity in any economic system in the world
and the only difference is the degree of unevenness in the system; in some system
the wealth distribution could be much more uneven than some others at certain time
period. Therefore, from within China, we might find that a major driving force of the
Chinese economic booming during the past quarter a century is indeed its economic
unevenness, which is of course a manifestation of economic relativity.

When some western economic experts predicted a quick crash of Chinese econ-
omy years ago, obviously they did not examine the size of the pool of relatively low
incomeor relatively disfavored in the country,whose interestswere not equally served
as those at economically upper levels or favored in other aspects. Since economic
relativity as I am discussing here basically means that the judgment of economic
wellbeing is different by different groups of people in a society, the interests of cer-
tain group of people could very much sacrificed by the economically powerful or
governing group of people in order to sustain a good economy for the main stream
or for specially favored groups. As a result, the degree of contrast between poor and
rich or disfavored and favored in an economic system could play a significant role
in determining various economic risks as well as the rate of economic development.
This is because the existence of the poor or relatively disfavored, especially educated
and trained ones provides a large financial buffer for the economic system, which,
while also contribute greatly to the production of the economy, would be forced to
absorb much negative impact upon the economy and thus virtually reduce the eco-
nomic risk of the system. Therefore, any effort of predicting the development trend of
an economic system like current Chinese economy must take into the consideration
of this manifestation of economic relativity.

The fact that the existence of big contrast between poor and rich or relatively
disfavored and favored could benefit the economic development implies that without
that big contrast we might face bigger challenge to sustain a healthy development of
economy. To better appreciate this challenge from the example of Chinese economic
booming, we need to pay attention to two more facts. First of all, the hybrid of com-
munism and capitalism in China could be characterized as the centrally controlled
capitalist market. While it has to face the same challenge of fair trading as people in
any other market economy have to, it is much easier for a centrally controlled system
to avoid much risk for state-wise economy at the cost of the economic wellbeing
of certain group of people. (Even so, as in any economic system, the principle of
fairness would always act to battle any practice by the powerful or rich to sacrifice the
interests of disfavored for the wellbeing of others or for the main stream economy).
Secondly, compared to 20 years ago, even though the Chinese economy might be
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more polarized, but the main stream general economy is greatly improved and the
living standard of ordinary people have been increased tremendously. This tells that
even though at certain stage of economic development the interests of some group
of people could be sacrificed because of the economic relativity, the accumulation
of wealth due to the main stream economic development could also benefit people
whose interests were not respected equally as others at earlier stages. Of course the
improvement of the socio-economic status of any group due to the general economic
development does not necessarily entail equality in its socio-economic status with
other groups.

Furthermore, economic relativity is not limited within the border of a single coun-
try, but is a global issue. For the Chinese economic booming, in addition to the cheap
labor cost and the low exchange rate as I mentioned earlier, the global economic rel-
ativity is also manifested in the great market potential created by its great population,
especially a population that is getting ever richer than before since the beginning of
this millennium.

Example of Eurozone. The Eurozone crisis provides another example of the sig-
nificance of economic relativity. Creating a greater market was the ultimate concern
to establish the Eurozone since the idea of capitalist free competition tells that market
is the key for economic growth. However, the cause for the Eurozone crisis is also
mainly a result from the pursuit of a greater market, or more precisely, from the igno-
rance of the negative side of the so called free competition in market economy. This
ignorance is indeed one version of ignorance of the economic relativity by assuming
that the so called free market competition is fair and mutually beneficial to everyone
in the economic system.

If we could take a high level contemplation seeing through the dazzling financial
figures presented to us by financial institutions around the world concerning the
Eurozone crisis, we could see some very obvious and simple philosophical reason
that is rooted in the capitalist market mechanism itself. Let’s reiterate two important
attributes of a capitalist market economy to facilitate the discussion here: (1) it
promotes (nominally) fair trading with a respect of private interests of the public;
(2) it encourages market based competitions. These two attributes are commonly
acknowledged by economists andmany ordinary people as the fundamental strengths
that differentiate capitalist economy from other economic systems. The first of these
two attributes is responsible for producing more to this world and the second is
the key factor of rewarding the winner through distributing the products within the
capitalist market system. Because of the free trading, capitalist economy could enjoy
the greatest productivity over human history; however, because of the competition,
capitalist economy would ultimately promote social polarization of wealth among
people.

In a single country of capitalist market economy without any exchange with other
countries, the social wealth would flow from some people to some other within that
country constantly due to the capitalist competition. As a result, without special so-
cial assistance to counteracting this polarizing consequence, the general trend that
could be expected with common sense would be that the rich would get richer and
the poor would get poorer. During the past few centuries, one great achievement
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in the so called capitalist world is the establishment of social security systems and
relatively reasonable domestic taxation systems within a democratic political frame-
work, which greatly helpedmaintaining a happymiddle class so that they could avoid
getting poorer and poorer in capitalist competitions.

Now if there are two that kind countries having international trading with each
other, and one of which is more competitive than the other in almost all economic
sectors, then based upon the previous discussion we could expect a one-directional
overallwealthflow from the less competitive country to themore competitive country.
To prevent this from happening, there are many conventional measures taken by
countries around the world, including tariffs at border, foreign exchange surcharges,
or some special taxes toward cross border international businesses, and more. These
measures function like cash dams to prevent surge of cash flow out of the country
while people could enjoy the prosperity brought by international businesses within
the country.

Now if those two countries decide to remove any trading barrier between them and
also use the same currency in their daily life, the less competitive country would no
doubt lose their protection on the border to prevent a severe cash flow out to the more
competitive country. Then one question arises: why should we even worry about this
since all the countries have social security systems to prevent the middle class people
from getting poorer and poorer? The difference here is that the social benefit system
of every country only serves its own people while the legal system of each country
within a constitutional multi-country free market zone (e.g. Eurozone) is demanded
to protect the free market business activities by people from all countries in that open
market zone. Therefore, the two countries of freemarket business in the example here
would face such an awkward situation that the competition mechanism of capitalist
economy would drive the cash flow in the grand territory of all countries in the zone
while the mechanism to counteract the wealth polarization of each country only
function within its own territory. The poor in the less competitive country could only
request help from their own government since the government of another country is
not elected by them and not responsible for their welfare, and the politicians of their
own government could not make use of the wealth accumulated in any other country
for the rescue within their own country.

Under certain economical condition, the imbalance between the polarization
resulting from capitalist competition and the counteracting social assistance power
caused by the scenario discussed in last paragraph could potentially drag the
less competitive country into financial austerity whilst the total wealth continues
to accumulate within the grand market formed in those two countries due to the free
market businesses in that market. Then when the general market is ruined by this
imbalance to certain degree, the grand economy of the zone of those two countries
would severely suffer as well. Even though the background assumption made in this
analysis is much simplified compared to real situation in Eurozone, it does reveal the
dynamic consequence that would result from the main conditions that characterize
the Eurozone economy.
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The Challenge

Wecould see that the economic relativity has played an important role in bothChinese
economic booming and Eurozone crisis although they are apparently two completely
different cases. In the example of Chinese economic booming, like the booming of
many other economic systems in history, the economic relativity provides a buffer to
absorb the negative impact of any detrimental happening and adverse condition for
the economic development, in addition to provide a great working power at low cost;
while in the example of Eurozone crisis, the economic relativity causes the economic
austerity due to the breakdown of the social safety net to balance the negative effect of
market economy. One common thing in these two cases is that the interests of certain
group of people become the cost of the benefits of some other group of people.

The main difference between the Chinese case and the Eurozone crisis case is
the starting level of the average living standard and the trend of the change of the
living standard. The Chinese economic booming started with a low general living
standard. Therefore, even though during the process the interests of certain group of
people was not respected the same as some other group of people or sometimes even
be sacrificed for the main stream economy, it would not cause much social tension
because most people don’t have the feeling of loss compared to their previous liv-
ing standard. On the other hand, the living standard of Eurozone countries was at a
relatively high level when the Eurozone was formed. Therefore, unless their living
quality could be improved, people of any group within the Eurozone would not ac-
cept the fact that their living quality would be worsen as the cost of the benefits of
others. Furthermore, closely related to the different starting levels of living standard,
even though the Chinese society might be financially more polarized than before, the
absolute living standard of the society as a whole is trending higher during the boom-
ing, while economic austerity has brought the economy of many Eurozone countries
into a downward rail. This would create very different psychological consequences;
the Chinese people might see some hope of a better future regardless the present un-
satisfactory living condition, while people in Eurozone crisis might feel pessimistic
about the future, which would obviously have very different impacts upon the social
stability and very different impacts upon the economies.

Here comes the challenge, since sometimes the sacrifice of the interests of certain
group of people could be benefiting the so calledmain streameconomy, should people
exploit this advantage and attempt to maintain a big pool of poor or disfavored for
the sake of the wellbeing of the grand economy?

As a matter of fact, even though people might not be well aware of the philosoph-
ical reason behind the economic relativity, to use a large pool of disfavored or poor
to benefit the wellbeing of favored or rich or the mainstream is a human practice with
thousands years of history. Theories of maintaining low living standard of poor so
that they would not demand much and thus would not cost much is nothing new but
familiar to the rich around the world thousands of years ago. Even in the so called
market economy, shrewd bosses know how to and eagerly do their best to get the
most from their employees with lowest compensations. This means that people have
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been practically exploiting the apparent advantage of maintaining a pool of poor for
what they think would be beneficial to their own wellbeing or to some imaginary
societal wellbeing. There have even been the depopulation conspiracy theories that
if only a small percentage of the population left on this globe then they would be
much more prosperous with all the existing natural resources and human knowledge,
which is some renewed global version of ancient Spartan way of thinking.

The cruel fact is that no matter how terrible the economy is at certain stage, there
is always at least one chance for it to get better, not through more efficient operations
for the existing market, but at the cost of the interests or even the survival rights of
some people in the society. Even though this might sound foreign to many people,
but there have always been some people who not only know it but really count on it.
This means that, opposite to what many people assumed in their daily thinking, the
goal of good economy is not virtually in line with the principle of fairness, which is
the cold meaning of the economic relativity. This shares some similarity with the up
and down of stock market. Over the history there have been quite a few times when
some major stock markets crashed but the global market has always found its way to
get back. However, what people usually tend to forget quickly after the stock market
recovers is howmany people could never get back to their original position due to the
previous crash, especially those who has ended their life as a result of the crash. The
full scale game of real life plays in a similar but sometimes much more cruel way.
So much often the recovery of an economy signifies not only the end of a period of
bad economy, but also the end of previously better life or previous prosperity or even
rights of living of some people who have been either the victim of the bad economy
or the cost of the recovery to the new economy.

Based upon our understanding of economic relativity, if we come back to look
at the example of Eurozone crisis again, among many other potential options, we
might see two logically viable possibilities for the Eurozone to get out of current
crisis: (1) establishing centrally administered taxation across the zone, which would
be used to help the less competitive nations in the zone so that the imbalance caused
by the relative differences in competitiveness across the borders would be reduced;
(2) to make the less competitive countries more competitive by restructuring their
economy to be the exactly same as those more competitive countries, which would
also reduce the above mentioned imbalance.

If either of the above 2 efforts could succeed, it could possibly solve the Eurozone
crisis. However, since among the essential elements of an economic structure are the
wealth distribution and social relationship, and also since every existing economic
structure in this world is bound to the existing life style related culture, a recovery
by a quick restructuring of economy might need to come at the cost of the interests
of certain group of people, which indeed echoes what happened in China when their
economic booming started a quarter century ago.

Now the question is that even though there is utilitarian benefit for the economy
bymaintaining or even creating a pool of disfavored or poor and it has been a practice
for thousands of years to exploit this advantage, should the majority of this world
endorse this type of practice for the sake of the main stream economy? To answer
this question, each person should ask himself another question whether he would
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like to be the cost for the wellbeing of others or for the main stream economy or not.
If his answer to that second question is “No” and he believes in the fairness principle,
then he might also need to answer “No” to the question whether the majority of this
world should endorse the practice of taking the advantage of the unfortunate for the
sake of the main stream economy.

As a matter of fact, a “Yes” answer to the above question violates the fundamental
idea of fair competition and fair market behind the idea of so called market economy,
and thus in the long run would ruin the advantage provided by the trading-based
market economy and hurt the economy itself as we have seen from the example of
Eurozone crisis. Besides, it would be very hard to maintain a disfavored group while
ensuring that their living standard would continue to improve when the economy
develops as what happened during the past quarter a century in China. Therefore, it
would be very risky for the economy in the long run to have a “Yes” answer to the
above question.

However, even though it might sound simple to answer “No” here, practically it
is not simple at all and most probably people would actually take a “Yes” position
for various pressing concerns no matter what they might think with their conscience.
This is because so much often the answer of “No” here might practically entail a bad
economy to everyone or at least to the so called mainstream of the society, and thus
to protect themselves, people might have to violate their own believes in fairness and
to choose a “Yes” position to agree to sacrifice the interests of some people for the
sake of the interests of their own or for the wellbeing of the main stream economy.

On the other hand, the danger for answering a “Yes” to above question is also very
clear to most people that once the majority of people could tolerate social unfairness
collectively for any reason, anyone of them could potentially be the next future victim
of what they endorse currently.

Therefore, the economic relativity brings up two different but related goals for
human civilization: (1) having a good economy in the society which everyone could
potentially enjoy; (2) ensuring that each one of the society would not become the
cost for the benefits of others or the mainstream society. The real challenge is to
make these two ethically supposed to be consistent but practically often inconsistent
goals to be consistent or at least as much consistent as possible. This is equivalent
to making a globally chaotic system of locally ordered units more synchronized or
less chaotic for the society as a whole.

However, due to the economic relativity, even though itwould be nice andbeautiful
that we could still believe in the theory that a really good economy should always be
an economy that maximizes the fair treatment of people in the society, unfortunately,
people might not have the luxury to prove this theory with real life data when they
need to bring a bad economy back to track if they don’t really know how tomaximize
the fairness with a really good economy. In other words, when facing to the economic
relativity, a goodwill of being fair is not enough for sustaining social fairness; it needs
some better knowledge including better knowledge about how economic relativity
and fairness impact the market economy to help people to prepare for the fair and
good economy in advance.
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A Myth

The ignorance of economic relativity might lead to some popular myth in public
life. One example is the myth that the more the employers earn the more they would
spend for their hiring and their payment to employees. This myth is often cited by
some politicians to support the argument that in order to boost economy the first and
utmost governmental economic task should be to help the employers to acquire more
capitals so that they could hire more and pay more to their employees. It would be
nice if life is so simple. Unfortunately, this is quite a wrong assumption. The ultimate
concern of the self-interest driven employers in general care most about their own
earning instead of the living status of either their current employees or some potential
employees in the market. Even though there might be some generous employers (at
least under certain circumstances), but in general, employers would hire more only
if that would be good for the business, and pay more to employees also only if there
is some specific reason for them to benefit from the higher payment. Higher profit
or higher earning does not necessarily entails the need for the employers to hire or
to pay. There are plenty of examples in the history that big or small companies share
the fruit of higher earnings only among owners or the high management team but not
with ordinary employees, which is indeed a manifestation of economic relativity.

Conclusions

When people in the field of natural science are claiming that “Philosophy is dead”
philosophy is and would continue to be reviving in the realm of social and eco-
nomic sciences. The reason is simple that social and economic systems are open
systems with virtually unlimited dimensions and highly nonlinear constitutive rela-
tions. Although the advance of technology and the avant-garde methodology might
provide some beautiful curves with electronically collected or calculated data for
social and economic issues, we might find that the narrowest bottle neck for any
data-based analysis is the lack of knowledge about the dynamic nature of any social
and economic system. Even though I would not comment much here on the saying
that philosophy is dead even in natural science, I would like to emphasize the above
mentioned difference between natural science and social-economic sciences because
this difference determines that, instead of working with well defined parameters and
well established formula as well as data collected from field or calculated using those
formula for those parameters as in natural science, in the area of social and economic
sciences, abstraction of proper parameters and discovery of right formula is still a
critical task for people to have a better understanding of the subject at current stage.

This indeed warrants an important role for philosophizing in social and economic
study even at this electronic and information age with advanced mathematical tools.
Compared to application of anynew technologyor avant-gardemethodology to reveal
the inner pattern of social and economic dynamics from collected data, it would be
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much trickier and more challenging to construct an abstract framework with limited
dimensions so that we could collect the data in a more meaningful way for social and
economic study, which means we need to have a better understanding of the abstract
dynamic relationship involved in social and economic processes. This is the job of
philosophical analysis and it is what this writing is aiming to contribute to.

The ultimate concern of all economy related studies and practices is to help build a
good economy or to avoid a bad economy. Therefore, themeaning of a good economy
is not only of theoretical importance but also is essential for decision making and
action taking in any economic practice. However, aswemight see from the discussion
of this writing that the judgment of a good economy would be ultimately affected by
the economic relativity, and accordingly fairness should be treated with a great care
to maintain a healthy and balanced market. Of course, economic relativity and the
relevant social fairness is a big subject about very complicated issues, and thus the
current discussion could only cover the very rudimentary aspects of the subject.
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Chapter 8
Restricted Coalition Formation

Giovanna Bimonte

Abstract Very often in social life individuals take decisions within groups (house-
holds, friendships, trade unions, local jurisdictions, networks, etc.). The formation
of coalition may imply some theoretical difficulties, such as costs arising from form-
ing a coalition or sharing information among agents. Coalition formation has the
explicit purpose to represent the process of formation of coalitions of agents and
hence modelling a number of relevant economic and social phenomena. Moreover,
following this theoretical and applied literature on coalitions, the seminal chapter
by Jackson and Wolinsky (1996) opened the way to a new stream of contributions
using networks (graphs) to model the formation of links among individuals. In this
chapter we will assume that only a subset S of the set of all possible coalitions in
an economy is the set of admissible coalitions. We define theS -core concept, as in
Hervès-Moreno. We will extend to a model with both uncertainty and asymmetric
informations the results showed in Okuda and Shitovitz.

Keywords Asymmetric information economies · Coalitions · Core allocations
Introduction

Very often in social life individuals take decisions within groups (households, friend-
ships, trade unions, local jurisdictions, etc.). In a differential information economy
the free coalition formation may imply some theoretical difficulties. It does not suf-
fice to say that a coalition can be formed by several agents.The restriction of coalition
formation is inflated by incomplete information. In a finite economy with N as the
set of agents, it may happen that an agent will only know the preferences and endow-
ments of a subset K ∈ N of people and can decide to form coalitions joint with
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agents from this group. Consequently, there is an upper maximum to the size of
possible coalitions in the economy. Moreover, the formation of coalition may imply
some theoretical difficulties, such as costs arising from forming a coalition or shar-
ing information among agents. Indeed, incompatibilities among different agents may
arise and a big amount of information and communication might be needed to form
a coalition.

There are some consequences of placing an upper limit on the set of possible
coalitions. Intuitively the core will be larger. We call a core with an upper maximum
a restricted core. The first study on this direction were made by Schmeidler (1972),
Vind (1972) and Grodal (1972).

We must take into account all limits imposed by the society to the aggregation
in coalition. It is very simple to thing that agents are not free to form any coalition,
especially in our framework. Indeed, it is usually argued that the costs, which arise
from forming a coalition, are not all negligible.Moreover, traderswill forma coalition
only if they know one to each other. Incompatibilities among different agents may
arise and a big amount of information and communication might be needed to form
a coalition. Thus, it will be not enough to say merely that several agents form a
coalition.

We define a set of all possible coalitions as the set of those coalitions that can be
formed and joint by any agent. There exists, in this way, a rule imposed over coalition
formation. We assume that only a subset S of β is allowed to be formed. In such
way, we fix over the set of agents a rule of aggregation for which the coalitions can
be formed only if they belong to this subset. We have restricted the set of coalitions
that can be joined by traders.

Let T be the set of all traders. A coalition S is a measurable subset of T , such
that μ(S) > 0 which represents the size of coalition S. In the case of atomless
economy, the size of a coalition S can be interpreted, following Schmeidler (1972),
as the amount of information and communication, or costs, needed in order to form
the coalition S. Then, it may be meaningful to consider those coalitions whose size
converges to zero or, symmetrically, to one; that is, the coalitions that do not involve
high costs to be formed.

The starting question is: suppose that in differential information economies a
private allocation can be blocked, then “can it also be blocked by a coalition that is
of a given structure”? Let P = (R1, ..., Rk) be a partition of the grand coalition,
with k large enough. We will prove that an optimal private allocation x belongs to
the core if and only if it cannot be improved upon by any coalition that includes at
least one of the element of the partition P . Under differentiability the dimension
of the cone of the efficiency price vector is one, then the condition k large enough
becomes k → 2. Our statements becomes, for any coalition R, a private allocation
x belongs to the private core of a market if and only if it cannot be blocked by any
coalition that contains R. Then, we can classifying core allocations with respect to
the family of all coalitions that include one of the members of partition.
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The Model

Weconsider aRadner-type exchange economyE with differential information,with a
finite number of types. The exogenous uncertainty ismodelled by ameasurable space
(ε,F ), whereε denotes a finite set of states of nature and the fieldF represents the
set of all events. The space of traders is a measure space (T,β,μ), where T is the set
of all traders,β is aα -field of all coalitions, andμ is the Lebesguemeasure. There is a
finite number of goods, l, in each state. The information of traders t ∼ T is described
by a measurable partition λt of ε . We denote by F t the field generated by λt . If
η0 is the true state of nature, trader t observes the member of λt which contains η0.
Every traders t ∼ T has a probability measure qt on F which represents his prior
beliefs: i.e. probability conditioned by their information set. The preferences of a
trader t ∼ T are represented by a state dependent utility function, ut : ε ×∞l+ ≡ ∞
such that ut (., η) is continuous, concave and strictly monotone a.e. in T . Moreover,
each trader t ∼ T has a fixed initial endowment e : T × ε ≡ ∞l+, such that,
e(., η) is assumed to be μ-integrable in each state η ∼ ε while e(t, .) is F t -
measurable, i.e. constant on each element of λt . The interpretation of this condition
is that traders do not acquire any new information from their initial endowment.
Let, for each t ∼ T , Mt = {

xt : ε ≡ ∞l+| xt is Ft − measurable
}
be the set of all

F t -measurable selections from the random consumption set of agent t . Throughout
the chapter, we shall assume that e(t, η) √ 0, and, for any function xt : ε ≡ ∞l+,
we will denote by ht (x) = ∑

η∼ε

qt (η)ut (η, x(η)) the ex-ante expected utility from

x of trader t .

Definition 1 Let R be a fixed coalition. An allocation x is said to belong to the
R-inclusive core if it cannot be improved upon by any coalition S that includes R;
i.e. if there is no coalition S and an assignment y F t -measurable, y : S × ε ≡ ∞l+
such that R ∈ S,μ(S) > 0,

∫
S y(t, .)dμ ≤ ∫

S e(t, .)dμ and ht (y(t, .)) > ht (x(t, .))
for almost every t in S.

Definition 2 A non-zero vector p: ε ≡ ∞l+ is an efficient price vector for the
allocation x if μ a.e. in T, x(t, η) is the maximal element of ht over the efficiency
set

B≈
t (p) =

{
z ∼ Mt |

∑

η∼ε

p(η) · z(η) ≤
∑

η∼ε

p(η) · x(t, η)

}
.

We denote the cone of all efficiency price vectors for an allocation x by

P(x,≥t ) =
{

p ∼ ∞l×n+ : x ≥t y ≤
∑

η∼ε

p(η) · x(t, η) →
∑

η∼ε

p(η) · y(t, η)

}

and its linear dimension by r = dimP .
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Definition 3 Let S ∼ β be the subset of all admissible coalitions, with μ(S) > 0
for every S ∼ S . A feasible allocation x belongs to the S -private core of E if it is
not privately blocked by any coalition S ∼ S .

We denote this core as S -Cp(E ).
In each coalition S belonging to the subsetS agents donot share their information,

accordingly with the private blocking mechanism. Traders joint a coalition which
belongs toS , and they choose a private allocation overS which improves upon the
allocation x .

From the definition ofS -core givenS1,S2 ∈ β we can easily infer the follow-
ing properties:

(i) ifS1 ∈ S2 then S2-Cp(E )∈S1-Cp(E );
(ii) S1-Cp(E )∩S2-Cp(E ) = (S1 ∇ S2)-Cp(E )

From the property (i) it is deduced that if the private core is non-empty, then so is
the S -private core. The property (ii) implies that if β = ⋃

i Si , then
⋂

i (Si −
Cp(E )) = Cp(E ). That is, for any partition P of the whole coalition set β the
allocations belonging to the private core are exactly those allocations that belong to
every S -private core, with S ∼ P , and the intersection of the S-private cores of a
partition P does not depend on P .

Preliminary Results

Given a fixed coalition R ∼ β , let

QR = {S ∼ β : R ∈ S}

be the set of all coalitions which contain R. This structure define the only coalitions
that can be formed as those containing R.
Define with T \QR={S ∼ β : R ∩ S = φ}.

Given this information structure, we turn to define the private core concept in a
R-inclusive way.

Definition 4 Let R be a fixed coalition. An allocation x is said to belong to the
R-inclusive private core if it cannot be privately improved upon by any coalition
S ∼ S , withS = QR ; i.e. if there is no coalition S, with μ(S) > 0, and a feasible
assignment y : S × ε ≡ ∞l+,F t -measurable, such that

(i) R ∈ S,
(ii) ht (y(t, .)) > ht (x(t, .)) for almost every t in S.

Definition 5 A feasible allocation x is individually rational if ht (x) → ht (e) for
almost every t in T .
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Definition 6 A non-zero vector p : ε ≡ ∞l+ is an efficient price vector for the
allocation x if μ a.e. in T , x(t, η) is the maximal element of ht over the efficiency
set

B≈
t (p) =

{
z ∼ Mt |

∑

η∼ε

p(η) · z(η) ≤
∑

η∼ε

p(η) · x(t, η)

}
.

We denote the cone of all efficiency price vectors for an allocation x(t, η) by P(x)

and its linear dimension by r = dimP .1

We consider a finite and measurable partition P = (R1, ..., Rk) of the grand
coalition, with k large enough.2 We prove that an optimal allocation x belongs to the
core if and only if it cannot be improved upon by any coalition belonging toQRi for
all i = 1, ...k.

Lemma 1 Let x(t, η) be an allocation and let p be a non negative price, p ∼ IB
′ε+ .

Then p is an efficient price vector for x if and only if p · G≈(t) → 0 for almost all
traders t .

Proof The first implication is trivial.
Conversely, suppose that there exists a price p supporting the set G≈(t) for almost

all t in T . We want to show that x(t, η) is the maximal element of the efficiency
budget set B≈

t (p) for almost all t ∼ T .
Suppose that z ∼ B≈

t (p) and ht (z) > ht (x). Then
∑

η∼ε

p(η) · z(η) ≤ ∑
η∼ε

p(η) ·
x(t, η). By continuity, there exists π < 1 such that ht (πz) > ht (x). Therefore,∑
η∼ε

p(η) · πz(η) → ∑
η∼ε

p(η) · x(t, η) → ∑
η∼ε

p(η) · z(η). If
∑

η∼ε

p(η) · z(η) > 0

the contradiction
∑

η∼ε

p(η)·z(η) >
∑

η∼ε

p(η)·πz(η) follows. If
∑

η∼ε

p(η)·z(η) = 0

then
∑

η∼ε

p(η)x(t, η) = 0. Since x(t, η) √ 0 for almost all agents, p(η) = 0 for

all η ∼ ε . Then, x is the maximal element of the efficient budget set.

Lemma 2 For a given allocation x, let F be a set-valued function such that G≈(t) ∈
F(t) for almost all traders t . If p is a non negative price such that p · ∫ F → 0, then

(i) (p, x) is an efficiency equilibrium,
(ii) p · f (t) → 0 for all integrable selections f of F and almost all t ∼ T .

Proof For each z ∼ ∞l+, let G≈−1(z) = {t ∼ T : z ∼ G≈(t)} be the set of all agents
t for which the allocation z belongs to the preferred set G≈(t) = {z ∼ Mt : ht (z) >

ht (x)} − x(t, .).
Then from G≈−1(z) = {t : ht (z(.) + x(t, .)) > ht (x(t, .))} we infer that this set is
measurable for each z. Let N be the set of all rational points r ∼ Qε , where Q
is a dense and denumerable set of IB, for which G≈−1(r) is null. Obviously, N is

1 As it is shown in Grodal (1972), it is always true that the linear dimension of the cone P of the
efficiency price vectors is less than or equal to the number of commodities in the market, l · |ε|,
and that under classical assumption of differentiability and interiority r = 1.
2 We refer to Okuda and Shitovitz (1985).
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denumerable. Define with S = ⋃
r∼N

G≈−1(r). Then S is a null coalition. Suppose that

for some t /∼ S, there is a bundle z(.) ∼ G≈(t)with
∑

η∼ε

p(η)·[z(t, η) − x(t, η)] < 0.

By continuity, we may find a rational point r ∼ G≈(t) sufficiently close to z, so that
we still have

∑
η∼ε

p(η) · r < 0.

Hence, for t /∼ S if A = G≈−1(r) then μ(A) > 0.
By desirability, for each ψ > 0, we have an integrable selection f = rφA +
ψq(t, .)φT \A from G≈(t), where q ∼ G≈(t). Hence, f ∼ F(t). Therefore 0 ≤∑
η∼ε

p(η) ·∫ f = ∑
η∼ε

p(η) ·rμ(A)+ψ
∑

η∼ε

p(η) · ∫

T \A
q(t, η) −≡ψ≡0

∑
η∼ε

p(η) ·
rμ(A) < 0 a contradiction.
Therefore,

∑
η∼ε

p(η) · G≈(t) → 0 for almost all traders t , and by Lemma 1, (p, x) is

an efficiency equilibrium.
Let f be an integrable selection from F(t).

Define with A =
{

t : ∑
η∼ε

p(η) · f (t, η) > 0

}
, then, for each ψ > 0, the integrable

function f = rφA + ψq(t, .)φT \A belongs to F(t). Therefore 0 ≤ ∑
η∼ε

p(η) · ∫ f =
∑

η∼ε

p(η) · ∫
A f + γ

∑
η∼ε

p(η) · ∫

T \A
q(t, η) −≡γ≡0

∑
η∼ε

p(η) · ∫
A f .

Therefore,
∑

η∼ε

p(η) ·∫A f → 0, which implies by the definition of A thatμ(A) > 0.

This completes the proof of the Lemma.

The Equivalence C p(E ) = S − C p(E )

The purpose of this section is to prove the equivalence between two private core
concept: the classical one for a differential information economy, and the private
core restricted defined in the previous section.

Proposition 1 Let x(t, η) be an allocation. Then x is Pareto optimal if and only
if there exists an efficient price vector p ∼ IB

′ε (p �= 0) such that
∑

η∼ε

p(η) ·
∫

T x(t, η) = ∑
η∼ε

p(η) · ∫
T e(t, η).

Proof By contrary, suppose that x is not a Pareto optimal allocation. Then there exists
an allocation y : T ×ε ≡ ∞l+, with y(t, .) ∼ Mt such that

∫
T y(t, .) ≤ ∫

T e(t, .) and
ht (y) > ht (x) for almost all t ∼ T . By assumption, there exists a supporting price
p : ε ≡ ∞l+ such that

∑
η∼ε

p(η) · y(t, η) >
∑

η∼ε

p(η) · x(t, η). By integrating

over T , we get
∫

T p(.) · y(t, .) >
∫

T p(.) · x(t, .). Since y is feasible, a contradiction
follows.

For the converse, let us consider the correspondence G defined by G(t) =
{z ∼ Mt : ht (z(·)) > ht (x(t, ·))}.
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We denote by Z≈(t) the correspondence defined by Z≈(t) = G(t) − e(t, ·) ∀t ∼ T .
By Pareto optimal assumption, we know that 0 /∼ ∫

T Z≈(t). Therefore, by Separation
hyperplane Theorem, there exists a price p �= 0 such that p · ∫

T Z≈ → 0, i.e. (p, x)

is an efficient equilibrium.
Since

∫
T x(t, .)belongs to the closure of

∫
T G(t) for almost all t ∼ T , then

∫
T x(t, .)−∫

T e(t, .) ∼ ∫
T Z≈ and do to feasibility the conclusion follows.

Theorem 1 Let x(t, η) be a Pareto optimal allocation satisfying the smoothness
assumption. Let P= (R1, ..., Rk) be a measurable partition of T . If k → 2, then x
belongs to the private core if and only if x belongs to the Ri -inclusive private core
for all i , i = 1, ..., k.

The proof of our results needs the following result:

Theorem 2 Let x(t, η) be an allocation and let R be a fixed coalition. Then x
belongs to the R-inclusive core if and only if there exists an efficiency price vector
p : ε ≡ IB

′
+ such that

∑
η∼ε

p(η) · x(t, η) ≤ ∑
η∼ε

p(η) · e(t, η) for almost each t

in T \R.

Proof First assume that there exists an efficient price vector such that
∑

η∼ε

p(η) ·
x(t, η) ≤ ∑

η∼ε

p(η) · e(t, η) for almost each t in T \R. Suppose by contrary

that x does not belong to the R-inclusive private core, than there exist a coalition
S ⊇ R and a private allocation y : T × ε ≡ ∞l+, with y(t, η) ∼ Mt such that∫

S y(t, .) ≤ ∫
S e(t, .) and ht (y) > ht (x) for almost all t ∼ S. Let define with z a

private measurable allocation in this way

z = yφS + eφT \S

then for almost every t ∼ S

∑

η∼ε

p(η) · z(t, η) =
∑

η∼ε

p(η) · y(t, η) >
∑

η∼ε

p(η) · x(t, η)

and for almost every t ∼ T \S

∑

η∼ε

p(η) · z(t, η) =
∑

η∼ε

p(η) · e(t, η) →
∑

η∼ε

p(η) · x(t, η).

Then for almost all t ∼ T

∑

η∼ε

p(η) ·
∫

T

z(t, η) >
∑

η∼ε

p(η) ·
∫

T

x(t, η)



144 G. Bimonte

and∑
η∼ε

p(η) · ∫

T
z(η) = ∑

η∼ε

p(η) · ∫

S
y(t, η) + ∑

η∼ε

p(η) · ∫

T \S
e(t, η) ≤ ∑

η∼ε

p(η) ·
∫

T
e(t, η), and the contradiction.

Let us look at the “only if” part. Assume that x belongs to the R-inclusive private
core. Then x s Pareto optimal.
Define with F(t) the correspondence:

F(t) =
{

G≈(t) for t ∼ R
G≈(t) ∇ [e(t, η) − x(t, η)] otherwise

where G≈(t) = {z(.) − x(t, .)|z(.) ∼ Mt and ht (z(.)) > ht (x(t, η))}, ∀ t ∼ T . By
Pareto optimality 0 /∼ ∫

T F(t).
From supporting hyperplane Theorem there exists a price p : ε ≡ ∞l+ such

that
∑

η∼ε

p(η) · ∫
F(t) → 0. By Lemma 2 p is an efficient price vector for x . By

monotonicity, there exists a measurable and integrable selection f (t, .) = (e(t, .) −
x(t, .))φT \R + z(.)φR , with f (t, .) ∼ F(t) for almost all t ∼ T . Therefore, by lemma
2 0 ≤ p · f (t, .) = p · e(t, .) − p · x(t, .) for almost all t ∼ T \R

Let us try to give an interpretation. If we consider a partition of T into two sets,
namely R and its complement we will say that a strictly positive allocation belongs
to the R-inclusive core if and only if it is possible for individuals belonging to T \R
to choose the efficiency price vector p(η), in each state of nature, so that the value of
their bundle is less than or equal to the value of initial bundle. So that, despite of the
measure of the fixed coalition R, agents in R are not willing to leave this coalition
to join its complement and to gain.

Now we can show the proof of the main theorem:

Proof (Theorem 1) Suppose that x belongs to each Ri -inclusive core. By theorem 2
there are efficient price vectors pi → 0 for x , one for each Ri such that:

∑

η∼ε

pi (η) · x(t, η) ≤
∑

η∼ε

pi (η) · e(t, η)

∀ i = 1, ...k and for almost all t ∼ T \Ri . Such pi (η) are linearly dependent for all

η ∼ ε , i.e., there exist π1(η), ...πk(η) not all vanishing, with
k∑

i=1
πi (η)pi (η) = 0

for all η ∼ ε . Let I + = {
j : π j (η) > 0

}
and I − = {

j : π j (η) < 0
}
. Since pi → 0

for all i = 1, ..., k, I + and I −are both nonempty. Let us define P by

P(.) =
∑

i∼I +
πi (.)pi (.) =

∑

i∼I −
(−πi )(.)pi (.)

P is the competitive price vector for x . Indeed,
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(i) P is an efficient price vector for x since by definition P is a convex cone.
(ii)

∑
η∼ε

P(η) · x(t, η) ≤ ∑
η∼ε

P(η) · e(t, η) for almost each t ∼ T . Indeed, let

t be in T . Since (R1, ..., Rk) is a partition of T , there exists i0 such that t ∼
Ri0 . Assume, w.l.o.g., that i0 /∼ I +. Therefore, for every j ∼ I +, we have
j �= i0, in particular t /∼ R j and therefore, by definition of the p j (.), we have∑
η∼ε

p j (η) · x(t, η) ≤ ∑
η∼ε

p j (η) · e(t, η). Since π j (η) > 0 for j ∼ I +, we

have
∑

η∼ε

π j (η)p j (η) · x(t, η) ≤ ∑
η∼ε

π j (η)p j (η) · e(t, η). Summing over I +,

we obtain the inequality

∑

η∼ε

P(η) · x(t, η) =
∑

η∼ε

∑

j∼I +
π j (η)p j (η) · x(t, η) ≤

∑

η∼ε

∑

j∼I +
π j (η)p j (η) · e(t, η) =

∑

η∼ε

P(η) · e(t, η).

for almost each t ∼ T .

Now, by Theorem 2, x is a core allocation.

Conclusion

In this chapter it is proved, for any coalition R, that a private allocation x belongs to
the private core of a market if and only if it cannot be blocked by any coalition that
contains R. Then, we have classified core allocations with respect to the family of
all coalitions that include one of the members of partition. If whatever can be done
by a coalition, can be done by any arbitrarily small coalition, then one only needs
a few well informed people to take us to Walrasian equilibrium. In such way, these
few well informed people can be considered as arbitrageurs. If the rest of people in
the economy remaining passive, it is enough for this small group to do their duty and
take to equilibrium.

Cooperation is modelled as a two stage process: first players form coalitions,
while at the second stage formed coalitions interact in strategic setting. This process
is a coalition formation game, in which a given rule of coalition formation maps
players announcements of coalitions into a coalition structure, which determines the
equilibrium strategies chosen by players at the second stage. Only in recent years,
a widespread literature on endogenous coalition formation has the explicit purpose
to represent the process of formation of coalitions of agents and hence modelling
a number of relevant economic and social phenomena. Moreover, following this
theoretical and applied literature on coalitions, the seminal chapter by Jackson and
Wolinsky (1996) opened the way to a new stream of contributions using networks
(graphs) to model the formation of links among individuals. Some natural extension
of our model will be to involves a sequential formation of links among players and
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bilateral negotiations take place in some predetermined order. The exogenous rule
determines the sequential order in which pairs of players negotiate to form a link. A
link is formed if and only if both players agree and, once formed, cannot be broken.
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Chapter 9
The Strange Attractor of the Firm

Safieddine Bouali

Abstract In this chapter, we assume that corporate arrangement between owners,
debt holders and managers builds modern firm. The governance of their interests and
conflicts determines the crucial financial rules of the firm especially in the contem-
porary context of persistent financial crisis, accounting scandals, frauds and wasted
earnings by the executive team. The lack of trust in their relationship with stock-
holders or bondholders pushes ownership to impose a strong discipline of payout
mechanism extracting the free cash flows (FCF) from the manager hands. Accumu-
lation of FCF and postponing payments should also imply a strong extra-dividend as
a punishment to executives when they don’t respect the discipline of payout policy.
To identify the dynamical outcome of such financial governance, we define a 3D
system of differential equations modeling a firm under the best standard of manage-
ment principles and rules but embedding a payout mechanism. The computations
reveal that state variables of this firm follow a wide spectrum of dynamics amongst
them singular strange attractors. The main results show that chaotic oscillation is an
intrinsic and endogenous characteristic of the modern firm, not derived from (exoge-
nous) market failure. Paradoxically, automated disciplining payout policy injects
dynamical risks in a deterministic model of firm without any stochastic leverage.
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Introduction

From a theoretical viewpoint, after that level of capitalized earnings was determined
ex ante as a strategic target by the corporation, the free cash flow (FCF) is the
remainder from liquidity expelled out of the firm in dividends (or stock repurchases
or loan repayments).

However, Bates et al. (2009) confirm that excess cash dilemma is a consistent,
persistent and an expanding phenomenon for a wide sample of US industrial firms.

Described in 1961 as “irrelevant” by Miller and Modigliani, the debate focused
on the dividend policy and its dual face, the optimal rate of capitalization, appears
not yet closed.

Indeed, Jensen (1986) identifies the deep corporate conflict between ownership
and management about the destination of FCF and delays indirectly the confirmation
of its “irrelevancy”.

Optimal reinvestment level should emerge as an explicit or implicit agreement
from corporate financial governance (Fama 1974). This is an item of the nexus of
contracts building the firm.

Payout stream concerns residual earnings while permanent returns of capital are
capitalized as self-financing assets even ifOlson andMcCann (1994) detects a volatil-
ity of the linkage between dividends and earnings. In this regard, to avoid underinvest-
ment problem (Mayers and Smith 1987), and the symmetric risk of over-investment
(Richardson 2006), the management should apply the prevailed and agreed dynam-
ical path of reinvestment. Indirectly, frauds temptation (Agrawal and Chadha 2006;
Agrawal et al. 1999) and wasted earnings dispatched in inefficient investments can
be drastically reduced.

Indeed, to insure these disbursement stream (Grullon andMichaely 2002; Oswald
and Young 2008) the (extra) dividend and/or repurchase programs are the two main
ways to extract excess of cash. This additional corporate governance goal stimulated
by multiple accounting scandals is allowed by faster disbursement stream of FCF. A
strong speed of payout is reached by selecting nonlinear mechanism of adjustment.
This rule as an item of the agency relationship triggering payout beyond a particular
threshold of earning by corporate arrangement between owners and managers non
only to improve the creation of wealth by the firm, to enhance its share value in the
stock market but, simultaneously, allowing incomes to the shareholders.

This chapter focuses the dynamical outcomes of the FCF when the power of
decision (Rajan and Zingales 1998) jumps from shareholders to debt-holders to
define the preferred reinvestment rate. Nowadays, profits sharing between dividends
and self-financing investment constitutes the main focus of the firm revealing the
lack of trust between owners and executives (CEO and senior managers).

In order to study the dynamic implications of the (self) imposed discipline of
capitalization via payout of the nonrecurring earnings, we propose a heuristic model
of a representative (and hypothetical) firm with cash cows committed to pursue a
sustainable reinvestment trend. The autonomous model of three ordinary differen-
tial equations selects Profit, Reinvestment, and Financial inflow (debt) having the
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status of the state variables. The system is defined to investigate the outcome of a
particular nonlinear mechanism to pay free cash flows as dividends or stock repur-
chases (section“Theoretical Framework”).

We simulate the dynamics of a firmwith a targeted strategy of reinvestment where
a nonlinear mechanism releases convergence by disbursements. We investigate the
outcome of the management alignment to shareholders’ interests then to debthold-
ers’ interests when the power of the firm is in their hands. The improved mechanism
of payout will be revealed when the firm experiences a different calibration of the
expected “normal” profit which is detected by its bifurcation diagram to prevent
financial hazards.We explore by several numerical computations, the dynamics of the
firm and their periodicity in the phase portraits of the state variables (“Computational
Results”). We argue that nonlinear payout policy is, itself, the mechanism of fluctua-
tion. The concluding remarks report some implications of our heuristic research and
highlights on how automated payout procedures modify the firm behavior (section
“Alignment of Payout Policy to Debtholders’ Interests”).

Theoretical Framework

We intend to emphasize stylized facts of corporate finance when it self-imposes
a mechanism of convergence to a targeted level of capitalized earnings where the
disbursements policy is a derived consequence. Obviously, our model describes ele-
mentary patterns of the firm and focuses only heuristic simulations of nonlinear
adjustments of the convergence. Results are qualitative to a large extend.

We set up a modified version of a nonlinear system model proposed by Bouali
(1999, 2002, 2011) in which Profits, Reinvestments and the (external) Financing of
the firm’s activity, are simultaneously determined. Written in three first-order differ-
ential equations, the model represents the first principles and rules of the disciplining
finance of the modern firms.

Theoretically, in thefirst equation, the basic premise of the earnings’ determination
is allowed by the financial investment.

Indeed, the capital allows the creation of profits P which is made up of Reinvest-
ments and financed also by a capital inflow, i.e. the debts F.

dP/dt = v(R + F) (9.1)

v, rate of profits.
On the other hand, when the incentives to shareholder’s underinvestment are

reduced, the managers encourage reinvestment which expands the production capac-
ity of the firm and enhances the shares value and avoids its dispersion. Reinvestment
constitutes an important item of the global reliance of the corporate governance. We
notice that additional investments have identical profitability (the scalar v) of the
previous projects.
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On the other hands, in a recent survey by Brav et al. (2005), operational and
investment choices are made before dividend payout or stock repurchases.

In concordance with the investment prevalence, firstly the cash spent on capital
acquisitions or mergers can be determined ex-ante by a corporate agreement as
follows:

dR/dt = m P

Meanwhile, interrelated to this targeted reinvestment in positive Net Present
Values (NPV) projects, the payout starts to reduce potential overinvestment if extra
cash is reinvested. In this direction, when the profit reaches the anticipated “normal”
value (by the corporate management) P* = 1 monetary unit (m.u.), m becomes the
amounts of reinvestments and no dividends or stock repurchases are featured. “Nor-
mal” value of the expected Profits is necessarily a “normative” amount determined by
an explicit or implicit evaluation from the corporate governance. Facing to multiple
hypothesis of growth, “normal” value of profit chosen by corporate arrangement is
a composition from pessimistic and optimistic viewpoints. This is the key of both
capitalization and payout processes.

On the contrary, ifP �= 1, it triggers off amechanismof convergence to the selected
level of capitalized earnings and the disbursement of the nonrecurring surplus cash
(Bagwell and Shoven 1989; Lie 2000) or symmetrically holding more earnings.

Eventually, the complete equation becomes:

dR/dt = m P + (P∗ − P2)n R (9.2)

P*, amount of “normal” earnings which do not release any adjustment process.
Indeed for P = P∗ = 1, the reinvestments trend takes the targeted m value and

no procedures of payout are launched. However, in case of losses reaching value
P = −1, the firm initiates a divestitures at the trend: −m.

Moreover, the nonlinearity allows a strong payout when Profits exceed P* and
a decrease of the capitalization of earnings valued at the rate n. Beyond what a
firm could invest, extra funds are strongly reduced to reach the m ratio of self-
investment by the intensification of disbursements, or the more flexible stock repur-
chases, according to the gap between 1 and P2.

Similar specification reveals lack of trust on corporate governance since this pay-
out procedure implies an immediate extraction of the FCF from the manager’s hand
with accelerated speed.

Symmetrically, when the mass of Profits is lower to P*, earnings are capitalized
with a fast increase.

Nonlinear item arises strongly and pushes management to reduce payout to com-
pensate the lack of profits. To prevent financial distress and underinvestment threat,
Payout is slowed since cash flow shortage is a critical phenomenon (Uhrig-Homburg
2005). Capitalization must grow at a strong rate to converge to the m value and the
stock buybacks, or the dividend payout, is decelerated.

When P < P*, the Reinvestment Privilege or the automatic reinvestment of
shareholders’ dividends in more shares by a Dividend Reinvestment Plan (or scrip



9 The Strange Attractor of the Firm 151

dividend) is used. The convergence pattern will keep funds to self-finance the capital
assets. Besides, for the weak amounts of profits, the firm must resort to financing
reinvestments by self-tender offers of new equities or shares’ issuances into the open
market. However, the firm divests its capital assets when accumulates losses.

The regulation’s mechanism and its specification violate neither the “orthodox”
behavior of the managers nor the principles and rules of the disciplining practice of
finance governance. In fact, the aim of the mechanism is the driving of Reinvestment
to desired level m and hinders the retention of excess liquid assets since that FCF,
or its shortcoming, constitutes the hidden parameter of the second equation. P* is a
threshold which separates betweenmarginal reinvestments and triggering off payout.

It is worth noticing that equations encompass the payout stream with a simple
pattern: only the profit drives the investment process.

In the actual international economic context of financial crisis and fraud scandals,
a strong level of a monitoring activity is chosen introducing managerial inertia as a
new agency cost. Indeed, in our model, even if identical profitable NPV investments
are available, the firm pursues the prevailed governance arrangement of reinvest-
ment rate (and its stabilization automaton) until the next managers’, shareholders’,
bondholders’ deliberations.

Eventually, the third equation is the account of the net capital inflow of the firm:

dF/dt = −r P + s R (9.3)

After deducting the capital outflow (r the debt service ratio), the corporate borrowing
is obtained according to the debt/equity ratio s. In fact, the debt service is linked to
the volume of loans but for ease of the simulations, our basic formulation simplifies
the model and does not modify fundamentally the core of the corporate governance.

Simulations of the model serve to check the implications of the imposed (or
self-imposed) discipline of capitalization policy when nonlinear mechanism of con-
vergence is made.

Computational Results

The basic study begins with the detection of the solutions of the system:

dP/dt = v(R + F)

dR/dt = m P + (P∗ − P2)n R

dF/dt = −r P + s R

All variables are endogenous and the steady-state equilibria are obtained for dP/dt
= dR/dt = dF/dt = 0.
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Fig. 9.1 Phase portrait of the chaotic attractors for P∗ = 1. a A chaotic attractor centered on E1
appears in the upper sub-basin when initial conditions IC (P0,R0,F0) are positive. The dynamic
of the firm fluctuates chaotically around the equilibrium E1 between weak negative values and
high levels of profits P. b With an additional and negative coordinates IC (−P0,−R0,−F0) set in
the lower sub-basin, the simulation displays another chaotic attractor anti-symmetrically shaped
and centered around E2. This dynamical bi-stability founds the Sensitive Dependency on Initial
Conditions (SDIC) of the model

We get F = −R from (9.1), n(P2 − P∗)R = mP from (9.2) and P = s R/r
from (9.3). The last two relations yielded the following equality: [(P2 − P∗) n r P/s]
−mP = 0.

The three roots of P are: P1 = 0, P2 = [(ms/nr) + P∗]1/2 and P3 = −P2.
Let [(ms/nr) + P∗]1/2 = k, the three equilibria become: E1(P,R,F) = (0, 0, 0),
E2(P,R,F) = (k, rk/s,−rk/s) and the third solution E3(P,R,F) = −E2.

Jacobian matrix of the 3D system gives|J| = v[nr(P∗ − P2) + ms − 2nPRs].
Numerical computations are carried out with the fifth-order Runge-Kutta inte-

gration method and 10−6 accuracy and the initial conditions are IC (P0, R0,
F0) = (0.01, 0.01, 0.01).

We select a set of parameters as the financial statements of the firm C(v, m, n,
r, s) = (0.25, 0.04, 0.02, 0.1, 0.3) and the expected “normal” profits: P∗ = 1.

The trajectory of the system (Fig. 9.1a) follows an infinite orbit centered on the
equilibrium: E1(P,R,F) = (2.64, 0.88,−0.88). The firm as a dynamical system
oscillates without any periodicity in a restricted domain of the phase portrait of the
state variables, profits, reinvestments and capital inflow.

In fact, the model studied reports a generalized bistability since the phase space
displays simultaneously two attractors. In the present case, the space domain (R,
P, F) is split in two independent sub-basins of attraction embedding each one its
own strange attractor. According the initial conditions related to the positive values
of R, and according the negative values of R, we obtain two independent chaotic
trajectories confined respectively in the two sub-domains (Fig. 9.1b). This property
of bistability attraction demonstrates the Sensitive Dependency on Initial Conditions
(SDIC) of the system.
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We notice the other equilibria: E0(P,R,F) = (0, 0, 0) and E2 = −E1. The model
is conservative for the trajectories that are close to E0 and dissipative particularly at
the neighborhood of E1 and E2.

Theoretically, if and only if the initial conditions are E1, the steady-state is
obtained. In practice, the E2 values cannot be attained with an infinite accuracy
since a very weak lag pushes the trajectory farther from the equilibrium. Even if
recorded financial data to built projections, analyst’s forecasts or extrapolation of
historical data have 10−9 accuracy, they do not allow reconstruction of the “real”
model since the missed ten-thousandth fractions of the variables hinders the perfect
estimation of the current financial statement. Paradoxically, the chaotic attractor as a
dynamical object confined in a limited set of the phase portrait prevents predictions
of the variable values and reflects an infinite number of dynamical periodicities. At
the most fundamental level, the deterministic nonlinear mechanism in Eq.9.2 can
imply chaotic motion of the state variables of the firm.

Triggering off sequences of reinvestment-divestiture procedures marks persistent
and non-transitory chaotic oscillations and a failed management practice leading
to other governance arrangements. In fact, the management of public firms can be
a subtle balance (and neutralization) of the stockholders and bondholders interests
allowing towide autonomousmanagerial actionswith aminimum level ofmonitoring
interference. Inefficient financial policy or unexpected and unpredictable instability
yields to the lost of the management autonomy leading sometimes to a “big bath”
(introducing a new agency cost!) requested by both groups of interests. Meanwhile,
unbalanced interests could put decision management rights and decision control
rights introduced by Fama and Jensen (1983), in the same hands of this or that group
of holders which invades the operational field (Fluck 1999).

The instability leads to the adoption of an alternative governance arrangement
substituting this failed management policy (Bhagat and Bolton 2008).

Alignment of Payout Policy to Debtholders Interests

If bondholders monitor the firm, they enforce their directives into the management.
The power of decision (Rajan and Zingales, op. cit.) is now in their hands and they
could postpone payout focusing on the extinction of instability.

In our application, themanagersmight decide to experience a new speed of adjust-
ment and, simultaneously, define other “normal” earnings. The management can
choose a different calibration of P* following objectives and beliefs of debtholders
to avoid hazards of chaotic motion incurred by the previous convergence procedure.
For example, the new payout strategy delays earning’s distribution with P* = 1.8.
Therefore, triggering the disbursement decision beyond a high threshold of cash flow
thereby allows a resource which will boost the reinvestment rate and guides, in first
principle, to a sustainable trend of growth. Indeed, zero-payout is yielded for the new
strategic reinvestments rising from dR/dt = 0.04 up to 0.05.
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Fig. 9.2 Chaotic attractor for P∗ = 1.8. The deterministic trajectory drives the firm to profitability
and loss without any prediction. The basin of the chaotic attractor expanded to its anti-symmetric
set leads to a wide array of losses. The unstable equilibria are E0(R, P, F) = (0, 0, 0),E1(R, P, F) =
(2.79, 0.93,−0.93), and E2 = −E1. Changing P* from 1 to 1.8, the system displays the Sensitive
Dependency on Parameters (SDP) of the chaotic system. Associated with the SDIC, the chaos of
the dynamical system becomes “strange”

The approach which governs the new strategy is focused not on the present earn-
ing’s distribution but on the future creation of the profits. Moreover, postponing
realization of capital gains through dividends allows the investors a preference to the
“timing tax option” (Constantinides 1984), whose taxation of several annual earnings
is less than that of the quarterly frequency tax.

Surprisingly, and contrarily to the expectations, the behavior of the state variables
is projected to an unified basin of attraction covering the whole phase space where
the profit P takes a wide range of gains but also a wide set of losses (Fig. 9.2). In other
words, keeping cumulative surplus of liquid assets triggers disbursements of their
squared amounts which are financed by earnings, equity issues, and also by debts.

The new attractor appears topologically different from the attractors displayed
in the Fig. 9.1 by the variation of a unique parameter of the model, keeping the
same Initial Conditions IC. Thus, the system expresses the property of the Sensitive
Dependency on Parameters (SDP).

Furthermore, theoretically, the simultaneous presence of the SDIC -in the previous
numerical computations- and currently the SDP, demonstrates the “strangeness” of
the chaos detected in the model of the firm. Thereby, chaotic attractors can be called
“strange attractors”.

The key question appears: what is the optimal P* leading to the minimum of
profit’s instability? In fact, simulating the 3D system for a set of P* allows the
detection of the dynamics of P and plots the diagram of bifurcation for the plane
F = 0 (Fig. 9.3).

Against the orthodox principles of management, incremental P* guide the profits
to an expanded chaotic bubble. Risk of negative profitability rises sharply beyond
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Fig. 9.3 Bifurcation diagram of the profit for P∗ ∈]0, 2]. Initial conditions P∗
0 = 0, step-size

dP∗/dt = 10−5, and the C parameters. Postponing disbursement streams imply the amplification
of the chaos bubble by the squared gap between the earnings and their expected level P*. We notice
the period-doubling cascade. P begins with a period-4 dynamic until P∗ = 0.5, then the system
bifurcates to a period-8 solution. A chaotic bubble with intermittent stability windows appears
signaling an infinite periodicity of the Profit

P∗ ≈ 1.5 since the possible worst performance of P moves from −2 to −6 despite
postponing earning’s distribution. The deterministic chaos vanishes when P* is
selected in the stability windows of the bifurcation diagram.

Alignment of Payout Policy to Equityholders Interests

If insider ownership and the block of common shareholders inspire andmonitor man-
agement (Schleifer and Vishny 1986; Blair 1995), they obviously evaluate “normal”
earnings P* at a lower value. Triggering early payout stream even in case of weak
profits reflects the management’s alignment to shareholders interests in the earning’s
distribution since they constitute the powerful group of the firm.

If P* = 0.4, targeted reinvestments fall and zero-payout is yielded to a low
motion: dR/dt = 0.02. The dynamical trajectory of the corporation follows period-4
orbit (Fig. 9.4). Efficient cash management is not only putting cash to applications
immediately to produce earnings but, also exiting excess cash flows to reduce the
periodicity of capital assets.

The result is consistent with high legal protection of shareholderswhich allows the
increase of dividends even in case of low profitability (Laporta et al. 2000). Whether
the payout mechanism injects oscillations for all values of P*, a low periodicity of
the firm’s variables is obtained when disbursements are released from very weak
amounts of cash but with a relative underinvestment. We notice that modification
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Fig. 9.4 Period-4 solution for P∗ = 0.4. The state variables oscillate around the unstable equilib-
riumE1(R, P, F) = (2.53, 0.84,−0.84) in the simplest orbit reachablewith a perfect and predictable
recurrence if the equity holders impose a reduction of the reinvestment stream and an early payout
triggering-off. The other equilibria are also unstable E0(R, P, F) = (0, 0, 0) and E2 = −E1

Fig. 9.5 Strange attractor for P∗ = 1and C(v, m, n, r, s) = (1.02, 0.02, 0.3, 0.1, 10)

of P* displays the morphological plasticity of the attractors and demonstrates the
Sensitive Dependency on Parameters (SDP) of the 3D system. The wide range of
patterns is obtained with only one nonlinear equation leading also to a singular anti-
symmetric strange attractor (Fig. 9.5.).

We could argue that payout automaton generates an endogenous, singular and
deterministic financial distress which is not driven by incomplete, imperfect market
considerations or industry arguments.

Our 3D system is consistent with the objectives of bondholders if they enforce
their interests to the management since delaying payout derives an overinvest-
ment. Likewise, when stockholders inspire early disbursements, the system leads
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to underinvestment. In fact, an imposed payout requires a somewhat fine-tuning
application to control oscillations: a small disbursement chain (low value of P*)
breaking the chaotic expansion of the profit variable. It is a new justification of the
“reluctance” to cut dividends (Kalay 1980; Frankfurter and Wood 2003).

Concluding Remarks

Corporate governance has now reached a level of sophistication far beyond our
idealized numerical experiments. Yet, our three dimensional model of the firmwhere
the disbursement policy is an implicit variable serves only as a heuristic tool to detect
the implications of a mechanism of convergence to a targeted capitalization rate. It
reflects well and rational choices of the corporate management art.

To our knowledge, this model is the first attempt to study dynamical findings of
self disciplining profit’s capitalization in the context of deep lack of trust between
ownership and control. Numerical computations are carried out also when the power
is transferred from shareholders to debt-holders. In our application, the nonlinear
reinvestment regulation is investigated with the tools of the theory of deterministic
chaos (Baumol and Benhabib 1989; Day 1994) which can complete the recently
established framework of econophysics (Mantegna and Stanley 1999).

Singular results are made in opposition to rules and principles of finance gov-
ernance built in static and linear framework since lead to a chaotic dynamics and
strange attractors. Firm can lose its dynamic stability when targets fixed reinvest-
ment stream. The gap between actual earnings and their expected amount releases
the mechanics of payout but automated financial governance procedures imply costs.

Indeed, the main findings of our nonlinear and ab initio heuristic model show the
negative implications of a self-imposed discipline of disbursements when the outflow
earnings are erroneously triggered (amounts and frequency).

Committing to pay out excess of earnings resolves an agency conflict, but, it can
also inject fluctuation leading to a chaotic hazard and bankruptcy threat added to the
wider array of identified financial risks. For example, postponing disbursements of
excess cash is not harmless and can introduce a critical dynamic motion. The normal
earning’s threshold P* which drives capitalization should be technically determined,
for example, by a bifurcation diagram. P* is a key parameter of the corporation
derived from the size and the profitability gathered in the financial statements para-
meters C (v, m, n, r, s).

Meanwhile, if the payout device maintains the interests of equityholders or bond-
holders, its automated mechanism plays against their interests themselves! The par-
ticular specification of the linkage between reinvestment target and payout policy
inserts a chaotic dimension, or almost a periodicity into the profit.

Assuming the simplest formulation of the model, the self-financing procedure to
focus level m is, itself, the turbulent process and not a transitory phenomenon. In a
few words, the dispatching of the profit (to reinvestment and payout flows) modifies
the dynamic stability of the profit itself.
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The first insight from our application can be seen as disciplining profit capitaliza-
tion policy is itself a mechanism of fluctuation. Oscillations are not an artifact yielded
by the simulations but the outcome of the nonlinear disbursements behavior. Payout
mechanism has an oscillatory nature since our heuristic system without the second
item of Eq. (9.2) leads to an exponential growth of P. Our outlook is consistent with
Baker and Smith (2006) conclusions. They indicate that some firms “…may fol-
low a “modified” instead of “pure” residual dividend policy to avoid highly volatile
dividend payments.”

Intuitively, managers “disconnect” the payout’s automaton and drive “manually”
the earnings’ disbursement to pull backward the system far from the chaotic bubble.

In our application, payout is not the residual of reinvestments but is triggered out
by the nonlinear adjustment of capital reflecting high sensitivity of ownership to the
cash emergence. The strong elasticity of payout to earnings can be a consequence of
severe agency conflicts, and derived from scarce level of trust between stockholders
and debtholders and managers (Farber 2005). The payout’s simulation approach can
be further applied to several sets of parameters particularly m, which is derived
from the expected earnings stream. A more promising path for investigating the
consistency of the present conclusions is carrying out simulations with other kinds
of reinvestment convergence.

Deep insights in the shape of these regulators and their dynamical implications
could enhance the practice of corporate finance and its reliability.

However, our basicmodel of thefinancial statementsmasks a loss of generality and
deserves a sophisticated formulation. For example, managers perceive a substantial
asymmetry between dividend cut’s decision and its increase (Brav, op. cit.) and, also,
between financial distress and profitability. The nonlinearity in Eq. (9.2) is adapted
only to a perfect symmetry of the flows.

Meanwhile, fixing ex ante a level of m denying per se investments in unexpected
NPV projects and hindering fund conversion in profitable assets is a credible agency
cost of corporate finance.

Moreover, in case of loss, the opposite motion emerges since the reinvestments
are converted into divestitures in Eq. (9.1) and the borrowing inflow to an outflow in
Eq. (9.3).

Eventually, this study shows that chaotic oscillation canbe an intrinsic and endoge-
nous characteristic of the modern firmwhen an automated disciplining payout policy
is implemented.
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Chapter 10
Interaction-Based Approach to Economics
and Finance

Mitja Steinbacher, Matjaz Steinbacher and Matej Steinbacher

Abstract The chapter examines the characteristics of interaction-based models in
economics and demonstrates that these models can be an important part of the future
research in economics and finance. The economy is considered a complex system
which consists of a large number of interacting units who are represented as software
bits of data and act upon the specified rules of conduct. The multidisciplinary nature
of the agent-based approach makes it highly applicable to examine heterogeneity,
interaction, evolution, uncertainty and the agents’ cognitive limitations which are
central to economics and finance.After a thorough literature review some interaction-
based applications are run.

Keywords Social interaction · Evolutionary activities on networks · Complex
adaptive systems · Agent-based models

Introduction

A distinctive feature of every economy is that it consists of a large number of
interacting unitswho pursue their private interests in an uncertain environmentwithin
particular circumstances of time and space.1 Even though it seems very complex

1 There is a difference between uncertainty and risk. Although both are related to incomplete
knowledge, uncertainty relates to the state in which outcomes and related probabilities are not
known, while risk relates to the state in which all outcomes and their probabilities are known.
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from the outside, a lot of economic activity depends upon the very simple question
of what individual members of a society know. Economic analysis has been tradition-
ally done under the rationality assumption of, loosely speaking, perfect knowledge,
perfect foresight and the agent’s best possible selection, although the environment in
which economic units make decisions is inherently the environment of incomplete
and frequently contradictory knowledge that is dispersed among all economic units
and which is evolving over time, as argued by Hayek (1937, 1945). Some presume
that dispersion of beliefs is required for the market to function at all (Milgrom and
Stokey 1982). Such decentralized systems represent the basis for extensive economic
interactions among bounded rational individuals. In the environment which consists
of many such individuals, the individual-specific characteristics and imperfections
determine the peculiar problemof a rational economic order. A problemof a selection
and allocation of available resources is thus not just a technical one that could be rep-
resented by the closed-form solution but a complex, making the economy a complex
system. Generally, every complex system that is characterized by the repeated non-
linear interactions among its constituents, where one agent’s decision affects and is
affected by decisions of others, can induce coherent large-scale collective behaviors
with a very rich structure that is impossible to foresee (Sornette 2004).

An agent-based approach in which bounded rational agents represent the driving
force of the aggregate behavior that evolves over time takes this into account. Agents
in an agent-based model are modeled as software entities and include data together
with behavioral characteristics that act on these data. They are goal-oriented indi-
viduals of different characteristics who are able to learn over time and are subject to
different constraints. Definition of an agent is not restricted only to human agents.
Agents might also include social groupings, biological entities and physical entities.
They can range from active data gathering decision-makers with sophisticated learn-
ing and cognitive capabilities to passive world features with no cognitive functioning
(Tesfatsion 2002; Tesfatsion and Judd 2006). Then, the network consists of a group
of mutually connected agents who may be very different in their structure. Starting
from an initially specified system state and the rules of conduct, these agents are con-
stantly engaged in local interactions by which they produce the outcome of the entire
group, which in turn affects individuals’ future behavior. Many of these applications
borrow from the evolutionary game theory, which helps us examine how behavior of
individual entities within a group changes over time according to behavior of their
counterparts (Maynard Smith 1982; Weibull 1995).

The present chapter examines social networks in a social science context, espe-
cially in economics and finance. Early attempts of using networks in economics were
due toMyerson (1977) andKirman (1983, 1997). Since then, agent-based techniques
have been increasingly used in economics. Our principal objectives were the follow-
ing: to review the field of interaction-based models in economics and finance, to
describe the properties of these models, and to present some applications.

Interaction-based approach provides a multidisciplinary tool for exploring many
different phenomena and can easily incorporate elements from other fields, such as
game theory, psychology, neurology, sociology, biology, which makes these mod-
els highly applicable. They have helped us understand many open questions from
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different research fields from within and out of economics, especially in cases of
complex models that are mathematically intractable. At least, these models have
provided us some complementary arguments to the questions at hand; not only about
the solutions as such but also about how these solutions evolve over time and how
they might change as the circumstances are slightly perturbed. In an interaction-
based model, individual nodes, links or some other model attributes can be affected
by different types of shocks while the modeler is able to examine the consequences.
The modeler can also examine the model according to different rules of conduct
and so on, which makes the agent-based approach well suited for examining very
complex and evolving systems.

The chapter proceeds as follows. In section “Properties of the Interaction-Based
Models”, we present social networks and cellular automaton as two baseline models
on which interaction-based games can be applied. They both represent an infrastruc-
ture which agents use to interact with each other and share information with one
another. In addition, both of them are capable of encompassing many different the-
oretical aspects that might be relevant in interaction-based applications and agents’
decision-making. The section ends with a brief discussion about the network types
that would best fit the model’s characteristics. Subsequent sections offer a thor-
ough overview of interaction-based models in economics and finance by which we
provide some ideas and the range of how these models can be used.We start with dif-
fusion models because other interaction-based models borrow many concepts from
this group. A special class of interaction-based models represents game theoretic
models. In section“Applications Outside Economics”, we review some interaction-
based models from outside the economics and finance. Many solutions from these
applications can be and have been very effectively used in examining various phe-
nomena in economics and finance. Although very extensive, the review is far from
being complete. Section “Simulation-Based Experiments” presents two examples
of interaction-based applications, by which we present how these applications can
be conducted and how (even minor) changes in parameter values or in the network
structure end up in highly different outcomes of the entire system. These simulation
experiments are then followed by a short discussion in Section “Discussion”, while
the last chapter concludes.

Properties of the Interaction-Based Models

The Network

Amodel for a social network is a graph.We can also say that a graph is amathematical
representation of a network. By definition, a graphG = (V, E) is composed of a non-
empty finite set of nodes (or vertices) V , representing the units, and a nonempty finite
set of edges (or links) E , representing their pairwise relations (Fig. 10.1). Depending
on the application, a node can be a single individual, a firm, a country, a group, or some
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Fig. 10.1 A graph

other autonomous unit. Nodes and links may include a variety of properties, which
may be numerical or qualitative. For instance, in a network of friends, nodes rep-
resent individuals and the links their friendship relations. In a banking network,
nodes may represent different banks and the links the interbank exposures. Extensive
reviews on social networks and the network-based models are given in Boccaletti et
al. (2006), Goyal (2008), Jackson (2008, 2010), Wasserman and Faust (1994), Brock
and Durlauf (2001a).

It is very common to denote the link between nodes i and j simply as ij = 1,
and ij = 0 otherwise. Two nodes that are joined by a link are referred to as incident
nodes or neighboring nodes or connected nodes. The presence of a link is a required
condition for the information flow between the two nodes, but not also a sufficient.
In an undirected graph, edges are unordered pairs of nodes, which means that if
ij = 1 ⇔ ji = 1 and if ij = 0 ⇔ ji = 0. This applies to situations where two nodes
are either in a relationship with each other or not. In a directed graph, edges have
directions. An edge (i, j) allows us to move only from i to j but not also from j to
i . We say the network is finite if it has a finite number of nodes.

In most applications, graphs do not contain loops or reflexive ties, by which
single nodes would be linked to themselves, nor multiple edges by which a pair of
nodes would be linked more than once. If such a structure exists, the elimination of
a single link between the two nodes does not eliminate the link between them. A
demonstration of a multiple-edge banking network would be the network, in which
banks possess various different instruments from the same counterparty.Mixed graph
is a graph with both undirected and directed links.

In a graph, individual nodes that are not directly linked may be reached through
the sequence of nodes and links. A graph is connected if for every pair of nodes
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(i, j) there exists a walk from node i to node j .2 The distance L (i, j) from node i to
node j is equal to the length of the shortest path from i to j . Often, the shortest path
between two nodes is referred to as a geodesic. If there is no path from i to j then
L (i, j) = ∞. The eccentricity of a node is the largest geodesic distance between
the node and any other node in the graph, i.e. Ecci = maxi L (i, j). Maximum
eccentricity of any node is (n − 1). A graph has a diameter D if every node in the
graph can be reached by the maximum geodesic of a length D = maxi, j L (i, j).
Diameter is the largest eccentricity. The term “degree of separation” is usually used
in the context of diameter.

The degree of a node k is the number of edges incident with it. It represents the
number of nodes linked to it. A node degree can range from 0 for an isolated node,
to n − 1 for a node that is linked to every other node in the network. The set of
nodes that are linked with node i is called the neighborhood of i . In directed graphs,
every node has an in-degree that represents the number of incoming links, and an
out-degree referred to as the number of out-going links. A bridge is a link in a graph
such that its elimination splits the graph into several unconnected sub-graphs; i.e.
components or islands. A node that connects two components is called a cutpoint.
Connectivity is an important element in defining the network behavior and may
induce different consequences when the network is used for different purposes. For
instance, connectivity can work either contagiously or as a channel of risk-sharing
in a financial network, while epidemiological networks do not have the risk-sharing
potential.

The most basic topological characterization of a graph can be obtained in terms
of the degree distribution P(k). It relates to the statistical distribution of the nodes’
degrees and is defined as the probability that an arbitrarily chosen node has degree k.
Equivalently, it is defined as the fraction of nodes in the graph having degree k.
In homogenous networks, such as randomnetworks and small-world networks, nodes
with degrees significantly higher than others do not exist. However, such networks
are rather exceptional in reality. On the contrary, it has been argued that most real-
world networks exhibit power-law distribution, which means that there exist some
nodes with high degrees and a vast majority of nodes with small number of adjacent
links (Albert and Barabasi 2002 and references therein). Such networks are referred
to as scale-free networks. In scale-free networks, the rate at which individual nodes
increase their degrees depends on their fitness to compete for the links of other nodes.
This observation is very general, because fitness of a node may be determined by
many factors, such as its degree, age, reputation, distance or some other competitive
factor that attracts other nodes. By the same token, some nodes may avoid linking
to some of the others. Not all nodes are identical in terms of fitness while each node
increases the number of connections accordingly to the fitness it possesses over time.
Barabasi andAlbert (1999) have demonstrated that if the network develops according
to this principle, which they call preferential attachment, it exhibits power law dis-
tribution. The preferential attachment and, under certain conditions, also the fitness

2 A walk is a sequence of nodes and links, starting and ending with nodes, in which each node is
incident with the links following and preceding it in the sequence.
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models allow for the endless link formation, which is possible only theoretically.
Most networks are subject to serious constraints, either due to the nodes’ limited
degree capacities or due to aging of nodes or links, for which the nodes’ degrees
have an upper bound (Amaral et al. 2000). In addition, communities of bounded
sizes have been observed in reality.

One additional network-based characteristic that is very common in socio-
economic networks is assortativity. It illustrates a phenomenon when nodes tend
to be connected to other nodes that are similar to themselves. Kremer (1993) identi-
fies such a pattern in a production process and argues that workers of the same skills
are matched together in the equilibrium, which makes high-skill workers even more
productive. Patterns of assortativity can be found in various grouping models, such
as marriage models, models that build on trust, mating models, etc. Dissortativity
(or negative assortative) is the opposite case, when, for instance, high degree nodes
tend to be connected to low degree nodes. Similarly, one can find homophily in the
networks, and heterophily, its opposite.

Although the notion of a node degree is compelling, it is by no means sufficient
let alone exhaustive. The behavior of a network depends on the role, influence, and
importance of single members within bigger communities. A node degree measures
the number of nodes to which individual nodes are adjacent but this does not say any-
thing about the importance of these links. A node can be linked to many unimportant
nodes or to some highly important. There is no clear definition of a node’s impor-
tance, which depends upon the structure of the network and the context as such. One
measure is represented through the node’s centrality, the other, when the directed
networks are applied, through its prestige (see Ballester et al. 2006; Wasserman and
Faust 1994). In Steinbacher et al. (2013), the node’s importance is measured through
the damage that its elimination causes to the system. Hence, each node is assigned an
alpha-criticality index with the criticality level measuring the extent of the damage.

Cellular Automata

The alternative approach to the network-based experimentation represents cellu-
lar automaton (Wolfram 1983). Cellular automaton was originally introduced by
vonNeumann (1966). It is a discrete time anddiscrete state system in aD-dimensional
lattice which consists of the cell space, cell size, neighborhood size and type, tran-
sition rules and temporal increments. In the schematic representation of Fig. 10.2,
individual agents are colored black and move throughout the lattice according to the
state on the lattice, their preferences and decision rules, and general rules of conduct.

Cellular automata on complex topologies are systems in which each agent can be
in only one of a finite number of states. At each time step, the next state of each agent
is computed as a function of its state and of the states of its neighbors on the network.
Agents can move only in the neighborhood of the cell which they occupy. Agents’
dynamics on the lattice could be limited by the outer bordering cells, but this does
not have to be the rule. For instance, in a 2-dimensional lattice we can assume that
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Fig. 10.2 Cellular automata model

the lattice is a representation of a globe. Therefore, an agent exiting of left enters the
lattice on the right and each cell has eight neighboring cells no matter the position.

Applications of cellular automata are many. Cellular automata have been
extensively used to simulate the evolution of self-organization systems and particu-
larly for urban modeling. Langton (1990) finds that by manipulating the parameters
of cellular automaton, the aggregate behavior of the system exhibits a phase
transition between highly ordered dynamics to chaos. Some applications will be
presented in the sequel.

The Game Structure

Many of the methodological concepts that we use are taken from the game theory
literature (see Osborne 2002). By referring to games, we do not have necessarily the
usual game theoretical framework in mind but computer-based experiments. Hence,
the games on networks could alternatively be referred to as the activities on networks.
We denote them games to highlight the connection to the games as we usually know.
Each game consists of the finite set of i = (1, 2, . . . , N ) agents, preferences and
objectives Pi for each agent, payoffs βi ∈ R for each agent (or utility), a set of
actions Ai for each agent and a set of rules Ri . In the network terminology, the
properties of nodes are usually called attributes and the properties of links are called
weights.

As we have said before, an agent may be an abstract version of a single individual,
a firm, a country, a hub or some other autonomous unit, while a multiagent system
is a system that contains multiple agents who interact with each other within the
environment in which they live and, in some applications, also with the environment.
Russell and Norvig (2010) define agents as anything that can perceive its environ-
ment through sensors and act upon that environment through effectors. The usual
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assumption here is that agents are heterogeneous and adaptive both in their attributes
and the ways in which they react to the environment.

Because heterogeneous agents interact with one another, the system virtually
always evolves over time dynamically and evolutionary, and often also stochastically.
The agents’ heterogeneity is an important factor which adds the complexity into the
course of the game. And not only that, when using an agent-based framework, it
becomes apparent that most of the problems we try to solve require heterogeneous
agents.

The game usually proceeds as follows. The model is first constructed, then the
initial conditions and the system states are specified and the rules of conduct defined.
Afterwards, autonomous agents are constantly engaged in local interactions accord-
ing to their characteristics and the predefined rules. During the game, agents affect
the others and are affected by the others by which at every point in time the aggregate
outcome of the entire group arises. Perpetual activity is thus integrated into themodel
structure, although the participants can also be just passive creatures.

Modeling Agents

Having defined the agents’ attributes, they can be freely manipulated to meet the
structure of the problem and to describe the agents’ characteristics. Computational
agents can be very broadly defined and can range from simple scalars to com-
plex functions.3 Agent-based approach is very robust in this respect and allows
the modeler to define different types of agents with different knowledge and prefer-
ences, objective functions and endowments, or to model agents who follow different
strategies and pursue different selection criteria, or agents who are omniscient or
non-omniscient, rational or irrational, unsuspicious or suspicious, autonomous or
subservient, far-minded or short-minded, patient or impatient, or conservative agents,
etc. All thismay bring themodeled agentsmuch closer to how they look like in reality
than the neoclassical.

A special class of games represents those in which agents refer to human beings.
A lot of what has been said in the previous paragraph relates to the agents as human
beings. Human agents differ from other types of agents in a cognitive component.
Whenwe talk about the cognitive component,weparticularly have inmind the agents’
preferences, their communication skills, knowledge and learning mechanisms, their
abilities to set-up their goals and build expectations, to gather and process informa-
tion, to maintain their (social) role in society and, finally, also their selection patterns.
A cognitive component makes the decision making of human agents a complex task
and their aggregate behavior a complex system of interdependent subjectivisms.
Non-human agents are generally passive in nature and their actions instantaneous
without the agents’ control. However, this does not mean that passive agents are not

3 Computational agents can also be referred to as the software agents, given that they are
programmed as bits of computer data.
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subject to different types of constraints. Electric hub, for instance, can transmit just
a limited amount of electricity. On the other hand, not all the models of human-alike
agents include a cognitive component.

In dynamic and evolutionary games, agents’ initial attributes are set over a vec-
tor of characteristics for each agent. Agents usually also have some prior knowl-
edge about the problem they face. If learning is applied, then the evolutionary
dynamics for these attributes has to be specified. The ability to include learning
is an important factor in interaction-based modeling, by which we make the agents
the active units who are allowed to correspond reasonable to the changing circum-
stances. This gives the games a new dimension. Different situations spur different
learning processes (Brenner 2006; Fudenberg and Tirole 1998; Russell and Norvig
2010). Agents can learn either when they are repeatedly faced with the same or
related problem, or when they play the same or related game repeatedly, or from
observing the changing environment. In the latter case, the dynamics inhibits learn-
ing processes. In the extreme case when the environment is chaotic, agents do not
have many opportunities to learn. However, in the two-agent repeated game, each
agent should also acknowledge that their actions may affect the future plays of
their opponents. In the games that include learning, different types of reinforce-
ment learning methods have been highly extensively used (Sutton 1988). In the
regret matching model, agents decide upon the pain caused by the non-selected
alternative as to the selected alternative, or upon experience-weighted attraction
model, proposed by Camerer and Ho (1999), or copy actions of their neighbors
(Erev et al. 1998), in Q-learning agents learn from delayed rewards. The method of
temporal differences is a method of incremental learning in which learning occurs
upon the difference between the predicted outcomes that are done upon past experi-
ence and the data, and actual outcomes. Reinforcement learning is a kind of feedback
learning. In reinforcement learning games, agent’s actions gradually approach the
most efficient ones. Agents either try different actions over time or get information
from their neighbors. In either case, this is either done through the trial-and-error
search or through reward-based search.

Alternatively, Cowan and Jonard (2004) model knowledge diffusion as a barter
process between agents, in which agents exchange different types of knowledge with
their adjacent links. In their model, agents repeatedly meet their neighbors and trade
if mutually profitable trades exist. In this way knowledge diffuses throughout the
economy.

Anderlini and Ianni (1996) study the long-run properties of a class of locally
interactive learning systems. A finite set of players at fixed locations play a two-by-
two symmetric normal form gamewith strategic complementarities, with one of their
neighbors selected at random. Their model exhibits emergent phenomena and a high
degree of path dependence, which is induced by the endogenous nature of the model
and the noise.Baumol andBenhabib (1989) argue that due to the huge sensitivity of an
economic system to microscopic changes in parameter values, a chaotic system may
reach the long-run at different points, producing very complex time paths, despite
the simple and even deterministic relationships among its constituents as long as
they are nonlinear. Such a local nature of search can explain price dispersion in a



170 M. Steinbacher et al.

search model, wherein different agents sell the same good at different prices in a
given market.

Although agents interact with their peers and exchange information with them,
the interaction-based experiments are not bound only to such inter-personal links,
but may also include information from the environment in which they live.

The last phase of a selection process is the selection as such. The selection is
viewed as a mapping of agents’ knowledge into a decision from a set of avail-
able alternatives, given the feasibility constraints. Although this is the universal
description of the agent’s problem, the assumptions about its constituents are the
key to understanding agents’ behavior. Traditionally, researchers have assumed that
agents make perfect selections so as to maximize a utility function upon the perfect
knowledge and time-consistent preferences.

The conceptual breakthrough that traced the path towards modeling cognitive
agents was initiated by the work of Herbert Simon who substituted the optimization
principle with the notion of satisficing agents (Simon 1957). The enormous liter-
ature on the psychological (or behavioral) economics which was later initiated by
Kahneman and Tversky (1979), Tversky and Kahneman (1986) expanded the per-
ception of the agent-based modeling, particularly in respect to individual agents. The
behavioral economics research suggests that the expected utility theory does not ade-
quately describe the agents’ behavioral and selection patterns, because agents violate
the fundamental axioms of the theory. Often, the “agent-based” agents are described
as bounded rational agents. Rubinstein (1998) provides a thorough discussion on
modeling bounded rational agents.

In the behavioral approach, agent’s decision-making is subject to imperfections
along the entire selection process from their preferences, set of alternatives, knowl-
edge about the alternatives, data gathering, data processing, to the choice rules and the
selection as such.4 Nothing from this is static over time. It is standard to assume that
agents face a hard budget constraint, while the behavioral literature also assumes that
agents have incomplete and asymmetric knowledge about the available alternatives,
that they do not have transitive preferences, violate rational expectations hypothesis,
are time-inconsistent, learn, apply different learning rules, while their behavior is also
affected by the behavior of others, etc. (see Barberis and Thaler 2003; Hirshleifer
2001). Agents’ decision may be subject to various types of “errors” in the selection
process, some of which might also be induced by confusion Selten (1975). In some
instances, they gamble, speculate, use heuristics and even make blind guesses. In
addition, agents can make decisions simultaneously or jointly as a part of different
groups. Agents’ decisions may either be perpetual solutions to their choice problems
or one-shot actions. In order to include these agent-based specifics but not to make
the model too precise which could easily make it very inappropriate, Steinbacher
(2012) combines all the subjective specifics that are relevant for the agent’s selection

4 In the computational economics literature, the interaction-based models are often characterized
as the behavioral models, although this does not adequately reflect the structure of these models.
Behavioral aspect represents only one component in the interaction-based models, although very
important one. The other is a social component.
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into a residual variable which he denotes the level of suspiciousness. Each agent is
thus allowed to make sub-perfect selections for whatever reason.

The emerging literature of a new approach that is commonly referred to as
neuroeconomics introduces neuroscience, i.e. knowledge about brain mechanisms,
into modeling economic agents’ decision-making (see Camerer et al. (2005) for an
overview). Neuroeconomics represents a very ambitious approach. The other ambi-
tious area of research that is developing very fast relates to sentiment analysis and
opinion mining (Pang and Lee 2008). This bunch of research is concerned with the
analysis of what individuals think, and this could bring some new insights on how
to give information an economic value and benefit from it.

Agent-based agentsmay either contain behavioral characteristics or be optimizers.
Themodeler is free to incorporate the neoclassical type ofmaximizing agents into the
model. In fact, agents might range from zero-intelligence agents who make random
guesses (Gode andSunder 1993) to suchwho decide upon the very detailed procedure
as in the ASMmodel where agents’ rules include more than 100 parameters. Agents
might have perfect recall, which means that they remember entire histories of their
actions and the relevant data, or they may have an imperfect recall. In addition,
agents’ decision making and their expectations can be affected or even restrained by
their cultural or religious characteristics, which have proved to be significant (see
Guiso et al. 2006 for a survey). Culture is particularly relevant in relation to trust and
economic activities that outdo the mere market mechanisms (Akerlof 1970).

Altogether, agents’ selections might depart from the seemingly most promising
alternatives if such ever existed. With such a shift away from a perfectly rational
and omniscient agent, Homo Economicus becomes bounded and begins losing IQ,
evolving into Homo Sapiens (Shiller 2000). Of course, it would be mistaken to
think that computational agents do not try to think rationally or even to make optimal
decisions if such existed. The behavioral approach gives the agents a “non-automata”
and a human characteristic, in which their selections capture cognitive and social
features.

Which Networks to Use?

In recent years, there has been a remarkable interest in the network structures. Over
the years, many different networks have been developed and identified and, in the
end, also used for different purposes. Some networks are very complexwith a specific
architecture, which gives them very specific and unique characteristics. Following
Newman (2003), the networks can be divided into four broad categories: socio-
economic, technological, information and biological networks.

From the economist’s perspective, socio-economic networks are usually applied,
especially in the game theoretic or agent-based applications. These networks consist
of a set of people or groups of people who are connected together in pairs by links.
Links signify some pattern of contacts or interactions between these individuals, and
represent a channelwhich these individuals use to share their private informationwith
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one another. Because individual units usually communicate with each other, these
networks usually take the form of communication networks. Technological networks
include tangible objects. Typically, they are designed to represent the distribution of
some commodity or resource. Some cookbook examples of technological networks
include networks of roads, airline routes, pedestrian traffic, etc. In economics and
finance, an example of a technological network would be a banking network in which
banks are linked to each other through the interbankmarket ofmutual exposures. Typ-
ical examples of the information networks are citation networks and the World Wide
Web. Information networks are also referred to as knowledge networks. A class of
preference networks in which people express their preferences on objects, e.g. book
or stock recommendation, also belongs among information networks. Finally, bio-
logical networks model biological systems as a network and examine their activities
in a network-based setting. Networks may include elements from different cate-
gories. The network of trading relationships among countries has elements of both
socio-economic and technological networks (Jackson 2008).

Networks can be further classified into those inwhich objective data, such as risks,
viruses or other events is transmitted and the networks where subjective beliefs, such
as ideas and opinion are transmitted. The difference between the two is not just
methodological but also technical, while applications of the latter are much more
complex than that of the objective-data models.

Furthermore, when links are necessarily reciprocal it will generally be the case
that mutual consent is needed to establish and maintain the link. Most economic
applications fall under the reciprocal-link framework. In such a case, undirected
networks should be adopted. When direction of a link is important, such as in credit
risk models, directed networks should be applied. In weighted networks, nodes and
links possess some attributes andweights. Usually, nodes possess some values whose
dynamics is provided by the weights of the links. Granovetter (1973) used such a
weighted socio-economic network, in which the links are given the strength of a
friendship between two persons according to the closeness of existing link and the
frequency of interaction. Hence, the interpersonal links can be either strong or weak
with the latter illustrating casual acquaintances. Granovetter then demonstrates that
although individuals get very useful information from their closest ties, the group
homogeneity exhausts the level of unknownswithin the group,whichmakesweak ties
indispensable for the propagation of new information into highly homogenous group.
Although Granovetter studied the job search market, weak ties can be instrumental
elsewhere, as well. Goldenberg et al. (2001) argue that weak ties overcome the effect
of the strong in all stages of the product life cycle. On the other hand, by definition,
weak ties are less accessible than the strong and also less willing to share their
knowledge and information, which may limit their value.

In addition, networks can be classified into the static and dynamic. In static net-
works, all nodes and links between them are fixed over time. In evolving networks,
new nodes emerge over time and some of them die off, while nodes make new links
and sever some of the existing. Many systems in reality would be best described by
evolving networks. Models of evolving networks need to include a mechanics by
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which the network grows and develops (Albert and Barabasi 2002; Boccaletti et al.
2006; Jackson 2008, 2010; Newman 2003).

We do not exaggerate by saying that economics has developed into a highly
interdisciplinary science with very broad research interests. Within this scien-
tific development, social networks represent the additional methodological tool to
examine the questions bottom-up from their substance. Furthermore, in tackling the
complexity and to simplify the problem, economists have often used conformist
assumptions in their models. Agent-based approach is, of course, not immune to
such simplifications. On some occasions, a modeler uses simplifying assumptions
in order to isolate the effects of particular factors of the model and simulate the
model under these specific circumstances. In the other, increased complexity of the
model structure seems redundant. Still, many models could not be solved without
such simplifications. Finally, there are some open questions of which we still do not
have a satisfying clue of how to tackle them successfully. In this respect, Gibbard and
Varian (1978) argue that models can be either approximations which aim to describe
reality, or caricatures which seek to give an impression that they describe reality.
From this perspective, one could argue that it is not so much a question of which
network-types are generally more appropriate for economics and finance, but which
types better fit the specific problem at hand and satisfy the modeler’s aims. This may
be true, although the appropriate network is required if one would like to defend the
argument.

In the following chapters we review the literature on agent-based models in eco-
nomics with an emphasis on social interactions and discuss the models from several
different aspects.

Diffusion Through the Networks

Spread of a Disease

We begin this overview of interaction-based models with the epidemic diffusion
models for a simple reason; because they represent a platform for other diffusion
models. They are also very intuitive and easy to understand, while the connection
between the networks and the epidemic models is very straightforward.

Let us presume a group of people, which consists of a portion of infected indi-
viduals and the rest. The network can be formed if we imagine that nodes represent
individual people and the links their pairwise connections along which the infection
can spread (Newman 2002; Pastor-Satorras and Vespignani 2001). Each individual
has a finite set of contacts, while over time these individuals interact with one another
through interpersonal contacts. Individuals may make new contacts and sever some
of the existing. The network structure allows the modeler to examine the epidemic
dynamics over time. Namely, diseases spread by contact and go from the infected
individuals to others and the modeler is able to monitor the speed and the extent
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of the progression under various circumstances. Applications of epidemic models
usually include the propagation of human and electronic viruses or other diseases.

Generally, three different types of the epidemic model are examined. In a SIS
model, individuals exist in one of the two discrete states: susceptible (S) or infected
(I). At each time step, each susceptible node gets infected with some rate if it is
connected to one or more infected nodes. A node which is connected to the bigger
number of infected nodes has a higher probability that it will get infected. At the same
time, infected nodes are cured and become susceptible with some rate. Susceptible
individuals who become infected become potential virus transmitters.

The extended model includes a group of recovered individuals (R) and is thus
referred to as a SIRmodel. Recovered (or dead) are those who have been infected and
are immune for life (or are dead). Such individuals cannot be transmitters anymore.
SIR models can be further extended to include the case when a recovered individual,
if not dead, can again become susceptible and infected. This kind of model is usually
referred to as a SIRS model.

The significant property of epidemicmodels is represented by the epidemic thresh-
old, which marks the effective spreading rate of the infection. It is important because
it gives us information whether the infection can become endemic or dies out. In SIS
models, it is the quotient between the infection rate and the rate at which the infected
nodes are cured.

Credit Contagion in Financial World

Epidemic models can easily be applied to the banking world to examine issues that
relate to credit risk. Credit risk can be defined as a risk of changes in the value that
is associated with unexpected changes in the credit quality of other counterparties.
As such, a credit event spreads like a “virus” across the network. Credit contagion
has been extensively studied within the network models (Allen and Gale 2000; Gai
et al. 2011; Haldane and May 2011; Lelyveld and Liedorp 2006; Steinbacher et al.
2013, see Allen and Babus 2008 for a survey).

Financial system has a natural representation of a network, in which the nodes
represent individual financial institutions (or banks) and the links the interbank posi-
tions. Banks may be modeled through their balance sheets. Financial network would
usually be directed and weighted, reflecting the fact that banks are either debtors
or creditors, and that interbank positions are of different sizes. Banks may be het-
erogeneous across the types and the size, which makes the banking network very
complex. It has been argued that the network of major international financial insti-
tutions exhibits an increasing scale-free characteristic in which a few large banks
interact with many others, although the system is strongly interdependent (Iori et al.
2008; Schweitzer et al. 2009). In the banking network, the bank capital serves as a
cushion to absorb losses.

By using the network-based approach, the modeler is able to stress the model
by either an idiosyncratic or macrostructural shocks and examine how these events
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affect the stability of the network and the banking system. The latter are considered
systematic events because no particular bank that holds an asset that has been hit
by the shock can avoid the consequences. The two events may be co-integrated and
correlated.

When a credit event occurs and the borrowers are unable or unwilling to ful-
fill their obligations, the interdependent banking system may induce credit conta-
gion, where failure of a single bank triggers the subsequent failures of counterparty
banks. Contagion is a typical network effect and represents the counterparty risk.
Following the bank default, adjacent banks are infected first and, if capital buffers
are not sufficient to cover losses, the shock propagates through the chain of links.
Contagion in the presence of a systemic event is different from that of the idio-
syncratic in that the systemic shock itself reduces the capital of each bank, thus
making them more vulnerable to additional writedowns due to the counterparty risk.
Correlated exposures of banks to a common source of risk can propagate systemic
risk through the banking system. In addition, the extent of a credit event depend upon
the level of recovery rates and a time delay from the time the bankruptcy of a bank
is acknowledged until the time when recovery rates are applied.

Hoardingmodels extend the perspective of the interbankmarket.5 Liquidity hoard-
ing refers to a situation when single institutions start to hoard liquidity from other
banks which are exposed to them. In the best case, they hoard long-term liquidity and
thus making the interbank market extremely short-termed. There are mixed views on
the reasons for liquidity hoarding (see Acharya and Merrouche (2010) and Acharya
and Skeie (2011) for the precautionary motive and Taylor and Williams (2009) for
the counterparty risk). Hoarding model of Allen et al. (2009) includes the central
bank, which could provide required liquidity to illiquid banks by using open market
operations.

Risk propagation models can be further extended so that credit events exacerbate
uncertainty, loss of confidence or panics. In addition, positive and negative newsmay
also be transmitted from one place to another when they are not directly connected.
Following the positive or negative news about certain entity, the relevant market
participants may reassess their priors about entities that are similar to them or come
from similar environments and make similar expectations as to those which they
have examined. Historically, transmission of the Thai crisis of 1997 from Thailand
to Brazil and Russia was largely psychological. In Russia, it induced the collapse of
the stock market and then also of the ruble in 1998. Some other cases of international
contagion are thoroughly examined in Kindleberger and Aliber (2011).

By the same token, credit contagion may also denote propagation of economic
distress from one firm to another or from one country to another or from firms to
banks and to countries’ budgets and vice versa and so on. Such interdependence

5 Interbank market is one of the most important factors for the financial system to work smoothly
because it transfers liquidity from banks in abundance to banks with a deficit. As such, it is vitally
important particularly for smaller banks which are usually short in liquidity and much more depend
on the interbank market than big banks.
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makes the effects of credit events nonlinear and complex, making the interaction-
based approach even more appropriate.

The interbank market resembles the parallels to the epidemic networks; it acts
as a transmission channel for spreading credit events from infected banks to their
counterparties and hence across the network. However, credit contagion models
differ from the epidemic models in transmissibility. As we have said before, the
node connectivity may work as a channel for the risk propagation or risk-sharing in
a banking world, while not also in epidemic networks, where single infected units
do not have the risk-sharing potential and would infect the entire component.

Spread of Ideas and Opinion-Building

The third class of diffusion models relate to the propagation of ideas through a social
network and the related opinion-sharing. It presumes that agents’ beliefs are affected
by the influence of others. Spread of ideas may also be referred to as information
contagion. In these models, we implicitly assume that each agent makes a decision
regarding some issue. Individual agents usually have some prior beliefs on the issue
they decide about and they regularly update their knowledge (Bala and Goyal 1998;
Banerjee 1992; Bikhchandani et al. 1992; Blume 1995; Castellano et al. 2009; Ellison
and Fudenberg 1995; Steinbacher 2012). Technically, either undirected or directed
networks may be applied. However, because correspondents are likely to respond
differently to direct communication than to the indirect, the choice for either of the
two network types may imply different consequences on how beliefs progress over
time.

The usual framework is the following. Agents are represented by nodes and their
pairwise connections by links. Agents are split into sub-groups of different priors.
Theymeet (randomly or systematically) with each other and share their beliefs to one
another. Depending on the agents’ characteristics and that of the others, agents may
get persuaded with some probability and adopt the priors of the fellows or remain
with the same belief.

Heterogeneity in agents’ attributes may not refer only to diversity in beliefs, but
also to the magnitude. The priors may either be strong or weak which affects the
evolutionary dynamics. Specifically, agents with stronger priors are more likely to
convert other agents to their beliefs. Then, the size of the information cascade depends
upon the network structure and the proportion of highly persuaded individuals who
never change their initial beliefs. Glaeser et al. (1996) offer an interaction-based
model to examine crime rates as a function of individuals’ attributes and that of the
neighborhood. In themodel, there are individualswho influence and are influenced by
their neighbors and those who influence their neighbors but who cannot themselves
be influenced. Each individual faces a choice of whether or not to engage in criminal
activity upon the behavior of his closest neighbors and the average behavior of the
neighborhood. Although the network-based effects are identified in petty andmoder-
ate crimes, they are almost negligible in the most serious crimes. Golub and Jackson
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(2012) apply the network-based approach to examine the effects of homophily to
the speed of learning when agents apply best-response techniques.6 They argue that
when agents’ beliefs or behaviors are developed by averaging what they see among
their neighbors then homophily slows down the convergence to a consensus. Aral
et al. (2009) examine peer effects in a dynamic network of social interaction and
distinguish between the influence-based contagion and homophily-driven diffusion
of ideas. A sort of the homophily-driven model was introduced by Mullainathan and
Shleifer (2005) and Gentzkow and Shapiro (2011). The model of Mullainathan and
Shleifer presumes that individuals prefer the news which is more consistent with
their prior beliefs. This infers that individuals segment their audience according to
their belief and prefer those that are likely to confirm their own views. Gentzkow
and Shapiro claim that individuals with some prior belief may process information
they receive very differently depending on the source and their priors. Similar to
these is the network-based bounded confidence model introduced by Deffuant et al.
(2000), in which agents can influence each other’s opinion only if the two opinions
are close enough. Agents start with some opinion, while at each time step an agent
shares his opinion with a randomly selected neighbor. If the two opinions differ by
more than a threshold parameter, both opinions remain unchanged; otherwise each
opinion moves in the direction of the other. In the experiment, either both change
their opinion or none. In the end, for the given difference in initial opinions, higher
thresholds increase the probability that two opposing opinions converge towards an
average opinion, while the low thresholds result in several opinion clusters. Yet, the
ants’ example of Kirman (1993) demonstrates that agents can change their beliefs
autonomously with no influence of others.

In the classical model of learning and consensus formation that was proposed by
DeGroot (1974), agents put weights on the opinion of others. At each time period,
weights are assigned to each individual according to trust and the level of confidence
an individual enjoys among other agents, while the opinion of each is then defined
as the weighted average of the opinions of others. Holme and Newman (2006) offer
an opinion model in which agents form their beliefs by either joining a group of
individuals with a similar belief or by influencing each other’s opinion which, as a
result, is becoming similar. By controlling the balance of the two processes, they
identify a phase transition, from a regime in which opinions are diverse to one in
which most individuals hold the same opinion.

Acemoglu et al. (2010) examine how the presence of forceful individuals who
influence beliefs of the others but are not willing to change their own, interferes with
information aggregation. Their main result is that the worst outcomes are obtained
when there are several forceful agents and forceful agents themselves update their
beliefs only on the basis of information they obtain from individuals most likely to
have received their own information previously.Watts andDodds (2007) examine the
“influentials hypothesis” and argue that large cascades of influence are driven not by

6 Homophily relates to the observation, in which individual agents tend to associate disproportion-
ately with individuals who are similar to them. In other words, node characteristics and the behavior
of nodes are correlated with the network structure.
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the opinion leaders but by a critical mass of individuals who can be influenced easily.
Kreps and Wilson (1982) argue that in the multistage and imperfect information
games, agents may try to acquire a reputation in the early stage of the game and
use it as the game proceeds. Burnside et al. (2011) present a heterogeneous agent
belief model to examine the housing market and explain variation in the housing
prices. Agents have different priors about the long-run fundamentals, meet randomly
and change their expectations following the interaction with others. The tighter the
priors of an agent, the more likely it is that an agent will convert other agents to his
beliefs. Sood and Redner (2005) examine the voter model and study its dynamics
on heterogeneous graphs. Vazquez et al. (2003) examine a version of a voter model
with three states: rightists, leftists and centrists, in which only the latter are involved
into interaction and subject to the opinion change.

Hong et al. (2004, 2005) examine the effects of word-of-mouth information on
individuals’ stockmarket participation and find that local networks of “friends” affect
their decisions. Goldenberg et al. (2001) use cellular automata to demonstrate how
the presence of weak and strong ties contributes to the spread of information through
the word-of-mouth and the acceptance of a new product. In their model, a purchase
of a product by an agent induces the non-zero probability that an adjacent agent
decides to purchase it as well, which makes the strength of ties highly effective in
the product life-cycle after the introduction stage is over.

Opinion-sharing differs from the usual diffusion models in that it relates to the
one’s beliefs, whose dynamics depends onmany factors, such as prior beliefs, knowl-
edge and expectations, incentives, reputation of an agent who would like to spread
his belief, willingness of an agent to change his prior belief. Many times the belief
dynamics is contextual, subject to the changing circumstances of time and space,
the general mood in society and similar. Often, after some new information arrives,
the group of a predominant opinion is enlarged by the group of fast adopters who
either have the least tight priors or have the most similar priors. Then the group is
enlarged by those who decide upon the size of the group until the late adopters. Some
individuals remain outside this box.

The most salient feature of this class of diffusion models is that agents refer to
human agents with a strong cognitive component. This is an important distinction
from the previous two classes of diffusion models.

Agent-Based Models in Finance

Agent-based framework is also highly applicable to finance. Financial markets are
inherently occupied with issues that involve time and uncertainty. What is even
more important, the market is characterized by the large number of micro agents
who differ in many respects: knowledge, preferences, objectives, attitude towards
risk, expectations building, learning capabilities, endowments, patience, friends, and
the very subjective and mostly indeterminate factors such as daily mood, eureka,
coincidence, the level of luck and similar. Additionally, agents on the markets are
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repeatedly engaged in local interactions and exhibit non-standard behavior by which
they produce the aggregate outcomes that are path dependent with very complex time
paths that go beyond the predicted outcomes.

A usual agent-based model of finance consists of a group of, presumably hetero-
geneous, agents who interact with each other and hence determine the dynamics of
asset prices. The price dynamics is a perpetual activity caused by the agents’ actions
which in turn affects agents’ future actions. In some cases, the aggregate behavior of
the whole can induce huge oscillations on the markets, including highly unexpected
outcomes such as market bubbles and crashes. As demonstrated by Lux (1995), these
outcomes are attached to herding of interacting market participants and cause market
instability. Kindleberger and Aliber (2011) provide a thorough historical overview
of how manias, panics and crashes have shaped financial world over time. They also
consider herding a central factor for price fluctuations. Therefore, financial markets
are highly appropriate for modeling in an interaction-based fashion. Handbook of
Computational Economics edited by Tesfatsion and Judd (2006) provides a thorough
review of recent agent-based models in economics and finance.

Oneof thefirst agent-basedmodels of financialmarketswith heterogeneous agents
is attributed to Zeeman (1974). The model is populated with fundamentalists and
chartists and explains switching phenomena in the proportion of the two types of
traders between the bull and bear markets. Fundamentalists and chartists represent
two typical groups of traders within the financial modeling. The first base their
decisions upon market fundamentals, such as dividend return and economic growth,
and the second upon the historical pattern of stock prices. There is no common rule of
how to model fundamentals let alone the trend behavior. Zeeman argues that in a bull
market the proportion of chartists who follow the trend increases, which pushes the
prices even higher. The uptrend continues until fundamentalists perceive the prices
too high and start selling, which in turn leads to price drops (bearmarket) and reduces
the proportion of chartists, respectively. The downtrend provokes fundamentalists to
start buying the stocks, which again turns the trend around. DeLong et al. (1990)
used the finite horizon financial market model to demonstrate that a constant fraction
of chartists may on average earn a higher expected return than fundamentalists and
may survive in the market with positive probability. In the model of Day and Huang
(1990), fundamentalists trade the more aggressively the farther the market price is
from the fundamental value. In the models of Lux (1998) and Lux and Marchesi
(1999) chartists pursue a combination of imitative and trend following strategies and
switch between an optimistic (bullish) and pessimistic (bearish) mood, depending
upon the majority opinion and the prevailing price trend. Boswijk et al. (2007) is
among the recent heterogeneous agent models with fundamentalists and chartists.

A slight deviation from these models have been proposed by Kim and Markowitz
(1989), whose simulated market contains two types of investors, rebalancers and
portfolio insurers, and two assets, stocks and cash. This model is one of the earliest
models of multi-agent dynamics. Hong and Stein (1999) propose a model, in which
market is populated with newswatchers andmomentum traders. Newswatchers make
forecasts based on private information without conditioning on past prices, whereas
momentum traders’ forecasts are based on the most recent price change.
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Brock and Hommes (1998) develop a discounted value asset pricing model with
agents of heterogeneous beliefs. In the model, agents pursue an adaptive behavior
and tend to switch towards strategies that have performed better in the past. Upon
the parameter values, the resulting system is nonlinear and capable of generating the
entire specter of complex behavior from local stability to high order cycles and even
chaos.

Levy et al. (1994) present an early econophysics approach in finance. Their sim-
ulations exhibit rich phenomena which include cycles, booms, and crashes. Cont
and Bouchaud (2000) develop a model of stock market returns by using tools from
statistical physics. The model is constructed on interacting agents and it demon-
strates how herding that is spurred by communication structure between agents and
imitation induces heavy-tails in stock returns. Iori (2002) develops a model with
heterogeneous agents, in which agents’ interactions are restricted to nearest neigh-
bors to examine large fluctuations in stock market returns and volatility clustering.

Artificial Stock Market model consists of an auctioneer, a risky and riskless asset,
and the arbitrary number of traders (Arthur 1994; LeBaron et al. 1999; Palmer et
al. 1994). At the beginning of each time period, each trader selects a portfolio to
maximize his expected utility in the next period. Agents interact with each other,
individually form their expectations of stock prices over time and continually intro-
duce new rules into their decision-making. Agents’ actions are a continuous activity.
Each agent first monitors the stock price and upon the stock price submits bids
and asks by which they jointly determine tomorrow’s price. In the model, agents
learn and modify their forecasting rules by a genetic algorithm, succeeded later by
the method of swarms. Following these rules, they eliminate the worst-performing
rules and replace them with new rules that are formed as variants of the retained
rules.

Steinbacher (2012) proposes an interaction-based model that is run on a social
network to study agents’ portfolio decisions. In the model, stock prices are given and
unknown to agents. At each point in time, agents interact with adjacent counterparts,
share informationwith them andmake regular decisions. Following the idea of Selten
(1975), decisions of suspicious agents are subject to selection errors in a very selection
phase, be they intentional or accidental. Agents’ decisions are not just bound to the
imperfect knowledge about asset prices, but also to imperfect selection. In the model,
agents’ inaction is also considered a decision that was done. The model is simulated
under different circumstances, including bull and the bear markets.

Another category of agent-based models in finance represent the order book mod-
els. These are models of price formation, in which agents post their buy or sell orders
(Rosu 2009 and the references therein). There are two classes of order book models.
A limit order is an order to trade a certain amount of a security at a given price. A
market order is an order to buy/sell a certain quantity of the asset at the best available
price in the limit order book. The lowest offer is called the ask price and the highest
bid is called the bid price. When a market order arrives it is matched with the best
available price in the limit order book, and a trade occurs.
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Table 10.1 The payoff
matrix of the game

A/B C D

C a, b c, d
D e, f g, h

Game Theoretic Applications

Game theoretic models are another class of particularly appealing applications for
the network-based approach. A game is an abstract formulation of an interactive
decision situation with possibly conflicting interests. In a general form, it consists
of the set of agents, payoffs for each agent and a set of rules and strategies for each
agent (Osborne 2002). Traditional game theoretic application is given as a finite two-
person simultaneous-move game in which each agent individually decides whether
to cooperate (C) or to defect (D), while agents do not know what the other will do
(Table 10.1).

Generally, for the given matrix structure, the game is named upon the values of
these parameters in the matrix.

For instance, in a prisoner’s dilemma game, defection yields higher payoff than
cooperation. However, if both defect, both are worse off than if both had cooperated.
On the contrary, in the stag-hunt game the player is better off doing whatever the
co-player does (Santos et al. 2006). With the payoff matrix given, the usual game
theoretic framework tries to answer a simple question of when should a person
cooperate and when defect in an ongoing interaction with another person or a group
of persons.

Evolutionary game theory extends these classical games with an evolutionary
aspect such as uncertainty, learning, adaptation and a dynamic component. In the
evolutionary games, the large populations of agents repeatedly engage in strategic
interaction, which allows them to learn over time and change their behavior upon
previous experience, communication with others and developments of individual
games (Camerer 2011; Maynard Smith 1982; Weibull 1995). In the evolutionary
setting, agents who are usually heterogeneous in nature adapt their behavior over the
course of repeated plays. Some models are reviewed in Chakraborti et al. (2011),
Goyal (2008), Jackson (2008, 2010), Szabo and Fath (2007).

The El Farol bar problem explores the dynamics of attendance (Arthur 1994).
Each week agents independently decide whether to go to the popular bar or not,
while the bar is enjoyable if it is not too crowded. The game could be denoted a
prediction-based model, because agents, who are not allowed to communicate to
each other, predict how many entered the bar the previous week. If an agent predicts
more than a certain number will attend he stays home, otherwise he goes. Upon
the success of their prediction, agents continuously adapt their predicting model
and corresponding parameters. The game thus exhibits a non-linear behavior. The
evolutionary perspective of the game was provided by Challet and Zhang (1997) and
Challet et al. (2004).
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Minority games have gained a widespread popularity. Chow and Chau (2003)
propose a variation of the minority game where every player has more than two
options. Bianconi et al. (2008) propose a version of a minority game in which agents
may invest in different assets (or markets) and find that the likelihood that agents
trade in a given asset depends on the relative amount of information available in that
market, while agents prefer to play in the stock with less information.

A large portion of researchers have examined the evolution of cooperation among
agents in evolutionary prisoner’s dilemma games under different circumstances
(Nowak and May 1992, 1993, see Szabo and Fath 2007 for an extensive overview).

Nowak and May argue that spatial version of the prisoners’ dilemma game, with
no memory among players and no strategic elaboration, can generate chaotically
changing spatial patterns, in which cooperators and defectors both persist indefi-
nitely. In these models, we can assume that the decision for cooperation or defection
depends upon the given payoffs; as the reward for defection increases, the probability
for cooperation decreases. However, Nowak (2006) has argued that cooperation can
evolve by kin selection, direct reciprocity, indirect reciprocity, network reciprocity,
and group selection. Axelrod (1984, 1997a) has demonstrated that “Tit-for-Tat” is
often the optimal strategy for iterated prisoner’s dilemma. Abramson and Kuperman
(2001) study an evolutionary prisoner’s dilemma game, played by agents on different
network topologies, inwhich agents change their strategies over timeby imitating that
of the most successful neighbor. They find that different network topologies produce
a variety of emergent behaviors. Helbing and Yu (2009) argue that success-driven
migrations help to establish cooperation and, besides the ability for strategic inter-
actions and learning, play a crucial role for the evolution of large-scale cooperation
and social behavior.

By using an n-person binary choice game, Axelrod (1986) has studied the emer-
gence of behavioral norms in the game of bounded rational agents. He concludes that
norms that have proved to be more effective are used more often in the future than the
less effective. In the game, agents can choose either to cooperate or to defect. Young
(1993) has examined a repeated n-person stochastic game to study the evolution of
conventions and demonstrated that in an environment where agents’ decisions are
subject to mistakes, societies occasionally switch from one convention to another,
while the society converges in probability to only one convention if the probability
of mistakes approaches zero.

Evolutionary approach is applicable to include different stochastic elements into
the usual game frameworks, such as errors in agents’ decisions, signaling or screen-
ing, imperfect recall, impatience, reputation, learning methods, network topologies
and similar. In the evolutionary perspective, agents may learn over time and modify
their behavior as to the game developments.
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Evolutionary Macroeconomics

Macroeconomic models have traditionally been analyzed by a top-down approach
under the rationality condition and solved as optimization problems with constraints
(see Ljungqvist and Sargent 2004). Although they considered the economy by a top-
down approach, uncertainty and asymmetric information, imperfect competition and
rivalry among many heterogeneous economic units, learning by doing and knowl-
edge spillovers, (uneven) initial conditions, increasing returns, diffusion processes
and imitation, incentives, strategic interaction, cooperation and collusion, transaction
costs, institutional framework and social norms, heterogeneous economic environ-
ments and time component have been highlighted as important elements of a pro-
duction process (see Barro and Sala-i-Martin (2004) for an overview of endogenous
growth models). Sargent (1993) and Simon (1997) provide a survey on bounded
rationality in macroeconomics. Research in behavioral science suggests that agents
differ in their preferences, especially in relation to risk, expectations and time, and
that their behavior is often time-inconsistent subject to errors, mistakes and regret.
Simon argues that the optimization maxima, i.e. the choice of the best available
alternative, that is a building-block of the standard approach is simply not feasi-
ble in most real-world situations and has to be substituted with that of satisficing,
i.e. the choice of an alternative which meets specified criteria but is not necessarily
the best. In their actions, individuals are often led by irrational exuberance or fads
(Bikhchandani et al. 1992; Shiller 2005). As demonstrated by Schelling (1971), the
outcome of a group of such interacting individuals with cognitive abilities can sub-
stantially differ from the outcome that would be aggregated upon their priors. Kirman
(1992) provides a discussion against the use of the representative agent in economics.

Roots of the evolutionary approach to economic growth can be traced back at least
into the late 18th century and Adam Smith’s division of labor and the invisible hand
dynamics, which transforms the environment of selfish individuals who interact with
each other into an ordered system in time and space that goes beyond initial intentions
of every individual. Hence, the market outcome of a decentralized economy is the
intercept of individual self-interests of market participants with the price system
being an integral part of the market order. In the 20th century, Joseph Schumpeter
Schumpeter (1934, 1947) described the economy as a system that is characterized by
perpetual creation of new ideas, products and firms and the decline of those existing
that have proved to be less efficient. An entrepreneur has been put in the center of
Schumpeterian economic development. Processes led by creative destruction and
entrepreneurial experimentation make the economy inherently dynamic, stochastic
and evolutionary. In the early 1980s, Nelson andWinter (1982) wrote a seminal book
on the evolutionary approach to economic growth.

Delli Gatti et al. (2011) offer an agent-based approach to macroeconomics. Delli
Gatti et al. (2010) model the economy as a network consisting of households, firms
and banks, and simulate the behavior of themodeled economy for different parameter
values. They explain cyclical behavior of the economy as a consequence of the
complex interaction of the agents’ financial conditions, and argue that a shock to the
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economy or to a significant group of agents in the credit network can be followed
by a bankruptcy avalanche if agents’ leverage is critically high. Gabaix (2011) and
Acemoglu et al. (2012) examine the effects of productivity shocks that hit different
sectors on a micro level to macro fluctuations and argue that firm-level idiosyncratic
shocks translate into aggregate fluctuations when the empirical distribution of firms
exhibits fat tail.

Within economics, social networks have been extensively used in job search
models to explain many phenomena that were considered anomalies. A typical job
search model consists of job postings and job candidates. Montgomery (1992) was
among the first to study labor market as an evolutionary process and highlights the
importance of social connections for the salary of employees. Calvo-Armengol and
Jackson (2004, 2007) use the Granovetter’s notion of weak ties (Granovetter 1973)
to develop a model where agents get information about the job vacancies through
the social interaction. Ioannides and Datcher Loury (2004) use social interaction
to study job-market outcomes. Bramoulle and Saint-Paul (2010) build a model on
the assumption that the probability of a new link formation is bigger between two
employed individuals than between an employed and an unemployed individual,
which generates negative duration dependence on exit rates from unemployment.
Goyal and Moraga-Gonzalez (2001) examine the evolution of R&D networks of
inter-firm collaboration on costly and human-capital intensive research and develop-
ment activities.

Other Applications

In one of the earliest simulation-based models, Thomas Schelling applied cellular
automata to demonstrate that an integrated society will generally turn into a rather
segregated one although no individual agent strictly prefers this (Schelling 1971).
This segregation seemed due to the spontaneous dynamics of the economic forces,
with all individuals following their incentives tomove to themost attractive locations.
The model was later generalized by Fagiolo et al. (2007), who conclude that mild
proximity preferences are an important possible explanation of segregation not only
in regular spatial networks, but also in more general social networks.

Nagel and Schreckenberg (1992) use cellular automata to simulate freeway traffic
and the related traffic congestion patterns. Epstein and Axtell’s sugarscape model is
an interaction-based model that is run on a lattice (Epstein and Axtell 1996). Each
cell is filled with different amount of sugar. Sugar is the commodity that agents need
to survive, while those who ran out of it die off. In addition, agents who reach the
maximum pre-defined age die off as well. Agents move sequentially in random order
from cell to cell by which they consume the sugar. Agents have different metabolic
rates. Each cell can be occupied by at most one agent at a time. When an agent
occupies a cell, he increases his sugar supplies by the amount of sugar from the
cell. Sugar then grows on an empty cell at the given rate. Agents also have different
lateral vision, which helps them to decide which cell to occupy. Agents move to
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the best available location. Interactions in the model are endogenous because they
depend upon the moves of agents throughout the lattice. There is no learning in
the game. The extended version of the game includes spice, which agents can trade
with their neighboring agents. Agents can only interact and trade with their direct
neighbors. Howmuch sugar and spice agents trade with each other depends upon the
utility functions of the two agents and the pre-defined bargaining rule. Additional
extensions of the game include different replacement rules of the deceased agents,
sex and the birth of offspring, credit relations between agents etc.

By using an interaction-based model, Föllmer (1974) was among the first to
demonstrate that even simple interactions among individuals can generate sophisti-
cated behavior at themacro level, including a breakdownof price equilibria. Currarini
et al. (2009) develop amodel of friendship formation inwhich individuals have differ-
ent types and see type-dependent benefits from friendships. Bramoulle and Kranton
(2007) analyzed networks in relation to public goods.

Axelrod (1997b) uses social networks to study cultural dynamics. Corominas-
Bosch (2004) uses a bipartite network to study a repeated bargaining game between
buyers and sellers who are connected by an exogenously given network. In the
game, players can make repeated alternating public offers that may be accepted by
any of the responders linked to each specific proposer. Chang and Harrington (2006)
provide a survey of various agent-based models of organizations. Bramoulle et al.
(2009) consider a model where interactions are structured through a social network
to identify the peer effects. Brock and Durlauf (2001b) develop an externality model
to examine aggregate outcomes when social interactions are embedded in individual
decisions of the agents.

Applications Outside Economics

Social networks and interaction-based models have been extensively used to explain
many phenomena from natural and social areas. Listed are just some of them.

Kirman (1993) uses it to examine behavior of ant colonies in exploiting two iden-
tical sources of food and characterizes a switching potential that is defined by the
self-conversion probability and a probability of being converted. Pastor-Satorras and
Vespignani (2001) use the network approach to study the spread of diseases, while
Bullmore and Sporns (2009) to study complexity of brain’s structural and functional
systems. Barabasi and Oltvai (2004) use networks to study the cell’s functional orga-
nization. Helbing (2001) uses it to examine the traffic dynamics and demonstrates
that the behavior of panicking pedestrians in a smoky room leads to an inefficient use
of available escape routes. The paper of Helbing also delivers an extensive review of
the main approaches to traffic and related models. Leskovec et al. (2005) examine
the dynamics of viral marketing. They observe the propagation of recommendations
and the cascade sizes and analyze how user behavior varies within user communities
defined by a recommendation network. Epstein (2001) presents two variants of an
agent-based computational model of civil violence in which agents, who differ by
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their private level of grievance, and cops interact on a lattice. In the first a central
authority seeks to suppress decentralized rebellion. In the second a central authority
seeks to suppress communal violence between two warring ethnic groups. Nowak
et al. (1999) extend the basic framework of the evolutionary game theory to exam-
ine the evolution of language. Christakis and Fowler (2007) use social networks to
examine the spread of obesity over time and link it to social ties.

A special class of models represents those that study the evolution of social net-
works (see Boccaletti et al. 2006; Goyal 2008 and Jackson 2010 for a survey). Call-
away et al. (2000) and Albert et al. (2000) examine the network fragility under
different types of attacks on the networks and argue that only intentional attacks
focused on the elimination of some of the most important nodes or links within the
network can destroy the network. Marriage networks have been used to explain the
rise of the Medici family in medieval Florence (Padgett and Ansell 1993).

Simulation-Based Experiments

In this section, we present some applications of agent-based games on social net-
works. The principal aim of this chapter is to demonstrate how these games can be
conducted,whilewe also demonstrate how even small perturbations of different para-
meters might end in highly different outcomes. The first application is an example
of the evolutionary game theory and examines the modified principal-agent inspec-
tion game. In the second, we propose a network-based model of credit contagion in
financial markets and examine the effects of idiosyncratic and macroeconomic credit
events to the banking system for various network topologies.

Game Theoretic application: Principal-Agent Inspection Game

Model

We extend the principal-agent inspection game of Dresher (1962) by introducing
social interaction among agents. In the principal-agent game, the principal assigns a
task to the agent for which the latter, if successfully accomplished, receives a pay-
ment. Because the two participants have opposite interests, the arrangement between
them results in the principal-agent problem (Grossman and Hart 1983). In particular,
while the employer wants his task accomplished, the employee tries to receive his
payment with as little effort as possible. The dilemma is tackled by a costly inspec-
tion going at the expense of the employer and intended to reveal the true effort of
the employee. If the employee is caught shirking he does not get paid. We extend
this basic framework by adding a credible and powerful institution into the game, i.e.
labor union, which warrants the shirking workers who are members of this institution
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Table 10.2 The payoff
matrix of the game

Ai /P I N

S 0/ − h w/ − w
W w − g/v − w − h w − g/v − w
SU cw − f/ − cw − h w − f/ − w
WU w − g − f/v − w − h w − g − f/v − w

a partial pecuniary compensation. This institution does not have to be a labor union
it can be any credible and powerful institution.

The game consists of a principal P who employs a finite set of employees (agents)
Ai , i = {1, 2, . . . , 1,000}, who are located on vertices of a small world network
(Watts and Strogatz 1998). An average connectivity of the network is ki (g) = 6
and randomness is p = 0.1. In every time period each agent simultaneously chooses
between two discrete choices, either to work W or to shirk S. When working, each
agent produces the output v for the principal, gets the payment w and bears some
work-related costs g. To make it simpler, we assume that agents are homogeneous in
this respect. A fraction u of agents is unionized,while the rest 1−u are not. Unionized
agents are randomly placed among the others and principal does not know who they
are. A unionized agent pays membership fee in the amount of f and gets a c part of
the wage if found shirking.

On the other hand, the principal may opt to inspect {I } the agents or not {N }.
It is assumed that P cannot condition the wage on the observable outcome v. If P
decides to inspect, this brings him additional cost h. In every time period, each agent
is inspected with the given probability r ∈ [0, 1], which agents do not know. Every
agent, who is not found for shirking, gets payment w. A unionized agent who is
found shirking gets a portion of the wage.

The time is discrete. During a single iteration of the game, each agent Ai plays
the game with the principal P , where both choose their strategies simultaneously
at the beginning of every time period, which means that they do not know what
the opponent has selected. An agent Ai may have four different strategies available:
shirking (S) and working (W ), as well as shirking while being a union member
(SU ) and working while being a union member (WU ). Principal chooses whether
to inspect or not. Payoffs for each of them are given in the matrix from Table 10.2.

After each full iteration of the game, when P interacts with all Ai , agents compare
their accumulated payoffs with a randomly chosen adjacent agent.

In every iteration, each agent Ai randomly selects one of the adjacent agents A j

and reports him the level of his wealth and the strategy he played. The two agents
then compare the two strategies they have played and the accumulated wealth, ei and
e j , and independently choose the strategy for the next period. Hence:

ei (t) = s
t−1∑

h=0

q(h) + q(t) (10.1)
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where s is the workers savings rate, and q(h) and [q(t)] are the payoffs of Ai at
iteration h and t , respectively. Agents’ choice function is determined as:

ε = 1

1 + exp
[(

ei − e j
)
/α

] (10.2)

Parameter α ∈ (0, 1) represents the uncertainty parameter and denotes a nonnegative
probability that an agent Ai will depart from adopting the most promising alternative
of the two being compared. If ran > ε, an agent keeps his alternative, otherwise
an agent adopts the alternative of adjacent agent. Parameter ran ∼ U (0, 1) is a uni-
formly distributed IID random number (Press et al. 2007). In the model, the choice
depends upon the expected benefit differential

(
ei − e j

)
and the suspiciousness para-

meter α . The scheme relates to the preferential attachment model where agents have
a preference to “attach” to the most profitable alternative, but may fail to do it for
different reasons. In general, the lower the α the higher is probability that an agent
adopts the most promising alternative, and vice versa. Agents also decide whether
or not to get unionized. Principal’s profit λ depends upon the value produced by the
workers and the expenditures for wages and inspection. In games, we examine the
profit rate for a principal under different circumstances and the optimal inspection
rate for a principal.

Results

All inspection games are iterated forward in time, using a synchronous update
scheme. If not stated differently, we use the following values for corresponding
coefficients. The output level of each agent v equals to 1 or zero if an agent shirks,
while other figures are set relative to the level of v. Each agents earns w = 0.4 and
bears work-related costs that are set at g = 0.125. Agents save 10% of the wage,
thus s = 0.04 and the union membership fee equals 5% of the wage, thus f = 0.02.
Inspection costs the principal h = 0.16. Unionization rate, where applicable, equals
u = 0.4, and α = 0.1. Parameters r and c may vary within [0, 1] with a 0.02
step. The outcomes presented in figures are average values after 105 iterations of 20
independent runs of the game.

Figure 10.3 shows how λ varies in dependence on r and c. Color-palette on the
heat-map visualization presents the profit of a principal. It is clear that what matters
for the principal’s payoff is the influence of the union that is directly correlated with
its bargaining power c. In particular, as the authority of the union increases (c → 1),
the maximal average income of the firm per iteration (λ) decreases steadily. By
c = 1 the maximal λ is obtained by r = 1, whereby then λ = 250, which is slightly
more than 50% lower as the peak value of λ in a no-union case at c = 0. The union
without bargaining power cannot affect the performance of the firm but just lowers
the net income of their members by f .

Results in Fig. 10.4 relate to the endogenous unionization rate, in which agents are
allowed to adopt the status of an adjacent agent as well, not only the corresponding
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Fig. 10.3 Performance of the principal under exogenous unionization

Fig. 10.4 Performance of the principal under endogenous unionization

strategy. The worst-case scenario, a loss of λ = −560, is obtained at c = r = 1,
when everyone is inspected with probability 1, no one works, recall that f is strictly
less than w, while the principal is obliged to pay out full wages.

Inspection is a required condition for the principal to push agents to work and
also a sufficient one in the no-union environment. If agents cannot be backed by the
union, a principal does not need to inspect every agent in order to force them to work.
On the other hand, inspection is neither required nor a sufficient in the environment
of a powerful union and endogenous unionization. Albeit in a bit lesser extend, the
union has an indirect effect even on non-members, in particular imposing a tendency
to shirk when this is definitely not optimal neither desirable.
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Epidemic Games: Credit Contagion

In this experiment,we examine the propagation of credit events throughout the system
of interconnected financial institutions, which we call banks. Assume that financial
system consists of a number of n banks, which are connected through the interbank
market into a banking network. By definition, such network is weighted and directed,
with the weighted links indicating the exposure of bank j to bank i , representing a
counterparty risk for bank i with strength given by the weight. Exposures can also
be both-sided.

Each bank that is exposed to other banks is vulnerable to losses of counterparty
banks. While banks with many outgoing links make their financial positions very
sensitive to the operations of other banks, banks with high in-degrees may provoke
contagion if defaulted. The extent of out-degrees entails two opposing effects; it
may work as a channel for the shock propagation or as a channel of risk-sharing.
In addition to direct links, banks may be connected to each other through several
different paths which all determine their status due to the credit event of a distant
bank.

Model

The banking network consists of n = 40 banks which are numbered from 1 to 40.
Banks retain the same number in all settings. Each bank is defined through its balance
sheet. The sample includes 13 big banks with total assets exceeding 900 bn USD
each. Total assets of 17 banks range from 100 to 700bn USD each, while total assets
of ten small banks do not reach 100bn USD per bank. A cumulative initial value
of banks’ assets is 25951.16bn USD. The banks represent real banks from different
geographical regions. They were chosen arbitrarily.

We use the banks’ 2011 Annual Reports to get the data on the banks’ total assets
and Tier 1 capital ratios as of December 31, 2011, from which we calculated each
bank’s initial Tier 1 capital level. Figure 10.5 plots banks’ initial Tier 1 ratios to
their total assets. The figure demonstrates that the smallest banks have both the
lowest and the highest capital ratios, with the medium and the largest banks being
in-between. Concentration towards the origin signifies that the sample consists of
mostly undercapitalized banks. Some descriptive statistics of initial banks’ positions
are further provided in Table 10.3.

Time is discrete and defined over t = {1, 2, . . . , 252}, which should resemble one
business year. Financial position of each bank is defined and reflected in its balance
sheet. The value of assets of bank i in time t is then given as:

Ai,t = Hi,t + Bi,t + Ni,t +
∑

i j=1

IB j
i,t (10.3)
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Fig. 10.5 Banks’ total assets versus Tier 1 ratios

Table 10.3 Descriptive statistics of banks’ initial positions

Assets Capital Tier 1 ratio

Mean 648.78 73.66 11.40
Median 305.35 30.70 10.95
Maximum 2555.00 311.70 23.30
Minimum 13.80 1.20 6.60
Standard deviation 724.06 86.08 3.82
Skewness 1.17 1.30 1.39
Kurtosis 3.19 3.65 4.81
Number of banks 40 40 40

Ai,t , Hi,t , Bi,t and Ni,t denote the values of bank i total assets, mortgage loans,
bonds and non-trading assets in time t , while IB j

i,t denotes the values of bank i assets
of banks j in time t . In the equation, ij = 1 designates the link from bank j to bank
i . Let us assume that the liabilities’ side of each bank is confined to the level of its
capital Ci,t . Capital of each bank promptly evolves according to the profit or loss
βi,t a bank generates on its trading part of assets as Ci,t+1 = Ci,t +βi,t . The banks’
assets develop over time according to the dynamics in the value of its equity portfolio
and through dynamics of the interbank market.

Banks are not allowed to rebalance their balance sheets over time nor raise addi-
tional capital. Banks default when their Tier 1 capital ratio falls below 4%. Bank
capital thus represents its capacity for absorbing losses. Default of a bank deteriorates
the balance sheet of its counterparties for the (1 − RR) proportion of the exposure



192 M. Steinbacher et al.

at default, where 0 ≤ RR ≤ 1 designates the recovery rates assigned to each bank.
For each bank RR is randomly taken from the uniform distribution on an interval
0.3 to 0.6 and is fixed for all repetitions and network topologies. Hence, the capital
dynamics for each bank over time is thus given as:

Ci,t+1 = Ci,t + βi,t −
∑

i j=1|C j ≤0

[(
1 − RR j

) · I B j
i,t

]
(10.4)

We test the model against idiosyncratic and systemic shocks. An idiosyncratic shock
is represented as a sudden default of an individual bank. Generally, individual banks
may default due to the failed business decisions, malpractice, fraud or any other
bank specific event. A systemic shock is represented by a sudden drop in the value of
mortgage loans.The two shocks inducedifferent outcomes.Contagion in the presence
of a systemic shock is different from that of the idiosyncratic in that the shock itself
reduces the capital of each bank, by which each bank is more vulnerable to additional
writedowns due to the counterparty risk later on. As the first banks default, the shock
may be succeeded by a sequence of idiosyncratic events. All shocks are applied in
t=10. They are unexpected events to banks, against which they cannot protect. We
assume that the shock affects no other parameters.

Results

We first consider the consequences in the banking network after a sudden default
of a bank which was given number 1. Bank 1 is a big bank with 2,129bn USD in
assets and initial Tier 1 capital ratio of 12.40. Figure 10.6 plots time evolution of
the net defaulted assets within the banking system in 20 random network topologies.
Network topologies determine the structure of the interbank market. We get net
defaulted assets per scenario if we substract the benchmark evolution of the game
in which the system is subject to no shock from the corresponding shock evolution
framework. The figures thus represent pure differences in defaulted assets within the
system that are only due to different network topologies.

Although the same shock magnitude has been applied in all network topologies,
the plots clearly exhibit the differences in dynamics of banks’ defaulted assets, which
is a consequence of different credit contagion paths. This means that the effects of
a bank default to the banking network depend upon the network topologies. In one
case, interbank market works as a shock absorber, while it gets contagious in some
other constellations.

We now examine the effects of a systemic shock. It is represented as a one-time
drop in the value of housing for a specified percentage. Simulations start with a shock
of a percentage point, while through the repetitions housing default rates progress
with an increment of 1% up to the 40%. In addition to the direct effects of the shock,
it can also become contagious if it induces bank defaults.

Again,weuse 20 randomnetwork topologies.Heat-mapvisualizations in Fig. 10.7
present the amount of net defaulted assets within the banking system over time
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Fig. 10.6 Time evolutions of net defaulted assets after a default of bank number 1 in 20 random
network topologies

(X-axis) by different levels of housing default (Y-axis). Color-palettes (Z-axis)
progress from red (low value) to black (the highest value).7

Contagion in the presence of a systemic shock is different from that of the idio-
syncratic in that the shock itself reduces the capital of each bank, by which each bank
is more vulnerable to additional writedowns that arise either due to the counterparty
risk or due to losses on the equity portfolio in the subsequent periods.

Discussion

In the preceding chapters, we have presented some arguments, theoretical, method-
ological and empirical, in favor of the agent-based approach in economics and
finance. Obviously, the approach is very ambitious and gives us some novel
techniques andmethods to model and examine the old questions from a new perspec-
tive. Its multidisciplinary nature makes it highly applicable for exploring complex
models that exhibit nonlinear dynamics.

7 Red color designates the net value of defaulted assets lower than 3,125 bn USD, orange the net
value of defaulted assets in range from 3,125 to 6,250 bn; yellow in range from 6,250 to 9,375 bn;
darker green in range from 9,375 to 12,500 bn; lighter green in range from 12,500 to 15,630 bn;
lightest blue in range from 15,630 to 18,750 bn; middle blue in range from 18,750 to 21,880 bn;
darkest blue in range from 21,880 to 25,000 bn and black designate the net value of defaulted assets
that exceed 25,000 bn USD.
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Fig. 10.7 Time evolutions of net defaulted assets after a default in housing for a specified percentage
(Y-axis) in 20 random network topologies

A distracted individual in the sense of his multiple imperfections is put into the
center of the agent-based approach. Although we refer to agents, an agent may not
only represent a human agent but any entity, which possesses some data and is
endowed with some behavioral rules.

A fundamental presumption of the agent-based approach pertains to decentralized
markets which are populated with heterogeneous agents with cognitive abilities who
interact with each other and also with the environment by which they regularly
change the environment in which they live and adapt to these changes which they as
a group create. Heterogeneous agentsmay respond differently to these developments,
which may end in aggregate outcomes of very rich structure. This may induce highly
extreme aggregate outcomes, such as market bubbles that are followed by crashes,
the tragedy of the commons as argued by Hardin (1968), or segregation in urban
communities as argued bySchelling (1971, 1978). Someof these are highly undesired
and, very likely, contrary to personal interests of most of egoistic individuals. There
is a “divergence between what people are individually motivated to do and what
they might accomplish together” (Schelling 1971). Markets are thus considered as
complex and adaptive systems in an uncertain environment and regularly exhibit
nonlinearities.

Interaction-based techniques are more capable of explaining these outcomes than
the equilibrium-based models which presume a representative agent. The latter mod-
els almost completely disregard the complex nature of economics which arises due to
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the microstructure, uncertainty, non-optimization, emergent behavior, etc. Although
they have provided us many helpful insights and reduced the sensitivity of many
models to the parameter estimates, equilibrium-based models have been subject to a
severe critique. A huge dissatisfaction with inability of equilibrium-based models to
explain some empirical facts could be reflected in the words of LeRoy and Werner
(2001), who have called them the placid equilibrium-based models that “bear little
resemblance to the turbulent markets one reads about in the Wall Street Journal” and
have called for the improvements.

Interaction-based methods provide methodological improvements and include a
great part of the micro-structure that was missing in previous models. Interaction-
based approach offers a multidisciplinary tool for exploring many complex systems
that are build on interacting units from different fields. They are especially useful for
examining systems that consist of heterogeneous agents who exhibit non-standard
behavior, or the systems that are characterized by evolution and path dependency.
By using simulation-based experiments, we are able to observe and examine how
autonomous agents behave over time, how egoistic agents cooperate with each other,
and how they respond to different circumstances which their behavior creates. Sig-
nificant features of interacting agents who are able to observe and imitate are herding
and information cascades, which may induce large, unexpected and often also unde-
sired aggregate outcomes.

Interaction-based models may include all the specifics of other computational
models in which agents’ information sets include histories of observable and some
hidden states. The related uncertainty is ingrained in the structure of agent’s selection.
When agents make decisions under uncertainty, which is usually the case, they may
rely on the probability which they assign to each alternative and then act according
to the expected payoff. However, the behavioral theory firmly suggests that choices
among risky alternatives exhibit the pattern which is inconsistent with the mere
probability analysis. This is even more relevant when one adds the evolutionary
perspective where certain events either occur or not. For, it has been demonstrated
that events that occur induce much larger consequences from events that might have
happened but have not.

From the methodological perspective, interaction-based approach applies a pos-
itive approach, addressing a question of which actions and strategies agents use
not the one of which they should. Agents’ decisions are not considered as right
or wrong, but as decisions that bring them lower or higher payoffs. Tversky and
Kahneman (1986) argue that normative approaches are doomed to failure, because
people routinely make choices that are impossible to justify on normative grounds,
in that they violate dominance or invariance. The behavior of cognitive agents is
nonlinear and can be characterized by thresholds, if-then rules, nonlinear coupling,
memory, path-dependence, and hysteresis, non-markovian behavior, temporal corre-
lations, including learning and adaptation. These assumptions are evenmore relevant
given the very subjective nature of information, which is never (or extremely rarely)
objective, and never available to everyone but is rather highly dispersed and dynamic.
As argued by Hayek (1937), “it is important to remember that the so-called “data”,
from which we set out in this sort of analysis, are (apart from his tastes) all facts
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given to the person in question, the things as they are known to (or believed by) him
to exist, and not in any sense objective facts.”

Methodological individualism and subjectivism togetherwith interaction between
heterogeneous economic agents go beyond the equilibrium which is so common to
the economics society. The robustness of simulation-basedmodeling allows us to test,
evaluate and challenge economic theories and models against different assumptions
and data, which can be either real or imaginary. Models and theories always simplify.
Usually, the assumptions on which they are built are very restrictive. The agent-
based approach also simplifies. However, it allows us to examine robustness of these
assumptions and the simplification factors as they may be relaxed, modified and
challenged. Once the model is constructed, a modeler can very easily perturb (or
stress) different parameters and then monitor and analyze the effects which may be
remarkable or insignificant.

By using the interaction-based approach, we are not stuck in the equilibrium, but
do not rule it out it in the long run, neither. If the equilibrium exists, we are able to see
the adjustment process and examine the speed of convergence. The approach allows
us to find the conditions under which these theories and theorems are supported and
provide some arguments about the anomalies. In order to obtain reliable statistical
estimations, equilibrium-based models regularly exclude extremes in spite of all the
effects they produce and the content that they include. In this respect, we are able
to identify critical points within the systems, whose elimination might well ruin the
system as such (see Albert et al. 2000), or explain rare outcomes that occur under
very specific circumstances which an econometrician, for instance, would simply
regard as an outlier.

Similar to the interaction-based approach are laboratory experiments. Gode and
Sunder (1993) and LeBaron et al. (1999) argued that the first are capable of isolating
and monitoring the effects of individuals’ various preferences, such as risk aversion,
learning abilities, trust, habits, and similar factors, while this is nearly impossible in
laboratory experiments. Even though the experimenter controls the procedure in lab-
oratory experiments, those who take part in it are aware of the fictitious nature of the
circumstances and are likely to adapt their responses accordingly. Such experiments
do not necessarily reflect what individuals would do under the same circumstances
in reality.

Although, methodologically, the interaction-based models reflect the real world
more accurately than the equilibrium-based models, their efficiency is far from the
absolute, be they approximations or caricatures. Sometimes we would like to bring
themodel as closer to reality as possible, the other timewewould like to apply the “as
if” assumption and examine the outcomes in a fictitious ideal world. In either case, by
applying the interaction-based methods, complexity of the model behavior over time
is usually not induced by a complex model, but by interaction of bounded rational
agents who regularly make decisions upon the very simple behavioral rules. Of
course, this does not prevent us frommodeling agents with highly complex selection
criteria.
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Conclusions

The purpose of the chapter has been to present how the interaction-basedmethods can
be used in economics and finance. Interaction-based approach encompasses micro
behavior. It is rooted in methodological individualism and subjectivismwhichmakes
it applicable to various areas that involve agents and interaction. One key departure of
interaction-based modeling from more standard approaches is that events are driven
solely by agent interactions once initial conditions have been defined and the rules of
conduct specified. Then, interacting economic agents are able to continually adjust
their actions according to the changing environmentwhich their actions produce.New
opportunities that emerge over time impede the system to reach global optimum or
general equilibrium, although the two are not ruled out a priori.

There is no doubt that the games on social networks or the activities on networks
will be an important part of the future research in economics and finance as they
represent a potentially highly useful instrument for conducting different kinds of
agent-based experiments that are based on interaction. If the purpose of the model is
to help us explain the questions which we come across or find them just intellectually
challenging, and we think that this is the case, then interaction-based techniques
represent an adequate and highly competitive tool for obtaining some of the answers.
To represent at least a complementarymethod to the currentlymainstream techniques
if not supplementary. This comes true amid the fact that social networks are very
robust and may easily include ideas from many different areas.

However, the future of economics and finance will to a great extent depend on
how successful researchers will be in grounding the two fields on a psychological
evidence about how people consider uncertainty and how they behave under different
circumstances when they are faced with uncertainty. This is one of the major chal-
lenges in economic modeling. Simon (1997) has argued that the future challenge for
economists relates to the question of how to “receive new kinds of research training,
much of it borrowed from cognitive psychology and organization theory,” and that
they “must learn how to obtain data about beliefs, attitudes, and expectations.”

With new methods that build on interaction among heterogeneous units, we are
able to find better explanations for many problems that were before either considered
intractable or were computationally too intensive or poorly calibrated.

On this trail for better models, the good news is that hardware and software solu-
tions develop very fast, and that newly developed simulation techniques could allow
for this data translation. The bad news is that no matter how good all these improve-
ments are and will be in the future, given the capacity of people to communicate,
think and adapt, human action will always be a couple steps ahead of the conceiv-
able capabilities of researchers and financial economists to model and understand it.
However, a good researcher will try to do his best.
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Chapter 11
Why Should Economics Give Chaos Theory
Another Chance?

Victor A. Beker

Abstract Economic data provide little evidence -if any- of linear, simple dynam-
ics, and of lasting convergence to stationary states or regular cyclical behavior. In
spite of this the linear approach absolutely dominates mainstream economics. The
problem is that mainstream economics is now in deep crisis. The recent financial
crisis clearly showed that orthodox economics was quite unprepared to deal with it.
Most mainstream economists not only did not foresee the depth of the current crisis,
they not even consider it possible. It is well known since the famous contribution of
Mandelbrot (1963) that many economic and financial time series have fat tails, i.e.
that the probability of extreme events is higher than if the data-generating process
were normal. However, the usual practice among orthodox economists has been to
assume-implicitly or explicitly- a normal distribution. Orthodox economists repre-
sent the economy as a stable equilibrium system resembling the planetary one. The
concept of equilibrium plays a key role in traditional economics. This approach is
useful in normal, stable times. However, it is incapable of dealing with unstable,
turbulent, chaotic times. The crisis has clearly showed this. Heterodox contributions
shed much more light on what happens during these crucial periods in which a good
part of the economy is reshaped; they provide powerful insights towards what poli-
cies to follow in those extraordinary circumstances. However, they remain as theories
mainly suitable for those periods of instability and crisis. The challenge is to arrive
at a unified theory valid both for normal and abnormal times. In this respect, the
complexity approach with its use of non-linear models offers the advantage that the
same model allows to describe stable as well as unstable and even chaotic behaviors.
Although the results of chaos tests do not prove so far the existence of chaos in all
economic variables they are consistent with its existence. The detection of chaos
in economic time series faces three types of difficulties: (1) the limited number of
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observations such series contain; (2) the high noise level in economic time series;
and (3) the high dimension of economic systems. However, topological methods for
chaos detection seem to be a highly promising tool. On the other hand, in economics,
there are no such things as crucial experiments. Economists seldom practice the fal-
sificationism they preach. Confidence in the implications of economics derives from
confidence in its axioms rather than from testing their implications. Therefore, non-
linear dynamics and chaos theory should not be subject to more stringent rules than
what is usual for the rest of economic theory.

Keywords Chaos · Determinism · Economic methodology · Nonlinearity ·
Predictability

Introduction

Economic data provide little—if any—evidence of linear, simple dynamics, and of
lasting convergence to stationary states or regular cyclical behaviour. Irregular fre-
quencies and amplitudes of economicfluctuations are persistent and donot showclear
convergence or steady oscillations. In spite of this, the linear approach absolutely
dominates mainstream economics.

It is well known since the famous contribution of Mandelbrot (1963) that many
economic and financial time series have fat tails; that is, that the probability of
extreme events is higher than if the data-generating process were normal. However,
the usual practice among orthodox economists has been to assume—implicitly or
explicitly—a normal distribution.

One of the few areas of economic analysis where non-linear models were used for
some time is the one devoted to the study of economic fluctuations. The business cycle
models by Hicks, Kaldor and Goodwin were pioneers in this regard. However, in the
60s there was a shift towards the use of linear models following the Slutzky-Frisch-
Tinbergen approach of generating cyclic processes using stochastic shocks attached
to low order linear difference equations. The fact that economic fluctuations appear
as a sole product of exogenous shocks was in line with the dominant equilibrium
approach in economic thought. In the absence of such shocks, the system would tend
to a steady state, as different versions of the neoclassical model of optimal growth
predicted.

Many assumptions in conventional economics—perfect rationality, identical rep-
resentative agents, convexity—have been chosen over time not for their reality but to
ensure an equilibrium, and an analytical solution. Schumpeter (1987, p. 935) clearly
expresses this point of view:

“From the standpoint of any exact science the existence of a uniquely determined
equilibrium is, of course, of the utmost importance, even if proof has to be purchased
at the price of very restrictive assumptions; without any possibility of proving the
existence of uniquely determined equilibria—or at all events, of a small number of
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possible equilibria—at however high a level of abstraction, a field of phenomena is
really a chaos that is not under analytical control.”

Orthodox economists represent the economyas a stable equilibriumsystem resem-
bling the planetary one. The concept of equilibrium plays a key role in traditional
economics. This approach is useful in normal, stable times, when what happened
yesterday is the best guide to what will happen tomorrow. However, it is incapable
of dealing with unstable, turbulent, chaotic times as the crisis has clearly showed.

Mainstream economics is now in deep crisis. The recent financial crisis clearly
showed that orthodox economics was quite unprepared to deal with it. Most main-
stream economists not only did not foresee the depth of the current crisis, they did not
even consider it possible. For them, any departure from equilibrium should be just a
temporary one: they not only assume that the economy tends towards an equilibrium
but also that it is a stable one.

Heterodox contributions shed much more light on what happens during these
crucial periods in which a good part of the economy is reshaped; they provide pow-
erful insights towards what policies to follow in those extraordinary circumstances.
However, as theories, they remain mainly suitable for those periods of instability and
crisis.

The challenge is to arrive at a unified theory valid both for normal and abnormal
times. In this respect, the complexity approach with its use of non-linear models
offers the advantage that the same model allows us to describe stable as well as
unstable and even chaotic behaviours.

However, the search for chaos in economics has been gradually vanishing, as
very little empirical support for the presence of chaotic behaviour in economics has
been found. In what follows we argue why economics should take advantage of the
contribution that non-linear and chaotic models may provide to the development of
the discipline.

There have been many definitions of chaos. Martelli et al. (1998) present many
of them. Anyway, chaos has two most important attributes which are both nec-
essary for the existence of a chaotic system; one, sensitive dependence on initial
conditions, and two, complicated patterns of non-linear relationships (Bayar 2005,
p. 2).The first condition means that a small change—no matter how small it is—at
one place in a deterministic nonlinear system can result in large differences at a
later state. The second one is necessary because without complex non-linearity, the
system will usually be predictable and will not be oversensitive on initial conditions
(Bayar 2005, p. 2).

What is a complex non-linear dynamical system? There are lots of definitions
of “complexity” which led Horgan (1995) to complain that “we have gone from
complexity to perplexity’ as quoted by Rosser (1999, p. 2).

BarkleyRosser offers a “broad tent” definition, followingDay (1994): a dynamical
system is complex if it endogenously does not tend asymptotically to a fixed point,
a limit cycle, or an explosion.

Sensitive dependence on initial conditions implies unpredictability. Beyond a
certain temporal horizon predictions lose any reliability. Non-linearity magnifies
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any initial discrepancy no matter how insignificant differences in the starting value
are.

The purpose of this chapter is to provide arguments from themethodological point
of view in favour of a wider use in economics of the non-linear approach and chaos
theory, emphasising that they should not be subject to more stringent rules than what
is usual for the rest of economic theory.

The chapter is organised as follows. Section “Non-linearity, Increasing Returns
and Path Dependence” analyses the implications of non-linearity in equilibrium
analysis. Section “Non-linearity, Attractors and the Paradox of Chaos” focuses on
the different type of attractors found in non-linear dynamic systems. Section “Deter-
minism and Predictability” addresses the relationship between determinism and pre-
dictability in light of chaos theory. Section “Non-linearity and Chaos in Financial
Markets” reviews some empirical studies which apply non-linear models in the area
of financial markets. The difficulties that application of chaos theory faces in practice
are described in Section“Chaos: From Theory to Applications”. The methodological
implications of non-linear dynamics and chaos for economic theory are analysed in
Section“Methodological Implications for Economics”. In section “Some Issues in
the Chaos Research Agenda” some particular issues in the chaos research agenda
are emphasised. Section “Conclusions” concludes.

Non-linearity, Increasing Returns and Path Dependence

Once non-linearity is admitted we are in the presence of positive feedback or increas-
ing returns. Here multiple equilibria are the norm. Increasing returns studies tend to
show common properties: a multiplicity of potential ‘solutions’; the outcome actu-
ally reached is not predictable in advance; it is ‘selected’ by small events; it tends
to be locked in; it is not necessarily the most efficient; itis subject to the histori-
cal path taken; and, while the problem may be symmetrical, the outcome is usually
asymmetrical (Arthur 2010, p. 159).

Mainstream economic theory removed from most of its areas the assump-
tion of increasing returns precisely for its tendency to generate the existence of
multiple equilibria. Convexity was a necessary assumption to warrant uniqueness
of equilibrium.

However, the existence of non-convexities and increasing returns are widely
used assumptions in different areas of economic analysis. International trade theory,
macroeconomics, economic growth, industrial organisation, regional economics and
economics of technology are examples of it.Multiple equilibria are also awidespread
result in game theory.

The selection problem—which equilibrium comes to be chosen—can be handled
by modelling the situation in formation, by translating it into a dynamic process with
random events. So it is possible to study the probability that a particular solution
emerges under a certain set of initial conditions (Arthur 2010, p. 159). Arthur (1994)
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makes extensive use of the non-linear Polya process, a path-dependent process in
probability theory.

The existence of increasing returns means that, once embarked on a certain path,
cumulative advantages are generated in favour of one of the possible equilibria.
The selected equilibrium is path dependent. Any random event which favours one
alternative may be decisive to the outcome.

The multiplicity of equilibria means that there are many possible worlds. Which
has finally resulted is the product of history: it is history dependent. Another dynamic
trajectory may have led to another result. If the equilibrium is unique, history does
not matter: sooner or later the system will arrive at that unique equilibrium. The
process is ergodic: whatever the sequence of events, the outcome is always the same.
On the other hand, if the process is non-ergodic, the path defines the result. From this
perspective, the economy can be seen as a process of self-organisation: the system
“chooses” between the options that are presented to it.

The influence of any factor—which in other circumstances would go unnoticed—
can be decisive in the choice of the alternative to which the system moves. Once this
singular event determines the system’s path, this option closes the road to the others
and becomes irreversible.

The result may not be the optimum, as evidenced by the case of the typewriter
keyboard. A technology that generates small initial increases in returns but has a
great potential in the long run can easily be discarded in favour of another one that
has the opposite characteristics. Once the economy has opted for this one and is
generating increasing returns because of the mass adoption of it, the other can hardly
be adopted though it may be more efficient in a long-term perspective. The economy
may be trapped in the inferior option.

The result is history dependent. There is not a single possible history from Adam
and Eve until today, but there is one single made history. This is because time is
irreversible: once an option is chosen, there is no possibility to retrace the path
already travelled.

The evolution of a system cannot be understood out of its own history. That history
combines necessity and freedom. The trajectory of a system passes through periods
of stability, where uniquely predictable behaviours prevail, alternating with periods
of instability, where it has “to choose” between various alternatives. Thus necessity
and chance build history, and, of course economic history.

Non-linearity, Attractors and the Paradox of Chaos

The equilibrium approach in economics is interested in only one type of attractor:
fixed point attractors. Most efforts are devoted to find out the conditions under which
a unique and stable equilibrium exists. In fact, linear systems either converge to a
fixed point or explode.
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Non-linear dynamic systems may evolve towards other types of attractors such as
limit cycle or periodic attractors, quasiperiodic attractors and chaotic attractors.1

A quasiperiodic attractor can be conceived as a mechanism consisting of two or
more independent periodic motions. Orbits can look quite complicated, since the
motion never exactly repeats itself.

Chaotic attractors possess the property of sensitive dependence on initial condi-
tions and usually have a fractal structure; that is, they have a non-integer dimension-
ality.

Since sensitive dependence on initial conditions is the essential feature of chaotic
dynamics, the measure of chaos is provided by the Lyapunov exponent, more pre-
cisely by the largest positive Lyapunov exponent. Kyrtsou and Serletis (2006) con-
struct a standard error for the dominant Lyapunov exponent, thereby providing a
statistical test for chaos.

Lyapunov exponents (L) measure how quickly nearby orbits diverge in phase
space. Unpredictability is an intrinsic feature of chaotic systems. Chaos implies the
existence of a temporal horizon—defined by the Lyapunov time2—beyond which
predictions lose any reliability.

The paradox of chaos is that we are in the presence of unpredictable behaviour
that is generated by a process completely deterministic. Deterministic is the opposite
of random. When I throw a die, the result is random: it is the product of chance.
The movement of the planets, on the other hand, is fundamentally deterministic. The
fact that they are not subject to any significant random element is what allows us to
know very precisely where the Moon, Venus, or Mars will be from now until next
century. This led to identifying determinism with predictability. Laplace’s demon is
the symbol of this identification. The famous mathematician and astronomer of the
18th century imagined that, if there was an omniscient being able to know the exact
location and speed of each of the objects in the universe at any given time as well as
all the forces involved, she could from there deduct its past and future evolution.

The classic determinism conceived the universe like a high precision clock in
which the present is simply the consequence of the past and the cause of the future.
In a deterministic world, if all data were available there would be no difficulty to
make accurate predictions. Failed predictions only show that there are missing data.
For this reason, it has been argued that chance is the name we give to our ignorance;
that is, to the variables that influence a phenomenon but that we have not been able
to detect. Remove randomness and all predictions should be absolutely accurate.

1 For some time the terms “strange” and “chaotic” attractors were used as synonymous. However,
later on it was discovered that there are strange non-chaotic attractors—they have a fractal structure
but do not possess the property of sensitive dependence on initial conditions—and non-strange
chaotic attractors—they do not possess a fractal structure. For example, Starrett (2012) shows a
chaotic dynamical system which has a one-dimensional attractor.
2 The Lyapunov time (τ ) is measured by the inverse of the Lyapunov exponent: τ = 1

L .
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Determinism and Predictability

Yet chaos implies a quite new situation: a process absolutely deterministic that
becomes unpredictable. Determinism and predictability are no longer equivalent.
Chaos theory has shown that, even though we knew the values of all the variables
involved in a phenomenon, unpredictability can arise from the impossibility of having
absolute precision in our measurements.

Chaos and randomness share a common element: the limited cognitive capacity
of the human being. In the case of chaos, it implies the impossibility of reaching
an infinite degree of precision in our measurements. In the case of randomness, it
reflects our lack of capacity for identifying every one of the multiple variables that
have to do with complex phenomena.

However, whereas a purely random system has no structure, a chaotic system
has a hidden one. Chaotic processes have a finite dimensional attractor whereas a
truly random process should be infinite-dimensional. So the phase portrait of a truly
random system would eventually totally fill up the whole phase space diagram since
no region in phase space would be preferred over another. In chaotic systems the
phase portraits are very intricate structures delimiting the dynamics to only circum-
scribed regions in their phase diagrams. This provides some measure of long-run
predictability in chaotic systems because, as the attractors of the system are con-
strained to particular regions of phase space, it can be predicted, with a certain level
of probability, that a certain trajectory will fall within a certain region. Beyond the
Lyapunov time, probabilities replace determinism.We can only predict that a certain
trajectory will fall within a certain region as if it were a truly random trajectory.
Beyond the temporal horizon, statistics replaces mathematics.

Non-linearity and Chaos in Financial Markets

Economists’ interest in non-linearity emerges from its potential aptitude to model
fluctuations in the economy and financial markets. It offers more options beyond the
linear model’s binary alternative between a stable and an explosive path.

Financial markets constitute natural candidates to find the types of behaviour
predicted by non-linear dynamics. It is not surprising, therefore, the preference shown
towards this area of the economy by empirical studies inspired by chaos theory.

The traditional approach in this area has been based on the efficient market
hypothesis, which argues that the price of financial assets should reflect all
available information. To this approach contributes the assumption of identical
investors with rational expectations; all this reasoning leads to sustain that price
changes are independent of each other and follow a randomwalk.3 There is, therefore,
no opportunity for persistent speculative profits or for a profitable use of technical

3 Strictly speaking, market efficiency does not necessarily imply a randomwalk model but the latter
does assume market efficiency.
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analysis. All news is immediately reflected in the prices and as these follow a random
distribution, so do their variations (see Lucas 1978).

However, the view that emerges from this traditional approach contrasts with
the widespread perception that financial markets offer opportunities for speculative
profits, that the use of technical analysis can be profitable and that the operating
volume is far from zero—as it should be according to the no trade theorems (Milgrom
and Stokey 1982; Tirole 1982).

To accommodate this type of real world phenomenon, the literature has introduced
an alternative approach based on the distinction between chartists—also called noise-
traders—and fundamentalists. While the first extrapolate the past trends, the latter
are rational investors who are governed by the fundamentals of the market. The
interaction between both types of traders destabilises the prices of financial assets
and contributes to their volatility. The price process is at least partially driven by an
endogenous non-linear law of motion. The fact that these models are very successful
in replicating the stylised facts of financial markets is seen as a kind of empirical
validation.

An early version of such a chartist-fundamentalist model was formulated by
Frankel and Froot (1990) and has been much refined by De Grauwe and Grimaldi
(2006). Based on this, Altavilla andDeGrauwe (2010) developed a simple theoretical
model in which chartists and fundamentalists interact. The model predicts the exis-
tence of different regimes, and thus non-linearities in the link between the exchange
rate and its fundamentals.The results suggest the presence of non-linear mean rever-
sion in the nominal exchange rate process. Traditional linear rational expectations
models cannot account for this except by introducing exogenous changes in regimes;
that is, by leaving these switches unexplained. The non-linear structure of the model
does not allow for a simple analytical solution. As a result the authors have to use
numerical simulation methods. One drawback of this approach is that it is not easy
to derive general conclusions. However, the authors present sensitivity analyses of
the numerical solutions.

The most striking finding is that there appear to be two regimes: one in which
the exchange rate follows the fundamental exchange rate quite closely and another
one in which the fundamental does not seem to play any role in determining the
exchange rate. Both regimes alternate in unpredictable ways; there are frequent
switches between fundamental and non-fundamental regimes.As a result, the relation
between the exchange rate and the fundamentals is an unstable one.

In the empirical part of the chapter, the authors examine the predictive power
of various models for the euro-dollar rate of exchange dynamics. They find that
the non-linear specification significantly improves forecast accuracy during periods
when the deviation between exchange rate and fundamentals is large—for example
2001:1–2004:4. Conversely, when the exchange rate is close to its equilibrium value
it tends to be better approximated by a naïve random walk.

These results are in line with other empirical studies that have so frequently found
a disconnection between macroeconomic fundamentals and the exchange rate. They
corroborate the advantages of using a non-linear approachwhich allows detecting the
existence of more than one state.The switching nature of the exchange rate process
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is inconsistent with a linear representation of the relation between the exchange rate
and its fundamentals.

In a more recent paper, De Grauwe and Rovira Kaltwasser (2012) introduce a dis-
tinction between optimist and pessimist fundamentalist traders, referring to traders
that systematically overestimate or underestimate the fundamental rate respectively.
They show that, even in the absence of chartists, chaos can govern the asset price
dynamics. Furthermore, chaos can indeed be triggered by the presence of biased fun-
damentalist traders alone and also by the interaction between biased and unbiased
fundamentalist traders. The model is extended introducing unbiased fundamental-
ists and chartists. The latter prove to have a destabilising influence: the larger the
coefficient expressing the degree with which they extrapolate the past change in
the exchange rate, the stronger their destabilisation power. The system exhibits a
Neimark–Sacker bifurcation of the steady state that leads to a stable limit cycle of
the market exchange rate. Increasing the value of the chartists’ extrapolation coeffi-
cient eventually leads to a break of the limit cycle and the exchange rate is governed
by a chaotic attractor. This feature of the model is a common result obtained in the
literature of heterogeneous agent models in finance where the interaction between
fundamentalists and chartists is analysed and the chartists act as a destabilising force
in the market.

Finally, the authors perform a Monte Carlo simulation. The model replicates the
widely observed phenomenon that exchange rate returns are not normally distributed,
but on the contrary exhibit fat tails.

Along the same line of analysis, Li and Barkley Rosser Jr. (2001) studied the
behaviour of a model of asset market dynamics with fundamentalists and noise
traders. Complex dynamics and greater volatility are seen to emerge as certain para-
meters in the system are varied.

It is clear that once theHolyTrinity of the unbounded rational representative agent,
efficient market and linearity hypotheses are put aside, new illuminating results are
obtained.

The Friedman (1953) hypothesis, stating that non-rational agents will not survive
evolutionary competition and will therefore be driven out of the market, provided
support to a representative rational agent framework as a (long-run) description of
the economy as well as to the market efficiency hypothesis. However, Blume and
Easley (1992, 2006) and Beker (2004) have shown that the market selection hypoth-
esis does not always hold and that non-rational agents may survive in the market.
Agent-based models with evolutionary selection among many different interacting
trading strategies in artificial stock markets showed that the market does not gener-
ally select for the rational, fundamental strategy (see Arthur et al 1997; Brock 1993,
1997; LeBaron 1999).

Several models have been introduced where markets are viewed as evolutionary
adaptive systems with heterogeneous boundedly rational interacting agents. They
match important stylised facts in financial time series such as fat tails and long mem-
ory in the returns distribution and clustered volatility. They exhibit interesting dynam-
ics characterised by temporary bubbles and crashes. Hommes and Wagener (2008)
reviewed some of these non-linear dynamic asset pricing models with evolutionary
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strategy switching and illustrated some of the key features present in the interact-
ing agents literature. Simulations show that predictions from a linear, representative
agent model versus a non-linear, heterogeneous agent model are quite different. In
particular, extreme events with large deviations from the benchmark fundamental
valuation are much more likely in a non-linear world. Asset price fluctuations are
characterised by phases where fundamentalists dominate and prices are close to fun-
damentals, suddenly interrupted by possibly long lasting phases of price bubbles
when trend following strategies dominate the market and prices deviate persistently
from fundamentals.

Chaos: From Theory to Applications

The interest in chaos is motivated in economics and finance because of its ability
to generate output that mimics the output of stochastic systems, thereby offering an
alternative explanation for business cycles which does not mainly rely on ad-hoc
introduced exogenous shocks.

However, it is difficult to distinguish between exogenous fluctuations produced by
random shocks and endogenous fluctuations produced from the non-linear structure
of the economy. In this respect, Barnett and Serletis (2000, p. 721) state that “there
have been no published tests of chaos ‘within the structure of the economic system’,
and there is very little chance that any such tests will be available in this field for a
very long time. Such tests are simply beyond the state of the art”. This is because
“existing tests cannot tell whether the source of detected chaos comes from within
the structure of the economy, or from chaotic external shocks, as from the weather”
(Barnett and Serletis 2000, p. 721).

Boldrin points out the theoretical and empirical difficulties that the introduction
of chaos theory faces in economics.

From the empirical side, most of aggregate economic series are non-stationary.
Non-linear dynamical systems techniques require to first reduce them to mean sta-
tionary time series. But this causes major alterations in the properties of the data set
and obscure its real structure (Boldrin 1997, p. 278).

On the other hand, changes in economic policy, institutional and political environ-
ments, market structures, technologies, regulations, etc. must affect the law ofmotion
of the system. Therefore, it is very unlikely that a one or two-dimensional chaotic
dynamical system can ever reproduce those movements in the aggregate economy
(Ibid.).

From the theoretical point of view, individual rationality, decreasing returns, ratio-
nal expectations andmarket completeness smooth the consumption/work/investment
pattern and dampen endogenous oscillations. But the only thing this proves is that
non-linear dynamics should not be searched within the boundaries of conventional
economics. Unfortunately for orthodoxy, economic time series show irregular fre-
quencies and amplitudes of economic fluctuations are persistent and do not show
clear convergence or steady oscillations.
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Faggini (2011) presents a review of tests for chaos in economic and financial
series. The main conclusion is that there is ample evidence of the presence of non-
linearities but a limited evidence of deterministic chaos. Although the results of chaos
tests do not prove the existence of chaos in all economic variables they are consistent
with its existence (Faggini 2011, p. 22).

The detection of chaos in economic time series faces three difficulties: (1) the lim-
ited number of observations such series contain; (2) the high noise level in economic
time series; and (3) the high dimension of economic systems.

While in physics, chemistry or biology experiments involve working with tens of
thousands tomillions of observations, economicsworkwithmuch smaller series. This
prevents many of the non-linear dynamics tools from detecting intrinsic irregularities
even when they are present.

The detection of chaos in meteorology has been achieved thanks to the huge
number of observations collected through the network of meteorological stations
and satellites devoted to that purpose. These instruments have made it possible to
significantly improve the accuracy of weather forecasts in recent times. One should
wonder what would happen if an equivalent investment were made for the collection
of economic data. Economic and financial storms have proved to be at least as
destructive as natural storms.

Additionally, another difficulty stems from the high noise level that exists in
most aggregated economic time series. The presence of dynamic noise makes it
extremely difficult to distinguish between (noisy) high-dimensional chaos4 and pure
randomness. One would need an extremely long time series to do so; the tests are
highly sensitive to noise and this becomes worse when the dimension of the system
increases. As Ruelle (1994, p. 27) stated, “the separation between noise and the
deterministic part of the evolution is ambiguous, because one can always interpret
‘noise’ as a deterministic time evolution in infinite dimension”.

On the other hand, concerning low-dimensional chaos, small noise easily causes
the system to diverge to infinity in the chaotic parameter range. Hommes andManzan
(2006) show how the introduction of increasing levels of noise to a chaotic asset pric-
ing model makes the Lyapunov exponent of the underlying chaotic skeleton model
become negative due to the presence of even a small amount of dynamic noise. This
may explainwhy there is weak evidence so far of low-dimensional chaos in economic
and financial time series. Thus robust deconvolution techniques are needed. Until
now, wavelet-based noise reduction techniques have found the broadest applications
(see Daubechies 1992; Guégan and Hoummiya 2005). Since the wavelet transfor-
mation is an orthogonal operation, it preserves the probabilistic properties of the
underlying system allowing reconstruction of the original attractor. Gao et al. (2010)
propose a non-linear adaptive denoising algorithm, and compare their approach with
a number of wavelet thresholding-based noise reduction approaches. Their approach
demonstrates to be more effective in reducing noise in the cases they present.

4 Low-dimensional chaos is characterised by only one positive Lyapunov exponent while high-
dimensional chaos by more than one such exponent.



216 V. A. Beker

Faggini (2010) argues in favour of using topological methods instead of the tra-
ditional ones to discover chaos in short noisy time series. She uses a topological
tool, visual recurrence analysis, and tests some macroeconomic time series already
analysed with traditional tests for chaos (correlation dimension and Lyapunov expo-
nent) which did not show the presence of chaos. On the contrary, visual recurrence
analysis detects the presence of chaotic behaviour. Faggini concludes that the topo-
logical approach can be more useful for economic analysis performed on noisy short
time series.

Finally, another difficulty in economics is that the dimension of the economic
system is much higher than the dimension of systems with which physical scientists
usually work; so the techniques in mathematics and statistics that are available to
test for chaos are more difficult to apply to economics in a convincing manner (see
Barnett and He 2012).

Given the fact that the trajectories generated by high-dimensional chaotic systems
are very similar to those arising from stochastic processes, onemay ask if the analysis
should focus primarily on thinking that chaos is an explanation for seemingly sto-
chastic data or, alternatively, if the apparently chaotic behaviour of the observations
should be attributed to stochastic processes.

This is an issue that has to do with the traditions of each discipline. For example,
in fluid mechanics the phenomenon of stochastic appearance of turbulence has been
addressed as a typical case of chaotic dynamics and the idea of attributing it to
exogenous random shocks has had slight consideration in the discipline. On the
contrary, in economics the stochastic process approach has prevailed.

In this respect, Barnett and He (2012, p. 10) argue that “since the hypothesis
of chaos within the economic system has not been tested, we may instead wish to
consider whether or not chaos is plausible on philosophical ground”. The issue is
then whether the economy should be viewed as a system which evolves naturally, as
in the natural sciences, or as the product of intentional human design by economic
“engineers” who design it to be stable.

Methodological Implications for Economics

Once we accept that many economic phenomena are of a non-linear nature, a change
in the economic analysis approach is required. Non-linearity is a promising tool
to analyse many of the disorders and illnesses in contemporary economies. But
this requires a change in economists’ priorities. Economic illness rather than eco-
nomic health should be the main object of economists’ efforts. This may sound
rather obvious, but most of the orthodox economists’ efforts are devoted to show the
non-existence of economic problems. The bulk of their papers are aimed at showing
how the market solves by itself any potential conflict or difficulty. If so, there is
no economic problem to work on. Most of the scholars’ effort is devoted to study
“health” and very little to analyse “illness” in economics. But, of course, it is eco-
nomic illness which causes concern to society. There is a lot of effort devoted to
show why, most of the time, the economy works smoothly, and very little effort
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to the analysis of why, from time to time, the economic mechanism breaks down
or—more importantly—what is needed to fix it. But these failures in the economic
mechanism have huge economic and social costs.

The main message that non-linearity introduces is quantity matters, to use the
style of the famous Friedman’s assertion. Critical values play a crucial role in the
natural sciences. For example, water boils at 100 ◦C and freezes at 0 ◦C. The phys-
ical laws that govern the universe contain many fundamental numbers; “the values
of these numbers seem to have been very finely adjusted to make possible the devel-
opment of life” (Hawkins 1988, p. 125). However, in economics the tendency to
predict qualitative behaviour regardless of quantitative values has predominated. In
particular, interest has been centred in determining the conditions under which there
is a solution to an extreme-value problem and finding the sign of the first derivative
of the solution values with respect to the variation of the parameters.5

Interest in finding qualitatively invariable behaviour has its cost: the need to
impose extremely restrictive assumptions. It is, for example, what happens when
the purpose is to guarantee the existence and uniqueness of a fixed-point attractor.
When those heroic assumptions are relaxed it is found out that anything happens, as
exemplified by the Sonnenschein-Mantel-Debreu theorem in the general equilibrium
theory. An equivalent result provides the anti-Turnpike theorem when it proves that
the neoclassical optimal growth model is compatible with any type of dynamics. If
anything can happen, the theory lacks any predictive power. But this is only the other
side of the fact that the excessive emphasis on obtaining unambiguous predictions
may lead to having to use in many cases heroic assumptions in order to ensure unique
results. This produces a theory for special cases instead of a general theory.

Perhaps it should be accepted that in the economy—as indeed happens in nature—
behaviour varies depending on the numeric values of the parameters and that the study
of such changes is an important objective of economic analysis. Non-linearity implies
precisely that a systemmay have different types of behaviour based on the values that
its parameters take. This provides relevance to the determination of some variables’
critical values—for example, the debt/GDP ratio, the debt/export ratio—that generate
such changes in behaviour (bifurcations). This could be a topic of particular interest
to future economic and econometric analysis.

Equally important is the study of how the economy behaves under those differ-
ent regimes. From the economic policy point of view, one thing is to be near the
equilibrium and a quite different one to be far away from it.

The non-linear approach allows studying the economy as a complex dynamical
system which evolves towards different attractors depending on the value of its
parameters.

Non-linear dynamics paves theway to the studyof cyclic, non-periodic and chaotic
behaviour. Sensitive dependence on initial conditions is the essential characteristic of
chaos. Itsmost important consequence is that, in chaotic systems, it is only short-term

5 As Samuelson (1983, p. 21) points out, this method has been taken from equilibrium thermody-
namics, which is based on linear relationships. It was the introduction of non-linear relationships
which allowed the development of non-equilibrium thermodynamics.
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prediction that is possible. This should also lead to a revision of the possibilities and
limitations of prediction in economy. Also, perhaps, to reassess the relative weight
that is given to it and to explanation in economics. The relationship between explana-
tion and prediction is not symmetric or transitive. For example, we understand how
earthquakes are generated but we cannot predict an individual episode. Conversely,
the phases of an incurable disease can be predicted without having a thorough expla-
nation of the causes of the ailment. As a result, in one case the centre of scientific
activity is oriented to improve prediction; in the other, to know the causes.

Perhaps this may seem rather obvious. However, it would not be superfluous to
remind that theory does not have as unique and exclusive purpose the formulation
of predictions. The main purpose of science is explanation. If a theory explains, it
helps understanding a phenomenon. If, additionally, it predicts, it is twice as useful.
When an answer is not available, prediction is a good second best, but it is never a
first best.

On the other hand, in economics there are no such things as crucial experiments.
For example, given a certain econometric result, in many cases it is enough to just
include another variable, or to slightly modify the model assumptions or the estima-
tion method to get different, and even opposite, results. There are many examples in
the economic literature in this respect. No matter how sophisticated the economic
tools are and how detailed the set of data one deals with, very few robust relationships
can be obtained.

As a matter of fact, economists seldom practice the falsificationism they preach.
Confidence in the implications of economics derives from confidence in its axioms
rather than from testing their implications (Hausman 1992, p. 1). Since economists
are typically dealing with complex phenomena in which many simplifications are
required and in which many interferences may appear, it does not seem rational to
surrender a credible hypothesis because of predictive failure. Economists trust more
in the implications deduced from the theory’s axioms than in the negative results
which may emerge from empirical testing. It is very unusual to disregard a theory
because of an apparent disconfirmation.

In this respect non-linearity is by far a much more compatible assumption with
most of the economic time series behaviour. So why should non-linear dynamics and
chaos theory be subject to different—more stringent—rules than what is usual for
the rest of economic theory?

Non-linear dynamics enables us tomodel change as a process of self-organisation,
where a system far away from the stability region reaches a bifurcation point and
undergoes a change of regime. In this sense, it may constitute a decisive contribution
in the direction of filling the lack—denouncedNorth (1994, p. 359) on the occasion of
receivinghisNobel Prize—of a theoryof economicdynamics comparable in accuracy
to the theory of general equilibrium. It would give us an important analytical tool to
understand critical issues such as evolution and economic change with the advantage
of being more related to real phenomena than general equilibrium theory.
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Although there are still serious problems to be solved that will require a lot of
further research, the recent financial crisis may act as what I have called elsewhere
Beker (2005) a “big social experiment”; that is, an event that discredits pre-existing
ideas and demands replacing them with new ones. Chaos theory is a well-qualified
candidate to be considered among them.

Some Issues in the Chaos Research Agenda

Since the existence of chaos implies unpredictability, a logical question that arises
is whether it is feasible to control it. Working inside a chaotic attractor would per-
mit controlling the system and being able to avoid explosions and strong volatility.
Bala et al. (1996) raised the possibility of controlling a chaotic dynamic system by
introducing a disturbance in its law of motion in order to achieve a fixed point.

Faggini and Parziale (2012) recall that Ott et al. (1990) proposed an ingenious and
versatile method for controlling chaos. The key achievement of their paper was to
show that control of a chaotic system can be made by a very small, “tiny” correction
of its parameters. Faggini and Parziale go on pointing out that we can obtain a
relatively large improvement in system performance by using small controls. They
add that these considerations are particularly interesting in the applications of control
of economic systems. They suggest that “the government may be able to manipulate
some policy parameters in order to shift the economic system from a position of
chaos to a fixed point outcome and in this way fulfil its stabilization goal” (Faggini
and Parziale 2012, p. 5). So if authorities control some of the bifurcation parameters
then they canmanipulate their values in order to attain a region of fixed point stability.

As was mentioned in the introduction, many economic and financial time series
have fat tails. Fat tails are defined as tails of the distribution that have a higher density
than what is predicted under the assumption of normality.

Extreme value theory provides a framework to formalise the study of behaviour in
the tails of a distribution. It aims at the probabilistic prediction of events of unusual
intensity. It has traditionally been used for predicting risk.

Recent theoretical work has proved that extreme value laws also hold in cer-
tain chaotic deterministic dynamical systems. The statistical theory of extremes was
originally developed for stochastic processes but substantial progress has been made
recently in transferring this theory to chaotic deterministic systems.

While bifurcations are commonly associated with qualitative changes in dynam-
ical behaviour, chaotic systems also may display smooth responses to parameter
variation.

Vitolo et al. (2009) took first steps toward a theory of “robustness of extremes”
and highlighted its potential usefulness for statistical inference and prediction in non-
linear systems. They investigate how the extremal properties of chaotic deterministic
systems respond to parameter variation. They consider the statistical properties of
extreme values that arise when the system enters asymptotically small regions of
phase space.
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A chaotic deterministic system is said to exhibit robust extremes under a given
observable when the associated statistics of extreme values depend smoothly on the
system’s control parameters. Vitolo et al. formulated the notion of robust extremes,
proved robustness of extremes for a simple class of systems, and demonstrated how
knowledge of robust extremes can be used to improve inferences about the extreme
values of complex systems.

This issue relates to the interpretation of extremeobservations as inherently related
to the dynamical behaviour of the model and has to do with the possibility of fore-
casting extreme events.

The authors discuss how to derive the dependence of a system’s extremal proper-
ties on its control parameters, thereby determining whether or not the system exhibits
robust extremes. Finally, they show how robustness can be used in interpreting and
predicting non-stationary extremes.

An alternative approach for the analysis of extreme events is provided by Statis-
tical Mechanics. This approach assumes that extreme events depend on the internal
structure of the system (Salzano 2008, p. 200). Bak and Chen (1991) introduced
the concept of self-organized criticality. Independent microscopic fluctuations can
propagate so as to give rise to instability on a macroscopic scale. In a “subcritical"
state, changes in one part of the system have a sufficiently weak effect upon neigh-
bouring parts that the state in different regions of the system is correlated only over
short distances. However, when the system reaches a “critical state” the correlation
between parts of the system ceases to decay exponentially with distance, and even
arbitrarily small external perturbations can have large effects upon the macroscopic
state. The authors use as an example a sand pile which is generated by gradually
adding grains of sand. Eventually, the slope of the pile reaches a critical value such
that the addition of one more grain results in an “avalanche”. The existence of the
self-organized critical state is robust: the critical state is the system’s attractor.

This class of dynamical systems are weakly chaotic; they exhibit zero Lyapunov
exponents, meaning that the separation of nearby trajectories is weaker than expo-
nential. Long-run prediction is therefore possible.

Scheinkmann and Woodford (1994) apply this approach to the analysis of eco-
nomic fluctuations. They propose that the effects of many small independent shocks
to different sectors of the economy do not cancel out in the aggregate, due to the
presence of significant non-linear interactions between the different parts of the
economy. The authors develop a model of production and inventory dynamics; they
show how an “avalanche” of production can develop depending upon the asymptotic
distribution for inventory configuration. They show the existence of a well-behaved
limiting distribution for individual avalanche sizes with a fat tail, just as in the sand
pile model.



11 Why Should Economics Give Chaos Theory Another Chance? 221

Conclusions

Although economic data provide little—if any—evidence of linear, simple dynamics,
and of lasting convergence to stationary states or regular cyclical behaviour, the linear
approach absolutely dominates mainstream economics.

However, non-linearity is by far a much more compatible assumption with most
economic time series behaviour. The non-linear approach allows study of the econ-
omy as a complex dynamical system which evolves towards different attractors
depending on the value of its parameters. It paves the way to the study of cyclic,
non-periodic and chaotic behaviour.

The detection of chaos in economic time series still faces some difficulties, mainly
the fact that in economics we deal with short and noisy time series. In this respect,
topological methods for chaos detection seem to be a highly promising tool.

On the other hand, economists seldom practice the falsificationism they preach.
Confidence in the implications of economics derives from confidence in its axioms
rather than from testing their implications. Therefore, non-linear dynamics and chaos
theory should not be subject to more stringent rules than what is usual for the rest of
economic theory

So, although there are still serious problems to be solved that will require a lot
of further research, chaos theory is a well-qualified candidate to model fluctuations
and other phenomena in economics and finance.
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Chapter 12
Disequilibrium Trade and the Dynamics
of Stock Markets

Tönu Puu

Abstract The present work considers pricing and trade dynamics for stock
commodity markets, which, unlike flow commodity markets have been little studied,
if at all. Concepts and tools in economics are shaped to deal with flowmarkets, where
commodities disappear in each period and then reemerge. This allows one to define
unique demand and supply functions and their equilibria. A durable commodity, a
stock, in contrast, remains on the market to the next period and may just change
owner through exchange. This, however, changes demand and supply functions, and
hence the equilibrium state to which a dynamic process may be heading. Dynamic
processes are provided with memory of the actual exchange history. We also need to
state how disequilibrium trade in stockmarkets takes place. This is another neglected
issue, though a fact of reality. Using a case with only two traders of two stock com-
modities, and focusing pure trade, it is possible to specify the exact conditions for
disequilibrium trade in each step of the dynamic process. In the end any of an infinity
of equilibria can be reached, or trade can stick in some disequilibrium point while
complex, even chaotic, price dynamics goes on.

Keywords Disequilibrium trade · Durable commodity markets · Complex dynamics ·
Multiple equilibria · Path dependence

Introduction

The present work focuses two different but related theoretical issues of economics,
both concerning the markets for stocks or assets.

These concepts usually connote financial claims, such as shares, bonds, or cash,
so, to avoid misunderstanding, it should be said from the outset that we presently

T. Puu (B)

CERUM, Umeå University, SE-90187 Umea, Sweden
e-mail: tonu.puu@cerum.umu.se

M. Faggini and A. Parziale (eds.), Complexity in Economics: Cutting Edge Research, 225
New Economic Windows, DOI: 10.1007/978-3-319-05185-7_12,
© Springer International Publishing Switzerland 2014



226 T. Puu

intend something much more general: We just do not refer to flow commodities,
such that disappear during one time period through consumption or as inputs in the
productive process, but to any class of commodities that remain on the market period
after period and that may change ownership through exchange.

Obviously, there are many such commodities, in fact any durable commodity that
has a user value, either for the owner or a potential buyer. To fix ideas, just think of
the housing market.

Digression on Real Estate Value Instability

This market is of special interest as recent turmoil in the western economy has been
related to instabilities on housing markets. The explanations offered have referred to
speculative bubbles. No doubt there exists some speculation through the intervention
of real estate dealers, but, there are other issues at work which may explain at least
some of the phenomena without any reference to speculation, which is difficult to
model convincingly.

The present author tends to lean on Lord Keynes’s pessimistic view that it is
impossible, even if he, more than anyone, admitted that it is a regrettable fact of life.
SeeKeynes (1936). For this reason, and for the reason that so (too?)much has already
been written on so called heterogenous (chartist/fundamentalist) agent models, the
present work will not touch upon this topic, nor on speculative behaviour at all.

So, if we disregard speculation, what else could there remain to blame the housing
market instabilities on?As amatter of fact, there is something very fundamental, even
trivial, but totally overlooked: Due to mobility and demographic change, housing
space always changes hands.

Consider, on one hand, an old family living in a large villa with the childrenmoved
out, whowould like tomove to an inner city apartment, and, on the other, a newlymar-
ried couple planning to have children andwanting some larger suburban living space.

As we do not live in a barter economy, prices drift up and down depending on
how the real estate dealers conceive of the market. Suppose prices are on the move
up; then people in city apartments get well paid, and can offer more for a suburban
villa, and the villa owners too can afford to move to an attractive city space.

Everybody gets nominally richer, and the upgoing price trend is sustained. Of
course, the bank owns most of the wealth, but as long as there are no constraints
imposed on the banking system, it functions as a passive credit multiplier, and need
not be taken in explicit account.

And, what about speculation? The present author would dare the claim that most
people just want to live in their accommodations without too much regard to second
hand value.

So why is this never mentioned? The most obvious reason is that economists sim-
ply do not have tools to analyze stockmarkets. The durability of stocks (unlike flows)
makes demand and supply functions change every time actual trade takes place, so
unique market equilibria, the dearest tools to the economist, can never be defined.
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Related to this is the lack of a theory for trade in disequilibrium which no doubt
is a fact of reality. The housing market always has a shortage or a superfluity of
accommodation, but yet exchange does take place, without waiting for Kingdom
come when the tatonnement has reached its equilibrium.

It is these two issues we are going to focus in what follows.

Stocks and Flows

Economic quantities can be classified as either stocks or flows, depending onwhether
they refer to time points or time periods. The stock of productive capital, the quantity
of money, the labour force, inventories, etc. are all examples of stocks. Conceptually
they are easier than flows, which assume a periodized background of evolving facts,
and hence imply some process in time. Such quantities depend on the length of
period chosen, and if one models evolution in continuous time, then they become
something rather abstract, i.e., time derivatives. Examples of flows are commodities
traded, hours of labour worked, periodized incomes, savings, investments, etc. The
distinction holds on the micro as well as on the macro level.

The tools of economic analysis relate almost exclusively to phenomena for flows.
To see this, consider any elementarymicroeconomics textbook. In one of the opening
chapters there is a picture of consumer’s preferences displayed as an indifferencemap.
There is a budget line representing the possible choices, whose axis intercepts are the
income divided by the respective price. The consumers seek maximum satisfaction,
which, given the proper curvature, is obtained at the point of tangency of the budget
line with an indifference curve. This explains how the consumers make their choices.

Next step is to see what happens if one price changes. The axes intercept that
represents the other price remains fixed, but the budget line changes slope and so
rotates around this fixed point, and this rotating movement sweeps out a curve of
new points of tangency. To each price corresponds a (unique) quantity demanded,
no matter how we rotate the budget line. By associating the demand quantity to the
price that represents the slope, one derives a unique demand curve which can be
aggregated over consumers, and used in the market setting to establish price and
quantity traded at equilibrium, where demand equals supply.

As a further step consider a case where the consumer does not have an income
in money (for instance a university professor of ancient times getting his salary in
terms of quantities of firewood, salted pork, and the like). No problem! The fixed
point is not on the axis, but somewhere out in the positive quadrant. If, given the
current market prices, he finds he would be better off changing some firewood for
more pork, he can do this on the market. Again, considering different relative prices,
the budget line rotates and sweeps out a unique demand/supply function.



228 T. Puu

Irreversibility and Hysteresis

However, it is taken for granted that all firewood is burnt and all pork is consumed
during the period. So, when the same situation arises anew next period, everything
is just repeated. This is the case for flows.

But what if the commodities were durable, remaining from one period to the next?
Then, if at some stage the consumers find it profitable to make an actual exchange,
this will influence the future. After any such exchange, the budget line would rotate
through a new point, so sweeping out a different demand/supply curve. The process
would thus be provided with a memory of the actual trading, and neither demand nor
supply functions would be unique. We encounter phenomena of irreversibility and
hysteresis, which never show up in elementary economics textbooks; a sign as good
as any that main steam economic theory is shaped for flows, not for stocks.

In the sequel, to the purpose of pinpointing the issue, we even take the total supply
for given. In the case of the housing market, we thus disregard new production and
scrapping due towear, so total supply is fixed, andwhat appears as demand and supply
on themarket is just what individual owners want to sell or buy of different habitation
types within given totals. The reader will forgive me for taking the discussion down
to such elementary trivialities, but it was necessary for making the point.

Tools developed for flowmarkets were, however, gladly transferred to markets for
stocks, for instance, the demand formoney, such an important issue in themonetarism
controversy. What if we cannot define a unique demand function? This question was
never posed, not even by Lord Keynes (1936) in his liquidity demand function.

Disequilibrium Trade

When we are considering apartments and houses changing owners within a given
total, we enter the other main issue; disequilibrium trade. As was noted above, trade
as a rule does take place even when there is no equilibrium. In general, it is quite
tricky to specify how such takes place, i.e., which consumers get fully satisfied and
which do not, or only get partial satisfaction from exchange.

However, there is one case that provides uswith a clear setting—the oldEdgeworth
box (Edgeworth 1894), provided we consider only two commodities and two agents.
This box was never used in such connection, but its use provides a simple, even
visual, start with an otherwise as messy as neglected issue.

The Edgeworth Box

So, imagine the story told above about indifference maps and rotating budget lines,
and consider two agents, one’s indifference map in normal position, the other rotated
180 ∈ and translated to a position such that the horizontal and vertical distances
between the two origins equal the (fixed) totals of the commodities available for



12 Disequilibrium Trade and the Dynamics of Stock Markets 229

exchange. Now, the diagram is exactly the Edgeworth box, familiar to economics
students from its application in international trade theory. One indifference set is
concave, the other convex, and if we consider the intersection of two curves, they
form a lens-shaped region in which every point is better for both agents than the
intersection itself.

The lens collapses to a single point along the curve of pointswhere the indifference
curves, one from each set, touch. These are the Pareto efficient optimal points, all
candidates for equilibria. The relative price ratio, or slope of the budget line, would
then have to take the slope of the two touching indifference curves at that point.

But, what if we dealt with stocks? Take any disequilibrium point not on this curve
of contact, and any announced price ratio.Would trade then be possible even if we do
not end up at equilibrium? The answer is yes, quite as in real life, and in the simple
setting chosen we can even state the precise conditions for this and for how trade
takes place.

Any point in the box can represent an initial distribution of the total wealth of the
two agents (equal to the sides of the box). A line through this point with some slope,
corresponding to the price ratio, would be the common budget line for both agents.

The question then is how far on this line the agents would want to move. Sooner or
later the budget linewould touch an indifference curve from eithermap. These are the
optimal points for the two agents. Any of them might be outside the box, but it does
not matter as the process designed will never go outside the box. If the announced
price ratio does not correspond to equilibrium, then there are three possibilities.

The optimal points are on the budget line to the same side of the initial point, to
the right or left of it. Then one agent would like to exchangemore than the other. That
agent has no means to force the other to move further than she/he wants, but profits
from proceeding even part of the way. Thus, disequilibrium exchange is possible, and
profitable for both, but the limit is set by the agent wanting to exchange least. This
results in two cases. In neither case, however, the exchange results in equilibrium.

As a third possibility, the optimum points may be on either side of the initial point.
Obviously, then no trade is possible as both agents want to change the same good
for another. When setting up the formal model we will go through all this in tedious
detail (as six logically possible cases) .

Just give a thought to howmuch more complicated everything would be if we had
three traders or three commodities. We are fortunate that the disequilibrium trade
condition were so intuitively easy to set up for this two by two case.

Price Adjustment

If we add some price adjustment mechanism that, for instance, generates rela-
tive prices due to excess demand/supply, then the dynamic model is closed. As
we will see, we can end up at infinitely many equilibrium points, or at infinitely
many disequilibrium points where no more trade is possible, but complicated price
dynamics, periodic, quasiperiodic, or chaotic, goes on for ever in a vain search for
an equilibrium.
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Digression on Ex Ante and Ex Post

These issues go through all of economics. In the wake of the Keynesian macroeco-
nomics, people started collecting data for the actual calculation of national income,
which before hadbeen a theoretical construct, such as periodic interest on the national
wealth (see Lindahl 1939), and its components—consumption, saving, investment.

Soon the question was posed whether the equality of saving and investment was
an equilibrium condition or an accounting identity.

The Stockholm School

The so called “StockholmSchool” set out to clear these things up.Obviously, individ-
ual agents have plans, and in a modern economy saving (abstaining from consuming)
and investment in capital for productive service are different actions dependent on
different decisions of the individual agents. If their planned decisions (ex ante)match,
then we are in a lucky and rare state of equilibrium.

However, if they do not, then in the national accounts they still balance (ex post).
The trick is played by unintended saving by consumers who due to shortage were
not able to buy the goods they wanted, and unintended investments in inventories of
goods that could not be sold.

The Stockholm School never got further than coining the concepts ex ante and
ex post, now absorbed by the entire economics profession. They did not manage to
explain how these unintended savings and investments came about.

For the interested reader Palander’s critique of all this (Palander 1941, 1953)
cannot be too highly recommended. There are about five or six key works in this
Stockholm School, but we only cite Myrdal’s book (Myrdal 1939), as Palander’s
extensive article formally is a book review, though it is also a thorough critique of
the confusion between stocks an flows and the total lack of any even rudimentary
treatment of disequilibrium trade. This digression served to show how deep these
issues cut even in macroeconomics. The merit of the Stockholm school was to shed
some little light on these issues, especially in view of the fact that we afterwards
used flow theory for stock markets and concentrated on equilibria to such an extent
that disequilibrium trade was never dealt with.

The Model

Notation

Denote the commodity quantities for the first agent (x, y). As it makes no harm in
a pure exchange model, let us normalize the totals of both commodities available
on the market to unity. Hence, the corresponding quantities for the second agent
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are denoted (1 − x, 1 − y). The Edgeworth box thus becomes a unit square. Any
actual distribution of assets in denoted in upper case, (X, Y ) for the first agent,
(1 − X, 1 − Y ) for the second.

We only deal with the relative price, so normalize the price of the first commodity
to unity, which just becomes a numéraire. The price of the second commodity is
denoted p, which hence is a relative price.

Budget Constraints

The budget constraint for the first agent reads

x + py = X + pY (12.1)

and accordingly for the second agent,

(1 − x) + p (1 − y) = (1 − X) + p (1 − Y ) (12.2)

However the latter is identical with (12.1), which we see if we subtract the expression
(1 + p) from both sides of (12.2).

This almost is all notation we need. Let us just call the optimal points to which
the agents would like to move (x1, y1) and (x2, y2) respectively, and we are finished.
These two points obviously have to lie on the budget line (12.1) or (12.2), quite as
the actual wealth distribution point (X, Y ). The points (x1, y1) and (x2, y2) touch an
indifference curve each from the preference map of either agent. All this is illustrated
in Fig. 12.1. Obviously the system cannot move from (X, Y ) to both optimal points.
Below we will discuss to which of them the new wealth distribution point

(
X →, Y →⎧

actually moves through trade.

Utility Functions

As for utility, take a Cobb-Douglas form for the utility function. Then, for the first
agent the utility function is

U = xα y1−α (12.3)

and for the second
V = (1 − x) β (1 − y)1−β (12.4)

Obviously, the Cobb-Douglas exponents must be in the interval 0 < α, β < 1.
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Fig. 12.1 Indifference curve maps for U = xα y1−α , V = (1 − x)β (1 − y)1−β , and the budget
line x + py = X + pY . Initial point (X, Y ), and the points (x1, y1) and (x2, y2), to which the agents
would like to move, are displayed. Further on display is the curve for equilibria, along which the
indifference curves touch, and the lense shaped area, where both agents are better off than in the
initial point. Parameter values α = 0.6, β = 0.4, X = 0.25, Y = 0.75, p = 1.5. Given these, from
(12.5) x1 = 0.825, y1 = 0.366, and from (12.6 ) x2 = 0.55, y2 = 0.55

Individual Optima

The results of maximizing Cobb-Douglas functions, such as (12.3)–(12.4) subject
to linear budget constraints, such as (12.1) or ( 12.2), are well known: Fixed shares
of the budget, equal to α, (1 − α) for the first agent and β, (1 − β) for the second
are spent on the commodities x, y. The budgets are given by the right hand sides of
(12.1) and (12.2) respectively. We only need to recall that for x the price is unity,
so for that commodity quantity and value are identical. For commodity y one has to
divide the budget share by price p in order to get the quantity demanded.

Hence the desired optima are

x1 = α (X + pY )

y1 = (1 − α)

⎪
X

p
+ Y

⎨
(12.5)

for the first agent, and
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1 − x2 = β ((1 − X) + p (1 − Y ))

1 − y2 = (1 − β)

⎪
1 − X

p
+ 1 − Y

⎨
(12.6)

for the second. Note that, in addition to the exponents of the utility functions, (12.5)
and (12.6) depend on relative price p and on the actual asset distribution X, Y , or
(1 − X), (1 − Y ).

As a rule (x1, y1) and (x2, y2) are different; from each other, and from the actual
asset distribution point (X, Y ), as we see in Fig. 12.1. Only in one situation are
they equal, as stated in the introduction, i.e. on the equilibrium curve which is also
illustrated in Fig. 12.1.

This curve can be obtained in different ways. We can put x1 = x2 and y1 = y2
in (12.5), (12.6) and eliminate p; or we can calculate the locus of points where
the indifference curves, one from each utility map, touch (through calculating and
equating the implicit derivatives). The latter is the usualwayway used in international
trade theory where the equilibrium curve is called “cont(r)act curve”. Whatever the
procedure chosen, the formula reads

Y = (1 − α) β X

α (1 − β) + (β − α) X
(12.7)

which too is shown in Fig. 12.1. Note that if α = β then from (12.7) is a straight line
(the diagonal).

The equilibrium relative price p in each point of (12.7) is well defined. It just
equals the slope of the touching indifference curves in that point. Also note that
along (12.7) there is a nondenumerable infinity of different possible equilibrium
points.

Trade

Above it was stated that trade is limited to the smallest change that any agent wants
to make, because the agent wanting to change more would then also benefit from
moving part of the way towards his optimum, whereas he has no means to force the
other agent to move further than he wants. Referring to Fig. 12.1, we see that, in the
case portrayed, this means moving from (X, Y ) to the new wealth distribution point(
X →, Y →⎧ = (x2, y2), distinguished by a dash.
Once this move has taken place, the budget line would pivot through this new

point at any further change of the relative price p., thus changing the demand/supply
functions.

Supposing price changes from p to p→ and then back to p again, the original asset
distribution point (X, Y ) would not be retrieved, because after trading this point
would not even be on the new budget line. For this reason one can neither speak of
unique demand or supply functions in the case of assets, nor of unique equilibria.
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Any asymptotically approached equilibrium state depends on the intervening trading
process.Asmentioned, there are infinitelymany equilibria, and anyof these canbe the
asymptotic state, depending on where the process starts and how the “tâtonnement”
for pricing works.

Even worse, as we will see, there are also infinitely many disequilibrium fixed
points off the curve of equilibria, where the process may stop, as further trade is not
possible. This is the nucleus of the present argument.

The trade possibilities can now be classified in six distinct categories, based on
how the points (X, Y ), (x1, y1), and (x2.y2) are ordered on the budget line, from left
to right. Actually, we can just use either the x or the y coordinate for this ordering,
so we go for the first option. This means that the trading map too can be set up in
terms of x alone; a deceptive simplicity as the map (12.5)–(12.6) uses both, and so
in one additional step brings both coordinates back in.

Six Cases

(i) x1 ∼ x2 < X : The first agent wants to sell (X − x1) but the second is only
willing to buy (X − x2). There can be trade, but it is limited by the buyer’s
willingness. As a consequence one gets the new trade point

(
X →, Y →⎧ = (x2, y2).

There is left an excess supply amounting to (x2 − x1), and a corresponding
excess demand for the other commodity. Note for future use that for this case
(x2 − x1) (x2 − X) ∼ 0.

(ii) x2 ∼ x1 < X : The first agent wants to sell (X − x1) and the second wants
to buy (X − x2), which is more Trade is now limited by the seller’s, the first
agent’s willingness. The new trade point becomes

(
X →, Y →⎧ = (x1, y1). There

is left an excess demand amounting to (x1 − x2), and a corresponding excess
supply of the other commodity. Note that for this case (x1 − x2) (x1 − X) ∼ 0.

(iii) X < x1 ∼ x2: The first agent wants to buy (x1 − X) and the second wants
to sell (x2 − X), which is more. Trade is limited by the buyer’s, i.e., the first
agent’s offer. The new trade point becomes

(
X →, Y →⎧ = (x1, y1). There is left an

excess supply amounting to (x2 − x1). For this case (x1 − x2) (x1 − X) ∼ 0.
(iv) X < x2 ∼ x1: The first agent wants to buy (x1 − X) and the second wants

to sell (x2 − X), which is less. Trade is limited by the seller’s, i.e., the second
agent’s offer. The new trade point is

(
X →, Y →⎧ = (x2, y2). There is left an excess

demand amounting to (x1 − x2). For this case (x2 − x1) (x2 − X) ∼ 0.
(v) x1 < X < x2: The first agent wants to sell (X − x1) and the second as well

wants to sell (x2 − X). As both want to sell the same commodity, no trade is
possible, so

(
X →, Y →⎧ = (X, Y ). There is left an excess supply amounting to

(x2 − x1). For this case (X − x1) (X − x2) < 0.
(vi) x2 < X < x1: The first agent wants to buy (x1 − X) and the second as well

wants to buy (X − x2). As both want to buy the same commodity, no trade is
possible. Again

(
X →, Y →⎧ = (X, Y ). There is left an excess demand amounting

to (x1 − x2). For this case too (X − x1) (X − x2) < 0.
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The very simple argument is that if x1 and x2 are on either side of X , then trade is
impossible (cases v andvi), because both agentswant to buy/sell the samecommodity.
If x1 and x2 are on the same side of X , then there is one potential buyer and one seller,
but the change is limited by the agent who wants to buy or sell least, agent 1 in cases
ii and iii, or agent 2 in cases i and iv. The map formulated below thus boils down to
three cases

(
X →, Y →⎧ = (x1, y1),

(
X →, Y →⎧ = (x2, y2), and

(
X →, Y →⎧ = (X, Y ), quite

as suggested in the introduction.

The Trade Map

It just reads

(
X →, Y →⎧ =

⎩




(x1, y1) if (x1 − x2) (x1 − X) ∼ 0
(x2, y2) if (x2 − x1) (x2 − X) ∼ 0
(X, Y ) if (X − x1) (X − x2) < 0

(12.8)

The application clauses exhaust all logical possibilities and are mutually exclusive
as can be easily established. The two first rows of (12.8) represent trade correspond-
ing to the limits set by agent 1 and 2 respectively, whereas the last row represents
blocked trade because the agents want to buy and sell the same commodity. Theweak
inequality signs in the first two branches let us include the equilibria in the map.

Excess Demand

Let us just restate the definitions for the desired optimal points to be used in (12.8),
(x1, y1) and (x2, y2). They were given in (12.5) and (12.6), though it is nicer to solve
for y1 and y2 in explicit form. Hence

⎪
x1
y1

⎨
=

(
α (X + pY )

(1 − α)
(

X
p + Y

)
)

(12.9)

⎪
x2
y2

⎨
=

(
1 − β ((1 − X) + p (1 − Y ))

1 − (1 − β)
(
1−X

p + 1 − Y
)

)
(12.10)

This almost completes the iterative map; only one item is missing, the setting of
relative price p.
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Price Adjustment

The case of two traders may seem to set the stage for bilateral monopoly, but we
intend the model as a first stepping stone for generalization to more traders, so it is
better to use some excess demand dependent price adjustment function of the type
Samuelson suggests (Samuelson 1947). It formalizesWalrasian tâtonnement (Walras
1874–1877).Actually,Walras seems to dealwith testing out equilibriumpriceswhich
come in effect only when equilibrium is reached, but Samuelson implies a dynamic
process where excess demand/supply drives prices or down, with a force dependent
on the size of the excess. When price increases due to excess demand, the latter is
reduced. These prices seem to be conceived as real transaction prices in a transitory
process As the demand and supply functions remain unchanged, we must conclude
that a market for flows is intended. However, there seems to be no harm in choosing
this most widely used type of price adjustment mechanism also for stock markets.

As we deal with relative price p, we can choose either excess supply on themarket
for x , or excess demand on the market for y, to trigger rises for the only variable
price p, as there is a simple reciprocity between the two in the model. We go for
the first alternative. From the six cases listed above we find that excess supply, or if
negative, excess demand for x always equals x2 − x1.

In discrete time a linear price adjustment function could easily lead to negative
prices which we want to avoid, so we choose the semilogarithmic,

p→ = p exp (δ (x2 − x1)) (12.11)

where δ denotes an adjustment step length. The choice of the map (12.11) has the
advantage of symmetry with respect to the other relative price 1/p, as the exponent
then just changes sign.

The dynamic model we propose consists of (12.8) and (12.11), where (x1, y1) and
(x2, y2) are as defined in (12.9)–(12.10). Despite its simple look, the model seems to
be too complicated for further closed form analysis. We can, however, obtain much
information through numerical experiment.

Numerical Analysis and Graphics

The Phase Plane

Trade Equilibria and Disequilibria

It is easy to run the map (12.8) and (12.11) with definitions (12.9)–(12.10) on the
computer and display the results in a phase plane such as Fig. 12.1. One just needs
to set the parameters, which are the exponents of the utility functions α, β, and the
price adjustment step length δ, and further choose the initial values for the asset
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Fig. 12.2 Orbits of 10 randomly generated initial points (X, Y ) using 100,000 iterations. Parame-
ters α = 0.6, β = 0.4, δ = 1. Notably, the orbits converge very fast to the equilibrium curve, though
to different points. Initial relative price is set at p = 1.5 in all iterations. Though p is adjusted in
each iterate according to (12.11 ), it cannot be excluded that initial p like initial (X, Y ) influence
the orbit and the final equilibrium

distribution (X, Y ) as well as for relative price p. Figures12.2 and 12.3 show the
orbits generated from ten randomly chosen initial points (X, Y ) in the unit square.
As in Fig. 12.1 we keep the parameter values α = 0.6, and β = 0.4, and fix the
initial relative price at p = 1.5. The system was run in 100,000 iterations in each
case. The iterates are indicated by circles joined by line segments representing the
jumps. Obviously, the first steps are giant, and the orbits in Fig. 12.2 converge rather
fast on the final positions.

The difference between Figs. 12.2 and 12.3 is due to the step size, δ = 1 in
Fig. 12.2, δ = 5 in Fig. 12.3.With the smaller step size all orbits converge to the equi-
librium curve as displayed in Fig. 12.1, though to different points, thereby illustrating
what was said about the dependence of equilibrium upon the dynamic adjustment
process.

In Fig. 12.3, some orbits still converge to the equilibrium curve, but some stop at
a distance from it. Visually this stopping in disequilibrium fixed points can occur in
just few steps; the large number of iterations suggests that the process indeed does
not leave these final disequilibrium fixed points

From the discussion above we know what these disequilibria signify—cases
where both agents want to buy/sell the same commodity so that no further trading
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Fig. 12.3 Orbits of the same 10 initial points (X, Y ) as in Fig. 12.2. Initial relative price is p = 1.5.
Parameters α = 0.6, β = 0.4, but now the step size is increased to δ = 5. Again the orbits converge
very fast, though to disequilibrium fixed points of the dynamic system where no further trade is
posssible. One orbit which will be studied closer is marked with a large dot; this one never leaves
the initial state. Note that it is not missing in Fig. 12.2, it just merges with another track

is possible. The excess demand triggered price adjustment process simply fails to
reach an equilibrium point. Numerical experiment also indicates that in cases where
the process seems to end up at the equilibrium curve, it only reaches a disequilibrium
point in the close neighbourhood of an unstable equilibrium point.

Note that one of the disequilibrium fixed points in Fig. 12.3 is indicated by a larger
dot. It represents a point where the price dynamics will be studied more closely in
the sequel.

To get some more information about disequilibrium fixed points, instead of just
generating a few initial phase points, as in Figs. 12.3 and 12.4, we next run the process
from all initial phase points, packed as close as the resolution admits and mark just
the final wealth distribution plane fixed points. Aswe see, they cover curves and areas
in the phase plane. Tomake the computation manageable the number of iterations for
each orbit was reduced to 5,000. The area of fixed points in Fig. 12.4 seems to gather
around the equilibrium curve known from Figs. 12.1, 12.2 and 12.3, sometimes thin
as a curve, sometimes swelling out to structures with nonzero area measure.



12 Disequilibrium Trade and the Dynamics of Stock Markets 239

Fig. 12.4 Final fixed points of the orbits from all initial points (X, Y ) in the square. The number
of iterations from each initial point was reduced to 5,000. Initial relative price was again p = 1.5.
Parameters α = 0.6, β = 0.4, δ = 5 as in Fig. 12.3. The disequilibrium fixed points agglomerate
to the neighbourhood of the equilibrium curve, but occasionally swell out over considerable areas
of the square

Price Oscillations

An interesting feature of the model is that the price adjustment process in a
disequilibrium fixed point produces continued price dynamics, periodic or aperi-
odic. This is illustrated in Figs. 12.5, 12.6, 12.7 and 12.8, produced for the para-
meter combinations α = 0.6, β = 0.4 quite as in Figs. 12.1, 12.2, 12.3 and 12.4.
The initial price was again taken as p = 1.5, and the initial asset distribution as
(X, Y ) ∞ (0.74, 0.55), corresponding to the large dot indicated in Fig. 12.3, actually
one of the randomly generated initial points in Figs. 12.2 and 12.3, from which the
process does not take one single step.

Note that from (12.9)–(12.10) x2 − x1 = (1 − β) + (β − α) X + p
(1 − (1 − α) Y ), which substituted in (12.11) p→ = p exp (δ (x2 − x1)), gives an
autonomous iterative map p ≡ p→, whenever (X, Y ) is fixed, as it is in any disequi-
librium fixed point.

The parameter that takes on different values in this series of illustrations is the
step size parameter; δ = 5 in Fig. 12.5, δ = 5.1 in Fig. 12.6, δ = 5.2 in Fig. 12.7, and
δ = 5.25 in Fig. 12.8. These pictures display the indifference maps and equilibrium
curve in the phase plane; further the disequilibrium fixed point (X, Y ) and a number



240 T. Puu

Fig. 12.5 2-period relative price oscillation. Fixed disequilibrium point (X, Y ) as indicated by the
large dotin Fig. 12.3, with initial relative price p = 1.5. Parameters α = 0.6, β = 0.4, and δ = 5.
Shown are flipping budget line segments with endpoints (x1, y1) and (x2, y2). Note that they swap
their positions relative to (X, Y )

of optimum points for the agents, (x1, y1) and (x2, y2). These come in pairs and
are joined by line segments, two in Fig. 12.5, four in Fig. 12.6, and six in Fig. 12.7.
Note that all line segments pass the point (X, Y ). These line segments are actually
segments of the budget lines.

In Fig. 12.8 the line segments are deleted and the end point pairs crowd dense
along curves. These curves can be obtained in closed form through eliminating p in
(12.5) and (12.6) respectively,

y1 = (1 − α) Y x1
x1 − αX

, (12.12)

y2 = (1 − β) (1 − Y ) x2
x2 − β (1 − X)

(12.13)

These curves have been superposed on the numerically calculated trains of budget
segment endpoints in order to show that this indeed is so.

The mechanism can be explained referring to Fig. 12.5. The relative price p oscil-
lates between two different values and so the budget line flips between two different
slopes. The endpoints (x1, y1) and (x2, y2), optima for the agents, are always on
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Fig. 12.6 The same case as in Fig. 12.5 but with a 4-period relative price oscillation when δ = 5.1

either side of the fixed point (X, Y ), but they switch positions when relative price
oscillates; at one value both want to sell, at the other both want to buy the same
commodity. Excess demand and excess supply alternate and the adjustment process
for pricing always overshoots equilibrium. In Fig. 12.6 this 2-period oscillation has
changed to a 4-period, in Fig. 12.7 to a 6-period, and in Fig. 12.8 to something ape-
riodic. Again the budget line flips between the different positions, and the endpoints
swap their positions so that there is always excess demand or supply of the same
commodity.

Bifurcation Diagrams

Step Size Bifurcations

The relative price dynamics displayed in Figs. 12.5, 12.6, 12.7 and 12.8 can be sum-
marized by the bifurcation diagram shown in Fig. 12.9. We now display p versus δ.
The initial asset distribution point (X, Y ) as well as the initial relative price p were
kept to the fixed values used in Figs. 12.5, 12.6, 12.7 and 12.8, as were the parameters
α, β. At each value of δ √ [4, 6] the system was run for 10,000 iterations. The first
9,000 were trashed in order to get rid of transients, and the last 1,000 were then
plotted. If there is a fixed point then the same p will eventually be hit over and over.
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Fig. 12.7 6-period orbit when step size δ = 5.2

We just see a point, or, considering different adjacent δ producing fixed points, a line
or curve. Once the fixed point bifurcates to a 2-period cycle we see the curve split in
2 branches, and so on in a cascade, eventually seeming to cover entire areas.

We see that the case of δ = 5 shown in Fig. 12.5 fits into the 2-branch region,
whereas at δ = 5.1 shown in Fig. 12.6, there has been a further period doubling to
4. Then, after a stretch of (possibly chaotic) intervals, at δ = 6.2 there are clearly
6 curve branches complying with Fig. 12.7. For δ = 5.25 a dense vertical stretch is
shown in accordance with Fig. 12.8.

Bifurcations in the Utility Coefficient Plane

A different bifurcation diagram in parameter plane is produced in Fig. 12.10. Again
we deal with the unit square, but now it is parameter space α, β and not phase space
that is concerned. As we see the dominant shade is labelled 1, indicating fixed points.
In the lower left corner there appears an irregularly concentric structure of periodicity
“tongues” of a period adding appearance; 1, 2, 3, 4, 5, 6, with large gaps between
indicating more complex dynamics.
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Fig. 12.8 When step size is increased to δ = 5.25, the simple periodicity of relative price oscillation
disappears. The points (x1, y1), (x2, y2) crowd densely on the curves (12.12) and (12.13), or on the
edges of the box

Summary

To sum up, we suggested a unified model of stock market dynamics, the clue to
which was the simple fact that stock commodities, unlike flow commodities, remain
on the market from period to period. Through trade these are redistributed among the
agents, which, however, changes the basis for future plans and actions. Due to this,
unique demand/supply functions and market equilibria do not exist as they do in the
case of flow commodities. If the system goes to an equilibrium, there are infinitely
many to choose from, and the one on which it converges depends on the dynamic
process itself. The system can also stick in disequilibrium states fromwhich it cannot
move because the agents always want to sell or buy the same commodities.

Notable is that trade occurs in disequilibrium states; the agents move towards
higher satisfaction, but not all can reach their desired optima. In the simple two
agent two commodities model, trade was limited to what the agent wanting to trade
least in an actual asset distribution was willing to exchange. In this way the agent
wanting to trade more could get part of the way to higher utility, lacking possibilities
to force the other to exchange more than she/he wants.

Prices were assumed to be excess demand driven, and could overshoot unstable
equilibrium points, resulting in complex price dynamics, periodic or aperiodic.
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Fig. 12.9 Bifurcation diagram showing eventual relative price oscillations, periodic and aperiodic,
as dependent on the step size parameter δ

Fig. 12.10 This picture shows the bifurcation diagram in α, β parameter plane. The remaining
parameter was fixed at δ = 5, and an initial point in phase space X = 0.25, Y = 0.75 was chosen.
For each combination of α, β, the system was run for 5,000 itertions after which the program
checked for periodicities 1–15
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A challenge to economists would be to set up a model with three (or more) agents,
and three (or more) commodities.

The case for three commodities could be dealt with in a solid Edgeworth cube,
with budget planes involving two relative prices. Trade possibilities could be studied
in terms of the indifference surface projections on such budget planes, though it is
no longer so obvious how to specify the conditions for trade. Likewise, things are
much more complicated with three agents, as we need further assumptions on the
success of the competitors. If there is excess demand and only one supplier, then it
is clear that the supplier gets what she/he wants, but as for the demanders we must
state who will come out more successful, and likewise for the other (now more than
six) cases.

It seems to be important to make some advance on this neglected issues. It also
is important to check the price generating process, which, after all, is responsible
for the complex dynamic with overshooting. We took the traditional case of prices
automatically dependent on excess demand/supply, but more realistic hypotheses
concerning price formation would be highly desirable. This is as much neglected in
economic theory as is disequilibrium trade.
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