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Summary

The estimation of levels, trends, and differentials in demographic and health
outcomes in developing countries has, over the years, relied heavily on indirect
methods that were devised to suit limited or deficient data. In recent decades,
some worldwide surveys like the World Fertility Survey and its successor, the
Demographic and Health Survey (DHS), have played an important role in filling
the gap in the availability of survey data in developing countries. These surveys,
conducted at enormous costs, are aimed at enabling investigators to make in-depth
analyses that could guide policy intervention strategies. However, their utilization
remains suboptimal, because optimal analyses of such data demand advanced
statistical techniques.

Since the use of DHS data in developing countries, many developments in
statistical modelling based on hierarchical models have been published, and our
primary aim is to bring together the various methodological advances. Naturally, the
choice of these recent developments reflects our own teaching and research interests.

We try to motivate and illustrate concepts with examples using real data from the
DHS, and the data sets are available on http://www.measuredhs.com. We could not
treat all recent developments in the area of health and survival in Africa in this book,
and in such cases we point to references at the end of each chapter.

The book presents both theoretical contributions and empirical applications of
such advanced techniques. We cover a range of new developments from both
the classical and Bayesian approaches. In the Bayesian framework, Monte Carlo
techniques, in particular MCMC, and their application to spatial and spatio-temporal
data are covered. These include techniques such as geoadditive semi-parametric
models that link individual health outcomes with area variables to account for spatial
correlation; latent modelling that deals with the impact of spatial effects on latent,
unobservable variables like “health status” or “frailty”; spatial modelling of multiple
diseases that enables quantifying the correlation between relative risks of each
disease as well as mapping of disease-specific residuals; and Bayesian structured
geostatistical regression modelling that permits a joint estimation of the usual linear
effects of categorical covariates, non-linear effects of continuous covariates and
small-area district effects on health outcomes within a unified structured additive
Bayesian framework.
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viii Summary

Within the classical approach, we describe multilevel models which address
issues of clustering within families and households; multiprocess models which
account for interdependencies over life-course events and non-random utilization
of health services; and flexible parametric alternatives to existing intensity models.

The techniques are illustrated mainly through modelling maternal and child
health in the African context using data from the DHS in several countries in the
continent. But the methods presented are universally applicable to other phenomena
and geographical areas with similar data sets.

The book is coherently organized and clearly written so that readers can follow
its contents without having to master the technical parts.

There are two parts to this book: (I) modelling child health and survival in Africa
and (II) modelling maternal health and survival in Africa.

Part I covers recent developments in child health modelling techniques. We
discuss the formulation of models using flexible geoadditive predictors accounting
for the effects of different types of covariates. Such formulation embraces the
usual famous regression models such as generalized additive models (GAM), gen-
eralized additive mixed models (GAMM), generalized geoadditive mixed models
(GGAMM), and stepwise regression models, among others. We emphasize the
modelling process and policy implications rather than explicit use of the techniques
(which can be found in other textbooks).

Part II introduces modelling of maternal health outcomes. Readers are guided
through these techniques with alternative software packages, such as WinBUGS and
BayesX. Many of the applications of this part relate directly to the models discussed
in Part I.

Although few authors worked on this text, it could not have been written without
the support from various sources. We would particularly like to thank all participants
of our session at the 57th Congress of the International Statistical Institute in
Durban, South Africa, 2009, where the idea to write this book originated. We
are also very grateful to the University of Aachen, Germany, for providing the
environment and the financial support to run our subsequent workshop in 2010.
In particular, we express our thanks to Professor Thomas Kraus, the head of
the Institute of Occupational and Social Medicine, University of Aachen, who
hosted and facilitated the workshop. Thanks to Professor Clifford Odimegwu of
the University of Witwatersrand for valuable comments on earlier versions of this
text. We also thank Professor Daniel Thorburn, Department of Statistics, Stockholm
University, for reading parts of the manuscript and coming up with valuable
comments. Our thanks also go to the anonymous reviewers from Springer who
read and commented on the first draft of our manuscript. We also thank Diana
Kandala for helping in copy-editing of the manuscript. Ngianga-Bakwin Kandala
acknowledges the financial support he received from the British Council under the
Development Partnership in Higher Education (DelPHE) scheme, Grant No. 788.
Last, but by no means least, Gebrenegus Ghilagaber would like to thank his children
Astér, Millen, and Simon for their unconditional love, patience, and understanding
during the preparation of the book whose value may not have been clear to them at
the time.
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Chapter 1
Advanced Techniques for Modelling
Maternal and Child Health in Africa

Samuel O.M. Manda, Ngianga-Bakwin Kandala, and Gebrenegus Ghilagaber

1.1 Introduction

More than ten million women die or experience adverse consequences during
pregnancy and child birth each year (WHO 2005). Furthermore, nearly nine million
children under the age of 5 years die each year, largely from preventable and
treatable diseases (UNICEF 2010). The hardest hit countries by poor maternal health
(defined as the health of mothers during pregnancy, childbirth, and in the postpartum
period) and poor child health (defined as the health of children from birth through
adolescence) are in the developing world. For example, even though the global
estimates of maternal and child mortality rates in 2008 were at 260 per 100,000
and 60 per 1,000 live births, respectively, the rates ranged from 21 to 620 and 13 to
12, with the African region at the top of both ranges (WHO 2011).

Progress on maternal and child health has long been recognized as critical to
fostering socio-economic development of a country. Thus, it was not surprising
that improvements in maternal and child health (MCH) were two of the eight
Millennium Development Goals (MDGs). In particular, MDG 4 targeted reducing
under-five mortality rates by 67 % between 1990 and 2015, and MDG 5 set two
targets: reducing maternal mortality ratio by 75 % and achieving universal access
to reproductive health by 2015 (United Nations 2012). However, progress towards

S.O.M. Manda (�)
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2 S.O.M. Manda et al.

meeting these targets has been very slow in developing countries. For instance,
the annual rate of under-five mortality decline is 2.1 %, which is below the target
of 4.4 % per year. Furthermore, even though many pregnant women received at
least one antenatal care visit with a skilled attendant, between 2000 and 2008, the
prevalence of skilled attendance at birth in Africa was estimated at 46 %. The global
estimate of this prevalence was put at 65 %, with a range of 46–96 % between the
WHO regions (Friberg et al. 2010; WHO 2011).

In recognition of the slow progress towards MDGs 4 and 5 in Africa, major
international bodies and funding agencies such as the United States Agency for
International Development (USAID) and the World health Organization (WHO)
have more than doubled their efforts at improving maternal and child health in the
region (The Kaiser Family Foundation 2009; The PLoS Medicine Editors 2010).
The interventions and programs that are mostly funded cover mitigating the adverse
effects of HIV and malaria in pregnant women and their children. Support is also
provided in the delivery of an evidence-based and cost-effective care for mothers
and children. Individually, some governments have taken steps to improve maternal
and child health. In South Africa, for instance, maternal and child health is one of
the four health priority areas within the National Department of Health (Department
of Health 2012).

Analyses of various data sources suggest that maternal and child health, for
example maternal and child mortality have been declining in recent years in the sub-
Saharan African (SSA) region. However, the levels of the decline vary considerably
across the countries of the regions, with the wealthier and modernized regions
having faster declines (UNICEF 2010; WHO 2011). But the data upon which these
empirical evidences are based are inconsistent and their sources and quality vary
between years and the countries. Thus, various governments and stakeholders have
invested substantially into data collection and analysis for improved and reliable
maternal and child health indicators.

Most of the empirical evidence upon which maternal and child health are
assessed on to measure progress towards achieving targets sets under MDGs 4 and
5 are derived from the Demographic and Health Surveys (DHS) datasets. The DHS
programme is funded by the USAID and is implemented by Macro International (a
US based consultancy firm). The surveys provide nationally-representative data on
population, health, HIV, and nutrition in over 90 developing countries. The data
generated are used by various stakeholders for a wide range of monitoring and
impact evaluation indicators in the areas of demographic and health in these coun-
tries. The DHS and its predecessor, the World Fertility Survey (WFS) have played
important roles in filling the gap in the availability of MCH data in developing
countries. The DHS datasets are available on http://www.measuredhs.com. Multiple
Indicator Cluster Survey (MICS) and HIV/AIDS and Reproductive Health Survey
are also increasingly used to provide comparative assessments of MCH outcomes.
The samples drawn in these surveys mostly use stratified multistage cluster sampling
designs, often with over-sampling of smaller domains such as urban areas or certain
regions of a country.

http://www.measuredhs.com
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Thus, any statistical analysis of data drawn from such complex surveys needs to
account for the sampling design, in addition to account for data quality nonresponse,
missing data, erroneous responses, and defective sampling frames. The importance
of accounting for the sample design in regression modelling is widely acknowledged
in the statistical literature (Binder 1983, 1992; Korn and Gruabard 1995, 1999;
Pfeffermann 1993; Skinner et al. 1989). However, in many instances, these data
are analyzed using statistical software designed for simple randomly sampled data.
When such data are interrogated using statistical methods, the summary information
used to inform public health policies regarding MCH can be misleading (Mathews
et al. 1999). Whilst statistical methods exist to overcome this problem, these
have not been extensively worked through in a coherent manner or packaged
appropriately into a volume, which is why this volume fills that gap. These datasets,
especially the DHS, include geographical information that could identify spatial
patterns in MCH to target health policies. This new information must also be
incorporated when analyses of such data are undertaken.

However, the utilization of a wealth of MCH data sources from high quality
national representative samples in the Sub Saharan region Africa (SSA), collected
at comparative enormous costs, remains sub-optimal because optimal analyses
of such data demand advanced statistical techniques. These data when analyzed
comprehensively using appropriate statistical methods for the robust evaluation
of data in respect to the socio-economic, demographic, general and maternal and
child health, can enable investigators to make in-depth assessments that could guide
policy intervention strategies. Studies that utilized appropriate statistical modelling
and analysis of MCH outcomes in the SSA region have increased recently (see for
example, Gemperli et al. (2004); Kandala and Madise (2004); Kandala et al. (2006,
2007); Kazembe and Namangale (2007); Manda et al. (2012a, b) to name a few).

Our primary aim in this volume is to bring together these methodological
advances to important applications in maternal and child health in Africa. Naturally,
the choice of these recent developments reflects our own teaching and research
interests. In order to make the volume widely read and accessible to the general
practitioner and researchers who are routinely involved in the analyses of the MCH
data; we have included motivating and illustrate concepts with examples using real
data from the DHS and similar surveys. We could not treat all recent developments
in the area of health and survival in Africa in this book, and in such cases, we point
to references at the end of each chapter.

The volume presents both theoretical contributions and empirical applications
of such recent and advanced techniques. We cover a range of new developments
from both the classical and Bayesian approaches. Within the classical approach,
we examine multilevel models that address the issue of clustering within families
and households; multiprocess models that account for interdependencies over
life-course events and non-random utilization of health services; and flexible
parametric alternatives to existing intensity models.
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On the other hand, within the Bayesian framework, Monte Carlo techniques,
in particular Markov Chain Monte Carlo (MCMC) and their application to spatio-
temporal data are covered. These include such techniques like geo-additive semi-
parametric models that link individual health outcomes with area variables to
account for spatial correlation; geo-additive latent modelling that deal with the
impact of the spatial effects on the latent, unobservable health status or frailty; joint
diseases mapping models that permit the quantification of common and specific
risk profiles between diseases. Bayesian structured additive regression modelling
that permits a joint estimation of the usual linear effects of categorical covariates,
nonlinear effects of continuous covariates and small-area effects on health outcomes
within a unified structured additive Bayesian framework.

Thus this volume presents wide theoretical and range of applications covering
most aspects of the data structures arising from DHS and similar surveys. The
techniques are illustrated through the modelling of maternal and child health in the
African context using data from DHS in several countries in the continent, with a
few example using Multiple Indicator Cluster Survey (MICS) and HIV/AIDS and
Reproductive Health Survey. But, the methods presented are universally applicable
to other phenomena and geographical areas with similar data sets.

1.2 Structure of the Volume

This volume is coherently organized and clearly written so that readers can follow its
contents without having to master the technical parts. Apart from this Introductory
Chapter and a Summary Chapter, it contains 14 chapters dedicated to case studies
in maternal and child health in Africa; and for each a modern statistical method has
been used to analyse the data. These 14 chapters are grouped into two parts: Part I
contains eight case studies on child health and survival (2–9) and Part II contains six
case studies on maternal health and survival (10–15). We emphasize the modelling
process and policy implications, rather than explicit use of the techniques (which
can be found in other textbooks).

Chapter 1 gives a general introduction of the volume. In Chap. 2 of the volume,
Ghilagaber discusses multilevel modelling for clustered child survival data and
the issue of selection bias in the utilization of maternal and child health services.
He discusses the difficulties in assessing the impact of prenatal care and hospital
delivery on child survival if the selection processes in the utilization of health
facilities are not accounted for. These issues are addressed using data from three
Africa countries: Egypt, Eritrea and Uganda. He constructs joint modelling of
survival and selection processes, which he then estimated using likelihood based
methods. Chapter 3 extends the ideas of multilevel modelling for child survival data
to situation where the data are arranged in space. Ghilagaber and colleagues discuss
the limitations of the independence assumptions by noting that neighbouring areas
are more likely to have similar child survival experiences than children in areas far

http://dx.doi.org/10.1007/978-94-007-6778-2_1
http://dx.doi.org/10.1007/978-94-007-6778-2_2
http://dx.doi.org/10.1007/978-94-007-6778-2_3
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apart. Thus, they propose using spatial models to determine variations of childhood
mortality between districts in Nigeria. The model proposed calls for time-varying
as well as non-linear effects of some covariates on child survival by introducing
smoothness structures for spatial and non-linear effects. These are estimated within
a Bayesian perspective and fitted using the recently developed MCMC simulation
techniques. The spatial modelling techniques in Chap. 3 are extended to Chap. 4,
where Khatab examines the impact of socioeconomic and public health factors on
childhood diseases and malnutrition by using latent or unobservable constructs.
His Geo-additive latent variable modelling is exemplified using data on childhood
disease and malnutrition in two African countries: Egypt and Nigeria.

In Chap. 5, Kazembe examines ecological associations between socio-economic
inequalities and childhood health in Malawi. He constructs child health status using
a number of combinations based on a child status on fever, diarrhoea, stunting
and underweight to a multinomial response with five categories within a geoad-
ditive spatial model. The empirical Bayesian method, using penalised likelihood
estimation techniques, is used to fit the individual and spatially relevant fixed
and random effects. In the analysis of time-to-event data Ghilagaber, in Chap. 6,
shows that indirect standardization and loglinear regression models for count data
are special cases of the well-known proportional hazards regression portrayed as
belonging to distinct fields or as competing methodologies. He further shows that
these seemingly different models can be synthesised in standard packages such
as SPSS and SAS. These issues are illustrated by an empirical analysis of a
data set on mortality experiences among Eritrean children. The spatial modelling
techniques discussed in Chaps. 3 and 4 dealing with flexible Bayesian structured
additive regression for joint estimation of trend, nonlinear effects of continuous
covariates, geographical variations and fixed effects of categorical covariates is also
adopted for Chap. 7 by Adebayo and Yahya. They analyse individual and ecological
determinants of vaccination coverage in Nigeria. Chapter 8 discusses the modelling
of both individual and ecological association with childhood survival in South
Africa. Here, Manda introduces robust and flexible spatial distributions based on the
double exponential model as opposed to the standard normal autoregressive model.
He uses a mixture of spatial distributions to offer more flexibility and less restrictive
form and shape of the spatial distribution assumed. Finally, Chap. 9 rounds off Part
I of the book by discussing socio-demographic determinants of anaemia in children
by Kandala (Shadrack), where he uses multilevel modelling to estimate the effects of
predictors. The resulting models are estimated using restricted iterative generalized
least squares (RIGLS) within MLwiN statistical package.

Part II starts off with Chap. 10, where Ghilagaber and co-authors discuss flexible
family of parametric survival models to the analysis of birth interval data. The
models are illustrated by an analysis of correlates of birth spacing in Eritrea, Ghana,
and Kenya. Kandala in Chap. 11 discusses health threats posed by emerging burden
of non-communicable diseases in the SSA region. He uses geostatistical modelling
described in various chapters in Part I to analyse spatial variations of hypertension
in South Africa. In Chap. 12, Manda and co-authors discuss modelling options for

http://dx.doi.org/10.1007/978-94-007-6778-2_3
http://dx.doi.org/10.1007/978-94-007-6778-2_4
http://dx.doi.org/10.1007/978-94-007-6778-2_5
http://dx.doi.org/10.1007/978-94-007-6778-2_6
http://dx.doi.org/10.1007/978-94-007-6778-2_3
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stratified survival data. They discuss unstratified and parametric stratified survival
analyses and show the advantages of a non-parametric approach based on mixtures
of triangular distributions to estimate baseline hazard rates. Within a Bayesian
formulation via Markov chain Monte Carlo algorithm for posterior computation,
they analyse determinants of timing of first childbirth in South Africa where the
data are heavily stratified.

Adebayo and Gayawan discuss the issues regarding levels and trends of fertility
in Nigeria. In particular, they consider number of children born to a woman and
model its individual and spatial determinants using flexible geoadditive approaches,
which as indicated earlier, permit non-linear or time-varying effects of covariates
and the usual linear effects in a joint model. These are discussed in Chap. 13.
In Chap. 14, Abiodun and colleagues use geostatistical models to investigate
geographical variation of timing of sexual initiation in Nigerian youth and discuss
the implications for HIV prevention. In Chap. 15, Kandala and coauthors extend the
work in Chap. 11 to modelling geographic co-morbidity of four vascular diseases:
high blood pressure, stroke, heart attack and high blood cholesterol in order to
understand interactions and dynamics between chronic diseases. In particular, they
use the shared component spatial models to estimate common and specific risk in
the four vascular diseases. Finally, in Chap. 16 Ghilagaber ties up the findings of the
volume by way of summary and direction for future research.
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Child Health and Survival



Chapter 2
Disentangling Selection and Causality
in Assessing the Effects of Health Inputs
on Child Survival: Evidence from East Africa

Gebrenegus Ghilagaber

2.1 Introduction

Many demographic data have a hierarchical or clustered structure. For example,
the analysis of childhood mortality involves a natural hierarchy where children
are grouped within mothers or families, and the latter, in turn, are grouped into
communities. Children from the same parents tend to be more alike in their
characteristics than children chosen at random from the population at large. To
ignore this grouping risks overlooking the importance of group effects, and may
render invalid many of the traditional statistical analysis techniques used for
studying data relationships.

The present chapter addresses the relationship between childhood mortality on
the one hand, and use of health care and other socioeconomic variables on the
other, in three African countries – Egypt, Eritrea, and Uganda. In contrast to most
previous works where the collection of children is assumed to be an independent
random sample, we treat children with the same mother as correlated cases (level 1)
within the same mother (level 2). This is consistent with the data collection where
a nationally representative random sample of women is selected (National Statistics
Office [Eritrea] and Macro International Inc 1995). Our formulation also enables us
to allow for unobserved mother-specific heterogeneity in the models.

A second and important issue that is addressed in this chapter is that of selection
bias. The public policy response to the problem of high childhood mortality
in developing countries has primarily focused on encouraging prenatal care and
institutional delivery. Since there are no randomized trials of standard prenatal care
and hospital delivery, it is difficult to assess the impact of such health inputs on
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survival chances without accounting for selection processes in the utilization of
health facilities.

Generally, selection bias can arise when there is a systematic difference in
characteristics between those who are selected for the study and those who are not. If
these unobserved factors also influence the impacts of the studied subject, selection
bias will occur. However, selection bias will only arise if these unobserved factors,
which influence the selection, also influence the phenomena under investigation.

Two common types of selection are adverse selection and favorable selection.
Suppose women who receive prenatal health care have a higher risk of losing their
child than women who do not receive prenatal health care. It is possible that women
who seek prenatal childcare in fact have characteristics that separate them from
others. If such characteristics are such that they lead to poorer outcome of prenatal
care than it really is, then the contribution of prenatal care may be underestimated
due to adverse selection.

In contrast, favourable selection arises when the studied individuals have charac-
teristics that lead to overestimation of the effects of a covariate on the phenomenon
under investigation.

In the present chapter, we examine the effects of selection on estimates of the
efficacy of prenatal care and hospital delivery (health inputs) by using multiprocess
models developed and earlier used by Lillard and Panis (see, Lillard 1993; Panis
and Lillard 1994; Lillard and Panis 2000).

2.2 Statistical Methods: Multilevel and Multiprocess
Modeling

2.2.1 A Piece-Wise Log-Linear Hazard Model
with Heterogeneity

A piece-wise log-linear hazards model of mortality is given by1:

ln �ij.t/ D �Tij.t/ C ˇ0Xij C "i (2.1)

where ln �ij.t/ is the log-hazard of death at age t associated to child j of mother i. The
baseline log-hazard �Tij.t/ is assumed to be piecewise linear in the child’s age; Xij

represents regressors, and " captures unobserved heterogeneity, at the mother level,
that is associated with mortality, " � N

�
0; �2

"

�
. The regressors may be time-varying

but all covariates used in this chapter are fixed. Regressors add to the log-hazard

1The presentation in this and the next sections follows largely that of Lillard and Panis (2000).
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and thus shift the hazard proportionally. Time is written as an argument in Tij.t/ to
indicate that it varies continuously over the duration of an interval but the slope may
vary between intervals.

This is a two-level piece-wise linear survival model with mothers as the level-2
units and children as repeated outcomes (level-1) within observations.

Conditional on the heterogeneity component ", the likelihood of the hazard for
child j from the ith mother is:

L
.M/
ij ."/ D

(
Sij
�
t�; "

�
; if the child is alive .censored/ at time t�

Sij
�
t l ; "

� � Sj .tu; "/ ; if the child died between at tland tu
(2.2)

where Sij .t; "/ is the survivor function at time t. In the absence of time-varying
covariates,

Sj .t; "/ D �
S0j .t; "/

�exp.ˇ0Xj C"/
; (2.3)

where
S0j .t; "/ representing the baseline survivor function at time t., i.e., the survivor

function based on the baseline duration dependency (or dependencies) only:

S0j .t/ D exp

8
<

:
�

tZ

�Dtb

�j 0 .�/ d�

9
=

;
;

where �j 0.t/ D �Tj .t/ and tb denotes the beginning of the hazard spell
(interval).

Conditional on the heterogeneity, the likelihood contributions in (2.2) are
independent. The joint likelihood of multiple hazard intervals in the presence of
heterogeneity is thus found by the product of conditional likelihoods of individual
hazard modules:

L.M/ D
Y

j

L
.M/
j (2.4)

The baseline duration pattern is the model’s dependency on time without any
covariates or heterogeneity. In the model above, it is represented by �Tij.t/.
A constant baseline hazard (exponential model) may be achieved by defining a
spline with intercept and without nodes, and fixing the slope coefficient to zero.
A Gormpertz (linear) log-hazard may be specified by defining a spline without
nodes, so that the slope is the Gompertz slope. A piecewise-constant hazard may be
achieved by estimating regression coefficient on time-varying indicator variables.
Piecewise-linear duration patterns are very attractive because they adjust to any
pattern in the data (with sufficiently many nodes), and because linear combinations
of piecewise-linear patterns are again piecewise-linear (Lillard and Panis 2000).
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2.2.2 Multilevel Probit Models with Unobserved Heterogeneity

A Probit Model of Prenatal Care

We model the ith mother’s decision to visit a prenatal care center (as opposed to no
such visit at all) during pregnancy of the jth child as a binary probit model:

P
�
ij D ˛0Xij C ıi (2.5)

where X are mother-specific explanatory variables (Xij D Xi for all children j of
the same mother); and ıi represents unobserved heterogeneity at the mother level
that is associated with utilization of prenatal care. We assume that the heterogeneity
component is distributed normally, ı � N

�
0; �2

ı

�
. Thus, the likelihood for a binary

probit model is given by

L
.P /
j D

(
ˆ
��˛0X

�
; if Pj D 0

1 � ˆ
��˛0X

�
; if Pj D 1

; (2.6)

where ˆ.:/ is the (cumulative) distribution function of the standard normal density:

ˆ.z/ D 1p
2�

zZ

�1
exp

�
�u2

2

�
du (2.7)

The Prenatal Care decision for child j is:

Pj D
(

0; if P
�
ij < 0 .no prenatal care/

1; if P
�
ij � 0 .prenatal care/

(2.8)

Conditional on the heterogeneity, the likelihood contributions in (2.6) are
independent. The joint likelihood of multiple probit modules in the presence of
heterogeneity is thus given by the product of conditional likelihoods of individual
probit contributions:

L.P / D
Y

j

L
.P /
j (2.9)

A Probit Model of Hospital Delivery

As with the prenatal care we model the decision to deliver in hospital (as opposed
to home delivery) as a binary probit model:

H
�
ij D �0Xij C !i (2.10)
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where X are mother-specific explanatory variables, and ! represents unobserved
heterogeneity at the mother level. We assume that the heterogeneity component is
distributed normally, ! � N

�
0; �2

!

�
.

The delivery decision for child j is:

Hj D
(

0; if H
�
j < 0 .delivery at home/

1; if H
�
j � 0 .institutional delivery/

(2.11)

The likelihood for a binary probit model (module) is then

L
.H/
j D

(
ˆ
���0X

�
; if Hj D 0

1 � ˆ
���0X

�
; if Hj D 1

(2.12)

where ˆ.:/ is the distribution function of the standard normal density as given in
(2.8).

Conditional on the heterogeneity, the likelihood contributions in (2.12) are
independent. The joint likelihood of multiple probit modules in the presence of
heterogeneity is thus given by the product of conditional likelihoods of individual
probit modules:

L.H/ D
Y

j

L
.H/
j (2.13)

2.2.3 Multiprocess Models: Disentangling Selection
and Causality

A Joint Model of Child Mortality and Prenatal Care

Suppose we estimated a hazard model of child mortality and found a significant ev-
idence of unobserved mother-specific characteristics that affect children’s survival.
If the mothers themselves are aware of at least some of those characteristics, they
may respond to this private knowledge. Suppose that those women who are at above-
average risk of losing their baby decide to reduce the risks by visiting prenatal care
centers. The result will, then, be that prenatal care centers get a disproportionately
high-risk mix of babies. If ignored, this adverse selection will underestimate the
beneficial effect of prenatal care on childhood mortality. Conversely, prenatal care
centers may get disproportionately low-risk mix of babies. This happens when
selection is favorable – that women with below-average risk of losing their babies
have a higher propensity of visiting prenatal care centers. These may include more
educated women who are more aware of the benefits of prenatal care and/or urban
residents for whom access is relatively easier. In this later type of selection, ignoring
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the favorable selection will overestimate the effect of prenatal care. These problems
prompt us to address the potential endogeneity of prenatal care and estimate a joint
model of child mortality and prenatal care decisions.

The joint model consists of two sets of equations:

• A hazard of child mortality:

ln �ij.t/ D �Tij.t/ C ˇ0Xij C "i (2.14)

• A probit of prenatal care:

P
�
ij D ˛0Xij C ıi (2.15)

The main issue addressed here is that we wish to allow for the possibility that
unobserved mother-specific characteristics affect both child survival and prenatal
care decisions, i.e., we wish to allow for correlation between " and ı:

 
"

ı

!

� N

" 
0

0

!

;

�
�2

"

�"ı �2
ı

�#

(2.16)

The bias due to selection effects is eliminated by making the source of the
bias (the correlation) part of the model. In our present case, the effect of prenatal
care on mortality may be biased because of non-random prenatal care decisions.
We therefore estimate a joint or multiprocess (to borrow a word from Lillard
and Panis 2000) model of child survival and the decision to visit a prenatal care
center.

The joint likelihood of the continuous and probit outcomes may be separated into
a continuous and a probit part:

L.MP / D L
.M/
1 L

.P /
2 (2.17)

where

L
.M/
1 D 1

�"

p
2�

exp

(

� .y � ˇ0X/
2

2�2
"

)

(2.18)

and

L
.P /
2 D

8
ˆ̂
<̂

ˆ̂̂
:

ˆ

�
	ıj" � ˛0X

�ıj"

�
; if P D 0

1 � ˆ

�
	ıj" � ˛0X

�ıj"

�
; if P D 1

(2.19)
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where the distribution of ıj" is such that:
 

"

ı

!

� N

" 
0

0

!

;

�
�2

"

�"ı �2
ı

�#

(2.20)

so that

ıj" � N

�
�"ı

�2
"

�
ln � � ˇ0X

�
; �2

ı � �"ı

�2
"

	
(2.21)

From (2.17), (2.18), (2.19), (2.20), and (2.21) we note that the probit residual ı

is conditional on the realized value of " and, hence, L
.P /
2 is conditional on L

.M/
1 .

A Joint Model of Child Mortality and Hospital Delivery

By analogous argument to the above subsection we address the potential endo-
geneity of institutional delivery by estimating a joint model of child mortality and
hospital delivery decisions.

• A hazard of child mortality:

ln �ij.t/ D �Tij.t/ C ˇ0Xij C "i (2.22)

• A probit of hospital delivery:

H
�
ij D �0Xij C !i (2.23)

Again, the joint likelihood of the continuous and probit outcomes may be
separated into a continuous and a probit part,

L.MH/ D L
.M/
1 L

.H/
2 (2.24)

where L
.M/
1 is as defined in (2.18) and

L
.H/
2 D

8
ˆ̂
<̂

ˆ̂̂
:

ˆ

�
	!j" � ˛0X

�!j"

�
; if H D 0

1 � ˆ

�
	!j" � ˛0X

�!j"

�
; if H D 1

(2.26)

where the distribution of !j" is such that:

 
"

!

!

� N

" 
0

0

!

;

�
�2

"

�"! �2
!

�#

(2.27)
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so that

!j" � N

�
�"!

�2
"

�
ln � � �0X

�
; �2

! � �"!

�2
"

	
(2.28)

We now wish to investigate whether unobserved characteristics at the mother
level that affect the prenatal care decision are correlated with those that affect
the decision to deliver in hospital. If these characteristics are correlated and the
correlation is not accounted for, the effects of prenatal care and hospital deliveries
on child mortality may be incorrect because these two effects may compete with
each other or reinforce each other depending on the direction of the correlation.

The next step is, therefore, to estimate the hazard of child mortality jointly
with both prenatal care and hospital delivery in order to control for the correlation
between unobserved characteristics that affect these two health care decisions.

A Joint Model of Child Mortality, Prenatal Care, and Hospital Delivery

The effect of prenatal care and hospital delivery on mortality may be biased because
of non-random prenatal care and hospital delivery decisions. More importantly,
these effects may be biased because of a disproportionately high number of hospital
deliveries with mothers who have visited a prenatal care center. We, therefore, model
prenatal care and hospital delivery decisions jointly with the hazard of mortality.

The three-process joint model consists of three sets of equations:

• A hazard of child mortality:

ln �ij.t/ D �Tij.t/ C ˇ0Xij C "i (2.29)

• A probit of prenatal care:

P
�
ij D ˛0Xij C ıi (2.30)

• A probit of hospital delivery:

H
�
ij D �0Xij C !i (2.31)

The key issue here is that we wish to allow for the possibility that unobserved
mother-specific characteristics affect all three dimensions: child survival, prenatal
care, and hospital delivery decisions. In other words, the mother-specific hetero-
geneities in the three models ."; ı and !/ are allowed to be pairwise correlated:

0
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The joint likelihood in the three process model is given as a product of the three
likelihoods in (2.18), (2.19), and (2.26).

2.3 Data and Correlates of Childhood Mortality
in Egypt, Eritrea, and Uganda

2.3.1 Data Sources

Egypt

The 1995 Egypt Demographic and Health Survey is the third survey in a series of
Demographic and Health surveys that have been carried out in Egypt. The survey
is a nationally-representative survey of 14,779 ever married women aged 15–49.
These women gave birth to a total of 56,681 children but information on antenatal
care visits and assistance, etc. is available only for children born within 5 years
before the survey. For the purpose of this chapter, therefore, we concentrate on these
12,051 children from 8,008 mothers. For comparison purposes we also use a subset
of 7,483 children from 6,140 mothers who were born within 3 years before the
survey. Details concerning the 1995 Egyptian Demographic and Health Survey is
documented in El-Zanaty et al. (1996).

Eritrea

The data used for illustration in the present section come the 1995 Demographic and
Health Surveys (DHS) in the three countries.

The Eritrean Demographic and Health Survey (EDHS) is a nationally-
representative survey of 5,054 women age 15–49 and 1,114 men age 15–59. It
is the first survey ever undertaken by the National Statistics Office (NSO) of the
Department of Macro Policy and International Economic Cooperation, Office of
the President. It was implemented through the worldwide Demographic and Health
Surveys (DHS) program of Macro International Inc.

One of the main objectives of the EDHS was to collect reliable data on maternal
and child health indicators among children in early ages of their life. These include,
among others, antenatal care visits and assistance at delivery. While the 5,054
women had a total of 14,268 children, information on antenatal care visits and
assistance, etc. is available only for children born within 3 years before the survey.
After deleting children with incomplete information on important factors we were
left with 2,284 children belonging to 1,969 mothers. The maximum number of
children per women was 3.

More details concerning the EDHS sample design, estimations of sampling errors
for selected variables as well as summary tabulations are provided in National
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Statistics Office (Eritrea), and Macro International Inc. (1995). In the present
illustration we use the 1,969 mothers as experimental units and treat the 2,284
children as levels nested within these 1,969 mothers.

Uganda

The 1995 Uganda Demographic and Health Survey is a second survey in a series
of Demographic and Health surveys that have been carried out in that country. It is
a nationally-representative survey of 7,070 women age 15–49. By the survey time
these women had a total of 22,752 children but the usable records for the purpose
of this chapter are the 5,677 children from 3,988 mothers who were born within 4
years before the survey and a subset of it – the 4,533 children from 3,670 women
who were born within 3 years before the survey. Tables of preliminary results and
other details on the 1,995 Uganda Demographic and Health Survey may be found
in Statistics Department [Uganda] and Macro International Inc. (1996).

2.3.2 Correlates of Child Mortality

The dependent variable is the log-hazard (logarithm of the rate at which the event
of death occurs). The time variable (duration) measures the number of months from
birth to death or the survey date, whichever comes first. Time varies between 0 and
35 months. The period between 0 and 35 months was partitioned into four: (0, 1),
(1, 6), (6, 12), and (12, 35). The slope of the log-hazard was assumed to be constant
within each interval but may vary between intervals. Additional models with time
ranging between 0 and 47 months (in Uganda) and between 0 and 59 months (in
Egypt) were also fit. In these models additional intervals for the time variable were
used. These were (12, 24) in the case of Uganda and (12, 24), and (24, 36) in the
case of Egypt.

Three mother-specific and five child-specific variables were used as explanatory
variables.

The mother-specific variables are:

X1 – Mother’s Age-group at survey time (15–19, 20–24, 25–29, : : : , 45–49).
X2 – Mother’s Level of Education (None, Primary, Secondary or higher).
X3 – Residence (Urban, Rural).

The child-specific variables are:

X4 – Preceding birth interval (First born, <18, 18–29, 30–47, 48C months).
X5 – Prenatal Care during pregnancy (None, Some prenatal care).
X6 – Place of delivery of index child (Home, Hospital or clinic).
X7 – Sex of index child (Girl, Boy).
X8 – Multiplicity of index child (Single birth, One of multiple births).
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The first level of each covariate was used as baseline (reference) level and, thus,
no estimates are reported for these levels.

These variables are among those considered to be correlated with childhood
mortality in previous analyses of the same data set (for the Eritrean data) or other
data sets. However, because our main aim is of methodological nature, we have not
strived to include all relevant covariates of mortality suggested in the literature or
discuss the theoretical expectations of the effects of the covariates included in the
analysis.

2.4 Results

2.4.1 Covariates Effects

The results of fitting the various models described in Sect. 2.2 to data on Egypt,
Eritrea, and Uganda, are shown in Tables 2.1, 2.2, and 2.3, respectively. The five
columns of results refer to the following situations:

• Model 1 refers to the multilevel piecewise log-linear hazards model in (2.1) but
without heterogeneity term.

• Model 2 refers to the multilevel piecewise log-linear hazards model in (2.1) with
mother-specific heterogeneity.

• Model 3 refers to the multilevel multiprocess model where (2.14) and (2.15) –
that is a hazard model of child mortality and a probit model of prenatal
care – are estimated simultaneously; we allow for mother-specific unobserved
heterogeneity in both models; and allow these two heterogeneity terms to
correlate.

• Model 4 refers to the multilevel multiprocess model where (2.22) and (2.23) –
that is a hazard model of child mortality and a probit model of hospital delivery –

Table 2.1 Estimates of effects of prenatal care and hospital delivery on log-hazards of mortality
(M) in various models: Egypt (1995)

Model 1 Model 2 Model 3 Model 4 Model 5

Parameters (No Hetro) (Hetro) (M and P) (M and H) (M, P & H)

ˇP �0.3493* �0.3959* �1.4141* �0.4037* �1.2112*

ˇH 0.0748 0.0945 0.0800 �0.6066* �0.5283*

�" – 0.7393* 0.9082* 0.7408* 0.8469*

�ı – – 2.2458* – 2.6563*


"ı – – 0.7531* – 0.6314*

�! – – – 2.6997* 2.2649*


"! – – – 0.6182* 0.7741*


ı! – – – – 0.4786*

*Estimate significant at 10 % significance level
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Table 2.2 Estimates of effects of prenatal care and hospital delivery on log-hazards of mortality
(M) in various models: Eritrea (1995)

Model 1 Model 2 Model 3 Model 4 Model 5

Parameters (No Hetro) (Hetro) (M and P) (M and H) (M, P & H)

ˇP �0.4624* �0.4928** 0.4632 �0.5038* 0.4432
ˇH �0.1142 �0.1107 �0.0920 �0.7188 0.1190
�" – 1.2488*** 1.3324*** 1.2367*** 1.3165***

�ı – – 1.3193*** – 1.2913***


"ı – – �0.5265* – �0.5412*

�! – – – 1.9301*** 1.7889***


"! – – – 0.3138** �0.2285

ı! – – – – 0.6233***

*Estimate significant at 10 % level; **Estimate significant at 5 % level; ***Estimate significant at
1 % level

Table 2.3 Estimates of effects of prenatal care and hospital delivery on log-hazards of mortality
(M) in various models: Uganda (1995)

Model 1 Model 2 Model 3 Model 4 Model 5

Parameters (No Hetro) (Hetro) (M and P) (M and H) (M, P & H)

ˇP �0.4163* �0.4280* �0.1284 �0.4258* �0.1713
ˇH �0.2945* �0.2996* �0.2942* 0.0271 �0.0211
�" – 0.5118* 0.4417** 0.5180* 0.4899*

�ı – – 1.9376* – 2.0197*


"ı – – �0.3654*** – �0.4036***

�! – – – 2.0799* 1.8867*


"! – – – �0.4099* �0.3525**


ı! – – – – 0.4625*

*Estimate significant at 10 % level; **Estimate significant at 5 % level; ***Estimate significant at
1 % level

are estimated simultaneously; we allow for mother-specific unobserved hetero-
geneity in both models; and allow these two heterogeneity terms to correlate.

• Model 5 refers to the multilevel multiprocess model where the three Eqs. (2.29),
(2.30), and (2.31) – that is a hazard model of child mortality and two probit
models for hospital delivery and prenatal care, respectively, – are estimated si-
multaneously; we allow for mother-specific unobserved heterogeneity in all three
models, and allow for pairwise correlation between these three heterogeneity
terms.

We have reported results related to hazard models alone and left out those
from probit models. Further, only estimates of Prenatal care and Hospital delivery
are presented in the Tables while estimates of the other background variables are
suppressed.

We can, however, mention that, in the Egyptian case for instance, children from
older cohort of mothers (aged 35 years or above at the time of the survey) had higher
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mortality risks than children from the very youngest cohort (15–19 years at survey
time). Further, children of mothers with higher education (secondary or above level)
had lower mortality; that 2nd and higher order births with short preceding birth
intervals (< 18 months) had higher risks than first born children, while those born
after long interval (at least 30 months) had significantly lower risks. The results for
Eritrea and Uganda, in terms of the unreported covariate effects, were not much
different.

2.4.2 Selection Bias in Prenatal Care Utilization

Again, beginning with Egypt (Table 2.1), a comparison of Models 2 and 3 shows that
while both models show a significant beneficial effect of prenatal care on child mor-
tality hazard, the magnitude is underestimated in the separate specification (from
�1.4141 to �0.3959). This, again, is due to the positive correlation (0.7531) be-
tween the unobserved mother-specific characteristics that affect childhood mortality
risks and the decision to visit a prenatal care during pregnancy. Thus, we can say that
there is also adverse selection into prenatal care, and failure to account for this selec-
tivity severely underestimates the magnitude of the beneficial effect of prenatal care.

The effect of selection in prenatal care is in the opposite direction in Eritrea.
While separate specification (Model 2) shows a marginally significant beneficial
effect of prenatal care (�0.4928), joint modeling (Model 3.) shows a positive
but insignificant effect (0.4632). The correlation between the unobserved mother-
specific characteristics that affect childhood mortality risks and the prenatal care
is negative (�0.5265) and it is this negative correlation that pushed the effect of
prenatal care far to the left of zero. In any case, we note that there is a mild favorable
selection to prenatal care in Eritrea.

In the case of Uganda the selection bias is in the same direction as in Eritrea but it
is stronger. The relatively weak and negative correlation (�0.3654) inflates the effect
of prenatal care from an insignificant value (�0.1284) to a strongly significant effect
(�0.4280) if this favorable selection is not accounted for.

2.4.3 Selection Bias in Hospital Delivery

Beginning with Egypt (Table 2.1), while the separate specification (Model 2) shows
an insignificant and positive effect of hospital delivery on child mortality hazard
(0.0748), joint estimation (Model 4) reveals a highly significant and strong negative
effect (�0.6066). As stated in Lillard and Panis (2000), the mechanical reason
lies in the positive correlation (0.6182) between the unobserved mother-specific
characteristics that affect childhood mortality risks and the decision to delivery
a child in hospital. An ignored positive correlation biases parameter estimates
in positive direction, i.e., toward zero in the present case. Substantively, women
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with above-average risks of losing a baby (" > 0) also tend to have above-average
propensities to deliver in a hospital (¨ > 0); and vice versa. In other words, there
is adverse selection into hospital delivery, and failure to account for this selectivity
severely underestimates the beneficial effect of hospital delivery.

The effect of selection bias is in the same direction in Eritrea as well (Table 2.2)
but the effect is milder in the case of Eritrea than in Egypt. While the estimate
changes from �0.1107 to �0.7188, it is insignificant in both Models 2 and 4.
This is due to the relatively weaker correlation (0.3138) between the unobserved
mother-specific characteristics that affect childhood mortality risks and the decision
to delivery a child in hospital, in the case of Eritrea.

A different picture is depicted in the case of Uganda (Table 2.3). To begin with,
the correlation between the unobserved mother-specific characteristics that affect
childhood mortality risks and the decision to deliver a child in hospital is negative
(�0.4099) in the case of Uganda.

This implies that, women with above-average risks of losing a baby (" > 0)
tend to have below-average propensities to deliver in a hospital (¨ < 0); and vice
versa. Thus, the effect of hospital delivery on child mortality shifts from a highly
significant beneficial effect (�0.2996) to an insignificant effect (0.0271). In other
words, there is favorable selection into hospital delivery in Uganda, and failure to
account for this selectivity severely overestimates the effect of hospital care.

2.4.4 Correlation Between Prenatal Care Utilization
and Hospital Delivery

The results in the above subsections indicated that there is significant correlation
between the mother-specific unobserved heterogeneities in the hazard and probit
models and that failure to account for such correlation would bias the parameter
estimates of the effects of prenatal care and hospital delivery.

An important question that still remains to be answered is as to whether the two
decisions (prenatal care and hospital delivery) are also correlated. It is quite likely
that mothers who visited prenatal care centers during pregnancy would have a higher
propensity to deliver their child in hospital than mothers who never did so. The
result will, then, be that delivery centers get a disproportionately high proportion
of babies whose mothers have visited prenatal care centers during pregnancy. If
ignored, it would be difficult to distinguish between the relative strengths of the
effects of prenatal care and hospital delivery on child mortality when both effects
are considered together.

We therefore address the potential endogeneity of both decisions and estimate a
joint (three-process) model of child mortality, prenatal care, and hospital delivery
decisions.

The results from such a three-process models are shown in the last column
(Model 5) of Tables 2.1, 2.2, and 2.3. In all three tables we see, as expected, that
there is a highly significant positive correlation between the decisions of visiting
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prenatal care during pregnancy and delivering the child in hospital. How does this
affect the relative magnitudes of the effects of these two endogenous factors on the
risk of childhood mortality?

In the case of Egypt Table 2.1 we note that failure to account for this positive
correlation raises the magnitude of effect of both factors – from �1.2112 (Model 5)
to �1.4141 (Model 3.) for prenatal care, and from �0.5283 (Model 5) to �0.6066
(Model 4) for hospital delivery.

The same is true for Eritrea Table 2.2 – from 0.4432 (Model 5) to 0.4632
(Model 3.) for prenatal care, and from 0.1190 (Model 5) to �0.7188 (Model 4)
for hospital delivery.

In Uganda Table 2.3 the changes are from �0.1713 (Model 5) to �0.1284
(Model 3.) for prenatal care, and from �0.0211 (Model 5) to 0.0271 (Model 4)
for hospital delivery.

2.4.5 Comparison of the Standard Model and the Multiprocess
Model with Unobserved Heterogeneity and Correlated
Health Input Variables

As a final remark in this section, it may be worth examining what happens to
the effects of prenatal care and hospital delivery on the log-hazard of childhood
mortality as we move from the standard model (Model 1) to the final model
(Model 5). The changes in estimates of such effects may be examined by comparing
the estimates in columns 1 and 5 of Tables 2.1, 2.2, and 2.3.

The results for Egypt Table 2.1 show that while the standard model reports a
significant beneficial effect of prenatal care (�0.3493) but no effect of hospital
delivery (0.0748), the final model, where selection and correlation are accounted for,
shows that both factors have significant beneficial effects (�1.2112 and �0.5283,
respectively). Thus, it seems that at least part of the effect of hospital delivery was
transferred to that of prenatal care in the standard model, which does not account
for the correlation between these two factors.

The Eritrean case Table 2.2 shows to the contrary. While the true picture is that
the two health inputs have no beneficial effects (0.4432 and 0.1190, respectively
for prenatal care and hospital delivery), failure to account for selection bias into
these two processes and the correlation between them would lead to concluding that
one of them (prenatal care) has strong beneficial effect (�0.4624) while the other
(hospital care) has no effect at all (�0.1142).

Ugandan results Table 2.3 show another interesting case. The right picture
(Model 5) is that none of these two health inputs has any beneficial effect on
childhood mortality (�0.1713 and �0.0211, respectively for prenatal care and
hospital delivery). If one ignores selection biases and the correlation between the
two health inputs, however, one would be led to the erroneous conclusion that the
two health inputs have highly significant beneficial effects in reducing childhood
mortality (�0.4163 and �0.2945, respectively).
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Are these changes statistically significant? This question may be answered by
comparing the differences in log-likelihoods in the models under consideration
because the models are nested within the next higher model.

It may also be of interest to examine the effects of unobserved heterogeneity,
selection bias, and correlation between health input variables, affects the effects of
the exogenous variables Education and Residence. A priori, one would suspect that
these two variables are correlated with the health input variables (prenatal care and
hospital delivery) because we expect the more educated women and those in urban
areas would have a higher propensity to use health care facilities.

The results (details not shown here) show that as long as Prenatal Care is treated
as exogenous variable, Education (at higher level) continues to have beneficial
effects in reducing childhood mortality in the Egyptian data set (with estimates
�0.4188, �0.4429, and �0.2279, respectively in Models 1, 2, and 4). Once we treat
Prenatal Care as endogenous variable (Model 3) and/or account for its correlation
with Hospital Delivery (Model 5), however, the beneficial effect of Education fades
away (the estimate reduces to �0.0916 and 0.0180, respectively, in Models 3 and 5).
One would, thus, be tempted to suspect that the effects of Education, at least in Egypt
work, via higher propensity of educated women to make use of prenatal care centers.
But we also need to reconcile this suspicion with our earlier results of adverse
selection into prenatal care. The effect of Residence is more blurred though there is
marginal evidence that the estimate shifts from insignificant difference towards rural
advantages in childhood mortality when proper care is taken of selection effects.

The opposite is true in Eritrea. Results from model 1, 2 and 4 show that there
is no effect of education on the hazard of childhood mortality. Once Prenatal Care
is treated at endogenous variable and/or its correlation with Hospital Delivery is
accounted for, it turns out that Education (now at primary level) has a strong
beneficial effect in reducing the risk of childhood mortality. We already know
that selection into prenatal care is favorable in Eritrea prompting that it is the
more educated women who benefit from such services. Thus, accounting for such
favorable selection brings to the surface the true and beneficial effect of education
on childhood mortality risks. The effect of Residence is also interesting in the case
of Eritrea. The standard model (Model 1) shows that Rural areas have significantly
lower risks of childhood mortality than urban areas. In Models 3 and 5, however, it
is shown that there are no differential mortality risks by mother’s place of residence.
We also know that we have favorable selection into prenatal care and that we suspect
this would be so due to the fact that urban residents benefit more from prenatal care
centers than their rural counterparts. Thus, failure to account for this selection would
have underestimated the urban advantage.

Uganda provides another interesting result. Here, there is relatively weaker
impact of our procedure on the effects of Education and Residence. If any, it is when
we account for Hospital Delivery that the effects of Education are strengthened. It
may be noted that there is a stronger correlation between the heterogeneity terms of
Hospital Delivery and Mortality in Uganda than in Egypt and Eritrea. On the other
hand, there is a weaker correlation between the heterogeneity terms of Prenatal Care
and Mortality in Uganda than in Egypt and Eritrea.
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The effects of accounting for selection biases and correlation between health
input variables are relatively minor on the other exogenous variables (Interval, Sex,
and Multiplicity) that we don’t give much space to discuss them.

2.5 Summary and Concluding Remarks

For the last two decades Demographic and Health Surveys have been collected to
provide information on family planning, maternal and child health, child survival,
and reproductive health in Africa, Asia, the Near East, Latin America, and the
Caribbean. The availability of such surveys has helped to shift the focus of
investigations from indirect methods of estimation of summary measures to the use
modern analytic methods in order to examine correlates of demographic behavior
and their policy implications.

The surveys have been collected hierarchically at the family, household, and
community levels. However, not many analysts seem to be aware of this nature
of the data. The data in the surveys are collected by interviewing a nationally
representative sample of women (and men in some cases). These women are
independent observations once we account for their communities. Thus, in the
analysis of marriage behavior, using these women as experimental units is a correct
procedure.

In the analysis of childhood mortality, however, the situation is different. To
analyze childhood mortality the original women data is converted to child data. In
so doing a number of children are nested within the same woman (mother) and the
data on children no longer consists of independent (random) observations unless we
select just one child, say of a given birth order, from each mother. Children of the
same mother are more alike than children selected at random from the population
and analytical methods must pay due attention to this nature of the data.

Other issues of concern in the analysis of Demographic and Health Surveys
Data include accounting for correlation structure among various determinants (such
as that between death of previous child and preceding birth interval) and, more
importantly, selection biases in the utilization of health facilities.

The present chapter attempts to address some of above issues through analyses of
childhood mortality in three African countries – Egypt, Eritrea, and Uganda based
on their 1995 DHS data.

In contrast to previous approaches where children are used as independent
experimental units, we have treated children of the same mother as correlated cases
(multilevels) within the same experimental unit (mother). We have also allowed for
mother-specific unobserved heterogeneity at the mother level. Further, we have paid
due account to selection into health care utilization by treating health care variables
like prenatal care and hospital delivery as endogenous variables and modeling them
simultaneously with the hazard of mortality.

Our results show that there are significant mother-level heterogeneities in the
three countries. More interestingly, we have demonstrated that while there are
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selection biases of health care utilization in all three countries, their effects and,
hence, policy implications are different. In one of the countries (Egypt) we have
shown that there is adverse selection bias and failure to account for this selection
underestimates the beneficial effects of health care inputs. In the other two countries
(Eritrea and Uganda) the selection is that of favorable selection and failure to
account for it overstates the effect of health inputs.

We have also accounted for the possible correlation between the various health
input variables and demonstrated that failure to account for such correlation
would benefit one of the variables at the expense of the other. Further, we have
demonstrated how the effects of exogenous variables like education and residence
may be under/over-estimated if proper care is not taken to address selection into
health care utilization.
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Chapter 3
Modeling Spatial Effects on Childhood
Mortality Via Geo-additive Bayesian
Discrete-Time Survival Model: A Case
Study from Nigeria

Gebrenegus Ghilagaber, Diddy Antai, and Ngianga-Bakwin Kandala

3.1 Introduction

Childhood mortality is an important indicator of overall health and development in
a country. It is the result of a complex interplay of determinants at many levels,
and as such several studies have recognized that, for instance, maternal (Caldwell
1979; Cleland and van Ginneken 1988), socio-economic (Castro-Leal et al. 1999;
Wagstaff 2001), and environmental (Wolfe and Behrman 1982; Lee et al. 1997)
factors are important determinants of childhood mortality. However, only a few
studies have incorporated environmental factors that are spatial in nature and derived
from geographic databases, such as distances from households or communities
(Watson et al. 1997).

While the commonly used approaches, such as correlation coefficients and
regression analysis may produce statistical outcomes and measures of association,
which are limited to a particular location, these relationships cannot be readily
generalized for other locations within a country. In order to determine that the
observed social phenomena are not distributed in a spatially random manner,
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spatial analysis is employed. Spatial analysis could be defined as a quantitative
data analysis, which focuses on the role of space and relies explicitly on spatial
variables in order to explain or predict the phenomenon under investigation (Cressie
1993; Chou 1997). It tests theories that stress that the location of an individual
influences social attitudes and behaviour, and that observed social phenomena are
not distributed in a spatially random fashion (Weeks 2004). Studies of childhood
mortality in developing countries using aggregated data and methodologies that
ignore spatial dimensions run the risk of explaining very little of the variations in
mortality rates as well as masking spatial variations. For instance, results of the 2003
Nigeria Demographic and Health Survey (NDHS), disaggregated by geopolitical
zones, shows that the infant mortality rate (IMR) for the period 10–14 years
preceding the 2003 NDHS (1989–1993) at the national level was 113 per 1,000
live-births, while the corresponding IMR for the then four geopolitical zones was
North East (129/1,000), North West (136/1,000), and South East (74/1,000), South
West (81/1,000) (NPC 2004).

Crude under-five mortality rates stratified by districts (states) are displayed in
Table 3.1, and reveal wide variations between districts within the same geopolitical
region, information that would otherwise be “hidden” in the overall picture of crude
mortality rate for that region or states had spatial analysis not been carried out,
thereby exemplifying the significance of spatial analysis.

This chapter is intended to account simultaneously for spatial and time-varying
effects on childhood mortality by employing a geo-additive Bayesian model with
dynamic and spatial extensions of discrete-time survival models in estimating
temporal and spatial variation in the determinants of childhood mortality, as well
as any associations between risk factors and childhood mortality in the presence
of spatial correlation. To ignore this correlation would mean an underestimation
of the variance of the effects of risk factors (Weeks 2004). The impact of some
determinant factors of child survival is allowed to vary over time, as well as allowing
for non-linear effects of some covariates on child survival. This model introduces
appropriate smoothness priors for spatial and non-linear effects, as well as Markov
chain Monte Carlo simulation techniques (Gelfand and Smith 1990; Smith and
Roberts 1993), used to estimate the model parameters. The models are subsequently
used to examine spatial variation in childhood mortality rates in Nigeria, and explore
district-level clustering of mortality rates across both space and time (Fig. 3.1). This
chapter will however be limited to the older 31 states (i.e. states created before
1996) due to lack of spatial data including the last five states. Figure 3.1 displays
spatial distribution of mortality rates (per 1,000) across these states/districts for
crude neonatal mortality (panel b); crude peri-natal mortality (panel c); crude infant
mortality (panel d); crude child mortality (panel e); and crude under-five mortality
(panel f).
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Table 3.1 Under-five mortality rates (per 1,000) by older states (districts) in
Nigeria for 0–4 years prior to the survey (1999–2003)

Region No. District Mortality rate (per 1,000)

North Central All 172
1 Plateau 65a

2 Benue 112a

3 Kogi 131
4 Kwara 96a

5 Niger 202
6 Abuja (FCT) 123a

North East All 270
7 Taraba 132a

8 Adamawa 270a

9 Borno 262
10 Bauchi 278a

11 Yobe 299

North West All 264
12 Jigawa 263a

13 Kano 266
14 Kebbi 240
15 Kaduna 221
16 Katsina 222
17 Sokoto 304a

South East All 92
18 Anambra 54a

19 Enugu 192
20 Abia 126
21 Imo 98a

South South All 187
22 Cross River 136a

23 Akwa Ibom 154a

24 Rivers 242a

25 Delta 117a

26 Edo 134a

South West All 101
27 Lagos 101
28 Oyo 52
29 Osun 86a

30 Ogun 124
31 Ondo 118a

aImputed rates, which correspond to Harmonic means of neighbouring states
whenever available



32 G. Ghilagaber et al.

Fig. 3.1 Map of Nigeria (a) and spatial distribution of mortality rates across the 36 states/districts
(b–f), in Nigeria 1999-2003 (Source: Table 3.1)

3.2 Study Area and Study Population

Nigeria, with a 2006 population of 140 million people, is the most populous country
in Africa (Onuah 2006). It is also the tenth largest country by population in the
world. The country lies on the west coast of Africa between 4ı and 14ı North
latitude and 2ı and 15ı East longitude, and is bordered by Benin, Niger, Chad,
Cameroon, and the Gulf of Guinea. It has a landmass extending over 923,768 km2

and is located on the eastern terminus of the bulge of West Africa (Population

http://dx.doi.org/10.1007/978-94-007-6778-2_2
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Resource Centre 2000). With an average density of approximately 124 persons
per square kilometer (Ali-Akpajiak and Pyke 2003) Nigeria is one of the most
densely populated countries in the world. The spatial distribution of the population
is uneven, with some areas of the country sparsely inhabited while other areas are
densely populated. With the exception of Lagos, which has the highest population
density in the country, the South East of Nigeria has the highest densities. Sixty four
percent of the population is concentrated in the rural areas (Ali-Akpajiak and Pyke
2003). Nigeria is made up of 36 states (districts) and a Federal Capital Territory
at Abuja. The 36 states are grouped into six geopolitical zones (regions). The mean
temperature ranges between 25 ıC and 40 ıC, and rainfall ranges between 2,650 mm
in the Southeast and less than 600 mm in some parts of northern Nigeria that lies
mainly in the Sahara desert. These climatic differences give rise to both vegetational
differences ranging from mangrove swamp forest in the Niger delta and Sahel
grassland in the North, and different soil conditions. This results in a variation in
agricultural produce and natural resources in the different parts of Nigeria. A map
of Nigeria indicating the geographical location of the states (districts) is shown in
Fig. 3.1.

3.3 Geo-Additive Bayesian Discrete-Time Survival Model

3.3.1 The Basic Model

Let T denote a discrete survival time, where t ç f1, : : : , q C 1g represents the t
th month after birth and let xi D (x1, : : : , xt) denote the history of a covariate up
to month t. The discrete-time conditional probability of death at month t is then
given by

œ.t; xi/ D pr.T D t jT � t; xi/; t D 1; : : : ; q: (3.1)

Survival information on each child is recorded by (ti, ıi), i ç f1, : : : , Ng, where
ti ç f1, : : : , 60g is the child’s observed survival time in months, and ıi is a survival
indicator with ıi D 1 if child i died, and ıi D 0 if it is still alive. Therefore for ıi D 1,
ti is the age (in months) of the child at death, and for ıi D 0, ti is the current age of
the child (in months) at the time of interview.

The assumption is non-informative censoring as applied by Lagakos (see
Lagakos 1979), so that the risk set Rt includes all individuals who are censored
in interval ending in t. A binary event indicator is then defined as:

yitfi çRt; t D 1; : : : ; tig
yit D f1 if t D ti and ıi D 1

f0 otherwise; (3.2)
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The event of death of individual i could then be considered as a sequence of
binary “outcomes” – dying at age t (yit D 1) or in the case of survival beyond age
t (yit D 0). Such formulation yields a sequence of 0 s and 1 s indicating survival
histories of each child at the various time points.

3.3.2 Incorporation of Fixed-, Time-Varying
and Spatial-Effects

Parallel with the sequence of 0 s and 1 s, the values of relevant explanatory variables
xit D (xi1, : : : , xit), i D1, 2, : : : could be recorded. These variables may be fixed
over time, for example sex, place of residence; or may vary over time, for example
breastfeeding of a child, at time t.

The indicator yit could be linked to the covariates xit by an appropriate link
function for binary response model such as probit, logit or multinomial link
function, and a predictor �it (xit). Assuming that yit has a binomial distribution and
using a probit link function for i ç Rt, the probability of death for a child i is denoted
by:

ˆ.˜it/ D pr .yit D 1jxit/: (3.3)

The usual form of the predictor is

˜it D f0 .t/ C xit “ (3.4)

where the baseline effect f0 (t), t D1, 2, : : : is an unknown, usually non linear,
function of t to be estimated from data and ˇ is the vector of fixed covariate effects.
In parametric framework, the baseline hazard is often modelled by a few dummy
variables, which divide the time-axis into a number of relatively small segments
or by some low-order polynomial. In practice however, it is difficult to correctly
specify such parametric functional forms for the baseline effects in advance. Non-
parametric modelling based on some qualitative smoothness restrictions offers a
more flexible framework to explore unknown patterns of the baseline.

Restriction to fixed effects alone might not be adequate in most cases, due to the
covariates whose value may vary over time. The predictor in (3.4) is subsequently
extended to a more flexible semi-parametric model, which could accommodate
time-varying effects. On further inclusion of another expression to represent spatial
effects, this semi-parametric predictor is given by

˜it D f0.t/ C f1.X/ C f.t/Xit C fspat.si/ C Xit “: (3.5)

Here, f0(t) is the baseline function of time, and f1 is a nonlinear effect of
metrical covariate X. The effects, f (t), of the covariates in Xit are time-varying,
while Xit comprises fixed covariates whose effect is represented by the parameter
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vector ˇ; and fspat is the non-linear spatial component of, for instance, district
s (s D1, : : : ,S), where the child lives. The spatial effects fspat (si) may be further
split-up into spatially correlated (structured) and uncorrelated (unstructured) effects
of the form fstr (si) C funstr (si). The fundamental reason behind this is that a spatial
effect is a surrogate of many unobserved influencing factors, some of which may
obey a strong spatial structure while others may only be present locally. The
analyses in this chapter are based on (3.4) and (3.5), and would be subsequently
referred to as “constant fixed effects model” and “geo-additive model” respectively.

3.3.3 The Estimation Process

The functions f0, f1, and f are smooth over by second-order random walk priors
using the MCMC techniques implemented in BayesX (Fahrmeir and Lang 2001a, b;
Brezger et al. 2002).

Let f D ff (1), : : : ,f (m),m � ng be a vector of corresponding function evaluations
at the observed values of x. The general form of the prior for f would be:

fj£2 ’ exp
��1=2£2.f2 f=Kf/

�
(3.6)

where K is a penalty matrix that penalizes too abrupt jumps between neighbouring
parameters. In most cases, K is rank deficient, therefore the prior for f is improper.

Traditionally, the smoothing parameter is equivalent to the variance parameter �2,
which controls the trade-off between flexibility and smoothness. A highly dispersed
but proper hyperprior is assigned to �2 so as to estimate the smoothness parameter
simultaneously with f. A proper prior for �2 is required in order to obtain a proper
posterior for f (Hobart and Casella 1996). In the event of the selection of an Inverse
Gamma distribution with hyper-parameters a and b, (�2 � IG (a, b)), a first- and
second-order random walk priors for f would be defined respectively by:

f.t/ D f.t � 1/ C u.t/; and f.t/ D 2f.t � 1/ � f.t � 2/ C u.t/; (3.7)

with Gaussian errors u(t) � N (0;�2) and diffuse priors f (1) ’ const, or f (1)
and f (2) ’ const, as initial values. A first order random walk penalizes abrupt
jumps f (t) � f (t � 1) between successive states, and a second order random walk
penalizes deviations from the linear trend 2f (t � 1) � f (t � 2). The trade-off be-
tween flexibility and smoothness of f is controlled by the variance parameter �2.
This chapter adopts the approach of estimating the variance parameter and the
smoothing function simultaneously; this is achieved by introducing an additional
hyperprior for �2 at a further stage of the hierarchy. A highly dispersed but proper
Inverse Gamma prior, p (�2) � IG (a; b) is chosen, with a D 1 and b D 0.005.
Similarly, a highly dispersed Inverse Gamma prior is defined for the overall
variance ¢2.
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For the spatially correlated or structured effect, fstr (s), s D 1, : : : ,S, Marked
random field priors common in spatial statistics are chosen (Besag et al. 1991) of
the form

fstr.s/j fstr.r/; r ¤ s; £2
str � N


X
fstr.r/= Ns; £2

str=Ns
�

rç@s (3.8)

where Ns is the number of adjacent regions, and r ç @s indicates that region r is a
‘neighbour’ of region s. Therefore the conditional mean of fstr (s) is an unweighted
average of function valuations for neighbouring regions. In addition, the variance
parameter �2

str controls the degree of smoothness.
For a spatially uncorrelated (unstructured) effect, funstr, s D 1, : : : ,S, common

assumptions are that the parameters funstr (s), are i.i.d. Gaussian:

funstr.s/j�2
unstr � N.0; �2

unstr/: (3.9)

Variance or smoothness parameters �2
j, j D str, unstr, are also considered as

unknown in a fully Bayesian analysis, and are therefore estimated simultaneously
with the corresponding unknown functions fj. As such, hyperpriors are assigned
to them in a second stage of the hierarchy by highly dispersed Inverse Gamma
distributions p (�2

j) � IG (aj, bj) with known hyperparameters aj and bj.
Standard choices for the hyperparameters are a D 1 and b D 0.005 or

a D b D 0.001. The results of the illustration in this chapter are however not
sensitive to the choice of a and b, and the later choice is close to Jeffrey’s non-
informative prior. Fully Bayesian inference is based on the posterior distribution
of model parameter, which is not a known form. As such, MCMC sampling from
full conditionals for nonlinear effects, spatial effects, fixed effects and smoothing
parameters is used for posterior analysis. For the nonlinear and spatial effects,
the sampling scheme of Iterative Weighted Least Squares (IWLS) implemented in
BayesX (see Brezger et al. 2002) is applied. This is an alternative to the general
Metropolis–Hastings algorithms based on conditional prior proposals, suggested
first by Knorr-Held (1999) in the context of state space models as an extension to
Gamerman (1997), and given in more detail in Knorr-Held and Rue (2002).

An essential task in the model-building process is the comparison of a set
of plausible models, for instance, rating the impact of covariates and assessing
whether their effects are time-varying or not; or comparing geo-additive models
with simpler parametric alternatives. The measure of complexity and fit suggested
by Spiegelhalter et al. (2002) is adopted in this chapter for comparison, and the
model that takes all relevant structure into account while remaining parsimonious is
selected.

The Deviance Information Criteria (DIC), which may be used for model
comparison, is defined as

DIC.M/ D D.M/ C pD: (3.10)
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Therefore, the posterior mean of the deviance D.M/ is penalized by the effective
number of model parameters pD. Models could be validated by analyzing the DIC,
which is smaller in models with covariates of high explanatory value.

3.3.4 Advantages of the Bayesian Geo-additive Model

There are several potential advantages of the Bayesian geo-additive model described
above over the more conventional approaches such as, discrete-time Cox models
with time-varying covariates and fixed or random districts effects, or the standard
2-level multilevel modelling with unstructured spatial effects (Goldstein 1999). In
the conventional models, it is assumed that the random components at the contextual
level (district in this case) are mutually independent. In practice however, these
approaches specify correlated random residuals (see Langford et al. 1999), which is
contrary to the assumption. Furthermore, Borgoni and Billari (2003) point out that
the independence assumption has an inherent problem of inconsistency. They argue
that if the location of the event matters, it is only logical to assume that areas close
to each other are more similar than areas that are far apart. In addition, treating
groups (in this case, districts) as independent is unrealistic and may lead to poor
estimates of the standard errors. As Rabe-Heskesth and Everitt (2000) stipulate,
standard errors for between-district factors are likely to be underestimated as a
result of observations from the same districts being treated as independent, and
thereby increasing the apparent sample size. In contrast, standard errors for within-
district factors are likely to be overestimated (see also Bolstad and Manda 2001).
Demographic and Health Survey data on the other hand are based on the random
sampling of districts that introduces a structured component, which allows for the
borrowing of strength from neighbors in order to cope with the posterior uncertainty
of the district effect and obtain estimates for areas that may have inadequate sample
sizes or are not represented in the sample. In order to highlight the advantages of
the Bayesian geo-additive model approach used in this chapter, and examine the
potential bias incurred when ignoring the dependence between aggregated spatial
areas, several models shall be fitted with, and without the structured and random
components, as seen in the illustration below.

3.4 Illustration: Spatial Modelling of Under-Five
Mortality in Nigeria

3.4.1 Data Set

Data from the 2003 Nigeria Demographic and Health Survey (NDHS) was used in
this chapter. The sample included 7,620 women aged 15–49 years, and all men aged
15–59 in a sub-sample of one-third (i.e. 2,346) of the households. The data contains
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6,029 children born within 5 years prior to the survey, which came from 3,725
mothers who contributed between 1 child and 6 children. Technical details of the
survey have been reported in the official 2003 NDHS report (NPC 2004). From the
data collected, a retrospective child file consisting of all children born to the sample
women was generated, of these, 1,559 children died before their fifth birthday. Each
live birth and each subsequent child health outcome contains information on the
household and each parent, thereby constituting the basic analytic sample.

The response variable used in this chapter is:

yit D
(

1 W if child i dies in month t

0 W if child i survives beyond time t;
(3.11)

3.4.2 Specification and Measurement of Variables

On the basis of previous studies, a selection of theoretically relevant variables was
chosen as covariates of childhood mortality, and these include: mab, mother’s age
at birth of the child (in years) – nonlinear; dobt, duration of breastfeeding – time-
dependent; dist, district (state) in Nigeria – spatial covariate; X, vector of categorical
covariates, such as: sex of the child (male or female), asset index (low, middle or
higher income household), place of residence (urban or rural), mother’s educational
level (no education, primary, secondary of higher), place of delivery (hospital or
home/other), preceding birth interval long birth interval [�24 months], or short birth
interval [<24 months], antenatal visits during pregnancy (at least one visit, or none),
marital status of mother (single or married), and district level mortality rate per
1,000 (at least 6 children, or at less than six children per woman).

The last levels of each covariate were selected as reference or baseline levels;
descriptive statistics of covariates used in the analysis are shown in Table 3.2.
Available statistics suggest that child mortality levels in Nigeria exhibit wide
geographic disparities (NPC 2000, 2004), with the northern regions and rural areas
generally having higher childhood mortality rates compared to the southern regions
and urban areas respectively. While the focus of previous studies in Nigeria have
mainly been on effect of individual and household factors in explaining childhood
mortality differences in the country, they have largely neglected the impact of
small area variations and community-level variables (see Iyun 1992; Adetunji 1994;
Folasade 2000; NPC 2004).

The aim of this present chapter is to highlight the regional- and district-level
variations in under-five mortality in Nigeria, while improving current knowledge
of district-level socio-economic and demographic determinants (thereby warranting
the inclusion of a geographic location [districts] covariate). It is also intended to
assist policy makers in evaluating and designing programme strategies needed to
improve child health services, and reduce childhood mortality levels in Nigeria.
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Table 3.2 Descriptive statistics of covariates used in the analysis, Nigeria
Demographic and Health Survey, 2003

Variables Frequency (%) Coding

Place of residence:
Urban 2,118 (35 %) 1
Rural 3,911 (65 %) Reference category

Sex of the child:
Male 3,062 (51 %) 1
Female 2,967 (49 %) Reference category

Preceding birth interval:
Long birth interval [25C months] 3,266 (58 %) 1
Short birth interval [<25 months] 2,326 (42 %) Reference category

Mother’s current age (in years):
Less than 20 years 264 (4 %) 1
20–35 years 5,765 (96 %) Reference category

Antenatal visits during pregnancy:
At least one visit 2,337 (64 %) 1
No antenatal visit 1,339 (36 %) Reference category

Place of delivery:
Hospital 2,094 (35 %) 1
Home/other 3,878 (65 %) Reference category

Asset index [economic status of the household]:
1st quintile 970 (16 %) 1
2nd quintile 2,332 (39 %) 2
3rd quintile 1,322 (22 %) 3
4th quintile 1,405 (23 %) Reference category

Mother’s educational level:
No education 3,033 (50 %) 1
Primary, secondary of higher 2,966 (50 %) Reference category

Partner’s educational level:
No education 2,343 (40 %) 1
Primary, secondary of higher 3,501 (60 %) Reference category

Marital status of mother:
Single 483 (8 %) 1
Married 5,546 (92 %) Reference category

Household size:
Large size 1,724 (29 %) 1
Medium size 2,927 (48 %) 2
Small size 1,378 (23 %) Reference category

3.4.3 Statistical Method

An analysis and comparison of simpler parametric probit models, and probit models
with dynamic effects, pr (yit D 1jxit) D· (�it), was made for the probability of dying
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in month t, i.e. the conditional probability of a child dying, given the child’s age in
months, the district where the child lived before death, and covariates in X above, is
modeled with the following predictors:

M1 W �it D f0.t/ C Xitˇ

M2 W �it D f0.t/ C f1.mab/ C f .t/Xit C funstr.dist/ C fstr.dist/ C Xitˇ

The fixed effects in model M1 include all covariates described above with
constant fixed effects. Mother’s age at birth was split into three categories as shown
in Table 3.2, and duration of breastfeeding was included as dichotomous (0, 1)
variable. Model M2 will be superior to model M1 because Model M2 accounts for
the unobserved heterogeneity that might exist in the data, all of which cannot be
captured by the covariates (see Madise et al. 1999).

The effects of f0 (t), f1 and f (t) are estimated using second-order random walk
prior, and Markov random field priors for fstr (s). The analysis was carried out using
BayesX-version 0.9 (Brezger et al. 2002), a software for Bayesian inference based
on Markov Chain Monte Carlo simulation techniques. The sensitivity of the effects
to choice of different priors for the non-linear effects (P-splines) and the choice of
the hyperparameter values a and b are investigated.

Previous studies, for example, Berger et al. (2002), have shown that breastfeeding
is an important factor. In order to assess its effect, a time-varying indicator variable
(see Kandala 2002), that takes the value 1 in the months a child is breastfed,
and 0 otherwise, is generated. In addition, temporal and spatial variations in the
determinants of child mortality are also assessed. Common choices for discrete
survival models are the grouped Cox model and probit or logit models. For this
chapter, probit model for discrete survival data is used because binary response
models (3.3) can be written equivalently in terms of latent Gaussian utilities, which
lead to very efficient estimation algorithms. In addition, since survival time in the
DHS data set is recorded in months and the longest observation time for this study
is limited to 60 months, the data naturally contain a high amount of tied events. A
constant hazard within each month is assumed.

At the exploratory stage, a probit model with constant covariate effects (M1) for
the effects of breastfeeding and mother’s age are fitted with a view to compare them
to the dynamic probit models (M2).

3.5 Results

3.5.1 Fixed Effects

The estimates of posterior odds ratio of the fixed effect parameters for under-five
mortality in Nigeria (Model 2) together with their standard errors and quantiles
are presented in Table 3.3. Results indicate that children living in urban areas at
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Table 3.3 Posterior Odds ratio of the fixed effect parameters for under-five mortality in
Nigeria (Model 2)

Variable Odds ration (OR) 2.5 % quantile 97.5 % quantile

Place of residence
Urban 0.54* (0.38; 0.83)
Rural 1

Sex of the child
Male 1.08 (0.83; 1.40)
Female 1

Preceding birth interval
<25 months 1
25C months 0.71* (0.55; 0.94)

Antenatal visits during pregnancy
At least one visit 0.57* (0.40 ; 0.77)
No visit 1

Place of delivery
Home or other 1
Hospital 0.95 (0.68; 1.40)

Asset index
1st quintile 1
2nd quintile 0.86 (0.55; 1.23)
3rd quintile 1.09 (0.78; 1.54)
4th quintile 0.93 (0.64; 1.37)

Mother’s educational level
No education 1.51* (1.06; 2.25)
Primary, secondary, or higher 1

Partner’s educational level
No education 0.76 (0.54; 1.20)
Primary, secondary, or higher 1

Marital status of mother
Single 1.27 (0.66; 2.47)
Married 1

Household size
Small size 1
Medium size 0.99 (0.67; 1.68)
Large size 0.96 (0.64; 1.51)

*Estimate significant at 5% level. This is also indicated by the corresponding 95%
confidence interval (which doesn’t include 1)

lower risk of dying than children living in rural areas (posterior odds ratio 0.54),
with positive corresponding 2.5 %- and 97.5 % quantiles indicating that the effect
is statistically significant. Boys are only slightly at higher risk of dying than girls
(posterior odds ratio 1.08), and the corresponding 2.5 %- and 97.5 % quantiles are
both positive. The results also show that a short birth interval significantly reduces
a child’s chances of survival, as children with birth interval 25C months were at
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lower risk of dying compared to those < 25 months (posterior odds ratio 0.71),
the effect being statistically significant. In comparison to children whose mothers
had no antenatal visits during pregnancy, children whose mothers had at least one
antenatal visit were at lower risk of dying; the effect being statistically significant.

Children delivered in hospitals were at slightly lower risk of dying compared to
children born at home or elsewhere (posterior odds ratio 0.95). Findings also indi-
cate that child survival is associated with economic status of the household; while
children living in households within the 2nd and 4th quintiles were significantly
at lower risks of dying compared to those in the 1st quintile (richest households),
those living in households within the 3rd quintile had a slightly higher risk of dying
(posterior odds ratio 1.09) compared to those in the 1st quintile. Mothers’ education,
was associated with child survival and works in the expected direction (with children
of uneducated mothers having 50 % higher risk). Partner’s education, on the other
hand, was insignificant.

Children of single mothers were at higher risk of dying (posterior odds ratio
1.27) compared to children whose mothers were married; both quantiles were
positive, and therefore the relationship was significant. Remarkably, the larger the
household size, the lower the risk of the children dying. Children living in medium-
size households (posterior odds ratio 0.99), and those living in large-size households
(posterior odds ratio 0.96), were at lower risk of dying compared to children living in
small-size households; both relationships had positive quantiles and were therefore
significant.

3.5.2 Baseline Effects

The estimated nonlinear effect of child’s age (baseline time) and the time-varying
effects, modelled and fitted through Bayesian P-splines are shown in Fig. 3.2. The
posterior means are presented within 80–95 % credible intervals, and show that
starting from a comparably high level in the first month, the baseline effect remains
more or less constant until 25–26, and 40–41 months, where they peak. These
observed peaks are likely to be caused by a “heaping” effect from the large number
of deaths reported at these times (probably resulting from incorrect reporting of
large number of deaths at these ages).

3.5.3 Time-Varying Effects

Figure 3.3 displays the time-varying effect of breastfeeding in Nigeria, and indicates
that breastfeeding is on average associated with lower risk of mortality within the
first 16–18 months using 80–95 % credible intervals. However, given the wide range
of the 80–95 % credible region at the end of the observation period (most likely due
to fewer numbers of cases), the results beyond 18 months should be interpreted with
caution.



3 Modeling Spatial Effects on Childhood Mortality Via Geo-additive. . . 43

Fig. 3.2 Estimated nonlinear effect of baseline time. Shown is the posterior mean within 80–95 %
credible intervals

Fig. 3.3 Estimated nonlinear effect of time-varying effect of breastfeeding. Shown is the posterior
mean within 80–95 % credible intervals

3.5.4 Nonlinear Effects

Figure 3.4 shows the non-linear or time-varying effect of mother’s age at birth of the
child. Children with younger mothers (<20 years) and older mothers (>35 years)
have higher (but statistically insignificant) risk of dying compared to children of
mothers within the middle age group (22–34 years). Figure 3.4 also shows that
children of mothers 42–48 years are even at higher risk of dying compared to
children of mothers <20 years.
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Fig. 3.4 Estimated nonlinear effect of mother’s age at child’s birth. Shown is the posterior mean
within 80–95 % credible intervals

0.82Dark coloured – high risk

Grey coloured  – low risk

1 1.21

Fig. 3.5 Estimated odd ratio of total residual spatial states effects for under-five mortality in
Nigeria. Dark coloured – high risk. Grey coloured – low risk

3.5.5 Spatial Effects

Posterior means of the estimated residual spatial states effects on under-five
mortality in Nigeria are presented in Fig. 3.5. This map shows a strong spatial
pattern, which suggests that survival chances of children under-5 years of age
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are highest within the North Western (Sokoto, and Kebbi) and South Western
(Lagos) regions compared to the other regions. On the other hand, the survival
chances of children under-5 years are lowest among children from Jigawa, Taraba,
Delta, Rivers and Adamawa states compared to the children from the rest of the
states. A comparison between the under-five mortality rates (Table 3.1) and the
estimated odds ratio (Fig. 3.5) reveals the emergence of a clear spatial pattern of
under-five mortality risk with the residual effects in Fig. 3.5. Therefore, failure to
take into consideration the posterior uncertainty in the spatial location (states or
districts) would invariably lead to an overestimation of the precision in predicting
childhood mortality risks in unsampled districts. The spatial effects could therefore
be interpreted as representing the cumulative effect of unidentified or unmeasured
additional covariates that may reflect impacts of environmental and socio-cultural
factors.

3.6 Discussion and Conclusion

After controlling for the spatial dependence in the data, almost all the covariates
associated with under-five mortality in the fixed part of the model were found to have
effects in the expected directions. A remarkable finding however, is that children
in larger households are at slightly lesser risk of dying compared to children in
small households; this may not be unconnected with factors that might contribute
to a household’s propensity to experience childhood deaths such as the burden of
child ill-health and mortality being borne by only a small fraction of all households
(Madise and Diamond 1995); household income (Vella et al. 1992); maternal
education (Cleland and van Ginneken 1988); physical access to care (Kuate Defo
1996); and rural as opposes to urban setting (Sastry 1997).

The time-varying effects of breastfeeding emphasize the importance of breast-
feeding, which is widely believed to be the most beneficial source of infant nutrition
for the attainment of health and well-being of the infant (Weimer 2001). Results
of this study show a lowered risk of mortality associated with breastfeeding within
the first 16–18 months. However, results at the end of the observation period do
not provide reliable information on the dynamic effect of breastfeeding (due to few
cases), and should therefore be interpreted with caution. Results of the nonlinear
effect of mother’s age at the birth of the child are in the expected direction,
emphasizing the risk associated with younger mother (also seen in Alam 2000) and
late childbirth (see Hobcraft et al. 1985), especially the higher risk associated with
children of women aged 42–48 years.

The estimated residual spatial effects for under-five mortality in Fig. 3.5 show
clear differences between the significantly better survival chances of children in the
North West (Sokoto, and Kebbi) and South West (Lagos) regions compared to the
North East (Adamawa, Taraba, Yobe, Borno), South South (Delta, Rivers, Akwa
Ibom) and South East (Enugu) regions. These state patterns are similar to analysis
of poverty in Nigeria in which the Northeast zone had the highest poverty incidence
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with 67.3 %, followed by the Northwest with 63.9 %; the South South zone had the
highest poverty rates (55 %) among the southern states, while the lowest poverty
rates were recorded in the South East at 34.2 %, followed by Southwest with 43.0 %
(National Bureau of Statistics 2005).

While some of these effects have been shown using traditional parametric
methods, using Bayesian geo-additive models uniquely shows subtle differences
when analysing for small-area spatial effects. Though the spatial effects do not
show causality, careful interpretation could identify latent and unobserved factors
that directly influence mortality rates. This geographic semi-parametric approach
therefore appears to be able to discern subtle influences of the determinants, and
identifies district-level clustering of under-five mortality.

The variation in the probability of childhood survival in Nigeria is spatially
structured. This implies that adjusted mortality risks are similar among neigh-
bouring states or districts, which may partly be explained by general health care
practices, similar prevalence of common childhood diseases, and the residual spatial
variation induced by variation in unmeasured district-specific characteristics (which
any standard 2-level model with unstructured spatial effects assuming independence
among districts would yield estimated that lead to incorrect conclusions).

References

Adetunji, J. A. (1994). Infant mortality in Nigeria: Effects of place of birth, mother’s education
and region of residence. Journal of Biosocial Science, 26(4), 469–477.

Alam, N. (2000). Teenage motherhood and infant mortality in Bangladesh: Maternal age-
dependent effect of party one. Journal of Biosocial Science, 32, 229–236.

Ali-Akpajiak, S. C. A., & Pyke, T. (2003). Measuring poverty in Nigeria. Oxfam: Oxfam Working
Papers. http://www.oxfam.org.uk/what we do/resources/wp poverty nigeria.htm

Berger, U., Fahrmeir, L., & Klasen, S. (2002). Dynamic modelling of child mortality in developing
countries: Application for Zambia. Sonderforschungsbereich 386 (Discussion Paper 299).
University of Munich, Germany.

Besag, J., York, Y., & Mollie, A. (1991). Bayesian image restoration with two applications in
spatial statistics. Annual Institute of Statistical Mathematics, 43, 1–59.

Bolstad, W. M., & Manda, S. O. (2001). Investigating child mortality in Malawi using family
and community random effects: A Bayesian analysis. Journal of the American Statistical
Association, 96(453), 12–19.

Borgoni, R., & Billardi, F. C. (2003). Bayesian spatial analysis of demographic survey data: An
application to contraceptive use at first sexual intercourse. Demographic Research, 83, 61–92.

Brezger, A., Kneib, T., & Lang, S. (2002). BayesX-software for Bayesian inference based on
Markov chain Monte Carlo simulation techniques. http://www.stat.uni-muenchen.de/�lang/

Caldwell, J. C. (1979). Education as a factor in mortality decline an examination of Nigerian data.
Population Studies, 33(3), 395–413.

Castro-Leal, F., Dayton, J., Demery, L., & Mehra, K. (1999). Public social spending in Africa: Do
the poor benefit? World Bank Research Observer, 14, 49–72.

Chou, Y.-H. (1997). Exploring spatial analysis in geographic information systems. Santa Fe:
OnWard Press.

http://www.oxfam.org.uk/what_we_do/resources/wp_poverty_nigeria.htm
http://www.stat.uni-muenchen.de/~lang/


3 Modeling Spatial Effects on Childhood Mortality Via Geo-additive. . . 47

Cleland, J. G., & van Ginneken, J. K. (1988). Maternal education and child survival in devel-
oping countries: The search for pathways of influence. Social Science & Medicine, 27(12),
1357–1368.

Cressie, N. A. C. (1993). Statistics for spatial data (Rev. ed.). New York: Wiley.
Fahrmeir, L., & Lang, S. (2001a). Bayesian Inference for generalized additive mixed models based

on Markov random field priors. Applied Statistics (JRSS C), 50, 201–220.
Fahrmeir, L., & Lang, S. (2001b). Bayesian semi-parametric regression analysis of multi-

categorical time-space data. Annual Institute of Statistical Mathematics, 53, 11–30.
Folasade, I. B. (2000). Environmental factors, situation of women and child mortality in south-

western Nigeria. Social Science & Medicine, 51(10), 1473–1489.
Gamerman, D. (1997). Efficient sampling from the posterior distribution in generalized linear

mixed models. Statistics and Computing, 7, 57–68.
Gelfand, A. E., & Smith, A. F. R. (1990). Sampling-based approaches to calculating marginal

densities. Journal of the American Statistical Association, 85, 398–409.
Goldstein, H. (1999, April). Multilevel statistical models. London: Institute of Education, Multi-

level Models Project. http://www.soziologie.uni-halle.de/langer/multilevel/books/goldstein.pdf
Hobart, J., & Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical

linear mixed models. Journal of the American Statistical Association, 91, 1461–1473.
Hobcraft, J. N., McDonald, J. W., & Rutstein, S. O. (1985). Demographic determinants of infant

and early child mortality: A comparative analysis. Population Studies, 39(3), 363–385.
Iyun, B. F. (1992). Women’s status and childhood mortality in two contrasting areas in south-

western Nigeria: A preliminary analysis. GeoJournal, 26(1), 43–52.
Kandala, N.-B. (2002). Spatial modelling of socio-economic and demographic determinants of

childhood undernutrition and mortality in Africa. Ph. D. Thesis, University of Munich, Shaker
Verlag.

Knorr-Held, L. (1999). Conditional prior proposals in dynamic models. Scandinavian Journal of
Statistics, 26, 129–144.

Knorr-Held, L., & Rue, H. (2002). On block updating in Markov random field models for disease
mapping. Scandinavian Journal of Statistics, 29, 597–614.

Kuate Defo, B. (1996). Areal and socioeconomic differentials in infant and child mortality in
Cameroon. Social Science & Medicine, 42, 399–420.

Lagakos, S. W. (1979). General right censoring and its impact on the analysis of survival data.
Biometrics, 35, 139–156.

Langford, I. H., Leyland, A. H., Rabash, J., & Goldstein, H. (1999). Multilevel modeling of the
geographical distributions of diseases. Journal of Royal Statistical Society, Series A (Applied
Statistics), 48, 253–268.

Lee, L.-F., Rosenzweig, M., & Pitt, M. (1997). The effects of improved nutrition, sanitation
and water quality on child health in high-mortality populations. Journal of Econometrics, 77,
209–235.

Madise, N. J., & Diamond, I. (1995). Determinants of infant mortality in Malawi: An analysis to
control for death clustering within families. Journal of Biosocial Science, 27, 95–106.

Madise, N. J., Matthews, Z., & Margetts, B. (1999). Heterogeneity of child nutritional status
between households: A comparison of six sub-Saharan African countries. Population Studies,
53, 331–343.

National Bureau of Statistics (NBS). (2005). Poverty profile for Nigeria report (1980–1996).
Federal Republic of Nigeria.

National Population Commission (NPC) [Nigeria]. (2000). Nigeria demographic and health survey
1999. Calverton: National Population Commission and ORC/Macro.

National Population Commission (NPC) [Nigeria]. (2004). Nigeria demographic and health survey
2003. Calverton: National Population Commission and ORC/Macro.

Onuah, F. (2006, Dec 30). Nigeria gives census result, avoids risky details. Reuters. http://za.today.
reuters.com. Accessed 30 March 2007

http://www.soziologie.uni-halle.de/langer/multilevel/books/goldstein.pdf
http://za.today.reuters.com
http://za.today.reuters.com


48 G. Ghilagaber et al.

Population Resource Centre. Nigeria Demographic Profile. (2000). Accessed at: http://www.prcdc.
org/summaries/nigeria/nigeria.html

Rabe-Heskesth, S., & Everitt, B. (2000). A handbook of statistical analysis using Stata (2nd ed.).
Boca Raton: Chapman and Hall/CRC.

Sastry, N. (1997). What explains rural-urban differentials in child mortality in Brazil? Social
Science & Medicine, 44, 989–1002.

Smith, A. F. M., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related
Markov chain Monte Carlo methods. Journal of the Royal Statistical Society (B), 55, 3–23.

Spiegelhalter, D., Best, N., Carlin, B., & Van der Line, A. (2002). Bayesian measures of models
complexity and fit. Journal of the Royal Statistical Society Series B, 64, 1–34.

Vella, V., Tomkins, A., Nidku, J., & Marshall, T. (1992). Determinants of child mortality in South-
West Uganda. Journal of Biosocial Science, 24, 103–112.

Wagstaff, A. (2001). Poverty and health. Geneva: Commission on Macroeconomics and Health
working paper series. Washington, DC: The World Bank.

Watson, R. T., Zinyowera, M. C., & Moss, R. H. (Eds.). (1997). The regional impacts of climate
change: An assessment of vulnerability. A special report of the intergovernmental panel on
climate change, Working Group II. Cambridge: Cambridge University Press.

Weeks, J. R. (2004). The role of spatial analysis in demographic research. In M. F. Goodchild &
D. G. Janelle (Eds.), Spatially integrated social science. Oxford: Oxford University Press.

Weimer, J. P. (2001). The economic benefits of breastfeeding: A review and analysis. (Food and
Rural Food Assistance and Nutrition Research Report No. 13), U.S. Department of Agriculture.

Wolfe, B., & Behrman, J. (1982). Determinants of child mortality, health and nutrition in a
developing country. Journal of Devlopement Economics, 11, 163–193.

http://www.prcdc.org/summaries/nigeria/nigeria.html
http://www.prcdc.org/summaries/nigeria/nigeria.html


Chapter 4
Bayesian Geoadditive Mixed Latent Variable
Models with Applications to Child Health
Problems in Egypt and Nigeria

Khaled Khatab

4.1 Introduction

Childhood morbidity and malnutrition are among the most serious health is-
sues facing developing countries. Analyses of these health outcomes are often
based on Demographic and Health Surveys (DHS) datasets which provide reli-
able information on childhood diseases and undernutrition. The analyses rely on
statistical inference with various forms of standard regression models. Because of
methodological restraints, it is difficult to detect nonlinear covariate effects, for
example of, age, adequately, and it is impossible to recover small-scale, district-
specific spatial effects with standard linear regression or correlation analysis. Recent
research has applied geoadditive regression models (Fahrmeir and Lang 2001;
Fahrmeir et al. 2004). These models can account for nonlinear covariate effects
and geographical variation while simultaneously controlling for other important
risk factors. They have been used in regression studies of risk factors for acute or
chronic undernutrition (e.g., Kandala et al. 2006; Adebayo 2003), for morbidity
(Kandala et al. 2006, 2007; Khatab and Fahrmeir 2009) and for mortality (Adebayo
and Fahrmeir 2005; Kandala and Ghilagaber 2006).

However, except in Khatab and Fahrmeir (2009), regression analyses are carried
out separately for each disease, such as cough or fever, or each undernutrition
status such as stunting, wasting or underweight, neglecting possible association
or common latent risk factors among these response variables. In this chapter, we
take a somewhat different point of view; we apply recently developed geoadditive
latent variable models for mixed continuous and discrete responses (Fahrmeir and
Raach 2007) considering binary indicators for cough, fever and diarrhea as well
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as Z-scores for stunting and underweight as observable outcomes of latent health
and nutrition status. This allows to simultaneously account for association between
these indicators and to assess the common influence of certain risk factors, nonlinear
effects of covariates such as age of child, and geographical variation on the latent
variables morbidity and malnutrition. The issues addressed are illustrated with data
from the 2003 Demographic and Health Surveys of Egypt and Nigeria but the
models and methods used are equally applicable to similar data from other countries.

A background of the present study is reported in previous works (Khatab and
Fahrmeir 2009; Khatab 2010). Effects of the different covariates on response
variables diarrhea, fever, and cough (indicating child’s health status) and stunting
and underweight (indicating malnutrition status) were analysed using separate
geoadditive latent variable models (Raach 2005; Fahrmeir and Raach 2007).

Further, we apply recently developed geoadditive latent variable models for
mixed continuous and discrete responses, which is the main focus of this chapter.
Models with one and with two latent variables are estimated using mixed indicators
(binary indicators for “health status”, and continuous indicators for “nutrition
status”) and the results are compared. The methods are applied to the 2003 DHS
data from Egypt (El-Zanaty and Way 2004) and Nigeria (National Population
Commission and ORC Macro 2004). Some of these ideas on joint spatial modelling
to identify common and specific risk factors and profiles using shared-component
models can be found in Chap. 15.

Computations are carried out using the MCMC package in R (Raach 2005).

4.2 Basic Ideas of Latent Variable Models

Latent variable models provide an important tool for the analysis of multivariate
data. When the joint distribution of a set of random variables is specified by a
statistical model it becomes a latent variable model if some of them are unobservable
(Bartholomew 1987).

There are many reasons why latent variables might be introduced into a model
in the first place and how their presence contributes to statistical investigation.
One reason is to reduce dimensionality. The information contained in the inter-
relationships of some variables can be useful, to an approximation, in a much
smaller set. This improves the ability to see structures in the data. That is the idea
behind factor analysis models and more recent applications of parametric structural
models (Bartholomew 1987). Secondly, latent variable models play a prominent
role in many fields to which statistical methods are applied, such as social science,
psychology and politics. There are two sorts of variables to be considered in terms of
latent variable models: variables which can be directly observed, known as manifest
variables, and latent variables, which cannot be measured directly.

http://dx.doi.org/10.1007/978-94-007-6778-2_15
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Many constructs that are of interest to social scientists cannot be observed
directly. Examples are preferences, attitudes, behavioral intentions, and personality
traits. Such constructs can solely be measured indirectly by means of observable
indicators, such as questionnaire items which are designed to elicit responses related
to an attitude or preference. There are various types of scaling techniques which
have been developed for deriving information on unobservable constructs of interest
from the indicators. A latent variable model can be a nonlinear, path analysis or
graphical. In addition to the manifest variables, the model can include one or more
unobserved or latent variables which represent the constructs of interest. There are
two assumptions defining the causal mechanisms underlying the responses. The first
one assumes that the responses on the indicators are the result of an individual’s
position on the latent variable. The second is that the manifest variables have nothing
in common after controlling for the latent variable. This is usually referred to as the
principle of local independence.

The main purpose of factor analysis is to determine the correlations between a
set of observed variables that can be interpreted by a few number of latent variables,
and how that could be identified. The factor analysis model can be found in two
ways

1. a model, which allows for ordinal or binary indicators. Typically researches have
used ordinal data in classic factor analysis models, which are assumed to be
normally distributed.

2. a latent variable model including covariates which influence the indicators or
the latent variables. Most statistical studies assume that the influence of the
covariates on the indicators and on the latent variable is strictly linear.

The original form of factor analysis has its roots in Psychology (Spearman 1904).
Spearman hypothesized that performance for each set of intellectual tasks is shared
with performance for all other intellectual tasks; the general intellectual ability
cannot be directly obtained, and therefore there is a need for a latent variable.

The Latent Variable Models (LVM) presented in this chapter includes binary and
continuous indicators.

Further, the model is based on a Bayesian framework where all unknown
population parameters are considered as random.

In order to understand the idea of LVM, we have to distinguish between two
types of variables: the observable variables which are called indicators or manifest
variables, and the unobservable variable which is called latent variable.

LVMs are mostly used in the fields of psychology and social science because
most of the variables in these areas cannot be directly quantifiable. LVM are also
used in the field of medicine, where patients suffer from disease syndromes which
are of a variety of effects such as Fetal Alcohol syndrome, and Downs Syndrome,
which are taken as indicators in many teratology studies (Holmes et al. 1987).
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4.2.1 General Formulation

Let y0 be a vector of p manifest variables (or indicators), y0 D .y1; y2; : : : ; yp/. One
wants to find a set of latent factors � 0 D .�1; �2; : : : ; �q/ with a smaller number
of components q < p than the observed variables that contain essentially the
same information. If both the response variables and the latent factors are normally
distributed with zero means and unit variances, this leads to classic factor model
(see Jöreskog and Goldberger 1975). We will distinguish between two different sets
of covariates.

• covariates that affect the indicators directly w0 D .w1; w2; ::::; wk/

• covariates that affect the indicators indirectly x0 D .x1; x2; : : : ; xr /

Covariates can be of any type, such as metrical, categorical (dummy variables)
or ordinal.

4.2.2 Latent Variable Models Using One factor

Here, we briefly discuss the types of models that will be studied in this chapter.
There are three observed variables y0 D .y1; y2; y3/ which are indicators of a single
latent variable �1. The observed variables can be binary as in the case of health
indicators or continuous as in the case of the malnutrion indicators.

The basic idea of latent variable models or the factor analysis is that the
multidimensional vector of p manifest variables y can be represented by one or
more latent factor � with a lower dimension of q. Consequently factor analysis
reduces the dimensionality of the data in such a way that the interrelationships
among the observed variables are preserved as much as possible.

The basic factor analytic model for Gaussian response consists of so-called
measurement model

yi D ƒ�i C "i ;

�i � N.0; I /; "i � Np.0; †/; (4.1)

for each observation i . ƒ is a p � q dimensional matrix of regression coefficients
which are called factor loadings and indicate the relationship between the latent
variable � , and the indicators (manifest variable) yi . The term "i represents a p-
dimensional error term. This is the case when the model does not include any
covariates effects.

However, we need to extend the basic factor model for the following reasons;
On the one hand, it is useful to include explanatory variables w which affect
the observed variables directly. On the other hand, it is interesting to know how
the explanatory variables modify the latent factor, and hence affect the observed
variables indirectly (indirect effects x). This chapter focuses on both types of
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exploratory variables (direct and indirect effects) as we are interested in how
variables, e.g. demographic variables, affect the latent variables.

Most structural models following Jöreskog and Goldberger (1975), distinguish
between two conceptually distinct parts of latent models, namely a structural part
and a measurement part.

The structural part of a model specifies the relationships among the latent
variables and the measurement part specifies the relationship of the latent to the
observed variables. The measurement model (with direct effects) is given by

yi D ƒ�i C Awi C "i: (4.2)

where wi are effects which directly affect the observed manifest variables and A is
the matrix of regression coefficients.

The part of the model that links a set of observed covariates with the latent
variables, the linear structural model is given by

�i D �xi C i : (4.3)

where xi are indirect effects which modify the latent factors, and hence affect the
observed variables. The matrix � contains the regression coefficients of the indirect
covariates x.

The latent variable �1 and the observed variable wi account for the associations
among the y variables. The direct relationship between w1 and y1 allows the mean
level (thresholds) for variable yi to be different for different values of the w1

variable.
Finally, x0 D .x1; x2/ affect the latent variable �1. Note that variable x needs to

be different from variable w for identification reasons.

4.3 Measurement Model and Structural Model

4.3.1 Measurement Model for the Binary Indicators:

The binary variables yij are taken to be manifestations of some underlying continu-
ous unobserved variables y�

ij .
The connection between the binary variable yij, j D p1 C 1; : : : ; p and the

underlying variable y�
ij is

yij D 1 , y�
ij > tj :

yij D 0 , y�
ij � tj
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Because of the identification restriction, the tj thresholds of all indicators j are
fixed to zero and var."i / D 1.

The relationship between the y�
i variables and the latent variables � in the

measurement model excluding direct effects is given by

y�
ij D ˛0 C ƒ�i C "ij; "ij � Np.0; I /:

where ƒ is a matrix containing the factor loadings, indicating strength of relation-
ship between latent factors and indicators.

The relationship between the y�
i variables and the latent variables �i in the

measurement model including direct effects is given by

y�
ij D ˛0 C ƒ�i C Awi C "ij "ij � Np.0; †/ (4.4)

The direct covariates are summarized in the d-dimensional vector wi D
.wi1; ::; wid /0 and the p � q-dimensional matrix A.

The direct effects provide additional information about data structure and
increase the strength of dimensionality through the relationship between y�

ij and
wi , used in the analyses later. Here "i is distributed normally "i � Np.0; †/

and † D diag.�2
1 ; : : : ; �2

p/, � is a .1 � p/ vector of latent variables that explain
the relationships among the indicators. The p � q matrix ƒ is the matrix of
factor loadings which indicate the relationship between the latent variables and the
indicators, and �0 is the intercept.

We assume that responses are conditionally independent and Bernoulli-
distributed. Thus, the model of the binary indicators can be written as

yijj�i � Bin.1; �ij/; j D p1 C 1; : : : ; p; (4.5)

and follow a probit model

ˆij D P.yij D 1j�i / D ˆ.�0
j �i C a0

j wi /; (4.6)

where ˆ denotes the standard normal distribution function, with the same latent
variables �i , as in (4.4) but using the effect of the covariates instead the matrix.
We also assume that all responses yij; j D 1; : : : ; p; are conditionally independent
given the latent variables �i , so that association between responses is introduced
through the common latent variables.

In such models, the correlations between the yi variables are explained by both
latent variables and covariates, instead of the latent variable alone.
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4.3.2 Measurement Model for the Continuous Indicators

For continuous (Gaussian) indicators there is no need for underlying variable, so
that

y�
ij D yij C "ijI "ij � N.0; �2

j /;

The logistic distribution function could also be used instead of the standard
normal distribution function; however we use the standard normal distribution
function because the parameter estimates for both function lead to similar results
in prediction (Moustaki et al. 2004).

4.3.3 Structural Model

Structural models relate latent variables to further covariates which have only
indirect effects on the observable responses. Traditional linear structural models
(e.g. Moustaki et al. 2004; Skrondal and Rabe-Hesketh 2004) assume (latent)
Gaussian linear models

�ir D x0
i ˇr C ıir ; r D 1; : : : ; q (4.7)

with i.i.d Gaussian errors ıir � N.0; 1/. Here xi is the vector of covariates with
direct effects on the latent variables. For identifiability reasons ˇr must not contain
an intercept term (it is included already in the measurement model), and the error
variance var .ıir / has to be fixed to 1.

The linear structural model (4.7) implies that the means of the latent variables
are linearly dependent on the covariates xi . This can be a severe restriction in real-
life research settings as in our application. For instance, continuous covariates such
as age of child, body mass index of mothers, and age of mothers at birth, a strictly
linear effect on the mean may not be appropriate. Also, the latent variables “mal-
nutrition” and “morbidity” may be influenced by geographically varying effects. To
incorporate these we employ more versatile geoadditive structural models

�ir D x0
i ˇr C fr1.zi1/ C : : : C frk.zik/ C fr;geo.si / C ıir ; r D 1; ::; q (4.8)

where fr1.zi1/; : : : ; frk.zik/ are smooth, nonparametric functions (effects) of con-
tinuous covariates z1; : : : ; zk like age of child, and fr;geo.si / is the geographical
(spatial) effect of location or geographical region si 2 f1; : : : ; Sg, where individual
i lives.

Such geoadditive models have been previously suggested for observable univari-
ate responses y of different types, (Fahrmeir et al. 2004), and have been applied
for analyzing malnutrition or disease indicators separately (Kandala et al. 2007).
Further application appear in Kandala (2002), Kandala et al. (2001), Khatab and
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Fahrmeir (2009), and Khatab (2010). Geoadditive latent variable models, combining
separate regression models to a joint multivariate model, have been suggested
recently in a Bayesian framework (Fahrmeir and Raach 2007). The appendix section
shortly reviews methods for modelling of the unknown function f1; : : : ; fk and fgeo

and points out some identifiability issues.

4.4 Latent Variable Models for Mixed Response Variables

We first introduce the scalar latent variable � , “health and undernutrition status”.
We consider a one-dimensional latent variable with different types of covariates.
Extension to two-dimensional latent variables with two types of responses and
different types of covariates are presented in the next section. The response variables
consist of five indicators: fever, diarrhea, cough, stunting and underweight.

The measurement model using one latent variable is given by

y�
ij D �0 C aj

0wi C �j �i C "ij; i D 1; : : : ; n; "ij � N.0; �2
j / (4.9)

for two metrical indicators and

y�
ij D �0 C aj

0wi C �j �i C "ij; "ij � N.0; 1/

for the underlying variables y�
ij corresponding to the three binary indicators yij,

j D 1; 2; 3.
The form of the structural model is

�i D u0
i ˛ C f1.xi1/ C : : : C f3.xi3/ C fgeo.regi / C ıi (4.10)

The models include the direct vector of covariates wi for each individual response
variable. The direct vector wi includes the categorical covariates water, educ, toilet,
urban, trep and elect in the LVM for Egypt (Table 4.3). In the case of Nigeria, it
includes the covariates male, educ, radio, and water (Table 4.4). The indirect vector
u includes male, anvis, work, and radio in the latent variable mixed models for
Egypt, and urban, work, terp, avis, toilet, and elect for Nigeria.

The measurement model using two latent variables is given by
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The structural model for the analysis uses two latent factors:
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where Chage is Child’s age in months, BMI is Mother’s body mass index, and
Mageb is Mother’s age at birth. Further, reg is the spatial covariate, which refers
to governorate or regions where respondent resides.

4.4.1 Selection Cariteria

To decide which covariates should be included in the measurement models and
which should be in the structural models, we follow the strategy below:

As a first step, we apply separate geoadditive probit models for health indicators
and separate geoadditive Gaussian models for the malnutrition indicators. The
results are reported in Khatab and Fahrmeir (2009) and Khatab (2010).

In the second step, we apply geoadditive probit LVMs to analyze the data.
Although the Deviance Information Criterion (DIC) is now commonly accepted as
a standard tool for selecting probit or logit models, its performance for LVM model
choice is not yet well understood.

4.4.2 Models Section

If the effects of covariates turned out to be significantly different (in terms of
confidence intervals) for the three diseases, we decided to keep them in the mea-
surement model, otherwise covariates were included in the geoadditive predictor of
the structural equation for the latent variable. All nonlinear effects and the spatial
effect are included in the structural model.

4.5 Applications

4.5.1 Childhood Diseases

Diarrhea

Diarrheal disease, caused by poor condition of water and sanitation, is a common
public health problem in developing countries. It is a variety of micro-organisms
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Table 4.1 Overview of the morbidities in Egypt

Health Indicators Observation Mean Std.Dev No diseases Had diseases

Diearhea 6,348 0.210 0.407 5,013(78.97) 1,335(21.03)
Fever 6,348 0.323 0.467 4,297(67.69) 2,051(32.31)
Cough 6,348 0.255 0.436 4,725(74.43) 1,623(25.57)

Table 4.2 Overview of the morbidities in Nigeria

Health Indicators Observations Mean Std.Dev No diseases Had diseases

Diearhea 5,186 0.179 0.383 4,257(82.09) 929(17.91)
Fever 5,186 0.309 0.462 3,583(69.09) 1,603(30.91)
Cough 5,186 0.235 0.407 3,967(76.49) 1,219(23.51)

including viruses, bacteria, and protozoan’s that cause diarrhea, affecting people’s
health through loss of water and electrolytes. This leads to dehydration and, in
disastrous preconditions, to death.

In Egypt, the widespread use of oral rehydration therapy has successfully reduced
the severity of diarrheal episodes and sharply reduced the number of subsequent
deaths. However, overall diarrheal disease has not declined. In the 2003 DHS,
mothers were asked whether any of their children less than 5 years of age had had
diarrhea at any time during the 2-week period before the survey.

Fever

Infection is the most common cause of fever in children. Most fevers in babies and
children are caused by a viral (germ) infection. Common viral and bacterial illnesses
like colds, gastroenteritis, ear infections, croup, and bronchitis are the most likely
illnesses to cause fever.

Cough

Cough and breathing difficulties are common problems in young children. Recent
literature indicates that breastfed children who had a cough or cold may have
difficulties in feeding. Breastfeeding however, could help fight diseases. Along with
diarrhea, acute respiratory infection (ARI), particularly pneumonia, is a common
cause of death in infants and young children.

Tables 4.1 and 4.2 provide overview of the morbidities in both countries.

4.5.2 Childhood Malnutrition

Childhood undernutrition is amongst the most serious health issues facing devel-
oping countries. It is an intrinsic indicator of well-being, but it is also associated
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with morbidity, mortality, impaired childhood development, and reduced labor
productivity (Sen 1999; UNICEF 1998; Pelletier 1998; Svedberg 1996). Three
anthropometric variables are measured through z-scores for wasting, stunting and
underweight, defined by

Zi D AIi � MAI

�
; (4.13)

where AI refers to the individual anthropometric indicator (e.g. height at a certain
age), MAI refers to the median of a reference population, and � refers to the
standard deviation of the reference population. Each of the indicators measure
somewhat different aspects of nutritional status. Note that higher values of a z-score
indicate better nutrition and vice versa. Therefore, a decrease of z-scores indicates
an increase in malnutrition. This has to be taken into account when interpreting
the results. The reference standard typically used for the calculation is the National
Center for Health Statistics-Center for Disease Prevention (NCHS-CDC) Growth
Standard that has been recommended for international use by WHO. The reference
population are children from the USA. More exactly, up to an age of 24 months
these are children from white parents with high socio-economic status, while older
children are from a representive sample of all US children.

Stunting

Stunting is an indicator of linear growth retardation relatively uncommon in the
first few months of life. However it becomes more common as children get older.
Children with height-for-age z-scores below minus two standard deviations from
the median of the reference population are considered short for their age or stunted.

Underweight

Underweight is a composite index of stunting and wasting. This means children may
be underweight if they are either stunted or wasted, or both. In a similar manner to
the two previous anthropometric incidences, children may be underweight when
their z-score is below minus two standard deviations.

Categorical Covariates

Tables 4.3 and 4.4 provide information on categorical socioeconomic and bio-
demographic covariates, their categories, frequencies, and the coding used in the
regression models for Egypt and Nigeria, respectively. Although wealth index was
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Table 4.3 Overview of the
factors analysed in the case
study for Egypt

Factor N(%) Coding effect

Place of residence
Urban 2,237(33.58 %) 1
Rural 4,424(66.42 %) �1.ref

Child’s sex
Male 3,487(52.35 %) 1
Female 3,174(47.65 %) �1.ref

Working
Yes 1,209(18.15 %) 1
No 5,452(81.85 %) �1.ref

Mother’s Education
No,
Incomp.prim,
Comp.prim,
Incomp.sec 4,194(62.97 %) 1
Compl.sec,
Higher 2,467(37.04 %) �1.ref

Pregnancy’s treatment
Yes 697(10.46 %) 1
No 5,964(89.54 %) �1.ref

Drinking water
Controlled 5,374(80.68 %) 1
Not controlled 1,287(19.32 %) �1.ref
Missing 1 %

Had radio
Yes 5,374(80.68 %) 1
No 1,559(19.32 %) �1.ref

Has electricity
Yes 6,203(93.12 %) 1
No 458(6.88 %) �1.ref

Toilet facility
Own flush toile facility 1,768(28 %) 1
Other and no toilet facility 4,511(71.8 %) �1.ref
Missing 1 %

Antenatal visit
Yes 4,181(63 %) 1
No 2,342(35 %) �1.ref
Missing 2 %

included in previous works of the author, in the present chapter we include only
radio, electricity, type of toilet, and drinking water in order to facilitate comparison
of results in the two countries.
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Table 4.4 Overview of the
factors analysed in the case
study for Nigeria

Factor N(%) Coding effect

Place of residence
Urban 2,118(35.13 %) 1
Rural 3,911(64.87 %) �1.ref

Child’s sex
Male 3,062(50.79 %) 1
Female 2,967(49.21 %) �1.ref

Working
Yes 3,835(63.61 %) 1
No 2,172(36.39 %) �1.ref

Mother’s Education
No,
Incomp.prim,
Comp.prim,
Incomp.sec 5,294(87.81 %) 1
Compl.sec,
Higher 735(12.19 %) �1.ref

Pregnancy’s treatment
Yes 1,001(16.6 %) 1
No 5,028(83.40 %) �1.ref

Drinking water
Controlled 1,899(32 %) 1
Not controlled 4,096(67 %) �1.ref
Missing 1 %

Had radio
Yes 4,466(74.08 %) 1
No 563(25.97 %) �1.ref

Has electricity
Yes 2,715(45.03 %) 1
No 3,314(54.97 %) �1.ref

Toilet facility
Own flush toile facility 590(10 %) 1
Other and no toilet facility 5,335(88.5 %) �1.ref
Missing 1.5 %

Antenatal visit
Yes 2,412(40 %) 1
No 1,264(21 %) �1.ref
Missing 29 %

Child’s Age (Chage)

The age of a child has a significant effect on its morbidity as reported in many
previous studies. According to the World Health Organization (WHO) children
should receive all recommended vaccines by 12 months of age.
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Mother’s Body Mass Index (BMI)

Body mass index (BMI) varies with the woman’s age, and it is somewhat higher
among urban women than among rural women. Studies show that this coexistence
of under- and overnutrition exists not only at the societal but also the household
level. The range of overweight mothers is remarkably large, even within a region.
For instance, 55 % of mothers are overweight in Egypt.

Mother’s Age at Birth (magb)

This is an important variable to fertility because it marks the onset of the childbear-
ing process. Delay in magb may indicate late establishment of marriage and hence
implies shortening of the reproductive period and consequential reduced fertility.

Spatial Covariates

The information of the geographic location (governorate or regions) where the child
lives at the time of interview is a significant contribution of the DHS data set to
understanding child disease and malnutrition in both countries. In the case of Egypt,
there are 20 governorates included. For Nigeria, 37 regions have been considered.

4.6 Case Study of Egypt

In this section, the latent variable models has been applied using data from the 2003
Egypt Demographic and Health Survey (El-Zanaty and Way 2004). The aim of
the analysis is investigate the relationship between the indicators of diseases and
the indicators of undernutrition in Egypt based on the analyses which have been
presented in Khatab and Fahrmeir (2009) that focused on the childhood morbidity
in Egypt, and Khatab (2010) that investigate childhood malnutrition in Egypt.

4.6.1 Model Estimation with One Factor Analysis

The modeling focused at this stage on the estimation using the binary indicators
(fever, diarrhea, and cough) and the continuous indicators (stunting and under-
weight), with one latent variable.

In order to decide which of the covariates should be included in the measurement
model as direct parametric effects, or in the structural equation as indirect effects
via their impact on the latent variables, mentioned criteria are taken into account.
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The covariates male, antenatal visit, radio and work were associated with childhood
diseases and childhood undernutrition, so we kept them in the structural equation in
the case study of Egypt.

Our analysis started using only one latent variable. The results for the estimation
of factor loadings, parametric indirect and direct effects for Egypt are presented in
Table 4.5.

The factor loadings in Table 4.5 show that the latent variable has a stronger
influence on the first three indicators that belong to the health status than on the
nutritional status (stunting and underweight).

The parametric indirect effects for male, antenatal visit and work have a
significant effect on the child health indicators in Egypt. Regarding the parametric
direct effects, covariate urban is associated with indicators cough, diarrhea, stunting
and underweight, whilst treatment during pregnancy is associated with the second
indicator; and the education level of mother has a positive effect on the indicators of
stunting and underweight.

In addition, none of the covariates which have parametric effects were associated
with the indicators of fever.

With regards to the nonparametric effects, Fig. 4.1 shows the nonlinear and
spatial effects. These results are expected, as the indicators of diseases are clearly
represented through the latent variable, so the results are consistent with the results
of the prevoius sudy, which has focused on the childhood modrbidity in Egypt
(Khatab and Fahrmeir 2009).

The nonlinear effect of child’s age indicates that the prevalence of diseases was
found to be highest among children 0–12 months of age. As for the effect of a
mother’s BMI, it has a slight effect on the latent variable; however, there is a higher
effect through the interval between 27 and 30. The pattern of mother’s age shows
that younger mothers (12–20) have a higher effect on the health staus of child
comapare to their counterparts (20–35 years of age).

The spatial effect for Egypt indicates that higher risks are associated with some
rural areas in the Nile Delta and in Sinai as well.

Again, looking at the estimated mean factor loadings in Table 4.5 we can
draw the following conclusions: First, the latent variable has significant effect on
all five indicators. Second, as we expected, disease and malnutrition indicators
are positively associated. Strictly speaking, disease indicators and z-scores for
stunting and underweight are negatively correlated, because by definition z-scores
for stunting and underweight decrease with increasing undernutrition.

Third, the latent variable loads much higher onto the disease indicators than onto
the malnutrition indicators. Therefore, we reanalyse the data with a LVM with two
latent variables in the next subsection. Because the latent variable loads mainly on
the disease indicators, these results are comparably close to the ones obtained with
the results for the LVM with two latent variables, so we defer interpretation to the
following subsection.
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Table 4.5 Estimates of factor loadings, parametric indirect and
direct effects of the LVMM with one latent variable for Egypt

Parameter Mean Std 2.5 % 97.5 %

Factor loadings
1. Fever �11 1.247* 0.089 1.094 1.420
2. Cough �21 0.811* 0.047 0.724 0.901
3. Diarrhea �31 0.816* 0.043 0.734 0.897
4. Stunting �41 �0.132* �0.134 �0.182 �0.084
5. Underweight �51 �0.133* 0.021 �0.015 �0.074

Parametric indirect effects
Male 0.168* 0.038 0.036 0.247
Anvis 0.221* 0.064 0.098 0.339
Work 0.123* 0.053 0.0168 0.238
Radio �0.164 0.108 �0.275 0.072

Parametric direct effects
Water.a11/ 0.122 0.088 �0.037 0.295
Educ.a12/ �0.065 0.049 �0.157 0.028
Toilet.a13/ �0.107 0.128 �0.452 0.116
Urban.a14/ 0.047 0.068 �0.082 0.183
Trepr.a15/ 0.076 0.097 �0.108 0.272
Elect.a16/ �0.313 0.279 �0.838 0.211
Water.a21/ 0.061 0.067 �0.065 0.195
Educ.a22/ �0.055 0.041 �0.140 0.015
Toilet.a23/ �0.089 0.120 �0.348 0.108
Urban.a24/ �0.22* 0.063 �0.348 �0.098
Trepr.a25/ 0.193* 0.073 0.039 0.340
Elect.a26/ 0.191 0.071 �0.467 0.532
Water.a31/ �0.02 0.067 �0.178 0.112
Educ .a32/ �0.033 0.038 �0.128 0.037
Toilet.a33/ �0.029 0.116 �0.277 0.184
Urban.a34/ 0.151* 0.056 0.044 0.265
Terpr.a35/ 0.015 0.079 �0.139 0.165
Elect.a36/ �0.096 0.231 �0.516 0.357
Water.a41/ 0.006 0.050 �0.090 0.108
Educ.a42/ 0.066a 0.026 0.015 0.118
Toilet.a43/ 0.029 0.084 �0.121 0.208
Urban.a44/ 0.123a 0.037 0.054 0.203
Terpr.a45/ �0.009 0.057 �0.108 0.098
Elect.a46/ �0.171 0.168 �0.519 0.153
Water.a51/ 0.013 0.039 �0.065 0.099
Educ .a52/ 0.052a 0.022 0.013 0.095
Toilet.a53/ �0.035 0.070 �0.197 0.119
Urban.a54/ 0.13a 0.036 0.069 0.199
Trepr.a55/ �0.023 0.0335 �0.126 0.079
Elect.a56/ �0.088 0.1455 �0.351 0.200
*Estimate significant at 5 % level
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Fig. 4.1 Non-linear effects from top to bottom: child’s age, mother’s BMI, mother’s age at birth
and spatial effects (for model LVMM using five indicators), on the indicators of a latent variable
“health status” and “undernutrition status” of children for Egypt using only one latent variable

4.6.2 Model Estimation with Two Latent Variables

In this section, we analyze determinants of childhood diseases and childhood
undernutrition using two latent variables.

The factor loadings estimates as shown in Table 4.6 observed that the first latent
variable loads onto the first three indicators (health indicators), whilst indicators 4
and 5 (nutritional status) are explained by the second latent variable. This was to
be expected, because the two different sets of indicators are supposed to measure
two different latent constructs. Further, it is indicated that the interpretation for the
LVMs with two factors are more reasonable compared to that of one factor model.

Both factor loadings and coefficients of the parametric indirect covariates of the
first latent factor are very similar to the estimates of the single latent factor model
given in Table 4.6. Regarding the factor loadings of the second latent variable, the
indicator underweight has high factor loading of 0.975.

The results in Table 4.6 also show that the influences of the covariates anvis,
male, radio and work are noticeable for the first latent variable, whilst the second
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Table 4.6 Estimates of factor loadings of the LVMM with two latent
variable and only five indicators for Egypt

Parameter Mean Std 2.5 % 97.5 %

Factor Loadings of First LV
1. Fever �11 1.221* 0.092 1.07 1.496
2. Cough �21 0.810* 0.0438 0.721 0.903
3. Diarrhea �31 0.816* 0.0441 0.737 0.914
4. Stunting �41 �0.066* 0.0179 �0.106 �0.019
5. Underweight �51 �0.048 0.0109 �0.051 0.039

Factor loadings of second LV
1. Fever �12 0.000 0.000 0.000 0.000
2. Cough �22 0.033 0.023 �0.058 0.046
3. Diarrhea �32 �0.031 0.0222 �0.054 0.039
4. Stunting �42 �0.657* 0.0145 �0.325 �0.260
5. Underweight �52 �0.975* 0.007 1.061 1.099

Parametric indirect effects of first LV
Male 0.1319* 0.0385 0.056 0.207
Anvis 0.206* 0.0428 0.127 0.288
Work 0.108* 0.0510 0.0133 0.205
Radio �0.737* 0.366 �1.359 �0.0512

Parametric indirect effects of second LV
Male 0.152* 0.025 0.101 0.200
Anvis �0.085* 0.0296 �0.140 �0.025
Work �0.0159 0.036 �0.0870 0.052
Trepr �0.020 0.036 �0.089 0.054
Elect 0.040 0.047 �0.0527 0.123
Radio 0.147 0.133 �0.0982 0.398

Parametric direct effects of both LVs
Water.a11/ 0.138 0.085 �0.0257 0.291
Educ.a12/ �0.051 0.0504 �0.149 0.038
Toilet.a13/ �0.110 0.145 �0.398 0.175
Urban.a14/ 0.031 0.068 �0.1002 0.164
Trepr.a15/ 0.082 0.0917 �0.095 0.262
Elect.a16/ �0.311 0.267 �0.839 0.208
Water.a21/ 0.079 0.073 �0.064 0.221
Educ.a22/ �0.053 0.0413 �0.130 0.024
Toilet.a23/ �0.059 0.125 �0.297 0.176
Urban.a24/ �0.211* 0.0610 �0.338 �0.090
Trepr.a25/ 0.192* 0.077 0.044 0.349
Elect.a26/ 0.018 0.251 �0.512 0.464
Water.a31/ �0.023 0.074 �0.162 0.119
Educ.a32/ �0.036 0.040 �0.113 0.028
Toilet.a33/ �0.023 0.119 �0.282 0.191
Urban.a34/ 0.152* 0.059 0.0446 0.276
Trepr.a35/ 0.014 0.08 �0.136 0.170
Elect.a36/ �0.112 0.234 �0.595 0.360

(continued)
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Table 4.6 (continued)

Parameter Mean Std 2.5 % 97.5 %

Water.a41/ �0.019 0.049 �0.109 0.084
Educ.a42/ 0.061* 0.0219 0.023 0.104
Toilet.a43/ �0.007 0.083 �0.175 0.155
Urban.a44/ 0.036 0.0352 �0.033 0.099
Water.a51/ �0.025 0.031 �0.0718 0.037
Educ.a52/ 0.048* 0.009 0.0278 0.064
Toilet.a53/ �0.02 0.068 �0.194 0.132
Urban.a54/ 0.11* 0.034 0.065 0.194
Trepr.a55/ �0.068 0.042 �0.151 0.013
Elect.a56/ �0.73 0.132 �0.327 0.160
*Estimate significant at 5 % level

latent variable is associated with anvis and male. The results of the parametric direct
covariates are quite similar to the estimates with a single latent variable. The results
are also consistent with those from separate analysis of childhood diseases and
childhood malnutrition (Khatab and Fahrmeir 2009; Khatab 2010).

The patterns of the covariates child’s age, mother’s BMI and mother’s age
resemble the patterns of the model with one latent variable (Fig. 4.1 is reproduced
in the left panel of Fig. 4.2), whilst the influence of these covariates on the second
latent variable looks different. Apparently, the nonlinear effects on the second latent
variable are associated with the indicators of nutritional status.

Sensitivity Analysis

It is known that the Markov Random Field prior for spatial covariates works well
if there are many neighbors for the spatial units. However, this is not the case for
Egypt, where there are few governorates and neighbors. Therefore, we carried out
a sensitivity analysis for the choice of the prior for the spatial effects. It turned out
that the results of the spatial effects remained stable for the separate models and also
for the latent variable models (Fig. 4.3).

4.7 Case Study of Nigeria

4.7.1 Model Estimation with One Factor Analysis

For Nigeria, the results (Table 4.7) lead to the same conclusion as for Egypt,
where the estimates of factor loadings for the diseases affect the latent variable
more than the indicators of undernutrition. The results show that the indicators of
undernutrition have a slightly stronger effect on the latent variable. The results of the
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Fig. 4.2 Estimates of nonparametric effect of nonlinear covariates from top to bottom: child’s age,
mother’s BMI, and mother’s age at birth for the first (left) and second (right) latent variables for
Egypt

indirect parametric covariates show that only urban and treatment during pregnancy
have significant effect on the latent variable. As for the direct parametric covariates,
male, education level and radio are associated with indicator 4 (stunting), whilst
only the level of education is associated with indicator 2 (cough).

The pattern of the nonparametric effects for the nonlinear effects of a child’s
age shows that the health status of children worsens until about 12 months of age
(Fig. 4.4). The effect of BMI seems to be a little higher for mothers with a BMI
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Fig. 4.3 Estimates of the nonparametric effect of spatial covariate for the first (left) and second
(right) for Egypt

under 20. Children from younger mothers, as in Egypt, are more likely to have
problems in their health status. We found that the high risk of the latent variable
health and nutritional status is pronounced in the northeastern part of Nigeria.

4.7.2 Model Estimation with Two Latent Variables

As shown in Table 4.8, In Nigeria, the second latent variable has the highest
influence on the indicator stunting, with factor loading of 1.165. The influence
of urban and trepr (treatment during pregnancy) is associated with the first
latent variable, however, the second latent variable is more influenced by the
covariates avis and elect. Most of the coefficients of parametric direct covariates
are insignificant with the exception of the child’s sex which affects the indicator
stunting and the covariate education level which affects the indicators of diarrhea
and stunting. Else, the results in Table 4.8 are very similar to those of the single
latent variable model in Table 4.7.

4.8 Summary and Discussion

In this chapter we have formulated a latent model for joint analysis of childhood
diseases and malnutrition in two African countries to highlight shared specific risk
factors which affect the diseases and malnutrition status in those countries.

The main goal was to assess the extent of spatial variation among risk of diseases
and nutritional status.
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Table 4.7 Estimates of
factor loadings, parametric
indirect and direct effects of
the LVMM with one latent
variable for Nigeria

Parameter Mean Std 2.5 % 97.5 %

Factor loadings
1. Fever �11 0.821* 0:081 0.682 0.989
2. Cough �21 0.651* 0:063 0.538 0.781
3. Diarrhea �31 0.896* 0:084 0.741 1.087
4. Stunting �41 �0.262* 0:046 �0.348 �0.171
5. Underweight �51 �0.21* 0:028 �0.246 �0.136

Parametric indirect effects
Urban �0.179* 0:079 �0.326 �0.017
Work 0.004 0:070 �0.126 0.147
Trepr 0.204* 0:074 0.053 0.331
Anvis �0.039 0:085 �0.204 0.126
Toilet �0.111 0:100 �0.325 0.078
Elect �0.018 0:077 �0.171 0.127

Parametric direct effects
Male.a11/ �0.006 0:068 �0.141 0.128
Educ.a12/ 0.024 0:077 �0.125 0.181
Radio.a13/ �0.030 0:040 �0.105 0.047
Water.a14/ 0.044 0:095 �0.130 0.243
Male.a21/ 0.016 0:061 �0.102 0.134
Educ.a22/ 0.151* 0:070 0.020 0.282
Radio.a23/ 0.007 0:039 �0.069 0.086
Water.a24/ �0.059 0:093 �0.240 0.113
Male.a31/ 0.128 0:078 �0.030 0.274
Educ.a32/ �0.118 0:094 �0.318 0.051
Radio.a33/ �0.044 0:044 �0.136 0.041
Water.a34/ �0.050 0:111 �0.249 0.183
Male.a41/ �0.218* 0:067 �0.347 �0.100
Educ.a42/ 0.449* 0:0718 0.308 0.584
Radio.a43/ 0.090* 0:040 0.012 0.166
Water.a44/ 0.093 0:095 �0.090 0.274
Male.a51/ 0.063 0:052 �0.032 0.165
Educ.a52/ �0.016 0:056 �0.122 0.085
Radio.a53/ 0.018 0:030 �0.037 0.076
Water.a54/ �0.048 0:069 �0.193 0.087
*Estimate significant at 5 % level

The current study was a follow up of previous studies (Khatab and Fahrmeir
2009; Khatab 2010) where child morbidity and malnutrition in Egypt were modelled
separately.

The joint analysis (latent variable models) used in this chapter confirmed most
of the previous findings. Additionally, it measured the degree of spatial correlation
between the indicators of diseases and those of malnutrition. This is, indeed, one of
the appealing features of the model as it permits to assess the association between
the diseases and the malnutrition indicators and also distinguishes between the
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Fig. 4.4 Non-linear effects from top to bottom: child’s age, mother’s BMI, mother’s age at birth
and spatial effects (for model LVMM using five indicators), on the indicators of a latent variable
“health status” and “undernutrition status” of children for Nigeria using only one latent variable

risk factors associated with each status indicator. In addition, the model allows
exploration of how spatial heterogeneity in these factors influences disease and
malnutrition patterns.

The epidemiological significance of the findings is that the estimated patterns
can be related to known possible explanatory factors or putative sources, thereby
guiding policy with regard to targeting interventions.

With regard to the statiscal methodology, geoadditive latent variable models
offer new opportunities and insights to analyze child morbidity and malnutrition
in developing countries within a joint modelling framework. In our case study for
Egypt and Nigeria we found strong support for flexibly modelling the effect of
some covariates that have nonlinear influences and for including a spatial effect.
The maps could be used for targeting regional development efforts and they may
highlight unexpected relationships that would be overlooked in analyses with
standard regression or latent variable models (Fig. 4.5).

Compared to separate modelling, the joint model in this chapter offers several
advantages. First, it offers a flexible regression modelling of highly correlated
response variables within a unified framework, thus improving efficiency and
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Table 4.8 Results of LVMM
using two latent variable for
Nigeria

Parameter Mean Std 2.5 % 97.5 %

Factor loadings of first latent variable
1. Fever �11 0.957* 0:083 0.821 1.146
2. Cough �21 1.032* 0:091 0.868 1.208
3. Diarrhea �31 0.77* 0:065 0.665 0.901
4. Stunting �41 �0.025 0:048 �0.118 0.073
5. Underweight �51 �0.155* 0:037 �0.226 �0.090

Factor loadings of second latent variable
1. Fever �12 0.000 0:000 0.000 0.000
2. Cough �22 0.253* 0:045 0.164 0.336
3. Diarrhea �32 �0.088* 0:0355 �0.1588 �0.014
4. Stunting �42 1.165* 0:028 1.109 1.224
5. Underweight �52 0.958* 0:0238 0.910 1.006

Parametric indirect effects of first LV
Urban �0.144* 0:067 �0.277 �0.020
Work 0.010 0:068 �0.108 0.160
Trepr 0.243* 0:074 0.091 0.380
Anvis �0.037 0:076 �0.171 0.111
Toilet �0.075 0:099 �0.287 0.109
Elect �0.023 0:074 �0.170 0.121

Parametric indirect effects of second LV
Urban 0.021 0:060 �0.103 0.141
Work 0.105 0:060 �0.014 0.219
Trepr 0.093 0:0613 �0.030 0.218
Anvis 0.359* 0:063 0.234 0.474
Toilet 0.143 0:080 �0.012 0.304
Elect 0.159* 0:064 0.029 0.287

Parametric direct effects of both LV
Male.a11/ �0.0073 0:066 �0.135 0.1230
Educ.a12/ �0.039 0:078 �0.186 0.130
Radio.a13/ �0.052 0:042 �0.137 0.034
Water.a14/ 0.041 0:103 �0.168 0.245
Male.a21/ 0.032 0:074 �0.104 0.168
Educ.a22/ 0.068 0:087 �0.100 0.242
Radio.a23/ �0.024 0:048 �0.115 0.068
Water.a24/ �0.056 0:110 �0.261 0.185
Male.a31/ 0.115 0:0707 �0.023 0.256
Educ.a32/ �0.154* 0:081 �0.312 �0.006
Radio.a33/ �0.066 0:038 �0.142 0.011
Water.a34/ �0.06 0:102 �0.266 0.137
Male.a41/ �0.242* 0:063 �0.374 �0.119
Educ.a42/ 0.185* 0:066 0.0565 0.326
Radio.a43/ 0.028 0:039 �0.052 0.105
Water.a44/ 0.072 0:0897 �0.102 0.230
Male.a51/ �0.061 0:047 �0.1472 0.042
Educ.a52/ 0.048 0:054 �0.052 0.153
Radio.a53/ 0.027 0:029 �0.030 0.082
Water.a54/ �0.005 0:072 �0.144 0.139
*Estimate significant at 5 % level
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Fig. 4.5 Estimates of nonparametric effect of nonlinear covariates from top to bottom: child’s age,
mother’s BMI, and mother’s age at birth for the first (left) and second (right) latent variable for
Nigeria

precision of parameter estimates. This, in turn, allows to include more indicators
in the model as response variables. Further, the model is able to deal with the
different type of indicators such as binary, continuous, ordinal, etc. In addition, not
only the probit model can be applied in terms of the latent variable model, but also
the Poisson and some other families of the distributions can be implemented.

In Egypt, rural areas in the Nile Delta and some other provinces there or in
Lower Egypt are associated with malnutrition in children. One reason, as some
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Fig. 4.6 Estimates of the nonparametric effect of spatial covariate for the first (left) and second
(right) for Nigeria

previous studies reported, is that obesity among adults, particularly women, has
reached very high proportions in Egypt in the last few years, while malnutrition
rates in children (in the first 2 years of life) remain stubbornly high. The 1998
national food consumption survey reported that 16.7 % of children 2–6-years-old
were underweight. Overweight and obesity affected 1.6 % of 2–6-year old children.
The prevalence of stunting in preschool children ranged from 13 % in Lower Egypt
to 24 % in Upper Egypt (Khatab 2010). At the same time, rates of early childhood
malnutrition remain stubbornly stable and relatively high. The double burden of
obesity and malnutrition is clearly evident. In addition, public awareness of the
increasing prevalence of obesity and of diet-related chronic disease is increasing,
and attention has turned to documenting the problem. On the other hand, most
studies relating diarrhea and malnutrition have been conducted in economically
marginal regions, where young children have high rates of diarrhea diseases and
severely faltering growth.

In Nigeria (Fig. 4.6), there is a sizeable difference between pronounced disease in
the eastern parts of the country and significantly better health status in the northern,
and central parts. We can see from the results that southeastern regions and some
regions in the north part are associated with a high rate of childhood disease. That
is because, as suggested by previous studies, a high level of pollution is present
due to petroleum production in those regions. For this reason, the pollution in this
area affected the health of children through water pollution that influences access to
drinkable water sanitation (see Adebayo 2002; Adebayo and Fahrmeir 2005).

The results indicate that, mostly districts in the northeast and southeast posi-
tively associated with height-for-age and weight-for-age. The results also reveal
striking regional variations, with the northeast, south and southeast in much
worse situations in terms of stunting and underweight than the northwest and
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southwest. On the other hand, the children who live in the northwest part of the
country are more likely to be wasted than their counterparts in other parts of
country.

There are both conceptual and technical problems associated with information
on prevalence of fever, diarrhea and cough obtained retrospectively from cross-
sectional studies. First, seasonal differences of occurrence in diarrhea are difficult
to be taken into account in such studies. Longitudinal studies may be more
appropriate to in different seasons. Second, during the survey, neither the children
were examined nor mothers were given a precise definition of what constitutes an
episode of various diseases. On the other hand, we have no sufficient information
about the children who have died before the survey, and whether the cause of death
was the diseases reported here or not.

The questions in the DHS measure the mother’s perception of her child’s health
rather, than morbidity according to clinical examination. This may create variations
among different socio-economic groups because perception of illness is not the
same across different social groups. Third, loss of memory of events as well
as misinterpretation of the reference period can also contribute to the problems
associated with the prevalence of diarrhea (Bateman and Smith 1991).

To sum up, Latent Variable Models offer a new methodology for considering
special types of diseases and malnutrition as indicators for latent morbidity and to
flexibly model covariate and spatial effects on this latent variable. Compared with
separate geoadditive models for the indicator variables, latent variable models can
be advantageous from a statistical and a substantive perspective. Common latent
variables automatically induce association between indicator variables not covered
by covariates.

Acknowledgments The research underlying this paper is part of a research project obtained
during my work period at the Munich University with Prof. Ludwig Fahrmeir. Part of this paper
has been presented and discussed in the Statistics and Life Sciences Conference, Munich, Germany
(March 2008) and other part has been prepared and discussed for the 57th International Statistical
Institute Conference in Durban, South Africa, 2009.

My thanks go to Prof. Ludwig Fahrmeir, for his insightful comments, helpful advice and his
discussions which helped me very much in editing this work. Comments from an anonymous
referee are also gratefully acknowledged. Finally, I want to thank Prof. Thomas Kraus, Institute of
Occupational and Social Medicine, Medical Faculty, RWTH Aachen University for his support in
the final phase of this work.

Appendix

Priors and Identifiability

Priors for regression coefficients ˛j and ˇj are flat, i.e. p.˛j / / 1, p.ˇj / 1/,
or weakly informative Gaussian, which is the standard prior in linear regression



76 K. Khatab

models. Similarly, inverse Gamma priors are usually chosen for error variances �2
j

in Gaussian measurement models.
Concerning factor loadings �j; we first have to deal with the well known identi-

fiability problem in factor analysis and latent variables models. Any transformation
from �0

j to Q�0
j D �j

0V and from �i to �2
i D V 0�i with an orthogonal matrix

V leads to the same predictor because Q�0
j Q�i D �0

j �i . To avoid this identifiability
problem we choose the matrix ƒ D .�0

1; ::; �0
p/0 of factor loadings to be a lower

block triangular matrix of full rank and positive diagonal elements as recommended
by Geweke and Zhou (1996) and Aguilar and West (2000). To avoid so-called
Heywood cases, we assume a standard normal prior for these factor loadings, which
is a standard choice in applications.

The nonparametric effects fr1; : : : ; frk for continuous covariates z1; : : : ; zk in the
structural equations (4.8) are modelled as (Bayesian) P-splines. Dropping indices to
simply the notation, a function f is approximated through a polynomial spline

f .z/ D †d
cD1�cBc.z/; (4.14)

where B1.z/; : : : ; Bd .z/ are B-spline basis functions. Smoothness of the function f

is achieved by assuming a (second order) random walk model.

�cD1 � 2�c�1 C �c�2 D uc � N.0; �2/ (4.15)

for the sequence of B-spline coefficients. The variance �2 controls the amount of
smoothness and is estimated (together with all other parameters) by assuming an
inverse Gamma prior.

More information about Bayesian P-spline regression is given in Lang and
Brezger (2004) and Fahrmeir et al. (2004).

The geographical effects fgeo.s/ for regions 1; : : : ; S are modelled through
Markov random field priors, a popular model in disease mapping (Besag et al. 1991)
and in spatial statistics (Rue and Held 2005). The basic idea is that adjacent regions
should have a similar impact on the latent variables, whereas two regions far apart
from each other need not exhibit such a similarity. We assume the standard Markov
random field prior

fgeo.s/jfgeo; s0 ¤ s N

 

†s02Ns

fgeo.s0/

ns

;
�2

geo

ns

!

; (4.16)

where N.s/ is the set of neighboring regions s0 of s, i.e. share a common boundary
with region s, and ns is the number of neighboring regions. Hence, the conditional
mean of fgeo.s/ is an average of the spatial effects fgeo.s0/ of all adjacent regions.
As for P-splines, the variance �2

geo controls smoothness of geographical effects and,
again, obeys an inverse Gamma prior.
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Identification Problems

There are two sources of identification problems.
The first is associated with modelling of ordinal variables, but our focus is in this

chapter was on binary indicators. The second is related to the uniqueness of factor
loadings matrix ƒ and factor scores.

For the binary indicators the tj of all indicators j are fixed to zero and
var."i / D1 in order to solve the identification problem. For more details see Raach
(2005).

Uniqueness of Factor Analysis and Scores

Consider a transformation of the model

y�
i D �0 C ƒT �1T �i C Awi C "i (4.17)

with a q � q non-singular matrix T (e.g. Bartholomew 1987), i.e. where ƒT �1 is a
loading matrix, new latent scores T �i and V.�i / D T ‰T 0.

Without any restrictions for ƒ or ‰, a different number of models may be created.
Since the matrix T consists of q2 elements, we have to set q2 restrictions in the
model. For this reason the latent scores have a standard normal distribution, and no
correlations among the latent variables exist.

In the traditional exploratory factor analysis, the variance matrix of the latent
scores can be chosen to be q-dimensional identity matrix Iq , leading to �i �
Nq.0; Iq/.

For this reason, the latent scores have a standard normal distribution, and no
correlations among the latent variables could exist. The model is invariant under
transformations with orthogonal q � q matrix V of form Qƒ D ƒV 0, and Q�i D
V �i since this transformations can keep the variance of latent scores without any
changing .V .�i / D V IkV 0 D ‰/. The factor loadings matrix ƒ is chosen to be a
lower block triagonal matrix of full rank and positive diagonal elements (Geweke
and Zhou 1996) using free parameters f D pq � q.q�1/

2
.

Prior Distributions

This section discuses briefly a complete specification of the prior distributions
for all parameters included in illustration of the present chapter. Since the prior
distributions of the underlying variables y� and the latent variables � are implicitly
determined by the prior distributions of all other parameters and the distributional
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assumptions about "i and �i , we have to specify prior distributions for the parameter
vector � D vecf�0; ƒ; A; †; ˇ; �; �g: If we assume that the individual parts of the
model are stochastically independent, then the prior distribution yields

p.�/ D p.�0; ƒ; A/:p.†/:p.�/:p.ˇ; �/:

The following subsections present briefly the prior distributions of the measure-
ment model p.�0; ƒ; A/, p.†/ and p.�/ and of the structural model p.ˇ; �/.

Prior Distribution of Intercept, Factor Loading and Direct Effects

Regarding the intercepts factor loadings and direct effects we define a p:.1Cq Cd/

dimensional vector ƒ which contains all parameters of �0, ƒ and A arranged ƒ WD
.ƒ10; ƒ11; a11; ::a1d ; ::; �p0; �p1; ::; �pq; ap1; ::; apd /. The prior distribution selected

for � is a p:.1 C q C d/ dimensional multivariate normal density with the mean �
�

and the precision matrix ƒ which are chosen according to prior information, i.e.

� N � .�
�
; ƒ

��1
/

p.�/ / constant:

We chose noninformative priors for the intercepts �0 and the regression coef-
ficients A of direct effects (see Fahrmeir and Raach 2006). The conjugate prior
distribution of the vector of regression coefficients �r is a m-dimensional multivari-
ate normal density with mean ��

r and precision matrix ��
r , �r � N.��

r ; ���1
r /. In

our analysis, we always choose noninformative priors for all regression parameter
�r , hence all values of ��

r are set to zero.

Prior Distribution of Structural Model

Prior Distribution for Smoothing Functions

A prior for smoothing functions fr1; ::; frg is based on a Bayesian P-spline approach
(Eilers and Marx 1996).

Prior Distribution for Spatial Effect

The prior of spatial effect is based on Markov random field (Besag 1974; Besag and
Kooperberg 1995).



4 Bayesian Geoadditive Mixed Latent Variable Models with Applications. . . 79

Fully Posterior Inference

A vector of parameters can be estimated after all parameters are arranged in the
parameter vector � .

� D vecf�0; ƒ; A; †; ˇ; �; tg:

Hence the posterior distribution is

p.� jy; w; x; u/ / p.�/:p.yj�; w; x; u/:

The complete parameter vector is obtained by adding the underlying variables
and latent variables to the parameter vector � leading to a posterior distribution

p.�; y�; zjy; w; x; u/ / p.�/p.y; y�j�; w; x; u/

Sampling from the posterior distribution is done through MCMC algorithms.
There are three different MCMC algorithms that can be used and that essentially
differ in the way of estimating the cutpoints in the case of ordinal indicators (Raach
2005; Fahrmeir and Raach 2007).
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Chapter 5
Mapping Socio-economic Inequalities
in Health Status Among Malawian
Children: A Mixed Model Approach

Lawrence N. Kazembe

5.1 Introduction

There has been a long interest in public health on the linkage between health
and socio-economic determinants, with many studies published from developed
countries, for example in Europe and USA (Braveman and Tarimo 2002; Wagstaff
2000; Black et al. 2003). The studies commissioned by World Health Organization
(WHO) on socio-economic determinants of health also spells out the importance of
socio-disparities in health, and its impact on socio-economic development (Wagstaff
2000; Zere and McIntyre 2003). In these studies, the following have been identified
as key determinants of health: deprivation or SES, education, race or ethnicity,
and rurality. For years, routine public health statistics have been reported, in
Europe and United states, by social factors (mainly income and education), race
or ethnicity. These have facilitated monitoring of socio-economic disparities in
health, and allowed comparison among social classes. In contrast, in developing
countries, studies that examine differences in risk, stratified by education or income
are relatively few, and where these have been considered there is no explicit
investigation of socio-economic patterning (Fotso and Kuate-Defo 2005; Hong
2007).

Furthermore, comparatively few studies have mapped socio-economic inequal-
ities in childhood health (Congdon 2003). Differences in risk that suggest a
socio-economic patterning at a particular area would support targeted interventions
in areas highlighted to be hotspots of ill health. Although it is well-known that
socioeconomic factors such as income and education are significant determinants
of individual health, the clear differences in risk across different socio-economic
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strata have not been studied in African scenario. In particular, there is interest
to understand the complex relationship between deprivation and childhood health
in Africa.

Health outcomes are highly dependent on geographical location. Proper account
of spatial clustering of the response is needed. The sources of spatial hetero-
geneity are many. The inclusion of spatial effects permits modelling unobserved
or unmeasured covariate information on the community level. Analysing their
geographical interrationship can help policy makers understand spatial patterns
and identify differences in disease burden across areas. Although this has a rich
applications in cases arising in developing countries, few such studies focused on
problems from developing countries exist. Investigations in the past have revealed
geographical variation in the distribution of risk in childhood morbidity (Kandala
2006; Kandala et al. 2006). In some instances, spatial profiles of risk happen to
be similar. For example, rural areas are associated with poorer health, impoverished
neighbourhoods are at relatively increased risk. Indeed, epidemiological overlap and
co-morbidity seem to be the norm than not. The impact of control efforts can be
substantial if interventions are spatially targeted (Carter et al. 2000). Recognizing
the areas where the risk overlap would assist in scaling-up of resources. Identifying
geographical differences in the risk may assist in planning integrated interventions,
thus reducing the cost of providing interventions and avoid duplications of systems
aimed at delivering resources.

The aims of this study are: (i) to jointly model the geographical distribution of the
four leading causes (diarrhoea, fever, stunting and underweight) of child morbidity,
(ii) to investigate the association of SES with the four ill-health conditions stated
above. SES is fitted as a spatially varying covariate, controlling for other risk
factors on the four causes, and (iii) to explore patterns of spatial correlation. We
conducted a multilevel spatial study with district (a third-level of administration)
and sub-districts (a fourth-level of administration) in Malawi as units of analysis.
This study takes advantage of the existing national surveys like the demographic
and health survey, which reports data on a number of variables including those
on childhood health, and socio-economic variable which can be construed as
possible socio-determinants of health. In addition, these surveys collected geo-
referenced data, which makes applications of spatial epidemiological techniques
a possibility.

We applied a multinomial model to analyse spatial patterns of childhood co-
morbidity in Malawi, in what is called a multi-categorical response models (Kneib
and Fahrmeir 2006). We considered the joint occurrences of (i) diarrhoea and fever,
(ii) diarrhoea and stunting, (iii) fever and stunting and (iv) stunting and underweight
as outcomes. Each of the joint outcome is considered as a response category of a
multinomial random variable. Note that such responses may be modelled in different
ways. Multivatiate models are such an alternative, see for example Fahrmeir and
Raach (2007) who introduced a latent class model to model multiple indicators.
However, multicategorical models, such as the multinomial logistic model, are
widely used in the social sciences, as either choice or classification models, for
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instance in demographic analysis of life-course events, fertility preferences and
contraceptive use (Steele et al. 2004). In several of these models, spatial patterns
have not been considered.

In our modelling strategy, we included both individual covariates and a structured
latent variable at two geographical levels (district and subdistrict). Our approach
here recognises the fact that several health outcomes occur simultaneously, largely
because of common risk factors, and probably due to overlap between multiple
risk factors, or that one disorder creates an increased risk for the other (Kazembe
and Namangale 2007; Fenn et al. 2005). In many sub-Saharan African countries,
diarrhoea, malaria, and malnutrition cause and inflict the largest burden National
Statistical Office and ORC Macro (2004), and they are often common forms of co-
morbidities (Källander et al. 2004; Mulholland 2005). Indeed, their co-existence is
largely blamed to expedited early and high childhood mortality (Fenn et al. 2005;
Mulholland 2005; Källander et al. 2004; Black et al. 2003). Our model, further,
extends a novel application of spatially-varying coefficients models to capture the
changing pattern of SES in space (Fotheringham et al. 2002; Gamerman et al. 2003;
Gelfand et al. 2006).

Modelling and inference is done through use of the empirical Bayes (EB)
approach via penalised likelihood techniques (Kneib and Fahrmeir 2006; Fahrmeir
et al. 2004; Tutz 2004). However, fully Bayesian (FB) approach is possible
(Fahrmeir and Lang 2001). For example, Tutz (2004) developed a class of gener-
alised semiparametric mixed models and proposed penalized marginal likelihood
approach for the estimation of parameters. Fahrmeir et al. (2004) considered a
penalised geoadditive model for space-time data with inference performed using
an empirical Bayes (EB) approach.

Now the rest of this chapter is structured as follows. Section 5.2 describes model
development, while Sect. 5.3 gives details of model fitting. In Sect. 5.4, we apply
the techniques to real data from 2006 Malawi Multiple Indicator Cluster Surveys
data. Section 5.5 gives the results. The final section is the conclusion.

5.2 Model Development

5.2.1 The Multinomial Model

A multinomial random variable applies where an event, Y, ends up with three or
more outcomes 1, : : : , J (J > 2). Specifically suppose. Y has unordered categories,
we assume

Y � multinomial .1; p.vi;˛// for i D 1; : : : ; n;

such that p.vi ; ’/ D .p1.vi ; ’/; � � � ; pJ .vi ; ’//0, and P.yi D j j’/ D pj .vi ; ’/,
given some covariates v D �

v1; : : : ; vp

�0
and corresponding parameter set ’.
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The most common approach to estimate multinomial probabilities is through the
logistic model

p.vi ; ˛/ D P.yi D j j˛/ D

8
ˆ̂̂
<

ˆ̂̂
:

exp.�ij /

1 CPJ �1
hD1 exp.�ih/

j D 1; � � � ; J � 1

1

1 CPJ �1
hD1 exp.�ih/

j D J

(5.1)

where ˜ij D v0˛j is the linear predictor. The last category J is considered as a
reference classification outcome. The likelihood L would take the form

L D
nY

iD1

JY

j D1

Œp.vi ; ’/�yij

with log-likelihood

log L D
nX

iD1

JX

j D1

yij log Œp.vi ; ’/� :

In this classical multinomial logit model all covariates are assumed to be
independent of the category while effects are category-specific. Extensions of the
classic model allows for the inclusion of category-specific covariates wJ �1 leading
to the predictor ˜ij D v0’j C wj ™.

Since the observations are associated with location of residence, it is desirable
to account for spatial correlation and heterogeneity. Modelling of heterogeneity
and spatially structured variation may be obtained by introducing random effects.
Similarly, nonlinear effects are introduced in the model through smoothing func-
tions. The predictor (5.1) is expanded to include all possible explanatory variables
like fixed, nonlinear and spatial covariates, giving a semi-parametric predictor
(Tutz 2004),

˜ij D v0˛j C wj ¥ C
qX

kD1

fjk

�
xij

�C fspat
�
sj

�
(5.2)

where ’ are fixed effects corresponding to wj D .wj1; � � � ; wjp/0, fjk; k D
1; : : : ; q are unknown smooth functions, for each response category j, of continuous
covariates xij D .xk11; � � � ; xkql /

0 that enter nonlinearly, and fspat.sj / is the spatial
component of the model that captures random effects of area sj ; s 2 f1; : : : ; Sg.

The component fspat.sj / is split further into spatially structured and unstructured
random effects, fstr.sj / and funst r .sk/ respectively, to capture any residual variation,
within or between area, in health status that is not explained by components of
the model. Further, define ” D (¥, ’0)0 as the overall vector of fixed regression
coefficients, and let
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U D

0

B
@

u0
1
:::

u0
J �1

1

C
A D

0

B
@

v0 0 w0
1 � w0

J

: : :
:::

0 v0w0
J �1 � w0

J

1

C
A

be the corresponding design matrix constructed from the covariates wk and
category-specific covariates v0. Then, after reindexing, we can rewrite the predictor
(5.2) in generic matrix notation as

�j D U ”j C X 1ˇj1 C X 2ˇj 2 C � � � C X lˇjl C � � � C X strˇj;st r (5.3)

which reduces to �j D P�j , where P D .U ; X 1; X 2; : : : ; X unst r ; X str/ are
appropriate design matrices for each fixed, metrical and spatial effect respectively,
and �j D .”j ; ˇj1; ˇj 2; : : : ; ˇj;st r / is a high dimensional parameter vector. The
elements X 1; X 2; : : : ; X l ; : : : ; X str and ˇj1; ˇj 2; � � � ; ˇjl ; � � � ; ˇj;unst r ; ˇj;st r are
such that f l D X lˇjl . The most compact form of the predictor � is obtained by

� D

0

B
@

�1

:::

�J �1

1

C
A D U ” C X 1ˇ1 C X 2ˇ2 C : : : C X lˇl C : : : C X strˇstr

5.2.2 Modelling Spatial Structure

We fitted the following three models. The first model fitted was where SES
is considered as a fixed variable while adjusting for bio-demographic factors,
and using districts and sub-districts as the spatial units in a simple conditional
autoregressive (CAR) model. Second, within the CAR framework, we explored
the idea of modelling SES as a spatially varying coefficient covariable. Third, we
introduced latent class models to automatically control for correlation at two scales
within a framework of a multilevel model or random intercepts.

Random Effects Model

Spatial correlation between areas is achieved by incorporating suitable random
effects into ˇstr. This is specified using Markov Random Field (MRF) priors. The
MRF is defined as

ˇstrj
˚
ˇstr; �2

str

� � N
�
0; �2

strQ
�1
�

(5.4)

where �2
str is the unknown precision parameter which controls the degree of

similarity, and Q is the spatial precision matrix. The (i, j)-th element of the spatial
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precision matrix Q is given by

Q D

8
ˆ̂<

ˆ̂:

ms; s D r

� 1; s � r

0; elsewhere

where s�r denotes that area s is adjacent to r which is assigned �1, ms is the number
of adjacent areas to s. We define areas as neighbours if they share a common border.
Thus area s, given neighbouring area r, has the following conditional distribution
(Besag et al. 1991)

ˇ2
strj
˚
ˇr

str; s ¤ r
� � N

 
1

ms

X

r2ıs

ˇr
str;

�2
str

ms

!

(5.5)

where s and r are adjacent areas in the set of all adjacent areas .•s/ of area s, and ms

are the number of adjacent areas.
For completeness, we specify other prior assumptions required in order to

model the relationship depicted in (5.3). Essentially, this is the second stage of
the hierarchy. For the fixed regression parameters, ”, a suitable choice is the
diffuse prior, p(”)/constant. The smooth functions of continuous covariates are
modelled using a second-order random walk prior given by “l j“l�1; “l�2; £2

l �
N
�
2“l�1 � “l�2; £2

l

�
for l D 3, : : : , j with noninformative priors for the initials.

Again £2
l controls the amount of smoothing, with larger values leading to less

smoothing. In order to capture unstructured spatial random effects .“unst r /, we
assumed exchangeable normal priors, “unst r � N

�
0; £2

unst r

�
, where £2

unst r is a
variance component that allows for over-dispersion and heterogeneity.

Spatially-Varying Coefficient Model

The second model fitted is spatially varying coefficients (SVC) model. The SVC
model allows the regression parameters for the lth covariate and jth joint health
condition, “jl D �

“jl .s1/; : : : ; “jl .sS /
�0

, to be different in different locations. Thus
SVC is an extension of model (5.2),

�j D � � � C fspat.sj /xl C � � �

and can be seen as interaction terms, where the effect of xl varies smoothly over
the domain of sj . In other words, geographical location acts as an effect modifier
of xl . Models of this kind are also known as geographically weighted regression,
see Fotheringham et al. (2002); Gamerman et al. (2003); Gelfand et al. (2006).
Again the evaluation function fspat.sj /xl can be written as matrix g D Zˇ,
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such that g D �
x1fspat.s1/; : : : ; xnfspat.sn/

�0 D diag.x1; : : : ; xn/X D Zˇ, where
Z D diag.x1; : : : ; xn/X . Again, a random walk prior can be assigned to the vector
of regression coefficients “. Note that the varying coefficients can also be interpreted
as a two-dimensional surface fspat.sj xl / D fspat.sj /xl . Therefore the predictor can
be written as

�j D � � � C fspat.sj ; xl / C � � �

and therefore can be approximated by the tensor product of the one-dimensional
penalised splines (P-splines). If we assume that the unknown surface ˇstr D
f .sj ; xl /, then

f .sj ; xl / D
m1X

pD1

m2X

vD1

ˇpvB1;p.sj /B2;v.xl / (5.6)

where B11; : : : ; B1m1 are the basis functions in sj direction and B21; : : : ; B2m2 in xl

direction. The design matrix Xk is now n � m1 � m2 dimensional and consists of
products of basic functions. Priors for “pv are based on spatial smoothness priors as
specified in Besag and Kooperberg (1995). A two-dimensional first order random
walk has been shown to work well (Lang and Brezger 2004). This is based on the
four nearest neighbours and is specified as

ˇpvj� � N

 
1

4
.ˇp�1;v C ˇpC1;v C ˇp;v�1 C ˇp;vC1/;

�2
pv

4

!

(5.7)

for p,v D 2, : : : , m�1 and appropriate changes for corners and edges. This prior is a
direct generalization of a first order random walk in one dimension. Its conditional
mean can be interpreted as a least squares locally linear fit at knot position
−p; −v given the neighbouring parameters. In many applications it is desirable to
additionally incorporate one dimensional main effects. Again, similar to the one
dimensional case additional identifiability constraints have to be imposed on the
functions.

Multilevel Models: Exploring Spatial Correlation and Heterogeneity
at District and Sub-district Levels

Assuming that the outcome is clustered at a sub-district and district administrative
levels, two area-specific random effects can be introduced in (5.2) to model their
effects. The predictor then becomes

�hijk D x0
hij ˇk C �hik C �hk (5.8)
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for sickness status k, of child j in subdistrict i within district h. The components ™hik

and ¥hk are area-specific random effects for the subdistrict and district respectively,
which can further be split into spatially structured variation and unstructured
heterogeneity.

5.3 Penalised Likelihood Inference

Inference for the semiparametric model is based on the empirical Bayesian ap-
proach, also called the mixed model methodology (Brezger et al. 2005; Fahrmeir
et al. 2004). The EB approach is achieved by recasting the predictor model (5.3) as
generalized linear mixed model (GLMM) after appropriate reparametrization. This
provides the key for simultaneous estimation of the functions fl and the variance
parameters £2

l in the empirical Bayes approach. To rewrite model (5.3) as mixed
model, we assume that “l has dimension dl and the corresponding penalty matrix
has rank hl < dl . Each parameter vector “l is partitioned into a penalized

�
“

pen

l

�

and unpenalized
�
“

unp

l

�
part yielding a variance component model (Brezger et al.

2005; Fahrmeir et al. 2004),

“l D ‰
unp

l “
unp

l C ‰
pen

l “
pen

l (5.9)

for some well defined dl � .dl � hl/ matrix ‰
unp

l and a dl � hl matrix ‰
pen

l .
The following priors are assumed. For the penalized part, an i.i.d Gaussian prior
is suitable, while for the unpenalized part we assume a flat prior:

p
�
ˇ

pen

l

� � N
�
0; �2

l Ihl

�
and p

�
ˇ

unp

l

� / const: (5.10)

Applying decomposition (5.9) to all the components of predictor (5.3) yields

˜ D Xunp“unp C Xpen“pen: (5.11)

We have obtained in (5.11) a GLMM with fixed effects “unp and random effects
“pen. The posterior, in terms of the GLMM representation, is given by

p.“unp; “penjdata/ / L.data; “unp; “pen/

gY

lD1

�
p
�
“

pen

l j£2
l

��
(5.12)

where L(�), again, denotes the likelihood which is the product of individual
likelihood contributions and p

�
“

pen

l j£2
l

�
as defined above. Estimation of regression

coefficients and variance parameters is carried out using iteratively weighted least
squares and approximate restricted maximum likelihood. Such details are given in
Lin and Zhang (1999). Fahrmeir et al. (2004) further derived numerically efficient
formulae that allow for handling large data sets.
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5.4 Application: Modelling Health Status
Among Malawian Children

5.4.1 Case Data

We used as a case study data collected as part of the 2006 Malawi Multiple
Cluster Indicators Survey (MICS). MICS was designed to provide estimates of
health and demographic indicators at the national and regional levels, and allow for
regional and urban-rural comparisons. A two-stage stratified sampling design was
implemented to collect the data. A total of 1,040 enumeration areas (EAs) as defined
in the Malawi Population and Housing Census of 1998 were selected, stratified by
urban/rural status with sampling probability proportional to the population of the
EA. Each EA was geo-referenced. A fixed number of households were randomly
selected in each EA. All women aged 15–49 were eligible for interview. A total of
32,220 women were interviewed with a response rate of 98 %. The data was realized
through an interviewer – administered questionnaire.

The outcome variables were derived from self-reported sickness status of
each child for the four ill-health conditions (fever, diarrhoea, stunting and un-
derweight), as reported by the care-givers (often mothers), experienced within
2 weeks prior to the survey date. The first two outcomes were based on a
mother’s self-report on the child, based on the following questions: “Does the
child have fever now/Did the child have fever during the last 2 weeks” and
“Did the child have diarrhoea in the last 2 weeks”. Stunting and underweight
were based on the transformed Z-scores on the height-for-age and weight-for-age
measurements respectively done on the child. A child was considered stunted or
underweight if Z < �2. Table 5.1 shows a cross-classification of diarrhoea, fever

Table 5.1 Fixed effects estimates and 95 % credible intervals (CI) from the multivariate
spatial model of childhood fever, diarrhoea and stunting morbidity in Malawi, 2006

Child stunted

Child ill with fever No Yes Total

Yes Child had diarrhoea Yes Count 1,562 1,408 2,970
% of Total 19.4 17.5 36.9

No Count 2,713 2,373 5,086
% of Total 33.7 29.5 63.1

Total Count 4275 3,781 8,056
% of Total 53.1 46.9 100

No Child had diarrhoea Yes Count 1,285 1,141 2,426
% of Total 8.6 7.6 16.3

No Count 6,934 5,563 12,497
% of Total 46.5 37.3 83.7

Total Count 8,219 6,704 14,923
% of Total 55.1 44.9 100
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and stunting. Evidently, the proportion experiencing multi-comorbidity is relatively
large (p D 17.5 %, n D 14,923). The proportions of co-morbidities of fever and
diarrhoea, and fever and stunting are 19.4 % and 29.5 % respectively, higher than
co-morbidity of diarrhoea and stunting (7.6 %). A multi-categorical response was
constructed as follows: (1) if the child was sick of both diarrhoea and fever (DF), (2)
if the child had diarrhoea and was stunted (DS), (3) if the child had fever and was
stunted (FS), (4) if the child was stunted and underweight (SUN), and (5) if the child
experienced no disease and not malnourished within the observation period. Note
that detailed single disease analyses have been dealt with elsewhere, see Kandala
et al. (2006), and our reporting shall deal with the five diseases combinations.

The following individual covariates were included in the analysis: (1) age of
the child categorized as (a) 1–5 months, (b) 6–11 months, (c) 12–23 months,
(d) 24–35 months and (e) 36–59 months (reference group); (2) received vitamin
A within 6 months prior to the survey date (yes D 1, no D 0); (3) type of place
of residence (rural D 1, urban D 0); (4) crowding indicator based on the whether
household size exceeded 5, which is the median household size in Malawi (yes D 1,
no D 0), (5) region of residence (1 D north, 2 D centre, 3 D south), (6) mother’s
education level (1 D none, 2 D primary, 3 D secondary or higher), and (7) wealth
ranking (1 D lowest, 2 D lower, 3 D medium, 4 D higher, and 5 D highest). The “no”
category was the reference group for all binary variables above. Individual data were
nested within two areas: 364 subdistricts and 31 districts.

5.4.2 Implementation

Let Yijk and �ijk be the sickness status and probability of co-morbidity of diarrhoea
and fever (k D 1), co-morbidity of diarrhoea and stunting (k D 2), co-morbidity of
fever and stunting (k D 3), co-morbidity of stunting and underweight (k D 4), no
disease (k D 5) of child j, j D 1; : : : ; ni in area i, i D 1, : : : , S. We fit the following
four sets of multinomial logistic models. The first model (M1) is purely spatial,

M1aW ˜ijk D fstr.TAj/ C funst r .TAj/:

M1bW ˜ijk D fstr.TAj/ C funst r .TAj/ C fstr.districtj / C funst r .districtj /:

In this model we introduce spatial smoothness priors to capture spatial corre-
lations at district and sub-district level. This is achieved by assuming CAR priors
(5.5). Further, the model permits unstructured heterogeneity. This model investi-
gates whether there is substantial spatial variation in the joint health conditions, and
if the answer is yes whether this variation can be explained by socio-economic status
and bio-demographic factors.

The second model, M2, is a spatial parametric model, which adjusts for
covariates,

M2aW ˜ijkDxij
0“j Cfstr.TAj/Cfunst r .TAj/Cfstr.districtj / C funst r .districtj /:
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With this model, we assess how much of the spatial variation is attenuated by
the inclusion of fixed effects of all considerable covariates. Here the effects of SES
are estimated as fixed effects. In model M2b we estimate the spatial effects at both
district and sub-district levels.

In the third model M3, we fit a spatial semi-parametric model with age of child
assumed nonlinear and the rest of the variables assumed fixed,

M3W ˜ijk D xij
0“j C f .age/ C fstr.TAj/ C funst r .TAj/

For the nonlinear effects we use a second-order random walk prior. Model M3
investigates the bias of fitting restrictive linear model, M2.

In the last model M4, we fit a spatially varying coefficient model with SES as-
sumed space varying, through components SES�fstr.TAj/ and SES�fstr.districtj /.
The rest of the variables are estimated as in model M3,

M4W ˜ijk D xij
0“j C f .age/ C fstr.TAj/ C funst r .TAj/ C SES�fstr.TAj/

C SES�fstr.districtj /:

Implementation of these models was carried out in BayesX (Brezger et al.
2005). In BayesX, regression coefficients are estimated iteratively. For each model
fitted, convergence is achieved when the change in regression parameters is 0.0001
and terminated at 400 iterations if convergence is not achieved. However, all models
converged at less than 25 iterations. We compare the fitted models using Akaike
Information criterion (AIC). This is defined as sum of the log-likelihood and the
degrees of freedom (df ). The log-likelihood measures the goodness of fit whereas
the df measures model complexity. The smaller the AIC, the better the fit of the
model.

5.5 Results

5.5.1 Random Effects Model

Figure 5.1 shows the observed geographical variations in childhood fever, diarrhoea
and stunting at district level for both highest and lowest levels of SES. There is
evidence of similarities in geographical patterning of the three conditions for lowest
levels of SES, in contrast to the patterning at highest levels of SES. Table 5.2 shows
the relationship between the disease outcomes with SES. The health outcomes
significantly associated by SES (�2 D 293:81; p < 0:001). Figure 5.2 provides
evidence of the relationship between the health classification and geographical
context, at sub-district level, measured through latent variables. It is revealing to
note that the varying risk has some degree of similarities in an area. Such variation
may largely be due to differences in population composition and structure, or there
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Fig. 5.1 Observed proportions of fever, diarrhoea, and stunting at district level cross-classified by
lowest and highest wealth quintiles, a measure of SES



5 Mapping Socio-economic Inequalities in Health Status Among Malawian. . . 95

Table 5.2 Cross-tabulation of co-morbidities with socio-economic status (SES), maternal
education and rural-urban differentials

Co-morbiditiesa

Wealth quintile DF DS FS SUN None Total ¦2 (p-value)

Lowest 6.9b 3.1 10:9 19:0 59.0 5,202 293.81 (<0.001)
Lower 7.6 3.2 10:4 17:1 60.8 4,960
Medium 7.2 2.8 11:7 15:7 61.6 4,946
Higher 6.2 3.1 9:6 13:7 66.0 4,432
Highest 5.4 2.9 6:9 10:2 73.4 3,698

Maternal
education

None 6.6 3.2 11:2 18:9 60.1 5,168 209.58 (<0.001)

Primary 6.9 3.0 10:3 15:8 64.0 15,307
Secondary 6.8 3.5 7:5 7:8 74.4 2,449

Area Urban 5.8 2.7 6:9 12:1 72.6 2,347 82.28 (<0.001)
Rural 6.9 3.1 10:6 16:1 63.3 20,647

aDF diarrhoca and fever, DS diarrhoea and shtunting, FS fever and stunting, SUN stunting
and underweight
bNumber are percentage

may be substantial area effects, which can be explained by factors considered here.
In this model, the highest risk for diarrhoea and fever (outcome I) was in Mulanje
(South), Mchinji (Centre) and Karonga (North). For outcome II (diarrhoea and
stunted), we observe that risk is highest in the central region and parts of Mangochi
district. Similar patterns were observed at district level for outcome III (fever and
stunted). The varying risk of joint stunted-underweight condition were highest in
Dedza and South-eastern region (Fig. 5.3).

The fit of the model, as assessed through AIC, shows it improved when
covariates were included in the model (Table 5.3). This baseline model yielded
AIC D 49615.97, higher compared to the AIC obtained under model M2, which
includes covariates (AIC D 49429.22). Model M4 performs far better than the other
two (AIC D 47469.43). We therefore dwell our discussions on this model (M4).

Table 5.4 gives estimates of fixed effects for the four joint outcomes based on
model M4. Outcome I, the joint diarrhoea-fever condition, was positively associated
with age of the child, socio-economic ranking at lowest to medium levels, but
no significant difference was obtained at higher level of SES compared to those
at highest level of SES. The central region, relative to the northern region, was
positively associated with outcome I. Similarly, crowded households were positively
associated with the joint condition of diarrhoea and fever. For the second outcome,
diarrhoea combined with stunting was negatively associated with age of less than 6
months and was positive for ages between 6 and 47 months relative to those aged
49–60 months. Nevertheless there was no significant association with SES, maternal
education, crowded households, vitamin A or place of residence. The joint fever-
stunted condition (outcome III) was observed to be associated with age, negatively
for those aged <6 months, and positively for those above age 12–47 months. We
also noted a positive association of this category with SES, rural residence and
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Fig. 5.2 Association between health outcomes and geographical location at sub-district level
based on model M1. Plot (a) outcome I (diarrhoea and fever); (b) outcome II (diarrhoea and
stunted); (c) outcome III (fever and stunted); (d) outcome IV (stunted and underweight)
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-0.53 0 0.28

a

-0.53 0 0.28

b

-0.53 0 0.28

c d

Fig. 5.3 Total residual spatial effects in the latent variable model. Shown are posterior modes at
district level for DF (plot a), DS (plot b), FS (plot c) and SUN (plot d)

Table 5.3 Model comparison values based on Akaike information criterion (AIC) for selected
multinomial modelsa

Model Description Log likelihood Degrees of freedom AIC

M1 Random effects at districts and
sub-district

49,125.23 245.37 49,615.97

M2 Fixed C Random effects 48,944.50 242.36 49,429.22
M3 Space-varying SES C Random

effects
48,902.30 346.46 49,595.22

M4 Fixed C Nonlinear C Space-
varying SES

46,872.61 298.41 47,469.43

aSee Sect. 5.4.2 for details on models fitted

maternal education. For the last outcome, a combination of stunted and underweight,
a significant relationship was observed with age of the child, SES, region, maternal
education and crowded households. However, for all joint health outcomes, age of
child was better estimated as nonlinear effects (Fig. 5.4). Indeed, considering the
values of log-likelihood, AIC (Table 5.3), the model with nonlinear effects (M4)
was better than the other two (M1 and M2). Note that for all outcomes the risk
increased with age up to age 15–20 months and then started decreasing at about
age of 20 months. However, for diarrhoea-fever condition this effect seemed to fall
much earlier, at about 10 months (Fig. 5.3).
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Fig. 5.4 Nonlinear effects of age of the child on co-morbidities of diarrhoea, fever, stunting and
underweight

5.5.2 Space-Varying Coefficient Model

Figure 5.5 displays spatial effects from a model where a spatially varying coefficient
was assumed. The varying effect of SES on the log-odds ranged between �0.095
and C0.13 on the joint diarrhoea-fever condition, with a positive effect in the north
near Songwe river, in the central region in one sub-district in Mchinji, and around
lake Chilwa in Zomba district (see plot (a)). The combined condition of diarrhoea-
stunted is shown in plot (b), and that of fever-stunted (plot c) portrayed a similar
risk pattern with regards their association with SES. The risk is highest in the central
region and equally lowest in other regions, ranging between �0.66 and C0.39 and
from �0.05 to C0.02 for the South or North respectively. Evidently the influence
of SES was dominant in the joint diarrhoea-stunted condition as shown by the
magnitude of the effects. For outcome IV, the varying risk of SES, range between
�0.13 and C0.26, with a few pockets of significantly positive association.

Total residual spatial effects, after accounting for fixed and space-varying effects
still remained significant, and are plotted in Fig. 5.6. Plot (a) shows the spatial effects
of outcome I (diarrhoea and fever). Here we observe clusters of positive association
in the South-eastern region, along Salima and in Chitipa. For outcome II (combined
diarrhoea-stunted category), as shown in panel (b), there was evidence of positive
clustering in the central region, and isolated areas in Nkhatabay and Mangochi.
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Fig. 5.5 Spatially varying coefficient effects of SES on joint conditions of diarrhea, fever, stunting
and underweight, as defined in the text
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Fig. 5.6 Total residual spatial effects in the latent variable models. Shown are the posterior modes
for outcome I-IV as defined in Table 5.4
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The residual effects for the joint fever-stunted category is given in panel (c). The
effects are again increased in the central region in Dowa, Ntchisi, Salima and
Nkhotakota districts. Similar patterns of positive association were obtained in the
South in Zomba, Nsanje and Chiradzulu districts. The last category, combination of
stunted-underweight had fewer pockets of elevated risk, as shown by dark shades of
colour.

5.5.3 Multilevel Structure at District and Subdistrict Level

Table 5.5 presents estimates of variance components for the spatial effects obtained
from two models that explore the spatial structure of the four health conditions
at both district and sub-district levels (see Sect. 5.4.2 for detailed description of
the two models). The spatial components in M1a was relatively large compared
to when covariates were added in M3. When model M1a is extended to add
district spatial structure, the variance components are almost split (see model M1b).
A similar picture was obtained when SES was fitted as space-varying. The variance
components in model M2b were higher compared to those in model M4, suggesting
again that the varying risks of childhood health are spatially correlated to a number
of factors, both at individual and population level.

5.6 Discussion

The concepts of SES and health are pervasive in epidemiological studies, yet an
examination of the such a complex relationship has not been fully explored. In
this Chapter, we observed a clear association between joint health conditions and
social inequality, measured using wealth ranking. Using a version of structured
additive regression model, in particular defining joint health status as a categorical
outcome, we fitted a multinomial logistic regression model. We explored the socio-
economic inequalities existing for each joint outcome, and extended our model
to investigate whether the socio-economic effects are spatially varying. Previous
studies of neighborhood effects on health status have modeled neighborhoods
as if they were independent of one another and therefore, did not consider the
interrelations among surrounding neighborhoods. To overcome this shortcoming,
this Chapter employed spatial autocorrelation analysis to assess the degree of
interrelation among neighborhoods, and incorporated this among-neighborhood
effect into a structured additive regression (STAR) model to simultaneously analyze
individual and area-level variables. Evidently, the last model that incorporated both
does explain most of the variation in childhood health status. This, as assessed by
AIC, is the ‘best’ model among the many we fitted.

The multinomial model presented here is based on the hierarchical framework.
At first level of hierarchy we presented a measurement model, followed by prior dis-
tributions at second level of hierarchy. This allows to model complex relationships
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that may exist, often realized in social science. This paper shows the importance
of such advanced tools and statistical techniques to better assess associations that
emanate at various levels, both at individual and population levels. In particular,
modelling the clustering variation allowed accounting directly for unmeasured risk
factors that vary with location. In this work, the geographical unit is the sub-district
or district, and because these are not the smallest spatial units, within-area variability
is expected, hence the need for both spatially varying coefficient, heterogeneity and
clustering random components in a single model. This therefore rules out over-
parameterisation of the model and hence the need for multilevel structured models.
A possible extension to the model we have considered here is to include area-level
risk factors together with individual factors. One limitation of this study is that the
data for diarrhoea and fever are self-reported and thus suffer from recall-bias.

Some researchers have argued that the definition of socio-economic status
is limited. Therefore a more inclusive definition should include education. The
definition of SES as approached here, follows the DHS definition and is systematic
approach to determine a household’s relative economic status (Rutstein and Kiersten
2004). The importance of wealth is its association with reproductive and maternal
health, child mortality and health, and use of public services, and is seen as an
enabling factor in health seeking behaviour.

As of the substantive modelling and risk factors obtained in this study, our
findings are consistent with what has been obtained before in previous studies
(Kazembe and Namangale 2007; Kandala et al. 2006; Kandala 2006). This research
has differentiated variability due to both individual and neighborhood effects (that is
unmeasured characteristics), see Table 5.5. Our findings, therefore, suggest that the
challenge to improve poor child health goes beyond addressing individual factors,
but also require to understanding unmeasured covariates for potential effective
interventions. Although we employed multinomial model, alternative methods, as
presented in the introduction, that employ multivariate responses as opposed to
multiple responses exist and much further work remains to be done, including
exploring the use of spatial structural equation models (SSEM) as demonstrated
in Fahrmeir and Raach (2007).

Acknowledgements We acknowledge permission granted by UNICEF to use the 2006 Malawi
MICS data.
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Chapter 6
Analysis of Grouped Survival Data: A Synthesis
of Various Traditions and Application
to Modeling Childhood Mortality in Eritrea

Gebrenegus Ghilagaber

6.1 Introduction

This paper merges together some statistical methods used in the analysis of
data involving rates of occurrence of an event. These methods are (1) indirect
standardization with the multiplicative model, (2) loglinear regression for count
data, and (3) proportional hazards regression for survival data. In many applications
these approaches have been portrayed as belonging to distinct fields or as competing
methodologies. In this paper it is demonstrated that (1) and (2) actually represent one
special case of (3) in two different, but equivalent, parameterizations. One advantage
of such synthesis is that computer algorithms developed for one setting can be
exploited in another. Accordingly, we demonstrate how the General Loglinear
Analysis Procedure in SPSS, and the GENMOD Procedure in SAS may be used to
compute estimates of baseline and relative hazards (parameters common in survial
analysis) and how these estimates may be interpreted in relation to standardization.
The issues addressed are illustrated by empirical analysis of a data set on mortality
experiences among 7,055 Eritrean children based on data from the 1995 Eritrean
Demographic and Health Survey.

In Sect. 6.2 we describe standard inference procedures for constant and piece-
wise constant hazard rates in the case of one populations. This is extended to the
case of two populations in Sect. 6.3. Section 6.4 is devoted to a description of
the multiplicative hazards model, estimation of its parameters, its relationship to
Cox’s proportional hazards model, and to Poisson model for count data. Further, we
demonstrate how standard programs like SPSS or SAS may be used to estimate
its parameters. An empirical illustration is provided in Sect. 6.5 where the data
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set, dependent and explanatory variables are described and inference procedures –
parameter estimation, testing for significance, and goodness-of-fit tests are shown
in detail. Section 6.6 summarizes the chapter.

6.2 Maximum Likelihood Estimation of the Hazard Rate

6.2.1 Estimation of a Constant Hazard Rate

A simple parametric specification of the hazard function, � .t/, is the exponential
model where the hazard rate remains constant over time (is independent of t).
Accordingly, the corresponding survivor functions are f .t/ D � exp .��t/, S.t/ D
exp .��t/, and �.t/ D � for t > 0, œ > 0. In constructing the likelihood function,
uncensored observations contribute f(t) while censored observations contribute S(t)
to the likelihood. These may be combined as

g.t/ D Œ� exp .��t/�ı.t/Œexp .��t/�1�ı.t/ D �ı.t/ exp Œ��.t/� ;

where •(t) is a censoring indicator with value •(t) D 1 if an individual has experi-
enced the event at time t and •(t) D 0 if the individual is censored at time t.

Let T1, T2, : : : , Tn be n independent observations of T from an exponential
distribution with parameter œ. The contribution to the likelihood of an individual
with value th (h D1, : : : , n), is then given by

ƒh D g.th/ D �ı.th/ exp Œ��.th/�

and, hence, the likelihood function for the entire sample is then given by

ƒ D
nY

hD1

ƒh D
nY

hD1

�ı.th/ exp Œ�� .th/� D�DC exp Œ��TC�

where DC D
nP

hD1

ı.th/ is the total number of events (say, deaths), among the n

observations and DC D
nP

hD1

th is the total exposure time (expressed in days, months,

years, or any other suitable unit) contributed by both uncensored and censored
observations.

The corresponding log-likelihood is then given by

ln ƒ D DC ln � � �TC
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Differentiating lnƒ with respect to œ we get

@

@�
ln ƒ D DC

�
� TC

while the second derivative is given by

@2

@�2
ln ƒ D �DC

�2

The first derivative implies that the maximum likelihood estimator of the hazard
(intensity) rate, œ, is given by

O� D DC
TC

which is a straight forward occurrence/exposure rate.
Further, the 2nd derivative implies that the estimated asymptotic variance of O� is

given by

Var

 O�
�

D � 1

@2

@�2 ln ƒ

ˇ̌
ˇ̌
ˇ
�DO�

D
O�2

DC
D
�

DC
TC

�2
1

DC
D DC

T 2C
D DC

TC
1

TC
D

O�
TC

:

Consequently, using standard results for maximum likelihood estimates, we have

O� � �
q O�

TC

� N .0; 1/

6.2.2 Estimation of a Piece-Wise Constant Hazard Rate

A straightforward extension of the exponential model is the so-called piece-wise
exponential model (piecewise-constant hazard model). A piecewise exponential
distribution arises from a distribution whose hazard rate is a step function. In other
words, for given time points t0, t1, : : : , tk, (where often t0 D 0) the density function is

f .t/ D

8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�1 exp .��1t/ ; t0 � t < t1

�2 exp Œ��1t1 � �2 .t � t1/� ; t1 � t < t2

:

:

:

�k exp Œ��1t1 � �2 .t2 � t1/ � : : : � �k .t � tk�1/� ; t � tk�1
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The corresponding survivor function is given by

S.t/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

exp .��1t/ ; t0 � t < t1

exp Œ��1t1 � �2 .t � t1/� ; t1 � t < t2

:

:

:

exp Œ��1t1 � �2 .t2 � t1/ � : : : � �k .t � tk�1/� ; t � tk�1

so that the hazard function is

�.t/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�1; t0 � t < t1

�2; t1 � t < t2

:

:

:

�k; t � tk�1

When œi D œ for all i we get the exponential model. The likelihood function
of the entire sample is then given by (by adjusting the likelihood in the previous
subsection):

ƒ D
kY

iD1

�i
Di exp Œ��i Ti �

where Di and Ti now refer to the total number of events (say, deaths) and exposure
units in the ith interval. The (natural) log-likelihood is given by

ln ƒ D
kX

iD1

Di ln �i �
kX

iD1

�i Ti

and maximization in the usual manner leads to

O�i D Di

Ti

; Var

 O�i

�
D

O�i

Ti

; and
O�i � �iq O�i

Ti

QN .0; 1/
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6.2.3 Extension to Two Populations

Consider J populations and let Dij be the number of occurrences, say deaths, at
age group (duration group) i (i D 1, : : : ,I) in the jth population for Tij months of
observed time (exposure).

Define

DiC D
JX

j D1

Dij ; DCj D
IX

iD1

Dij ; DCC D
IX

iD1

JX

j D1

Dij

and let TiC, TCj, and TCC represent similar quantities for the exposure variable T.
Usually, the intensity functions are assumed to be piece-wise constant in each of the
two populations but may vary between the two populations. In other words, the time
to event (death) is assumed to follow piece-wise exponential distribution in each
population.

In the context of our notation, the density function of the time to death in age
group i for a person in population j is given by

f
�
tij
� D �ij exp

�
�ij tij

�

The corresponding likelihood function is given by

ƒ D
IY

iD1

JY

j D1

�ij
Dij exp

���ij tij
�

so that

ln ƒ D
IX

iD1

JX

iD1

�
Dij ln �ij � �ij tij

�

Further,

@

@�ij

ln ƒ D Dij

�ij

� Tij :

Thus, the MLE of �ij is the corresponding occurrence/exposure rate in the (i, j)th
cell:

O�ij D Dij

Tij

:

A standard argument for maximum likelihood estimators proves that the O�ij , are
asymptotically stochastically independent, that the estimator O�ij has the asymptotic
mean �ij (is asymptotically unbiased), and that its asymptotic variance can be

estimated by
O�ij

Tij
.
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6.3 The Multiplicative Hazard Model with Two Factors:
Imposing a Structure on the Hazard Rate

6.3.1 The Two-Factor Multiplicative Model

Assume, in general, that we are interested in some collection of hazard rates �ij

where the factor indexed by i has I levels and factor indexed by j has J levels.
Suppose that the following multiplicative two factor model holds:

�ij D �i ˛j

whereby the age-specific hazard rates are obtained from multiplicative contributions
of the ith age (duration) group �i , and jth level of the covariate (say, period or birth
cohort) ˛j . A model of this form has been suggested for many situations. A brief
discussion of its merits has been given by Breslow and Day (1975) while Hoem
(1987) reviews the statistical theory behind the model.

This model has I C J parameters though a restriction of some kind will be needed
to attain identifiability. Here it suffices to mention that ˛j measures the relative
super-/sub-hazard of death in period j (relative to a baseline level) �i is the hazard
at duration i in the standard (baseline) level of the covariate.

6.3.2 Maximum Likelihood Estimation

To find estimates of the parameters �i and ˛j when the multiplicative model holds,
we first define !ijr as an indicator of whether the rth sample member having the
jth level of the covariate dies (!ijr D 1) or is alive (!ijr D 0) in the ith age group
(duration). The contribution, to the likelihood, of the sub-sample of individuals in
the ith age group and having the jth level of the covariate can then be obtained as

ƒij D
Y

r

�
�i ˛j

�!ijr

exp
��tijr�i ˛j

� D �
�i ˛j

�Dij exp
��Tij �i ˛j

�

The likelihood for the entire sample will then be the product of the ƒij over all
levels of i and j:

ƒ D
Y

i

Y

j

ƒij D
Y

i

Y

j

n �
�i ˛j

�Dij exp
��Tij �i ˛j

� o

so that

ln ƒ D
X

i

DiC ln �i C
X

i

DCj ln ˛j �
X

i

X

j

Tij �i ˛j

where DiC and DCj are as defined before.
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If we differentiate ln ƒ with respect to �i and separately with respect to ˛j and
proceed in the normal manner to maximize ln ƒ, we get the normal equations

�
.k/
i D DiC

P

j

˛
.k�1/
j Tij

and

˛
.k/
j D DCj

P

i

�
.k/
i Tij

This is a system of I C J equations that does not have an explicit solution in
general. It defines the maximum likelihood estimators �i and ˛j implicitly, but one
cannot write a simple formula for them. When the occurrences Dij and exposures
Tij are given, numerical values of the estimators can easily be found from an
iteration process, however. One such iteration process is as follows:

Define initial values ˛
.0/
j D 1 for all j D 1, : : : , J and enter them into the right

hand side of the equation for �
.k/
i to get corresponding first values for the �

.k/
i , as

follows:

�
.1/
i D DiC

P

j

˛
.0/
j Tij

D DiCP

j

Tij

D DiC
TiC

Then, �
.1/
i is a straightforward occurrence/exposure rate at age group (duration)

i when we take no account of the other covariate indexed by j. In other words, it is
the crude death rate in age group i (crude because we have not yet standardized for,
say, period differences).

Now compute a next approximation to ˛j by plugging �
.1/
i into the equation of

˛
.k/
j , i.e. let

˛
.1/
j D DCj

P

i

�
.1/
i Tij

The denominator gives the expected number of deaths in the jth period had
the individuals in this period been subjected to the mortality rates for the entire
population at each age (� .1/

i ). In other words, ˛
.1/
j is the effect of the jth period,

indirectly standardized with respect to age (duration), using the whole observed
subpopulation (Tij) as a standard.

Next, plug ˛
.1/
j back into the equation for �

.k/
i to get a second approximation � i :

�
.2/
i D DiC

P

j

˛
.1/
j Tij

i D 1; 2; : : : ; I
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We note, again, that the denominator in �
.2/
i gives the expected number of deaths

in the ith age group had the individuals in this age group been subjected to the
mortality rates for the entire population at each period (˛.1/

j ). In other words, �
.2/
i

is the hazard rate at age group i, indirectly standardized with respect to the period
(birth cohort), using the whole observed subpopulation (Tij) as a standard.

The next step would be to continue the iterations until convergence is attained.
Upon convergence, we may use the final estimates (say ��

i and ˛�
j ) to get a set of

standardized hazard rates

�ij D ��
i ˛�

j

gives the final maximum likelihood estimate of �ij under the multiplicative
structure.

6.3.3 Extension to More Than Two Factors
and Goodness-of-Fit Tests

The above model can be extended to include even further factors. With a third factor,
for instance, the hazard function becomes

�ijk D �i ˛j �k

while with four factors we may decompose the model as

�ijkl D �i ˛j �kım

and so on.
Further, interaction between two covariates or between a covariate and the

duration variable may be included in the model. With four factors where the last
two factors interact, the hazard function may be written as

�ijkl D �i ˛j �km

while if the interaction is between the time variable and the second factor the model
may be written as

�ijkl D �ij �kım

At each step, the overall fit of the model and the improvement in fit resulting
from adding a set of covariates to the model can be tested by a likelihood ratio test.
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6.3.4 Similarities Between the Multiplicative Model
and the Cox Model

In the Cox proportional hazards model (Cox, 1972), we deal with expressions like

� .t jz1; : : : ; zk/ D �0.t/ exp

0

@
X

j

ˇj zj .t/

1

A

where � .t jz1; : : : ; zk/ is the hazard rate at time t for an individual with covariate
vector .z1; : : : ; zk/, these covariates being regressors which may depend on time t,
�0.t/ is the base-line hazard rate that applies when all covariates have the value of
zero, and the ˇj ’s are corresponding regression coefficients to be estimated.

In the multiplicative model, on the other hand, we have expressions like

�ij D �i ˛j

where, without loss of generality, i indexes the (grouped) time variable, while j
indexes a categorical covariate.

It is possible to transform the later (multiplicative) model so that it fits into the
form of former (Cox) model. Consider a child who is still alive. Let t be his exact
age, counted as a continuous variable (here months), and let i(t) be the corresponding
level of the grouped time variable. In other words, i(t) represents a categorical value
corresponding to t.

Suppose that s/he attains the level j(t) of the categorical covariate indexed by j
at time t. Then, the multiplicative model means that we consider the hazard-rate of
death at age t to be a discrete hazard model:

�.t/ D �i.t/˛j.t/

Now define �0.t/ D �i.t/ and let zj .t/ D 1 if the child attains level j(t) at
age group i(t) and zj .t/ D 0, otherwise. Finally, let ˇj D ln ˛j for all j. Then
� .t jz1; : : : ; zk/ in the Cox model is nearly equal to �ij in multiplicative model (or,
equivalently to �.t/ in the above discrete model). The only difference is that while
the original Cox model is based on the exact failure times, the discrete model is
based on grouping the failure times.

Nevertheless, we note here that by defining zj .t/ to be a binary representation of
j(t) for all levels but one, of the variable indexed by j (and letting zj .t/ D 0 when
j(t) equals to the base-line level), it can be shown (see, for instance, Hoem 1993)
that the multiplicative model is just a grouped-data version of the Cox proportional
hazards model.
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6.3.5 Similarities Between the Multiplicative Model
and Poisson Model for Count Data

In practical applications of the multiplicative model, it is assumed that the popula-
tions are sufficiently large, and the events sufficiently rare, so that the data are well
represented by the Poisson model. In such a setting, the Tij are regarded as fixed
numbers whereas the Dij are subject to random variation according to the Poisson
distribution with expectation

E
�
Dij jT ij

� D �ij T ij D �i ˛j T ij

If, in the multiplicative model above, we assume instead that the number of
deaths Dij are independent realizations from a Poisson distribution with parameter
(mean)

E
�
Dij jT ij

� D �ij T ij D �i ˛j T ij

for nonrandom Tij, the likelihood of the total sample, ƒP say, will be

ƒP D
IY

iD1

JY

j D1

�
�ij

�Dij exp
�
�ij T ij

�

�
Dij

�
Š

D
IY

iD1

JY

j D1

�
�ij

� Dij exp
�
�i ˛j T ij

�

�
Dij

�
Š

which is proportional to the likelihood (ƒ) arising from the multiplicative
model. The maximum likelihood estimates of �i and ˛j under the Poisson
setting will, therefore, satisfy the previous estimation equations for the genuine
occurrence/exposure rates. In such a case, it becomes unimportant for much of the
practical analysis which stochastic mechanism applies for a particular data set. As
a result, computer algorithms developed for one setting can often be exploited in
another.

6.4 Practical Estimation Using SPSS/SAS: A Log-Linear
Parameterization of the Multiplicative Model

Consider the two-factor multiplicative model discussed previously:

�ij D �i ˛j
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for i D 1, : : : , I and j D 1, : : : , J, and with one of the ˛j ’s (often ˛J ) fixed to be
equal to 1 (baseline level of the covariate). Now let

Ai D ln �i

and

Bj D ln ˛j

so that, under the multiplicative model,

ln �ij D ln �i C ln ˛j D Ai C Bj :

Further, let

A D

IP

iD1

Ai

I
and B D

JP

j D1

Bj

J

be the means of the Ai’s, and the Bj’s, respectively.
Computer procedures such as the General Log-Linear Procedure in SPSS, and

the GENMOD Procedure in SAS, yield estimates of the grand mean effect,

� D A C B;

the interval-specific effects

ai D Ai � A;

and the effect of the jth level of the covariate,

bj D Bj � B;

such that the highest levels are baseline (aI D bJ D 0). The gm (generalized models)
procedure in R yields estimates of the same parameters with the lowest levels as
baseline (a1 D b1 D 0) but it can be recoded to have the last highest levels as baseline
and hence make the results directly comparable with those from SPSS and SAS.

Further, the procedures provide estimates of standard errors of the estimates,
the corresponding test statistic, and asymptotic 95 % confidence intervals for the
estimates ai and bj.

Using these estimates, we have

ln �ij D ln �i C ln ˛j D Ai C Bj

D �
ai C NA�C �

bj C NB� D � NA C NB�C ai C bj

D � C ai C bj
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The corresponding hazard rates and the relative risks (multiplicative factors) may
be estimated as follows:

From the last equation above, we have

�ij D exp
�
� C ai C bj

�
:

By design

�iJ D �i ˛J D �i .1/ D �i :

Thus, we have

�i D �i .1/ D �i ˛J D exp .� C ai C bJ / D exp .� C ai C 0/ D exp .� C ai / :

Lastly,

˛j D �ij

�i

D exp
�
� C ai C bj

�

exp .� C ai /
D exp

�
bj

�
:

The last two equations give the final estimates of baseline- and relative hazards,
respectively.

Estimates of the 95 % confidence intervals for these relative risks may be
obtained by taking the exponential of the corresponding estimates of the 95 %
confidence intervals for the estimates of log-hazards.

Again, the procedure outlined above can be easily extended to the case of more
than two factors and to models with interactions.

6.5 Demographic Illustration: Modelling Childhood
Mortality in Eritrea

We shall now apply the models of the preceding sections to a numerical data set.
For illustration we shall take the data in Table 6.1 which contains deaths (Dij) and
exposure months (Tij) at age group i for birth cohort j (i D 1, 2, 3, 4; j D 1, 2). The
age groups are subdivisions of the first 5 years after birth for some new born children
in two independent birth periods. More details about the source of the data may be
found in National Statistics Office [Eritrea], & Macro International Inc. (1995).

6.5.1 Estimation in the Unstructured Case

If we can assume a constant intensity over the entire period (1986–1995), then the
maximum likelihood estimate of the hazard rate is given by

O� D DCC
TCC

D 456 C 248

94188 C 100255
D 704

194440
D 0:0036206;
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Table 6.1 Deaths and exposure months in two birth cohorts, Eritrea

Birth cohort (j)

1986–1990 (j D 1) 1991–1995 (j D 2)

Age (i) Di1 Ti1 O�i1 Di2 Ti2 O�i2
O�i1

O�i2

< 1 year (i D 1) 155 36,913 41.99 143 38,197 37:44 1.12
1–2 year (i D 2) 119 27,164 43.81 66 28,070 23:51 1.86
2–3 year (i D 3) 93 17,939 51.84 25 19,433 12:86 4.03
3–5 year (i D 4) 89 12,172 73.12 14 14,555 9:62 7.60
Total 456 94,188 48.41 248 100,255 24:74 1.96

or 36 deaths per 10,000 person months.
If the death rate is assumed to be constant in each birth cohort but varies between

the two cohorts, then we have:

O�1 D DC1

TC1

D 456

94188
D 0:0048414;

or 48 deaths person 10,000 person months,

O�2 D DC2

TC2

D 248

100255
D 0:0024737;

or 25 deaths person 10,000 person months.
Thus, a crude estimate of the overall relative hazard of death in period 1 (1986–

1990) relative to that in 1991–1995 is given by

RR D
O�1

O�2

D 0:0048414

0:0024737
D 1:96;

indicating that the risk of death for those born in 1986–1990 was about twice (1.96
times) that of the younger cohort born 1991–1995. This result should, however, be
interpreted with caution because the older cohort was exposed (to the risk of death)
for a longer time than the younger cohort.

If, on the other hand, the intensity is allowed to vary over both the age groups
and for the two birth cohorts, then we have:

O�11 D D11

T11

D 155

36913
D 0:0042 O�12 D D12

T12

D 143

38197
D 0:0037

O�21 D D21

T21

D 119

27164
D 0:0044 O�22 D D22

T22

D 66

28070
D 0:0024

O�31 D D31

T31

D 93

17939
D 0:0052 O�32 D D32

T32

D 25

19433
D 0:0013

O�41 D D41

T41

D 89

12172
D 0:0073 O�42 D D42

T42

D 14

14555
D 0:0010
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6.5.2 Estimation in the Structured Case (Multiplicative
Two-Factor Model)

We now fit the multiplicative model to our data set in Table 6.1. We shall take period
2 (1991–1995) as a reference period. Then, the base-line hazards at age group i, ™i

will reflect this period while the relative risk ’1 is the multiplicative factor (intensity
of death in period 1 relative to that in period 2).

The SAS input-code and the corresponding output are shown at the end of present
Section. Thus, we have � D �5.9209, a1 D 0.0053, a2 D �0.1643, a3 D �0.2156,
a4 D 0 (by design), b1 D 0.6721, and b2 D 0 (by design).

Thus, we have

O�11 D exp .� C a1 C b1/ D exp .�5:9209 C 0:0053 C 0:6721/ D 0:0053

O�21 D exp .� C a2 C b1/ D exp .�5:9209 � 0:1643 C 0:6721/ D 0:0045

O�31 D exp .� C a3 C b1/ D exp .�5:9209 � 0:2156 C 0:6721/ D 0:0042

O�41 D exp .� C a4 C b1/ D exp .�5:9209 C 0 C 0:6721/ D 0:0022

O�12 D exp .� C a1 C b2/ D exp .�5:9209 C 0:0053 C 0/ D 0:0027

O�22 D exp .� C a2 C b2/ D exp .�5:9209 � 0:1643 C 0/ D 0:0023

O�32 D exp .� C a3 C b2/ D exp .�5:9209 � 0:2156 C 0/ D 0:0053

O�42 D exp .� C a4 C b2/ D exp .�5:9209 C 0 C 0/ D 0:0027

while, the relative risk of death for birth cohort 1 (relative to that of birth cohort 2)
is given by

˛1 D �i1

�i

D exp .� C ai C b1/

exp .� C ai /
D exp .b1/ D exp .0:6721/ D 1:9583:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The SAS input code is as follows

data Erit86 95;
input Age Period Deaths Exposure;
lexposureDlog(Exposure);
cards;

1 1 155 36913
1 2 143 38197
2 1 119 27164
2 2 66 28070
3 1 93 17939
3 2 25 19433
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4 1 89 12172
4 2 14 14555

run;
proc genmod dataDErit86 95;
class Age Period;
model DeathsDAge Period/distDpoisson linkDlog

offsetDlexposure type3;
run;

The corresponding SAS output is as follows:

Parameter DF Estimate
Standard
error 95 % Confidence limits

Wald
Chi-Square Pr > ChiSq

Intercept 1 �5.9209 0.1100 �6.1366 �5:7052 2894.86 <.0001
Age1 1 0.0053 0.1143 �0.2188 0:2294 0.00 0.9628
Age2 1 �0.1643 0.1230 �0.4053 0:0768 1.78 0.1816
Age3 1 �0.2156 0.1349 �0.4799 0:0488 2.56 0.1099
Age4 0 0.0000 0.0000 0.0000 0:0000 – –
Period1 1 0.6721 0.0789 0.5174 0:8268 72.52 <.0001
Period2 0 0.0000 0.0000 0.0000 0:0000 – –

6.6 Summary and Concluding Remarks

The choice of an appropriate analytic method is a natural question when one is
confronted with a specific data-analysis problem. In problems of standardization,
for instance, the choice of a standard population and the interpretation of rates
standardized with reference to specific population pose problems.

In the present chapter we have described and illustrated a multiplicative hazard
model. Further, we demonstrated that this model is (1) a model-based alternative to
the problem of standardization and (2) a discrete-data (grouped-data) version of the
common proportional hazards model.

When viewed as a model-based indirect standardization, the multiplicative model
enables the investigator to test for the importance (significance) of one or more
covariates in explaining the behavior under study. Further, its log-linear parameter-
ization enables investigators to estimate its parameters using commonly available
software that are developed for other purposes such as contingency table analysis.
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Chapter 7
Modelling Immunization Coverage in Nigeria
Using Bayesian Structured Additive Regression

Samson Babatunde Adebayo and Waheed Babatunde Yahya

7.1 Introduction

The introduction and usage of different kinds of vaccines have contributed
immensely to the eradication of some of the dreaded diseases in many developed
countries. Immunization has remained the most cost-effective mechanism through
which the outbreak of common diseases is prevented in many developing countries
(Odusanya et al. 2000, 2003). More than two million deaths among children
are averted all over the world annually through vaccination against some early
childhood diseases such as diphtheria, tetanus, pertussis, measles and hepatitis
B (Duclos et al. 2009). This improvement in childcare notwithstanding, vaccine
preventable diseases still contribute significantly to the global child mortality cases
(Centre for Global Development 2005). Particularly in 2002, the World health
Organization (WHO) estimated under five mortality cases that are attributable to
vaccine preventable diseases to be 1.4 million worldwide. This was about 14 % of
total global child mortality all over the world with considerable number of cases
being from third-world countries.

In 1974, the Expanded Program on Immunization (EPI) was initiated by the
World Health Assembly to assist in coordinating the efforts of public health
programmes especially in developing countries to ensure full immunization of
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all children under one year of age against common diseases like poliomyelitis,
smallpox, diphtheria, tetanus, measles, tuberculosis, pertussis and so on. The EPI
further aimed at ensuring that new vaccines and preventive health interventions are
extended to children in parts of the world. One of the objectives of the EPI was that
by 2010, global routine immunization coverage of all children under one year of age
should reach 90 % (Hadler et al. 2004). To ensure that the objectives of the EPI are
achieved and sustained especially in poor countries of the world, the Global Alliance
for Vaccines and Immunization (GAVI), a coalition of bodies such as United Nations
Children Emergency Fund (UNICEF), WHO and the World Bank was created
in 1999 (Brugha et al. 2002). This body was enhanced by the establishment of
Global Immunization Vision and Strategy (GIVS) (2006–2015) in 2005 at the 58th
World Health Assembly. A common objective for establishing both GAVI and GIVS
among others is to strengthen national immunization program and improve child and
maternal health especially in the third world countries (Bilous et al. 2006).

The huge amount of resources and efforts committed by WHO, UNICEF and
World Bank (WHO and UNICEF 2005, 2009) at ensuring full immunization of
children all over the world were justified in 2007 when out of 129 million surviving
children, a total of 105 million (about 81 %) children under one year of age were
vaccinated worldwide with three doses of diphtheria, pertussis and tetanus (DPT3)
vaccine while the number of unvaccinated children decreased to 24 million from 33
million reported in the year 2000 (Duclos et al. 2009).

Stemming out of GAVI/GIVS alliance, the impacts and successes of several rou-
tine immunization programmes and the EPI initiated in Nigeria have been presented
in previous studies, (Clements et al. 2006; Odusanya et al. 2008; Jenkins et al. 2008;
WHO 2008a). For instance, significant reduction in the spread of wild polioviruses
in 2003 in six notable countries worldwide, was reported by WHO in 2004 (WHO
2004, 2006). Jenkins et al. (2008) discussed the efficacy of monovalent type 1
oral poliovirus vaccine and its immunization coverage in northern Nigeria. It was
reported in Jenkins et al. (2008) that immunization efforts contributed significantly
to the reduction of the overall number of cases of poliomyelitis by 75 % in Nigeria in
2007. Odusanya et al. (2008) examined some determinants of vaccination coverage
in a selected rural area in Nigeria and observed positive association between
completeness of vaccination and knowledge of mothers on immunization. Although,
about 80 % coverage of DPT/OPV vaccinations was reported, more efforts are still
needed for mothers to be fully aware of the need to fully immunize their children
against common diseases. Similar results were reported by Oladokun et al. (2010)
in their study. In a different study, Ngowu et al. (2008) reported the benefits of
immunization and other systemic factors on child mortality reduction in Nigeria.
More discussions on immunization coverage and its benefits in Nigeria can be
found in Babaniyi and Spiegel (1993); Okoro and Egwu (1994); Odusanya et al.
(2000); Centres for Diseases Control (CDC) (1999); and Ambe et al. (2001) among
others.

Despite the tremendous improvement in global vaccination coverage as reported
in various studies (Patriarca et al. 1991; Dabbagh et al. 2007; Lim et al. 2008; Djibuti
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et al. 2009; Koumaré et al. 2009; Sanou et al. 2009), 75 % of the unimmunized
children worldwide live in African and Asian countries with Nigeria and other
African countries and Indian having the highest low coverage of child immunization
respectively (Duclos et al. 2009). Apart from socio-cultural factors, the low
vaccination profile in some parts of Nigeria is not unconnected with low literacy
levels in the affected areas. A typical example was an erroneous belief in some
northern parts of the country that vaccinations are designed by the western world
to reduce (control) the population of the world, Ambe et al. (2001). This wrong
perception of some people about immunization is hitherto impacting negatively
on the extent of immunization coverage in those parts of Nigeria, Clements et al.
(2006). This has consequently resulted into the existence of many EPI difficult-
to-reach (DTR) areas for vaccinations in Nigeria. In 2003 precisely, there was a
temporary suspension of all poliovirus immunization in some northern states of
Nigeria. This contributed immensely to the high spate of poliomyelitis endemic
in the country during the period before poliovirus immunization was reinstituted
thereafter (Pallansch and Sandhu 2006). Till date, routine immunization coverage is
still low in northern Nigeria.

In spite of the efforts from government and donor agencies, Nigeria, as at
present, still ranked among the least successful sub-Sahara African countries with
improved records in child survival, (Global Polio Eradication Initiative (GPEI)
2008; IRIN 2007). This is not unconnected with her low level of vaccinations
coverage against some common early childhood diseases since low vaccination
coverage increases the risks of a child being exposed to various vaccines preventable
diseases. The apparent success achieved at reducing measles mortality in some
parts of Africa is still fragile because of low level of routine measles immunization
coverage (WHO 2008b; Duclos et al. 2009). Therefore, more efforts are still needed
to be concentrated at sustaining the current level of vaccination and developing
strategies of gaining access into the identified DTR areas for full vaccinations
of all the children in Nigeria to be ensured. Accomplishment of this task would
surely guarantee remarkable reduction in child (neonatal, infant & under-five)
mortality in Nigeria. This would in turn contribute significantly to the attainment
of United Nations Millennium Development Goals (MDG 4) that calls for a two-
third reduction in child mortality by 2015 as compared to 1990 levels.

Empirical evidence has revealed substantial geographical variations on immu-
nization coverage in Nigeria (NPC [Nigeria] and Macro ICF 2009). In an attempt
to address the challenge of low vaccination coverage in Nigeria, this chapter
therefore provides detailed analyses of immunization coverage in Nigeria modelling
possible trend and geographical variations of vaccination coverage in the presence
of other covariates using 1999, 2003 and 2008 Nigeria Demographic and Health
Surveys (NDHS) data. We adopt a flexible Bayesian structured additive regression
approach which permits joint estimation of trend, non linear effects of continuous
covariates, geographical variations and fixed effects of categorical covariates. In
the present study, we investigate the influence of bio-demographic variables such
as maternal and partner (spouse) educational attainment, mother’s age at the birth
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of child as well as some other socio-economic variables on vaccination coverage
in Nigeria using flexible geoadditive models. The approach here permits a joint
estimation of the usual linear effects of categorical covariates, nonlinear effects
of continuous covariates and small-area district effects on vaccination coverage
within a unified structured additive Bayesian framework. This study is aimed at
providing policymakers with tools to design effective interventions which can lead
to frugal utilization of the scarce resources. The results from this study would guide
policy makers at directing the scarce resources to states where they are crucially
needed.

Two methods of data analysis were employed in this Chapter. The first approach
compares children who received full vaccination with those without full vaccination.
Under this setting, a binary outcome variable is obtained in which a probit or logit
model is most appropriate. In the second method, we differentiated children who
received no vaccination from those who received some and those who received the
complete vaccination within the duration. Thus an ordered outcome vaccinations
is conceptualized and cumulative probit models are fitted to the data within
the Bayesian framework. Details of the two methods are presented in the next
sections.

7.2 Data Description

The datasets used for this study are the NDHS data for the 3 years 1999, 2003
and 2008. The Demographic and Health Surveys (DHS) are national representative
surveys of men and women of reproductive age and their children in many
developing countries of the world. These surveys are funded by United States
Agency for International Development (USAID) for the purpose of collecting
vital up-to-date information on health related matters such as mortality, morbidity,
vaccinations and general health conditions of children and their mothers, as well
as on many other socio-economic related variables that directly affect the growth
and development of the children ((NPC) [Nigeria], 2000; NPC [Nigeria] and ORC
Macro 2004).

Information on vaccination coverage and on types of vaccines administered on
the children through different immunization schedules are also included in all the
NDHS data. The types of vaccines provided free by donor agencies to Nigerian
children are Bacille Calmette Guerin (BCG) vaccines and Oral Polio Vaccine (OPV)
to guide against tuberculosis and poliomyelitis respectively. Others are Diphtheria,
Pertussis, and Tetanus (DPT) and measles vaccines. According to Nigerian National
Program on Immunization (NNPI) schedule (which is adapted from the WHO
immunization schedule), a child is considered to be fully vaccinated if he or she
has received a BCG, three doses of DPT (i.e. DPT1, DPT2, DPT3), at least three
doses of OPV (i.e. OPV0, OPV1, OPV2), and one dose of measles vaccines (NPC
[Nigeria] and ICF Macro 2009).
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7.3 Structured Additive Regression Model and Analysis

7.3.1 Structured Additive Regression Model

All analyses in this Chapter are based on Structured Additive Regression (STAR)
model proposed by Fahrmeir et al. (2004), Kneib and Fahrmeir (2005), Kneib
and Fahrmeir (2006), and Kneib and Fahrmeir (2007), with a flexible geoadditive
(Kammann and Wand 2003) predictor accounting for the effects of different types of
covariates. STAR embraces the usual famous regression models such as generalized
additive models (GAM), generalized additive mixed models (GAMM), generalized
geoadditive mixed models (GGAMM), stepwise regression models among others.
We consider two outcome variables for immunization coverage in Nigeria. The
first being a dichotomous variable, differentiating children aged 12 months and
above who received full immunization from their counterparts who did not receive
full immunisation (i.e. either some or none) based on the datasets from the 1999,
2003 and 2008 Nigeria Demographic and Health Surveys. This follows a Binomial
distribution whose dependence and effect on a predictor of interest can be modelled
either through a probit or logit model. Here we chose a probit link for computational
reasons as a convenient approach to screen effect of different covariates on the
outcome variable. The second outcome variable was considered as an ordered
categorical variable; differentiating children who received partial immunization and
those who received full immunization from their counterparts who did not receive
any. In other words, this results in a 3 – level ordinal outcome. The dependence of
this on a predictor of interest can be modelled through a cumulative probit model.

In both cases, a database for analyses was created for children aged 12 months
and above. This is to permit proper evaluation of child immunization coverage
with the aim of eliciting children who received full immunization. In total, 23,
913 children involved in the surveys were 12 months or older and included in the
database.

Generalized linear models (e.g. Fahrmeir and Tutz 2001) assume that, given
covariates vector x and unknown parameters “, the distribution of the response
variable y belongs to an exponential family, with mean � D E(yjx, “) linked to a
linear predictor ˜ by

	 D h.�/ � D x0ˇ: (7.1)

Here h is a known response function, and “ are unknown regression parameters.
However, in most practical regression situations, we are often faced with the
problem of rigid assumption of linear effect of continuous covariates in the datasets
on the predictor. Sometimes, observations may be spatially or temporally correlated.
Furthermore, covariates may not be able to sufficiently describe any inherent
heterogeneity among individuals or units. To overcome these difficulties, we replace
the strictly linear predictor in (7.1) by a structured additive predictor (7.2).
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Consider a set of regression observations (yi, xi, si, vi), i D 1, : : : , n, where yi

is either a binary or categorical response variable, a vector x D (x1, : : : , xp)0 of
continuous covariates (say respondents’ age), si D (1, : : : , S) the state (district)
where respondent i lived during the survey and a further vector v D (v1, : : : , vq)0
of categorical covariates. Usually one intends to jointly model the dependence of yi

on continuous, spatial and categorical covariates within the context of generalized
additive model (Hastie and Tibshirani 1990).

The predictor �i for the structured additive regression (STAR) model can be
defined as

�i D
pX

j D1

fj .xij / C fspat .si / C v
0

i ˇ (7.2)

where f1, : : : , fp are nonlinear (unknown) smooth functions of the metrical
covariates, fspat is the nonlinear effect of spatial covariates and “i D (“1, : : : , “q)0 is
a vector of fixed effect parameters for the categorical covariates including time (i.e.
year of study with 1999 as the reference category). One may further split up spatial
effects fspat into spatially correlated (structured) and uncorrelated (unstructured)
effects as

fspat.si / D fstr.si / C funstr.si /:

A rationale behind this is that a spatial effect is a surrogate of many unobserved
influential factors, some of which may be a strong spatial structure and others may
only be present locally.

7.3.2 Model Specification

Model A: According to the World Health Organisation (WHO), each child is
expected to have completed an immunization schedule before celebrating his/her
first birthday. Through this, a child is considered fully vaccinated if he or she has
received a BCG vaccination against tuberculosis, three doses of DPT, vaccine to
prevent diphtheria, pertussis, and tetanus; at least three doses of polio vaccine; and
one dose of measles vaccine within the first year (NPC [Nigeria] and ICF Macro
2009). A binary variable that describes level of vaccination coverage as

yi D

8
<̂

:̂

1 W if a child aged 12 months and beyond has received all the
recommended vaccines

0 W otherwise

was created.
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Model B: Here, the immunisation schedule (according to WHO) that a child should
receive was categorised into none, partial and full. This was aimed at eliciting
information about those children who received partial vaccination separate from
those who did not receive any vaccination. Therefore, a three-level ordinal outcome
variable describing level of vaccination coverage was created as

yi D

8
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
:̂

1 W if a child aged 12 months and beyond has received all the
recommended vaccines;

2 W if a child aged 12 months and beyond only received some
recommended vaccinations;

3 W if a child aged 12 months and beyond did not receive any vaccination:

In an attempt to explore possible determinants, trend and spatial variations
on level of vaccination coverage in Nigeria between 1999 and 2008, analyses
were based on predictor (7.1). For model A, influence of determinants of level of
vaccination coverage was modelled through a binary model assuming a probit link
within a Bayesian perspective that jointly accounts for nonlinear, time, fixed and
spatial effects. Bayesian geoadditive probit model is preferred for computational
reasons as a convenient approach to screen a number of different models (Crook
et al. 2003). There are considerable computational advantages using the probit
formulation and an implementation based on latent variables. In particular, it allows
for fast block updates of the parameters representing the non-parametric smoothing
functions of the nonparametric effects (Fahrmeir and Lang 2001a; Rue 2001).
Furthermore, results using the probit model are qualitatively very similar to logit
estimates (Fahrmeir and Tutz 2001). Using the probit link as an approximation to
the logit model is very common in many other areas of statistics, for example, in
measurement error models as discussed in Carroll et al. (1995, p. 64).

The predictors in these models include non-parametric effect of a metrical
covariate (mothers age at the birth of the child – measured in years, and child’s
age – measured in months), spatial components and linear part in an additive
form. Similarly for model B, a cumulative probit model was assumed with the
aim of modelling influence of determinants of level of vaccination coverage within
a Bayesian perspective that jointly accounts for nonlinear, time, fixed and spatial
effects in a similar manner as in model A. In both cases (i.e. models A and B),
predictor (7.1) was used to explore the dependence of vaccination coverage on the
specified covariates.

7.3.3 Cumulative Probit Model

Let us consider the regression model based on multicategorical outcomes. Such
models can be motivated from latent variables such that the response variable y can
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be observed in ordered categories 1, : : : , k. It is postulated that y is a categorized
version of a latent variable

U D � C " (7.3)

obtained through the threshold mechanism

y D r; �r-1 < U � �r ; r D 1; : : : ; k

with thresholds �1 D ™0 < ™1 < : : : < ™k D 1. We assume that the error variable ©

has a distribution function F, hence it follows that y obeys a cumulative model

p.y � r j�/ D F.�r � �/; (7.4)

where ˜ is the geoadditive predictor described in (7.1) which can be specified for
a particular child i. To enhance identifiability, functions are centred about zero,
thus the fixed effect parameters automatically include an intercept term. In the
application to model B, level of vaccination coverage y is considered as a three-
ordered categorical version of the latent continuous variable U. Here © is assumed
to have a standard normal distribution function, i.e.

p.y � r j� D x; s; v/ D ˆ.�r � �/

yielding a cumulative probit model. Cumulative models based on category bound-
aries or threshold approaches (Edwards and Thurstone 1952) are commonly used in
ordinal regression.

7.4 Bayesian Inference

Within a Bayesian context, all parameters and functions are usually considered as
random variables upon which appropriate priors are assumed. Independent diffuse
priors are assumed on the parameters of fixed effects. For the non-linear effects,
Bayesian P-splines prior based on Lang and Brezger (2004); and Brezger and
Lang (2006) was assumed. Omitting indices, each function f is represented or
approximated through a linear combination

p.z/ D
JX

j D1

ˇj Bj .z/

of B-spline basis functions. Smoothness of function f is achieved by penalizing
differences of coefficients of adjacent B-splines (Eilers and Marx 1996) or, in
our Bayesian approach, by assuming first or second order Gaussian random walk
smoothness priors
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ˇ1 D ˇj �1 C u1 ˇ1 D 2ˇj �1 � ˇj �2 C u1;

with i.i.d. errors u1 � N.0; £2/. The variance £2 controls the smoothness of f.
Assigning a weakly informative inverse Gamma prior £2 � IG.©; ©/; © small, it
is estimated jointly with the basis function coefficients.

For the geographical effects fspat(s), s D 1, : : : ,S, we assume a Gaussian Markov
random field prior. Basically, this is an extension of first order random walk priors
to two-dimensional spatial arrays, see Rue and Held (2005) for general information.

For the structured spatial effects fstr(s) we chose a Gaussian Markov random field
prior which is common in spatial statistics, see Besag et al. (1991).

.fstr.s/jfstr.t/I t ¤ s; �2/ � N

0

@
X

t2@s

fstr.t/

Ns

;
�2

Ns

1

A

Unstructured spatial effects are i.i.d. random effects.
In order to be able to estimate the smoothing parameters for non linear and

spatial effects simultaneously, highly dispersed but proper hyper-priors are assigned
to them. Hence for all variance components, an inverse gamma distribution with
hyperparameters a and b is chosen, e.g. £2 � IG(a, b). Standard choices of hyperpa-
rameters are a D 1 and b D 0.005 or a D b D 0.001.

Similar to Fahrmeir and Lang (2001a, b), posterior samples are drawn from full
conditionals of single parameters or blocks of parameters given the rest and the data
is enhanced through MCMC simulations. Let ’ represent the vector of all function
evaluations and spatial effects (i.e. ’ D (f, fspat, “)) and £ represent the vector of all
variance components. For the binomial probit model, Bayesian inference can then
be based on the posterior

p.˛; �; ˇjy/ / p.yj˛; ˇ/p.˛j�/p.�/p.ˇ/; (7.5)

where p(yj’, “) is the likelihood function of the data given the parameters. An
additional parameter U of the continuous latent variable must be included in the
posterior analysis of the cumulative probit models. Therefore, their posteriors can
be based on

p.˛; �; ˇ; U jy/ / p.yjU /p.U j˛; ˇ/p.˛j�/p.�/p.ˇ/: (7.6)

Details about the sampling schemes for both binomial probit and cumulative
probit models are discussed in the manual of the software. For the models consid-
ered in the applications, all the full conditionals involved have known distributions,
hence a Gibbs sampler can be used for the MCMC simulations. Efficiency is
guaranteed by Cholesky decomposition for band matrices (Rue 2001). The approach
was implemented in BayesX, a statistical package for Bayesian analysis and all
computations were performed with the software.
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Sensitivity to the choice of priors was investigated in this case-study through
different means. First, we compared results from MCMC with similar models
using Restricted Maximum Likelihood (REML) approach. Second, hyperpriors for
smoothing parameters were varied systematically. Lastly, we considered different
priors such as ‘Markov Random Field’, ‘Two dimensional P-spline with first
order random walk penalty’ which is known as geospline, for spatial effects. For
model choice and comparison, the deviance information criterion (DIC) which was
developed by Spiegelhalter, et al. (2002) was used. BayesX, software for Bayesian
inference using structured additive regression models was used for all analyses
(Brezger et al. 2009).

Fully Bayesian inference is based on the posterior distribution of the model
parameters, which is not of a known form. Therefore, MCMC sampling from
full conditionals for nonlinear effects, spatial effects, fixed effects and smoothing
parameters was used for posterior analysis. For nonlinear and spatial effects,
Metropolis-Hastings algorithms based on conditional prior proposals (Knorr-Held
1999) and iteratively weighted least squares (IWLS) proposals suggested by Brezger
and Lang (2006) as an extension of Gamerman and Lopes (2006) were applied.
Similar results are obtained from both sampling schemes but we relies on Iteratively
Weighted Least Square (IWLS) proposal which has good mixing properties without
requiring tuning.

7.5 Data Analysis and Discussions

7.5.1 Analysis

To explore impact of trend, demographic characteristics, continuous variables and
spatial effect on level of vaccination coverage in Nigeria between 1999 and 2008,
structured additive regression model was fitted. This method of analysis permits
joint estimation of time, spatial, nonlinear and fixed effects simultaneously. In
this Chapter, all analyses were based on predictor (7.1) for models with outcome
variables described as models A and B. Through this, one would be able to identify
possible effect of the predictor on a child receiving full vaccination coverage
compared with others who either received partial (i.e. incomplete according to
WHO’s immunisation schedule) or did not receive any among children who were
12 months and above as at the time of the survey. Covariates were included in the
model based on their significance at bivariate level (see Table 7.1).

Model building was guided by the use of Deviance Information Criterion (DIC)
proposed by Spiegelhalter et al. (2002). We started the process from a very
simple model; where only year of study (trend) was included in the predictor to
a complex model involving, trend, demographic characteristics of the respondents
(mothers), partner’s (husband) educational attainment, random effect of cluster
(where respondents were sampled) and that of unstructured spatial effect, structured
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Table 7.1 Bivariate analysis of vaccination coverage according to selected characteristics in
1999, 2003 and 2008 Nigeria demographic and health survey

Level of vaccination coverage

Variables None Partial Full P-valuea Total respondents

Year of study
1999 35:9 55.7 8:4 <0.0001 2,109
2003 22:8 71.6 5:6 3,212
2008 29:0 56.9 14:1 18,592

Geopolitical zones
North Central 11:4 58.9 29:7 <0.0001 2,560
North East 16:3 59.0 24:7 2,304
North West 43:7 53.5 2:8 6,434
South East 27:1 58.1 14:8 4,325
South West 33:6 61.8 4:7 5,457
South South 13:8 66.0 20:2 2,833

Place of residence
Rural 33:1 58.3 8:6 <0.0001 16,969
Urban 18:0 60.1 21:8 6,944

Sex
Male 29:0 58.7 12:3 0.579 12,161
Female 28:5 58.9 12:6 11,752

Respondents’ education
None 44:1 52.5 3:4 <0.0001 11,931
Primary 19:5 66.9 13:6 5,561
Secondary 9:0 65.6 25:4 5,256
Higher 4:5 54.2 41:3 1,165

Partners’ education
None 45:3 51.6 3:2 <0.0001 9,579
Primary 22:1 64.2 13:8 5,198
Secondary 16:2 64.6 19:3 5,953
Higher 12:2 60.1 27:8 2,645

Birth order
More than 4 30:5 60.5 9:0 <0.0001 4,398
Firstborn 28:2 55.2 16:6 11,232
Second to Fourth 30:5 60.5 9:0 8,283

Antenatal visits
None 47:4 48.8 3:8 <0.0001 6,274
1–9 15:1 67.1 17:8 5,769
More than 9 7:3 64.4 28:3 1,928

Place of delivery
At home/others 38:2 56.5 5:4 <0.0001 15,902
Hospital 8:8 64.2 27:1 7,844
aAll test are based on Pearson X2 test of differences of proportion
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Table 7.2 Summary of the DIC as measure of model selection for the fitted models

Binomial probit Cumulative probit

Model predictors D(bar) pD DIC D(bar) pD DIC

M1: trend alone 19,455.39 3:13 19,461.65 55,921.48 4:00 5,929.48
M2: trend C demographic

characteristics
15,835.00 17:84 15,870.69 50,146.16 18:85 50,183.87

M3: trend C random effects (state
and household) C demographic
characteristics

15,313.30 57:87 15,429.04 49,051.03 75:86 49,202.74

M4: m1 C spatial (no random
effect)

15,332.20 47:50 15,427.19 49,104.11 49:20 49,202.50

M5: m3 C nonlinear effect of
continuous variables

13,845.28 51:71 13,948.70 37,304.78 60:80 37,426.37

M6: spatial C trend C random
(state and House hold) C
nonlinear of continuous C
extended fixed effects

8,134.73 64:48 8,263.70 20,886.75 82:92 21,052.58

M7: spatial C trend C nonlinear of
continuous C extended fixed
effects

8,130.33 58:06 8,246.46 20,912.07 65:42 21,042.91

spatial effects, nonlinear effect of continuous variables, etc. Some of the fitted
models explored are stated below:

M1: ˜ D Trend alone
M2: ˜ D Trend C Demographic characteristics
M3: ˜ D Trend C Random effects (States and cluster)CDemographic characteristics
M4: ˜ D Trend C Spatial effect (i.e. M1 C spatial)
M5: ˜ D M3 C nonlinear effect of continuous variables
M6: ˜ D Trend C Spatial C Random (States and Clusters) C Nonlinear of continu-

ous C extended fixed effects (including partners’ educational attainment)
M7: ˜ D Trend C spatial C nonlinear of continuous C extended fixed effects (in-

cluding partners’ educational attainment)

It turned out that, models with predictor M7 is the best in terms of the DIC (see
Table 7.2). Therefore, discussion of results in Sects. 7.5.2 and 7.5.3 shall be based
on model M7. All analyses are carried out based on BayesX 2.0.1 – software for
modelling structured additive regression modelling through a Bayesian perspective
(Brezger et al. 2009). This is available under http://www.stat.uni-muenchen.de/�
bayesX

7.5.2 Results

For the binomial probit model that assumes model A as the outcome variable,
Table 7.3 presents findings of the fixed effect model. A significant positive

http://www.stat.uni-muenchen.de/~bayesX
http://www.stat.uni-muenchen.de/~bayesX
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Table 7.3 Posterior estimates for binomial and cumulative models with predictor M7. Shown are
the posterior means, std errors and 95 % credible intervals

Binomial model with predictor M7
Cumulative probit model
with predictor M7

95 % credible
interval

95 % credible
interval

Variables Mean Std error Lower Upper Mean Std error Lower Upper

Constant �2.160 0.254 �4.460 �3.441 �0.059 0.110 �0:279 0:149

Trend
Year 1999 (ref) Ref Ref
Year 2003 �0.141 0.143 �0.520 0.020 0.252 0.043 0:163 0:339

Year 2008 0.412 0.096 0.587 0.981 0.315 0.031 0:254 0:376

Geopolitical zones
North Central (ref) Ref Ref
North East �0.350 0.494 �1.777 0.122 0.166 0.234 �0:289 0:619

North West �0.503 0.452 �1.996 �0.155 �0.012 0.212 �0:412 0:399

South East 0.092 0.432 �0.557 1.081 �0.098 0.238 �0:560 0:379

South West �0.298 0.353 �1.244 0.137 �0.188 0.156 �0:489 0:100

South South 0.072 0.444 �0.638 1.147 0.090 0.255 �0:382 0:631

Place of residence
Rural (ref) Ref Ref
Urban 0.211 0.065 0.251 0.506 0.169 0.026 0:120 0:220

Sex
Male (ref) Ref Ref
Female 0.010 0.056 �0.079 0.138 0.028 0.021 �0:013 0:071

Respondents’ educ
None (ref) Ref Ref
Primary 0.239 0.101 0.265 0.678 0.256 0.032 0:195 0:318

Secondary 0.419 0.107 0.591 0.993 0.520 0.040 0:442 0:604

Higher 0.572 0.138 0.758 1.281 0.694 0.062 0:577 0:812

Partners’ educ
None (ref) Ref Ref
Primary 0.180 0.102 0.176 0.578 0.234 0.032 0:173 0:297

Secondary 0.160 0.106 0.134 0.550 0.190 0.033 0:123 0:256

Higher 0.323 0.119 0.406 0.858 0.315 0.045 0:226 0:405

Birth order
More than 4 Ref Ref
Firstborn 0.193 0.120 0.105 0.573 0.001 0.043 �0:085 0:087

Second to Fourth 0.057 0.078 �0.45 0.252 �0.019 0.029 �0:081 0:145

Antenatal visits
None (ref) Ref Ref
1–9 0.064 0.038 0.031 0.173 0.113 0.016 0:081 0:145

More than 9 �0.053 0.038 �0.153 �0.008 �0.100 0.016 �0:132 �0:068

Place of delivery
At home/others Ref Ref
Hospital 0.433 0.069 0.634 0.905 0.477 0.029 0:420 0:532

Threshold 1 (™1) NA NA NA NA 0.059 0.110 �0:149 0:279

Threshold 2 (™2) NA NA NA NA 2.234 0.112 2:018 2:463

NA not applicable
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trend was observed between 2008 and 1999 compared with 2003 and 1999. Full
immunization coverage varies according to the geopolitical zones with North West
having significantly lower full vaccination. Residing in urban areas is significantly
associated with full immunization coverage as children in urban areas are more
likely to be fully immunized compared with their counterparts in rural areas. A
significant positive association of respondents’ and partners’ educational attainment
was evident on full vaccination coverage. Firstborns are more likely to have
received full vaccination compared with their counterparts who are later than fourth
born. Children who were delivered at the hospital are more likely to receive full
vaccination coverage compared with those who were delivered at home or other
places. Children from mothers who had at most primary, or at most secondary or at
most higher education are more likely to receive full vaccination coverage compared
with their counterparts with no formal education. Similarly children whose fathers
have secondary education or higher are significantly more likely to receive full
vaccination compared with those whose fathers have at most primary education of
no formal education. Children whose parents received between 1 to 9 antenatal visits
are positively associated with receiving full immunization coverage.

Now consider the cumulative probit model B. Estimates of the fixed effect
parameters are shown in Table 7.3. Similar conclusions can be drawn from the fixed
effects as in model A. Furthermore, estimates of the threshold parameters ™1 and ™2

for categories ‘Full vaccination’ and ‘partial vaccination’ respectively are included
in Table 7.3. For interpretation of the results of threshold parameters, higher (lower)
values correspond to full vaccination. For instance, a positive sign of ™1 and ™2

signifies a shift on the latent scale to the left side, yielding a higher probability for
category ‘full vaccination’ and partial vaccination compared with ‘no vaccination’.
For fixed effects, the directions of findings are similar for cumulative probit models.
However, effect of firstborns is not statistically significant.

Turning attention to the nonlinear effects of child’s age and mother’s age
at the birth of the child, Fig. 7.1 presents findings for both models A and B.
From the binomial probit model, a steady decline in full vaccination coverage
was evident from children who are 12 months old and beyond. This shows a
possible improvement on full vaccination coverage in the recent time compared
with the older children. In other words, the younger children are more likely to
be fully immunized compared with older children. For cumulative probit model,
effect of child’s age is almost an approximately zig-zag pattern. On respondents’
(mothers) age at birth of the child, the pattern is similar for both binomial probit
and cumulative probit models. There is a steady increase in child’s immunization
coverage up till mother’s age birth of 21 years before it stabilises between age 22
and 42 years. This implies that children whose mothers are below 21 years (perhaps
teenage mothers) are less likely to receive full immunization coverage compared
with those children whose mothers are in the age range 22 and 42 years.

Figure 7.2 displays spatial effects for binomial probit and cumulative probit
models A and B on map of Nigeria. The posterior means are shown in the left
columns (a and c) while the corresponding posterior probabilities of significance
of spatial effects are shown in the right columns (b and d). Looking at the maps
of posterior probabilities, states with white colour are associated with significantly
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Fig. 7.1 Nonlinear effects of (a) Child’s age and (b) Mother’s age at birth [Binomial probit
model], (c) Chld’s age and (d) Mother’s age at birth with their corresponding 95 % and 80 %
credible intervals

high vaccination coverage, states with dark colour are associated with significantly
low vaccination coverage while states with grey colour are associated with insignif-
icant spatial effects. In other words, states with white colour have positive credible
intervals, states with dark colour have negative credible intervals while states with
grey have credible intervals that include zero. For instance, from the cumulative
probit model; rather than assuming that all the states in the North East, North West
and North Central are significantly associated with low vaccination coverage, this
analysis has permitted us to identify that Kano, Sokoto and Zamfara in the North
West; Jigawa, Yobe and Borno in North East; and Nassarawa in the North Central are
associated with low vaccination coverage. Similarly, Lagos, Oyo, Osun, and Ekiti
states in the South West; Ebonyi in the South East and FCT in the North Central are
associated with high vaccination coverage. Similar inferences can be drawn from the
binomial probit model A with Jigawa, Yobe and Benue states significantly associated
with no or incomplete vaccination coverage while FCT, Lagos, Osun and Ekiti states
are significantly associated with full immunization coverage.

7.5.3 Discussions

Structured additive regression models for binomial and cumulative probit models
have been applied to the 1999, 2003 and 2008 Nigeria Demographic and Health
Survey data on level of immunization coverage in Nigeria between 1999 and 2008 in
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Fig. 7.2 Map of Nigeria showing spatial effect (a) and (c) for binomial and cumulative probit
respectively; and the corresponding map of significance of spatial effects (b) and (d) for binomial
and cumulative probit respectively

this Chapter. In this Section we discuss findings from the analysis and implications
for policy formulation on improving immunization coverage in Nigeria. This Chap-
ter has availed us the opportunity to discern states with partial or low immunization
coverage with the aim of developing appropriate intervention strategy, which can
help in improving immunization coverage.

In this paper, flexible modelling of small area district-specific effects is of great
advantage compared to the usual parametric and frequentist approach. For instance,
modelling of the effects of the 37 small area districts in Nigeria through a frequentist
(parametric approach) would have led to creating 36 dummy variables resulting
in superfluous parameters for only one variable. However, Bayesian geoadditive
models have distinct advantages for exploring such small area spatial effects
by allowing incorporation of spatial effects, nonlinear or time-varying effects of
covariates as well as the usual linear effects in a joint model by assigning appropriate
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smoothness priors to them. Furthermore, this approach of analysis is useful for
policy formulation so that governments of the districts (states) where vaccination
is done partially or haphazardly can pay more attention to the cause of such.
Perhaps it may be necessary to create more awareness on benefits of immunisation
in such districts (states) or think of possible improvements. This will further assist
government and policy makers on prudent use of the scarce resources, which is
prominent in the country.

In this Chapter, the idea behind model B was to identify children who must
have dropped out of the exercise. In this case, drop-outs are children who begin
the vaccination schedule but do not complete it. Some of the reasons for this may
not be unconnected with lack of information, poor services, time constraints; social,
cultural or political barriers; misinformation and or distance. Therefore, this paper
has revealed that some mothers initiated immunization of their children but dropped
out somewhere along the line. So, monitoring drop-outs and devising strategies
to prevent them deserve greater attention. With the increased use of expensive
vaccines, if a child does not receive all of the doses required for full protection,
the resources that have been used to partially vaccinate that child are mostly wasted
(USAID 2009).

Reasons for lack of immunization vary from country to country. For instance,
studies have shown that most people will use immunization services as long as
they know when and where to bring their children to, whether those services
are available, accessible, reliable and friendly. Thus the role of communication
activities in achieving these conditions is important but not sufficient. Dissemination
of information, training, supervision and other ways of improving services need
to be employed in a mutually supportive way to promote complete and timely
immunization of children and women at large.

Therefore, achievement of immunization goals is affected by the behaviour many
groups including politicians, community leaders, health care providers, managers
and supervisors, women of reproductive age, parents, children and their families.

7.6 The Impact of Immunization on Child’s Health

Another area of maternal and child health issues which has not been sufficiently
addressed in the literature is the assessment of all the various immunization vaccines
on children’s survival. This kind of assessment will serve as a measure to determine
whether the core objective of immunizing the children (reduction in children
mortality rate through protection of children against the basic early childhood
diseases) through the various vaccines has been achieved or not. Thus, It is expected
that mortality rate among the groups of children that were fully immunized should
be considerably lower than the mortality rate of the unimmunized group of children.

To this end, we obtained from the three waves of the NDHS data discussed
here, the number of children that were alive or dead having being vaccinated or
unvaccinated against some of the commonly identified early childhood diseases that
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Table 7.4 The contingency table showing the cross-classification of children by their full
immunization status (fully immunized or non-immunized) and their survival status (dead or alive)

1999 2003 2008

Child’s status Child’s status Child’s status

Dead Alive Total Dead Alive Total Dead Alive Total

Full
immunization

No 342 2,918 3,260 772 3,972 4,744 3,201 21,058 24,259
Yes 0 292 292 0 394 394 0 4,388 4,388
Total 342 3,210 3,552 772 4,366 5,138 3,201 25,446 28,647

could ordinarily result to child’s death if left unchecked. From these statistics, it was
possible to compute the conditional probability of survival outcome of a child (alive
or dead) given that he or she is fully immunized or non-immunized.

According to NNPI schedule as earlier reported in section 6.2, a child is deemed
to have been fully immunized if he or she has received a BCG, the three doses of
DPT, one dose of measles and at least the first three doses of OPV vaccines. Based
on this recommendation, the survival status (dead or alive) of all the children in each
of the NDHS data set was cross-classified against their immunization status (fully
immunized or not immunized) the results of which are presented in Table 7.4.

The results from Table 7.4 show that out of 3,552, 5,138 and 28,647 Nigerian
children in the 1999, 2003 and 2008 Nigeria demographic and health surveys,
only 292 (8.2 %), 394 (7.7 %) and 4,388 (15.3 %) of them were fully immunized
against some of the early childhood diseases respectively. These results simply
show that less than 20 % of children in Nigerian were fully immunized against the
most commonly identified early childhood diseases as at 2008. This has impacted
negatively on the survival of the children as revealed in Table 7.4.

It can be observed from Table 7.4 that the conditional probability that a fully
immunized child will die is zero. In all the three data sets, all the 292, 394 and
4,388 children that were fully immunized according to 1999, 2003 and 2008 NDHS
respectively survived beyond their fifth year of birth. On the other hand, of 3,260,
4,744 and 24,259 children that were not immunized (or not fully immunized) in the
1999, 2003 and 2008 NDHS data, 342, 772 and 3,201 of them died before their
fifth year of birth. This translates to significant child mortality rates of 10.5 % in
1999 (p < 0.0001; 95 % CI: 0.0947, 0.1161), 16.3 % in 2003 (p < 0.0001; 95 % CI:
0.1524, 0.1736) and 13.2 % in 2008 (p < 0.0001; 95 % CI: 0.1277, 0.1363) within
the group of unimmunized children. Based on these results, it is very clear that
more efforts should be directed at ensuring full compliance to the internationally
recommended immunization schedule by nursing mothers in Nigeria in order to
stem the increasing trend of child mortality.

In addition to the above, we assess the impact of OPV and DPT vaccines on
child’s survival using the three NDHS data sets. The choice of these two vaccines
is informed by their significant impacts on the survival of children during the first 5
years of birth (Taylor et al. 1996).

In Table 7.5, we present the survival status (dead or alive) of all the children in
the 1999, 2003 and 2008 NDHS data cross-classified by their OPV immunization
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Table 7.5 The contingency table showing the cross-classification of children by their polio
immunization status (fully immunized or non-immunized for Polio) and their survival status (dead
or alive)

1999 2003 2008

Child’s status Child’s status Child’s status

Dead Alive Total Dead Alive Total Dead Alive Total

Full Polio
vaccines

No 342 2,907 3,249 772 4,056 4,828 3,201 21,336 24,537
Yes 0 303 303 0 310 310 0 4,110 4,110
Total 342 3,210 3,552 772 4,366 5,138 3,201 25,446 28,647

status (fully immunized or not immunized). Also, tables for the cross-classification
of children by their survival status (dead or alive) and their DPT immunization status
(fully immunized or not immunized) were obtained, but these were not presented
due to space. However, a child is considered to be fully immunized by both OPV
and DPT vaccines if he or she has received OPV0, OPV1, OPV2 and DPT1, DPT2,
DPT3 vaccines respectively.

In agreement with the results reported in Table 7.4, the results in Table 7.5
generally revealed that all the children that died in 1999, 2003 and 2008 based on
the respective data were those children that did not received the full dose of oral
polio vaccines as recommended. Interestingly, all the children that received the full
OPV survived beyond their fifth year of birth between 1999 and 2008 covered by
the data. The results are the same for those children that received full dose of DPT
vaccines. In all cases, the proportion of child’s deaths due to lack of (full dosage
of) OPV and DPT vaccines in the children were all significantly different from zero
across the three sets of NDHS data considered (p < 0.0001).

7.7 Conclusion

This Chapter has provided readers with opportunity for flexibly modelling of
nonlinear effects, spatial effects that incorporate neighbourhood influence, fixed
effect and possibly random and interaction effects. In our analysis, we attempted
random and interaction effects at an exploratory stage but both were found not to
be significant. At another stage of the analysis, effect of continuous covariates i.e.
child’s age and mother’s age at birth was assumed to be linearly related to models
A and B and modelled parametrically. Even though these effects were significant in
the parametric models, however, the model with smooth (nonlinear) functions of the
covariates was found to be better in terms of the DIC. Evidently effects of child’s age
and mother’s age at birth are non-linear, and an assumption of linear dependence a
priori would have been too rigid and resulted in erroneous and spurious conclusions.

Results of the spatial effects for the fitted models showed that there exist sub-
stantial geographical variations in level of immunization coverage across Nigeria.
While some states were significantly associated with full immunization, some were
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significantly associated with no or partial immunization coverage. Ensuring full
immunization coverage will assist Nigeria in averting deaths in children under five
(especially infants) due to preventable causes. Through this, Nigeria can achieve the
millennium development goals on reduction of infant and child mortality rates.

Generally, full immunization coverage is still very low in Nigeria. The pro-
gressive increase in the percentage of fully immunized children from around 8 %
between 1999 and 2003 to about 15 % in 2008 is still not impressive. More serious
efforts are still needed from government and non-governmental organizations
in the areas of enlightenment campaign to improve significantly on the current
achievement if objective number four of the United Nations MDG that calls for
a two-third reduction in child mortality by 2015 is to be accomplished in Nigeria.

In conclusion, findings from this Chapter provide insight to policy formulation.
Scarce resources have been identified as a major challenge towards implementation
of necessary intervention strategies in sub-Saharan African countries, including
Nigeria. This Chapter provides policy-makers with tools to enhance appropriate
policy formulation on improving access to and coverage of immunization; which
can also assist in allocating resources to states or districts where the resources can be
effectively utilized. While identifying states that require intensive prevention efforts
towards full vaccination, the need for sustenance of the full immunization coverage
in states that are associated with full coverage must be ensured by policy-makers in
the affected states.
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Chapter 8
Macro Determinants of Geographical Variation
in Childhood Survival in South Africa Using
Flexible Spatial Mixture Models

Samuel O.M. Manda

8.1 Introduction

In many societies around the world, social and economic programmes have been
put in place aimed at improving the health of the populations. This is premised on
evidence that a healthy population is economically more active; thus contributing to
efforts meant to lowering levels of poverty (Romani and Anderson 2002). Leading
indicators of overall social-economic development and health status of a country
are infant (under 1 year) mortality and under-five mortality rates (Romani and
Andersen 2002; Bradshaw et al. 2004; Burgard and Treiman 2006). Under-five
mortality rate, defined as the number of children younger than 5 years who die
out of 1,000 live births, is a Millennium Development Goal 4 (MDG 4) indicator
(United Nations 2012). Furthermore, in conditions where HIV/AIDS is pandemic,
childhood death rates are important for investigating inequalities regarding HIV
policies and services; in particular, differential rates of mother-to-child transmission
(MTCT) of HIV (Bradshaw et al. 2004).

Even though childhood mortality rates have generally been declining worldwide,
the levels of the decline and the current rates vary considerably across regions.
In some regions, for example, the sub-Saharan African (SSA) region, declines in
child mortality have either reversed or slowed or stalled in many countries from
the early 1990s, making it unlikely that the target of reducing under-five mortality
rate by two thirds between 1990 and 2015 will be reached (Fotso et al. 2007). The
more wealthier and modernised regions have had faster declines in, and have lower,
childhood mortality rates and vice-versa (Heaton and Amoateng 2007; UNICEF
2010). Between 1990 and 2008, the overall world-wide reduction in under-five
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mortality rate was 28 %, with a high of 40 % in the industrialised countries and
a low average of 22 % in the SSA region. The overall under-five mortality rate is 65
deaths (1,000 live births), with rates of 6 and 144, respectively, in the industrialised
and the SSA region (UNICEF 2010).

South Africa (SA) has one of the lowest rates of childhood mortality in the SSA
region (SA infant mortality rate is 45; SSA’s is 82 (African Population and Health
Research Center 2008)). However, the country is one of the few at the start of
the 1990s to have experienced a reversal in child mortality decline. The reversal
has been attributed to an increase in HIV prevalence in pregnant women within
the same period (Hall 2009). The country’s low childhood mortality rates mask
variation within the country where the rates vary by province, with the Western
Cape province having the lowest infant and under-five mortality rates at 30 and
39 per 1,000 live births, while the Eastern Cape province has the highest rates at
61 and 81 per 1,000 live births, respectively (Hall 2009). Ethnicity is an important
predictor of differential childhood mortality rates in South Africa as it is indicative
of differences in educational, health and social-economic access; a legacy of the
then apartheid policies (Romani and Anderson 2002; Burgard and Treiman 2006;
Heaton and Amoateng 2007).

This chapter uses data from the South African Demographic Health Survey
1998 (SADHS 1998) (Department of Health 2002) and the spatially relevant
health district data to investigate geographical variation of childhood mortality
in South Africa. In particular, we use socio-economic, demographic and health
variables at the district level to explain excess risk in childhood mortality at
the district level. Childhood mortality is modelled with time-to-event survival
random effects models involving spatially arranged random effects. We do not
restrict the conditional distribution of the spatial random effects to be Gaussian
but are flexibly modelled using mixtures of Gaussian and double exponential
distributions. The resulting residual fitted hazard rates are mapped to help the search
for possible persistent spatial correlations, which may suggest links with district-
specific covariates. This study therefore provides the benefit of identifying groups
of children and places to be targeted with relevant and effective interventions; thus
helping stakeholders to prioritise the available resources to places and sub-groups
that are in greater need.

8.2 Some Theoretical Considerations

A number of studies in poor and less developed countries have used a number
of individual and household factors to model childhood mortality. These include
the mother’s age, education and occupation, parity, birth interval, breastfeeding
duration, sex of child, previous child deaths, and household amenities (Forste 1994;
Huang et al. 1997; Manda 1999). In particular, the studies have shown gathered
inverse relation between birth intervals and infant and child mortality. There are
various mechanisms by which birth intervals might affect childhood mortality.
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A short birth interval may erode the reproductive and nutritional resources of the
mother leading to a higher incidence of premature and weaker births. Closely
spaced children compete for scarce resources such as food and clothing. An
increased transmission of infant and child contagious infections among closely
spaced siblings may also occur. Early cessation of breastfeeding may expose the
child to greater risks of illness from contaminated water and food in conditions
where proper substitutes of food are scarce. But the effects of birth intervals and
breastfeeding duration on childhood mortality are too complicated to entangle,
due to complications arising from different factors (Manda 1999; Kandala and
Ghilagaber 2006):

Maternal age at birth of the child and birth order tend to exhibit a U-shaped
relationship with childhood mortality (Sastry 1997). Young mothers have repro-
ductive systems that are not completely mature, and this leads to underweight and
weaker babies, while older mothers have declining maternal resources due to aging.
Young mothers are also less likely to have received adequate prenatal care. High
order births have relatively higher childhood mortality because they are born to
older women. First-born children are more likely to be born to young mothers.
Maternal education and household wealth provide the means with which the mother
can ably care for a sick child, and the awareness of preventive modern medicines.
In some studies, the survival status of the proceeding child had been used to model
family effects where it has been assumed that if mortality risks within a family are
correlated, the index child has a higher chance of dying.

On the macro level, countries in the Sub-Saharan Africa region are characterised
by some of the highest infant and under-five mortality rates in the world (Balk
et al. 2004). The declines, which started in the late 1960s, have stalled in the
1990s, with some countries actually experiencing an increase in childhood mortality.
Overall, the region accounts for more than one in three of deaths of children
under the age of five (Amouzou and Hill 2004). Within the region, levels and
trends in mortality exhibit a considerable heterogeneity. In particular, the western
and middle regions experience high childhood mortality rates than the eastern and
southern region. A number of contributing factors have been assessed to explain the
observed variation in both infant and child mortality across countries. Amouzou
and Hill (2004) investigated the effect of three of a country’s socioeconomic
indicators: per capita income, illiteracy levels among women and the level of
urbanisation on child mortality variations across the region’s countries. Their results
showed a positive association between illiteracy levels among women and negative
associations between per capita income, urbanisation and child mortality. On the
other hand, Balk et al. (2004) studied environmental and geographical factors
such as population density, urban proximity, climate, farming system and disease
environment in a spatial analysis of child mortality in West Africa, and found
that country-specific variations in child mortality attenuated when these spatially-
relevant variables were accounted for in the models.

Sub-nationally, spatial variations in child mortality have also been shown to
exist. In a study of childhood mortality in Malawi, Kalipeni (1993) and Kandala
and Ghilagaber (2006) found that districts in the Northern region tended to display
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lower rates of infant mortality than districts in the Central and Southern regions.
These spatial variations persisted even after controls for important district level
factors, such as female education and agricultural occupation, health facilities
and demography (age at first marriage and fertility levels). In Zimbabwe, Root
(1997) concluded that population density was an independent predictor of provincial
variations of child mortality, with children in the lower-density Ndebele provinces
having lower child mortality than their counterparts in the higher-density Shona
provinces. Gemperli et al. (2004) found high level of infant mortality in the
Central and Eastern parts of Mali, which were partially reduced by the inclusion of
socioeconomic and bio-demographic variables at the individual level. In other parts
of the world, geographical differentials in child mortality have also been observed,
for instance in the Guizghou region, China (Huang et al. 1997) and Bolivia (Forste
1994), which were attributed to poverty differentials.

The few studies that have modelled community heterogeneity effects on child
mortality have not controlled for community-specific spatial relevant factors (Sastry
1998; Bolstad and Manda 2001). Gemperli et al. (2004), Balk et al. (2004) and
Kandala and Ghilagaber (2006) in their analyses of small-area spatial variation
of infant and child mortality in the sub-Saharan region, appended area-specific
spatially-relevant factors to individual and household data in the Demographic and
Health Survey (DHS) data sets. The spatial analysis studies in Kalipeni (1993), Root
(1997) and Balk et al. (2004) did not account for spatial dependence in the data.
Moreover, they did not even account for heterogeneity effects in the data across the
studied geographical areas to account for extra-variation. The results may have been
biased because failure to account for both unstructured and structured heterogeneity
could underestimate the standard errors of the parameters, which might inflate their
significance. Only a few studies have modelled childhood mortality using correlated
spatial effects (Banerjee et al. (2003) and Gemperli et al. (2004)). We follow this up
in this study; childhood mortality in the period 0–59 months is modelled using a
counting process formulation of a proportional hazards model, which is modified
to include spatially correlated frailty effects adjusted for area-specific spatially-
relevant factors.

8.3 Flexible Modelling of Area Spatial Effects

8.3.1 Basic Frailty Model

The application of Clayton-type counting process formulations for clustered sur-
vival data and gamma frailty are now routinely applied in analyses of clustered
survival data. Frailty models have been successfully used to model dependence
in clustered survival models (Clayton 1991; Sastry 1997). The unavailability of
information about the distribution of the random effects, and the possibility of
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bias in parameter estimation when the distribution is mis-specified, motivates
nonparametric or semi-parametric approaches in frailty survival modelling (Zhang
and Steele 2004; Manda 2011).

The basic proportional hazards model will be formulated using the counting
process approach as in Andersen and Gill (1982) and Clayton (1991). We suppose
there are I areas and each has ni subjects. For subject ij .i D 1; : : : ; I I j D
1; : : : ni /, a process Nij .t/ is observed, which counts the number of events which
have occurred for the subject by time t. In addition, a process Yij .t/, which indicates
whether or not the subject was at risk for the event of death at time t , is also
observed. The intensity process �ij .t/ for subject ij is a product of the risk indicator
and the hazard function hij .t/I ie �ij .t/ D Yij .t/hij .t/. We also measure a
possibly time-varying p � dimensional vector of risk factors xij .t/, where p is the
number of risk factors being investigated. Thus, for subject ij , the observed data are
D D fNij .t/; Yij .t/; xij .t/I t � 0g and are assumed independent. Let dNij .t/

be the increment of Nij .t/ in the infinitesimal interval Œt; t C dt� and Ft � be the
available data just before time t . Since the increment dNij .t/ can take a value 1 or
0, we have �ij .t/dt D Pr

�
dNij .t/ D 1jFt �

�
as the mean increase in Nij .t/ during

the infinitesimal interval Œt; t C dt�.
The effect of the risk factors on the baseline intensity function for subject ij at

time t is given by the Cox proportional hazards model

�ij

�
t j�0.t/; ˇ; xij .t/; wi

� D Yij .t/�0.t/ exp
�
ˇT xij .t/ C wi

�

Where ˇ is a p � dimensional parameter vector of regression coefficients; wi is
the area-specific unobserved frailty, which captures the risk of the unobserved or
unmeasured risk variables; and �0 is the baseline intensity, which is unspecified
and to be modeled non-parametrically. In the present study, the frailty effect wi is
assumed to be time-invariant, but this can be relaxed in certain situations (Manda
and Meyer 2005). Under non-informative censoring, the (conditional) likelihood of
the observed data D is proportional to

IY

iD1

niY

j D1

TY

t�0

�
�ij .t j�0.t/; ˇ; xij .t/; wi

�dNij .t/
exp

��.�ij .t j�0.t/; ˇ; xij .t/; wi

�
dt/

This is just a Poisson likelihood taking increments dNij .t/ as independent
Poisson random variables with means 	ij .t/ D �ij

�
t j�0.t/; ˇ; xij .t/; wi

�
dt D

Yij .t/ exp
�
ˇT xij .t/ C wi

�
dƒ0.t/, where dƒ0.t/ is the increment in the inte-

grated baseline hazard function in interval Œt; t C dt�. We conveniently model the
baseline hazard function as piecewise constant, where in each interval increment
dƒ0.t/ D dt�0t D exp .�0t / In this way, the baseline hazard can be estimated
with the fixed effects ˇ as constants. In situations where the assumptions of time-
constant hazards may not hold, the baseline hazard function is modeled using a
random walk prior (Manda and Meyer 2005) or nonparametric approaches as in
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Chap. 12. For computational purposes, the basic assumption has been that the area
frailty effects are independently and identically distributed normal or log-gamma
random variables with a mean of 0 and unknown variance.

However, in many epidemiological studies involving mortality and morbidity
mapping, this assumption is overly simplistic and it becomes problematic as it
is very unlikely that disease risks are independent across geographical areas, a
concept which is difficult to justify when there may be significant evidence of
clustering of mortality. For any given area i say, all neighbouring areas are likely
to share similar environment exposures and therefore one would expect mortality
rate estimates for the area i to resemble those of all adjacent areas. Statistically,
it creates analytical problems in that observational units are not independent, and
consequently, statistical analyses such as standard Cox regression model that rely
upon the assumption of independence may no longer be valid.

8.3.2 Modelling Spatially Correlated Area Frailty Effects

The basic model for the frailty effect that has been considered so far allows
for over dispersion in the distribution of subjects survival time tij by the use of
random effects wi . This may partially account for unmeasured covariates that induce
dependence in the tij , but as discussed in the preceding subsection, it does not
allow for explicit spatial dependence between the outcomes. The latter may arise,
for example, through “lesser variation” in hazard rates in neighbouring densely
urban populated areas as opposed to sparsely populated rural areas or through a
putative infectious aetiology for the disease(s) under investigation. Such explicit
spatial dependence may be incorporated into the model by including an additional
spatially structured random effect term. The model is then extended to

log uij .t/ D log dƒ0.t/ C ˇT xij .t/ C wi C vi

so that the log-hazards ratios are now given by wi C vi . The priors relating to wi

are specified as before, however, the vi are taken to have a spatially structured prior
of which. By writing, ! D .v1; : : : ; vI / the most common prior specification has
the conditional intrinsic Gaussian autoregressive (CAR Normal) (Besag et al. 1991)
given by the joint distribution

‰j�2
v � CAR

�
�2

v

� / ��1
v exp

"

� 1

2�2
v

X

i�i 0

.vi � vi 0/2

#

/ ��1
v

�
� 1

2�2
v

X
mi vi .vi � vi /

	
(8.1)

where i � i means that regions i and i are adjacent, Nv is the average of the v0s
that are adjacent to vi , and mi is the number of these neighbouring regions. The
sum-to-zero constraint

P
iD1 vi D 0 is added for identification purposes.

http://dx.doi.org/10.1007/978-94-007-6778-2_12
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In a more familiar form, the prior specification in (8.1) appears as conditional
distributions (Besag et al. 1991) as

vi jvk¤i � N

0

B
@

P

k¤i

wikvk

P

k¤i

wik

;
�2

vP

k¤i

wik

1

C
A

where wik are suitably chosen proximity weights for the areas (often simply 1 if two
areas are adjacent, 0 otherwise) and the new hyperparameter �2

v controls the strength
of local spatial dependence. Typically a vague gamma hyperprior is assumed for the
inverse of �2

v . An advantage of spatial smoothing technique is the ability to remove
or reduce the effect of arbitrary geographical boundaries, since geo-political areas
are unlikely to be related to the disease of interest. Thus, any artefactual variation
exhibited in the data by methods of data aggregation is ameliorated.

However, information about the exact distribution of the spatial random effects
is unavailable. Thus, it is not incorrect to make assumptions that the random
frailty effects arise from a known parametric distribution, which might have a
restrictive shape. This has led to choosing a frailty distribution that is flexible
enough to account for arbitrary multimodality and unpredictable skewness. The
use of nonparametric models such as those based on a Dirichlet process prior
offer infinite possibilities for random effects distribution (Manda 2011). However,
a Dirichlet process prior is not widely used in practice. A simpler approach to
reducing the impact of parametric distributional assumptions on random effects is
the use of finite mixture models (but problems remain in the choice of the number
of mixture components) or random walk prior (Manda and Meyer 2005; Kandala
and Ghilagaber 2006).

In this chapter, we follow the simpler approach where the conditional spatial
random effect vjviDi 0 is assumed to be drawn from one of two distributions, the
conditional intrinsic autoregressive normal (ICAR Normal) and the ICAR double
exponential. The latter, with its wider tails, offers a robust alternative to the normal
distribution whose random effect estimates and inferences can be susceptible to
district effect outliers. We assume that the conditional spatial effect has probability
�i of being drawn from ICAR Normal, and probability 1 � �i of being drawn from
ICAR double exponential. Thus,
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y � DEXP.	; �2/ D 1=2�2 exp .�1=�2jy � 	j/, with mean 	 and variance
2�2�2. We could follow outright membership of the conditional spatial effect to
either component mixture based on its posterior membership probability �i . Thus,
if the probability exceeds 0.5, then a draw from the ICAR Normal is the value of
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the area-specific conditional spatial effect, otherwise the conditional spatial effect
is assigned a value drawn from the ICAR double exponential. However, for the
purpose of this study, we assign it the weighted draws from each of the two
components using posterior estimates of �i and 1 � �i as weights.

8.4 Analysis of South Africa Under-Five Mortality

8.4.1 Data Source

The 1998 South African Demographic and Health Survey (SADHS) was a nation-
ally representative probability sample of nearly 12,000 women between the ages
of 15 and 49 years. The main report contains the full design, sampling procedures
and various descriptive statistics (Department of Health 2002). Briefly, the women
were selected using a two-stage sampling design. Firstly, the survey selected 976
primary units, which corresponded to the enumeration areas (EAs) using a sampling
frame 86,000 EAs that were created for the Census 1996. The EAs were stratified by
province, urban and non-urban residence. For a second stage sampling, a systematic
sample of households was undertaken within each of the selected EAs. All the
women between the ages of 15 and 49 in the household were identified and
interviewed about information for all their births in the previous 5 years. In this
study, we used only singleton births in this period, and the total number of births
came to 4,903 after data cleaning and validations.

We used most of the individual and household variables discussed in Sect. 8.2.
Three related variables: preceding birth interval, survival status of the preceding
birth and birth order share the category of first birth, so the design matrix would
be singular. Combining birth order and the preceding birth interval into a single
variable avoids the problem of preceding birth interval, status of preceding birth and
birth order sharing the same category. We also included child’s age as a predictor of
child mortality where a series of child age intervals are specified to capture trends
in the risk of death within 5 years (Bolstad and Manda 2001); the intervals are
less than 1 month, 1–5 months, 6–11 months, 12–23 months, and 24–59 months.
We also included child’s sex because there is some evidence that male infants and
children have a higher mortality risk than do females in the sub-Saharan African
region (Manda 1999). The survival status of the child preceding the index child was
also included to account for familial genetic predisposition to child health or shared
household environment or to measure changes in parenting skills since parents
might change their behaviour or environment after child death, thereby increasing
the index child’s survival probability (Manda 1999; Bolstad and Manda 2001).

Several background measures of socio-economic status are included in the
analyses; these include maternal level of formal education. In addition, measures of
urban–rural residence and province are used as proxies for measures of development
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Table 8.1 Descriptive
statistics of individual and
household explanatory
variables used in the analyses,
South African Demographic
and Health Survey 1998

Variable Frequency Percent

Gender of child
Male 2,481 50.60
Female 2,422 40.40

Mother’s ethnicity
Black African 4,006 81.71
Coloured 581 11.85
White 208 4.24
Asian/Indian 108 2.20

Place of residence
Urban 2,181 44.48
Rural 2,722 55.52

Mean Std Dev
Birth order 2.72 1.94
Mother’s age 26.87 6.89
Mother’s years of education 8.15 3.89
Preceding birth interval (months) 55.25 35.21

and customs which were not directly measured. However, in many developing
countries, especially in rural areas, measuring income may be problematic since
many people work in agriculture and informal sectors. Even though, Demo-
graphic and Health Surveys do not collect adequate data on household income
and expenditure, they, nonetheless, provide information on household assets. This
has prompted many researchers to use the information on household assets to
calculate a composite measurement of household-level poverty (Booysen 2001).
In particular, DHS data sets provide a wealth index which indirectly measures
long-term economic status of a household. As mentioned earlier, in South Africa
the mother’s race is the key differential marker of child mortality as race is the
major axis of differential health, social-economic and educational advantage. The
distribution of some explanatory variables over the total sample at risk in the overall
age interval 0–59 months is presented in Table 8.1.

In addition to modelling individual and household predictors of under-five
morality, we performed an ecological investigation of the mortality at the level of
health district. The District Health System (DHS) is the basic channel through which
the delivery of Primary Health Care is undertaken in South Africa (Hall 2009). Thus,
the individual level bio-demographic and socioeconomic and household data in the
SADHS 1998 were enriched with the spatially-relevant health district contextual
factors: district-level material and social deprivation level and district-level HIV
prevalence among pregnant women. The deprivation score is a measure of relative
deprivation across districts and sub-districts within South Africa, and is a composite
measure derived from a set of variables that are considered to be indicators of
material and social deprivation (Noble et al. 2006). The districts with higher
values are relatively more deprived, and as a measure of socio-economic status,
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it is particularly helpful in identifying more deprived districts which potentially
have a greater need for primary health care service (Hall 2009). Differentials in
HIV prevalence rates among pregnant women are an indication of inequalities in
health deprivation, which may impact on vertical HIV transmission and PMTCT
programmes (Bradshaw et al. 2004; Hall 2009).

8.4.2 Implementation of the Models

In the implementation of a Bayesian fit and estimation of the various models to
the child survival data, all the fixed effect parameters were assigned independent
Normal .0; 103/ prior distributions. The precision parameters were independently
assigned a hyper-prior Gamma (0.5, 0.0005) distribution, where a Gamma .a; b/

distribution has mean a=b and variance a=b2. A Gamma (0.5, 0.0005) prior
distribution on the precision parameter implies that the random effects variance
falls between 0.0002 and 1.02 with 95 % probability; a variance of 0.0002 implies a
1.06-fold increase in the mortality hazard between a district at the 2.5th percentile of
hazard and a district at the 97.5th percentile of risk; this is quite conservative; while
a variance of 1.02 implies a 54.41 fold increase in risk; this is overly optimistic.
However, the modal variance is 0.00033, implying a 1.07-fold increase in hazard
risk; thus the prior concentrated hazard ratios towards unity.

We did not set out to perform prediction analyses, but rather to use a best model
that describes the child mortality in South Africa. Thus, we did not embark on
diagnostic tools to detect unusual observations, but to choose the best model among
a number of possible candidates. Their performances were compared using model
Deviance Information Criterion (DIC), which is a sum of model fit and complexity
(Spiegelhalter et al. 2002). The fit of the model is given by the posterior mean of
the deviance ND, whereas the model complexity is given by the effective number
of parameters, pD . The quantity pD is defined as pD D D. N�/ � ND, where D. N�/

is the deviance evaluated at the posterior expectations of the model parameters, �.
Thus, DIC D ND CpD and a model with the smaller DIC is better supported by the
data.

The computation of the parameter estimates was accomplished in WinBUGS
software (Spiegelhalter et al. 2004). For each model considered, two parallel Gibbs
sampler chains from independent starting positions were ran for 30,000 iterations.
All fixed effects and covariance parameters were monitored for convergence. Trace
plots of sample values of each of these parameters showed that they were converging
to the same distribution. We formally assessed convergence of the three chains using
the German-Rubin reduction factor, and it stabilised to 1.0 by 5,000 iterations. For
posterior inference, we used a combined sample of the last 25,000 iterations from
the respective chains.
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8.5 Results

There was considerable variation with respect to sample size and the under-five
mortality rate among the 52 districts. The district-level sample size ranged from 1
to 573 children, with a median sample size of 78; the under-five mortality ranged
from 0 to 129, with a median rate of 39. This is reflected in the observed under-
five mortality rate map in Fig. 8.1, which shows a large amount of noise; which
makes it difficult to discern any geographical trends in under-five mortality rate.
Nonetheless, some of the highest rates of under-five mortality are indicated in the
districts of KwaZulu-Natal, Eastern Cape and Mpumalanga and Limpopo provinces,
while the provinces of the Western Cape and Northern Cape have some of the
lowest under-five mortality rates. Figures 8.2 and 8.3 show, respectively, levels of
deprivation and pregnant-woman HIV prevalence for all of the 52 health districts
in South Africa. It is clearly seen that most of the deprived districts are in the
Eastern Cape and Kwazulu-Natal provinces, and the least deprived districts are in
the Western Cape Province. A further investigation (results not shown), revealed
most rural districts are among the most deprived districts, while districts in the
metropolitan areas are the least deprived. In regards to HIV prevalence among
pregnant women, discernable trends are that ddistricts in the provinces of Kwazulu-
Natal, Mpumalanga, Free State and south-eastern parts of the Eastern Cape Province
have some of the highest prevalence, while the lowest HIV prevalence is shown in
districts of the Western Cape and Northern Cape provinces. Thus, districts that have
higher under-five mortality rates are more likely to be more deprived and have higher
rate of HIV among pregnant women.
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(11) 15.0 - 35.0

(16) 35.0 - 55.0

(14) >= 55.0

0.005km

N

Fig. 8.1 Under-five mortality rate distribution by health district in South Africa, 1983–1998
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Fig. 8.2 Level of material and social deprivation by health district in South Africa, 2001
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Fig. 8.3 Antenatal HIV prevalence by health district in South Africa, 2006–2007

A comparison of a number of competing models is shown in Table 8.2, where all
the DIC components are shown. Initially, a standard proportional hazards regression
model was fitted without any frailty effects (NonFrailty Model). This has effective
number of parameters as 23.49, which is very close to the actual number of
parameters, 24 (19 fixed effects and 5 constant hazards). We also fitted models with
only the unstructured frailty effects (NonSpatial Frailty Model). Then, we fitted
a number of spatial models with or without the covariates using the conventional
unstructured and spatially structured frailty effects (Convolution Model) or the
convolution model where the spatially structured random effect is a mixture of the
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Table 8.2 Comparison of the fitted models using DIC components

Model D D .�/ pD DIC

NonFrailty 2,504.69 2,481.19 23.49 2,528.18
NonSpatial frailty, noncovariates 2,516.08 2,495.6 20.484 2,536.56
Convolution spatial frailty, nocovariates 2,514.85 2,494.32 20.53 2,535.38
Spatial mixture frailty, nocovariates 2,514.76 2,501.04 13.717 2,528.48
Nonspatial frailty 2,497.87 2,468.90 28.97 2,526.84
Convolution frailty 2,498.61 2,470.65 27.96 2,526.57
Spatial mixture frailty 2,486.30 2,452.15 34.191 2,520.53

ICAR Normal and ICAR double exponential (Spatial Mixture Frailty Model). As
expected, the models without the inclusion of the covariates have lower effective
number of parameters, but with substantially larger DIC values. The DIC values
favour Mixture Spatial Frailty models over the Convolution models. The best fitting
model is the Mixture Spatial Frailty Model, with the smallest DIC value of 2520.53,
at least 5 lower than the other models.

Across all the fitted models, it was shown that the under-five mortality hazard
depended on age of the child, which declined with increasing age (results not
shown). For instance, the mortality hazard in the first month was about 1.11 times
that in the months 1–5, 17. 86 times that in the months 6–11, and 20.07 and 28.55
times that in the months 12–23 and 24–59 months, respectively. In Table 8.3, we
present the posterior summaries for the fixed effect parameters from only four
models; two basic models: the NonFrailty Model and the NonSpatial Model and
two spatial models: the Spatial Mixture Frailty Model (A) which only included the
individual and households covariates, and the Spatial Mixture Frailty Model (B)
which is an extension of the Spatial Mixture Frailty Model (A) with the inclusion of
two district level factors: deprivation and HIV prevalence among pregnant women.
The results are shown on the logarithm scale where no risk is represented by 0.

In all of the four models shown, there is general consistency in the estimate for
the predictor effect, and that the individual and household estimates are unaffected
by the inclusion of district-level factors. Using the nonspatial model analysis, and
on the basis of the 95 % CI, not all of the fixed effects are significant; however, the
median estimated effects support the findings in previous studies on child mortality
in Sub-Saharan Africa and other less developed countries (Sastry 1997; Manda
1999). In particular, the under-five mortality hazard for boys is consistently slightly
higher than that for girls. First births or lower birth orders combined with short
preceding birth interval have high mortality hazards. The coefficient of the quadratic
part of the age of the mother is significant, and it indicates a child born to a younger
or older mother has higher under-five mortality hazard. As expected, maternal
education inversely and significantly affects under-five mortality hazard. It is also
evidently clear that the mother’s ethnicity affects the hazard of under-five mortality;
the fully adjusted hazard for White or Indian children is about e�1;206 D 0:300, a
third of that for Black African children. Furthermore, children born in the rural areas
have higher hazard of death in the first 5 years of life than children born in the urban
areas (Table 8.3).
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There is evidence that under-five mortality hazard is related to deprivation level
of a district, but the relationship is not linear, it is a U-shaped relationship. In both
nonfrailty and nonspatial frailty models, higher levels of HIV consistently have
elevated under-five mortality hazard; however, after taking into account the spatial
dependence in the mortality, the relationship is U-shaped.

8.6 Mapping the Fitted District-Level Mortality Hazard

Figures 8.4, 8.5, and 8.6 display the unadjusted posterior means of the log-hazards
from different models for the under-five mortality across the 52 health districts.
Under the nonspatial frailty model (Fig. 8.4); the rate of childhood mortality appears
to be relatively higher in the central, south-eastern and north-eastern parts of South
Africa. However, a clear discernable picture emerges when considering spatial
models (Figs. 8.5 and 8.6) that reveal excess mortality in the central, south-eastern
and the northern parts of the country; covering districts in the Eastern Cape, Free
State, Kwazulu-Natal and Limpopo provinces. The maps of excess mortality risk
not explained by the individual, household and district-level covariates, under both
the nonspatial and mixture models shows the distribution of the mortality risk
has become more evenly distributed across the country with fewer districts having
excess log-hazard mortality above 0.2 or below �0.2 (Figs. 8.7 and 8.8). Thus, the
factors included, some of which vary spatially, may have explained some of the
observed differential geographical patterns in the under-five mortality hazards.

(3) < -0.2

(29) -0.2 - 0.0

(14) 0.0 - 0.2

(6) >= 0.2

0.005km

N

Fig. 8.4 Estimated under-five mortality log-hazards based on the Nonspatial Frailty Model
without covariates
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(7) < -0.2

(22) -0.2 - 0.0

(15) 0.0 - 0.2

(8) >= 0.2

0.005km

N

Fig. 8.5 Estimated under-five mortality log-hazards based on the Convolution Frailty Model
without covariates

(6) < -0.2

(23) -0.2 - 0.0

(18) 0.0 - 0.2

(5) >= 0.2

0.005km

N

Fig. 8.6 Estimated under-five mortality log-hazards based on the Robust Mixture Frailty Model
without covariates

8.7 Discussion

This chapter has demonstrated the use and feasibility of modelling spatially
correlated maternal and child health data, where the outcomes are time to event;
in our application, we investigated under-five mortality in South Africa. Spatial
smoothing allowed us to discern the inherent spatial patterns of the mortality hazard
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(0) < -0.2

(28) -0.2 - 0.0

(24) 0.0 - 0.2

(0) >= 0.2

0.005km

N

Fig. 8.7 Estimated under-five mortality log-hazards based on the Covariate-adjusted Nonspatial
Frailty model

(0) < -0.2

(30) -0.2 - 0.0

(22) 0.0 - 0.2

(0) >= 0.2

0.005km

N

Fig. 8.8 Estimated under-five mortality log-hazards based on the Covariate-adjusted Robust
Mixture Frailty model

of childhood mortality across the country. We were able, by using our methods,
to show general trends in childhood mortality hazards attributed to measured
individual and district-level covariates. Increasing district deprivation and HIV
prevalence among pregnant women were associated with excess hazard for under-
five mortality. Adjusting for these ecological factors and individual and household
covariates weakened the association, but there was still a cluster of high mortality
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risk in the country. These excess district-level variations may indication a number of
confounding factors such urbanization, health care and nutritional differentials that
were directly controlled in the models. Thus, the models described here go a long
way in maintaining parsimony in the number of predictor variables to include. This
application has revealed probable districts that may warrant further examination
to find out how they fall into the highest or lowest under-five mortality hazards
categories. This investigation would then lead into the identification of other relevant
spatially varying covariates within the broad context of public health intervention
efforts.

The estimated effects on under-five mortality hazards of the included individual
and household covariates are in the expected direction and they are well known
(Manda 1999; Gemperli et al. 2004). For instance, due to biological differences,
boys are more vulnerable to infection in the early years of life. Mothers with
increased formal education have better access to health-related information and
may be more efficient at using the resources they have to raise healthy children.
Furthermore, young mothers have less experience in childbearing and their repro-
ductive systems have not sufficiently developed compared to older mothers whose
children are more likely to be in later birth orders. The clear ethnical differential
in the hazard of under-five death, which is exceedingly lower for children born
to White or Asian children, is a reflection of institutionalized racial social and
material disadvantage among the Black African population in the country during
the apartheid era (Burgard and Treiman 2006).

There are some issues around the use of mortality outcomes and some covariate
factors as used in this study. The levels of under-five mortality used in this
chapter were obtained from the Demographic and Health Survey conducted in
1998. The most reliable childhood mortality data are from the Demographic and
Health Surveys (DHS) programme. The South African Demographic and Health
Survey of 2003 had data quality problems, especially for maternal and child health
(Department of Health 2007). The last reliable data to base estimates of childhood
mortality are from the 1998 SADHS (Burgard and Treiman 2006; Hall 2009). The
district-level district deprivation and antenatal HIV prevalence used were for 2001
and 2006–2007, respectively; thus there were some misalignment of the outcome
measure and risk factors. We believe that the trends in district level deprivation and
antenatal HIV prevalence have not changed much in to the trends in 1998; only that
magnitudes may have gone up or down.

Analysis of survey data with complex sampling design needs to account for the
design. The SADHS 1998 used weighted, stratified and clustered sampling proce-
dure to draw the ultimate sample of women respondents. Any DHS data contains the
sampling weights for each sample subjects, and in estimation of national effects, the
weights correct for the unequal sampling probabilities (under/oversampled groups
may influence results). However, the use of sampling weights to correct for unequal
sampling probabilities is controversial (Pfeffermann 1993; Korn and Graubard
1995). A model-based approach includes variables used for determining weights
in the regression model and a design-based approach uses individual weights
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accordingly in the analyses. We opted for former where we have urban or rural
residence, variables that contributed to the weights and stratification, as repressor
variables.

A second concern relates to measures of district-level deprivation and HIV
prevalence, and the geography. The social and material deprivation used here is for
the whole population, rather than specific to children. Attempts have been made
to produce deprivation indices that directly affect children, but these are yet to
be available at the district level (Noble et al. 2006; Barnes et al. 2008). The HIV
prevalence was estimated for pregnant women in 2006–2007, attending in public
hospitals. This is not a representative sample of the total population in the country;
the antenatal HIV prevalence estimate might be biased upwards compared to the
general population’s HIV prevalence (Manda et al. 2012). However, in a generalised
epidemic like HIV, these estimates are adequate and reliable, and they can be used
as proxies for health deprivation, especially in accessing primary health care for
PMTCT of HIV (Bradshaw et al. 2004). There also has been a change in the
names and number of health districts over the years. Even though the geography
that was sampled from 1998 was automatically linked to the current districts, there
were some very few that were manually linked. This might have created spatial
uncertainties in the definitions of locations over time. Although a better resolution
of the analysis can be done at the municipality level, the geography below the district
level, most of the important contextual factors related to childhood mortality are not
yet available at this lower level.

Perhaps, a main limitation of the results in this chapter may concern the overall
quality of the data used. The retrospective nature of data collection in these surveys
renders the data to many biases resulting from missing data and nonresponse. For
birth histories, women may provide an incorrect recall on birth and death dates for
their children or even deaths omission especially for infants (Fotso et al. 2007).
Even fieldworkers can introduce bias, especially when they transfer births out of the
interest period to avoid lengthier questionnaires. The SADHS 1998 had a very high
response rate of 92 %, and only 89 cases (0.15 %) had missing information. There
was very high completeness of reporting of dates of birth and death, and very little
evidence of transfer of child births (Department of Health 2002).

Even though there were some imputations of ages at death of dead siblings, DHS
datasets are of high quality to directly estimate childhood mortality (Fotso et al.
2007). Thus, the substantive conclusions are less likely to be affected are sufficiently
robust for decision-making are indicated in this discussion.

8.8 Conclusions

In conclusion, our methods and analysis offer valuable tools for producing robust
and flexible covariate-adjusted maps of under-five morality that may indicate
underlying latent risk profiles. We have also indicated how the otherwise limited
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data in most survey data can be enriched with external sources using the geo-
graphical information system tools. Such an integration methods and data sources
will increase the relevance of statistical models for many problems, including
epidemiology and medicine.

The generated maps may help the search for possible persistent spatial correla-
tion, which may suggest links with district-specific covariates. Therefore this study
has shown a novel methodology that could help to identify groups of children and
places to be targeted with relevant and effective interventions. Such a process will
help stakeholders to prioritise the available resources to places and sub-groups that
are in greater need.

8.9 Further Reading

The current trends in child mortality rates in the sub-Saharan African region and
the progress toward Millennium Development Goal 4 of two-third reduction in the
mortality by 2015 is found in Fotso et al. (2007). The overall world-wide state of
child mortality is contained in United National (UNICEF) report (UNICEF 2010,
which shows that the SSA region, despite declines in child mortality, still lags far
behind the rest of the world.

The idea of using frailty effects for child survival modelling in the developing
countries can be found in Sastry and Bolstad and Manda, to name a few. The
general theoretical ideas of frailty effects can be found in Hougaard (2000), who
presents an excellent treatise on the various specification of the shared frailty model
using independent and identically distributed assumptions. Theoretical extensions
to modelling spatially structured shared frailty effects can be found in Banerjee
and Carlin (2003) and Banerjee et al. (2004) using the CAR model. Nonparametric
frailties have recently appeared in the literation (Manda 2011; Naskar 2008). How-
ever, methodological developments for nonparametric spatially structured models
are still being investigated, even though methodology is typically computationally
intensive.
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Chapter 9
Socio-Demographic Determinants of Anaemia
in Children in Uganda: A Multilevel Analysis

Ngianga II Kandala (Shadrack)

9.1 Introduction

Anaemia is the most common nutritional problem in both developed and developing
countries. In developing countries between one and two-thirds of children are
affected (Levin 1986). Currently it affects two billion people throughout the world
(WHO 2008). This includes pre-school and school aged children. It appears to be not
only a major cause of pre and post-partum morbidity and mortalitity in developing
countries but also it affects the physical development of children.

Many researchers suspect that anaemia may increase children’s susceptibility to
infection (Stoltzfus et al. 2006). There is a growing body of evidence, based on
animal studies, which suggests that iron deficiency adversely affects the immune
system (Abouzahr and Royston 1991). Anaemia can also affect a person’s learning
ability. It has adverse effects on cognition and the effect is most probably located
at the level of information reception (Pollitt 1982). In pre-school and school aged
children, anaemia impaired motor development and administration, language devel-
opment and scholastic achievement, and it develops in children psychological and
behavioural effects such as inattention, fatigue, insecurity and it decreases children’s
physical activity (DeMaeyer 1990). It was estimated that globally, 200 million under
5 year olds fail to reach their cognitive and socio-emotional development, because
of under nutrition, including anaemia (Badham 2007).

Children are the future of a nation, and there is no single effort more radical
in its potential for saving the nation’s future than optimising children’s wellbe-
ing. Although the biological immediate causes of anaemia are documented, its
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socioeconomic and demographic related factors and the fact that anaemia differs
markedly between individuals within households and communities have rarely been
explored.

This study aims to explore socio-demographic determinants of anaemia among
children in Uganda after accounting for some proximate determinants and use multi-
level modelling to quantify the effects due to individual, household and community
levels. Multilevel modelling will be used because simple logistic regressions assume
that errors are binomially distributed and outcomes are independent. However,
due to unmeasured factors such as traditional beliefs or cultures, this might not
be the case (Madise et al. 1999). Since observations within communities are
not independent, the fixed effects model underestimates the standard errors and
overestimates the significance of some variables (Snijders and Boker 1999).

Knowing the determinants of the disease and understanding its relationship with
individuals, households and community factors are important for policy makers to
plan and develop anaemia intervention at appropriate level and achieve Millennium
Development Goals (MGD 1,2, 4, 5, & 6).

9.1.1 The Study Area

Uganda is one of the world’s less developed countries. Agriculture is the most
important sector of the economy and it employs over 80 % of the work force. Coffee
is the main source of foreign trade. The country poses substantial natural resources
like fertile soils and regular rainfalls. Uganda’s climate is equatorial climate with a
mean annual temperature ranging from about 16 ıC in the Southwestern highland
to 25 ıC in the Northwest, but in the northeast, temperature exceed 30 ıC. Except
in the Northeastern region, rainfall is well distributed across the country. Uganda is
faced with a number of environmental and socioeconomic problems. Almost every
year heavy rains have triggered flooding that displaces thousands of peoples and
sweeps away crops and livestock thereby creating food insecurity responsible for
malnutrition to many children.

9.2 Data and Methods

9.2.1 Data

Data used in this study is from the 2006 Uganda Demographic Health Survey. The
sample design involved a probabilistic two-stage sampling. It is a representative
probabilistic sample where the country was divided into 368 clusters. 9,864
households were selected based on a completed sample frame of households. 15–20
households were randomly selected from each cluster. An additional 10 households
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from each cluster were selected from the 2005 Uganda National Health Services
(UNHS) list. All women aged 15–49 (permanent resident or not) present in the
household on the night before the 2006 survey were eligible to be interviewed.
In addition, 2,110 children aged less than 5 years present in the selected households
were tested for anaemia. It should be noted that the 2006 UDHS is the first
UDHS which includes the entire country (UDHS 2007). In the previous surveys
some groups or districts were excluded for security problems. A detailed sampling
methodology can be found in the 2006 Uganda Demographic Health survey final
report (UDHS 2007).

9.2.2 Socio-Demographic Information and Potential
Risk Factors of Anaemia

This analysis is based on a binary outcome (anaemic/not anaemic) and categorical
variables grouped as individual, household, maternal, nutritional and community
related factors.

Individual factors included gender (male/female), birth order categorised (first
birth, 2–3 and 6C), preceding birth interval in months (<24, 24–35 and 36C),
diarrhoeal infections (yes/no), and birth weight (low, normal and overweight).
Bed net use (yes/no), maternal education (uneducated, primary and secondary C),
partner education (no partner, primary and secondary C), maternal occupation (not
working, agricultural, non-agricultural), toilet facility (none, flush and pit/bucket),
wealth quintiles (lowest, lower, middle, higher and highest) and religion (Catholics,
Muslim, Pentecostal, protestant, Seven Days Adventist and other) were classified
as household related factors. Maternal factors comprised maternal age (<20 years,
20–34 years and 35C), maternal smoking habit (yes/no) and mother’s anaemia
status (yes/no). The place of residence (rural/urban), the place of delivery (home,
hospital or other), and the nine region of Uganda and water source (other, piped)
were considered as community related factors. Additional nutritional factors in-
cluded breastfeeding (yes/no), breastfeeding time during the day (2–4, 4–8, 8C),
whether the child ate meat (yes/no) and whether the child was given green leafy
vegetables (yes/no). Also contextual variables such as the proportion of children
from households with piped water and from the lowest and highest wealth quintiles
by community were computed and included as continuous variables.

9.2.3 Statistical Analysis

SPSS 17 (SPSS corp., Tx, USA) enabled to acquire the data and recode some
variables. Stata/SE10 (Stata Corp., College Station, TX, USA) was used for the
initial analysis. In the bivariate analysis, cross-tabulation was made between each
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of the above potential risk factors and the presence of anaemia. Chi-square test was
used to test the significance of each of the selected potential risk factors in the model.
A p-value of 0.05 served as a cut off point.

In the multivariate analysis, MLwIn 2.11 was used to fit multilevel logistic
regression models, to account and quantify the variability due to individual,
household and community levels. Forward model selection (Rabe-Hesketh and
Everitt 2004) was used for the model specification. The Wald test was used to test
the joint significance for each of the selected categorical factors. Adjusted Odds
ratio and their associated 95 % confidence intervals (C.I) were computed and are
presented.

Multilevel Models

Most data collected in human or biological sciences have a hierarchical structure.
For example, children with the same parents tend to be more alike in their
physical and mental characteristics than random individuals from a population
(Goldstein 2010). Individuals may be further nested within geographical areas
such as communities. Multilevel model recognises the existence of such data
hierarchies by allowing for residual components at each level in the hierarchy.
For example, a two-level model, which allows for grouping of child outcomes
within households would include residuals at child and household level. Thus the
residual variance is partitioned into between-household component (the variance
of household level residuals) and within household component (the variance of
the child-level residuals). Household residual, often called “household effects”,
represent unobserved characteristics that affect child outcomes. These unobserved
variables lead to correlation between outcomes for children from the same house-
hold. Multilevel models are useful for a number of reasons (1) correct inferences,
standard regression approaches assume that the units of analysis are independent
observations. One consequence of failing to recognise hierarchical structures is that
standard errors of regression coefficients will be underestimated resulting to an
overstatement of statistical significance. The standard error for the coefficient of
higher-level predictor variables might be the most affected if grouping or clustering
is ignored. (2) Interest in group effects: in many situations, research question
concerns the extend of grouping in individual outcomes, and the identification of
“outlying” groups in evaluation of household effect, for example, the investigators
are interested to see the household effects on children risk of having anaemia. Such
effects correspond to household residual in multilevel model. (3) Inferences to a
population of groups: in a multilevel model the grouping in the sample is treated as a
random sample from a population of groups. Using a fixed effects model, inferences
cannot be made beyond the groups in the sample.
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Multilevel Logistics Model Specification

In situation with clustered data where observations in the same group are related,
for example, children nested within households it is possible to find out by using
a random effect model how much of an effect household has on children after
controlling for children background characteristics.

Let �ijk D p.yijk D 1/ be the probability that a child .i/ in the household j ,
from the community k, is anaemic. Where yijk is equal to 1 if a child is anaemic and
0 if not. We define this probability as a function of an intercept and the exploratory
variables as follows:

log it.�ijk/ D log

�
�ijk

1 � �ijk

�
D ˇ0jk C ˇ1x1ijk C ˇ2x2ijk C ˇ3x3ijk C : : : C ˇnxnijk

With ˇ0jk D ˇ0 C 	0jk.
In this equation, ˇ0jk indicates that we are modelling the intercept in this

relationship as random at j th (household) and kth (community) levels. The variables
x1ijk to xnijk are the exploratory variables and their coefficients are fixed effects.
The logit link function is assumed in the above equation, however other software
allow also to use a probit or a complementary log-log function (McCullagh and
Neder 1989). The intercept consists of two terms, a fixed term ˇ0 and a random
term 	0jk . The standard assumption is that the response yijk is distributed as
Binomial .1; �ijk/. We may write this distributional assumption in a general form
as: �ijk � Binomial .nijk; �ijk/ where in our case nijk are all equal to 1. This standard
distributional form is also used to model proportions, where each proportion yijk is
based on nijk observations and has a denominator nijk and is a special case where the
denominator is everywhere 1 (Rasbash et al. 2005).

Using MLwiN, the estimates procedures were implemented. These procedures
use a linearization methods, based on a Taylor series expansion, that transforms
a discrete response model to continuous response model (Rasbash et al. 2005).
After applying the linearization, the model is estimated using the Restricted Iter-
ative Generalized Least squares (RIGLS) and quasi-likelihood methods to convert
estimates into Predictive quasi-likelihood (PQL), where the level 2 residual are
added to the linear element of the model at each stage. The transformation to linear
model requires an approximation to be used and the type of approximation available
in MLwiN are: marginal quasi-likelihood (MQL) and predictive quasi-likelihood
(PQL). There are two orders in both of these methods, 1st and 2nd order terms of the
Taylor series expansion. Both orders can be used, however the second is preferable
because it is an improved approximation procedure (Rasbash et al. 2005). However
it is less stable. The first order MQL is also useful, but when the sample sizes within
the level 2 units are small or the response proportion is extern, the estimates may be
biased. Further details can be found in Goldstein (2009).
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9.3 Results

9.3.1 Characteristics of the Study Population

Among the 2,110 children who were included in this study, 51 % were males and
49 % were females, most of children (56 %) were between 2 and 5 birth and 22 %
were respectively the first birth and 6th birth of their mothers, the majority (33 %)
had a preceding birth interval between 24 and 35 months, 26 % less than 20 months,
and 20 % with 36 months or plus. Few (12 %) were delivered at the hospital, 17 %
at home and the majority (71 %) at others places, 55 % were breastfeed and 45 %
were not.

9.3.2 Bivariate Analysis and Prevalence of Anaemia

Of the 2,110 children tested for anaemia, 73 % are anaemic. Anaemia was
cross-tabulated with each of the selected potential risk factors and the preva-
lence of anaemia by the study characteristics was examined. The results indicate
that maternal education (Chi-square D44.73, p < 0.001), paternal education (Chi-
square D35.43, p < 0.001), maternal occupation (Chi-square D71.37, p < 0.001),
wealth quintiles (Chi-square D133.65, p < 0.001), religion (Chi-square D 65.21,
p < 0.001), mother’s anaemia status (Chi-square D 98.65, p < 0.001), the place
of residence (Chi-square D181.93, p < 0.001), the place of delivery (Chi-square
D22.51, p < 0.001), region (Chi-square D373.20, p < 0.001), water source (Chi-
square D15.88, p < 0.001), breastfeeding (Chi-square D 5.02, p D 0.025), breast-
feeding times per day (Chi-square D15.55, p D 0.004), whether the child was
given meat (Chi-square D 4.55, p D 0.033) and whether the child ate green leafy
vegetables (Chi-square D 10.20, p < 0.001) are factors associated with anaemia in
children in Uganda (Table 9.1).

The bivariate analysis suggests that the prevalence of anaemia decreases with an
increased maternal and father’s level of education and wealth quintiles. Anaemia
is much more prevalent among children of uneducated women (56 %) or fathers
(59 %) than it is among those whose mothers are educated (46 %), 43 % among
children from households in the highest wealth quintiles and 58 % among those
form the lowest wealth quintiles (see Figs. 9.1 and 9.2). Anaemia is much more
prevalent (65 %) among Pentecostal children, followed by Catholics (52 %), and
Protestant (50 %). However it is less prevalent among Seven Day Adventist (SDA)
children (see Fig. 9.3). 54 % of children of women working in the agriculture sector
are anaemic, while it is 46 % among those whose mothers work in other sectors.
Maternal anaemia status is another risk factor of anaemia among children; children
of anaemic women are associated with a higher prevalence (64 %) than those of no
anaemic women (34 %). Anaemia is highly prevalent in rural areas (54 %) while
it is 32 % in urban, lower among children from households connected with piped
water (40 %) than among those from households which use others sources.



9 Socio-Demographic Determinants of Anaemia in Children in Uganda. . . 175

Table 9.1 Potential
socioeconomic and
demographic risk factors
associated with anaemia in
children

Variable Chi-square P-value

Maternal education 44:73 <0.001
Maternal occupation 35:43 <0.001
Paternal education 71:37 <0.001
Wealth quintiles 133:65 <0.001
Mother’s anaemia status 98:65 <0.001
Urban/Rural residence 181:93 <0.001
Place of delivery 22:51 <0.001
Source of drinking water 15:88 <0.001
Breastfeeding 5:02 0.025
Breastfeeding times 15:55 0.004
Child ate meat 4:55 0.033
Child ate green vegetables 10:22 <0.001
Region 375:2 <0.001
Religion 65:21 <0.001
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Fig. 9.1 The prevalence of anaemia by maternal education

9.3.3 Multivariate Analysis

This study suggests that beside other unknown risk factors of anaemia among
children, in Uganda, age, gender, maternal occupation, and whether or not the
mother is anaemic are factors significantly associated with anaemia (see Table 9.2).
Younger children (below the age of 2 years old) and male are associated with an
increased risk of having anaemia compared with their counterparts who are 2 years
old or female.

With regards to maternal anaemia status, children of anaemic mothers are
associated with two folds increased risk of anaemia compared with those whose
mothers are not anaemic.
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Fig. 9.3 The prevalence of anaemia by religion

Maternal occupation is another risk factor of anaemia in children in Uganda.
Compared with children whose mothers work in other sectors or are not working,
children of skilled mothers or of those who work in services sector have 81 %
decreased risk of anaemia.

In addition, the results from this study support those from previous studies which
suggest that anaemia intervention is much more needed at community level followed
by individual level and that the variability due to community effects are fewer.

However, no association was found between anaemia and maternal level of
education, household wealth status, maternal smoking habit, the place of residence,
region, the source of drinking water, whether the child was given meat or green leafy
vegetables, maternal age and breastfeeding.
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Fig. 9.4 Residual diagnostic

9.3.4 Multilevel Logistic Regression Model Versus Simple
Logistic Regression

Table 9.2 presents both, results from multilevel logistics regression and simple
logistic regression model. Simple logistic model estimates and standard errors
are presented just for comparison reasons. In Sect. 9.3.2 it was mentioned that
one consequence of failing to recognise hierarchical structures of the data is
the standard errors of regression coefficients are underestimated resulting to an
overstatement of statistical significance of some variables in the model. Table 9.2
confirms this indicating that if we ignore the hierarchical nature of the data, age,
gender, maternal occupation, whether the mother is anaemic, the region and the
proportion of household connected with piped water in communities are all factors
associated with the risk of anaemia in children in Uganda. The standard errors
of all the variables in the model are biased downward. Multilevel logistic model,
however, suggests that the differences in children’s risk of having anaemia observed
between the nine regions of Uganda are not statistically significant, the proportion
of household connected with piped water is not significantly associated with the risk
of having anaemia among these children. Children’s risk of having anaemia differs
significantly between communities in which children’s live.

Model Assumption and Diagnostics

Residual were analysed using graphical display to check the plausible model
assumptions of normally distributed errors. The results suggest that the residuals
are normally distributed at community level (see Fig. 9.4).
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9.4 Discussions

A cross sectional study of 2,110 children aged less than 5 years old in Uganda
in 2006 was carried out and potential risk factors of anaemia were examined at
individual, household and community levels. The first aim of this study was to
explore the risk factors of anaemia in children at each level and then use multilevel
logistic regression model to quantify variability due to individual, household and
community effects in order to inform policy makers in Uganda and in other countries
with the same characteristics. Hypothesis such as whether the risk of anaemia
increases or decreases with a decreased or increased proportion of households
connected to a piped water or within the lower or highest wealth quintiles
by community were tested. Individual, household and community effects were
quantified.

This study suggests a higher prevalence of anaemia in children in Uganda.
The overall prevalence of anaemia in children is 73 %. There are important and
significant relationships between anaemia and some of the selected potential risk
factors. These included age, gender, maternal occupation and whether the mother is
anaemic. It suggests that maternal health plays a significant role in children’s risk
of anaemia and that children of anaemic mothers are more likely to have anaemia
and this was consistent even after accounting for the place of residence, region, and
mother’s smoking habit.

The results also suggest that children of mothers who are skilled and work in
services sector are less likely to have anaemia compared with children of those
women who don’t work at all or who work in others economic sectors. It is argued
that in Uganda, over 75 % of skilled women work in government services such
as those in medical (nurses and midwives) and teaching fields. Significant lower
risk of anaemia associated with children of those women who are skilled or who
work in services could indirectly be attributed to women’s education or income
although women’s education is not directly related with anaemia in children in this
study. Educated women have better job opportunity with reasonable income than
uneducated women and they can make a good choice for their household diet for
their children’s health in order to protect them from some preventable diseases. The
other reason might be the fact that in least developed countries the access to health
facilities is limited. In areas with health facilities, the quality of services provided
is poor and women who are not educated might not overcome these obstacles
(Caldwell 2000; Hobcraft 1993; Mensch 1986; Cleland and van Ginneken 1988).

Although there has been little investigation of socioeconomic factors associated
with anaemia in children, these finding are consistent with few studies that have
analysed the overall nutritional status of children in the region (Smith et al. 2004;
Fotso 2006).

In addition, it indicates that more variability in children’s risk of anaemia is
due to community level, followed by individual factors and there is few variability
due to household level factors. This study brings to light that anaemia intervention
in Uganda needs to be targeted at community, which could help spread the
relevant information. The results from this study indicate that if the individuals
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are nested within households and households are nested within communities (data
are hierarchical), ignoring the hierarchical nature of the data could result in over
statement of the significance of some of the variables included in the model. Most
importantly, the standard errors are biased downward.

Anaemia is a widespread health problem in Uganda. The study findings have
some important and relevant policy messages. Policy makers should place more
emphasis on the role of remoteness as well as environmental or climatic factors
on diseases. The links between the age, gender, the differences between maternal
occupations need to be addressed in order to achieve the Millennium Development
Goals (MDG 1,2, 4, 5, & 6) as well as fostering human development.

9.5 Limitations

There are some limitations. As for many questionnaire-based data, the limitations
for the UDHS included reporting and recall bias, particularly for age or other
retrospective data relying on memory of a past event. Therefore, individual level
data required more careful interpretation. Nevertheless, these results are important
in guiding the assessment of current evidence and the definition of future research
strategies.

9.6 Conclusions

This analysis suggests that anaemia in children is highly prevalent in Uganda.
This higher prevalence in Africa in general and in Uganda in particular may be
due to diverse factors. However, in this study children’s age, gender, maternal
occupation and whether the mother is anaemic are factors significantly associated
with anaemia in children. Children aged below 2 years old, male, those whose
mothers work in other sectors or are not working at all and children’s of anaemic
mothers are associated with a higher risk of anaemia. These differences need to
be well scrutinised in future studies. The results also suggest that the hierarchical
nature of the data need to be accounted for, otherwise, the standard errors of some
factors are underestimated and some factors might seem significant while in reality
they are not. This study throws light on the fact that anaemia intervention needs to
focus more at community level followed by individual level.
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Chapter 10
A Family of Flexible Parametric Duration
Functions and Their Applications to Modeling
Child-Spacing in Sub-Saharan Africa

Gebrenegus Ghilagaber, Woldeyesus Elisa, and Stephen Obeng Gyimah�

10.1 Introduction

Examining the dynamics of child spacing is of interest for several reasons. First,
several inferences are consistent with the view that in much of the developing world,
women with large families have shorter birth intervals than those with smaller
families. There is thus an indication of an inverse relationship between spacing
and completed or cumulative fertility. The spacing of births also has a significant
bearing on maternal and child health through the dynamics of sibling competition,
maternal depletion and interval effect hypotheses (Gribble 1993; Gyimah in press;
Hobcraft et al. 1985; Majumder et al. 1997; Palloni & Millman 1986; Pederson
2000; Rafalimanana and Westoff 2000; Rodriguez et al. 1984).

According to the competition hypothesis, the birth of each successive child
generates competition for scarce resources among siblings in the household which
subsequently leads to a lower quality of care and attention to each child. The
family resources may also be stretched to the limit, increasing the probability of
children in such households becoming malnourished (Gribble 1993). The maternal
depletion syndrome contends that births in rapid succession physiologically deplete
the mother of energy and nutrition which may lead to premature births or pregnancy
complications; thus increase the risk of infant or maternal death or impairing the
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mother’s ability to nurture her children. Additionally, women with closely spaced
births may still have very young children and, as such, are less likely to attend
prenatal care services which may increase maternal and child mortality risks.

Further, the early arrival of a new child often necessitates the premature weaning
of the previous child, exposing the weaned one to malnutrition and increasing the
child’s vulnerability to infectious and parasitic diseases. Invariably, longer birth
spacing has been found to increase profoundly the probability of infant survival
(Bicego and Ahmad 1996; Defo 1997; Pederson 2000). Understanding the timing
and spacing of births thus provides a thorough view of attitudes toward family size
as well as differentials in fertility and childhood mortality levels.

The birth interval approach to studying fertility views the family building process
as consisting of a series of stages, where women move successively from marriage
to first birth, from first to second birth, and so on, until they reach their completed
family size (Rodriguez et al. 1984). The point of entry into the process may be
defined either as marriage or as entry into motherhood, but the main focus of
this analysis is on the process of transition from one stage to the next, or the
intervals between successive births. The transition process is studied in terms of
the birth function,1 defined as the cumulative proportion of women having a birth
by successive duration since the previous birth (or marriage in the case of first
birth). This function reflects two aspects of the process of reproduction. The first
is the quantum of fertility indicated by the proportion of women progressing to the
next higher parity (parity progression ratio), and the second is the tempo of fertility
measured by the time it takes to make the transition for those women who continue
reproduction.

In most empirical analyses of birth interval data, the focus has been on the
quantum of fertility using proportional hazard models for the intensity of birth. That
is, the rates at which children are born to a defined set of women within a specified
unit of time. The proportional hazards model (Cox 1972) specifies the intensity of
birth as a function of an unspecified time dependent baseline hazard, � 0(t), and the
covariates,

�.t; z/ D �0.t/ exp.z“/ (10.1)

where, z is a vector of covariates and “ is a vector of unknown regression parameters.
While the nuisance baseline specification makes the Cox model attractive

particularly in contexts where the focus is not on the timing function, the model may
be too restrictive because the assumption of proportional hazards is often unrealistic

1In mortality analysis, interest is usually focussed on survival probability. The proportion surviving
up to time t, is commonly denoted by S(t), and is defined as S(t) D P(T > t). In fertility
analysis, however, interest is focused on the proportion having a subsequent child (partial parity
progression ratio). Thus, the birth function is simply the complementary function, B(t) D 1-
S(t) D F(t) D P(T � t). It is simply the cumulative proportion of women having a subsequent birth
by single months of duration since previous birth (or marriage).
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in many real life situations. Also, there are instances where one’s research interest
centers on the distributional shape of the timing function and thus calling for
alternative models.

In this chapter, we present a second class of models, more akin to ordinary
linear regression, that specifies the covariates to act multiplicatively on tempo of
fertility (or linearly on log-tempo) rather than on the quantum (intensity of birth).
We demonstrate how a number of common parametric duration models like the
Weibull and log-normal may be embedded in a single parametric framework, and
how each special-case model may be assessed relative to a more comprehensive
one. This class of models is then applied on birth interval data from three African
countries (Eritrea, Ghana, & Kenya) with a view to examining the distributional
shape of birth intervals and the sensitivity of inferences to the choice of a model.

The chapter thus has both methodological and substantive objectives. The
methodological objective centres on the application of a flexible family of para-
metric survival models to the analysis of birth interval data. The second set of
objectives, of a substantive nature, relate to examining correlates of birth spacing
in sub-Saharan Africa using Demographic and Health Surveys data from Eritrea,
Ghana, and Kenya. In the next section, we introduce the class of flexible parametric
duration models and describe how covariates effects are estimated in such models.
In Sect. 10.3, we fit this family of models to birth interval data from the three African
countries and discuss the results, while Sect. 10.4 provides a summary.

10.2 A Family of Flexible Parametric Duration Functions

10.2.1 Accelerated Failure-Time Models for the Tempo
of Fertility

Suppose we denote by To the time (birth interval in months) associated with the
baseline level corresponding to zero values for the covariates (z D 0). Such baseline
levels may, for example, be women with no education (to be later compared with
those having some primary- or secondary-level education) or urban residents (to be
compared with rural residents). Then, the accelerated tempo model specifies that if
the vector of covariates had been z (z ¤ 0), the event time (time to birth) would
have been

T D To exp.z“/; (10.2)

or equivalently, that

ln T D ln To C z“ (10.3)

where, as before, T is the vector of failure times, z is a vector of covariates, “

is a vector of unknown regression parameters. Since covariates alter, by a scale
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factor, the rate at which an individual woman traverses the time axis, (10.2) may
be referred to as the accelerated failure time model (accelerated tempo of fertility
in the context of this chapter). Thus, for proportional hazards model (10.1), the
explanatory variables act multiplicatively on the baseline intensity so that their effect
is to increase or decrease the intensity of birth relative to œ0(t). For accelerated
tempo models, on the other hand, the explanatory variables act multiplicatively on
time to the event (birth in our case) so that their effect is to accelerate or decelerate
transition time to birth relative to T0.

The model in (10.3) is a linear model with lnTo playing the role of an error term
with an underlying baseline distribution. Usually, an intercept term ’ and a scale
parameter • are allowed in the model to give

ln T D ’ C z“ C • ln To (10.4)

In terms of the original (untransformed) times to birth, the effect of the intercept
term and the scale factor are to scale and power the time to birth, respectively:

T D exp.’ C z“ C • ln To/ D To
• exp.’/ exp.z“/ (10.5)

In other words, the effect of covariates in an accelerated tempo model is to change
the scale, but not the location, of a baseline distribution of birth times. A point worth
noting at this stage is that the parameterizations in (10.1) and (10.2) are different.
A positive coefficient in (10.1) implies an increased birth intensity (shorter interval)
while in (10.2) it implies longer interval (decreased intensity) relative to that of the
baseline level.

10.2.2 The Choice Between Alternative Baseline Distributions

As we saw above, the model for the response variable (10.4) consists of a linear
effect composed of the covariates together with a random disturbance term. Such
models may be rewritten more explicitly as

lnT D z“ C •© (10.6)

in which the intercept is incorporated in the coefficient vector “ and a more
conventional notation is used for the random error term. The distribution of the
random error term can be taken from a class of distributions that includes the
extreme-value, normal, and logistic distributions, and by using a log-transformation,
exponential, Weibull, log-normal, log-logistic and gamma distributions. In general,
the distribution may depend on additional shape parameter k.

Embedding competing models in a single parametric framework allows the
methods of ordinary parametric inference to be used for discrimination and leads
to an assessment of each competing model relative to a more comprehensive one.
Stacey (1962) showed that the generalized gamma model could be useful in this
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regard. The generalized-gamma model is the distribution of T such that lnT D
z“C•©, where the random error term © has the density;

f.k; ©/ D 1

�.k/
exp fk" � exp."/g ; �1 < z“ < 1; �1 < © < 1; and •; k > 0:

(10.7)

Prentice (1974) showed that a transformation of the form w D k½(" – lnk) leads to
a standard normal distribution for w as k ! 1. Further, he extended the generalized
gamma distribution by setting q D k-½ and by allowing the error density at -q to be
a reflection, about the origin, of that of q. The parameter q D k-½ was chosen as
the unique power of k that leads to finite, nonzero likelihood derivatives at the log-
normal model for T.

The final model with parameters -1< z“< 1, –1 < q < 1, and • > 0, can be
written as lnT D z“C •© where the error density function f(q,") is

f .q; "/ D

8
ˆ̂̂
<

ˆ̂̂
:

jqj
�.q�2/

.q�2/
q�2

exp
�
q�2 fq" � exp.q"/g� ; q ¤ 0

.2�/�1=2 exp

�
�"2

2

�
; q D 0

(10.8)

The distribution of T, when the error term has the density (10.8) will henceforth
be called the Extended Generalized Gamma (EGG) distribution. As can be seen
from the lower part of (10.8), the EGG model reduces to the standard normal
distribution for " when the shape parameter q is equal to zero. Accordingly, T will
have a log-normal distribution. When the shape parameter q equals 1, (10.8) reduces
to f(1,") D f(") D expf" � exp."/g, –1 < " < 1, which is the standard (type 1)
extreme-value distribution. As lnT is a linear function of ", it has the same (extreme-
value) distribution as ". Hence T D exp(z“C•©) will have a Weibull distribution. If
q D 1 and • D 1, then T has the exponential distribution as a special case of the
Weibull distribution. The case of q D �1 corresponds to extreme maximum-value
distribution for lnT. This, in turn, corresponds to reciprocal Weibull distribution for
T. The case of • D 1 and q > 0 is also of interest. Farewell and Prentice (1977) argue
that this gives the ordinary gamma distribution for T, though, in accordance with
Bergström and Edin (1992), this does not hold in our case illustration. Consequently,
we shall label this special case (• D 1, q > 0) the ‘gamma’ distribution in our
illustrative example.

Thus, five models for T are included as special cases of the EGG model. Since
each of these five models is nested within the EGG model, its goodness of fit
to the data, in relation to the more comprehensive EGG model, may be assessed
through standard likelihood ratio tests. Another model of interest, though not a
special case of the EGG model, is the log-logistic model. A log-logistic distribution
is the distribution of T such that logT follows a logistic distribution. Description
and applications of the log-logistic model may be found in Diekmann (1992), Little
et al. (1994), Nandram (1989), Shoukri et al. (1988), and Singh et al. (1988).
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10.2.3 Estimation

The practical estimation of (10.6) proceeds as follows. Consider survival times of
n individuals t1, t2, : : : ,tn and p covariates z1, z2, : : : ,zp. Let di take value 0 if ti
is a censoring time and value 1 if ti represents an event time. The log-likelihood
function ln(lnt; z“, •, q), assuming a noninformative censoring mechanism, will
then be proportional to

nX

iD1

di fln f ."I q/ � ln ıg C
nX

iD1

.1 � di / ln S."i I q/; (10.9)

where f(";q) is given by the EGG model (10.8), S(";q) is the corresponding survivor
function, and "i D (yi – zi“)/•. At each of several q-values the maximum likelihood
estimates . Ǒ.q/; Oı.q// are obtained by using the Newton–Raphson method to solve
the normal equations arising from (10.9). Standard errors of coefficients may be
obtained from the information matrix as usual.

10.3 Illustration: Analysis of Birth-Interval Data
in Eritrea, Ghana, and Kenya

10.3.1 Background

The aim of the present illustration is to fit the models discussed above to birth
interval data to study the distributional shape and discriminate among special-case
models. Related questions concern identifying correlates of child spacing and, more
importantly, the dependence of inference about these correlates on the distributional
shape of the duration variable (birth intervals).

The data sets come from the Demographic and Health Survey (DHS) data for
Ghana (1998) and Kenya (1998) and Eritrea (1995). The DHS are funded by the
United States Agency for International Development (USAID) and administered
by Macro International in conjunction with reputable host institutions in selected
developing countries. These are national representative self-weighting samples of
women in the reproductive ages of 15–49 years. The respondents for the interview
were women who had spent the previous night in the selected households. The
quality of DHS data has been extensively discussed in the literature and will not
be highlighted here. Although there are non sampling errors on some age-related
variables, evaluation studies suggest the DHS compares favorably with other large
scale surveys such as the World Fertility Survey (Gage, 1995).

The dependent variable for this illustrative analysis is transition time between
successive births measured in months. For comparison purposes, we shall also fit
the Cox model (10.1) in which the dependent variable is the birth intensity at a
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given time. Generally, differences in birth intervals can be explained through demo-
graphic, socio-economic and socio-cultural factors. On the basis of previous work,
we have selected an array of theoretically relevant variables as likely covariates of
birth intervals. These include mother’s birth cohort, age at first marriage and at first
birth, residence, maternal education, and the survival status of the index child.

A cohort is indicative of structural factors that have shaped the life of individuals.
At the macro level, similar life experiences can be detected among women belong-
ing to the same cohort despite subtle micro level differences. Given the changing
contextual factors affecting reproduction in sub-Saharan Africa, we expect the
younger cohorts, who became adolescents in a period of a more egalitarian gender
role, efficient contraceptives, and higher female enrolments in formal education, to
have wider intervals than earlier cohorts.

Age at first marriage and age at first birth are also of tremendous importance
in fertility studies because of their inverse relation to the exposure to the risk of
conception (see, e.g., Gyimah, 2003; Westoff, 1992). They also represent a number
of unmeasured factors that predispose women to differential timing of births and,
thus, overall fertility. Women who marry at younger ages or have first births earlier
are likely to come from disadvantaged socio-economic backgrounds and are thus
more likely to be associated with the higher risks of births than their counterparts
whose first marriages or first birth occurs late (Gyimah, 2001). Consequently, we
expect women who marry or have birth early to be associated with shorter intervals.

Also significant in determining the length of the inter-birth interval is the survival
status of the index child (Montgomery and Cohen 1998; Preston 1978). In both
Ghana and Kenya, it has been demonstrated that intervals following the death of the
index child tend to be significantly shorter than intervals where the child survived, a
result of biological and behavioral processes (Gyimah and Fernando 2002). We thus
expect the death of the index child to be associated with shorter intervals.

There is also a considerable empirical evidence that associates urban residence
and high levels of maternal education with low fertility. The pathways through
which these happen have been explained through an array of mechanisms including
late age at marriage, greater knowledge and access to contraception, high labor force
participation and alternative values regarding family size (Cochrane 1979, 1983;
Martin 1995; Ware 1984). Previous work in Ghana has found a positive linear effect
of education on the intervals between successive births (Ghana Statistical Service
and Macro International 1999). Consistent with previous research, we expect the
intervals between births to be longer among urban residents and highly educated
women.

10.3.2 Descriptive Results

Summary statistics for the data are given in Tables 10.1, 10.2 and 10.3 for Eritrea,
Ghana, and Kenya respectively. It is worth noting, right at the outset, that while the
datasets for Eritrea and Kenya refer to the totality of children born by all women
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Table 10.1 Frequency distribution and summary statistics, Eritrea, 1995

Variables
Sub sample
(#of children)

Number with
closed intervals

% with closed
intervals

Exposure
(months)

Case/exposure
(per 1,000)

Relative
hazards

Mother’s birth
cohort

1946–1950 2,997 2,523 84.18 140,164 18.00 1.00
1951–1960 6,176 5,060 81.93 231,022 21.90 1.22
1961–1970 4,067 2,841 69.85 126,450 22.47 1.25
1971–1980 1,028 376 36.58 23,500 16.00 0.89

Birth period of
index child

1960–1964 1,510 1,469 97.28 62,886 23.36 1.00
1975–1990 8,962 8,005 89.32 369,943 21.64 0.93
1991–1995 3,796 1,326 34.93 88,307 15.02 0.64

Mother’s
education

None 10,898 8,458 77.61 393,508 21.49
Primary 2,339 1,697 72.55 88,444 19.19 0.89
SecondaryC 1,031 645 62.56 39,184 16.46 0.77

Residence
Urban 5,943 4,454 74.95 236,086 18.87 1.00
Rural 8,320 6,343 76.24 284,895 22.26 1.18

Death status of
index child

Alive 11,692 8,536 73.01 431,832 19.77 1.00
Dead 2,576 2,264 87.89 89,304 25.35 1.28

Age at first
marriage

Under 20 years 11,721 9,016 76.92 429,433 21.00
20–24 years 1,941 1,387 71.46 67,876 20.43 0.97
25–29 years 438 293 66.89 17,326 16.91 0.81
30 C years 126 84 66.67 4,505 18.65 0.89

Age at first
birth

Under 20 years 7,274 5,602 77.01 276,886 20.23
20–24 years 5,004 3,778 75.50 175,613 21.51 1.06
25–29 years 1,581 1,150 72.74 54,180 21.23 1.05
30 C years 409 270 66.01 14,457 18.68 0.92
Total 14,268 10,800 75.69 521,136 20.72

interviewed (and ranging from birth order 1 to birth order 14), those from Ghana
refer to children born in the five years before the survey and thus range between
birth orders 1 and 5. Thus, 14,268, 3,176, and 22,493 index children were analyzed
for Eritrea, Ghana and Kenya, respectively.

The columns labeled ‘closed intervals’ (and % closed intervals) in these Tables
(10.1, 10.2, 10.3) relate to children with at least one younger sibling at the time of
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Table 10.2 Frequency distribution and summary statistics, Ghana, 1998

Variables
Sub sample
(#of children)

Number with
closed intervals

% with closed
intervals

Exposure
(months)

Case/exposure
(per 1,000)

Relative
hazards

Mother’s
current age

15–24 739 174 23:55 15,790 11:02 1.00
25–34 1,482 440 29:69 37,562 11:71 1.06
35–49 955 233 24:40 27,327 8:53 0.77

Mother’s
education

None 1,506 449 29:81 38,404 11:69 1.00
Primary 567 150 26:46 14,176 10:58 0.91
SecondaryC 1,103 248 22:48 28,099 8:83 0.75

Residence
Urban 687 144 20:96 17,793 8:09 1.00
Rural 2,489 703 28:24 62,886 11:18 1.38

Death status of
index child

Alive 2,941 718 24:41 75,241 9:54 1.00
Dead 235 129 54:89 5,438 23:72 2.49

Age at first
marriage

Under 20 years 2,131 565 26:51 54,744 10:32 1.00
20–24 years 817 219 26:81 20,203 10:84 1.05
25 C years 228 63 27:63 5,732 10:99 1.07

Age at first
birth

Under 20 years 1,641 434 26:45 42,508 10:21 1.00
20–24 years 1,169 309 26:43 29,298 10:55 1.03
25 C years 366 104 28:42 8,873 11:72 1.15

Length of
succeding
interval
(months)

Under 18
months

1,063 85 8:00 9,582 8:87 1.00

18–29 months 888 307 34:57 20,888 14:70 1.66
30–47 months 940 406 43:19 35,237 11:52 1.30
48 C months 285 49 17:19 14,972 3:27 0.37
Total 3,176 847 26:67 80,679 10:50

the survey. The next column ‘exposure’ refers to the exposure months contributed
by each sub-sample, including those children who were censored (did not get a
younger sibling) by the survey time. The ‘case/exposure’ column is just the crude
birth intensity (births per 1,000 person months) while the last column gives ratios
of the birth intensities to that of the baseline level of each variables. These are
unstandardized versions of the relative intensities in proportional hazards models.
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Table 10.3 Frequency distribution and summary statistics, Kenya, 1998

Variables
Sub sample
(#of children)

Number with
closed intervals

% with closed
intervals

Exposure
(months)

Case/exposure
(per 1,000)

Relative
hazards

Mother’s birth
cohort

1946–1950 1,180 1,614 136.78 91,989 17.55 1.00
1951–1960 8,826 7,434 84.23 370,059 20.09 14.00
1961–1970 8,496 6,476 76.22 300,847 21.53 1.23
1971–1980 3,291 1,699 51.63 86,929 19.54 1.11

Birth period of
index child

1960–1974 1,841 1,800 97.77 70,083 25.68 1.00
1975–1990 12,895 11,776 91.32 545,277 21.60 0.84
1991–1995 1,157 3,647 315.21 234,464 15.55 0.61

Mother’s
education

None 5,375 4,461 83.00 214,927 20.76
Primary 13,010 9,916 76.22 474,999 20.88 1.01
SecondaryC 4,108 2,846 69.28 159,898 17.80 0.86

Residence
Urban 2,712 1,817 67.00 120,038 15.14 1.00
Rural 19,781 15,406 77.88 729,786 21.11 1.39

Death status of
index child

Alive 20,466 15,589 76.17 776,073 20.09 1.00
Dead 2,027 1,634 80.61 73,751 22.16 1.10

Age at first
marriage

Under 20 years 16,404 12,887 78.56 612,783 21.03 1.00
20–24 years 5,108 3,652 71.50 195,065 18.72 0.89
25–29 years 806 564 69.98 32,574 17.31 0.82
30 C years 175 120 68.57 9,402 12.76 0.69

Age at first
birth

Under 20 years 15,559 12,230 78.60 591,033 20.69 1.00
20–24 years 6,162 4,488 72.83 229,826 19.53 0.94
25–29 years 665 443 66.62 25,216 17.57 0.85
30 C years 107 62 57.94 749 82.78 4.00
Total 22,493 17,223 76.57 849,824 20.27 –

From Table 10.1, we note that 10,800 (75.7 %) of the Eritrean children in the
study had younger siblings (the birth intervals were closed) while the rest were
censored as at the survey time (the birth intervals were still open). Of the 10,800 with
younger siblings, the majority (8,536) were alive when their next younger siblings
were born while in the rest (2,264) cases the index child has died before the birth
of the younger sibling. Thus, as shown in the last column of Table 10.1, a crude
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estimate of birth intensity of women who lost their index child is 1.28 times (about
28 % higher) that of women with a living index child. Similar patterns are noticeable
in Tables 10.2 and 10.3 for Ghana and Kenya, respectively.

10.3.3 Covariate Effects

In Tables 10.4, 10.5, and 10.6, we report results of fitting models (10.1) and (10.8)
to data for Eritrea, Ghana and Kenya, respectively. The estimated coefficients in the
first seven columns under ‘parametric models’ come from fitting the model in (10.8)
and, hence, represent effects of the respective levels of a factor on log-birth interval
(that of baseline level is set to 0 by design). These were obtained using the LifeReg
procedure in SAS by including some options that restrict the shape and/or scale
parameter whenever the need arises. Estimates given in the column labeled Cox
were obtaine using the PhReg procedure in SAS and are related to model (10.1)
and, as such, measure the effect of the covariates on the log-intensity of transition
to the next higher parity (birth intensity). The last column is just relative intensities
(intensity ratios, or hazard ratios) obtained by exponentiating the estimates in the
Cox model.

As we pointed out earlier, the two classes of models follow slightly different
parameterizations. A positive coefficient in any of the seven columns under
parametric models implies an extended birth interval (decreased birth intensity)
while a positive coefficient in column under Cox implies increased birth intensity
(shorter birth interval) relative to that of the baseline. Further, it may be worth noting
that the shape and scale parameters are free (estimated from the data) in the more
comprehensive EGG model, while in the five special case-models one or both of
these parameters are set to some fixed value(s) as discussed in Sect. 10.2.

According to Table 10.4, for example, the factors that considerably shorten the
birth interval (increase the birth intensity) are belonging to a younger birth cohort,
death of index child, and a delayed age at first birth. Having the birth in recent
periods seem to have the opposite effect while residence, education, and age at
first marriage seem to have only marginal effects. Such results are reported by
most models though the Weibull and Exponential models show stronger effects of
Education (increase of birth intervals with increase in education) and Residence
(shorter birth intervals in rural areas). In the next section, we shall examine if these
models have adequate goodness of fit.

10.3.4 Discrimination Among Parametric Models

When parametric models are nested, the likelihood ratio tests can be used to assess
the best fit model (Heckman and Walker 1991; Allison 2010). The likelihood-
ratio statistics corresponding to various tests for special cases of the EGG model
(10.8) are presented in Table 10.7. These are used to test whether the corresponding
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special-case model is adequate enough relative to the more comprehensive EGG
model. The results for Eritrea show that all special cases are rejected in favor of
the more general EGG model, though the Reciprocal Weibull model is the closest
to the EGG model. This is in accordance with the estimated value of the shape
parameter under the EGG model. The estimate of the shape parameter, as reported
in Table 10.4, is �1.068 (corresponding to the EGG model). This estimate is closer
to the assertion of the Reciprocal Weibull where the shape parameter is fixed to �1
than to any other value set by the other alternative distributions. When compared to
the Weibull model, the exponential model is also rejected as shown in the last row
of Table 10.7.

The results for Kenya are also consistent with observations made on Eritrea –
all special case distributions are rejected in favor of the EGG model. Again, the
Reciprocal Weibull model is the closest to the EGG model, and this is consistent
with the estimate of the shape parameter (�1.106) in Table 10.6, which is close to
�1. The results for Ghana (Table 10.5) come from birth intervals of children born
within five years before the survey as earlier mentioned and thus, are not directly
comparable to those of Eritrea and Kenya where all children were included in the
analyses. Not surprisingly, therefore, the results for Ghana show a different picture
of the distributional shape of birth intervals. Here, the log-normal distribution
fits the data as adequately as the more comprehensive EGG model. This is
shown by the insignificant difference between the log-likelihoods of these models
(difference D 0.4 with a p-value of 0.472 for a Chi-square with 1 degree of freedom).

The equivalence of the EGG and the log normal models for Ghana is clearly
indicated by the estimated shape parameter in the EGG model (see Table 10.5).
The estimated shape parameter of �0.069 is very close to 0 and the log-normal
model is obtained as a special case of the EGG model when the shape parameter of
the latter is constrained to 0. Another important point worth noting here is that the
estimated effects of covariates on the log-interval corresponding to the EGG and the
log-normal models are almost identical (see Table 10.5) while the estimates from
the other models are far from those of these two models.

10.3.5 Determinants of Child-Spacing in the Three Countries

A summary of the results for the three countries is given in Table 10.8. The results
for each country relate to the most suitable model in the respective countries. That
is, the EGG model for Eritrea and Kenya, and the log-normal model for Ghana.
Although the levels of some covariates in the three countries were not fully identical,
it is clear from Table 10.8 that women from the younger birth cohort, those with
delayed age at first birth, and those who have lost their index child tend to have
shortened birth intervals. Rural residence is associated with longer birth intervals in
Eritrea but with shorter birth intervals in Ghana and Kenya. Women with secondary
level education (and in Kenya even those with primary level education) tend to have
longer birth interval though the evidence is marginal in Ghana. Lastly, in Eritrea
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Table 10.8 Comparison of estimated coefficients in the best fit models for Eritrea, Ghana and
Kenya

Eritrea Ghana Kenya

Covariates
Extended Generalized
Gamma Model

Log normal
Model

Extended Generalized
Gamma Model

Intercept 3.243c 3.806c 3.185c

Shape 0.558 0.474 0.553
Scale �1.068 0.000 �1.106

Mother’s birth cohort,
Ghana age at survey

1946–1950 (reference), Ghana
(under 25 reference)

0.000 0.000 0.000

1951–1960, Ghana 25–34 years �0.078c 0.062a �0.034b

1961–1970, Ghana 35–49 years �0.136c 0.226c �0.073c

1971–1980 �0.131c � �0.126c

Birth period of index child
1960–1964 (reference) 0.000 � 0.000
1975–1990 0.076c � 0.095c

1991–1995 0.273c � 0.311c

Mother’s education
None (reference) 0.000 0.000 0.000
Primary �0.020 0.024 0.026c

SecondaryC 0.048c 0.066a 0.050c

Residence
Urban (reference) 0.000 0.000 0.000
Rural 0.033c �0.094c �0.045c

Death Status of index child
Alive (reference) 0.000 0.000 0.000
Dead �0.207c �0.519c �0.212c

Age at first marriage
Under 20 years (reference) 0.000 0.000 0.000
20–24 years �0.005 �0.019 0.068c

25–29 years, Ghana 25 C years 0.105c �0.042 0.105c

30 C years 0.023 � 0.11b

Age at first birth
Under 20 years (reference) 0.000 0.000 0.000
20–24 years �0.046c �0.059a �0.085c

25–29 years, Ghana 25 C years �0.118c �0.134c �0.153c

30 C years �0.176c � �
aIndicates the corresponding effect is statistically significant at 10 %
bIndicates significance at 5 %
cIndicates significance at 1 %

and Kenya, there is strong evidence that children born in more recent periods tend
to have been spaced wider than those born earlier.

In an attempt to further our knowledge on these models, we also fitted them to
data on first birth interval (interval between first marriage and first birth) for Eritrea.
The results are presented in Table 10.9. Here, we note that the estimated scale
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Table 10.10 Hypotheses and corresponding likelihood ratio statistics for testing special cases
(Null) against the more general (H1) within the parametric family of models for Eritrea: transition
to parenthood

Null hypothesis
Model under null
hypothesis

Model under
alternative hypothesis

Likelihood ratio
statistic (p values)

Shape D �1 Reciprocal Weibull Extended generalized gamma 1,327 (0.000)
Shape D 0 Log-normal Extended generalized gamma 200 (0.000)
Shape D 1 Weibull Extended generalized gamma 101 (0.000)
Scale D 1, given

Shape >0
Gamma’ Extended generalized gamma 47 (0.000)

Scale D 1 and
Shape D1

Exponential Extended generalized gamma 267 (0.000)

Scale D1, given
Shape D1

Exponential Weibull 166 (0.000)

parameter of 0.899 of the EGG is very close to 1. From Sect. 10.2, we recall that if
we constrain the scale parameter of the EGG model to 1, then we get the “Gamma”
model as a special case. Accordingly, the Likelihood Ratio Test in Table 10.10
shows that while all special case models are rejected in favor of the EGG model,
the closest model is the “Gamma” model. This is in contrast to the case with all
birth intervals from Eritrea and Kenya (where the Reciprocal Weibull model was
the closest) or in the case with the most recent birth intervals from Ghana (where
the log-normal model was the closest).

10.4 Summary

A natural question arises as to which model to fit or which procedure to use when
one is confronted with a specific data analysis problem. As with most statistical
or demographic methods, it is rather difficult to codify the procedures involved
in choosing a model. There are many factors, such as mathematical convenience,
theoretical appropriateness, and empirical evidence that should legitimately enter
the decision and none can be easily quantified.

Given the wide range of fertility models in the literature, it is worth asking
whether conclusions are sensitive to the particular statistical model chosen. The
answer to this question is unknown until results obtained with one method have
been compared to those obtained by another method. Such comparisons have been
one of the objectives of the present chapter. Our empirical results indicate that the
distributional shape of birth intervals is different depending on whether we refer
to the first or higher-order birth intervals. It also depends on the subset of birth
intervals analyzed (analyzing all available birth intervals or restricting oneself to the
most recent subset of birth intervals). More importantly, our results demonstrate that
inferences concerning covariate effects on birth intervals are sensitive to the choice
of the distributional shape.
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In summary, our results indicate that the choice of the appropriate distribution
of birth intervals is of crucial importance in order to make valid inference and,
thereby, suggest sound and effective policy interventions. This chapter has outlined
a statistically well grounded, theoretically appropriate, and empirically evident
procedure on how to identify the most appropriate distribution for a given dataset.

This study is, however, not without limitations. The units of analysis in this
chapter have been the records on birth intervals of individual children. However,
many of these children belong to the same mother. Children of the same mother are
more alike than those selected at random from the population. Thus, using mothers
as units of analysis and treating children of the same mother as clustered cases
(multi-levels) of the same unit (mother) would be a more appropriate procedure.
Such a formulation would allow investigators to examine unobserved heterogeneity
at the cluster (mother) level and partition the variability into the contributions of the
individual child (level 1) and the mother (level 2).

Further, unlike death, the event studied in this chapter (childbearing) is not a
certain event to all individuals – there may be long-term survivors in the sense
of Maller and Zhou (1996). Accordingly, alternative models that allow for this
feature, such as Li and Choe (1997), Yamaguchi (2003), or Land et al. (2001), could
be appropriate. We have also not attempted to relate our findings to theories like
rational choice theory (Yamaguchi and Ferguson 1995).

It is our ambition to address this issue in the near future. Meanwhile, it is also
our hope that the findings in this chapter bring the importance of how to specify
duration phenomena into the surface, and motivate researchers to look for stronger
links between the underlying reality and the models we present and investigate what
behavioural or biological processes are better represented by one model than another
and what sorts of bias would one expect to observe in estimated effects if those
processes are not appropriately modelled.
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Chapter 11
Spatial Variation of Predictors of Prevalent
Hypertension in Sub-Saharan Africa: A Case
Study of South-Africa

Ngianga-Bakwin Kandala

11.1 Introduction

Sub-Saharan Africa (SSA) is a region of striking socio-economic and demographic
diversities. There are enormous variations between and within countries in the
epidemiologic transition, basic socio-economic and demographic indicators. For
instance, rural sub-Saharan Africa is at an earlier stage of economic and health
transition than the urban settings.

In a recent systematic review of hypertension in SSA, Addo et al. (2007) note that
hypertension is of public health importance in SSA, particularly in urban areas with
evidence of considerable under-diagnosis, lack of treatment and control. The authors
also point to the lack of strategies to prevent, detect, treat and control hypertension
effectively in the African region.

While much attention in the region has been focused on communicable and
infectious diseases such as diarrhoea, malaria, tuberculosis etc. and the pandemic
of HIV/AIDS, it is predicted that the twenty-first century will see a serious added
health and economic burden from non-communicable diseases including vascular
disease as SSA progresses through the epidemiologic transition.

The stage of vascular disease in a population is thought to result from the
prevalence of vascular risk factors. Already hypertension and stroke are common
in adults in SSA. In South Africa (SA) for instance, the prevalence of people
with high blood pressure (HBP) was estimated to be 14 % and 25.1 % based on
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measured blood pressure (BP) available on data from the 1998 Adult health module
of the 1998 South Africa Demographic and Health Survey data (SADHS) (MRC
2006; Cappuccio 2004; Steyn et al. 2001). The overall prevalence is so low for two
reasons:

1. They used the definition of high blood pressure based on the cut-off of
(160/95 mmHg) and of BP �140/90 mmHg without including people with
diagnosed hypertension and

2. The prevalence was not age adjusted and the age structure is heavily weighted to
the younger ages, while the prevalence of HBP increases sharply with age (for
example they reported 34.4 % in women aged 65C). The same data suggest that
only 29 % of men and 55 % of women who had hypertension reported that they
had hypertension. Therefore, most of hypertensive participants had undiagnosed
hypertension.

From cross-sectional surveys in SSA it is estimated that the true prevalence of
hypertension could be as high as 40 % in urban areas and in some rural areas it
already approaches 25 % (Thorogood et al. 2007a, b; MRC 2006; Cappuccio 2004;
Steyn et al. 2001).

The objective of this chapter is to apply the new cut off of HBP (BP
�140/90 mmHg) to the SADHS data including also people with diagnosed
hypertension and examine the spatial distribution of hypertension including a
number of socio-demographic, household and community characteristics that could
confound or mediate the observed variation in the prevalence of hypertension in
South Africa. It further seeks to highlight patterns that exist within the data, after
multiple adjustments of proximate variables. Such estimates illustrate how much
can be learned by detailed exploratory analyses and suggest how these data can be
used to strategically inform policy.

The epidemiologic transition from low to high levels of chronic diseases is asso-
ciated with advancing acculturation, urbanization and affluence with a progressive
increase in salt intake, smoking habit and saturated fat intake. The appearance of
hypertension (and associated stroke) as the predominant form of cardiovascular
disease being observed in SSA is also a by-product of eco-biological (interaction
between biology and environment), psychological, medical (bio-technology and
public health) advances, economic growth and rising incomes.

South Africa is characterized by a marked socio-cultural, economic and en-
vironmental diversity likely to cause variations in chronic diseases. Although
the prevalence of chronic diseases is well documented in some communities in
South Africa, the fact that chronic diseases differ markedly between individuals,
households and communities has rarely been explored. Further, the chronic diseases
risk factors included in these studies were all at the level of household, without
the inclusion of community characteristics such as the province of residence. For
the above reasons, the ethnic diversity and the inter-province variations of the
prevalence of hypertension in South Africa provide a unique opportunity to study
the determinants of HBP in this diverse society. Using a Bayesian approach we wish
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to assess the spatial variation of the prevalence of hypertension risk factors (socio-
economic status, BP, BMI, waist circumference, Hip circumference, co-morbidities
(diabetes, asthma, and chronic bronchitis), lifestyle (alcohol, smoking, diet, and
quality of sleep)) in South Africa, using a cross-sectional population based survey
on adult health. We will identify the extent of province-level variations in the
prevalence of hypertension, the link with ethnicity, urbanization and other risk
factors and the amount of residual geographic variation due to unobserved factors,
which may include environmental causes. As the epidemiological transition in South
Africa is faster than anticipated, by identifying groups or settings, in which chronic
illness is high, preventive actions can be targeted more effectively.

11.2 Background of the Study Area (South Africa)

South Africa is located in the Sub-Saharan African (SSA) region of the world.
It shares borders with Zimbabwe, Botswana, Namibia, Lesotho, Swaziland and
Mozambique. Demographically, it is the most populous country in the southern
region with an estimated population of 49, 99 million according to Statistics South
Africa’s mid-2010 estimates (Statistics South Africa 2010). About half of the
population are women and an increasing number of people in the older age group
(7.3 %); hence the burden of chronic diseases, which affect mostly older people,
should not be ignored. Economically, South Africa is very buoyant. South Africa
combines a developed first-world infrastructure with a vibrant emerging market
economy to create huge investment potential. With the real gross domestic product
(GDP) growth expected to come in at 3 % in 2010/11 and high per capita income,
but with high HIV/AIDS prevalence, the country would find it difficult to bear the
cost implications of the health burden arising from the complications of chronic
diseases. Therefore, there is strong economic and public health justification to tackle
hypertension.

Moreover, SA is multicultural because of its different ethnic groups, races,
languages, dialects and cultures. Few countries in Sub-Saharan African have been
exposed to such diversity. The SADHS reports the following ethnic composition:
Black 79.6 %, White 9.1 %, Coloured 8.9 %, Asian 2.5 %. The Multi-cultural
population is distributed in 9 provinces with an estimated urban population of
57 % in 2007. Since the end of apartheid in 1994, most South Africans have high
expectations and hopes for their future.

However, life expectancy at birth for men and women was estimated in 2009 at
49.8 (53.3 in 2010) and 48.1 years (55.2 in 2010) and the infant mortality per 1,000
live births was 44.4 (46.9 in 2010) coupled with a maternal mortality rate of 551 per
100 000 live births.

According to Statistics South African mid-year population estimates, in 2011,
the HIV prevalence rate among age 2 and over was estimated at 17 % and 5.24
million people living with HIV/AIDS were reported. The total number of new HIV
infections for 2010 is estimated at 410,000. Of these, an estimated 40,000 will be
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among children. Total fertility rate was estimated at 2.38 children per woman of re-
productive health (Stats South Africa 2010; UNDP Report 2009, World Bank 2008).

In terms of per capita South Africa is considered an emerging economy (upper-
middle-income country), but notwithstanding this relative wealth, most households
in South Africa are poor or continue to be vulnerable to being poor. In addition,
the distribution of income and wealth in South Africa is among the most unequal in
the world, and many households still have unsatisfactory access to education, health
care, energy and clean water (Woolard 2002; Schwabe 2004).

Looking at a wide range of poverty measures, recent data from South Africa
indicates that poverty has remained stagnant but for less optimistic South Africans,
poverty has deepened, inequality has increased and the benefits of growth have not
reached the poorest of the poor (Woolard 2002; Schwabe 2004).

The assessment of SA by some of the key social indicators of deprivation,
a decade after the end of apartheid shows the extent and depth of poverty and
inequality. These indicators also reflect on how serious the income distribution
and poverty is skewed in South Africa. However, it is important to note that some
measures also have been taken to address these issues and the benefits of these
measures are yet to be seen.

For instance, in 2010, South Africa has a per capita GNP of USD 7,158 per
annum, yet about 18 % of adults are illiterate, 9.2 % of children under-five are
malnourished and life expectancy has fallen from 62 years in 1990 to 48 in 2007 as
a consequence of AIDS.

Of the estimated 47 million people in the country in 2009, about 8 million were
surviving on less than the international dollar a day poverty line and 18 million were
living on less than 2 dollars per day.

Also, 60 % of the poor get no social transfers and health expenditure is 7 % of the
GNP, but less than half of this is public spending (Woolard 2002; Schwabe 2004).

The rural areas are the most affected by poverty, contain 50 % of the population of
South Africa and they constitute 72 % of those members of the total population who
are poor. The poverty gap (which is the annual amount needed to uplift the poor to
the poverty line by means of a perfectly-targeted transfer of money, and which mea-
sures how deep or intense the poverty is) was about R28 billion in 1995, and 76 %
of this was concentrated in the rural areas (Schwabe 2004, Landman 2003, p. 6).

11.2.1 Demographics and Spatial Dimension
of Poverty in South Africa

For many decades, poverty in South Africa had racial, gender and spatial di-
mensions, as a direct consequence of the policies of the successive colonial,
segregationist and apartheid regimes (May 1998). There is an unequal distribution
of poverty among the 9 provinces. The distribution of provincial poverty rates are
as follows: the rates are highest for the Eastern Cape (71 %), Free State (63 %),
North-West (62 %), Northern Province (59 %) and Mpumalanga (57 %), and lowest
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for Gauteng (17 %) and the Western Cape (28 %). The provinces most affected by
poverty are the Eastern Cape, Free State and Northern Province, which together
make up 36 % of the population but account for 51 % of the total poverty gap (May
1998). It is worth mentioning that while poverty is general, it is mostly concentrated
among black Africans (61 %) followed by coloureds (38 %) compared with 5 % of
Indians and 1 % of whites.

Following a household poverty line of US$220 per month in 1999, it was noted
that 52 % of the South African population was poor while 95 % of poor people were
African, though Africans were only 79 % of the population as a whole. 72 % of
the poor live in rural areas and 60 % are female mostly without any social security
transfers (Everatt 2005, p.78; Woolard 2002; Gelb 2003; Schwabe 2004).

As chronic diseases in later life have been shown to be linked to health behaviours
in childhood, it is not surprising to note that three children in five live in poor
households, and many children are exposed to public and domestic violence,
malnutrition and inconsistent parenting and schooling. There is a huge spatial
variation in the risk of childhood poverty by province varying from 78 % in Eastern
Cape compared to 20 % in Gauteng (May 1998).

The above evidence in poverty indicators and inequality can explain in part
the spatial variation of chronic diseases in South Africa within the different
social groups of the 9 provinces. High mortality and disease prevalence are easily
understood if discussed together with the environment and location where they are
occurring, since they almost always interact, but this chapter appreciates that at
times there can be a high disease prevalence inequality resulting from biological
factors, though rarely.

Looking at the 2010 Human Development Index (HDI), an indicator developed to
determine the degree to which people live long, informed and comfortable lives, and
which combines measures of life expectancy at birth, education levels, and standard
of living, South Africa ranks 113th out of 172 countries. It is not surprising that these
indicators also show a wider discrepancy by race group, gender and geographical
location within the country confirming low measures already observed in human
development, such as life expectancy, infant mortality and adult illiteracy (Gelb
2003, p. 18).

11.3 Current Challenges for Africa

The epidemiology of chronic diseases in Africa differs across certain groups of
the population, probably due to different exposure to known and unknown risk
factors, like unhealthy lifestyles, access to health care and environmental conditions
including traditional customs. It should be noted that diseases linked to poverty and
famine are still highly prevalent.

A major challenge for Africa is to increase knowledge on the epidemiology and
pathogenesis of neglected conditions to allow improvements in management and
prevention.
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However, research-funding sources are rare because there are few industries and
trusts. On the other hand, policymakers are concerned that investment in research
into the conditions will interfere with efforts to control communicable diseases.

As in many countries around the world, some of the African population is under-
going a demographic transition from higher to lower levels of fertility and mortality.
Although initially experienced by the more developed countries, population ageing
is now a global phenomenon, experienced in virtually all countries of the world. As
South Africa’s population is also undergoing demographic transition from higher
to lower levels of fertility and mortality, population ageing has become a matter
of public concern because of health consequences in South Africa (MRC 2006).
A prominent feature in almost all countries of population ageing is the onset of
chronic disease among older people.

The 2001 population census of South Africa found that 7.3 % of the total
population were 60 years or older. This proportion may be perceived as low, or
at least considerably lower than the 2000 proportions of some developed nations,
such as Italy (24.1 %), Greece (23.4 %) and Japan (23.2 %), but it is higher than
the proportions of almost all other African nations in 2000, with the exception
of the two island populations of Mauritius (9 %) and Reunion (9.9 %). South
Africa’s 7.3 % was noticeably higher than the 5.1 % for the African continent as
a whole, but displayed similar levels of ageing as those in such nations as Brazil
(7.8 %), India (7.6 %), Mexico (6.9 %), Samoa (6.8 %) and Vietnam (7.5 %).
The average proportion for the Southern African region in 2000 was 5.7 %, and
neighbouring countries’ proportions ranged from 4.5 % in Angola and Botswana
to 6.5 % in Lesotho. Moreover, this older proportion of South Africa is projected
to increase over the next decades, and that by 2025 more than one person in ten
will be 60 years or older (MRC 2006; Steyn et al. 2001; Dennison et al. 2007;
Seedat 1999).

According to the 2006 South Africa Medical Research Council (MRC) report,
High blood pressure (BP) or hypertension is a common condition in South Africa
and is a risk factor for heart attacks, stroke, left ventricular hypertrophy, renal
disease and blindness. It is believed that people who have hypertension are
usually unaware that they have the condition, unless the BP has been measured
at health-care facilities. It is therefore frequently referred to as a ‘silent epi-
demic’ in South Africa. Consequently, hypertension is universally under reported
and/or inadequately treated resulting in extensive target-organ damage and pre-
mature death. The report suggested that hypertension frequently co-exists with
other risk factors for chronic diseases of lifestyle (CDL), such as diabetes and
obesity.

This study is part of the effort to compliment work of many South African experts
by introducing the impact environmental dimension on health has (i.e. impact of
environment, geographic location on health). Since lifestyle and location has an
impact on health, we examine how the prevalence of hypertension varies across
space (provinces) and the role that individual factors play in this relationship.
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11.4 Measures

11.4.1 The Spatial Determinants of Hypertension

The spatial risk factors of hypertension refer to both specific features and pathways
by which societal conditions affect health status and that potentially can be altered
by informed action. These risk factors include the lack of health infrastructures
adequately equipped for diagnosis and care and the absence of research to deliver
the required scientific advances in a reasonable timescale. Rapid urbanization, lack
of physical activity, obesity, high-salt and high-cholesterol content diets, tobacco,
diabetes and increase in life expectancy are all lifestyle factors that can be associated
with chronic diseases.

South Africa is divided into 9 provinces. Hypertension prevalence is aggregated
and known at a national level. We went a step further and accounted, simultane-
ously, for geographic location effects on hypertension at the disaggregated level
of provinces, thereby highlighting the spatial distribution of hypertension. We
recognise that the province is still a large unit but disaggregating to this level
represents a considerable advance over the use of national averages and our analysis
provides adjusted province-level estimates of hypertension.

We used geo-additive Bayesian modelling, with dynamic and spatial effects, to
assess temporal and geographical variation in hypertension. The model used also
allows for non-linear effects of covariates on hypertension. The modelling approach
is described in more detail in the next section.

11.4.2 Dependent Variable

For the present analyses, the outcome or dependent variable we considered hy-
pertension defined as systolic or diastolic blood pressure �140 or �90 mmHg,
respectively, or self-report of a health professional diagnosis, a binary outcome.
We choose the binary outcome instead of the continuous blood pressure because of
interpretability reasons since with the binary outcome one can estimate posterior
odds ratios (POR) of hypertension comparing high risk hypertension provinces
to the relative low risk provinces, while accounting for a number of potential
confounders.

Blood pressure was measured three times using a standard mercury manometer
by trained and certified technicians in both examinations. The onsets of the first-
phase (systolic) and fifth-phase (diastolic) Korotkoff sounds were recorded. The
mean of the second and third measures were used in the analyses.

Using the above definition, the 1998 SADHS sample nationwide produces a
prevalence of 30.4 %. The geographic distribution of the prevalence of hypertension
by provinces of South Africa is shown in Table 11.1. The data indicates the
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Table 11.1 Baseline
characteristics of the study
population (SADHS 1998)a

Variable N D 13,596

Mean ageb (SD) 38.5(17.9)
Women (%) 58.2
Ethnicity (%)

Black/African 75.8
Coloured 13.0
White 7.8
Asian/Indian 3.3

Education (%)
No education 14.1
Primary education 77.3
Secondary education 4.7
Higher education 3.9

Urban population (%) 56.0
Mean BMI, kg/m2 (SD) 25.2(6.2)
Mean Waist (SD) 83.7(15.2)
Smoking status (%)

Non-current smoker 63.3
Current smoker 36.7

Drinking status (%)
Non-current drinker 38.9
Current drinker 61.1

Sleep problems (%)
Yes 16.2
No 83.8

Diabetes (%)
Yes 3.0
No 97.0

High blood cholesterol (%)
Yes 1.3
No 98.7

Heart attack or angina (%)
Yes 4.8
No 95.2

Stroke in the 12 months (%)
Yes 0.9
No 99.1

Salty foods (%)
Yes 13.5
No 86.5

Hypertensionc (%)
Yes 30.4
No 69.6

Hypertension by province of residence (%)
Northern Cape 36.0
Free State 33.5
Western Cape 32.4
North West 32.2

(continued)
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Table 11.1 (continued) Variable N D 13,596

Eastern Cape 31.6
Gauteng 31.2
Kwazulu Natal 30.8
Mpumalanga 23.0
Northern province 20.8

aData are expressed as mean (standard deviation) or as
percentages
bAge ranges from 15 to 95 years of age
cDefined as blood pressure � 140/90 mmHg or self-report

Fig. 11.1 Map of South Africa showing the 9 administrative provinces

following distribution of hypertension ranked by provinces: Northern Cape (36.0),
Free State (33.5 %), Western Cape (32.4 %), North West (32.2 %), Eastern Cape
(31.6 %), Gauteng (31.2 %), Kwazulu Natal (30.8 %), Mpumalanga (23.0 %), and
Northern Province (20.8 %). However, the actual incidence may be much higher
than the reported figures according to some South African experts in the field.

11.4.3 Independent Variables

The main exposure variable investigated was the respondent geographic location
(province of residence: see Fig. 11.1) in addition to various individual-level control
variables such as socio-demographics, lifestyle, and cardiovascular co-morbidities



220 N.-B. Kandala

known to be associated with hypertension. The respondent’s age at the time of
survey was also included as an indicator of the birth cohort of the participant. Other
socio-demographic covariates were gender, ethnicity (black/African vs. coloured,
white and Asian/Indian), and education of the respondent (no education vs. primary,
secondary and higher education). Anthropometric measures were taken, including
height, weight, and waist circumference; body mass index (BMI) was calculated as
weight in kilograms divided by height in meters squared and categorized as follows:
<25, 25–29.9, �30. Lifestyle factors included smoking (non-current smoker vs.
current smoker), drinking status (non-current alcohol drinker vs. current alcohol
drinker), sleep quality (trouble sleeping vs. no trouble sleeping), and self-reported
dietary habits including usual intake of salty foods. Cardiovascular co-morbidities
comprised a medical history of type 2 diabetes, high blood cholesterol, coronary
heart disease (i.e., heart attack or angina), and stroke in the past 12 months (yes vs.
no). Finally, environmental factors included place (locality) of residence (rural vs.
urban) and province of residence of the respondents.

11.5 Material and Methods

11.5.1 Data Source

The Demographic and Health Survey (DHS), funded by the United States Agency
for International Development (USAID), is a well-established source of reliable
population level data with a substantial focus on health. The objectives, organi-
sation, sample design and questionnaires used in the DHS surveys are described
elsewhere (Department of Health 2002). One unique particularity of the 1998 South
Africa (SADHS) survey was a module focused on adult health. Briefly, a random
probability sample of women and men aged 15 and over were selected in this cross-
sectional survey, which used hypertension as an indicator condition to assess the
prevalence, determinants and quality of care provided for hypertensive patients.

Data was collected on self-reported lifestyle habits that influence health and on
commonly occurring chronic adult diseases. The blood pressure, height and weight
of participants were measured and participants reported on any illness and injury
suffered due to their workplace. A random sample of 13,827 persons 15 years
and older was selected, their BP was measured electronically, some risk factors
for hypertension and chronic prescribed medications were recorded, as were socio-
demographic data and the province of residence. For this chapter, however, we
use the individual records of 13,596 participants with complete information on
measured systolic and diastolic blood pressure.

The DHS are known to be of good quality. The most comprehensive estimates
of the prevalence of hypertension in South Africa are provided in the report of the
SADHS that was conducted in the country in 1998 and in the SA MRC report 2006.
In this study, we have linked hypertension status to the geographic location and a
number of demographic, anthropometric, lifestyle and co-morbidity variables.
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In the analysis of survey data, the commonly adopted models are probit or
logit models and the standard measure of effect is the odds ratio. DHS data use
cluster-sampling to draw upon respondents via multistage sampling. At the first
stage, a stratified sample of enumeration areas (villages/communities) is taken;
at the second stage, a sample of households within the selected communities is
taken; and finally, at the third stage, all respondents (aged 15 and over) in the
sample households are included. These households have at least one respondent.
Although, cluster sampling is a cost-saving measure, without the need to list all the
households, statistically, it creates analytical problems in that observational units
are not independent. Thus, statistical analyses that rely upon the assumption of
independence are no longer valid.

In the present study, however, the SADHS data contains geographic or spatial
information, such as the province of individuals in the study and the presence of
non-linear effects for some covariates means that strictly linear predictors cannot
be assumed. Analysing and modelling geographical patterns for the prevalence of
hypertension, in addition to the impact of other covariates, is of obvious interest in
many studies. In a novel approach, the geographical patterns of hypertension and the
possibly non-linear effects of other factors were therefore explored within a simulta-
neous, coherent regression framework, using a geo-additive, semi-parametric mixed
model that simultaneously controlled spatial dependence and possibly nonlinear
or time-varying effects of covariates and the complex sampling design (Kandala
et al. 2011).

We use this nationally representative population household survey data (SADHS
1998) to quantify the provincial-level variation of prevalent hypertension risk among
adults in South Africa. Previous research on cardiovascular diseases in South Africa
did not account for geographic location, auto-correlation in the data, non-linear and
time varying effects of covariates, and small samples, cast doubt on the general-
izability of the findings. Specifically, these studies relied on the independence of
random components at the contextual level (province). Most of these studies also
based their conclusions on limited statistical analysis, neglecting to control for fac-
tors that may significantly affect adult health, such as physical environment where
adults live and the potential impact of the geographic location where the adult lives.
Finally, the findings represented in these studies provide national statistics; which
cannot be extrapolated for a particular province. In this study we address these
shortcomings by linking the prevalence of hypertension with geographic locations,
by using all cases processed in each province of South Africa, and by accounting
for the influence of such important factors as non-linear effects of covariates,
dependence of random components and geographic location on case outcomes.

Our analysis aims also to document differences between provinces in the
variations of the observed prevalence of hypertension risks by testing the bivariate
and multivariate associations of well known lifestyle and socioeconomic correlates
of cardiovascular disease risks. From this initial analysis, we expect to identify
the association between lifestyle, socio-economic and demographic factors and
hypertension while showing province related differences in the risks and variation
across them in the correlates.
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We use appropriate statistical techniques to explain differences across the
provinces in prevalence of hypertension risks using the household socio-economic
characteristics that are observed in our data. This allows us to see the degree to
which the spatial variation in the raw data is reduced – or increased – when we
take into account the differences in observed characteristics of households that are
associated with the risk of hypertension.

Examples of issues we investigate in this chapter are: does prevalence of hyper-
tension risk vary from province to province because of factors that are not measured
by our survey data, where these factors could include environmental or biological
factors? Are high risks for hypertension concentrated in poorer provinces? Does
variation in prevalence of hypertension risk from province to province occur
because of differences in household socioeconomic status, education, rural, race
and ethnicity (Dennison et al. 2007; Seedat 1999).

In pursuing these aims, this chapter exhibits three key features. First, we re-
analyze the 1998 SADHS. These data provide a representative cross-national sample
of adults in South Africa.

Second, since SADHS data are hierarchical in nature at the family and com-
munity or province level, which are inter-related, we use flexible methods to model
spatial determinants of hypertension and to allocate these spatial effects to structured
and unstructured (random) components. This approach draws on Bayesian geo-
additive methods of spatial statistics, taking advantage of advances in Geographic
Information Systems. The modelling of the two components is done jointly in one
estimation procedure that thereby simultaneously identifies lifestyle, socioeconomic
determinants, and the spatial effects that are not explained by these determinants. In
this way, we are able to identify province patterns of hypertension that are either
related to left-out lifestyle and socioeconomic variables that have a clear spatial
pattern or point to spatial (possibly epidemiological or environmental or biological)
processes that account for these spatial patterns.

In so doing, this modeling approach identifies the extent of province-level
variation in South Africa in the risk of hypertension, and the amount of residual
variation due to unobserved factors, which may include environmental or biological
factors. We anticipate that our study findings result in further research questions.
In addition, our results should suggest avenues for further research to assess more
directly the prevalence of cardiovascular disease risk in several SSA countries using
a combination of data (for example: WHO Global Burden of disease and data from
a collaborative network of disease prevalence from Gambia, Kenya, and Nigeria).

11.6 Statistical Analysis

To account for spatial autocorrelation of hypertension in South Africa, we applied a
unified approach by exploring spatial patterns in the prevalence of hypertension and
possible nonlinear effects within a simultaneous, coherent regression framework
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using a geo-additive semi-parametric mixed model. The model employed a fully
Bayesian approach using Markov Chain Monte Carlo (MCMC) techniques for
inference and model checking (Fahrmeir and Lang 2001; Kandala et al. 2011).
The response variable is defined as yi D 1 if hypertensive and yi D 0 otherwise. The
standard measure of effect is the posterior odds ratio (OR).

Epidemiological investigations of spatial variations of diseases are often confined
to using province-specific dummy variables to capture the spatial dimension. The
commonly adopted model for the analysis of these data is the logistic model, and
the standard measure of effects is the odds ratio (OR). Because of the geographical
nature of our data and the presence of non-linear effects for some covariates, the
assumption of a strictly linear predictor may not be appropriate however.

In this analysis, we apply a novel approach by exploring provincial patterns of
hypertension prevalence and possible non-linear effects of other factors within a
simultaneous, coherent regression framework using a geo-additive semi-parametric
mixed model. The model used for this investigation has been described elsewhere
(Fahrmeir and Lang 2001; Kandala et al. 2011).

As the predictor contains usual linear terms, non-linear effects of metrical
covariates and geographic effects in an additive form, such models are also called
geo-additive models. Kammann and Wand 2003 proposed this type of model within
an empirical Bayesian approach. Here, we apply a fully Bayesian approach as
suggested in Fahrmeir and Lang 2001, which is based on Markov random field
priors and uses Markov Chain Monte Carlo (MCMC) techniques for inference and
model checking. Although the estimation process with this model is fully Bayesian,
the estimated posterior odds ratios (OR) that are produced could be interpreted as
similar to those of ordinary logistic models.

Consider regression situations, where observations (yi; xi; wi); i D 1; : : : ; N,
on a metrical response y, a vector x D (xi; : : : ; xp)0 of metrical covariates (age
of participant), times scales or spatial covariates (province in South Africa) and
a vector w D (w1; : : : wr)0 of further covariates are made, in which categorical
covariates are often given. The generalized additive modelling framework assumes
that, given xi and wi, the distribution of the response yi belongs to an exponential
family, with mean �i D (yij xi , wi) linked to an additive semi-parametric predictor
�i D h(�),where h is a known response function.

Traditionally, the effect of the covariates on the response is modelled by a linear
predictor

�� D x0
i ˇ C w0

i � (11.1)

The response variable in this application is defined as Yi D 1, if individual i is
hypertensive during the reference period t and Yi D 0 otherwise. We have a logit
link function Pr(yi D 1j��) D e��/(1 C e��) for the probability of having hypertension
at the reference period (i.e. we model the conditional probability of an individual
having hypertension) given the individual’s age in months, the province where the
person lives, and X, with predictor (11.1).
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In our application to chronic diseases prevalence and in many other regression
situations, we are facing the following problems:

• For the continuous covariates in the data set, the assumption of a strictly linear
effect on the response y may not be appropriate. In our study, such covariates
are individual’s age (age) at the time of the survey. Generally, it will be difficult
to model the possibly non-linear effect of such covariates through a parametric
functional form, which has to be linear in the parameters, prior to any data
analysis.

• In addition to usual covariates, geographical small-area information is given
in the form of a location variable s, indicating the province, district or com-
munity where individuals or units in the sample size live or come from. In
our study, this geographical information is given by the provinces where the
individual lives at the time of the survey. Attempts to include such small-area
information using province-specific dummy-variables would in our case entail
more than 50 dummy-variables and could not access spatial inter-dependence
of provinces. The latter problem could not be solved through conventional multi-
level modelling using uncorrelated random effects. It is reasonable to assume that
areas close to each other are more similar than areas far apart, so that spatially
correlated random effects are required.

To overcome these difficulties, we replace the strictly linear predictor with a geo-
additive predictor, leading to the geo-additive regression model:

�� D f1.xi1/ C : : : C fp.xip/ C fspat .si / C w0
i � (11.2)

here, f1, : : : ,fp are non-linear smooth effects of the metrical covariates, and fspat (si)
is the effect of the spatial covariate si 2 f1, : : : ,Sg labelling the province in South
Africa. Regression models with predictors as in (11.2) are sometimes referred to as
geo-additive models (Kammann and Wand 2003).

For our inference using the Bayesian approach, unknown functions fj and
parameters ” as well as the variance parameter �2 are considered as random
variables and have to be supplemented with appropriate prior assumptions. In the
absence of any prior knowledge we assume independent diffuse priors � j / const,
j D 1, : : : ,r for the parameters of fixed effects. Another common choice is highly
dispersed Gaussian priors.

Several alternatives are available as smoothness priors for the unknown functions
fj (xj), (see Fahrmeir and Lang 2001). We use Bayesian P(enalized) – Splines
(Eilers and Marx 1996), introduced by Eilers and Marx in a frequentist setting. For
the spatially correlated effect fstr (s), s D 1, : : : S, we choose Markov random field
priors common in spatial statistics (Fahrmeir and Lang 2001; Kandala et al. 2011).
These priors reflect spatial neighbourhood relationships. For a spatially uncorrelated
(unstructured) effect funstr a common assumption is that the parameters funstr(s) are
i.i.d. Gaussian. We also perform a sensitivity analysis using other priors for the
spatial effect but results of the Markov random field priors outperformed other
priors.
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Although the estimation process with this model is fully Bayesian, the estimated
posterior odds ratios (OR) that were produced could be interpreted as similar to
those of ordinary logistic models.

For comparison with standard regression models such as ordinary logistic
regression, the standard measure of effect is still the odds ratio (OR) and its 95 %
confidence interval (CI) for a logistic model. However, because of the use of a
fully Bayesian approach that relies on prior assumption to make posterior inference,
instead of ‘OR’, we have ‘posterior OR’ and 95 % credible region (CR). For model
choice and adequacy, we routinely use the Deviance Information Criterion (DIC)
(Spiegelhalter et al. 2002) developed as a measure of model fit and complexity
instead of tests for significance, linear trends and interactions. To account for
possible departures from the assumed distribution, 95 % credible regions (CRs)
for the posterior ORs and probability maps (the equivalent of CIs for the spatial
effects) are calculated using robust standard errors estimated via MCMC simulation
techniques.

11.7 Advantages of the Bayesian Geo-Additive Model
Over Conventional Models

There are many potential advantages of the approach described above over more
conventional approaches like regression models with fixed or random provinces
effects; or standard 2-level multilevel modelling with unstructured spatial effects. In
the conventional models, it is assumed that the random components at the contextual
level (province in our case) are mutually independent. In practice, these approaches
specify correlated random effects, which are contrary to that assumption. Further,
the independence assumption has an inherent problem of inconsistency. If the
location of the event matters, it makes sense to assume that areas close to each other
are more similar than areas that are far apart. Moreover, treating groups (in our case
provinces) as independent is unrealistic and leads to poor estimates of the standard
errors. Standard errors for between-province factors are likely to be underestimated
because we are treating observations from the same province as independent and
thus increasing the apparent sample size. On the contrary, standard errors for within
province factors are likely to be overestimated (Kandala and Ghilagaber 2006). On
the other hand, Demographic and Health Survey data are based on a random sample
of districts which, in turn, introduces a structured component. Such a component
allows us to borrow strength from neighbours in order to cope with the posterior
uncertainty of the district effect and obtain estimates for areas that may have
inadequate sample sizes or are not represented in the sample.

In an attempt to highlight the advantages of our approach in a spatial context
and examine the potential bias incurred when ignoring the dependence between
aggregated spatial areas, we fitted several models with and without the structured
and random components in this study.



226 N.-B. Kandala

Controlling for important risk factors such as geographical location (spatial auto-
correlation) arising from environment impact on health and population mobility
(migration) gives estimates of prevalence that are statistically robust.

The analysis was carried out using version 2.0.1 of the BayesX software package,
which permits Bayesian inference based on Markov chain Monte Carlo (MCMC)
simulation techniques. The statistical significances of apparent associations between
potential risk factors and the prevalence of hypertension were first explored
using chi-square and Mann–Whitney U-tests, as appropriate. Secondly, multivariate
analysis was used to evaluate the significance of the posterior OR determined for
the fixed, non-linear effects and spatial effects. A P-value of <0.05 was considered
indicative of a statistically significant difference.

11.8 Results

Table 11.1 shows the overall prevalence of hypertension and baseline characteristics
of the population, Table 11.2 indicates the prevalence of hypertension by some
baseline characteristics and province and Table 11.3 the adjusted marginal odds
ratios (MOR) using the traditional logistic regression model, and adjusted posterior
odds ratios (POR) using the Bayesian approach. The overall hypertension preva-
lence was 30.4 % using the current recommended cut-off point of blood pressure
(BP �140/90 mmHg) or diagnosed high BP. It is higher than the 14.0 % and
25.1 % suggested in the previous report using the 160/95 and 140/90 cut-offs only.
Higher prevalence was observed among women, white and coloured compared
to the national average and the prevalence was higher among people with no
education, lower prevalence in rural areas, higher prevalence among obese people,
higher prevalence among current smokers and current drinkers, higher prevalence
among people with sleep problems, people with co-morbidities (diabetes, high blood
cholesterol, heart attack, stroke), higher prevalence among people without salty
food habits and lower prevalence in the northern province (now Limpopo) and
Mpumalanga. The mean age of the participants in this study was older 38.5 (SD:
17.9) and 58.2 % of the sample was women. The results show distinct differences
between urban and rural with higher proportion of hypertension in urban areas
compared with rural areas (31.8 % vs. 28.7 %) and the difference persisted in terms
of traditional hypertension risk factors, : smoking (33.8 % vs. 26.1 %), alcohol
(34.6 % vs. 27.8 %) and obesity (49.5 % vs. 21.4 %). Adjusted marginal odds ratios
indicate a large spatial variation of hypertension in 1998 with the highest prevalence
of hypertension observed in North West [OR & 95 % CI: 2.06 (1.66, 2.56)], Free
State [OR & 95 % CI: 2.02 (1.62, 2.53)], and Northern Cape [OR & 95 % CI:
1.95 (1.53, 2.47)] provinces, followed by Gauteng, Western Cape, Kwazulu Natal
and Eastern Cape provinces, with the lowest prevalence in Northern province and
Mpumalanga provinces (see Table 11.1). Adjustment of study characteristics and
the province of residence without taking into account spatial auto-correlation in the
data are shown in Table 11.3, first column (MOR). It is similar to the observed
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Table 11.2 Baseline characteristics of the study population by hypertensive
statusa (SADHS 1998)b

Variable
Hypertensive
(N D 4138)

Non-hypertensive
(N D 9458) P-valuec

Mean age 50.3(17.2) 33.3(15.5) <0.001
Gender (%)

Male 1,560(37.7) 4,118(43.5)
Female 2,578(62.3) 5,340(56.5) <0.001

Ethnicity (%)
Black/African 2,976(72.1) 7,321(77.5)
Coloured 622(15.1) 1,148(12.2)
White 397(9.6) 666(7.0)
Asian/Indian 134(3.2) 312(3.3) <0.001

Education (%)
No education 907(22.1) 1,003(10.6)
Primary education 2,862(69.7) 7,602(80.6)
Secondary education 141(3.4) 496(5.3)
Higher education 196(4.8) 332(3.5) <0.001

Place of residence (%)
Urban 2,422(58.5) 5,197(54.9)
Rural 1,716(41.5) 4,261(45.1) <0.001

BMI (kg/m2) (%)
< 25 1,639(40.3) 6,013(64.2)
25–29.9 1,116(27.5) 2,021(21.6)
� 30 1,306(32.2) 1,332(14.2) <0.001

Waist (tertile) (%)
1 (lowest) 717(17.6) 3,798(40.4)
2 1,166(28.6) 3,301(35.2)
3 (highest) 2,194(53.8) 2,287(24.4) <0.001

Smoking status (%)
Non-current smoker 2,301(55.6) 6,302(66.7)
Current smoker 1,836(44.4) 3,150(33.3) <0.001

Drinking status (%)
Non-current drinker 2,309(55.9) 5,985(63.4)
Current drinker 1,825(44.1) 3,450(36.6) <0.001

Sleep problems (%)
Yes 886(21.4) 1,317(13.9)
No 3,252(78.6) 8,141(86.1) <0.001

Diabetes (%)
Yes 287(7.0) 113(1.2)
No 3,823(93.0) 9,310(98.4) <0.001

High blood cholesterol (%)
Yes 100(2.5) 69(0.7)
No 3,965(97.5) 9,290(99.3) <0.001

Heart attack or angina (%)
Yes 430(10.4) 225(2.4)
No 3,687(89.6) 9,211(97.6) <0.001

(continued)
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Table 11.2 (continued)

Variable
Hypertensive
(N D 4138)

Non-hypertensive
(N D 9458) P-valuec

Stroke in the 12 months (%)
Yes 87(2.1) 37(0.4)
No 4,039(97.9) 9,410(99.6) <0.001

Salty foods (%)
Yes 495(12.0) 1,335(14.1)
No 3,633(88.0) 8,111(85.9) <0.001

Region of residence (%)
Northern Cape 450(10.9) 801(8.5)
Free State 397(9.6) 787(8.3)
Western Cape 367(8.9) 765(8.1)
North West 395(9.6) 832(8.8)
Eastern Cape 1,049(25.3) 2,273(24.0)
Gauteng 337(8.1) 742(7.9)
Kwazulu Natal 619(14.9) 1,392(14.7)
Mpumalanga 281(6.8) 940(9.9)
Northern province 243(5.9) 926(9.8) <0.001

aDefined as blood pressure � 140/90 mmHg or self-report
bData are expressed as mean (standard deviation) or as percentages
cP-values for comparison between hypertensive and non-hypertensive subjects

Table 11.3 Marginal and posterior odds ratios of hypertension across selected
covariates (SADHS 1998)

Variable Marginal OR & 95% CIa Posterior OR & 95 % CIb

Age groups See Fig. 11.2
<D30 1.00
31–40 1.86(1.63, 2.12)
41–60 4.68(4.16, 5.28)
60C 10.5(9.07, 12.1)

Gender
Male 0.97(0.88, 1.08) 1.02 (0.71, 1.24)
Female 1.00 1.00

Ethnicity
Black/African 1.00 1.00
Coloured 1.14(0.96, 1.34) 1.16 (0.99, 1.36)
White 0.85(0.71, 1.01) 0.81 (0.68, 0.95)
Asian/Indian 0.85(0.65, 1.11) 0.90 (0.69, 1.20)

Education
No education 0.98(0.86, 1.12) 0.97 (0.77, 1.20)
Primary education 0.77(0.60, 1.00) 1.05 (0.88, 1.27)
Secondary education 0.99(0.79, 1.25) 0.83 (0.62, 1.11)
Higher education 1.00 1.00

(continued)
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Table 11.3 (continued)

Variable Marginal OR & 95% CIa Posterior OR & 95 % CIb

Place of residence
Urban 1.09(0.99, 1.21) 1.08 (0.99, 1.19)
Rural 1.00 1.00

BMI (kg/m2)
< 25 1.00
25–29.9 1.59(1.43, 1.77)
�30 2.53(2.25, 2.84) See Fig.11.2

Smoking status
Non-current smoker 1.00 1.00
Current smoker 1.12(1.01, 1.24) 1.14 (1.03, 1.26)

Drinking status
Non-current drinker 1.00 1.00
Current drinker 1.17(1.05, 1.30) 1.17 (1.05, 1.29)

Sleep problems
Yes 1.13(1.00, 1.27) 1.16 (1.02, 1.31)
No 1.00 1.00

Diabetes
Yes 2.57(2.00, 3.30) 2.49(1.92, 3.13)
No 1.00 1.00

High blood cholesterol
Yes 1.47(1.01, 2.14) 1.38(0.99, 1.90)
No 1.00 1.00

Heart attack or angina
Yes 2.47(2.03, 3.01) 2.41(2.01, 2.86)
No 1.00 1.00

Stroke in the 12 months
Yes 2.09(1.31, 3.35) 2.11(1.36, 3.16)
No 1.00 1.00

Salty foods
Yes 0.90(0.79, 1.02) 0.99 (0.81, 1.03)
No 1.00 1.00

Region of residence See also Figs. 11.3 and 11.4
Northern Cape 1.95(1.53, 2.47) 1.30(1.02, 1.55)
Free State 2.02(1.62, 2.53) 1.32(1.08, 1.68)
Western Cape 1.49(1.15, 1.91) 0.93(0.73, 1.10)
North West 2.06(1.66, 2.56) 1.33(1.14, 1.61)
Eastern Cape 1.43(1.18,1.72) 0.93(0.79, 0.91)
Gauteng 1.55(1.22, 1.97) 1.00(0.81, 1.23)
Kwazulu Natal 1.46(1.19, 1.80) 0.94(0.81, 1.13)
Mpumalanga 1.11(0.89, 1.39) 0.77(0.63, 0.92)
Northern province 1.00 0.68(0.56, 0.84)

aAdjusted marginal odds ratio (OR) from standard logistic regression models. The
Northern Province was used as the reference category because of the lowest crude
hypertension prevalence (see Table 11.1)
bSpatially adjusted posterior odds ratio (OR) from Bayesian geo-additive regression
models after controlling for nonlinear effect of age, categorical variables and the
province of residence (spatial effects)
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Fig. 11.2 Estimated nonlinear (logit) effects of age and Body Mass Index (BMI) on hypertension
in South Africa. Shown are the posterior logit within the 95 % and 80 % credible intervals (DHS
1998)

crude prevalence in Table 11.2 indicating slightly higher magnitudes provincial
point estimates. The highest prevalence was still observed in North West, Free State,
and Northern Cape provinces, followed by Gauteng, Western Cape, Kwazulu Natal
and Eastern Cape provinces, with the lowest prevalence in Northern province and
Mpumalanga provinces (see Table 11.2). Kwazulu Natal and Gauteng provinces
were among the highest prevalence rates provinces compared to the national average
but surprisingly, have now moved down the rank in the adjusted POR model
(Table 11.3).

In general, for both the observed prevalence and adjusted marginal ORs,
Northern Province and Mpumalanga provinces were associated with the lowest
prevalence.

The estimates of the spatial effects of hypertension were also mapped (Figs. 11.3
and 11.4). Before adjustment for the geographic location, which acts as a surrogate
for cultural, ethnic and environmental differences, a higher prevalence of hyper-
tension was concentrated in the central provinces and the southern west provinces
(Tables 11.1 and 11.2). However, after multiple adjustments, the effect normalised
in South West provinces but became more pronounced in Free State and North West
provinces (Fig. 11.3). In Fig. 11.4, the left-hand maps show estimated posterior
Odd Ratio (OR) of total residual spatial province effects (i.e. adjusted odds ratios
after multiple adjustment of the geographical location, taking into account the auto-
correlation structure in the data and other risk factors) for hypertension in each
province, with the dark colour indicating the maximum posterior OR recorded
(1.33) while grey denotes a lower prevalence (OR: 0.68).
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Dark coloured – high risk
Grey coloured – low risk

OR:0.83 1.00 1.15 OR:0.82 1:00 1:17

Fig. 11.3 Unstructured (left) and structured (right) residual spatial provincial effects of the risk of
hypertension in South Africa (DHS 1998) (Dark coloured – high risk, Grey coloured – low risk)

A high prevalence of hypertension was concentrated in North West, Free State
and Northern Cape provinces. The right-hand maps (Fig. 11.4) show the 95 %
posterior probability maps of hypertension. White colour indicates a negative spatial
effect (associated with reduced risk of hypertension), black colour a positive effect
(an increased risk).

The pattern of the prevalence of hypertension by province differed markedly
between the estimated models, though there was consistently higher prevalence
in North West, Free State and Northern Cape and lower prevalence in Northern
Province and Mpumalanga (Table 11.3). The marginal odds ratios of hypertension
prevalence at the provincial level shown in Table 11.3 left column indicate that the
two provinces in which hypertension prevalence is lowest and below the national
prevalence are Northern Province and Mpumalanga provinces.

Table 11.3 (2nd column) contains the fixed effects from the multivariable
Bayesian geo-additive regression analyses, and the non-linear effects of respon-
dent’s age and BMI are shown in Fig. 11.2. In the left-hand map of Fig. 11.4 we
show the posterior OR by province predicted by considering the socioeconomic
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Dark coloured – high risk Black coloured – significant

White coloured – significant

Grey coloured – no significant effect

positive spatial effect

negative spatial effect
Grey coloured – low risk

OR.0.68 1.00 1.33

Fig. 11.4 Total residual spatial provincial effects (left) and 95 % posterior probability map (right)
of the risk of hypertension in South Africa (DHS 1998) (Dark coloured – high risk, Black
coloured – significant positive spatial effect, Grey coloured – low risk, White coloured – significant
negative spatial effect, Grey coloured – no significant effect)

covariates and many other risk factors consisting of the residual spatial effects by
province that are not explained by the socioeconomic and other variables in our
data. These residual spatial effects are then allocated to structured and unstructured
effects (Fig. 11.3). The posterior OR estimate of the structured spatial effects fstr

is shown in the maps of Fig. 11.3a. Figure 11.3b shows the unstructured spatial
effects. The total residual spatial effects (i.e. the sum of the unstructured and
structured spatial effects) are shown in Fig. 11.4a. In addition, posterior probability
maps (Fig. 11.4b) indicate significance of the spatial effects (white D significantly
negative effect (lower risk); black D significantly positive (higher risk), grey D not
significant). Note that the spatial effects are centred on zero, i.e. the average over
all provinces is zero, while the overall level is estimated through the intercept term.
Before commenting on the substantive results, it is important to point out that the
spatial model has the best fit after evaluation of the fit criteria using Deviance
Information Criteria (DIC).
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The results for the fixed effects from the multivariable Bayesian geo-additive
regression analyses in Table 11.3 (2nd column) suggest that, current smokers [OR
& 95 % Credible Region (CR): 1.14 (1.03, 1.26)], current drinkers [OR & 95 % CR:
1.17 (1.05, 1.29)], sleep problems [OR & 95 % CR: 1.16 (1.02, 1.31)] and diabetes
[OR & 95 % CR: 2.49 (1.92, 3.13)], heart attack [OR & 95 % CR: 2.41(2.01, 2.86)],
and stroke [OR & 95 % CR: 2.11(1.36, 3.16)], were consistently associated with
higher prevalence of hypertension.

It is observed that after controlling for socio-economic life-style variables there
still remains a substantial residual spatial effect that begs for an explanation
(Figs. 11.3 and 11.4), and the province of residence remained a significant risk
factor for hypertension. Overall, results of the 1998 SADHS (Fig. 11.4) show that
provinces with the highest prevalence of hypertension included only North West,
Free State and Northern Cape after accounting for spatial auto-correlation in the
data, while Eastern Cape, Gauteng and Kwazulu Natal no longer ranked among the
highest prevalence provinces as suggested by the marginal OR (Table 11.3).

Figure 11.2 shows the non-linear relationship (as a continuous variable), and
between the risk of hypertension and age and BMI of the respondent at the time
of the survey for the whole national sample. Shown are estimated posterior logits
of the effects of the respondent’s age and BMI within the 80 % and 90 % credible
intervals. There is a clear linear association between respondent’s age and BMI.
Age and BMI of the respondent appear to be almost linearly positively related to the
prevalence of hypertension. As expected, as age and BMI increase, the likelihood of
respondent’s hypertension status per age also significantly increases.

11.9 Discussion

Our novel and most important findings are illustrated in the contrast between 1st,
2nd column of Table 11.3 (marginal ORs obtained using the traditional logistic
regression model and the posterior ORs using the Bayesian model). We observed
a pronounced change in the odd ratios in the provincial effects for Western and
Eastern Cape, Kwazulu Natal and Gauteng following adjustment of the geographical
location (spatial auto-correlation) arising from environmental factors and age
structure of the population.

Figures 11.3 and 11.4 (left) shows that the socioeconomic effects are able to
explain a fair amount of the spatial variation of hypertension in South Africa. We
calculate that the average residual spatial effect in the left-hand panel of Fig. 11.4
is about 22 % lower than the observed prevalence and marginal OR in Table 11.2,
showing that the socioeconomic and other risk factors explain some but not all of
the spatial variation.

However, the spatial residuals in the left-hand side of Fig. 11.4 show that much
of the variation in hypertension remains unexplained. These spatial effects are then
allocated by the model into structured effects, which are shown in Fig. 11.3 left, and
unstructured residual effects in Fig. 11.3 right and the total effects in Fig. 11.4.
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Several important findings emerged. First, the structured spatial effects point to
some spatial variation in the risk of hypertension although they are not significant
as indicated by the probability map (not shown here).

Thus we clearly have a pattern of higher hypertension in the western provinces:
North West, Free State, and Northern Cape.

Conversely, ORs are significantly lower in Northern Province and Mpumalanga.
Second, while these structured effects suggest hypertension is higher in the southern
provinces in a belt ranging from Gauteng to Western Cape, it is interesting to note
that the province of Gauteng is not a significant component in that belt. Thus while
some spatial residuals do spill significantly across borders, e.g. between Northern
Cape and North West and Free State, some borders do seem to matter in the sense
that spatial residuals remain noticeably distinct in the analysis on the two sides of
the border.

Third, the unstructured spatial effects shown in Fig. 11.3 left, while being
much smaller and not significant, also displayed an interesting pattern. While the
Western Cape and Eastern Cape have significantly higher observed prevalence of
hypertension this was not the case in the structured map in Fig. 11.3 right and
Fig. 11.4 left where these provinces actually have lower prevalence, though not
statistically significant. This may be related to the effect of life style factors specific
to certain provinces as the unstructured spatial effects convey a localised effect.

The clear structured pattern begs for an explanation. None of the socioeconomic
variables we tried in addition to the ones mentioned are able to completely explain
these pronounced spatial effects. One common factor to most of the areas that
are negatively affected is that these areas are comparatively at the centre of the
country and are mostly poor provinces. This distinction is most noticeable and
clear in the South–north divide observed in the structured and total spatial effects.
The difference could well be due to differences in life style, level of urbanisation,
share of poverty, access to medical facilities, and other diseases that thrive in these
provinces. Indeed, looking at the ranking of hypertension by provinces, there is
a positive correlation between provinces with higher poverty and provinces with
high hypertension. Free State is a typical example of this association between
hypertension and poverty. There might well be some other factors such as climate
and associated environmental factors (Dennison et al. 2007; Seedat 1999, Cappuccio
et al. 2008; Thorogood et al. 2007a, b).

Moreover, the higher prevalence in Northern Cape, Free State and North West
could additionally be related to the poor access to health facilities and the general
remoteness of these areas, which are poorly served with health facilities. These
issues deserve closer attention and this procedure is merely able to highlight the
important spatial patterns of hypertension without being able to fully explain them.

Quite clearly, the methods used here are able to identify more subtle life style,
socioeconomic and spatial influences on hypertension than reliance on linear models
with regional dummy variables. As such, they are useful for diagnostic purposes
to identify the need to find additional variables that can account for this spatial
structure. Moreover, even if the causes of spatial structure are not fully explained,
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one can use this spatial information for chronic diseases mapping for planning
purposes and educational programmes on life-style, which is gaining increasing
importance in policy circles that attempt to focus the allocation of public resources
to the most affected areas of the population.

Another important fact to highlight is co-morbidity associated with vascular
conditions such as hypertension, heart attacks or angina, stroke and high blood
cholesterol in Sub-Saharan Africa (Dennison et al. 2007). Little is known about
environmental and geographic overlaps in these illnesses. The epidemiology and
aetiology of the diseases may be improved by joint spatial modelling for man-
agement, planning and cost-effective control. In this chapter a univariate spatial
model was applied to a single disease hypertension, in which provincial specific
geographic variation of high blood pressure in South Africa was fitted. In Chap. 14,
however, a multivariate spatial model is applied to analyse more than one vascular
disease (hypertension, heart attacks or angina, stroke and high blood cholesterol)
simultaneously which enable to quantify the correlation between relative risks for
each disease as well as enable disease-specific residuals to be mapped, while at the
same time, examining the influence of covariates on each disease.

There are some limitations in the present study that deserve attention. First, the
cross-sectional nature of the present study does not allow establishing temporality
and thus causality of the observed associations. Given the self-reporting of lifestyle
factors, we cannot disregard the likelihood that health outcomes such as hyperten-
sion may influence reports of habitual smoking, drinking habits, and sleep problems
and not vice versa. Second, the analysis was based on data collected in 1998,
which is likely to underestimate the current prevalence of hypertension in South
Africa, as reported by several recent reports (10–13). However, since 1998 there
are no recent nationally representative reliable data from SA with information on
hypertension. Thus, this limits our ability to apply our approach to more recent data.
In addition, there was limited or lack of information for variables such as dietary
habits, physical activity, and biomarker data, which are relevant to hypertension
aetiology. Nevertheless, our findings corroborate the notion that high blood pressure
is an increasing public health issue in these settings, with evidence of considerable
spatial variation in hypertension prevalence across different provinces in South
Africa.

Another important issue in the use of this data is the issue of data quality because
of the fact that national surveys in developing countries are prone to incomplete
or partial reporting of responses. Moreover, the use of complex questionnaires
inevitably allows scope for inconsistent responses to be recorded for different
questions resulting in a further complication in the assessment of health outcomes.
Luckily, the MEASURE DHS program primary goals are to produce high-quality
data and make it available for analysis in a coherent and consistent form. Therefore,
the DHS program has a strict primary data quality policies by adopting a policy
of editing and imputation which results in a data file that accurately reflects the
population studied and may be readily used for analysis which ultimately reduce
bias in the reporting of health outcomes including hypertension.

http://dx.doi.org/10.1007/978-94-007-6778-2_14
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11.10 Conclusion

In this chapter we re-analysed the 1998 Demographic and Health surveys of South
Africa to model the socioeconomic and spatial determinants of hypertension. We
find strong association between poverty and the prevalence of hypertension by using
a flexible approach to modelling hypertension that clearly has spatial structure.
The spatial analysis shows distinct patterns that point to the influence of omitted
variables with strong spatial structure or possibly life-style, health accessibility,
environment and epidemiological processes that account for this spatial structure.

By re-examining the data, we are able to establish that the prevalence of chronic
diseases in Sub-Saharan Africa is even higher than reported and for the case of
South Africa, the prevalence of hypertension was under-estimated. With the novel
approach, we are able to depict the higher hypertension in Free State and North
West, which begs for an explanation.

The maps generated are novel tools to help policy-makers re-evaluate the lack
of focus on non-communicable diseases (chronic diseases) in Sub-Saharan Africa
and focus on integrated diseases management approach, which we believe will
accelerate the achievement of the Millennium Development Goals (MDGs) for
maternal and child health in the region.
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Chapter 12
A Semiparametric Stratified Survival Model
for Timing of First Birth in South Africa

Samuel O.M. Manda, Renate Meyer, and Bo Cai

12.1 Introduction

In many parts of the world, pregnancy in adolescence has been found to be
associated with adverse reproductive and maternal health, economic, educational
and social consequences. In particular, as a result of biological immaturity and
social disadvantage, teenage pregnancy is linked to high risk of low birth weight,
premature birth, unsafe abortion and miscarriage that may result in high child
and maternal mortality and morbidity (Acsadi and Johnson-Acsadi 1990; Sharma
et al. 2003; Gupta and Mahy 2003; Magadi 2004). These adverse effects are
compounded in populations where maternal health care among teenage mothers
is very poor (Borja and Adair 2003). A reduction in education and employment
opportunities hinders women from contributing effectively to social and economic
development of a country (Siu-Man and Boachang 1995). As a consequence of
limited life opportunities, young mothers face gender inequalities, which subject
them to subordinate positions in a society (Jewkes et al. 2009). Improvement in
maternal health is one of the eight Millennium Development Goals (MDGs) (United
Nations 2012). It is now widely accepted that high rates of teenage pregnancy
contribute to the cycle of maternal mortality and indicate poorer reproductive health.
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Rates of teenage pregnancy have been declining across the world, albeit with
differing success. For instance, in South Africa, there were 124 births per 1,000
women, aged between 15 and 19 years, in the period 1987–1989; the rate was 81
and 54 by 1998 and 2003, respectively (Department of Health 2002, 2007). Even
though this shows a substantial decline, the rates are high compared to the developed
countries where there are only 24 births per 1,000 women in the same age group. In
particular, rates of teenage pregnancy in South Africa are more than twice those of
the United Kingdom, which itself has the highest rates in Western Europe (Jewkes
et al. 2009). The declining rates in South Africa may be explained by the country
having high use of modern methods of contraception and legalized termination of
pregnancy up to 20 weeks. However, lack of information about the abortion services
and inadequate access create uncertainty of termination rates (Jewkes et al. 2009).
Thus, teenage pregnancy rates might be higher than estimated. A distinct feature of
South Africa compared to most sub-Saharan countries is that Black African women
tend to marry late at around 28 years, if at all (Kalule-Sabiti et al. 2007). Thus, a
high proportion of teenage pregnancies are pre-marital leading to high pre-marital
teenage fertility rate. In this scenario, timing of first birth may be a more important
predictor of fertility in South Africa. In other sub-Saharan Africa countries, early
age at marriage in the absence of contraceptives has been shown to be associated
with high rates of fertility (Manda and Meyer 2005).

Despite the high risks associated with pregnancy in adolescence in the sub-
Saharan region, there is a scarcity of research studies in this area. The sociocultural
and economic determinants favouring early pregnancy are analysed so that suitable
preventive measures can be taken up. There are many sociocultural and economic
factors that have consistently been found to be associated with early pregnancy
in the developing countries (U.S. Bureau of the Census 1996; Singh 1998; Maitra
2004; Uwaezuoke et al. 2004; Manda and Meyer 2005). Through its influence on
poverty and modernisation, the level of education is the overwhelming determi-
nant of adolescent pregnancy (Were 2007). However, its relationship with early
childbearing is compromised by prevailing sociocultural and economic factors that
may favour early marriage and pregnancy (Sharma et al. 2003; Were 2007). In
many instances, after dropping out of school, young girls grow up in residential
areas where poverty is entrenched. In these conditions, they have poor access
to healthcare services, experience gender power imbalances, low socio-economic
status and poor life opportunities to further education or to establish livelihoods. The
overall consequences are that young women struggle to meet immediate material
needs and have very few opportunities to negotiate safe sex, thus increasing the
risk of pregnancy (Jewkes et al. 2009; Human Sciences Research Council [HSRC]
2009). In societies where there is a great stigma attached to adolescent sexuality,
there are few opportunities for open communication about sex with parents and
partners. These barriers constrain young girls from accessing maternal health
services, resulting in gaps in knowledge on how to access contraception.

The foundations of the paper are methodologically and empirically driven to
investigate socio-economical and geographical determinants that are independently
predictive of early pregnancy in South Africa. In particular, the paper investigates a
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number of substantive themes including quantifying provincial, racial, urban–rural,
birth cohort, poverty and educational differential effects on teenage pregnancy rates.
The available data on time to first child birth was obtained using stratified sampling.

A standard analysis for survival data collected over many strata is fitting a
stratified proportional hazards model. This, however, fails to borrow strength by
implicitly assuming that the strata are completely unrelated. An unstratified analysis,
on the other hand, is risky when the strata have different underlying baseline
hazards. Thus, a better approach models each stratum-specific baseline hazard
function as an overall hazard function multiplied by a frailty, where a collection
of strata units are regarded as frailties. The frailties are defined as independent
and identically distributed random variables. This frailty model is regarded as a
compromise between fully stratified and unstratified analyses. However, attempting
to describe the variability of a whole function by a single random variable will
obviously be insufficient in most situations. Therefore, in this paper we use a
modelling approach where instead of including frailties we consider treating the
entire stratum-specific baseline hazard function as a random effect using a Bayesian
nonparametric approach. Each stratum-specific baseline hazard function is thus
treated as a random draw from a population of hazard functions and the data
will provide information about the variability of the hazard functions between
units. If the baseline hazard functions are highly variable between strata, the
analysis moves towards a stratified analysis whereas if they are similar to each
other, it moves towards an unstratified analysis. In general, it will provide results
that can be regarded as a compromise between the two extreme situations. We
employ simultaneous estimation of the unknown baseline hazard functions using
a nonparametric approach based on mixtures of triangular distributions and the
covariate effects using a parametric approach based on the Cox proportional hazard
regression model. The estimation procedure is Bayesian in formulation using a
Markov chain Monte Carlo algorithm for posterior computation. The results are
compared to those of fitting a fully parametric Weibull proportional hazards model.

The rest of the paper is organized as follows. Section 12.2 briefly describes the
study data, with some preliminary results. In Sect. 12.3, we present the parametric
Weibull and the semiparametric Cox proportional hazards model based on mixtures
of triangular distributions together with issues of posterior computation. The models
are fitted to the example data and results presented in Sect. 12.4. Section 12.5
concludes with a discussion of the models and results.

12.2 The Study Data

The data available for this study were collected from 7,041 women aged 15–49
years who were interviewed in the 2003 South Africa Demographic and Health
Survey (2003 SADHS) (Department of Health 2007). The 2003 SADHS selected
a nationally representative probability sample of nearly 10,000 households using a
two-stage stratified cluster sampling technique. The country was primarily stratified
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into the nine provinces, and each province was further stratified into urban and rural
areas. The first stage selected a proportional sample of 630 primary sampling units
(enumerate areas (EA)) and the second stage sampled a total of just over 10,000
households from each selected EA with systematic sampling. All women aged
between 15 and 49 years in the selected households were eligible for the interviews,
resulting in just over 7,000 interviews. In order to obtain sufficient numbers from
the minority Indian population, there was an oversample of EAs with a large Indian
ethnicity. This resulted in differing sample proportions; thus, the sample is not self-
weighting at the national level and appropriate weighting needs to be considered
when deriving national indicators. We do not pursue these issues in this paper. For
purposes of this study, we restrict the analyses to those 5,591 women aged 20 or
more years as these women were exposed to teenage pregnancy for the full teenage
period, below 20 years.

We consider a number of explanatory variables for inclusion in the analyses:
province of residence, whose boundaries largely define social and cultural norms,
is used to investigate sociocultural differentials; urban or rural residence captures
effects of urbanisation and modernisation; birth cohort is used to capture effects
of time period on early childbearing; education level of woman is used to capture
effects of social status and modernisation of women. The inclusion of woman’s
education in the hazard regression equation for age at first child birth may result
in the endogeneity of education. A teenage woman may leave school after getting
pregnant, resulting in reverse causality. In order to minimise the possibility of
endogeneity of education, we follow Manda and Meyer (2005) by including
categories of no and little education. The reasoning is that not many young women
in the first few years of schooling would be forced to leave school due to being
mothers. However, formally, a two-stage modelling process could be used, with the
first stage being a regression model on education using covariates such as women
birth cohort, province of residence and rural–urban residence. Then its predicted
value could be used as an explanatory variable in a model for age at first child birth,
an approach adopted by Maitra (2004) but not here.

Some of the above explanatory variables act as proxies for socio-demographic
status and traditional beliefs, which may influence family planning decisions and
female independence. Inclusion of province and ethnicity may capture differentials
in general levels of education, beliefs and sanctions against premarital childbirth,
culturally approved motherhood ages and religious beliefs that would have the effect
of increasing or decreasing the timing of childbearing (Gupta and Mahy 2003;
Maitra 2004).

It is conventionally accepted that income and expenditure measurements ade-
quately describe poverty at a household level. However, in many developing coun-
tries, especially in rural areas, measuring income may be problematic since many
people work in agriculture and informal sectors. Even though, Demographic and
Health Surveys do not collect adequate data on household income and expenditure,
they nonetheless provide information on household assets. This has prompted many
researchers to use the information on household assets to calculate a composite
measurement of household-level poverty (Booysen 2001). In particular, a DHS data
set provides a wealth index, which indirectly measures long-term economic status of
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Table 12.1 Distributions of
characteristics for women
aged 20–49 years, SADHS
2003

Characteristic Frequency Percent

1979–1983 1;227 21:95

1974–1978 1;019 18:23

1969–1973 901 16:12

1964–1968 972 17:39

1969–1963 782 13:99

1954–1958 690 12:24

Place of residence
Urban 3;348 59:88

Rural 2;946 40:12

Province of residence
Western Cape 596 10:48

Eastern Cape 382 6:83

Northern Cape 610 10:91

Free State 624 11:16

Kwazulu-Natal 995 17:80

North West 613 10:96

Gauteng 615 11:00

Mpumalanga 613 10:96

Limpopo 553 9:89

Ethnicity of woman
Black African 4;097 73:33

Coloured 749 13:41

White 237 4:29

Asian/Indian 504 9:02

Total 5;591 100:00

Education level of woman
No education 331 5:92

Grade 1–7 1;103 19:73

Grade 8–11 2;200 39:36

Grade 12 1;396 39:36

Higher 560 10:02

Wealth index quintile
I (Least wealth) 1;026 18:37

II 1;159 20:75

III 1;159 20:75

IV 1;052 18:84

V (Most wealth) 1;189 21:29

a household. It is the first principal component from a principal component analysis
(PCA) on the measured household assets (Rutstein and Johnson 2004).

The distributions of the explanatory variables are shown in Table 12.1. We
also used the Kaplan-Meier product limit method to calculate fractions of women
that were mothers at each teenage age across the different 5-year birth-cohorts
(Fig. 12.1). There appears to be an overall increase in age at motherhood as the
birth cohort gets younger. For instance, about 5 % of women born in 1978 or earlier
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Fig. 12.1 Fraction of birth cohorts that are mothers by various teenage ages

would have been mothers by age 15 years as opposed to only 3 % of women born
between 1978 and 1983. By 20 years, nearly half of the women born in 1973 or
earlier would have had a child, but only 40 % and 43 % of the women born in 1979–
1983 and 1974–1978 birth cohorts, respectively would have had a child, . There have
been concerns that women respondent in the 2003 SADHS underreported their birth
histories, which may have impacted negatively on the estimated national fertility
declines and teenage motherhood rates (Department of Health 2007). However, the
data are of reasonable quality such that under-reporting and mis-reporting errors
would not have a major impact on the results arising from this study.

12.3 Statistical Methods

To set notation, let nl denote the number of women in the l th stratum, l D 1; : : : ; n;

tlj denote the age (or censoring time) of the j th woman in stratum l; j D 1; : : : ; ni

and let ılj be a censoring indicator variable (1 if first child born, 0 if not). In a
proportional hazards model, the hazard function in stratum l for a woman with
explanatory variables vector zlj is given by

h.t I zlj / D h0l .t/ exp.ˇzlj / D h0l .t/ exp.ˇ1zlj1 C : : : ˇpzljp/; (12.1)

where h0l .t/ denotes the baseline hazard in stratum l.
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In our first model, we use a parametric assumption for the baseline hazards in
each stratum and assume that these follow the Weibull distribution with stratum-
specific hazard function

h0l .t/ D 
l t

l �1 exp.ˇ0l
l /; (12.2)

where ˇ0l is a stratum-specific time-scale accelerator, and the parameters 
l are
stratum-specific shape parameters. If 
l is positive or negative, we obtain an
increasing or decreasing baseline hazard function, respectively. The 
l are given a
Gamma .˛; ˛�1/ prior distribution, where a Gamma .a; b/ distribution has mean ab

and variance ab2. Thus, the prior specification for 
l reflects a prior expectation of a
constant baseline hazard as the prior mean of 
l is 1; its prior variance of 1/’ implies
that smaller values of ’ correspond to a wide distribution around 1. The stratum-
specific time-scale accelerator ˇ0l is given a Normal prior, i.e. ˇ0l � N .	0; �2

0 /.
The hierarchical model specification is completed by adding a flat normal prior on
parameter 	0 and Gamma .c1; d1/ and Gamma .c2; d2/ priors on �0 D 1=�2

0 and ’,
respectively. Furthermore, flat normal priors are used for the regression parameters
ˇ1; : : : ; ˇp . This parametric model can be implemented using the Bayesian software
package WinBUGS (Spiegelhalter et al. 2004) that implements the Gibbs sampler
for sampling from the joint posterior distribution of all model parameters.

By making rigid parametric assumptions, parametric models like the Weibull
model for the stratum-specific baseline hazards have restricted flexibility compared
to nonparametric approaches that allow a fully data-driven specification of the
functional form of the baseline hazard. The main advantages of nonparametric
models are that they have the potential to detect local trends; they can provide
additional information and thus prevent model misspecification. And they can, of
course, verify the validity of simpler parametric models as well.

In our second model, we follow the nonparametric approach by Carlin and
Hodges (1999), which models a suitable transformation of the integrated baseline
hazard H0l.t/ D R t

0
h0l .s/ ds as a mixture of beta distributions. We first note that

modeling the integrated baseline hazard function H0l.t/ is equivalent to modeling
a stratum-specific cumulative distribution function (cdf) F0l . This is because any
integrated hazard H(t) is a nondecreasing function on the positive real line; thus,
there exists a cdf F on [0,1] such that H.t/ D J �1 .F .J.t/// where J.t/ D at

atCb

for some a, b > 0. But instead of using a mixture of beta distributions as in Carlin
and Hodges (1999), we use a mixture of triangular distributions that allows a closer
approximation (Perron and Mengersen 2001; Cai and Meyer 2011).

Let J0l W RC ! Œ0; 1� with J0l .t/ D J .H0l .t// D aH0l .t/

aH0l .t/Cb
where a and b

are global pre-specified positive constants. Each J0l can be represented by a cdf
Fl on [0, 1], i.e. J .H0l .t// and these are modelled as a mixture of triangular
cumulative distributions with stratum-specific knots xl D .x0l ; x1l ; : : : ; xkl / as
follows:

J0l .t/ D
Xk�1

iD�1
wi l IT .J.t/I xi;l ; xiC1;l ; xiC2;l / for l D 1; : : : ; n; (12.3)
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where IT .t; xi ; xiC1; xiC2/ denotes the cumulative distribution function of the
triangular distribution based on the knots xi ; xiC1; xiC2 with mode at xiC1 and the
weights w0l D w1l D : : : D wk�1;l D 1

k
and w�1;l D wk�1;l D 1

2k
are fixed.

A candidate integrated baseline hazard function QH0, such as QH0.t/ D t of the
exponential distribution, is chosen at which we nonparametrically center each of
the stratum-specific baseline hazards via the transformation J0l .

Denoting the collection of knot vectors by x D .x1; : : : ; xn/ the likelihood is
given by

L.ˇjx; y; z; ı/ D
nY

lD1

nlY

j D1

˚
h0l .tlj / exp.ˇzlj /

�ılj

� exp
��H0l.tlj / exp.ˇzlj /

�

To evaluate the likelihood function, we need expressions for H0l.t/ in terms of
J0l .t/ and thereby x or w, respectively. The former is

H0l.t/ D bJ0l .t/

a Œ1 � J0l .t/�

D b
Pk�1

iD�r wi l b
.r/
i .J.t/I xil ; : : : ; xiCrC1;l /

b
h
1 �Pk�1

iD�r wi l b
.r/
i .J.t/I xiCrC1;l /

i

while the latter is obtained by differentiating the integrated hazard above and
using the quotient and chain rules. The joint posterior density (up to normalization
constant) is then obtained by multiplying the likelihood by the prior density of
the parameters. We choose a Dirichlet prior for the knot spacings, i.e. .x1l �
x0l ; : : : ; xk�1;l / � Dirichlet .�0; : : : ; �k�1/ with hyperparameter .� D �0 D
: : : D �k�1/. The hierarchical models are completed by a prior distribution for the
hyperparameters � � Gamma.a; b/ with a D 0.5 and b D 2. We used k D 10 knots
and set the global transformation constants to be a0 D 1 and b0 D 20 to cover the
largest range of [0,1]. We ran multiple MCMC chains from highly dispersed starting
values for 30,000 iterations after discarding a burn-in of 10,000. We performed
the Gelman and Rubin (1992) convergence diagnosis, and it confirmed adequate
convergence by iteration 1,000. We also conducted the sensitivity analysis for
the triangular mixture model with different choices of hyperparameters, which
provide a robust result. We also calculated the deviance information criterion (DIC)
(Spiegelhalter et al. 2002) for the model based on triangular mixtures. The DIC is
29220.22. The posterior mean and the 95 % credible interval for � is 0.5 (0.411,
0.603). The proposed semiparametric model can be conceptually implemented by
using either WinBUGS or R. However, due to the large sample size, we experienced
an intensive computation. Instead, a C program was written for implementing the
approach.
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12.4 Results

We fitted the stratified proportional hazards model to the age at first birth dataset
using both the Weibull and the triangular mixture distributions for stratum-specific
baseline hazards. The stratum-specific time-scale accelerator hyper-parameter 	0

and fixed-effect parameters ˇ1; : : : ; ˇp were assigned exchangeable flat normal
priors with mean zero and variance 1,000. The hyperparameter �0 D ��2

0 of the
stratum-specific time-scale accelerator was assigned a Gamma (3, 0.5) prior and,
as in Carlin and Hodges (1999), we used a low-information Gamma (3,10) prior
for ’. Three multiple chains were run from different starting values for 10,000
iterations after discarding the first 1,000 as being in the burn-in period. Trace plots
and Gelman-Rubin convergence diagnostic statistic (Brooks and Gelman 1998) all
confirmed adequate convergence.

Plots of the stratum baseline hazards using the Weibull and triangular mix-
tures models are shown in Figs. 12.2 and 12.3, respectively. Both plots show
substantive provincial variations in baseline risk on the timing of first child birth.
The stratum-specific baseline risks from fitting the parametric Weibull model are
shown in Fig. 12.2. Both urban and rural areas of the Eastern Cape, North West,
Mpumalanga and Limpopo provinces show early motherhood rates; likewise for
Gauteng province. Higher rates of delayed motherhood are seen in Northern Cape
and Free State. Kwazulu-Natal is seen as having low rates of teenage child birth, but
this should be treated with great caution as the reproductive health data from this
province was found to be inconsistent (Department of Health 2007). The problem
with the Weibull model is the per se increasing hazard rate, which is not realistic

Fig. 12.2 Stratum-specific timing of first child baseline hazards using the Weibull model
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Fig. 12.3 Stratum-specific timing of first child baseline hazards using the triangular mixture
model

in the context of South Africa and the Sub-Saharan African region (Kalule-Sabiti
et al. 2007; HSRC 2009). The differences in baseline hazards between provinces
only show which ones increase more quickly.

The restrictions inherent in Weibull models are removed when we use mixtures of
triangular distributions, where we can detect peaks, periods of increase and decrease
or even multi-modal function of hazards. From Fig. 12.3, the baseline risk of timing
of first child birth shows general bi-modal peak hazards around 20 and 30 years of
age. In particular, rural areas of the Northern Cape and Free State have baseline risk
with a bi-modal distribution. It also shows that early adolescent child birth is highest
in the North West province and in the urban parts of the Gauteng province.

Table 12.2 presents posterior medians and 95 % credible intervals of fixed
effect hazard ratios using the Weibull parametric and triangular mixture distribution
models. Also, shown are results from an unstratified analysis, where stratum factor
was included as a fixed effect and results from an analysis where the strata were
treated as random effects using a frailty model. A frailty model is seen as a
compromise between a fully stratified and unstratified Cox regression model. We
assumed that the stratum-specific random effects follow an exchangeable normal
distribution with mean zero and a precision parameter drawn from a Gamma
(0.01, 100) distribution.

The fixed effects results from both the frailty and Weibull models confirm the
findings of the unstratified model. The triangular mixture approach is consistent with
the other three models, but there are a few exceptions. The more realistic triangular
mixture model has significantly higher hazard ratios for older birth cohorts 1954–
1958 and 1959–1963 than the 1979–1983 cohort, not smaller as the other models
seem to suggest. The Triangular mixture model even shows a more consistent and
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Table 12.2 Median (95 % CI) hazards ratios estimates of fixed effects parameters

Parameter Unstratified model Frailty model Weibull model
Triangular
mixture model

Birth cohort
1979–1983 1 (–, –) 1 (–, –) 1 (–, –) 1 (–, –)
1974–1978 1.12 (1.01, 1.25) 1.11 (1.00, 1.25) 1.11 (0.99, 1.23) 1.25 (1.12, 1.38)
1969–1973 1.17 (1.06, 1.31) 1.16 (1.05, 1.30) 1.16 (1.04, 1.29) 1.45 (1.30, 1.60)
1964–1968 1.18 (1.06, 1.32) 1.17 (1.04, 1.30) 1.16 (1.05, 1.30) 1.55 (1.40, 1.71)
1959–1963 0.93 (0.82, 1.04) 0.91 (0.81, 1.03) 0.93 (0.83, 1.04) 1.46 (1.31, 1.62)
1954–1958 0.83 (0.74, 0.94) 0.82 (0.73, 0.93) 0.84 (0.74, 0.94) 1.39 (1.24, 1.56)

Education
None 1 (–, –) 1 (–, –) 1 (–, –) 1 (–, –)
Grade 1–7 1.14 (0.98, 1.31) 1.12 (0.99, 1.31) 1.15 (1.01, 1.31) 1.08 (0.96, 1.24)
Grade 8–11 1.19 (1.04, 1.37) 1.17 (1.04, 1.37) 1.20 (1.06, 1.37) 1.07 (0.95, 1.22)
Grade 12 0.97 (0.75, 1.01) 0.86 (90.75, 1.02) 0.87 (0.76, 1.01) 0.78 (0.68, 0.91)
Higher 0.69 (0.59, 0.83) 0.70 (0.57, 0.84) 0.69 (0.59, 0.82) 0.63 (0.53, 0.74)

Ethnicity
Black/African 1 (–, –) 1 (–, –) 1 (–, –) 1 (–, –)
Coloured 0.97 (0.85, 1.09) 0.96 (0.86, �1.09) 0.96 (0.85, 0.1.09) 0.94 (0.87, 1.04)
White 0.75 (0.62, 0.89) 0.75 (0.63, 0.89) 0.74 (0.62, 0.89) 0.84 (0.71, 0.99)
Indian/Asian 1.14 (0.98, 1.32) 1.13 (0.97, 1.30) 1.15 (0.99, 1.35) 1.19 (1.05, 1.35)

Wealth
I 1 (–, –) 1 (–, –) 1 (–, –) 1 (–, –)
II 1.00 (0.91, 1.11) 1.01 (0.91, 1.11) 1.01 (0.91, 1.11) 1.01 (0.92, 1.11)
III 0.95 (0.85, 1.05) 0.95 (0.85, 1.05) 0.94 (0.86, 1.06) 0.93 (0.85, 1.03)
IV 1.03 (0.93, 1.16) 1.03 (0.92, 1.15) 1.05 (0.94, 1.17) 0.94 (0.84, 1.04)
V 0.89 (0.78, 1.02) 0.89 (0.78, 1.02) 0.91 (0.80, 1.04) 0.85 (0.85, 0.96)

significant reduction in the hazard ratio for women with higher education than the
other models. The same picture emerges with women in the higher wealth groups.
Thus, using the results from the mixture model, rates of early childbearing are higher
among older birth cohorts, low educated women, Black/African or Indian/Asian
women and women with low economic status.

12.5 Discussion and Conclusion

This paper introduces novel Bayesian nonparametric approaches to model baseline
hazards in a stratified proportional hazards regression model using data on timing of
first birth in South Africa. The computations of the model parameters are embedded
within a Bayesian hierarchical model framework. This is an important application
as teenage pregnancies are associated with adverse health and socioeconomical
consequences, particularly in the developing countries. Thus, this paper adds
valuable insights into the social and public health knowledge base on maternal
health. We have modelled the influence of a number of important explanatory
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variables. Important features of our modelling and estimation approaches are the
avoidance of parametric assumptions for the stratum-specific hazard functions
and flexible modelling using a nonparametric mixture of triangular distributions.
This innovative feature relaxes the typical parametric assumptions for the baseline
hazard yielding a more realistic analysis. The commonly used Weibull model, for
instance, has per se either increasing or decreasing hazard rates, whereas a mixture
of triangular distributions has the ability to detect peaks, periods of increase and
decrease and multi-modality in the baseline hazards.

The results show that teenage pregnancy was significantly associated with low
education, rural residence and being of Black African, Indian/Asian, or Coloured
ethnicity. Teenage pregnancy also depended on birth cohorts where rates were
higher among the women born between the 1960s and 1970s than among women
born in the 1980s. The rates also varied according to the province of residence,
with higher rates in Eastern Cape, North West, Mpumalanga, Limpopo and Gauteng
provinces. These findings point to an association between socio-cultural and
economic determinants and pregnancy in adolescence, which is consistent with
results obtained in previous studies (Singh 1998; Sharma et al. 2003; Gupta and
Mahy 2003). These findings should be treated with caution as there have been grave
concerns about the accuracy of reproductive history data (Department of Health
2007). The observed differentials in education operate through other elements of
socioeconomic development that are associated with education. Educated women
are an urbanised and modernized subgroup with better socio-economic status
conducive towards delayed childbearing (Maitra 2004). Moreover, they are more
likely to use modern contraceptives in order to develop careers (US Bureau of
the Census 1996). Although improvements have been achieved, levels of women’s
education in the rural areas of the sub-Sahara region remain low (Kirk and Pillet
1998). Thus, the status of education among rural women in the region indicates that
the environment is not conducive to any significant increase in age at first child birth.

The government of South Africa has acknowledged the importance of improving
maternal health and has put in place policies that focus on empowering teenagers
to prevent pregnancy. In this respect contraception is freely and widely available
from clinics, which are easily accessible (Jewkes et al. 2009). It can be argued
that the declines in rates of teenage pregnancy are more attributable to increasing
use of contraception by teenagers. However, quantifying the net gains in teenage
pregnancies is complicated as there are legal provisions for termination of pregnancy
up to 20 weeks gestation. This policy is so liberal that teenagers do not need
parental consent to terminate a pregnancy. A proper empirical study is needed to
examine important factors contributing to reduction of rates of early pregnancy. As
a complement to helping young women to avoid conception, the government has put
in place policies devised to mitigate the adverse consequences for the young mother
and baby. These policies have made it possible for girls to remain in school until
the end of their pregnancy and return at an appropriate stage after the birth. This has
had some success but many African girls still have their education interrupted by
pregnancy. As most teenage pregnancies happen to the more economically deprived
teenagers, the government has also introduced policies to prevent extreme child
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poverty. A monthly child support grant is disbursed to the primary care giver of
a child up to 14 years of age. Even though this is well intended, a greater number of
beneficiaries are, for various reasons, not able to access it (Jewkes et al. 2009).

In conclusion, South Africa has made positive steps in improving maternal health
among teenagers and in combating the adverse effects of early childbearing on
both the mother and child. It is apparent that through its influence on poverty
and modernisation, the level of education is the overwhelming direct and indirect
determinant of adolescent pregnancy. Women with higher education levels possess
better socio-economic status that is conducive to delayed childbearing in that they
are more likely to use contraceptives in order to develop careers (US Bureau
of the Census 1996; Maitra 2004). Although improvements have been achieved,
levels of African/Black women’s education in the country are comparatively
low (Kirk and Pillet 1998). The government has acknowledged the importance
of improving women’s education as a way of curbing the negative social and
economic consequences of teenage pregnancy. Programs that strengthen education,
employment and family planning have been embarked on. An improvement in
accessibility to information on reproductive health services for young people will
enhance maternal health among adolescents. However, there is a need for better
understanding of factors, including cultural practices, contributing to unusually
high incidence of teenage pregnancies in South Africa to enable formulation of
most effective programmes for prevention of teenage pregnancy. The programmes
should comprehensively empower teenagers with relevant information and skills to
negotiate safe sex and motherhood. However, any such programs need strong and
sustained commitment by the government, a task made even harder by the adverse
economic conditions and resources (Caldwell and Caldwell 2002).
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Chapter 13
Stepwise Geoadditive Regression Modelling
of Levels and Trends of Fertility in Nigeria:
Guiding Tools Towards Attaining MDGs

Samson Babatunde Adebayo and Ezra Gayawan

13.1 Introduction

African countries are beginning to experience fertility transition like other parts of
the world. This belated transition is, however, slow and as a result, fertility rates
are still at very high levels in majority of the countries going by the standard of the
rest of the world. Whereas only a few countries in the continent e.g. South Africa,
Ghana, Lesotho, Namibia, and Swaziland, are now maintaining a total fertility rates
(TFR) of about 4.0 births per woman or less, others, Nigeria inclusive, are still
having a rate above 5.0.

Relative to other countries in the continent, the transition from high to low
fertility in Nigeria appears to be one of the least and slowing. In 1981–1982, report
of the National Fertility Survey (NFS) put the TFR of the country at 6.3 births
per woman. This dropped to 6.0 in 1990 in the 1990 Nigeria Demographic and
Health Survey (NDHS) and then slightly to 5.9 in 1991 (Population Census). The
rate further reduced to 5.7 in 2003 (NPC [Nigeria] and ORC Macro 2004); a rate that
is still being maintained as at 2008 NDHS (NPC [Nigeria] & ICF Macro). However,
Cohen (1998) and Kirk and Pillet (1997) have observed a comparable small and slow
decline in countries like Burkina Faso, Burundi, Liberia, Mali, Niger and Uganda.

In response to the pattern and trend of population growth and its adverse
effects on national development, the Federal Government of Nigeria in 1988
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set up the National Policy on Population for Development. As other emerging
issues such as HIV/AIDS, poverty, gender inequality, among others, gained wider
recognition, the 1988 Policy was reviewed giving way to the National Policy
on Population for Sustainable Development in 2005. The policy recognizes that
population factors, environmental issues and social and economic developments
are irrevocably interconnected and are critical to the achievement of sustainable
development in Nigeria which in turn can lead to the country’s attainment of the
Millennium Development Goals (MDGs). One of the set targets as a consequence
of the 2005 policy is the reduction of the TFR by at least 0.6 children every 5 years
by encouraging child spacing through the use of family planning.

Studies on the major determinants of fertility in Nigeria have therefore become
inevitable. Several authors (Bongaarts and Potter 1983; Foote et al. 1993; Cleland
et al. 1994; Cohen 1998) have shown interest in studying the proximate determinants
of fertility in the African region as these determinants are considered important
developmental problems that are related to economic growth and poverty as
well as maternal and child health (Shen and Willianson 1999). Using Bongaart’s
framework (Bongaarts 1982), Jolly and Gribble (1993) and Adlakha et al. (1991)
found that fertility inhibiting effect of age at marriage is significant in African
countries. Makinde-Adebusoye and Ebigbola (1992); Makinde-Adebusoye (2001)
and Norville et al. (2003) identified some social-economic and socio-cultural factors
to include couple’s relative income, kinship and community institutions, as well as
lineage and decent; and explained how they determine fertility level especially in
African countries. According to Bongaarts’s (1982) framework, all the important
variation in fertility is captured by variation in the proximate determinants of
fertility. Therefore if we have quality and enough individual-level data on contra-
ceptive use, breastfeeding and post-partum amenorrhoea and the other proximate
determinants, we should be able to capture all variation in individual-level fertility.
Baschieri and Hinde (2007) also opined that changes in fertility are the direct
result of changes in the proximate determinants, which thus mediate the effect of
changes in social, economic and cultural factors. Looking at these determinates from
modelling point of view, Kazembe (2009) asserted that modelling determinants of
fertility may assist in designing effective interventions that can lead to improved
child and maternal well-being as well as economic growth.

In a typical regression situation where the dependence of an outcome variable of
interest is to be modelled on several independent variables, a better way to achieve a
more parsimonious model is to consider screening of the variables. In this Chapter,
we adopted a modelling technique that permits screening and selection of variables
(i.e. the determinants of fertility) using stepwise geoadditive regression model as
proposed in Belitz and Lang (2008).

Although many studies on determinates of fertility have been carried out
especially in sub-Saharan African countries, see Kazembe (2009); Baschieri and
Hinde (2007), not much work has been done with the Nigerian data especially
considering joint estimation of trend, nonlinear effects of continuous covariates,
spatial effect and possible random effect to account for unobserved heterogeneity
that may be present in the data. Often, effects of continuous covariates are modelled
by assuming a linear dependence of the outcome variable on the predictor. It has
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become evident that assumption of linear dependence is often too rigid in many
realistically complex situations. Therefore, classical parametric regression models
for analysing fertility data have severe problems with estimating small area effects
and simultaneously adjusting for other covariates, in particular when the effects
of some covariates are non-linear or time-varying. Usually a very high number of
parameters will be needed for the modelling purposes, which may result in unstable
estimates with high variance. Therefore, flexible geoadditive approaches are needed
which allow one to incorporate small area spatial effects, non-linear or time-varying
effects of covariates and usual linear effects in a joint model.

In this Chapter, we explore level and trend of total fertility in Nigeria using
the total number of children ever born per woman. As highlighted by Kazembe
(2009), total number of children ever born per woman measures lifetime fertility
for women of reproductive age. Similarly, Becker and Lewis (1973); Famoye and
Wang (1997); and Olfa and El Lahga (2002) used children ever born per woman
as a better approximate measure of fertility rate. In this case, children ever born
per woman results in a count variable. Therefore, we adopted a Poisson stepwise
geoadditive regression approach through a Bayesian perspective for screening of
the variables.

13.2 The Data

The most common set of data used to study fertility differentials in developing
countries are the Demographic and Health Surveys (DHS). These are large,
nationally representative sample surveys collected for many countries around the
world, which provide information about fertility and family planning, including
knowledge and current use of contraceptive methods, and detailed fertility histories
with records of children’s birth and death dates.

Several scholars have examined the quality of DHS data. Studies by, Arnold
(1990), Blanc and Rutenberg (1990), Arnold and Blanc (1990) and Makinde-
Adebusoye and Feyisetan (1994) have noted the limitations of the data with
respect to the estimations of levels and trend in fertility. Inaccuracies result from
age misreporting, under-reporting of births, inaccurate reporting of births and its
consequent intentional or unintentional displacements of birth and age heaping.
However, in order to avoid these problems and to ensure the data properly reflect
the situations they intend to describe, the DHS programme developed standard
procedures, methodologies and manuals to guide the survey process. Also, appro-
priate policies guiding the editing and imputation of data are put in place. The
standard methodologies permit comparison of indicators across all countries where
these surveys are being conducted. Hence, many researchers who have carried out
demographic studies preferred DHS data.

Therefore, we used three waves of datasets from 1999, 2003 and 2008 Nigeria
Demographic and Health Surveys (NDHS). This avails us opportunity to explore
trend in fertility between 1999 and 2008 in Nigeria NPC ([Nigeria] (2000), NPC
[Nigeria] and ORC Macro (2004), NPC [Nigeria] and ICF Macro (2009)). The 2008
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survey was a significant improvement on the 1999 and 2003 surveys in scope and
content. Whereas a nationally representative sample of 34,070 households were
successfully interviewed in the 2008 survey, 7,647 and 7,225 households were
interviewed in the 1999 and 2003 surveys respectively. Of these, the response rates
for the eligible women in the households were 92 %, 95 % and 97 %, for the 1999,
2003 and 2008 surveys respectively.

The NDHS was designed to provide estimates for demographic and health
indicators at the national, zonal and states levels as well as for rural and urban
areas. The sampling frame used for the survey was the Population and Housing
Census of the Federal Republic of Nigeria conducted in 1991 and 2006. The primary
sampling unit (PSU), referred to as a cluster for the survey was defined on the
basis of enumeration areas (EAs) from the census frames. The NDHS sample was
selected using a stratified two-stage cluster design. Due to the hierarchical nature
of which the data were collected, conventional regression approach that assumes
independent observations may not be suitable. Therefore, a modelling technique that
accounts for possible within cluster correlation is required. Our modelling technique
permits incorporation of random effect and spatially correlated observations which
may assist in explaining some unobserved heterogeneity that may be present in
the data.

One of the eligibility criteria for women component of the survey is that female
respondents must be in the age range 15–49 years. As mentioned earlier, the data
include the total number of children per woman. Of the independent variables
considered in the analyses, age at marriage is an important proximate determinate of
fertility and is therefore included in this study. It is evident in developing countries
that marriage affects fertility via frequent and regular exposure to sexual relations.
Given the fact that fertility often takes place within marriage, there is an inverse
relationship between age at first marriage and fertility (Blanc and Poukouta 1997).
This is because age at first marriage determines the length of exposure to the
risk of becoming pregnant and the actual commencement of the process of child
bearing (Islam 2009). Previous studies have also shown that the level of women’s
education and fertility are inversely related. It affects the woman’s knowledge and
awareness of modern contraceptive methods and usage; delays entry into marriage
which reduces the exposure time to risk of child bearing thus, more educated women
are known to have fewer children than the less educated ones. Other studies have
investigated possible association between respondent’s working status and fertility
level. However, this was not the case in this study. Among other covariates suspected
to be related to fertility and considered in this study are: type of place of residence
given as urban or rural (reference category), partner’s education, respondent’s age,
marital status, time the respondent wanted the last child, respondent’s and partner’s
desire for children, parity, use of modern contraceptive, desire for last child, age
at first sex, use of a modern family planning method before birth, and geopolitical
zones. Finally, the state of residence is an important factor as it captures the large-
scale socio-economic difference that exits in Nigeria. In all, there are 37 states
(36 states and the Federal Capital Territory, Abuja). All categorical covariates are
dummy coded. We present the variables included in the analyses in Table 13.1.
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Table 13.1 Description
of variables included
in the analysis

Variables Description of variables

totchid Total number of children ever given birth to (count
and outcome variable)

yearstud Year of study: 1999, 2003 and 2008 (2 dummies
time2 – 2003 and time3 – 2008 were created;
1999 as reference)

agecont A continuous variable of age in years
maryyr Duration of marriage measured in years
agesex1 Age at first sexual intercourse measured in years

(continuous)
agemar Age at marriage (continuous)
wantedlc Desire for last child
usingcon Current use of modern Family Planning
Useb4b Whether respondent used modern FP before birth
Educ Educational attainment (no formal education – ref

category)
idealchd Ideal number of children grp (7 and above – ref

category)
whendes Respondents desire for more children (wants no

more, infecund & sterilised – ref category)
husbdes Husband’s desire for children (Others – ref

category)
married Marital status (formerly or never married – ref

category)
zones Geopolitical zones (North Central – ref category)
p educ Partner’s educational attainment (No formal

education – ref category)
urban Place of residence (rural – ref category)

13.3 Stepwise Geoadditive Regression Model
for Count Outcomes

13.3.1 Bayesian Stepwise Regression

Stepwise regression technique is a model building approach that permits choice of
predictive variables in a model according to a specific criterion (Hocking 1976).
This can be achieved through either a forward selection or backward selection
procedure by using partial correlations of the explanatory variables. Usually in
many practical situations, one is faced with a large number of potential explanatory
variables, and no underlying theory on which to base the model selection (as in
this case study). The procedure is used primarily in regression analysis, though the
basic approach is applicable in many forms of model selection. This is a variation on
forward selection. At each stage in the process, after a new variable is added into the
model, a test is made to check if some variables can be deleted without appreciably
increasing the residual sum of squares. The procedure terminates when the measure
is (locally) maximized, or when the available improvement falls below some critical
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value. The basic idea is to find a best model from a number of possible models.
This technique has been well discussed in literature. For details about stepwise
regression, see Draper and Smith (1981), Chaterjee and Price (1991), Neter et al.
(1996) among others.

Variable selection for complex regression models has been an area of research
that recently attracts attention. In realistically complex models, the decision as to
which variables (covariates) to be included in a model, the inclusion of continuous
covariates whether as linear or nonlinear, etc., is difficult to make. In some situations
when the methodology exists, user-friendly methods of implementing such can
as well be challenging. Also in a number of applications, one is confronted with
large datasets with many potential covariates of different types and a lack of
theory guiding the analysts as to the specification promising models. Moreover,
the existence or non existence of complex interactions between covariates is often
difficult and challenging. In their efforts to contribute to this area, Belitz and
Lang (2008) proposed a stepwise regression approach for regression models with
structure additive predictors. Within a structured additive regression procedure
(Fahrmeir et al. 2004; Kneib and Fahrmeir 2006, 2007), stepwise regression
simultaneously performs model selection and estimation with inferences based on
penalised likelihood. Markov chain Monte Carlo (MCMC) techniques are partly
used for computing interval estimates. This was first proposed by Belitz (2007) and
incorporated into BayesX – software for Bayesian inference in Structured Additive
Regression Models by Belitz and Lang (2008). In this case, model choice and
estimation of the parameters is done simultaneously. The algorithm for Bayesian
variable selection technique determines whether a particular covariate enters the
model; determines whether a continuous covariate enters the model linearly or
nonlinearly; determines whether a spatial effect enters the model, determines
whether a unit or cluster specific heterogeneity effects enter the model, selects
complex interaction effects, determine the degree of smoothness of nonlinear
covariates, spatial or cluster specific heterogeneity effects.

Inference is based on penalized likelihood in combination with fast algorithms
for selecting relevant covariates and model terms. Different models are compared
via various goodness-of-fit criteria, e.g. Akaike’s Information Criterion (AIC),
Bayesian Information Criterion (BIC), Generalized Cross Validation (GCV) and 5
or 10 fold cross validation (Belitz and Lang (2008)). Stepwise regression analysis
is estimated with object ‘stepwisereg’ in BayesX. For more details, see the software
manuals (http://www.stat.uni-muenchen.de/�bayesx/manual/tutorials manual.pdf).

13.3.2 Bayesian Inference

Suppose that observations (yi, xi, si, vi), i D 1, : : : , n, where yi is a Poisson
response variable, a vector x D (xi1, : : : , xip)0 of metrical covariate, si D (1, : : : , S)
the state (district) where respondent i lived during the survey and a further vector
v D (vi1, : : : , viq)0 of categorical covariates. Usually one intends to jointly model the

http://www.stat.uni-muenchen.de/~bayesx/manual/tutorials_manual.pdf
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dependence of yi on metrical, spatial and categorical covariates within the context
of generalized additive model (Hastie and Tibshirani 1990). The predictor �i for the
Structured Additive Regression (STAR) model can be defined as

�i D time2 C time3 C
pX

j D1

fj .xij / C
KX

kD1

gk.xik; xik0/ C fspat.si / C v
0

i ˇ (13.1)

where f1, : : : ,fp are nonlinear (unknown) smooth functions of the metrical covari-
ates, g1, : : : ,gk are the interaction1 effects of continuous variables xik and xik

0, fspat is
the nonlinear effect of spatial covariates and ˇi D (ˇ1, : : : , ˇL)0 is a vector of fixed
effect parameters for the categorical covariates, time2 and time3 are the second and
third rounds of the NDHS data: 2003 and 2008 (i.e. year of study with 1999 as
the reference category). One may further split up spatial effects fspat into spatially
correlated (structured) and uncorrelated (unstructured) effects as

fspat.si / D fstr.si / C funstr.si /:

A rationale behind this is that a spatial effect is a surrogate of many unobserved
influential factors, some of which may be a strong spatial structure and others may
only be present locally.

Within a Bayesian context, all parameters and functions are usually considered as
random variables upon which appropriate priors are assumed. Independent diffuse
priors are assumed on the parameters of fixed effects. For the non-linear effects,
a Bayesian P-splines prior based on Lang and Brezger (2004); and Brezger and
Lang (2006) was assumed. Omitting indices, each function f is represented or
approximated through a linear combination

p.z/ D
JX

j D1

ˇj Bj .z/

of B-spline basis functions. Smoothness of function f is achieved by penalizing
differences of coefficients of adjacent B-splines (Eilers and Marx 1996) or, in
our Bayesian approach, by assuming first or second order Gaussian random walk
smoothness priors

ˇ1 D ˇj �1 C u1 ˇ1 D 2ˇj �1 � ˇj �2 C u1;

with i.i.d. errors ul � N.0; £2/. The variance £2 controls the smoothness of f.
Assigning a weakly informative inverse Gamma prior £2 � IG.©; ©/; © small, it
is estimated jointly with the basis function coefficients.

1This can also be a varying coefficient effect.
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For the geographical effects fspat(s), s D 1, : : : , S, we assume a Gaussian Markov
random field prior. Basically, this is an extension of first order random walk priors
to two-dimensional spatial arrays, see Rue and Held (2005) for general information.

For the structured spatial effects fstr(s) we chose a Gaussian Markov random
field prior (13.2) which is common in spatial statistics, see Besag et al. (1991).
Unstructured spatial effects are i.i.d. random effects.

.fstr.s/jfstr.t/I t ¤ s; �2/ � N

 
X

t2@s

fstr.t/=Ns; �
2
=Ns

!

(13.2)

In order to be able to estimate the smoothing parameters for non-linear and
spatial effects simultaneously, highly dispersed but proper hyper-priors are assigned
to them. Hence for all variance components, an inverse gamma distribution with
hyperparameters a and b is chosen, e.g. £2 IG(a,b). Standard choices of hyperpa-
rameters are a D 1 and b D 0.005 or a D b D 0.001.

Basis of inference in this study is a penalized least squares with pointwise
confidence intervals for non-linear effects. The variable selection procedure aims
at minimising a goodness-of-fit criterion.

13.4 Bayesian Stepwise Regression Analysis of Fertility Data

Modelling count data has received considerable attention in the recent time, see
Cameron and Trivedi (1998), Chib et al. (1998), Winkelmann (2000), Chib and
Winkelmann (2001), and Fahrmeir and Osuna (2006), also Kazembe (2009) for
modelling fertility which is more related to this work. In our application in this
study, fertility is known to depend on a number of factors such as age at marriage,
age at first sex, respondent’s and partner’s educational attainment, desire and
preference for children, and district (state) of residence. The decision as to which of
these covariates should be included in an attempt to model the dependence of total
number of children ever given birth to per woman, how the continuous covariates
should enter the model (whether linear or nonlinear) and possible interactions of the
covariates is often too difficult to make a priori.

In this case study, we adopted a structured additive regression predictor for
count data as proposed by Fahrmeir and Osuna (2006). The approach provides
flexible modelling that can deal with most problems inherent in traditional Poisson
regression such as overdispersion, zero inflated outcomes, estimation of temporal
or spatial correlation, and possibly nonlinear effects of metrical covariates available
in that data. The models are fully Bayesian and inference is carried out through
computationally efficient MCMC techniques. To incorporate variable selection and
estimation of the smoothing parameters simultaneously, the object name stewisereg
in BayesX was used for all analyses. Through this, we are able to adequately address
the issues of variable selection and model building. These consist of including
continuous covariates, spatial correlation, interaction of continuous covariates, and
exclusion of heterogeneity among respondents through the approach.
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In this case study, we fitted the model (as the primary model) that includes all
the possible covariates as

totchidDtime2 C time3 C fspat(state) C f1(agecont) C f2(agesex1) C f3(agemar)
C f4(maryyr) C g(agecont*maryyr) C state(random) C cluster(random) C
zones(factor) C urban C married C educ(factor) C part educ(factor) C chd 0
C chd 13 C chd 45 C chd 6 C withn2 C later2 C unsuretm C undecided C
wantsame C husbmore C husbfew C usedb4b C usingcon C wantedlc,

In BayesX, categorical variable can be specified with factor. This permits
estimation of categorical variable without user necessarily creating the dummies
for such categorical variables.

13.5 Results

13.5.1 Applications to Fertility Data

The final model was achieved at the 10th step with AIC �177589.19. This is
extracted from the output and displayed below:

Final model totchid D const C year03 C year08 C northe C northw C southe C
southw C married C primary C secondry C higher C chd 0 C chd 13 C chd 45
C chd 6 C withn2 C later2 C unsuretm C usingcon C wantedlc C usedb4b
C agesex1(psplinerw2,dfD8.03645,(lambdaD418.645)) C undecide C wantsame
C husbfew C husbmore C agemar(psplinerw2,dfD4.95213,(lambdaD6578.29))
C agecont(psplinerw2,dfD3.96368,(lambdaD37166.4)) C maryyr(psplinerw2,
dfD15.037,(lambdaD32.768)) C sstate(spatial,dfD26.9899,(lambdaD255.59)) C
maryyr c*agecont c(psplineinteract,dfD6.56474,(lambdaD5302.73))

Also automatically estimated and included as part of the fitted model are the
degrees of freedom and smoothing parameters. This model is more parsimonious
than the full model. For instance, partner’s educational attainment, unstructured
spatial effects and cluster specific random effects were excluded from the model.
Moreover, the selected model still contains the interaction between respondent’s age
and duration of marriage. The final model was later fitted with object ‘bayesreg’
in BayesX. Therefore, we based the discussion of our results (fixed, spatial and
nonlinear effects) on the ‘bayesreg’ output and not on the stepwisereg output.
As mentioned earlier, the variable selection approach applied prior to the main
estimation of the fitted model has availed us opportunity to reasonably determine
which covariates and form (linear or nonlinear for continuous variables) should be
included in the model, inclusion of complex interaction effect. In the same manner,
variable selection made it clear that inclusion of cluster and unstructured spatial
effect will not lead to a better fit, hence, the need to drop them from the analysis.
This would not have been possible without a scientific means of determining which
variables should be explored.
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13.5.2 Results

Trend and Linear Effects

Table 13.2 presents the results of fixed effects. A possible significant trend was
evident based on total number of children given birth to per woman. Comparing
2003 with 1999 and 2008 with 1999, the total number of children given birth to has
not substantially decreased. Respondent’s educational attainment was significantly
related to fertility with respondents with secondary education or higher having fewer
number of children compared with those that do not have any formal education. On
ideal number of children the respondents desire, those who desire at most 5 children
are likely to have given birth to fewer children than those who desire 7 children and
more; and in other words, contribute less to the overall total fertility level of the
country. The surveys elicited information about husband’s desire for children. The
respondents who said that their husband’s desire more children are more likely to
give birth to more children and this is positively significant.

Contraceptive use has been shown in some studies to be significantly related to
fertility. In this study, effect of current use of a modern contraceptive and use before
the last birth on fertility was explored. As shown in Table 13.2, contraceptive use
(either currently or before the last birth) does not show any reduction effect on the
number of children given birth to per woman. However, those who are currently
using are more likely to have fewer number of children compared with those who
used before last birth. Respondents who claimed to have wanted last child are
associated with fewer number of children.

Nonlinear Effects

Now turning attention to the nonlinear effect of the continuous variables, see
Fig. 13.1 a–d. While effect of age at first sex and effect of respondent’s current
age are approximately linearly related to number of children given birth to, the
stepwise regression approach reveals that estimating these nonparametrically fits
better than assuming a parametric model. Moreover, the DIC of models with linear
dependence of these effects are better off. Therefore, we still maintained the model
with non parametric effect of age at first sex and current age of the respondents.
With age at first sex, an obvious reduction in number of children given birth to was
apparent among respondents who had their first sexual experience at an older age.
On the other hand, an obvious increase in number of children given birth to was
evident among older respondents. Respondents who married at an early age: say
10–25 years are more likely to have given birth to more children compared with
their counterparts who married at older age (25 years and above). Year or duration
of marriage is positively associated with fertility with number of children increasing
as duration of marriage increases. A sharp increase was noticed, however, between
0 and 10 years.
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Table 13.2 Estimates of posterior means with 95 % credible interval for the Poisson regression
model of fertility rate

95 % Credible interval (CI)

Variable Post mean Std. Dev. Lower Upper

Constant 1.380 0.088 1.203 1.549

Year of study
Year 1999 (ref) ref
Year 2003 0.058 0.012 0.035 0.080
Year 2008 0.044 0.010 0.026 0.065

Geopolitical zones
North Central (ref) ref
North East 0.050 0.030 �0.013 0.105
North West 0.029 0.028 �0.027 0.087
South East 0.047 0.023 8.23e-05 0.090
South West �0.045 0.025 �0.093 0.004
Married 0.113 0.017 0.080 0.146

Respondent’s education
None (ref) ref
Primary 0.016 0.008 0.002 0.032
Secondary �0.029 0.009 �0.047 �0.012
Higher �0.133 0.017 �0.165 �0.099

Ideal number of children
7 and above (ref) ref
None �0.046 0.024 �0.094 0.006
1–3 �0.186 0.019 �0.223 �0.149
4–5 �0.144 0.010 �0.164 �0.123
6 �0.027 0.008 �0.044 �0.011

Desire for more children
Wanted no more/sterilised/infecund ref
Within 2 years �0.174 0.009 �0.190 �0.156
Later than 2 years �0.105 0.008 �0.121 �0.090
Unsure of time �0.126 0.013 �0.149 �0.100
Undecided �0.063 0.010 �0.082 �0.042

Husband’s desire for children
Others (ref) ref
Want same 0.004 0.007 �0.010 0.017
Husband wants more 0.016 0.006 0.004 0.028
Husband wants few �0.004 0.018 �0.0412 0.031
Currently using FP method 0.019 0.009 0.001 0.038
Wanted last child �0.051 0.008 �0.067 �0.034
Used FP before last birth 0.027 0.009 0.009 0.046
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Fig. 13.1 Nonlinear effects of (a) age at first sex, (b) age at marriage, (c) respondent’s age,
(d) duration of marriage with their corresponding 95 % and 80 % credible intervals. Also included
is the surface plot of interaction effect of duration of marriage and respondent’s age

Interaction Effect

Figure 13.1e displays the interaction effect of duration of marriage and respondent’s
age. It was evident that as the duration of marriage and age of the respondent also
increase, they both have positive impact on increase number of children given birth
to per woman. This 3 dimensional plot was obtained with ‘plotsurf ’ command in R.
It can also be obtained using the same function in Splus. BayesX automatically
generates the graph command for plotting the interaction effect of any two variables.
Model with interaction effect of duration of marriage and respondent’s age was
found to be more parsimonious based on the stepwise regression procedure in
BayesX.
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Fig. 13.2 Map of Nigeria showing spatial effect (a) and significance of spatial effect (b)

Spatial Effects

Figure 13.2a, b shows the results of spatial effect in the fitted model. In Fig. 13.2a,
an interesting West–east spatial pattern was noticed. Respondents in the Western
zones are associated with fewer number of children. However, this spatial pattern
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is only significant for a few states. Figure 13.2b shows the map of significance
with estimates presented at 95 % credible intervals. States in white are significantly
associated with high number of children (95 % CI lie in the positive side) while
states in black colour (negative CI) are significantly associated with low number of
children per woman. Spatial effects in other states in grey colour are not significant
i.e. the 95 % credible intervals include zero (0). The substantial geographical
variations that were evident from the crude data have reduced after adjusting for
some covariates. This implies that the remaining spatial effects are the residual
spatial effects.

13.6 Discussions and Conclusions

In this Chapter, we demonstrated the use of Bayesian variable selection procedure
for fitting a parsimonious model to fertility data in Nigeria. Rather than assuming
all available variables would be useful in modelling the phenomenon at hand,
the approach permits automatic identification of variables to be included in the
model and also specify the form that a continuous covariate enters the model
(whether linearly or nonlinearly). This has been a very challenging task in many
realistically complex situation where modelling involves many components such as
trend, spatial, random, nonlinear, interaction and spatial effects. In this application, a
more parsimonious model was achieved and model interpretations could be assumed
to be more objective.

In the analysis of fertility data, it became apparent that highest level of educa-
tional attainment by women could be considered as a major proximate determinant
of fertility in Nigeria. This is similar to other findings. For such, see Bhargava
(2007); and Kazembe (2009). Therefore, for the country to achieve the planned
reduction of 0.6 children every 5 years, effective intervention that will address
and encourage women’s education should be designed. Whereas those respondents
that acquired at most primary education are found to be significantly associated
with more number of children, those with secondary education and above are
significantly associated with reduction of fertility. Although, in other studies,
respondents in urban areas were found to be significantly associated with fewer
number of children, however, this variable was eliminated in the course the variable
selection procedure. Therefore, it did not appear in the final model.

Inter-spousal communication on contraceptive use has been found to play major
role in uptake of a family method. For instance, Ujuju et al. (2010) found male
involvement to be a useful approach towards acceptability of a family planning
method. The link between use of family method and fertility is inter-twined. In
this study, however, respondents who claimed that their husbands desire fewer
children are more likely to have contributed towards reduction of fertility. Although
this was not significant, the result suggests a possible and important implication
of findings. Similarly, those respondents who claimed that their husbands want
more children than them are significantly likely to adversely affect the reduction
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of fertility. One important programmatic implication of this is that, policy makers
should intensify behavioural change in communications that will be targeted at men
which will encourage couples discussion to deciding on the benefits of reduced
fertility to the family and not only to the mother alone.

Although contraceptive use was found to be significantly associated with fertility,
however, there was no evidence to show that its use could result in reduction of
fertility in Nigeria. Other studies have found similar result as regards contraceptive
use in sub Saharan Africa. Notable among them are Agyei-Mensah (2007) and
Kazembe (2009) among others. Nigeria is one of the countries in sub Saharan
African with low contraceptive prevalence. One implication of this finding is that,
possibly there could be an unmet need for family planning method. On the other
hand, it may be an evidence of contraceptive failure. However, the cause of this
cannot be established in this study. A point for follow-up research here may be to
conduct qualitative studies which may assist in unravelling this difficult knot. On
ideal number of children a respondent would like to have, respondents who desired
at most six children are significantly associated with reduction in fertility compared
with their counterparts who desired at least seven children.

A steady decline in fertility with increase in age at first sex is biologically not
unusual. Firstly, it is expected that those that had the first sex at an older age have
reduced intervals between onset of sexual initiation and age of menopause. In other
words, the older a respondent is before initiation of sex, the fewer the number
of children that person can give birth to. This same explanation goes for age at
marriage. On respondent’s current age and duration of marriage, almost similar
pattern are evident here. Under a normal circumstance and all things being equal,
older respondents, who were married at a reasonably normal time (say 25 years);
and who did not experience death of children are very likely to have more children
compared with their counterparts who experienced delay in getting married, delay
in conception and possibly death of children. Early marriage and the onset of
childbearing at young ages are strongly associated with high fertility (Foote et al.
1993),

The significant spatial effect that was evident in this study could be as a result
of some unexplained factors that may be associated with number of children given
birth to per woman. For instance, Nigeria has a diverse cultural and ethnic structure.
This, sometimes, is difficult to separate from religion. After adjusting for possible
determinants of fertility, Akwa Ibom, Anambra, Bayelsa, and Rivers states are
significantly associated with high fertility; while Kwara and Zamfara states are
significantly associated with low fertility. This method of analysis has permitted
opportunity that will assist policy makers in prudently making use of the scarce
resources which is the situation in developing countries (including Nigeria).

Of the seven components of the Millennium Development Goals (MDGs), fertil-
ity is directly or indirectly linked with four of them, these are MDG 1 (eradicating
extreme poverty), MDG 2 (achieve universal education), MDG 4 (reduce child
mortality) and MDG 5 (improve maternal health). Therefore, if findings from this
study are judiciously used, it will assist policy makers in designing strategies that
will contribute towards attaining the goals.
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Appendix

Example of output from fitting ‘Stepwise’ regression in BayesX
> stepwisereg s
> s.outfileD C:nCollaborationsnYahyanFertilitynm12
> s.regress totchid D sstate(spatial,mapDm,lambdaD0.1) C agecont(psplinerw2)
C agesex1(psplinerw2) C agemar(psplinerw2) C maryyr(psplinerw2) C
agecont*maryyr(psplineinteract) C agecont*agesex1(psplineinteract) C age-
sex1*agemar(psplineinteract) C sstate(random) C Hholdno(random) C year03 C
year08 C northe C northw C southe C southw C souths C urban C married
C primary C secondry C higher C chd 0 C chd 13 C chd 45 C chd 6 C
withn2 C later2 C unsuretm C undecide C wantsame C husbmore C husbfew
C usedb4b C usingcon C wantedlc, CIDMCMCselect stepD10 iterationsD10000
familyDpoisson predict using d

STEPWISE OBJECT s: stepwise procedure
GENERAL OPTIONS:

Performance criterion: AIC imp
Maximum number of iterations: 100

RESPONSE DISTRIBUTION:

Family: Poisson
Number of observations: 33482

OPTIONS FOR STEPWISE PROCEDURE:

OPTIONS FOR LINEAR EFFECTS TERM: year03

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: year08

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: northe

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: northw

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: southe

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: southw

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: souths
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Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: urban

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: married

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: primary

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: secondry

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: higher

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: chd 0

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: chd 13

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: chd 45

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: chd 6

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: withn2

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: later2

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: unsuretm

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: undecide

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: wantsame

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: husbmore

Startvalue of the 1. startmodel is “effect excluded”
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OPTIONS FOR LINEAR EFFECTS TERM: husbfew

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: usedb4b

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: usingcon

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR LINEAR EFFECTS TERM: wantedlc

Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: agecont

Minimum value for the smoothing parameter: 42.59841875
This is equivalent to degrees of freedom: approximately 15, exact 15.0445
Maximum value for the smoothing parameter: 561250
This is equivalent to degrees of freedom: approximately 2, exact 1.9873
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: agesex1

Minimum value for the smoothing parameter: 4.300834375
This is equivalent to degrees of freedom: approximately 15, exact 15.0073
Maximum value for the smoothing parameter: 122500
This is equivalent to degrees of freedom: approximately 2, exact 2.03467
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: agemar

Minimum value for the smoothing parameter: 11.4688125
This is equivalent to degrees of freedom: approximately 15, exact 14.9876
Maximum value for the smoothing parameter: 203750
This is equivalent to degrees of freedom: approximately 2, exact 2.02288
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: maryyr

Minimum value for the smoothing parameter: 32.7680375
This is equivalent to degrees of freedom: approximately 15, exact 15.0367
Maximum value for the smoothing parameter: 403750
This is equivalent to degrees of freedom: approximately 2, exact 2.02664
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”
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OPTIONS FOR NONPARAMETRIC TERM: sstate

Minimum value for the smoothing parameter: 7.5776421875
This is equivalent to degrees of freedom: approximately 27, exact 35.5912
Maximum value for the smoothing parameter: 1470.23
This is equivalent to degrees of freedom: approximately 1, exact 14.519
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: sstate

Minimum value for the smoothing parameter: 1074.7904359375
This is equivalent to degrees of freedom: approximately 27, exact 27.0357
Maximum value for the smoothing parameter: 141250
This is equivalent to degrees of freedom: approximately 1, exact 0.963917
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: Hholdno

Minimum value for the smoothing parameter: 6.5536
This is equivalent to degrees of freedom: approximately 220, exact 220.004
Maximum value for the smoothing parameter: 12968.8
This is equivalent to degrees of freedom: approximately 10, exact 10.0044
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: agecont c*maryyr c

Minimum value for the smoothing parameter: 6.71875e-07
This is equivalent to degrees of freedom: approximately 310, exact 310.032
Maximum value for the smoothing parameter: 5302.73
This is equivalent to degrees of freedom: approximately 50, exact 49.9928
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: agecont c*agesex1 c

Minimum value for the smoothing parameter: 1.97362723338301e-08
This is equivalent to degrees of freedom: approximately 330, exact 329.971
Maximum value for the smoothing parameter: 9375
This is equivalent to degrees of freedom: approximately 50, exact 50.0202
Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

OPTIONS FOR NONPARAMETRIC TERM: agesex1 c*agemar c

Minimum value for the smoothing parameter: 1.5e-06
This is equivalent to degrees of freedom: approximately 260, exact 259.988
Maximum value for the smoothing parameter: 1639.47
This is equivalent to degrees of freedom: approximately 50, exact 50.0083
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Number of different smoothing parameters with equidistant degrees of freedom: 20
Startvalue of the 1. startmodel is “effect excluded”

STEPWISE PROCEDURE STARTED

Startmodel:

totchid D const

AIC imp D -137982.08

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C
southw C souths C urban C married C primary C secondry C higher
C chd 13 C chd 45 C withn2 C later2 C unsuretm C undecide C
wantsame C husbmore C husbfew C usedb4b C usingcon C wantedlc C
agesex1 c*agemar c C agecont(psplinerw2,dfD8.38737,(lambdaD1671.22)) C
agesex1(psplinerw2,dfD5.15948,(lambdaD3879.49)) C agemar(psplinerw2,dfD
4.16032,(lambdaD16239.4)) C sstate(spatial,dfD28.2258,(lambdaD168.912)) C
sstate(random,dfD2.16761,(lambdaD9511.92))
AIC imp D -170003.9

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw
C souths C urban C married C secondry C higher C chd 13 C chd 45
C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b C
usingcon C wantedlc C agecont(psplinerw2,dfD9.02973,(lambdaD967.445)) C
agesex1(psplinerw2,dfD10.0038,(lambdaD125.019)) C agemar(psplinerw2,dfD
4.99049,(lambdaD6578.29)) C maryyr(psplinerw2,dfD15.1087,(lambdaD32.768))
C sstate(spatial,dfD22.1851,(lambdaD168.912)) C sstate(random,dfD9.12529,
(lambdaD1651.18)) C agecont c*maryyr c(psplineinteract,dfD8.34503,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD8.47754,(lambdaD9375)) C
agesex1 c*agemar c(psplineinteract,dfD7.37864,(lambdaD1639.47))
AIC imp D -177017.85

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw
C souths C married C primary C secondry C higher C chd 13 C chd 45 C
chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b C
usingcon C wantedlc C agecont(psplinerw2,dfD6.04443,(lambdaD6172.44)) C
agesex1(psplinerw2,dfD4.99068,(lambdaD3879.49)) C agemar(psplinerw2,dfD
4.9667,(lambdaD6578.29)) C maryyr(psplinerw2,dfD15.0388,(lambdaD32.768))
C sstate(spatial,dfD26.5994,(lambdaD66.5082)) C sstate(random,dfD6.98566,
(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD7.73487,(lambda
D5302.73)) C agecont c*agesex1 c(psplineinteract,dfD13.4769,(lambdaD
2043.22)) C agesex1 c*agemar c(psplineinteract,dfD12.2985,(lambdaD1.5e-06))
AIC imp D -177541.1
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Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw
C souths C married C secondry C higher C chd 13 C chd 45 C chd 6
C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b C
usingcon C wantedlc C agecont(psplinerw2,dfD4.96975,(lambdaD14419.5)) C
agesex1(psplinerw2,dfD4.00305,(lambdaD9619.72)) C agemar(psplinerw2,dfD
6.02728,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0327,(lambdaD32.768))
C sstate(spatial,dfD25.5783,(lambdaD77.6428)) C sstate(random,dfD7.74974,
(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD7.26835,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD15.9844,(lambdaD1.97363e-
08)) C agesex1 c*agemar c(psplineinteract,dfD11.9434,(lambdaD1.5e-06))
AIC imp D -177633.66

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw
C souths C married C secondry C higher C chd 0 C chd 13 C chd 45 C
chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b C
usingcon C wantedlc C agecont(psplinerw2,dfD3.96519,(lambdaD37166.4)) C
agesex1(psplinerw2,dfD2.95082,(lambdaD31303.9)) C agemar(psplinerw2,dfD
6.02686,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0375,(lambdaD32.768))
C sstate(spatial,dfD26.6013,(lambdaD66.5082)) C sstate(random,dfD6.98631,
(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD6.58284,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD9.86227,(lambdaD1.97363e-
08)) C agesex1 c*agemar c(psplineinteract,dfD9.08355,(lambdaD1.5e-06))
AIC imp D -177651.74

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw C
souths C married C primary C secondry C higher C chd 0 C chd 13 C chd 45
C chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b C
usingcon C wantedlc C agecont(psplinerw2,dfD3.96485,(lambdaD37166.4)) C
agesex1(psplinerw2,dfD2.95079,(lambdaD31303.9)) C agemar(psplinerw2,dfD
6.02644,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0365,(lambdaD32.768))
C sstate(spatial,dfD25.5786,(lambdaD77.6428)) C sstate(random,dfD7.74987,
(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD6.58136,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD9.86105,(lambdaD1.97363e-
08)) C agesex1 c*agemar c(psplineinteract,dfD9.08291,(lambdaD1.5e-06))
AIC imp D -177659.5

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw C
souths C married C primary C secondry C higher C chd 0 C chd 13 C chd 45
C chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b
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C usingcon C wantedlc C agecont(psplinerw2,dfD3.9648,(lambdaD37166.4))
C agesex1(psplinerw2,dfD2.95078,(lambdaD31303.9)) C agemar(psplinerw2,
dfD6.02628,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0365,(lambdaD
32.768)) C sstate(spatial,dfD25.5783,(lambdaD77.6428)) C sstate(random,dfD
7.74977,(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD6.58102,
(lambdaD5302.73)) C agecont c*agesex1 c(psplineinteract,dfD9.86082,(lambda
D1.97363e-08)) C agesex1 c*agemar c(psplineinteract,dfD9.08301,(lambdaD
1.5e-06))
AIC imp D -177662.58

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw C
souths C married C primary C secondry C higher C chd 0 C chd 13 C chd 45
C chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b
C usingcon C wantedlc C agecont(psplinerw2,dfD3.96479,(lambdaD37166.4))
C agesex1(psplinerw2,dfD2.95079,(lambdaD31303.9)) C agemar(psplinerw2,df
D6.0262,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0366,(lambdaD32.768))
C sstate(spatial,dfD24.3966,(lambdaD91.9764)) C sstate(random,dfD8.63275,
(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD6.58091,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD9.86074,(lambdaD1.97363e-
08)) C agesex1 c*agemar c(psplineinteract,dfD9.08311,(lambdaD1.5e-06))
AIC imp D -177664.52

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw C
souths C married C primary C secondry C higher C chd 0 C chd 13 C chd 45
C chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b C
usingcon C wantedlc C agecont(psplinerw2,dfD3.96479,(lambdaD37166.4)) C
agesex1(psplinerw2,dfD2.95079,(lambdaD31303.9)) C agemar(psplinerw2,dfD
6.02614,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0366,(lambdaD32.768))
C sstate(spatial,dfD24.3965,(lambdaD91.9764)) C sstate(random,dfD8.63272,
(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD6.58088,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD9.8607,(lambdaD1.97363e-
08)) C agesex1 c*agemar c(psplineinteract,dfD9.0832,(lambdaD1.5e-06))
AIC imp D -177665.39

Startmodel:

totchid D const C year03 C year08 C northe C northw C southe C southw C
souths C married C primary C secondry C higher C chd 0 C chd 13 C chd 45
C chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b
C usingcon C wantedlc C agecont(psplinerw2,dfD3.9648,(lambdaD37166.4))
C agesex1(psplinerw2,dfD2.9508,(lambdaD31303.9)) C agemar(psplinerw2,dfD
6.02609,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0366,(lambdaD32.768))
C sstate(spatial,dfD24.3964,(lambdaD91.9764)) C sstate(random,dfD8.6327,
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(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD6.5809,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD9.86069,(lambdaD1.97363e-
08)) C agesex1 c*agemar c(psplineinteract,dfD9.08325,(lambdaD1.5e-06))
AIC imp D -177666.11

Final Model:

totchid D const C year03 C year08 C northe C northw C southe C southw C
souths C married C primary C secondry C higher C chd 0 C chd 13 C chd 45
C chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b
C usingcon C wantedlc C agecont(psplinerw2,dfD3.9648,(lambdaD37166.4))
C agesex1(psplinerw2,dfD2.9508,(lambdaD31303.9)) C agemar(psplinerw2,dfD
6.02609,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0366,(lambdaD32.768))
C sstate(spatial,dfD24.3964,(lambdaD91.9764)) C sstate(random,dfD8.6327,
(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD6.5809,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD9.86069,(lambdaD1.97363e-
08)) C agesex1 c*agemar c(psplineinteract,dfD9.08325,(lambdaD1.5e-06))
AIC imp D -177666.76

Used number of iterations: 11
————————————————————————
Final Model:
totchid D const C year03 C year08 C northe C northw C southe C southw C
souths C married C primary C secondry C higher C chd 0 C chd 13 C chd 45
C chd 6 C withn2 C later2 C unsuretm C undecide C husbmore C usedb4b
C usingcon C wantedlc C agecont(psplinerw2,dfD3.9648,(lambdaD37166.4))
C agesex1(psplinerw2,dfD2.9508,(lambdaD31303.9)) C agemar(psplinerw2,dfD
6.02609,(lambdaD2859.82)) C maryyr(psplinerw2,dfD15.0366,(lambdaD32.768))
C sstate(spatial,dfD24.3964,(lambdaD91.9764)) C sstate(random,dfD8.6327,
(lambdaD1074.79)) C agecont c*maryyr c(psplineinteract,dfD6.5809,(lambdaD
5302.73)) C agecont c*agesex1 c(psplineinteract,dfD9.86069,(lambdaD1.97363e-
08)) C agesex1 c*agemar c(psplineinteract,dfD9.08325,(lambdaD1.5e-06))
AIC imp D -177687.06
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Chapter 14
A Spatial Analysis of Age at Sexual Initiation
Among Nigerian Youth as a Tool for HIV
Prevention: A Bayesian Approach

Alfred A. Abiodun, Samson Babatunde Adebayo, Benjamin A. Oyejola,
Jennifer Anyanti, and Olaronke Ladipo�

14.1 Introduction

Age at first sex has been associated with increased risk of unplanned pregnancy and
sexually transmitted infections, including HIV and human papilloma-virus (HPV)
(Cooper et al. 2007). Studies have examined early sexual activity largely as a
potential risk factor for adverse outcomes rather than identifying the correlates of
the timing of sexual debut (Pettifor et al. 2005; Harrison et al. 2005).

There have been changes in the age at which young males and females initiate sex
in Nigeria over years. The median age at sexual initiation has been steadily lower
for females aged 15–24 than for males in the same age group. This was evident from
the findings from the 2003 and 2005 National HIV/AIDS and Reproductive Health
Survey. In 2003, the median age at sexual initiation (MASI) for youth aged 15–24
years was 19.8 and 16.9 for male and female respectively. These values increased to
20.1 and17.4 for male and female respectively in 2005. The national average (males
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and females combined) are 18.4, 18.8 and 16.5 in 2003 and 2005 respectively. There
has been a steady decline in the average age at sexual initiation in the urban areas
of the country over this period (2003 D 19.3 and 2005 D 18.7), while a slight delay
in sexual debut was noticeable in the rural areas (2003 D 18.1 and 2005 D 18.7). In
Nigeria, majority of male youth experience first sexual intercourse at older age than
their female counterparts.

The median age at sexual initiation is consistently higher over the period 2003–
2005 for males in the Northern part of the country than in the Southern part. This is,
however, consistently lower in the North than South for females. For 2003 survey,
median age at sexual initiation (MASI) for males in the North was 20.2 compared
with 18.7 in the South, and 17.5 in the North compared with 18.5 in the South. From
2005, MASI is 21.8 in the North compared with 18.7 in the South while for females
it is 16.9 in the North compared with 18.9 in the South.

Findings from Demographic and Health Surveys (DHS) conducted in six African
countries (Ghana, Kenya, Tanzania, Uganda, Zambia and Zimbabwe) between 1988
and 2000 show that the median age at sexual initiation is generally lower for females
youth (age 15–24 years) than their male counterparts (see Zaba et al. 2004), a finding
which is similar to Nigeria’s experience.

One major focus of the Millennium Development Goals (MDGs) is combating
the spread of HIV and AIDS, malaria and other infectious diseases by 2015. Recent
studies indicate that about one half of all new HIV infections in sub-Saharan Africa
occur among youth aged 15–24 years (Garcia-Calleja et al. 2006; Mishra et al.
2006). Studies show that globally, an estimated 12 million people age 15–24 were
living with HIV/AIDS in 2002 and three-quarters of these lived in sub-Saharan
African countries. Since most HIV infections are through heterosexual activity, the
vulnerability of young people is strongly influenced by sexual behaviour and their
ability to protect themselves.

Situation analysis on HIV and AIDS in Nigeria revealed that the HIV prevalence
rate has reduced from 5.8 % in 2001 (the peak) to 4.4 % in 2005 (FMOH 2006).
However, substantial state level variation exists as prevalence ranges between 1.6 %
and 10 % throughout the country. Early intercourse exposes one to increased risk
of sexually transmitted diseases and unwanted pregnancies; which may result in
long term health and social disadvantages (Dickson et al. 1998). Studies from the
U.S. have suggested that adolescents who have fewer interpersonal and community
resources to draw upon are likely to initiate their sexual activity earlier (Coleman
1988; Brewster 1994).

Sexual behaviour among Nigerian youth age 15–24 is not only influenced by
socio-economic, demographic and health factors, but it also varies considerably
across regions, districts and ethnic groups. Most studies in sub-Saharan Africa
have focused on the social, demographic and familial factors associated with sexual
initiation and reasons adolescents begin having consensual intercourse (Andersson-
Ellstrom et al. 1996; Kinsman et al. 1998; Rink et al. 2007). Such studies have only
reported geographical variations at a highly aggregated regional level and trends for
data collected from similar multi-round surveys (see for instance, Agha et al. 2006;
Chiao and Mishra 2007). Very little is known about the geographical factors and
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some unobserved heterogeneity at high level of aggregation, which expectedly may
help identify the extent of regional, state and ethnic disparities in age at first sex.

A major challenge with this is that information is concealed within regions
and has an adverse influence on policy formulation. First, policy is not usually
formulated at a zonal level since five to seven states may constitute a zone.
Second, in multi-ethnic country such as Nigeria, designing interventions at a zonal
level seems impracticable and not suitable for the political and administrative
convenience of the country.

Various indicators have been used to measure age at first sex from cross-sectional
data in various surveys and to assess changes over time from data in multiple
surveys. Also studies have been carried out on the individual and contextual factors
influencing age at first sex. For example, Agha et al. (2006) examined individual and
community-level determinants of early sexual initiation among males and females
aged 15–24, using multilevel analysis. In their study, censored observations were
ignored in which case binary variable was created for response, where value 1
was assigned if a respondent reported that he/she initiated sex before age 15 and
0 assigned if otherwise. Little had been done on timing of sexual initiation among
Nigerians aged 15–24 by accounting for those who had not initiated sex by the
survey time. This approach is limited by the fact that information is grossly lost
from the ignored censored observations. To fill the gaps highlighted above, this
study examines individual bio-demographic and knowledge covariates influencing
early sexual initiation. It also examines spatial effects as well as adjusting for frailty
components by controlling for clustering effects under the same model framework.
Demographic covariates include age, sex, level of education and other covariates
that describe the background characteristics of the survey population. Covariates on
knowledge provide information about awareness of HIV, knowledge about how it
can be transmitted.

14.2 Model Specification

Time-to-event principle that is commonly encountered in survival analysis often oc-
curs in many practical situations and has a wide coverage with industrial, economic,
demographic and medical applications. Age at initiation of sexual intercourse can
also be viewed within this principle. In demographic studies, proportional hazards
model, a popular methodology in survival analysis is used widely to model event
history data such as age at marriage, age at first pregnancy and age at sexual
initiation. Further, Cox proportional hazards model, which leaves the baseline
distribution arbitrary has been used in modelling data on age at sexual initiation
(see Fatusi and Blum 2008).

Often, time-to-event studies involve hierarchical data with structured and un-
structured geographical information grouped into identified clusters such as clinical
sites, states, geographic regions, census block or location of residence. In such
settings, subjects residing within the same cluster are often exposed to similar
unmeasured physical and social environments, which may be different from subjects
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residing in adjacent clusters. Therefore, there is need to take into account such
unmeasured or unobserved heterogeneity during analysis. One way of analyzing
such data is to include in the model cluster specific random effects (frailties) to
account for the unexplained heterogeneity that cannot be included as fixed effects.
In its simplest form, a frailty is an unobserved random proportionality factor that
modifies the hazard function of an individual, or of related individuals (Wienke
2003). The concept of frailty dates back to the work of Greenwood and Yule (1920)
on accident proneness and the term itself was introduced by Vaupel et al. (1979).
An analysis that ignores frailty if present in data and assumes independence of
observations across clusters may result in an underestimation of variances thereby
leading to an inflation of the significance of the effects (Goldstein 1991).

Until recently, previous studies involving frailties have focused mainly on models
with one level of frailty (Sastry 1997; Sargent 1998). Often, the study data may be
composed of more than one level of random effects in which case we have one
level nested within the other. A three-level hierarchical Cox model with nested
random effects structure was presented by Sastry (1997) with an application to the
study of child survival in northeast Brazil, where the children were clustered at both
community and family levels.

It is observed that a flexible exploratory analysis that considers spatial variability
at a highly disaggregated level of states as considered in this application is lacking
in literature especially for Nigeria. Rather, analyses that consider spatial variation at
highly aggregated regional (or zonal) level, which conceals local and district specific
information are common in literature.

The main focus of this Chapter, therefore, is to examine the demographic
factors as well as knowledge about modes of transmission and prevention of
HIV/AIDS that may be associated with age at sexual initiation among Nigerian
youths (males and females aged 15–24 years). It also aims at investigating the
influence of geographical heterogeneity on sexual initiation, taking advantage of
structured spatial information at highly disaggregated level of states as well as frailty
information due to census blocks and ethnic groups.

The justification for the study is that it will help in identifying geographical areas
of increased or decreased risks of early sexual initiation as well as studying the
variability in age at first sex among youths aged 15–24 years which are attributable
to measured covariates and unobservable heterogeneity.

14.3 Data

The data used for this Chapter was obtained from the 2005 National HIV/AIDS
and Reproductive Health Survey (NARHS). It is a nationally representative survey
in Nigeria conducted to provide information on the reproductive and sexual health
in Nigeria and the factors that influence them. Eligible respondents for the survey
were females aged 15–49 years and males aged 15–64 years. One specific objective
of NARHS, 2005 is to collect quantitative data on key sexual behaviours and
reproductive health indicators among these age groups in Nigeria, and also provide
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information that will be used to monitor behavioural patterns that may influence
HIV/AIDS as well as the impact of reproductive health interventions.

Selection of sample in the survey involved a three-level multistage sampling
procedure, employing a probability sampling technique. The first stage involved
selection of rural and urban localities from the sampling frame of all the rural and
urban localities maintained by the Nigeria National Population Commission. At the
second stage, enumeration areas were randomly selected within each locality; and at
the third stage, individual respondents were selected within each enumeration area.

The development and management of survey protocol was handled by the tech-
nical committee and survey management committee. Ethical approval was granted
by the appropriate institutional review board. Consents, both written for the literate
respondents and verbal with thumb printing for non-literate respondents were sought
from the eligible respondents. As contained in the survey protocol, confidentiality of
information provided by the respondents was emphasized and ensured. For detailed
description of the survey protocol, see FMOH [Nigeria] (2006).

The survey was undertaken by the Federal Ministry of Health (FMOH) with the
Society for Family Health providing technical support in planning, implementation,
data processing, analysis and report writing of the survey. The British Department
for International Development (DFID) and the United States Agency for Inter-
national Development (USAID) provided the financial support to undertake this
project while the National Population Commission provided assistance in the design
of the sampling methodology for the survey.

In the survey questionnaire, question on whether or not the respondents ever had
sexual intercourse was asked. The respondent was also asked to give the age at
which he/she first had sexual intercourse and this was recorded to the nearest whole
year. A respondent who had not initiated sex at the time of survey was right censored
at current (survey) age.

For the purpose of the study in this Chapter, data for young respondents, males
and females, aged 15–24 years were retrieved from the entire survey data. 4,301
respondents in this age range participated in the survey. These consisted of 2,162
(52.27 %) males and 2,139 (49.73 %) females. Of these, 2,050 (47.75 %) reported
ever had sex. 798 (37.0 %) of male respondents ever had sex while 1252 (58.61 %)
of the females did. The number of respondents that ever had sex varied across
the geopolitical zones. It was highest in the South, where of 940 respondents,
431(45.9 %) have engaged in sexual activities whereas South East recorded the least
where only 34 % (183of 528) of the respondents ever had sex. Of 1,512 respondents
aged 15–24 years who were urban dwellers, 661 (43.7 %) had initiated sex while
1,389 (49. 0 %) of the 2,781 residing in the rural locations had ever engaged in sex.

14.4 Survival Model with Nested Frailties

One popular model for analyzing continuous survival data is the Cox proportional
hazards model (Cox 1972). The hazard function for a given individual describes
the instantaneous risk of experiencing an event of interest within an infinitesimally
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small interval of time, given that the individual has not experienced that event prior
to the beginning of the interval. The interesting feature about Cox proportional
hazard model is that it does not make any assumption about the shape of the
underlying hazards, but rather keeps the baseline hazard as an arbitrary, nonnegative
function of time.

We consider that data collected on n respondents are denoted by (ti, ıi, Zi),
i D 1,. . .n, where ti is the age at which the ith respondent had sexual initiation,
ıi is the censoring indicator such that ıi D1 if the respondent was observed to have
initiated sex at time (age) ti and ıi D 0 if the respondent has not yet initiated sexual
intercourse as at the time of the survey and hence right censored at the current
(survey) age. We suppose that Zi is a vector of covariates (including metrical and
categorical) collected on the ith respondent.

For the data used in this study, respondents were sampled from 344 clusters
across the country and such cluster information is necessary to assist in capturing
heterogeneity in the attitude towards sexual behaviour of Nigerian youth. This is
often introduced into the model as a random effect (frailty) !g , shared by all
members of the cluster g, g D 1,. . .,344. Thus in the frailty setting, the classical
Cox (1972) proportional hazard model assumes that the hazard function for the ith

subject with covariate value Zi has the form

�.tig

ˇ̌
Zig ; !g/ D !g�o.t/ exp.Z

=
ig�/; (14.1)

where �o.t/ is an unspecified baseline hazard function and � is the vector of
regression coefficients.

Suppose the study is composed of G independent clusters indexed by g, and
within each cluster g, there are Jg sub-clusters indexed by j, if we consider Cox
model with two-level random effects structure as in this study, then conditional on
the frailties (random effects) wjg and vg for sub-cluster j and cluster g respectively,
the model of ith individual (i D 1, : : : ,Gij), with covariate vector Zijg in the sub-
cluster j (j D 1, : : : , Jg), nested within cluster g (g D 1, : : : ,G) can be given by

�.tijg

ˇ̌
Zijg ; wjg; vg/ D wjgvg�o.tijg/ exp.Z

=
ijg�/; (14.2)

Model in (14.2) is based on assumption that the cluster level frailties vg are
assumed to be independent and identically distributed with vg � (0,¢2) and also
that given the cluster level frailties vg, the sub-cluster random effects wjg are
conditionally independent with wjgjvg � (0,¢g

2).
For the data used in this chapter, respondents were sampled from 344 clusters

based on the urban-rural localities in Nigeria, which is distributed over more
than 250 ethnic groups. It is conjectured that analysis of data on the age at
sexual initiation of respondents based on independent and identically distributed
assumption may be grossly inadequate. In a nested sample, respondents within
the same census block or the same ethnic group are more likely to have similar
sexual behaviours such that their responses can no longer be treated as independent.
Grouping data at the levels of the census blocks (sub-clusters) within ethnic group
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(cluster) can therefore be described by two- level hierarchical nested random effects
(frailties) structure. In the setting, wjg represent the frailties for the census blocks
and vg are for the ethnic groups. Studies of this kind on age at sexual initiation,
that incorporate frailties at more than one level is not common in survival analysis
literature.

Model (14.2) assumes that effects of covariates (metrical and categorical) are
linear on the log hazard and are often modelled parametrically as fixed effects.
However, in this study continuous covariate (current age of respondents at survey)
is supposed to have a nonlinear effect. Also, classical parametric regression models
for analysing data containing geographical information may become unrealistic in
estimating small area effects and simultaneously adjusting for other covariates,
especially when the effects of some covariates are non-linear or time-varying. In
such a situation, a very high number of parameters may be required for modelling
purposes; which may result in unstable estimates with high variance (Adebayo and
Fahrmeir 2005). For example, the dataset used in this chapter contains 36 states and
the Federal Capital Territory (FCT, Abuja) of Nigeria. Therefore model (14.2) was
extended to a geo-additive regression model by including the state as a structured
spatial covariate so as to adequately explore geographical effects. Geo-additive
model allows one to simultaneously incorporate small area spatial effects, non-
linear effects of continuous variables as well as the usual linear fixed effects for
categorical variables in a unifying model framework. Such models have been used
in some studies. For example, Adebayo and Fahrmeir (2005) analyzed data on child
mortality in Nigeria using geo-additive discrete-time survival model. In this Chapter,
a flexible geo-additive regression model, similar to Kammann and Wand (2003),
and developed in Fahrmeir and Lang (2001a), which is an extension of Hastie and
Tibshirani (1990) was used under Cox proportional hazards model framework.

Model (14.2), on re-parameterization with inclusion of spatial effects, extending
Hennerfeind et al. (2006), may be written as

�i .t/ D exp.�i .t//;

with

�i .t/ D fo.t/ C
pX

j D1

fj .xij / C fspat .si / C Z
=
i � C bjg C bg; (14.3)

where fo.t/ D log �o.tijg/, suppressing the index (ijg), is the log-baseline effect,
fj is the nonlinear function of a continuous covariate xj, � is the vector of the usual
linear fixed effects, fspat(si) is a structured spatial effect of area or state, such as the
36 states of Nigeria plus the Federal Capital Territory where s, s D1, : : : , 37 is a
spatial index, with si D s if respondent i is from state s, bjg D exp(wjg) are the sub-
cluster specific unstructured random effects (frailties) such as the census block in
our data and bg D exp(wg) are the cluster specific frailties such as ethnic group in
Nigeria.
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The log frailties bjg and bg are typically assumed to be independent and
identically distributed variables from normal distributions (Biggeri et al. 2001).

One practical obstacle to the application of (14.3) has been the lack of available
software. However, the Cox survival model with normal frailty can now be fitted
in BayesX (Belitz et al. 2009). It is a software for Bayesian Inference in structured
Additive Regression Models.

To estimate smooth effect functions and model parameters in (14.3), a fully
Bayesian approach, extended from Lang and Brezger (2004) and Brezger and Lang
(2006) was used. In Bayesian analysis, the proposed model of the observed data
is combined with the prior distributions of all the unknown model parameters and
functions. Therefore in (14.3), a diffuse prior p.�j / / const was assigned for fixed
effect parameters ”. For the function fj of continuous covariate xj, a Bayesian P-
splines prior based on Lang and Brezger (2004) which is an extension of Eilers and
Marx (1996) was assigned. A spline of degree l can be written in terms of a linear
combination of m D s C l B-spline basis functions Bt in which each function f can
be approximated through a linear combination

f .x/ D
mX

tD1

ˇtBt .x/ (14.4)

where ˇ D (ˇ1,, : : : ˇm) corresponds to the vector of unknown regression coeffi-
cients. Smoothness of function f can be achieved within the Bayesian context by a
first or a second order random walk model

ˇt D ˇt�1 C ut ; ˇt D 2ˇt�1 � ˇt�2 C ut (14.5)

for the regression coefficients, with identically distributed Gaussian errors ut �
N.0; �2/ (see Fahrmeir and Lang 2001b). A first order random walk penalizes abrupt
jumps ˇt �ˇt�1 between successive states and a second order random walk penalizes
deviations from the linear trend 2ˇt�1 � ˇt�2. The variance £2 controls the amount
of smoothness of f.

For the structured spatial effects fstr(s), the Gaussian Markov random field prior
(GMRF), which is common in spatial statistics was chosen, see Besag et al. (1991).
This is given as

ffstr.s/jfstr.t/I t ¤ s; �2g � N

0

@
X

t2@s

fstr.t/

Ns

;
�2

Ns

1

A ; (14.6)

where Ns is the number of adjacent sites and t 2 @s denotes that site t is a neighbour
of site s. Thus the (conditional) mean of fstr(s) is an average of function evaluations
fstr(t) of neighbouring sites t. Again �2 controls the amount of spatial smoothness.

A highly dispersed but proper hyper-prior was assigned to the smoothing param-
eter £2 to allows its estimation and for all variance components, an inverse gamma
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distribution with hyper-parameters a and b was chosen, e.g. £2 � IG(a, b). For this
study, inverse gamma priors for the variance components with hyperparameters
a D b D 0.001 were used.

For the unstructured random effects bjg due to the census blocks, independent
and identically distributed Gaussian prior, bjg � N.0; �2

b / was assigned and bg �
N.0; �2

e / assigned for the ethnic group random effects bg.
Fully Bayesian inference was based on the posterior distribution of the model

parameters. Because posterior distribution is numerically intractable in some prac-
tical situations involving structured additive regression models, Markov chain
Monte Carlo (MCMC) method has been widely used in Bayesian Statistics as a
simulation method that allows one to draw random samples from the posterior
and approximates joint distributions involving difficult integrals (Manda and Meyer
2005). The algorithm requires that sampling be done from all full conditional
posterior distributions of the parameters. Each of the full conditional posterior
distributions involves only those terms from the joint posterior distribution that
are relevant to the parameter under consideration. In this study therefore, MCMC
sampling from full conditionals for nonlinear effects, spatial effects, fixed effects,
and smoothing parameters was used for posterior analysis utilizing, the sampling
scheme based on iteratively weighted least squares (IWLS) proposals. This is
generally designed for responses from an exponential family within which the data
used in this chapter fall.

14.5 Data Analysis and Results

14.5.1 Data Analysis

Using the 2005 National HIV/AIDS and Reproductive Health Survey (NARHS),
the impacts of some demographic covariates and covariates about the knowledge
about HIV/AIDS on age at sexual initiation of Nigerian youths aged 15–24 years
were explored. As a result of missing observations in some of the covariates, 4,194
observations were included in the final analysis.

Due to the hierarchical nature of the data, frailty terms were included at two levels
(census blocks nested within ethnic groups) to investigate the impact of unmeasured
covariates and unobserved heterogeneity on the sexual behaviours of the Nigerian
youths.

Analyses were based on the following variables: Outcome variable: Age at sexual
initiation (measured in years). The only continuous independent variable included
in the analysis is the respondent’s age (measured in years) as at the last birthday
prior to the survey. All categorical variables were dummy-coded.

Several models, with and without spatial effects were investigated at the ex-
ploratory data analysis stage, utilizing various explanatory variables which were
thought to be associated with sexual initiation.



288 A.A. Abiodun et al.

Model fit and complexity were compared by examining the distribution of the
posterior deviance using Deviance Information criterion (DIC) (Spiegelhalter et al.
2002). The smaller the value of DIC the better the model.

All analyses were carried out using BayesX. To ensure identifiability, BayesX
automatically imposes sum-to-zero constraints on the parameters representing the
smooth functions fj’s and includes an additional intercept term. This is implemented
during the MCMC by subtracting the mean from the current estimate at each
iteration (Crook et al. 2003).

Models were run by including demographic independent variables, knowledge
variables and combined variables in different analyses. Current age of respondent
was dichotomized as “age (15–19)” (reference category) or “age (20–24)”. Best
model based on DIC was selected for further analyses.

Model Building

M1: Baseline with fixed effects of the six geopolitical zones with no further
covariates

� D fo.t/ C N E=�1 C N W =�2 C SE=�3 C SW =�4 C SS=�5

M2: Baseline, state-specific structured spatial effects with GMRF priors with no
further covariates.

� D fo.t/ C fspat .s/

M3: Baseline, fixed effects of geopolitical zones and fixed effects of combined
demographic and knowledge covariates (U)

� D fo.t/ C N E=�1 C N W =�2 C SE=�3 C SW =�4 C SS=�5 C U
=
i �

M4: Baseline, state-specific structured spatial effects with GMRF priors and both
demographic and knowledge covariates

� D fo.t/ C fspat .s/ C U
=
i �

M5: Baseline, state-specific structured spatial effects with GMRF priors and reduced
set of bio-demographic and knowledge covariates (V)

� D fo.t/ C fspat .s/ C V
=

i �

M6: Same as M5 but also with nonlinear effect of age

� D fo.t/ C fspat .s/ C f .age/ C V
=

i �
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M7: Same as M6 but with census blocks frailties

� D fo.t/ C fspat .s/ C f .age/ C V
=

i � C bjg

M8: Same as M6 but with ethnic groups frailties

� D fo.t/ C fspat .s/ C f .age/ C V
=

i � C bg

M9: Same as M6 but with census blocks frailties nested within ethnic groups
frailties.

� D fo.t/ C fspat .s/ C f .age/ C V
=

i � C bjg C bg

where fo.t/ is the log-baseline effect in all the models, � ’s are the effects of the
usual linear fixed effects of the geopolitical zones, demographic and knowledge
covariates; fspat(s) is a structured spatial effect of the 36 states and Federal capital
territory with Gaussian Markov Random Field (GMRF) prior.

At the second stage of the analyses, models were first fitted with inclusion of
the geographical information as fixed effects of geopolitical zones (M1) and also as
structured spatial effects of states (M2), both without any further covariate included.
More complex models were fitted thereafter by progressively adding covariates.
Analyses at the second stage allowed us to closely examine the possible information
loss due to concealment of geographic information within the highly aggregated
level of geopolitical zone when compared to the less aggregated level of states.

Tables 14.1 and 14.2 present some descriptive information about the covariates
included in the analysis and the median age at sexual initiation among males and
females aged 15–24 years.

14.5.2 Results

Table 14.3 presents the results of DIC of the selected models from the second
stage analyses. It is observed that models without covariates (Models M1 and M2)
were generally worst in performances with DIC values of 12955.8 and 12911.6
respectively. However, Model M1 where geographical information were condensed
into six geopolitical zone at high level of aggregation performed worse than M2

which incorporated geographical information as spatial effect of states at less level
of aggregation.

Clear improvements were seen when covariates were included. Models M3

and M4 were obtained from M1 and M2 respectively by including demographic
and knowledge covariates. Better performances were observed when M3 and M4

were compared with M1 and M2, The DIC were M3 (11856.7) and M4 (11810.5)
respectively.
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Table 14.1 Descriptive information about some selected covari-
ates included in the analysis

Indicators/variables Male (%) Female (%) Total (%)

Locality
Urban 35.9 34.4 35.2
Rural 64.1 65.6 64.8

Education
Qur’anic 9.6 11.8 10.6
Primary 19.7 20.3 20.0
Secondary 63.2 60.1 61.8
Higher 7.5 7.8 7.6

Region
North-Central 17.4 17.8 17.6
North-East 16.3 15.3 15.8
North-West 21.0 23.1 22.0
South-West 17.9 16..8 17.4
South-East 11.6 13.0 12.3
South-South 15.8 14.0 14.9

Religion
Islam 46.6 48.8 47.7
Protestant 37.5 36.0 36.7
Catholic 15.0 14.7 14.8
Traditional 0.9 0.5 0.8

Knowledge about male condom
Ever heard 80.2 55.0 65.3
Never heard 19.7 44.7 34.3

Age of Respondents
15–19 41.6 45.5 43.6
20–24 58.4 54.5 56.4
Mean Age (st.dev) 18.7 (2.84) 18.9 (2.87) 18.8 (2.86)

Knowledge of HIV
Yes 94.8 90.0 92.4
No 5.2 10.0 7.6

Knowledge that a healthy looking person can be HIV positive
Yes 72.4 67.2 59.6
No 27.6 32.8 40.4

Knowledge of cure for AIDS
Yes 86.7 83.3 85.0
No 13.3 16.7 15.0
Total 50.3 49.7 100.0

During the second stage analyses some of the demographic and knowledge
covariates were found not to be significant and were removed from further analyses
and this resulted in the reduced model M5. Model M6 was obtained from M5

by the inclusion of nonlinear effect of age. This was aimed at exploring whether
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Table 14.2 Median age at
first sex among youth 15–24
years

Male (%) Female (%)

Locality
Rural 20.3 17.1
Urban 19.8 17.8

Region
North-Central 19.0 17.6
North-East 22.7 17.6
North-West 23.8 15.5
South-East 19.6 20.2
South-South 19.3 17.8
South-West 19.2 17.8

Total 20.1 17.4

Source: FMOH [Nigeria] (2006, p. 22)

Table 14.3 Model comparison based on the deviance information criterion (DIC)

Model Model description pD DIC

M1 � D fo.t/ C N E=�1 C N W =�2 C SE=�3 15:2 12955.8
CSW =�4 C SS=�5

M2 � D fo.t/ C fspat .s/ 38:1 12911.6
M3 � D fo.t/ C N E=�1 C N W =�2 C SE=�3 49:9 11856.7

CSW =�4 C SS=�5 C W
=

i �

M4 � D fo.t/ C fspat .s/ C W
=

i � 47:4 11810.5

M5 � D fo.t/ C fspat .s/ C V
=

i � 46:5 11804.7

M6 � D fo.t/ C fspat .s/ C f .age/ C V
=

i � 49:4 11758.3
M7 � D fo.t/ C fspat .s/ C bg 140:8 11743.3

M8 � D fo.t/ C fspat .s/ C f .age/ C V
=

i � C bg 104:6 11757.9

M9 � D fo.t/ C fspat .s/ C f .age/ C V
=

i � C bjg C bg 103:5 11723.5

considering nonlinear effect of age will result in a more appropriate model. Models
M7 and M8 included frailty components of census blocks and ethnic groups
respectively in separate analyses and Model M9 included census blocks frailty
nested within that of ethnic group. It was observed that model M9 performed best
of all the models considered in this study. Therefore, discussion of results for all
components of the model is based on model M9.

Results of Fixed Effects

Table 14.4 presents the posterior estimates (means) of the fixed effect parameters in
model M9 along with the standard errors, hazard ratios and 95 % credible intervals.
The results show significant gender differentials of age at sexual initiation. Females
were more likely to initiate sexual activities earlier than their male counterparts,
(hazards ratio of male to that of female is 0.690). As observed, respondents in the
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Table 14.4 Posterior estimates of the fixed effects of Bio-demographic covariates Model M9

Variable Coefficient Std. error 2.5 % 97.5 %
Hazard
ratio 2.5 % 97.5 %

Male �0.373 0.051 �0.474 �0.269 0.689 0.623 0.764
Age (20–24) �0.228 0.137 �0.514 �0.198 0.793 0.598 0.820
Primary �0.525 0.080 �0.686 �0.369 0.592 0.504 0.691
Secondary �0.432 0.075 �0.576 �0.274 0.649 0.562 0.760
Higher edu. �0.542 0.106 �0.743 �0.332 0.582 0.476 0.717
Urban �0.207 0.063 �0.334 �0.081 0.813 0.716 0.922
Singles �1.187 0.058 �1.303 �1.077 0.305 0.272 0.341
Ever heard of AIDS 0.012 0.112 �0.207 0.251 1.012 0.813 1.285
Knew one who died

of AIDS
0.049 0.087 �0.125 0.214 1.050 0.882 1.239

Knew correct of
modes of HIV
transmission

�0.144 0.057 �0.248 �0.032 0.866 0.780 0.969

Healthy looking
person can be
HIV positive

0.143 0.058 0.029 0.253 1.154 1.029 1.288

Variance of
random effects

Model M7 0.058 0.020
Model M8 0.014 0.015
Model M9 (census

blocks)
0.044 0.018

Model (Ethnic
group)

0.014 0.016

cohort of age group 15–19 years initiated sexual activity earlier than those in age
group 20–24 years. On level of educational attainment, respondents with higher
education were less likely to initiate sexual activities at younger age than their
counterparts with no formal education. Muslims, Protestant and Catholic youth were
more likely to delay sexual debut than those belonging to other or no religions.
Results also show that respondents living in urban areas were likely to initiate sexual
activities later than those living in the rural areas. Ever heard of diseases that can
be transmitted through sexual intercourse (STIs) lowered the risk of early sexual
initiation than those who never heard of it. Also, respondents who never heard of
AIDS were likely to initiate sex earlier than those who have heard of it. Respondents
with correct knowledge of mode of HIV transmission were likely to delay sexual
initiation compared with those with incorrect knowledge.

Results of Spatial Effects

Map of Nigeria showing the 36 states and the Federal Capital Territory is shown in
Fig. 14.1. Results of spatial effects for models M2 and M9 are presented in Fig. 14.2.
Shown are the posterior means (a) and (c) with the 95 % posterior probabilities
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Fig. 14.1 Map of Nigeria showing 36 states and the Federal Capital Territory

of spatial effects (b) and (d). It is evident that there exist geographical variations
at state level on age at sexual initiation in Nigeria. From the maps of posterior
probabilities (b) and (d), states with black colours are associated with negatively
significant spatial effects implying that early sexual initiation was experienced in
those states. States with white colours were associated with positively significant
spatial effects implying that respondents in those states are likely to delay sexual
initiation. However, the spatial effects in states with grey colour are not significant,
implying that the credible intervals include zero (0).

Regarding the impact of relevant covariates in this model, it is clearly observed
that when no other covariates were controlled for (model M2), as presented in the
upper panel (b), early sexual initiation was prominent in Abia, Anambra, Borno,
Ebonyi, Enugu, Imo, Kano and Plateau states. On the other hand, states associated
with significant delayed sexual debut include Bayelsa, Cross-River, Delta, Jigawa,
Katsina, Kebbi, Kwara, Ondo and Rivers. Model M9 explored net-effect of spatial
variations in age at sexual initiations after controlling for other covariates. Results
are shown in (c) and (d) at the lower panel of Fig. 14.2. Evidently, significant spatial
variations of state of residence of the respondents were observed. Furthermore,
a clearly North – South divide was noticed with respondents in the North being
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Fig. 14.2 (a) Spatial effects of states on age at sexual initiation and (b) 95% credible interval for
posterior probabilities for model M2 (upper panels) and (c) Spatial effects of states on age at sexual
initiation and (d) 95% credible interval posterior probabilities model M9 (lower panels)

associated with early initiation of sexual debut while their counterparts in the South
were found to be associated with delayed sexual debut. For instance, respondents
in Jigawa and Katsina states that were associated with delayed sexual initiation and
respondents in Sokoto, Zamfara, Yobe and Kaduna where spatial effect were non-
significant when no further covariates were adjusted (model M2); were observed
to be associated with early sexual initiation when covariates were controlled. In
a similar manner, the early sexual initiation that was evident in Abia, Anambra,
Ebonyi, Enugu, and Imo states when no further covariates were controlled for;
disappear after controlling for other covariates.

Non-Linear Effects

Figure 14.3 shows the non-linear effects of the baseline fo(t) of age at sexual
initiation (left panel) and current age of the respondents (right panel). It is clearly
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Fig. 14.3 Non-linear effects of baseline and respondents’ age

observed from the Figure that the relationship between age at first sex and current
age of the respondent is non-linear. This has provided us with an insight into the
functional pattern of the respondent’s age in relation to age at sexual debut. With
this, considering age as a linear effect would have resulted in spurious and unreliable
conclusion. An approximately inverse U-shape feature is evident. This implies that
most of the respondents aged 20 years have had their first sexual experience.
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Results of Analysis with Frailty

Prior to the inclusion of frailty components in the models, Model M6 which included
geographical information as structured spatial effects with GMRF priors in the
model and with reduced set of demographic and knowledge covariates was best
in terms of DIC (11758.3).

Frailty components due to census blocks, ethnic group and census blocks nested
within ethnic group were included in Model M6 to produce Models M7, M8 and M9

respectively. This enables us see the impact of frailty (unobserved heterogeneity) in
the data. The results are presented in Table 14.3 with their respective DIC values.
It is observed that model M7 with census blocks frailty incorporated had a better fit
(DIC of 11743.4) than model M6 which controlled for only structured spatial effects
of states. However, incorporation of only random effects (frailty) due to ethnic group
(M8) did not make appreciable impact on the model fit (DIC D 11757.9 vs. 11758.3).
Fitting the model with nested frailties is observed from the table to have the overall
best performance with DIC of 11723.5.

The implication is that when data contain identified clusters, analyses that take
clustering information into consideration through random effect, in addition to the
structured spatial effect is capable of providing more robust estimates than those that
ignore it. From Table 14.4, census blocks accounted for more frailty (unobserved
heterogeneity) in the data than ethnic group. As observed, when only census blocks
frailty was incorporated (Model M7), the frailty variance was 0.058 (standard error
0.020). However, when only ethnic group frailty was incorporated (Model M8),
the frailty variance was 0.014 (standard error 0.015). There were slight reductions
in variances of frailties when census blocks were nested within ethnic groups
(Model M9). The variances were 0.044 (standard error 0.018) and 0.014 (standard
error 0.016) for census blocks and ethnic groups respectively. The implication of this
is that the observations within the census blocks were more correlated than those
within the ethnic groups. The between-cluster differences in these models could be
due to either the observed individual or normative factors or to other unmeasured
community factors.

14.6 Sensitivity Analysis

Sensitivity to the choice of hyper-parameters a and b was also investigated in this
study. Various values of hyperparameters a and b were set for models with GMRF
priors. These include IG(1e–03, 1e–03) (default in BayesX), IG(1e–05, 1e–05)
and IG(1e–08, 1e–08). The performances were evaluated based on mixing and
convergence. The results are presented in Fig. 14.4. It is observed that the models
were not sensitive to the choice of priors and hyper-priors.
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Fig. 14.4 Selected sampling paths for structured spatial effects and different choices for the
parameters a and b of the IG(a, b) hyperpriors for GMRF priors
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14.7 Discussion and Conclusions

A nested frailty model was applied to data from the 2005 National HIV/AIDS
and Reproductive Health Survey (NARHS) on age at sexual initiation for males
and females aged 15–24. This presented an extension to existing frailty models for
sexual initiation data. In its simplest form, it was a two-level model, which included
heterogeneity on both census blocks and ethnic groups’ levels.

Inference was fully Bayesian with Markov Chain Monte Carlo (MCMC) sim-
ulation techniques. The approach allowed flexible modelling of small area district
effects, which is of great advantage compared to the usual parametric and frequentist
approach.

Findings from the descriptive analysis revealed a higher median age at first sex
among male youth (implying delayed sexual debut) compared with their female
counterparts. Furthermore, a rural-urban differential in median age at first sex was
evident. Findings showed that gender had significant influence on sexual initiation.
It was found that females were more likely to initiate sexual activities earlier than
their male counterparts. Early sexual initiation was also found in the cohort of
younger respondents than the older cohort. Highly educated youth were less likely
to initiate sexual activities at younger age than the non-educated. These results are
consistent with the results of Agha et al. (2006). The implication is that, policy
towards ‘education for all’ indirectly resulted in delayed sexual debut. Therefore,
policy makers should look at the issue of ensuring that every youth is empowered to
be educated in that this can compliment sexual reproductive health and rights.

Though religious affiliation does not appear to have significant influence on age
at sexual initiation, respondents who were Muslims, Protestant and Catholic mem-
bers were observed to have reported late sexual initiation than those belonging to
other religion or no religion. Respondents living in urban areas were associated with
delayed sexual debut compared to the rural dwellers. This might be connected with
their exposure to education relating to sexual activities. Furthermore, respondents
living in urban areas were also more likely to have access to information through
various media such as radio, television and newspapers on sexual reproductive
health and right than those in rural areas. Such information may be through
campaigns on HIV/AIDs and other reproductive health. Knowledge about sexually
transmitted infection including HIV and AIDS were also significantly associated
with delayed sexual debut. Correct knowledge of modes of HIV transmission
were significant factors associated with age at first sexual initiation. Respondents
with correct knowledge of mode of HIV transmission were likely to delay sexual
initiation compared with those with incorrect knowledge. Therefore, government,
policy makers and donors should strive towards ensuring universal coverage of
information on sexual reproductive health including HIV and AIDS.

Regional variation was also noticed with females from North-West reporting
the lowest age at first sex compared to their counterparts from other geopoliti-
cal zones. With the incorporation of spatial effects, rather than concluding that
respondents from the entire South-West and South-South have delayed sexual
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initiation compared to those in the North-Central, which may conceal some useful
information, exploration of spatial effect at a highly disaggregated level of state
will avail researcher opportunity to identify states associated with early sexual
initiation compared with those associated with delayed sexual debut. Through
this, policy makers and donors can prioritize the use of available scarce resources
in a more prudent way. Again, with findings on National Educational survey
showing that states in the North are associated with lower educational attainment
especially among females in the North (NPC [Nigeria] and RTI International 2011).
Coupled with early sexual initiation among females in the North, this provides
some explanation for the early sexual initiation in those States. Lower educational
attainment that is evident among northern women is also known to be a determinant
factor to early marriage (also more prevalent in the North) is also a confounder
to early sexual initiation (Manda and Meyer 2005). From the analysis in this
chapter, most of the states associated with early sexual initiation are in the North-
East and North-West of Nigeria. This may be connected with the socio-cultural
background and religious belief which encourage early marriage. The predominant
religion in these parts of the country is Islam. A common view among Muslims in
Nigeria is that if a female child matures under the parent’s roof, there is likelihood
that she will engage in premarital sexual activities and this is against Islamic
doctrine. This therefore, possibly resulted in early marriage with majority having
no formal education. Findings from a similar national survey on Education Data
for Decision-Making (National Population Commission [Nigeria] and ORC Macro
2004) revealed that about 30 % of youth age 15–24 years have no formal education.
Furthermore, more than half of the male respondents from the North-West (52.7 %)
and North-East (50.7 %) had no formal education compared with their counterparts
in the North-Central (22.3 %), South-East (11.5 %), South-South (7.1 %) and South-
West (14.1 %). The trend is similar for females with about 78.1 % in North-West and
72.8 % in North-East without formal education. This development might possibly
suggest a higher tendency for early marriage with attendant early sexual initiation
in these regions.

Analyses in this Chapter have also helped to clearly discern states within a
geographical region with similar socio-cultural background that are associated with
early sexual initiation rather than assuming that early or delayed sexual debut is
related to the whole region. Findings from the spatial analysis showed that states
such as Kwara, Ondo, Kebbi were associated with delayed sexual initiation while
Borno, Bauchi, Anambra states were associated with early sexual initiation. Besides
the spatial effect, this analysis has allowed control for unobserved heterogeneity
at cluster level. This has assisted in accounting for the effect of some unobserved
covariates.

One benefit of this modelling technique is that controlling for clustering invali-
dates the wrong independent and identical assumption often being made regarding
survival time observations that are clustered. Two levels of frailty, census blocks
and ethnic groups were incorporated separately as well as census blocks nested
within ethnic groups. Model that accounted for unobserved heterogeneity due to
census blocks was observed to be more adequate than the ones that ignored it,
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while ethnic group did not seem to provide obvious frailty information in the data.
The insignificant impact of the random effect of ethnic group might be due to the
aggregation of ethnic groups in Nigeria into 23 in which case some differences
due to ethnicity were possibly coarsened. However, model that included census
blocks nested within ethnic groups was superior to all other models in terms of
DIC. Promoting delayed sexual initiation among young people is an important
component of the ‘ABC’ of HIV and AIDS prevention strategies, especially for
youth in the countries with generalised epidemics of the virus as in Nigeria. Sexual
abstinence serves as a protection against HIV infection as well as forestalling
unwanted pregnancies among youth. The Ugandan experience (where incidence
rates of HIV among youth have consistently dropped over the years) is a clear
example of the success of abstinence and delayed sexual debut among youth in
reducing the incidence of both unwanted pregnancies as well as HIV infections
(Hogle 2002). It is, therefore, believed that if an abstinence campaign is mounted to
equip young people with information, motivation and behavioural skills needed to
abstain as well as social support to do so, young people will abstain or at least delay
sexual debut.

It is expected that findings from this study will better assist authorities and policy
makers in various states of Nigeria to have a deeper understanding of what happens
in their states while planning and designing HIV prevention interventions. Based
on these, appropriate policies on interventions can be formulated and strategies to
address issues related to the delay of sexual debut can then be developed.

This Chapter is also expected to assist policymakers in appropriate targeting and
prioritization of interventions. This will enhance an effective utilisation of scarce
resources, which is predominant in developing countries like Nigeria. Furthermore,
possible dialogues and consultations with parents, opinion leaders, religious leaders,
community leaders as well as traditional heads/rulers will go a long way to assist
in the effective and proper integration of life building and negotiation skills into the
educational curriculum in states where earlier sexual debut is prevalent.
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Chapter 15
Assessing Geographic Co-morbidity Associated
with Vascular Diseases in South Africa: A Joint
Bayesian Modeling Approach

Ngianga-Bakwin Kandala, Samuel O.M. Manda, and William Tigbe

15.1 Introduction

The growing incidence of chronic conditions associated with changing lifestyles
is creating new challenges for African countries; most of which are struggling
with widespread infectious diseases. The dangers of infectious diseases such as
malaria, HIV/AIDS and tuberculosis in Africa are well-known. However, the
growing public health problems associated with lifestyle and chronic diseases such
as heart disease, stroke, obesity, diabetes, cancer, as well as those associated with
smoking, alcohol and drug abuse are not widely recognised. Changing lifestyles and
dietary patterns, declining levels of physical activity and an increasingly long-lived
population all play a role as African countries move through stages of nutritional
and epidemiologic transitions (Mensah 2008). The shift from infectious to chronic
diseases is accelerating: it’s projected that by 2020, chronic diseases will account
for almost three-quarters of all deaths worldwide and that 60 % of the burden of
chronic diseases will occur in developing countries (WHO 2011).

In particular, stroke and high blood pressure are major causes of death and
disability worldwide. Although comprehensive stroke surveillance data for Africa
are lacking, the available data show that age-standardised mortality, case fatality
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and prevalence of disabling stroke in Africa are similar to or higher than in most
high-income regions. In Africa, more than 90 % of patients with haemorrhagic
stroke and more than half with ischaemic stroke are found to have high blood
pressure (Mensah 2008). Likewise, awareness of hypertension and its prevention,
treatment and control remain very low in Africa even though recent surveys show
an increasing prevalence of the disease consistent with the nutritional and epidemi-
ological transition in the region. Renewed emphasis on improved surveillance and
the prevention and control of high blood pressure and stroke in Africa is needed.

However, despite the growing incidence of chronic diseases, infectious diseases
show no signs of abating. Despite the success of vaccination programmes for polio
among others, HIV/AIDS, tuberculosis and malaria remain prevalent and difficult
to control. More than 95 % of deaths due to infectious diseases, most of which are
preventable, occur in the developing world (Brenzel et al. 2006). During the next
20–30 years, these diseases will continue to burden major parts of the population,
while emerging diseases such as SARS, Ebola and avian flu as well as antibiotic
resistant strains of already known bacteria will also play a major role in Africa. The
combined threat of chronic and infectious diseases is creating a “double burden of
disease” on developing nations, which needs a joint urgent action by scientists and
governments to try to tackle the burden.

The complex interactions between chronic and infectious diseases, such as the
relationship between diabetes and tuberculosis, for instance, are the subject of
increasing study. On the other hand the interactions between chronic diseases,
such as hypertension, stroke, heart attacks and high blood cholesterol are not well
documented as well as their interplay with environmental and lifestyle factors.
Various ways of tackling these interactions are being identified. Preventive actions
and good management are obviously major priority concerns, given the myriad
health risks associated with chronic diseases. Investment in research is another
priority, as are campaigns aimed at encouraging healthy and active lifestyles. Col-
laborations between public, private and voluntary organisations are ways forward,
given the fact that most public health funds are devoted to tackling the ravages
of infectious diseases. Most importantly, however, government health policy and
infrastructure must ensure that all African populations enjoy sufficient nutrition and
decent levels of healthcare and that all are made aware of the benefits and dangers
of the populations’ ever changing lifestyle choices.

Co-morbidity between vascular conditions such as hypertension, heart attacks
or angina, stroke and high blood cholesterol is common in Sub-Saharan Africa.
However, little is known about environmental and geographic overlaps in these
illnesses. The overlapping epidemiology and aetiology of the diseases may be
improved by pooling data across the diseases in a unified way using joint spatial
modelling. We use recently developed multivariate spatial disease models to
analyse more than one vascular disease simultaneously. These models allows for
quantification of correlation structures between relative risks of related diseases
as well as enabling common and disease-specific observed covariate effects and
spatial patterns at the same time (Langford et al. 1999; Knorr-Held and Best 2001;
Dabney and Wakefield 2005). Thus, joint spatial models have both substantive and
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methodological advantages over a univariate spatial model considered in Chap. 11
for an analysis of high blood pressure in South Africa. These joint mapping models
have been used to model and estimate risks of related cancers (Held et al. 2005;
Downing et al. 2008), childhood illnesses (Kazembe et al. 2007) and childhood
cancer and diabetes (Manda et al. 2009).

In order to estimate spatial similarities and differences in the risk of four vascular
diseases, high blood pressure, heart attack, stroke and high blood cholesterol in
South Africa, we modelled and fitted a shared component model which jointly
analyses spatial variations of two or more diseases (Knorr and Best, Dabney).
The model fits common and uncommon risk factors where the risks for different
diseases are described by log-odds model on binary responses pertaining to disease
status at the subject level. The log odds are linearly modelled using the effects
of individual confounding variables (gender, age, ethnicity, education, place of
residence, co-morbidity as measure by body mass index (BMI) and lifestyle factors
measured by smoking and alcohol drinking) and district-level spatial random
effects. The resulting spatial residuals of risks are decomposed into shared (common
to all vascular diseases) and disease-specific structured spatial random terms.
Additionally, we allowed for unstructured unshared spatial terms to account for
any extra binomial variation. The common and disease-specific spatially structured
effects are considered as latent variables denoting common and disease-specific risk
factors operating at the district level.

We present this model in the context for an analysis for co-morbidity of four
vascular diseases; high blood pressure, heart attack or angina, stroke and high
blood cholesterol in South Africa We considered the adult health data from the
1998 South African Health and Demographic Survey (Department of Health 2002),
but aggregated to the current 52 health districts in the country. All these vascular
diseases are known to share unhealthy diet as a common risk factor. Nonetheless,
in this paper, we investigate the possibility of other different risk factors for
these diseases, or even the presence of an interaction effect but with different
spatial patterns. By applying the joint spatial modelling approach, the aims of this
chapter are four-fold: (1) describing the geographic pattern of hypertension, heart
attack or angina, stroke and high blood cholesterol at sub-district level in South
Africa; (2) assessing the influence of vascular severity, adjusting for confounding
individual-level covariates; (3) estimating the correlation between diseases at sub-
district level; and (4) investigating common and disease-specific covariate effects
and spatial patterns of observed and unobserved risks.

15.2 Methods

15.2.1 Individual-Level Data

South African Demographic and Health Survey (SADHS) used a stratified sample
of 972 enumeration areas (EAs) at the first stage sampling. For a second stage
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sampling, a systematic sample of households was undertaken within each of the
selected EAs, and in total 12,860 household were selected. Data collection was done
using five questionnaires of which the adult health questionnaire was applied to all
adults in every alternate household. The adult questionnaire collected information
on adult health conditions using questions about risk factors, self-reported chronic
conditions and heath service utilisation. Additionally, anthropometric and blood
pressure measurements were done (Department of Health 2002). The adult health
information has been instrumental in identifying new directions for the national and
provincial health programmes in the country. Prevalence and treatment of chronic
health conditions are crucial indicators in evaluating policies and programmes and in
making projections for the future. As part of the larger international Demographic
and Health Surveys programme, the health data collected contributes to a global
commitment to improving lives worldwide.

We used a number of individual variables: The exposure variable investigated
is the respondent geographic location (province of residence) in addition to var-
ious control variables on socio-demographic, lifestyle and co-morbidity factors
known to be associated with vascular diseases. The respondent’s age at the
time of survey was included as an indicator of birth cohort of the participant.
Other predictor variables included were socio-demographic factors such as gender,
ethnicity (black/African vs. coloured, white and Asian/Indian), and education of
the respondent (no education vs. Primary, secondary and higher education), and
body mass index (BMI) (normal vs. underweight, overweight/obese); two lifestyle
factors; smoking (non-current smoker vs. current smoker), drinking status (non-
current alcohol vs. current alcohol drinker), and finally place of residence (rural
vs. urban) as an environmental factor. A total of 13, 827 adults (aged 15 years or
above) provided health information, of which 1,930 (13.96 %), 630 (4.56 %), 136
(0.98 %) and 173 (1.25 %) were high blood pressure, heart attack or angina, stroke
and high blood cholesterol cases, respectively. The potential risk factors for these
four vascular diseases available from the data are presented in Table 15.1. A majority
of the sampled adult were females (58.4 %) and were, as expected of black/African
origin. The mean age was 38.54 years a standard deviation of 17.90 years; about
43 % were overweight or obese. There were 25 % and 28 % current smokers and
alcohol drinkers in the sample (Table 15.1).

15.2.2 Health District Level Data

An overriding objective of this study was to model jointly the prevalence rates
of four vascular diseases: high blood pressure, heart attack or angina, stroke and
high blood cholesterol in South Africa. In this context, we set out to explore the
patterns of spatial correlation amongst them, and to estimate the relative weight of
the shared risk factors for each vascular disease, both before and after adjustment
for individual demographic, socioeconomic and lifestyle background. For the spatial
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Table 15.1 Subject level
socio-demographic, body
mass index and lifestyle risk
factors used in the analysis of
vascular diseases in South
Africa, SADHS 1998

Characteristic Summary

Gender of subject (N (%))
Female 8,074 (58.39)
Male 5,753 (41.61)

Age in years (Mean (SD)) 38.54 (17.90)

Education (%)
No education 1,937 (14.08)
Primary 4,030 (29.29)
Secondary 6,928 (50.35)
Higher 866 (6.29)

Population group (N (%))
Black/African 10,457 (75.76)
Coloured 1,780 (12.90)
White 1,103 (7.99)
Indian 462 (3.35)

Residential setting (N (%))
Rural 6,074 (43.93)
Urban 7,753 (56.07)

Body Mass Index (N (%))
Underweight 1,323 (9.77)
Normal 6,342 (46.81)
Obese/overweight 5,850 (43.18)

Current smoker (N (%)) 3,460 (25.02)
Current alcohol drinker (N (%)) 3,919 (28.34)

Total (N (%)) 13,827 (100)

Table 15.2 A summary of the district prevalence rates for each vascular
disease

Vascular disease Mean Median Minimum Maximum

High blood pressure 15:55 15:18 3.88 50:00

Heart attack 5:66 4:89 0.00 40:00

Stroke 0:92 0:79 0.00 3:51

High blood cholesterol 1:19 0:76 0.00 9:38

analysis, we used the health district as the unit at which the residual spatial risk in
the prevalence rates we estimated. The District Health System (DHS) is the basic
channel through which the delivery of Primary Health Care is undertaken in South
Africa (Day et al. 2010).

The minimum number of sampled adults in a health district was 10 and the
maximum was 900, with mean and median number of 266 and 235. A summary
of the district prevalence rates for each of the four vascular diseases is shown in
Table 15.2, and the nonparametric correlations amongst the ward prevalence rates
are shown in Table 15.3. Vascular disease of high blood pressure and heart attack
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Table 15.3 Correlations between the standardised incidence ratios for
each condition

Blood
pressure

Heart
attack Stroke

High blood
cholesterol

High blood pressure 1.00 � � �
Heart attack 0.33 1.00 � �
Stroke �0.05 0.04 1.00 �
High blood cholesterol 0.17 �0.12 0.31 1.00

Fig. 15.1 High blood pressure prevalence by health district in South Africa

were more prevalent whilst stroke and high blood cholesterol were less prevalent.
There were 15 districts out of the 52 that had a prevalence of 0 % for stroke, and
13 out of 52 had a prevalence of 0 % for high blood cholesterol. The correlation
amongst the districts prevalence rates was highest for high blood pressure and heart
attack (0.33), followed by stroke and high blood cholesterol (0.31). There were
negative correlations between high blood pressure and stroke (�0.05) and between
heart attack and blood cholesterol (�0.12); incidentally these negative correlations
involve the diseases that are very rare. The disease-specific prevalence maps in
Figs. 15.1, 15.2, 15.3, and 15.4 show a large amount of noise especially for the
rare diseases (Figs. 15.3 and 15.4), making it difficult to discern any geographical
trends in the prevalence rates. Nonetheless, some of the highest prevalence of high
blood pressure and heart attacks are in the districts in the south-western parts of the
country and the lowest in north-eastern parts. For stroke and high blood cholesterol,
prevalence rates appear to be relatively evenly distributed across the country.
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Fig. 15.2 Heart attack prevalence by health district in South Africa

Fig. 15.3 Stroke prevalence by health district in South Africa
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Fig. 15.4 High blood cholestroal prevalence by health district in South Africa

15.2.3 Statistical Methods

There are J D 52 districts, and district j has Nj adults out of the total sampled.
We let Yijk be a binary response corresponding to subject i in district j for
vascular disease k.j D 1; : : : ; 52I i D 1; : : : ; Nj I k D 1; : : : ; 4/ taking values 1

if the subject has had the disease and 0 otherwise at the time of the survey.
Furthermore, suppose Xij is the vector of risk covariates associated with subject ij .
For the unaccounted variation in the risks of the diseases, unobserved district-spatial
variation Ujk is introduced for district j and vascular disease k. We are working
within the framework of conditional models where conditional on spatial random
effects U D .Uj1; Uj 2; Uj 3 Uj 4/ and the disease-specific fixed effects parameters
ˇk , the binary responses Yijk are independent Bernoulli random variables with
parameters  ijk , being the probability of subject ij having disease k. In order to
model the probabilities of the observed and unobserved spatial variation, we use a
logit link function on the probabilities:

log

�
 ijk

1 �  ijk

�
D ˛k C ˇ0

kXij C Ujk

where ˛k
0s are the disease-specific log-odds constant terms.

In order to model co-morbidity among the four vascular diseases, we can use
a multivariate normal prior to assess spatial correlations amongst the four disease
spatial effects Uj1; Uj 2; Uj 3 and Uj 4.As an alternative, we use a shared-component
model where one shared component, relevant to all the four vascular diseases,
is included. The shared spatial component could be interpreted as a proxy for
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variations in lifestyle and nutritional uptake choices. Within the symmetric formu-
lations of the shared component model, we also include disease-specific spatial
components for each of the four diseases (Knorr-Held and Best 2001; Held et
al. 2005). Thus the mode decomposes each of the four spatial random effects
Uj1; Uj 2; Uj 3 and Uj 4 into a common spatial and disease specific component. The
resulting model enables us to determine the extent of the variation exhibited through
common as well as specific geographical patterns in the disease risks. We also
allow for disease-specific unstructured heterogeneous effects "jk to account for
possible extra-binomial variation that is not explained by the included fixed effect;
and common and specific structured spatial terms.

Thus, the four diseases are modelled as follows on log-odds scale:

log

�
 ij1

1 �  ij1

�
D ˛1 C ˇ0

1Xij C �1Uj C Uj1 C "j1

log

�
 ij 2

1 �  ij 2

�
D ˛2 C ˇ0

2Xij C �2Uj C Uj 2 C "j 2

log

�
 ij 3

1 �  ij 3

�
D ˛3 C ˇ0

3Xij C �3Uj C Uj 3 C "j 3

log

�
 ij 4

1 �  ij 3

�
D ˛4 C ˇ0

4Xij C �4Uj C Uj 4 C "j 4

where Uj1; Uj 2; Uj 3 and Uj 4 are the log odds for the risk of high blood pressure,
heart attack or angina, stroke and high blood cholesterol, respectively, in health
district j . The parameters ˛k

0s and ˇk
0s are the disease-specific baseline risk and

fixed effect risks associated with the risk vector Xij ; and Uj is the shared component
common to all four vascular diseases. The unknown parameters � allow for different
risk gradients for common latent risk on the four vascular diseases.

For a Bayesian model to be completed, all unknown parameters, whether for
fixed or random effects, are given prior distributions. The shared and specific spatial
random effects Uj and Uj1; Uj 2; Uj 3 and Uj 4 were given a prior distribution to
capture local dependence in space using intrinsic conditional autoregressive (ICAR)
normal models (Besag et al. 1991). We used districts sharing a common boundary
with the district under investigation to define a neighbourhood set. The disease-
specific heterogeneity terms were modelled to arise from a multivariate normal
prior distribution with covariance matrix † to allow for correlations amongst the
four vascular diseases. A flat prior was assigned on the overall disease-specific risk
terms ˛k and the fixed effects were assigned independent Normal .0; 103/ prior
distributions. Further details about the ICAR normal prior for modelling spatially
structured effects can be found in Chap. 8.

The logarithms of the scaling parameters were assigned independent
Normal .0; 5/ prior distributions, and the shared and specific component
precision parameters were independently assigned a conjugate hyper-prior Gamma
(0.5, 0.0005) distribution (Richardson et al. 2006). The precision matrix †�1

http://dx.doi.org/10.1007/978-94-007-6778-2_8
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for the multivariate normal unstructured random effects was assigned a Wishart
prior distribution. The shared component model for the four vascular diseases
was estimated using the WinBUGS software (Spiegelhalter et al. 2004). Three
independent chains were run for 40,000 iterations, using trace plots of precision
parameters to assess convergence; we obtained rapid convergence by 5,000
iterations. Thus, we took the first 5,000 iterations as being in the burn-in period, and
used the remaining combined 105,000 iterations from the three chains for posterior
summaries.

15.3 Results

Figures 15.5, 15.6, 15.7, 15.8, and 15.9 show the covariate-adjusted smoothed
estimated of the log-odds for the shared component, and for the four disease-specific
components. The shared component, which can be taken to represent nutrition and
lifestyle not accounted for in the model, had a larger effect on vascular disease
prevalence in south-western areas of the country. Unlike the unevenness evident
in the unadjusted unsmoothed (raw) prevalence maps (Figs. 15.1, 15.2, 15.3, and
15.4), now the disease-specific log-odds show clear spatial patterns. In particular,
the spatial distributions of high blood pressure and stroke are concentrated highly in
south-western parts of the country; the risk of heart attacks has a high concentration
in the districts around the central north-eastern corridor; and high blood cholesterol
is concentrated more in the top north-eastern corridor.

Fig. 15.5 Shared component
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Fig. 15.6 High blood pressure specific spatial component

Fig. 15.7 Heart attack specific spatial component
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Fig. 15.8 Stroke specific spatial component

Fig. 15.9 High blood cholesterol specific spatial component
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Table 15.4 Relative weights of each vascular disease for the shared component

Disease Blood pressure Heart attack Stroke

Blood pressure 1.00
Heart attack 1.071 (0.317–2.602) 1.00
Stroke 1.070 (0.353–3.211) 1.085 (0.401–2.961) 1.00
High blood cholesterols 1.098 (0.329–3.511) 1.116 (0.345–2.870) 0.960 (0.312–3.580)

The figures represent the weight of the vascular disease listed along the top row relative to those
listed along the left hand side. If the RR is >1.00 then the vascular disease along the top row has
more weight

Table 15.4 shows the level of relative weight or effect that the shared component
has for the different vascular diseases. The shared component, which was taken to
represent nutritional and lifestyles not accounted for in the models, affected high
blood pressure more slightly than the other three vascular diseases, but the relative
weights were not statistically significant. The component was also slightly more
important for heart attack than for stroke and high blood cholesterol and again this
was not significant. However, stroke was less affected by the component relative to
high blood cholesterol.

Table 15.5 shows the risks of vascular diseases on the odds ratio (OR) scale by
the modelled risk factors. A male adult is associated with a reduced risk of high
blood pressure and heart attack (OR D 0.45, 95 % CI 0.39–0.51, and OR D 0.57,
95 % CI 0.46–0.69), respectively, and a higher risk for high blood cholesterol
(OR D 1.56, 95 % CI 1.10–1.2.26), but with equal risk for stroke (OR D 1.01, 95 %
CI 0.63–1.54) compared to a female adult. Increasing age is positively associated
with increased risks of all four vascular diseases (OR D 22.49 (17.58–29.23), 11.04
(7.54–16.54), 14.41 (5.21–80.40), 5.07 (2.48–11.55)), respectively, for high blood
pressure, heart attack, stroke and high blood cholesterol, in the age group 65 years
or above compared to 14–24 year group. There appears to be a positive association
between increasing education and an increased risk of high blood cholesterol, whilst
the opposite was seen for heart attack and stroke; but the relationship with high
blood pressure is not systematic.

There is a statistically significant association between population groups and
risk for high blood cholesterol (OR D 5.96 (3.19–11.06), 20.88 (12.26–35.33),
20.01 (10.77–44.02), respectively, in Coloureds, Whites and Indians/Asians com-
pared to the Blacks/Africans). Ethnicity was also significantly associated with
high blood pressure where Coloureds and Indians were at higher risk compared
to Blacks/Africans. Whites are significantly at higher risk of heart attack that
Blacks/Africans. Being White slightly increases the risk of stroke, and the risk
decrease among Coloureds and Indians but the effects are not significant. Living
in an urban environment impacts adversely on high blood pressure (OR D 1.36
(1.18–1.58)), whilst the opposite holds for high blood cholesterol (OR D 0.62 (0.39–
0.99)). Urban residence has negative and positive effects, respectively on heart
attack and stroke, but both effects are not significant. Being overweight or obese
significantly decreases the risk for all of the four vascular diseases: high blood
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Table 15.5 Odds ratio of vascular disease prevalence by socio-demographic, body mass and
lifestyle factors

High blood pressure Heart attack Stroke
High blood
cholesterol

Male (YesD1,
No-0)

0.45 (0.39–0.51) 0.57 (0.46–0.69) 1.01 (0.63–1.54) 1.56 (1.10–2.26)

Age
14–24 years 1.00 1.00 1.00 1.00
25–34 years 2.21(1.69–2.86) 2.99(2.03–4.44) 4.84(1.77–27.95) 2.70(1.35–6.10)
35–44 years 4.45(3.46–5.76) 3.55(2.44–5.38) 6.13(2.17–33.87) 2.52(1.22–5.45)
44–54 years 10.83(8.56–13.91) 5.92(4.11–9.03) 10.33(3.89–62.76) 5.36(0.19–11.54)
55–64 years 17.35 (13.5–22.4) 9.37(6.52–14.17) 13.75(4.76–70.09) 4.70(2.36–10.19)
>D 65 years 22.49(17.58–29.23) 11.04(7.54–16.54) 14.41(5.21–80.4) 5.07(2.48–11.55)

Education
No education 1.00 1.00 1.00 1.00
Primary 1.15(0.98–1.35) 0.98(0.78–1.23) 0.67(0.39–1.12) 1.13(0.49–2.81)
Secondary 1.01(0.85–1.23) 0.70(0.53–0.91) 0.58(0.31–1.03) 1.88(0.90–4.64)
Higher 0.96(0.71–1.30) 0.35(0.19–0.61) 0.55(0.18–1.34) 2.64(1.18–7.75)

Population
group
Black/African 1.00 1.00 1.00 1.00
Coloured 1.36(1.09-1.68) 0.98(0.72–1.32) 0.86(0.43–1.57) 5.96(3.19–11.06)
White 1.07(0.86–1.34) 1.65(1.17–2.31) 1.75(0.87–3.43) 20.88(12.26–35.33)
Indian 1.49(1.07–2.06) 1.42(0.84–2.33) 0.91(0.28–2.44) 22.01(10.77–44.02)

Urban setting
(YesD1,
NoD0)

1.36(1.18–1.58) 0.94(0.77–1.15) 1.39(0.86–2.23) 0.62(0.39–0.99)

Body Mass
Indes
Underweight 0.77(0.58–1.01) 1.26(0.90–1.75) 1.03(0.40–2.26) 0.36(0.05–1.36)
Normal 1.00 1.00 1.00 1.00
Obese 2.18(1.93–2.46) 1.21(1.00–1.46) 1.48(0.97–2.32) 3.97(2.58–6.33)

Current smoker
(YesD1,
NoD0)

0.83(0.72–0.97) 0.96(0.74–1.21) 1.31(0.80–2.10) 0.95(0.64–1.41)

Current alcohol
drinker
(YesD1,
NoD0)

1.09(0.96–1.25) 0.94(0.6–1.16) 0.66(0.40–1.03) 0.91(0.61–1.33)

pressure (OR D 2.18; 1.93–2.46); heart attack (1.21; 1.00–1.46); stroke (1.48; 0.97–
2.32); and high blood cholesterol (3.97; 2.58–6.33), compared to a normal body
mass index. Lifestyles such as smoking and drinking alcohol appear not to have any
adverse effects on the vascular diseases; in most parts the trend seems to be negative
though not statistically significant.
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15.4 Discussion

We have demonstrated, by our model, the spatial distribution of vascular disease
burden and influence of nutrition and lifestyle (the shared component) on vascular
disease in South Africa. It appears that dietary and lifestyle factors have greater
influence on vascular disease in the south-western areas of the country. This will
suggest lifestyle modification will make greater impact in reducing the burden of
vascular disease in these areas. Importantly, high blood pressure and stroke, which
are highly related (MacMahon et al. 1990) and associated with diet (Freis 1976) and
physical activity (Wareham et al. 2000), have higher concentrations in the south-
western areas (Figs. 15.6, 15.7, and 15.8).

Heart attacks and angina are known to be associated with abnormal blood
cholesterol (Yusuf et al. 2004). The concentration of these conditions in the north-
eastern areas of South Africa reaffirms these associations and the need for a common
public health approach to reduce blood cholesterol levels and risk of coronary heart
disease in this specific geographical area. Low physical activity (Gill and Hardman
2003; Kraus et al. 2002), prolonged sitting (Hamilton et al. 2004) and dietary lipid
(Shekelle et al. 1981) independently influence the blood cholesterol profile and
vascular outcomes.

Men have reduced risk for high blood pressure and heart attack but have
higher risk for high blood cholesterol. In previous studies in Europe and North
America, where no spatial modelling was undertaken, the prevalence of high blood
pressure was consistently higher among men compared to women in all the eight
countries studied (Wolf-Maier et al. 2003). Between sexes the difference in physical
activity participation and adipose tissue distribution may differ between Africa and
Europe/North America. Importantly, this increased risk of high blood pressure and
heart attack or angina among women poses an extra challenge for maternal health if
measures are not taken to influence behaviour.

As expected, high BMI is associated with increased higher risk of vascular
disease. Obesity is known to be associated with increased vascular risk (Gerber
and Stern 1999; WHO 2004) and this increasing burden of chronic diseases with
an increasing proportion of the population of the obese is a new challenge for
African countries, most of which are struggling with more than their share of
infectious diseases. The increasing burden of vascular and other non-communicable
diseases associated with an increasing population of older people needs addressing.
With economic growth life expectancy will continue to increase in Africa, and so
is the adoption of Western lifestyle and dietary habits. These lifestyle changes,
which are also associated with educational attainment, may contribute to the spatial
variations in vascular disease burden in South Africa. We observed an increase
in risk for high blood cholesterol associated with higher educational attainment.
However, education attainment was also associated with a reduction in risk for heart
attack, and probably stroke and high blood pressure (the latter two not statistically
significant). This may be interpreted as interplay between diet and physical activity.
It is possible that the more educated may have a high intake of dietary cholesterol but
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may be more physically active thereby increasing the HDL cholesterol (protective
cholesterol) component. Higher physical activity is also associated with reduced
blood pressure and stroke.

The adjusted odds of high blood pressure and high blood cholesterol are higher
among the Coloured, White and Indian populations compared to Blacks and stroke
and heart attack risk are higher among White and Indian compared to Blacks and
Coloured. Therefore, aside from the spatial distribution of vascular disease in South
Africa, ethnic specific measures are necessary to target high risk groups. It may also
be that ethnicity is confounded by dietary and physical activities and urbanisation.
Urban lifestyle in South Africa has been shown to impact negatively on the risk
of high blood pressure and stroke. However, the risk of high blood cholesterol and
heart attack are lower among urban dwellers. This may be due to differences in diet
and/or physical activity behaviour between urban and rural dwellers.

However, smoking and alcohol consumption seem not to have negative health
effects. It might be that the level and pattern of consumption of these products
in South Africa are different from those observed in Western societies (Rehm
et al. 2003).

We have also shown the relative weights of each vascular disease that is explained
by the shared component, i.e. dietary and lifestyle factors. While these diseases
are interlinked, the relative weight allows us to ascertain the relative health gain of
implementing a lifestyle change in a geographic area. A combination of the disease
burden and the relative weight may be used to prioritise geographically targeted
public health programmes.

There are some limitations in the present study that deserve attention as those
mentioned in Chap. 11. First, the cross-sectional nature of the present study does
not allow establishing temporality and thus causality of the observed associations.
Given the self-reporting of lifestyle factors, we cannot disregard the likelihood that
health outcomes such as hypertension, stroke, high cholesterol and heart attack may
influence reports of habitual smoking, drinking habits, and sleep problems and not
vice versa. Second, the analysis was based on data collected in 1998, which is likely
to underestimate the current prevalence of hypertension in South Africa, as reported
by several recent reports. However, since 1998 there are no recent nationally
representative reliable data from SA with information on hypertension. Thus, this
limits our ability to apply our approach to more recent data. In addition, there was
limited or lack of information for variables such as dietary habits, physical activity,
and biomarker data, which are relevant to hypertension aetiology. Nevertheless, our
findings corroborate the notion that high blood pressure, stroke, high cholesterol and
heart attack are increasing public health issues in these settings, with evidence of
considerable spatial variation in hypertension prevalence across different provinces
in South Africa.

Another important issue in the use of this data is the issue of data quality because
of the fact that national surveys in developing countries are prone to incomplete
or partial reporting of responses. Moreover, the use of complex questionnaires
inevitably allows scope for inconsistent responses to be recorded for different
questions resulting in a further complication in the assessment of health outcomes.

http://dx.doi.org/10.1007/978-94-007-6778-2_11
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Luckily, the MEASURE DHS program primary goals are to produce high-quality
data and make it available for analysis in a coherent and consistent form. Therefore,
the DHS program has a strict primary data quality policies by adopting a policy
of editing and imputation which results in a data file that accurately reflects the
population studied and may be readily used for analysis which ultimately reduce
bias in the reporting of health outcomes including hypertension.

15.5 Conclusion

The double burden of chronic and communicable diseases in the sub-Saharan
African region require rigorous public health interventions if the Millennium
Development Goals (MDGs) for maternal and child health in the region are to be
achieved. In Chap. 11, we highlighted the lack of appreciation of the burden of non-
communicable diseases in Africa. By our novel approach, we have demonstrated
in this chapter how a shared behaviour (diet, physical activity and other lifestyle
variables) is distributed across South Africa. We have also shown how this behaviour
may determine geographic distribution of four cardiovascular conditions – high
blood pressure, heart attack/angina, stroke and high blood cholesterol. It is our
firm believe that policy-makers will be able to use our maps to re-orient public
health programmes on aimed at reducing chronic disease. An integrated disease
management is required to address the double burden of disease in the Sub-Saharan
African region.
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Chapter 16
Advances in Modelling Maternal and Child
Health in Africa: What Have We Learned
and What Is Next?

Gebrenegus Ghilagaber

16.1 Background

Demographic and Health Surveys (DHS) have played important role in filling the
gap in the availability of survey data in developing countries. The samples drawn in
the DHS use stratified multistage cluster sampling designs, and gather retrospective
data on fertility history, and other background information related to maternal and
child health by interviewing selected women in fertile ages. Thus, any statistical
analysis of such data drawn from a complex survey needs to account for the
sampling design, in addition to account for data quality. For instance, DHS datasets
include geographical information that could identify spatial patterns to target health
policies. Such information needs to be incorporated when the analyses of such data
are undertaken.

However, the utilization of a wealth of data on maternal and child health from
high quality national representative samples in the Sub Saharan region Africa (SSA),
collected at comparatively enormous costs, remains sub-optimal because optimal
analyses of such data demand advanced statistical techniques.

The primary aim of this volume has been to bring together such methodological
advances. Thus, the volume is organized around one major (central) and two
minor themes. Our central theme deals with developing or implementing new
and advanced models and methods for the analysis of data collected through
Demographic and Health Surveys (DHS) in African countries. Our other themes
are more of substantive nature and emerge in the application of these advanced
techniques to model levels, trends, and correlates of maternal and child health in the
context of Africa.

G. Ghilagaber (�)
Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden
e-mail: Gebre@stat.su.se

N.-B. Kandala and G. Ghilagaber (eds.), Advanced Techniques for Modelling
Maternal and Child Health in Africa, The Springer Series on Demographic Methods
and Population Analysis 34, DOI 10.1007/978-94-007-6778-2 16,
© Springer ScienceCBusiness Media Dordrecht 2014

321

mailto:Gebre@stat.su.se


322 G. Ghilagaber

16.2 Overview of the Advanced Models and Methods

To examine association between maternal and child health on one hand and
individual-, family-, and community-level background variables on the other, we use
various models and estimation methods. By necessity or convenience, some of the
models used are static and focus on whether the event of interest (say, death of child)
has occurred or not. Such models focus only on the quantum and ignore the tempo of
the event by ignoring the time it takes for the event to occur. This is addressed by the
dynamic survival (or event history) models used throughout the volume. The regres-
sion models fitted throughout the volume are hazard-rate regression models rather
than ordinary regression. Ordinary regression models are not appropriate in the pres-
ence of censored observations as the exact event-time is unknown for the censored
individuals. Hazard-rate framework, on the other hand, integrates information from
censored and uncensored observations and, thus, uses the data more efficiently.

Typically, Demographic and Health Surveys (DHS) employ a nationally rep-
resentative, two-stage probability sample. In the first, primary sampling units
(PSUs) are selected with probability proportional to size. A complete listing of the
households in the selected PSUs is carried out. The lists of households obtained
are used as the frame for the second-stage sampling, which is the selection of
the households to be visited by the interviewing teams during the main survey
fieldwork. Women between the ages of 15 and 49 are identified in these households
and interviewed.

In modeling child health, the original woman-data is converted into a child-
data. In the process, children whose mother reports on their living status and
other characteristics are nested within their corresponding parent (mother). Since
children of the same parent are more alike than children selected at random from the
population, the basic assumption of a random (independent) sample of children can’t
be ascertained. Further, children of the same mother are expected to be positively
corrected as they share the same mother- and household characteristics (shared
frailty). Thus, if this clustering (and thereby the correlation) is ignored the standard
errors of covariates will be underestimated leading to spurious significance.

A sensible analytical method needs, thus, to address this issue and that is what
the multi-level models in this volume do by treating children from the same parents
as correlated cases (multi-levels) within the same observation (parent). Such a
procedure also has the additional advantage of accounting for any parent-specific
unobserved heterogeneity that may affect outcome at a child level.

We also introduce multiprocess approaches (instead of single process) to allow
for interdependence among life-course processes and tackle the issue of endogeneity
(reciprocal causation) and selection. Utilization of health facilities may not be
uniform among potential users. Such differential utilization may lead either to
underestimation or overestimation of the beneficial effects of health inputs depend-
ing on whether the selection process is adverse or favorable. The methods in this
volume address this issue by making the source of selection (correlation between
unobserved heterogeneity terms in various processes) part of the model. In some of
the countries studied it is shown that while use of health care reduces mortality risks
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such beneficial effect may be underestimated if selection effects (due to more frail
users of health care) is not accounted for as is done in standard modeling. In others,
the effect of health care is overestimated when selection effects (due to less frail
users of health care) is not accounted for.

Other features of the advanced models and methods include a more general
piecewise-linear baseline hazards (rather than the restrictive piecewise constant
hazards modeling), a more general Bayesian framework rather than classical
approaches, and geo-additive models in order to account for geographical (area)
measures.

In the two subsections below, we point out what new insights could be gained
by using the advanced analytic techniques. This is done by way of summarizing the
findings of relevant chapters in the themes of child and maternal health.

16.3 Child Health

In Chap. 2, children of the same mother are treated as correlated cases (multi-
levels) within the same experimental unit (mother) and mother-specific unobserved
heterogeneity is allowed. Further, due account is paid to selection in health care
utilization by treating health care variables like prenatal care and hospital delivery
as endogenous variables and modeling them simultaneously with the hazard of
child mortality. The results show that standard procedures that ignore clustering
and selection would underestimate or overestimate (depending on the country in
question) the beneficial effects of health inputs on child survival.

In Chap. 3, spatial effect is interpreted as representing the cumulative effect
of unidentified or unmeasured additional covariates that may reflect impacts of
environmental and socio-cultural factors. As a result, it is shown that failure to take
into consideration the spatial dimension would invariably lead to an overestimation
of the precision in predicting childhood mortality risks in un-sampled districts.

The geoadditive latent variable models in Chap. 4 offer possibilities to jointly
analyze child morbidity and malnutrition. One of the outcomes is the possibility
to measure the degree of spatial correlation between the indicators of diseases and
those of malnutrition.

In Chap. 5, pathway in the association between wealth and child health is
investigated. It is shown that wealth is an indirect factor seen as an enabling factor
in health seeking behavior.

Chapter 6 synthesizes various traditions and shows that multiplicative hazard
model is (1) a model-based alternative to the problem of standardization and
(2) a discrete-data version of the common proportional hazards model. Further,
its log-linear parameterization enables investigators to estimate its parameters
using commonly available software that are developed for other purposes such as
contingency table analysis.

Chapter 7 uses spatial models to identify geographic variations in level of
immunization coverage across Nigeria, thereby providing policy-makers with tools
to enhance appropriate policy formulation on improving access to and coverage of
immunization.

http://dx.doi.org/10.1007/978-94-007-6778-2_2
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The methods used in Chap. 8 offer valuable tools for producing robust and
flexible covariate-adjusted maps of under-five morality that may indicate underlying
latent risk profiles. The authors also indicated how the otherwise limited information
in most survey data can be enriched with external sources using the geographical
information system tools.

Results in Chap. 9 confirm findings in previous chapters that failure to account
for hierarchical nature of data leads to underestimation of standard errors of some
factors resulting in spurious significance.

16.4 Maternal Health

Chapter 10 presents a flexible family of parametric distributions for modeling
the tempo of fertility by embedding a number of commonly known distributions
as special cases of a more general extended generalized gamma model. As a
number of common distributions like exponential, Weibull, and lognormal are
nested within the more general model, the relative merit of each can be tested
through standard likelihood ratio test. This provides a statistically well grounded,
theoretically appropriate, and empirically evident procedure on how to identify the
most appropriate distribution for a given dataset.

Among the many and novel findings in Chap. 11 are the maps generated as
tools to help policy-makers re-evaluate the lack of focus on non-communicable
diseases (chronic diseases) in Sub-Saharan Africa and focus on integrated diseases
management approach, which will accelerate the achievement of the Millennium
Development Goals (MDGs) for maternal and child health in the region.

The mixture of triangular distributions proposed in Chap. 12 has the ability to
detect peaks, periods of increase and decrease, multi-modal, giving a much more
detailed picture than traditional distributions like the Weibull. Application of such
model to the timing of first birth in South Africa yields expected estimates of
birth cohort effects, in line with the suggested increased access to birth control
and abortion over the years. A contradicting picture emerges from using the other
models. Based on such appropriate model, it is shown that South Africa has made
positive steps in improving maternal health among teenagers and in combating the
adverse effects of early childbearing on both the mother and child.

The use of Bayesian variable selection procedure for fitting a parsimonious
model to fertility data in Nigeria is demonstrated in Chap. 13. The approach permits
automatic identification of variables to be included in the model and also specify
the form in which a continuous covariate enters the model (linearly or nonlinearly).
Use of such model on fertility data reveals that woman’s educational attainment is
a major proximate determinant of fertility in Nigeria.

A nested frailty model which included heterogeneity on both census blocks and
ethnic groups’ levels was implemented on age at sexual initiation for males and fe-
males aged 15–24 in Chap. 14. Such an approach allowed flexible modeling of small
area district effects which is of great advantage compared to the usual parametric
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and frequentist approach. Findings from the descriptive analysis revealed, among
others, a higher median age at first sex among male youth (implying delayed sexual
debut) compared with their female counterparts. One benefit of such modeling
technique is that controlling for clustering invalidates the wrong independence and
identical-distribution-assumption often made regarding survival time observations
that are clustered.

Lastly, in Chap. 15, a novel approach demonstrates how a shared behavior
such as diet, physical activity and other lifestyle variables is distributed across
South Africa and how such behavior may determine geographic distribution of four
cardiovascular conditions – high blood pressure, heart attack/angina, stroke and
high blood cholesterol. The maps produced are expected to enable policy-makers
to re-orient public health programmes aimed at reducing chronic disease. Thus, the
double burden of chronic and communicable diseases in the sub-Saharan African
region require rigorous public health interventions if the Millennium Development
Goals (MDGs) for maternal and child health in the region are to be achieved.

16.5 Some Potential Extensions for the Future

Since every chapter in this volume is designed to be as self-contained as possible,
most of the methods and examples are treated independently, leaving little room for
the inter-method, inter-chapter, or inter-data comparisons. This may be one of the
limitations of the volume.

Except for death, the other events studied in this volume are not a certain event
to all individuals. In other words, there may be long-term survivors – individuals
who may never experience the event irrespective of the length of exposure time.
Accordingly, alternative models that allow for this feature (partition the censored
observations among real censoring and long-term survivors) could be appropriate.

The multiprocess procedure used in one of the chapters estimates two or more
equations jointly and allows investigators to model the correlation (source of
selection bias) directly, thereby mitigating the bias due to selection. The tradeoff
in the procedure is that we have to assume that the mother specific heterogeneity
terms in the two equations are jointly normally distributed. If the true model is
known, then a proper model will eliminate selection bias. In real life, we don’t
know what the true model is, however. We may theorize that there is an unobserved
mother effect which is normally distributed. If the distribution of that effect is
in fact something other than normal, the selection bias will be reduced but not
necessarily eliminated. Thus, while the modeling approach we used is designed
to certainly mitigate selection biases, it may not be taken for granted that such
biases are fully eliminated. A possible area for future studies would, therefore, be a
deeper examination on the validity of the distributional assumptions (and proposal
of alternative distributions) as well as investigation of the robustness to violations
of distributional assumptions of the procedure used here.
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