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Summary

The estimation of levels, trends, and differentials in demographic and health
outcomes in developing countries has, over the years, relied heavily on indirect
methods that were devised to suit limited or deficient data. In recent decades,
some worldwide surveys like the World Fertility Survey and its successor, the
Demographic and Health Survey (DHS), have played an important role in filling
the gap in the availability of survey data in developing countries. These surveys,
conducted at enormous costs, are aimed at enabling investigators to make in-depth
analyses that could guide policy intervention strategies. However, their utilization
remains suboptimal, because optimal analyses of such data demand advanced
statistical techniques.

Since the use of DHS data in developing countries, many developments in
statistical modelling based on hierarchical models have been published, and our
primary aim is to bring together the various methodological advances. Naturally, the
choice of these recent developments reflects our own teaching and research interests.

We try to motivate and illustrate concepts with examples using real data from the
DHS, and the data sets are available on http://www.measuredhs.com. We could not
treat all recent developments in the area of health and survival in Africa in this book,
and in such cases we point to references at the end of each chapter.

The book presents both theoretical contributions and empirical applications of
such advanced techniques. We cover a range of new developments from both
the classical and Bayesian approaches. In the Bayesian framework, Monte Carlo
techniques, in particular MCMC, and their application to spatial and spatio-temporal
data are covered. These include techniques such as geoadditive semi-parametric
models that link individual health outcomes with area variables to account for spatial
correlation; latent modelling that deals with the impact of spatial effects on latent,
unobservable variables like “health status” or “frailty”; spatial modelling of multiple
diseases that enables quantifying the correlation between relative risks of each
disease as well as mapping of disease-specific residuals; and Bayesian structured
geostatistical regression modelling that permits a joint estimation of the usual linear
effects of categorical covariates, non-linear effects of continuous covariates and
small-area district effects on health outcomes within a unified structured additive
Bayesian framework.
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viii Summary

Within the classical approach, we describe multilevel models which address
issues of clustering within families and households; multiprocess models which
account for interdependencies over life-course events and non-random utilization
of health services; and flexible parametric alternatives to existing intensity models.

The techniques are illustrated mainly through modelling maternal and child
health in the African context using data from the DHS in several countries in the
continent. But the methods presented are universally applicable to other phenomena
and geographical areas with similar data sets.

The book is coherently organized and clearly written so that readers can follow
its contents without having to master the technical parts.

There are two parts to this book: (I) modelling child health and survival in Africa
and (II) modelling maternal health and survival in Africa.

Part I covers recent developments in child health modelling techniques. We
discuss the formulation of models using flexible geoadditive predictors accounting
for the effects of different types of covariates. Such formulation embraces the
usual famous regression models such as generalized additive models (GAM), gen-
eralized additive mixed models (GAMM), generalized geoadditive mixed models
(GGAMM), and stepwise regression models, among others. We emphasize the
modelling process and policy implications rather than explicit use of the techniques
(which can be found in other textbooks).

Part II introduces modelling of maternal health outcomes. Readers are guided
through these techniques with alternative software packages, such as WinBUGS and
BayesX. Many of the applications of this part relate directly to the models discussed
in Part I.

Although few authors worked on this text, it could not have been written without
the support from various sources. We would particularly like to thank all participants
of our session at the 57th Congress of the International Statistical Institute in
Durban, South Africa, 2009, where the idea to write this book originated. We
are also very grateful to the University of Aachen, Germany, for providing the
environment and the financial support to run our subsequent workshop in 2010.
In particular, we express our thanks to Professor Thomas Kraus, the head of
the Institute of Occupational and Social Medicine, University of Aachen, who
hosted and facilitated the workshop. Thanks to Professor Clifford Odimegwu of
the University of Witwatersrand for valuable comments on earlier versions of this
text. We also thank Professor Daniel Thorburn, Department of Statistics, Stockholm
University, for reading parts of the manuscript and coming up with valuable
comments. Our thanks also go to the anonymous reviewers from Springer who
read and commented on the first draft of our manuscript. We also thank Diana
Kandala for helping in copy-editing of the manuscript. Ngianga-Bakwin Kandala
acknowledges the financial support he received from the British Council under the
Development Partnership in Higher Education (DelPHE) scheme, Grant No. 788.
Last, but by no means least, Gebrenegus Ghilagaber would like to thank his children
Astér, Millen, and Simon for their unconditional love, patience, and understanding
during the preparation of the book whose value may not have been clear to them at
the time.



Contents

Advanced Techniques for Modelling Maternal and Child

Healthin Africa........ .. ... . i,

Samuel O.M. Manda, Ngianga-Bakwin Kandala,
and Gebrenegus Ghilagaber

PartI Child Health and Survival

2

Disentangling Selection and Causality in Assessing
the Effects of Health Inputs on Child Survival: Evidence

from East Africa .. ... ..o

Gebrenegus Ghilagaber

Modeling Spatial Effects on Childhood Mortality Via
Geo-additive Bayesian Discrete-Time Survival Model:

A Case Study from Nigeria ...,

Gebrenegus Ghilagaber, Diddy Antai,
and Ngianga-Bakwin Kandala

Bayesian Geoadditive Mixed Latent Variable Models

with Applications to Child Health Problems in Egypt and Nigeria ...

Khaled Khatab

Mapping Socio-economic Inequalities in Health Status

Among Malawian Children: A Mixed Model Approach ...............

Lawrence N. Kazembe

Analysis of Grouped Survival Data: A Synthesis
of Various Traditions and Application to Modeling

Childhood Mortality in Eritrea ..................oooooiiiiiiiiiiiiii

Gebrenegus Ghilagaber

49

ix



X Contents

7  Modelling Immunization Coverage in Nigeria Using
Bayesian Structured Additive Regression ...............................
Samson Babatunde Adebayo and Waheed Babatunde Yahya

8 Macro Determinants of Geographical Variation
in Childhood Survival in South Africa Using Flexible
Spatial Mixture Models ...............cooiiiiiiiiiiiiiiiiiiiiiiiiiees
Samuel O.M. Manda

9  Socio-Demographic Determinants of Anaemia in Children
in Uganda: A Multilevel Analysis..........................oll.
Ngianga II Kandala (Shadrack)

Part I Maternal Health

10 A Family of Flexible Parametric Duration Functions
and Their Applications to Modeling Child-Spacing
in Sub-Saharan Africa ...................
Gebrenegus Ghilagaber, Woldeyesus Elisa,
and Stephen Obeng Gyimah

11 Spatial Variation of Predictors of Prevalent Hypertension
in Sub-Saharan Africa: A Case Study of South-Africa ................
Ngianga-Bakwin Kandala

12 A Semiparametric Stratified Survival Model for Timing
of First Birth in South Africa ................ ... i
Samuel O.M. Manda, Renate Meyer, and Bo Cai

13 Stepwise Geoadditive Regression Modelling of Levels
and Trends of Fertility in Nigeria: Guiding Tools Towards
Attaining MIDGS ...
Samson Babatunde Adebayo and Ezra Gayawan

14 A Spatial Analysis of Age at Sexual Initiation Among
Nigerian Youth as a Tool for HIV Prevention: A Bayesian
APProach ...
Alfred A. Abiodun, Samson Babatunde Adebayo, Benjamin
A. Oyejola, Jennifer Anyanti, and Olaronke Ladipo

15 Assessing Geographic Co-morbidity Associated
with Vascular Diseases in South Africa: A Joint Bayesian
Modeling Approach .......... .. .. oo
Ngianga-Bakwin Kandala, Samuel O.M. Manda,
and William Tigbe



Contents

16 Advances in Modelling Maternal and Child Health
in Africa: What Have We Learned and What Is Next? ................
Gebrenegus Ghilagaber

xi

321






Contributors

Alfred A. Abiodun Department of Statistics, University of Ilorin, Ilorin, Nigeria

Samson Babatunde Adebayo Planning, Research and Statistics, National Agency
for Food and Drug Administration and Control, Abuja, Nigeria

Diddy Antai Department of Public Health Sciences, Karolinska Institute,
Stockholm, Sweden

Jennifer Anyanti Society for Family Health, Abuja, Nigeria

Bo Cai Department of Epidemiology and Biostatistics, University of South
Carolina, Columbia, SC, USA

Woldeyesus Elisa Statistics and Evaluation Office, Asmara, Eritrea

Ezra Gayawan Department of Mathematical Sciences, Redeemer’s University,
Redemption City, Ogun State, Nigeria

Gebrenegus Ghilagaber Department of Statistics, Stockholm University, Stock-
holm, Sweden

*Stephen Obeng Gyimah Department of Sociology, Queen’s University,
Kingston, Ontario, Canada

Ngianga-Bakwin Kandala Warwick Medical School, Division of Health Sci-
ences, University of Warwick, Coventry, UK

KEMRI-University of Oxford-Welcome Trust Collaborative Programme, Nairobi,
Kenya

Division of Epidemiology and Biostatistics, University of the Witwatersrand,
Johannesburg, South Africa

Ngianga II Kandala (Shadrack) Division of Social Statistics, University of
Southampton, Southampton, UK

Xiii



Xiv Contributors

Lawrence N. Kazembe Department of Statistics and Population Studies, Univer-
sity of Namibia, Windhoek, Namibia

Khaled Khatab Faculty of Health and Wellbeing, Centre for Health and Social
Care Research, Sheffield Hallam University, Sheffield, UK

*QOlaronke Ladipo Society for Family Health, Abuja, Nigeria

Samuel O.M. Manda Biostatistics Unit, South African Medical Research Council,
Pretoria, South Africa

Division of Epidemiology and Biostatistics, University of the Witwatersrand,
Johannesburg, South Africa

Renate Meyer Department of Statistics, University of Auckland, Auckland, New
Zealand

Benjamin A. Oyejola Department of Statistics, University of [lorin, Ilorin, Nigeria

William Tigbe Division of Health Sciences, Warwick Medical School, University
of Warwick, Coventry, UK

Waheed B. Yahya Department of Statistics, University of Ilorin, Ilorin, Nigeria

*Unfortunately, two contributors did not live long to see the end product of their efforts. Stephen
Obeng Gyimah died on 11 May 2012 while Olaronke Ladipo died on 31 October 2012. Our
thoughts will always be with their families, close friends and colleagues who are affected by their
untimely death.



Chapter 1

Advanced Techniques for Modelling
Maternal and Child Health in Africa

Samuel O.M. Manda, Ngianga-Bakwin Kandala, and Gebrenegus Ghilagaber

1.1 Introduction

More than ten million women die or experience adverse consequences during
pregnancy and child birth each year (WHO 2005). Furthermore, nearly nine million
children under the age of 5 years die each year, largely from preventable and
treatable diseases (UNICEF 2010). The hardest hit countries by poor maternal health
(defined as the health of mothers during pregnancy, childbirth, and in the postpartum
period) and poor child health (defined as the health of children from birth through
adolescence) are in the developing world. For example, even though the global
estimates of maternal and child mortality rates in 2008 were at 260 per 100,000
and 60 per 1,000 live births, respectively, the rates ranged from 21 to 620 and 13 to
12, with the African region at the top of both ranges (WHO 2011).

Progress on maternal and child health has long been recognized as critical to
fostering socio-economic development of a country. Thus, it was not surprising
that improvements in maternal and child health (MCH) were two of the eight
Millennium Development Goals (MDGs). In particular, MDG 4 targeted reducing
under-five mortality rates by 67 % between 1990 and 2015, and MDG 5 set two
targets: reducing maternal mortality ratio by 75 % and achieving universal access
to reproductive health by 2015 (United Nations 2012). However, progress towards
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meeting these targets has been very slow in developing countries. For instance,
the annual rate of under-five mortality decline is 2.1 %, which is below the target
of 4.4 % per year. Furthermore, even though many pregnant women received at
least one antenatal care visit with a skilled attendant, between 2000 and 2008, the
prevalence of skilled attendance at birth in Africa was estimated at 46 %. The global
estimate of this prevalence was put at 65 %, with a range of 46-96 % between the
WHO regions (Friberg et al. 2010; WHO 2011).

In recognition of the slow progress towards MDGs 4 and 5 in Africa, major
international bodies and funding agencies such as the United States Agency for
International Development (USAID) and the World health Organization (WHO)
have more than doubled their efforts at improving maternal and child health in the
region (The Kaiser Family Foundation 2009; The PLoS Medicine Editors 2010).
The interventions and programs that are mostly funded cover mitigating the adverse
effects of HIV and malaria in pregnant women and their children. Support is also
provided in the delivery of an evidence-based and cost-effective care for mothers
and children. Individually, some governments have taken steps to improve maternal
and child health. In South Africa, for instance, maternal and child health is one of
the four health priority areas within the National Department of Health (Department
of Health 2012).

Analyses of various data sources suggest that maternal and child health, for
example maternal and child mortality have been declining in recent years in the sub-
Saharan African (SSA) region. However, the levels of the decline vary considerably
across the countries of the regions, with the wealthier and modernized regions
having faster declines (UNICEF 2010; WHO 2011). But the data upon which these
empirical evidences are based are inconsistent and their sources and quality vary
between years and the countries. Thus, various governments and stakeholders have
invested substantially into data collection and analysis for improved and reliable
maternal and child health indicators.

Most of the empirical evidence upon which maternal and child health are
assessed on to measure progress towards achieving targets sets under MDGs 4 and
5 are derived from the Demographic and Health Surveys (DHS) datasets. The DHS
programme is funded by the USAID and is implemented by Macro International (a
US based consultancy firm). The surveys provide nationally-representative data on
population, health, HIV, and nutrition in over 90 developing countries. The data
generated are used by various stakeholders for a wide range of monitoring and
impact evaluation indicators in the areas of demographic and health in these coun-
tries. The DHS and its predecessor, the World Fertility Survey (WES) have played
important roles in filling the gap in the availability of MCH data in developing
countries. The DHS datasets are available on http://www.measuredhs.com. Multiple
Indicator Cluster Survey (MICS) and HIV/AIDS and Reproductive Health Survey
are also increasingly used to provide comparative assessments of MCH outcomes.
The samples drawn in these surveys mostly use stratified multistage cluster sampling
designs, often with over-sampling of smaller domains such as urban areas or certain
regions of a country.
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Thus, any statistical analysis of data drawn from such complex surveys needs to
account for the sampling design, in addition to account for data quality nonresponse,
missing data, erroneous responses, and defective sampling frames. The importance
of accounting for the sample design in regression modelling is widely acknowledged
in the statistical literature (Binder 1983, 1992; Korn and Gruabard 1995, 1999;
Pfeffermann 1993; Skinner et al. 1989). However, in many instances, these data
are analyzed using statistical software designed for simple randomly sampled data.
When such data are interrogated using statistical methods, the summary information
used to inform public health policies regarding MCH can be misleading (Mathews
et al. 1999). Whilst statistical methods exist to overcome this problem, these
have not been extensively worked through in a coherent manner or packaged
appropriately into a volume, which is why this volume fills that gap. These datasets,
especially the DHS, include geographical information that could identify spatial
patterns in MCH to target health policies. This new information must also be
incorporated when analyses of such data are undertaken.

However, the utilization of a wealth of MCH data sources from high quality
national representative samples in the Sub Saharan region Africa (SSA), collected
at comparative enormous costs, remains sub-optimal because optimal analyses
of such data demand advanced statistical techniques. These data when analyzed
comprehensively using appropriate statistical methods for the robust evaluation
of data in respect to the socio-economic, demographic, general and maternal and
child health, can enable investigators to make in-depth assessments that could guide
policy intervention strategies. Studies that utilized appropriate statistical modelling
and analysis of MCH outcomes in the SSA region have increased recently (see for
example, Gemperli et al. (2004); Kandala and Madise (2004); Kandala et al. (2006,
2007); Kazembe and Namangale (2007); Manda et al. (2012a, b) to name a few).

Our primary aim in this volume is to bring together these methodological
advances to important applications in maternal and child health in Africa. Naturally,
the choice of these recent developments reflects our own teaching and research
interests. In order to make the volume widely read and accessible to the general
practitioner and researchers who are routinely involved in the analyses of the MCH
data; we have included motivating and illustrate concepts with examples using real
data from the DHS and similar surveys. We could not treat all recent developments
in the area of health and survival in Africa in this book, and in such cases, we point
to references at the end of each chapter.

The volume presents both theoretical contributions and empirical applications
of such recent and advanced techniques. We cover a range of new developments
from both the classical and Bayesian approaches. Within the classical approach,
we examine multilevel models that address the issue of clustering within families
and households; multiprocess models that account for interdependencies over
life-course events and non-random utilization of health services; and flexible
parametric alternatives to existing intensity models.
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On the other hand, within the Bayesian framework, Monte Carlo techniques,
in particular Markov Chain Monte Carlo (MCMC) and their application to spatio-
temporal data are covered. These include such techniques like geo-additive semi-
parametric models that link individual health outcomes with area variables to
account for spatial correlation; geo-additive latent modelling that deal with the
impact of the spatial effects on the latent, unobservable health status or frailty; joint
diseases mapping models that permit the quantification of common and specific
risk profiles between diseases. Bayesian structured additive regression modelling
that permits a joint estimation of the usual linear effects of categorical covariates,
nonlinear effects of continuous covariates and small-area effects on health outcomes
within a unified structured additive Bayesian framework.

Thus this volume presents wide theoretical and range of applications covering
most aspects of the data structures arising from DHS and similar surveys. The
techniques are illustrated through the modelling of maternal and child health in the
African context using data from DHS in several countries in the continent, with a
few example using Multiple Indicator Cluster Survey (MICS) and HIV/AIDS and
Reproductive Health Survey. But, the methods presented are universally applicable
to other phenomena and geographical areas with similar data sets.

1.2 Structure of the Volume

This volume is coherently organized and clearly written so that readers can follow its
contents without having to master the technical parts. Apart from this Introductory
Chapter and a Summary Chapter, it contains 14 chapters dedicated to case studies
in maternal and child health in Africa; and for each a modern statistical method has
been used to analyse the data. These 14 chapters are grouped into two parts: Part [
contains eight case studies on child health and survival (2-9) and Part II contains six
case studies on maternal health and survival (10-15). We emphasize the modelling
process and policy implications, rather than explicit use of the techniques (which
can be found in other textbooks).

Chapter 1 gives a general introduction of the volume. In Chap. 2 of the volume,
Ghilagaber discusses multilevel modelling for clustered child survival data and
the issue of selection bias in the utilization of maternal and child health services.
He discusses the difficulties in assessing the impact of prenatal care and hospital
delivery on child survival if the selection processes in the utilization of health
facilities are not accounted for. These issues are addressed using data from three
Africa countries: Egypt, Eritrea and Uganda. He constructs joint modelling of
survival and selection processes, which he then estimated using likelihood based
methods. Chapter 3 extends the ideas of multilevel modelling for child survival data
to situation where the data are arranged in space. Ghilagaber and colleagues discuss
the limitations of the independence assumptions by noting that neighbouring areas
are more likely to have similar child survival experiences than children in areas far
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apart. Thus, they propose using spatial models to determine variations of childhood
mortality between districts in Nigeria. The model proposed calls for time-varying
as well as non-linear effects of some covariates on child survival by introducing
smoothness structures for spatial and non-linear effects. These are estimated within
a Bayesian perspective and fitted using the recently developed MCMC simulation
techniques. The spatial modelling techniques in Chap. 3 are extended to Chap. 4,
where Khatab examines the impact of socioeconomic and public health factors on
childhood diseases and malnutrition by using latent or unobservable constructs.
His Geo-additive latent variable modelling is exemplified using data on childhood
disease and malnutrition in two African countries: Egypt and Nigeria.

In Chap. 5, Kazembe examines ecological associations between socio-economic
inequalities and childhood health in Malawi. He constructs child health status using
a number of combinations based on a child status on fever, diarrhoea, stunting
and underweight to a multinomial response with five categories within a geoad-
ditive spatial model. The empirical Bayesian method, using penalised likelihood
estimation techniques, is used to fit the individual and spatially relevant fixed
and random effects. In the analysis of time-to-event data Ghilagaber, in Chap. 6,
shows that indirect standardization and loglinear regression models for count data
are special cases of the well-known proportional hazards regression portrayed as
belonging to distinct fields or as competing methodologies. He further shows that
these seemingly different models can be synthesised in standard packages such
as SPSS and SAS. These issues are illustrated by an empirical analysis of a
data set on mortality experiences among Eritrean children. The spatial modelling
techniques discussed in Chaps. 3 and 4 dealing with flexible Bayesian structured
additive regression for joint estimation of trend, nonlinear effects of continuous
covariates, geographical variations and fixed effects of categorical covariates is also
adopted for Chap. 7 by Adebayo and Yahya. They analyse individual and ecological
determinants of vaccination coverage in Nigeria. Chapter 8 discusses the modelling
of both individual and ecological association with childhood survival in South
Africa. Here, Manda introduces robust and flexible spatial distributions based on the
double exponential model as opposed to the standard normal autoregressive model.
He uses a mixture of spatial distributions to offer more flexibility and less restrictive
form and shape of the spatial distribution assumed. Finally, Chap. 9 rounds off Part
I of the book by discussing socio-demographic determinants of anaemia in children
by Kandala (Shadrack), where he uses multilevel modelling to estimate the effects of
predictors. The resulting models are estimated using restricted iterative generalized
least squares (RIGLS) within MLwiN statistical package.

Part II starts off with Chap. 10, where Ghilagaber and co-authors discuss flexible
family of parametric survival models to the analysis of birth interval data. The
models are illustrated by an analysis of correlates of birth spacing in Eritrea, Ghana,
and Kenya. Kandala in Chap. 11 discusses health threats posed by emerging burden
of non-communicable diseases in the SSA region. He uses geostatistical modelling
described in various chapters in Part I to analyse spatial variations of hypertension
in South Africa. In Chap. 12, Manda and co-authors discuss modelling options for
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stratified survival data. They discuss unstratified and parametric stratified survival
analyses and show the advantages of a non-parametric approach based on mixtures
of triangular distributions to estimate baseline hazard rates. Within a Bayesian
formulation via Markov chain Monte Carlo algorithm for posterior computation,
they analyse determinants of timing of first childbirth in South Africa where the
data are heavily stratified.

Adebayo and Gayawan discuss the issues regarding levels and trends of fertility
in Nigeria. In particular, they consider number of children born to a woman and
model its individual and spatial determinants using flexible geoadditive approaches,
which as indicated earlier, permit non-linear or time-varying effects of covariates
and the usual linear effects in a joint model. These are discussed in Chap. 13.
In Chap. 14, Abiodun and colleagues use geostatistical models to investigate
geographical variation of timing of sexual initiation in Nigerian youth and discuss
the implications for HIV prevention. In Chap. 15, Kandala and coauthors extend the
work in Chap. 11 to modelling geographic co-morbidity of four vascular diseases:
high blood pressure, stroke, heart attack and high blood cholesterol in order to
understand interactions and dynamics between chronic diseases. In particular, they
use the shared component spatial models to estimate common and specific risk in
the four vascular diseases. Finally, in Chap. 16 Ghilagaber ties up the findings of the
volume by way of summary and direction for future research.

References

Binder, D. A. (1983). On the variance of the asymptotically normal estimators from complex
surveys. International Statistical Review, 51, 279-292.

Binder, D. A. (1992). Fitting Cox’s proportional hazards model from survey data. Biometrika, 79,
139-147.

Department of Health. (2012). Maternal and child health. http://www.doh.gov.za/list.php?type=
Maternalandchildhealth. Accessed November 10, 2012.

Friberg, I. K., Kinney, M. V., Lawn, J. E., Kerber, K. J., Odubanjo, M. O., et al. (2010). Sub-Saharan
Africa’s mothers, newborns, and children: How many lives could be saved with targeted health
interventions? PLoS Medicine, 7, €295.

Gemperli, A., Vounatsou, P., Kleinschmidt, L., et al. (2004). Spatial patterns of infant mortality in
Mali: The effect of malaria endemicity. American Journal of Epidemiology, 159(1), 64-72.
Kandala, N.-B., & Madise, J. (2004). The spatial epidemiology of childhood diseases in Malawi

and Zambia. African Population Studies, 19(3), 199-226.

Kandala, N.-B., Magadi, M. A., & Madise, N. J. (2006). An investigation of district spatial
variations of childhood diarrhoea and fever in Malawi. Social Science & Medicine, 62(5),
1138-1152.

Kandala, N.-B., Ji, C., Stallard, N., et al. (2007). Spatial analysis of risk factors for childhood
morbidity in Nigeria. The American Journal of Tropical Medicine and Hygiene, 77(4),
770-778.

Kazembe, L. N., & Namangale, J. J. (2007). A Bayesian multinomial model to analyse spatial
patterns of childhood co-morbidity in Malawi. European Journal of Epidemiology, 22(8),
545-556.

Korn, E. L., & Graubard, B. I. (1995). Analysis of large health surveys: accounting for the sampling
design. Journal of the Royal Statistical Society A, 158, 263-295.


http://dx.doi.org/10.1007/978-94-007-6778-2_13
http://dx.doi.org/10.1007/978-94-007-6778-2_14
http://dx.doi.org/10.1007/978-94-007-6778-2_15
http://dx.doi.org/10.1007/978-94-007-6778-2_11
http://dx.doi.org/10.1007/978-94-007-6778-2_16
http://www.doh.gov.za/list.php?type=Maternal and child health
http://www.doh.gov.za/list.php?type=Maternal and child health

1 Advanced Techniques for Modelling Maternal and Child Health in Africa 7

Korn, E. L., & Graubard, B. 1. (1999). Analysis of large health surveys. New York: Wiley.

Manda, S. O. M., Lombard, C. L., & Mosala, T. (2012a). Divergent spatial patterns in the
prevalence of human immunodeficiency virus and syphilis in South African pregnant women.
Geospatial Health, 6(2), 221-231.

Manda, S. O. M., Feltbower, R. G., & Gilthorpe, M. S. (2012b). A multivariate frailty model for
multiple spatially dependent survival data. In Y.-K. Tu & D. C. Greenwood (Eds.), Modern
methods for epidemiology (pp. 157-172). Dordrecht/New York: Springer.

Mathews, Z., Madise, N., & Stephenson, R. (1999). Regression modelling for complex survey data:
An application to child nutritional status in four African Countries. Proceedings of the Third
African Population Conference, Durban, South Africa, 1, 333-347.

Pfeffermann, D. (1993). The role of sampling weights when modelling survey data. International
Statistical Review, 61, 317-337.

Skinner, C., Holt, D., & Smith, T. (1989). Analysis of complex surveys. New York: Wiley.

The Kaiser Family Foundation. (2009). The U.S. and global maternal and child health. kaiser
fast facts. Data Source: #7963. http://www.kff.org/globalhealth/upload/7963.pdf. Accessed
November 10, 2012.

The PLoS Medicine Editors. (2010). Maternal health: Time to deliver. PLoS Medicine 7(6),
€1000300.

UNICEEF. (2010). ChildInfo: Monitoring the situation of children and woman. Available at http://
www.childinfo.org/mortality.html. Accessed November 10, 2012.

United Nations. (2012). The millennium development goals report 2012. New York: United
Nations.

WHO. (2005). The World health report 2005 — Make every mother and child count. Geneva: World
Health Organization. http://www.who.int/wht/2005/en. Accessed November 10, 2012.

WHO. (2011). World health statistics 2011. Geneva: WHO Press/World Health Organization.


http://www.kff.org/globalhealth/upload/7963.pdf
http://www.childinfo.org/mortality.html
http://www.childinfo.org/mortality.html
http://www.who.int/whr/2005/en

Part I
Child Health and Survival



Chapter 2

Disentangling Selection and Causality

in Assessing the Effects of Health Inputs

on Child Survival: Evidence from East Africa

Gebrenegus Ghilagaber

2.1 Introduction

Many demographic data have a hierarchical or clustered structure. For example,
the analysis of childhood mortality involves a natural hierarchy where children
are grouped within mothers or families, and the latter, in turn, are grouped into
communities. Children from the same parents tend to be more alike in their
characteristics than children chosen at random from the population at large. To
ignore this grouping risks overlooking the importance of group effects, and may
render invalid many of the traditional statistical analysis techniques used for
studying data relationships.

The present chapter addresses the relationship between childhood mortality on
the one hand, and use of health care and other socioeconomic variables on the
other, in three African countries — Egypt, Eritrea, and Uganda. In contrast to most
previous works where the collection of children is assumed to be an independent
random sample, we treat children with the same mother as correlated cases (level 1)
within the same mother (level 2). This is consistent with the data collection where
a nationally representative random sample of women is selected (National Statistics
Office [Eritrea] and Macro International Inc 1995). Our formulation also enables us
to allow for unobserved mother-specific heterogeneity in the models.

A second and important issue that is addressed in this chapter is that of selection
bias. The public policy response to the problem of high childhood mortality
in developing countries has primarily focused on encouraging prenatal care and
institutional delivery. Since there are no randomized trials of standard prenatal care
and hospital delivery, it is difficult to assess the impact of such health inputs on
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survival chances without accounting for selection processes in the utilization of
health facilities.

Generally, selection bias can arise when there is a systematic difference in
characteristics between those who are selected for the study and those who are not. If
these unobserved factors also influence the impacts of the studied subject, selection
bias will occur. However, selection bias will only arise if these unobserved factors,
which influence the selection, also influence the phenomena under investigation.

Two common types of selection are adverse selection and favorable selection.
Suppose women who receive prenatal health care have a higher risk of losing their
child than women who do not receive prenatal health care. It is possible that women
who seek prenatal childcare in fact have characteristics that separate them from
others. If such characteristics are such that they lead to poorer outcome of prenatal
care than it really is, then the contribution of prenatal care may be underestimated
due to adverse selection.

In contrast, favourable selection arises when the studied individuals have charac-
teristics that lead to overestimation of the effects of a covariate on the phenomenon
under investigation.

In the present chapter, we examine the effects of selection on estimates of the
efficacy of prenatal care and hospital delivery (health inputs) by using multiprocess
models developed and earlier used by Lillard and Panis (see, Lillard 1993; Panis
and Lillard 1994; Lillard and Panis 2000).

2.2 Statistical Methods: Multilevel and Multiprocess
Modeling

2.2.1 A Piece-Wise Log-Linear Hazard Model
with Heterogeneity

A piece-wise log-linear hazards model of mortality is given by':
lnkij(l‘) = )/Tij(l‘) + ﬂ/Xij + & 2.1

where In A;(¢) is the log-hazard of death at age t associated to child j of mother i. The
baseline log-hazard y T;;(¢) is assumed to be piecewise linear in the child’s age; Xj;
represents regressors, and € captures unobserved heterogeneity, at the mother level,
that is associated with mortality, ¢ ~ N (0, 082). The regressors may be time-varying
but all covariates used in this chapter are fixed. Regressors add to the log-hazard

!'The presentation in this and the next sections follows largely that of Lillard and Panis (2000).
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and thus shift the hazard proportionally. Time is written as an argument in 7j(?) to
indicate that it varies continuously over the duration of an interval but the slope may
vary between intervals.

This is a two-level piece-wise linear survival model with mothers as the level-2
units and children as repeated outcomes (level-1) within observations.

Conditional on the heterogeneity component ¢, the likelihood of the hazard for
child j from the ith mother is:

S (t*.€), if the childis alive (censored) at time r*
LM (e) = 2.2)
Sij (Zl, 8) — S (t", &), ifthe childdied between at dand t*

where Sj; (f, &) is the survivor function at time t. In the absence of time-varying
covariates,

St ) = [Soj (1. 6)] PP+ 2.3)

where
So; (t, &) representing the baseline survivor function at time t., i.e., the survivor
function based on the baseline duration dependency (or dependencies) only:

t
Soj () = exp —/Ajo(t)dt ,

T=Ip

where A;0(f) = yT;(t) and 7, denotes the beginning of the hazard spell
(interval).

Conditional on the heterogeneity, the likelihood contributions in (2.2) are
independent. The joint likelihood of multiple hazard intervals in the presence of
heterogeneity is thus found by the product of conditional likelihoods of individual
hazard modules:

LoD =TTL™ 2.4)
7

The baseline duration pattern is the model’s dependency on time without any
covariates or heterogeneity. In the model above, it is represented by yTj;(¢).
A constant baseline hazard (exponential model) may be achieved by defining a
spline with intercept and without nodes, and fixing the slope coefficient to zero.
A Gormpertz (linear) log-hazard may be specified by defining a spline without
nodes, so that the slope is the Gompertz slope. A piecewise-constant hazard may be
achieved by estimating regression coefficient on time-varying indicator variables.
Piecewise-linear duration patterns are very attractive because they adjust to any
pattern in the data (with sufficiently many nodes), and because linear combinations
of piecewise-linear patterns are again piecewise-linear (Lillard and Panis 2000).
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2.2.2 Multilevel Probit Models with Unobserved Heterogeneity

A Probit Model of Prenatal Care

We model the ith mother’s decision to visit a prenatal care center (as opposed to no
such visit at all) during pregnancy of the jth child as a binary probit model:

P =ad'X;+6 (2.5

where X are mother-specific explanatory variables (Xj; = X; for all children j of
the same mother); and §; represents unobserved heterogeneity at the mother level
that is associated with utilization of prenatal care. We assume that the heterogeneity
component is distributed normally, § ~ (0 ‘75) Thus, the likelihood for a binary
probit model is given by

@ (—a/X), if P; =0

’ 1—®(—'X), ifPj=1
, J

(2.6)

where ®(.) is the (cumulative) distribution function of the standard normal density:

d(z) = «/_ / exp( )du 2.7)

The Prenatal Care decision for child j is:

0, if P; <0 (no prenatal care)

P = 2.8)

1, if P} >0 (prenatal care)
Conditional on the heterogeneity, the likelihood contributions in (2.6) are
independent. The joint likelihood of multiple probit modules in the presence of

heterogeneity is thus given by the product of conditional likelihoods of individual
probit contributions:

L =TT} (2.9)

A Probit Model of Hospital Delivery

As with the prenatal care we model the decision to deliver in hospital (as opposed
to home delivery) as a binary probit model:

Hi = ¢'X; + o (2.10)
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where X are mother-specific explanatory variables, and @ represents unobserved
heterogeneity at the mother level. We assume that the heterogeneity component is
distributed normally,  ~ N (0,02).

The delivery decision for child j is:

0, if H; <0 (delivery at home)
H; = (2.11)
I, if H} > 0 (institutional delivery)
The likelihood for a binary probit model (module) is then
®(—¢'X), ifH; =0
L = (=¢'%) ’ (2.12)
1-®(—¢'X), ifH; =1

where ®(.) is the distribution function of the standard normal density as given in
(2.8).

Conditional on the heterogeneity, the likelihood contributions in (2.12) are
independent. The joint likelihood of multiple probit modules in the presence of
heterogeneity is thus given by the product of conditional likelihoods of individual
probit modules:

L) — HLﬁ‘H) (2.13)
J

2.2.3 Multiprocess Models: Disentangling Selection
and Causality

A Joint Model of Child Mortality and Prenatal Care

Suppose we estimated a hazard model of child mortality and found a significant ev-
idence of unobserved mother-specific characteristics that affect children’s survival.
If the mothers themselves are aware of at least some of those characteristics, they
may respond to this private knowledge. Suppose that those women who are at above-
average risk of losing their baby decide to reduce the risks by visiting prenatal care
centers. The result will, then, be that prenatal care centers get a disproportionately
high-risk mix of babies. If ignored, this adverse selection will underestimate the
beneficial effect of prenatal care on childhood mortality. Conversely, prenatal care
centers may get disproportionately low-risk mix of babies. This happens when
selection is favorable — that women with below-average risk of losing their babies
have a higher propensity of visiting prenatal care centers. These may include more
educated women who are more aware of the benefits of prenatal care and/or urban
residents for whom access is relatively easier. In this later type of selection, ignoring
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the favorable selection will overestimate the effect of prenatal care. These problems
prompt us to address the potential endogeneity of prenatal care and estimate a joint
model of child mortality and prenatal care decisions.

The joint model consists of two sets of equations:

* A hazard of child mortality:
In A;(t) = yT;(t) + B' Xy + & (2.14)
* A probit of prenatal care:
Py =a'X;+6 (2.15)

The main issue addressed here is that we wish to allow for the possibility that
unobserved mother-specific characteristics affect both child survival and prenatal
care decisions, i.e., we wish to allow for correlation between ¢ and §:

(Z) NNKS)(«:? of)} (2.16)

The bias due to selection effects is eliminated by making the source of the
bias (the correlation) part of the model. In our present case, the effect of prenatal
care on mortality may be biased because of non-random prenatal care decisions.
We therefore estimate a joint or multiprocess (to borrow a word from Lillard
and Panis 2000) model of child survival and the decision to visit a prenatal care
center.

The joint likelihood of the continuous and probit outcomes may be separated into
a continuous and a probit part:

where
1 (y—p'X)’
(M)
L, = ———expy——— (2.18)
! 0.V 21 pg 20}
and
e ,X
® (M) , ifP=0
035\
L = (2.19)

— /X
I_Q(M), ifP =1

O§|e
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where the distribution of §|e is such that:

<;) NN[(E)(SZ o§)j| (2.20)

so that
O¢s 2 Ogs
8|€NN|:O'_3 (1HA—/3/X), Og —0_—82:| (221)

From (2.17), (2.18), (2.19), (2.20), and (2.21) we note that the probit residual &

is conditional on the realized value of ¢ and, hence, L(zP) is conditional on L(IM).

A Joint Model of Child Mortality and Hospital Delivery

By analogous argument to the above subsection we address the potential endo-
geneity of institutional delivery by estimating a joint model of child mortality and
hospital delivery decisions.

¢ A hazard of child mortality:
In A;(t) = yTy(t) + B Xy + & (2.22)
* A probit of hospital delivery:
H; =¢' X+ wi (2.23)

Again, the joint likelihood of the continuous and probit outcomes may be
separated into a continuous and a probit part,

L) = M0 D (2.24)

where L(IM) is as defined in (2.18) and

_ /X
q,(u) if H =0
(H) _

Owle

L = (2.26)
? MHole — o' X .
(Bl %2 g =1

Ople

where the distribution of w|e is such that:

RO S |
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so that

()
2
0

wls ~ N [ (nk—¢'X). o2 — US‘”} (2.28)

o7

We now wish to investigate whether unobserved characteristics at the mother
level that affect the prenatal care decision are correlated with those that affect
the decision to deliver in hospital. If these characteristics are correlated and the
correlation is not accounted for, the effects of prenatal care and hospital deliveries
on child mortality may be incorrect because these two effects may compete with
each other or reinforce each other depending on the direction of the correlation.

The next step is, therefore, to estimate the hazard of child mortality jointly
with both prenatal care and hospital delivery in order to control for the correlation
between unobserved characteristics that affect these two health care decisions.

A Joint Model of Child Mortality, Prenatal Care, and Hospital Delivery

The effect of prenatal care and hospital delivery on mortality may be biased because

of non-random prenatal care and hospital delivery decisions. More importantly,

these effects may be biased because of a disproportionately high number of hospital

deliveries with mothers who have visited a prenatal care center. We, therefore, model

prenatal care and hospital delivery decisions jointly with the hazard of mortality.
The three-process joint model consists of three sets of equations:

* A hazard of child mortality:

In A1) = yTy(0) + B'Xy + & (2.29)
* A probit of prenatal care:
Pf=dX;+ 3 (2.30)
* A probit of hospital delivery:

HE = ¢'X; + o 2.31)
The key issue here is that we wish to allow for the possibility that unobserved
mother-specific characteristics affect all three dimensions: child survival, prenatal
care, and hospital delivery decisions. In other words, the mother-specific hetero-
geneities in the three models (g, § and w) are allowed to be pairwise correlated:

& 0 2
O;
S| ~N 0], Ogs 052
2
w 0 Ocw O8w O
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The joint likelihood in the three process model is given as a product of the three
likelihoods in (2.18), (2.19), and (2.26).

2.3 Data and Correlates of Childhood Mortality
in Egypt, Eritrea, and Uganda

2.3.1 Data Sources

Egypt

The 1995 Egypt Demographic and Health Survey is the third survey in a series of
Demographic and Health surveys that have been carried out in Egypt. The survey
is a nationally-representative survey of 14,779 ever married women aged 15-49.
These women gave birth to a total of 56,681 children but information on antenatal
care visits and assistance, etc. is available only for children born within 5 years
before the survey. For the purpose of this chapter, therefore, we concentrate on these
12,051 children from 8,008 mothers. For comparison purposes we also use a subset
of 7,483 children from 6,140 mothers who were born within 3 years before the
survey. Details concerning the 1995 Egyptian Demographic and Health Survey is
documented in El-Zanaty et al. (1996).

Eritrea

The data used for illustration in the present section come the 1995 Demographic and
Health Surveys (DHS) in the three countries.

The Eritrean Demographic and Health Survey (EDHS) is a nationally-
representative survey of 5,054 women age 1549 and 1,114 men age 15-59. It
is the first survey ever undertaken by the National Statistics Office (NSO) of the
Department of Macro Policy and International Economic Cooperation, Office of
the President. It was implemented through the worldwide Demographic and Health
Surveys (DHS) program of Macro International Inc.

One of the main objectives of the EDHS was to collect reliable data on maternal
and child health indicators among children in early ages of their life. These include,
among others, antenatal care visits and assistance at delivery. While the 5,054
women had a total of 14,268 children, information on antenatal care visits and
assistance, etc. is available only for children born within 3 years before the survey.
After deleting children with incomplete information on important factors we were
left with 2,284 children belonging to 1,969 mothers. The maximum number of
children per women was 3.

More details concerning the EDHS sample design, estimations of sampling errors
for selected variables as well as summary tabulations are provided in National
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Statistics Office (Eritrea), and Macro International Inc. (1995). In the present
illustration we use the 1,969 mothers as experimental units and treat the 2,284
children as levels nested within these 1,969 mothers.

Uganda

The 1995 Uganda Demographic and Health Survey is a second survey in a series
of Demographic and Health surveys that have been carried out in that country. It is
a nationally-representative survey of 7,070 women age 15-49. By the survey time
these women had a total of 22,752 children but the usable records for the purpose
of this chapter are the 5,677 children from 3,988 mothers who were born within 4
years before the survey and a subset of it — the 4,533 children from 3,670 women
who were born within 3 years before the survey. Tables of preliminary results and
other details on the 1,995 Uganda Demographic and Health Survey may be found
in Statistics Department [Uganda] and Macro International Inc. (1996).

2.3.2 Correlates of Child Mortality

The dependent variable is the log-hazard (logarithm of the rate at which the event
of death occurs). The time variable (duration) measures the number of months from
birth to death or the survey date, whichever comes first. Time varies between 0 and
35 months. The period between O and 35 months was partitioned into four: (0, 1),
(1, 6), (6, 12), and (12, 35). The slope of the log-hazard was assumed to be constant
within each interval but may vary between intervals. Additional models with time
ranging between 0 and 47 months (in Uganda) and between 0 and 59 months (in
Egypt) were also fit. In these models additional intervals for the time variable were
used. These were (12, 24) in the case of Uganda and (12, 24), and (24, 36) in the
case of Egypt.

Three mother-specific and five child-specific variables were used as explanatory
variables.

The mother-specific variables are:

X —Mother’s Age-group at survey time (15-19, 20-24, 25-29, ..., 45-49).
X, — Mother’s Level of Education (None, Primary, Secondary or higher).
X3 — Residence (Urban, Rural).

The child-specific variables are:

X4 — Preceding birth interval (First born, <18, 18-29, 30-47, 48+ months).
Xs — Prenatal Care during pregnancy (None, Some prenatal care).

X — Place of delivery of index child (Home, Hospital or clinic).

X7 — Sex of index child (Girl, Boy).

Xs — Multiplicity of index child (Single birth, One of multiple births).
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The first level of each covariate was used as baseline (reference) level and, thus,
no estimates are reported for these levels.

These variables are among those considered to be correlated with childhood
mortality in previous analyses of the same data set (for the Eritrean data) or other
data sets. However, because our main aim is of methodological nature, we have not
strived to include all relevant covariates of mortality suggested in the literature or
discuss the theoretical expectations of the effects of the covariates included in the
analysis.

2.4 Results

2.4.1 Covariates Effects

The results of fitting the various models described in Sect. 2.2 to data on Egypt,
Eritrea, and Uganda, are shown in Tables 2.1, 2.2, and 2.3, respectively. The five
columns of results refer to the following situations:

e Model 1 refers to the multilevel piecewise log-linear hazards model in (2.1) but
without heterogeneity term.

* Model 2 refers to the multilevel piecewise log-linear hazards model in (2.1) with
mother-specific heterogeneity.

* Model 3 refers to the multilevel multiprocess model where (2.14) and (2.15) —
that is a hazard model of child mortality and a probit model of prenatal
care — are estimated simultaneously; we allow for mother-specific unobserved
heterogeneity in both models; and allow these two heterogeneity terms to
correlate.

* Model 4 refers to the multilevel multiprocess model where (2.22) and (2.23) —
that is a hazard model of child mortality and a probit model of hospital delivery —

Table 2.1 Estimates of effects of prenatal care and hospital delivery on log-hazards of mortality
(M) in various models: Egypt (1995)

Model 1 Model 2 Model 3 Model 4 Model 5
Parameters (No Hetro) (Hetro) (M and P) (M and H) (M, P &H)
Bp —0.3493" —0.3959" —1.41417 —0.4037" —1.2112°
Bu 0.0748 0.0945 0.0800 —0.6066" —0.5283"
O, - 0.7393" 0.9082" 0.7408" 0.8469"
o5 - - 2.2458" - 2.6563"
Pes - - 0.7531" - 0.6314"
o, - - - 2.6997" 2.2649"
Pew - - - 0.6182" 0.7741*
Psw - - - - 0.4786"

“Estimate significant at 10 % significance level
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Table 2.2 Estimates of effects of prenatal care and hospital delivery on log-hazards of mortality
(M) in various models: Eritrea (1995)

Model 1 Model 2 Model 3 Model 4 Model 5
Parameters (No Hetro) (Hetro) (M and P) (M and H) M, P & H)
Br —0.4624" —0.4928™ 0.4632 —0.5038" 0.4432
Bu —0.1142 —0.1107 —0.0920 —0.7188 0.1190
O¢ - 1.2488"" 1.3324™ 1.2367"" 1.3165™"
035 - - 1.3193" 1.2913"
Pes - - —0.5265" - —0.5412"
0w - - - 1.9301"" 1.7889™"
Pew> - - - 0.3138™ —0.2285
Psw - — - - 0.6233"*"
“Estimate significant at 10 % level; “~“Estimate significant at 5 % level; ““Estimate significant at

1 % level

Table 2.3 Estimates of effects of prenatal care and hospital delivery on log-hazards of mortality
(M) in various models: Uganda (1995)

Model 1 Model 2 Model 3 Model 4 Model 5
Parameters (No Hetro) (Hetro) (M and P) (M and H) M, P & H)
Bp —0.4163" —0.4280" —0.1284 —0.4258" —0.1713
Bu —0.2945" —0.2996" —0.2942" 0.0271 —0.0211
O, - 0.5118" 0.4417" 0.5180" 0.4899"
o - - 1.9376" - 2.0197
Pes - - —0.3654"" —0.4036™"
O - - - 2.0799" 1.8867"
Psw - - - —0.4099" —0.3525™
Psw - - — 0.4625"

“Estimate significant at 10 % level; “Estimate significant at 5 % level; ““Estimate significant at
1 % level

are estimated simultaneously; we allow for mother-specific unobserved hetero-
geneity in both models; and allow these two heterogeneity terms to correlate.

* Model 5 refers to the multilevel multiprocess model where the three Egs. (2.29),
(2.30), and (2.31) — that is a hazard model of child mortality and two probit
models for hospital delivery and prenatal care, respectively, — are estimated si-
multaneously; we allow for mother-specific unobserved heterogeneity in all three
models, and allow for pairwise correlation between these three heterogeneity
terms.

We have reported results related to hazard models alone and left out those
from probit models. Further, only estimates of Prenatal care and Hospital delivery
are presented in the Tables while estimates of the other background variables are
suppressed.

We can, however, mention that, in the Egyptian case for instance, children from
older cohort of mothers (aged 35 years or above at the time of the survey) had higher
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mortality risks than children from the very youngest cohort (1519 years at survey
time). Further, children of mothers with higher education (secondary or above level)
had lower mortality; that 2nd and higher order births with short preceding birth
intervals (< 18 months) had higher risks than first born children, while those born
after long interval (at least 30 months) had significantly lower risks. The results for
Eritrea and Uganda, in terms of the unreported covariate effects, were not much
different.

2.4.2 Selection Bias in Prenatal Care Utilization

Again, beginning with Egypt (Table 2.1), a comparison of Models 2 and 3 shows that
while both models show a significant beneficial effect of prenatal care on child mor-
tality hazard, the magnitude is underestimated in the separate specification (from
—1.4141 to —0.3959). This, again, is due to the positive correlation (0.7531) be-
tween the unobserved mother-specific characteristics that affect childhood mortality
risks and the decision to visit a prenatal care during pregnancy. Thus, we can say that
there is also adverse selection into prenatal care, and failure to account for this selec-
tivity severely underestimates the magnitude of the beneficial effect of prenatal care.

The effect of selection in prenatal care is in the opposite direction in Eritrea.
While separate specification (Model 2) shows a marginally significant beneficial
effect of prenatal care (—0.4928), joint modeling (Model 3.) shows a positive
but insignificant effect (0.4632). The correlation between the unobserved mother-
specific characteristics that affect childhood mortality risks and the prenatal care
is negative (—0.5265) and it is this negative correlation that pushed the effect of
prenatal care far to the left of zero. In any case, we note that there is a mild favorable
selection to prenatal care in Eritrea.

In the case of Uganda the selection bias is in the same direction as in Eritrea but it
is stronger. The relatively weak and negative correlation (—0.3654) inflates the effect
of prenatal care from an insignificant value (—0.1284) to a strongly significant effect
(—0.4280) if this favorable selection is not accounted for.

2.4.3 Selection Bias in Hospital Delivery

Beginning with Egypt (Table 2.1), while the separate specification (Model 2) shows
an insignificant and positive effect of hospital delivery on child mortality hazard
(0.0748), joint estimation (Model 4) reveals a highly significant and strong negative
effect (—0.6066). As stated in Lillard and Panis (2000), the mechanical reason
lies in the positive correlation (0.6182) between the unobserved mother-specific
characteristics that affect childhood mortality risks and the decision to delivery
a child in hospital. An ignored positive correlation biases parameter estimates
in positive direction, i.e., toward zero in the present case. Substantively, women
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with above-average risks of losing a baby (¢ > 0) also tend to have above-average
propensities to deliver in a hospital (w > 0); and vice versa. In other words, there
is adverse selection into hospital delivery, and failure to account for this selectivity
severely underestimates the beneficial effect of hospital delivery.

The effect of selection bias is in the same direction in Eritrea as well (Table 2.2)
but the effect is milder in the case of Eritrea than in Egypt. While the estimate
changes from —0.1107 to —0.7188, it is insignificant in both Models 2 and 4.
This is due to the relatively weaker correlation (0.3138) between the unobserved
mother-specific characteristics that affect childhood mortality risks and the decision
to delivery a child in hospital, in the case of Eritrea.

A different picture is depicted in the case of Uganda (Table 2.3). To begin with,
the correlation between the unobserved mother-specific characteristics that affect
childhood mortality risks and the decision to deliver a child in hospital is negative
(—0.4099) in the case of Uganda.

This implies that, women with above-average risks of losing a baby (¢ >0)
tend to have below-average propensities to deliver in a hospital (o < 0); and vice
versa. Thus, the effect of hospital delivery on child mortality shifts from a highly
significant beneficial effect (—0.2996) to an insignificant effect (0.0271). In other
words, there is favorable selection into hospital delivery in Uganda, and failure to
account for this selectivity severely overestimates the effect of hospital care.

2.4.4 Correlation Between Prenatal Care Utilization
and Hospital Delivery

The results in the above subsections indicated that there is significant correlation
between the mother-specific unobserved heterogeneities in the hazard and probit
models and that failure to account for such correlation would bias the parameter
estimates of the effects of prenatal care and hospital delivery.

An important question that still remains to be answered is as to whether the two
decisions (prenatal care and hospital delivery) are also correlated. It is quite likely
that mothers who visited prenatal care centers during pregnancy would have a higher
propensity to deliver their child in hospital than mothers who never did so. The
result will, then, be that delivery centers get a disproportionately high proportion
of babies whose mothers have visited prenatal care centers during pregnancy. If
ignored, it would be difficult to distinguish between the relative strengths of the
effects of prenatal care and hospital delivery on child mortality when both effects
are considered together.

We therefore address the potential endogeneity of both decisions and estimate a
joint (three-process) model of child mortality, prenatal care, and hospital delivery
decisions.

The results from such a three-process models are shown in the last column
(Model 5) of Tables 2.1, 2.2, and 2.3. In all three tables we see, as expected, that
there is a highly significant positive correlation between the decisions of visiting
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prenatal care during pregnancy and delivering the child in hospital. How does this
affect the relative magnitudes of the effects of these two endogenous factors on the
risk of childhood mortality?

In the case of Egypt Table 2.1 we note that failure to account for this positive
correlation raises the magnitude of effect of both factors — from —1.2112 (Model 5)
to —1.4141 (Model 3.) for prenatal care, and from —0.5283 (Model 5) to —0.6066
(Model 4) for hospital delivery.

The same is true for Eritrea Table 2.2 — from 0.4432 (Model 5) to 0.4632
(Model 3.) for prenatal care, and from 0.1190 (Model 5) to —0.7188 (Model 4)
for hospital delivery.

In Uganda Table 2.3 the changes are from —0.1713 (Model 5) to —0.1284
(Model 3.) for prenatal care, and from —0.0211 (Model 5) to 0.0271 (Model 4)
for hospital delivery.

2.4.5 Comparison of the Standard Model and the Multiprocess
Model with Unobserved Heterogeneity and Correlated
Health Input Variables

As a final remark in this section, it may be worth examining what happens to
the effects of prenatal care and hospital delivery on the log-hazard of childhood
mortality as we move from the standard model (Model 1) to the final model
(Model 5). The changes in estimates of such effects may be examined by comparing
the estimates in columns 1 and 5 of Tables 2.1, 2.2, and 2.3.

The results for Egypt Table 2.1 show that while the standard model reports a
significant beneficial effect of prenatal care (—0.3493) but no effect of hospital
delivery (0.0748), the final model, where selection and correlation are accounted for,
shows that both factors have significant beneficial effects (—1.2112 and —0.5283,
respectively). Thus, it seems that at least part of the effect of hospital delivery was
transferred to that of prenatal care in the standard model, which does not account
for the correlation between these two factors.

The Eritrean case Table 2.2 shows to the contrary. While the true picture is that
the two health inputs have no beneficial effects (0.4432 and 0.1190, respectively
for prenatal care and hospital delivery), failure to account for selection bias into
these two processes and the correlation between them would lead to concluding that
one of them (prenatal care) has strong beneficial effect (—0.4624) while the other
(hospital care) has no effect at all (—0.1142).

Ugandan results Table 2.3 show another interesting case. The right picture
(Model 5) is that none of these two health inputs has any beneficial effect on
childhood mortality (—0.1713 and —0.0211, respectively for prenatal care and
hospital delivery). If one ignores selection biases and the correlation between the
two health inputs, however, one would be led to the erroneous conclusion that the
two health inputs have highly significant beneficial effects in reducing childhood
mortality (—0.4163 and —0.2945, respectively).
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Are these changes statistically significant? This question may be answered by
comparing the differences in log-likelihoods in the models under consideration
because the models are nested within the next higher model.

It may also be of interest to examine the effects of unobserved heterogeneity,
selection bias, and correlation between health input variables, affects the effects of
the exogenous variables Education and Residence. A priori, one would suspect that
these two variables are correlated with the health input variables (prenatal care and
hospital delivery) because we expect the more educated women and those in urban
areas would have a higher propensity to use health care facilities.

The results (details not shown here) show that as long as Prenatal Care is treated
as exogenous variable, Education (at higher level) continues to have beneficial
effects in reducing childhood mortality in the Egyptian data set (with estimates
—0.4188, —0.4429, and —0.2279, respectively in Models 1, 2, and 4). Once we treat
Prenatal Care as endogenous variable (Model 3) and/or account for its correlation
with Hospital Delivery (Model 5), however, the beneficial effect of Education fades
away (the estimate reduces to —0.0916 and 0.0180, respectively, in Models 3 and 5).
One would, thus, be tempted to suspect that the effects of Education, at least in Egypt
work, via higher propensity of educated women to make use of prenatal care centers.
But we also need to reconcile this suspicion with our earlier results of adverse
selection into prenatal care. The effect of Residence is more blurred though there is
marginal evidence that the estimate shifts from insignificant difference towards rural
advantages in childhood mortality when proper care is taken of selection effects.

The opposite is true in Eritrea. Results from model 1, 2 and 4 show that there
is no effect of education on the hazard of childhood mortality. Once Prenatal Care
is treated at endogenous variable and/or its correlation with Hospital Delivery is
accounted for, it turns out that Education (now at primary level) has a strong
beneficial effect in reducing the risk of childhood mortality. We already know
that selection into prenatal care is favorable in Eritrea prompting that it is the
more educated women who benefit from such services. Thus, accounting for such
favorable selection brings to the surface the true and beneficial effect of education
on childhood mortality risks. The effect of Residence is also interesting in the case
of Eritrea. The standard model (Model 1) shows that Rural areas have significantly
lower risks of childhood mortality than urban areas. In Models 3 and 5, however, it
is shown that there are no differential mortality risks by mother’s place of residence.
We also know that we have favorable selection into prenatal care and that we suspect
this would be so due to the fact that urban residents benefit more from prenatal care
centers than their rural counterparts. Thus, failure to account for this selection would
have underestimated the urban advantage.

Uganda provides another interesting result. Here, there is relatively weaker
impact of our procedure on the effects of Education and Residence. If any, it is when
we account for Hospital Delivery that the effects of Education are strengthened. It
may be noted that there is a stronger correlation between the heterogeneity terms of
Hospital Delivery and Mortality in Uganda than in Egypt and Eritrea. On the other
hand, there is a weaker correlation between the heterogeneity terms of Prenatal Care
and Mortality in Uganda than in Egypt and Eritrea.
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The effects of accounting for selection biases and correlation between health
input variables are relatively minor on the other exogenous variables (Interval, Sex,
and Multiplicity) that we don’t give much space to discuss them.

2.5 Summary and Concluding Remarks

For the last two decades Demographic and Health Surveys have been collected to
provide information on family planning, maternal and child health, child survival,
and reproductive health in Africa, Asia, the Near East, Latin America, and the
Caribbean. The availability of such surveys has helped to shift the focus of
investigations from indirect methods of estimation of summary measures to the use
modern analytic methods in order to examine correlates of demographic behavior
and their policy implications.

The surveys have been collected hierarchically at the family, household, and
community levels. However, not many analysts seem to be aware of this nature
of the data. The data in the surveys are collected by interviewing a nationally
representative sample of women (and men in some cases). These women are
independent observations once we account for their communities. Thus, in the
analysis of marriage behavior, using these women as experimental units is a correct
procedure.

In the analysis of childhood mortality, however, the situation is different. To
analyze childhood mortality the original women data is converted to child data. In
so doing a number of children are nested within the same woman (mother) and the
data on children no longer consists of independent (random) observations unless we
select just one child, say of a given birth order, from each mother. Children of the
same mother are more alike than children selected at random from the population
and analytical methods must pay due attention to this nature of the data.

Other issues of concern in the analysis of Demographic and Health Surveys
Data include accounting for correlation structure among various determinants (such
as that between death of previous child and preceding birth interval) and, more
importantly, selection biases in the utilization of health facilities.

The present chapter attempts to address some of above issues through analyses of
childhood mortality in three African countries — Egypt, Eritrea, and Uganda based
on their 1995 DHS data.

In contrast to previous approaches where children are used as independent
experimental units, we have treated children of the same mother as correlated cases
(multilevels) within the same experimental unit (mother). We have also allowed for
mother-specific unobserved heterogeneity at the mother level. Further, we have paid
due account to selection into health care utilization by treating health care variables
like prenatal care and hospital delivery as endogenous variables and modeling them
simultaneously with the hazard of mortality.

Our results show that there are significant mother-level heterogeneities in the
three countries. More interestingly, we have demonstrated that while there are
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selection biases of health care utilization in all three countries, their effects and,
hence, policy implications are different. In one of the countries (Egypt) we have
shown that there is adverse selection bias and failure to account for this selection
underestimates the beneficial effects of health care inputs. In the other two countries
(Eritrea and Uganda) the selection is that of favorable selection and failure to
account for it overstates the effect of health inputs.

We have also accounted for the possible correlation between the various health
input variables and demonstrated that failure to account for such correlation
would benefit one of the variables at the expense of the other. Further, we have
demonstrated how the effects of exogenous variables like education and residence
may be under/over-estimated if proper care is not taken to address selection into
health care utilization.
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Chapter 3

Modeling Spatial Effects on Childhood
Mortality Via Geo-additive Bayesian
Discrete-Time Survival Model: A Case
Study from Nigeria

Gebrenegus Ghilagaber, Diddy Antai, and Ngianga-Bakwin Kandala

3.1 Introduction

Childhood mortality is an important indicator of overall health and development in
a country. It is the result of a complex interplay of determinants at many levels,
and as such several studies have recognized that, for instance, maternal (Caldwell
1979; Cleland and van Ginneken 1988), socio-economic (Castro-Leal et al. 1999;
Wagstaff 2001), and environmental (Wolfe and Behrman 1982; Lee et al. 1997)
factors are important determinants of childhood mortality. However, only a few
studies have incorporated environmental factors that are spatial in nature and derived
from geographic databases, such as distances from households or communities
(Watson et al. 1997).

While the commonly used approaches, such as correlation coefficients and
regression analysis may produce statistical outcomes and measures of association,
which are limited to a particular location, these relationships cannot be readily
generalized for other locations within a country. In order to determine that the
observed social phenomena are not distributed in a spatially random manner,
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spatial analysis is employed. Spatial analysis could be defined as a quantitative
data analysis, which focuses on the role of space and relies explicitly on spatial
variables in order to explain or predict the phenomenon under investigation (Cressie
1993; Chou 1997). It tests theories that stress that the location of an individual
influences social attitudes and behaviour, and that observed social phenomena are
not distributed in a spatially random fashion (Weeks 2004). Studies of childhood
mortality in developing countries using aggregated data and methodologies that
ignore spatial dimensions run the risk of explaining very little of the variations in
mortality rates as well as masking spatial variations. For instance, results of the 2003
Nigeria Demographic and Health Survey (NDHS), disaggregated by geopolitical
zones, shows that the infant mortality rate (IMR) for the period 10-14 years
preceding the 2003 NDHS (1989-1993) at the national level was 113 per 1,000
live-births, while the corresponding IMR for the then four geopolitical zones was
North East (129/1,000), North West (136/1,000), and South East (74/1,000), South
West (81/1,000) (NPC 2004).

Crude under-five mortality rates stratified by districts (states) are displayed in
Table 3.1, and reveal wide variations between districts within the same geopolitical
region, information that would otherwise be “hidden” in the overall picture of crude
mortality rate for that region or states had spatial analysis not been carried out,
thereby exemplifying the significance of spatial analysis.

This chapter is intended to account simultaneously for spatial and time-varying
effects on childhood mortality by employing a geo-additive Bayesian model with
dynamic and spatial extensions of discrete-time survival models in estimating
temporal and spatial variation in the determinants of childhood mortality, as well
as any associations between risk factors and childhood mortality in the presence
of spatial correlation. To ignore this correlation would mean an underestimation
of the variance of the effects of risk factors (Weeks 2004). The impact of some
determinant factors of child survival is allowed to vary over time, as well as allowing
for non-linear effects of some covariates on child survival. This model introduces
appropriate smoothness priors for spatial and non-linear effects, as well as Markov
chain Monte Carlo simulation techniques (Gelfand and Smith 1990; Smith and
Roberts 1993), used to estimate the model parameters. The models are subsequently
used to examine spatial variation in childhood mortality rates in Nigeria, and explore
district-level clustering of mortality rates across both space and time (Fig. 3.1). This
chapter will however be limited to the older 31 states (i.e. states created before
1996) due to lack of spatial data including the last five states. Figure 3.1 displays
spatial distribution of mortality rates (per 1,000) across these states/districts for
crude neonatal mortality (panel b); crude peri-natal mortality (panel c); crude infant
mortality (panel d); crude child mortality (panel e); and crude under-five mortality

(panel f).
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Table 3.1 Under-five mortality rates (per 1,000) by older states (districts) in
Nigeria for 0—4 years prior to the survey (1999-2003)

Region No. District Mortality rate (per 1,000)
North Central All 172
1 Plateau 65
2 Benue 1122
3 Kogi 131
4 Kwara 96*
5 Niger 202
6 Abuja (FCT) 1232
North East All 270
7 Taraba 1322
8 Adamawa 270
9 Borno 262
10 Bauchi 278
11 Yobe 299
North West All 264
12 Jigawa 263
13 Kano 266
14 Kebbi 240
15 Kaduna 221
16 Katsina 222
17 Sokoto 3042
South East All 92
18 Anambra 542
19 Enugu 192
20 Abia 126
21 Imo 982
South South All 187
22 Cross River 136*
23 Akwa Ibom 1542
24 Rivers 2422
25 Delta 1172
26 Edo 1342
South West All 101
27 Lagos 101
28 Oyo 52
29 Osun 86*
30 Ogun 124
31 Ondo 118

Imputed rates, which correspond to Harmonic means of neighbouring states
whenever available

31
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Fig. 3.1 Map of Nigeria (a) and spatial distribution of mortality rates across the 36 states/districts
(b—f), in Nigeria 1999-2003 (Source: Table 3.1)

3.2 Study Area and Study Population

Nigeria, with a 2006 population of 140 million people, is the most populous country
in Africa (Onuah 2006). It is also the tenth largest country by population in the
world. The country lies on the west coast of Africa between 4° and 14° North
latitude and 2° and 15° East longitude, and is bordered by Benin, Niger, Chad,
Cameroon, and the Gulf of Guinea. It has a landmass extending over 923,768 km?
and is located on the eastern terminus of the bulge of West Africa (Population
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Resource Centre 2000). With an average density of approximately 124 persons
per square kilometer (Ali-Akpajiak and Pyke 2003) Nigeria is one of the most
densely populated countries in the world. The spatial distribution of the population
is uneven, with some areas of the country sparsely inhabited while other areas are
densely populated. With the exception of Lagos, which has the highest population
density in the country, the South East of Nigeria has the highest densities. Sixty four
percent of the population is concentrated in the rural areas (Ali-Akpajiak and Pyke
2003). Nigeria is made up of 36 states (districts) and a Federal Capital Territory
at Abuja. The 36 states are grouped into six geopolitical zones (regions). The mean
temperature ranges between 25 °C and 40 °C, and rainfall ranges between 2,650 mm
in the Southeast and less than 600 mm in some parts of northern Nigeria that lies
mainly in the Sahara desert. These climatic differences give rise to both vegetational
differences ranging from mangrove swamp forest in the Niger delta and Sahel
grassland in the North, and different soil conditions. This results in a variation in
agricultural produce and natural resources in the different parts of Nigeria. A map
of Nigeria indicating the geographical location of the states (districts) is shown in
Fig. 3.1.

3.3 Geo-Additive Bayesian Discrete-Time Survival Model

3.3.1 The Basic Model

Let T denote a discrete survival time, where t € {1, ..., ¢+ 1} represents the ¢
th month after birth and let x; = (xj, ..., x;) denote the history of a covariate up
to month ¢. The discrete-time conditional probability of death at month 7 is then
given by

rMux) =pr(T=t|T >t, x5), t=1,...,q. (3.1
Survival information on each child is recorded by (#; §;), i € {1, ..., N}, where
t; e {1, ..., 60} is the child’s observed survival time in months, and §; is a survival

indicator with §; = 1 if child i died, and §; = 0 if it is still alive. Therefore for §; = 1,
t; is the age (in months) of the child at death, and for §; =0, ¢; is the current age of
the child (in months) at the time of interview.

The assumption is non-informative censoring as applied by Lagakos (see
Lagakos 1979), so that the risk set R, includes all individuals who are censored
in interval ending in ¢. A binary event indicator is then defined as:

yilieRy, t=1, ..., t}
yie = {1 ift=tand§; = 1
{0 otherwise, (3.2)
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The event of death of individual i could then be considered as a sequence of
binary “outcomes” — dying at age ¢ (yi = 1) or in the case of survival beyond age
t (yit =0). Such formulation yields a sequence of 0 s and 1 s indicating survival
histories of each child at the various time points.

3.3.2 Incorporation of Fixed-, Time-Varying
and Spatial-Effects

Parallel with the sequence of 0 s and 1 s, the values of relevant explanatory variables
Xit = (Xi1, ..., Xit), § =1, 2, ... could be recorded. These variables may be fixed
over time, for example sex, place of residence; or may vary over time, for example
breastfeeding of a child, at time ¢.

The indicator y; could be linked to the covariates x; by an appropriate link
function for binary response model such as probit, logit or multinomial link
function, and a predictor 7 (x;;). Assuming that y; has a binomial distribution and
using a probit link function for i € Rz, the probability of death for a child i is denoted
by:

®(nyy = pr (yi = 1x50). (3.3)
The usual form of the predictor is
nit == f() (t) + Xit B (3.4)

where the baseline effect fy (¢), t =1, 2, ... is an unknown, usually non linear,
function of ¢ to be estimated from data and B is the vector of fixed covariate effects.
In parametric framework, the baseline hazard is often modelled by a few dummy
variables, which divide the time-axis into a number of relatively small segments
or by some low-order polynomial. In practice however, it is difficult to correctly
specify such parametric functional forms for the baseline effects in advance. Non-
parametric modelling based on some qualitative smoothness restrictions offers a
more flexible framework to explore unknown patterns of the baseline.

Restriction to fixed effects alone might not be adequate in most cases, due to the
covariates whose value may vary over time. The predictor in (3.4) is subsequently
extended to a more flexible semi-parametric model, which could accommodate
time-varying effects. On further inclusion of another expression to represent spatial
effects, this semi-parametric predictor is given by

Nie = fo(0) + 1 (X) + f(OXie + Fipar(si) + Xie B- (3.5)
Here, fy(t) is the baseline function of time, and fi is a nonlinear effect of

metrical covariate X. The effects, f (z), of the covariates in Xj, are time-varying,
while Xj; comprises fixed covariates whose effect is represented by the parameter
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vector B; and fipy is the non-linear spatial component of, for instance, district
s(s =1, ...,S), where the child lives. The spatial effects fg,, (s;) may be further
split-up into spatially correlated (structured) and uncorrelated (unstructured) effects
of the form fi (i) + funste (5;)- The fundamental reason behind this is that a spatial
effect is a surrogate of many unobserved influencing factors, some of which may
obey a strong spatial structure while others may only be present locally. The
analyses in this chapter are based on (3.4) and (3.5), and would be subsequently
referred to as “constant fixed effects model” and “geo-additive model” respectively.

3.3.3 The Estimation Process

The functions fy, fi, and f are smooth over by second-order random walk priors
using the MCMC techniques implemented in BayesX (Fahrmeir and Lang 2001a, b;
Brezger et al. 2002).

Let f ={f(1),....f(m),m <n} be a vector of corresponding function evaluations
at the observed values of x. The general form of the prior for f would be:

f|t* aexp (—1/27%(f, f/Kf)) (3.6)

where K is a penalty matrix that penalizes too abrupt jumps between neighbouring
parameters. In most cases, K is rank deficient, therefore the prior for f is improper.
Traditionally, the smoothing parameter is equivalent to the variance parameter 72,
which controls the trade-off between flexibility and smoothness. A highly dispersed
but proper hyperprior is assigned to 72 so as to estimate the smoothness parameter
simultaneously with f. A proper prior for 77 is required in order to obtain a proper
posterior for f (Hobart and Casella 1996). In the event of the selection of an Inverse
Gamma distribution with hyper-parameters a and b, (> ~IG (a, b)), a first- and
second-order random walk priors for f would be defined respectively by:

f(t) = f(t — 1) + u(t), and f(t) = 2f(t — 1) — f(t — 2) + u(v), 3.7)

with Gaussian errors u(f)~N (0;z%?) and diffuse priors f(1) a const, or f(1)
and f(2) o const, as initial values. A first order random walk penalizes abrupt
jumps f(f) — f(t — 1) between successive states, and a second order random walk
penalizes deviations from the linear trend 2f(t — 1) —f(t —2). The trade-off be-
tween flexibility and smoothness of f is controlled by the variance parameter 2.
This chapter adopts the approach of estimating the variance parameter and the
smoothing function simultaneously; this is achieved by introducing an additional
hyperprior for 2 at a further stage of the hierarchy. A highly dispersed but proper
Inverse Gamma prior, p (2)~1G (a; b) is chosen, with a=1 and b=0.005.
Similarly, a highly dispersed Inverse Gamma prior is defined for the overall

variance 02.
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For the spatially correlated or structured effect, fy, (s), s=1,...,S, Marked
random field priors common in spatial statistics are chosen (Besag et al. 1991) of
the form

far(S) i (0), 7 # 5, Pr ~ N (Y )/ Ns, Pa/Ns)
reos (3.8)

where Nj is the number of adjacent regions, and r ¢ ds indicates that region r is a
‘neighbour’ of region s. Therefore the conditional mean of fy, (s) is an unweighted
average of function valuations for neighbouring regions. In addition, the variance
parameter 72, controls the degree of smoothness.

For a spatially uncorrelated (unstructured) effect, fynse, s=1, ...,S, common
assumptions are that the parameters fyng (5), are i.i.d. Gaussian:

funstr(s)hzunstr ~ N(O, 7:zunstr)~ 3.9

Variance or smoothness parameters sz, Jj =str, unstr, are also considered as
unknown in a fully Bayesian analysis, and are therefore estimated simultaneously
with the corresponding unknown functions f;. As such, hyperpriors are assigned
to them in a second stage of the hierarchy by highly dispersed Inverse Gamma
distributions p (7%;) ~IG (a;, b;) with known hyperparameters a; and b;.

Standard choices for the hyperparameters are a=1 and b=0.005 or
a=>b=0.001. The results of the illustration in this chapter are however not
sensitive to the choice of a and b, and the later choice is close to Jeffrey’s non-
informative prior. Fully Bayesian inference is based on the posterior distribution
of model parameter, which is not a known form. As such, MCMC sampling from
full conditionals for nonlinear effects, spatial effects, fixed effects and smoothing
parameters is used for posterior analysis. For the nonlinear and spatial effects,
the sampling scheme of Iterative Weighted Least Squares (IWLS) implemented in
BayesX (see Brezger et al. 2002) is applied. This is an alternative to the general
Metropolis—Hastings algorithms based on conditional prior proposals, suggested
first by Knorr-Held (1999) in the context of state space models as an extension to
Gamerman (1997), and given in more detail in Knorr-Held and Rue (2002).

An essential task in the model-building process is the comparison of a set
of plausible models, for instance, rating the impact of covariates and assessing
whether their effects are time-varying or not; or comparing geo-additive models
with simpler parametric alternatives. The measure of complexity and fit suggested
by Spiegelhalter et al. (2002) is adopted in this chapter for comparison, and the
model that takes all relevant structure into account while remaining parsimonious is
selected.

The Deviance Information Criteria (DIC), which may be used for model
comparison, is defined as

DIC(M) = D(M) + pD. (3.10)
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Therefore, the posterior mean of the deviance D (M) is penalized by the effective
number of model parameters pD. Models could be validated by analyzing the DIC,
which is smaller in models with covariates of high explanatory value.

3.3.4 Advantages of the Bayesian Geo-additive Model

There are several potential advantages of the Bayesian geo-additive model described
above over the more conventional approaches such as, discrete-time Cox models
with time-varying covariates and fixed or random districts effects, or the standard
2-level multilevel modelling with unstructured spatial effects (Goldstein 1999). In
the conventional models, it is assumed that the random components at the contextual
level (district in this case) are mutually independent. In practice however, these
approaches specify correlated random residuals (see Langford et al. 1999), which is
contrary to the assumption. Furthermore, Borgoni and Billari (2003) point out that
the independence assumption has an inherent problem of inconsistency. They argue
that if the location of the event matters, it is only logical to assume that areas close
to each other are more similar than areas that are far apart. In addition, treating
groups (in this case, districts) as independent is unrealistic and may lead to poor
estimates of the standard errors. As Rabe-Heskesth and Everitt (2000) stipulate,
standard errors for between-district factors are likely to be underestimated as a
result of observations from the same districts being treated as independent, and
thereby increasing the apparent sample size. In contrast, standard errors for within-
district factors are likely to be overestimated (see also Bolstad and Manda 2001).
Demographic and Health Survey data on the other hand are based on the random
sampling of districts that introduces a structured component, which allows for the
borrowing of strength from neighbors in order to cope with the posterior uncertainty
of the district effect and obtain estimates for areas that may have inadequate sample
sizes or are not represented in the sample. In order to highlight the advantages of
the Bayesian geo-additive model approach used in this chapter, and examine the
potential bias incurred when ignoring the dependence between aggregated spatial
areas, several models shall be fitted with, and without the structured and random
components, as seen in the illustration below.

3.4 Illustration: Spatial Modelling of Under-Five
Mortality in Nigeria

3.4.1 Data Set

Data from the 2003 Nigeria Demographic and Health Survey (NDHS) was used in
this chapter. The sample included 7,620 women aged 15-49 years, and all men aged
15-59 in a sub-sample of one-third (i.e. 2,346) of the households. The data contains
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6,029 children born within 5 years prior to the survey, which came from 3,725
mothers who contributed between 1 child and 6 children. Technical details of the
survey have been reported in the official 2003 NDHS report (NPC 2004). From the
data collected, a retrospective child file consisting of all children born to the sample
women was generated, of these, 1,559 children died before their fifth birthday. Each
live birth and each subsequent child health outcome contains information on the
household and each parent, thereby constituting the basic analytic sample.
The response variable used in this chapter is:

1: if child i dies in month ¢
Jit = e e . . (3.11)
0 : if child i survives beyond time ¢,

3.4.2 Specification and Measurement of Variables

On the basis of previous studies, a selection of theoretically relevant variables was
chosen as covariates of childhood mortality, and these include: mab, mother’s age
at birth of the child (in years) — nonlinear; dobt, duration of breastfeeding — time-
dependent; dist, district (state) in Nigeria — spatial covariate; X, vector of categorical
covariates, such as: sex of the child (male or female), asset index (low, middle or
higher income household), place of residence (urban or rural), mother’s educational
level (no education, primary, secondary of higher), place of delivery (hospital or
home/other), preceding birth interval long birth interval [>24 months], or short birth
interval [ <24 months], antenatal visits during pregnancy (at least one visit, or none),
marital status of mother (single or married), and district level mortality rate per
1,000 (at least 6 children, or at less than six children per woman).

The last levels of each covariate were selected as reference or baseline levels;
descriptive statistics of covariates used in the analysis are shown in Table 3.2.
Available statistics suggest that child mortality levels in Nigeria exhibit wide
geographic disparities (NPC 2000, 2004), with the northern regions and rural areas
generally having higher childhood mortality rates compared to the southern regions
and urban areas respectively. While the focus of previous studies in Nigeria have
mainly been on effect of individual and household factors in explaining childhood
mortality differences in the country, they have largely neglected the impact of
small area variations and community-level variables (see Iyun 1992; Adetunji 1994;
Folasade 2000; NPC 2004).

The aim of this present chapter is to highlight the regional- and district-level
variations in under-five mortality in Nigeria, while improving current knowledge
of district-level socio-economic and demographic determinants (thereby warranting
the inclusion of a geographic location [districts] covariate). It is also intended to
assist policy makers in evaluating and designing programme strategies needed to
improve child health services, and reduce childhood mortality levels in Nigeria.
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Table 3.2 Descriptive statistics of covariates used in the analysis, Nigeria

Demographic and Health Survey, 2003

Variables Frequency (%) Coding
Place of residence:

Urban 2,118 (35 %) 1

Rural 3,911 (65 %) Reference category
Sex of the child:

Male 3,062 (51 %) 1

Female 2,967 (49 %) Reference category

Preceding birth interval:
Long birth interval [25+ months]

3,266 (58 %)

1

Short birth interval [<25 months] 2,326 (42 %) Reference category
Mother’s current age (in years):
Less than 20 years 264 (4 %) 1

20-35 years

Antenatal visits during pregnancy:

5,765 (96 %)

Reference category

At least one visit 2,337 (64 %) 1

No antenatal visit 1,339 (36 %) Reference category
Place of delivery:

Hospital 2,094 (35 %) 1

Home/other 3,878 (65 %) Reference category

Asset index [economic status of the household]:

1st quintile 970 (16 %) 1

2nd quintile 2,332 (39 %) 2

3rd quintile 1,322 (22 %) 3

4th quintile 1,405 (23 %) Reference category
Mother’s educational level:

No education 3,033 (50 %) 1

Primary, secondary of higher 2,966 (50 %) Reference category
Partner’s educational level:

No education 2,343 (40 %) 1

Primary, secondary of higher

Marital status of mother:

3,501 (60 %)

Reference category

Single 483 (8 %) 1

Married 5,546 (92 %) Reference category
Household size:

Large size 1,724 (29 %) 1

Medium size 2,927 (48 %) 2

Small size 1,378 (23 %) Reference category

39

3.4.3 Statistical Method

An analysis and comparison of simpler parametric probit models, and probit models
with dynamic effects, pr (yi = 1|x;) = @ (1;), was made for the probability of dying
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in month ¢, i.e. the conditional probability of a child dying, given the child’s age in
months, the district where the child lived before death, and covariates in X above, is
modeled with the following predictors:

M1 : i = fot) + XiP

M2 :ny = fo(t) + fi(mab) + f(1)Xic + funse(dist) + for(dist) + X8

The fixed effects in model M1 include all covariates described above with
constant fixed effects. Mother’s age at birth was split into three categories as shown
in Table 3.2, and duration of breastfeeding was included as dichotomous (0, 1)
variable. Model M2 will be superior to model M1 because Model M2 accounts for
the unobserved heterogeneity that might exist in the data, all of which cannot be
captured by the covariates (see Madise et al. 1999).

The effects of f; (f), fi and f(¢) are estimated using second-order random walk
prior, and Markov random field priors for fy; (s). The analysis was carried out using
BayesX-version 0.9 (Brezger et al. 2002), a software for Bayesian inference based
on Markov Chain Monte Carlo simulation techniques. The sensitivity of the effects
to choice of different priors for the non-linear effects (P-splines) and the choice of
the hyperparameter values a and b are investigated.

Previous studies, for example, Berger et al. (2002), have shown that breastfeeding
is an important factor. In order to assess its effect, a time-varying indicator variable
(see Kandala 2002), that takes the value 1 in the months a child is breastfed,
and O otherwise, is generated. In addition, temporal and spatial variations in the
determinants of child mortality are also assessed. Common choices for discrete
survival models are the grouped Cox model and probit or logit models. For this
chapter, probit model for discrete survival data is used because binary response
models (3.3) can be written equivalently in terms of latent Gaussian utilities, which
lead to very efficient estimation algorithms. In addition, since survival time in the
DHS data set is recorded in months and the longest observation time for this study
is limited to 60 months, the data naturally contain a high amount of tied events. A
constant hazard within each month is assumed.

At the exploratory stage, a probit model with constant covariate effects (M 1) for
the effects of breastfeeding and mother’s age are fitted with a view to compare them
to the dynamic probit models (M2).

3.5 Results

3.5.1 Fixed Effects

The estimates of posterior odds ratio of the fixed effect parameters for under-five
mortality in Nigeria (Model 2) together with their standard errors and quantiles
are presented in Table 3.3. Results indicate that children living in urban areas at
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Table 3.3 Posterior Odds ratio of the fixed effect parameters for under-five mortality in
Nigeria (Model 2)

Variable Odds ration (OR) 2.5 % quantile  97.5 % quantile
Place of residence

Urban 0.54" (0.38; 0.83)

Rural 1
Sex of the child

Male 1.08 (0.83; 1.40)

Female 1

Preceding birth interval

<25 months 1

25+ months 0.71" (0.55; 0.94)
Antenatal visits during pregnancy

At least one visit 0.57" 0.40; 0.77)

No visit 1
Place of delivery

Home or other 1

Hospital 0.95 (0.68; 1.40)
Asset index

1st quintile 1

2nd quintile 0.86 (0.55; 1.23)

3rd quintile 1.09 (0.78; 1.54)

4th quintile 0.93 (0.64; 1.37)
Mother’s educational level

No education 1.51" (1.06; 2.25)

Primary, secondary, or higher 1

Partner’s educational level
No education 0.76 (0.54; 1.20)
Primary, secondary, or higher 1

Marital status of mother

Single 1.27 (0.66; 2.47)
Married 1

Household size
Small size 1
Medium size 0.99 (0.67, 1.68)
Large size 0.96 (0.64; 1.51)

“Estimate significant at 5% level. This is also indicated by the corresponding 95%
confidence interval (which doesn’t include 1)

lower risk of dying than children living in rural areas (posterior odds ratio 0.54),
with positive corresponding 2.5 %- and 97.5 % quantiles indicating that the effect
is statistically significant. Boys are only slightly at higher risk of dying than girls
(posterior odds ratio 1.08), and the corresponding 2.5 %- and 97.5 % quantiles are
both positive. The results also show that a short birth interval significantly reduces
a child’s chances of survival, as children with birth interval 25+ months were at
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lower risk of dying compared to those <25 months (posterior odds ratio 0.71),
the effect being statistically significant. In comparison to children whose mothers
had no antenatal visits during pregnancy, children whose mothers had at least one
antenatal visit were at lower risk of dying; the effect being statistically significant.

Children delivered in hospitals were at slightly lower risk of dying compared to
children born at home or elsewhere (posterior odds ratio 0.95). Findings also indi-
cate that child survival is associated with economic status of the household; while
children living in households within the 2nd and 4th quintiles were significantly
at lower risks of dying compared to those in the st quintile (richest households),
those living in households within the 3rd quintile had a slightly higher risk of dying
(posterior odds ratio 1.09) compared to those in the 1st quintile. Mothers’ education,
was associated with child survival and works in the expected direction (with children
of uneducated mothers having 50 % higher risk). Partner’s education, on the other
hand, was insignificant.

Children of single mothers were at higher risk of dying (posterior odds ratio
1.27) compared to children whose mothers were married; both quantiles were
positive, and therefore the relationship was significant. Remarkably, the larger the
household size, the lower the risk of the children dying. Children living in medium-
size households (posterior odds ratio 0.99), and those living in large-size households
(posterior odds ratio 0.96), were at lower risk of dying compared to children living in
small-size households; both relationships had positive quantiles and were therefore
significant.

3.5.2 Baseline Effects

The estimated nonlinear effect of child’s age (baseline time) and the time-varying
effects, modelled and fitted through Bayesian P-splines are shown in Fig. 3.2. The
posterior means are presented within 80-95 % credible intervals, and show that
starting from a comparably high level in the first month, the baseline effect remains
more or less constant until 25-26, and 40-41 months, where they peak. These
observed peaks are likely to be caused by a “heaping” effect from the large number
of deaths reported at these times (probably resulting from incorrect reporting of
large number of deaths at these ages).

3.5.3 Time-Varying Effects

Figure 3.3 displays the time-varying effect of breastfeeding in Nigeria, and indicates
that breastfeeding is on average associated with lower risk of mortality within the
first 16—18 months using 80-95 % credible intervals. However, given the wide range
of the 80-95 % credible region at the end of the observation period (most likely due
to fewer numbers of cases), the results beyond 18 months should be interpreted with
caution.
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Fig. 3.2 Estimated nonlinear effect of baseline time. Shown is the posterior mean within 80-95 %
credible intervals
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Fig. 3.3 Estimated nonlinear effect of time-varying effect of breastfeeding. Shown is the posterior
mean within 80-95 % credible intervals

3.5.4 Nonlinear Effects

Figure 3.4 shows the non-linear or time-varying effect of mother’s age at birth of the
child. Children with younger mothers (<20 years) and older mothers (>35 years)
have higher (but statistically insignificant) risk of dying compared to children of
mothers within the middle age group (22-34 years). Figure 3.4 also shows that
children of mothers 42-48 years are even at higher risk of dying compared to
children of mothers <20 years.
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Fig. 3.4 Estimated nonlinear effect of mother’s age at child’s birth. Shown is the posterior mean
within 80-95 % credible intervals
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Fig. 3.5 Estimated odd ratio of total residual spatial states effects for under-five mortality in
Nigeria. Dark coloured — high risk. Grey coloured — low risk

3.5.5 Spatial Effects

Posterior means of the estimated residual spatial states effects on under-five
mortality in Nigeria are presented in Fig. 3.5. This map shows a strong spatial
pattern, which suggests that survival chances of children under-5 years of age
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are highest within the North Western (Sokoto, and Kebbi) and South Western
(Lagos) regions compared to the other regions. On the other hand, the survival
chances of children under-5 years are lowest among children from Jigawa, Taraba,
Delta, Rivers and Adamawa states compared to the children from the rest of the
states. A comparison between the under-five mortality rates (Table 3.1) and the
estimated odds ratio (Fig. 3.5) reveals the emergence of a clear spatial pattern of
under-five mortality risk with the residual effects in Fig. 3.5. Therefore, failure to
take into consideration the posterior uncertainty in the spatial location (states or
districts) would invariably lead to an overestimation of the precision in predicting
childhood mortality risks in unsampled districts. The spatial effects could therefore
be interpreted as representing the cumulative effect of unidentified or unmeasured
additional covariates that may reflect impacts of environmental and socio-cultural
factors.

3.6 Discussion and Conclusion

After controlling for the spatial dependence in the data, almost all the covariates
associated with under-five mortality in the fixed part of the model were found to have
effects in the expected directions. A remarkable finding however, is that children
in larger households are at slightly lesser risk of dying compared to children in
small households; this may not be unconnected with factors that might contribute
to a household’s propensity to experience childhood deaths such as the burden of
child ill-health and mortality being borne by only a small fraction of all households
(Madise and Diamond 1995); household income (Vella et al. 1992); maternal
education (Cleland and van Ginneken 1988); physical access to care (Kuate Defo
1996); and rural as opposes to urban setting (Sastry 1997).

The time-varying effects of breastfeeding emphasize the importance of breast-
feeding, which is widely believed to be the most beneficial source of infant nutrition
for the attainment of health and well-being of the infant (Weimer 2001). Results
of this study show a lowered risk of mortality associated with breastfeeding within
the first 16-18 months. However, results at the end of the observation period do
not provide reliable information on the dynamic effect of breastfeeding (due to few
cases), and should therefore be interpreted with caution. Results of the nonlinear
effect of mother’s age at the birth of the child are in the expected direction,
emphasizing the risk associated with younger mother (also seen in Alam 2000) and
late childbirth (see Hobcraft et al. 1985), especially the higher risk associated with
children of women aged 42—48 years.

The estimated residual spatial effects for under-five mortality in Fig. 3.5 show
clear differences between the significantly better survival chances of children in the
North West (Sokoto, and Kebbi) and South West (Lagos) regions compared to the
North East (Adamawa, Taraba, Yobe, Borno), South South (Delta, Rivers, Akwa
Ibom) and South East (Enugu) regions. These state patterns are similar to analysis
of poverty in Nigeria in which the Northeast zone had the highest poverty incidence
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with 67.3 %, followed by the Northwest with 63.9 %; the South South zone had the
highest poverty rates (55 %) among the southern states, while the lowest poverty
rates were recorded in the South East at 34.2 %, followed by Southwest with 43.0 %
(National Bureau of Statistics 2005).

While some of these effects have been shown using traditional parametric
methods, using Bayesian geo-additive models uniquely shows subtle differences
when analysing for small-area spatial effects. Though the spatial effects do not
show causality, careful interpretation could identify latent and unobserved factors
that directly influence mortality rates. This geographic semi-parametric approach
therefore appears to be able to discern subtle influences of the determinants, and
identifies district-level clustering of under-five mortality.

The variation in the probability of childhood survival in Nigeria is spatially
structured. This implies that adjusted mortality risks are similar among neigh-
bouring states or districts, which may partly be explained by general health care
practices, similar prevalence of common childhood diseases, and the residual spatial
variation induced by variation in unmeasured district-specific characteristics (which
any standard 2-level model with unstructured spatial effects assuming independence
among districts would yield estimated that lead to incorrect conclusions).
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Chapter 4

Bayesian Geoadditive Mixed Latent Variable
Models with Applications to Child Health
Problems in Egypt and Nigeria

Khaled Khatab

4.1 Introduction

Childhood morbidity and malnutrition are among the most serious health is-
sues facing developing countries. Analyses of these health outcomes are often
based on Demographic and Health Surveys (DHS) datasets which provide reli-
able information on childhood diseases and undernutrition. The analyses rely on
statistical inference with various forms of standard regression models. Because of
methodological restraints, it is difficult to detect nonlinear covariate effects, for
example of, age, adequately, and it is impossible to recover small-scale, district-
specific spatial effects with standard linear regression or correlation analysis. Recent
research has applied geoadditive regression models (Fahrmeir and Lang 2001;
Fahrmeir et al. 2004). These models can account for nonlinear covariate effects
and geographical variation while simultaneously controlling for other important
risk factors. They have been used in regression studies of risk factors for acute or
chronic undernutrition (e.g., Kandala et al. 2006; Adebayo 2003), for morbidity
(Kandala et al. 2006, 2007; Khatab and Fahrmeir 2009) and for mortality (Adebayo
and Fahrmeir 2005; Kandala and Ghilagaber 2006).

However, except in Khatab and Fahrmeir (2009), regression analyses are carried
out separately for each disease, such as cough or fever, or each undernutrition
status such as stunting, wasting or underweight, neglecting possible association
or common latent risk factors among these response variables. In this chapter, we
take a somewhat different point of view; we apply recently developed geoadditive
latent variable models for mixed continuous and discrete responses (Fahrmeir and
Raach 2007) considering binary indicators for cough, fever and diarrhea as well
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as Z-scores for stunting and underweight as observable outcomes of latent health
and nutrition status. This allows to simultaneously account for association between
these indicators and to assess the common influence of certain risk factors, nonlinear
effects of covariates such as age of child, and geographical variation on the latent
variables morbidity and malnutrition. The issues addressed are illustrated with data
from the 2003 Demographic and Health Surveys of Egypt and Nigeria but the
models and methods used are equally applicable to similar data from other countries.

A background of the present study is reported in previous works (Khatab and
Fahrmeir 2009; Khatab 2010). Effects of the different covariates on response
variables diarrhea, fever, and cough (indicating child’s health status) and stunting
and underweight (indicating malnutrition status) were analysed using separate
geoadditive latent variable models (Raach 2005; Fahrmeir and Raach 2007).

Further, we apply recently developed geoadditive latent variable models for
mixed continuous and discrete responses, which is the main focus of this chapter.
Models with one and with two latent variables are estimated using mixed indicators
(binary indicators for “health status”, and continuous indicators for “nutrition
status”) and the results are compared. The methods are applied to the 2003 DHS
data from Egypt (El-Zanaty and Way 2004) and Nigeria (National Population
Commission and ORC Macro 2004). Some of these ideas on joint spatial modelling
to identify common and specific risk factors and profiles using shared-component
models can be found in Chap. 15.

Computations are carried out using the MCMC package in R (Raach 2005).

4.2 Basic Ideas of Latent Variable Models

Latent variable models provide an important tool for the analysis of multivariate
data. When the joint distribution of a set of random variables is specified by a
statistical model it becomes a latent variable model if some of them are unobservable
(Bartholomew 1987).

There are many reasons why latent variables might be introduced into a model
in the first place and how their presence contributes to statistical investigation.
One reason is to reduce dimensionality. The information contained in the inter-
relationships of some variables can be useful, to an approximation, in a much
smaller set. This improves the ability to see structures in the data. That is the idea
behind factor analysis models and more recent applications of parametric structural
models (Bartholomew 1987). Secondly, latent variable models play a prominent
role in many fields to which statistical methods are applied, such as social science,
psychology and politics. There are two sorts of variables to be considered in terms of
latent variable models: variables which can be directly observed, known as manifest
variables, and latent variables, which cannot be measured directly.
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Many constructs that are of interest to social scientists cannot be observed
directly. Examples are preferences, attitudes, behavioral intentions, and personality
traits. Such constructs can solely be measured indirectly by means of observable
indicators, such as questionnaire items which are designed to elicit responses related
to an attitude or preference. There are various types of scaling techniques which
have been developed for deriving information on unobservable constructs of interest
from the indicators. A latent variable model can be a nonlinear, path analysis or
graphical. In addition to the manifest variables, the model can include one or more
unobserved or latent variables which represent the constructs of interest. There are
two assumptions defining the causal mechanisms underlying the responses. The first
one assumes that the responses on the indicators are the result of an individual’s
position on the latent variable. The second is that the manifest variables have nothing
in common after controlling for the latent variable. This is usually referred to as the
principle of local independence.

The main purpose of factor analysis is to determine the correlations between a
set of observed variables that can be interpreted by a few number of latent variables,
and how that could be identified. The factor analysis model can be found in two
ways

1. amodel, which allows for ordinal or binary indicators. Typically researches have
used ordinal data in classic factor analysis models, which are assumed to be
normally distributed.

2. a latent variable model including covariates which influence the indicators or
the latent variables. Most statistical studies assume that the influence of the
covariates on the indicators and on the latent variable is strictly linear.

The original form of factor analysis has its roots in Psychology (Spearman 1904).
Spearman hypothesized that performance for each set of intellectual tasks is shared
with performance for all other intellectual tasks; the general intellectual ability
cannot be directly obtained, and therefore there is a need for a latent variable.

The Latent Variable Models (LVM) presented in this chapter includes binary and
continuous indicators.

Further, the model is based on a Bayesian framework where all unknown
population parameters are considered as random.

In order to understand the idea of LVM, we have to distinguish between two
types of variables: the observable variables which are called indicators or manifest
variables, and the unobservable variable which is called latent variable.

LVMs are mostly used in the fields of psychology and social science because
most of the variables in these areas cannot be directly quantifiable. LVM are also
used in the field of medicine, where patients suffer from disease syndromes which
are of a variety of effects such as Fetal Alcohol syndrome, and Downs Syndrome,
which are taken as indicators in many teratology studies (Holmes et al. 1987).
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4.2.1 General Formulation

Let y’ be a vector of p manifest variables (or indicators), y" = (1, y2, ..., yp). One
wants to find a set of latent factors v’ = (v, vs,..., v,) with a smaller number
of components ¢ < p than the observed variables that contain essentially the
same information. If both the response variables and the latent factors are normally
distributed with zero means and unit variances, this leads to classic factor model
(see Joreskog and Goldberger 1975). We will distinguish between two different sets
of covariates.

* covariates that affect the indicators directly w' = (wy, wy, ...., wi)
* covariates that affect the indicators indirectly x’ = (xy, x3,...,x;)

Covariates can be of any type, such as metrical, categorical (dummy variables)
or ordinal.

4.2.2 Latent Variable Models Using One factor

Here, we briefly discuss the types of models that will be studied in this chapter.
There are three observed variables y’ = ()1, ¥, y3) which are indicators of a single
latent variable v;. The observed variables can be binary as in the case of health
indicators or continuous as in the case of the malnutrion indicators.

The basic idea of latent variable models or the factor analysis is that the
multidimensional vector of p manifest variables y can be represented by one or
more latent factor v with a lower dimension of g. Consequently factor analysis
reduces the dimensionality of the data in such a way that the interrelationships
among the observed variables are preserved as much as possible.

The basic factor analytic model for Gaussian response consists of so-called
measurement model

i = Av; + ¢,
v ~N(0,1), & ~ Npy(,X), 4.1)

for each observation i. A is a p x g dimensional matrix of regression coefficients
which are called factor loadings and indicate the relationship between the latent
variable v, and the indicators (manifest variable) y;. The term &; represents a p-
dimensional error term. This is the case when the model does not include any
covariates effects.

However, we need to extend the basic factor model for the following reasons;
On the one hand, it is useful to include explanatory variables w which affect
the observed variables directly. On the other hand, it is interesting to know how
the explanatory variables modify the latent factor, and hence affect the observed
variables indirectly (indirect effects x). This chapter focuses on both types of
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exploratory variables (direct and indirect effects) as we are interested in how
variables, e.g. demographic variables, affect the latent variables.

Most structural models following Joreskog and Goldberger (1975), distinguish
between two conceptually distinct parts of latent models, namely a structural part
and a measurement part.

The structural part of a model specifies the relationships among the latent
variables and the measurement part specifies the relationship of the latent to the
observed variables. The measurement model (with direct effects) is given by

yi = Av; + Aw; + €. 4.2)

where w; are effects which directly affect the observed manifest variables and A is
the matrix of regression coefficients.

The part of the model that links a set of observed covariates with the latent
variables, the linear structural model is given by

Vi = VX + ;i- (43)

where x; are indirect effects which modify the latent factors, and hence affect the
observed variables. The matrix y contains the regression coefficients of the indirect
covariates Xx.

The latent variable v; and the observed variable w; account for the associations
among the y variables. The direct relationship between w; and y; allows the mean
level (thresholds) for variable y; to be different for different values of the w;
variable.

Finally, x’ = (x1, x,) affect the latent variable v,. Note that variable x needs to
be different from variable w for identification reasons.

4.3 Measurement Model and Structural Model

4.3.1 Measurement Model for the Binary Indicators:

The binary variables y;; are taken to be manifestations of some underlying continu-
ous unobserved variables y;

The connection between the binary variable y;, j = p; + 1,..., p and the
underlying variable y is

y,-j=1<:>y;>tj.

yi=0%yi =<t
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Because of the identification restriction, the ; thresholds of all indicators j are
fixed to zero and var(g;) = 1.

The relationship between the y variables and the latent variables v in the
measurement model excluding direct effects is given by

y; =0+ Av; +¢g5, g~ Np(o’ I).

where A is a matrix containing the factor loadings, indicating strength of relation-
ship between latent factors and indicators.

The relationship between the y;* variables and the latent variables v; in the
measurement model including direct effects is given by

y;; =0y + Av; + Aw; + Eij  Eij ~ NP(O, Y) 4.4)

The direct covariates are summarized in the d-dimensional vector w; =
(Wi1, ..,wiq) and the p x g-dimensional matrix A.

The direct effects provide additional information about data structure and
increase the strength of dimensionality through the relationship between y; and
w;, used in the analyses later. Here ¢; is distributed normally &; ~ N,(0, X)
and £ = diag(o?,... ,0‘5), visa (1 x p) vector of latent variables that explain
the relationships among the indicators. The p x g matrix A is the matrix of
factor loadings which indicate the relationship between the latent variables and the
indicators, and A is the intercept.

We assume that responses are conditionally independent and Bernoulli-
distributed. Thus, the model of the binary indicators can be written as

yilvi ~ Bin(1,7y), j =pi+1,....p, 4.5)
and follow a probit model
D = P(y; = l|v) = @(Ajv; +dfwi). (4.6)

where ® denotes the standard normal distribution function, with the same latent
variables v;, as in (4.4) but using the effect of the covariates instead the matrix.
We also assume that all responses y;, j = 1,..., p, are conditionally independent
given the latent variables v;, so that association between responses is introduced
through the common latent variables.

In such models, the correlations between the y; variables are explained by both
latent variables and covariates, instead of the latent variable alone.
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4.3.2 Measurement Model for the Continuous Indicators

For continuous (Gaussian) indicators there is no need for underlying variable, so
that

The logistic distribution function could also be used instead of the standard
normal distribution function; however we use the standard normal distribution
function because the parameter estimates for both function lead to similar results
in prediction (Moustaki et al. 2004).

4.3.3 Structural Model

Structural models relate latent variables to further covariates which have only
indirect effects on the observable responses. Traditional linear structural models
(e.g. Moustaki et al. 2004; Skrondal and Rabe-Hesketh 2004) assume (latent)
Gaussian linear models

Vi = xl{ﬂr +8ir’ r = 1,...,q (47)

with i.i.d Gaussian errors §;, ~ N(0, 1). Here x; is the vector of covariates with
direct effects on the latent variables. For identifiability reasons 8, must not contain
an intercept term (it is included already in the measurement model), and the error
variance var (§;,) has to be fixed to 1.

The linear structural model (4.7) implies that the means of the latent variables
are linearly dependent on the covariates x;. This can be a severe restriction in real-
life research settings as in our application. For instance, continuous covariates such
as age of child, body mass index of mothers, and age of mothers at birth, a strictly
linear effect on the mean may not be appropriate. Also, the latent variables “mal-
nutrition” and “morbidity” may be influenced by geographically varying effects. To
incorporate these we employ more versatile geoadditive structural models

Vir = X Br + fr(zi) + ...+ fix@ik) + frgeo(si) +68irn r=1,.,q (4.8)

where f1(zi1), ..., frk(zix) are smooth, nonparametric functions (effects) of con-
tinuous covariates zj,...,zx like age of child, and f; g.() is the geographical
(spatial) effect of location or geographical region s; € {1, ..., S}, where individual
i lives.

Such geoadditive models have been previously suggested for observable univari-
ate responses y of different types, (Fahrmeir et al. 2004), and have been applied
for analyzing malnutrition or disease indicators separately (Kandala et al. 2007).
Further application appear in Kandala (2002), Kandala et al. (2001), Khatab and
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Fahrmeir (2009), and Khatab (2010). Geoadditive latent variable models, combining
separate regression models to a joint multivariate model, have been suggested
recently in a Bayesian framework (Fahrmeir and Raach 2007). The appendix section
shortly reviews methods for modelling of the unknown function fi, ..., fi and fee
and points out some identifiability issues.

4.4 Latent Variable Models for Mixed Response Variables

We first introduce the scalar latent variable v, “health and undernutrition status”.
We consider a one-dimensional latent variable with different types of covariates.
Extension to two-dimensional latent variables with two types of responses and
different types of covariates are presented in the next section. The response variables
consist of five indicators: fever, diarrhea, cough, stunting and underweight.

The measurement model using one latent variable is given by

yi=h+ aj'wi+Ajvi+e;, i=1,....n g~ N(O,ajz-) (4.9)
for two metrical indicators and
yi =ro+a;j'wi+Ajv +e5, g~ NO,1)

for the underlying variables y; corresponding to the three binary indicators y;;,
j=123
The form of the structural model is

Vi = M;(X + fl(x,-l) + ‘e + f3(xl-3) + fge(,(re‘g,') + 8,’ (410)

The models include the direct vector of covariates w; for each individual response
variable. The direct vector w; includes the categorical covariates water, educ, toilet,
urban, trep and elect in the LVM for Egypt (Table 4.3). In the case of Nigeria, it
includes the covariates male, educ, radio, and water (Table 4.4). The indirect vector
u includes male, anvis, work, and radio in the latent variable mixed models for
Egypt, and urban, work, terp, avis, toilet, and elect for Nigeria.

The measurement model using two latent variables is given by

i Ail aj Al Ara &il
yi*z Az alz Aol Ax Ein
yl-*3 = Ai3 + ag . (W1 Wy W3 Wy W5) + 131 132 . (zl) + | &3
y,-*4 Ais a;, A A ? Ei4
Vis Ais as Asp Asy &is
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The structural model for the analysis uses two latent factors:
v\ [ o N f11(Chage;) L Si2(BMI;) 4 f13(Mageb;)
V2 M;ZOQ fz[(Chage,') fzz(BM[,‘) f23(Mageb[)

+ ﬁ4(regi) + 8i1 (412)
Sra(reg;) 8i2
where Chage is Child’s age in months, BMI is Mother’s body mass index, and

Mageb is Mother’s age at birth. Further, reg is the spatial covariate, which refers
to governorate or regions where respondent resides.

4.4.1 Selection Cariteria

To decide which covariates should be included in the measurement models and
which should be in the structural models, we follow the strategy below:

As a first step, we apply separate geoadditive probit models for health indicators
and separate geoadditive Gaussian models for the malnutrition indicators. The
results are reported in Khatab and Fahrmeir (2009) and Khatab (2010).

In the second step, we apply geoadditive probit LVMs to analyze the data.
Although the Deviance Information Criterion (DIC) is now commonly accepted as
a standard tool for selecting probit or logit models, its performance for LVM model
choice is not yet well understood.

4.4.2 Models Section

If the effects of covariates turned out to be significantly different (in terms of
confidence intervals) for the three diseases, we decided to keep them in the mea-
surement model, otherwise covariates were included in the geoadditive predictor of
the structural equation for the latent variable. All nonlinear effects and the spatial
effect are included in the structural model.

4.5 Applications

4.5.1 Childhood Diseases

Diarrhea

Diarrheal disease, caused by poor condition of water and sanitation, is a common
public health problem in developing countries. It is a variety of micro-organisms
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Table 4.1 Overview of the morbidities in Egypt

Health Indicators Observation Mean Std.Dev No diseases Had diseases
Diearhea 6,348 0.210 0.407 5,013(78.97) 1,335(21.03)
Fever 6,348 0.323 0.467 4,297(67.69) 2,051(32.31)
Cough 6,348 0.255 0.436 4,725(74.43) 1,623(25.57)

Table 4.2 Overview of the morbidities in Nigeria

Health Indicators Observations Mean Std.Dev No diseases Had diseases
Diearhea 5,186 0.179 0.383 4,257(82.09) 929(17.91)
Fever 5,186 0.309 0.462 3,583(69.09) 1,603(30.91)
Cough 5,186 0.235 0.407 3,967(76.49) 1,219(23.51)

including viruses, bacteria, and protozoan’s that cause diarrhea, affecting people’s
health through loss of water and electrolytes. This leads to dehydration and, in
disastrous preconditions, to death.

In Egypt, the widespread use of oral rehydration therapy has successfully reduced
the severity of diarrheal episodes and sharply reduced the number of subsequent
deaths. However, overall diarrheal disease has not declined. In the 2003 DHS,
mothers were asked whether any of their children less than 5 years of age had had
diarrhea at any time during the 2-week period before the survey.

Fever

Infection is the most common cause of fever in children. Most fevers in babies and
children are caused by a viral (germ) infection. Common viral and bacterial illnesses
like colds, gastroenteritis, ear infections, croup, and bronchitis are the most likely
illnesses to cause fever.

Cough

Cough and breathing difficulties are common problems in young children. Recent
literature indicates that breastfed children who had a cough or cold may have
difficulties in feeding. Breastfeeding however, could help fight diseases. Along with
diarrhea, acute respiratory infection (ARI), particularly pneumonia, is a common
cause of death in infants and young children.

Tables 4.1 and 4.2 provide overview of the morbidities in both countries.

4.5.2 Childhood Malnutrition

Childhood undernutrition is amongst the most serious health issues facing devel-
oping countries. It is an intrinsic indicator of well-being, but it is also associated
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with morbidity, mortality, impaired childhood development, and reduced labor
productivity (Sen 1999; UNICEF 1998; Pelletier 1998; Svedberg 1996). Three
anthropometric variables are measured through z-scores for wasting, stunting and
underweight, defined by

z, = Al MAT (4.13)
o

where Al refers to the individual anthropometric indicator (e.g. height at a certain
age), M AI refers to the median of a reference population, and o refers to the
standard deviation of the reference population. Each of the indicators measure
somewhat different aspects of nutritional status. Note that higher values of a z-score
indicate better nutrition and vice versa. Therefore, a decrease of z-scores indicates
an increase in malnutrition. This has to be taken into account when interpreting
the results. The reference standard typically used for the calculation is the National
Center for Health Statistics-Center for Disease Prevention (NCHS-CDC) Growth
Standard that has been recommended for international use by WHO. The reference
population are children from the USA. More exactly, up to an age of 24 months
these are children from white parents with high socio-economic status, while older
children are from a representive sample of all US children.

Stunting

Stunting is an indicator of linear growth retardation relatively uncommon in the
first few months of life. However it becomes more common as children get older.
Children with height-for-age z-scores below minus two standard deviations from
the median of the reference population are considered short for their age or stunted.

Underweight

Underweight is a composite index of stunting and wasting. This means children may
be underweight if they are either stunted or wasted, or both. In a similar manner to
the two previous anthropometric incidences, children may be underweight when
their z-score is below minus two standard deviations.

Categorical Covariates
Tables 4.3 and 4.4 provide information on categorical socioeconomic and bio-

demographic covariates, their categories, frequencies, and the coding used in the
regression models for Egypt and Nigeria, respectively. Although wealth index was
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Table 4.3 Overview of the
factors analysed in the case
study for Egypt

K. Khatab
Factor N(%) Coding effect
Place of residence
Urban 2,237(33.58 %) 1
Rural 4,424(66.42 %)  —l.ref
Child’s sex
Male 3,487(52.35 %) 1
Female 3,174(47.65 %)  —l.ref
Working
Yes 1,209(18.15 %) 1
No 5,452(81.85 %) —l.ref
Mother’s Education
No,
Incomp.prim,
Comp.prim,
Incomp.sec 4,194(62.97 %) 1
Compl.sec,
Higher 2,467(37.04 %) —l.ref
Pregnancy’s treatment
Yes 697(10.46 %) 1
No 5,964(89.54 %) —l.ref
Drinking water
Controlled 5,374(80.68 %) 1
Not controlled 1,287(19.32 %)  —1.ref
Missing 1 %
Had radio
Yes 5,374(80.68 %) 1
No 1,559(19.32 %)  —1l.ref
Has electricity
Yes 6,203(93.12 %) 1
No 458(6.88 %) —1l.ref
Toilet facility
Own flush toile facility 1,768(28 %) 1
Other and no toilet facility  4,511(71.8 %) —1.ref
Missing 1%
Antenatal visit
Yes 4,181(63 %) 1
No 2,342(35 %) —1l.ref
Missing 2 %

included in previous works of the author, in the present chapter we include only
radio, electricity, type of toilet, and drinking water in order to facilitate comparison
of results in the two countries.



4 Bayesian Geoadditive Mixed Latent Variable Models with Applications. ..

Table 4.4 Overview of the
factors analysed in the case
study for Nigeria

Child’s Age (Chage)

61

Factor

N(%)

Coding effect

Place of residence
Urban
Rural

Child’s sex
Male
Female

Working
Yes
No

Mother’s Education
No,

Incomp.prim,
Comp.prim,
Incomp.sec
Compl.sec,

Higher

Pregnancy’s treatment
Yes
No

Drinking water
Controlled

Not controlled
Missing

Had radio

Yes

No

Has electricity
Yes
No

Toilet facility

Own flush toile facility
Other and no toilet facility
Missing

Antenatal visit

Yes

No

Missing

2,118(35.13 %)
3,911(64.87 %)

3,062(50.79 %)
2,967(49.21 %)

3,835(63.61 %)
2,172(36.39 %)

5,294(87.81 %)

735(12.19 %)

1,001(16.6 %)
5,028(83.40 %)

1,899(32 %)
4,096(67 %)
1%

4,466(74.08 %)
563(25.97 %)

2,715(45.03 %)
3,314(54.97 %)

590(10 %)
5,335(88.5 %)
1.5 %

2,412(40 %)
1,264(21 %)
29 %

—1.ref

—lL.ref

—1.ref

—1.ref

—l.ref

—1.ref

—1.ref

1
—lL.ref

1
—l.ref

1
—1.ref

The age of a child has a significant effect on its morbidity as reported in many
previous studies. According to the World Health Organization (WHO) children
should receive all recommended vaccines by 12 months of age.



62 K. Khatab

Mother’s Body Mass Index (BMI)

Body mass index (BMI) varies with the woman’s age, and it is somewhat higher
among urban women than among rural women. Studies show that this coexistence
of under- and overnutrition exists not only at the societal but also the household
level. The range of overweight mothers is remarkably large, even within a region.
For instance, 55 % of mothers are overweight in Egypt.

Mother’s Age at Birth (magb)

This is an important variable to fertility because it marks the onset of the childbear-
ing process. Delay in magb may indicate late establishment of marriage and hence
implies shortening of the reproductive period and consequential reduced fertility.

Spatial Covariates

The information of the geographic location (governorate or regions) where the child
lives at the time of interview is a significant contribution of the DHS data set to
understanding child disease and malnutrition in both countries. In the case of Egypt,
there are 20 governorates included. For Nigeria, 37 regions have been considered.

4.6 Case Study of Egypt

In this section, the latent variable models has been applied using data from the 2003
Egypt Demographic and Health Survey (El-Zanaty and Way 2004). The aim of
the analysis is investigate the relationship between the indicators of diseases and
the indicators of undernutrition in Egypt based on the analyses which have been
presented in Khatab and Fahrmeir (2009) that focused on the childhood morbidity
in Egypt, and Khatab (2010) that investigate childhood malnutrition in Egypt.

4.6.1 Model Estimation with One Factor Analysis

The modeling focused at this stage on the estimation using the binary indicators
(fever, diarrhea, and cough) and the continuous indicators (stunting and under-
weight), with one latent variable.

In order to decide which of the covariates should be included in the measurement
model as direct parametric effects, or in the structural equation as indirect effects
via their impact on the latent variables, mentioned criteria are taken into account.
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The covariates male, antenatal visit, radio and work were associated with childhood
diseases and childhood undernutrition, so we kept them in the structural equation in
the case study of Egypt.

Our analysis started using only one latent variable. The results for the estimation
of factor loadings, parametric indirect and direct effects for Egypt are presented in
Table 4.5.

The factor loadings in Table 4.5 show that the latent variable has a stronger
influence on the first three indicators that belong to the health status than on the
nutritional status (stunting and underweight).

The parametric indirect effects for male, antenatal visit and work have a
significant effect on the child health indicators in Egypt. Regarding the parametric
direct effects, covariate urban is associated with indicators cough, diarrhea, stunting
and underweight, whilst treatment during pregnancy is associated with the second
indicator; and the education level of mother has a positive effect on the indicators of
stunting and underweight.

In addition, none of the covariates which have parametric effects were associated
with the indicators of fever.

With regards to the nonparametric effects, Fig. 4.1 shows the nonlinear and
spatial effects. These results are expected, as the indicators of diseases are clearly
represented through the latent variable, so the results are consistent with the results
of the prevoius sudy, which has focused on the childhood modrbidity in Egypt
(Khatab and Fahrmeir 2009).

The nonlinear effect of child’s age indicates that the prevalence of diseases was
found to be highest among children 0-12 months of age. As for the effect of a
mother’s BMI, it has a slight effect on the latent variable; however, there is a higher
effect through the interval between 27 and 30. The pattern of mother’s age shows
that younger mothers (12-20) have a higher effect on the health staus of child
comapare to their counterparts (20-35 years of age).

The spatial effect for Egypt indicates that higher risks are associated with some
rural areas in the Nile Delta and in Sinai as well.

Again, looking at the estimated mean factor loadings in Table 4.5 we can
draw the following conclusions: First, the latent variable has significant effect on
all five indicators. Second, as we expected, disease and malnutrition indicators
are positively associated. Strictly speaking, disease indicators and z-scores for
stunting and underweight are negatively correlated, because by definition z-scores
for stunting and underweight decrease with increasing undernutrition.

Third, the latent variable loads much higher onto the disease indicators than onto
the malnutrition indicators. Therefore, we reanalyse the data with a LVM with two
latent variables in the next subsection. Because the latent variable loads mainly on
the disease indicators, these results are comparably close to the ones obtained with
the results for the LVM with two latent variables, so we defer interpretation to the
following subsection.



64

Table 4.5 Estimates of factor loadings, parametric indirect and
direct effects of the LVMM with one latent variable for Egypt

Parameter Mean Std 2.5 % 97.5 %
Factor loadings

1. Fever Aq; 1.247" 0.089 1.094 1.420
2. Cough Ay 0.811" 0.047 0.724 0.901
3. Diarrhea A3, 0.816" 0.043 0.734 0.897
4. Stunting A4 —0.132" —0.134 —0.182 —0.084
5. Underweight As;  —0.133" 0.021 —0.015 —0.074
Parametric indirect effects

Male 0.168" 0.038 0.036 0.247
Anvis 0.221" 0.064 0.098 0.339
Work 0.123" 0.053 0.0168 0.238
Radio —0.164 0.108 —0.275 0.072
Parametric direct effects

Water(ay;) 0.122 0.088 —0.037 0.295
Educ(ay) —0.065 0.049 —0.157 0.028
Toilet(a3) —0.107 0.128 —0.452 0.116
Urban(a,4) 0.047 0.068 —0.082 0.183
Trepr(a;s) 0.076 0.097 —0.108 0.272
Elect(a¢) —0.313 0.279 —0.838 0.211
Water(ay;) 0.061 0.067 —0.065 0.195
Educ(ay) —0.055 0.041 —0.140 0.015
Toilet(ays) —0.089 0.120 —0.348 0.108
Urban(asqg) —0.22" 0.063 —0.348 —0.098
Trepr(azs) 0.193" 0.073 0.039 0.340
Elect(aye) 0.191 0.071 —0.467 0.532
Water(as;) —0.02 0.067 —0.178 0.112
Educ (a3) —0.033 0.038 —0.128 0.037
Toilet(ass) —0.029 0.116 —0.277 0.184
Urban(as4) 0.151" 0.056 0.044 0.265
Terpr(ass) 0.015 0.079 —0.139 0.165
Elect(ase) —0.096 0.231 —0.516 0.357
Water(aq;) 0.006 0.050 —0.090 0.108
Educ(ay,) 0.066* 0.026 0.015 0.118
Toilet(ays) 0.029 0.084 —0.121 0.208
Urban(ayq) 0.123* 0.037 0.054 0.203
Terpr(ass) —0.009 0.057 —0.108 0.098
Elect(aye) —0.171 0.168 —0.519 0.153
Water(as; ) 0.013 0.039 —0.065 0.099
Educ (as;) 0.052* 0.022 0.013 0.095
Toilet(ass) —0.035 0.070 —0.197 0.119
Urban(asg) 0.13% 0.036 0.069 0.199
Trepr(ass) —0.023 0.0335 —0.126 0.079
Elect(ase) —0.088 0.1455 —0.351 0.200

“Estimate significant at 5 % level

K. Khatab
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Fig. 4.1 Non-linear effects from top to bottom: child’s age, mother’s BMI, mother’s age at birth
and spatial effects (for model LVMM using five indicators), on the indicators of a latent variable
“health status” and “undernutrition status” of children for Egypt using only one latent variable

4.6.2 Model Estimation with Two Latent Variables

In this section, we analyze determinants of childhood diseases and childhood
undernutrition using two latent variables.

The factor loadings estimates as shown in Table 4.6 observed that the first latent
variable loads onto the first three indicators (health indicators), whilst indicators 4
and 5 (nutritional status) are explained by the second latent variable. This was to
be expected, because the two different sets of indicators are supposed to measure
two different latent constructs. Further, it is indicated that the interpretation for the
LVMs with two factors are more reasonable compared to that of one factor model.

Both factor loadings and coefficients of the parametric indirect covariates of the
first latent factor are very similar to the estimates of the single latent factor model
given in Table 4.6. Regarding the factor loadings of the second latent variable, the
indicator underweight has high factor loading of 0.975.

The results in Table 4.6 also show that the influences of the covariates anvis,
male, radio and work are noticeable for the first latent variable, whilst the second
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Table 4.6 Estimates of factor loadings of the LVMM with two latent

variable and only five indicators for Egypt

Parameter Mean Std 2.5 % 97.5 %
Factor Loadings of First LV

1. Fever A; 1.2217 0.092 1.07 1.496
2. Cough Ay 0.810" 0.0438 0.721 0.903
3. Diarrhea A3, 0.816" 0.0441 0.737 0.914
4. Stunting A4 —0.066" 0.0179 —0.106 —0.019
5. Underweight As; —0.048 0.0109 —0.051 0.039
Factor loadings of second LV

1. Fever A, 0.000 0.000 0.000 0.000
2. Cough Ay 0.033 0.023 —0.058 0.046
3. Diarrhea A3, —0.031 0.0222 —0.054 0.039
4. Stunting A4 —0.657" 0.0145 —0.325 —0.260
5. Underweight As, —0.975" 0.007 1.061 1.099
Parametric indirect effects of first LV

Male 0.1319" 0.0385 0.056 0.207
Anvis 0.206" 0.0428 0.127 0.288
Work 0.108" 0.0510 0.0133 0.205
Radio —0.737" 0.366 —1.359 —0.0512
Parametric indirect effects of second LV

Male 0.152" 0.025 0.101 0.200
Anvis —0.085" 0.0296 —0.140 —0.025
Work —0.0159 0.036 —0.0870 0.052
Trepr —0.020 0.036 —0.089 0.054
Elect 0.040 0.047 —0.0527 0.123
Radio 0.147 0.133 —0.0982 0.398
Parametric direct effects of both LVs

Water(ay;) 0.138 0.085 —0.0257 0.291
Educ(ay) —0.051 0.0504 —0.149 0.038
Toilet(a;3) —0.110 0.145 —0.398 0.175
Urban(a4) 0.031 0.068 —0.1002 0.164
Trepr(a,s) 0.082 0.0917 —0.095 0.262
Elect(as) —0.311 0.267 —0.839 0.208
Water(ay;) 0.079 0.073 —0.064 0.221
Educ(ax) —0.053 0.0413 —0.130 0.024
Toilet(assz) —0.059 0.125 —0.297 0.176
Urban(ayq) —0.211" 0.0610 —0.338 —0.090
Trepr(azs) 0.192" 0.077 0.044 0.349
Elect(ass) 0.018 0.251 —0.512 0.464
Water(as;) —0.023 0.074 —0.162 0.119
Educ(azs,) —0.036 0.040 —0.113 0.028
Toilet(asz) —0.023 0.119 —0.282 0.191
Urban(asq4) 0.152" 0.059 0.0446 0.276
Trepr(ass) 0.014 0.08 —0.136 0.170
Elect(asq) —0.112 0.234 —0.595 0.360

(continued)
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Table 4.6 (continued)

Parameter Mean Std 2.5 % 97.5 %
Water(ay ) —0.019 0.049 —0.109 0.084
Educ(aq,) 0.061" 0.0219 0.023 0.104
Toilet(as3) —0.007 0.083 —0.175 0.155
Urban(ayq) 0.036 0.0352 —0.033 0.099
Water(as;) —0.025 0.031 —0.0718 0.037
Educ(as,) 0.048" 0.009 0.0278 0.064
Toilet(asz) —0.02 0.068 —0.194 0.132
Urban(ass) 0.11" 0.034 0.065 0.194
Trepr(ass) —0.068 0.042 —0.151 0.013
Elect(ase) —0.73 0.132 —0.327 0.160

“Estimate significant at 5 % level

latent variable is associated with anvis and male. The results of the parametric direct
covariates are quite similar to the estimates with a single latent variable. The results
are also consistent with those from separate analysis of childhood diseases and
childhood malnutrition (Khatab and Fahrmeir 2009; Khatab 2010).

The patterns of the covariates child’s age, mother’s BMI and mother’s age
resemble the patterns of the model with one latent variable (Fig. 4.1 is reproduced
in the left panel of Fig. 4.2), whilst the influence of these covariates on the second
latent variable looks different. Apparently, the nonlinear effects on the second latent
variable are associated with the indicators of nutritional status.

Sensitivity Analysis

It is known that the Markov Random Field prior for spatial covariates works well
if there are many neighbors for the spatial units. However, this is not the case for
Egypt, where there are few governorates and neighbors. Therefore, we carried out
a sensitivity analysis for the choice of the prior for the spatial effects. It turned out
that the results of the spatial effects remained stable for the separate models and also
for the latent variable models (Fig. 4.3).

4.7 Case Study of Nigeria

4.7.1 Model Estimation with One Factor Analysis

For Nigeria, the results (Table 4.7) lead to the same conclusion as for Egypt,
where the estimates of factor loadings for the diseases affect the latent variable
more than the indicators of undernutrition. The results show that the indicators of
undernutrition have a slightly stronger effect on the latent variable. The results of the
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Fig. 4.2 Estimates of nonparametric effect of nonlinear covariates from top to bottom: child’s age,
mother’s BMI, and mother’s age at birth for the first (left) and second (right) latent variables for

Egypt

indirect parametric covariates show that only urban and treatment during pregnancy
have significant effect on the latent variable. As for the direct parametric covariates,
male, education level and radio are associated with indicator 4 (stunting), whilst
only the level of education is associated with indicator 2 (cough).

The pattern of the nonparametric effects for the nonlinear effects of a child’s
age shows that the health status of children worsens until about 12 months of age
(Fig. 4.4). The effect of BMI seems to be a little higher for mothers with a BMI
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Fig. 4.3 Estimates of the nonparametric effect of spatial covariate for the first (left) and second
(right) for Egypt

under 20. Children from younger mothers, as in Egypt, are more likely to have
problems in their health status. We found that the high risk of the latent variable
health and nutritional status is pronounced in the northeastern part of Nigeria.

4.7.2 Model Estimation with Two Latent Variables

As shown in Table 4.8, In Nigeria, the second latent variable has the highest
influence on the indicator stunting, with factor loading of 1.165. The influence
of urban and trepr (treatment during pregnancy) is associated with the first
latent variable, however, the second latent variable is more influenced by the
covariates avis and elect. Most of the coefficients of parametric direct covariates
are insignificant with the exception of the child’s sex which affects the indicator
stunting and the covariate education level which affects the indicators of diarrhea
and stunting. Else, the results in Table 4.8 are very similar to those of the single
latent variable model in Table 4.7.

4.8 Summary and Discussion

In this chapter we have formulated a latent model for joint analysis of childhood
diseases and malnutrition in two African countries to highlight shared specific risk
factors which affect the diseases and malnutrition status in those countries.

The main goal was to assess the extent of spatial variation among risk of diseases
and nutritional status.
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Table 4.7 Estimates of
factor loadings, parametric
indirect and direct effects of
the LVMM with one latent
variable for Nigeria

. Khatab

Parameter Mean Std 2.5 % 97.5 %
Factor loadings

1. Fever Ay 0.821"  0.081 0.682 0.989
2. Cough Ay 0.651"  0.063 0.538 0.781
3. Diarrhea A3, 0.896"  0.084 0.741 1.087
4. Stunting A4 —0.262°  0.046 —0.348 —0.171
5. Underweight As; —0.21" 0.028 —0.246 —0.136
Parametric indirect effects

Urban —0.179"  0.079 —0.326 —0.017
Work 0.004 0.070 —0.126 0.147
Trepr 0.204°  0.074 0.053 0.331
Anvis —0.039 0.085 —0.204 0.126
Toilet —0.111 0.100 —0.325 0.078
Elect —0.018 0.077 —0.171 0.127
Parametric direct effects

Male(a) —0.006 0.068 —0.141 0.128
Educ(a) 0.024 0.077 —0.125 0.181
Radio(a3) —0.030 0.040 —0.105 0.047
Water(ai4) 0.044 0.095 —0.130 0.243
Male(ay) 0.016 0.061 —0.102 0.134
Educ(az) 0.151°  0.070 0.020 0.282
Radio(ays) 0.007 0.039 —0.069 0.086
Water(ay,) —0.059 0.093 —0.240 0.113
Male(as;) 0.128 0.078 —0.030 0.274
Educ(as,) —0.118 0.094 —0.318 0.051
Radio(as3) —0.044 0.044 —0.136 0.041
Water(ass) —0.050 0.111 —0.249 0.183
Male(aas) —0.218"  0.067 —0.347 —0.100
Educ(as) 0.449°  0.0718 0.308 0.584
Radio(ay43) 0.090"  0.040 0.012 0.166
Water(agy) 0.093 0.095 —0.090 0.274
Male(as;) 0.063 0.052 —0.032 0.165
Educ(as) —0.016 0.056 —0.122 0.085
Radio(as3) 0.018 0.030 —0.037 0.076
Water(ass) —0.048 0.069 —0.193 0.087

“Estimate significant at 5 % level

The current study was a follow up of previous studies (Khatab and Fahrmeir
2009; Khatab 2010) where child morbidity and malnutrition in Egypt were modelled

separately.

The joint analysis (latent variable models) used in this chapter confirmed most
of the previous findings. Additionally, it measured the degree of spatial correlation
between the indicators of diseases and those of malnutrition. This is, indeed, one of
the appealing features of the model as it permits to assess the association between
the diseases and the malnutrition indicators and also distinguishes between the
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Fig. 4.4 Non-linear effects from top to bottom: child’s age, mother’s BMI, mother’s age at birth
and spatial effects (for model LVMM using five indicators), on the indicators of a latent variable
“health status” and “undernutrition status” of children for Nigeria using only one latent variable

risk factors associated with each status indicator. In addition, the model allows
exploration of how spatial heterogeneity in these factors influences disease and
malnutrition patterns.

The epidemiological significance of the findings is that the estimated patterns
can be related to known possible explanatory factors or putative sources, thereby
guiding policy with regard to targeting interventions.

With regard to the statiscal methodology, geoadditive latent variable models
offer new opportunities and insights to analyze child morbidity and malnutrition
in developing countries within a joint modelling framework. In our case study for
Egypt and Nigeria we found strong support for flexibly modelling the effect of
some covariates that have nonlinear influences and for including a spatial effect.
The maps could be used for targeting regional development efforts and they may
highlight unexpected relationships that would be overlooked in analyses with
standard regression or latent variable models (Fig. 4.5).

Compared to separate modelling, the joint model in this chapter offers several
advantages. First, it offers a flexible regression modelling of highly correlated
response variables within a unified framework, thus improving efficiency and
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Table 4.8 Results of LVMM
using two latent variable for
Nigeria

K. Khatab

Parameter Mean Std 2.5 % 97.5 %
Factor loadings of first latent variable

1. Fever Ay, 0.957" 0.083 0.821 1.146
2. Cough Ay 1.032°  0.091 0.868 1.208
3. Diarrhea A3, 077" 0.065 0.665 0.901
4. Stunting A4 —0.025 0.048 —0.118 0.073
5. Underweight 1s; —0.155" 0.037 —0.226 —0.090
Factor loadings of second latent variable

1. Fever A1, 0.000  0.000 0.000 0.000
2. Cough A, 0.253"  0.045 0.164 0.336
3. Diarrhea A3, —0.088" 0.0355 —0.1588 —0.014
4. Stunting A4 1.165° 0.028 1.109 1.224
5. Underweight A5, 0.958" 0.0238 0.910 1.006
Parametric indirect effects of first LV

Urban —0.144" 0.067 —0.277 —0.020
Work 0.010 0.068 —0.108 0.160
Trepr 0.243"  0.074 0.091 0.380
Anvis —0.037 0.076 —0.171 0.111
Toilet —0.075 0.099 —0.287 0.109
Elect —0.023 0.074 —0.170 0.121
Parametric indirect effects of second LV

Urban 0.021  0.060 —0.103 0.141
Work 0.105 0.060 —0.014 0.219
Trepr 0.093 0.0613 —0.030 0.218
Anvis 0.359"  0.063 0.234 0.474
Toilet 0.143  0.080 —0.012 0.304
Elect 0.159" 0.064 0.029 0.287
Parametric direct effects of both LV

Male(a;) —0.0073 0.066 —0.135 0.1230
Educ(a) —0.039 0.078 —0.186 0.130
Radio(a3) —0.052 0.042 —0.137 0.034
Water(ai4) 0.041 0.103 —0.168 0.245
Male(as) 0.032 0.074 —0.104 0.168
Educ(ay) 0.068 0.087 —0.100 0.242
Radio(ay3) —0.024 0.048 —0.115 0.068
Water(azs) —0.056 0.110 —0.261 0.185
Male(as;) 0.115 0.0707 —0.023 0.256
Educ(as,) —0.154" 0.081 —0.312 —0.006
Radio(ass) —0.066 0.038 —0.142 0.011
Water(azs) —0.06 0.102  —0.266 0.137
Male(ay) —0.242" 0.063 —0.374 —0.119
Educ(as) 0.185" 0.066 0.0565 0.326
Radio(ay3) 0.028 0.039 —0.052 0.105
Water(ayq) 0.072  0.0897 —0.102 0.230
Male(as) —0.061 0.047 —0.1472 0.042
Educ(as,) 0.048 0.054 —0.052 0.153
Radio(as3) 0.027 0.029 —0.030 0.082
Water(ass) —0.005 0.072 —0.144 0.139

“Estimate significant at 5 % level
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Fig. 4.5 Estimates of nonparametric effect of nonlinear covariates from top to bottom: child’s age,
mother’s BMI, and mother’s age at birth for the first (left) and second (right) latent variable for

Nigeria

precision of parameter estimates. This, in turn, allows to include more indicators
in the model as response variables. Further, the model is able to deal with the

different type of indicators such as binary, continuous, ordinal, etc. In addition, not

only the probit model can be applied in terms of the latent variable model, but also
the Poisson and some other families of the distributions can be implemented.

In Egypt, rural areas in the Nile Delta and some other provinces there or in

Lower Egypt are associated with malnutrition in children. One reason, as some
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Fig. 4.6 Estimates of the nonparametric effect of spatial covariate for the first (/eff) and second
(right) for Nigeria

previous studies reported, is that obesity among adults, particularly women, has
reached very high proportions in Egypt in the last few years, while malnutrition
rates in children (in the first 2 years of life) remain stubbornly high. The 1998
national food consumption survey reported that 16.7 % of children 2—-6-years-old
were underweight. Overweight and obesity affected 1.6 % of 2—6-year old children.
The prevalence of stunting in preschool children ranged from 13 % in Lower Egypt
to 24 % in Upper Egypt (Khatab 2010). At the same time, rates of early childhood
malnutrition remain stubbornly stable and relatively high. The double burden of
obesity and malnutrition is clearly evident. In addition, public awareness of the
increasing prevalence of obesity and of diet-related chronic disease is increasing,
and attention has turned to documenting the problem. On the other hand, most
studies relating diarrhea and malnutrition have been conducted in economically
marginal regions, where young children have high rates of diarrhea diseases and
severely faltering growth.

In Nigeria (Fig. 4.6), there is a sizeable difference between pronounced disease in
the eastern parts of the country and significantly better health status in the northern,
and central parts. We can see from the results that southeastern regions and some
regions in the north part are associated with a high rate of childhood disease. That
is because, as suggested by previous studies, a high level of pollution is present
due to petroleum production in those regions. For this reason, the pollution in this
area affected the health of children through water pollution that influences access to
drinkable water sanitation (see Adebayo 2002; Adebayo and Fahrmeir 2005).

The results indicate that, mostly districts in the northeast and southeast posi-
tively associated with height-for-age and weight-for-age. The results also reveal
striking regional variations, with the northeast, south and southeast in much
worse situations in terms of stunting and underweight than the northwest and
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southwest. On the other hand, the children who live in the northwest part of the
country are more likely to be wasted than their counterparts in other parts of
country.

There are both conceptual and technical problems associated with information
on prevalence of fever, diarrhea and cough obtained retrospectively from cross-
sectional studies. First, seasonal differences of occurrence in diarrhea are difficult
to be taken into account in such studies. Longitudinal studies may be more
appropriate to in different seasons. Second, during the survey, neither the children
were examined nor mothers were given a precise definition of what constitutes an
episode of various diseases. On the other hand, we have no sufficient information
about the children who have died before the survey, and whether the cause of death
was the diseases reported here or not.

The questions in the DHS measure the mother’s perception of her child’s health
rather, than morbidity according to clinical examination. This may create variations
among different socio-economic groups because perception of illness is not the
same across different social groups. Third, loss of memory of events as well
as misinterpretation of the reference period can also contribute to the problems
associated with the prevalence of diarrhea (Bateman and Smith 1991).

To sum up, Latent Variable Models offer a new methodology for considering
special types of diseases and malnutrition as indicators for latent morbidity and to
flexibly model covariate and spatial effects on this latent variable. Compared with
separate geoadditive models for the indicator variables, latent variable models can
be advantageous from a statistical and a substantive perspective. Common latent
variables automatically induce association between indicator variables not covered
by covariates.
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Appendix
Priors and Identifiability

Priors for regression coefficients «; and f; are flat, i.e. p(a;) o 1, p(B; o 1),
or weakly informative Gaussian, which is the standard prior in linear regression
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models. Similarly, inverse Gamma priors are usually chosen for error variances 012
in Gaussian measurement models.

Concerning factor loadings A ;, we first have to deal with the well known identi-
fiability problem in factor analysis and latent variables models. Any transformation
from A to A} = A ;'V and from v; to v%; = V'y; with an orthogonal matrix

V leads to the same predictor because )I/J U= )L/j v;. To avoid this identifiability
problem we choose the matrix A = (A/, .., )L;,)’ of factor loadings to be a lower
block triangular matrix of full rank and positive diagonal elements as recommended
by Geweke and Zhou (1996) and Aguilar and West (2000). To avoid so-called
Heywood cases, we assume a standard normal prior for these factor loadings, which
is a standard choice in applications.

The nonparametric effects f1, ..., fx for continuous covariates z1, . .., zx in the
structural equations (4.8) are modelled as (Bayesian) P-splines. Dropping indices to
simply the notation, a function f is approximated through a polynomial spline

f@) =S¢y Be(2). (4.14)

where B;(2),..., Bi(z) are B-spline basis functions. Smoothness of the function f
is achieved by assuming a (second order) random walk model.

Yem1 = 2Vt + Ye—a = te ~ N(0,7%) (4.15)

for the sequence of B-spline coefficients. The variance 7> controls the amount of
smoothness and is estimated (together with all other parameters) by assuming an
inverse Gamma prior.

More information about Bayesian P-spline regression is given in Lang and
Brezger (2004) and Fahrmeir et al. (2004).

The geographical effects fg.,(s) for regions 1,...,S are modelled through
Markov random field priors, a popular model in disease mapping (Besag et al. 1991)
and in spatial statistics (Rue and Held 2005). The basic idea is that adjacent regions
should have a similar impact on the latent variables, whereas two regions far apart
from each other need not exhibit such a similarity. We assume the standard Markov
random field prior

’ T2
_fgw(s)|fgw,s/ #sN (ES/EN\-M, _geo ) (4.16)

X ng

where N(s) is the set of neighboring regions s’ of s, i.e. share a common boundary
with region s, and n; is the number of neighboring regions. Hence, the conditional
mean of fgeo(s) 1S an average of the spatial effects fy.o(s) of all adjacent regions.
As for P-splines, the variance Téeo controls smoothness of geographical effects and,
again, obeys an inverse Gamma prior.
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Identification Problems

There are two sources of identification problems.

The first is associated with modelling of ordinal variables, but our focus is in this
chapter was on binary indicators. The second is related to the uniqueness of factor
loadings matrix A and factor scores.

For the binary indicators the ¢; of all indicators j are fixed to zero and
var(g;) =1 in order to solve the identification problem. For more details see Raach
(2005).

Uniqueness of Factor Analysis and Scores

Consider a transformation of the model
yE =X+ AT 'Tv; + Aw; + ¢ 4.17)

with a ¢ x ¢ non-singular matrix T (e.g. Bartholomew 1987), i.e. where AT ! is a
loading matrix, new latent scores T v; and V(v;) = TWT".

Without any restrictions for A or W, a different number of models may be created.
Since the matrix 7 consists of g2 elements, we have to set g2 restrictions in the
model. For this reason the latent scores have a standard normal distribution, and no
correlations among the latent variables exist.

In the traditional exploratory factor analysis, the variance matrix of the latent
scores can be chosen to be g-dimensional identity matrix I,, leading to v; ~
N, (0, 1,).

For this reason, the latent scores have a standard normal distribution, and no
correlations among the latent variables could exist. The model is invariant under
transformations with orthogonal ¢ x ¢ matrix V' of form A = AV' and ¥ =
Vv; since this transformations can keep the variance of latent scores without any
changing (V(v;) = VI V' = W). The factor loadings matrix A is chosen to be a
lower block triagonal matrix of full rank and positive diagonal elements (Geweke
and Zhou 1996) using free parameters [ = pqg — @.

Prior Distributions

This section discuses briefly a complete specification of the prior distributions
for all parameters included in illustration of the present chapter. Since the prior
distributions of the underlying variables y* and the latent variables v are implicitly
determined by the prior distributions of all other parameters and the distributional
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assumptions about &; and &;, we have to specify prior distributions for the parameter
vector 8 = vec{ig, A, A, X, B, y, t}. If we assume that the individual parts of the
model are stochastically independent, then the prior distribution yields

p(0) = p(Ao, A, A).p(2).p(1).p(B. V).

The following subsections present briefly the prior distributions of the measure-
ment model p(dg, A, A), p(X) and p(r) and of the structural model p(B, y).

Prior Distribution of Intercept, Factor Loading and Direct Effects

Regarding the intercepts factor loadings and direct effects we define a p.(1+¢q +d)
dimensional vector A which contains all parameters of Ao, A and A4 arranged A :=
(Ao, Atr, @i, -.aigs s Apos Apts ooy Apg, Apt, .., apa ). The prior distribution selected
for Aisa p.(1 + g + d) dimensional multivariate normal density with the mean x
and the precision matrix A which are chosen according to prior information, i.e.

AN ~@ R
p(A) o constant.

We chose noninformative priors for the intercepts Ay and the regression coef-
ficients A of direct effects (see Fahrmeir and Raach 2006). The conjugate prior
distribution of the vector of regression coefficients y, is a m-dimensional multivari-
ate normal density with mean y* and precision matrix ['*, y, ~ N(y*,T*7!). In
our analysis, we always choose noninformative priors for all regression parameter
yr, hence all values of T'* are set to zero.

Prior Distribution of Structural Model

Prior Distribution for Smoothing Functions

A prior for smoothing functions f;1, .., f,, is based on a Bayesian P-spline approach
(Eilers and Marx 1996).

Prior Distribution for Spatial Effect

The prior of spatial effect is based on Markov random field (Besag 1974; Besag and
Kooperberg 1995).
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Fully Posterior Inference

A vector of parameters can be estimated after all parameters are arranged in the
parameter vector 6.

0 =vec{do, A\, A, X, B, y,t}.
Hence the posterior distribution is

p@|y,w,x,u) x p(0).p(¥0,w, x,u).

The complete parameter vector is obtained by adding the underlying variables
and latent variables to the parameter vector 6 leading to a posterior distribution

PO, y*.zly.w,x,u) o< p(8)p(y, y*|0.w,x,u)

Sampling from the posterior distribution is done through MCMC algorithms.
There are three different MCMC algorithms that can be used and that essentially
differ in the way of estimating the cutpoints in the case of ordinal indicators (Raach
2005; Fahrmeir and Raach 2007).
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Chapter 5
Mapping Socio-economic Inequalities

in Health Status Among Malawian
Children: A Mixed Model Approach

Lawrence N. Kazembe

5.1 Introduction

There has been a long interest in public health on the linkage between health
and socio-economic determinants, with many studies published from developed
countries, for example in Europe and USA (Braveman and Tarimo 2002; Wagstaff
2000; Black et al. 2003). The studies commissioned by World Health Organization
(WHO) on socio-economic determinants of health also spells out the importance of
socio-disparities in health, and its impact on socio-economic development (Wagstaff
2000; Zere and McIntyre 2003). In these studies, the following have been identified
as key determinants of health: deprivation or SES, education, race or ethnicity,
and rurality. For years, routine public health statistics have been reported, in
Europe and United states, by social factors (mainly income and education), race
or ethnicity. These have facilitated monitoring of socio-economic disparities in
health, and allowed comparison among social classes. In contrast, in developing
countries, studies that examine differences in risk, stratified by education or income
are relatively few, and where these have been considered there is no explicit
investigation of socio-economic patterning (Fotso and Kuate-Defo 2005; Hong
2007).

Furthermore, comparatively few studies have mapped socio-economic inequal-
ities in childhood health (Congdon 2003). Differences in risk that suggest a
socio-economic patterning at a particular area would support targeted interventions
in areas highlighted to be hotspots of ill health. Although it is well-known that
socioeconomic factors such as income and education are significant determinants
of individual health, the clear differences in risk across different socio-economic
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strata have not been studied in African scenario. In particular, there is interest
to understand the complex relationship between deprivation and childhood health
in Africa.

Health outcomes are highly dependent on geographical location. Proper account
of spatial clustering of the response is needed. The sources of spatial hetero-
geneity are many. The inclusion of spatial effects permits modelling unobserved
or unmeasured covariate information on the community level. Analysing their
geographical interrationship can help policy makers understand spatial patterns
and identify differences in disease burden across areas. Although this has a rich
applications in cases arising in developing countries, few such studies focused on
problems from developing countries exist. Investigations in the past have revealed
geographical variation in the distribution of risk in childhood morbidity (Kandala
2006; Kandala et al. 2006). In some instances, spatial profiles of risk happen to
be similar. For example, rural areas are associated with poorer health, impoverished
neighbourhoods are at relatively increased risk. Indeed, epidemiological overlap and
co-morbidity seem to be the norm than not. The impact of control efforts can be
substantial if interventions are spatially targeted (Carter et al. 2000). Recognizing
the areas where the risk overlap would assist in scaling-up of resources. Identifying
geographical differences in the risk may assist in planning integrated interventions,
thus reducing the cost of providing interventions and avoid duplications of systems
aimed at delivering resources.

The aims of this study are: (i) to jointly model the geographical distribution of the
four leading causes (diarrhoea, fever, stunting and underweight) of child morbidity,
(i) to investigate the association of SES with the four ill-health conditions stated
above. SES is fitted as a spatially varying covariate, controlling for other risk
factors on the four causes, and (iii) to explore patterns of spatial correlation. We
conducted a multilevel spatial study with district (a third-level of administration)
and sub-districts (a fourth-level of administration) in Malawi as units of analysis.
This study takes advantage of the existing national surveys like the demographic
and health survey, which reports data on a number of variables including those
on childhood health, and socio-economic variable which can be construed as
possible socio-determinants of health. In addition, these surveys collected geo-
referenced data, which makes applications of spatial epidemiological techniques
a possibility.

We applied a multinomial model to analyse spatial patterns of childhood co-
morbidity in Malawi, in what is called a multi-categorical response models (Kneib
and Fahrmeir 2006). We considered the joint occurrences of (i) diarrhoea and fever,
(i) diarrhoea and stunting, (iii) fever and stunting and (iv) stunting and underweight
as outcomes. Each of the joint outcome is considered as a response category of a
multinomial random variable. Note that such responses may be modelled in different
ways. Multivatiate models are such an alternative, see for example Fahrmeir and
Raach (2007) who introduced a latent class model to model multiple indicators.
However, multicategorical models, such as the multinomial logistic model, are
widely used in the social sciences, as either choice or classification models, for
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instance in demographic analysis of life-course events, fertility preferences and
contraceptive use (Steele et al. 2004). In several of these models, spatial patterns
have not been considered.

In our modelling strategy, we included both individual covariates and a structured
latent variable at two geographical levels (district and subdistrict). Our approach
here recognises the fact that several health outcomes occur simultaneously, largely
because of common risk factors, and probably due to overlap between multiple
risk factors, or that one disorder creates an increased risk for the other (Kazembe
and Namangale 2007; Fenn et al. 2005). In many sub-Saharan African countries,
diarrhoea, malaria, and malnutrition cause and inflict the largest burden National
Statistical Office and ORC Macro (2004), and they are often common forms of co-
morbidities (Killander et al. 2004; Mulholland 2005). Indeed, their co-existence is
largely blamed to expedited early and high childhood mortality (Fenn et al. 2005;
Mulholland 2005; Killander et al. 2004; Black et al. 2003). Our model, further,
extends a novel application of spatially-varying coefficients models to capture the
changing pattern of SES in space (Fotheringham et al. 2002; Gamerman et al. 2003;
Gelfand et al. 2006).

Modelling and inference is done through use of the empirical Bayes (EB)
approach via penalised likelihood techniques (Kneib and Fahrmeir 2006; Fahrmeir
et al. 2004; Tutz 2004). However, fully Bayesian (FB) approach is possible
(Fahrmeir and Lang 2001). For example, Tutz (2004) developed a class of gener-
alised semiparametric mixed models and proposed penalized marginal likelihood
approach for the estimation of parameters. Fahrmeir et al. (2004) considered a
penalised geoadditive model for space-time data with inference performed using
an empirical Bayes (EB) approach.

Now the rest of this chapter is structured as follows. Section 5.2 describes model
development, while Sect. 5.3 gives details of model fitting. In Sect. 5.4, we apply
the techniques to real data from 2006 Malawi Multiple Indicator Cluster Surveys
data. Section 5.5 gives the results. The final section is the conclusion.

5.2 Model Development

5.2.1 The Multinomial Model

A multinomial random variable applies where an event, Y, ends up with three or
more outcomes 1, ..., J (J>2). Specifically suppose. Y has unordered categories,
we assume

Y ~ multinomial (1, p(v;.@)) for i =1,...,n,

such that p(v;, @) = (p1(vi, @), -+, ps(vi, @), and P(y; = jla) = p;j(vi, @),
given some covariates v = (vl,...,vp)/ and corresponding parameter set o.
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The most common approach to estimate multinomial probabilities is through the
logistic model

1 ;ym() Sheld
, + 2 p=1€Xp(Min
pvi@) = P(yi = jlo) = | (5.1)
1+ 25z exp(nin)
where n;; = V'a; is the linear predictor. The last category J is considered as a

reference classification outcome. The likelihood L would take the form

n J
L=T][]lp0vi 01

i=1 =1

with log-likelihood

n J
log L = Z ZYU log [p(vi,o)].

i=1j=1

In this classical multinomial logit model all covariates are assumed to be
independent of the category while effects are category-specific. Extensions of the
classic model allows for the inclusion of category-specific covariates w;_; leading
to the predictor n;; = Vo + w;6.

Since the observations are associated with location of residence, it is desirable
to account for spatial correlation and heterogeneity. Modelling of heterogeneity
and spatially structured variation may be obtained by introducing random effects.
Similarly, nonlinear effects are introduced in the model through smoothing func-
tions. The predictor (5.1) is expanded to include all possible explanatory variables
like fixed, nonlinear and spatial covariates, giving a semi-parametric predictor
(Tutz 2004),

q
Ny = Ve +wib+ Y fik (%) + fopar (57) (52)
k=1

where a are fixed effects corresponding to w; = (w1, ,w;,), fix.k =
1, ..., q are unknown smooth functions, for each response category j, of continuous
covariates x;; = (Xki1, - ,xkq,)’ that enter nonlinearly, and fi,.(s;) is the spatial
component of the model that captures random effects of area s;,s € {1,...,S}.

The component fy,q(s;) is split further into spatially structured and unstructured
random effects, fy,-(s;) and fi.s (k) respectively, to capture any residual variation,
within or between area, in health status that is not explained by components of
the model. Further, define y = (¢, a’)’ as the overall vector of fixed regression
coefficients, and let
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/ / A /
u Vi 0wl —w)

/o) /
uy_, 0 viw,_, —w)

be the corresponding design matrix constructed from the covariates wy and
category-specific covariates V. Then, after reindexing, we can rewrite the predictor
(5.2) in generic matrix notation as

n, =Uy; + XiBj+XoBpy+-+XiBj 4+ XeurB s (53)

which reduces to n, = Po;, where P = (U, X, X2, ..., Xunstr, Xsr) are
appropriate design matrices for each fixed, metrical and spatial effect respectively,
and 0; = (y;,B;1.Bj2 ---,B ) is a high dimensional parameter vector. The
elements X1, Xo,..., Xy, ..., Xgr and B, B0, Bjise+ s Bjunsers Bjsir ar€
such that f;, = X ;. The most compact form of the predictor 7 is obtained by

URt
n= : =Uy+ X8+ XoB+...+ XiB+ ... + XsByr

-1

5.2.2 Modelling Spatial Structure

We fitted the following three models. The first model fitted was where SES
is considered as a fixed variable while adjusting for bio-demographic factors,
and using districts and sub-districts as the spatial units in a simple conditional
autoregressive (CAR) model. Second, within the CAR framework, we explored
the idea of modelling SES as a spatially varying coefficient covariable. Third, we
introduced latent class models to automatically control for correlation at two scales
within a framework of a multilevel model or random intercepts.

Random Effects Model

Spatial correlation between areas is achieved by incorporating suitable random
effects into B,,. This is specified using Markov Random Field (MRF) priors. The
MREF is defined as

ﬂstr| {ﬁstr’ rsztr} ~N (0’ TsztrQ_l) (54)

2

where 7. is the unknown precision parameter which controls the degree of

similarity, and Q is the spatial precision matrix. The (i, j)-th element of the spatial
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precision matrix Q is given by

0, elsewhere

where s~r denotes that area s is adjacent to » which is assigned —1, m; is the number
of adjacent areas to s. We define areas as neighbours if they share a common border.
Thus area s, given neighbouring area r, has the following conditional distribution
(Besag et al. 1991)

?tr|{ . 7é ry~ N( Zﬁm’ m) (5.5)

My réeés

where s and r are adjacent areas in the set of all adjacent areas (8;) of area s, and m;
are the number of adjacent areas.

For completeness, we specify other prior assumptions required in order to
model the relationship depicted in (5.3). Essentially, this is the second stage of
the hierarchy. For the fixed regression parameters, y, a suitable choice is the
diffuse prior, p(y)cxconstant. The smooth functions of continuous covariates are
modelled using a second-order random walk prior given by B;|Bi—1.Bi—2. T/ ~
N (251—1 —Bi-2, 'clz) for /=3, ..., j with noninformative priors for the initials.
Again 112 controls the amount of smoothing, with larger values leading to less
smoothing. In order to capture unstructured spatial random effects (Bunser), we
assumed exchangeable normal priors, By ~ N (O 2 ) where T2 is a

> ‘unstr unstr
variance component that allows for over-dispersion and heterogeneity.

Spatially-Varying Coefficient Model

The second model fitted is spatially varying coefficients (SVC) model. The SVC
model allows the regression parameters for the /th covariate and jth joint health
condition, B;; = [B ji(s), ..., B ﬂ(ss)]/, to be different in different locations. Thus
SVC is an extension of model (5.2),

17] = + f?pal(sj)x/ +

and can be seen as interaction terms, where the effect of x; varies smoothly over
the domain of s;. In other words, geographical location acts as an effect modifier
of x;. Models of this kind are also known as geographically weighted regression,
see Fotheringham et al. (2002); Gamerman et al. (2003); Gelfand et al. (2006).
Again the evaluation function f,.(s;)x; can be written as matrix g = Z8,
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such that g = (x1 fipa(s1). .. .. xnfxpm(sn))/ = diag(xi,....x,)X = ZpB, where
Z = diag(xy,...,x,)X. Again, a random walk prior can be assigned to the vector
of regression coefficients B. Note that the varying coefficients can also be interpreted
as a two-dimensional surface f,a(S;x1) = fopa(s;)x;. Therefore the predictor can
be written as

Wy = fopasyx) 4o

and therefore can be approximated by the tensor product of the one-dimensional
penalised splines (P-splines). If we assume that the unknown surface B, =
Sf(s;,x;7), then

mp my
SGsj.x0) =D BpBiy(s;)Bay(x) (5.6)
p=1v=1
where Byi, ..., By, are the basis functions in s; direction and By, ..., Boy, in x;

direction. The design matrix Xy is now n X mj - m, dimensional and consists of
products of basic functions. Priors for §,, are based on spatial smoothness priors as
specified in Besag and Kooperberg (1995). A two-dimensional first order random
walk has been shown to work well (Lang and Brezger 2004). This is based on the
four nearest neighbours and is specified as

1 rzv
IBpV|‘ ~ N (Z(ﬂp—l.v + ,Bp+1$v + ﬂp,v—l + ,Bp,v-i-l)» %) (5‘7)

for p,v =2, ..., m—1 and appropriate changes for corners and edges. This prior is a
direct generalization of a first order random walk in one dimension. Its conditional
mean can be interpreted as a least squares locally linear fit at knot position
Sp> Gy given the neighbouring parameters. In many applications it is desirable to
additionally incorporate one dimensional main effects. Again, similar to the one
dimensional case additional identifiability constraints have to be imposed on the
functions.

Multilevel Models: Exploring Spatial Correlation and Heterogeneity
at District and Sub-district Levels

Assuming that the outcome is clustered at a sub-district and district administrative

levels, two area-specific random effects can be introduced in (5.2) to model their
effects. The predictor then becomes

nhijk = xj,;; B + Onix + Puk (5.8)
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for sickness status k, of child j in subdistrict i within district 4. The components 0y«
and ¢y are area-specific random effects for the subdistrict and district respectively,
which can further be split into spatially structured variation and unstructured
heterogeneity.

5.3 Penalised Likelihood Inference

Inference for the semiparametric model is based on the empirical Bayesian ap-
proach, also called the mixed model methodology (Brezger et al. 2005; Fahrmeir
et al. 2004). The EB approach is achieved by recasting the predictor model (5.3) as
generalized linear mixed model (GLMM) after appropriate reparametrization. This
provides the key for simultaneous estimation of the functions f; and the variance
parameters ‘EIZ in the empirical Bayes approach. To rewrite model (5.3) as mixed
model, we assume that f; has dimension d; and the corresponding penalty matrix
has rank /;; < d;. Each parameter vector B; is partitioned into a penalized (")
and unpenalized (B;"”) part yielding a variance component model (Brezger et al.

2005; Fahrmeir et al. 2004),

Bl — \D;MPBIMHP + qjlpen fen (59)
for some well defined d; x (d; — h;) matrix U,"” and a d; x h; matrix ¥/*".
The following priors are assumed. For the penalized part, an i.i.d Gaussian prior
is suitable, while for the unpenalized part we assume a flat prior:

p(BF") ~ N (0,t21);) and p(B,"") o const. (5.10)
Applying decomposition (5.9) to all the components of predictor (5.3) yields
n= Xunpﬁunp + Xpeanen. (511)

We have obtained in (5.11) a GLMM with fixed effects **# and random effects
pre". The posterior, in terms of the GLMM representation, is given by

g
p (B, BP¢"|data) < L(data,B*?,p") l—[ (p ( [pml‘tlz)) (5.12)
=1

where L(-), again, denotes the likelihood which is the product of individual
likelihood contributions and p ( f en |'clz) as defined above. Estimation of regression
coefficients and variance parameters is carried out using iteratively weighted least
squares and approximate restricted maximum likelihood. Such details are given in
Lin and Zhang (1999). Fahrmeir et al. (2004) further derived numerically efficient

formulae that allow for handling large data sets.
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5.4 Application: Modelling Health Status
Among Malawian Children

5.4.1 Case Data

We used as a case study data collected as part of the 2006 Malawi Multiple
Cluster Indicators Survey (MICS). MICS was designed to provide estimates of
health and demographic indicators at the national and regional levels, and allow for
regional and urban-rural comparisons. A two-stage stratified sampling design was
implemented to collect the data. A total of 1,040 enumeration areas (EAs) as defined
in the Malawi Population and Housing Census of 1998 were selected, stratified by
urban/rural status with sampling probability proportional to the population of the
EA. Each EA was geo-referenced. A fixed number of households were randomly
selected in each EA. All women aged 15-49 were eligible for interview. A total of
32,220 women were interviewed with a response rate of 98 %. The data was realized
through an interviewer — administered questionnaire.

The outcome variables were derived from self-reported sickness status of
each child for the four ill-health conditions (fever, diarrhoea, stunting and un-
derweight), as reported by the care-givers (often mothers), experienced within
2 weeks prior to the survey date. The first two outcomes were based on a
mother’s self-report on the child, based on the following questions: “Does the
child have fever now/Did the child have fever during the last 2 weeks” and
“Did the child have diarrhoea in the last 2 weeks”. Stunting and underweight
were based on the transformed Z-scores on the height-for-age and weight-for-age
measurements respectively done on the child. A child was considered stunted or
underweight if Z < —2. Table 5.1 shows a cross-classification of diarrhoea, fever

Table 5.1 Fixed effects estimates and 95 % credible intervals (CI) from the multivariate
spatial model of childhood fever, diarrhoea and stunting morbidity in Malawi, 2006

Child stunted
Child ill with fever No Yes Total
Yes Child had diarrhoea  Yes  Count 1,562 1,408 2970
% of Total 19.4 17.5 36.9
No  Count 2,713 2,373 5,086
% of Total ~ 33.7 29.5 63.1
Total Count 4275 3,781 8,056
% of Total ~ 53.1 46.9 100
No Child had diarrhoea  Yes  Count 1,285 1,141 2,426
% of Total 8.6 7.6 16.3
No  Count 6,934 5,563 12,497
% of Total  46.5 37.3 83.7
Total Count 8,219 6,704 14,923

% of Total ~ 55.1 44.9 100
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and stunting. Evidently, the proportion experiencing multi-comorbidity is relatively
large (p =17.5 %, n=14,923). The proportions of co-morbidities of fever and
diarrhoea, and fever and stunting are 19.4 % and 29.5 % respectively, higher than
co-morbidity of diarrhoea and stunting (7.6 %). A multi-categorical response was
constructed as follows: (1) if the child was sick of both diarrhoea and fever (DF), (2)
if the child had diarrhoea and was stunted (DS), (3) if the child had fever and was
stunted (FS), (4) if the child was stunted and underweight (SUN), and (5) if the child
experienced no disease and not malnourished within the observation period. Note
that detailed single disease analyses have been dealt with elsewhere, see Kandala
et al. (2006), and our reporting shall deal with the five diseases combinations.

The following individual covariates were included in the analysis: (1) age of
the child categorized as (a) 1-5 months, (b) 6-11 months, (c) 12-23 months,
(d) 24-35 months and (e) 36-59 months (reference group); (2) received vitamin
A within 6 months prior to the survey date (yes =1, no=0); (3) type of place
of residence (rural = 1, urban = 0); (4) crowding indicator based on the whether
household size exceeded 5, which is the median household size in Malawi (yes = 1,
no =0), (5) region of residence (1 =north, 2 =centre, 3 =south), (6) mother’s
education level (1 =none, 2 = primary, 3 = secondary or higher), and (7) wealth
ranking (1 = lowest, 2 = lower, 3 = medium, 4 = higher, and 5 = highest). The “no”
category was the reference group for all binary variables above. Individual data were
nested within two areas: 364 subdistricts and 31 districts.

5.4.2 Implementation

Let Y}, and 7 be the sickness status and probability of co-morbidity of diarrhoea
and fever (k= 1), co-morbidity of diarrhoea and stunting (k = 2), co-morbidity of
fever and stunting (k= 3), co-morbidity of stunting and underweight (k =4), no
disease (k=5) of childj, j = 1,..., n;inareai,i=1, ..., S. We fit the following
four sets of multinomial logistic models. The first model (M1) is purely spatial,

Mla: Nijk = fvtr(TAj) + funstr(TAj)-
Milb: Nijk = f;tr(TAj) + ﬁmstr(TAj) + fm(districtj) + fmm,.(districtj).

In this model we introduce spatial smoothness priors to capture spatial corre-
lations at district and sub-district level. This is achieved by assuming CAR priors
(5.5). Further, the model permits unstructured heterogeneity. This model investi-
gates whether there is substantial spatial variation in the joint health conditions, and
if the answer is yes whether this variation can be explained by socio-economic status
and bio-demographic factors.

The second model, M2, is a spatial parametric model, which adjusts for
covariates,

M2a: Nijk :xij/Bj +fstr(TAj)+funxtr(TAj)'i_fstr(diStriCtj) + funstr(diStriCtj)-
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With this model, we assess how much of the spatial variation is attenuated by
the inclusion of fixed effects of all considerable covariates. Here the effects of SES
are estimated as fixed effects. In model M2b we estimate the spatial effects at both
district and sub-district levels.

In the third model M3, we fit a spatial semi-parametric model with age of child
assumed nonlinear and the rest of the variables assumed fixed,

M3: nijx = xi;'B; + f(age) + fur(TA)) + funsir(TA))

For the nonlinear effects we use a second-order random walk prior. Model M3
investigates the bias of fitting restrictive linear model, M2.

In the last model M4, we fit a spatially varying coefficient model with SES as-
sumed space varying, through components SES* f,;.(TA;) and SE S™ f,(district ;).
The rest of the variables are estimated as in model M3,

M4: nijx = x;'Bj + flage) + fur(TAj) + funser(TA)) + SES™ fo,(TA))
+ SES™ fo(district;).

Implementation of these models was carried out in BayesX (Brezger et al.
2005). In BayesX, regression coefficients are estimated iteratively. For each model
fitted, convergence is achieved when the change in regression parameters is 0.0001
and terminated at 400 iterations if convergence is not achieved. However, all models
converged at less than 25 iterations. We compare the fitted models using Akaike
Information criterion (AIC). This is defined as sum of the log-likelihood and the
degrees of freedom (df). The log-likelihood measures the goodness of fit whereas
the df measures model complexity. The smaller the AIC, the better the fit of the
model.

5.5 Results

5.5.1 Random Effects Model

Figure 5.1 shows the observed geographical variations in childhood fever, diarrhoea
and stunting at district level for both highest and lowest levels of SES. There is
evidence of similarities in geographical patterning of the three conditions for lowest
levels of SES, in contrast to the patterning at highest levels of SES. Table 5.2 shows
the relationship between the disease outcomes with SES. The health outcomes
significantly associated by SES (x> = 293.81, p < 0.001). Figure 5.2 provides
evidence of the relationship between the health classification and geographical
context, at sub-district level, measured through latent variables. It is revealing to
note that the varying risk has some degree of similarities in an area. Such variation
may largely be due to differences in population composition and structure, or there
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Fig. 5.1 Observed proportions of fever, diarrhoea, and stunting at district level cross-classified by
lowest and highest wealth quintiles, a measure of SES
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Table 5.2 Cross-tabulation of co-morbidities with socio-economic status (SES), maternal
education and rural-urban differentials

Co-morbidities®
Wealth quintile DF DS FS SUN None Total  y? (p-value)
Lowest 6.9 3.1 10.9 19.0 59.0 5,202 293.81 (<0.001)
Lower 76 32 104 17.1 60.8 4,960
Medium 7.2 2.8 11.7 157 61.6 4,946
Higher 62 31 9.6 13.7 66.0 4,432
Highest 54 29 69 102 734 3,698

Maternal None 6.6 32 112 18.9 60.1 5,168 209.58 (<0.001)
education

Primary 69 3.0 103 158 640 15307
Secondary 6.8 35 7.5 7.8 744 2,449

Area Urban 58 27 69 121 726 2,347 82.28 (<0.001)
Rural 69 3.1 106 16.1 633 20,647

4DF diarrhoca and fever, DS diarrhoea and shtunting, F'S fever and stunting, SUN stunting

and underweight
"Number are percentage

may be substantial area effects, which can be explained by factors considered here.
In this model, the highest risk for diarrhoea and fever (outcome I) was in Mulanje
(South), Mchinji (Centre) and Karonga (North). For outcome II (diarrhoea and
stunted), we observe that risk is highest in the central region and parts of Mangochi
district. Similar patterns were observed at district level for outcome III (fever and
stunted). The varying risk of joint stunted-underweight condition were highest in
Dedza and South-eastern region (Fig. 5.3).

The fit of the model, as assessed through AIC, shows it improved when
covariates were included in the model (Table 5.3). This baseline model yielded
AIC =49615.97, higher compared to the AIC obtained under model M2, which
includes covariates (AIC = 49429.22). Model M4 performs far better than the other
two (AIC = 47469.43). We therefore dwell our discussions on this model (M4).

Table 5.4 gives estimates of fixed effects for the four joint outcomes based on
model M4. Outcome I, the joint diarrhoea-fever condition, was positively associated
with age of the child, socio-economic ranking at lowest to medium levels, but
no significant difference was obtained at higher level of SES compared to those
at highest level of SES. The central region, relative to the northern region, was
positively associated with outcome I. Similarly, crowded households were positively
associated with the joint condition of diarrhoea and fever. For the second outcome,
diarrhoea combined with stunting was negatively associated with age of less than 6
months and was positive for ages between 6 and 47 months relative to those aged
49-60 months. Nevertheless there was no significant association with SES, maternal
education, crowded households, vitamin A or place of residence. The joint fever-
stunted condition (outcome III) was observed to be associated with age, negatively
for those aged <6 months, and positively for those above age 12—47 months. We
also noted a positive association of this category with SES, rural residence and
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Fig. 5.2 Association between health outcomes and geographical location at sub-district level
based on model M1. Plot (a) outcome I (diarrhoea and fever); (b) outcome II (diarrhoea and
stunted); (c) outcome III (fever and stunted); (d) outcome IV (stunted and underweight)
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-0.53 0 0.28
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Fig. 5.3 Total residual spatial effects in the latent variable model. Shown are posterior modes at
district level for DF (plot a), DS (plot b), FS (plot ¢) and SUN (plot d)

Table 5.3 Model comparison values based on Akaike information criterion (AIC) for selected
multinomial models®

Model  Description Log likelihood = Degrees of freedom  AIC

M1 Random effects at districts and 49,125.23 245.37 49,615.97
sub-district

M?2 Fixed + Random effects 48,944.50 242.36 49,429.22

M3 Space-varying SES + Random  48,902.30 346.46 49,595.22
effects

M4 Fixed + Nonlinear + Space- 46,872.61 298.41 47,469.43
varying SES

2See Sect. 5.4.2 for details on models fitted

maternal education. For the last outcome, a combination of stunted and underweight,
a significant relationship was observed with age of the child, SES, region, maternal
education and crowded households. However, for all joint health outcomes, age of
child was better estimated as nonlinear effects (Fig. 5.4). Indeed, considering the
values of log-likelihood, AIC (Table 5.3), the model with nonlinear effects (M4)
was better than the other two (M1 and M?2). Note that for all outcomes the risk
increased with age up to age 15-20 months and then started decreasing at about
age of 20 months. However, for diarrhoea-fever condition this effect seemed to fall
much earlier, at about 10 months (Fig. 5.3).
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Fig. 5.4 Nonlinear effects of age of the child on co-morbidities of diarrhoea, fever, stunting and
underweight

5.5.2 Space-Varying Coefficient Model

Figure 5.5 displays spatial effects from a model where a spatially varying coefficient
was assumed. The varying effect of SES on the log-odds ranged between —0.095
and +-0.13 on the joint diarrhoea-fever condition, with a positive effect in the north
near Songwe river, in the central region in one sub-district in Mchinji, and around
lake Chilwa in Zomba district (see plot (a)). The combined condition of diarrhoea-
stunted is shown in plot (b), and that of fever-stunted (plot c) portrayed a similar
risk pattern with regards their association with SES. The risk is highest in the central
region and equally lowest in other regions, ranging between —0.66 and +0.39 and
from —0.05 to +0.02 for the South or North respectively. Evidently the influence
of SES was dominant in the joint diarrhoea-stunted condition as shown by the
magnitude of the effects. For outcome IV, the varying risk of SES, range between
—0.13 and 4-0.26, with a few pockets of significantly positive association.

Total residual spatial effects, after accounting for fixed and space-varying effects
still remained significant, and are plotted in Fig. 5.6. Plot (a) shows the spatial effects
of outcome I (diarrhoea and fever). Here we observe clusters of positive association
in the South-eastern region, along Salima and in Chitipa. For outcome II (combined
diarrhoea-stunted category), as shown in panel (b), there was evidence of positive
clustering in the central region, and isolated areas in Nkhatabay and Mangochi.
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Fig. 5.5 Spatially varying coefficient effects of SES on joint conditions of diarrhea, fever, stunting
and underweight, as defined in the text
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Fig. 5.6 Total residual spatial effects in the latent variable models. Shown are the posterior modes

for outcome I-IV as defined in Table 5.4
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The residual effects for the joint fever-stunted category is given in panel (c). The
effects are again increased in the central region in Dowa, Ntchisi, Salima and
Nkhotakota districts. Similar patterns of positive association were obtained in the
South in Zomba, Nsanje and Chiradzulu districts. The last category, combination of
stunted-underweight had fewer pockets of elevated risk, as shown by dark shades of
colour.

5.5.3 Multilevel Structure at District and Subdistrict Level

Table 5.5 presents estimates of variance components for the spatial effects obtained
from two models that explore the spatial structure of the four health conditions
at both district and sub-district levels (see Sect. 5.4.2 for detailed description of
the two models). The spatial components in M1a was relatively large compared
to when covariates were added in M3. When model M1la is extended to add
district spatial structure, the variance components are almost split (see model M15).
A similar picture was obtained when SES was fitted as space-varying. The variance
components in model M2b were higher compared to those in model M4, suggesting
again that the varying risks of childhood health are spatially correlated to a number
of factors, both at individual and population level.

5.6 Discussion

The concepts of SES and health are pervasive in epidemiological studies, yet an
examination of the such a complex relationship has not been fully explored. In
this Chapter, we observed a clear association between joint health conditions and
social inequality, measured using wealth ranking. Using a version of structured
additive regression model, in particular defining joint health status as a categorical
outcome, we fitted a multinomial logistic regression model. We explored the socio-
economic inequalities existing for each joint outcome, and extended our model
to investigate whether the socio-economic effects are spatially varying. Previous
studies of neighborhood effects on health status have modeled neighborhoods
as if they were independent of one another and therefore, did not consider the
interrelations among surrounding neighborhoods. To overcome this shortcoming,
this Chapter employed spatial autocorrelation analysis to assess the degree of
interrelation among neighborhoods, and incorporated this among-neighborhood
effect into a structured additive regression (STAR) model to simultaneously analyze
individual and area-level variables. Evidently, the last model that incorporated both
does explain most of the variation in childhood health status. This, as assessed by
AIC, is the ‘best’ model among the many we fitted.

The multinomial model presented here is based on the hierarchical framework.
At first level of hierarchy we presented a measurement model, followed by prior dis-
tributions at second level of hierarchy. This allows to model complex relationships
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that may exist, often realized in social science. This paper shows the importance
of such advanced tools and statistical techniques to better assess associations that
emanate at various levels, both at individual and population levels. In particular,
modelling the clustering variation allowed accounting directly for unmeasured risk
factors that vary with location. In this work, the geographical unit is the sub-district
or district, and because these are not the smallest spatial units, within-area variability
is expected, hence the need for both spatially varying coefficient, heterogeneity and
clustering random components in a single model. This therefore rules out over-
parameterisation of the model and hence the need for multilevel structured models.
A possible extension to the model we have considered here is to include area-level
risk factors together with individual factors. One limitation of this study is that the
data for diarrhoea and fever are self-reported and thus suffer from recall-bias.

Some researchers have argued that the definition of socio-economic status
is limited. Therefore a more inclusive definition should include education. The
definition of SES as approached here, follows the DHS definition and is systematic
approach to determine a household’s relative economic status (Rutstein and Kiersten
2004). The importance of wealth is its association with reproductive and maternal
health, child mortality and health, and use of public services, and is seen as an
enabling factor in health seeking behaviour.

As of the substantive modelling and risk factors obtained in this study, our
findings are consistent with what has been obtained before in previous studies
(Kazembe and Namangale 2007; Kandala et al. 2006; Kandala 2006). This research
has differentiated variability due to both individual and neighborhood effects (that is
unmeasured characteristics), see Table 5.5. Our findings, therefore, suggest that the
challenge to improve poor child health goes beyond addressing individual factors,
but also require to understanding unmeasured covariates for potential effective
interventions. Although we employed multinomial model, alternative methods, as
presented in the introduction, that employ multivariate responses as opposed to
multiple responses exist and much further work remains to be done, including
exploring the use of spatial structural equation models (SSEM) as demonstrated
in Fahrmeir and Raach (2007).

Acknowledgements We acknowledge permission granted by UNICEF to use the 2006 Malawi
MICS data.
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Chapter 6

Analysis of Grouped Survival Data: A Synthesis
of Various Traditions and Application

to Modeling Childhood Mortality in Eritrea

Gebrenegus Ghilagaber

6.1 Introduction

This paper merges together some statistical methods used in the analysis of
data involving rates of occurrence of an event. These methods are (1) indirect
standardization with the multiplicative model, (2) loglinear regression for count
data, and (3) proportional hazards regression for survival data. In many applications
these approaches have been portrayed as belonging to distinct fields or as competing
methodologies. In this paper it is demonstrated that (1) and (2) actually represent one
special case of (3) in two different, but equivalent, parameterizations. One advantage
of such synthesis is that computer algorithms developed for one setting can be
exploited in another. Accordingly, we demonstrate how the General Loglinear
Analysis Procedure in SPSS, and the GENMOD Procedure in SAS may be used to
compute estimates of baseline and relative hazards (parameters common in survial
analysis) and how these estimates may be interpreted in relation to standardization.
The issues addressed are illustrated by empirical analysis of a data set on mortality
experiences among 7,055 Eritrean children based on data from the 1995 Eritrean
Demographic and Health Survey.

In Sect. 6.2 we describe standard inference procedures for constant and piece-
wise constant hazard rates in the case of one populations. This is extended to the
case of two populations in Sect. 6.3. Section 6.4 is devoted to a description of
the multiplicative hazards model, estimation of its parameters, its relationship to
Cox’s proportional hazards model, and to Poisson model for count data. Further, we
demonstrate how standard programs like SPSS or SAS may be used to estimate
its parameters. An empirical illustration is provided in Sect. 6.5 where the data
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set, dependent and explanatory variables are described and inference procedures —
parameter estimation, testing for significance, and goodness-of-fit tests are shown
in detail. Section 6.6 summarizes the chapter.

6.2 Maximum Likelihood Estimation of the Hazard Rate

6.2.1 Estimation of a Constant Hazard Rate

A simple parametric specification of the hazard function, A (t), is the exponential
model where the hazard rate remains constant over time (is independent of t).
Accordingly, the corresponding survivor functions are f(¢) = Aexp (—At), S(¢) =
exp (—At), and A(¢) = A for t>0, A > 0. In constructing the likelihood function,
uncensored observations contribute f(t) while censored observations contribute S(t)
to the likelihood. These may be combined as

g(t) = [rexp (A0 fexp (—A0)]' " = 23O exp [-A(1)],

where 8(t) is a censoring indicator with value §(t) = 1 if an individual has experi-
enced the event at time t and §(t) = O if the individual is censored at time t.

Let Ty, Ty, ..., Ty be n independent observations of T from an exponential
distribution with parameter A. The contribution to the likelihood of an individual
with value t, (h =1, ..., n), is then given by

A = g(ty) = X exp [-A(13)]

and, hence, the likelihood function for the entire sample is then given by

A =TT Aw = [TA"% exp =4 (5)] ="+ exp [-AT:]
h=1 h=1

n
where Dy = ) (1) is the total number of events (say, deaths), among the n
h=1

n
observations and D = ) 1 is the total exposure time (expressed in days, months,
h=1
years, or any other suitable unit) contributed by both uncensored and censored
observations.

The corresponding log-likelihood is then given by

InA = D+1I1/X—/XT+
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Differentiating InA with respect to A we get

d D4
—IhA=—-T
7
while the second derivative is given by
02 D4
A=

The first derivative implies that the maximum likelihood estimator of the hazard
(intensity) rate, A, is given by
~ D
.
Ty
which is a straight forward occurrence/exposure rate.
Further, the 2nd derivative implies that the estimated asymptotic variance of A is
given by

A 1
Var (A) == —,()2—
mln/\

DT,

A2 (D+)21 Dy Dy 1 A
+

A=A D+ T

Consequently, using standard results for maximum likelihood estimates, we have
A— 2

e
T+

~ N(0,1)

6.2.2 Estimation of a Piece-Wise Constant Hazard Rate

A straightforward extension of the exponential model is the so-called piece-wise
exponential model (piecewise-constant hazard model). A piecewise exponential
distribution arises from a distribution whose hazard rate is a step function. In other
words, for given time points ty, ti, ..., tx, (Where often ty = 0) the density function is
Arexp(=Ait), to <t <t

Aexp[—Ati — At —1)], h <t<th

fo) =

Arexp[=Aitr —Aa (b —11) — ... = Ak (E = fr—1)] . 1 > fp—1
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The corresponding survivor function is given by

exp(=Ait), 1o <t <t
exp[—Aiti — At —1)], Hh <t <t

S(t) =

exp[—Aiti — Ay (ta—t) — ... — A (t —tx—1)], t > ti—y

so that the hazard function is
A, tg <t <ty

A, 11 <t <t

At) =

Aks T >ty

When A; =\ for all i we get the exponential model. The likelihood function
of the entire sample is then given by (by adjusting the likelihood in the previous

subsection):
k
A=]]r" exp[-iTi]
i=1
where D; and T; now refer to the total number of events (say, deaths) and exposure
units in the ith interval. The (natural) log-likelihood is given by

k k
InA = ZDi InA; —Z)L,T,-
i=l1

i=1

and maximization in the usual manner leads to
A =i
LN (0, 1)

)Ati = %, Var (il) = %, and \/:
T;
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6.2.3 Extension to Two Populations

Consider J populations and let D;; be the number of occurrences, say deaths, at
age group (duration group) i (i=1, ...,D) in the jth population for T;; months of
observed time (exposure).

Define

7 i I
Dy = ZDU" Dy; = ZDU, Dyt = ZZDzj
j=1

i=1 i=1j=1

and let T;1, T4, and T represent similar quantities for the exposure variable T.
Usually, the intensity functions are assumed to be piece-wise constant in each of the
two populations but may vary between the two populations. In other words, the time
to event (death) is assumed to follow piece-wise exponential distribution in each
population.

In the context of our notation, the density function of the time to death in age
group i for a person in population j is given by

I (t) = Aij exp (Aijij)
The corresponding likelihood function is given by

r J

A=TTTT 2" exp[=A1]

i=1j=1

so that
I J
i=1i=1
Further,
— InA="L_T;.
8/\,']' " Aij ’

Thus, the MLE of A;; is the corresponding occurrence/exposure rate in the (i, j)th
cell:

A standard argument for maximum likelihood estimators proves that the )Ati j, are

asymptotically stochastically independent, that the estimator ;\i ; has the asymptotic
mean A;; (is asymptotically unbiased), and that its asymptotic variance can be

. ij
estimated by =-.
i



112 G. Ghilagaber

6.3 The Multiplicative Hazard Model with Two Factors:
Imposing a Structure on the Hazard Rate

6.3.1 The Two-Factor Multiplicative Model

Assume, in general, that we are interested in some collection of hazard rates A;;
where the factor indexed by i has I levels and factor indexed by j has J levels.
Suppose that the following multiplicative two factor model holds:

Aij = bia;

whereby the age-specific hazard rates are obtained from multiplicative contributions
of the ith age (duration) group 6;, and jth level of the covariate (say, period or birth
cohort) ;. A model of this form has been suggested for many situations. A brief
discussion of its merits has been given by Breslow and Day (1975) while Hoem
(1987) reviews the statistical theory behind the model.

This model has I 4 J parameters though a restriction of some kind will be needed
to attain identifiability. Here it suffices to mention that o; measures the relative
super-/sub-hazard of death in period j (relative to a baseline level) 6; is the hazard
at duration i in the standard (baseline) level of the covariate.

6.3.2 Maximum Likelihood Estimation

To find estimates of the parameters 0; and «; when the multiplicative model holds,
we first define w;;, as an indicator of whether the rth sample member having the
jth level of the covariate dies (w;;, = 1) or is alive (w;;, = 0) in the ith age group
(duration). The contribution, to the likelihood, of the sub-sample of individuals in
the ith age group and having the jth level of the covariate can then be obtained as

Ay =[] (0ra))™ exp (~ti,6:0;) = (6:;)" exp (~Ty0r0t;)

r

The likelihood for the entire sample will then be the product of the A;; over all
levels of i and j:

A =TTTT 0 = TTTT| ()™ exp (-7 |
i i
so that

InA =Y "DiyIn6;+Y Di;lna;— Y Y Tybia,
i i i

where D; 4 and D ; are as defined before.
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If we differentiate In A with respect to 6; and separately with respect to «; and
proceed in the normal manner to maximize In A, we get the normal equations

0 =
and

(x) Dy,

ozl

This is a system of I+ J equations that does not have an explicit solution in
general. It defines the maximum likelihood estimators 6; and o; implicitly, but one
cannot write a simple formula for them. When the occurrences D;; and exposures
T;; are given, numerical values of the estimators can easily be found from an
iteration process, however One such iteration process is as follows:

Define initial values o'’ ] = 1forallj=1, ..., J and enter them into the right

hand side of the equation for 0,( ) to get corresponding first values for the 051‘)
follows:

Then, 0f1) is a straightforward occurrence/exposure rate at age group (duration)
i when we take no account of the other covariate indexed by j. In other words, it is
the crude death rate in age group i (crude because we have not yet standardized for,
say, period differences).

Now compute a next approximation to «; by plugging 0;1) into the equation of

a®

Ly ,i.e. let

Do
aV = tJ

VA )3 051) T
The denominator gives the expected number of deaths in the jth period had
the individuals in this period been subjected to the mortality rates for the entire
population at each age (0( )) In other words, oz; ) is the effect of the jth period,
indirectly standardized with respect to age (duration), using the whole observed
subpopulation (Tj) as a standard.

Next, plug aﬁl) back into the equation for Ek) to get a second approximation 6;:

0 @ Dt

Za(l)T i=12,...,1



114 G. Ghilagaber

We note, again, that the denominator in 6 52) gives the expected number of deaths
in the ith age group had the individuals in this age group been subjected to the
mortality rates for the entire population at each period (ot;”). In other words, 052)
is the hazard rate at age group i, indirectly standardized with respect to the period
(birth cohort), using the whole observed subpopulation (Tj;) as a standard.

The next step would be to continue the iterations until convergence is attained.
Upon convergence, we may use the final estimates (say 6 and ot;‘) to get a set of
standardized hazard rates

gives the final maximum likelihood estimate of A;; under the multiplicative
structure.

6.3.3 Extension to More Than Two Factors
and Goodness-of-Fit Tests

The above model can be extended to include even further factors. With a third factor,
for instance, the hazard function becomes

Ajjk = B0 yi
while with four factors we may decompose the model as
At = 0;aj VS
and so on.
Further, interaction between two covariates or between a covariate and the

duration variable may be included in the model. With four factors where the last
two factors interact, the hazard function may be written as

Aijt = 0 Pim

while if the interaction is between the time variable and the second factor the model
may be written as

Aijit = 6 YkOm

At each step, the overall fit of the model and the improvement in fit resulting
from adding a set of covariates to the model can be tested by a likelihood ratio test.
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6.3.4 Similarities Between the Multiplicative Model
and the Cox Model

In the Cox proportional hazards model (Cox, 1972), we deal with expressions like

Azt .z) = Ao(@)exp | D Bz;(0)
J

where A (f|z1, ..., zx) is the hazard rate at time t for an individual with covariate
vector (zy, ..., 2 ), these covariates being regressors which may depend on time t,
Ao(t) is the base-line hazard rate that applies when all covariates have the value of
zero, and the ;s are corresponding regression coefficients to be estimated.

In the multiplicative model, on the other hand, we have expressions like

Aij = 9,'0[1'

where, without loss of generality, i indexes the (grouped) time variable, while j
indexes a categorical covariate.

It is possible to transform the later (multiplicative) model so that it fits into the
form of former (Cox) model. Consider a child who is still alive. Let t be his exact
age, counted as a continuous variable (here months), and let i(t) be the corresponding
level of the grouped time variable. In other words, i(t) represents a categorical value
corresponding to t.

Suppose that s/he attains the level j(t) of the categorical covariate indexed by j
at time t. Then, the multiplicative model means that we consider the hazard-rate of
death at age t to be a discrete hazard model:

At) = O;0)@ )

Now define A¢(t) = 6;() and let z;(t) = 1 if the child attains level j(t) at
age group i(t) and z;(#) = 0, otherwise. Finally, let 8; = Ino; for all j. Then
A (tl|z1, ..., zx) in the Cox model is nearly equal to A;; in multiplicative model (or,
equivalently to A(¢) in the above discrete model). The only difference is that while
the original Cox model is based on the exact failure times, the discrete model is
based on grouping the failure times.

Nevertheless, we note here that by defining z; (¢) to be a binary representation of
j(©) for all levels but one, of the variable indexed by j (and letting z;(#) = 0 when
j(t) equals to the base-line level), it can be shown (see, for instance, Hoem 1993)
that the multiplicative model is just a grouped-data version of the Cox proportional
hazards model.
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6.3.5 Similarities Between the Multiplicative Model
and Poisson Model for Count Data

In practical applications of the multiplicative model, it is assumed that the popula-
tions are sufficiently large, and the events sufficiently rare, so that the data are well
represented by the Poisson model. In such a setting, the Tj; are regarded as fixed
numbers whereas the Dy; are subject to random variation according to the Poisson
distribution with expectation

E(Dij|Tij) = ATy = 6,0, Ty
If, in the multiplicative model above, we assume instead that the number of
deaths D;; are independent realizations from a Poisson distribution with parameter
(mean)
E(DyITi;) = A Ti; = bia; Ty

for nonrandom Tj;, the likelihood of the total sample, A p say, will be

_Mr (i) ™ exp [4, T ]
i=1,=1 (Di./) !

ﬁ (Aij) " exp B0, T]
!

1
=1;=1 (Di./)

1

which is proportional to the likelihood (A) arising from the multiplicative
model. The maximum likelihood estimates of 6; and «; under the Poisson
setting will, therefore, satisfy the previous estimation equations for the genuine
occurrence/exposure rates. In such a case, it becomes unimportant for much of the
practical analysis which stochastic mechanism applies for a particular data set. As
a result, computer algorithms developed for one setting can often be exploited in
another.

6.4 Practical Estimation Using SPSS/SAS: A Log-Linear
Parameterization of the Multiplicative Model

Consider the two-factor multiplicative model discussed previously:

Aij = Qi(xj
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fori=1, ...,Iand j=1, ..., J, and with one of the «;’s (often «) fixed to be
equal to 1 (baseline level of the covariate). Now let

A; =Inb;
and
Bj =Ina;
so that, under the multiplicative model,
Inl; =In6; +Ine; = A; + B;.
Further, let

I J
ZAi ZB/'

A== andB =17
1 J

be the means of the A;’s, and the B;’s, respectively.
Computer procedures such as the General Log-Linear Procedure in SPSS, and
the GENMOD Procedure in SAS, yield estimates of the grand mean effect,

A=A+B,

the interval-specific effects

a; ZA,'—A,

and the effect of the jth level of the covariate,

such that the highest levels are baseline (a; = by = 0). The gm (generalized models)
procedure in R yields estimates of the same parameters with the lowest levels as
baseline (a; = b; = 0) but it can be recoded to have the last highest levels as baseline
and hence make the results directly comparable with those from SPSS and SAS.

Further, the procedures provide estimates of standard errors of the estimates,
the corresponding test statistic, and asymptotic 95 % confidence intervals for the
estimates a; and b;.

Using these estimates, we have

]n)tij =1n9,~ +11’10(j = A,‘ +Bj

=(ai +A)+ (b, + B) = (A+ B) +a; + b,
=A+4a; +0b;
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The corresponding hazard rates and the relative risks (multiplicative factors) may
be estimated as follows:
From the last equation above, we have

Aij =exp (A + a; +bj).
By design
Ay =bOiay; =06;(1) = 06;.
Thus, we have
0; = 0;(1) = Oy = exp(A +a; +by) =exp(A+a; +0) =exp(A +a;).
Lastly,

Ay exp(A+ai+bj) _
%= 0, exp(A+a) =exp (b))

The last two equations give the final estimates of baseline- and relative hazards,
respectively.

Estimates of the 95 % confidence intervals for these relative risks may be
obtained by taking the exponential of the corresponding estimates of the 95 %
confidence intervals for the estimates of log-hazards.

Again, the procedure outlined above can be easily extended to the case of more
than two factors and to models with interactions.

6.5 Demographic Illustration: Modelling Childhood
Mortality in Eritrea

We shall now apply the models of the preceding sections to a numerical data set.
For illustration we shall take the data in Table 6.1 which contains deaths (D;;) and
exposure months (Tj) at age group i for birth cohort j (i=1, 2, 3, 4; j=1, 2). The
age groups are subdivisions of the first 5 years after birth for some new born children
in two independent birth periods. More details about the source of the data may be
found in National Statistics Office [Eritrea], & Macro International Inc. (1995).

6.5.1 Estimation in the Unstructured Case

If we can assume a constant intensity over the entire period (1986-1995), then the
maximum likelihood estimate of the hazard rate is given by

5 Div 4564248 704
© Toy 94188 4100255 194440

= 0.0036206,
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Table 6.1 Deaths and exposure months in two birth cohorts, Eritrea

Birth cohort (j)

1986-1990 (j=1) 1991-1995 (j =2)
Age (i) Dy T A Dy T Ao 5
<lyear(i=1) 155 36,913 41.99 143 38,197 37.44 1.12
I2year(i=2) 119 27,164  43.81 66 28,070 23.51 1.86
2-3 year (i=3) 93 17,939 51.84 25 19,433 12.86 4.03
3-5year i=4) 89 12,172 73.12 14 14,555 9.62 7.60
Total 456 94,188 48.41 248 100,255 24.74 196

1>

L

or 36 deaths per 10,000 person months.
If the death rate is assumed to be constant in each birth cohort but varies between
the two cohorts, then we have:

A D 456
A= 2 = = 0.0048414,
T+ 94188
or 48 deaths person 10,000 person months,
A D 248
Pt = 0.0024737,
Ti 100255

or 25 deaths person 10,000 person months.
Thus, a crude estimate of the overall relative hazard of death in period 1 (1986—
1990) relative to that in 1991-1995 is given by

A1 00048414

RR=71=—"""—"_
i, 0.0024737

1.96,

indicating that the risk of death for those born in 1986—-1990 was about twice (1.96
times) that of the younger cohort born 1991-1995. This result should, however, be
interpreted with caution because the older cohort was exposed (to the risk of death)
for a longer time than the younger cohort.

If, on the other hand, the intensity is allowed to vary over both the age groups
and for the two birth cohorts, then we have:

R Dy 155 R D, 143
Ml = =——=0.0042 Ap=—-=-—— =0.0037
T 36913 T, 38197
. Dy 119 R Dy 66
dor= 22 = 7 00044 Ay = -2 = =0.0024
1T T 27164 27T, T 28070
R D 93 R D 25
dai= =L = —— =0.0052 Ap=—2=_—""=0.0013
Ty 17939 Ty, 19433
. D 89 . D 14
=22 = 27 00073 Ap=—2=_—"_ =0.0010

Ta 12172 T, 14555
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6.5.2 Estimation in the Structured Case (Multiplicative
Two-Factor Model)

We now fit the multiplicative model to our data set in Table 6.1. We shall take period
2 (1991-1995) as a reference period. Then, the base-line hazards at age group i, 6;
will reflect this period while the relative risk «; is the multiplicative factor (intensity
of death in period 1 relative to that in period 2).

The SAS input-code and the corresponding output are shown at the end of present
Section. Thus, we have A = —5.9209, a; = 0.0053, a, = —0.1643, a; = —0.2156,
as =0 (by design), b; =0.6721, and b, =0 (by design).

Thus, we have

in =exp (A +a; + b)) = exp(—5.9209 4+ 0.0053 + 0.6721) = 0.0053
Aa1 = exp (A + a; + by) = exp (—5.9209 — 0.1643 + 0.6721) = 0.0045
A31 = exp (A + a3 + by) = exp (=5.9209 — 0.2156 + 0.6721) = 0.0042
Ay = exp (A +ag+ by) = exp(—5.9209 + 0 + 0.6721) = 0.0022
Ay = exp (A + a; + by) = exp (—5.9209 + 0.0053 + 0) = 0.0027
Axn =exp (A + a; + by) = exp (—5.9209 — 0.1643 + 0) = 0.0023
Az = exp (A + a3 + by) = exp (—5.9209 — 0.2156 + 0) = 0.0053

Agp = exp (A + a4 + by) = exp (—5.9209 + 0 + 0) = 0.0027

while, the relative risk of death for birth cohort 1 (relative to that of birth cohort 2)
is given by

ﬂ _exp(A+a; +by)
6  exp(A+a)

= exp (b;) = exp (0.6721) = 1.9583.

The SAS input code is as follows

data Erit86_95;

input Age Period Deaths Exposure;
lexposure = log (Exposure) ;

cards;

1115536913
12143 38197
2111927164
2266 28070
319317939
322519433
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418912172
42 14 14555

run;

proc genmod data=Erit86_95;

class Age Period;

model Deaths=2Age Period/dist =poisson link=1log
offset =lexposure type3;

run;

The corresponding SAS output is as follows:

Standard ‘Wald

Parameter DF  Estimate error 95 % Confidence limits Chi-Square  Pr> ChiSq
Intercept 1 —5.9209 0.1100 —6.1366 —5.7052 2894.86 <.0001
Agel 1 0.0053 0.1143 —0.2188 0.2294 0.00 0.9628
Age2 1 —0.1643  0.1230 —0.4053 0.0768 1.78 0.1816
Age3 1 —0.2156  0.1349 —0.4799 0.0488 2.56 0.1099
Aged 0 0.0000  0.0000 0.0000 0.0000 - -

Periodl 1 0.6721  0.0789 0.5174 0.8268 72.52 <.0001
Period2 0 0.0000  0.0000 0.0000 0.0000 - -

6.6 Summary and Concluding Remarks

The choice of an appropriate analytic method is a natural question when one is
confronted with a specific data-analysis problem. In problems of standardization,
for instance, the choice of a standard population and the interpretation of rates
standardized with reference to specific population pose problems.

In the present chapter we have described and illustrated a multiplicative hazard
model. Further, we demonstrated that this model is (1) a model-based alternative to
the problem of standardization and (2) a discrete-data (grouped-data) version of the
common proportional hazards model.

When viewed as a model-based indirect standardization, the multiplicative model
enables the investigator to test for the importance (significance) of one or more
covariates in explaining the behavior under study. Further, its log-linear parameter-
ization enables investigators to estimate its parameters using commonly available
software that are developed for other purposes such as contingency table analysis.
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Chapter 7
Modelling Immunization Coverage in Nigeria
Using Bayesian Structured Additive Regression

Samson Babatunde Adebayo and Waheed Babatunde Yahya

7.1 Introduction

The introduction and usage of different kinds of vaccines have contributed
immensely to the eradication of some of the dreaded diseases in many developed
countries. Immunization has remained the most cost-effective mechanism through
which the outbreak of common diseases is prevented in many developing countries
(Odusanya et al. 2000, 2003). More than two million deaths among children
are averted all over the world annually through vaccination against some early
childhood diseases such as diphtheria, tetanus, pertussis, measles and hepatitis
B (Duclos et al. 2009). This improvement in childcare notwithstanding, vaccine
preventable diseases still contribute significantly to the global child mortality cases
(Centre for Global Development 2005). Particularly in 2002, the World health
Organization (WHO) estimated under five mortality cases that are attributable to
vaccine preventable diseases to be 1.4 million worldwide. This was about 14 % of
total global child mortality all over the world with considerable number of cases
being from third-world countries.

In 1974, the Expanded Program on Immunization (EPI) was initiated by the
World Health Assembly to assist in coordinating the efforts of public health
programmes especially in developing countries to ensure full immunization of
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all children under one year of age against common diseases like poliomyelitis,
smallpox, diphtheria, tetanus, measles, tuberculosis, pertussis and so on. The EPI
further aimed at ensuring that new vaccines and preventive health interventions are
extended to children in parts of the world. One of the objectives of the EPI was that
by 2010, global routine immunization coverage of all children under one year of age
should reach 90 % (Hadler et al. 2004). To ensure that the objectives of the EPI are
achieved and sustained especially in poor countries of the world, the Global Alliance
for Vaccines and Immunization (GAV]), a coalition of bodies such as United Nations
Children Emergency Fund (UNICEF), WHO and the World Bank was created
in 1999 (Brugha et al. 2002). This body was enhanced by the establishment of
Global Immunization Vision and Strategy (GIVS) (2006-2015) in 2005 at the 58th
World Health Assembly. A common objective for establishing both GAVI and GIVS
among others is to strengthen national immunization program and improve child and
maternal health especially in the third world countries (Bilous et al. 2006).

The huge amount of resources and efforts committed by WHO, UNICEF and
World Bank (WHO and UNICEF 2005, 2009) at ensuring full immunization of
children all over the world were justified in 2007 when out of 129 million surviving
children, a total of 105 million (about 81 %) children under one year of age were
vaccinated worldwide with three doses of diphtheria, pertussis and tetanus (DPT3)
vaccine while the number of unvaccinated children decreased to 24 million from 33
million reported in the year 2000 (Duclos et al. 2009).

Stemming out of GAVI/GIVS alliance, the impacts and successes of several rou-
tine immunization programmes and the EPI initiated in Nigeria have been presented
in previous studies, (Clements et al. 2006; Odusanya et al. 2008; Jenkins et al. 2008;
WHO 2008a). For instance, significant reduction in the spread of wild polioviruses
in 2003 in six notable countries worldwide, was reported by WHO in 2004 (WHO
2004, 2006). Jenkins et al. (2008) discussed the efficacy of monovalent type 1
oral poliovirus vaccine and its immunization coverage in northern Nigeria. It was
reported in Jenkins et al. (2008) that immunization efforts contributed significantly
to the reduction of the overall number of cases of poliomyelitis by 75 % in Nigeria in
2007. Odusanya et al. (2008) examined some determinants of vaccination coverage
in a selected rural area in Nigeria and observed positive association between
completeness of vaccination and knowledge of mothers on immunization. Although,
about 80 % coverage of DPT/OPV vaccinations was reported, more efforts are still
needed for mothers to be fully aware of the need to fully immunize their children
against common diseases. Similar results were reported by Oladokun et al. (2010)
in their study. In a different study, Ngowu et al. (2008) reported the benefits of
immunization and other systemic factors on child mortality reduction in Nigeria.
More discussions on immunization coverage and its benefits in Nigeria can be
found in Babaniyi and Spiegel (1993); Okoro and Egwu (1994); Odusanya et al.
(2000); Centres for Diseases Control (CDC) (1999); and Ambe et al. (2001) among
others.

Despite the tremendous improvement in global vaccination coverage as reported
in various studies (Patriarca et al. 1991; Dabbagh et al. 2007; Lim et al. 2008; Djibuti
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et al. 2009; Koumaré et al. 2009; Sanou et al. 2009), 75 % of the unimmunized
children worldwide live in African and Asian countries with Nigeria and other
African countries and Indian having the highest low coverage of child immunization
respectively (Duclos et al. 2009). Apart from socio-cultural factors, the low
vaccination profile in some parts of Nigeria is not unconnected with low literacy
levels in the affected areas. A typical example was an erroneous belief in some
northern parts of the country that vaccinations are designed by the western world
to reduce (control) the population of the world, Ambe et al. (2001). This wrong
perception of some people about immunization is hitherto impacting negatively
on the extent of immunization coverage in those parts of Nigeria, Clements et al.
(2006). This has consequently resulted into the existence of many EPI difficult-
to-reach (DTR) areas for vaccinations in Nigeria. In 2003 precisely, there was a
temporary suspension of all poliovirus immunization in some northern states of
Nigeria. This contributed immensely to the high spate of poliomyelitis endemic
in the country during the period before poliovirus immunization was reinstituted
thereafter (Pallansch and Sandhu 2006). Till date, routine immunization coverage is
still low in northern Nigeria.

In spite of the efforts from government and donor agencies, Nigeria, as at
present, still ranked among the least successful sub-Sahara African countries with
improved records in child survival, (Global Polio Eradication Initiative (GPEI)
2008; IRIN 2007). This is not unconnected with her low level of vaccinations
coverage against some common early childhood diseases since low vaccination
coverage increases the risks of a child being exposed to various vaccines preventable
diseases. The apparent success achieved at reducing measles mortality in some
parts of Africa is still fragile because of low level of routine measles immunization
coverage (WHO 2008b; Duclos et al. 2009). Therefore, more efforts are still needed
to be concentrated at sustaining the current level of vaccination and developing
strategies of gaining access into the identified DTR areas for full vaccinations
of all the children in Nigeria to be ensured. Accomplishment of this task would
surely guarantee remarkable reduction in child (neonatal, infant & under-five)
mortality in Nigeria. This would in turn contribute significantly to the attainment
of United Nations Millennium Development Goals (MDG 4) that calls for a two-
third reduction in child mortality by 2015 as compared to 1990 levels.

Empirical evidence has revealed substantial geographical variations on immu-
nization coverage in Nigeria (NPC [Nigeria] and Macro ICF 2009). In an attempt
to address the challenge of low vaccination coverage in Nigeria, this chapter
therefore provides detailed analyses of immunization coverage in Nigeria modelling
possible trend and geographical variations of vaccination coverage in the presence
of other covariates using 1999, 2003 and 2008 Nigeria Demographic and Health
Surveys (NDHS) data. We adopt a flexible Bayesian structured additive regression
approach which permits joint estimation of trend, non linear effects of continuous
covariates, geographical variations and fixed effects of categorical covariates. In
the present study, we investigate the influence of bio-demographic variables such
as maternal and partner (spouse) educational attainment, mother’s age at the birth
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of child as well as some other socio-economic variables on vaccination coverage
in Nigeria using flexible geoadditive models. The approach here permits a joint
estimation of the usual linear effects of categorical covariates, nonlinear effects
of continuous covariates and small-area district effects on vaccination coverage
within a unified structured additive Bayesian framework. This study is aimed at
providing policymakers with tools to design effective interventions which can lead
to frugal utilization of the scarce resources. The results from this study would guide
policy makers at directing the scarce resources to states where they are crucially
needed.

Two methods of data analysis were employed in this Chapter. The first approach
compares children who received full vaccination with those without full vaccination.
Under this setting, a binary outcome variable is obtained in which a probit or logit
model is most appropriate. In the second method, we differentiated children who
received no vaccination from those who received some and those who received the
complete vaccination within the duration. Thus an ordered outcome vaccinations
is conceptualized and cumulative probit models are fitted to the data within
the Bayesian framework. Details of the two methods are presented in the next
sections.

7.2 Data Description

The datasets used for this study are the NDHS data for the 3 years 1999, 2003
and 2008. The Demographic and Health Surveys (DHS) are national representative
surveys of men and women of reproductive age and their children in many
developing countries of the world. These surveys are funded by United States
Agency for International Development (USAID) for the purpose of collecting
vital up-to-date information on health related matters such as mortality, morbidity,
vaccinations and general health conditions of children and their mothers, as well
as on many other socio-economic related variables that directly affect the growth
and development of the children ((NPC) [Nigeria], 2000; NPC [Nigeria] and ORC
Macro 2004).

Information on vaccination coverage and on types of vaccines administered on
the children through different immunization schedules are also included in all the
NDHS data. The types of vaccines provided free by donor agencies to Nigerian
children are Bacille Calmette Guerin (BCG) vaccines and Oral Polio Vaccine (OPV)
to guide against tuberculosis and poliomyelitis respectively. Others are Diphtheria,
Pertussis, and Tetanus (DPT) and measles vaccines. According to Nigerian National
Program on Immunization (NNPI) schedule (which is adapted from the WHO
immunization schedule), a child is considered to be fully vaccinated if he or she
has received a BCG, three doses of DPT (i.e. DPT1, DPT2, DPT3), at least three
doses of OPV (i.e. OPV0, OPV1, OPV2), and one dose of measles vaccines (NPC
[Nigeria] and ICF Macro 2009).
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7.3 Structured Additive Regression Model and Analysis

7.3.1 Structured Additive Regression Model

All analyses in this Chapter are based on Structured Additive Regression (STAR)
model proposed by Fahrmeir et al. (2004), Kneib and Fahrmeir (2005), Kneib
and Fahrmeir (2006), and Kneib and Fahrmeir (2007), with a flexible geoadditive
(Kammann and Wand 2003) predictor accounting for the effects of different types of
covariates. STAR embraces the usual famous regression models such as generalized
additive models (GAM), generalized additive mixed models (GAMM), generalized
geoadditive mixed models (GGAMM), stepwise regression models among others.
We consider two outcome variables for immunization coverage in Nigeria. The
first being a dichotomous variable, differentiating children aged 12 months and
above who received full immunization from their counterparts who did not receive
full immunisation (i.e. either some or none) based on the datasets from the 1999,
2003 and 2008 Nigeria Demographic and Health Surveys. This follows a Binomial
distribution whose dependence and effect on a predictor of interest can be modelled
either through a probit or logit model. Here we chose a probit link for computational
reasons as a convenient approach to screen effect of different covariates on the
outcome variable. The second outcome variable was considered as an ordered
categorical variable; differentiating children who received partial immunization and
those who received full immunization from their counterparts who did not receive
any. In other words, this results in a 3 — level ordinal outcome. The dependence of
this on a predictor of interest can be modelled through a cumulative probit model.

In both cases, a database for analyses was created for children aged 12 months
and above. This is to permit proper evaluation of child immunization coverage
with the aim of eliciting children who received full immunization. In total, 23,
913 children involved in the surveys were 12 months or older and included in the
database.

Generalized linear models (e.g. Fahrmeir and Tutz 2001) assume that, given
covariates vector x and unknown parameters , the distribution of the response
variable y belongs to an exponential family, with mean w = E(y|x, p) linked to a
linear predictor n by

w="hm n=xp. (7.1)

Here & is a known response function, and B are unknown regression parameters.
However, in most practical regression situations, we are often faced with the
problem of rigid assumption of linear effect of continuous covariates in the datasets
on the predictor. Sometimes, observations may be spatially or temporally correlated.
Furthermore, covariates may not be able to sufficiently describe any inherent
heterogeneity among individuals or units. To overcome these difficulties, we replace
the strictly linear predictor in (7.1) by a structured additive predictor (7.2).
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Consider a set of regression observations (y;, x;, s;, v;), i=1, ..., n, where yj
is either a binary or categorical response variable, a vector x = (x, ..., xp)’ of
continuous covariates (say respondents’ age), s =(1, ..., S) the state (district)
where respondent i lived during the survey and a further vector v=(vi, ..., vq)
of categorical covariates. Usually one intends to jointly model the dependence of y;
on continuous, spatial and categorical covariates within the context of generalized
additive model (Hastie and Tibshirani 1990).

The predictor n; for the structured additive regression (STAR) model can be
defined as

P
7
ni = Z Ji(xip) + fopar(si) +vi B (7.2)
j=1
where fi;, ..., fp are nonlinear (unknown) smooth functions of the metrical
covariates, fpq is the nonlinear effect of spatial covariates and ; = (B, ..., By) is

a vector of fixed effect parameters for the categorical covariates including time (i.e.
year of study with 1999 as the reference category). One may further split up spatial
effects fi, into spatially correlated (structured) and uncorrelated (unstructured)
effects as

fspat(si) = fstr(si) + funstr(si)'

A rationale behind this is that a spatial effect is a surrogate of many unobserved
influential factors, some of which may be a strong spatial structure and others may
only be present locally.

7.3.2 Model Specification

Model A: According to the World Health Organisation (WHO), each child is
expected to have completed an immunization schedule before celebrating his/her
first birthday. Through this, a child is considered fully vaccinated if he or she has
received a BCG vaccination against tuberculosis, three doses of DPT, vaccine to
prevent diphtheria, pertussis, and tetanus; at least three doses of polio vaccine; and
one dose of measles vaccine within the first year (NPC [Nigeria] and ICF Macro
2009). A binary variable that describes level of vaccination coverage as

1 : if a child aged 12 months and beyond has received all the
yi = recommended vaccines

0 : otherwise

was created.
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Model B: Here, the immunisation schedule (according to WHO) that a child should
receive was categorised into none, partial and full. This was aimed at eliciting
information about those children who received partial vaccination separate from
those who did not receive any vaccination. Therefore, a three-level ordinal outcome
variable describing level of vaccination coverage was created as

1 : if a child aged 12 months and beyond has received all the
recommended vaccines,

y; = ¢ 2:if achild aged 12 months and beyond only received some
recommended vaccinations,

3 :if a child aged 12 months and beyond did not receive any vaccination.

In an attempt to explore possible determinants, trend and spatial variations
on level of vaccination coverage in Nigeria between 1999 and 2008, analyses
were based on predictor (7.1). For model A, influence of determinants of level of
vaccination coverage was modelled through a binary model assuming a probit link
within a Bayesian perspective that jointly accounts for nonlinear, time, fixed and
spatial effects. Bayesian geoadditive probit model is preferred for computational
reasons as a convenient approach to screen a number of different models (Crook
et al. 2003). There are considerable computational advantages using the probit
formulation and an implementation based on latent variables. In particular, it allows
for fast block updates of the parameters representing the non-parametric smoothing
functions of the nonparametric effects (Fahrmeir and Lang 2001a; Rue 2001).
Furthermore, results using the probit model are qualitatively very similar to logit
estimates (Fahrmeir and Tutz 2001). Using the probit link as an approximation to
the logit model is very common in many other areas of statistics, for example, in
measurement error models as discussed in Carroll et al. (1995, p. 64).

The predictors in these models include non-parametric effect of a metrical
covariate (mothers age at the birth of the child — measured in years, and child’s
age — measured in months), spatial components and linear part in an additive
form. Similarly for model B, a cumulative probit model was assumed with the
aim of modelling influence of determinants of level of vaccination coverage within
a Bayesian perspective that jointly accounts for nonlinear, time, fixed and spatial
effects in a similar manner as in model A. In both cases (i.e. models A and B),
predictor (7.1) was used to explore the dependence of vaccination coverage on the
specified covariates.

7.3.3 Cumulative Probit Model

Let us consider the regression model based on multicategorical outcomes. Such
models can be motivated from latent variables such that the response variable y can
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be observed in ordered categories 1, ..., k. It is postulated that y is a categorized
version of a latent variable

U=n+e (1.3)

obtained through the threshold mechanism

y=r 6 <U<86,, r=1,...,k
with thresholds —oo =0y <07 < ... <0 = 0co. We assume that the error variable ¢
has a distribution function F, hence it follows that y obeys a cumulative model
p(y =rlnp) = F(6 —n), (7.4)

where 1 is the geoadditive predictor described in (7.1) which can be specified for
a particular child i. To enhance identifiability, functions are centred about zero,
thus the fixed effect parameters automatically include an intercept term. In the
application to model B, level of vaccination coverage y is considered as a three-
ordered categorical version of the latent continuous variable U. Here ¢ is assumed
to have a standard normal distribution function, i.e.

p(y =rln=1x,s,v) = &, —n)

yielding a cumulative probit model. Cumulative models based on category bound-
aries or threshold approaches (Edwards and Thurstone 1952) are commonly used in
ordinal regression.

7.4 Bayesian Inference

Within a Bayesian context, all parameters and functions are usually considered as
random variables upon which appropriate priors are assumed. Independent diffuse
priors are assumed on the parameters of fixed effects. For the non-linear effects,
Bayesian P-splines prior based on Lang and Brezger (2004); and Brezger and
Lang (2006) was assumed. Omitting indices, each function f is represented or
approximated through a linear combination

J
P@ =Y BB
j=1

of B-spline basis functions. Smoothness of function f is achieved by penalizing
differences of coefficients of adjacent B-splines (Eilers and Marx 1996) or, in
our Bayesian approach, by assuming first or second order Gaussian random walk
smoothness priors
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Br=Bj-1+u Br=2B;—1—Bj—2 +u,
with i.id. errors u; ~ N(O,t?). The variance t2 controls the smoothness of f.
Assigning a weakly informative inverse Gamma prior 1> ~ IG(g,¢), € small, it
is estimated jointly with the basis function coefficients.

For the geographical effects fspa:(s), s =1, ...,S, we assume a Gaussian Markov
random field prior. Basically, this is an extension of first order random walk priors
to two-dimensional spatial arrays, see Rue and Held (2005) for general information.

For the structured spatial effects f;,(s) we chose a Gaussian Markov random field
prior which is common in spatial statistics, see Besag et al. (1991).

2
(fsr ()| far(@); 8 F# 5, 2 Z fstr(t) i

t€d;s

Unstructured spatial effects are i.i.d. random effects.

In order to be able to estimate the smoothing parameters for non linear and
spatial effects simultaneously, highly dispersed but proper hyper-priors are assigned
to them. Hence for all variance components, an inverse gamma distribution with
hyperparameters a and b is chosen, e.g. ©> ~ IG(a, b). Standard choices of hyperpa-
rameters are a =1 and » = 0.005 or a = b =0.001.

Similar to Fahrmeir and Lang (2001a, b), posterior samples are drawn from full
conditionals of single parameters or blocks of parameters given the rest and the data
is enhanced through MCMC simulations. Let o represent the vector of all function
evaluations and spatial effects (i.e. a = (f, fipar, B)) and t represent the vector of all
variance components. For the binomial probit model, Bayesian inference can then
be based on the posterior

pla, T, Bly) o« p(yle, B) p(a|t) p(z) p(B). (7.5)

where p(y|a, p) is the likelihood function of the data given the parameters. An
additional parameter U of the continuous latent variable must be included in the
posterior analysis of the cumulative probit models. Therefore, their posteriors can
be based on

pla, 7, B, Uly) < p(y|U)p(U|a, B)p(a|t) p(t) p(B). (7.6)

Details about the sampling schemes for both binomial probit and cumulative
probit models are discussed in the manual of the software. For the models consid-
ered in the applications, all the full conditionals involved have known distributions,
hence a Gibbs sampler can be used for the MCMC simulations. Efficiency is
guaranteed by Cholesky decomposition for band matrices (Rue 2001). The approach
was implemented in BayesX, a statistical package for Bayesian analysis and all
computations were performed with the software.
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Sensitivity to the choice of priors was investigated in this case-study through
different means. First, we compared results from MCMC with similar models
using Restricted Maximum Likelihood (REML) approach. Second, hyperpriors for
smoothing parameters were varied systematically. Lastly, we considered different
priors such as ‘Markov Random Field’, ‘Two dimensional P-spline with first
order random walk penalty’ which is known as geospline, for spatial effects. For
model choice and comparison, the deviance information criterion (DIC) which was
developed by Spiegelhalter, et al. (2002) was used. BayesX, software for Bayesian
inference using structured additive regression models was used for all analyses
(Brezger et al. 2009).

Fully Bayesian inference is based on the posterior distribution of the model
parameters, which is not of a known form. Therefore, MCMC sampling from
full conditionals for nonlinear effects, spatial effects, fixed effects and smoothing
parameters was used for posterior analysis. For nonlinear and spatial effects,
Metropolis-Hastings algorithms based on conditional prior proposals (Knorr-Held
1999) and iteratively weighted least squares (IWLS) proposals suggested by Brezger
and Lang (2006) as an extension of Gamerman and Lopes (2006) were applied.
Similar results are obtained from both sampling schemes but we relies on Iteratively
Weighted Least Square (IWLS) proposal which has good mixing properties without
requiring tuning.

7.5 Data Analysis and Discussions

7.5.1 Analysis

To explore impact of trend, demographic characteristics, continuous variables and
spatial effect on level of vaccination coverage in Nigeria between 1999 and 2008,
structured additive regression model was fitted. This method of analysis permits
joint estimation of time, spatial, nonlinear and fixed effects simultaneously. In
this Chapter, all analyses were based on predictor (7.1) for models with outcome
variables described as models A and B. Through this, one would be able to identify
possible effect of the predictor on a child receiving full vaccination coverage
compared with others who either received partial (i.e. incomplete according to
WHO’s immunisation schedule) or did not receive any among children who were
12 months and above as at the time of the survey. Covariates were included in the
model based on their significance at bivariate level (see Table 7.1).

Model building was guided by the use of Deviance Information Criterion (DIC)
proposed by Spiegelhalter et al. (2002). We started the process from a very
simple model; where only year of study (trend) was included in the predictor to
a complex model involving, trend, demographic characteristics of the respondents
(mothers), partner’s (husband) educational attainment, random effect of cluster
(where respondents were sampled) and that of unstructured spatial effect, structured
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Table 7.1 Bivariate analysis of vaccination coverage according to selected characteristics in
1999, 2003 and 2008 Nigeria demographic and health survey

Level of vaccination coverage

Variables None  Partial Full P-value®  Total respondents
Year of study

1999 35.9 55.7 8.4 <0.0001 2,109
2003 22.8 71.6 5.6 3,212
2008 29.0 56.9 14.1 18,592
Geopolitical zones

North Central 11.4 58.9 29.7 <0.0001 2,560
North East 16.3 59.0 24.7 2,304
North West 43.7 53.5 2.8 6,434
South East 27.1 58.1 14.8 4,325
South West 33.6 61.8 4.7 5,457
South South 13.8 66.0 20.2 2,833
Place of residence

Rural 33.1 58.3 8.6 <0.0001 16,969
Urban 18.0 60.1 21.8 6,944
Sex

Male 29.0 58.7 12.3 0.579 12,161
Female 28.5 58.9 12.6 11,752
Respondents’ education

None 44.1 52.5 3.4 <0.0001 11,931
Primary 19.5 66.9 13.6 5,561
Secondary 9.0 65.6 25.4 5,256
Higher 4.5 54.2 41.3 1,165
Partners’ education

None 45.3 51.6 3.2 <0.0001 9,579
Primary 22.1 64.2 13.8 5,198
Secondary 16.2 64.6 19.3 5,953
Higher 12.2 60.1 27.8 2,645
Birth order

More than 4 30.5 60.5 9.0 <0.0001 4,398
Firstborn 28.2 55.2 16.6 11,232
Second to Fourth 30.5 60.5 9.0 8,283
Antenatal visits

None 47.4 48.8 3.8 <0.0001 6,274
1-9 15.1 67.1 17.8 5,769
More than 9 7.3 64.4 28.3 1,928
Place of delivery

At home/others 38.2 56.5 5.4 <0.0001 15,902
Hospital 8.8 64.2 27.1 7,844

aAll test are based on Pearson X test of differences of proportion



134 S.B. Adebayo and W.B. Yahya

Table 7.2 Summary of the DIC as measure of model selection for the fitted models

Binomial probit Cumulative probit
Model predictors D(bar) pD  DIC D(bar) pD  DIC
MI: trend alone 19,455.39  3.13 19,461.65 55,921.48 4.00 5,929.48
M2: trend + demographic 15,835.00 17.84 15,870.69 50,146.16 18.85 50,183.87

characteristics
M3: trend + random effects (state  15,313.30 57.87 15,429.04 49,051.03 75.86 49,202.74
and household) + demographic

characteristics

M4: m1 + spatial (no random 15,332.20 47.50 15,427.19 49,104.11 49.20 49,202.50
effect)

MS5: m3 + nonlinear effect of 13,845.28 51.71 13,948.70 37,304.78 60.80 37,426.37
continuous variables

M6: spatial + trend + random 8,134.73 64.48 8,263.70 20,886.75 82.92 21,052.58

(state and House hold) +
nonlinear of continuous +
extended fixed effects
MT7: spatial + trend + nonlinear of ~ 8,130.33 58.06 8,246.46 20,912.07 65.42 21,042.91
continuous + extended fixed
effects

spatial effects, nonlinear effect of continuous variables, etc. Some of the fitted
models explored are stated below:

MI: n =Trend alone

M2: n = Trend + Demographic characteristics

M3: 1 = Trend + Random effects (States and cluster)+Demographic characteristics

M4: n = Trend + Spatial effect (i.e. M1 + spatial)

MS5: n = M3 + nonlinear effect of continuous variables

M6: n = Trend + Spatial 4 Random (States and Clusters) 4+ Nonlinear of continu-
ous + extended fixed effects (including partners’ educational attainment)

M7: n =Trend + spatial + nonlinear of continuous + extended fixed effects (in-
cluding partners’ educational attainment)

It turned out that, models with predictor M7 is the best in terms of the DIC (see
Table 7.2). Therefore, discussion of results in Sects. 7.5.2 and 7.5.3 shall be based
on model M7. All analyses are carried out based on BayesX 2.0.1 — software for
modelling structured additive regression modelling through a Bayesian perspective
(Brezger et al. 2009). This is available under http://www.stat.uni-muenchen.de/~
bayesX

7.5.2 Results

For the binomial probit model that assumes model A as the outcome variable,
Table 7.3 presents findings of the fixed effect model. A significant positive
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Table 7.3 Posterior estimates for binomial and cumulative models with predictor M7. Shown are
the posterior means, std errors and 95 % credible intervals

Binomial model with predictor M7

Cumulative probit model

with predictor M7

95 % credible

95 % credible

interval interval
Variables Mean  Std error Lower Upper Mean  Stderror Lower Upper
Constant —2.160 0.254 —4.460 —3.441 —0.059 0.110 —0.279 0.149
Trend
Year 1999 (ref) Ref Ref
Year 2003 —0.141 0.143 —0.520  0.020 0.252 0.043 0.163 0.339
Year 2008 0.412 0.096 0.587  0.981 0.315 0.031 0.254 0.376
Geopolitical zones
North Central (ref) Ref Ref
North East —0.350 0.494 —1.777 0.122 0.166 0.234 —0.289 0.619
North West —0.503 0.452 —1.996 —0.155 —0.012 0.212 —0.412 0.399
South East 0.092 0.432 —0.557 1.081 —0.098 0.238 —0.560 0.379
South West —0.298 0.353 —1.244 0.137 —0.188 0.156 —0.489 0.100
South South 0.072 0.444 —0.638 1.147 0.090 0.255 —0.382 0.631
Place of residence
Rural (ref) Ref Ref
Urban 0.211 0.065 0.251  0.506 0.169 0.026 0.120 0.220
Sex
Male (ref) Ref Ref
Female 0.010 0.056 —0.079  0.138 0.028 0.021 —0.013 0.071
Respondents’ educ
None (ref) Ref Ref
Primary 0.239 0.101 0.265 0.678 0.256 0.032 0.195 0.318
Secondary 0.419 0.107 0.591  0.993 0.520 0.040 0.442  0.604
Higher 0.572 0.138 0.758  1.281 0.694 0.062 0.577 0.812
Partners’ educ
None (ref) Ref Ref
Primary 0.180 0.102 0.176  0.578 0.234 0.032 0.173 0.297
Secondary 0.160 0.106 0.134  0.550 0.190 0.033 0.123 0.256
Higher 0.323 0.119 0.406  0.858 0.315 0.045 0.226  0.405
Birth order
More than 4 Ref Ref
Firstborn 0.193 0.120 0.105  0.573 0.001 0.043 —0.085 0.087
Second to Fourth 0.057 0.078 —0.45 0.252 —0.019 0.029 —0.081 0.145
Antenatal visits
None (ref) Ref Ref
1-9 0.064 0.038 0.031 0.173 0.113 0.016 0.081 0.145
More than 9 —0.053 0.038 —0.153 —0.008 —0.100 0.016 —0.132 —0.068
Place of delivery
At home/others Ref Ref
Hospital 0.433 0.069 0.634  0.905 0.477 0.029 0.420 0.532
Threshold 1 (6;) NA NA NA NA 0.059 0.110 —0.149 0.279
Threshold 2 (65) NA NA NA NA 2.234 0.112 2.018 2.463

NA not applicable
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trend was observed between 2008 and 1999 compared with 2003 and 1999. Full
immunization coverage varies according to the geopolitical zones with North West
having significantly lower full vaccination. Residing in urban areas is significantly
associated with full immunization coverage as children in urban areas are more
likely to be fully immunized compared with their counterparts in rural areas. A
significant positive association of respondents’ and partners’ educational attainment
was evident on full vaccination coverage. Firstborns are more likely to have
received full vaccination compared with their counterparts who are later than fourth
born. Children who were delivered at the hospital are more likely to receive full
vaccination coverage compared with those who were delivered at home or other
places. Children from mothers who had at most primary, or at most secondary or at
most higher education are more likely to receive full vaccination coverage compared
with their counterparts with no formal education. Similarly children whose fathers
have secondary education or higher are significantly more likely to receive full
vaccination compared with those whose fathers have at most primary education of
no formal education. Children whose parents received between 1 to 9 antenatal visits
are positively associated with receiving full immunization coverage.

Now consider the cumulative probit model B. Estimates of the fixed effect
parameters are shown in Table 7.3. Similar conclusions can be drawn from the fixed
effects as in model A. Furthermore, estimates of the threshold parameters 0; and 6,
for categories ‘Full vaccination’ and ‘partial vaccination’ respectively are included
in Table 7.3. For interpretation of the results of threshold parameters, higher (lower)
values correspond to full vaccination. For instance, a positive sign of 6; and 6,
signifies a shift on the latent scale to the left side, yielding a higher probability for
category ‘full vaccination’ and partial vaccination compared with ‘no vaccination’.
For fixed effects, the directions of findings are similar for cumulative probit models.
However, effect of firstborns is not statistically significant.

Turning attention to the nonlinear effects of child’s age and mother’s age
at the birth of the child, Fig. 7.1 presents findings for both models A and B.
From the binomial probit model, a steady decline in full vaccination coverage
was evident from children who are 12 months old and beyond. This shows a
possible improvement on full vaccination coverage in the recent time compared
with the older children. In other words, the younger children are more likely to
be fully immunized compared with older children. For cumulative probit model,
effect of child’s age is almost an approximately zig-zag pattern. On respondents’
(mothers) age at birth of the child, the pattern is similar for both binomial probit
and cumulative probit models. There is a steady increase in child’s immunization
coverage up till mother’s age birth of 21 years before it stabilises between age 22
and 42 years. This implies that children whose mothers are below 21 years (perhaps
teenage mothers) are less likely to receive full immunization coverage compared
with those children whose mothers are in the age range 22 and 42 years.

Figure 7.2 displays spatial effects for binomial probit and cumulative probit
models A and B on map of Nigeria. The posterior means are shown in the left
columns (a and c) while the corresponding posterior probabilities of significance
of spatial effects are shown in the right columns (b and d). Looking at the maps
of posterior probabilities, states with white colour are associated with significantly
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Fig. 7.1 Nonlinear effects of (a) Child’s age and (b) Mother’s age at birth [Binomial probit
model], (¢) Chld’s age and (d) Mother’s age at birth with their corresponding 95 % and 80 %
credible intervals

high vaccination coverage, states with dark colour are associated with significantly
low vaccination coverage while states with grey colour are associated with insignif-
icant spatial effects. In other words, states with white colour have positive credible
intervals, states with dark colour have negative credible intervals while states with
grey have credible intervals that include zero. For instance, from the cumulative
probit model; rather than assuming that all the states in the North East, North West
and North Central are significantly associated with low vaccination coverage, this
analysis has permitted us to identify that Kano, Sokoto and Zamfara in the North
West; Jigawa, Yobe and Borno in North East; and Nassarawa in the North Central are
associated with low vaccination coverage. Similarly, Lagos, Oyo, Osun, and Ekiti
states in the South West; Ebonyi in the South East and FCT in the North Central are
associated with high vaccination coverage. Similar inferences can be drawn from the
binomial probit model A with Jigawa, Yobe and Benue states significantly associated
with no or incomplete vaccination coverage while FCT, Lagos, Osun and EKkiti states
are significantly associated with full immunization coverage.

7.5.3 Discussions

Structured additive regression models for binomial and cumulative probit models
have been applied to the 1999, 2003 and 2008 Nigeria Demographic and Health
Survey data on level of immunization coverage in Nigeria between 1999 and 2008 in
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Fig. 7.2 Map of Nigeria showing spatial effect (a) and (c¢) for binomial and cumulative probit
respectively; and the corresponding map of significance of spatial effects (b) and (d) for binomial
and cumulative probit respectively
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this Chapter. In this Section we discuss findings from the analysis and implications
for policy formulation on improving immunization coverage in Nigeria. This Chap-
ter has availed us the opportunity to discern states with partial or low immunization
coverage with the aim of developing appropriate intervention strategy, which can
help in improving immunization coverage.

In this paper, flexible modelling of small area district-specific effects is of great
advantage compared to the usual parametric and frequentist approach. For instance,
modelling of the effects of the 37 small area districts in Nigeria through a frequentist
(parametric approach) would have led to creating 36 dummy variables resulting
in superfluous parameters for only one variable. However, Bayesian geoadditive
models have distinct advantages for exploring such small area spatial effects
by allowing incorporation of spatial effects, nonlinear or time-varying effects of
covariates as well as the usual linear effects in a joint model by assigning appropriate
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smoothness priors to them. Furthermore, this approach of analysis is useful for
policy formulation so that governments of the districts (states) where vaccination
is done partially or haphazardly can pay more attention to the cause of such.
Perhaps it may be necessary to create more awareness on benefits of immunisation
in such districts (states) or think of possible improvements. This will further assist
government and policy makers on prudent use of the scarce resources, which is
prominent in the country.

In this Chapter, the idea behind model B was to identify children who must
have dropped out of the exercise. In this case, drop-outs are children who begin
the vaccination schedule but do not complete it. Some of the reasons for this may
not be unconnected with lack of information, poor services, time constraints; social,
cultural or political barriers; misinformation and or distance. Therefore, this paper
has revealed that some mothers initiated immunization of their children but dropped
out somewhere along the line. So, monitoring drop-outs and devising strategies
to prevent them deserve greater attention. With the increased use of expensive
vaccines, if a child does not receive all of the doses required for full protection,
the resources that have been used to partially vaccinate that child are mostly wasted
(USAID 2009).

Reasons for lack of immunization vary from country to country. For instance,
studies have shown that most people will use immunization services as long as
they know when and where to bring their children to, whether those services
are available, accessible, reliable and friendly. Thus the role of communication
activities in achieving these conditions is important but not sufficient. Dissemination
of information, training, supervision and other ways of improving services need
to be employed in a mutually supportive way to promote complete and timely
immunization of children and women at large.

Therefore, achievement of immunization goals is affected by the behaviour many
groups including politicians, community leaders, health care providers, managers
and supervisors, women of reproductive age, parents, children and their families.

7.6 The Impact of Immunization on Child’s Health

Another area of maternal and child health issues which has not been sufficiently
addressed in the literature is the assessment of all the various immunization vaccines
on children’s survival. This kind of assessment will serve as a measure to determine
whether the core objective of immunizing the children (reduction in children
mortality rate through protection of children against the basic early childhood
diseases) through the various vaccines has been achieved or not. Thus, It is expected
that mortality rate among the groups of children that were fully immunized should
be considerably lower than the mortality rate of the unimmunized group of children.

To this end, we obtained from the three waves of the NDHS data discussed
here, the number of children that were alive or dead having being vaccinated or
unvaccinated against some of the commonly identified early childhood diseases that
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Table 7.4 The contingency table showing the cross-classification of children by their full
immunization status (fully immunized or non-immunized) and their survival status (dead or alive)

1999 2003 2008

Child’s status Child’s status Child’s status

Dead Alive Total Dead Alive Total Dead Alive  Total
Full No 342 2918 3,260 772 3,972 4,744 3,201 21,058 24,259

immunization Yes 0 292 2920 394 394 0 4388 4,388
Total 342 3,210 3,552 772 4,366 5,138 3,201 25,446 28,647

could ordinarily result to child’s death if left unchecked. From these statistics, it was
possible to compute the conditional probability of survival outcome of a child (alive
or dead) given that he or she is fully immunized or non-immunized.

According to NNPI schedule as earlier reported in section 6.2, a child is deemed
to have been fully immunized if he or she has received a BCG, the three doses of
DPT, one dose of measles and at least the first three doses of OPV vaccines. Based
on this recommendation, the survival status (dead or alive) of all the children in each
of the NDHS data set was cross-classified against their immunization status (fully
immunized or not immunized) the results of which are presented in Table 7.4.

The results from Table 7.4 show that out of 3,552, 5,138 and 28,647 Nigerian
children in the 1999, 2003 and 2008 Nigeria demographic and health surveys,
only 292 (8.2 %), 394 (7.7 %) and 4,388 (15.3 %) of them were fully immunized
against some of the early childhood diseases respectively. These results simply
show that less than 20 % of children in Nigerian were fully immunized against the
most commonly identified early childhood diseases as at 2008. This has impacted
negatively on the survival of the children as revealed in Table 7.4.

It can be observed from Table 7.4 that the conditional probability that a fully
immunized child will die is zero. In all the three data sets, all the 292, 394 and
4,388 children that were fully immunized according to 1999, 2003 and 2008 NDHS
respectively survived beyond their fifth year of birth. On the other hand, of 3,260,
4,744 and 24,259 children that were not immunized (or not fully immunized) in the
1999, 2003 and 2008 NDHS data, 342, 772 and 3,201 of them died before their
fifth year of birth. This translates to significant child mortality rates of 10.5 % in
1999 (p < 0.0001; 95 % CI: 0.0947, 0.1161), 16.3 % in 2003 (p < 0.0001; 95 % CI:
0.1524, 0.1736) and 13.2 % in 2008 (p < 0.0001; 95 % CI: 0.1277, 0.1363) within
the group of unimmunized children. Based on these results, it is very clear that
more efforts should be directed at ensuring full compliance to the internationally
recommended immunization schedule by nursing mothers in Nigeria in order to
stem the increasing trend of child mortality.

In addition to the above, we assess the impact of OPV and DPT vaccines on
child’s survival using the three NDHS data sets. The choice of these two vaccines
is informed by their significant impacts on the survival of children during the first 5
years of birth (Taylor et al. 1996).

In Table 7.5, we present the survival status (dead or alive) of all the children in
the 1999, 2003 and 2008 NDHS data cross-classified by their OPV immunization
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Table 7.5 The contingency table showing the cross-classification of children by their polio
immunization status (fully immunized or non-immunized for Polio) and their survival status (dead
or alive)

1999 2003 2008
Child’s status Child’s status Child’s status
Dead Alive Total Dead Alive Total Dead Alive Total

Full Polio No 342 2,907 3,249 772 4,056 4,828 3,201 21,336 24,537
vaccines  Yes 0 303 303 0 310 310 0 4,110 4,110
Total 342 3,210 3,552 772 4,366 5,138 3,201 25,446 28,647

status (fully immunized or not immunized). Also, tables for the cross-classification
of children by their survival status (dead or alive) and their DPT immunization status
(fully immunized or not immunized) were obtained, but these were not presented
due to space. However, a child is considered to be fully immunized by both OPV
and DPT vaccines if he or she has received OPV0, OPV1, OPV2 and DPT1, DPT2,
DPT3 vaccines respectively.

In agreement with the results reported in Table 7.4, the results in Table 7.5
generally revealed that all the children that died in 1999, 2003 and 2008 based on
the respective data were those children that did not received the full dose of oral
polio vaccines as recommended. Interestingly, all the children that received the full
OPV survived beyond their fifth year of birth between 1999 and 2008 covered by
the data. The results are the same for those children that received full dose of DPT
vaccines. In all cases, the proportion of child’s deaths due to lack of (full dosage
of) OPV and DPT vaccines in the children were all significantly different from zero
across the three sets of NDHS data considered (p < 0.0001).

7.7 Conclusion

This Chapter has provided readers with opportunity for flexibly modelling of
nonlinear effects, spatial effects that incorporate neighbourhood influence, fixed
effect and possibly random and interaction effects. In our analysis, we attempted
random and interaction effects at an exploratory stage but both were found not to
be significant. At another stage of the analysis, effect of continuous covariates i.e.
child’s age and mother’s age at birth was assumed to be linearly related to models
A and B and modelled parametrically. Even though these effects were significant in
the parametric models, however, the model with smooth (nonlinear) functions of the
covariates was found to be better in terms of the DIC. Evidently effects of child’s age
and mother’s age at birth are non-linear, and an assumption of linear dependence a
priori would have been too rigid and resulted in erroneous and spurious conclusions.

Results of the spatial effects for the fitted models showed that there exist sub-
stantial geographical variations in level of immunization coverage across Nigeria.
While some states were significantly associated with full immunization, some were
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significantly associated with no or partial immunization coverage. Ensuring full
immunization coverage will assist Nigeria in averting deaths in children under five
(especially infants) due to preventable causes. Through this, Nigeria can achieve the
millennium development goals on reduction of infant and child mortality rates.

Generally, full immunization coverage is still very low in Nigeria. The pro-
gressive increase in the percentage of fully immunized children from around 8 %
between 1999 and 2003 to about 15 % in 2008 is still not impressive. More serious
efforts are still needed from government and non-governmental organizations
in the areas of enlightenment campaign to improve significantly on the current
achievement if objective number four of the United Nations MDG that calls for
a two-third reduction in child mortality by 2015 is to be accomplished in Nigeria.

In conclusion, findings from this Chapter provide insight to policy formulation.
Scarce resources have been identified as a major challenge towards implementation
of necessary intervention strategies in sub-Saharan African countries, including
Nigeria. This Chapter provides policy-makers with tools to enhance appropriate
policy formulation on improving access to and coverage of immunization; which
can also assist in allocating resources to states or districts where the resources can be
effectively utilized. While identifying states that require intensive prevention efforts
towards full vaccination, the need for sustenance of the full immunization coverage
in states that are associated with full coverage must be ensured by policy-makers in
the affected states.
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Chapter 8

Macro Determinants of Geographical Variation
in Childhood Survival in South Africa Using
Flexible Spatial Mixture Models

Samuel O.M. Manda

8.1 Introduction

In many societies around the world, social and economic programmes have been
put in place aimed at improving the health of the populations. This is premised on
evidence that a healthy population is economically more active; thus contributing to
efforts meant to lowering levels of poverty (Romani and Anderson 2002). Leading
indicators of overall social-economic development and health status of a country
are infant (under 1 year) mortality and under-five mortality rates (Romani and
Andersen 2002; Bradshaw et al. 2004; Burgard and Treiman 2006). Under-five
mortality rate, defined as the number of children younger than 5 years who die
out of 1,000 live births, is a Millennium Development Goal 4 (MDG 4) indicator
(United Nations 2012). Furthermore, in conditions where HIV/AIDS is pandemic,
childhood death rates are important for investigating inequalities regarding HIV
policies and services; in particular, differential rates of mother-to-child transmission
(MTCT) of HIV (Bradshaw et al. 2004).

Even though childhood mortality rates have generally been declining worldwide,
the levels of the decline and the current rates vary considerably across regions.
In some regions, for example, the sub-Saharan African (SSA) region, declines in
child mortality have either reversed or slowed or stalled in many countries from
the early 1990s, making it unlikely that the target of reducing under-five mortality
rate by two thirds between 1990 and 2015 will be reached (Fotso et al. 2007). The
more wealthier and modernised regions have had faster declines in, and have lower,
childhood mortality rates and vice-versa (Heaton and Amoateng 2007; UNICEF
2010). Between 1990 and 2008, the overall world-wide reduction in under-five
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mortality rate was 28 %, with a high of 40 % in the industrialised countries and
a low average of 22 % in the SSA region. The overall under-five mortality rate is 65
deaths (1,000 live births), with rates of 6 and 144, respectively, in the industrialised
and the SSA region (UNICEF 2010).

South Africa (SA) has one of the lowest rates of childhood mortality in the SSA
region (SA infant mortality rate is 45; SSA’s is 82 (African Population and Health
Research Center 2008)). However, the country is one of the few at the start of
the 1990s to have experienced a reversal in child mortality decline. The reversal
has been attributed to an increase in HIV prevalence in pregnant women within
the same period (Hall 2009). The country’s low childhood mortality rates mask
variation within the country where the rates vary by province, with the Western
Cape province having the lowest infant and under-five mortality rates at 30 and
39 per 1,000 live births, while the Eastern Cape province has the highest rates at
61 and 81 per 1,000 live births, respectively (Hall 2009). Ethnicity is an important
predictor of differential childhood mortality rates in South Africa as it is indicative
of differences in educational, health and social-economic access; a legacy of the
then apartheid policies (Romani and Anderson 2002; Burgard and Treiman 2006;
Heaton and Amoateng 2007).

This chapter uses data from the South African Demographic Health Survey
1998 (SADHS 1998) (Department of Health 2002) and the spatially relevant
health district data to investigate geographical variation of childhood mortality
in South Africa. In particular, we use socio-economic, demographic and health
variables at the district level to explain excess risk in childhood mortality at
the district level. Childhood mortality is modelled with time-to-event survival
random effects models involving spatially arranged random effects. We do not
restrict the conditional distribution of the spatial random effects to be Gaussian
but are flexibly modelled using mixtures of Gaussian and double exponential
distributions. The resulting residual fitted hazard rates are mapped to help the search
for possible persistent spatial correlations, which may suggest links with district-
specific covariates. This study therefore provides the benefit of identifying groups
of children and places to be targeted with relevant and effective interventions; thus
helping stakeholders to prioritise the available resources to places and sub-groups
that are in greater need.

8.2 Some Theoretical Considerations

A number of studies in poor and less developed countries have used a number
of individual and household factors to model childhood mortality. These include
the mother’s age, education and occupation, parity, birth interval, breastfeeding
duration, sex of child, previous child deaths, and household amenities (Forste 1994;
Huang et al. 1997; Manda 1999). In particular, the studies have shown gathered
inverse relation between birth intervals and infant and child mortality. There are
various mechanisms by which birth intervals might affect childhood mortality.



8 Macro Determinants of Geographical Variation in Childhood Survival. .. 149

A short birth interval may erode the reproductive and nutritional resources of the
mother leading to a higher incidence of premature and weaker births. Closely
spaced children compete for scarce resources such as food and clothing. An
increased transmission of infant and child contagious infections among closely
spaced siblings may also occur. Early cessation of breastfeeding may expose the
child to greater risks of illness from contaminated water and food in conditions
where proper substitutes of food are scarce. But the effects of birth intervals and
breastfeeding duration on childhood mortality are too complicated to entangle,
due to complications arising from different factors (Manda 1999; Kandala and
Ghilagaber 2006):

Maternal age at birth of the child and birth order tend to exhibit a U-shaped
relationship with childhood mortality (Sastry 1997). Young mothers have repro-
ductive systems that are not completely mature, and this leads to underweight and
weaker babies, while older mothers have declining maternal resources due to aging.
Young mothers are also less likely to have received adequate prenatal care. High
order births have relatively higher childhood mortality because they are born to
older women. First-born children are more likely to be born to young mothers.
Maternal education and household wealth provide the means with which the mother
can ably care for a sick child, and the awareness of preventive modern medicines.
In some studies, the survival status of the proceeding child had been used to model
family effects where it has been assumed that if mortality risks within a family are
correlated, the index child has a higher chance of dying.

On the macro level, countries in the Sub-Saharan Africa region are characterised
by some of the highest infant and under-five mortality rates in the world (Balk
et al. 2004). The declines, which started in the late 1960s, have stalled in the
1990s, with some countries actually experiencing an increase in childhood mortality.
Overall, the region accounts for more than one in three of deaths of children
under the age of five (Amouzou and Hill 2004). Within the region, levels and
trends in mortality exhibit a considerable heterogeneity. In particular, the western
and middle regions experience high childhood mortality rates than the eastern and
southern region. A number of contributing factors have been assessed to explain the
observed variation in both infant and child mortality across countries. Amouzou
and Hill (2004) investigated the effect of three of a country’s socioeconomic
indicators: per capita income, illiteracy levels among women and the level of
urbanisation on child mortality variations across the region’s countries. Their results
showed a positive association between illiteracy levels among women and negative
associations between per capita income, urbanisation and child mortality. On the
other hand, Balk et al. (2004) studied environmental and geographical factors
such as population density, urban proximity, climate, farming system and disease
environment in a spatial analysis of child mortality in West Africa, and found
that country-specific variations in child mortality attenuated when these spatially-
relevant variables were accounted for in the models.

Sub-nationally, spatial variations in child mortality have also been shown to
exist. In a study of childhood mortality in Malawi, Kalipeni (1993) and Kandala
and Ghilagaber (2006) found that districts in the Northern region tended to display
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lower rates of infant mortality than districts in the Central and Southern regions.
These spatial variations persisted even after controls for important district level
factors, such as female education and agricultural occupation, health facilities
and demography (age at first marriage and fertility levels). In Zimbabwe, Root
(1997) concluded that population density was an independent predictor of provincial
variations of child mortality, with children in the lower-density Ndebele provinces
having lower child mortality than their counterparts in the higher-density Shona
provinces. Gemperli et al. (2004) found high level of infant mortality in the
Central and Eastern parts of Mali, which were partially reduced by the inclusion of
socioeconomic and bio-demographic variables at the individual level. In other parts
of the world, geographical differentials in child mortality have also been observed,
for instance in the Guizghou region, China (Huang et al. 1997) and Bolivia (Forste
1994), which were attributed to poverty differentials.

The few studies that have modelled community heterogeneity effects on child
mortality have not controlled for community-specific spatial relevant factors (Sastry
1998; Bolstad and Manda 2001). Gemperli et al. (2004), Balk et al. (2004) and
Kandala and Ghilagaber (2006) in their analyses of small-area spatial variation
of infant and child mortality in the sub-Saharan region, appended area-specific
spatially-relevant factors to individual and household data in the Demographic and
Health Survey (DHS) data sets. The spatial analysis studies in Kalipeni (1993), Root
(1997) and Balk et al. (2004) did not account for spatial dependence in the data.
Moreover, they did not even account for heterogeneity effects in the data across the
studied geographical areas to account for extra-variation. The results may have been
biased because failure to account for both unstructured and structured heterogeneity
could underestimate the standard errors of the parameters, which might inflate their
significance. Only a few studies have modelled childhood mortality using correlated
spatial effects (Banerjee et al. (2003) and Gemperli et al. (2004)). We follow this up
in this study; childhood mortality in the period 0-59 months is modelled using a
counting process formulation of a proportional hazards model, which is modified
to include spatially correlated frailty effects adjusted for area-specific spatially-
relevant factors.

8.3 Flexible Modelling of Area Spatial Effects

8.3.1 Basic Frailty Model

The application of Clayton-type counting process formulations for clustered sur-
vival data and gamma frailty are now routinely applied in analyses of clustered
survival data. Frailty models have been successfully used to model dependence
in clustered survival models (Clayton 1991; Sastry 1997). The unavailability of
information about the distribution of the random effects, and the possibility of
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bias in parameter estimation when the distribution is mis-specified, motivates
nonparametric or semi-parametric approaches in frailty survival modelling (Zhang
and Steele 2004; Manda 2011).

The basic proportional hazards model will be formulated using the counting
process approach as in Andersen and Gill (1982) and Clayton (1991). We suppose
there are / areas and each has n; subjects. For subject ij (i = 1,...,1;j =
1,...n;), a process Nj;(t) is observed, which counts the number of events which
have occurred for the subject by time . In addition, a process Y;; (¢), which indicates
whether or not the subject was at risk for the event of death at time 7, is also
observed. The intensity process A;; (¢) for subject ij is a product of the risk indicator
and the hazard function h;;(t); ie Aj;(t) = Y;j(¢)h;;(¢). We also measure a
possibly time-varying p — dimensional vector of risk factors x;; (¢), where p is the
number of risk factors being investigated. Thus, for subject ij, the observed data are
D = {N;;(t), Y;;(t), x;;(t); t = 0} and are assumed independent. Let d N;; ()
be the increment of N;;(¢) in the infinitesimal interval [z, t + dt] and F,— be the
available data just before time ¢. Since the increment d N;; () can take a value 1 or
0, we have A;; (1)dt = Pr (d N;j(t) = 1| F;—) as the mean increase in N;; (¢) during
the infinitesimal interval [z, ¢ + d].

The effect of the risk factors on the baseline intensity function for subject ij at
time ¢ is given by the Cox proportional hazards model

Aij (t120(t), B, xi; (). wi) = Yi;(1)Ao(r) exp (B xi; (1) +w;)

Where § is a p — dimensional parameter vector of regression coefficients; w; is
the area-specific unobserved frailty, which captures the risk of the unobserved or
unmeasured risk variables; and A is the baseline intensity, which is unspecified
and to be modeled non-parametrically. In the present study, the frailty effect w; is
assumed to be time-invariant, but this can be relaxed in certain situations (Manda
and Meyer 2005). Under non-informative censoring, the (conditional) likelihood of
the observed data D is proportional to

1 n; T
TTTTTT (i tlao@). B. xii @) wi)™ ) exp (=(hi (tAo(0). B, xi (1), w:) di)
i=1j=11>0

This is just a Poisson likelihood taking increments d N;;(t) as independent
Poisson random variables with means p;; (t) = A;; (t|1Ao(2), B. xi; (1), w;) dt =
Y;j(t) exp (BT xi;(t) +w;) dAo(r), where d Ao(t) is the increment in the inte-
grated baseline hazard function in interval [¢, ¢ + dt]. We conveniently model the
baseline hazard function as piecewise constant, where in each interval increment
dAo(t) = dthy, = exp (8y;) In this way, the baseline hazard can be estimated
with the fixed effects B as constants. In situations where the assumptions of time-
constant hazards may not hold, the baseline hazard function is modeled using a
random walk prior (Manda and Meyer 2005) or nonparametric approaches as in
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Chap. 12. For computational purposes, the basic assumption has been that the area
frailty effects are independently and identically distributed normal or log-gamma
random variables with a mean of 0 and unknown variance.

However, in many epidemiological studies involving mortality and morbidity
mapping, this assumption is overly simplistic and it becomes problematic as it
is very unlikely that disease risks are independent across geographical areas, a
concept which is difficult to justify when there may be significant evidence of
clustering of mortality. For any given area i say, all neighbouring areas are likely
to share similar environment exposures and therefore one would expect mortality
rate estimates for the area i to resemble those of all adjacent areas. Statistically,
it creates analytical problems in that observational units are not independent, and
consequently, statistical analyses such as standard Cox regression model that rely
upon the assumption of independence may no longer be valid.

8.3.2 Modelling Spatially Correlated Area Frailty Effects

The basic model for the frailty effect that has been considered so far allows
for over dispersion in the distribution of subjects survival time #;; by the use of
random effects w;. This may partially account for unmeasured covariates that induce
dependence in the #;;, but as discussed in the preceding subsection, it does not
allow for explicit spatial dependence between the outcomes. The latter may arise,
for example, through “lesser variation” in hazard rates in neighbouring densely
urban populated areas as opposed to sparsely populated rural areas or through a
putative infectious aetiology for the disease(s) under investigation. Such explicit
spatial dependence may be incorporated into the model by including an additional
spatially structured random effect term. The model is then extended to

logu;; (t) = logd Ao(t) + BT xi; (t) + w; + v;

so that the log-hazards ratios are now given by w; + v;. The priors relating to w;
are specified as before, however, the v; are taken to have a spatially structured prior
of which. By writing, ® = (v1,...,v;) the most common prior specification has
the conditional intrinsic Gaussian autoregressive (CAR Normal) (Besag et al. 1991)
given by the joint distribution

1
V|o) ~ CAR (o)) «x 0, ' exp |:—F (v — vi/)2:|
i~i’

v

X G\/_l [—2%“)2 Zmivi(vi —V,‘):| (81)

where i = i means that regions i and i are adjacent, v is the average of the v's
that are adjacent to v;, and m; is the number of these neighbouring regions. The
sum-to-zero constraint ) ,_, v; = 0 is added for identification purposes.
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In a more familiar form, the prior specification in (8.1) appears as conditional
distributions (Besag et al. 1991) as

> Wikvk ,

ki o
Vilvigi ~ N )
ke >owik Y Wik
ki ki

where w; are suitably chosen proximity weights for the areas (often simply 1 if two
areas are adjacent, 0 otherwise) and the new hyperparameter o> controls the strength
of local spatial dependence. Typically a vague gamma hyperprior is assumed for the
inverse of 02. An advantage of spatial smoothing technique is the ability to remove
or reduce the effect of arbitrary geographical boundaries, since geo-political areas
are unlikely to be related to the disease of interest. Thus, any artefactual variation
exhibited in the data by methods of data aggregation is ameliorated.

However, information about the exact distribution of the spatial random effects
is unavailable. Thus, it is not incorrect to make assumptions that the random
frailty effects arise from a known parametric distribution, which might have a
restrictive shape. This has led to choosing a frailty distribution that is flexible
enough to account for arbitrary multimodality and unpredictable skewness. The
use of nonparametric models such as those based on a Dirichlet process prior
offer infinite possibilities for random effects distribution (Manda 2011). However,
a Dirichlet process prior is not widely used in practice. A simpler approach to
reducing the impact of parametric distributional assumptions on random effects is
the use of finite mixture models (but problems remain in the choice of the number
of mixture components) or random walk prior (Manda and Meyer 2005; Kandala
and Ghilagaber 2006).

In this chapter, we follow the simpler approach where the conditional spatial
random effect v|v;=;, is assumed to be drawn from one of two distributions, the
conditional intrinsic autoregressive normal (ICAR Normal) and the ICAR double
exponential. The latter, with its wider tails, offers a robust alternative to the normal
distribution whose random effect estimates and inferences can be susceptible to
district effect outliers. We assume that the conditional spatial effect has probability
7; of being drawn from ICAR Normal, and probability 1 — m; of being drawn from
ICAR double exponential. Thus,

Z Wik Vil 2 Z WikVi2 2 2
ki 0y k#i 26v20v2
, + (1 —m)DEXP ,
Do Wik D Wik Do Wik D Wik
k#i k#i k#i ki

Vilvigi ~ i N

y ~ DEXP(u, 0%) = 1/202exp (—1/0?%|y — u|), with mean p and variance
20%6%. We could follow outright membership of the conditional spatial effect to
either component mixture based on its posterior membership probability ;. Thus,
if the probability exceeds 0.5, then a draw from the ICAR Normal is the value of
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the area-specific conditional spatial effect, otherwise the conditional spatial effect
is assigned a value drawn from the ICAR double exponential. However, for the
purpose of this study, we assign it the weighted draws from each of the two
components using posterior estimates of 7; and 1 — 7; as weights.

8.4 Analysis of South Africa Under-Five Mortality

8.4.1 Data Source

The 1998 South African Demographic and Health Survey (SADHS) was a nation-
ally representative probability sample of nearly 12,000 women between the ages
of 15 and 49 years. The main report contains the full design, sampling procedures
and various descriptive statistics (Department of Health 2002). Briefly, the women
were selected using a two-stage sampling design. Firstly, the survey selected 976
primary units, which corresponded to the enumeration areas (EAs) using a sampling
frame 86,000 EAs that were created for the Census 1996. The EAs were stratified by
province, urban and non-urban residence. For a second stage sampling, a systematic
sample of households was undertaken within each of the selected EAs. All the
women between the ages of 15 and 49 in the household were identified and
interviewed about information for all their births in the previous 5 years. In this
study, we used only singleton births in this period, and the total number of births
came to 4,903 after data cleaning and validations.

We used most of the individual and household variables discussed in Sect. 8.2.
Three related variables: preceding birth interval, survival status of the preceding
birth and birth order share the category of first birth, so the design matrix would
be singular. Combining birth order and the preceding birth interval into a single
variable avoids the problem of preceding birth interval, status of preceding birth and
birth order sharing the same category. We also included child’s age as a predictor of
child mortality where a series of child age intervals are specified to capture trends
in the risk of death within 5 years (Bolstad and Manda 2001); the intervals are
less than 1 month, 1-5 months, 6—11 months, 12-23 months, and 24-59 months.
We also included child’s sex because there is some evidence that male infants and
children have a higher mortality risk than do females in the sub-Saharan African
region (Manda 1999). The survival status of the child preceding the index child was
also included to account for familial genetic predisposition to child health or shared
household environment or to measure changes in parenting skills since parents
might change their behaviour or environment after child death, thereby increasing
the index child’s survival probability (Manda 1999; Bolstad and Manda 2001).

Several background measures of socio-economic status are included in the
analyses; these include maternal level of formal education. In addition, measures of
urban-rural residence and province are used as proxies for measures of development
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Table 8.1 Descriptive

statistics of individual and Variable Frequency Percent

household explanatory Gender of child

variables used in the analyses, Male 2,481 50.60

South African Demographic Female 2,422 40.40

and Health Survey 1998 Mother’s ethnicity
Black African 4,006 81.71
Coloured 581 11.85
White 208 4.24
Asian/Indian 108 2.20
Place of residence
Urban 2,181 44.48
Rural 2,722 55.52

Mean Std Dev

Birth order 2.72 1.94
Mother’s age 26.87 6.89
Mother’s years of education 8.15 3.89
Preceding birth interval (months)  55.25 35.21

and customs which were not directly measured. However, in many developing
countries, especially in rural areas, measuring income may be problematic since
many people work in agriculture and informal sectors. Even though, Demo-
graphic and Health Surveys do not collect adequate data on household income
and expenditure, they, nonetheless, provide information on household assets. This
has prompted many researchers to use the information on household assets to
calculate a composite measurement of household-level poverty (Booysen 2001).
In particular, DHS data sets provide a wealth index which indirectly measures
long-term economic status of a household. As mentioned earlier, in South Africa
the mother’s race is the key differential marker of child mortality as race is the
major axis of differential health, social-economic and educational advantage. The
distribution of some explanatory variables over the total sample at risk in the overall
age interval 0-59 months is presented in Table 8.1.

In addition to modelling individual and household predictors of under-five
morality, we performed an ecological investigation of the mortality at the level of
health district. The District Health System (DHS) is the basic channel through which
the delivery of Primary Health Care is undertaken in South Africa (Hall 2009). Thus,
the individual level bio-demographic and socioeconomic and household data in the
SADHS 1998 were enriched with the spatially-relevant health district contextual
factors: district-level material and social deprivation level and district-level HIV
prevalence among pregnant women. The deprivation score is a measure of relative
deprivation across districts and sub-districts within South Africa, and is a composite
measure derived from a set of variables that are considered to be indicators of
material and social deprivation (Noble et al. 2006). The districts with higher
values are relatively more deprived, and as a measure of socio-economic status,



156 S.0.M. Manda

it is particularly helpful in identifying more deprived districts which potentially
have a greater need for primary health care service (Hall 2009). Differentials in
HIV prevalence rates among pregnant women are an indication of inequalities in
health deprivation, which may impact on vertical HIV transmission and PMTCT
programmes (Bradshaw et al. 2004; Hall 2009).

8.4.2 Implementation of the Models

In the implementation of a Bayesian fit and estimation of the various models to
the child survival data, all the fixed effect parameters were assigned independent
Normal (0, 10%) prior distributions. The precision parameters were independently
assigned a hyper-prior Gamma (0.5, 0.0005) distribution, where a Gamma (a, b)
distribution has mean a/b and variance a/b>. A Gamma (0.5, 0.0005) prior
distribution on the precision parameter implies that the random effects variance
falls between 0.0002 and 1.02 with 95 % probability; a variance of 0.0002 implies a
1.06-fold increase in the mortality hazard between a district at the 2.5th percentile of
hazard and a district at the 97.5th percentile of risk; this is quite conservative; while
a variance of 1.02 implies a 54.41 fold increase in risk; this is overly optimistic.
However, the modal variance is 0.00033, implying a 1.07-fold increase in hazard
risk; thus the prior concentrated hazard ratios towards unity.

We did not set out to perform prediction analyses, but rather to use a best model
that describes the child mortality in South Africa. Thus, we did not embark on
diagnostic tools to detect unusual observations, but to choose the best model among
a number of possible candidates. Their performances were compared using model
Deviance Information Criterion (DIC), which is a sum of model fit and complexity
(Spiegelhalter et al. 2002). The fit of the model is given by the posterior mean of
the deviance D, whereas the model complexity is given by the effective number
of parameters, pp. The quantity pp is defined as pp = D(Q) — D, where D(Q)
is the deviance evaluated at the posterior expectations of the model parameters, 2.
Thus, DIC = D + pp and a model with the smaller DIC is better supported by the
data.

The computation of the parameter estimates was accomplished in WinBUGS
software (Spiegelhalter et al. 2004). For each model considered, two parallel Gibbs
sampler chains from independent starting positions were ran for 30,000 iterations.
All fixed effects and covariance parameters were monitored for convergence. Trace
plots of sample values of each of these parameters showed that they were converging
to the same distribution. We formally assessed convergence of the three chains using
the German-Rubin reduction factor, and it stabilised to 1.0 by 5,000 iterations. For
posterior inference, we used a combined sample of the last 25,000 iterations from
the respective chains.
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8.5 Results

There was considerable variation with respect to sample size and the under-five
mortality rate among the 52 districts. The district-level sample size ranged from 1
to 573 children, with a median sample size of 78; the under-five mortality ranged
from O to 129, with a median rate of 39. This is reflected in the observed under-
five mortality rate map in Fig. 8.1, which shows a large amount of noise; which
makes it difficult to discern any geographical trends in under-five mortality rate.
Nonetheless, some of the highest rates of under-five mortality are indicated in the
districts of KwaZulu-Natal, Eastern Cape and Mpumalanga and Limpopo provinces,
while the provinces of the Western Cape and Northern Cape have some of the
lowest under-five mortality rates. Figures 8.2 and 8.3 show, respectively, levels of
deprivation and pregnant-woman HIV prevalence for all of the 52 health districts
in South Africa. It is clearly seen that most of the deprived districts are in the
Eastern Cape and Kwazulu-Natal provinces, and the least deprived districts are in
the Western Cape Province. A further investigation (results not shown), revealed
most rural districts are among the most deprived districts, while districts in the
metropolitan areas are the least deprived. In regards to HIV prevalence among
pregnant women, discernable trends are that ddistricts in the provinces of Kwazulu-
Natal, Mpumalanga, Free State and south-eastern parts of the Eastern Cape Province
have some of the highest prevalence, while the lowest HIV prevalence is shown in
districts of the Western Cape and Northern Cape provinces. Thus, districts that have
higher under-five mortality rates are more likely to be more deprived and have higher
rate of HIV among pregnant women.

|:| (11) < 15.0
.(11)15.0-35.0

- (16) 35.0 - 55.0

- (14) >= 55.0

0.005km

Fig. 8.1 Under-five mortality rate distribution by health district in South Africa, 1983-1998
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Fig. 8.2 Level of material and social deprivation by health district in South Africa, 2001
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Fig. 8.3 Antenatal HIV prevalence by health district in South Africa, 2006-2007

A comparison of a number of competing models is shown in Table 8.2, where all
the DIC components are shown. Initially, a standard proportional hazards regression
model was fitted without any frailty effects (NonFrailty Model). This has effective
number of parameters as 23.49, which is very close to the actual number of
parameters, 24 (19 fixed effects and 5 constant hazards). We also fitted models with
only the unstructured frailty effects (NonSpatial Frailty Model). Then, we fitted
a number of spatial models with or without the covariates using the conventional
unstructured and spatially structured frailty effects (Convolution Model) or the
convolution model where the spatially structured random effect is a mixture of the
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Table 8.2 Comparison of the fitted models using DIC components

Model D D (Q) Db DIC

NonFrailty 2,504.69 2,481.19 23.49 2,528.18
NonSpatial frailty, noncovariates 2,516.08 2,495.6 20.484  2,536.56
Convolution spatial frailty, nocovariates  2,514.85 2,494.32  20.53 2,535.38
Spatial mixture frailty, nocovariates 2,514.76  2,501.04 13.717 2,528.48
Nonspatial frailty 2,497.87 2,46890 28.97 2,526.84
Convolution frailty 2,498.61 2470.65 27.96 2,526.57
Spatial mixture frailty 2,486.30 2,452.15 34.191 2,520.53

ICAR Normal and ICAR double exponential (Spatial Mixture Frailty Model). As
expected, the models without the inclusion of the covariates have lower effective
number of parameters, but with substantially larger DIC values. The DIC values
favour Mixture Spatial Frailty models over the Convolution models. The best fitting
model is the Mixture Spatial Frailty Model, with the smallest DIC value of 2520.53,
at least 5 lower than the other models.

Across all the fitted models, it was shown that the under-five mortality hazard
depended on age of the child, which declined with increasing age (results not
shown). For instance, the mortality hazard in the first month was about 1.11 times
that in the months 1-5, 17. 86 times that in the months 611, and 20.07 and 28.55
times that in the months 12-23 and 24-59 months, respectively. In Table 8.3, we
present the posterior summaries for the fixed effect parameters from only four
models; two basic models: the NonFrailty Model and the NonSpatial Model and
two spatial models: the Spatial Mixture Frailty Model (A) which only included the
individual and households covariates, and the Spatial Mixture Frailty Model (B)
which is an extension of the Spatial Mixture Frailty Model (A) with the inclusion of
two district level factors: deprivation and HIV prevalence among pregnant women.
The results are shown on the logarithm scale where no risk is represented by 0.

In all of the four models shown, there is general consistency in the estimate for
the predictor effect, and that the individual and household estimates are unaffected
by the inclusion of district-level factors. Using the nonspatial model analysis, and
on the basis of the 95 % CI, not all of the fixed effects are significant; however, the
median estimated effects support the findings in previous studies on child mortality
in Sub-Saharan Africa and other less developed countries (Sastry 1997; Manda
1999). In particular, the under-five mortality hazard for boys is consistently slightly
higher than that for girls. First births or lower birth orders combined with short
preceding birth interval have high mortality hazards. The coefficient of the quadratic
part of the age of the mother is significant, and it indicates a child born to a younger
or older mother has higher under-five mortality hazard. As expected, maternal
education inversely and significantly affects under-five mortality hazard. It is also
evidently clear that the mother’s ethnicity affects the hazard of under-five mortality;
the fully adjusted hazard for White or Indian children is about e~'2% = 0.300, a
third of that for Black African children. Furthermore, children born in the rural areas
have higher hazard of death in the first 5 years of life than children born in the urban
areas (Table 8.3).
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There is evidence that under-five mortality hazard is related to deprivation level
of a district, but the relationship is not linear, it is a U-shaped relationship. In both
nonfrailty and nonspatial frailty models, higher levels of HIV consistently have
elevated under-five mortality hazard; however, after taking into account the spatial
dependence in the mortality, the relationship is U-shaped.

8.6 Mapping the Fitted District-Level Mortality Hazard

Figures 8.4, 8.5, and 8.6 display the unadjusted posterior means of the log-hazards
from different models for the under-five mortality across the 52 health districts.
Under the nonspatial frailty model (Fig. 8.4); the rate of childhood mortality appears
to be relatively higher in the central, south-eastern and north-eastern parts of South
Africa. However, a clear discernable picture emerges when considering spatial
models (Figs. 8.5 and 8.6) that reveal excess mortality in the central, south-eastern
and the northern parts of the country; covering districts in the Eastern Cape, Free
State, Kwazulu-Natal and Limpopo provinces. The maps of excess mortality risk
not explained by the individual, household and district-level covariates, under both
the nonspatial and mixture models shows the distribution of the mortality risk
has become more evenly distributed across the country with fewer districts having
excess log-hazard mortality above 0.2 or below —0.2 (Figs. 8.7 and 8.8). Thus, the
factors included, some of which vary spatially, may have explained some of the
observed differential geographical patterns in the under-five mortality hazards.

[J@=<-02
. (29)-0.2- 0.0
- (14)0.0-0.2
Il o>-02

0.005km

Fig. 8.4 Estimated under-five mortality log-hazards based on the Nonspatial Frailty Model
without covariates
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Fig. 8.5 Estimated under-five mortality log-hazards based on the Convolution Frailty Model
without covariates
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Fig. 8.6 Estimated under-five mortality log-hazards based on the Robust Mixture Frailty Model
without covariates

8.7 Discussion

This chapter has demonstrated the use and feasibility of modelling spatially
correlated maternal and child health data, where the outcomes are time to event;
in our application, we investigated under-five mortality in South Africa. Spatial
smoothing allowed us to discern the inherent spatial patterns of the mortality hazard
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Fig. 8.7 Estimated under-five mortality log-hazards based on the Covariate-adjusted Nonspatial

Frailty model
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Fig. 8.8 Estimated under-five mortality log-hazards based on the Covariate-adjusted Robust

Mixture Frailty model

of childhood mortality across the country. We were able, by using our methods,
to show general trends in childhood mortality hazards attributed to measured
individual and district-level covariates. Increasing district deprivation and HIV
prevalence among pregnant women were associated with excess hazard for under-
five mortality. Adjusting for these ecological factors and individual and household
covariates weakened the association, but there was still a cluster of high mortality



164 S.0.M. Manda

risk in the country. These excess district-level variations may indication a number of
confounding factors such urbanization, health care and nutritional differentials that
were directly controlled in the models. Thus, the models described here go a long
way in maintaining parsimony in the number of predictor variables to include. This
application has revealed probable districts that may warrant further examination
to find out how they fall into the highest or lowest under-five mortality hazards
categories. This investigation would then lead into the identification of other relevant
spatially varying covariates within the broad context of public health intervention
efforts.

The estimated effects on under-five mortality hazards of the included individual
and household covariates are in the expected direction and they are well known
(Manda 1999; Gemperli et al. 2004). For instance, due to biological differences,
boys are more vulnerable to infection in the early years of life. Mothers with
increased formal education have better access to health-related information and
may be more efficient at using the resources they have to raise healthy children.
Furthermore, young mothers have less experience in childbearing and their repro-
ductive systems have not sufficiently developed compared to older mothers whose
children are more likely to be in later birth orders. The clear ethnical differential
in the hazard of under-five death, which is exceedingly lower for children born
to White or Asian children, is a reflection of institutionalized racial social and
material disadvantage among the Black African population in the country during
the apartheid era (Burgard and Treiman 2006).

There are some issues around the use of mortality outcomes and some covariate
factors as used in this study. The levels of under-five mortality used in this
chapter were obtained from the Demographic and Health Survey conducted in
1998. The most reliable childhood mortality data are from the Demographic and
Health Surveys (DHS) programme. The South African Demographic and Health
Survey of 2003 had data quality problems, especially for maternal and child health
(Department of Health 2007). The last reliable data to base estimates of childhood
mortality are from the 1998 SADHS (Burgard and Treiman 2006; Hall 2009). The
district-level district deprivation and antenatal HIV prevalence used were for 2001
and 2006-2007, respectively; thus there were some misalignment of the outcome
measure and risk factors. We believe that the trends in district level deprivation and
antenatal HIV prevalence have not changed much in to the trends in 1998; only that
magnitudes may have gone up or down.

Analysis of survey data with complex sampling design needs to account for the
design. The SADHS 1998 used weighted, stratified and clustered sampling proce-
dure to draw the ultimate sample of women respondents. Any DHS data contains the
sampling weights for each sample subjects, and in estimation of national effects, the
weights correct for the unequal sampling probabilities (under/oversampled groups
may influence results). However, the use of sampling weights to correct for unequal
sampling probabilities is controversial (Pfeffermann 1993; Korn and Graubard
1995). A model-based approach includes variables used for determining weights
in the regression model and a design-based approach uses individual weights
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accordingly in the analyses. We opted for former where we have urban or rural
residence, variables that contributed to the weights and stratification, as repressor
variables.

A second concern relates to measures of district-level deprivation and HIV
prevalence, and the geography. The social and material deprivation used here is for
the whole population, rather than specific to children. Attempts have been made
to produce deprivation indices that directly affect children, but these are yet to
be available at the district level (Noble et al. 2006; Barnes et al. 2008). The HIV
prevalence was estimated for pregnant women in 2006-2007, attending in public
hospitals. This is not a representative sample of the total population in the country;
the antenatal HIV prevalence estimate might be biased upwards compared to the
general population’s HIV prevalence (Manda et al. 2012). However, in a generalised
epidemic like HIV, these estimates are adequate and reliable, and they can be used
as proxies for health deprivation, especially in accessing primary health care for
PMTCT of HIV (Bradshaw et al. 2004). There also has been a change in the
names and number of health districts over the years. Even though the geography
that was sampled from 1998 was automatically linked to the current districts, there
were some very few that were manually linked. This might have created spatial
uncertainties in the definitions of locations over time. Although a better resolution
of the analysis can be done at the municipality level, the geography below the district
level, most of the important contextual factors related to childhood mortality are not
yet available at this lower level.

Perhaps, a main limitation of the results in this chapter may concern the overall
quality of the data used. The retrospective nature of data collection in these surveys
renders the data to many biases resulting from missing data and nonresponse. For
birth histories, women may provide an incorrect recall on birth and death dates for
their children or even deaths omission especially for infants (Fotso et al. 2007).
Even fieldworkers can introduce bias, especially when they transfer births out of the
interest period to avoid lengthier questionnaires. The SADHS 1998 had a very high
response rate of 92 %, and only 89 cases (0.15 %) had missing information. There
was very high completeness of reporting of dates of birth and death, and very little
evidence of transfer of child births (Department of Health 2002).

Even though there were some imputations of ages at death of dead siblings, DHS
datasets are of high quality to directly estimate childhood mortality (Fotso et al.
2007). Thus, the substantive conclusions are less likely to be affected are sufficiently
robust for decision-making are indicated in this discussion.

8.8 Conclusions

In conclusion, our methods and analysis offer valuable tools for producing robust
and flexible covariate-adjusted maps of under-five morality that may indicate
underlying latent risk profiles. We have also indicated how the otherwise limited
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data in most survey data can be enriched with external sources using the geo-
graphical information system tools. Such an integration methods and data sources
will increase the relevance of statistical models for many problems, including
epidemiology and medicine.

The generated maps may help the search for possible persistent spatial correla-
tion, which may suggest links with district-specific covariates. Therefore this study
has shown a novel methodology that could help to identify groups of children and
places to be targeted with relevant and effective interventions. Such a process will
help stakeholders to prioritise the available resources to places and sub-groups that
are in greater need.

8.9 Further Reading

The current trends in child mortality rates in the sub-Saharan African region and
the progress toward Millennium Development Goal 4 of two-third reduction in the
mortality by 2015 is found in Fotso et al. (2007). The overall world-wide state of
child mortality is contained in United National (UNICEF) report (UNICEF 2010,
which shows that the SSA region, despite declines in child mortality, still lags far
behind the rest of the world.

The idea of using frailty effects for child survival modelling in the developing
countries can be found in Sastry and Bolstad and Manda, to name a few. The
general theoretical ideas of frailty effects can be found in Hougaard (2000), who
presents an excellent treatise on the various specification of the shared frailty model
using independent and identically distributed assumptions. Theoretical extensions
to modelling spatially structured shared frailty effects can be found in Banerjee
and Carlin (2003) and Banerjee et al. (2004) using the CAR model. Nonparametric
frailties have recently appeared in the literation (Manda 2011; Naskar 2008). How-
ever, methodological developments for nonparametric spatially structured models
are still being investigated, even though methodology is typically computationally
intensive.
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Chapter 9
Socio-Demographic Determinants of Anaemia
in Children in Uganda: A Multilevel Analysis

Ngianga II Kandala (Shadrack)

9.1 Introduction

Anaemia is the most common nutritional problem in both developed and developing
countries. In developing countries between one and two-thirds of children are
affected (Levin 1986). Currently it affects two billion people throughout the world
(WHO 2008). This includes pre-school and school aged children. It appears to be not
only a major cause of pre and post-partum morbidity and mortalitity in developing
countries but also it affects the physical development of children.

Many researchers suspect that anaemia may increase children’s susceptibility to
infection (Stoltzfus et al. 2006). There is a growing body of evidence, based on
animal studies, which suggests that iron deficiency adversely affects the immune
system (Abouzahr and Royston 1991). Anaemia can also affect a person’s learning
ability. It has adverse effects on cognition and the effect is most probably located
at the level of information reception (Pollitt 1982). In pre-school and school aged
children, anaemia impaired motor development and administration, language devel-
opment and scholastic achievement, and it develops in children psychological and
behavioural effects such as inattention, fatigue, insecurity and it decreases children’s
physical activity (DeMaeyer 1990). It was estimated that globally, 200 million under
5 year olds fail to reach their cognitive and socio-emotional development, because
of under nutrition, including anaemia (Badham 2007).

Children are the future of a nation, and there is no single effort more radical
in its potential for saving the nation’s future than optimising children’s wellbe-
ing. Although the biological immediate causes of anaemia are documented, its
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socioeconomic and demographic related factors and the fact that anaemia differs
markedly between individuals within households and communities have rarely been
explored.

This study aims to explore socio-demographic determinants of anaemia among
children in Uganda after accounting for some proximate determinants and use multi-
level modelling to quantify the effects due to individual, household and community
levels. Multilevel modelling will be used because simple logistic regressions assume
that errors are binomially distributed and outcomes are independent. However,
due to unmeasured factors such as traditional beliefs or cultures, this might not
be the case (Madise et al. 1999). Since observations within communities are
not independent, the fixed effects model underestimates the standard errors and
overestimates the significance of some variables (Snijders and Boker 1999).

Knowing the determinants of the disease and understanding its relationship with
individuals, households and community factors are important for policy makers to
plan and develop anaemia intervention at appropriate level and achieve Millennium
Development Goals (MGD 1,2, 4, 5, & 6).

9.1.1 The Study Area

Uganda is one of the world’s less developed countries. Agriculture is the most
important sector of the economy and it employs over 80 % of the work force. Coffee
is the main source of foreign trade. The country poses substantial natural resources
like fertile soils and regular rainfalls. Uganda’s climate is equatorial climate with a
mean annual temperature ranging from about 16 °C in the Southwestern highland
to 25 °C in the Northwest, but in the northeast, temperature exceed 30 °C. Except
in the Northeastern region, rainfall is well distributed across the country. Uganda is
faced with a number of environmental and socioeconomic problems. Almost every
year heavy rains have triggered flooding that displaces thousands of peoples and
sweeps away crops and livestock thereby creating food insecurity responsible for
malnutrition to many children.

9.2 Data and Methods

9.2.1 Data

Data used in this study is from the 2006 Uganda Demographic Health Survey. The
sample design involved a probabilistic two-stage sampling. It is a representative
probabilistic sample where the country was divided into 368 clusters. 9,864
households were selected based on a completed sample frame of households. 15-20
households were randomly selected from each cluster. An additional 10 households
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from each cluster were selected from the 2005 Uganda National Health Services
(UNHS) list. All women aged 15-49 (permanent resident or not) present in the
household on the night before the 2006 survey were eligible to be interviewed.
In addition, 2,110 children aged less than 5 years present in the selected households
were tested for anaemia. It should be noted that the 2006 UDHS is the first
UDHS which includes the entire country (UDHS 2007). In the previous surveys
some groups or districts were excluded for security problems. A detailed sampling
methodology can be found in the 2006 Uganda Demographic Health survey final
report (UDHS 2007).

9.2.2 Socio-Demographic Information and Potential
Risk Factors of Anaemia

This analysis is based on a binary outcome (anaemic/not anaemic) and categorical
variables grouped as individual, household, maternal, nutritional and community
related factors.

Individual factors included gender (male/female), birth order categorised (first
birth, 2-3 and 6+), preceding birth interval in months (<24, 24-35 and 36-+),
diarrhoeal infections (yes/no), and birth weight (low, normal and overweight).
Bed net use (yes/no), maternal education (uneducated, primary and secondary +),
partner education (no partner, primary and secondary +), maternal occupation (not
working, agricultural, non-agricultural), toilet facility (none, flush and pit/bucket),
wealth quintiles (lowest, lower, middle, higher and highest) and religion (Catholics,
Muslim, Pentecostal, protestant, Seven Days Adventist and other) were classified
as household related factors. Maternal factors comprised maternal age (<20 years,
20-34 years and 35+), maternal smoking habit (yes/no) and mother’s anaemia
status (yes/no). The place of residence (rural/urban), the place of delivery (home,
hospital or other), and the nine region of Uganda and water source (other, piped)
were considered as community related factors. Additional nutritional factors in-
cluded breastfeeding (yes/no), breastfeeding time during the day (2-4, 4-8, 8+),
whether the child ate meat (yes/no) and whether the child was given green leafy
vegetables (yes/no). Also contextual variables such as the proportion of children
from households with piped water and from the lowest and highest wealth quintiles
by community were computed and included as continuous variables.

9.2.3 Statistical Analysis

SPSS 17 (SPSS corp., Tx, USA) enabled to acquire the data and recode some
variables. Stata/SE10 (Stata Corp., College Station, TX, USA) was used for the
initial analysis. In the bivariate analysis, cross-tabulation was made between each
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of the above potential risk factors and the presence of anaemia. Chi-square test was
used to test the significance of each of the selected potential risk factors in the model.
A p-value of 0.05 served as a cut off point.

In the multivariate analysis, MLwIn 2.11 was used to fit multilevel logistic
regression models, to account and quantify the variability due to individual,
household and community levels. Forward model selection (Rabe-Hesketh and
Everitt 2004) was used for the model specification. The Wald test was used to test
the joint significance for each of the selected categorical factors. Adjusted Odds
ratio and their associated 95 % confidence intervals (C.I) were computed and are
presented.

Multilevel Models

Most data collected in human or biological sciences have a hierarchical structure.
For example, children with the same parents tend to be more alike in their
physical and mental characteristics than random individuals from a population
(Goldstein 2010). Individuals may be further nested within geographical areas
such as communities. Multilevel model recognises the existence of such data
hierarchies by allowing for residual components at each level in the hierarchy.
For example, a two-level model, which allows for grouping of child outcomes
within households would include residuals at child and household level. Thus the
residual variance is partitioned into between-household component (the variance
of household level residuals) and within household component (the variance of
the child-level residuals). Household residual, often called “household effects”,
represent unobserved characteristics that affect child outcomes. These unobserved
variables lead to correlation between outcomes for children from the same house-
hold. Multilevel models are useful for a number of reasons (1) correct inferences,
standard regression approaches assume that the units of analysis are independent
observations. One consequence of failing to recognise hierarchical structures is that
standard errors of regression coefficients will be underestimated resulting to an
overstatement of statistical significance. The standard error for the coefficient of
higher-level predictor variables might be the most affected if grouping or clustering
is ignored. (2) Interest in group effects: in many situations, research question
concerns the extend of grouping in individual outcomes, and the identification of
“outlying” groups in evaluation of household effect, for example, the investigators
are interested to see the household effects on children risk of having anaemia. Such
effects correspond to household residual in multilevel model. (3) Inferences to a
population of groups: in a multilevel model the grouping in the sample is treated as a
random sample from a population of groups. Using a fixed effects model, inferences
cannot be made beyond the groups in the sample.
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Multilevel Logistics Model Specification

In situation with clustered data where observations in the same group are related,
for example, children nested within households it is possible to find out by using
a random effect model how much of an effect household has on children after
controlling for children background characteristics.

Let w3 = p(yix = 1) be the probability that a child (i) in the household j,
from the community k, is anaemic. Where y;j is equal to 1 if a child is anaemic and
0 if not. We define this probability as a function of an intercept and the exploratory
variables as follows:

_—
¢) = Bojk + Bixzijk + Baxzik + B3Xzijk + - - . + BuXnijk

log it(mjjx) = log (1 —
iji

With B = Bo + Hojk-

In this equation, fBo;x indicates that we are modelling the intercept in this
relationship as random at ;' h (household) and k*" (community) levels. The variables
X7jjk to X, are the exploratory variables and their coefficients are fixed effects.
The logit link function is assumed in the above equation, however other software
allow also to use a probit or a complementary log-log function (McCullagh and
Neder 1989). The intercept consists of two terms, a fixed term Sy and a random
term ftojx. The standard assumption is that the response y; is distributed as
Binomial (1, ;). We may write this distributional assumption in a general form
as: mij —Binomial (n;%, ) where in our case n;j are all equal to 1. This standard
distributional form is also used to model proportions, where each proportion y;j is
based on n;; observations and has a denominator 7, and is a special case where the
denominator is everywhere 1 (Rasbash et al. 2005).

Using MLwiN, the estimates procedures were implemented. These procedures
use a linearization methods, based on a Taylor series expansion, that transforms
a discrete response model to continuous response model (Rasbash et al. 2005).
After applying the linearization, the model is estimated using the Restricted Iter-
ative Generalized Least squares (RIGLS) and quasi-likelihood methods to convert
estimates into Predictive quasi-likelihood (PQL), where the level 2 residual are
added to the linear element of the model at each stage. The transformation to linear
model requires an approximation to be used and the type of approximation available
in MLwiN are: marginal quasi-likelihood (MQL) and predictive quasi-likelihood
(PQL). There are two orders in both of these methods, 1st and 2nd order terms of the
Taylor series expansion. Both orders can be used, however the second is preferable
because it is an improved approximation procedure (Rasbash et al. 2005). However
it is less stable. The first order MQL is also useful, but when the sample sizes within
the level 2 units are small or the response proportion is extern, the estimates may be
biased. Further details can be found in Goldstein (2009).
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9.3 Results

9.3.1 Characteristics of the Study Population

Among the 2,110 children who were included in this study, 51 % were males and
49 % were females, most of children (56 %) were between 2 and 5 birth and 22 %
were respectively the first birth and 6th birth of their mothers, the majority (33 %)
had a preceding birth interval between 24 and 35 months, 26 % less than 20 months,
and 20 % with 36 months or plus. Few (12 %) were delivered at the hospital, 17 %
at home and the majority (71 %) at others places, 55 % were breastfeed and 45 %
were not.

9.3.2 Bivariate Analysis and Prevalence of Anaemia

Of the 2,110 children tested for anaemia, 73 % are anaemic. Anaemia was
cross-tabulated with each of the selected potential risk factors and the preva-
lence of anaemia by the study characteristics was examined. The results indicate
that maternal education (Chi-square =44.73, p <0.001), paternal education (Chi-
square =35.43, p <0.001), maternal occupation (Chi-square =71.37, p <0.001),
wealth quintiles (Chi-square =133.65, p <0.001), religion (Chi-square = 65.21,
p <0.001), mother’s anaemia status (Chi-square =98.65, p <0.001), the place
of residence (Chi-square =181.93, p <0.001), the place of delivery (Chi-square
=22.51, p<0.001), region (Chi-square =373.20, p <0.001), water source (Chi-
square =15.88, p <0.001), breastfeeding (Chi-square =5.02, p=0.025), breast-
feeding times per day (Chi-square =15.55, p=0.004), whether the child was
given meat (Chi-square =4.55, p=0.033) and whether the child ate green leafy
vegetables (Chi-square = 10.20, p <0.001) are factors associated with anaemia in
children in Uganda (Table 9.1).

The bivariate analysis suggests that the prevalence of anaemia decreases with an
increased maternal and father’s level of education and wealth quintiles. Anaemia
is much more prevalent among children of uneducated women (56 %) or fathers
(59 %) than it is among those whose mothers are educated (46 %), 43 % among
children from households in the highest wealth quintiles and 58 % among those
form the lowest wealth quintiles (see Figs. 9.1 and 9.2). Anaemia is much more
prevalent (65 %) among Pentecostal children, followed by Catholics (52 %), and
Protestant (50 %). However it is less prevalent among Seven Day Adventist (SDA)
children (see Fig. 9.3). 54 % of children of women working in the agriculture sector
are anaemic, while it is 46 % among those whose mothers work in other sectors.
Maternal anaemia status is another risk factor of anaemia among children; children
of anaemic women are associated with a higher prevalence (64 %) than those of no
anaemic women (34 %). Anaemia is highly prevalent in rural areas (54 %) while
it is 32 % in urban, lower among children from households connected with piped
water (40 %) than among those from households which use others sources.
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Table 9.1 Potential
socioeconomic and
demographic risk factors
associated with anaemia in
children

60

175
Variable Chi-square ~ P-value
Maternal education 44.73 <0.001
Maternal occupation 35.43 <0.001
Paternal education 71.37 <0.001
Wealth quintiles 133.65 <0.001
Mother’s anaemia status 98.65 <0.001
Urban/Rural residence 181.93 <0.001
Place of delivery 22.51 <0.001
Source of drinking water 15.88 <0.001
Breastfeeding 5.02 0.025
Breastfeeding times 15.55 0.004
Child ate meat 4.55 0.033
Child ate green vegetables 10.22 <0.001
Region 375.2 <0.001
Religion 65.21 <0.001

50 +

40

30 +

Percentages

20 +

10 +

None

Primary

Maternal education

Fig. 9.1 The prevalence of anaemia by maternal education

9.3.3 Multivariate Analysis

Secondary & higher

This study suggests that beside other unknown risk factors of anaemia among
children, in Uganda, age, gender, maternal occupation, and whether or not the
mother is anaemic are factors significantly associated with anaemia (see Table 9.2).
Younger children (below the age of 2 years old) and male are associated with an
increased risk of having anaemia compared with their counterparts who are 2 years

old or female.

With regards to maternal anaemia status, children of anaemic mothers are
associated with two folds increased risk of anaemia compared with those whose
mothers are not anaemic.
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Fig. 9.2 The prevalence of anaemia by wealth quintiles
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Fig. 9.3 The prevalence of anaemia by religion

Maternal occupation is another risk factor of anaemia in children in Uganda.
Compared with children whose mothers work in other sectors or are not working,
children of skilled mothers or of those who work in services sector have 81 %
decreased risk of anaemia.

In addition, the results from this study support those from previous studies which
suggest that anaemia intervention is much more needed at community level followed
by individual level and that the variability due to community effects are fewer.

However, no association was found between anaemia and maternal level of
education, household wealth status, maternal smoking habit, the place of residence,
region, the source of drinking water, whether the child was given meat or green leafy
vegetables, maternal age and breastfeeding.
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Fig. 9.4 Residual diagnostic

9.3.4 Multilevel Logistic Regression Model Versus Simple
Logistic Regression

Table 9.2 presents both, results from multilevel logistics regression and simple
logistic regression model. Simple logistic model estimates and standard errors
are presented just for comparison reasons. In Sect. 9.3.2 it was mentioned that
one consequence of failing to recognise hierarchical structures of the data is
the standard errors of regression coefficients are underestimated resulting to an
overstatement of statistical significance of some variables in the model. Table 9.2
confirms this indicating that if we ignore the hierarchical nature of the data, age,
gender, maternal occupation, whether the mother is anaemic, the region and the
proportion of household connected with piped water in communities are all factors
associated with the risk of anaemia in children in Uganda. The standard errors
of all the variables in the model are biased downward. Multilevel logistic model,
however, suggests that the differences in children’s risk of having anaemia observed
between the nine regions of Uganda are not statistically significant, the proportion
of household connected with piped water is not significantly associated with the risk
of having anaemia among these children. Children’s risk of having anaemia differs
significantly between communities in which children’s live.

Model Assumption and Diagnostics
Residual were analysed using graphical display to check the plausible model

assumptions of normally distributed errors. The results suggest that the residuals
are normally distributed at community level (see Fig. 9.4).
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9.4 Discussions

A cross sectional study of 2,110 children aged less than 5 years old in Uganda
in 2006 was carried out and potential risk factors of anaemia were examined at
individual, household and community levels. The first aim of this study was to
explore the risk factors of anaemia in children at each level and then use multilevel
logistic regression model to quantify variability due to individual, household and
community effects in order to inform policy makers in Uganda and in other countries
with the same characteristics. Hypothesis such as whether the risk of anaemia
increases or decreases with a decreased or increased proportion of households
connected to a piped water or within the lower or highest wealth quintiles
by community were tested. Individual, household and community effects were
quantified.

This study suggests a higher prevalence of anaemia in children in Uganda.
The overall prevalence of anaemia in children is 73 %. There are important and
significant relationships between anaemia and some of the selected potential risk
factors. These included age, gender, maternal occupation and whether the mother is
anaemic. It suggests that maternal health plays a significant role in children’s risk
of anaemia and that children of anaemic mothers are more likely to have anaemia
and this was consistent even after accounting for the place of residence, region, and
mother’s smoking habit.

The results also suggest that children of mothers who are skilled and work in
services sector are less likely to have anaemia compared with children of those
women who don’t work at all or who work in others economic sectors. It is argued
that in Uganda, over 75 % of skilled women work in government services such
as those in medical (nurses and midwives) and teaching fields. Significant lower
risk of anaemia associated with children of those women who are skilled or who
work in services could indirectly be attributed to women’s education or income
although women’s education is not directly related with anaemia in children in this
study. Educated women have better job opportunity with reasonable income than
uneducated women and they can make a good choice for their household diet for
their children’s health in order to protect them from some preventable diseases. The
other reason might be the fact that in least developed countries the access to health
facilities is limited. In areas with health facilities, the quality of services provided
is poor and women who are not educated might not overcome these obstacles
(Caldwell 2000; Hobcraft 1993; Mensch 1986; Cleland and van Ginneken 1988).

Although there has been little investigation of socioeconomic factors associated
with anaemia in children, these finding are consistent with few studies that have
analysed the overall nutritional status of children in the region (Smith et al. 2004;
Fotso 2006).

In addition, it indicates that more variability in children’s risk of anaemia is
due to community level, followed by individual factors and there is few variability
due to household level factors. This study brings to light that anaemia intervention
in Uganda needs to be targeted at community, which could help spread the
relevant information. The results from this study indicate that if the individuals
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are nested within households and households are nested within communities (data
are hierarchical), ignoring the hierarchical nature of the data could result in over
statement of the significance of some of the variables included in the model. Most
importantly, the standard errors are biased downward.

Anaemia is a widespread health problem in Uganda. The study findings have
some important and relevant policy messages. Policy makers should place more
emphasis on the role of remoteness as well as environmental or climatic factors
on diseases. The links between the age, gender, the differences between maternal
occupations need to be addressed in order to achieve the Millennium Development
Goals MDG 1,2, 4, 5, & 6) as well as fostering human development.

9.5 Limitations

There are some limitations. As for many questionnaire-based data, the limitations
for the UDHS included reporting and recall bias, particularly for age or other
retrospective data relying on memory of a past event. Therefore, individual level
data required more careful interpretation. Nevertheless, these results are important
in guiding the assessment of current evidence and the definition of future research
strategies.

9.6 Conclusions

This analysis suggests that anaemia in children is highly prevalent in Uganda.
This higher prevalence in Africa in general and in Uganda in particular may be
due to diverse factors. However, in this study children’s age, gender, maternal
occupation and whether the mother is anaemic are factors significantly associated
with anaemia in children. Children aged below 2 years old, male, those whose
mothers work in other sectors or are not working at all and children’s of anaemic
mothers are associated with a higher risk of anaemia. These differences need to
be well scrutinised in future studies. The results also suggest that the hierarchical
nature of the data need to be accounted for, otherwise, the standard errors of some
factors are underestimated and some factors might seem significant while in reality
they are not. This study throws light on the fact that anaemia intervention needs to
focus more at community level followed by individual level.
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Chapter 10

A Family of Flexible Parametric Duration
Functions and Their Applications to Modeling
Child-Spacing in Sub-Saharan Africa

Gebrenegus Ghilagaber, Woldeyesus Elisa, and Stephen Obeng Gyimah'

10.1 Introduction

Examining the dynamics of child spacing is of interest for several reasons. First,
several inferences are consistent with the view that in much of the developing world,
women with large families have shorter birth intervals than those with smaller
families. There is thus an indication of an inverse relationship between spacing
and completed or cumulative fertility. The spacing of births also has a significant
bearing on maternal and child health through the dynamics of sibling competition,
maternal depletion and interval effect hypotheses (Gribble 1993; Gyimah in press;
Hobcraft et al. 1985; Majumder et al. 1997; Palloni & Millman 1986; Pederson
2000; Rafalimanana and Westoff 2000; Rodriguez et al. 1984).

According to the competition hypothesis, the birth of each successive child
generates competition for scarce resources among siblings in the household which
subsequently leads to a lower quality of care and attention to each child. The
family resources may also be stretched to the limit, increasing the probability of
children in such households becoming malnourished (Gribble 1993). The maternal
depletion syndrome contends that births in rapid succession physiologically deplete
the mother of energy and nutrition which may lead to premature births or pregnancy
complications; thus increase the risk of infant or maternal death or impairing the

T deceased

G. Ghilagaber ()
Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden
e-mail: Gebre @stat.su.se

W. Elisa
Statistics and Evaluation Office, Asmara, Eritrea

N.-B. Kandala and G. Ghilagaber (eds.), Advanced Techniques for Modelling 185
Maternal and Child Health in Africa, The Springer Series on Demographic Methods

and Population Analysis 34, DOI 10.1007/978-94-007-6778-2_10,

© Springer Science-+Business Media Dordrecht 2014


mailto:Gebre@stat.su.se

186 G. Ghilagaber et al.

mother’s ability to nurture her children. Additionally, women with closely spaced
births may still have very young children and, as such, are less likely to attend
prenatal care services which may increase maternal and child mortality risks.

Further, the early arrival of a new child often necessitates the premature weaning
of the previous child, exposing the weaned one to malnutrition and increasing the
child’s vulnerability to infectious and parasitic diseases. Invariably, longer birth
spacing has been found to increase profoundly the probability of infant survival
(Bicego and Ahmad 1996; Defo 1997; Pederson 2000). Understanding the timing
and spacing of births thus provides a thorough view of attitudes toward family size
as well as differentials in fertility and childhood mortality levels.

The birth interval approach to studying fertility views the family building process
as consisting of a series of stages, where women move successively from marriage
to first birth, from first to second birth, and so on, until they reach their completed
family size (Rodriguez et al. 1984). The point of entry into the process may be
defined either as marriage or as entry into motherhood, but the main focus of
this analysis is on the process of transition from one stage to the next, or the
intervals between successive births. The transition process is studied in terms of
the birth function,' defined as the cumulative proportion of women having a birth
by successive duration since the previous birth (or marriage in the case of first
birth). This function reflects two aspects of the process of reproduction. The first
is the quantum of fertility indicated by the proportion of women progressing to the
next higher parity (parity progression ratio), and the second is the tempo of fertility
measured by the time it takes to make the transition for those women who continue
reproduction.

In most empirical analyses of birth interval data, the focus has been on the
qu