Carmen Molina-Paris
Grant Lythe Editors

Mathematical
Models

and Immune
Cell Biology



Mathematical Models and Immune Cell Biology






Carmen Molina-Paris « Grant Lythe
Editors

Mathematical Models
and Immune Cell Biology

@ Springer



Editors

Carmen Molina-Paris

Department of Applied Mathematics
School of Mathematics

University of Leeds

Woodhouse Lane

LS2 9JT Leeds, UK

Grant Lythe

Department of Applied Mathematics
School of Mathematics

University of Leeds

Woodhouse Lane

LS2 9JT Leeds, UK

carmen @maths.leeds.ac.uk grant@maths.leeds.ac.uk

ISBN 978-1-4419-7724-3
DOI 10.1007/978-1-4419-7725-0
Springer New York Dordrecht Heidelberg London

e-ISBN 978-1-4419-7725-0

Library of Congress Control Number: 2011926883

(© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of going
to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


carmen@maths.leeds.ac.uk
grant@maths.leeds.ac.uk
www.springer.com

a nuestros hijos, Federico y Sofia






Preface

The new experimental and imaging techniques of the past few decades allow us
to observe, study and ponder the world of cells and molecules inside our bodies,
stimulating the development of new mathematics and putting a new perspective on
our view of our own world.

Whole new areas of immunological research are emerging from the analysis
of experimental data, going beyond statistics and parameter estimation into what
an applied mathematician would recognise as modelling of dynamical systems.
Stochastic methods are increasingly important, because stochastic models are closer
to the Brownian reality of the cellular and sub-cellular world.

This volume contains chapters on mathematical modelling, on immunology, and
on mathematical modelling in immunology. Although there is a bias towards the
adaptive immune system, and towards T cells in particular, the reader will find
Chapters on dendritic cells, B cells and germinal centres.

We hope the list of abbreviations will help to indicate the type of research that is
being carried out at the interface of mathematics and immunology.

This book would not have been possible without the passion and perseverance of
Joseph Burns. We are extremely grateful for the support, assistance and patience of
Andrea Macaluso, Jeffrey Ciprioni and Melanie Wilichinsky.

That the two of us are doing research in mathematical immunology at all is due
to the influence of David Rand, Nigel Burroughs and Hugo van de Berg.

2011 Carmen Molina-Paris
Grant Lythe

vii






Contents

ContribUtorsS . ... Xi
List of Abbreviations................ ... i XV
1 Thymocyte Development.................ooooiiiiiiiiiiiiiiiiiii . 1

William Jenkinson, Eric Jenkinson, and Graham Anderson

2 A Review of Mathematical Models for T Cell Receptor
Triggering and Antigen Discrimination.................................... 25
Daniel Coombs, Omer Dushek, and P. Anton van der Merwe

3  Dynamic Tuning of T Cell Receptor Specificity
by Co-Receptors and Costimulation........................coooiiiiiiin, 47
Hugo A. van den Berg and Andrew K. Sewell

4 T Cell Activation and Function: Role of Signal Strength ................ 75
Asma Ahmed and Dipankar Nandi

5 The Cyton Model for Lymphocyte Proliferation
and Differentiation .....................ccoiiiiiiiiiii 107
Cameron Wellard, John F. Markham, Edwin D. Hawkins,
and Phillip D. Hodgkin

6  Modelling Intravital Two-Photon Data of Lymphocyte
Migration and Interaction ..........................o i 121
Marc Thilo Figge and Michael Meyer-Hermann

7  Modelling Lymphocyte Dynamics In Vivo................................. 141
Becca Asquith and José A.M. Borghans

8  Continuous-Time Birth and Death Processes: Diversity
Maintenance of Naive T Cells in the Periphery ........................... 171
Carmen Molina-Paris, Emily Stirk, Katie Quinn,
and Grant Lythe

ix



10

11

12

13

14

15

16

17

18

19

Contents

Multivariate Competition Processes: A Model for Two
Competing T Cell Clonotypes .............ccovviiiiiiiiiiiiiiiieeiiiinnn..
Carmen Molina-Paris, Grant Lythe, and Emily Stirk

Stochastic Modelling of T Cell Homeostasis for Two
Competing Clonotypes Via the Master Equation .........................
Shev MacNamara and Kevin Burrage

Dendritic Cell Migration in the Intestinal Tract ..........................
Rowann Bowcutt and Sheena Cruickshank

Reassessing Germinal Centre Reaction Concepts ........................
Jose Faro and Michal Or-Guil

B Cell Strategies of Ag Recognition in a Stratified

Immune SYStem...........uuuuu e
Belen de Andrés, Ana R. Sanchez-Archidona,

Isabel Cortegano, Natalia Serrano, Sharmili Jagtap,

Marfa-Luisa Gaspar, and Miguel-Angel Rodriguez Marcos

Dynamics of Peripheral Regulatory and Effector T Cells
Competing for Antigen Presenting Cells......................ooooiinin
Nuno Sepulveda and Jorge Carneiro

Mathematical Models of the Role of IL.-2

in the Interactions Between Helper

and Regulatory CD41T T Cells.............c.ooooviiiiiiiiiiiiiiieennn,
Kalet Le6n and Karina Garcia-Martinez

A Physicist’s Approach to Immunology .......................
Mario Castro

Timescales of the Adaptive Immune Response............................
Mark Day and Grant Lythe

Using Mathematical Models to Explore the Role
of Cytotoxic T Lymphocytes in HIV Infection ............................
Helen Fryer and Angela McLean

Viral Immunity and Persistence ...........................
Stephen Hickling and Rodney Phillips



Contributors

Asma Ahmed Department of Biochemistry, Indian Institute of Science,
Bangalore 560012, India, asma.127 @gmail.com

Graham Anderson Medical Research Council Centre for Inmune Regulation,
Institute for Biomedical Research, Medical School, University of Birmingham,
Birmingham B15 2TT, UK, g.anderson @bham.ac.uk

Belen de Andrés Centro Nacional de Microbiologia, ISCIII, Majadahonda,
28220 Madrid, Spain, bdandres @isciii.es

Becca Asquith Department of Immunology, Wright-Fleming Institute, Imperial
College London, Norfolk Place, London W2 1PG, UK, b.asquith@imperial.ac.uk

José A.M. Borghans Department of Immunology, University Medical Center
Utrecht, Lundlaan 6, Utrecht, The Netherlands, j.borghans @umcutrecht.nl

Rowann Bowcutt Faculty of Life Sciences, AV Hill Building, University of
Manchester, Oxford Road, Manchester M13 9PL, UK,
Rowann.Bowcutt@postgrad.manchester.ac.uk

Kevin Burrage The Oxford Computing Laboratory and Oxford Centre for
Integrative Systems Biology, University of Oxford, Oxford OX1 2JD, UK,
and

The Institute for Molecular Biosciences, The University of Queensland,
Queensland, Brisbane, QLD 4072, Australia, kevin.burrage @comlab.ox.ac.uk

Jorge Carneiro Instituto Gulbenkian de Ciéncia, Oeiras, Portugal,
nunosep @igc.gulbenkian.pt

Mario Castro Grupo Interdisciplinar de Sistemas Complejos (GISC), Grupo de
Dinamica No Lineal, Universidad Pontificia Comillas, Madrid E-28015,
Spain, mariocastro73 @gmail.com

Daniel Coombs Department of Mathematics and Institute of Applied
Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 172,
coombs@math.ubc.ca

Isabel Cortegano Centro de Biologia Molecular, CSIC-UAM, Campus, de
Cantoblanco, 28049 Madrid, Spain, icortegano @isciii.es

Xi


asma.127@gmail.com
g.anderson@bham.ac.uk
bdandres@isciii.es
b.asquith@imperial.ac.uk
j.borghans@umcutrecht.nl
Rowann.Bowcutt@postgrad.manchester.ac.uk
kevin.burrage@comlab.ox.ac.uk
nunosep@igc.gulbenkian.pt
mariocastro73@gmail.com
coombs@math.ubc.ca
icortegano@isciii.es

xii Contributors

Sheena Cruickshank Faculty of Life Sciences, AV Hill Building,
University of Manchester, Oxford Road, Manchester M13 9PL, UK,
sheena.cruickshank @manchester.ac.uk

Mark Day Department of Applied Mathematics, University of Leeds,
Leeds LS29JT, UK, jhs5msd@leeds.ac.uk

Omer Dushek Centre for Mathematical Biology, University of Oxford,

Oxford OX1 3LB, UK

and

Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE,
UK, omer.dushek @path.ox.ac.uk

Jose Faro Edificio de Ciencias Experimentdis, Universidade de Vigo, Campus
As Lagoas-Marcosende, 36310 Vigo, Spain,

and

Estudos Avancados de Oeiras, Instituto Gulbenkian de Ciéncia, Apartado 14,
2781-901 Oeiras, Portugal, jfaro @uvigo.es; jfaro@igc.gulbenkian.pt

Marc Thilo Figge Applied Systems Biology, Friedrich Schiller University Jena,
Leibniz Institute for Natural Product Research and Infection Biology — Hans Knoll
Institute, Beutenbergstrasse 11a, 07745 Jena, Germany, thilo.figge @hki-jena.de

Helen Fryer The Institute for Emerging Infections, The Oxford Martin School,
Department of Zoology, University of Oxford, Oxford OX13PS, UK,
helen.fryer@zoo.ox.ac.uk

Karina Garcia-Martinez Center of Molecular Immunology, Havana, Cuba,
karina@cim.sld.cu

Maria-Luisa Gaspar Centro Nacional de Microbiologia, ISCIII, Majadahonda,
28220 Madrid, Spain, mlgaspar @isciii.es

Edwin D. Hawkins The Walter and Eliza Hall Institute of Medical Research,
1G Royal Parade, Parkville, Victoria 3052, Australia

and

Department of Medical Biology, The University of Melbourne, Parkville,
Victoria 3010, Australia, Edwin.Hawkins @petermac.org

Stephen Hickling Peter Medawar Building for Pathogen Research, University
of Oxford, South Parks Road, Oxford OX1 3SY, UK,
stephen.hickling@lincoln.ox.ac.uk

Phillip D. Hodgkin The Walter and Eliza Hall Institute of Medical Research,
1G Royal Parade, Parkville, Victoria 3052, Australia

and

Department of Medical Biology, The University of Melbourne, Parkville,
Victoria 3010, Australia, wellard @ wehi.edu.au

Sharmili Jagtap Centro de Biologia Molecular, CSIC-UAM, Campus de
Cantoblanco, 28049 Madrid, Spain, Sharmili.Jagtap @dartmouth.edu


sheena.cruickshank@manchester.ac.uk
jhs5msd@leeds.ac.uk
omer.dushek@path.ox.ac.uk
jfaro@uvigo.es;
jfaro@igc.gulbenkian.pt
thilo.figge@hki-jena.de
helen.fryer@zoo.ox.ac.uk
karina@cim.
sld.cu
mlgaspar@isciii.es
Edwin.Hawkins@petermac.org
stephen.hickling@lincoln.ox.
ac.uk
wellard@wehi.edu.au
Sharmili.Jagtap@dartmouth.edu

Contributors xiii

Eric Jenkinson Medical Research Council Centre for Immune Regulation,
Institute for Biomedical Research, Medical School, University of Birmingham,
Birmingham B15 2TT, UK, e.j.jenkinson @bham.ac.uk

William Jenkinson Medical Research Council Centre for Inmune Regulation,
Institute for Biomedical Research, Medical School, University of Birmingham,
Birmingham B15 2TT, UK, w.e.jenkinson@bham.ac.uk

Kalet Leon Center of Molecular Immunology, Havana, Cuba, kalet@cim.sld.cu

Grant Lythe Department of Applied Mathematics, University of Leeds,
LS29JT, UK, grant@maths.leeds.ac.uk

Shev MacNamara The Oxford Computing Laboratory and Oxford Centre for
Integrative Systems Biology, The University of Oxford, Oxford OX1 2JD, UK
and

The Institute for Molecular Biosciences, The University of Queensland, Brisbane,
QLD 4072, Australia, shev.macnamara@maths.ox.ac.uk

Miguel-Angel Rodriguez Marcos Centro de Biologia Molecular, CSIC-UAM,
Campus de Cantoblanco, 28049 Madrid, Spain

John F. Markham The Walter and Eliza Hall Institute of Medical Research,
1G Royal Parade, Parkville, Victoria 3052, Australia

and

Department of Medical Biology, The University of Melbourne, Parkville,
Victoria 3010, Australia, jmarkham @wehi.edu.au

Angela McLean The Institute for Emerging Infections, The James Martin 21st
Century School, Department of Zoology, University of Oxford, Oxford OX13PS,
UK, angela.mclean @zo0.0x.ac.uk

Michael Meyer-Hermann Department of Systems Immunology, Helmholtz
Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig,
Germany, michael.meyer-hermann @helmholtz-hzi.de

Carmen Molina-Paris Department of Applied Mathematics, University of Leeds,
Leeds LS29JT, UK, carmen @maths.leeds.ac.uk

Dipankar Nandi Department of Biochemistry, Indian Institute of Science,
Bangalore 560012, India, nandi @biochem.iisc.ernet.in

Michal Or-Guil Systems Immunology Research Group, Institute for Theoretical
Biology, Humboldt University, 10115 Berlin, Germany

and

Research Center ImmunoSciences, Charité, 10115 Berlin, Germany,

m.orguil @biologie.hu-berlin.de

Rodney Phillips Peter Medawar Building for Pathogen Research, University of
Oxford, South Parks Road, Oxford OX1 3SY, UK, rodney.phillips @ndm.ox.ac.uk

Katie Quinn Department of Applied Mathematics, University of Leeds,
Leeds LS29JT, UK


e.j.jenkinson@bham.ac.uk
w.e.jenkinson@bham.ac.uk
kalet@cim.sld.cu
grant@maths.leeds.ac.uk
shev.macnamara@maths.ox.ac.uk
jmarkham@wehi.edu.au
angela.mclean@zoo.ox.ac.uk
michael.meyer-hermann@helmholtz-hzi.de
carmen@maths.leeds.ac.uk
nandi@biochem.iisc.ernet.in
m.orguil@biologie.hu-berlin.de
rodney.phillips@ndm.ox.ac.uk

Xiv Contributors

Ana R. Sanchez-Archidona Centro Nacional de Microbiologia, ISCIII,
Majadahonda, 28220 Madrid, Spain, asarchidona@sanfordburnham.org

Nuno Sepiilveda Instituto Gulbenkian de Ciéncia, Oeiras, Portugal
and

London School of Hygiene and Tropical Medicine, Keppel Street,
London WCIE 7HT, UK, nuno.sepulveda@Ishtm.ac.uk

Natalia Serrano Centro Nacional de Microbiologia, ISCIII, Majadahonda,
28220 Madrid, Spain

Andrew K. Sewell Department of Infection, Immunity and Biochemistry,
Cardiff University School of Medicine, Henry Wellcome Building, Heath Park,
Cardiff CF14 4XN, UK, sewellak @cardiff.ac.uk

Emily Stirk Department of Applied Mathematics, University of Leeds,
Leeds LS29JT, UK, emily @maths.leeds.ac.uk

Hugo A. van den Berg Warwick Systems Biology Centre, University of Warwick,
Coventry CV47AL, UK, hugo @maths.warwick.ac.uk

P. Anton van der Merwe Sir William Dunn School of Pathology, University
of British Columbia, Oxford OX1 3RE, UK, anton.vandermerwe @path.ox.ac.uk

Cameron Wellard The Walter and Eliza Hall Institute of Medical Research,
1G Royal Parade, Parkville, Victoria 3052, Australia

and

Department of Medical Biology, The University of Melbourne, Parkville,
Victoria 3010, Australia, wellard @ wehi.edu.au


asarchidona@sanfordburnham.org
nuno.sepulveda@lshtm.ac.uk
sewellak@cardiff.ac.uk
emily@maths.leeds.ac.uk
hugo@maths.warwick.ac.uk
anton.vandermerwe@path.ox.ac.uk
wellard@wehi.edu.au

List of Abbreviations

Ab
ACE
AID
APC
APP
BCR
BM
BrdU
CD
CDR
CFSE
CP
CpG
CSR
cTEC
CTL
DC
DN
DP
EBV
ER
FDC
FSP
GC
GIT
HCMV
HIV
HLA
HSC
IEC
IFN

ILF

antibody

abundance coverage estimator
activation-induced deaminase
antigen-presenting cell

antigen presentation profiles

B cell antigen receptor

bone marrow
5-bromo-2’-deoxyuridine
cluster of determination cell surface molecules
complementarity-determining region of the TCR
carboxyfluorescein diacetate succinimidyl ester
colonic patch

C—phosphate—G region of DNA
class switch recombination
cortical thymic epithelial cells
cytotoxic T lymphocyte
dendritic cell

double negative

double positive

Epstein-Barr virus

endoplasmic reticulum
follicular dendritic cell

finite state projection

germinal centre

gastrointestinal tract

human cytomegalovirus

human immunodeficiency virus
human leukocyte antigens
haematopoietic stem cells
intestinal epithelial cell
interferon

immunoglobulin

isolated lymphoid follicle

XV



XVi

IL-2
IL-7
IR

IS
ITAM
ITIM
MAP
mTEC
LCD
ME
MHC
MHCI
MHCII
MLN
MZ
NK
NP
ODE
PCR
PDE
PDF
PGF
PLC
pMHC
PRR
QSD
RAG
SHM
SHIV
SIvV
SP
SSA
TAP
TCR
TDL
TNF
TREC

List of Abbreviations

interleukin-2

interleukin 7

immune response

immune system

immunoreceptor tyrosine-based activation motif
immunoreceptor tyrosine-based inhibition motif
methionine aminopeptidas

medullary thymic nepithelial cells

limiting conditional probability distribution
master equation

major histocompatibility complex

class I MHC

class I MHC

mesenteric lymph node

marginal zone

natural killer cell

nitrophenyl

ordinary differential equation

polymerase chain reaction

partial differential equation

probability density function

probability generating function

peptide loading complex

peptide-MHC

pattern recognition receptor
quasi-stationary distribution

recombinase activating gene

somatic hypermutation

simian-human immunodeficiency virus
simian immunodeficiency virus

single positive

stochastic simulation algorithm

transporter associated with antigen presentation
T cell antigen receptor

thoracic duct lymphocyte

tumour necrosis factor

T cell receptor excision circle
immunoglobulin variable region



Chapter 1
Thymocyte Development

William Jenkinson, Eric Jenkinson, and Graham Anderson

Abstract T cell development within the thymus involves the dynamic interaction of
thymocytes with a unique heterogeneous microenvironment formed predominantly
by a three-dimensional network of specialized thymic epithelium. Multiple devel-
opmental checkpoints have been identified during thymocyte maturation, including
selective recruitment to the thymus, af versus y§ T cell fate decisions, positive
and negative selection and finally regulated egress of mature T cells from the thy-
mus to the periphery. The controlled migration of thymocytes within the thymus
ensures that developing T cells undergo a series of tightly-regulated interactions
with stromal cells of the thymus, ensuring that, firstly, only cells bearing a func-
tional TCR are selected for survival and onward differentiation via positive selection
and, secondly, that autoreactive T cells capable of responding to self-antigens and
causing autoimmune disease are deleted via negative selection. The stringent selec-
tion mechanisms enforced within the thymus are demonstrated by the fact that only
2-5% of thymocytes generated within the thymus mature to form naive T cells ca-
pable of forming a functional, self-tolerant component of the peripheral adaptive
immune system. Whilst many of the developmental processes occurring during thy-
mocyte development have become elucidated over the past several years, systems
directed towards modelling the dynamic migratory patterns and real-time cellular
interactions will radically advance our understanding of how such pivotal cells of
the immune system are generated.

Introduction

During T cell development, thymocytes undergo a programme of sequential
interactions with stromal cells of the thymus, predominantly of an epithelial na-
ture, providing essential developmental cues to ensure a carefully orchestrated

W. Jenkinson ()
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maturational programme lasting 3—4 weeks [1]. Similar to B cells, thymocytes bear
a cell surface receptor capable of recognizing antigen, inducing cellular activation
and driving adaptive immune responses, although unlike B cells, T cells require
presentation of antigen by MHC class I and II. The huge diversity of potential
antigen that a single individual may encounter over the course of a lifetime requires
a highly efficient and specialized mechanism to ensure the production of sufficient
T cells, each bearing a receptor of a single specificity, to confer the ability to rec-
ognize and respond to such diversity of antigen. This variety of T cell receptors
(TCR) is generated during thymocyte development via the ability of individual cells
to rearrange multiple gene segments encoding the « and fB-chains of the TCR in
a random fashion. Whilst the capacity to generate TCR diversity via random gene
recombination provides the capacity to produce a huge range of TCR specificities,
estimated at 10'°, an intrinsic drawback of such a system is the potential to generate
multiple non-functional TCR arrangements and also TCRs capable of recognizing
the host’s own tissue and driving potential autoimmune responses. It is therefore
essential that a strict quality-control mechanism operates within organisms capable
of generating lymphocytes bearing randomly generated receptors. In most verte-
brates the thymus represents the site of selection, sorting the good from the bad and
ensuring that only useful T cells progress to populate the periphery and contribute
to immunological defence. As a result of this, while approximately 50 million thy-
mocytes are generated within the thymus every day, only around 1 in 20 thymocytes
survive the stringent selection events required to become a mature T cell.

The thymus until relatively recently, remained an organ of mystery. The essen-
tial function of the thymus in the generation of lymphocytes was established in the
1960s through pioneering research by Jacques Miller, demonstrating that neonatal
thymectomy resulted in immunodeficiency and furthermore indicating that the thy-
mus was a site where lymphocytes were selected and tolerance induced. Extensive
research into thymocyte development and thymus biology have begun to uncover the
nature of the mechanisms regulating T cell development and the cellular interactions
involved in this process. In this chapter, an overview of thymocyte development will
be provided summarizing the relationship between thymocyte and thymic microen-
vironment resulting in the generation of functional, self-tolerant T cells.

Thymic Microenvironments

The thymus represents a bilobed organ, located in the superior mediastinum of
the thorax anterior to the outflow tract of the heart. The mature thymus shows a
clear degree of compartmentalization, displaying both anatomically and function-
ally distinct regions of cortex and medulla (Fig. 1.1). A fibrous capsule surrounds the
mature thymus, with a rich vascular network penetrating throughout the organ. The
parenchyma of the thymus consists predominantly of a unique three-dimensional
arrangement of epithelial cells providing a mesh-like network, within which de-
veloping T cells are able to migrate and receive essential signalling interactions.
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Fig. 1.1 The thymus displays a high degree of organization. Confocal analysis of mouse thy-
mus for CD4 (green), CD8 (red) and CD25 (white) reveals the distinct thymic compartments of
outer subcapsular region (SC), cortex (C) and inner medulla (M). Thymocytes at different stages
of development differentially express the cell surface markers CD4, CD8 and CD25 and specif-
ically localize to defined thymic regions. The subcapsular region is predominantly populated by
immature CD4~87251 thymocytes (whife), forming a discrete rim to the thymus. The cortex is
visualized as a densely packed region predominantly populated by CD4™~ 8 double positive thy-
mocytes (appearing yellow), which undergo interactions with a network of interspersing cortical
thymic epithelial cells. The inner thymic medulla consists of a more sparsely populated region
formed by thymocytes at the single positive CD4 187 (green) and CD4~8% (red) undergoing
maturational interactions with a combination of medullary thymic epithelium and dendritic cells

In addition to thymic epithelium and thymocytes, a heterogeneous mixture of
additional cell types reside within the thymus, including stromal fibroblasts, thymic
macrophages and dendritic cells, all of which play an important role in thymus
biology.

During embryogenesis, the thymus develops as a bilateral outgrowth of endo-
derm, which buds off from a region of the foregut termed the third pharyngeal
pouch. A series of reciprocal signalling interactions with neural crest-derived mes-
enchyme ensheathing the thymic rudiment leads to a cascade of transcription factor
activity within the endoderm-derived thymus primordium, resulting in both out-
growth and differentiation of the thymus. Recent experimental data indicate that
endoderm-derived thymic epithelium producing cortex and medulla is not only gen-
erated from a single embryonic origin, but that both cortical and medullary thymic
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epithelium derive from a bipotent progenitor population. Whether such a common
thymic epithelial progenitor population persists within the adult thymus and whether
such a population may represent a potential stem cell population with clinical ma-
nipulation implications remains an open area of research.

T cell development is not a cell autonomous process. The thymic microenviron-
ment nurtures the development of thymocytes, providing a wide range of signalling
interactions at defined developmental checkpoints in discrete anatomical locations.
Signals provided by thymic stromal cells regulate commitment to the T cell lin-
eage, regulation of proliferation, survival and importantly, selection of functional
T cells that are self-tolerant on the basis of thymocyte T cell receptor capability and
specificity. Due to the strict compartmentalization of thymic epithelial cells provid-
ing defined signals required at specific stages of thymocyte maturation, developing
T cells display a highly ordered pattern of migration within the thymus regulat-
ing stepwise interactions and sequential maturation. Amongst the important signals
provided by thymic epithelium to developing thymocytes, Delta-like 4 (D14) a lig-
and for the Notch signalling pathway is expressed by thymic epithelium. Signalling
through the Notch receptor, expressed by thymus colonizing thymocyte precursors,
is critical for commitment to the T cell lineage. Mice demonstrating defects in the
Notch signalling pathway lack the capacity to generate thymic T cells, instead B
cells are found to populate the thymus indicating that Notch plays an essential role
in the commitment of lymphoid precursors to the T cell lineage [2]. In addition,
thymic epithelium provides essential survival factors to developing thymocytes, in-
cluding IL-7 and stem cell factor [3]. Interestingly, the requirement for IL-7 appears
to be less important for thymocyte development within the fetal thymus compared to
the adult thymus, highlighting subtle differences in the developmental requirements
of T cells at defined temporal stages [4]. Of critical importance, thymic epithelium
also expresses high levels of both MHC class I and MHC class II. MHC expression
within the thymus plays an essential role in the selection of both CD4 and CDS§
T cells through the capacity to test whether thymocytes with randomly generated
T cell receptors are able to recognise MHC presenting self-peptides with sufficient
affinity to ensure the TCR is functional but also ensure that those cells recognizing
MHC-self-peptide complexes with too high affinity are deleted to avoid potentially
autoreactive immune responses. Lack of MHC molecules on thymic epithelium re-
sults in a complete block in thymocyte development at the CD41 8T double positive
(DP) stage, as developing thymocytes are unable to test their randomly generated
receptors and fail to receive TCR transmitted survival signals.

It is clear that thymic epithelium provides essential signals to developing thymo-
cytes in a highly ordered stepwise manner. However, such signalling interactions
are not simply a one-way process. Analysis of the thymi of mice demonstrating
blocks in thymocyte development at defined stages demonstrates a clear correspond-
ing defect in differentiation, organization and maintenance of cortical and medullary
epithelium. Such findings highlight a complex reciprocal signalling mechanism op-
erating within the thymus whereby thymocytes provide important signals, such as
through the Lymphotoxin signalling pathway, that act to regulate the microenviron-
ments that regulate their own survival and maturation [5].
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The thymus is not an organ that is maintained at a constant size throughout life.
A programmed decrease in the proportion of functional thymic tissue ensues gen-
erally from the onset of puberty, resulting in a consequent decrease in T cell output
from the thymus of older individuals. The decrease in functional thymic tissue is
termed thymic involution or atrophy. The precise mechanics of thymus involution
remains unclear although several lines of evidence point to a pivotal role for sex
steroids in this process [6]. During thymocyte development, approximately 95% of
thymocytes are deleted due to production of either non-functional or auto-reactive
T cell receptors. Such huge wastage may provide an explanation as to the reason
for thymic involution, the necessity to maintain such a wasteful organ following
the establishment of a peripheral T cell pool of sufficient size and diversity as to
maintain immune protection may no longer be required. In support of this, thymec-
tomy of young individuals does not lead to significant immunodeficiency, indicating
that maintenance of a fully functional thymus with increasing age is not strictly
necessary. However, improving healthcare and associated increases in lifespan of in-
dividuals may present problems in the future as elderly individuals may demonstrate
a reduction in the T cell repertoire as a result of reduced thymic output. In addition,
the advent of clinical therapies resulting in depletion of lymphoid compartments
followed by bone marrow transplant presents a problem in terms of the reduced
presence of functional thymic microenvironments capable of supporting rapid re-
constitution of T cell compartments. Indeed, post-bone marrow transplant patients
demonstrate a high susceptibility to opportunistic infection due to a severely re-
duced capacity to produce T cells. Identification of potential thymic epithelial stem
cell populations and the precise signalling pathways involved in regulating thymic
epithelial development and expansion currently present intense areas of research
aimed at developing methods of regenerating functional thymic tissue and T cell
reconstitution.

Colonization and Export from the Thymus

The thymus lacks a resident population of self-renewing haematopoietic stem cells
(HSC). Unlike B cell development, where HSC exist within the same localized mi-
croenvironment as their B cell progeny, the remote location of the thymus therefore
requires the selected recruitment of T cell progenitors throughout life to ensure a
continuous supply of mature T cells. Recruitment of T cell progenitors to the thy-
mus, whilst continuous throughout life, does not occur in a steady stream but rather
entry is regulated in a periodically-gated manner [7]. The precise mechanisms reg-
ulating such stop-start thymic entry remains unclear, although evidence suggests
that this may at least in part be regulated by the availability of space within intra-
thymic niches capable of nurturing developing thymocytes [8]. Following entry to
the thymus, T cell precursors undergo a series of maturational events including
bursts of proliferation resulting in a single thymus colonizing cell generating up to
one million progeny [9]. The recruitment and specific entry of lymphoid progenitor
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cells into the thymus therefore forms the first hurdle that potential thymocytes must
overcome in their journey to becoming a mature T cell.

Colonization of the thymus within the mouse appears to occur via two different
mechanisms operating within temporally defined windows. At approximately day
11.5 of gestation, recruitment of circulating fetal liver and AGM-region haematopoi-
etic cells to the embryonic thymus initiates and continues for a period of approx-
imately 2 days. During the initial window of thymus colonization, the thymus
remains an avascular structure, with entry of blood vessels into the thymus proper
occurring after day 14 of gestation. As a result, specific recruitment of haematopoi-
etic precursors occurs via the induction of haematopoietic precursor extravasa-
tion from capillaries in proximity to the thymus followed by migration through
perithymic mesenchyme and finally entry to the thymus through the presumptive
capsule. Attraction of haematopoietic cells to the early fetal thymus appears to be a
highly specific process regulated by the action of a restricted set of chemokines com-
prising CCL25, CCL21 and CXLC12. Absence of expression of CCR7 and CCRY,
the receptors for CCL21 and CCL25 respectively, on haematopoietic cells results
in a severe reduction in pre-vascularized thymus colonization and an associated ab-
sence of T cell subsets normally generated from these cells [10]. The importance
of CCL25 in mediating colonization of the fetal thymus is further highlighted in
Nude mice. Nude mice display a mutation in the transcription factor Foxn1. Lack of
functional Foxnl expression results in a cell-autonomous defect in thymic epithelial
differentiation after day 11.5 of gestation and a corresponding absence of thymic
epithelial CCL25 expression. Whilst CCL25 expression is absent in Nude thymic
epithelium, CCL21 is expressed normally in a Foxnl-independent manner in cells
of the adjacent parathyroid. Importantly, whilst haematopoietic cells are attracted to
the proximity of the Nude thymus, no cells enter into the thymus itself. Such findings
suggest a differential two-step role for CCL21 and CCL25, whereby CCL21 attracts
haematopoietic cells into proximity of the thymus, whereupon CCL25 mediates en-
try of cells into the epithelial microenvironment of the thymus itself. Whilst the
diversity of chemokine expression within the embryonic thymus appears relatively
restricted, analysis of the chemokine receptors expressed by thymus colonizing cells
demonstrates a diverse heterogeneous mixture of cells, whether such cells demon-
strate differential developmental potential remains unclear [11].

Within the mature adult thymus a rich network of blood vessels penetrate into
the thymic tissue. Colonization of the thymus in vascularized adult stages occurs
via extravasation of thymus colonizing cells at post-capillary venules located pre-
dominantly at the junction between cortex and medulla. The role of chemokines in
the control of adult thymus colonization remains less clear than for the fetal thy-
mus. Recent evidence however, suggests that CCL25-CCRO signalling may also be
involved in recruitment of cells to the adult thymus. In addition to chemokine action,
the protein P-selectin expressed on the endothelium of thymic post-capillary venules
binds the carbohydrate P-selectin ligand-1 (PSGL1) expressed by thymus coloniz-
ing cells, absence of either receptor or ligand results in a significantly reduced entry
of cells into the mature thymus highly implicating this pairing in thymus coloniza-
tion. Importantly, expression of P-selectin has been shown to be regulated by the
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availability of thymic stromal niches identifying a potential mechanism regulating
the gated entry of haematopoietic precursors into the thymus [12].

Until recently, the mechanisms regulating T cell exit from the thymus have re-
mained ill-defined. Again, chemokines have been implicated in the regulation of this
process. CCL19, an additional ligand for the chemokine receptor CCR7 expressed
by mature thymocytes, has been identified on blood vessels present within thymic
medulla. Whilst such chemokine expression is able to attract mature thymocytes
to exit thymic parenchyma into perivascular spaces within the thymus, additional
signals are required to facilitate full thymic egress. The cell surface receptor sphin-
gosine 1-phosphate type 1 (S1P1) appears to play an essential role in exit from the
thymus in response to a gradient of expression of the ligand S1P between thymus
and blood. As such, mice lacking the capacity to signal through the S1P1 receptor
expressed on haematopoietic cells demonstrate a traffic jam of mature thymocytes
within the thymus and perivascular spaces [13] as cells are unable to receive the cor-
rect signals to exit the thymus. Together, such data imply that thymic exit of mature
thymocytes occurs in a two step process driven firstly via initial chemokine attrac-
tion to blood vessels and into perivascular spaces followed secondarily by S1P1
receptor mediated exit into the bloodstream. Previous reports have also suggested
that exit from the thymus occurs in a lucky-dip haphazard manner whereby some
thymocytes leave early in maturation and some thymocytes leave late [14]. How-
ever, recent data now suggest that thymic emigration is a strictly ordered process
ensuring that only the most mature thymocytes, having completed the full develop-
mental program, have a preferential ability to leave the thymus. Such mechanisms
are thought to operate at least partly based on differential thymocyte expression of
the S1P1 receptor [15].

aff Versus y§ T Cell Development

Two main lineages of T cells are produced within the thymus, a prevailing «f8 T cell
lineage, and a minor y§ T cells lineage. Whilst multiple aspects of o T cell de-
velopment and function have been defined, those relating to the yé T cell lineage
remain vague. Both af and y§ T cells develop from a common haematopoietic
progenitor population colonizing the thymus. Branching of the y§ T cell lineage
from «f T cell lineage is though to occur within the window of the late DN2 to
DN3 stage [16]. During DN thymocyte development, Recombinase activating gene
(RAG) complex activity results in TCR gene rearrangement, in addition to -chain
rearrangements, DN thymocytes also undergo rearrangements of both y- and §-TCR
chains. The fact that 8-chain rearrangements may be found within mature y§ T cells
and conversely, y§-chain rearrangements within a8 T cells strongly supports the no-
tion of a common precursor origin for both T cell lineages [17, 18].

The precise developmental requirements of the y§ T cell lineage within the thy-
mus remain uncertain. However, recent studies have indicated that a subset of y§
T cells bearing a canonical TCR of restricted diversity, generated exclusively during
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fetal development, may undergo positive selection in response to interactions with
thymic epithelium. In contrast, the interactions of y§ T cells, bearing diverse TCR
specificities, with thymic stromal elements are unclear. Within this chapter, we will
therefore concentrate on describing development of the o T cell lineage, which
form the majority of thymocytes developing within the thymus and also mature
T cells within the periphery.

Developmental Changes During Thymocyte Development

During thymocyte development, the linear progression of maturation can be charac-
terised by the differential expression of numerous cell surface molecules. Initially,
as thymic settling haematopoietic precursors colonize the thymus, the cells lack ex-
pression of both the T cell co-receptor molecules CD4 and CD8, as such these cells
are termed double negative CD4~8~ (DN) and represent the most immature thy-
mocyte subset. The precise identity of thymus settling cells remains contentious.
While cells have been found within both bone marrow and blood with a lymphoid
bias, thymus-settling cells are capable of generating multiple different lineages, with
current data suggesting that multiple populations of haematopoietic cells colonize
the thymus, with each subset displaying different degrees of T cell potential. Upon
entry into the thymus, thymic settling progenitors undergo a series of interactions
with thymic stromal cells that regulate the proliferation, survival and progressive
differentiation of the haematopoietic cells. DN CD47~8~ thymocytes subsequently
upregulate both CD4 and CDS8 to become double positive CD4*8% (DP) thymo-
cytes, and finally mature to become single positive CD4% or CD8* (SP) cells
following stringent selection events. Development of thymocytes is strictly regu-
lated by sequential reciprocal signalling interactions with stromal cells of the thymic
microenvironment. Consequently, it is essential that developing thymocytes are lo-
cated in the right place at the right time to receive the right signals to drive efficient
maturational events.

Double negative thymocytes can be further subdivided into subpopulations on the
basis of CD25 and CD44 expression. The most immature thymocytes express CD44
but lack CD25 expression being termed CD44 725~ DN1 cells. After approximately
10 days, thymocytes next upregulate CD25 to become CD44 125" DN2 cells. The
DN2 stage lasts 2 days, during which thymocytes begin the process of gene rear-
rangement within the TCR chain locus. Downregulation of CD44 follows, marking
the transition to the CD44~25" DN3 stage, accompanied by ongoing V(D)J TCRS
gene rearrangement mediated by RAG1 and RAG2. Successful completion of TCRA
chain gene rearrangement leads to pairing of the TCR chain with the invariant sur-
rogate pre-TCRa chain (pTa) at the cell surface in conjunction with CD3 molecules.
Due to the imprecise nature of random TCRJ gene rearrangement, a high proportion
of DN thymocytes are unable to generate a functional TCR chain due to failed gene
rearrangement. The creation of the preTCR provides an early screening mechanism
to eliminate thymocytes bearing non-functional TCRs through the process termed
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B-selection. Transient expression of the preTCR at the cell surface in conjunction
with CD3 elements results in the transmission of signal through the assembled re-
ceptor in what is currently thought to be a ligand-independent process. Successful
preTCR signals result in several important outcomes:

(a) Prevention of apoptosis

(b) Initiation of cell division

(c) Inhibition of TCR B-chain rearrangement and

(d) Progression of differentiation through downregulation of CD25 to briefly
become CD44725~ DN4 thymocytes

The DN3 stage of development again lasts for approximately 2 days.

Following B-selection and multiple rounds of cell replication, DN4 thymocytes
upregulate both CD4 and CD8 becoming double positive (DP) CD4 8% thymo-
cytes. During transit to the DP stage, cellular replication ends and rearrangement of
TCRa genes is initiated through re-expression of the RAG complexes responsible
for driving TCR gene rearrangement. During TCR «-chain rearrangement, thymo-
cytes are provided with multiple opportunities to express a functional TCR« chain.
Only thymocytes expressing a functional TCR of correct specificity receive survival
signals allowing escape from programmed cell death. During this period, thymo-
cytes will continue to rearrange «-chain genes until a functional a-chain paired with
the B-chain allows for positive selection, or alternatively thymocytes run out of time
and are subsequently deleted as a result of failure to generate a functional TCR capa-
ble of interacting correctly with thymic stromal elements. The precise mechanisms
regulating DP thymocyte lifespan remain unclear. However, one potential mecha-
nism regulating the lifespan of DP thymocytes is thought to operate via the action
of the orphan nuclear receptor RORy regulating expression of the anti-apoptotic
factor Bcl-XL. Under steady-state conditions, it is thought that the pre-selection DP
stage of thymocyte development may last in the region of 2—-3 days. Regulation of
DP thymocyte lifespan therefore plays an essential role in determining the diver-
sity of the T cell repertoire through the linked interplay with the amount of time
that thymocytes receive to continue TCR «-chain gene rearrangement and potential
for creating a functional TCR [19]. Once thymocytes are generated bearing a func-
tional TCR consisting of rearranged «- and f-chain subunits expressed at the cell
surface, positive selection of thymocytes ensues assuming appropriate recognition
of self-peptide:MHC complexes, resulting in downregulation of RAG and cessation
of further TCR«a gene rearrangement.

Up until the DP stage of development, thymocytes are confined to and mature
within the cortex. Post-positive selection DP thymocytes upregulate CD69 and sub-
sequently down regulate either CD4 or CD8 becoming single positive (SP) CD418~
or CD4-87. In addition, SP CD4 and CD8 thymocytes demonstrate a redistribution
of compartmentalization, being primarily located within medullary areas. Within
the medulla , thymocytes undergo further maturational events thought to last up
to 12-14 days, although recent estimates suggest this may last as little as 4-5
days [15]. Within the medullary residency period, newly formed SP thymocytes
demonstrate a CD69"'CD62LOY phenotype and exhibit relatively functionally
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immature properties, following a period of maturation involving as yet poorly
defined events, SP thymocytes lose CD69 expression and increase CD62L
expression at which stage thymocytes become functionally mature and exhibit
a heightened responsiveness to thymic export signals.

Intrathymic Migration

After entry to the mature thymus at the cortico-medullary junction, thymocytes
demonstrate a clear pattern of migration. Such migration helps to establish compart-
mentalization of cells at different stages of maturation. This process acts to ensure
that cells are in the correct microenvironment at the right stage of development to
ensure access to the signals provided by stromal cells that dictate whether individual
thymocytes survive and differentiate or alternatively meet an early death through in-
duction of apoptosis (Fig. 1.2). The most immature thymocytes being CD4~8~ DN
exhibit an outward pattern of migration moving from the cortico-medullary junction
towards a sub-capsular location. As such, DN1 thymocytes are located in relation
to the cortico-medullary junction, extending into the deep cortex, DN2 thymocytes
are present within mid-cortex and DN3 cells are present within the outer cortical
region [20]. Within the DN3 population, 8-selection induces proliferation and accu-
mulation of pre-DP thymocytes within the subcapsular region. Following transition
to the subcapsular region, progression to the CD4 181 DP stage is initiated resulting
in TCR «-chain rearrangement and cessation of proliferation. Subcapsular microen-
vironments may play a role in regulating the progression of DN thymocytes to the
DP stage through production of TGFf, which has been shown to negatively regulate
pre-DP thymocyte proliferation [21]. The outward migration of thymocytes across
the cortex is mediated by the action of several chemokine receptors inducing di-
rected cellular migration. Mice lacking the chemokine receptors CXCR4 or CCR7
both display an accumulation of early DN thymocytes near the cortico-medullary
junction and aberrant thymocyte development [22, 23]. In addition, mice lacking
CCR9, whilst demonstrating normal DN2 and DN3 localization within mid- and
outer-cortical regions display an inefficient localization of pre-DP thymocytes at
subcapsular sites [24]. However, CCR9-deficient mice do not appear to demonstrate
any gross defects in early thymocyte development suggesting that sub-capsular mi-
gration is not essential for thymocyte development.

In addition to directional cues provided by chemokine signalling gradients,
thymic stromal cells provide a defined matrix over which immature thymocytes are
able to crawl. Thymocytes express adhesion molecules differentially during their
maturational program, with studies demonstrating that expression of the adhesion
molecule VCAMLI by cortical stromal cells is necessary for normal thymocyte pre-
cursor migration [25].

As thymocytes enter the DP stage, they begin to rearrange the TCR «-chain and
test the function of newly generated TCRaf8 receptors to recognize peptide:MHC
complexes. DP thymocytes accumulate near the cortico-medullary junction but are
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Fig. 1.2 Thymus settling cells enter the thymus through post-capillary venules located at the
cortico-medullary junction (CMJ) as DN1 (CD4~CD8~CD441TCD257) cells. Differentiation
of thymocytes into DN2 (CD4™ CD8~CD441CD257) and DN3 (CD4~CD8~CD44~CD25%)
subsets is accompanied by outwards-directed migration towards the subcapsular region. DN3
thymocytes passing the B-selection checkpoint undergo both differentiation and extensive pro-
liferation whilst passing through the DN4 (CD4~ CD8™ CD44~CD257) stage. Double positive
CD41CD8™ thymocytes subsequently undergo inwards-directed migration back through the cor-
tex, whilst undergoing a series of cognate interactions with cortical thymic epithelial cells in search
of positively selecting ligands. Positive selection of thymocytes results in rapid relocation to thymic
medulla where SP CD41 8~ and CD4~87 thymocytes pass through further developmental check-
points prior to export from the thymus. Presentation of self-antigens by medullary thymic epithelial
cells (mTEC) and dendritic cells (DC) ensure that potentially auto-reactive thymocytes are deleted
via the mechanism of negative selection. Functional, self-tolerant SP T cells subsequently exit the
thymus through blood and lymphatic vessels via a combination of chemokine and S1P mediated
signals

unable to migrate into medullary areas. Thymocytes receiving positive signals con-
firming the generation of a functional TCR forming low affinity interactions with
self-peptide:MHC exhibit upregulation of the chemokine receptor CCR7 [26] and
begin rapid migration towards thymic medullary areas preferentially expressing the
CCR7 associated ligands CCL19 and CCL21. In support of this, mice lacking either
CCR7 or both ligands CCL19 and CCL21 exhibit a clear block in cortex to medulla
migration as a result of inhibited chemotaxis towards medullary regions. However,
SP thymocytes are still capable of entering medullary areas albeit in a seemingly
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inefficient random manner occurring as a result of an absence of directed chemo-
taxis to medullary CCR7-ligands. Recent studies have further suggested that while
CCRY7 is required for SP thymocyte chemotaxis towards medullary areas, a second
undefined G-protein coupled receptor mediated signal is required to enter thymic
medulla and migrate on medullary substrates possibly via activation of specific ad-
hesion molecules on SP thymocytes.

Positive Selection

The random nature of T cell receptor generation is accompanied by the intrinsic
drawback of the potential for T cells to be generated bearing receptors that either are

(a) Incapable of recognizing peptide presented by MHC, therefore being non-
functional or

(b) Capable of recognizing self-antigens to such an extent that they pose the dan-
gerous potential to generate autoimmune actions against the bodies own tissues

The quality control process operating within the thymus provides essential mech-
anisms acting to eliminate both non-functional and auto-reactive thymocytes yet
retain and facilitate the maturation of functional, self-tolerant T cells. Following
rearrangement and pairing of TCRa and f-chains, three developmental outcomes
are open to DP thymocytes. Thymocytes generating TCR pairings incapable of
identifying self-peptide:MHC complexes with sufficient strength fail to generate
TCR transduced signals of sufficient level to cross the threshold required to induce
cell survival. In such cells, further TCR «-chain rearrangement provides a second-
chance for DP thymocytes via continued generation of alternative new TCRaf
pairings in order to try and generate a functional TCR. Alternatively thymocytes
may fail to win a reprieve and undergo deletion via neglect due to a lack of sur-
vival signal provision. On the flip-side to lack of sufficient TCR signalling inducing
death by neglect, an overly strong interaction between thymocytes bearing TCR and
self-peptide:MHC complexes presented by antigen presenting cells again results in
the induction of cell death in a process termed negative selection or clonal dele-
tion, thought to be an important factor in preventing the generation of potentially
autoreactive T cells. Interestingly, the threshold for TCR stimulation within DP thy-
mocytes undergoing selection events in the thymus appears to be lower than that
required by mature T cells responding to peptide in the periphery.

Sitting in a happy medium between these two negative outcomes of thymocyte
deletion lies the third potential fate of DP thymocytes, positive selection. Positive
selection occurs following engagement of DP thymocyte-expressed TCR with self-
peptide:MHC complexes with low affinity recognition remaining below the signal
strength threshold responsible for inducing negative selection. The three poten-
tial developmental outcomes open to developing thymocytes during selection has
been described as following the Goldilocks hypothesis. The Goldilocks conditions
command that positive selection and onwards development of thymocytes within
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the thymus may only proceed when the selecting signal is just right, as opposed
to too little or too much signal leading to death by neglect and negative selection
respectively [27]. Following positive selection, DP thymocytes undergo a host of
developmental changes including termination of TCR «-chain rearrangement, re-
duction in the expression of the RAG complexes, downregulation of either CD4 or
CDS8 and induction of chemotaxis from the cortex towards the thymic medulla. In
addition, positive selection ensures the viability of functional thymocytes through
upregulation of the survival-related factors Bcl-2 and IL-7Ra. Interestingly, it is
thought that following positive selection by self-peptide:MHC low affinity inter-
actions, mature T cells subsequently generated reduce their sensitivity to such
ligands, whilst retaining their capacity to respond to high affinity peptide:MHC
antigens [28,29]. Such alterations in the differential threshold levels of TCR sensi-
tivity may reflect mechanisms operating to ensure that mature T cells do not retain
a capacity to respond to self-antigen consequently reducing the risk of autoimmune
reactions, yet ensure that mature T cells are capable of responding to foreign insult.

The precise nature and kinetics of the selecting signals involved within positive
selection remain unclear. However, recent studies utilising two-photon real-time
imaging techniques have begun to address the interactions between thymocytes
and thymic epithelium to investigate the dynamics involved in thymocyte selection
events. Within a thymic environment lacking a positively selecting capacity, thy-
mocyte migration appeared random, presumably as thymocytes sample numerous
surrounding thymic epithelial cells in search of a selecting MHC-self-peptide
complex. Conversely, within a positively selecting environment, thymocyte migra-
tion appears restricted with sustained interactions occurring with thymic epithelial
cells demonstrating both stable, persistent cell-cell contacts and shorter, dynamic
interactions. The precise reasons for the mixture of interaction types and durations
between thymocytes and epithelium remains unclear, although it has been proposed
that such differences may result from the provision of signal variants and sub-stages
of positive selection occurring [30,31].

Further studies utilising two-photon microscopy have additionally demonstrated
that within a wildtype thymus, the majority of cortical thymocytes display relatively
slow and random patterns of migration. Within such wildtype mice, a small pro-
portion of thymocytes demonstrated an increase in speed of movement and specific
direction of movement towards thymic medullary areas, suggesting that positive
selection induces a capacity for instructed directional migration from cortex to
medulla as cells pass an important hurdle in development. Complementing this
theory, analysis of mice bearing transgenic T cell receptors and a corresponding
positively selecting thymic microenvironment demonstrated an increased proportion
of rapidly migrating thymocytes demonstrating apparent guided chemotaxis [32].
Such experiments demonstrate the dynamic nature of thymocyte development dur-
ing positive selection and highlight the complexity of getting the right cells together
at the right time to ensure the provision of the right signals to drive thymocyte
development.

An open question that remains however, is how does a rare thymocyte with a
single receptor specificity sample enough self-peptide: MHC bearing cortical thymic
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epithelial cells in order to identify rare complexes of the corresponding type to
receive positive selection and consequently survival signals before the estimated
2-3 day window prior to apoptosis induction. Recent studies suggest that during
positive selection, thymocytes scan many thymic epithelial cells receiving multi-
ple transient encounters with numerous cortical thymic epithelial cells in a manner
independent of the formation of an immunological synapse [33] which sustains thy-
mocyte survival. The requirement for re-exposure to multiple positively selecting
complexes may explain the short, dynamic interactions between thymocytes and
thymic epithelial cells observed in the two-photon studies by Bousso et al. [30]. In
addition, the requirement for thymocytes to make numerous continued interactions
with different thymic epithelial cells may help to prevent the selection of thymocytes
bearing TCR with a restriction to a rare peptide:MHC specificity thus enforcing the
onward development of only T cells tolerant to self-antigen. The huge potential ar-
ray of peptides that the randomly generated TCR repertoire can recognize is easily
likely to outnumber the capacity for a single antigen-presenting cell to provide to
a developing thymocytes. As such, it would make sense that developing thymo-
cytes would need to generate interactions with numerous thymic cells presenting a
combined wide array of antigen in order to screen sufficient ligand combinations to
ensure tolerance induction. The ability of such selective events would likely be far
less efficient in the case of sustained interactions where thymocytes bound tightly
to APC presenting a limited array of peptide-MHC combinations rather than in a
system relying on transient, promiscuous interactions. The regulation of positive
selection and receptor diversity appears to be controlled by competition amongst
developing thymocytes for niches providing appropriate positively selecting lig-
ands. This hypothesis is supported by studies utilizing transgenic mouse models,
whereby competition for selecting ligands stimulates TCR editing [34]. Such find-
ings indicate that positive selection is limited by the abundance of selecting ligands,
highlighting the advantages of a dynamic system of numerous short-lived thymo-
cyte:APC interactions.

Specificity of cTEC for Positive Selection

Positive selection of thymocytes requires specific cognate interactions with radio-
resistant epithelial cells making up the thymic cortex. Importantly, the unique
three-dimensional mesh-like organization of cortical thymic epithelium (¢TEC) ap-
pears to play an important role in the capacity to mediate positive selection as culture
of cortical thymic epithelium in two-dimensional adherence cultures abrogates the
capacity of cTEC to mediate positive selection most likely as a result of the down-
regulation of specific cell surface molecule expression. Cortical thymic epithelium
appears to be unique in its capacity to mediate positive selection efficiently. In ad-
dition to expression of MHC class I and II molecules, it would appear that cTEC
provide additional specialized signals to mediate positive selection that other cell
types are unable to provide. The precise nature of such additional accessory signals
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remains unclear, although it is likely that any such signals will be cell surface asso-
ciated due to the specific requirement for cell-cell cognate interactions.

In addition to accessory signalling molecules at the cell surface, the nature of
mechanisms used by cTEC to allow association of MHC class II and self-peptides
appears distinctive, in that cTEC utilize the protease Cathepsin L as opposed to
the differential usage of protease Cathepsin S in the periphery. Recent studies have
also identified a unique proteasome subunit 85t specifically within cTEC [35]. The
function of B5t has been shown to play a highly important role in the processing
of peptides for presentation via MHC class I and consequently CD8 T cell positive
selection. Such differential processing of self-peptide—MHC complexes in the thy-
mus may play a role in determining the differential signalling thresholds involved in
positive selection in the thymus versus activation of mature T cells in the periphery
to foreign-antigen:MHC complexes.

CD4 Versus CDS8 Cell Fate Decisions

Within the periphery, mature CD4 and CD8 T cells generate specific immune res-
ponses through ¢STCR recognition of antigen presented by either MHC class I and
MHC class I respectively. In addition to TCR mediated recognition of antigen, the
TCR co-receptor glycoproteins CD4 and CD8 facilitate TCR peptide:MHC interac-
tions through specific recognition and binding of either MHC class IT or MHC class
I molecules respectively. As such, CD4 T cells demonstrate an exclusive restric-
tion to MHC class II presented antigens whereas CD8 T cells display a restriction to
MHC class I presented antigens. During positive selection, DP CD4 "8 thymocytes
undergo interactions with thymic epithelial cells selecting functional thymocytes
through provision of survival and differentiation signals resulting in the generation
of CD4 and CD8 ¢ TCR thymocytes. A major maturational event during the stage
of positive selection is the decision of selected thymocytes to become restricted to
either the CD4 SP or CD8 SP sub-lineage. Studies analyzing mice with transgenic
TCRs specific for peptide associated with MHC class I, demonstrate that all SP thy-
mocytes within the thymus and SP T cells in the periphery are restricted to the CD8
branch, conversely, mice with TCRs specific for MHC class II associated peptides
generate only CD4 T cells. It would appear therefore that whether a T cell expresses
either CD4 or CDS8 is determined by the aptitude of a ¢ TCR pairing on a sin-
gle T cell to recognize peptide provided in the context of either MHC class II or I
respectively.

The management of CD4 versus CDS lineage at the transcriptional level has
recently begun to be unravelled. The zinc finger transcription factor cKrox (alter-
natively termed ThPOK) demonstrates specific upregulation during the selection
of CD4 SP thymocytes but not CD8 SP thymocytes. In addition, experiments per-
formed whereby imposed expression of cKrox within TCR transgenic thymocytes
normally restricted to the CDS8 lineage, have demonstrated that the cKrox tran-
scription factor is capable of diverting such thymocytes to a CD4-expressing T
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cell fate [36]. In relation to enforcement of CD8 SP cell fate, the transcription fac-
tors TOX and Runx3 have been implicated [37,38]. Whilst the identity of specific
transcription involved in CD4:CD8 cell fate have begun to be revealed, further in-
vestigation is required to determine how signals transmitted through a single TCR
activate specific transcription factor cascades and subsequently divert thymocytes to
either a CD4 or CDS fate. However, clues to this question are provided by studies
suggesting that the strength of TCR transmitted signals may contribute to the deci-
sion of a thymocyte to assume either a CD4 or CD8 cell identity, thereby helping
to co-ordinate TCR specificity for MHC class I or II antigens and CD4 or CD8 ex-
pression. Transient, low-level TCR signals have been suggested to induce a CDS§
specification, whereas stronger, prolonged TCR signals are thought to result in CD4
lineage commitment [39]. In addition to TCR mediated signals, signalling through
the Notch receptor on developing thymocytes may also play a role in supplement-
ing CD4 versus CD8 cell fate decisions by active signalling promoting CD8 lineage
commitment, although this view has been challenged [39,40].

Negative Selection

Positive selection within the thymus operates via the induced survival of developing
thymocytes capable of recognizing self-peptide:MHC complexes with the correct
degree of affinity. Such low affinity ligands however, in general lack the capacity to
stimulate and activate mature peripheral T cells, although continuous sub-optimal
TCR mediated stimulation via low affinity interactions with self-peptide:MHC com-
plexes are required for continued peripheral T cell survival [41]. Activation of
mature T cells operates via recognition of foreign peptide:MHC complexes, thought
to bear a structural relation to positively selecting ligands presented within the thy-
mus, with a high level of affinity such that TCR stimulation crosses the threshold of
T cell activation. The corresponding stimulation of thymocytes within the thymus
by self-antigen:MHC complexes with high affinity however, leads to a very different
outcome, inducing programmed cell death of the corresponding thymocyte, thereby
ensuring that potentially auto-reactive thymocytes with a high level of specificity
for self-antigen are deleted thereby enforcing central tolerance.

As indicated, positive and negative selection both operate via recognition of self-
antigen:MHC complexes. However, these two events lead to two very different cell
fates, on the one-hand survival and differentiation and conversely on the other hand
cellular deletion. How these differential outcomes are induced via the same type of
ligand has yet to be fully elucidated. Evidence suggests however, that the induction
of negative versus positive selection may relate to the strength of signal propagated
through the TCR in response to self-peptide:MHC. In response to TCR stimulation
via ligation of self-peptide:MHC, it is thought that intracellular signalling cascades
utilising MAP kinase activation is differentially induced. In this setting, a prolonged
activation of the protein ERK at a low level is induced in positive selection , whereas
negative selection is associated with ERK activated for a short period but at a high
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level. In addition, during negative selection, ERK activation is thought to synergize
with the action of the additional protein kinases JNK and p38 [42, 43]. The uti-
lization of different potential signalling pathways during either positive or negative
selection may again relate to differences in the dynamics of TCR stimulation as
previously described, in that positively selecting thymocytes endure short-lived in-
teractions with thymic epithelium whereas negatively selecting thymocytes undergo
sustained interactions. How the dynamics of TCR binding change the intracellular
signalling pathways utilized during positive versus negative selection remains an
open area of research.

Central tolerance imprinted within the thymus ensures that T cells with the po-
tential to generate autoimmune responses through recognition of self-antigens and
activation against the bodies own tissues are deleted. However, one potential bar-
rier to this system is how are thymocytes within the restricted environment of the
thymus exposed to the plethora of self-antigens associated with spatially diverse pe-
ripheral tissues. Mechanisms operating within the thymus provide a route around
this problem through the action of the transcriptional regulator Aire. Within the
thymic medulla, multiple populations of medullary epithelial cells express proteins
normally associated with peripheral tissues, such that the thymus provides a minia-
ture reflection of the bodies own tissues thereby providing a microenvironment
in which autoreactive thymocytes can be deleted (Fig. 1.3). Absence of Aire ex-
pression results in multi-organ cellular infiltrates and autoimmune disease in both

100 pm

Fig. 1.3 The thymic medulla imposes central tolerance. (Left panel) The transcriptional regula-
tor Aire (red), responsible for the control of ectopic peripheral tissue antigen expression within
the thymus, is specifically expressed within medullary thymic epithelium, identified by reactivity
for cytokeratin 5 (green). (Right panel) Dendritic cells, identified by expression of the cell sur-
face marker CD11c (red) predominantly cluster within medullary thymic areas. Staining for CD4
(green) discriminates densely populated cortical regions and more sparsely populated medullary
areas. Thymocytes are screened for auto-reactive specificities via their ability to recognize self-
antigen. T cell recognition of self-antigen, provided by the combinatory action of mTEC and
dendritic cells, with sufficiently high affinity results in deletion of auto-reactive T cells
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mice and humans where Aire deficiency results in the autoimmune disorder au-
toimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) [44].
In addition, the loss of a single Aire-regulated eye-related antigen within the thymus
specifically leads to ocular-associated autoimmunity, highlighting the importance of
peripheral tissue antigen expression within the thymus for the maintenance of self-
tolerance [45]. Importantly, not all peripheral tissue antigen expression within the
thymus appears to be regulated by Aire, although additional regulators of nega-
tive selection have yet to be identified. Development of Aire expressing medullary
thymic epithelial cells is dependent on cellular interactions with lymphoid tissue
inducer cells (LTi), previously demonstrated to be essential for secondary lymphoid
tissue formation. Such interactions regulate Aire™ mTEC generation via provision
of RANK-ligand binding the RANK receptor on epithelial cells. In addition to LTi
cells regulating Aire expression, mature CD4" SP thymocytes may also play a role
in maintaining Aire expression in mTEC through provision of CD40-ligand to CD40
expressing epithelium [46].

As well as cell fate decisions generating CD4 and CD8 «TCR SP thymo-
cytes during selection events, a distinct subset of thymocytes develop bearing
a CD41TCD25™" phenotype, being termed regulatory cells (Treg). CD4TCD25"
T cells generated within the thymus display a regulatory function in the periph-
ery, acting to suppress autoimmune T cells that have managed to bypass and evade
negative selection mechanisms within the thymus. Regulatory T cells therefore act
to provide a safety net of peripheral tolerance maintenance, acting to supplement
negative selection and central tolerance induction imposed within the thymus. In
addition to the cell surface phenotype of CD4 and CD25 expression, regulatory
T cells may also be identified by the transcription factor Foxp3. Foxp3 acts as the
master regulator of Treg development and also confers the capacity for a regulatory
function. The exact mechanisms operating in the generation and commitment of
Treg within the thymus remains unclear at present. It is thought that such regulatory
cells are generated in response to high-affinity interactions with self-peptide:MHC
complexes [47]. The basis for how some developing thymocytes generating high
affinity interactions with self-peptide:MHC escape negative selection to become
Treg remains unknown although again this may be related to narrow differences
in the threshold of TCR stimulation.

The kinetics and progression of positive and negative selection whilst unclear
do not seem to follow a linear path. Studies utilizing mice transgenic for specific
TCR B-chain demonstrate that negative selection of MHC-peptide specific thy-
mocytes within a polyclonal compartment occurring in response to the presence
of a deleting peptide occurs throughout thymic development suggesting that pas-
sage through positive selection is not a prerequisite for negative selection [48].
As previously mentioned, expression of peripheral tissue antigens is thought to be
restricted to medullary epithelium partially under the control of Aire. In addition to
compartmentalization of peripheral tissue antigens, thymocytes display clear organi-
zation, such that DP thymocytes occur within the cortex and SP thymocytes within
the medulla. However, if negative selection of thymocytes can occur throughout
thymocyte development and even prior to positive selection, it follows that negative
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selection must also occur within the cortex. Multiple studies have demonstrated that
the thymic medulla provides a unique site for negative selection, emphasized by
studies demonstrating autoimmunity in mice lacking formation of normal medulla
or inability of thymocytes to enter medullary areas [26,49]. Whilst medullary thymic
epithelial cells play an essential role in the production and expression of peripheral
tissue antigens in an Aire dependent manner, medullary epithelial cells themselves
appear to be poor mediators of negative selection. Medullary thymic epithelial cells
are capable of negatively selecting CD8 thymocytes, although they are unable to
delete CD4 thymocytes. Bone marrow-derived dendritic cells represent efficient
antigen presenting cells (APC), not only in the periphery but also within the thy-
mus efficiently negatively selecting both CD4 and CD8 SP thymocytes. Efficient
negative selection of thymocytes by dendritic cells may in part be related to the pro-
vision of co-stimulatory molecules such as B7-1/2 and CD40 providing an essential
secondary signal supplementing that provided through TCR peptide:MHC interac-
tions [50]. Such negative selection mediated by dendritic cells is thought to rely on
production of peripheral tissue antigens by mTEC, transfer to and capture of anti-
gen by dendritic cells and subsequent presentation to and screening of developing
thymocytes [51]. Such cross-presentation of antigens from mTEC to dendritic cells
potentially increases the number of cells presenting rare peripheral tissue antigens
improving screening efficiencies and tolerance induction. In addition, migration of
dendritic cells into the thymus from the periphery also raises the possibility that
self-antigens may be brought into the thymus from anatomically distant sites. Whilst
such mechanisms may aid in the deletion of autoreactive cells, it remains to be deter-
mined whether importation of antigen into the thymus by migrating dendritic cells
influences selection of developing thymocytes during infection of the periphery.

Whilst it is clear that the thymic medulla provides an essential microenvironment
for the negative selection of thymocytes through provision of peripheral tissue anti-
gens, it has also been suggested that many thymocytes may be reactive to ubiquitous
self-antigens expressed within cortical regions. Model systems have demonstrated
that clonal deletion of thymocytes may occur within the cortex in response to ubiqui-
tous self-antigens without any medullary involvement [52]. However, while cortical
thymic epithelium is able to trigger signalling through the TCR, again it is only when
dendritic cells are present that full negative selection of responding thymocytes is
completed, resulting in the deletion of such reactive cells.

During thymocyte development, random patterns of movement are observed in
pre-selection cells as thymocytes screen multiple cortical epithelial cells in a series
of dynamic interactions before exhibiting directed migration to medulla following
positive selection [30,32]. In relation to negative selection, recent studies have begun
to model thymocyte dendritic cell interactions via two-photon microscopy real-
time imaging techniques highlighting important interactions between these two cell
types within the thymic cortex [53]. Thymocytes receiving positive selection signals
demonstrate increased association with dendritic cells located near to cortical vas-
culature mediated by chemokine signalling via CCR7 expression on thymocytes.
The purpose of such interactions between thymocytes and cortical dendritic cells
may involve negative selection to ubiquitously expressed self-antigens found in the
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cortex as previously mentioned and may also involve negative selection of thymo-
cytes responsive to peripheral tissue antigens provided to dendritic cells derived not
only from medullary epithelial cells but also from peripheral tissues themselves.
Together, such mechanisms may explain how negative selection is able to occur
throughout the development of thymocytes and also overcome the anatomical bar-
riers of compartmentalization of both thymocytes at defined stages of development
and their corresponding negatively selecting ligands.

It would appear clear that bone marrow-derived dendritic cells play a key role
in negative selection. The efficiency of dendritic cells to mediate negative selection
of developing thymocytes has been demonstrated in studies utilizing reaggregate

Table 1.1 Models to study thymocyte development
Model type

Advantages Disadvantages

In vitro

Fetal thymus organ Allows study of T cell Limited to fetal thymus. Loss of

culture (FTOC)

Reaggregate thymus
organ culture
(RTOC)

OP9-DL1 bone
marrow culture
system

In vivo
Bone marrow
chimeras

development in 3-dimensional
thymic environment in the
absence of external influences.
Easily manipulated via addition
of growth factors, viral delivery
systems etc. Can be depleted of
thymocytes via addition of
dGuO. Easy to image

Allows isolation and reaggregation

of defined thymic cellular
elements allowing study of
specific cellular interactions and
requirements. Easy to image

Provides simple, uniform stromal

environment. Allows easy
analysis of single cell clonal
assays of T cell development.
Easy to image

Physiologically relevant. Allows

study of adult thymus and T cell
development. Provides capacity
to study thymus colonization
and T cell egress. Allows study
of competitive T cell
development in mixed bone
marrow chimeras

normal thymus organization.
Relatively expensive
requirement for timed pregnant
mice

Limited to fetal thymus. Loss of

normal thymus organization

Lacks 3-dimensional organization

of thymus. Utilizes DL-1 ligand,
whilst physiologically relevant
Notch ligand expressed by
thymic epithelium is DL4.
Failure to support normal
selection events by absence of
MHC class II and Aire
expression. Absence of normal
thymocyte migration patterns

Wide diversity of cell types

present, external influences and
waves of thymus colonization
hamper study of isolated cellular
interactions. Sub-lethal
irradiation sometimes performed
prior to bone marrow transplant
may alter thymus biology due to
creation of an empty thymus.
Very difficult to image




1 Thymocyte Development 21

thymic organ cultures (RTOC) [54]. In RTOC, fetal thymi were digested and pop-
ulations of thymic epithelium and pre-selection DP thymocytes were reaggregated
to form a composite thymus organ culture in the presence of carefully titrated pro-
portions of dendritic cells. Analysis of dendritic cell numbers on negative selection
remarkably revealed that maximal negative selection was achievable with dendritic
cells representing just 1% of total cell numbers, highlighting the efficiency of den-
dritic cells in mediation of negative selection. In addition, within the same studies,
the impact of peptide diversity on negative selection indicated that in a setting of
reduced peptide diversity, negative selection was reduced when compared to nega-
tive selection in the presence of a diverse peptide repertoire. Such findings highlight
the fact that a large degree of positively selected cells within the thymus display a
potentially autoreactive repertoire and emphasize the importance of dendritic cell
mediated negative selection in the presence of a diverse peptide repertoire in order
to negate potential autoimmune disease.
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Chapter 2
A Review of Mathematical Models for T Cell

Receptor Triggering and Antigen Discrimination

Daniel Coombs, Omer Dushek, and P. Anton van der Merwe

Abstract Theoretical studies of T cell receptor signalling and T cell activation have
become a well-known part of immunology and the models described in this chapter
provide a good basis for future studies. Nonetheless it is crucial that, over the next
few years, modelers seek to expand the scope of their efforts and provide a more
comprehensive, predictive and multifaceted approach to T cell receptor signalling.
Currently available models usually provide qualitative results and cannot be confi-
dently parameterized. To obtain more precise and predictive models will be difficult
but is plausible given improvements in quantitative experimental techniques and
their quick adoption by experimentalists.

Introduction

The central event in the generation of adaptive immune responses is the binding
of T cell receptors (TCR) to peptide-major-histocompatibility-complex (pMHC)
molecules at the T cell-antigen-presenting-cell (APC) interface. It is important to
understand how features of the molecular interaction determine the T cell response
(potentially leading to a large-scale immune response in the body). This molecu-
lar recognition event is remarkably sensitive (as few as 5-10 antigenic pMHC can
cause a robust cellular response) but also specific (a single amino-acid change in
the presented peptide can dramatically alter the cellular response). Furthermore, the
sensitivity to very small quantities of antigenic pMHC occurs in the context of a
vast number of chemically similar but functionally irrelevant pMHC. These pMHC
are derived from self proteins and are thought to weakly interact with TCR at the T
cell-APC contact interface. Understanding the specificity and sensitivity of pMHC
recognition in the presence of many self pMHC by T cells is further complicated by
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the fact that we do not understand how pMHC binding to TCR transmits a signal
across the plasma membrane, a process termed TCR triggering. In this chapter we
will review models that attempt to explain the interplay between sensitivity, speci-
ficity and TCR triggering.

In particular, we will focus on the organization of TCR proximal signalling
events, that underlie three major classes of TCR triggering models (conformational
change, aggregation, and segregation) and how the details of the TCR—-pMHC inter-
action can affect signalling. We will begin the chapter with a very brief summary of
the key experimental results that motivated these models.

Sensitivity and Specificity

T cells are challenged to detect the molecular signatures of infection, in the form of
antigenic pMHC, from the background of noise, in the form of endogenous (self)
pMHC. Antigen-presenting-cells express 10°~10° diverse pMHC on their cell sur-
faces, of which relatively few are antigenic, capable of activating a T cell via its
TCR. The key experiments on sensitivity, showing that very low numbers of anti-
genic pMHC can stimulate T cells were by Sykulev et al. (1996) [1] and Irvine
et al. (2002) [2]. In the 2002 experiments, pMHC were individually labelled with
a fluorescent marker, showing that CD4 and CD8 T cells will transiently respond
(flux calcium) in response to a single antigenic pMHC. The level of calcium re-
sponse correlated with the number of presented pMHC up to about 10. After this
many pMHC are detected, a more complete response occurs. A further finding of
this study was that cytotoxic T cells can kill antigen presenting cells after recogniz-
ing as few as three antigenic pMHC. This hair-trigger level of sensitivity is amazing
and perhaps frightening given our knowledge of autoimmune disease. The speci-
ficity of the T cell response has been known for some time by the observation that
a single amino acid substitution in the presented peptide can substantially alter the
T cell response [3, 4]. Taken together, these experiments showed that T cells are
able to respond to a few specific pMHC amidst a background of chemically similar
endogenous pMHC, which when presented in the absence of specific pMHC do not
elicit a T cell response.

Parametric Descriptions of TCR-pMHC Binding

It is natural to ask what quantitatively measurable features of the TCR—pMHC
interaction determine the cellular response. The simplest model of the TCR—pMHC
binding interaction treats it as a simple chemical binding with binding rate k,, and
unbinding rate kof. It is then possible to define the half-life £, = (In2)/ ko and
the dissociation constant Kp = kogr/ kon. It is important to note that ko, is a two-
dimensional rate (units of um2s~!), reflecting the fact that the pMHC and TCR are
restricted to their respective cell membranes.
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Commonly used methods for measuring biochemical rates, such as those using
surface plasmon resonance [5, 6], yield three-dimensional rates which may or may
not correlate well with the actual rates of binding and unbinding within the tight
region of contact between a T cell and an APC. For example, it is possible that
the bond in a physiological situation is stressed and therefore that ko would be
higher than a 3-d measurement would suggest [7]. On the other hand, experiments
that directly measured the two-dimensional rates of CD2-CD58 and CD16-1gG Fc
interactions found a 2-d off-rate that is 100-fold smaller than the 3-d measurement
[8]. This observation may be due to rapid rebinding of the same ligand-receptor pair
in the 2-d environment which is a consequence of diffusion-limited reactions [9, 10].

In any case, 3-d measurements must be converted to two dimensions for use in
mathematical models. The most commonly implemented method is to keep ko the
same, but modify ko, by dividing by an appropriate length scale (typically 5-10nm)
[11]. An additional effect was proposed by Qi et al. [12] based on the work of
Krogsgaard et al. [13], who used thermodynamic methods and a cartoon model of
the TCR to obtain a formula for converting experimentally measured 3-d off-rates to
2-d parameters. This method requires additional measurements of the heat capacity
of the bond to be made. Both of these methods still require experimental validation
or refutation.

Importance of Stable TCR-pMHC Binding

With the caveat that the parameters still need to be measured in a physiological 2-d
situation, the majority of authors have focused on the stability of the TCR—-pMHC
interaction (presumed to be governed by ko from 3-d measurements) as the key de-
terminant of T cell activation. Experimentally, this is supported by a range of studies
showing T cell activation, as measured by cytokine production, is well correlated to
kot (reviewed in [14, 15]) but these results were challenged by others [16, 17] who
did not find such correlations. In terms of signalling, the kinetic proofreading model
(discussed in detail below) gives a rationale for superior signalling by long-lived
complexes in terms of a series of essential signalling steps.

In order to explain experimentally-observed deviations from this rule, more com-
plex models have been devised that take into account additional aspects of the
interaction. For instance, it appears that the TCR coreceptor CD8 stabilizes the
TCR—-pMHC complex by binding in a peptide-independent fashion to MHC and
therefore supports TCR signalling on cytotoxic T cells [18]. An alternative ap-
proach was taken by Krogsgaard et al. [13], who measured the heat capacity of
the TCR-pMHC bond and found that this could be used, along with kg, to provide
an improved fit of T cell activation data. This is consistent with the importance of
effects of molecular reorientation during bond formation [12].

‘We now move on to describe models for TCR signalling following pMHC bind-
ing. In turn, we look at the following:

— Kinetic proofreading models based on a linear sequence of signalling events
proximal to the TCR and dependent on pMHC binding
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— Detailed biochemical models for TCR signalling, involving more complex
reaction networks and feedbacks

— Conformational change of the TCR upon binding

— Models that take special account of TCR aggregation into multimeric complexes

— Segregation-based models

These models should not be viewed as contradictory. TCR signalling is a multi-
faceted process and each class of models takes into account only aspects of the
biological situation. A full model that reconciles all experimental findings is a chal-
lenging task that will build on existing models and will only develop in tandem with
appropriate experimental data.

Kinetic Proofreading Models for Antigen Discrimination

Kinetic proofreading models for TCR signalling are, at their heart, phenomeno-
logical models based on a cartoon version of biochemical signalling initiated upon
TCR/pMHC binding. During signal transduction after receptor ligation, a series of
biochemical events occur at the cytoplasmic tail of the receptor. These events build
a signalling structure of modified components that eventually gives a complete sig-
nal. However if the ligand dissociates from the receptor, the chemical reactions are
aborted and do not go to completion. The essence of the kinetic proofreading model
is therefore to provide a reasonable mechanism for a time lag separating ligand bind-
ing from receptor signalling and hence allowing a receptor to discriminate between
ligands with small differences in off-rate.

As a simple quantitative example, consider a receptor that signals after T = 1's
of engagement, and two potential ligands with k(‘;}f = 1s7! and k(ﬁf = 5571,
The probability of signalling following a single engagement by ligand A is
exp(—kA7r) = e~! while for ligand B it is exp(—kZt) = e™. Ligand A is
thus exp(4) >~ 55 times as likely to signal as ligand B, based on one binding event.
Observe that this mechanism allows discrimination based on half-life (or equiva-
lently, ko) and that small differences in the half-life can be translated into large
differences in signalling. A time-lag model of receptor signalling was considered in
a more general context in [19].

Despite their simple nature, kinetic proofreading models have been extensively
used in a variety of contexts. McKeithan introduced the kinetic proofreading model
for TCR in his seminal paper [20], following on from earlier work in a differ-
ent context [21, 22]. McKeithan’s original scheme is illustrated in Fig.2.1a. In
this model, the TCR begins in an inactive state. Upon binding, it undergoes N
sequential modifications, each representing an intermediary on the path to signal
transduction. Upon completing N modifications, a signal is assumed to have been
completely transduced. Furthermore, McKeithan supposed that if the pMHC un-
binds from the TCR prior to the Nth step being reached, the TCR immediately
reverts back to the inactive state. Mathematically speaking, this model essentially
generates a sigmoidal response to pMHC based on their mean lifetime of binding to
the TCR (1/ ko). We may therefore say that the kinetic proofreading model allows
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Fig. 2.1 Schematic descriptions of kinetic proofreading and feedback models. (a) We show the
original kinetic proofreading model [20]. Black dots indicate unspecified signalling steps occuring
at the cytosolic tail of the receptor. A full signal is transduced at the end of the signalling sequence.
(b) A positive/negative feedback model of TCR signalling [36—38]. Schematic shown most closely
resembles the feedback model by Lipniacki et al. [38]

the T cell to discriminate pMHC based on their chemical off-rate for the TCR. This
model has been used by many researchers as a simple model of TCR signalling
(e.g. [9,23-27)).

One of McKeithan’s observations about his model was that the specificity of
discrimination grows with N, but at the expense of sensitivity (i.e. as N increases,
the number of signalling events due to pMHC with high off-rates decreases, but
the total number of signalling events from any pMHC also decreases). This point
was examined in more detail in critical reviews of the kinetic proofreading model
[25,28], and shown to be an unavoidable feature of the basic model. It was proposed
that to resolve this issue, fully activated TCR could have a decreased off-rate for the
pMHC - requiring that the signalling machinery be able somehow lock the pMHC
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in place at the TCR [20]. Although we note that there is no experimental evidence
for this effect at present, we can speculate as to how this might be achieved. Possible
non-exclusive mechanisms could include

— A direct mechanical modification of the TCR upon signalling (possibly related to
the piston action or receptor deformation described below). We note that, since
single amino-acid substitutions on the presented peptide can change the cellular
response, it is not inconceivable that small changes in the geometry of the TCR
could have an effect.

— Introduction of additional nonspecific MHC-binding coreceptors CD4 and CD8
to the signalling complex, increasing the effective affinity of the signalling com-
plex for pMHC and fixing the pMHC in place.

— Recruitment of additional TCR to the signalling region. For this idea to make
sense, nearby TCR would need to be able to act effectively to share, or integrate
signals. The pMHC would then serially ligate different TCR within the signalling
cluster, but the kinetic proofreading steps would take place as if via a single
receptor. Experimentally, TCR are known to form clusters in response to cognate
presented pMHC [29, 30].

— By modulating the local geometry of the cell membranes at the signalling re-
ceptor to optimize the intermembrane separation from the point of view of the
TCR—pMHC bond, and reduce the unbinding rate. We note that TCR signalling
is known to be linked to the cortical actin cytoskeleton of the T cell, that could
provide a feasible mechanism for some local control. An alternative or comple-
mentary means of control would be via the removal of cell-surface molecules
with large extracellular domains from the local area.

We note that mechanisms for holding pMHC fixed and bound to a single TCR
contradict the serial engagement hypothesis [31] which argues that the signalling
capacity of rare agonist pMHC multiplies when each pMHC binds to multiple TCR
during the cellular interaction. However, serial engagement of TCR by pMHC could
occur within a TCR microcluster or other localized signalling region [32].

It is also important to note that within the basic model, ligands with lower prob-
abilities of generating a signal can compensate for this weakness by being present
in larger quantities. This is critical for the TCR given the large numbers of irrele-
vant peptides present on the APC. This problem is partially overcome by the strong
nonlinearity in response achieved if there are many proofreading steps (albeit at the
expense of sensitivity) but remains a point to be addressed by more complex models.

The biological basis for the kinetic proofreading model in the case of the TCR
remains unclear. We may, however, draw some inspiration from the signalling path-
way of the high affinity IgE receptor FceRI on mast cells. This receptor, closely
related to the TCR, binds IgE with high affinity and the IgE on different recep-
tors can then be crosslinked by an appropriate ligand. The subsequent signalling
cascade has been studied in great detail, allowing a detailed mathematical model
to be built [33, 34]. Experimental and modelling results reflect many aspects of
kinetic proofreading, but certainly do not allow us to fit the parameters of McKei-
than’s formulation of the model, or obtain a clear biological interpretation of the
parameters (reviewed in [35]).
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To summarize our discussion of kinetic proofreading, we observe that a literal
interpretation of McKeithan’s kinetic proofreading model is certainly not correct.
The basic model is unable to reconcile specificity and sensitivity, and the interme-
diate steps have not been found. However, detailed modelling of the FceRI receptor
shows that the basic idea of kinetic proofreading in terms of a set of molecular
events that must happen proximal to the receptor should remain a useful paradigm
for describing TCR signalling. New models can be described in terms of their devi-
ations from the kinetic proofreading model. Additionally, the kinetic proofreading
model is a useful and easily implemented component that can be incorporated into
larger or more complex models of TCR signalling. A good example of this is the
model of Wedagedera and Burroughs (2006) which examines the whole process of
T cell activation from a queuing theory perspective [27]. The kinetic proofreading
component is a simple and natural choice to capture the essence of the signalling
cascade without getting bogged down in the details.

Extensions of Kinetic Proofreading

TCR-pMHC Rebinding

The reactions between many cytosolic proteins are thought to be reaction-limited
because diffusion coefficients in the cytosol are relatively large. In this regime
the dynamics can be accurately captured by simple ordinary-differential-equations
(ODEs) which rely on the so called well-mixed assumption. In contrast, the reac-
tions between many membrane confined proteins are thought to be diffusion-limited,
whereby molecular collisions occur at much lower frequencies but often lead to a
reaction owing to the reaction on-rate being larger than an appropriate measure of
diffusion, see for example Lauffenburger and Linderman [39]. A consequence of
diffusion-limited reactions is that a receptor-ligand complex will break and reform
several times before each binding partner diffuses apart. As discussed above, the 2D
reaction rates between TCR and pMHC are presently unknown but it is reasonable
that their binding rate, like the binding rate for other membrane confined proteins, is
diffusion-limited. Therefore it is expected that a TCR—-pMHC pair will unbind and
rebind many times before the TCR and pMHC move apart. Incorporating this effect
into the canonical kinetic proofreading model proposed by McKeithan [20] it was
found that TCR—-pMHC rebinding has only a small effect on productive signalling,
Fig.2.2a. However, by supposing that the TCR signal is not lost during the brief
interval between rebinding events, pMHC rebinding can have a large effect on pro-
ductive signalling, Fig. 2.2b. In particular, it was found that in addition to ko, the
on-rate can also have a critical role in determining signalling. Therefore this simple
extension to the kinetic proofreading model showed that by explicitly modelling re-
binding and signal persistence at the TCR, T cells are able to discriminate pMHC
based on both kg and k,,. This theoretical work is summarized in Dushek et al. [9].
In support of this model, the potency of pMHC can be well-predicted by an effective
off-rate that accounts for rebinding but not by the off-rate alone [10].
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Fig. 2.2 Incorporating rebinding and signal persistence in kinetic proofreading models allows for
pMHC discrimination based on both k. and k. (a) Schematic of the canonical kinetic proof-
reading model modified to include the possibility of TCR—-pMHC rebinding. In this model pMHC
dissociation from TCR results in state U, which allows the two molecules to rebind or diffuse
away at rate k—. (b) Contours of the probability that at least 1 of 10 presented pMHC will trans-
duce a productive signal (final step in the proofreading scheme) after # = 30 s as a function of
kot and ko, on a log—log plot. As expected, ko is critical in determining productive signalling but
increasing rebinding events, by increasing ko, has little effect on productive signalling. (¢) The
scheme shown in panel (a) is modified to include the possibility that TCR signals persist during
the brief intervals between rebinding events (states U;). This modification is plausible given the
finite time required for phosphatases to revert the phosphosphorylation state of the TCR to basal
levels. (d) In this modified scheme (shown in panel (c)) it is found that k., may also have a critical
role in determining productive signals. For further details see Dushek et al. [9]

Ligand Antagonism

Certain pMHC are known to desensitize T cells to further stimulation. These pMHC
are called antagonists and we should seek to understand how they work in forming a
complete theory of TCR signal transduction. A 1996 study by Rabinowitz et al. [40]
used a modified kinetic proofreading model to allow for partial and incomplete sig-
nals leading to cellular desensitization. They modelled TCR as existing in three
states — inactive, partially modified, and fully modified. A receptor must be fully
modified to generate a positive signal. Partially modified receptors are taken to give
negative signals. The existence of the intermediate state can be motivated by the ob-
servation that ZAP-70 is not activated by antagonist pMHC, indicating that pMHC
discrimination occurs upstream of ZAP-70 activation and so intermediate state(s)
must exist. Further experimental work shows that the membrane phosphatase SHP-1
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is recruited to TCR during pMHC binding, and that this leads to the inactivation of
Lck kinase, but that as binding continues, this process is inhibited by recruitment of
the MAP kinase ERK-1 [36] (discussed further below).

Theoretical modelling of ligand antagonism was also performed by van den
Berg, Burroughs and Rand [23]. This work proposed a method whereby careful
experimentation and data analysis could be used to distinguish between passive an-
tagonism (where antagonist pMHC successfully compete with agonists in terms of
binding TCR) and active antagonism (where the signalling ability of individual TCR
is reduced after antagonist binding). The strength and mode of ligand antagonism
was shown to depend on the density of presented pMHC, also suggesting that T cells
may control their signalling capacity by modulating surface presentation of TCR.

Spatially Extended Models of TCR Activation

The basic ideas described by Rabinowitz et al. [40] were extended in a mathematical
modelling paper by Cliburn Chan et al. [41]. In this model, a spatial Monte Carlo
simulation of pMHC-induced TCR activation was used to examine spatial spread of
activation and inhibition from a ligated TCR to its neighbours. Individual TCR in the
model were supposed to exist in different states — empty, bound, partially activated,
and fully activated. Furthermore, signals were supposed to spread to neighbouring
TCR. These signals could be inhibitory (prohibiting further activation) or protec-
tive (protecting the TCR against inhibition). Biologically, these effects could occur
via recruitment of SHP-1 phosphatase to the signalling region (inhibiting Lck acti-
vation) and ERK-1 activation (which protects Lck from SHP-1). Inhibitory signal
spreading (“receptor crosstalk”) improves the specificity of signalling based on kgt
of the TCR—-pMHC bond, although it decreases sensitivity to low numbers of pre-
sented pMHC. The loss of sensitivity in the model is restored in the full model
by protective signal spreading. Importantly, this model addresses a crucial short-
coming of the basic kinetic proofreading model in that it shows how a low-density,
long-lived (small k) ligand can be discriminated from a very high density, but
short-lived (large ko) ligand.

Detailed Biochemical Models and Feedback Control
of the Signalling Cascade

A development of the kinetic proofreading model based on signalling feedbacks has
been advanced by Germain and coworkers [15, 36, 37]. This model contains four
TCR states — unbound, bound, partially activated and completely activated. Two
feedback loops are proposed: a negative feedback from the partially activated state,
reducing further activation steps, and a positive feedback from the fully activated
state, enhancing further signalling. The model identifies the mediator of negative
feedback as SHP-1, while the positive feedback is mediated by ERK-1. The model



34 D. Coombs et al.

is described using ordinary differential equations, and broadly represents a spatially
homogenized version of earlier models of Chan et al. [41,42]. However, the focus
here is on short-time (1-3 min) responses to ligand, rather than over 60 min as in
Chan et al. The combination of positive and negative feedback responses in the
model leads to a bistability in the T cell response. The power of this work is in
the integration of modelling and detailed experimental work within a single labora-
tory. The model is shown to make a number of predictions, which are then tested
experimentally, verifying the model. For example, the feedback model shows the
response time decreases sharply as the number of pMHC is reduced. By measuring
the ERK-1 response at different ligand densities, Altan-Bonnet and Germain were
able to verify this behaviour [37]. Wylie et al. (2007) incorporated the same feed-
back mechanisms in another model for the role of CD4 coreceptors (constitutively
associated with Lck) and nonagonist ligands in T cell activation [43]. This latter
paper also emphasizes the importance of considering stochastic fluctuations when
analyzing receptor signalling models.

The basic idea of combining kinetic proofreading with positive and negative
feedbacks received further attention in a modelling paper by Lipniacki et al. [38]. In
this model, TCR can exist in six states: (1) unbound; (2) bound; (3) associated with
unphosphorylated Lck; (4) associated with phosphorylated Lck; (5) with phospho-
rylated Lck and TCR-¢ chain singly phosphorylated; (6) with phosphorylated Lck
and TCR-¢ chain doubly phosphorylated, leading to cellular activation. The model
also incorporates negative feedback via phosphorylated SHP from state (4) onto it-
self, and positive feedback from state (6) via a pathway from the receptor to ZAP-70,
MEK and ultimately doubly phosphorylated ERK onto the negative feedback. The
model, which explicitly contains SHP and ERK, is expressed as a set of ordinary
differential equations which are solved deterministically and also in a stochastic
framework. The results indicate that the T cell will respond, most of the time, to
5-10 agonist pMHC, but that the sensitivity is substantially reduced in the presence
of antagonist pMHC. The modelling indicates a bistability in response (activation or
nonactivation with no intermediate) but that the barrier between the basins of attrac-
tion is low enough that small fluctuations can change the response. It is shown that
the deterministic solution of the system is therefore a poor descriptor of the actual
behaviour in the presence of noise.

To summarize, models based on known biochemical events, and particularly the
SHP-1 / ERK-1 feedback loops, allow experimentally testable predictions to be
made (and tested), and surely represent the future of TCR signalling models. How-
ever, substantial challenges remain:

— The accurate parameterization of the models remains a thorny issue, especially
given the multitude of interacting chemical species. This means that sensitivity
analysis becomes extremely important (discussed in [43]). However, the fact that
we can speak of measuring identifiable parameters at all is a major step forward.

— The models must handle the presence of two kinds of stochastic effects. First,
the obviously stochastic nature of any biochemical reaction network with small
numbers of players. Second, there is substantial variation in expression levels of
signalling components between cells. This second point was examined in detail
in a theoretical-computational study of Feinerman et al. [44].
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— The role of spatial effects such as TCR clustering and segregation of signalling
molecules must be carefully addressed. This requires the intelligent use of mod-
els defined by partial differential equations or (more likely) spatial Monte Carlo
simulations. The development of efficient algorithms is an important ongoing
concern [45-47].

The authors of competing feedback models are sometimes at pains to distinguish
their work from kinetic proofreading. We find this, to some extent, to be a false
dichotomy since in every model we have described, a core pathway can be dis-
tinguished, which is essentially determining a kinetic proofreading process. This
scheme is modified by the presence of feedback loops, of course. As stated above,
the paradigm of kinetic proofreading remains useful in describing the basic features
of these models.

Models of TCR Triggering

The mathematical models described above have assumed that TCR proximal sig-
nalling is initiated upon pMHC binding to the TCR. For example, kinetic proof-
reading models assume that proofreading initiates when pMHC binds TCR and
is terminated when pMHC unbinds. However, the exact mechanism by which the
pMHC signal is communicated across the plasma membrane and initiates signalling
is presently unknown. We now review three broad classes of TCR triggering models
and discuss how kinetic proofreading is modified in these systems.

Models Relying on a Conformational Change

Conformational change models postulate that TCR binding to pMHC somehow
results in a conformational change in the CD3 cytoplasmic portions. Early confor-
mational change models postulated that a conformational change was transmitted
allosterically through the TCRaf subunits. However this is implausible given the
huge semi-random structural diversity of TCR/pMHC interfaces, and structural
studies of the TCR/pMHC complexes have failed to identify any such long-range
conformational change which is common to many TCR upon pMHC binding. More
recent models have postulated that the TCR binding leads to a conformational
change of two TCR/CD3 complexes with respect to each other, the TCRa module
with respect to the CD3 chains or a ‘piston-like’ change in the TCR/CD3 com-
plex with respect to the plasma membrane. How could pMHC binding lead to such
changes? We have noted that pMHC binding will automatically subject the TCR to a
mechanical pulling force [7] and proposed that this pulling could be responsible for
such conformational changes [48,49]. A very similar ‘receptor-deformation’ model
has been proposed more recently by others [50].
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Support for conformational change models has come from the demonstration
that the cytoplasmic portions of the CD3 chains undergo conformational change
[51-53]. In one case the conformational change in a proline-rich motif of the CD3e
was shown to be induced by TCR binding to pMHC [54], although subsequent func-
tional studies indicated that this motif is not required for TCR signalling but is
instead involved in regulation of TCR/CD3 surface density in thymocytes [55]. The
recent evidence that the CD3e¢ chain binds to the membrane, with the two ITAM
tyrosine residues sequestered deep therein, suggests how conformational change
might regulate tyrosine phosphorylation [53]. It is possible, however that phos-
phorylation of CD3e regulates membrane association rather than vice versa, and
it remains to be shown that TCR binding to pMHC can influence this CD3¢ binding
to the membrane.

In this model of TCR triggering, the basic kinetic proofreading scheme does not
need any modification. The binding of pMHC to TCR transduces a conformational
change at the TCR which initiates kinetic proofreading (signalling) while pMHC
unbinding reverses the TCR conformational change which terminates kinetic proof-
reading (signalling). In this way, TCR triggering by a conformational change is the
simplest kinetic proofreading mechanism.

Molecular Aggregation Models

A common mechanism of signal transduction across the plasma membrane is
the dimerization (or oligomerization) of cell surface proteins [56]. For example,
receptor tyrosine kinases (RTKs) are transmembrane receptors composed of an
extracellular ligand binding site and an intracellular tyrosine residue which can
become phosphorylated by a specific kinase domain also located on the RTK. Typi-
cally, a single RTK cannot phosphorylate itself because these intracellular domains
are physically separated. Ligand binding induces RTK dimerization which brings
these domains into close proximity and allows each receptor to phosphorylate the
other, a process known as trans-autophosphorylation. Unlike RTKs, the TCR does
not have intrinsic kinase domains that allow for autophosphorylation. However, ty-
rosine kinases of the Src family (SFKs) (e.g. Lck, Fyn) may associate with the
TCR/CD3 complex even in the basal state such that subsequent dimerization of
TCRs bring SFKSs into close proximity of tyrosine residues on the other TCR. There-
fore it is possible that signal transduction is initiated by TCR aggregation.

Several experimental studies have demonstrated that TCR aggregation is suf-
ficient for TCR triggering. Stern and colleagues [57] have used soluble pMHC
oligomers to demonstrate that homo-dimers, -trimers, and -tetramers are able to
induce T cell activation (by crosslinking TCR) but monomeric pMHC cannot. How-
ever, in a physiological setting agonist pMHC are present at low concentrations
making it improbable to find agonist pMHC homodimers. To address this, a subse-
quent study revealed that even agonist-endogenous pMHC heterodimers can drive
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T cell activation [58]. These studies have convincingly demonstrated that TCR
aggregation via pMHC oligomers can drive TCR triggering.

A key drawback to a model where pMHC oligomers drive TCR triggering by
aggregation is that, to date, there is little evidence that pMHC form oligomers when
presented to T cells on the APC membrane [49]. However, quantitative analysis of
the dependence of TCR internalization rates on TCR surface density suggests that
TCR internalization following exposure to pMHC pulsed APCs is preceded by TCR
dimerization [59,60]. Since only triggered TCR are marked for internalization, these
result imply that TCR triggering is accompanied by TCR dimerization. Although
suggestive, it does not follow that TCR triggering is the result of and follows dimer-
ization/aggregation. Moreover, it is possible that TCR dimerization/aggregation
follows and is the result of TCR triggering.

Assuming that TCR aggregation via pMHC binding is required for TCR trig-
gering, it is natural to ask what are the effects of TCR aggregation on pMHC
discrimination. This question was investigated using a mathematical model by Salz-
mann and Bachmann [61] (reviewed by Bachmann and Ohashi [62]). The model
assumes that two pMHC species, denoted with superscript plus and minus, undergo
reversible reactions with TCR,

CT=KTP'T
C =K PT

where T, P, and C represent the free TCR, free pMHC, and bound TCR—pMHC
concentrations. Assuming that all TCR-pMHC complexes rapidly partition into
dimers they approximate the dimer concentrations as

D+/+ = ,3(C+)2/Ctm
D+/_ = 2,3C+C_/Clot
D—/— = ﬁ(c_)z/ctot-

where Cioy = CT 4+ C~, B is a dimensionless proportionality constant, and the
subscripts indicate the dimer composition. The model next assumes that both TCR
in the newly formed dimer undergo basic kinetic proofreading and that a productive
signal is transduced only if both TCR remain bound to pMHC. They do not model
kinetic proofreading explicitly, but instead assume a simple lag time (r) between
TCR/pMHC binding and full TCR activation. The probability that both TCR in
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Extending the analysis for an oligomer consisting of # TCR—pMHC complexes the
relative signal obtained from the two pMHC species is then

+ n
j”—+ - [%] exp " Kkor—ka® 2.1)
o

where 7 is the lag phase required for signalling. The equation is further simplified by
assuming 1) both pMHC are present at concentrations that exceed the TCR concen-
tration and 2) both pMHC are present at equal concentrations. The ratio of signals
generated becomes

n
Anv _ | kah/ kgy exp ki)
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Note that molecular concentrations do not appear in the equation. Based on the
form of this equation the authors argue that the discriminatory capacity of T cells
increases more rapidly with the oligomer size n (appearing in both exponents) than
the proofreading lag t. This result is important because increasing t will, in general,
reduce the total signals obtained by the T cells (equivalent to reducing sensitivity by
additional proofreading steps). By requiring both TCR in a dimer to be bound to
pMHC, they propose that a further increase in specificity can be achieved.

There are several shortcomings to the model. The most critical shortcoming is
the omission of kinetic processes, mainly serial binding. We expect that pMHC with
large off-rates will be less likely to transduce productive signals (as predicted by the
model) but in addition, these pMHC will be able to rapidly form and reform many
dimers effectively increasing the probability of transducing productive signals. We
suspect that including this effect will remove the n dependence in the first fraction
above, reducing specificity obtained by oligomers. Additionally, it is unclear how
these results will be altered if the two pMHC species are present in unequal num-
bers (e.g. [PT] < [P™)). In the future, it will be important to extend the model to
the physiological scenario where the agonist pMHC is expressed at low numbers,
possibly revealing the importance of agonist-endogenous pMHC heterodimers. In
addition, any future model should account for the process of aggregation as a kinetic
process that allows for the formation and also disassembly of TCR oligomers.

We briefly mention that models have been proposed based on the aggregation of
T cell coreceptors (CD4/CD8) and TCR [49]. T cell coreceptors are able to bind
pMHC directly at a site that is independent of the TCR binding site and therefore
complexes composed of TCR—-pMHC-coreceptor are expected to form. This core-
ceptor heterodimerization model posits that only once this complex forms can a
productive signal be transduced. This mechanism is possible because Lck, an im-
portant kinase that can phosphorylate the TCR signalling modules, is constitutively
associated with T cell coreceptors. However, many studies have shown that TCR
triggering is possible in the complete absence of the T cell coreceptors, suggest-
ing that coreceptors may enhance triggering by recruiting additional Lck to the
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TCR—pMHC complex [16] or stabilizing the TCR/pMHC interaction [63]. A model
incorporating the effects of agonist-endogenous pMHC heterodimers and corecep-
tors has also been proposed [58]. This pseudodimer model, although plausible in
principle, cannot account for TCR triggering in the complete absence of coreceptors.

In summary, studies have shown that TCR aggregation, by TCR crosslinking with
soluble pMHC oligomers, can activate T cells and therefore trigger TCR. However,
the mechanism of TCR crosslinking at the T cell-APC interface remains elusive
because pMHC do not form oligomers. Under the assumption that TCR-pMHC
complexes aggregate, mathematical modelling has attempted to determine the ef-
fects of oligomerization on T cell specificity. Future experiments and modelling is
required to determine the physiological mechanism of TCR aggregation and the
effects that aggregation may have on pMHC detection and discrimination.

In recent years, experiments have demonstrated that TCR rapidly aggregate into
sub-micron scale clusters when stimulated by pMHC on a supported planar bilayer
[29,30,64]. These studies demonstrated the importance of TCR clusters by showing
that signalling molecules localize to them. However, it is unclear if TCR cluster
formation is required for TCR triggering (via aggregation) or if TCR clusters form
once triggering has already taken place, possibly allowing for signal amplification.
In addition to the aggregation of TCR (and signalling molecules) in clusters, studies
have also revealed that certain molecules (e.g. the membrane phosphatase CD45)
are excluded from clusters [30]. This raises the possibility that TCR clusters may
be important for molecular segregation. The role of molecular segregation in TCR
triggering and pMHC discrimination is the topic of the next section.

Segregation

Given the inability of the conformational change and aggregation mechanisms to
fully account for TCR triggering, a third type of mechanism has been proposed,
namely that triggering is the result of segregation of the engaged TCR/CD3 com-
plex from inhibitory molecules [65-67]. This kinetic-segregation model of TCR
triggering was inspired by two observation. Firstly, exposure of T cells to tyrosine
phosphatase inhibitors stimulates a dramatic increase in tyrosine phosphorylation
on the TCR/CD3 complex and results in full T cell activation. This observation in-
dicates that there is constitutive tyrosine phosphorylation of the TCR/CD3 complex
which is normally balanced by tyrosine phosphatases (reviewed in [66]). Sec-
ondly, the most abundant receptor tyrosine phosphatase, CD45, has a much larger
ectodomain than the TCR and would therefore be expected to segregate from the
engaged TCR at the T cell/APC contact interface [68]. As a result of this local
segregation, the kinase/phosphatase balance is shifted decisively towards phospho-
rylation which triggers a signal cascade.

This model of TCR triggering was explored using stochastic simulations by
Burroughs et al. [69]. The simulation domain was taken to be a square of area
of 1 um? with periodic boundary condition. In the absence of agonist pMHC,
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TCR randomly diffuse on a lattice and are continually phosphorylated (kinases) and
dephosphorylated (phosphatases). Since there are multiple phosphorylation sites on
the TCR they use kinetic proofreading to represent each phosphorylated state of the
TCR but unlike previous schemes, they account for the ability of phosphatases to
reverse individual kinetic proofreading steps. In the basal state, an individual TCR
cannot reach the final step in the kinetic proofreading scheme because phosphatases
rapidly reverse each step. Therefore this study accounts for phosphatase activity by
implementing a dual-track (reversible) kinetic proofreading mechanism.

In the presence of agonist p MHC, TCR/pMHC complexes will form which will
segregate membrane proteins with large ectodomains, such as the membrane phos-
phatase CD45. For simplicity the model does not account for the formation of areas
depleted of CD45, herein referred to as kinase rich domains (KRD), and instead
models nine identical and static KRDs within the simulation domain, Fig.2.3a.
KRDs have two major effects that collectively allow for TCR triggering. First, the
rate to traverse forward steps in the reversible kinetic proofreading scheme is in-
creased while the backward rate decreases, due to the depletion and enrichment
of phosphatases and kinases, respectively. Secondly, TCR that bind pMHC within
KRDs are expected to become trapped for longer periods of time due to mem-
brane deformation. This effect is modelled by assuming that the TCR/pMHC bond
is spring-like, favoring an optimal intermembrane separation. Departing a close-
contact zone will stress the bond and therefore effectively confines complexes to
KRDs. Longer durations in KRDs will increase the probability of TCR triggering.
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Fig. 2.3 T cell receptor triggering via kinetic segregation. (a) Stochastic spatial simulations of
diffusing TCRs (red traces) are performed on a periodic boundary consisting of nine kinase rich
domains (KRDs). (b) The probability of the TCR being in the ith proofreading step is shown with-
out any pMHC (black line), low activity self pMHC with ko = 557! and [pMHC]=300 pm 2
(dark blue), self pMHC with ko = 3s~! and [pMHC] = 50 wm™? (light blue), high density self
PMHC with ko = 3s~! and [pMHC]=300 um~2 (orange), and high density self pMHC with
agonist pMHC having ko = 0.1s~! and [pMHC]=1 um~2 (red). The physiologically relevant
comparisons are the light blue curve (little productive signalling) and red curve, showing substan-
tial productive signalling only when agonist pMHC are present. For further details see Burroughs
et al. [69]



2 T Cell Receptor Triggering and Antigen Discrimination 41

The critical results from the model are shown in Fig.2.3b, where the kinetic
proofreading steps are plotted against the occupancy probability. First, we see that
TCR are able to reach the final activation state (S) and hence become triggered by
remaining in KRDs for sufficiently long. Second, TCR triggering by self pMHC
is minimal and therefore kinetic-segregation is also able to minimize noise from a
high density of such pMHC. Lastly, small changes in the off-rate of agonist pMHC
alters the number of triggered TCR and therefore allow for pMHC discrimination
(not shown).

The model itself has several shortcomings. For simplicity, forward and re-
verse kinetic proofreading steps are assumed to be first order. However, these
kinase/phosphatase enzymatic interactions are bimolecular two-step reactions. In
the future it will be important to investigate the role of these nonlinearities in pMHC
detection. The model is also sensitive to the size of KRDs, whereby KRDs with a
radius of over 300 nm lead to TCR triggering from self pMHC. It will be important
to determine which factors determine the size of KRDs and whether they reach this
critical size on the T cell surface.

In addition to kinetic-segregation, another class of TCR triggering model based
on segregation invokes lipid rafts, which are lipid microdomains thought to be en-
riched tyrosine kinases such as Lck and deficient in tyrosine phosphatases such as
CD45. These models postulate that TCR engagement of pMHC results in associ-
ation of the TCR/CD3 complex with lipid rafts, resulting in enhances phospho-
rylation because of the altered kinase/phosphatase balance within rafts. The main
drawback of lipid raft models is that they do not provide a plausible molecular
mechanism by which TCR engagement of pMHC drives association with rafts.

Concluding Remarks

Experiments have shown that T cells respond to very few and very specific pMHC
presented on antigen presenting cells. In order to understand these observations var-
ious mathematical models have been formulated based on the known biophysics
and biochemistry of TCR/pMHC interactions and the signalling events that are
triggered within the T cell upon pMHC binding to TCR. The backbone of all math-
ematical models to date is the kinetic proofreading model which is able to explain
pMHC discrimination based on the TCR/pMHC bond off-rate. Over the past decade,
this simple model has been extended and modified to explain various experimental
observations. In parallel to this research aimed at understanding antigen discrimi-
nation, molecular immunologists have been investigating the mechanism by which
pMHC binding to TCR transduces a signal across the plasma membrane that initi-
ates the very first steps intracellular signalling. This process of TCR triggering is
intricately linked to antigen discrimination and we believe that additional insights
can be made by future mathematical modelling that couples the two processes.
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Chapter 3
Dynamic Tuning of T Cell Receptor Specificity
by Co-Receptors and Costimulation

Hugo A. van den Berg and Andrew K. Sewell

Abstract Mounting evidence that each clonotype of T cell antigen receptor can
productively interact with hundreds or even thousands of peptide antigens would
appear to conflict, prima facie, with the immune system’s primary task of guarding
against auto-immunity and singling out harmful “non-self” epitopes against a back-
ground of “self” epitopes. This paradox dissolves somewhat once it is appreciated
that, at any one time, a TCR will only have high functional sensitivity to a small
subset of all its potential agonists, that is, when presented at low copy numbers,
only this small subset will be able to activate the T cell. In this light, the self-nonself
problem becomes a matter of keeping the TCR trained on the appropriate subset of
salient epitopes. We review evidence and models that show how the co-receptors
CD4 and CDS8, as well as the “signal 2” costimulatory system, act to keep the TCR
focussed on the appropriate agonist subset. On the theory of dynamic tuning of
TCR specificity, both immune tolerance and specific reactivity against salient epi-
topes rely on continual regulation by other components of the immune system. We
present a model of “avidity maturation” during the early phase of a T cell response.

The TCR repertoire, while vast, is thought to be too small by at least one order
of magnitude to encompass a specific TCR against any pathogen-derived peptide
the host may ever encounter [1, 2]. Several lines of evidence suggest that a given
TCR may recognise a wide variety of peptides, a phenomenon known as TCR de-
generacy [3,4]. This raises the questions of how the immune system ensures that
such degeneracy does not engender autoimmunity, and if any of these mechanisms
may also play a role in TCR maturation. This chapter reviews models of T cell ac-
tivation that propose that the degeneracy of a TCR is not merely a static property
determined by the molecular identity of its CDRs, but instead a highly malleable
property of the TCR/pMHC/co-receptor complex, subject to dynamic modulation
that can restrict or expand the set of ligands for which the TCR has high functional
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sensitivity, and which, moreover, can act to focus the TCR on one particular ligand,
suggestive of an avidity maturation mechanism analogous to affinity maturation in
humoral immunity.

A key variable in the analysis is functional sensitivity, a term coined by Wool-
dridge et al. [5]. This quantity corresponds to what has been termed TCR avidity
by some immunologists (e.g. [6]), although use of this latter term may invite confu-
sion, since avidity already has an established biochemical meaning. Quantification
of TCR signalling strength has been controversial, which is perhaps not surpris-
ing since a read-out at the cellular/population level must somehow be related to
biomolecular parameters. The importance of both the TCR/pMHC off-rate (equiv-
alently, the mean TCR/pMHC interaction time) and the affinity (off-rate divided
by on-rate) has been emphasised, as well as that of TCR and pMHC densities
on the surfaces of, respectively, the T cell and the APC. The TCR triggering rate
model of functional sensitivity due to Rand and co-workers [7-9] is perhaps the
simplest mathematical model that combines all these parameters, and is briefly
reviewed below.

When one considers TCR degeneracy in statistical terms, each TCR is viewed
as functionally sensitive to every possible peptide ligand, and characterised by its
distribution over these ligands. Almost all of the probability mass is concentrated
about zero sensitivity; these null peptides trivially include those that cannot bind
to the appropriate MHC isoform. On the order of 107> of the probability mass is
concentrated over the non-null range of functional sensitivities, with ~ 1076-1077
found at the maximum functional sensitivity end of the spectrum.

Looking at TCR degeneracy in statistical terms is necessary because a T cell can
actively alter its functional sensitivity distribution, and hence its TCR degeneracy.
That is to say that a T cell can tune itself to become more broad-spectrum promis-
cuous, or sensitive only to a very small set of peptide ligands.! Moreover, it seems
possible that the T cell can select this ligand from among a set of potential strong
agonists. These abilities can be understood, in mechanistic terms, on the basis of the
TCR triggering rate model, as will be explained below.

Dynamic degeneracy would vastly amplify the flexibility of the T cell response
and allow it to mount a specific response to virtually every antigen even with a lim-
ited repertoire. However, dynamic degeneracy might equally well allow a substantial
portion of T cells to become autoreactive — even those who have been exposed to
negative selection. This underlines the importance of costimulation in regulating the
T cell’s functional sensitivity, in both health and disease. The role of costimulation
and threshold adaptation in the maintenance of the naive T cell repertoire has been
analysed elsewhere [10, 11]; we consider the role of costimulation in adjusting the
functional sensitivity spectrum associated with an immune response.

! A residual level of promiscuity is inherent in the physico-chemical properties of the TCR/pMHC
contact; one might say that a TCR tuned to minimal degeneracy is sensitive to a single molecular

fingerprint.
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The Triggering Rate Model for Functional Sensitivity

The T cell integrates, at the whole-cell level, intracellular signals emanating from in-
dividual TCR/CD3 complexes that have been triggered by a peptide/MHC molecule
(the triggered TCR corresponds to a signalosome, a complex involving several ki-
nases and adapter linkers). The philosophy of the triggering model, due to Rand and
co-workers, is that any pMHC can trigger a given TCR, but will do so with widely
varying likelihood. In particular, the rate at which TCRs are triggered on the surface
of a given T cell is given by a simple formula:

> 2yPuig i, j)
J

where the sum ranges over all pMHC species j; §2;; denotes the rate at which cou-
plings occur between the TCR of clonotype i and a ligand of species j, whereas
Pyig (i, j) denotes the probability that a given interaction between a TCR of type i
and a pMHC of type j results in the TCR being triggered.

The kinetic pre-factor §2;; generally depends on several factors: the density of
free (unbound) TCR molecules on the T cell surface; the density of free pMHC
molecules on the APC surface; and the affinity constant of the TCR/pMHC interac-
tion. A detailed derivation of these dependencies is given by van den Berg et al. [8].
The kinetic pre-factor depends only on the free TCR density when the latter is suf-
ficiently low relative to the affinity constant; in this TCR-limited triggering regime
the expression levels of ligand are immaterial. This regime may prevail during pos-
itive selection in the thymus, and is perhaps also important in CTLs. On the other
hand, interactions between T cells and APCs in secondary lymphoid tissues may be
expected to take place in the MHC-limited triggering regime, where the rate factor
depends only on the pMHC levels:

Z .

Q4= Tj (3.1)
where Z; is the copy number of pMHC species j engaged by the T cell and Tj
denotes the mean interaction time of the TCR/pMHC interaction (that is, 1/7j; is
the off-rate). Although the affinity constant does not appear explicitly in this ex-
pression, it plays an important role in governing the change-over between TCR- and
MHC-limited triggering; a theoretical prediction that was borne out by experimental
observations [12]. The theory postulates that the T cell response is a functional of
the triggering rate Zj §2ijPuig (i, j) (cf. [13-15]); e.g. the T cell is activated if the
integrated rate ) j $2ij Puig (i, J) exceeds a certain value, called the cellular activa-
tion threshold, during the T cell: APC conjugation [16].

Equation (3.1) forms a link between theory and experiment. Write the TCR trig-
gering rate due to pMHC species j as W;; and assume MHC-limited triggering. Then

.
Wy =z e D). (3.2)
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Also assume that the T cell responds when Wj; > W, where W, > 0 denotes the
cellular activation threshold. The functional sensitivity is determined experimentally
by exposing T cells to APCs with various ligand levels and determining the midpoint
of the dose-response curve.” Let ZI.Cril denote this midpoint level. Then the reciprocal
is taken as a measure of functional sensitivity: the higher the pMHC copy number
required, the lower the functional sensitivity of the TCR for that ligand. In formula:

I 1 Puli )
Z;m_Wacl Tz

(3.3)

which shows that functional sensitivity is proportional to the MHC-specific TCR
triggering rate’ Pyig(i, j)/ T;;. Moreover, (3.3) shows how functional sensitivity
might be modulated: through changes of Py, (i, j) and Tj; at the receptor level and
through changes of W, at the cellular level. We discuss modulation of Pyis (i, j)
and T;; via the co-receptor and then modulation of W, via the costimulatory ligands.

Co-Receptor Tuning of Functional Sensitivity

T cells vary considerably with respect to the amount of stimulation that is re-
quired to elicit a response: naive, nearly quiescent T cells require an interaction
with a professional APC that may last for hours, whereas fully differentiated CTLs
may be triggered by very few ligand molecules [17, 18]. These differences re-
flect differences in the expression of the TCR, various kinases, phosphorylases,
including CD45 which occurs in isoforms that correlate with the cellular activa-
tion threshold of the T cell, as well as different forms of costimulation which
modulate the strength of the cognate TCR/pMHC interaction. The T cell sur-
face glycoproteins CD4 and CDS8 interact with invariable regions of the MHC
molecule, independently of the cognate contact [19], and hence termed co-receptors
(see Fig.3.1). This section focuses on the effects exerted by these co-receptors on
TCR triggering.

% The width of the dose-response curve is attributable to natural variability in Z; among the APCs
and W, among the T cells; this variation comes into play because a population-level response is
measured.

31In fact, an additional step intervenes between experiment and theory: the immunologist does
not control the presentation level Z directly, but rather the concentration at which the APC is
incubated with peptide ligand. The latter may be assumed to increase with Z and will often be
simply proportional.
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antigen-presenting cell
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Fig. 3.1 Receptors and co-receptors at the T cell: APC interface

The TCR Triggering Probability

The probability that the TCR/CD3 complex achieves signalosome status (i.e. starts
to contribute to the activation signal that is conveyed through intracellular signalling
pathways) following an interaction with a pMHC molecule is given by the following
formula*:

H@=A Pult) fr(t)dt 3.4

where f7(¢) is the probability density function of the TCR/pMHC residence time,
that is, the probability that the TCR remains bound to the pMHC molecule for at
least an amount of time ¢ equals ftoo fr(u)du, and P, (t) is the probability that the
TCR/CD3 complex is phosphorylated at all n sites at time ¢. If the dissociation rate
is not influenced by the age of the ternary complex, the TCR/pMHC interaction
time follows the exponential distribution:

exp (~1/T))

fr() = ="

(3.5)

where Tj; denotes the average docking time of a TCR/pMHC complex constituting
a TCR molecule of clonotype i and a pMHC molecule of species j; the half-life of
the interaction is log(2)Tj;.

If there are a large number of individual reaction steps that all have to occur in
order for the TCR to be triggered, the waiting time for completion of all steps may
be expected to be well-approximated by a narrow Gaussian, in view of the Central
Limit Theorem. Such steps include phosphorylations of ITAMs, binding of kinases

“For the sake of simplicity, the dependence on i and j will be suppressed if it is less important in
the immediate context.
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and linker proteins, which themselves may need to undergo phosphorylations for
further steps to happen [20, 21]. The narrow Gaussian may be expected to be
obtained if the steps are strictly ordered in a linear succession. For more complex
transition graphs, the narrow Gaussian remains a good approximation if all steps
are forward and all completion paths through the graph contain many steps; in this
case the shortest path dominates. The T cell can modulate which path is shortest by
diverting certain routes through the transition graph by means of ITIM phosphory-
lation. If backward steps, such as dephosphorylations, are allowed, the waiting time
distribution widens.

In the limit for large n, the narrow Gaussian becomes degenerate. The func-
tion P, (¢) is then well-approximated by the Heaviside step function:

0 fort <Tg

1 fort > Tr (3.6)

Py(1) = %
where Tr denotes the receptor threshold duration: whenever the TCR remains lig-
ated with a pMHC molecule for longer than this threshold time 7g, the TCR/CD3
complex is triggered. Equations (3.4)—(3.6) together give:

® exp(—t/Tj
Plrig = / %dt = eXp(—TR/ T,j) . (37)
Tr ij

Recall from (3.2) that the MHC-limited kinetic co-factor is inversely propor-
tional to 7j;. The TCR triggering rate is then proportional to exp(=Tgr/Tj)/ Ty,
which implies that the TCR triggering rate depends non-monotonically on 77;, with
a maximum at Tg. This is the serial triggering effect first proposed by Valitutti &
Lanzacecchia [22] and experimentally confirmed by Kalergis et al. [23]. Clearly, the
serial triggering effect will only be found under MHC-limited conditions.

The Classic Proof-Reading Model

One may question how robust approximation (3.7) is, given the simplifying assump-
tions. Some support is lent by the classic kinetic proof-reading model [24], which
approaches the narrow Gaussian very neatly via a sequence of Gamma distributions.
On this model, the TCR/CD3 complex has to undergo n ITAM phosphorylations
before it acquires the ability to mediate intracellular signal transduction, leading to
various cellular responses (notably gene activation in the naive T cell) [25,26]. It is
assumed that the ith phosphorylation can take place only after phosphorylations 1
through i — 1 have taken place. Let the ITAM phosphorylation rate A be nil if the
TCR is not bound to a peptide/MHC (pMHC) complex, and take A > 0 during
TCR/pMHC ligation. The probability P;(¢) that there are i phosphorylated ITAMs
at time 7 then obeys the following differential equations during ligation:
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4Py =—APg
AP =A(Pioy—P) fori=1,..n-1 (3.8)
%Pn ZAPn—l

with initial conditions Py(0) = 1, P; (0) = 0 fori > 0. These equations are readily
solved to give

(A1)

Pi(1) = exp(=A1) " (3.9)

fori =0,...,n—1and

n—1 i
Py(1) = 1—exp(—A1) Y (Al—? (3.10)
i=0 :

for the nth phosphorylation. Substituting this result in the general expression for the
triggering probability, (3.4), with an exponentially distributed dwell time, (3.5), we
obtain

n " n
Pyio = | —— h Tr = — 3.11
trig (TR/T,;,'—i-n) where T =~ (3.1D)

and lim, 00 Pyig = exp(—Tr/Tj) in accordance with the threshold model, (3.7).
The latter is already an excellent approximation to the n-step proof-reading model
when 7 is of order 10, even if the corresponding Gamma distribution does not ade-
quately approximate a step function for n this low.

Co-Receptor Kinetics

The co-receptors CD4 and CD8 modulate the rate of TCR triggering by pMHC
engagement [27-29] and thereby the TCR’s functional avidity [30]. Various dis-
tinct modulatory roles of the co-receptor, possibly acting in concert, have been
proposed: (1) promoting the association of TCR and pMHCI [31]; (2) stabilising
the TCR/pMHCI interaction [28, 32], thus prolonging the mean dwell time of the
interaction which alters the efficacy of the pMHCI ligand [23]; and (3) enhancing
the rate at which the TCR/CD3 complex attains signalling status [29, 33], by asso-
ciation of TCR/CD3 with protein tyrosine kinases such as p56'** [34] and adaptor
molecules such as LAT [35] and LIME [36].

The first of these two mechanisms affects the affinity of the TCR/pMHC inter-
action, whereas the third affects the TCR triggering threshold. Thus, let Tl]* denote
the mean lifetime of the TCR/pMHC interaction when the MHC molecule is bound
to the co-receptor. The stabilising effect is expressed by the inequality 7;* > Tj;.
Similarly, let 7 denote the TCR triggering threshold when the MHC molecule is
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bound to the co-receptor. Co-receptor enhancement is expressed by the inequality
Tﬁ < Tg. There is evidence that CD8 acts through all three mechanisms [32,37],
whereas CD4 seems to act only through the third mechanism [38]. Moreover, the
CD8 af heterodimer is considerably more potent as a co-receptor than the «« ho-
modimer [34,39,40], which stresses the importance of the third function, which is
strongly dependent on the presence of the CD8p chain [39,41].

During any particular interaction between TCR/pMHC, the co-receptor may bind
and unbind the MHC molecule any number of times. It will be assumed that the co-
receptor-dependent effects (viz. reduced TCR/pMHC off-rate and enhanced rate of
ITAM phosphorylations and so on) hold instantaneously and momentarily whenever
the co-receptor is bound. Let s denote the number of transitions between the co-
receptor-bound and unbound forms of the TCR/pMHC complex during the lifetime
of the latter. The triggering probability, conditioned on this number of transitions, is
then expressed as follows:

Pyig = Z]P’(trig | s, CHP(s | CHP(CT) + P(trig | s, C7)P(s | CT)P(C™)

s=0
(3.12)

where P(C ™) and P(C™) are the probabilities that the TCR/pMHC complex is
bound (C) or unbound (C ™) to the co-receptor when the cognate contact forms.
Equilibrium considerations give the following:

P(CH) = —"— and P(CT)=—L— (3.13)
y+p

y+p

where y is the co-receptor association rate and p the dissociation rate. The co-
receptor may engage the TCR/pMHC complex via a TCR/CD3 binding site as
well as an MHC biding site, making association and dissociation two-stage pro-
cesses [5,34,42]. Provided the kinetics of the second step are sufficiently rapid, the
kinetics may be treated as first-order (see [37] for a detailed argument).

The probability of s transitions can be readily calculated by considering the geo-
metric distribution associated with the embedded Markov chain (the “jump chain”).
For s even, one finds:

s/2
1 voTyT;
P(s|CT) = : — (3.14)
L+ pTy \ (A +yTp( + pT})
/2
1 TiTy '
P(s | C7) = T G-15)
L+yTy \ (L +yTyp (1 + pTy)

whereas for s odd, these probabilities are:

(s+1)/2
T*
Pl ) (3.16)

P(s | CY) = (yT;) ¢ "2
(s|C*) = (yTy) (I +yTy(1 + pT}
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T (s+1)/2

(s—1)/2 Vi

P CT) = . 3.17
(5167 = (eT) ((1+yT,y)(1+pT,;,~*>> GA7

The triggering probabilities can be computed, in general, from a Markov chain
whose transition graph is obtained by doubling the original TCR/CD3 transition
graph as discussed above, and inserting directed arcs linking corresponding nodes
bidirectionally, expressing the processes of co-receptor association and dissocia-
tion.> Since the off-rate is affected by co-receptor engagement, the lifetime 7" of
the TCR/pMHC complex is no longer an exponential variate. The mixture of two
off-rates gives rise to a bi-exponential distribution:

P(T >1) = % (e‘“’ + e_k—’)
(0 402+ @ =T = p)) (€ =)

2y + )+ o+ T + T2 =4y Ty + p/ Ty + (TyTy) ™)
(3.18)

_|_

where

)Liz——(y+p+T +T;7h

£ 0+ o T R TR G T e/ Ty (T
The mean lifetime is readily obtained:
11 1
ET)==-—+ —
) 2 (A+ + A_)

. (0 + 02+ T =T, =) (1/A4 = 1/20)

2(V+P)\/V+P+T + T~ ‘) (V/ * 4 0/ Ty + (T;T, ~)‘1)
(3.19)

3 A simple formula is obtained using the Heaviside simplification, (3.6):

P(trig | s, CT) =P ( Y > Trls, C )

R

where T is a Gamma-distributed random variable with location parameter 7;;/(1 + yT};) and shape

parameter x = 1 + ent((s + 1)/2) iff s is even and c* = C—_, whereas x = ent((s + 1)/2)
otherwise (where ent(x) is the largest integer smaller than x), and T* is another Gamma-distributed
random variable with location parameter 7;7 /(1 + pT;7) and shape parameter x = 1 + ent((s +

1)/2) iff s is even and C* = C™t, whereas x = ent((s + 1)/2) otherwise.
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Co-Receptor Kinetics in the ‘Slow’ and ‘Fast’ Limits

More insight into the above results can be gained by considering two special cases,
which form the endpoints of a continuum of possibilities. The first is the case where
the co-receptor kinetics is slow with respect to the TCR/pMHC kinetics, so that the
MHC molecule either retains its contact with the co-receptor during the cognate in-
teraction or remains unbound during its comparatively short docking with the TCR.
Then (3.19) reduces to:

p 4 *

E(T) = ij ij
v+’ yv+p?

as one would expect from elementary considerations.® On the other hand, if the
co-receptor kinetics is very rapid compared to the cognate interaction, many transi-
tions happen during a TCR/pMHC docking, and the lifetime becomes exponential
again, with an effective off-rate determined by the co-receptor binding equilibrium.
Thus (3.19) reduces to

-1
Ery=(—L—. L v 1)
y+e Ty yv+p Tj

g

Simple expressions for the triggering probability are similarly obtained for these
special cases. If the co-receptor is slow relative to the TCR, the s = 0 term in (3.12)
dominates and one finds:

Ptrig =

P Y * *
—Tr/T;) + —— —Tx/T; 3.20
peXP( ®/ J)+-y4_peXp( %/ T}) (3.20)

whereas for rapid co-receptor kinetics one obtains:

o/ Ti+v/T;
/TR +v/Th )

Pyig = exp (—

The parameter y is proportional to the surface density of co-receptor molecules;
if [CD(4—38)] denotes this surface density and K p is the dissociation constant of
the co-receptor—-MHC interaction, the following holds:

y _ _ [CDE—8)]
y+p  [CDG—S)]+Kp

© This presupposes a co-receptor binding equilibrium, which is realistic for CD8/TCR or CD4/TCR
adducts, but may not be realistic for CD8/MHCI or CD4/MHCII couplings, whose stability may
depend on the TCR/pMHC docking.
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Thus, by varying the co-receptor levels, the T cell modulates interaction time and
triggering probability as well as the functional sensitivity Pyie/IE(T). Interestingly,
the effect of increased co-receptor levels is not necessarily to increase Pyig/E(T).
An increase at high co-receptor levels (i.e. [CD(4—8)] > Kp) compared to low
co-receptor levels ([CD(4—38)] <« Kp) is only found if the following condition is

satisfied:

T* T T, T7

R V1), (3.21)
Tr T; Tr T;

This means that, should the co-receptor only exert the TCR/pMHC stabilisation ef-
fect (i.e. Ty = Tg, no threshold effect), an increase of the functional sensitivity is
possible only if T;; < Tg (ligands which satisfy this condition are sub-optimal ag-
onists at [CD(4—38)] <« Kp). This is illustrated in the left panel of Fig. 3.2, which
shows scaled functional sensitivity exp[—Tr/ Tjj](Tr/ T}j) as a function of Tj;/ Tg.
The co-receptor stabilisation effect amounts to a shift to the right in this graph;
it is clear that the TCR’s functional sensitivity to sub-optimal agonists can be en-
hanced by such a shift. The opposite will be true of ligands such that 7;; > Tg (the
so-called heteroclitic agonists). The right panel of Fig.3.2 shows the percentage
co-receptor enhancement obtained when saturating levels of co-receptor are com-
pared to zero levels. It is assumed that ;7 = 27j;, as suggested by the data of the
Sewell group [32]; the leftmost curve corresponds to the case where there is no ef-
fect on the receptor threshold, while the middle curve corresponds to Ty = Tr/2
and the rightmost to Tx = Tg/10. This illustrates that the receptor-level effect en-
larges the range of ligands that are positively boosted by the co-receptor, and that
the receptor-level boost factor T/ Tg need not be much larger than the stabilisa-
tion factor 7j;/ TU* ; van den Berg et al. [37] estimate that this boost is twofold for
the pMHCI/CDS interaction.

For slow co-receptor kinetics, condition (3.21) applies at all co-receptor den-
sities, whereas for rapid kinetics, an enhancement relative to nil co-receptor may
occur even when condition (3.21) is not satisfied; in this case, the functional sensitiv-
ity Pyig /E[T] first increases with increasing co-receptor levels and then decreases at
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Fig. 3.2 Co-receptor-mediated enhancement of functional sensitivity
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higher levels. This effect’ is qualitatively important only for marginally sub-optimal
agonists whose ‘unboosted’ Tj; is lower than, but close to Tg.

The present analysis suggests that T cells can use co-receptor expression lev-
els not only to modulate the functional sensitivity (“avidity”) to a given peptide
ligand, but, moreover, that co-receptor level variation should enable differential reg-
ulation of TCR sensitivity. That is to say: the functional sensitivity for some ligands
goes down while that for others goes up as the T cell up- or down-regulates its co-
receptor. All these ligands have the potential to be good agonists, but at any one
time, the T cell is tuned in on only a few, or just one, of them.

While the above theory suggests the possibility of differential regulation of TCR
avidity, such a phenomenon remains to be experimentally observed. One would
have to find a TCR X and two ligands A and B such that A is a good agonist for X
at low levels of the co-receptor whereas B is a good agonist for X at high levels
of the co-receptor, such that the ordering of functional sensitivities reverses as the
co-receptor levels are varied. Since good agonists at nil co-receptor levels will be
rare and are highly unlikely to be the index ligand through which any given clone is
initially identified, it is perhaps not too surprising that the predicted effect has not
yet been observed.

If it can be confirmed that differential regulation of TCR avidity occurs, there
are two far-reaching consequences: (1) T cells have an — albeit limited — ability
for “avidity maturation” which effectively multiplies the diversity of the repertoire
(cf. [45]), in terms of enhancing its ability to match any pathogenic challenge to a
highly sensitive TCR; (2) costimulation plays a pivotal role in supplying the T cell
with accessory information: in the absence of disease, the T cell should be kept
from tuning in (at least not too strongly) to the ligands it encounters,® whereas the
opposite response is required when the APC carries a salient epitope. The remainder
of this chapter focuses on the latter case, and describes how the unique properties of
the ‘signal 2’ system help shape the T cell response.

Costimulatory Tuning of the Responder Spectrum

The professional APC involved in the initiation of an immune response presents the
harm-associated epitope on the MHC molecule, together with an accessory costim-
ulus (‘signal 2°%) which it transmits via the receptors CD80 and CD86 [54]. The

7 A mathematically equivalent effect is obtained by keeping co-receptor levels constant, but in-
creasing K p; this has been achieved by mutating the «2 domain of the MHCI molecule [43,44],
which interacts with the co-receptor.

8 Since such ligands are “self” or in some cases “harmless non-self”’; co-receptor expression is up-
and down-regulated by, respectively, interferon-y and interleukin-4 [46], which is thought to be
directly involved in modulating the autoreactivity of the quiescent repertoire [47]. Costimulation
also governs CD257 regulatory T cells which are important in maintaining immune tolerance to
autoligands [48].

% Depending on the nature of this costimulus, a naive T cell may induced to undergo cell divi-
sion and differentiation, to take part in an immune response [16, 49, 50]. Alternatively, it may be
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two main'® costimulatory receptors on the T cell are CD28 and CD152 (Fig.3.1);
the former being a key activator and the latter a key attenuator for the activation
of naive T cells [49, 58]. Costimulation through CD28 and CD152 regulates the
expansion of the T cell clones that take part in the immune response [59, 60].

The characteristics of the CD80/CD86—CD28/CD152 costimulatory system are
discussed below. It has been observed that both CD80 and CD86 can interact with
CD28 as well as CD152 [61]. One could interpret this finding as mere redundancy,
or, alternatively, one could regard this as a system which exploits differences in
affinities as a means to transmit information encoded in the CD80/CD86 ratio on
the APC. We analyse this (relatively novel) differential affinity signalling paradigm.

It has been proposed that the CD80/CD86—-CD28/CD152 costimulatory system
modulates the spectrum of functional sensitivities for the antigenic peptide, among
the responding clones [62,63]. This seems plausible, since costimulation is known to
modulate the cellular activation threshold'' [65], and (3.3) suggests a link between
activation threshold and functional sensitivity; Sect. 3 analyses this idea in detail,
based on the following model:

Waet = mapc X M1 cell X Waet (3.22)

where I//V;[ expresses the baseline activation threshold (for a naive T cell interacting
with a mature professional APC) and m apc X mT e is multiplier expressing modu-
lation of the activation threshold. It is assumed here that modulation of I/T/;t by the
APC (mapc) and by the T cell (m7 ;) combine multiplicatively; this assumption,
which forms the basis for our dynamic model, will be examined first.

Differential Affinity Signalling in the CD80/CD86-CD28/CD152
System

Engagement of CD28 potentiates T cell survival, proliferation, and activation [66].
CD28 appears to reduce the cellular activation threshold (W,.) in naive T cells!?

induced to enter an unresponsive anergic state [51], from which it may further differentiate into an
immunoregulatory phenotype [52,53].

10 Another receptor important in T cell priming is CD27, which binds CD70 [55]; CD278 as well
as members of the TNF receptor family are expressed in activated T cells and are important in
regulating the size of the expansion [56,57].

' the absence of CD28, the activation threshold is large and can only be attained by prolonged
stimulation [50] or by high presentation levels of the antigenic ligand [64].

12 CD28-mediated costimulation regulates the number of mitotic events that responding T cells
undergo [67]; acting through phosphatidylinositol 3’-kinase (PI3K) and Akt, the costimulatory
receptor CD28 increases the rate of glucose uptake and glycolysis, preparing the T cell for pro-
liferation [68]. It is unclear whether CD28 can have a direct effect on the TCR triggering rate or
the rate of pMHC engagement [16,69]; CD28 could enhance TCR triggering by Itk/Emt-mediated
activation of tyrosine kinase, as well as by recruitment and clustering of such kinases in membrane
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while CD152 generally counteracts the effects of CD28 [58, 76]; its engagement
increases the cellular activation threshold [77]."* Up-regulation of CD152 is de-
pendent on TCR signalling [63] as well as CD28 [85]; this constitutes a negative
feedback effect which limits clonal expansion and may broaden the avidity spec-
trum among the responding clones by being strongest in high-avidity T cells, which
receive the strongest cognate stimulation [62, 86].

The APC costimulates the T cell through two counter-receptors CD80 and CD86,
each of which interact with both CD28 and CD152. CD80 binds both costimulatory
receptors more strongly than CD86, and, moreover, markedly favours engagement
of CD152 over CD28, whereas the more weakly binding CD86 shows much less
bias [61]. While CD28 has a single binding site for CD80(86), CD152 has two
identical binding sites which exhibit negative cooperativity; the site which binds
first has a much higher affinity for both CD80 and CD86 than CD28’s single
site [61].

To represent these interactions in a simple'* mathematical model, assume that
CD28 has a single binding site for CD80 and CD86, with two distinct affinities ex-
pressed by the two-dimensional dissociation constants Kjg;so and Kpg/ge. For the
CD152 dimer assume two identical, interdependent binding sites. The cooperativity
between binding to one of the sites and the occupancy of the other is represented by
the following two-dimensional dissociation constants: K s, (K{sys6) for binding
to CD80 (CD86) when the other site is still unoccupied, and K7s,q, (K} s,86) for
binding to CD80 (CD86) when the other site is already occupied by either CD80
or CD86.!° At equilibrium, the following conditions then govern the surface densi-
ties of the various species in the area of contact between the T cell and the APC:

microdomains [70-73]. Various T cell activation genes depend on the nuclear factor of activation in
T cells (the transcription factor NFAT). The relevant active form of this intracellular messenger is
unphosphorylated NFAT, localised in the nucleus. The enzyme glycogen synthase kinase-3 (GSK3)
is thought to phosphorylate serine residues on NFAT, which causes it to be exported from the nu-
cleus. It is thought that the general effect of CD28 costimulation is to depress the level of active
GSK3, while CD152 costimulation may elevate GSK3 activity [62,74,75].

13 Engagement of CD152, also known as CTLA-4, also restricts clonal expansion, i.e. the num-
ber of mitotic events following activation [78-81]. Furthermore, CD152 interferes with TCR
signalling, possibly by a direct interaction with the TCR/CD3¢-chain, thus negatively regulat-
ing recruitment of the TCR to kinase-rich membrane microdomains [82, 83]. CD152 can recruit
PP2A-family serine/threonine phosphatases that may attenuate intracellular signalling cascades, or
interfere directly with CD28 by targeting PP2A activity to CD28 [84]. While the cytoplasmic tail
of CD152 contains a binding motif for Scr homology-2 domain containing tyrosine phosphatases,
the involvement of such phosphatases in CD152 signalling remains unclear [77].

14 Spatial aspects related to CD80 dimerization, as proposed by Schwartz et al. [87], are ignored.
15 Collins et al. [61] furnish the following relations between the dissociation constants, based
on 3D measurements: Kzg/go/Kzg/g() = 0.2; K1052/80/K28/8() = 0.0185; K%z/gﬁ/KZSISG =
0.2845; K00/ Kasise = 0.065; Ksye6/ Kasise = 0.725. These values indicate negative co-
operativity: the dissociation constants for the second ligands are over two times higher than the
corresponding first ligand value (i.e. K® as compared to K °).
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[CD28]fl—ee X [CDSO]free = Kzg/g() X [CD28/CD80]
[CD28]fl—ee X [CD86]free = K28/86 X [CD28/CD86]
[CD152]jree X [CD80]ree = K050 X [CD152/CDS0]
[CD152)jree X [CD86)ree = K,y X [CD152/CDS6]
[CD152/CD80)fice X [CD80free = K P50 % [CD152/CD80/CDSO]
[CD152/CD86)fice X [CD80free = K P50 X [CD152/CD86/CDSO)]
[CD152/CD80]fce X [CD86]iree = K syg5 % [CD152/CDO/CDSE6]
[CD152/CD86)fice X [CD86]iree = K syg5 % [CD152/CD86/CDSE]

(3.23)

where square brackets indicate surface densities and ‘free’ means ‘unoccupied’. Let
A, denote the total surface area of the APC, At the total surface area of the T cell,
and Ac the surface area of the conjugate interface. Then the relevant conservation
laws can be written as follows:

|CD28| = A7[CD28]1wec + Ac ([CD28/CD80] + [CD28/CD86])  (3.24)
|CD152| = A7[CD152]5ec + Ac ([CD152/CD80] + [CD152/CD86]

+ [CD152/CD80/CD80] + [CD152/CD80/CDS6]

+ [CD152/CD86/CD80] + [CD152/CD86/CD86]) (3.25)
|CD80| = AA[CD80]srec + Ac ([CD28/CD80] + [CD152/CD80]

+ [CD152/CD80/CD86] + [CD152/CD86/CDS0]

+2 [CD152/CD80/CDS80]) (3.26)
|CD86| = AA[CD86]ec + Ac ([CD28/CD86] + [CD152/CD86]

+ [CD152/CD80/CD86] + [CD152/CD86/CDS0]

+2 [CD152/CD86/CDS6)) (3.27)

where | - | denotes the total number of molecules present on the cell’s surface.
It is straightforward to reduce these equations to a system of only two non-
linear equations, which are readily solved numerically by means of a fixed-point
algorithm.'®

The hypothesis of differential affinity signalling is embodied in the following
three parameters:

CD86
APC o = | | : (3.28)
|CDS80| + |CDS6|
|CD28|
Teell v= : 3.29
% VT epis2) + (cp2g| (3-29)
CDI152| + |CD28|)/4
Teel:APC y = U hal D/ At (3.30)

¥ = (|CD80| + [CD86])/4x

16 The species CD152/CD86/CD80 and CD152/CD80/CDS86 are physically identical, and distin-
guished in the calculations by the order in which they engaged their ligands; the two densities are
added to give the density of the single molecular species they represent.
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The parameter o represents the balance between CD80 and CD86 on the APC. The
APC can influence the nature of signal transmission between APC and T cell by
adjusting o. Similarly, v represents the balance between CD28 and CD152, and
this balance is under the control of the T cell. The third parameter y represents the
balance between CD28/152 and CD80/86; this parameter is jointly determined by
the two interacting cells. The costimulatory status of the APC is expressed by the
following dimensionless parameter:

. — Ks/36
(ICD80| + |CD86])/ A,

The discussion at the start of this section motivates the following assumptions:
(1) both CD28 and CD152, when expressed, make a constitutive contribution to
intracellular processing of the TCR-stimulus; and (2) the strength of the stimula-
tory effect of CD28 (and, similarly, of the inhibitory effect of CD152) depends on
the relative enrichment of these receptors in the T cell: APC contact area, where the
TCR signal arises. These enrichment effects can be expressed as sequestration ra-
tios, defined as the contact area density of all species relative to the density prior to
the cell—cell contact:

ocpas = (ICD28|/ A1) ™" ([CD28]5ee + [CD28/CD80] + [CD28/CDS6])
and

ocois2 & (ICD152]/ Ar) ! ([CD152 e + [CD152/CD80] + [CD152/CD86]
+ [CD152/CD80/CD80] + [CD152/CDS0/CDS6]
+ [CD152/CD86/CD80] + [CD152/CD86/CDS6]) .

This sequestration effect corresponds to the increase in signalling intensity.

The effective stimulation of the T cell depends on the balance between positive
stimulation (due to the combined CD28 species in the cell—cell contact area) and
negative stimulation (due to the combined CD152 species in the cell-cell contact
area), which is expressed by the ratio ocp2sv/(0cpis2(1 — v)). This quantity can be
identified with the multiplier in (3.22) under the following identifications:

_ Qcp2s o v
mapc = ——  and  Mre = ——
ocpis2 (1-v)
that is, the T cell sets the balance between CD28 and CD152 whereas the APC
determines the sequestering ratios by varying « and o. Comparison of the top and
bottom panels in Fig. 3.3 indicates that these two factors combine multiplicatively,
as assumed by (3.22); the effect of changing mr ..y amounts — to a very good ap-
proximation — to a simple scaling. As the left and middle panels of Fig. 3.3 show,
sequestering of both co-receptors decreases with an increasing proportion of CD86,
but at different rates, which leads to either an increase or a decrease of the stimula-
tory balance (right panels), depending on the value of «.
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Fig. 3.3 Differential affinity signalling. Left: CD28 sequestering (0cpas); middle: CD152 seques-
tering (0cpis2); right: strength of stimulation (ocpasv/(0cpis2(1 — v))) all as a function of o.

Ac/Ar = 0.05, Ac/Aan = 0.005, v = 0.9 (top panels), 0.5 (lower panels); y = 1. Curves

for (top to bottom in the sequestering graphs) x = 11—6 é j—w % 1,2,4,8 (lowest curves for lowest

CD80(86) densities). The costimulatory balance (in favour of T cell activation) increases with o
when « is large (i.e. when CD80(86) densities are low)

Evolution of the Responder Functional Sensitivity Spectrum

Clonal expansion involves antigen-driven selection of TCR clonotypes that have the
highest functional sensitivity for the pathogen-derived epitopes presented on profes-
sional APCs [88]. Costimulation through CD28 and CD152 is thought to influence
the shape of the TCR avidity spectrum among the clones responding to a given
pMHC antigen. In some instances, the most efficacious T cell response may be com-
posed of a few (or one) dominating clonotypes of very high functional sensitivity
(a narrow spectrum response), whereas in other cases the immune response needs
to maintain T cell diversity, with a broader spectrum [62]. The professional antigen
presenting cells involved in priming naive T cells may play an active role in guiding
the evolution of the ‘avidity spectrum’ during the primary expansion, employing the
differential affinity properties of the CD80/CD86—-CD28/CD152 system. This sec-
tion describes a model for the dynamics of the ‘avidity spectrum’ which elucidates
the possible roles of APCs and co-stimulation.
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Let w;; denote the functional sensitivity of the interaction between a TCR of
clonotype i and a pMHC ligand of species j:

def Puig (i, J)
Wy = —
)

(the quantities on the right are those for the prevailing levels of co-receptor, not the
‘unboosted’ values; a slight abuse of notation for the sake of simplicity). The aim is
to describe the statistical distribution of wj-values among the TCR clones that are
activated by a given pMHC ligand j. The probability that a T cell is activated during
a given encounter with a professional APC is calculated as follows:

Z .
P(Zjwij > Waet) = ]P’( IS mT““) (3.31)
mapc Wact Wij

(with (3.22)). For the random variable Z; /(m APCI/T/a\Ct), it is convenient and rea-
sonable to choose a log-logistic distribution. With location parameter z and scale
parameter ¥ one then has:

. 1
]P( j/\ - H’ITcell) — (1 + (mTceu?U/Wij)ﬂ)
M apc Wact i

Responding T cells will experience a number of encounters with pAPCs, each of
which may activate the T cell to undergo further proliferation or terminal differen-
tiation. It is believed that a T cell responds to such an activation event by increasing
its activation threshold W, through up-regulation of CD152 [79]. Consider a T cell
with functional sensitivity w;; which has thus far experienced k activating encoun-
ters. The probability that this T cell will be activated in the next encounter is
given by:

0o
Pact(k + 1; W,‘j) = / P (Z‘,-/(mAchm) > m/w,j) dFk(m; Wij) (3.32)
1

which is obtained by conditioning the activation probability, (3.31), on the distribu-
tion Fy, defined as follows:

Fy (m; wy) & P(mcen < m after k encounters, with functional specificity wy;).
If the encounter is successful, the T cell’s threshold multiplier changes as follows:
mr cell(k + 1; WU) =mr cell(k; Wij)fO (Z/ Wij/ Wacl(k; Wij))77 .

Egen et al. [62] proposed that the increment of the activation threshold depends on
the strength of the TCR signal; this effect is represented in the above equation by
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the non-negative parameter 1 (for n = 0, the Egen effect is absent and the threshold
increase is always by a factor fo > 1).

Equation (3.32) gives the activation probability for a T cell with a given func-
tional sensitivity w;;; the probability that any of the T cells that were activated in the
k previous rounds is activated during the next encounter is found by conditioning
on the distribution of functional sensitivities among T cells that have been activated
k times. Denote this distribution as G (w). Then:

Pk + 1) = / Paalle + 1:w)d Gy (w) (333)

where

def
Gr(w) =

w
i | Pt (334)
The initial condition for this recurrence relation is the distribution Go(w) of func-
tional sensitivities among antigen-inexperienced T cells'’; this distribution has been
described in detail by van den Berg & Rand [89]. To complete the mathematical
description, a recurrence relationship for Fj must be found. Straightforward proba-
bility considerations give the following expression:

m/ fo 7 1/n
Fk+1(m§Wij) =1- / P —/A > Ll (M) dFk(/L;W,j)
1 mAPCWacl Wij 12

[ (s Y dRin | s 439

m/fo mapc Wact Wij Pacl(k; Wij)

The initial condition Fo(m; w;;) is the degenerate distribution at m = 1 for all val-
ues of w;;. Equations (3.32), (3.33)—(3.35) constitute a system of integro-difference
equations which can be solved numerically.

By the avidity principle, a T cell whose TCR has comparatively low functional
sensitivity w;; for the relevant ligand can still be activated if the presentation level Z ;
is sufficiently high. Professional APCs (mature dendritic cells) that activate T cells
from the naive repertoire can, in principle, prevent T cells from exploiting this avid-
ity advantage, by correlating high presentation levels with high multiplier (mpc)
values,'® whereas a negative correlation would emphasise the avidity advantage. In
the present model this correlation is expressed by the parameter . The variance of

17Tt is reasonable to assume that this function does not depend on the ligand at hand. This naive
distribution G has the following features: most of its probability mass is concentrated near zero
avidity (w; =~ 0 for almost all clonotypes i, as the vast majority of naive T cells have no or
very little sensitivity for any given ligand j), while a minute fraction of the probability mass is
concentrated near the maximum avidity; these latter cells constitute likely responders.

18 Such correlations require a connection between the antigen presentation pathways and co-
receptor expression; such a correlation may be induced by DC maturation, which sees an increase
in presentation levels as well as a shift from CD80 to CD86 expression [90, 91], which appears to
depend on stimulation of CD80 [92].
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the random variable Z ; /(mapc Wa:[), which represents the modulated influence of
the APC, is minimised (i.e. ¢ is large) when high m apc correlate positively with Z ;,
so that a high threshold tends to cancel out the higher number of ligand molecules
presented to the T cell. By contrast, a negative correlation tends to increase this
variance (i.e. to lower ¢). The effect of this parameter is shown in Fig. 3.4. The top
panel shows that large variability of Z; / (mapc W;[) gives rise to a broad spectrum
centred on W/};t.

During successive rounds of activation, this spectrum shifts toward the right,
that is, becomes enriched with TCRs with greater functional sensitivity.'” When
the variance is low (Fig. 3.4, bottom panel) the spectrum is just the naive spectrum,
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Fig. 3.4 Functional sensitivity spectra among responding clonotypes: the effect of APC variability
alone. w = 0.25; fo = 1; n = 0; 9 = 10, 50, 500 (top to bottom); abscissa is scaled functional
sensitivity 7grwj;; ordinate is probability density

19 Generally, the avidity spectrum among the responders at any given moment in time is a weighted
sum of the spectra for k = 1,2, 3,.... However, if the number of divisions between activation
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left-truncated at I//I-/a:l. It is interesting that successive rounds do not lead to an enrich-
ment of strong TCRs in this case; this is because clones just above I//V;t are likely to
be re-activated in later rounds when the APC-related variance is low, whereas only
those with high functional sensitivity are secure when APC-related variance is high.

Thus, selection for high functional sensitivity can be driven by APC variability
alone, in the absence of threshold increases on the part of the T cell. Figure 3.5
shows the effect of changing f from 1 to 1.05. As one would expect, this improves
the drive to select stronger clonotypes. At low APC variability the threshold eventu-
ally becomes too stringent for any of the responding T cells to receive stimulation,
whereas high APC variability ensures that a left tail of intermediate-strength TCRs
is retained.
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Fig. 3.5 Functional sensitivity spectra among responding clonotypes: the effect of activation-
dependent threshold increments. w = 0.25; f, = 1.05; n = 0; ¥ = 10, 50, 500 (top to bottom);
abscissa is scaled functional sensitivity 7Tgrw;;; ordinate is probability density

events is sufficiently large, the actual spectrum will be dominated by that corresponding to the
latest activation round.
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The effect of stimulation-dependent threshold increments is demonstrated in
Fig. 3.6, for various positive values of n. As Egen et al. [62] predicted, the effect
of ‘penalising’ high-strength TCRs is to make the spectrum more uniform, so that
it acquires the appearance of a plateau. Moreover, the spectrum converges quickly
after ~10 activation rounds.

The spectrum Gy is continuous probability density function, effectively describ-
ing an ensemble of identically prepared immune systems; in any one of these
systems, the spectrum will be a histogram describing a relatively small*’ number
of responding clones. This number is Poisson distributed®! with parameter
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Fig. 3.6 Functional sensitivity spectra among responding clonotypes: the effect of stimulation-
dependent threshold increments. w = 0.25; fy = 1;n = 0.1, 0.5, 0.9 (top to bottom); ¥ = 50;
abscissa is scaled functional sensitivity 7Tgrwj;; ordinate is probability density

20 The detectable expansion consists of on the order of 10 clones [93]; clonotypical heterogeneity
typically has a “quasi-species” structure with only one or a few clones constituting the bulk [94];
the number of clones initially activated may be up to an order of magnitude larger.

21 As may easily be shown using a technique called compounding.
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k
Mk = NC l_[ Pacl(z)
=1

after k rounds; here, N¢ denotes the number of TCR clonotypes in the naive reper-
toire. The number of clones whose functional sensitivity exceeds a given value @
is similarly Poisson distributed, with parameter px (w) = (1 — Gg(w)) g after k
rounds (clearly px = px(0)). An open problem is to specify the parameters I/T/;t,
Jfo, 1, and ¥ so that g (w) is maximised, given w.
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Chapter 4
T Cell Activation and Function:
Role of Signal Strength

Asma Ahmed and Dipankar Nandi

Abstract Optimal T cell function lies at the heart of an efficient adaptive response.
T cell activation is a highly regulated process and it is important to ensure that acti-
vation occurs in the proper context to prevent the development of harmful conditions
such as autoimmunity and excessive inflammatory responses. One of the important
factors in this process is the strength of the primary activating signal which is de-
livered upon ligation of the T cell receptor (TCR) with the major histocompatibility
complex (MHC) encoded class I or class II molecules bearing the antigenic peptide.
The strength of signal (SOS), in turn, depends on several factors: the affinity/avidity
of the TCR for the MHC—peptide complex, the time of engagement, antigen con-
centrations, costimulatory interactions, etc. This chapter reviews the effects of SOS
on thymocyte selection and education, T cell costimulation, proliferation, survival,
formation of T helper T g 1 and T 52 subsets, responses to infectious agents etc. The
role of the SOS in modulating diverse T cell responses is well appreciated. However,
further studies are required to understand the mechanisms by which SOS signals
are relayed from the TCR to downstream effectors to modulate T cell activation and
responses.

Introduction

Higher vertebrates have complex immune systems which allow them to survive in an
environment teeming with infectious agents and also to combat internal abnormali-
ties such as tumors. Immune cells, irrespective of whether they belong to the innate
or adaptive arms, remain quiescent in a healthy individual and swing into action
only when the body is under threat, for example during infections. Usually, the cells
belonging to the innate arm, e.g. neutrophils and macrophages, are the first to come
in contact with an invading microbe. These cells produce non-specific effectors,
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for example free radicals, to contain the infection. In addition, antigen processing
cells (APC) process and present peptides derived from microbial proteins to initiate
the T cell response. Unlike the initial non-specific innate immune response, the
adaptive immune response is relatively delayed but highly antigen-specific due to
the presence of clone specific B cell receptors or T cell receptors (TCR) on B cells
and T cells respectively. The subsequent activation and expansion of specific T and
B cell clones followed by the secretion of effector molecules, for example antibod-
ies secreted by plasma cells, cytokines by CD4™ T cells, granzymes and perforins
by CD8" T cells, play important roles in protecting the host. Subsequently, im-
mune responses are down modulated (involving death of activated cells) although
some memory B cells and T cells survive. Clearly, the ability to induce a specific
immune response against antigens is an important hallmark of the immune system
in higher organisms.

T cells are one of the most versatile immune cells and perform several functions
ranging from providing B cell help, killing infected/tumor cells and regulating im-
mune responses. The study of T cells becomes important because any perturbation in
their function leads to severe disorders. Hyperactive T cells are observed in several
autoimmune diseases such as multiple sclerosis, insulin dependent diabetes melli-
tus etc. On the other hand, reduced T cell function makes individuals susceptible to
pathogens and tumors as observed in patients with the acquired immunodeficiency
syndrome. The importance of the T cell response is highlighted by the fact that im-
munotherapy is very often targeted towards modulating T cell function, for example
suppressing the response during autoimmunity, hypersensitivity and transplantation
or boosting it for successful vaccination purposes.

The adaptive immune response mediated by T cells begins in the secondary lym-
phoid organs with the interaction of dendritic cells (DCs) bearing surface antigen
loaded MHC molecules with specific TCR bearing T cells. A productive interaction
leads to clonal expansion and differentiation of naive T cells into effector T cells.
Depending on their surface homing receptors, these effectors migrate to specific tis-
sues, under the influence of chemokine gradients, to perform their functions. There
are several outcomes downstream of T cell activation and multiple factors deter-
mine the differentiation program of naive T cells, whether they proliferate or die
and, finally, whether a productive T cell response clears the infection/tumor. One of
these factors is the strength of the activating signal delivered to the cell upon interac-
tion of the TCR with the MHC—peptide complex on APCs. The strength or potency
(weak or strong) of the signal is, primarily, determined by the affinity/avidity of the
TCR-MHC interaction, the duration of the interaction, the dose of antigen available
and presence of costimulatory signals. This chapter will give a brief introduction
to T cell activation and will delve deeper into the mechanisms by which the SOS
impacts cell fate decisions in the thymus and influences T cell function and death in
the periphery.
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The T Cell Receptor

A T cell recognizes processed antigenic peptides presented on MHC class I or class
IT molecules with the help of specific cell surface receptors known as the TCR. It is
important to point out that the TCR is different from the B cell receptor in that it does
not bind antigen alone but only does so in the context of self MHC molecules. This
attribute is known as self-MHC restriction, which was first described by Doherty and
Zinkernagel [1]. The TCR is a heterodimer of two disulphide linked chains, either
af or y§. About 95% of TCRs are a heterodimer of & and 8 chains and a small frac-
tion (2-5%) expresses the y§ heterodimer. On account of having an immunoglobulin
like domain structure, TCRs are considered members of the immunoglobulin super-
family. Each @ and B chain has an amino terminal variable (V) and a constant (C)
region much like an antibody. In addition, each chain has a transmembrane region
of 21 or 22 amino acids and a very short 5—12 amino acid long cytoplasmic tail. In
humans the o and § gene segments are located on chromosome 14 and the 8 and y
segments on chromosome 7. The generation of functional TCR molecules is due to
rearrangement of V and J segments of the o and y chains and V, D and J segments
of the B and § chains. This mechanism is similar to antibody gene rearrangements
and occurs in the thymus.

As TCRs contain a very short cytoplasmic tail, signal transduction after MHC—
TCR binding occurs via the CD3 molecule. In fact, TCRs are associated with the
CD3 complex (Fig.4.1) consisting of five invariant chains which form two het-
erodimers (y¢ and €8) and one homodimer ({¢). The cytoplasmic tails of the CD3
chains contain special immunoreceptor tyrosine-based activation motifs (ITAM)
which interact with tyrosine kinases and play important roles in signal transduc-
tion. The sequence of a typical ITAM is YXXL/IX¢—sYXXL. y, § and ¢ have single
ITAMs while ¢ has three in a row, taking the tally up to ten ITAMs per TCR-CD3
complex.

Apart from the TCR-CD3 complex, T cells express several other important sur-
face molecules, the most vital among them being the CD4 and CD8 co-receptors,
which are also members of the immunoglobulin superfamily. T cells are, broadly, di-
vided into two subsets: CD4 ™ T cells recognize antigen in context of MHC class II,
and CD8™ in context of MHC class I (Fig.4.2). CD4 is a monomer whereas CD8
is a heterodimer of « and § chains. These co-receptors perform two functions: first,
their extracellular domains bind regions on the MHC molecule thus strengthening
interaction with the TCR. Second, their intracellular domains associate with the
Src family tyrosine kinase, Lck, and this association helps in signal transduction.
Mice lacking CD4 generate reduced MHC class II restricted T cells, produce less
Interleukin (IL)-2 upon activation and are unable to mount an efficient antibody
response [2, 3].
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Fig. 4.1 Structure of the T cell receptor—-CD3 complex. Most T cells express a cell surface TCR
consisting of a heterodimer of & and S chains bearing variable antigen binding (blue) and constant
(pink) regions. The TCR does not transduce a signal upon antigen binding and this function is
performed by the associated CD3 complex comprising of €, y, 6 and ¢ chains. CD3 subunits have
long cytoplasmic tails bearing ITAMs (green) which assist in signal transduction

Signalling Pathways Leading to T Cell Activation

T cell activation is initiated when a naive circulating T cell comes in contact with
an APC expressing on its surface the cognate MHC—peptide complex. The TCR
binds to the MHC—peptide complex and a cascade of signalling events is triggered,
the end result of which is the secretion of IL-2 and clonal expansion (Fig.4.3).
Events downstream of the binding of the TCR upon activation can be classified as
early and late. Early responses include formation of the immunological synapse, a
specialized structure at the contact point(s) between the T cell and APC, phosphory-
lation and activation of kinases and other proteins, massive remodelling of the actin
cytoskeleton, changes in cytosolic Ca?T concentrations and, finally, activation of
transcription factors such as NF-AT and their translocation into the nucleus [4].
Subsequent events include transcription and translation of genes, such as IL-2,
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Fig. 4.2 Optimal T cell activation requires a combination of primary and secondary signals.
CD471 and CD81 T cells recognize antigenic peptides in context of MHC class IT and MHC class T
molecules, respectively. CD4 and CD8 co-receptors stabilize the TCR-MHC peptide interaction
which sends signal 1 to the T cell. Binding of CD28 on T cells with CD80/CD86 on the APCs
or target cells delivers signal 2 which drives T cell cytokine secretion and clonal expansion. Also
important is the interaction between CD40 on APCs and CD40L on CD41 T cells for T dependent
B cell responses and isotype switching

CD8 ! CDS0/CD86

appearance of activation markers such as the CD25 (the high affinity IL-2 receptors),
DNA replication and cell division. Further down the line are events which lead to
differentiation of cells into effector and memory types and the eventual clearance of
effector cells to maintain homeostasis.

The first signalling event downstream of the TCR is the phosphorylation of
the ITAMs by the kinases Lck and Fyn. Multiple pathways might be operating
in coupling the binding of TCR and the cognate-MHC—peptide complex to phos-
phorylation of ITAMs in CD3: First, the proximity of CD4 linked Lck to the
TCR-CD3 complex may be responsible. Second, conformational changes in the
CD3 polypeptides induced by TCR ligation may make the ITAMs more accessible
to phosphorylation. Alternately, the exclusion of Csk and other phosphatases may
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push the momentum towards phosphorylation. Phosphorylated ITAMs now serve as
docking sites for Src homology (SH)2 domain containing protein tyrosine kinases,
e.g. Zeta associated protein 70 kDa (ZAP70), spleen tyrosine kinase (Syk), and a
Tec family member, IL-2 induced tyrosine kinase (Itk) and Receptor like kinase
(RIk) [4,5].

A dramatic increase in cytosolic Ca?* due to release from ER stores is one of
the early events which takes place after ligation of the TCR-CD3 complex with the
cognate MHC—peptide complex. The trigger for release of Ca?™ from smooth endo-
plasmic reticulum stores is the binding of IP3 (generated by the activation of PLCy)
to its receptors (Fig.4.4). Cytosolic Ca**amounts in a resting T cell are about
0.1 mM but increase to 0.5-2mM as soon as the smooth endoplasmic reticulum
Ca?" stores are opened. However, these stores are soon exhausted and this depletion
acts as a trigger for Ca?™ from the extracellular milieu to flow into the cell through
Ca?* release activated channels (CRAC). This process known as capacitative Ca?*
entry ensures that cytosolic Ca™ levels are maintained at higher than basal amounts,
e.g. ~0.2-0.5 mM, which is required for sustained T cell activation [6].

The Immunological Synapse

The immunological synapse (IS) is a highly specialized structure which is formed
at the interface of a T cell and APC. Molecules present in the IS are the TCR,
CD4 associated with Lck, CD28, PKCO and LFA-1 on the T cell side and pMHC,
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Fig. 4.4 A simplified overview of the Ca*T signalling pathway. First, signals downstream of the
TCR-CD3 complex lead to generation of InsP3. Second, the InsP3 binds to its receptors on the
SER leading to release of Ca?™ in to the cytosol. Soon, the intracellular Ca> T stores are exhausted.
Third, this depletion is sensed and conveyed by stromal interaction molecule 1 (STIMI) to the
plasma membrane CRAC channels, which now open and allow Ca?t influx from extrcellular en-
vironment. Fourth, sufficient Ca?T is now present to bind calmodulin and enable activation of
phosphatase calcineurin. Finally, calcineurin dephosphorylates cytosolic NF-AT (cNF-AT), leads
to its nuclear translocation and nNF-AT, along with other transcription factors, enhances transcrip-
tion of /L-2

CD80/CD86 and ICAM-1 on the APC side. Circulating T cells which have not
encountered antigen are symmetrical, round and non-polarized. Also, their adhe-
sion molecules are in a low activity state. However, when they migrate to inflamed
tissue or extravasate into secondary lymphoid tissue they become polarized, possi-
bly under the influence of chemokine gradients. These T cells now have a leading
F-actin rich lamellipodium and a myosin-II rich uropod (lagging end), migrating
with a speed of 5-10 pm/min. The lamellipodium is five- to tenfold more sensi-
tive to antigen than the uropod. Enhanced actin polymerization at the leading edge
also leads to the activation of integrins. The chances of adhesion and formation of
a synapse between the T cell and APC bearing the agonist MHC—peptide complex
are now increased manifold. Recognition of agonist MHC—peptide complex by the
TCR leads to elevation of Ca?™", which serves as a stop signal for T cell migration.
Formation of the IS begins with a few TCR-MHC-peptide complexes and, subse-
quently, these clusters come together to form a supra-molecular complex [7].
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Costimulation

Optimal T cell activation, in addition to the signal generated by TCR-MHC—peptide
complex ligation, requires a second costimulatory signal. This interaction involves
costimulatory receptors like CD28 on the T cells and their ligands CD80/CD86 on
APC:s. This is known as the two signal hypothesis [8] and is required to drive T cell
proliferation and effector functions. In addition, it prevents anergy, a state of unre-
sponsiveness during a secondary encounter with antigen [9]. In vitro experiments
performed to study anergy primarily characterized it as a condition of reduced pro-
liferation and cytokine production (mainly IL-2) upon restimulation of T cells. The
situation is slightly different in vivo where the phenomenon of un-responsiveness is
termed as adaptive tolerance and is required to prevent autoreactivity.

CD28, a 44 kDa glycoprotein homodimer, is a member of the immunoglobulin
superfamily and is constitutively expressed on T cells [10]. Structurally, it has a
leader sequence, an extracellular domain comprising of three complementarity de-
termining regions (CDRs), a transmembrane region and an intracellular domain. Its
ligands are CD80 and CD86 expressed on APCs. CD86 is constitutively expressed
on APCs but CD80, almost absent on resting cells, is upregulated during inflamma-
tion. The ligand binding motif of CD28 consists of MYPPY which is present in the
CDR3 region and shows high conservation in CD28 from different species. CD28
is present at the immunological synapse and functions mainly as an amplifier of
TCR signals [11] and enhances recruitment and redistribution of lipid rafts [12]. It
boosts Ca?* signalling and prolongs T cell-APC interactions [13]. The signalling
molecules, Itk, PI3K and PLCy, assemble on the CD28 intracellular tail to form a
signalling unit [13]. Consequently, CD28 signalling leads to higher nuclear levels
of transcription factors like NF-AT and AP-1 and enhanced transcription of 7/-2.
Also, CD28 signalling stabilizes IL-2 mRNA levels. All this leads to enhanced IL-2
levels and cell cycle progression in cells which receive both the first and the second
signal [14]. CD28 prolongs T cell responses as is highlighted by the phenotype of
Cd28~/~ mice which can initiate but not sustain T cell activation [15].

CD28 also enhances T cell survival by upregulating anti-apoptotic proteins such
as Bcl-2 and BcelXy, and inhibiting FasL expression [16]. CD28 apart from amplify-
ing TCR signals can generate its own unique signal. After it has bound to its ligand,
Tyr residues on its cytoplasmic tail get phosphorylated and lead to the recruitment
of PI3K [17]. Among other molecules that get activated downstream of CD28 are
Tec, Itk [18] and the guanine nucleotide exchange factor Vav-1 (involved in actin
polymerization) and PLCy1 [19]. A comparative study of expression in cells ac-
tivated with TCR alone, CD28 alone or the two together showed both quantitative
and qualitative differences in genes modulated by CD28 [11].

While CD28 is the prototypic positive costimulatory receptor, at the other end
of the spectrum is the cytotoxic T lymphocyte associated molecule 4 (CTLA4 or
CD152). Interestingly, CD28 and CTLA4 bind to the same ligands, i.e. CD80 and
CD86. CTLAA4, a 33-45kDa glycoprotein, binds to CD80 and CD86 but with a man-
ifold higher affinity than CD28. Also, CTLA4 is expressed only on activated T cells,
unlike CD28. CTLA4 is a negative regulator of T cell responses as concluded from
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the phenotype of Ctla4~/~ mice which die from hyperproliferation of lymphocytes
by 4-6 weeks of age [20,21]. Reducing Ctla4 expression in mice using small in-
terfering RNA causes onset of diabetes in mice [22]. This is important in light
of the fact that several autoimmune disorders map to mutations in CTLA4 in hu-
mans [23]. Several mechanisms have been proposed to explain the inhibition of
T cell activation by CTLA4. These can be broadly classified into two categories:
(1) by competing with CD28 for CD80/CD86 ligands or (2) generating its unique
set of signals. CTLA4 inhibits the TCR and CD28 induced raft formation, asso-
ciation with the tyrosine phosphatase SHP-2 and the serine/threonie phosphatase
PP2A which downregulates MAPK and ERK signalling. Increase in TGFS secre-
tion and increment in indoleamine dioxygenase (IDO) activity have been observed
with CTLA4 ligation. More recently, CTLA4 has been shown to decrease T cell—
APC dwell times by modulating intracellular Ca?T levels. Overall, the net effect of
CTLAA4 ligation results in a decrease in IL-2 production and cell cycle progression
[24-27].

Some other positive costimulatory receptors are CD40, inducible-costimulator
(ICOS), OX40, 4-1BB, signalling lymphocyte activation molecule (SLAM). CD40
is expressed on B cells and other professional APCs and binds to its ligand CD40L
on T cells (Fig.4.2) [28]. Productive T dependent B cell responses and isotype
switching requires CD40-CD40L interactions [29]. Cd401~/~ mice show reduced
antigen-induced inflammatory responses, e.g. lower IgE and IgG amounts, and are
unable to clear some microbial infections, e.g. Leishmania major [30,31]. ICOS
is a member of the B7 family and binds to its ligand ICOS-L. It is induced on ac-
tivated T cells and Jcos™/~ mice have impaired germinal centre and Peyer’s patch
formation [32,33]. OX40 is a member of the tumor necrosis factor (TNF) family and
binding to its ligand, OX40L, sustains proliferation of T cell effectors. OX40 sig-
nalling enhances IL-2 and T2 cytokine production. Ox40~/~ mice have impaired
effector and primary response to keyhole limpet hemocyanin [34]. Also, OX40 sig-
nalling dampens Treg function, increases symptoms of autoimmunity but lowers
anti-tumor responses [35]. 4-1BB (CD137) is another tumor necrosis factor fam-
ily member which binds to its ligand 4-1BBL to enhance CD4" and CD8" T cell
responses and promote IENy production. Importantly, 4-7bb~/~ mice have defec-
tive recall CD8™ responses to some viruses like influenza [36]. Binding of CD27, a
member of the TNF family, to its ligand CD70 promotes proliferation and survival
of activated T cells. Constitutive activation of CD27 results in immunopathology
during autoimmunity and viral infections [37]. Signalling lymphocyte activation
molecule (SLAM) deficiency reduces IL-4 and marginally increases IFNy produc-
tion in mice [38].

Other negative regulators of T cell activation, apart from CTLA4, are pro-
grammed death (PD)1 and B and T lymphocyte attenuator (BTLA). PD1 is a B7
family member and binds to its ligand PD-L1 and PD-L2. Pdl ~/~ mice develop
lupus-like disorders [39]. BTLA is also a B7 family member and a negative regula-
tor of B and T cell responses and Brla~/~ mice develop exacerbated experimental
autoimmune encephalomyelitis (EAE) [40]. A regulatory role has recently been as-
signed to the T-cell Ig domain and mucin domain (TIM) family members TIM-1, 2, 3
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and 4. TIM1, 2 and 3 are expressed on T cells while TIM4 is primarily expressed on
APCs [41]. TIM-3 was identified as T g 1 specific molecule responsible for regulat-
ing autoimmunity [42]. TIM-1, 3 and 4 can costimulate T cells, regulate apoptosis,
tolerance and clearance of apoptotic cells [41]. Links have been found between TIM
proteins and allergy, asthma and autoimmunity [43].

The proper functioning of positive and negative costimulatory molecules is cru-
cial for an optimal T cell response and is highlighted by the phenotypes of mice
deficient in any of these molecules. It is important to point out that costimulation
ensures that T cell activation occurs in a proper context e.g. during an ongoing im-
munological response and this safeguards against development of autoimmunity.

SOS and Its Intracellular Modulators

Two important factors during T cell activation are the affinity/avidity of the TCR
for the MHC—peptide complex and the time for which the two are engaged. Both
these factors along with the availability of co-stimulation determine the overall SOS
that is delivered to a T cell during activation. T cells express heterogeneous TCRs
which may bind to the same antigen with different affinities. Therefore, T cells get
activated with varying SOS, which has a profound impact during thymic education
and modulate T cell responses in the periphery with respect to proliferation, cytokine
secretion, survival and death. It is thought that optimal T cell activation requires
sustained signalling for several hours. To achieve this, TCRs need to be continuously
engaged or triggered at periodic intervals (serial triggering). The model of ‘temporal
summation’ proposes that each short-term TCR-MHC-peptide interaction leads to
accumulation of intracellular signalling intermediates until a threshold for optimal
activation is reached [44].

One of the signalling intermediates robustly modulated by signal strength is in-
tracellular Ca®™. The stronger the signal, the higher is the Ca?* flux [45]. Also,
intracellular amounts of Ca?™ and ROS increase with the SOS in primary mouse
CD4™ T cells [46]. The TCR interacting molecule (TRIM), a transmembrane adap-
tor protein expressed on T cells, stabilizes TCR surface levels after engagement
with MHC—peptide complexes and leads to higher intracellular Ca>* amounts, lead-
ing to enhanced activation [47]. The other intracellular integrator of signal strength
is ERK. There is evidence to suggest that strong signals lead to greater but tran-
sient ERK activation. On the other hand, weak signals result in lower but sustained
ERK phosphorylation [48]. Proteins such as Fos which have an ERK targeting DEF
motif are sensitive to transient versus sustained ERK activation and can trigger
gene transcription in accordance with the SOS [49]. Disruption of Mekk2 (an up-
stream MAPK kinase) in mice leads to enhanced IL-2 and IFNy. In these mice
JNK activation, but not ERK activation, is affected and it is possible that MEKK
acts as a negative regulator of TCR signal strength by activating JNK [50]. An-
other negative regulator of TCR signal strength was identified as cyclophillin A, a
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peptidyl-prolyl isomerase (Ppia). Ppia interacts and inhibits Itk and Ppia~/~ mice
have elevated levels IgE, develop allergic disorders and their T cells are hypersensi-
tive to activation [51].

Other cell surface molecules that are regulators of signal strength are CD5 and
the co-receptor CD8. CD5 is a negative regulator of TCR signalling and, hence,
protects against autoimmunity. T cells from Cd5~/~ mice are hyperresponsive to
anti-CD3 mediated activation [52]. CDS5 expression levels are also controlled by
the avidity of the TCR-MHC-peptide interaction and a strong interaction leads to
higher surface amounts of CDS5. Massive deletion of thymocytes in transgenic mice
expressing high affinity TCR in a Cd5~/~ background is observed due to a shift
from positive to negative selection [53]. Unlike CDS5, CD8 expression is inversely
proportional to TCR signal strength. Experiments done to study this relationship
found that, as the affinity of TCR and self MHC—peptide complexes increased, CD8
surface expression is reduced. It is possible that reducing surface CD8 amounts
lowers the avidity of T cells for self ligands and prevents autoimmunity [54].

Although the molecular mechanisms and the intracellular modulators of signal
strength are not completely understood, progress has been made in identifying
several molecules that influence the SOS. However, the modulation of expression
of these molecules under varying SOS and their interaction with other molecules
affecting T cell responses need to be understood in greater detail. Nevertheless, the
impact of SOS on almost every aspect of T cell life is well established and discussed
below.

Role of Signal Strength in Cell Fate Decisions in the Thymus

The thymus is a bilobed structure located just above the heart comprised of support-
ing cells which constitute the stroma and T cells, in various stages of development,
known as thymocytes. Progenitor bone marrow cells migrate to the thymus under
the influence of chemotactic factors by day 11 of gestation in mice and the eighth
or ninth week in humans. Once in the thymus, progenitor T cells undergo a process
of maturation and education to yield mature single positive (SP) CD41 or CD8'T
cells that enter the peripheral circulation (Fig. 4.5). Approximately 99% of thymo-
cytes die by apoptosis during this process and only mature T cells that recognize
peptides presented in the context of either MHC class I or MHC class II are selected.
The importance of the thymus is highlighted in children suffering from DiGeorge
syndrome which results from deletions in chromosome 22q11.2. Similar deletions
in mice chromosome have highlighted the importance of the transcription factor
Tbx1 in this disorder. These children have an underdeveloped or completely absent
thymus and, along with several other defects, are highly susceptible to viral, fungal
and protozoan infections [55].

The development and maturation of thymocytes can be tracked by following the
changes in expression of cell surface molecules. During the early stages of differ-
entiation, thymocytes lack surface expression of CD4 and CD8 and are referred
to as CD4~CD8™ or “double negative (DN)”. A small fraction of CD4~CD8~
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Fig. 4.5 A simplified overview of thymic development and education. T cell precursors that enter
the thymus undergo a rigorous programme of development and education involving positive and
negative selection to emerge into the periphery as 8 T cells or o TCR bearing CD4T or CD8+
T cells

thymocytes make productive rearrangements of their y and § chain genes to ex-
press surface yé TCR together with the CD3 complex. yé T cells represent about
0.5-10% of peripheral T lymphocytes and are quite abundant in the skin, intestinal
epithelium and pulmonary epithelium in mice. These cells are capable of recogniz-
ing a broad range of peptide and non-peptide antigens but not necessarily in the
context of the MHC class I and class II molecules. They are believed to be members
of the earliest cell-mediated immune system and may have evolved to protect the
integrity of epithelial tissues [56].

A vast majority of thymocytes productively rearrange o and 8 TCR genes to ex-
press on their surface the 8 TCR-CD3 complex. TCR gene rearrangement occurs
in a manner similar to antibody gene rearrangement in B cells with the help of RAG-
1 and RAG-2 and other proteins required for DNA recombination. During these
stages, thymocytes also acquire surface CD4 and CD8 molecules and are referred to
as CD4TCD8™ or “double positive (DP)” thymocytes. This stage is important for
thymic education as only those thymocytes which recognize self MHC molecules
are selected by a process known as “positive selection.” Thymocytes which bind to
self-MHC molecules with very high affinity are deleted by a process known as “neg-
ative selection.” This process is important as it reduces the risk of autoimmunity and
is well illustrated by the master transcription factor, AIRE, which is responsible for
expression of several self proteins in the thymus. The deficiency of AIRE results in
a multi-organ autoimmune disease known as autoimmune polyglandular syndrome,
type 1 [57]. Thymocytes that fail these selection processes die by apoptosis. The
MHC restricted self tolerant double-positive thymocytes lose either CD4 or CD8
co-receptor to become mature SP CD4% (Tg) or CD8% (Tc¢) T cells and enter the
peripheral circulation [3].
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Apart from positive and negative selection, two more cell fate decisions relevant
in terms of the SOS in the thymus are: (1) the development of T cells express-
ing either y§ TCR or the o TCR and (2) differentiation of af TCR™ cells
into CD4™ or CD8™ lineages. In both these cell fate decisions, the SOS deliv-
ered via the TCR plays crucial roles. Precursor cells in the thymus consisting of
c-kitTCD44TCD25TCD24TCD4~CD8" can differentiate into different lineages
and the DN stage is divided into 4 stages (1-4). As development progresses, thy-
mocytes express less c-kit, CD44, CD25 and CD24, acquire Thyl, CD4, CD8 and
begin to rearrange their TCR genes. Commitment to the T cell lineage takes place at
the DN stage 3 once precursors acquire Thyl and express a fully functional preTo
(an invariant o chain of the TCR which is expressed early in the thymus) and rear-
range their y and § chains. This is also the stage when the choice between the two
development programs, i.e. «f and y§, needs to be made. Those cells which fail to
productively rearrange their TCR genes or do not express surface TCR die by apop-
tosis. Two models have been proposed to explain how the choice between the o
TCR versus the y§ TCR is made. The first model is the stochastic/selection model
according to which cell fate specification is made independent of signals induced
by the TCR, i.e. fate is decided before fully functional TCRs (y¢$ and preTa ) are
expressed [58]. The second is the instructive model in which fate is decided based
on distinct signals generated through the preTa and y§ TCRs. One of the distin-
guishing factors in the generation of these two TCRs is SOS and the development
of one lineage should affect the development of the other, according to this model
[58-60]. The SOS model for lineage commitment was put forward by Hayes
et al. [61]. Using a model where fate specification was entirely mediated by the y§
TCR, this group showed that increasing signal strength through the y§ TCR en-
hanced the development of yé T cells. Conversely, weakening of signal strength
resulted in the development of T cells belonging to the o lineage. Similar results
were reported by another group [62]. One way in which signal strength through
y8 and preTo could be altered is through differences in their surface expression.
Reduction in y§ TCR surface expression skewed development towards «f T cells.
Concomitantly, increasing expression of the y§ TCR increased the development
of y8 T cells and reduced the development of a8 T cells [63]. Also, reducing y3
TCR signalling by reducing the number of ITAMs on the CD3¢ chain enhances « 3
commitment [64]. It has been shown that the magnitude of signalling downstream
of the y§ TCR is greater compared to that generated by the pre-TCR [65].

A biochemical basis for the lineage commitment has also been explained in terms
of ERK activation. A strong signal as delivered by the y§ TCR leads to sustained
activation of ERK, while transient ERK activation by the weak pre-TCR signal
is more conducive for proliferation and transit of cells to the DP stage [61, 62].
Sustained ERK activation leads to enhanced induction of early growth response fac-
tor (Egr), a Zn?* finger transcription factor. Egr proteins are induced by both y§
and pre-TCR signals; however, the level of induction is regulated by the SOS. Over-
expression of Egr leads to more y§ T cells and a decrease in a8 T cell numbers.
Downstream to Egr is Id3, a helix-loop-helix (HLH) protein. Induction of Id3 is
found to be concomitant with y§ T cell lineage commitment [62]. One mechanism
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by which Id3 nudges cells towards the y§ T cell lineage is by suppressing the activ-
ity of basic helix-loop-helix E proteins which are required for VDJ recombination
by the TCR B chain [60, 62].

In addition to differing SOS in determining a8 ‘vs’ y§ cell fate, a role for Notch
signalling has also been proposed. According to this model, moderate pre-TCR sig-
nals synergize with Notch signals enabling generation and proliferation of «ff T
cells. While strong 6 TCR signals are sufficient for the lineage commitment of y§
T cells, weak y3 TCR signals can synergize with strong Notch signals to give rise
to af cells. In other words, it appears that development of &8 T cells depends more
on Notch signalling compared to y§ T cells [66].

After commitment to the a8 lineage, DN stage 4 cells become CD4+TCD8™" or
DP in addition to the expression of the TCR B chain. The « TCR chain now un-
dergoes rearrangement. In fact, DP cells continue to express RAG proteins for an
extended period of time and multiple V/J recombinations occur at the same « locus
so that several o8 TCRs can be produced per cell. DP thymocytes in the cortex
bearing the 8 TCR undergo selection processes that are dependent on signals
generated through the binding of TCR to the MHC—peptide complex. The affin-
ity/avidity model for positive and negative selection is the most widely accepted.
o TCRs which have low to intermediate affinity for self MHC, undergo positive se-
lection and differentiate into CD4 1 or CD8* SP cells while those TCRs which have
high affinities are negatively selected and undergo clonal deletion. There are several
lines of evidence that indicate that the SOS through the TCR determines the fate of
DP thymocytes. Cells which are unable to engage MHC or do so with a very low
affinity die by neglect, a fate which befalls most DP thymocytes. Those which en-
gage MHC with an intermediate intensity are positively selected and those that bind
with too high an intensity are either clonally deleted, become anergic or differentiate
into regulatory T cells (Treg), which are peripheral immune regulators [67]. Those
thymocytes that survive the rigorous selection process and are MHC restricted are
present in the medulla and enter the peripheral circulation as mature T cells.

The binding affinities of TCR-MHC peptide complexes are reflected in the signal
strengths generated downstream of the TCR which trigger specific programs leading
to either positive or negative selection. Experiments have shown that by varying the
SOS, positive and negative selection decisions can be altered. In a study to exam-
ine the role of TCR signal intensity on positive and negative selection, TCR signal
potency was varied by substituting transgenic TCRs having 1, 2, 3 or no ITAMs
on the CD3¢ chain. Interestingly, decreasing the signalling ability in cells with low
affinity led to reduced selection. However, in cells which bound self-MHC with very
high affinity and would normally have undergone clonal deletion, decreasing TCR
signal potency by varying the number of ITAMs increased the chances of positive
selection [68]. Low affinity ligands generate the p21 form of CD3 ¢ which has only
2/3 ITAMs phosphorylated while high affinity ligands lead to phosphorylation of
all 3 ¢ ITAMs resulting in formation of the p23 form. The signalling molecules and
adaptor proteins recruited by p21 and p23 are different and may explain the dif-
ferences in the distinct signalling programs triggered during positive and negative
selection [69].
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The activation of ERK has been shown to integrate signal strength and cell fate
decisions in the thymus. Positive selecting ligands trigger low but sustained ERK
activation whereas negative selecting ligands lead to strong but transient ERK ac-
tivation. Also, in foetal thymic organ cultures, negative selection stimuli can be
converted to positive selection signals by use of pharmacological inhibitors of ERK.
One of the reasons behind differences in ERK activation during positive and nega-
tive selection is thought to be the time for which TCRs remain on the surface. High
affinity/negative selection ligands induce rapid internalization of TCR. However,
during low affinity interactions TCRs stay on the surface for longer times, lead-
ing to prolonged ERK activation which is essential for survival and proliferation
of positively selected DP thymocytes. Sustained ERK activation leads to phospho-
rylation and ubiquitin mediated proteosomal degradation of pro-apoptotic protein
Bim. On the other hand strong and transient ERK activation leads to upregulation of
genes such as Nur77 that lead to apoptosis [70-72]. Another line of evidence sug-
gesting the involvement of TCR-Ras-MEK-ERK pathway is the fact that targeted
deletion of RasGRP, a guanine nucleotide exchange factor for Ras, has a profound
effect on positive selection by virtue of reduced ERK activation [73]. A germline
knockout of ERK1 having a conditional deletion of ERK2 at the DN stage re-
sulted in developmental arrest at the DP stage, suggesting a role for ERK in positive
selection [74].

The process of commitment to either the helper (CD4™) or cytotoxic (CD8™) lin-
eages is crucial and DP thymocytes downregulate either CD4 or CD8 co-receptors
to become MHC class II or class I restricted. This process could be random and
independent of TCR signals such that cells which down regulate the mismatched
co-receptor are eliminated. However, the stochastic model could not explain why
constitutive co-receptor expression could not rescue cells which had mismatched
CD4 or CD8 expression. The instructive model, on the other hand, suggests that
commitment to the CD4 and CDS lineage occurs in response to specific TCR sig-
nals [75]. Lck associates with CD4 more compared to CD8 and this may lead to
stronger signals being delivered by MHC class II compared to MHC class I re-
stricted cells [76]. Strong and weak signals lead to selective downmodulation of
either CD4 or CD8. Evidence suggests that weak signal stimulated cells develop into
CDS8™ T cells whereas strong signals stimulate differentiation into CD4™" T cells.
Mice expressing an inactive Lck contain MHC class II restricted cells differenti-
ating into CD8™ T cells and constitutively active Lck can direct MHC-I restricted
cells to differentiate into the CD4 lineage [77]. Lineage commitment can also be de-
cided by signal duration where, longer and shorter duration signals lead to CD4 and
CDS lineage commitment respectively [78]. Another model termed the ‘kinetic sig-
nalling model’ proposes that the duration of TCR signalling rather than the strength
plays a key role in determining the CD4™" or CD8™ T cell lineage. However, in this
case too, the quantity of signal delivered to a cell is the deciding factor. What this
model proposes is that all DP cells transiently terminate CD8 expression so that they
become CD41TCDS8". If this transient population of cells receives sustained TCR
signalling, it develops to form CD4™ cells. If the signalling is of a short duration,
transcription of CDS is reinitiated, CD4 is silenced and CD8 ™" SP cells develop [79].
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Consistent with this model, mice which expressed CD4 under the control of CDS§
E8i1 enhancer, showed progressive downmodulation of CD4 after the DP stage.
Positive selection of MHC-II restricted cells was normal but the differentiation of
these cells was skewed towards the CD8 subtype by virtue of co-receptor downmod-
ulation [80].

Overall, the strength or duration of signal plays crucial roles during thymic de-
velopment and education: First, the conversion of DN cells to 4§ T cells or o T
cells; second, positive and negative selection of @8 TCR* DP cells and, finally, the
generation of mature CD41 or CD8™ SP T cells.

Signal Strength Influences Ty 1/T 2 Dichotomy

The encounter of an antigenic peptide presented on MHC class II triggers a series
of events leading to the differentiation of CD4™ T cells into different Tz subtypes,
which are characterized by distinct cytokine secretion patterns. Two primary sub-
types identified are T 1 which secrete IFNy, IL-2, lymphotoxin 8 and T g2 which
secrete IL-4, IL-5, IL-6 and IL-13 [81, 82]. Another recently identified effector sub-
setis T g 17 which, primarily, produces IL-17. Their generation is regulated by IL-6
and TGFp [83] and their development is regulated by the master transcription fac-
tors Stat3 and RORy [84]. Ty 17 cells are crucial for combating several pathogens.
Mice lacking IL-17 are highly susceptible to infection with Klebsiella and Candida.
More importantly, Tz 17 cells have been associated with several autoimmune con-
ditions such as multiple sclerosis and rheumatoid arthritis. Indeed IL-17 deficient
mice develop less severe experimental autoimmune encephalomyelitis [85].

Tw1 responses are crucial for clearing intracellular pathogens while Ty 2 re-
sponses are effective during parasite infections and antibody production. Abnormal
or excessive Ty activation leads to autoimmune disorders (T g 1) or atopy (Tg2).
The local cytokine milieu, co-stimulatory interactions, antigen concentration and
strength of TCR signals are the factors which govern Ty differentiation. The
cytokine environment existing during priming has a far reaching effect on differ-
entiation. The presence of IL-12 skews differentiation towards Tz 1 whereas IL-4
results in greater Ty 2 responses [86]. The SOS, in terms of duration of engage-
ment and antigen dose, is a key determinant in Tg fate decision [87, 88]. T cells
from allergic individuals produce IL-4 only when stimulated with a low dose of al-
lergen. When the allergen dose is increased, IL-4 production is reduced and may
form the basis for allergen immunotherapy [87]. On the other hand, IL-12 coupled
with a short duration TCR signal is sufficient for Ty 1 polarisation; however, pro-
longed TCR signalling is required for T 52 responses [88]. A weak intensity signal
provided by a low affinity altered peptide ligand favors T g2 whereas optimal con-
centrations of an agonist peptide which transduce a relatively strong signal favors
Ty 1 differentiation [89-91]. Agonist peptides trigger strong and more sustained
signalling events such as CD3¢ phosphorylation, Ca?>* mobilization, JNK and
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MAPK activation as compared to altered peptide ligands [92-95]. The magnitude of
Ca’*fluxes downstream of weak and strong TCR signals is an important determi-
nant of T subtypes. Weak TCR stimulation induce Ca?" signals that promote IL-4
production whereas strong signals induce MAPK activation that induce IFNy [96].
Consistent with this observation, inhibition of MAPK and JNK in both human and
mouse T cells promotes T g2 and inhibits Ty 1 differentiation [97]. Constitutive ac-
tivation of p38 MAPK promotes Ty 1 but expression of a dominant negative form
of p38 MAPK inhibits T g 1 differentiation [98]. Stimulation of JNK1 deficient cells
with a combination of anti-CD3 + anti-CD28 enhances Tg2 differentiation [99].
JNK?2 deficiency enhances T2 differentiation but suppresses Tg 1 primarily due
to a lack of upregulation of the IL-12R2 subunit [100].

The key transcription factors required for Ty 1 differentiation are T-bet and Stat4
and those involved in T g2 differentiation are Stat6, c-Maf and GATA-3. T-bet and
GATA-3 are master regulators of Ty 1 and Tg2 differentiation respectively [86].
Over expression of T-bet induces T2 cells to make IFNy and T-bet™/~ mice have
impaired Ty 1 differentiation, show increase in T2 cytokines and develop asthma
like symptoms [101, 102]. On the other hand, deletion of GATA-3 leads to Ty2
cytokine defects [103]. Stat4 is an amplifier of IL-12 signals and can induce Ty 1
differentiation even in absence of TCR signals, whereas Stat6, activated by IL-4, in
turn is essential for activation of GATA-3 [82, 86]. However, the transcription fac-
tors that are primarily modulated by the SOS belong to the NF-AT class. Activation
and nuclear localization of NF-AT is dependent on the Ca®* signal. Stronger Ca™
signals ensure longer nuclear dwell times for NF-AT. The SOS regulates amounts
of NF-ATp (NF-ATc2 or NF-AT1) and NF-ATc (NF-ATcl or NF-AT2) in the nu-
cleus. Strong signals as opposed to weak ones lead to more NF-ATp accumulation
in the nucleus, which promotes GATA-3 suppression and Tg 1 differentiation. Al-
tered peptide ligands on the other hand have low NF-ATp but sufficient NF-ATc in
the nucleus to drive IL-4 transcription and T g2 differentiation. Both IL-4 and IL-2
have been shown to be essential for Tg?2 differentiation in response to low dose
antigenic peptide. Cells receiving low intensity signals upregulate GATA-3 which
can, in turn, enhance its own levels. GATA-3, along with IL-2 activated Stat5, drives
IL-4 transcription and T i 2 differentiation [104].

Co-stimulation through CD28 has not been found to independently contribute
to Ty differentiation. The addition of anti-CD28 enhances cytokine secretion but
does not change the kind of cytokines secreted. However, the ability of anti-CD28
to enhance IL-4 production in cells which receive a low intensity signal results in
greater differentiation of T g 2 differentiated cells [91,95]. However what does have
a qualitative effect on cytokine pattern is interaction between LFA-1 and ICAM.
Blockade of this interaction promotes T g2 whereas increasing the LFA-1-ICAM
interaction promotes T 1 development due to a sustained Ca?* signal [105, 106].
Overall, it appears that SOS, along with other factors, is important during Ty cell
differentiation. This aspect is relevant during T i responses as the dose and potency
of the antigen clearly modulate immune responses.
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Role of Signal Strength in Treg Function

Treg cells are important in the maintenance of peripheral tolerance. They have
been characterized as a subset (5-10%) of CD4™ T cells expressing high levels
of CD25, the IL-2R« chain, and are capable of suppressing in vivo and in vitro T
cell responses [107]. The primary function of Treg cells is to regulate autoimmu-
nity and depletion of this population in mice has been shown to precipitate several
autoimmune disorders. Injection of CD4TCD25" cells reduces symptoms of sev-
eral autoimmune diseases such as colitis, gastritis, insulin dependent autoimmune
diabetes and thyroiditis in mouse models [107, 108].

Treg cells do not proliferate or produce IL-2 in response to TCR mediated stim-
ulation [109]. Most Treg cells are CD4 ™, express the transcription factor Foxp3 and
can be divided into two groups: natural Treg (nTreg) and induced Treg (iTreg). The
former arise in the thymus whereas the latter are derived from peripheral CD25™
SP CD4* T cells under the influence of IL-2 and TGFB. Both express high levels
of CD25, glucocorticoid-induced tumor necrosis factor inhibitor (GITR), CTLA4,
CCR4, and CD62L [110]. Tregs are CD45RB!Y (mice) and CD45RO™Y (humans),
a sign that they are pre-activated [110]. Apart from the site of their generation, the
conditions that give rise to natural and induced Tregs are quite different. nTregs are
the result of strong TCR signals delivered by self peptides in the thymus [111]. Also
required for their generation are strong costimulatory signals because, in the absence
of CD28, the numbers of nTreg are reduced [112—114]. On the other hand, iTregs
arise in the periphery due to weak or suboptimal primary and secondary signals
[115,116]. However, absolutely essential in this case is CTLA4 signalling because
mice lacking CTLA4 do not have this category of Tregs [117]. IL-2 is the cytokine
that is crucial for generation and maintenance of Treg cells [118] as the expression
of Foxp3 is dependent on IL-2 signalling [119]. Indeed, I/-27/~ mice suffer from
fatal autoimmunity [120]. Treg cells are thought to mediate their suppressive effects
via direct cell—cell contact. Numerous mechanisms, including secretion of suppres-
sive cytokines IL-10 and TGFp, repression of IL-2 transcription and induction of
the tryptophan depleting enzyme indoleamine 2, 3 dioxygenase in target cells, have
been proposed to explain their mode of action [121].

Tregs, when isolated from peripheral blood, are anergic. As they have immense
therapeutic potential, the possibility of expanding them in vitro would be of great
benefit. What has been found is that TCR and costimulatory signals that drive pro-
liferation of naive CD4™" T cells are insufficient for propagation of Tregs bearing
very high avidity TCRs for self antigens. Apart from strong TCR signals, Tregs re-
quire high intensity CD28 signals for expansion, but high amounts of IL-2 cannot
substitute for CD28 signalling [122]. These results are consistent with results ob-
tained with a superagonist anti-CD28 that selectively increased Treg numbers and
their suppressive activity in rats suffering from EAE. In fact, treatment with this an-
tibody was found to confer protection against EAE and was proposed as a therapy
for treating autoimmune disorders [123].

Signal strength, apart from controlling Treg expansion, also dictates resistance
or susceptibility to Treg mediated suppression. Using an in vitro model, it has been
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shown that human T cells became more and more resistant to Treg suppression as
the SOS, in terms of anti-CD3 mode (soluble ‘vs’ plate-immobilised) and antigen
concentration, was increased [124]. Using this information, a model was proposed
according to which Tregs suppress T cells which receive low intensity signals but
not those that are activated with a stronger signal. The former would be the case
of autoreactive T cells binding to self-peptides and the latter of T cells binding
antigenic peptides derived from pathogens. This mechanism might help Tregs to
control autoimmunity and at the same time avoid suppressing pathogen specific T
cell responses that are essential for the host [125]. Another mechanism by which
Treg function is suppressed during infection is by IL-6 secretion by DCs in response
to Toll like receptor (TLR) ligands. Depletion of CD257 cells restores effector T cell
priming in -6/~ mice, suggesting a role for this cytokine in suppression of Treg
function [126]. This aspect is important during the generation of immune responses
during infections.

Role of Signal Strength in Effector and Memory
Phenotype Delineation

Retaining memory long after an infection has been cleared is an important hallmark
of the adaptive immune response. The frequency of a particular CD8™ T cell clone
in a normal healthy individual is around 1 in 100,000. Once a clone is exposed to
a specific antigen, it undergoes a burst of expansion dividing several times so that
its numbers increase by about 50,000-fold. After expansion these cells migrate to
inflamed tissue, perform effector functions such as cytokine secretion and cytolysis.
Once the infection is cleared and the antigen is no longer present most (90-95%)
effectors die by apoptosis to maintain homeostasis and prevent damage to self tis-
sue. However, some survive and develop a memory phenotype and are capable of
providing protection during subsequent infections. This entire program of expan-
sion of effector cells and commitment to the memory phenotype requires 2-3 days
after first encounter with antigen. Memory T cells are much faster in responding to
an antigenic challenge compared to naive T cells. Unlike naive T cells, a fraction
of memory cells known as effector memory cells (CD62L'°CCR7™) resides in non-
lymphoid mucosal sites so that they can encounter antigen immediately. The other
subset is the central memory cells (CD62LMCCR7V) that reside in secondary lym-
phoid tissue. The balance between effector and central memory cells is dependent
on the dose of antigen and frequency of TCR stimulation [127, 128].

It is unclear whether effector and memory differentiation are coupled. Experi-
ments where effector cells were tagged and then tracked showed that these tagged
effectors appeared in the memory population [129]. However, in some cases it has
been seen that conditions during priming dictate effector/memory differentiation.
A combination of a primary and co-stimulatory signals in presence of cytokines
such as IL-12, IL-21 and IFNea/f early on during infection promotes effector cell
generation while the primary and secondary signals in absence of an inflammatory



94 A. Ahmed and D. Nandi

milieu, when antigen concentrations are lower, reduce the differentiation of memory
cells [130, 131]. Also important during memory phenotype acquisition is help from
CD4™" cells. CD8" memory cells which form without CD4 ™" help are qualitatively
poor, do not respond efficiently to secondary antigenic challenge, and die by ac-
tivation induced cell death (AICD). CD4™ T cell interaction with DCs generates
chemokines that attract CD8™ cells to appropriate niches where they can receive
the entire gamut of signals essential for differentiation into the memory phenotype.
CD4™ T cells are essential for long survival of memory cells as CD4 knock-out
mice show gradual decline in memory CD8™ cells [127].

Qualitatively good and functional memory cells arise only under conditions of
optimal antigen dose. Chronic infection conditions, such as infection with My-
cobacterium tuberculosis or human immunodeficiency virus (HIV), result in the
persistence of antigens for a very long time. This condition leads to unresponsive
effector cells that are ‘exhausted’ and do not give rise to functional memory cells
but undergo deletion [132]. The degree of CD8™ T cell exhaustion depends directly
on the persisting antigen load [127, 133] and with increasing antigen dose, CD8"
effector T cells undergo more rounds of cell divisions and the frequency of memory
cells progressively decreases. Exhaustion results from interaction of programmed
death-1 (PD-1) with its ligand PD-L1, which is highly expressed on chronically in-
fected cells [134]. This line of therapy i.e. blockade of PD-1-PD-L1 interactions,
is being pursued to boost immune responses during vaccination and immunother-
apy [127,135].

Another important factor in memory cell generation is IL-7 because, in the ab-
sence of signalling by this cytokine, memory cells do not form in mice [136].
Memory cell precursors can be identified by the presence of IL-7R [137]. What has
also been found is that memory cell characteristics i.e. IL-7Ra expression, prolifer-
ation and expansion in response to IL-7 via a PI3K dependent signalling pathway
are acquired as a function of increasing signal strength. However, the ability to pro-
liferate and secrete IL-2 in response to TCR stimulation decreases when high signal
strengths are used for priming. These results demonstrate that qualitatively good
memory cells arise when priming is done at intermediate signal strengths [138].

Long lived CD4% memory cells are very high avidity clones suggesting that,
during differentiation, cells which receive the strongest stimulus acquire the mem-
ory phenotype. The SOS during priming has a profound impact on the generation
of memory CD4™" T cells. This was shown using a model of adoptive transfer
in which transgenic SMARTA cells specific for I-A®-restricted GPs;_go epitope of
lymphocytic choriomeningitis virus were injected into normal C57BL/6 mice and
challenged with either the virus or Listeria monocytogenes expressing the viral pep-
tide. When these mice were challenged with virus, SMARTA cells along with the
endogenous viral specific CD41 T cells expanded normally, contracted and de-
veloped into long lived memory cells. However, when mice were injected with
a recombinant Listeria monocytogenes secreting GPg_gp, unlike the endogenous
C57BL/6 CD4 population, SMARTA cells failed to develop memory cells after the
initial expansion. Also, post expansion SMARTA cells had high Bim and low Bcl-2
levels and eventually died by apoptosis. Compared to the endogenous CD4™" T cell
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population SMARTA cells had lower affinity TCRs and the signals they received
during priming were, most likely, sufficient to drive proliferation but insufficient for
memory differentiation [139].

SOS Modulates the Outcome of Costimulatory Interactions

As mentioned earlier, CD28 by binding to CD80/CD86 molecules delivers the cos-
timulatory signal essential for clonal expansion of T cells and preventing anergy.
The strength of the CD28 signal can alter responses to weak and strong TCR sig-
nals. Increasing the strength of CD28 costimulation can change a weak signal and a
strong signal into a strong and super strong signal respectively [140]. On the other
hand, it has also been shown that absence of CD28 signals affects blastogenesis
and frequency of cell division equally in T cells activated with a weak and strong
signal [141].

As described earlier, several lines of evidence and the phenotype of Crla4~/~
mice suggest that CTLA4 is a negative regulator of T cell activation. On the other
hand there are several reports that suggest that there could be a degree of plasticity in
CTLAA4 responses: First, CTLA4-CD80/CD86 interactions were found capable of
costimulating T cells [142]. Second, CTLA4 could be converted from a negative to
a positive costimulator by use of a recombinant single chain Fv ligand [143]. Third,
CTLA4 lacking the cytoplasmic domain was found to costimulate IL-2 production
in T cell hybridomas [144]. It has been found that the SOS is a key determinant
of effects downstream of CTLA4. Using an in vitro system where CD4™ T cells
were activated with varying SOS, it was found that CTLA4 function switches from
positive to negative in terms of IL-2 production and cell cycle progression as the
strength of the primary signal is increased [145, 146]. The downstream effectors of
CTLA4 in this system of study were found to be Ca?* and reactive oxygen species
(ROS) whose intracellular levels were found to be directly proportional to the SOS.
CTLAA4, under both weak and strong activation conditions, increased intracellular
Ca?* and ROS levels but with distinct outcomes: T cells activated with a weak
signal possess low amounts of Ca?>* and ROS and CTLA4-CD80/CDS86 interac-
tion enhances activation. However, cells activated with a strong signal already have
substantially high levels of ROS and Ca?* and their further increase by CTLA4—
CD80/CDS86 interactions lowers cell cycling [46].

It is possible that the plasticity displayed by CTLA4 in vitro also has physiolog-
ical roles. In a pool of heterogenous T cells, CTLA4 has differential effects: T cells
from multiple sclerosis patients when stimulated with myelin basic protein in the
presence of CTLA4 blockade showed unequal expansion of high and low affinity
clones. CTLAA4 ligation enhances expansion of clones with low affinity TCRs but
inhibits that of high affinity TCRs [147]. In another in vivo mouse model of EAE,
immunization with a disease antagonist peptide along with CTLA4 blockade leads
to lowered frequency of clones reactive to the disease agonist peptide [148]. Taking
these results together, it is possible that CTLA4 inhibits expansion of high affinity
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TCR clones which might dominate the T cell response. It also enhances expansion
of low affinity clones which may promote the generation of a broader cross re-
active immune response that may play important roles to clear rapidly mutating
pathogens [149].

SOS Controls Survival and Death of T Cells in the Periphery

Circulating naive T cells are fairly long lived owing to cytokines such as IL-7, IL-6
and IL-15. When T cells encounter antigen, they undergo a phase of rapid expan-
sion which enables them to perform their effector functions and clear the infection.
Expansion is followed by contraction where most effectors are deleted to maintain
homeostasis and prevent conditions such as autoimmunity. From the expansion to
the contraction state, T cells become increasingly susceptible to apoptosis. There
are two apoptotic pathways operating during the contraction phase: activation in-
duced cell death (AICD) and activated T cell autonomous death or ACAD [150].
The former relies on extrinsic death signals transmitted through surface death recep-
tors such as Fas (CD95) and TNFR1 and occurs when pre-activated cells undergo
secondary stimulation. The role of CD95 in T cell homeostasis is observed in Ipr
(mutated CD95 or Fas) and gld (mutated CD95L or FasL) mice which suffer from
autoantibody production and excessive lymphoproliferation. On the other hand,
ACAD relies on death signals arising from the mitochondria. Death in this case
depends on the ratio of pro- and anti-apoptotic proteins. However, both AICD and
ACAD pathways converge on caspase 3 activation and eventual cell death [150,151].
One of the factors that regulates resistance and sensitivity to death during expan-
sion and contraction is the cytokine milieu. IL-2, which is an important cytokine
during the expansion phase, is also responsible for priming cells for death by mod-
ulating expression of pro-apoptotic factors such as c-FLIP and CD95L [152]. IFNy
limits expansion of activated cells and promotes apoptosis by upregulating caspases
[151, 153]. Once antigen is withdrawn, T cells become susceptible to death by ne-
glect and their survival depends on how well they are able to respond to survival
signals provided by ubiquitous cytokines IL-7 and IL-15. This ability of T cells to
survive post the expansion phase is termed as ‘T cell fitness’ and is directly propor-
tional to the SOS [154]. Human and mouse CD4" and CD8 cells activated with
a weak activating signal expand but die by neglect as soon as the antigen is with-
drawn because they are unable to respond to IL-15. On the other hand, cells which
receive a relatively strong signal not only proliferate during the expansion phase
but also survive in vitro and in vivo even in absence of the signal by upregulating
the anti-apoptotic protein, BclXy In addition, IL-15R expression is enhanced so
that the response to IL-15 survival signals continues. Together, these mechanisms
ensure these cells are ‘fit’ [154]. However, there can be conditions where signals
can be weaker or stronger than those that are used. In some cases, T cells become
anergic whereas in other cases the cells die due to excessive activation [155-157].
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Anergy

aff T cell differentiation yoT cell differentiation Negative selection
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CD8' T cdll differentiation CD4' T cell differentiation Cell death and clonal deletion
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CTLA-4 mediated proliferation CTLA-4 mediated attenuation
Sensitivity to Treg suppression Resistance to Treg suppression

Memory cell generation

Fig. 4.6 Summary of the effects of signal strength on T cell differentiation and function

Summary

The relative SOS perceived by a T cell is translated into differential amounts of
intracellular mediators, e.g. Ca?t, ERK etc, which leads to distinct responses. Con-
sequently, these changes decide the fate and nature of T cell responses in terms
of differentiation into various subsets, survival and death (Fig.4.6). During thymic
differentiation, immature thymocytes which receive strong TCR signals are more
likely to become y8 T cells compared to a8 T cells. CD4TCD8™ thymocytes that
express low amounts of the &8 TCR and bind to self peptide-MHC complexes with
very high affinity, i.e high SOS, are negatively selected and die by apoptosis. This
process reduces the risk of auto-reactivity in the periphery. Only those thymocytes
that bind with the “right” affinity to self peptide-MHC complexes are positively
selected. Once again, SOS plays a role and those thymocytes that receive a strong
signal are likely to differentiate into CD41 T cells whereas those that receive a
weaker signal differentiate into CD8 T cell. Only SP thymocytes are mature and
enter the peripheral circulation.

In the periphery, a combination of TCR signal strength and local cytokine mi-
lieu determine Ty 1 and T g2 differentiation pathways. Strong signals drive Ty 1
whereas weak signals result in generation of Tg2 cells. During an ongoing im-
mune response, T cells activated with a strong signal are better equipped to survive
during the contraction phase and develop into memory cells compared to cells that
are primed with a comparatively weaker signal. There can be signals that are too
weak or too strong to drive productive T cell responses. In case of the former, cells
become unresponsive or anergic and the latter usually results in cell death. This
implies that a T cell should receive the optimal amount of signal (as determined
by antigen dose, receptor affinity and occupancy) for the desired response. This
aspect becomes important during vaccination and autoimmune disorders. There-
fore, the intensity/potency of the TCR signal is a simple and elegant mechanism to
regulate several T cell processes. It is possible that modelling of T cell responses
taking into account the role of SOS may be an important criterion to predict in
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vivo T cell responses. Further experimental verification of these modelling profiles
will be important in devising better immunotherapeutic strategies to enhance T cell
responses.
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Chapter 5
The Cyton Model for Lymphocyte Proliferation
and Differentiation

Cameron Wellard, John F. Markham, Edwin D. HawKins,
and Phillip D. Hodgkin

Abstract We discuss a stochastic model for lymphocyte population dynamics
based on the interaction of sub-cellular mechanisms responsible for cell death, di-
vision and differentiation. Competition between these mechanisms determines the
fate of an individual, and their stochastic nature allows a range of outcomes, gener-
ating the large-scale diversity that is characteristic of an immune response.

Mathematically the function of each mechanism can be expressed as a prob-
ability density function for the time for the particular event to occur, and it is
the parameters that define these distributions that are the free parameters of the
model.

We formulate the problem as a branching process, and derive an expression for
the probability generating function for the number of live cells of each type in all
divisions, as a function of time. This allows the calculation of arbitrary moments for
the live cell numbers, giving quantification not just of the mean system behaviour,
but of the random fluctuations that are a consequence of the stochasticity of the
underlying mechanisms.

Introduction

In this chapter we present a mathematical model for lymphocyte proliferation and
differentiation based on the notion that individual cellular processes are controlled
by independent molecular mechanisms. On a molecular level these mechanisms are
incredibly complex, however we find that for the purposes of describing their effect
on cell dynamics it is sufficient to take a statistical approach. In this way we can
ignore the complex molecular pathways responsible for apoptosis and simply use
an empirically derived probability density function (PDF) for the observed death
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times of a particular cell type. Thus we summarise each cellular function as a PDF
for the time-to-transformation, and each process is considered to act independently,
competing to determine the fate of the cell.

This approach naturally encompasses the observed diversity of immune re-
sponses, with the stochastic nature of the independent mechanisms ensuring dif-
ferent trajectories for individual cells, generating a diverse response from the
stimulation of a homogeneous population.

We begin with a discussion of the cyton model of the population dynamics of B
lymphocytes. Here we use the model to derive a set of integro-differential equations
for the expected number of cells in each division as a function of time. We apply the
theory of branching processes to the model, and derive a recursion relation for the
probability generating function (PGF) for the population size in each generation.
In addition to the mean population dynamics, the PGF allows description of the
fluctuations around the mean due to the stochastic nature of the cell dynamics. To
illustrate this we derive a set of integral equations for both the mean, and the stan-
dard deviation, of the population size of each generation as a function of time. We
introduce differentiation into the model, showing how the modules used to describe
division and death can be generalised to include various differentiation processes.
We then use the branching process approach to derive equations for the population
dynamics of each of the subsets defined by the differentiation process. Finally, we
briefly discuss some of the issues involved with direct simulation of such a system
using an agent-based approach.

Proliferation

CFSE and Cell Population Dynamics

The study of cell proliferation has been facilitated by the use of the fluorescent
dye Carboxyfluorescein diacetate succinimidyl ester (CFSE) [1]. CFSE is uniformly
distributed throughout the cellular cytoplasm and on division is distributed approx-
imately evenly between the two daughter cells. Thus each generation of cells has
approximately half the CFSE of the previous generation, and this will appear half
as bright when measured using flow-cytometry.

Stochastic Lymphocyte Division

CFSE studies have shown an element of randomness in the proliferation of lympho-
cytes. In a typical assay a system of lymphocytes are stained with CFSE and then
stimulated, the CFSE intensity is measured at various time-points after stimulation
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Fig. 5.1 Sample CFSE intensity profiles showing the asynchronous progression of cells through
divisions

using flow-cytometry. An example profile is shown in Fig.5.1. Immediately after
stimulation the profile shows one distinct peak, indicating that none of the cells have
divided. At a later time however, it is generally found that the profile shows sev-
eral distinct peaks, indicating that not all of the cells in the culture have undergone
the same number of divisions. This implies some element of randomness control-
ling the process of cell division [2, 3], with the division time distributed according
to some probability density function (PDF), that may be characteristic of both the
cell type, and the experimental conditions.

Death and Division as Competing Random Processes

Similar to division, cell death is a stochastic process. This has been demonstrated
by measuring the survival curve of a system of cells and observing that individual
cells die in a non-deterministic fashion, and that the death times of a system of
cells describe some PDE. Often this PDF is, for mathematical convenience, treated
as exponential however evidence suggests that a right-skewed distribution gives a
better fit in many circumstances [4].

For the purposes of modelling, the processes of death and division can be treated
as competing random events. On stimulation, each cell randomly draws a time-to-
die and a time-to-divide from the relevant PDFs, and the earliest of these determines
the fate of the cell. On division these process clocks are reset, possibly from new
PDFs characteristic of the division number of the cell.
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Division Destiny and Progressor Fraction

There is evidence that there exists a mechanism that intrinsically limits the maxi-
mum number of division rounds that cells will undergo in a response. Experiments
performed on cells in which the apoptotic machinery has been disabled show that
after a certain number of divisions, cells stop dividing and enter a state of quies-
cence [5]. The division destiny, the ultimate number of division reached by a cell in
a response, is not uniform but is usually distributed over several generations.

Division Dependence

In general the mechanisms for death and division within a cell seem to be dependent
on the number of division rounds that the cell has undergone since initial stimula-
tion. In particular, the average times for both death and division are much longer
for undivided cells, than they are for cells in subsequent generations. Further, the
progressor fraction, that is the fraction of cells that are division capable, is strongly
dependent on the generation number, tending to decrease as cells progress through
the response.

The Cyton Model

The cyton model [4] is a stochastic model for lymphocyte proliferation based on
these observations; namely that

— Death and division are stochastic processes, characterised by a PDF for the time
to divide or die respectively

— These processes are independent, and compete to determine the fate of the cell

— Division events reset the mechanism responsible for these processes

— Only a fraction of cells in each division are division capable

— These mechanisms are division dependent

Let y;, called the progressor fraction, be the fraction of cells that, after i divisions,
are capable of further division. Let piB (1), pl.D (t) be the PDFs for the division and
death times of cells in generation i. Given that a cell arrives in generation i, the
probability that it dies at a time between ¢ and ¢ +dt after the i th division is ql.D (t)dt,
where ql.D () equals piD (#) multiplied by the probability that no cell division occurs
before #:

t
2 (0) = pP(0) (1 - / p}*(wdc); G.1)
0



5 The Cyton Model 111

Similarly, the conditional probability of cell division at a time between ¢ and ¢ + dt
after the 7 th division is

B () = vipP (1) (1 - / p}’(r)dr) . 5:2)
0

The cyton model can thus be expressed as a set of integro-differential equations for
the expected number of cells 7; (¢), in division 7, as a function of time:

io(t) = =no(0) (49 (1) + 4 (1) (53)
and, fori > 1,2,...,

ni(t) = 208 (1) —nB (1) — P (1),

t
5 (0) = m (0)gP (1) +2 / i (0B (- Dy,
0
WP (1) = ni (0)gP (1) +2 / t A (0)gP (t — 1)dr. (5.4)
0

In this form the model is completely general. With judicious choice of the forms
of the PDFs in each division, as well as their defining parameters, and for the values
of the progressor fractions, this model could describe the mean population dynam-
ics of any cell system. Leaving all of these parameters free however, means that
the model is over parameterised for most data sets. To be of any use as a predictive
tool requires that we use system-specific knowledge to reduce the number of free
parameters.

Right Skewed Distributions for Division and Death Times

Many models of cell division use exponential rates for cell death and division,
usually for reasons of mathematical convenience rather than from any biological
motivation [6]. Such a choice implies that both processes are age-independent, and
are equally likely to occur in any given time-interval. Evidence suggests this is not
the case. In particular cells are much less likely to either die, or to divide, immedi-
ately after a previous division event [4]. Careful examination of the data suggests
that death and division times are well described by a right skewed distribution, such
as lognormal or gamma distribution [7]. For example, in Fig.5.2 we show a plot
obtained from a course of tritiated thymidine pulses. The count rate is proportional
to the number of cells taking up the thymidine during DNA replication in S-phase.
Treatment with colcemid prevents divisions, preventing the pollution of the sig-
nal from further division. Thus the signal is proportional to the number of cells in
S-phase of the first mitotic cycle after stimulation, and the distribution is well de-
scribed by a lognormal PDE. Note that the proportion of cells participating in the
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Fig. 5.2 Distribution of division times for B cells stimulated with 10pg/ml, 3.3 pg/ml,
1.1 pg/ml of @-CD40 in the presence of IL4. The cells were cultured in the presence of colcemid,
and a time course of 1h [3H]thymidine pulses was conducted. The measured count rate (counts
per minute) is proportional to the number of cells in S-phase. The distributions are well fit by a
lognormal PDF. The figure is taken from [4]
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Fig. 5.3 A survival curve for B cells isolated from lymph nodes. The data have been fit to a
lognormal survival curve, the corresponding distribution of death times is shown in the fop right.
The figure is taken from [4]

response increases with increasing concentration of the mitogen, illustrating how
these PDFs can be changed by external signals. Similarly, the death times of undi-
vided lymphocytes can also be described using a lognormal PDF. Figure 5.3 shows
a survival curve for B cells isolated from a lymph node. The data have been fit to a
lognormal survival curve, with the corresponding PDF shown above.
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First and Subsequent Divisions and Progressor Fraction

Although the PDFs for death and division may, in principle, vary for each division,
we find that for most cases it is sufficient to distinguish between undivided cells,
and those in subsequent generations. Detailed analysis of a CpG-stimulated B cell
approach in vitro shows that the PDFs for death and division times vary only slightly
with generation after initial division [8].

We introduced the concept of the progressor fraction and discussed its division
dependence. Here we apply a functional form to this division dependence, thus re-
ducing the number of free parameters that are necessary to specify the progressor
fraction in the model. The form used in [4], is based on the observation that the
ultimate division number achieved by a cohort of cells is approximately normally
distributed over the generations [5]. As is the case with death and division times, the
undivided cells behave in a way that is different from cells in subsequent genera-
tions, and for this reason we let the progressor fraction for undivided cells remain a
free parameter unconstrained by the functional form used for the subsequent gener-
ations. This implies that the fraction of cells in generation i that are division capable
is given by

)/0 lfl - O,
0o
Vi = } N(”s Mdests Udest)dn (55)
i+l ifi >0,

)
/ N(n s Mdest Udest)dn
l

where [Lgesr, Odess are the mean and standard deviation of the Gaussian PDF that
describes division destiny:

N, u, o) =

1 (n — p)?
G ()

Comparison with Experiment

This gives a model with 11 free parameters, listed in Table 5.1, which are obtained
empirically by fitting to experimental data in the form of CFSE timecourses. The
values of these parameters will be dependent on experimental conditions such as the
strength and type of stimulus, as well as the presence of different cytokines and their
concentrations. In Fig. 5.4 we show a comparison between the best-fit model pre-
diction for the population of cells in each division compared with experimental time
course. The data was obtained from CFSE analysis of a system of LPS stimulated
B cells. The best-fit values for the free parameters were obtained by minimising the
sum of the squared residuals between predicted and measured values.



114

C. Wellard et al.

Table 5.1 A list of free parameters used in the cyton model of lymphocyte proliferation

Parameter Description

Parameter Description

% Mean time to first division pcz)r Mean time to die for cells
in subsequent divisions
crg Standard deviation of the time U;r Standard deviation of the time
to first division to die in subsequent division
ul, Mean time to die for undivided Yo Progressor fraction for undivided
cells cells
og Standard deviation of the time dist Mean generation number for the
to die for undivided cells PDF characterising the division
destiny
p_;' Mean time to subsequent division 0 Standard deviation of the generation
number for the PDF
characterising the division
destiny
0;' Standard deviation of the time
to subsequent division
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Fig. 5.4 A fit to time course data obtained from CFSE analysis of LPS stimulated B cells. Here
we show the best-fit prediction for the populations of each generation as a function of time (/ine),
compared to the measured values (points)
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Stochastic Variation in Population Number

Although the cyton model is based on the idea that the fundamental cellular
processes of death and division are inherently stochastic, we have only presented
a solution for the average behaviour of the system. The solution of these equa-
tions gives an estimate for the number of cells that would be expected over many
replicates of an identical experiment, but does not give any information about fluctu-
ations in this result due to the stochastic nature of the underlying processes. In large
systems the variation between replicates due to these fluctuations will usually be
small, generally much lower than the variation due to experimental considerations,
however in small systems these stochastic fluctuations can be observed. In [8], the
authors present multiple time course experiments obtained from the time-lapse mi-
croscopy of CpG-stimulated B cells. In each case the clone produced from a single
progenitor was followed throughout the duration of the response, and the number of
cells in each generation recorded as the response progressed. In this experiment sig-
nificant variation was observed in the population sizes of the different clones. While
the model as formulated in (5.4) is sufficient to reproduce the average behaviour of
these clones, it is not sufficient to encapsulate the stochastic variation. To do this
requires a new approach.

Branching Process Models

The theory of branching process [9] has been used extensively in mathematical
biology to simulate cell population dynamics, from discrete time models [10] to
more complex continuous time models [11-13]. Here we use a generalisation of the
Bellman—Harris model to obtain a set of recursion relations for the probability gen-
erating function (PGF) for the number of cells in each generation as a function of
time. This PGF can be used to calculate the mean population dynamics, as well as
the expected stochastic fluctuations around this mean.

We begin by defining the random variable Z; (¢) to denote the number of live
cells in generation i at time 7. The PGF for the number of cells in each generation,
given a single cell in generation i at time ¢ = 0 is defined as

Fi(s,t) = E []‘[siz,f"’) Zi(0)=1,Z;(0) =0V # i:| , (5.6)
l'/

where E[x] denotes the expectation value of the random variable x. Following the

prescription for a generalised Bellman—Harris model [12, 13] gives a recursion rela-

tion for this PGF

t
0

Fi(s.t) = (1=0F (1)) (1-0P (1)si+ QP () + / Fiy1(s.t—1)%q} ()dr. (5.7)
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Here the qu (1), qiD (1) are the effective probability distributions defined in (5.1),
and Q IB (), 0 I.D (t) are the corresponding cumulative functions. The first term in
the above equation takes into account the case in which the cell has neither died
nor divided, the contribution for this case is s;. The second term takes into account
the case in which the cell has died, here the contribution is one. Finally the third
term takes into account the cases in which the cell divided at a time ¢ — 7, and the
contribution here is equal to the product of two PGFs for cells in the subsequent
generation,bornat ¢ — t.

Mean Population Dynamics

The mean dynamics of the model can be obtained using ,u‘l.i (1) = % o where
J s=

ulj (1) gives the expected number of cells of generation j at time ¢ given a single
progenitor of generation i at = 0. When applied to (5.7) this gives

t

uﬂn=(1—Qfmx1—QPa»&j+2A;dHa—rm?@ma 5.8)

This recursion relation can be evaluated by noting that p,l] (t)=0,Vj <i,andby
assuming some limit on the number of divisions that a cell has undergone. This limit
may be imposed either by a progressor fraction that effectively vanishes beyond a
certain generation, or by assuming a minimum division time for cells.

Stochastic Fluctuations

The advantage of the branching process approach is that, in principle, it is possible
to calculate the entire probability distribution for the populations size at any point
in time. In practice this is quite difficult, and usually unnecessary. A much easier
prospect, and one that offers great utility, is to calculate the variance in population
size. This variance will give a measure of the uncertainty in the population size
resulting from the stochastic nature of the underlying processes. To calculate the

variance, we begin with the second derivative of the PGF vi.i ’k(t) = E’;—SF/:% o
J s=
When applied to (5.7) this gives

. t . .
ﬁ*“*zzﬁ Qﬁﬁg—ry+uhgp—nﬂﬁda—z»qfuma (5.9)

From this we can use the relations

(5.10)

Y G RO O N A
’ v (0 + 1l () =l (7 j =k
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to calculate the covariances of the population of cells in generations j, k at time ¢
resulting from an initial cell of generation i.

Differentiation

Branching process models have been used to model differentiation in neuronal
cells [11]. Here we extend our model to include possible differentiation processes
for lymphocytes. The cyton model can be generalised to treat general differentiation
processes in the same way as it treats death and division. To motivate this generali-
sation we note that various differentiation events in activated B cells, such as isotype
switching and commitment to antibody-secreting cells, have been shown to be divi-
sion linked [14,15]. Similarly we assume that the death and division processes are
dependent on the differentiation state, or type of the cell, and that the probability of
differentiating to a particular state is dependent on the current state of the cell.

Thus we hypothesise the existence of a molecular mechanism responsible for
each possible differentiation process, that acts independently of all other process,
and acts in a stochastic manner. In analogy to death and division these processes
can be characterised by a PDF for the differentiation time, which is dependent on
the state of the cell, as well as its generation number. We define the PDF for time-
to-differentiation from type j to type k for a cell in division i as pllf ; (). In analogy
with progressor fraction, we define a division dependent differentiation fraction nf." j
which gives the fraction of cells of type j that are capable of differentiation to type
k in division i. In this case the effective distributions, which give the probability
density at time ¢, are given by

qt; () = yiipl; (1= PR@O) [T -, P 0),

k
aP; (1) = pP (1 =y, PEO) [ (1 =nf; PE ).
k
gk (1) =0k pk ;0 = PE@)(1 -y PE @) T] (1—nk,PF0).

k'#k,j

Here P(t) denotes the cumulative distribution of the relevant PDF.
Using the same methodology as previously we can derive a recursion relation for
the PGF

Fjs.n=(1-0F0)1-0P0)[] (1-0F®»)s; + 0P

=y

t
+ [ P -0l i+ Y / Fir(s.t — g, (0)dr.
0 =y
(5.11)
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As previously, we can use this relation to derive an expression for the expected
population of cells of type j’ in generation i’ given an initial cell of type j in
generation i

w0y = (1= 08, ) (1 — 0P, [T — 0F (10814185
k#j

w2 [l - oay e + 3 [l o= ot e

k#j
Similarly we can use

/ slas ! 1

0 =2 [ (= ol =0+ = 0) a8 o0

+ Z/ ’] i7" (Z—r)qu(t)dr

k#j

to calculate values for the covariances.

Simulation

The methods mentioned so far require numerical solution of a set of deterministic
integral equations for the mean number of cells or the variance. Higher order mo-
ments can also be calculated however each comes at further computational expense
to the previous. An alternative approach is to simulate the cells directly. Although
this approach is generally slower to calculate the mean value, there is no further cost
in calculating the variance and higher moments. Further, it is more flexible and can
be quickly adapted to different sorts of models. Also it can be readily extended to
provide readouts of common experimentally observed quantities.

Modelling Cell Properties

Each cell being simulated carries with it a set of numbers which represent its physi-
cal state. In some cases these numbers are decided when the cell is created, in others
they vary over (simulated) time. The following is a non-exhaustive list of what might
be stored:

— When the cell was created. This allows age related properties of the cell to be
calculated.
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— Aunique ID. This way relationships between cells can be kept so that correlations
and clonal effects can be explored.

— Cell fate. In the case of the Cyton model, whether a cell dies or divides and when
this happens can be decided at the time a cell is created.

— Cell type. Whether the cell has committed to becoming antibody secreting cell
and if isotype switching has occurred.

— Stage of cell cycle and cell size. By storing where a cell is in the cell cycle
the amount of DNA can be calculated. This allows comparison to be made with
flow cytometry techniques that can measure DNA content such as DAPI and
Hoechst stains which bind to the DNA in a stoichiometric manner. Estimating
cell size allows connection to be made with forward scatter measurements from
flow cytometry.

— Fluorophore content. If the stage of the cell cycle and DNA content are known
then it is also possible to make connection with Bromodeoxyuridine (BrdU)
experiments. BrdU is a molecule that can replace thymidine during DNA repli-
cation. In BrdU experiments, cells’ exposure to BrdU is limited to certain times.
Its incorporation can be measured using immunohistochemistry techniques. Nor-
mally it is used to provide confirmation that cells are dividing during a particular
time (when BrdU is present) but potentially it can be used to provide more infor-
mation about the parameters for a model such as Cyton [16—-18].

— Affinity for antigen. This enables the models to be implemented which link a
cell’s ability to proliferate to its affinity, thereby addressing repertoire issues.

Implementation

In practice the simulation of cells is done using a discrete event simulator. This
requires the maintenance of a list of cells and their associated states and a time-
ordered list of events that can occur to them. Simulation is done asynchronously.
That is, instead of stepping through time, the programme processes a sequence of
queued events. In this way, time resolution can be made arbitrarily small (within
machine precision) without incurring computational expense. Examples of events
that need to be queued are

— Cell division and death
— Changing of some cell property such as a cell type and phase
— Making measurement corresponding to those made at experimental time points

Assuming that there are no interactions between cells then the computational cost
of this method scales no worse than O(N) times the cost of insertion into the event
list where N is the number of cells.
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Chapter 6
Modelling Intravital Two-Photon Data

of Lymphocyte Migration and Interaction

Marc Thilo Figge and Michael Meyer-Hermann

Abstract Multi-photon microscopy is a powerful tool for imaging lymphocyte
migration and interaction in intact biological organs. These experiments gener-
ate quantitative data on the cell motility, shape dynamics, and contact duration of
cellular interactions. In this chapter we review mathematical models that have suc-
cessfully contributed to the interpretation of these data with regard to lymphocyte
migration and interaction. The examples involve different modelling approaches and
range from T cell priming in secondary lymphoid tissue to B cell affinity maturation
in germinal centres.

Introduction

Adaptive immunity implies the diligent communication of specific information that
is facilitated by lymphocyte migration in lymphoid tissue and their interaction with
other components of the immune system. For example, T cells scan antigen present-
ing cells and may become activated if the T cell receptors recognize specific foreign
peptides embedded in major histocompatibility molecules. T cell priming by den-
dritic cells in lymph nodes occurs in subsequent phases that clearly differ in the T
cell behaviour with regard to migration and interaction [1]. Differences in the mi-
gration behaviour of the distinct types of T cells in diverse lymphoid tissues remain
to be explained [2].

The salient feature of B cells is that the B cell receptors undergo affinity matu-
ration in order to optimize the immune response against pathogenic antigens. This
process takes place in follicular structures of lymphoid organs, referred to as ger-
minal centres [3,4], and involves intercellular interactions in the selection process
for high-affinity B cells. Germinal centres have a peculiar morphology consisting of
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two distinct zones, termed the dark and the light zone. The dark zone is the region
of B cell proliferation, while in the light zone B cells undergo selection. How B cell
migration between the zones is realized is still a matter of debate today [5-8].

For the last few years, lymphocyte migration and interaction have been exten-
sively explored by non-invasive intravital microscopy [9]. The main achievement
of this technique is that lymphocytes can be followed in real time and within their
natural cellular environment. The generated data include records of cell tracks, i.e.
the time-dependent position of single cells, as well as cellular contact times of in-
teractions. The working principle of imaging by multi-photon microscopy is briefly
summarized, together with an overview of dynamical cell properties that can be ex-
plored by this experimental technique. The rapidly growing body of experimental
data is calling for mathematical methods that are suitable for analyzing these data
in order to extract meaningful conclusions initiating new insights and experiments.

The art of mathematical modelling is to choose an adequate modelling approach.
This process starts by specifying the questions to be answered and continues by
identifying all variables and connections between them that are relevant for answer-
ing these questions. Each modelling approach has its assets and drawbacks. As a
rule of thumb, computationally cheap methods often only give a very rough repre-
sentation of reality and, therefore, they often only provide answers to questions of a
very general kind. Questions with regard to specific system properties typically re-
quire detailed calculations involving sophisticated computational methods. In many
cases, however, a detailed modelling approach also demands knowledge about pro-
cesses and parameters that are not yet accessible experimentally. Estimating the
quantitative impact of these processes ultimately leaves the questioner with the task
to decide whether or not the obtained answers are reasonable. Ideally, different mod-
elling approaches can be combined where answers to questions obtained at a certain
level of resolution serve as input for modelling at a level of higher resolution.

We consider three modelling approaches of lymphocyte migration and interac-
tion that differ in the level of resolution with respect to the functional properties of
the cells. The first is a statistical modelling approach for the analysis of cell tracks as
observed in two-photon experiments. Single cells are viewed as independent point
particles and the only functional aspect that is taken into account is their ability to
migrate. Next, we consider cellular systems in which different types of cells migrate
and interact with each other. This is captured by an agent-based modelling approach,
where each cell represents a discrete agent that interacts with other cells and is mon-
itored during its whole lifetime. Finally, the agent-based modelling approach is used
with a sufficiently high spatial resolution to go beyond the point particle represen-
tation of cells in order to study the dynamics of cellular shape deformations under
migration and interaction.
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Imaging Lymphocyte Migration and Interaction

Intravital Microscopy

Optical multi-photon microscopy is today’s method of choice for in vivo imaging
of single-cell dynamics and cellular interactions within intact tissue. Conventional
methods employing fluorescence techniques, such as wide-field and confocal mi-
croscopy, are based on light excitations of fluorophores by single photons. A flu-
orophore is a functional molecule which absorbs and re-emits light at different
wavelengths. The single-photon excitation typically requires photon wavelengths in
the order of 400 nm corresponding to photon energies that give rise to phototoxicity
and strong scattering in biological tissue.

Multi-photon microscopy is based on the virtually simultaneous light excitation
by two or more photons. For example, in two-photon microscopy the fluorophore is
excited by two photons, each of which contributes one half of the energy required to
induce fluorescence. The required photon density at the focal spot of the microscope
objective is generated by a pulsed laser, which is adjusted such that the density is
sufficiently high but yet not so high as to damage the biological sample. The main
advantage of this method is that using low-energetic photons with long wavelengths
in the order of 800 nm strongly decreases the absorption and scattering of light in
biological tissue. Moreover, since the impact of phototoxicity and photobleaching is
negligible for infrared photons, imaging up to millimeter-depths into the biological
tissue can be realized without inducing significant damage to the biological sample.

As with conventional microscopes, image sequences can be built up by scanning
the focal spot across the sample. Since the requirement on the photon density for the
induction of multi-photon fluorescence is only met within the confined volume of
the focal spot, the resulting images are free of out-of-focus fluorescence and there-
fore have higher image contrast as compared to single-photon techniques. With the
help of advanced tracking software, individual cells can be identified and followed
in the three-dimensional stacks of image sequences. This makes laser scanning
multi-photon microscopy the state-of-the-art technique for intravital cell imaging
in biological tissue with high spatial and temporal resolution.

Exploring Dynamic Cell Properties

At each time point, multi-photon imaging yields data on the position and on the
geometric shape of every cell within the three-dimensional focal spot. For an image
sequence consisting of N 4 1 measurements that are recorded with the time step
At, the position of the i th cell, (x; (n), y; (n), z; (n)), is determined at the time points
tn, = nAt withn = 0,1,2,..., N. Similarly, the geometric shape of the ith cell
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may be quantified by a shape index s;(n) characterizing the time-dependent cell
geometry. The data on the cell track and cell shape can be combined into the lists

xi (0) x; (1) x; (2) ... x;i(N)
Ti = | yi(0) yi(1) yi(2) ... yi(N) | and S; = (5;(0) 5 (1) 5:(2) ... 5i(N))
zi(0) zi(1) zi(2) ... z(N)
6.1)
foreachcelli =1,2,..., 1, respectively.

Various definitions of the shape index may be envisaged. For example, repre-
senting the cell geometry by an ellipsoid with equatorial radii @, b, and ¢ that is
approximated by an oblate (¢ = b > ¢) or a prolate (¢ = b < c) spheroid, the
shape index may be defined as the ratio of the long to the short axis. This gives rise
to values s; (n) > 1, where s; (n) = 1 for a spherical and s; (n) > 1 for an elongated
cell shape.

The cell migration is characterized by quantities that can be computed from the
cell track lists 7;. These lists may be viewed as 3 x N matrices, where the nth
column contains the position vector of the i th cell at time #,:

x;(n)
Rn)y=|yi0n|. (6.2)
zi(n)

Observables of interest are often averaged over all monitored cells. This is done by
summation of the corresponding quantity for each cell i and division by their total
number /. In passing we note that for practical reasons the number of cells may be
a function of time, / = I(n), since cells may exit the focal spot at longer times
and cannot be imaged anymore. The fewer remaining cells give rise to standard
deviations of the averaged quantities that are increasing with the measurement time.
The time-dependent displacement vector of a cell relative to its starting point is

given by
ri(n) = Ri(n) — R;(0) (6.3)

and is used in the calculation of the mean cell velocity

(ri(n)) — (ri(n —m))

mAt

(Vi,m(n)) =

(6.4)

at times t, = nAt with n > m. Here, the brackets (...) denote the average over
all monitored cells. Note that v; ,,(n) depends on the choice of the time interval
mAt and the interpretation of a cell’s speed, v; ,(n) = |vim(n)|, may actually
lead to wrong conclusions. For small time intervals m At the cell speed may be
overestimated due to the jitter motion of otherwise stationary cells. On the other
hand, if the cells perform random walk migration, the actual cell speed may be
underestimated for long time intervals.

Random walk migration refers to cells that do not move unidirectional but ran-
domly change their migration direction. These random changes may either occur
at each time step of the measurement, or only after a number of time steps have
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elapsed. In the latter case, a directional persistence time exists corresponding to the
time interval Az, during which cells migrate in the same direction before randomly
turning into another direction.

Unidirectional migration and random walk migration can be distinguished by
analyzing the time-dependence of the mean displacement (|r;(n)|). For cells per-
forming unidirectional migration, e.g. by following chemokine gradients, the mean
cell velocity is a constant, such that

([rimI]) = (vin(m)) tn. (6.5)

In other words, (|r;(n)|) equals exactly the mean path length (/; (n)), which is de-
fined by:

n

LS ity — i = D). (6.6)

T n

(li(m)
n’'=1

In contrast, for cells performing random walk migration the mean path length be-
comes significantly larger than the mean displacement, (/;(n)) > (|r;(n)|) for
times 7, > At, since cells randomly change their migration direction and even-
tually re-approach their starting point. This is schematically shown in Fig. 6.1a. The
corresponding mean displacement does not scale linearly with time, but only with
the square-root of time,

(Iri(n)]) = V2DM /1, 6.7)

where the proportionality constant depends on the system’s spatial dimension D and
the motility coefficient M . Note that random walk migration with a directional per-
sistence time is a combination of unidirectional migration on small time scales and
random walk migration on large time scales. The time scale is set by the directional
persistence time: at times ¢, < At,, (|r;(n)|) scales linear with time but assumes
scaling with the square-root of time for #,, > At,. The time-dependence of the mean
displacement is shown in Fig. 6.1b for the three different migration behaviours.
Taken together, multi-photon imaging provides a firm data basis to characterize
the migration behaviour and the shape dynamics of cells in intact biological tissue.

Statistical Cell Track Models

Statistical cell track models aim at re-constructing experimentally observed cell
tracks in order to identify underlying migration mechanisms. In this modelling
approach cells are treated as independently migrating point particles that are char-
acterized by their speed and polarity. The re-construction of cell tracks is achieved
by calculating the position vector r; (n 4 1) of the i th cell at time t,,41 = (n+ 1) At
from its position r; (1) and its velocity v; (n) at time #,:

riln+1)=r;(n)+ Atvi(n). (6.8)
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Fig. 6.1 Schematic representation of a cell track and the cellular migration behaviour in terms
of the mean displacement. (a): The first 11 time steps of a three-dimensional cell track are shown.
The cell performs random walk migration, where the length of the displacement vector r;(11)
is much smaller than the path length /;(11). Three cell positions at times #,—; to f,41 span a
plane that defines the turning angle «; (1) between the displacement vectors r;(n) — r;(n — 1)
and r;(n 4+ 1) — r;(n), as indicated for n = 5. (b): The cellular migration behaviour in terms of
the mean displacement as a function of the square-root of time. Cells performing unidirectional

migration scale like /7~ (dotted line), whereas random walk migration scales linear with /7
(solid line). Random walk migration with a directional persistence time Az, (dashed-dotted line)
. . . . 2 . .

is characterized by a scaling behaviour /7~ at times smaller than Az » and /1t for larger times.
If the migration is constrained to a finite volume, the mean displacement curves level off after
sufficiently long times. This is depicted for the two curves showing random walk migration
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Thus, at each time step At of the measurement, the new cell position is calculated
by updating the velocity,
vi(n) = vi(n)e;(n), (6.9)

in terms of the cell speed v; (1) and the cell polarity vector e; (7). In spherical coor-
dinates the unit vector e; (n) is given by

sin(,) cos(gn)
e;(n) = | sin(d,)sin(ey) | . (6.10)
cos(v,)

where ¥, € [0, 7| and ¢, € [0, 27| denote the spherical angles.

So far we did not specify the procedure according to which (6.8) is updated.
In fact, depending on the available data basis, different procedures may be applied
in different situations. In what follows we review two procedures that have been
applied to re-construct cell tracks for T cells in lymphoid tissue and for B cells in
germinal centres.

T Cell Migration in Lymphoid Tissue

Imaging individual T cells within lymphoid organs has been the subject of vari-
ous studies in recent years [1, 10-12]. The experimental results on T cell migration
have been presented in terms of the mean displacement curve as a function of the
square-root of time. In general, these curves show the characteristics of random walk
migration with a directional persistence time.

Using the statistical cell track model approach, a mathematical analysis was
performed with the goal to estimate values of parameters underlying T cell mi-
gration [2]. In this analysis, the three-dimensional T cell tracks were projected on a
two-dimensional plane by neglecting the z-component of the polarity vector (6.10).
The new polarity vector, which does not have the property of being a unit vector,
reads

sin(d5) cos(¢n)
ei(n) = | sin(d,)sin(e,) |. (6.11)
0

The re-construction of cell tracks was then performed according to (6.8) and (6.9),
where the cell speed was set to a constant value,

vi(n) =v, (6.12)
for all cells. Furthermore, the time step At was decomposed into the persistence

time Az, during which cells migrate with constant speed and the re-polarization
time Az, during which cells do not move but are thought to reposition their
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lamellipods and uropod. After having paused, T cells randomly pick a new direction
of migration, which was realized by choosing new angles ¥, and ¢, from uniform
distributions.

For each parameter set {v, Az,, At,}, a number of 10° individual cell tracks
was generated in a randomized fashion. The parameters were explored in the range
v =[5, 50] um/min, At, = [0.5, 20] min, and At, = [0, 3.5] min and the optimal
values were determined from a fitting procedure to the experimental data.

Combining the T cell tracks of different experimental data sets [1, 10-12]
yielded the optimal values of the parameter set to be {v = 18.8 pm/min, Az, =
2min, At, = 0.5min}. Thus, T cells perform random walk migration with a per-
sistence time of 2 min and the time for re-polarization is 30 s. Interestingly, under
the constraint that the re-polarization time is neglected, Az, = O min, the optimal
values changed into {v = 16.6 pm/min, A¢, = 2 min}. Thus, while the T cell speed
attains a somewhat smaller value, the persistence time does not change. A general
conclusion of this analysis was that the re-polarization time does not play a central
role in improving the agreement with the experimental data. The cell re-polarization
is further discussed below and in Section “Cell Shape Dynamics of Migrating T and
B Cells” within a modelling approach that resolves the shape of migrating cells.

B Cell Trans-Zone Migration in Germinal Centres

The migration of B cells between the light and dark zone in germinal centres was
investigated by several experimental groups using two-photon microscopy [13-15].
All three experimental groups agree that during measurements of 1 h, 5-10% of the
observed B cells will have migrated from one zone to the other. Furthermore, the
three experimental groups agree on the interpretation that B cell motility follows
random walk migration with a directional persistence time of about 1 min.

Based on the measured turning angle and speed distributions [13], a statistical
cell track model was applied to check whether the persistent random walk hypoth-
esis can be reconciled with the measured trans-zone migration frequency of B cells
in germinal centres [7]. The persistent random walk hypothesis was incorporated in
the velocity (6.9) by choosing the speed and turning angle independently. In prac-
tice, this was realized by a Monte Carlo acceptance-rejection method that generates
random cell speeds v; (1) and random turning angles «; (1) from the respective ex-
perimental distributions [7, 13].

It should be noted, however, that the turning angle (see Fig. 6.1a) provides infor-
mation on the angle between polarity vectors e; (n) and e;(n + 1) within the same
plane:

a;(n) = arccos (e;(n) -e;(n + 1)). (6.13)

Thus, in three spatial dimensions, e; (1 + 1) is not uniquely determined by (6.13) but
may refer to any point on a cone with axis e;(n) and radius ry; () = |sin(a; (1))].
In the spirit of the persistent random walk hypothesis, the point on this circle was
chosen at random from a uniform distribution.
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The turning angle and the speed are permanently changing after characteristic
time steps Az, and At,, respectively. A new speed value was randomly drawn from
the corresponding distribution at every time step At = Af, = 20 s, corresponding
to the time interval between two consecutive speed measurements [13]. The time
step At, was determined such that the measured curve of the mean displacement
versus the square-root of time is reproduced. It is important to note that even though
the directional persistence time A7, is not known a priori, turning angles can never-
theless be drawn from the experimental distribution that was evaluated with a time
resolution of 20 s. It has been shown that the turning angle distribution is extremely
robust and represents a reasonable approximation for different values of Af;, rang-
ing from 20s up to 160 [7].

Re-constructing 10> B cell tracks and fitting Az, under the constraint that the
experimentally observed mean displacement curve is recovered, yields the reason-
able value At, = 1.24min for B cells in wildtype mice. Using this value, it was
confirmed that the persistent random walk hypothesis can be reconciled with the
trans-zone migration frequency for B cells migrating between the light and dark
zone in germinal centres. This can be seen in Fig. 6.2a, where we plot the frac-
tion of 10° monitored cells that migrate during a one-hour measurement across
the zone boundary of 40 wm thickness within a spherical germinal centre of radius
R =160 pm.

The position distribution P(r,t,) was calculated from the re-constructed cell
tracks and represents the probability to find a cell after time #,, at a radial distance r
from its initial position. The result is plotted in Fig. 6.2b att, = 10 min and#, = 3h
for a spherical germinal centre of radius R = 160 wm and cellular starting posi-
tions at the centre of the sphere. Interestingly, for B cells that perform random walk
migration with a directional persistence time, it was found that within 3h B cells
will be equally distributed over the whole germinal centre. This result is in con-
flict with the observation of a zonal structure in germinal centres, where more B
cells are found in the dark zone than in the light zone. In other words, these results
suggest that additional mechanisms must be present that prohibit the quick intermix-
ture of the germinal centre by the B cells. A natural candidate for this mechanism is
chemotaxis and its implications on the germinal centre morphology will be further
discussed below.

Agent-Based Models of Interacting Cell Systems

Cellular systems exhibit complex phenomena that require a modelling approach
where different types of cells are represented as discrete objects with specific prop-
erties and characteristic functions. This is realized in agent-based models where
each cell is an agent that can migrate and interact with other agents in space and
time. It is convenient to impose a lattice of space points that mimics the spatial
environment of the cells, where the distance between neighboring lattice points de-
termines the spatial resolution. The advantage of the spatial discretization by the
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Fig. 6.2 Trans-zone
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lattice representation is that the neighborhood topology is kept fixed during the sim-
ulation, whereas lattice-free agent-based models with continuous space coordinates
require additional measures to identify the neighbors of a cell in each time step of
the simulation [16].

The procedure according to which the system evolves in time depends on the type
of implemented agent-based model. In the next section, we consider a Potts-model
approach, where the system dynamics is governed by minimizing a pre-defined en-
ergy functional. In contrast, we will also consider a model that is based on rules for
stochastic events that determine the time-evolution on the basis of rates associated
with the occurrence of these events.
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T Cell Migration and Interaction with Dendritic Cells

On the basis of two-photon imaging data from lymph nodes of mice, the migration
of T cells and their interaction with dendritic cells was studied using a Potts model
[17, 18]. In this model, cells are represented by several connected points in a three-
dimensional lattice. The cell types taken into account are T cells, dendritic cells
and static fibroblastic reticular cells forming the reticular network in lymph nodes.
Surface and volume energies are assigned to cells that are in contact with other cells
and changes in the cellular configuration are determined by minimizing an energy
functional.
The energy functional is given in terms of the Hamiltonian

H = Z Z J [T(Oijk)’ T(ai’j’j’ ] (1 _Sgijkao'i’j’./")

ijk i)’

+ ) [Me = Vo) + Ap(ps — Po)’] . (6.14)

The first term represents the surface energy J depending on the interacting cell types
7(0) with ¢ the identification number of the cells on the lattice. The summation
runs over all lattice points {ijk} and neighboring lattice points {i’j’j’} with the
Kronecker delta excluding self-terms of the surface energy. The volume energy is
determined by A, and is a measure for the cell inelasticity driving the actual cell
volume v, to a pre-defined target cell volume V,;. For dendritic cells the large surface
to volume area is imposed by the A ,-term in the Hamiltonian with actual dendritic
cell surface p, and target surface P, .

The system is advanced in time by random changes in the cellular configura-
tion that give rise to the energy difference AH between the two configurations. In
addition, for motile T cells the direction of migration is measured by the angle o
relative to a pre-defined target direction. This gives rise to an additional contribu-
tion AHT = —pcos(a) for T cells, such that the total energy difference is given
by AH, = AH + AHr. A Metropolis Monte Carlo algorithm is used to decide
whether or not the new cellular configuration is accepted. The details of this proce-
dure together with the chosen model parameters can be found in [17].

In the model, T cells perform random walk migration with a directional per-
sistence time in the order of 2min that was fitted to reproduce the experimental
data [11]. This agreement was obtained without the requirement that T cells reg-
ularly pause and subsequently choose a new random direction. Instead, the model
suggests that this migration behaviour is a consequence of T cells having a preferred
direction of motion that is adjusted by the reticular network and dendritic cells in
the nearby environment. According to the simulations, T cells migrate preferentially
along the fibers of the reticular network unless they see obstacles on their migration
path. It was proposed that this behaviour gives rise to small, dynamic streams of T
cells through the lymph node.
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The model has also been used to estimate the scanning rates of dendritic cells by
T cells. The simulations revealed that T cells are able to scan 100 different dendritic
cells per hour. This implies that, during negative selection in the thymic medulla,
maturing T cells scan about 3.4 x 10* different dendritic cells in 14 days. This
number involves many brief contacts lasting less than 1 min and the simultaneous
interaction between a T cell and multiple dendritic cells. The average contact dura-
tion was between 1 and 2 min according to the simulations, with rare interactions
that took up to 10 min. It should be noted, however, that the contact duration and the
scanning estimate depend on the imposed densities of the different cell types.

The cellular Potts model has also been applied to investigate the three dis-
tinct phases of T cell stimulation that have been observed in two-photon ex-
periments [18]. In the first phase, T cells rapidly migrate trough lymph nodes
experiencing only brief encounters with dendritic cells. Several hours after T cells
are first exposed to their cognate antigen, they enter into the second phase, which is
characterized by T cells being clustered around dendritic cells for more than 30 min.
It is likely that immunological synapses form during this phase that ultimately re-
sults into the stimulation of T cells. The third phase is characterized by T cells that
are again rapidly migrating and proliferating in response to antigen stimulation.

Simulations suggest that, in order to enter the second phase of T cell stimulation,
the assumption of adhesion between specific T cells and antigen-bearing dendritic
cells alone is not sufficient. Rather, it was concluded from the simulations that stop
signals have to be provided by dendritic cells that are integrated by the T cells during
the first phase and enable the transition to the second phase. It was speculated that
stop signals may be provided during the first and second phase of T cell priming,
but are absent or ignored with the onset of the third phase, in which T cells resume
rapid migration behaviour.

Transient Chemotaxis of B Cells in Germinal Centres

During the last decade, the germinal centre reaction has been simulated by var-
ious implementations of agent-based models that describe cell migration and in-
teraction as the result of stochastic events occurring with characteristic reaction
rates [8,19-22]. Recent two-photon imaging of in vivo B cell migration in ger-
minal centres [13—15] has re-initiated the functional analysis of the germinal centre
reaction for different assumptions on the B cell migration behaviour [7].

We have discussed that the statistical cell track model, based on the hypothesis
of B cells performing persistent random walk migration, reveals a conflict. On the
one hand, this hypothesis is sufficient to explain the experimentally observed fre-
quency of B cell trans-zone migration in germinal centres, on the other hand the
high motility of B cells results in a quick intermixture of the germinal centre that
cannot be reconciled with the observed zonal structure in germinal centres. How-
ever, performing a functional analysis within an agent-based modelling approach,
this conflict can be resolved under the additional assumption that persistent random
walk migration of B cells is subject to transient chemotaxis [7].
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The applied agent-based model consists of the following three coupled levels:

(a) The first level contains the main lattice corresponding to the three-dimensional
physical space in which cells can migrate and interact. Each lattice point can
carry up to one biological cell that evolves according to reaction rates defining
a probability of action or interaction with neighboring cells on the lattice. In
addition, cells migrate according to a chemokine distribution that is calculated
on a separate lattice (see third level below).

(b) The second level refers to the antibody shape space, which is represented by
a four-dimensional lattice encoding the antibody type of each B cell. Somatic
hypermutation is represented by switching the antibody type to a neighboring
point in the shape space. Each point in the shape space is associated with an
antibody—antigen affinity and determines the binding probability of a B cell to
an antigen-presenting follicular dendritic cell.

(c) The third level deals with solving a system of reaction-diffusion equations for
the chemokines CXCL12 and CXCL13. The source for CXCL12 are stromal
cells at the border of the follicle in the dark zone, and follicular dendritic cells
in the light zone for CXCL13.

The essential feature of this agent-based model is that it captures the whole ger-
minal centre reaction comprising the population kinetics, cellular interactions, and
affinity maturation. This level of description allows to distinguish between centrob-
lasts, proliferating B cells that undergo somatic hypermutation, and centrocytes,
nondividing B cells with activated apoptosis competing for survival signals. The
included mechanisms follow, to a large extent, the classical model of the germi-
nal centre reaction [3] and the simulations are validated by numerous experimental
facts [7].

The preferred direction of B cell migration is defined by a polarity vector that is
renewed after the persistence time of 1.24 min, which was obtained from the statis-
tical cell track model that was discussed in Section “B Cell Trans-Zone Migration
in Germinal Centres”. The polarity vector consists of two contributions. A random
contribution according to the turning angle distribution as measured in two-photon
experiment [13] and a contribution that depends on the chemokine gradients.

The simulations predicted a novel migration model for B cells in germinal cen-
tres, referred to as “transient chemotaxis model” that reconciles all experimental
and theoretical data [7,8]. According to this model, most of the cells in the dark and
light zone actively perform persistent random walk migration. Centrocytes acquire
additional sensitivity to CXCL13 after or during differentiation from centroblasts
and orient toward the network of follicular dendritic cells in the light zone. In the
network, the centrocytes lose CXCL13 sensitivity. This might be induced by contact
with follicular dendritic cells, by overcritical CXCL13 concentrations and CXCRS5
internalization, or simply by down-regulation of CXCRS after a characteristic time.
Similarly, a return to the dark zone of positively selected centrocytes is facilitated by
a transient chemotactic sensitivity for CXCL12. However, random walk migration
remains the dominant pathway of re-polarization since B cells undergo directed mi-
gration only temporarily. Therefore, transient chemotaxis might well be hidden in
the experimental motility data that seemingly support pure persistent random walk
migration.
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Furthermore, the functional analysis of germinal centre simulations revealed
insight about the interaction between B cells and follicular dendritic cells. Cen-
trocytes bind antigen on follicular dendritic cells to obtain survival signals and this
binding process is affinity dependent. Contacts observed in vivo have rarely been
found to be longer than 5 min [14]. In the agent-based model it was assumed that,
depending on the affinity of the encoded antibody, the B cells either contact fol-
licular dendritic cells in a static condition of 30 min or in a transient manner that
lasted until the B cell continued to migrate. A distribution of contact durations was
obtained from the simulations and is plotted in Fig. 6.3. It was found that the ma-
jority of B cells exhibit only short contacts with follicular dendritic cells, i.e. less
than 5 min (see Fig.6.3a), and only 2—-4% of the cells are in a static contact dur-
ing the germinal centre reaction (see Fig.6.3b). These results of the simulations
are in agreement with the two-photon measurements [14]. Therefore, it cannot be
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concluded from the experimental contact data that centrocytes integrate signals from
short contacts with follicular dendritic cells [14]. Instead, even though signal inte-
gration cannot be ruled out, the simulations were consistent with the idea that rare
static contacts are sufficient to drive affinity maturation.

Agent-Based Models of Cell Shape Dynamics

Two-photon microscopy data reveal that cell motility and cell shape are closely in-
terlinked with each other, since the re-polarization of cells involves the repositioning
of the cellular cytoskeleton. Several modelling approaches exists that capture the
shape dynamics of migrating cells [17, 18,23]. In this chapter, we concentrate on
the approach that has been applied to analyze the experimentally observed shape
dynamics of migrating cells in lymphoid organs [23].

Two-photon data show a stochastic variation of lymphocyte motility that is
closely interlinked with the cell shape [10]. Therefore, to analyze these data, cells
cannot be treated as point particles but have to be modelled in a spatially resolved
fashion. This is realized by an agent-based model with a sufficiently high lattice
resolution that represents each cell by a collection of subunits corresponding to
connected lattice points. In addition, updating rules have to be implemented in the
agent-based model that mimic realistic shape deformations of migrating cells.

Cell Shape Dynamics of Migrating T and B Cells

Following a reductionalist point of view, cells may be represented by the cell vol-
ume, the cell polarity and a list of connected cell subunits that constitute the cell
shape on the lattice. The cell volume determines the number of cell subunits accord-
ing to the chosen space resolution, while velocity states translate into probabilities
of subunit movements in the direction of the cell polarity according to the chosen
time resolution.

Two main contributions of cell dynamics have been identified [23]:

(1) The rearrangement of subunits with respect to a virtually shifted barycentre of
the cell (active movement). A normalized polarization vector determines the di-
rection of the active movement of a cell, which in reality is a complex function
of the cytoskeleton organization as well as localized signalling pathways. This
vector is considered as an approximation for the direction in which cell protru-
sions are developed and is assumed to change randomly with a probability that
is associated with the persistence time.

(2) The rearrangement of the subunits with respect to the actual barycentre (re-
shaping forces). The subunit movement is realized according to heuristic rules
that are interpretable as physical quantities. This ingredient of the cell motil-
ity model concerns the cell shape stability. During the procedure of active
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cell movement the details of forces that reshape the cell towards a sphere, i.e.
hydrostatic pressure, reduced actin filament assembly, actomyosin contraction,
or membrane surface tension, are ignored. Within a phenomenological approx-
imation, all these forces are included in a single reshaping force. This overall
elastic force drives the subunits of an elongated cell back to the current barycen-
tre and promotes a spherical shape.

The simulation of active movement was performed by the following procedure:
The barycentre of the cell is virtually shifted in the direction of the polarization vec-
tor towards the membrane of the cell. Then every subunit representing a membrane
point of the cell is moved in random order towards free lattice points near the virtual
barycentre. Moving a border subunit which is not a direct neighbor of its target point
(e.g. a subunit on the back of the cell) is considered to correspond to the cytosol shift
through the whole cell. Note that in this model all subunits carried the same proper-
ties and if the movement of a membrane subunit would have caused the subunits of
the cell to become disconnected this movement was suppressed. The displacement
of subunits was stopped when either no membrane subunit remained to be moved or
the barycentre of the cell was displaced by one lattice constant. In the new state the
cell had reorganized its membrane and thus changed its shape. Thereby the total cell
volume (or, the total cell area in a two-dimensional implementation) was conserved.
Thus, the movement of the cell barycentre was realized by subunit rearrangements,
and inherently coupled the cell movement to its deformation.

The comparison of the model results with experiment revealed that the two in-
gredients active movement and reshaping forces are sufficient in order to describe
lymphocyte motility data as found by two-photon imaging. Here, we concentrate
on the shape index that was calculated from the data obtained for T cell and B
cell migration in lymph nodes of mice [10]. Projecting the cell volume on a two-
dimensional plane, the area was approximated by an ellipse, which is characterized
by its two axes. The shape index s; () of the ith cell was calculated as the ratio of
the long to the short axis at each time step #,,, such that s; (n) > 1 corresponds to an
elongated cell shape that becomes circular for s; (n) = 1.

In Fig. 6.4 the shape index distributions are plotted as obtained from the mea-
surement of / = 46 T cells and B cells. The average shape index is around 2.3 for
T cells and 1.6 for B cells, indicating that the cellular elongation is about a factor
1.5 larger for T cells compared to B cells. The differences in the shape index are
in agreement with observations by two-photon microscopy [10]. It was speculated
that this may point to cardinal differences in the cytoskeleton dynamics of migrat-
ing T and B cells [23]. Nevertheless, in the simulations both cell types dynamically
round up and take a symmetric shape during the process of re-polarization. It should
be noted that this result has not been enforced by assuming a pausing time in the
agent-based model, as was done in the statistical cell track model combined with
the assumption of a single speed state for the cells. Rather, in the agent-based model
the shape index is a direct consequence of the reshaping forces that cells experience
while they are continuing to migrate and the shape index is closely connected with
a significant width in the underlying speed distributions [23].
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Summary

Multi-photon microscopy is a powerful tool for imaging lymphocyte migration and
interaction in intact biological organs. Quantitative information on the cell motility,
shape dynamics and contact durations are derived from these data by mathematical
analysis that shape our interpretation of these data.

It is important to realize that mathematical analysis is not merely a descriptive
approach, rather, its valuable contribution is to constitute a predictive consistency
check of the working hypothesis that is underlying the interpretation of the experi-
mental data. For example, a simple statistical cell track model was used to analyze
the trans-zone migration of B cells in germinal centres. This revealed, on the one
hand, that the measured trans-zone frequency is in agreement with the working
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hypothesis of B cells performing a persistent random walk migration in germinal
centres. On the other hand, the same analysis disclosed an inconsistency with re-
spect to the observed zonal morphology in germinal centres. This initiated further
analysis using an agent-based model approach that captures the functional aspects
of the germinal centre reaction. It then turned out that, hidden behind the experi-
mental data from which the working hypothesis was derived, transient chemotaxis
restores the zonal morphology in germinal centres. Since transient chemotaxis is
still compatible with the B cell motility data, this implied that the initial working
hypothesis of pure random walk migration with directional persistence time was ac-
tually formulated too narrow. This development of insight is a prime example for
experiment and theory working hand in hand [8].

A firm experimental data basis is the mandatory prerequisite for realistic models
of cellular dynamics in complex biological systems. Including more detailed aspects
of cell dynamics into mathematical models reveals new system features and is be-
coming more feasible due to the continuously growing computer resources in terms
of memory and processor speed. At the same time experimental techniques are de-
veloping fast and highly accurate data on cellular dynamics that are recorded over
several hours time can be expected in the near future. The real challenge, however,
is for modelers and experimentalists to keep pace in working hand in hand achieving
the highest benefit from the symbiotic effects of theory and experiment.
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Chapter 7
Modelling Lymphocyte Dynamics In Vivo

Becca Asquith and José A.M. Borghans

Abstract Quantification of lymphocyte dynamics contributes greatly to our under-
standing of many fundamental processes in immunology, including homeostasis,
ageing, immunological memory and pathogenesis. Recently developed experimen-
tal techniques to label lymphocytes and mathematical models to interpret the re-
sulting data enable us to accurately measure the rate of T and B lymphocyte
proliferation and disappearance in humans in vivo. Here we describe some of the
experimental and mathematical techniques involved, including a discussion of the
advantages and disadvantages of the most popular methods available, as well as a
practical guide to modelling labelling data, and a discussion of future challenges in
this rapidly-moving area.

Why Quantify Lymphocyte Dynamics?

Lymphocytes are the key cells of our adaptive immune system and their dynamics
determine our health. The correct balance between the production of lymphocytes
(de novo in the thymus and by peripheral proliferation) and lymphocyte loss (by
cell death or differentiation) is essential for immune function. Dysregulation of
lymphocyte dynamics results in a broad spectrum of pathologies including AIDS
(precipitated by CD4™ T lymphocyte loss), leukemia (aberrant growth of B or T
lymphocytes) and autoimmune conditions such as multiple sclerosis or arthritis
(inappropriate activity of self-reactive lymphocytes). Even though lymphocyte pro-
liferation and death rates are often regarded as textbook immunology, estimates of
these rates can easily vary by a 100-fold. Nevertheless, researchers are trying to un-
derstand how human diseases like HIV infection, and therapeutic interventions such
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as haematopoietic stem cell transplantation, affect lymphocyte kinetics. As long as
there is controversy about lymphocyte kinetics in healthy individuals, such ques-
tions will remain hard to address.

Why Are Mathematical Models Needed?

Thanks to recent experimental advances, including the application of stable isotope
labelling to label and trace cells that undergo proliferation, the time is now ripe to
determine these rates of lymphocyte turnover. Proper interpretation of labelling ex-
perimental data hinges upon the use of mathematical models. Without mathematical
models, labelling curves remain merely descriptive and do not yield the quantitative
turnover parameters that are needed. Moreover, mathematical modelling helps to ob-
tain insights into the complicated dynamical processes underlying the functioning
of the immune system.

Mathematical models are often criticized because of the assumptions that are
made. Indeed, as Lee Segel, a distinguished mathematical biologist himself, once
said “mathematical biologists are people who make oversimplified models”, but
importantly he added “and do not even feel embarrassed”. It is important to re-
alize, that any interpretation of data incorporates assumptions. The danger with
intuitive, model-free interpretations is that the assumptions are often implicit. Im-
plicit assumptions lack transparency and researchers themselves may be unaware
that they are making these assumptions and so their accuracy is never addressed.
Indeed, as will be repeatedly seen in the following examples, intuitive “assumption-
free” approaches that initially seem persuasive have frequently been demonstrated
to give incorrect results. The fact that mathematical models make their assumptions
explicit, and thereby visible, makes it easier to scrutinise them. Additionally, making
simplifications and eliminating free parameters has the considerable advantage that
it becomes possible to estimate key parameters such as lymphocyte proliferation and
disappearance rates with limited amounts of data, which would be impossible with
highly complex models (see the Section on Parameter Identifiability). Finally, sim-
plified models can provide real insights into complex and highly dynamical systems
such as the immune system.

Different Methods to Study Lymphocyte Dynamics

Inrecent decades, a large number of different methods have been applied to estimate
the rates of production and death of different lymphocyte populations. These meth-
ods differ widely and include the interpretation of “experiments of nature”, such as
lymphocyte reconstitution after severe lymphopenia, as well as different markers to
study lymphocyte populations that undergo proliferation and death. Some of those
markers occur naturally, including the expression of the proliferation marker Ki67,
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or the length of a cell’s telomeres. Others are administered for research purposes
and include the nucleoside analogue BrdU and different stable isotopes. Here we
will give an overview of these experimental methods, as well as some of the mathe-
matical models that have been developed to interpret the data.

Experiments of Nature

In the absence of specific labelling techniques, investigators have estimated the rate
of production and loss of different lymphocyte populations by following changes in
the numbers of cells under specific extreme “natural” circumstances. In patients with
extremely low lymphocyte numbers, e.g. because of severe regimens of chemother-
apy as treatment for cancer or prior to stem cell transplantation, the reconstitution of
the different lymphocyte compartments was followed over time and translated into
net rates of lymphocyte production [1,2]. On the one hand, such rates may under-
estimate the true lymphocyte production rate, because cells may also die during the
reconstitution period, a process that may go unnoticed but which will decrease the
net rate of reconstitution. On the other hand, production rates in lymphopenic pa-
tients may exceed the actual rate at which cells are produced in a fully reconstituted
lymphocyte compartment in steady state, because cells undergo little competition
for survival factors.

Another extreme case that has been used to study the rate of lymphocyte turnover
is by measuring the loss of lymphocytes with chromosomal damage in patients after
treatment with radiotherapy for cancer. Assuming that no new lymphocytes with
chromosomal damage are produced after stopping radiotherapy, the average loss rate
of different lymphocyte populations has been estimated [3]. Again, extrapolation of
these estimates to the healthy situation has to be done cautiously, because these loss
rates may be influenced by the DNA damage of the cells under investigation and by
the low numbers of lymphocytes in these patients.

Despite the fact that the quantitative parameters resulting from these “experi-
ments of nature” may not translate exactly to the natural situation, these studies have
had a large impact on our insights into immunological memory. Both approaches
have clearly shown that the turnover rate of memory T lymphocytes exceeds that
of naive T cells, and have thereby suggested that immunological memory is not
maintained by a pool of long-lived memory cells, but by a highly dynamic pool of
memory T cells with a rapid rate of cellular turnover.

Static Markers of Cell Proliferation and Death

Instead of measuring net production rates or net loss rates of lymphocytes under
specific extreme circumstances, one can measure the natural expression of mark-
ers for cells undergoing cell proliferation or death. Ki67, for example, is a protein
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whose expression is restricted to proliferating cells. It is expressed during all ac-
tive phases of the cell cycle, i.e. during the Gy, S, G, and mitotic phase, but not
during the Go phase. Measuring the fraction of Ki67-expressing cells thus gives
insights into the fraction of cells that is undergoing proliferation. Similarly, cells
undergoing apoptosis can be measured by different methods. One of the plasma
membrane alterations characteristic of cells in the early phase of apoptosis is the
translocation of phosphatidylserines from the inner side of the membrane to the
outer side. This expression can be measured by Annexin V staining, a protein that
binds phosphatidylserine with high affinity. Alternatively, cells in apoptosis can be
distinguished by intracellular staining for certain caspases, which are proteases in-
volved in the cleavage of cellular proteins in cells undergoing apoptosis.

Measuring cell death and proliferation by such naturally expressed markers has
the advantage that the immune system does not need to be disturbed. These mea-
sures are therefore very useful in comparisons of lymphocyte dynamics between
individuals. Such static markers are, however, hard to translate into quantitative bi-
ological parameters such as the fraction of cells that proliferate or die per day. The
fraction of cells expressing markers of death or proliferation reflects not only the
fraction of cells undergoing death or proliferation per day, but is also influenced by
the period during which these markers are expressed. The problem becomes even
larger when the period of expression is not constant, e.g. because it is influenced
by the immunological situation under investigation. For example, if T cells in HIV
infected individuals were to die very rapidly, one might measure low fractions of
Annexin V positive T cells, while in fact many cells are killed. Likewise, it has been
suggested that T cells undergoing proliferation in HIV infected individuals may
get stuck in the cell cycle [4], and thereby cause higher levels of Ki67 expression
than one would expect from the fraction of cells that is actually producing progeny.
Avoiding such problems and obtaining more quantitative biological parameters re-
quires dynamic markers for cell proliferation and death.

Dynamic Markers of Cell Proliferation and Death

In order to study T lymphocyte production and death dynamically, a large number
of markers have been used, all with their own characteristics, advantages and dis-
advantages. Naturally occurring dynamic markers of T cell production and death
include the telomere length of a T cell population, a marker that is typically inter-
preted as reflecting the proliferative history of a cell population, and the expression
of T cell receptor excision circles (TRECs), a marker that has been proposed for the
measurement of T cell production in the thymus. Other dynamic markers are not
naturally expressed and include the administration of the nucleoside analogue BrdU
or stable isotopes such as deuterated water or deuterated glucose. By administration
of such labels and by following their incorporation in the DNA of newly-produced
cells during and after label administration, one can measure both the rate of pro-
liferation and loss of different lymphocyte populations. Below we will provide a
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short summary of these different experimental techniques, as well as our favoured
mathematical interpretation of the resulting data. Note that for all these techniques
a number of different mathematical models have been developed. We focus on the
ones that we think most clearly illustrate the impact of mathematics on our insights
into lymphocyte dynamics.

T Cell Receptor Excision Circles

For decades, investigators have tried to quantify the contribution of T cells that are
newly formed by the thymus to the maintenance of the peripheral T cell pool. In
the late nineties a new assay was introduced to measure the number of cells that are
produced by the thymus. This assay is based on the occurrence of T cell receptor ex-
cision circles (TRECs) [5,6]. TRECs are by-products of V(D)J rearrangements that
occur in the thymus when the T cell receptor (TCR) is formed. During this genetic
rearrangement process, parts of the TCR genome are excised and form stable DNA
circles (Fig. 7.1a). These TRECs are not copied when a cell divides; they are simply
passed on to one of the daughter cells (Fig. 7.1b). TRECs are thus uniquely formed
in the thymus. Measurement of the average number of TRECs in a cell population
by quantitative PCR was therefore proposed as a direct measure for thymus output.

J

Vv
3 v — <
TREC DNA TREC

Fig. 7.1 (a) TRECs are excised from the DNA, during T cell receptor V(D)J gene rearrangement
in the thymus. The excised pieces of DNA form stable circular DNA products, which fail to be
copied during DNA duplication. (b) As a consequence, the average number of TRECs (in blue) per
cell in a cell population decreases when cells proliferate
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When the average number of TRECs per T cell was measured in individuals of
different ages, an exponential decline was observed [6]. These findings fitted exactly
to the common view that the thymus undergoes involution, and its output thereby de-
creases exponentially with age. Decreased TRECs per cell in HIV-infected patients
were similarly interpreted as evidence for impaired thymic output [6], and increased
TRECS per cell in individuals after haematopoietic stem cell transplantation as evi-
dence for thymic rebound to compensate for the lack of T lymphocytes [7].

A simple mathematical model pointed out, however, that TRECs do not directly
reflect thymic output [8§—10]. The change in the average TREC content of a pop-
ulation of cells with age can be calculated from the change in the total number of
TRECsS, T', and the change in the total number of cells N with age. The total number
of cells decreases by cell death at rate § per day, and increases by T cell proliferation
at rate p per day and by thymic output, o (¢), which itself decreases exponentially
with age at rate v per day:

d
d_ftv —6(t) + pN — 6N (7.1)

where
o(t) = o(0)e™".

The total number of TRECs also decreases by cell death and increases by thymic
output, but is not affected by T cell proliferation:

dTr

— = t) — 4T, 7.2
- =co() (12)
where c is the average TREC content of a cell that leaves the thymus. The average
TREC content A of a cell population can be calculated as A = T/N. It is easy to
demonstrate that when 7" and N are at equilibrium, the average TREC content 4 is:

A=c(6—p)/s. (7.3)

In other words, the average TREC content of this cell population is totally inde-
pendent of the number of cells that are generated by the thymus per day. This
equation demonstrates that the rate of proliferation and death of this cell popula-
tion strongly influence its average TREC content. The more proliferation the cells
undergo, the lower their TREC content, and the larger the death rate of the cells,
the higher their TREC content. With hindsight, this can be understood intuitively,
because cell proliferation increases the number of cells but not TRECs, and because
cell death influences the average age of a cell population. The larger the death rate,
the younger the cell population, and hence the fewer rounds of proliferation have
occurred and diluted the average TREC content.

One thus has to be extremely careful when interpreting TREC data [8—10]. The
fact that T cell TREC contents decline with age probably reflects a homeostatic
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response of the immune system to decreasing thymus output. While increased rates
of T cell proliferation or decreased rates of T cell death, both possibly contributing
to T cell homeostasis, strongly affect TREC contents, changes in thymic output per
se will not. Likewise, low TREC contents in HIV patients are more likely to reflect
increased rates of proliferation rather than decreased thymic output [8], an insight
with considerable implications for the HIV field. The above equations illustrate that
part of the problem can be solved by not only measuring average TREC contents
of cell populations (i.e. A), but also measuring total TREC numbers per ml blood
(i.e. T), a measure that is independent of the proliferation rate of the population.
Nevertheless, even total TREC numbers do not directly reflect thymus output, be-
cause they are also influenced by cellular death rates. In summary, these analyses
have demonstrated that a marker that is so unique for T cell generation by the thy-
mus nevertheless also reflects all dynamical processes that T cells undergo in the
periphery.

Telomere Length

Another naturally occurring dynamic marker for cell proliferation and loss is the
length of a cell’s telomeres. Telomeres are unique structures at the end of chro-
mosomes, which consist of tandem DNA repeats. Because DNA polymerases fail
to copy the very ends of the chromosomes during cell division, telomeres shorten
with each cell division and thereby provide a record of a cell’s proliferation history
(Fig.7.2) [11,12]. Although it is very tempting to translate the decline in the aver-
age telomere length of a cell population directly into the number of cell divisions
the population has undergone, describing telomere dynamics with a mathematical
model has demonstrated that one has to be extremely cautious when interpreting
telomere data [13]. Furthermore, the activity of the enzyme telomerase which effec-
tively elongates telomeres can potentially destroy the relationship between telomere
length and the number of divisions a cell has undergone [14, 15].

If one assumes that telomerase is not active then one can describe the shortening
of telomeres in a population of cells by giving each cell an index i, depending on
the number of cell divisions the cell has undergone, the so-called division index
[13]. When a cell with division index i divides, it produces two daughter cells with
division index i 4 1. If the number of cells with division index i is denoted by
n;, and the total number of cells by N, the average division index p of such a cell
population is:

1 o0
w= NZini. (7.4)
i=0

The average division index of a population increases with time. Its change over
time (du/dt) can be calculated by differentiating o with respect to time, and by
substituting d N /dt, the change in the total number of cells N over time, and dn; /d¢,
the change in the number of cells n; with division index i over time. If (7.4) applies
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Fig. 7.2 Telomeres are
repetitive DNA patterns
found at the ends of the
chromosomes. During DNA

replication, the leading strand 5’
(blue) can make a full copy of
the DNA, while the lagging 3’

strand (green) fails to copy
the very end of the
chromosome, leading to
progressive telomere
shortening 3
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to memory T cells, the change in the total number of memory T cells (N = M) is
described by [13]:

dM dm;
= - =M -4 cV, 7.5
o SN (pm —8m) +vy (7.5)

where pjs denotes the proliferation rate of memory T cells, §3s denotes the rate at
which memory T cells die, y the rate at which naive T cells are primed and enter the
memory compartment, C is the average number of cell divisions occurring during
clonal expansion (i.e. when naive T cells are triggered to become memory T cells)
and V is the number of naive T cells. See Fig.7.3. The change in the number of
memory cells m; with division index i is described by the following differential
equation [13]:

dm;
d_tl =2pumi—1 — (pm + Sm)m; +yVn;_g, (7.6)
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Naive cells V

4

Memory cells M

2 3

Fig. 7.3 The total memory T cell population, M, consists of sub-populations of cells m; that have
undergone i cell divisions. Memory cells in any sub-population i/ divide at rate pj; and produce
two daughter cells with division index i + 1, they die at rate &), and are produced when naive T
cells V' are activated at rate y and clonally expand into C memory cells

where K is the number of divisions made during clonal expansion. Substituting
these two equations into the derivative of (7.4), yields that the average division index
uuy of the memory T cell population changes according to:

C“;—ZM =2pn —yC%(uM — v — K). (7.7)
The latter equation gives the important insight that the average telomere length of
the memory T cell population does not only reflect the proliferative history of the
memory T cell population, but also the transition of naive T cells into the memory
compartment [13]. Telomere loss in the memory T cell pool is in part compensated
by the influx of cells from the naive compartment, which — on average — have longer
telomeres than memory cells. Thus, the rate of telomere loss in the memory popu-
lation is to a large extent determined by the rate of telomere loss in the naive T cell
pool. It is therefore perhaps not surprising that the telomere loss of naive and mem-
ory T cells was found to occur at similar rates [16], even though naive and memory
T cells are thought to proliferate at different rates.

Similarly, one can argue that the rate at which naive T cells shorten their telom-
eres may not directly reflect their proliferation rate, but may also be influenced to a
large extent by the rate of telomere loss of progenitor cells that are exported from
the thymus into the periphery [13]. Since recent thymus emigrants form a permanent
source of cells with relatively long telomeres, they increase the average telomere
length of the naive T cell population. Ignoring this influx of cells from the thymus
into the periphery may therefore lead to an underestimation of the naive T cell divi-
sion rate.

In summary, although telomeric lengths may seem to be the best marker for the
proliferative history of a cell population, again, just like TREC contents, they are
not only influenced by T cell proliferation, but also by cellular death rates and input
from the thymus. In fact, TREC contents and telomere lengths thus reflect very
similar processes, even though they were originally proposed to be discriminative
for thymic output and cellular proliferation, respectively.
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BrdU Labelling

T cell turnover rates have extensively been studied by the use of 5-bromo-2'-
deoxyuridine (BrdU), a nucleoside analogue that is incorporated into the DNA of
cells that are dividing, instead of the nucleoside thymidine [17-20]. Because of its
potential toxicity, BrdU has mainly been applied to rodents and non-human pri-
mates. It is typically administered via the drinking water and its incorporation in
cells can be detected by flow cytometry. When cells divide in the presence of BrdU,
newly-formed DNA strands build in BrdU and are subsequently randomly dis-
tributed over the two daughter cells, resulting in two BrdU-labelled cells (Fig.7.4).
When BrdU-labelled cells divide in the absence of BrdU, their label intensity de-
creases with every cell division. Nevertheless, BrdU labelling studies typically
report the percentage of BrdU-positive cells, i.e. the percentage of cells in which the
BrdU intensity exceeds a certain threshold, irrespective of their exact label intensity.

During BrdU intake, the percentage of cells that are BrdU-positive gradually
increases, and after BrdU is withdrawn from the drinking water the percentage of
BrdU-positive cells typically decreases. Simple, intuitive analyses interpret the rate
of increase of labelled cells during the labelling period as reflecting the rate of cell
proliferation and the rate of loss of labelled cells during the delabelling period as
the rate of cell death. Although this may sound very persuasive, in fact it is not so
straightforward. A simple mathematical model demonstrates where intuition goes
wrong [21-25]. One can describe the accrual of label during BrdU administration
either by the rate at which the fraction of labelled cells increases or by the rate at
which the fraction of unlabelled cells decreases. Since both rates should be equal,
one can simply use the easiest equation. During BrdU administration, it is easiest
to describe the number of unlabelled cells, U. Unlabelled cells are lost when they

< <
@<= W @ @<8 W

BrdU administration Deuterium administration

Fig. 7.4 BrdU labelling experiments follow the fraction of labelled cells, while stable isotope la-
belling experiments follow the fraction of labelled DNA strands. During BrdU administration (light
blue box), dividing cells build BrdU into their newly-formed DNA strands. Labelled DNA strands
(blue) are randomly distributed over the daughter cells. Upon BrdU-withdrawal, the label intensity
of the cells decreases with every cell division, but the fraction of BrdU+ cells (dark green) does
not decrease. During stable isotope labelling (light blue box), dividing cells build deuterium into
their newly-formed DNA strands. Labelled DNA strands (blue) are randomly distributed over the
daughter cells. Upon deuterium withdrawal, the fraction of labelled DNA decreases with every cell
division
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divide (because they become BrdU-labelled) at rate p per day, or when they die at
rate § per day:

dU

dr
This equation demonstrates that the fraction of unlabelled cells decreases, and hence
the fraction of labelled cells increases, during label administration at rate p 4 §. Im-
portantly, and rather counter-intuitively, label accrual during label administration
thus does not only reflect proliferation but also loss of cells through death or matu-
ration.

When BrdU is no longer administered, it is easier to follow the loss of labelled
cells. Labelled cells are lost from the population by cell death at rate § per day, but
they are also gained, by cell proliferation at rate p per day, even in the absence of
BrdU. Because previously labelled chromosomes are randomly distributed among
daughter cells, both daughter cells will be BrdU labelled (see Fig.7.4), albeit with
lower BrdU intensity. Each BrdU labelled cell that divides thus adds another labelled
cell to the population, even in the absence of BrdU:

= —pU —§U. (7.8)

dL
- = pL—5L. (7.9)

The latter equation demonstrates that the fraction of labelled cells decreases at rate
p — & per day when label administration is stopped [21, 24]. Importantly, the rate
at which the fraction of labelled cells decreases after label cessation thus does not
directly reflect the rate of cell loss. For a population at steady state, one would
expect the rate of cell production p to be equal to the rate of cell loss 4, in other
words p — § = 0. Consequently, one would expect the fraction of BrdU labelled
cells to remain constant after label cessation. This is in contrast to what is routinely
observed: that labelled cells decrease after the end of the labelling period.

It is therefore rather surprising that most BrdU studies show a significant decline
in the proportion of labelled cells during de-labelling, suggesting that the average
proliferation rate of lymphocytes, p, is smaller than the average loss rate of BrdU
labelled cells, 6. Indeed, separate estimates of § and p have shown up to tenfold
larger rates of cell loss compared to the rate of T cell proliferation [21]. One possible
explanation for this discrepancy is that dividing cells are not at equilibrium although
the whole population is. Alternatively, if cell proliferation occurs in “bursts,” BrdU
labelling may have diluted to such an extent that cells are no longer recognized as
label-positive, after extensive T cell proliferation in the absence of label. Currently
ongoing research is aiming to distinguish between these options.

Stable Isotope Labelling
The most recently developed method to study lymphocyte kinetics in vivo is based

on stable isotope labelling. Stable isotopes are non-radioactive variants of a chemi-
cal element, with a different mass because of the presence of extra neutrons in the
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nucleus. The stable isotope that is typically used in lymphocyte dynamic studies is
deuterium, the heavier variant of hydrogen, which contains one proton and one neu-
tron, and has twice the mass of hydrogen, which contains no neutrons. Deuterium
has been administered in the form of deuterated glucose (2H2-glucose) [26-33] or
deuterated water (*H,0) [34-36], and has proven to be safe and non-toxic when
given in low concentrations. The deuterium atoms from these stable isotope labelled
compounds are incorporated into the DNA of cells when they divide. Deuterium
incorporation can be measured by a combination of gas chromatography and mass
spectrometry (GC-MS) on the extracted DNA from sorted cells. In contrast to BrdU
labelling studies, in which the fraction of labelled cells is measured, stable isotope
labelling is measured in terms of fractions of labelled DNA fragments, not cells.
The mathematics required to analyse stable isotope labelling data therefore deviate
from those used in BrdU experiments [36—38].

The number of labelled DNA fragments in a population of cells increases by cell
proliferation at rate p per day, independent of whether the proliferating cells had
already incorporated deuterium or not. The extent to which label is incorporated
during cell proliferation depends on the availability of deuterium, D. In deuterated
glucose experiments, the availability is assumed to be either maximal, during label
intake, or zero, after label cessation, because the turnover rate of glucose is very
fast. In case of heavy water labelling, however, the supply of deuterium is more
variable, and hence should be explicitly taken into account (see below). The number
of labelled DNA fragments decreases by loss of labelled cells from the population
at rate § per day, through differentiation, maturation or cell death. The change in the
total number of labelled DNA fragments per day can hence be described by [37]:

% = pcND(t) — 8L (7.10)
where N denotes the total number of DNA fragments in the population, and ¢
reflects an amplification factor which needs to be introduced, because there are mul-
tiple hydrogen atoms in a single DNA fragment that can be replaced by deuterium.
Typically, deuterium is given in such low concentrations that the chance to double-
label a DNA fragment (and thereby miss it during mass spectrometry) is close to
zero. However, the presence of multiple hydrogen atoms does increase the chance
of labelling a DNA fragment at one position. Translating (7.10) into the fraction of
labelled DNA fragments (! = L/N) yields:

dl

— = pcD(t) =6l 7.11

o = PeP® (7.11)
If labelling is performed with deuterated glucose, then we can assume that D = 1
during the labelling period and D = 0 during the delabelling period and (7.11) has
the following solutions [37]:

pc

[ =
)

(1- e_St), during label administration (¢ < 7)
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and

[ = %(1 — e 70T)e780-D) after label administration (r > 7). (7.12)

where t represents the time point at which label administration is stopped.

If labelling is performed with deuterated water then, as mentioned above, the
availability of deuterium needs to be explicitly taken into account. To this end, the
heavy water enrichment in the serum of mice or the urine of humans can be mea-
sured and fitted to a simple exponential accrual and loss function:

D)= f(1—e ") + Be™ during label administration (¢ < 7)
(7.13)

and

D(t) = (f(1 —e™ %) + e %) e "™ after label administration (f > 1),

where f represents the fraction of deuterated water in the drinking water, ¢ denotes
time in days, € represents the turnover rate of body water per day, and B is the
body water enrichment that is attained after a boost of label by the end of day O.
These equations can be substituted into (7.11) (and solved) to obtain a model for
label enrichment in deuterated water experiments [36], which is an extension of the
deuterated glucose model [37].

Equation (7.11) shows that in the absence of label, i.e. when D = 0, the decay of
labelled DNA directly reflects the loss of labelled cells §, and not — as in the case of
BrdU - the difference between cell loss and proliferation. Typically, the loss rate of
labelled cells § appears to be several-fold higher than the estimated rate p at which
cells proliferate. Although at first sight this may seem surprising for a population
at steady state, the kinetics of cells that have recently divided (and hence picked up
label) may be intrinsically different from those that have not [37,39,40]. It has been
shown that cells that have recently divided are more likely to undergo activation-
induced cell death than cells that have not. Even in the absence of such differences,
the loss of label may exceed the accrual of label, because the uplabelling phase is
representative of the cell population as a whole, including cells that will and cells
that will not go into division during the labelling period. Loss rates, on the other
hand, are based on the loss of cells that have picked up the label, and hence only
involve the part of the lymphocyte pool that has recently divided. As a consequence,
especially in short-term labelling experiments, rapidly turning over cells are over-
represented during the downlabelling phase. Long labelling periods will give rise
to lower rates of T cell loss, because the population that has picked up the label
becomes more representative of the T cell population as a whole. Indeed, meta-
analysis of stable isotope labelling studies with different labelling periods showed
a negative correlation between the length of the labelling period and the estimated
death rate [37]. Importantly, however, the average proliferation rate — which is esti-
mated from the uplabelling phase — should in principle not be affected by the length
of the labelling period.
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Although stable isotope labelling has provided a large step forward in the analysis
of lymphocyte dynamics, quite large discrepancies have been observed between sta-
ble isotope labelling studies from different laboratories [41]. Despite the fact that
average proliferation rates should not depend on the length of the labelling period,
there seems to be a tendency for deuterated glucose experiments, which typically
have short labelling periods, to give rise to higher average proliferation rates than
studies using deuterated water, which is typically administered for much longer pe-
riods of time. The source of this discrepancy is the subject of active research.

Mathematical and Statistical Methods of Parameter Estimation

The basis of all of the work discussed in the last Section is regression. In each case a
model is formulated, usually from first principles based on an understanding of the
system, and then fitted to the experimental data in order to estimate the kinetic pa-
rameters using regression. In this Section we discuss the basic techniques of model
formulation and fitting for the purposes of parameter estimation focussing on the
method of least squares. Our emphasis is on a practical rather than a theoretical ap-
proach. Basic techniques will be illustrated via an example taken from stable-isotope
labelling studies (see the worked example later in this chapter).

Model Formulation and Selection

The fundamental requirement of a mathematical model for analysing lymphocyte
kinetics is that it predicts the observed state variable(s), e.g. the fraction of labelled
lymphocytes, as a function of the parameter(s) that we wish to estimate, for example,
the proliferation rate. The most appropriate type of model will depend on the system
being analysed: difference equations for a synchronised population, partial differen-
tial equations for a population with continuous spatial variation, multi-compartment
ordinary differential equations for a population with discrete spatial variation and
ordinary differential equations for a population where spatial homogeneity is as-
sumed. It is not necessary for the model to be soluble analytically in order to fit it
to experimental data. Whilst it is tempting to construct models that reflect the true
complexity of the biological system, there is invariably a trade-off between the com-
plexity of the model, in particular the number of free parameters of the model, and
the ability to estimate the parameter(s) of interest. As a minimum requirement, the
number of degrees of freedom D, where

D = number of data points N — number of free parameters P

must be greater than zero and ideally should be considerably higher than zero (see
the Section on Parameter Identifiability). The biological world is complex and a
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“true” model of an in vivo biological system would need a very large, arguably infi-
nite, number of parameters to describe it fully. Such a model could never be used to
estimate parameters from a finite data set. A model for parameter estimation should
capture all phenomena likely to impact significantly on the observable being pre-
dicted but introducing further complexity is usually detrimental. When more than
one model is possible, model selection should first be based on biological plausibil-
ity. If there are alternative models that are all biologically realistic then an objective
selection can be made based on the goodness of fit of the models to the data. The
goodness of fit of the models i.e. the discrepancy between the observed and the pre-
dicted values (often measured as the sum of squared residuals, that is the sum of the
squares of the differences between the observed and predicted data) can be tested
via the F test for nested models or the Akaike Information Criterion in the general
case [42].

Parameter Identifiability

A parameter is identifiable if the measurements made of the state variable contain
sufficient information to allow unique and accurate estimation of the parameter.
Identifiability encompasses two concepts: theoretical identifiability and practical
identifiability. Theoretical identifiability analyses parameter uniqueness based on
the model structure and schedule of measurements, it assumes that the measure-
ments are error free. Practical identifiability analyses parameter estimate accuracy
also taking into account measurement noise. Theoretical identifiability is a neces-
sary but not sufficient condition for practical identifiability. Theoretical identifiabil-
ity (strictly speaking local theoretical identifiability) is calculated from the Jacobian
or parameter sensitivity matrix. If X is the state variable observed at N timepoints
t1,t2,...ty and @ is the vector of P parameters § = (61,0,,...,0p) then the
Jacobian J is the N x P matrix

X 0X 0xX
01 fr=py 9021, 0P |1—,
x| s
s | 00l 062, 00p li=r | (7.14)
x| s
L 96, t=ty 36> t=ty d0p 1=ty

If the product of the transpose of the Jacobian with the Jacobian, JTJ, is evaluated
for a given choice of parameters and written in reduced row echelon form [43] then
the rows that are zero except for the diagonal indicate an identifiable parameter with
that row index.
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Practical identifiability can be assessed via the covariance matrix C

C =o2(JTN)71, (7.15)

where 0 = (W)% and X; is the predicted value of the state variable X;
attime . The jth diagonal element of the covariance matrix, C;;, approximates the
variance of the estimator of the jth parameter 6; (see the Section below on Esti-
mating parameter errors). For the assumed noise and parameter choice this will thus
provide a direct estimate of the accuracy with which a parameter can be estimated.
Both theoretical and (provided a reasonable estimate of the size of the parameters
and measurement error can be made) practical identifiability can be assessed prior
to data collection and this should be done wherever possible to ensure that the ex-
periment design (choice of observables and schedule of measurements) will allow
identification of the parameter(s) of interest with sufficient accuracy. There are a
number of factors that reduce parameter identifiability and these should be identi-
fied and minimised before conducting the experiment.

Degrees of Freedom

The variance of a parameter estimator is approximately inversely proportional to the
number of degrees of freedom N — P. Identifiability can therefore be increased by
decreasing the number of free parameters P or increasing the number of measure-
ments N. The number of parameters can be reduced by reducing the complexity
of the model or by replacing free parameters by numerical estimates where prior
information is available. The number of data points can be increased by changing
the experiment design to include more time points or measuring a greater num-
ber of different state variables or, if data is available for a number of individuals,
using population (mixed effects) methods. The relative efficiency of the different
options for increasing the effective number of degrees of freedom depends on the
problem in hand. Population methods involve pooling all data from a number of
individuals, which greatly increases the number of data points, and then fitting
assuming that these parameters are drawn from a single distribution, so instead of
needing to estimate k separate parameters for each of k individuals and for each
parameter of interest (i.e. a total of kP parameters) it is only necessary to estimate
one or two parameters that describe the parameter distribution, e.g. the mean and
standard deviation for each parameter of interest (i.e. a total of P or 2 P parameters).
A detailed description of population methods is beyond the scope of this chapter
and interested readers are referred to one of a large number of excellent textbooks
including [44-46].

Sensitivity of Observations to Parameter Change

Clearly if a parameter is to be determined from the behaviour of an observable it is
essential that the observable is sensitive to changes in the parameter. Sensitivity can
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only be optimised by a change of experiment design, e.g. using a different observ-
able or, more realistically, using different timepoints where the observable is more
sensitive to parameter changes.

Parameter Correlations

Even if an observable is sensitive to changes in a parameter it is often the case that
the observable will also depend on other parameters of the model and thus there
may not be a unique combination of parameters that give rise to a certain observed
value. For example if

fraction of labelled cells at time ¢t = (proliferation rate — death rate ) x ¢,

then a given time course of the fraction of labelled cells can be attained for a range
of different combinations of proliferation and death, and the proliferation and death
rates are said to be correlated. In this case it will not be possible to distinguish,
based solely on the goodness of fit of the model to the data, which is the true value
of proliferation and death. The correlation between the ith and jth parameters is
approximated by the ithjth element of the correlation matrix:

-
P = €y
where C is the covariance matrix defined previously. In the above example, prolifer-
ation rate and death rate would be perfectly correlated, that is the correlation would
be +1. High (magnitude of) correlations between parameters can be reduced by
simplifying the model, by changing the measurement schedule to improve param-
eter separability or by constructing alternative parameters that are a combination
or transformation of the highly correlated parameters, e.g. in the above example
neither proliferation rate nor death rate can be accurately estimated (whatever the
measurement schedule in this case) but the “net growth rate”

net growth rate = proliferation rate — death rate

can be estimated.

Model Fitting

We restrict ourselves to the case where both the predictor (independent) variables
and the state (dependent) variables are continuous. If a model is linear in the free
parameters then analytical multiple linear regression should be used to estimate the
parameters (see any introductory statistics book, e.g. [45,47]). In general, if models
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cannot or should not (because of bias) be transformed to a linear form then non-
linear regression should be used to the fit the model to the data. There are two basic
statistical frameworks for fitting models to data: the frequentist (maximum likeli-
hood) approach and the Bayesian approach. The well known least squares method
is equivalent to a special case of the maximum likelihood approach.

Least Squares Estimate of Parameters

Consider a system with an observable X measured at time ¢ so we have a set of N
observations,

{(t1, X1), (t2, X2) -+ (tn. Xn)},

and we believe that this system is described by a model f(¢, 8) where 6 is the vector
of parameters of the model so that

Xi=ft;,0) +e i=1,...N,

where ¢; is the random noise on the ith measurement. The least squares estimator
of the parameters is the vector of parameters that minimises the sum of the squared
differences between the observed and the predicted variables, i.e. that minimises
vazl(X i f(ti.0))%. In general this minimum cannot be found analytically and it
is necessary to use numerical searching algorithms (see the Section on Choice of
software). When searching numerically for minima it is important to check that the
true global minimum rather than a local minimum has been found. It is therefore ad-
visable to start the search from a number of different initial conditions and to check
that they find the same global minimum. Additionally, the convergence criteria of
the search algorithms should be checked.

Maximum Likelihood Estimate of Parameters
For the system described above we wish to estimate the parameters 6 given the
observations, i.e. we want to find 6 that is most likely to describe the system given

the set of observations and the model. The likelihood of 6 given {¢;, X;} and f is
denoted L(0|t;, X;, f) and can be calculated from:

L@, Xi}, /) = [ PXil6, 1),
giving

N
In[L(@l{s, Xi}, 1)) = Y In[P(X; 6. 1)]. (7.16)

i=1



7 Modelling Lymphocyte Dynamics In Vivo 159

If the errors are independent and normally distributed with mean zero and constant
variance o2 then

X; ~ Normal( f (¢, 0), o), since f(t;, ) is constant for given i.

The probability density function for the Normal distribution is

P(Xi|0.1) =

—(X; — f(li,Q))z) ' (7.17)

1
ex
o2m p( 202

So, substituting (7.17) into equation (7.16) yields

1 Xi — f(t,0))*

In[L(O){ti, X}, =NIn——+« — —_—

(L@t Xi}. )] - Z 553

And it can be seen that the likelihood is maximised (or equivalently the In[L] is
maximised since the logarithm function is monotonic) when ), W is
minimised and the problem is reduced to the standard least squares problem. That is,
when the errors are independent and normally distributed the maximum likelihood

estimator of a parameter is equal to the least squares estimator.

Bayesian Parameter Inference

In the Bayesian approach parameter inference is informed not just by the data
but by prior knowledge of the parameters, entered as prior distributions. The in-
fluence of prior information will depend on our confidence in the information as
well as the size of the current data set. Prior data will naturally be most influen-
tial when the data set is small and the prior is strong. In the case when the prior is
non-informative and the data set is infinite the Bayesian estimator is numerically
equivalent to the maximum likelihood estimator. The advantages of a Bayesian
approach include the ability to incorporate prior information, removal of the as-
sumption that parameters are drawn from a normal distribution and in many cases
a simpler implementation for fitting complex models with a hierarchical structure.
There are numerous books that discuss Bayesian methods, those that emphasise a
practical treatment include Congdon et al. [44] and Gilks et al. [46].

Choice of Software

There are numerous software packages that can be used to automate model fitting
via least squares and just a few of the more popular options are listed here. As with
all software there is an inverse correlation between the power and flexibility of the
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language and the initial investment of time to become competent in handling the
software. Packages with a short learning curve include SPSS and ScoP. SPSS and
SCoP are both difficult to run in batch mode so fitting a large number of datasets
sequentially can involve a lot of manual data handling. Importantly, SPSS does not
have a numerical differential equation solver and so cannot be used for models with-
out an analytical solution. Probably the best balance of relatively short learning
curve with software flexibility and ease of automation is offered by dedicated high
level mathematical or statistical languages such as Maple (where the global optimi-
sation package needs to be purchased as an additional add-on), Mathematica or R.
For optimal flexibility and speed (balanced by a longer learning curve) the mid-level
language C or C++ should be used. Software that implements a general maximum
likelihood (i.e. non-normal errors) or Baysian approach are less common. Both R
and C/C++ are sufficiently flexible to enable maximum likelihood or Bayesian
methods, alternatively for Bayesian methods the BUGS software can be used. The
software described can be downloaded from the following sites; R, C/C++ and
BUGS are free.

SPSS http://www.spss.com/

SCoP http://www.simresinc.com/

Maple http://www.maplesoft.com/
Mathematica  http://www.wolfram.com/

R http://cran.r-project.org/

C/C++ http://gcc.gnu.org/

BUGS http://www.mrc-bsu.cam.ac.uk/bugs/

Estimating Parameter Errors

There are two methods that are widely used to estimate the errors on parameter
estimates: the asymptotic covariance matrix method and the bootstrap method.

Asymptotic Covariance Matrix Method

The asymptotic covariance matrix (ACM) method is based on the calculation of
the covariance matrix defined in (7.15). It is only strictly true for models that are
linear in the parameters of interest and when the errors on the measurements are
independent and identically distributed; however if the deviation from linearity is
“small” the ACM method also provides a reasonable approximation to the parameter
error for nonlinear models. The covariance matrix (also known as the variance—
covariance matrix or the inverse of the Fisher information matrix) is calculated from
the Jacobian. The diagonal elements of the covariance matrix are the variances of
the parameter estimates.
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Bootstrap Method

Bootstrapping is a framework for statistical inference based on resampling and
has widespread applicability beyond regression [48, 49]. In the field of regres-
sion, bootstrapping can be used to estimate the variance(s) of parameter estimates
with no restrictions on the nature of the model. Here we describe case-resampling
(bootstrapping the data) rather than model-based resampling (bootstrapping of the
residuals).

Consider a system where there are N measurements of an observable X; made
for N predictor values ¢;, that is there are N pairs (#;, X;). A bootstrap estimate of
the variance(s) of the model parameter(s) is made by creating a bootstrap sample of
size N by random sampling with replacement from the original dataset, that is from
the set of N pairs (#;, X;). The model is fitted to the bootstrap sample and the pa-
rameters of interest estimated. This is repeated R times (typically R is of the order
of 100) and the distribution of the parameter estimates constructed. The bootstrap
estimate of the parameter variance is simply the variance of the bootstrapped param-
eters over the R runs. The number of bootstrap runs R that need to be performed can
be ascertained by checking for the stabilisation of the variance with increasing R.

Choice of Method

Both the bootstrap method and the ACM method are easy to implement although
the bootstrap method can be computationally intensive; which method is optimal
depends on the model and data of interest. For any given model, parameter values
and data schedule, the deviation from linearity can be assessed by calculating the
intrinsic nonlinearity and the root mean square curvature. Details of the calculation
are beyond the scope of this chapter, see [50] for an excellent description. How-
ever, whilst the curvature and intrinsic nonlinearity need to be “small” for the linear
approximation of the ACM method to be applicable, how small is rather poorly
defined. In practice it is often more useful to determine the optimal method of er-
ror calculation by generating “data” for known parameters using the model, adding
noise by random sampling from a plausible distribution, fitting the model to the
“data” and estimating the errors using both the bootstrap method and the ACM
method. How often the known parameter lies within the confidence interval of the
estimate of the parameter can then be assessed.

A Worked Example

As a concrete example we provide a step-by-step explanation of the fitting of the
model to describe deuterated glucose labelling (see (7.11)) to experimental data
taken from Macallan [29] and reproduced in Table 7.1. The data were obtained
by infusing an individual with deuterated glucose for 1 day and then quantifying
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Table 7.1 Deuterated glucose labelling data. The fraction of labelled DNA frag-
ments in the CD8TCD45ROT T cell population sorted from PBMC at successive
timepoints following 1 day labelling starting at time 0. The standard deviation of
three technical replicates is shown. Data is reproduced from Macallan et al. [29]

Time (days) Fraction of labelled DNA fragments, / Standard deviation
4 0.0141 0.0017
10 0.0093 0.0008
16 0.0096 0.0008

the fraction of labelled DNA fragments in CD8TCD45RO™ T lymphocytes from
peripheral blood mononuclear cells. Measurements were made at three time points
during the delabelling phase; the standard deviation of three technical replicates is
provided.

Parameter Identifiability

If the measurement schedule is to be 4 days, 10 days and 16 days then, prior to
data collection, we should investigate parameter identifiability to assess whether the
parameters of interest can be estimated with the required accuracy.

Theoretical identifiability: Rewriting the problem in the notation of (7.14), we
have 0 = (p.8), 11 = 4,10 = 10,13 = 16 and X = Z(1 — e31)e 80D,
The expression for X is the solution (7.12) of the model (7.11), where the labelling
period t = 1; as all the time points are taken during the delabelling phase after label
administration we only use the second half of the solution. Substituting this into the
expression for the Jacobian (7.14) yields

(1 — e 8)e8¢=D pede 8D (1 o8t — )e B

) )

p(l _ e—&)e—8(t—1)
— 5

t=4

(1—e%)e 3  pede3 ~3p(1 - e )38 _p(l— e )38
= ] é é 52
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JTJ is then the 2 x 2 matrix with the following elements

3
TN =Y J3

i=1

(1= ed)e=3a=D 2

t=4,6,10

3
JTJ12 = Z-Iiz-]il etc.

i=1

Rewiting JTJ in reduced row echelon form (i.e. applying elementary matrix oper-
ations to the rows and columns of JTJ until it is transformed into a matrix with all
of the nonzero rows preceding all of the zero rows, the first nonzero element in each
row is 1, the first non-zero element in each row appears in the column to the right
of the first nonzero element in the preceding row, and the first nonzero element in a
row is the only nonzero element in its column) gives

(0 V)

indicating that the parameters with index 1, i.e. p, and index 2, i.e. §, are theoreti-
cally identifiable.

Practical identifiability: In order to assess the practical identifiability prior to data
collection it is necessary to make estimates of the error o and the parameters p and
8. If the discrepancy between the observed and predicted value of the state variable,
X; X i, is estimated to be, for example, 10% of the predicted value at each time
point, then

| 3 1/2

i=1

and the variance of the estimates of p and § can be calculated from the diagonal
elements of the covariance matrix C (7.15).

As an example we investigate our ability to estimate p. By examining the expres-
sion for the variance of p it can be seen that the standard error (square root of the
variance) is linear in p and so the coefficient of variation (standard error expressed
as a fraction of p) is independent of p. The numerical value of the coefficient of
variation of p is plotted as a function of § in Fig. 7.5 (red line). Previous studies typ-
ically measure § to be in the range 0-0.3 day ! so we focus on this range. Figure 7.5
reveals that for § in the range 0-0.3 day ™!, the coefficient of variation is between
20—40%. This is rather a large coefficient of variation and it is worth considering
how the experimental design can be modified to reduce the error on the estimates. Of
course experimental design will be constrained by logistic, financial and, in the case
of human and animal experiments, ethical considerations. It is essential that these
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| : - . . original schedule
03 .' t=4, 10, 16 days
f ——  dlternative schedule
" t=4, 8, 10, 16 days
06 . = alternative schedule
cV(p) _ ., t=40, 50, 60, 70 days

Fig. 7.5 The coefficient of variation of the estimate of p (i.e. standard error of the estimate divided
by the estimate) is plotted for three different measurement schedules. Red: original measurement
schedule t =4, 10, 16 days. Blue: alternative measurement schedule ¢ =4, 8, 10, 16 days. Green:
alternative measurement schedule ¢t =40, 50, 60, 70 days. It can clearly be seen that the first
alternative measurement schedule (+ =4, 8, 10, 16 days) gives systematically lower errors in p than
the original schedule for a wide range of values of &, whilst the second alternative measurement
schedule (r =40, 50, 60, 70 days) gives systematically higher errors in p than the original schedule

points are considered when designing an experiment, because there is no point in
designing the perfect experiment for parameter estimation if the experiment cannot
be conducted! Conversely however, there is no point in conducting an experiment
to estimate parameters if the expected error on the estimate is unacceptably high.
In the example considered, the measurements are taken at days 4, 10, and 16; if the
experimental design is adapted to include one extra time point at day 8, then it can
be seen (Fig. 7.5, blue line) that the coefficient of variation of p falls for all values
of § considered and is between 15 and 20% for § in the range 0-0.3 day™~!. This im-
provement in our ability to estimate p is due to the increased number of degrees of
freedom as a consequence of having four data points rather than three. However, the
choice of time points is also important. It is not the case that any choice of 4 time-
points will give a reduced coefficient of variation of p. For example, an alternative
schedule of day 40, 50, 60, and 70 increases the coefficient of variation dramatically
(Fig. 7.5, green line). This is because at later time points the observed variable, i.e.
the fraction of labelled DNA, is low and rather insensitive to changes in p. This
preliminary analysis suggests that it may be worth considering taking an extra time
point if possible, as it is likely to significantly improve the accuracy with which p
can be measured. However, later time points contribute very little to the estimates
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and so are effectively a waste of resources. Before making any final decisions re-
garding experiment design, it would be prudent to consider a wider range of possible
measurement schedules. Of course a comprehensive analysis is best conducted by
studying the analytical expressions for the coefficient of variation.

Model Fit

We assume that in this case it was not possible to adapt the measurement schedule
and the experiment proceeded with the original design yielding the data in Table 7.1.
If we fit the solution (7.12) of the model (7.11) to the data by least squares regression
we estimate that p = 0.015day~! and § = 0.037day"!. So the doubling time
of CD8TCD45RO™ T lymphocytes is In(2)/0.015 = 46days and the half-life of
labelled CD8TCD45RO™ T lymphocytes is In(0.5)/0.037 = 18.7 days. That is,
in the absence of cell death, the CD8TCD45RO™ T-lymphocyte population would
double in just over a month and (in the absence of cell proliferation) the labelled
CD8TCD45RO™ T-lymphocyte population would halve in just over a fortnight. The
fit of the model to the data is given in Fig. 7.6 (green line). To calculate the standard
errors on the estimates via the ACM method we substitute our estimates of p and
§ into the expression for the covariance matrix C (7.15). To ensure accuracy we
retained a high number of decimal places on p and §; specifically we use p =
0.015343 and § = 0.036929. We find that the error is ¢ = 0.00182 and

__(0.00000791 0.0000487
~10.0000487  0.000408 ]

0.02
e data
— unweighted fit
0.015 1 —— weighted fit

0.01 1

0.005 -

Fraction of labelled DNA fragments

0 5 10 15 20
Time (days)

Fig. 7.6 The least squares fit of the model describing deuterated glucose labelling, (7.10), to the
experimental data in Table 7.1
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The standard errors on the estimates are therefore 0.003 on p and 0.020 on 4.
Using the bootstrap method with 30 random samples, the errors are 0.002 and
0.016 respectively (the bootstrap method relies on random resampling, so do not
be concerned if your estimates of the bootstrap errors differ slightly). Examining
the covariance matrix, it can be seen that the correlation between p and § is 0.857.
The fact that the correlation is positive indicates that if p is overestimated then &
will be overestimated. The fact that the correlation is rather high indicates that it is
relatively difficult to estimate p and § uniquely as they tend to compensate for each
other, i.e. a high estimate of p and a high estimate of § will give a similar labelling
pattern to a lower estimate of p and a lower estimate of §, making it difficult to
distinguish between the pairs of values. This is manifest as rather high errors on the
estimates of p and 4.

Weighted Fit

In this experiment technical replicates were performed. The standard deviation of
the experimental data points can be taken as a reflection of our confidence in those
points. When fitting the model to the data we may wish to take into account our
confidence in the points; this can be achieved by weighting the fit by an appropriate
value, for instance the inverse of the variance of the replicates, i.e. instead of min-
imizing ZlNzl(Xi — f(t,0))?, we minimize Z;N=1 wi(X; — f(t;,0))?, where w;
is the inverse of the variance of the ith measurement. Performing this weighted fit
to the data in Table 7.1 yields estimates of p = 0.013day~! and §=0.037 day!.
The plot of this fit (Fig. 7.6, blue line) shows that, as expected, the predicted curve
is weighted towards those points in which we have the most confidence, i.e. those
with a lower standard deviation.

Future Challenges

Despite significant advances that have been made during the past decade in our un-
derstanding and quantification of lymphocyte dynamics, several important questions
remain. For example, even though the measurement of telemore lengths and TREC
contents were originally introduced to quantify cellular proliferation and thymic
output, respectively, we have shown in this chapter that the kinetic behaviour of
both measures is in fact determined by a combination of production of lymphocytes
in the thymus and in the periphery. It is therefore very puzzling that telomeres and
TREC contents of CD4™ T lymphocytes are differently affected by HIV infection.
While TREC contents of CD4" T lymphocytes have been shown to be reduced in
HIV-infected individuals [6, 8, 51, 52], CD4™" T cell telomere lengths turned out to
be normal [53]. Understanding these discrepancies is the topic of ongoing research.

Also in the field of stable isotope labelling several open questions remain. Even
though stable isotope labelling forms the best method that is currently available to
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quantify lymphocyte dynamics, several laboratories have reported quite different es-
timates of lymphocyte turnover. In fact, estimated proliferation and death rates based
on heavy water and deuterated glucose labelling differ systematically, with higher
values being obtained with deuterated glucose and with shorter labelling times [41].
The cause of these discrepancies between studies is currently being investigated.
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Chapter 8

Continuous-Time Birth and Death Processes:
Diversity Maintenance of Naive T Cells

in the Periphery

Carmen Molina-Paris, Emily Stirk, Katie Quinn, and Grant Lythe

Abstract We construct a birth and death process for the number of T cells
belonging to one clonotype. Cells are released from the thymus into the periph-
eral lymphoid organs. We assume that after this time, no more T cells of this
clonotype are exported by the thymus, so that further T cells of this clonotype can
only be generated by homeostatic proliferation, when a T cell receives a survival
signal and undergoes a single round of cell division. We show that eventual extinc-
tion is guaranteed. The late-time behaviour of the process before extinction takes
place is described by the limiting conditional probability distribution (LCD), which
we prove exists. We show how approximations are related to the LCD of the original
process and use them to study the LCD in two special cases.

T cells mature in the thymus, a small organ close to the heart, where they undergo
two tests called positive and negative selection [1]. Cells that survive then migrate
to the peripheral lymphoid organs such as the spleen and the lymph nodes where
they become part of the naive T cell repertoire, so called because the T cells have
not yet encountered their specific antigen. T cells have molecules on their surface
called T cell receptors (TCRs) which are responsible for recognising antigen. Each
T cell expresses many identical copies of the TCR and T cells with differing TCR
structures are said to belong to different clonotypes, i.e., each clonotype has one
specificity of receptor. The number of T cells in a healthy adult human is approx-
imately 10" [2] and this total includes around 107-10% different clonotypes [3].
This diverse repertoire is produced by random rearrangements of the TCR genes
during the T cell maturation process in the thymus [4].

Peptides are presented to T cells by specialised cells called antigen presenting
cells (APCs). These peptides are displayed on the major histocompatibility com-
plex (MHC) molecules that are found on the surface of the APC. The peptide-MHC
(pMHC) complex interacts with the T cell via the TCR (see Fig. 8.1) and this en-
counter occurs in the lymph nodes when the T cell and the APC come into contact.
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Fig. 8.1 APC and T cell surfaces. These cells interact in the lymph nodes

An APC can present around 10 different peptides at any given instant [5], each
occurring in differing numbers, and the peptides displayed change over time. The
array of peptides presented at a single point in time is referred to as an antigen pre-
sentation profile (APP) [6]. The peptides presented are mostly self-peptides, i.e.,
peptides derived from the body’s own proteins. However, in the case of infection,
foreign peptides will also be displayed. Each peptide may be capable of interacting
with several T cell clonotypes and, in turn, each TCR can interact with many differ-
ent peptides [7]. (If there were a one-to-one correspondence between peptides and
TCRs then a very large number of T cells would be required, far greater than can be
accommodated in the body.)

A diverse and balanced repertoire of T cells is essential for a functional adaptive
immune response [8]. This is because the immune system is unable to predict which
pathogens the organism will be exposed to during its lifetime. How is this large
diversity of naive T cells maintained over the lifetime of the host?

In the periphery, the number of naive T cells is subject to homeostatic con-
trol [10]. This means that the number of T cells remains approximately constant and
returns to the steady state following a perturbation, e.g., following infection. How-
ever, homeostatic mechanisms appear to break down in old age and the diversity of
the naive T cell repertoire declines as T cell clonotypes become extinct [2]. This
may leave gaps in the repertoire and result in increased susceptibility to infection.

Peripheral naive T cells can be produced in two ways: (1) output of new cells
from the thymus and (2) homeostatic proliferation of existing cells in the periph-
ery. Experimental evidence suggests that this proliferation occurs after the T cell
receives a survival signal from an APP presenting self pMHC complexes [11]. In
this chapter we use a continuous-time Markov chain to model the number of T cells
belonging to a particular clonotype, which includes T cell division after receiving
a survival signal from an APP and cell death. A stochastic model is more appro-
priate than a deterministic model because it enables us to study the probability of
clonotype extinction which, as described above, is important biologically. Also, the
number of T cells belonging to a given clonotype may be small, in which case
stochastic fluctuations are important.
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Continuous-Time Markov Chains

A stochastic process {X; : ¢t € 7} is a collection of random variables indexed by a
set 7, the elements of which usually correspond to time values. The state-space S
of the process is the range of all possible values that the random variables X; can
take. In this chapter, the values of the random variables will represent the number
of T cells belonging to a particular clonotype and so the state-space will be discrete.
Production of a new cell or death of an existing cell may occur at any time and so
the set 7 will be continuous.

A stochastic process {X; : ¢ > to} on the state-space S = {0, 1, ...} is called a
continuous-time Markov chain if it satisfies the following condition. For any 0 <
fo <t <...<tj<tj4i,

P(thJrl :l’lj+1|Xt0 :l’l(),...,ij :l’lj) :P(thJrl :l’lj+1|th :l’lj)

This is the Markov property. It says that, given the current state of the process, the
probability of future behaviour is not influenced by any additional knowledge of the
past history of the process.

The transition probabilities are denoted by

Pnm(t1,12) = P(X;, = I’)’l|X,1 =n)

fort; < t, and n, m € S. That is, p,m(t1,12) is the probability that the process
is in state m at time f, given that it was in state n at time #;. We will say that the
transition probabilities are stationary (homogeneous) if the transition probabilities
depend, not on both #; and 7, but only on #, — 7. Then the notation becomes

Pnm(ta —t1) = P(Xy, = m|Xy; = n).
The transition probabilities have the property

+o00
anm(t) =1 fort>ty, nes,

m=0

and satisfy the equations

+o00
Pam(t +5) =Y puk () prm (5), 8.1)
k=0

for all s, t € [tg,+00) and all n, m € S, which are known as the Chapman—
Kolmogorov equations.
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Birth and Death Processes

A birth and death process is a continuous-time Markov chain where transitions are
only allowed to adjacent states. The state-space of the process may be finite i.e.,
S=1{0,1,..., N} orinfinite i.e., S = {0, 1, ...}. A birth and death process has the
following transition probabilities as Az — 0%:

Pam(At) = P(X;i1ar = m|X; = n)

AnAt + 0(At) m=n-+1
) pnAt +0(Ar) m=n-—1 8.2)
)1l =(AnF+ At +o(At)m =n ’
0(At) otherwise,
f(Ar)

where f(At) = o(At) as At — 0T if lim = 0. The birth rate, A,, is
At—0t

the rate of transition from state n to n 4+ 1 while the death rate, 5, is the rate of
transition from state n to n — 1. The birth and death rates satisfy A, > 0, u, > 0
forn =0,1,2,..., but uo = 0 so that transitions outside of the state-space cannot
occur. The process can be represented as

D9 @0
Hy Ho H3 Hp H

n+1

Let
pn(t) =P(Xy = n|Xyy =ng), neS, (8.3)

which is the probability that the birth and death process is in state n at time ¢, given
that the initial state of the process is n. If the state-space of the process is finite and
An = 0 so that transitions outside of the state-space cannot occur, the equation for
the endpoint,n = N, is

PNt + At) = AN Atpn—1(1) + (1 — un At) pw (1) + 0 (A1), (8.4)

Taking the limit Az — 07T, results in

dp,(t
p(;lt( ) =An1Pn1 ) + ppr1Pn1 (@) — An + w)pn(®), 1<n<N-1
(8.5)
Similarly,

dpo(t
p(;)t( ) _ w1 p1(t) — Ao polt), (8.6)

d t
pglt( ) = AN-1PN-1(t) — un pN(1). (8.7

The differential equations (8.5)—(8.7) are known as the forward Kolmogorov
equations.
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Stationary Probability Distribution

A stationary probability distribution = = (79, 71, ...), where 7, > 0 forn € S,
7, =0forn ¢ Sand Y oo, 7y = 1, satisfies the equations

0= pymy — Aomo.,
0=Ap1mp_1 + Mn+1TTn+1 — An + Mn)TTn, I<n<N-1,
0=AN—1TN—1 — UNTIN,

which are the forward Kolmogorov equations with the time derivatives set to zero.

If the state-space of the birth and death process {X; : t > to} is infinite i.e., S =

{0,1,...}, a unique positive stationary probability distribution, 7, exists if and only
if [12]

Apn—1 >0 and u, >0 forn=1,2,... (8.8)
and
+o00
AoAr ... Ap—
Yo LT < o (8.9)

= M2 i
If these conditions are satisfied, the stationary probability distribution is given by

1

To = e T oy (8.10)
1+ Z":i l(zlllbz---lbnl
AoAr .. Ap—

iy = DAL A e = 1,2, (8.11)
K12 - .. n

If the state space of the birth and death process is finite i.e., S = {0,1,2,..., N},
then a unique positive stationary probability distribution 7 exists if and only if

An—1 >0 and u, >0 forn=1,2,...,N.

Then the stationary probability distribution is given by (8.10)-(8.11), where the
index n and the summation on n extend from 1 to N.

Continuous-Time Birth and Death Process with Absorbing States

If Ao = o = 0thenn = 0 is an absorbing state, meaning that once the process
reaches this state, it remains there forever. The process can be represented as

)\1 )\2 >\n -1 >\n
Hy Ho H3 My,

,un+ 1
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The stationary probability distribution of the process has all its mass at the absorbing

state, i.e., 7 = (1,0,0,...)T. The probability of the process reaching the absorbing

state is given by ligl po(t). If the state-space of the process is infinite i.e., S =
t—>+00

{0,1,...} and

o0
K12 ... Un

= +o0, 8.12
ida ®.12)

then lirll po(t) = 1, which means that eventual absorption at n = 0 is guaran-
t—>+00
teed [13]. On the other hand, if (8.12) does not hold, then

Z‘FOO K12 M

=m AiA>...A
lim po (r)_ R (8.13)
e IS R

where m is the initial state of the process.

The Limiting Conditional Probability Distribution

Prior to extinction at n = 0 occurring, the probability distribution of a birth and
death process may adopt a stationary shape for a long period of time, especially
if the expected time until absorption is relatively large. In order to study the be-
haviour of the process before extinction occurs, we define the following conditional
probabilities:

@ =P =n X 20 = D g w12 (8.14)

1 — po(1)

which is the probability that the process is in state n at time ¢, given that absorption
has not yet occurred. These conditional probabilities satisfy:

dgn(r) 1 dpa () Pn(l) 1 dpo(?)
de - 1=po(r) dt 1—po(t) 1 = po(r) dr
= kn—lqn—l(t) —(An + /Ln)CIn(t)
Fn+1gn+1(8) + p1q1(0)qn(2), (8.15)

forn > 2 and
dg:1(t) 1 dpi(@) 1210) 1 dpo(r)
dr 1—po(t) dt L= po(t) 1 = po(r) dt
p2q2(t) — (A1 + p1)qi(t) + p1q1(t)qa (). (8.16)
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If the state space is finite, we have

dgn(t) 1 dpn(t) 240! 1 dpo(t)
de 1 —po(r) dt 1= po(t) 1= po(t) dr
= AN-1gN-1(t) — ungnN (1) + p1q1()gn (). (8.17)

A distribution g is called a quasi-stationary probability distribution (QSD) if it is
a solution of (8.15)—(8.17) where the time derivatives are set to zero. The limiting
conditional probability distribution (LCD) of the process is defined as

lim ¢,(t), n>1. (8.18)

t—>-+o00

Since the LCD is independent of time, it is also a QSD. If the state-space of the
process is finite, there is a unique QSD, which is also the LCD of the process.
However, if the process has an infinite state-space, there may be no QSD and, if a
QSD does exist, it is not necessarily unique [14]. In most cases, it is not possible
to find an explicit solution for the QSD or the LCD, but numerical methods can be
used (see [15] for an iterative procedure).

The LCD can be approximated analytically by setting ;t; = 0 [15]. This results
in a new birth and death process which has no absorbing state and can be repre-
sented as

e 99 @08

,un+1
IfA,—1 >0 and u, >0 forn =2,3,...,and
+o0
AMAz. . A,
P (8.19)

n—p M2H3-.-Hn

the new process has a unique positive stationary probability distribution which is
given by

20 1
+00 AjAo. Ay
1+Zn =2 WUoM3e--fn
AMAz. . A
Jr,gl) = MT[F) forn > 2. (8.20)
Mo h3 ... Up

This distribution is an approximation to the true LCD of the process.

The LCD may also be approximated by the stationary distribution of a birth and
death process which has the same birth rates as the original process, but where the
death rates p, are replaced by jt,—; to allow for one immortal individual [15]. This
can be represented as
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® 0 9 9 €909

My Ha Hp—1 Hp
IfA, >0 andu, >0 forn=1,2,...,and
+o00

AMAr.. A,
o2l < oo (8.21)
s M1H2 - fn—1

this process has a unique positive stationary probability distribution which is
given by

@ _ 1
T ,
1+ +00 AjAr.. A,
N=2 (L) 42 eefhy—1

Az A
= 222l a @ forp > 2. (8.22)

i
M1M2 .. Hn—1

In general, 71 is a better approximation to the LCD when the mean time until

extinction is long, whereas 7 provides a better approximation when the mean

extinction time is short [15].

Mathematical Model of Peripheral Maintenance

We will use the index i to label T cell clonotypes and the index ¢ to label APPs. Let
C be the set of all T cells in the naive repertoire. Whether or not a T cell of clonotype
i can receive a survival signal from a given APP ¢ depends on the particular TCR
it expresses on its surface. The subset C, is defined to be the set of all T cells that
are capable of receiving a survival signal from APP ¢. Also, Q is the set of all APPs
which may occur in the periphery and Q; is the subset of APPs from which T cells
of clonotype i can receive a survival signal. We define n; = |Cg4|, which is the
total number of T cells that can receive a survival signal from APP ¢. These sets are
illustrated in Fig. 8.2.

Let y, be the rate of survival signals from all the APCs presenting APP ¢, which
we assume remains constant in time. We will also assume that the survival signals
from any APP ¢ are shared equally among all the T cells capable of receiving them.
Now define 1) to be the per cell birth rate for T cells of clonotype i. Then

M) _ Ya
20 = Z TonE (8.23)

q€Q;
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APPs T cell clonotypes

Fig. 8.2 The sets of APPs and T cell clonotypes. Each circle on the left represents an APP, while
each circle on the right represents a T cell clonotype (containing all the T cells with an identical
TCR). A line between the two circles indicates that T cells of this clonotype receive a survival
signal from the APP

Let n; be the number of T cells belonging to clonotype i and 7;, be the number of
T cells not of clonotype i that receive a survival signal from an APP ¢ € Q;. Then
ng = n; + njq so that

=3 T (8.24)

9
n; +n;
qeQ; ! +1ig

where we have assumed that y, = y for simplicity. Next, we partition the set Q;
into disjoint subsets as follows:

+o00
Q=JQr, (8.25)

r=0

where Q;, is the set of APPs which provide survival signals to T cells of clonotype i
and to r other distinct clonotypes in the repertoire. Then Q;, N Q;,» = @ forr # r’,
and hence,

+o00 1
20 = _ 8.26
SIS 826

r=0q€Q;,

The previous equation implies that the birth rate per T cell of clonotype i depends
not only on the number of T cells of clonotype 7, but also on the number of T cells
of any other clonotype that receives a survival signal from an APP ¢ € Q; through
the term n;4.

We proceed to develop a mean field approximation to decouple the birth rates so
that the expression for 1) depends only on the number of T cells of clonotype i.
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Treating the mean number of T cells per clonotype as a parameter, (n), the approx-
imation is [9]

+o00
20 =y 3 NGl (8.27)

= r(n) + n;

Let v; be the number of clonotypes that compete with T cells of clonotype i for
survival signals from an APP, with the average taken over all the APPs belonging to
the set Q;. Assuming that

vie Vi

|Qir] = |Qi| = (8.28)

r!

completes the model.

Summary of the Model

Using the mean field approximation, we have modelled the number of T cells
belonging to a given clonotype, i, as a continuous-time birth and death process
{X; : t > to} on the state-space S = {0, 1,2, ...} with the birth and death rates

Ao =0, (8.29)
+oo
1
M =gne S L s, (8.30)
oy rir(n)+n
Un =pun, n>0, (8.31)

where the clonotype label i has been dropped for notational convenience. The model
has four parameters:

(1) ¢ is a parameter proportional to the number of APPs which can provide survival
stimuli to T cells of the fixed clonotype i. Then ¢! is proportional to the mean
time until a T cell of this clonotype receives a survival signal from an APP in
the absence of competition with T cells of other clonotypes.

(2) v is the “mean niche overlap” and encodes competition for survival stimuli be-
tween T cells of the fixed clonotype, i, and T cells of other clonotypes.

(3) (n) is the average clonotype size over the naive T cell repertoire.

(4) p is the death rate per T cell of clonotype i.

Special Cases

We introduce two special cases of the model which are defined by the value of the
mean niche overlap parameter v, which encodes competition. If v < 1 we say that
the clone occupies a “hard niche”, while if v > 1 we say that it occupies a “soft
niche”. Biologically, a clonotype with v < 1 possesses a TCR that is very different
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from the other clonotypes in the repertoire, while a clonotype with v > 1 has a
TCR that is similar to the TCRs of many other clonotypes in terms of the APPs
from which it is able to receive survival signals. We now derive expressions for the
forms of the birth rates in these special cases.

For v « 1, the first term in the sum in (8.30) dominates so that

(]

1
An ~ gone_“%— ~ ¢, forn>1,
I'n

which means that the birth rate is approximately constant in this case. On the other
hand, for v > 1 we have

—v,,r

+o00
e v 1 1
An = ——— = ¢pnEk| ——|, 8.32
g q)n; rt r{n)+n on [Y(n)+n:| (8.32)

where Y is Poisson distributed with mean v. Carrying out a Taylor expansion about
the mean gives

An = ( L +) (8.33)
n=en vin) +n  (wn)+n)d ) ’

Since v > 1, the second and subsequent terms in the above expansion may be

neglected, which results in

__ yn
An = R (8.34)

Clonal Extinction and Mean Extinction Times

Since o = Ao = 0, the birth and death process has an absorbing state at n = 0.
Clonal extinction occurs if the process reaches this state. We now calculate the prob-
ability of extinction using condition (8.12).

Firstly, note that the birth rate is bounded from above as follows:

+o0 o 1
An = gne™" _—
= rlr{n)+n
+oo
< gpne™’ vy
= rl'n
— (pe—l)ev

—0. (8.35)
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Therefore
R ipe R !
Rl . (8.36)
» IAIAZ-- An _nz=:1 (pn

using the upper bound (8.35). Let a, = “:,7!. Then

ant1 _ pn+1)
an @

— +ooasn — +00,

and so Z;:“{ a, diverges by the ratio test. Hence, condition (8.12) holds by the
comparison test and we conclude that absorption at n = 0 is certain for all values
of the parameters. This means that the eventual fate of any clone is extinction and
disappearance from the repertoire.

‘We now compute the mean times to extinction. The mean time to extinction from
initial state m is given by [12]

+o00

AAz. . Au
L"‘Z 1142 n 1’ m:l,
S A SV Ry
Tm = o o (8.37)
S S [y SR B RN
k=1 oM, Sy M-

We first calculate the mean time to extinction for the hard niche case (v < 1). Sub-
stituting the birth and death rates A, = ¢ and u, = un into the above expressions
results in

1/ e
0= (eu - 1), (8.38)
m—1 k+1 k n
k! 1
=T+ Y. —(E) e — 3 (f) — | form > 2. (8.39)
i \e o \u) n!

We now consider the most general form of the birth and death rates given by (8.30)—
(8.31). Then

+o00

AMAz .. Au—
TIZZ 112 n—1
= g2

+oo n—1
<

using the bound A, < ¢

n=1

1)

(en - 1) , (8.40)

1
@
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and
-1
i e S AAa Ao
KRR Dl v e vl Dl
= A2 A S HiM2 ... Un
m—lM m m o0 1 @ n
sn 3 gt 5 (%)
k=1 172 kn=k+1(pn' s
m—1 +oo n—k
k! (o
sy 2 ()
|
k=1n=k+1<pn. K
m—1 k+1 k n
k! 1
:z1+Z—(E) ei’i—Z(f) — | form > 2, (8.41)
o \e —\u) n!

so the mean extinction times in the most general case are bounded by (8.38)—(8.39).
Therefore, the hard niche case provides an upper bound on the mean extinction
times. This is shown in Fig. 8.3 where 7; (calculated numerically) is plotted as a
function of v for fixed ¢, u and (n). For v <« 1, 71 is independent of v, in agreement
with (8.38). Clones with v < 1 have the longest lifetimes in the repertoire. These
are the clonotypes that are most different from other T cells in the repertoire in terms
of the APPs they are able to receive survival signals from and so their long residence
times in the repertoire ensure that diversity is maintained.

le+25 T T T T T T T T T
I p=10 —5— ]
i = 50 - O
1e+20f'®®'0®‘<><>'<>.<> ]
[ 0 ]
le+15 |- . -
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o ]
100000 |- o .
F—TT—ta—aE——F : g
- m ]
! ! . I P SO S S
1 BRI ——H—H O—HA

0.0001 0.01 1 100 10000

Fig. 8.3 1 as a function of v for ¢ = 10,50, (n) = 10and pu = 1
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Homeostasis and the Limiting Conditional Distribution

Since extinction is guaranteed with probability one, the limiting distribution of the
process is given by (1,0,0,...)7. To investigate the behaviour of the system before
extinction takes place, we consider the limiting conditional probability distribution
(LCD) of the process, which represents the homeostatic distribution of T cells.

Casev K 1

In the hard niche case, the birth and death rates are given by Ao = 0, A, = ¢, for
n > 1and u, = un, forn > 0. Then

e e f(z)“%

n—p M2H3-.-Hn

The first approximation (8.20) to the LCD is given by

7[{1) = 1 == §0
+00 AjAr.Ay— A ’
1+ Z":; llL212L3---Mnl ,LL(CM a 1)
n
jénziﬁi;iziﬂnz(ﬂ)__TL__fmn>z
H2fd3 .- . fn w) onler —1) B

This distribution has mean

+o00
P =t
n=1 12 (

1—e‘ﬁ)’

and variance

+o0 +o0 2 1 @ 2 m 1

2_(1) _ (1) - - (_) (1 ~_ —)
E n°m E nm = + .
n=1 " (n=1 " ) (1 —e_%) M ® 1—6_%
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The second approximating distribution (8.22) to the LCD is:

+00 +o00 —
3 et Z( ) LI Y
b OV — (n—1)!

This means that

1
nl(z) = =e K,

+o0 /’L]Az...lnfl
1+ Z"=2 U2 by —1

n—1
7® = —A A2 A (2) (f) L e u, forn>2.
? K12 - - fin—1 2 (n—1)! -

xS

NS

This distribution has mean

Znn(z) = + 1,

and variance
+o00 +o00 2
S n2n® - (Zm,52>) _?
n=1 n=1 K

The mean time to extinction increases as ¢ increases. Hence, 7 is the best
approximation when the mean time to extinction is short, while the accuracy of
approximation 77 (!) improves with increasing mean time to extinction.

Casev > 1

In the soft niche case, the birth rates are given by (8.34) and the first approximating
distribution to the LCD is given by

1
HONS

1 + n—1
1+ HOCZJ;( ) Hk 1k+vn
m_ ey (1)1—[ U im0
T, == T —— forn ,
" n\ ! k_lk—i—v(n) -

while the second approximating distribution is given by

’

n® = :
+ n—1
I+ Zn:) ( ) Hk 1 k+v (n)

n—1
@ @) 1
7{}52) = (—) T klill m forn > 2.

n
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If ¢ is large enough, the clonotype behaves as a hard niche clone even though v > 1,
and 7 is a good approximation to the LCD for long mean extinction times, while
7@ is a better approximation than (! when the mean time to extinction is short,
as for the case v < 1.
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Chapter 9
Multivariate Competition Processes: A Model
for Two Competing T Cell Clonotypes

Carmen Molina-Paris, Grant Lythe, and Emily Stirk

Abstract Diversity in the naive T cell repertoire is maintained throughout the
majority of an individual’s lifetime. The homeostatic mechanisms involved include
competition for survival stimuli furnished by antigen-presenting cells, dependent on
weak recognition of arrays of self-peptides by the T cell antigen receptor. We study
the dynamics of this process from the point of view of stochastic competitive exclu-
sion between a pair of T cell clonotypes which are similar in terms of the specific
survival stimuli which they are able to receive. This dynamics is formulated as a bi-
variate continuous-time Markov process for the number of T cells belonging to the
pair of clonotypes. We prove that the ultimate fate of both clonotypes is extinction
and provide a bound on mean extinction times. We concentrate mainly on the case
where the two clonotypes exhibit little competition with other T cell clonotypes in
the repertoire, since this case provides an upper bound on the mean extinction times.
As the two clonotypes become more similar in terms of the proportion of their re-
sources which are shared between them, one clonotype quickly becomes extinct in
a process resembling the ecological principle of classical competitive exclusion. We
consider the limiting probability distribution for the bivariate process, conditioned
on non-extinction of both clonotypes.

Introduction: Bivariate Competition Processes

A healthy adult human possesses approximately 10'! naive T cells [1], which
belong to around 107-10% different clonotypes (all T cells with identical T cell
antigen receptor) [2]. The number of naive T cells is controlled homeostatically,
meaning that it remains approximately constant throughout much of an individ-
ual’s lifetime [3]. Experimental evidence suggests that T cell homeostasis is driven
by interactions with self-antigens (antigens derived from the body’s own proteins)
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displayed on the surface of antigen-presenting cells [4—6]. Naive T cells undergo
infrequent cell divisions after receiving a survival signal from an antigen-presenting
cell (APC). Whether or not a particular T cell can receive a survival signal from a
given APC depends on the TCR it expresses and the array of self-antigens presented
on the APC surface [7]. Competition amongst T cells for these interactions regulates
the diversity of the T cell repertoire [8].

In Chap. 9, we constructed a univariate birth and death process to model the num-
ber of T cells belonging to a particular clonotype. The model relied upon a mean
field approximation of the competition between different clonotypes. It was assumed
that, even though a given T cell may compete with T cells of many other clonotypes
for access to survival signals from an antigen-presentation profile (APP), individual
competitive interactions between pairs of clonotypes are weak and do not have a
significant impact on the fate of either clonotype. In terms of the sets defined in the
previous chapter, this means that [Q; N Q;| < |Q;| fori # j (see Fig.9.1). In this
chapter, we introduce a model for the case when this condition does not hold. This
means that the two clonotypes i and j overlap significantly in terms of the APPs
from which they can receive survival signals and so the number of T cells of one
clonotype affects the level of survival signals available to T cells of the other clono-
type. We will assume that [Q; N Qx| < [Q;l, |Q; N Qx| < |Q,| fork # i, j and
so competition between pairs of clonotypes (other than the pair i and j) is small.
Therefore, the birth rates for the two competing clonotypes are coupled and we re-
quire a bivariate continuous-time Markov process to model the number of T cells
belonging to both clonotypes [9, 10].

In the next section, a type of bivariate continuous-time Markov chain called a
competition process is defined. This type of process is then used to model the num-
ber of T cells belonging to two closely competing clonotypes. It is then shown

1Q: N Q| < Qs There exists j such that

for all j # i [Qi N Q] ~ Qi

Fig. 9.1 The diagram on the left represents pairs of clonotypes for which the mean field approx-
imation, described in the previous chapter, is reasonable. In this chapter, we consider a pair of
clonotypes such as that represented on the right
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that both clonotypes eventually become extinct with probability one. The model
is extended to include any number of clonotypes for which the mean field approx-
imation introduced in the previous chapter does not hold. Finally, we conclude the
chapter with a numerical simulation of the full model using the Gillespie algorithm,
where it is not necessary to make any mean field assumptions regarding the compe-
tition between different clonotypes.

We will construct a mathematical model for the number of T cells belonging
to two different clonotypes, which we refer to as clonotypes 1 and 2, for which
|Q1 N Q2] ~ |Q1]. This means that the two clonotypes overlap significantly in
terms of the APPs from which they are able to receive survival signals. The random
variable X(¢) describes the number of T cells of clonotype 1 at time ¢, while the
random variable Y(¢) describes the number of T cells of clonotype 2 at time 7. At
time t = 7, 1; cells of clonotype 1 are released from the thymus and at time ¢t = 7,,
fi2 cells of clonotype 2 are released from the thymus. It is assumed that after 7; no
T cells of clonotype 1 are produced from the thymus and similarly, after 7> no T cells
of clonotype 2 are produced from the thymus. Without loss of generality we may

assume that 7} < i, & to. For t < tg, only one of the clonotypes is present in the
T cell repertoire and so the univariate model introduced in the previous chapter may
be used. After this time we model the number of T cells belonging to clonotype 1
and 2 as a bivariate competition process.

Competition Processes

Let {(X(¢),Y(¢)) : t > to} be a continuous-time bivariate Markov process on the
state-space S = {(n1,n3) : ni,ny = 0,1,...}. The transition probabilities are
defined by

pam(At) = P{X(t + At) = m 1, Y(t + At) = my|X(t) =n1,Y() =na} (9.1)

form = (n1,n3) € Sand m = (my,my) € S, where it is assumed that the tran-
sition probabilities are stationary (they only depend on the time interval between
transitions and not the time at which transitions occur), as in the previous chapter.
A bivariate competition process is a continuous-time Markov process where tran-
sitions are only allowed to adjacent states. Then the transition probabilities satisfy

pan(A1) = 1= AN 422+ 1M+ u@ ) At + o(Ar) and

AN L At + o(Ar) m= (n, + 1,n)
AP, At + o(Ar) m=(n.ny+1)
Pam(A1) = 3 1V Al + 0(A1) m=(n —1,n2) (9.2)
,u,(,zl),nzAt + 0(At) m = (ny,n, — 1)
o(At) otherwise,

. . A
where f(Ar) = o(At) if limy,_ o+ L42 = 0.
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2
Nf)ti

2
o

(2)
Ho, 3

Fig. 9.2 A schematic representation of the bivariate competition process and the transitions
between different states

A schematic representation of the process is given in Fig. 9.2. The quantity )L,(lll), ny
is the birth rate of T cells of clonotype 1 and is the rate of transition from state
(n1,n3) to (n; + 1,n,). Similarly, the birth rate of T cells of clonotype 2, denoted
)Lf,zl),nz, is the rate of transition from state (n1,n2) to (n1,n + 1). The death rate
for T cells of clonotype 1 is given by ,uf,ll),nz and this is the rate of transition from

state (11, 7n2) to (n; — 1,n2). The death rate of T cells of clonotype 2, ,u,(,zl),nz, is the
rate of transition from state (n1,n;) to (n1,n — 1). We set p,gl)/ = ;LSZ()) = 0 for all
J = 0so that transitions outside of the state space S cannot occur.

Let pn, n, be the probability that the process is in state (11, 7n,) at time 7. These

probabilities satisfy the forward Kolmogorov equations, which are given by
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dpn, ., (1) YO

2 1
dr nl_l,nzpnl—l,nz(l) +)‘£,l),n2_1pn1,n2—l(l) + //Lfll)+1,n217n1+1,n2(l)

)
+ Mnlsn2+1pnlsn2+1(l) - (Af,ll),nz + )&Slzl),nz + /’Lglll),nz
+M5121),n2)17n1,n2(t), 9.3)
forny = 1, np > 1, plus

dpo,o(?)
PO = u{h o) + 1Y poa (@) — (A4 + 284 Poo().

dr
dpo,n, () 2 1 2
% = /\((),,),2_11?0,@—1(1) + Mg,,),zpl,nz (1) + M((),,),2+1P0,n2+1(l)

1 2 2
— (A0, A0+ 18,) P @), 2= 1,

dpny,0(t)
“Em 0 _ M oPni—1,0(t) + Hlel)+1,0pn1+1,0(f) + M;zl)JPnl,l(t)

d TmL
— (A0 + 420+ 10) Paro®). m = 1. 9.4)
If the state-space of the process is finite, i.e., S = {(n1,n2) : n1,n =0,1,..., N}

and )LS)M = )Lflzl)N = 0forny,ny, = 0,1,..., N so that transitions outside of
the state-space cannot occur, there are additional equations for the states on the
boundary which are given by

dpn,o(t) 1 2 2 1
T = lgv)_l,opzv—l,o(f) + Mgv,)1pN,1(t) - (ASV,)O + H“SV,)O) pN’O(t)’
dpo,n (1) 2 1 1 2
= Af)}\,_lpo,zv—l(l) + Mﬁ}vpl,zv(l) - (Af)}v + Mg;v) po.N (1),
dpnn, (1) 1 2 2

d'tl2 = )tgv)_l,nsz—l,nz(l) + AgV,)nz—les’Q_l(l) + I’LSV,)ﬂ2+1pN’n2+1(Z)

2 1 2
_(AEV,)HZ—FMEV,)}’LZ—FMEVLZ) pN,nz([)s 1 EHZSN_ly

dpﬂ],N(t) — A.(l)

2 1
NPt (O + A2 Py -1 () + )y P

dr m-t
1 1 2
— (M )y ) PN @, 1 Sm <N -1,
dpn,n (1) 1 2
= )Lgv)_l,NpN_l,N(t) +A§V?N_IPN,N—1(f)

- ( %)N + ME?N) PN, (D). 9.5)
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Mathematical Model for Two Competing Clonotypes

The transition probabilities defining the competition process take the form of those
in (9.2) and are now derived. Recall that C is the set of all T cells in the naive
repertoire and C, is the set of all T cells that are capable of receiving a survival
signal from APP ¢g. Also, Q is the set of all APPs which may occur in the periphery
and Q; is the subset of APPs from which T cells of clonotype i can receive a survival
signal. We define n, = |C,|, which is the total number of T cells that can receive a
survival signal from APP g. Let y, be the rate of survival signals from all the APCs
presenting APP ¢, and A1) be the per-cell birth rate of T cells of clonotype 1. Then,
assuming that y, = y and that the survival signals from APP g are shared equally
among all the T cells capable of receiving them, we have that

1 _ Yy Y
A _Zm_zn—, (9.6)
q€Q 9 qeQ; 4

as for the univariate case. Let n; be the number of T cells belonging to clonotype 1,
and n14 be the number of T cells not belonging to clonotype 1 that receive a survival
signal from an APP g € Q. Hence, ny = ny + niq.

We next divide the set Q; into two disjoint subsets by defining

Q12 = Q1 NQy, 9.7)

which is the set of APPs from which T cells of both clonotype 1 and clonotype 2
can receive a survival signal, and

Qi =0Q1N Qa, (9.8)

which is the set of APPs from which T cells of clonotype 1 receive a survival signal,
but T cells of clonotype 2 do not. Here, (Q, denotes the complement of the set Q.
Then, Q; = Q12 U Qq/2 and Q2 N Q2 = 9. Therefore,

AW =3 S 3 _r
q€Qi2 1N T Mg q€Qy/2 1t Mg

where n, denotes the number of T cells belonging to clonotype 2 and n124 = ng —

ny —nj.
Now, we partition the sets Q12 and Q» into disjoint subsets as follows:

+00 +oo
Qu=|JQw2 and  Qip={JQup.
r=0 r=0

where Q12 is the set of APPs which provide survival signals to T cells of clono-
type 1 and clonotype 2 and to r other distinct clonotypes in the repertoire, and Q1>
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is the set of APPs which provide survival signals to T cells of clonotype 1 and to r
other distinct clonotypes, none of which is clonotype 2. Hence,

+o00
1 1
AW = _— + — 1. 9.9
)/Z Z ny 4+ nz + nizq Z ny+nig ©9)

r=0 \g€Qi2r q€Q1r/2

Note that the birth rate of T cells of clonotype 1 depends on the number of T cells
of any other clonotype that competes with clonotype 1 for access to survival signals
from an APP, through the terms n14 and n124.

We now introduce a mean field approximation so that this birth rate depends only
on the number of T cells belonging to clonotypes 1 and 2. We denote by

— p1 the probability that a randomly chosen APP provides a survival stimulus to
T cells of clonotype 2, given that it provides a survival stimulus to T cells of
clonotype 1

— p» the probability that a randomly chosen APP provides a survival stimulus to
T cells of clonotype 1, given that it provides a survival stimulus to T cells of
clonotype 2

— p.isj the probability that an APP chosen at random from Q;/; will belong to the
set Q of a different clonotype k selected at random

With the mean field approximation we write

+o00
KDIr/Zl
/\(1) _ |Q12r| | ) 9.10
y;} n1+n2+r(n)+n1+r(n) ( )
where
e vz e 1
|Q12/] = P1|Q1|HT and |Q1r/2] = (1 = p1)|Q1] 1r' .

The parameter vy, is the mean niche overlap for APPs in the set Q12, which is the
average number of clonotypes that are competing with clonotype 1 and clonotype
2 for an APP in the set Q;5, whereas v; is the mean niche overlap for APPs in
the set Qy/2, which is the average number of clonotypes that are competing with
clonotype 1 for an APP in the set Q;/>. Hence, these parameters represent the
strength of competition between T cells of clonotype 1 and T cells of other clono-
types in the repertoire (other than clonotype 2) for APPs in these sets, Q12 and
Q1/2, respectively. These parameters are not the same as the mean niche overlap
parameter for all APPs in the set Q;, v, which is a parameter of the corresponding
univariate model described in the previous chapter. However, these parameters are
related by

v=vi2p1 +vi(l — p1). 9.1D
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Hence, the per-cell birth rate of T cells of clonotype 1 is given by

+o00 +o00

2 =g |pre 12 Z &;4_(1 —pe™ Z V_;;
— rl ny 4+ ny +r(n) — rlny+rin))’
r=0 r=0

(9.12)

where @1 = y|Q;] is a parameter proportional to the number of APPs from which
T cells of clonotype 1 receive a survival signal. By a similar derivation, the per-cell
birth rate of T cells of clonotype 2 is given by

+00 T
AP =gy (pre™2 Y it S — +(I—p2)e™™ 2_1 _ ;
= r! ny+ny+rin) = rl ny 4+ r{n)

(9.13)

where ¢, = y|Q2| and p = P(¢ € Q1|g € Q2). The per-cell death rate of a given
clonotype is assumed to be constant and is given by p; for T cells of clonotype 1
and p, for T cells of clonotype 2. Therefore, the birth and death rates of the bivariate
competition process are given by

A0 2ADn,, )L,(fl),nz = k(z)nz, ,u(l) = uinp and [L(Z) = UaNy.

ni,nz

Summary of the Model

We have constructed a bivariate competition process {X(#), Y(z) : ¢t > to} on the
state-space {(ny,np) : ni,ny = 0,1,...} which models the number of T cells
belonging to clonotypes 1 and 2 at time ¢. The birth rates are given by (9.12), (9.13)

plus /15)1,3,2 = 0 forn, > 0 and )‘5121),0 = 0 for ny > 0. The death rates are given
by Mi,ll),,,z = pin; and ,uflzl),nz = Uany for ny,ny > 0. By definition, Q; N Q, =

Qi2 = Q21 = Q2 N Q;. We also have that y|Qi2| = yp1|Qi| = ¢ip1 and,
similarly, y|Q21] = yp2|Q2| = ¢2 p». This leads to the constraint on the parameters

Y1P1 = Q2D2, (9.14)

where 0 < p; < land 0 < p, < 1, as the parameters p; and p, represent
probabilities. Hence, the model has nine independent parameters,

©1.92, P1, V12, V1, V2, i1, f2, (1),

compared to the four parameters of the univariate model described in the previous
chapter.



9 Competing T Cell Clonotypes 195

Clonal Extinction and Mean Extinction Times

Since we have that M(()li = Mgz()) = /\61,} = /\% = 0 for all j > 0, the set of
states A = {(n1,n3) : n1 = Oorny = 0} forms an absorbing set. (Once the
process enters this set, it will never leave.) This corresponds to extinction of one of
the clonotypes from the T cell repertoire. The state (121, 72) = (0, 0) is an absorbing
state corresponding to extinction of both clonotypes. In this section, we prove that
the probability of the process eventually reaching this absorbing state is one and
show that the mean time until the absorbing state is reached is finite. In order to do
this, we require the following upper bound on the birth rates:

. +o00 sz 1 +o0 U{ 1
Y <oy [ preT2 Y Tinr +(1=pe > T
r=0 r=0

o evi2 _em
= @11 (Ple vi2 + (1= pre™ _)
ni ni

=¢1- (9.15)

Similarly, we can show that )Lf,zl),nz < ¢.

Both Clonotypes Become Extinct with Probability One

In order to prove that the absorbing state at (n1,n2) = (0, 0) is reached with prob-
ability one, we use the method of Iglehart [11] and bound the bivariate competition
process with a univariate birth and death process which moves towards the absorb-
ing state at the origin at a slower rate than the bivariate process. We then show that
the univariate process reaches the absorbing state with certainty, and hence we may
conclude that the bivariate competition process also reaches state (0, 0) with proba-
bility one. We first divide the state-space S of the process into the following disjoint
subsets:

Sk = {(n1,n2) :n1 +ny =k} fork > 0.

A schematic diagram of these sets is given in Fig. 9.3. The birth and death rates for
the univariate birth and death process are now defined in such a way that this new
process moves towards the origin at a slower rate than the bivariate process. Let

A = max {/X(l) +/\£,21),n2} and up = min {(1) +n },

ni.n I/Lﬂ n ni,.n
(n1,n2)€Sk 2 (n1,n2)€Sg 112 112

with )u}c = M}( = 0 when k = 0. If the process is in the set Sg, at the next transition
it moves to either Sx_; or Sgy1. The rate )L;( is the maximum rate at which the
bivariate process moves upwards from the set Sg to Sg4; and the rate ) is the
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Fig. 9.3 Diagram of the sets Sy for k > 0

minimum rate at which the bivariate process moves downwards from the set Sg to
Sk—1. Hence, these rates define a univariate birth and death process on the state
space {So, S1,S3, ...} where Sy is an absorbing state and Sy is now treated as an
element rather than a set. This process moves towards the absorbing state at a slower
rate than the bivariate process and can be represented by the following diagram:

A sufficient condition for this process to reach the absorbing state with probability
one is that the series

L

— (9.16)
fat MAY A
diverges (see previous chapter). In order to prove this, we first observe that
r_ (1) )
e = (nlr,lrgl)XESk {Anl’nz + Anl’"z} =S¢t 2 ©.17)
from (9.15) and
W= min_ {puing + pony} = kmin(uy, i12). (9.18)

(n1,n2)€Sk
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Therefore,
+ x i
S ks SR KliminGu. i) 9.19)
PR (o1 +02)* |
= M1h2 ko k=1
Let
oy — FlminGuy, pa)l (9:20)
(p1 +@2)F
so that
As1 _ (k + D) min(uq, u2) — 4+ooask — +oo ©.2D)

ag (o1 + ¢2)

Hence, the series Z,L“j ay diverges by the ratio test and so the series (9.16) diverges
by comparison. Therefore, the univariate process reaches the origin with certainty
and so we conclude that the bivariate competition process ultimately reaches the ab-
sorbing state (11, 7n2) = (0, 0) with probability one for all values of the parameters,
corresponding to extinction of both clonotypes from the repertoire.

Finite Mean Extinction Times

The mean time until both clonotypes become extinct, when the initial state of the
process is (11, n2), is denoted by 7, ,,. This quantity is finite for all (n1,n,) €
S\ {(0, 0)} if the series

400 9797 ’
ANy A

Yo A (9.22)
k=1 Ml“z"'“k
converges [11]. For the rates (9.17)—(9.18),
+ + -
f MA2 Ay _ f (¢1 + ¢2)* ©0.23)
iy T o K minun, po)F
Let
k—1
= (<p1.+ ®2) _ 9.24)
k![min(u1, p2)]
Then,
b
k1 _ (o1 + ¢2) — 0ask — 400, (9.25)

b (k+1)min(py, p2)

which means that the series Z;’: by converges by the ratio test. Hence, the series
(9.22) converges by comparison and therefore the mean time to reach the absorb-
ing state from all initial states (n7,n2) € S\ {(0,0)} is finite for all values of
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the parameters. This is because the convergence of the series (9.22) is sufficient
to prove that the univariate process with the birth and death rates A) and pu)
reaches the absorbing state in finite time from all initial states, and this process
moves towards the absorbing state at a slower rate than the bivariate competition
process.

The Limiting Conditional Probability Distribution

The limiting conditional probability distribution of the process represents the late-
time behaviour of the system before extinction occurs. Since extinction of both
clonotypes occurs with certainty in finite time, the limiting probability distribution
of the process, lim; sy o0 Pn, 1, (t), has all its mass at the state (n1,1,) = (0,0). In
order to study the behaviour of the process before extinction takes place, we condi-
tion on the event that the process has not yet reached the absorbing set A. Let p,(¢)
denote the probability that the process is not in set A at time ¢. We define

pnl,nz(t)

, 9.26
pa(t) ©:20

qnl,nz(t) =

which is the probability that the process is in state (n1,7n,) at time ¢, given that
extinction of either clonotype has not yet occurred. Then

dqn, n, (1) _ 1 dpnyn, (1) _ Pnyny (1) dpa(?)

= 9.27)
dr pa(t)  dt (pa@))? dt
Using the fact that n1 0 an o Pny.n, = 1, we have
+o00 +o0
pa®) =1=" pony ()= D puy.o(t) + poo(0). (9.28)
n>=0 n1=0
and hence
dpa(t) _ dpo,o(r)
— t t . 9.29
dr T nzZ:OPOnz() dr an:OPn1O()+ ( )

We now derive expressions for the terms on the right hand side of this equation.

d +o00 +oo d +o00 +oo
3 2 Pom () =i Y pras() and ¥ pui o) = pa Y pua ().

n2=0 n2=0 n1=0 n1=0
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Therefore,
dPA(l)
=~ Z PLas () = 112 Z Py (D),
np= 1 }’L]—l
and
dqn, n, (1) 1 2 1
% = Af,l)_1,y,2Qn1—l,n2 (Z) + )‘fll),nz_1Qn1,n2—l(l) + I/Lfll)+1,n2fIn1+l,n2(l)

() 1 2 1
+Mn1,n2+lqnl,n2+1(t) - (Al(ll)nz A1(11)112 + /‘LI(H),HZ

+:ur(121),n2) Gny .y (1)

00
+:u1qﬂl,ﬂz(t) Z ql,ﬂz(t) + :qum,nz(t) Z QHl,l(t)’ (9.30)

n2=1 n1=1

forn; > 1,n, > 1. A distribution, g, is called a quasi-stationary probability distri-
bution (QSD) if it is a solution of the equations obtained from (9.30) by setting the
time derivatives to zero. The limiting conditional probability distribution (LCD) is
defined by

t—1>iI—POO Gnyns (1), (9.31)
where ny > 1, np, > 1. This distribution is independent of time and so is a QSD.
For a process where the state-space is finite, the QSD of the process is unique and
is equal to the LCD [12]. This will always be the case when the LCD of the process
is calculated numerically.

A Process with m Competing Clonotypes

In previous sections we have studied a process modelling the number of T cells
belonging to two competing clonotypes. In this section we extend the model to
include m competing clonotypes for which the mean field approximation does not
hold, and prove that all clonotypes eventually become extinct with probability one
and that the mean time until extinction is finite. In this case, we do not make use of
a mean field approximation.

The number of T cell of clonotypes 1,2,..., m at time ¢ is modelled as a
continuous-time multivariate Markov process {X;(¢), Xo(?), ..., X, (t) : t > to}
on the state-space S = {(n1,n2,...,0m) : N1, N2, ..., 0y = 0,1,2,...}. As be-

fore, transitions are only allowed to adjacent states and so we have an m-dimensional
generalisation of the birth and death process, which we call a multivariate competi-
tion process [13].
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Forn = (ny,na,....n,), 0 = (n|,n},....,n,) we introduce the transition
probabilities

P (A1) = P{X1(t + Ar) = n'|,Xao(t + A1) = n), ...,
Xm(t + At) = n;n|X1(t) =n1,X2(t) =na,..., X)) = I’lm}>

fornandn’ € S. As At — 0% these probabilities satisfy

Pan(A) =1 — (Af}) oA Dy u,(,’”)) At + o(At)

and
AV AL+ o(Ar) 0=+ Lna.....nm)

AP Al + o(Ar) 0= (n.ny+1.....0)

A At + o(Ar) 0 = (1,0, ....0m+ 1)

P (A1) = ,u,(ll)At + O(Af) n = (ny—1,n2,...,0m)

wP At + o(At) W= na—1,... 0m)

w8 At + o(At) n =N, ... 0, —1)
0(At) otherwise

and ppw(At) = Oforn ¢ Sorn’ ¢ S. Here, /\,(,S) is the birth rate of T cells of

clonotype s and is the rate of transition from state (11,15, ..., 1, ..., y) to state
(n1,n2,....,n5 +1,...,ny) for 1 <s < m. Similarly, u,(,s) is the death rate of T
cells of clonotype s and is the rate of transition from state (ny,ns,...,0s,..., )
to state (ny,nz,...,n5 — 1,...,ny) for I < s < m. Setting /L,(,S) =0forng =0

and I < s < m ensures that transitions outside of the state-space cannot occur.
We will assume that, after the initial time, the thymus does not produce any more

T cells of clonotypes 1,2, ..., m. Hence, )L,(f) = 0forng = Owherel <s < m.
This means that the set of states A = {(ny,n2,...,n,) :ng =0forl <s <m}is
an absorbing set and the state (11,12, ...,1,) = (0,0, ...,0) is an absorbing state.

Rather than explicitly deriving an expression for the birth rate of each clonotype
in the multivariate competition process, we instead formulate a bound on each of
these rates. Let Qs be the set of all APPs from which T cells of clonotype s can
receive a survival signal. We define 1) to be the per-cell birth rate for T cells of
clonotype s, where 1 < s < m. Then

A0 = 3 _CV =y (9.32)
q€Qs 1G4l q€Qy s + Nsq
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where n; is the number of T cells belonging to clonotype s and ny, is the number
of T cells in C, that are not of clonotype s. Then

N

Ng Ng
q€Qy

where g5 = y|Qs]| is a parameter representing the strength of the stimulation. There-
fore,

)LI(IS) = 28n, < W, (9.33)

for 1 < s < m. To obtain the death rates, we assume there is a constant per-cell
death rate, which for clonotype s is denoted by us. Hence,

&) = piing, (9.34)

forl <s <m.

Extinction Occurs with Probability One

Using the bound on the birth rates derived in the previous section, we now show
that the probability of eventual absorption at state (ny,nz,...,1n,) = (0,0,...,0)
is 1 for all values of the parameters. We first introduce the following disjoint subsets
of S:

Sk ={(n1,n2,....,nm) :n1+...+ny =k} fork >0.

We now define the birth rates for a univariate birth and death process on the state-
space {So,S1,...} in such a way that it moves towards the absorbing state at the
origin at a slower rate than the multivariate process. Let

o= omax 0 +aR 4+ A 9.35)
(1150t ) ESE

W = min {u,(,” FuP 4+ M,ﬂ’")} . (9.36)
(P nm) €Sk

From (9.33) we have that

A, =  max {/\,(11)—#)&,(,2)4-...—1—)&,(,'”)}§<p1+g02+...+<pm,

1,0 nm) €Sk

W= min_ {pny 4 pans + ..o+ Umlp} = kmin(u, o, .. ).

(150t ) ESE

As in the bivariate case, )u;c is the maximum rate at which the multivariate process
moves from the set Sg to Sg4; and u}( is the minimum rate at which the multivariate
process moves from the set Sy to Sg_1. Hence, the univariate birth and death process
with rates 1) and . on the state-space {So, Sy, ...} moves towards the absorbing
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state at Sp at a slower rate than the multivariate one. The univariate process reaches
the absorbing state with certainty if

+
=Gy g ©.37)
Ty ‘

diverges. We have

S Ay - W Ji” k! [min(py, pa. - )|

oMy T it et o)

k=1
Let .
cr = k![mln(,ulv H2, ..., MM)]k
(1 +@2+ ...+ o)k’
so that

Ckrr _ (kK + Dmin(py, pa, ..., lom)

— 4+ooask — +oo,
Ck o1 +@2+ ...+ Om

which means that Z,‘:;“{ cx diverges by the ratio test. Hence, the series (9.37) di-
verges by comparison and so the univariate process reaches the absorbing state with
probability one. Since this process moves towards the absorbing state at a slower
rate than the multivariate competition process, we conclude that absorption at the
origin is also certain for this process for all values of the parameters.

Let 7, be the mean extinction time if the initial state of the process is
n = (ny1,n3,...,Nny,). This time is finite for all m € S\ {(0,0,...,0)} if the
series
XN A

> :

— (9.38)
P Y R

converges [11]. We have
+o00

ngx’z...x;{_l _ ittt
= Ay T R minQe, o, )1

Let
4= Ottt
k\min(py, o, . ..\ pm)]*
Then
de+1 prt@x+ ..+ om

—0ask — +o0o,

dy N (k + V)min(uy, 2, ..., Um)
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and so Z,L“j dy converges by the ratio test. Hence, the series (9.38) converges by
comparison and so t, is finite for allm € S\ {(0,0,...,0)} for all values of the
parameters.

Numerical Results

We have carried out numerical solutions of the competition model, without any type
of mean field approximation, using the Gillespie algorithm [14]. A number of T cell
clonotypes, N¢, a number of APPs, |Q], and a set of connections between them, are
input at the start of a numerical run. In the run used to produce the data in Figs. 9.4
and 9.5, the initial number of T cell clonotypes is 1,000 and there are 100 cells of
each clonotype at = 0. Connections between T cell clonotypes and APPs, meaning
that the clonotype receives a signal from the APP, are assigned independently with
probability p at the beginning of the run and not changed thereafter. The death rate
W is constant; the birth rate of each clonotype is calculated using (9.6) at each time
during the numerical run. Each clonotype’s value of v is a function of time that is the
average, over the APPs from which it receives a stimulus, of the number of other
surviving clonotypes also stimulated by an APP. A clonotype that only receives
signals from APPs that do not signal to any other clonotype will have v = 0; a
clonotype that receives signals from two APPs, one of which signals to one other
clonotype and one of which signals to two other clonotypes, will have v = 1.5.

800 - N(t)— .
400 - B

100

&\/' (n) —
50 -

0 200 400 600 800
t

Fig. 9.4 Numerical results, showing the time evolution of the number of clonotypes with at least
one living cell, the mean number of cells per clonotype, and the mean value of v. The T cell
clonotype—APP connections are randomly assigned at the beginning of the numerical run. The
parameters for the run are N. = 1,000, |Q| = 2,000, x = 0.1, y = 1 and p = 0.0025
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Fig. 9.5 Competition, and extinction of some clonotypes, leads to more uniform coverage of the
set of APPs by the repertoire of T cell clonotypes. The upper panel shows a histogram of the
number of clonotypes that recognise an APP at the beginning of the numerical run. The lower
panel shows a histogram of the number of clonotypes that recognise an APP at t = 1,000

Figure 9.4 shows several properties of the repertoire of T cells as a function of
time. The upper panel shows the number of surviving clonotypes (those with at least
one living cell) as a function of time. The central panel shows the mean number of
cells per surviving clonotype and the lower panel the mean value of v in the set of
surviving clonotypes. Each dot in the lower panel indicates the time of extinction
of a clonotype (horizontal coordinate) and its v value. Note that the majority of
the clonotypes that die out have above-average values of v. The hypothesis of the
existence of a well-defined mean number of cells per clonotype, necessary for the
approximate mean field model, is supported by numerical results on this “exact”
model. The conjecture that competition is unfavourable to clonotypes with large
values of v is also supported.

It is illuminating to examine the dynamics from the point of view of the set of
APPs. This set does not change with time, but the number of T cell clonotypes in
the repertoire that recognise any one APP (the number of clonotypes in the set C;)
does change over time because some clonotypes die out. In Fig.9.5 we illustrate
the effect of competition in producing an increasingly uniform coverage of the set,
which may be envisaged as a space of epitopes. At the start of the numerical run,
the distribution of the number of clonotypes that recognise an APP is wide and the
most common value is 2; at the end of the run, it is much narrower, and the most
common value is 1. Competition for survival signals forces T cell clonotypes and
their APPs to be increasingly monogamous.
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Chapter 10

Stochastic Modelling of T Cell Homeostasis
for Two Competing Clonotypes Via the Master
Equation

Shev MacNamara and Kevin Burrage

Abstract Stochastic models for competing clonotypes of T cells by multivariate,
continuous-time, discrete state, Markov processes have been proposed in the lit-
erature by Stirk, Molina-Paris and van den Berg (2008). A stochastic modelling
framework is important because of rare events associated with small populations
of some critical cell types. Usually, computational methods for these problems
employ a trajectory-based approach, based on Monte Carlo simulation. This is
partly because the complementary, probability density function (PDF) approaches
can be expensive but here we describe some efficient PDF approaches by directly
solving the governing equations, known as the Master Equation. These computa-
tions are made very efficient through an approximation of the state space by the
Finite State Projection and through the use of Krylov subspace methods when
evolving the matrix exponential. These computational methods allow us to explore
the evolution of the PDFs associated with these stochastic models, and bimodal
distributions arise in some parameter regimes. Time-dependent propensities natu-
rally arise in immunological processes due to, for example, age-dependent effects.
Incorporating time-dependent propensities into the framework of the Master Equa-
tion significantly complicates the corresponding computational methods but here
we describe an efficient approach via Magnus formulas. Although this contribu-
tion focuses on the example of competing clonotypes, the general principles are
relevant to multivariate Markov processes and provide fundamental techniques
for computational immunology.
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Introduction

In order to survive, an organism must constantly monitor itself for invading entities
or cells. This monitoring role is fulfilled by the immune system, which responds
to infections from a variety of pathogens, such as viruses, bacteria, protozoa, and
fungi. Immunology is a broad field but this contribution focuses on one important
part of the immune system, namely T cells. These cells choreograph what is known
as the adaptive immune response [1,2].

Briefly, T cells are released from the thymus after undergoing a series of pos-
itive and negative selection processes. They recognize foreign epitopes present in
an organism by scanning the organism’s own cells — which display signature pep-
tide fragments of what is inside on special membrane proteins, together known
as Major Histocompatibility Complex (MHC) — with T cell receptors (TCR) on
the T cell membrane. The T cell population can be partitioned into clonotypes
with the same TCR. Different T cell clonotypes have different receptors that are
capable of recognizing peptide fragments. The T cell population is the subject
of homeostatic regulation and a particular clonotype population may rise or fall
depending on the stimulus that it receives. The unique peptide fragments recog-
nized by a particular TCR are known as the epitopes for that clonotype. There is
also some overlap, in the sense that different clonotypes are cross-reactive with
other epitopes to varying extents. Clonotype populations receive a stimulus to in-
crease their population from epitopes that they recognize, so this overlap leads
to competition amongst clonotypes for survival stimulus. When a pathogen is
detected through one of these recognition events, the T cell involved becomes
activated and, through a complex series of events, can trigger an immune re-
sponse [2, 3].

The space of all possible epitopes that an organism may potentially be chal-
lenged with is enormous so an organism needs to maintain diversity amongst
its T cell population so that it is capable of recognizing as many different types
of pathogens as possible. Also, while scanning itself, the larger the clonotype
population, the sooner the invading pathogen is found. Thus, on the one hand,
the more different clonotypes, and the larger the populations, the better; on the
other hand, there are limits to the size of the population of T cells that an or-
ganism can maintain. In order to cover as much as possible of this epitope
space with only a limited population of T cells an organism must minimize
the overlap of different clonotypes. As an indication of the magnitude of the
numbers involved it has been estimated that the human repertoire has up to
~3 x 107 distinct TCR clonotypes but that the complexity of the space of all
possible peptide-MHC 11mers is ~6 x 10'2 [4]. This large difference in num-
bers shows that the correspondence cannot be one-to-one and that there is a need
for great diversity and for some cross-reactivity in the T cell repertoire. This
motivates the competitive models of T cell clonotype homeostasis considered
here but see Stirk, Molina-Paris and van den Berg for more background to this
problem [5].
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Mathematical Background

Mathematical models in immunology often consist of ordinary differential equa-
tions (ODEs), based on rates of production and decay of pertinent species. However,
when some species are present in small numbers, such as T cell clonotypes, a dis-
crete and stochastic framework is more appropriate. In particular, Stirk et al. argue
that the appearance and disappearance of clonotypes in the peripheral pool of naive
T cells is an inherently stochastic phenomena and that maintenance functional diver-
sity depends critically on these chance events [5, Sect. 2]. Markov processes provide
such a stochastic framework [6] and Stirk et al. employ a continuous-time, discrete
state, multivariate Markov process to model T cell populations [5]. Allen provides
a nice survey of the different modelling approaches [7].

In our framework, a Markov process consists of N species and the state of the
system, x = [x1,...,xy], records the integer population of each. Each state may
transition to M other states, x +v;,for j = 1,..., M. Here the v; are a set of M
vectors that define the geometry of the Markov process. Associated with each state
is a set of M propensities, aj(x) > 0, that determine the relative chance of each
transition occurring. The propensities are defined by the requirement that, given
x(t) = x, a;(x)dt is the probability of transition j, in the next infinitesimal time
interval [¢,¢ + dt). This contribution focuses on numerical methods for studying
such immunological models and we now describe two complementary approaches.

Trajectory Approaches

The Stochastic Simulation Algorithm (SSA) is a statistically exact algorithm for
simulating strong trajectories of discrete stochastic Markov processes. Algorithm 1
summarizes the SSA. The inputs to the algorithm are: ¢, the amount of time that
the simulation should run for; x ¢, the initial state of the process; v, N and M as
defined above. The output of the algorithm is the state of the system at time 7.
The algorithm needs a way to compute the values of the propensities of each of
the M possible transitions. In Algorithm 1 this is done by making a function call.
Often these propensities are functions of the current state, parameterized by some
constants determined from the application being modelled. We denote the vector of
these parameters by ¢, which must also be given as input to the Algorithm. At each
step, the SSA samples the waiting time until the next change occurs from an ex-
ponential distribution, and samples from a uniform distribution to determine which
of the M possible changes occurs, based on the relative sizes of the propensity
functions [8, 9]. Note that in Algorithm 1, ry, r», denote random numbers from the
uniform distribution on [0, 1], and log(ﬁ) arises because we employ the inverse-
transform method for sampling from the exponential distribution. If an absorbing
state is reached then « is zero and the algorithm may terminate and simply return
the absorbing state. On average, the time step, denoted by t, is of the order of the
reciprocal of the sum of the propensity functions, which may be very small if either
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ALGORITHM 1: SSA (t7,x9,¢,v, N, M)
X < Xy
t<0
whilez < 7/ do
o <— propensities(x, ¢)
if (@ ==0)
1 < lf
break
end if
oy <— Zju=l dj
ry,rp ~ U[O, 1]
v (Lylog(d)
it +t>1y)
1 < l‘f
break
end if
t<t+r1
choose j such that Z,ﬁ;ll o < agry < Z,iu:j o
X <x+v;
end while
return x

some of the rate constants are large or some of the species occur in large numbers.
Since many thousands, even hundreds of thousands, of simulations may be neces-
sary to compute statistics about the dynamics it may be computationally cheaper to
directly compute the probability density function (PDF).

PDF Approaches

Associated with the Markov process is a PDF that evolves according to the forward
Kolmogorov equations, which, in this setting, are known as the Master Equations
(MEs) [10]. Given an initial condition x (f9) = x, the probability of being in state x
attime ¢, P(x; 1), satisfies the following discrete partial differential equation (PDE),

) M M
% = Zaj(x —vj)P(x —v;it) — P(x;t)Zaj(x).

j=1 j=1

This ME may be written in an equivalent matrix-vector form so that the evolution
of the probability density p(¢) (which is a vector of probabilities P(x;?), indexed
by the states x) is described by a system of linear, constant coefficient, ordinary
differential equations,

p(t) = Ap(1), (10.1)
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where the matrix A = [q;;] is populated by the propensities and represents the
infinitesimal generator of the Markov process, with aj; = — Zi;é/' aij [11].

Remark. It is common in the literature to work with the Q-matrix: Q = AT,

Given an initial distribution p(0), the solution at time ¢ is

p(1) = exp(t4) p(0), (10.2)

where the exponential of a bounded operator is usually defined via a Taylor series:
exp(tA) =1+ ,2, (t::,)n - The numerical solution of (10.2), for the special class
of matrices arising in imﬁlunology applications, is the focus of this work. In this
context, the matrices often represent birth-death processes and are large and sparse.
The matrix exponential is well studied [12, 13] and numerical methods for linear
ODEs [14] are closely related. There are some technical considerations when the
system is infinite, as noted in [15—-17]. Recently, the Finite State Projection (FSP)
algorithm was suggested as a way of handling the large matrices that arise in MEs
associated with chemical kinetic processes [18].

The FSP algorithm In the FSP algorithm the matrix in (10.2) is replaced by A

where
A = (ﬂ’i) (10.3)
* [%

i.e. Ay is a k x k submatrix of the true operator A. The states indexed by {1, ...k}
then form the finite state projection. The FSP algorithm replaces (10.2) with the

approximation
exXp t A 0
P(tf) ~ ( (f Ok)pk( )) i

which, by [18, Theorem 2.1], is nonnegative. The subscript k denotes the truncation
just described and we note that a similar truncation is applied to the initial distribu-
tion. Consider the column sum I}, = 17 exp(t s Ax) pr(0), where Il = (1, ..., HT
with appropriate length. Normally the exact solution (10.2) is a probability vec-
tor with unit column sum, however due to the truncation, the sum I/} may be less
than one, because in the approximate system, probability is no longer conserved.
However, as k increases, [} increases too, so that the approximation is gradually
improved [18]. Additionally it is shown in [18, Theorem 2.2] that if I}, > 1 — € for
some pre-specified tolerance €, then

A 0 A 0
(eXp(lf Ok)Pk( )) < pliy) < (eXp(lf Ok)Pk( )) +el

For simplicity we described the algorithm as if it merely increases k but it can be
generalized so that the projection is expanded around the initial state in a way that
respects the reachability [18] of the Markov model.
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The Krylov FSP Algorithm The FSP method was recently improved to a Krylov-
based approach [15, 19,20] by adapting Sidje’s Expokit codes [21,22]. The Krylov
FSP converts the problem of exponentiating a large sparse matrix to that of expo-
nentiating a small, dense matrix in the Krylov subspace. Given an initial vector and
matrix the Krylov subspace of dimension m is

Km = Km(A,v) = span{v, Av, A%v,... , A" v},

The dimension m of the Krylov subspace is typically small and m = 30 was used
in this implementation. The Krylov approximation to exp(tA)v is

BV mr1exp (tHmi1) ey

where B = ||v|,, e is the first unit basis vector, and V41 and H,,. are the
orthonormal basis and upper Hessenberg matrix, respectively, resulting from the
well-known Arnoldi process. The exponential in the smaller subspace is computed
via the diagonal Padé approximation with degree p = 6, together with scaling and
squaring.

A description of the Arnoldi process may be found in the classic text of Golub
and Van Loan [23] and is often employed as a numerical scheme for eigenvalue
problems, for example. In our context, we employ the Arnoldi process to build a
basis for the Krylov subspace /Cp,. This is similar to the usual mathematical Gram—
Schmidt process for building a basis but involves a small change which makes the
Arnoldi process preferable numerically. It results in a matrix V,, whose columns
form an orthonormal basis of /.

The Krylov FSP is a general purpose ME-solver. In this work we describe how
to apply it to immunological models. Also, we will demonstrate how to generalize
the algorithm to the case of time-dependent or age-dependent propensities.

Numerical experiments All numerical experiments were performed in MATLAB on
a 2 GHz processor running the Windows XP operating system. For the numerical
purposes here it is enough to report the values of the parameters used but for other
applications appropriate scalings and units of measurement would be required.

T Cell Homeostasis for Two Competing Clonotypes

We now review the Stirk et al. model and adopt their notation [5]. The model con-
sists of N T cell clonotypes and the state of the system records the nonnegative
population of each. The model is a multivariate birth-death process [6]: the popu-
lation of a particular clonotype may change by an increase or decrease of precisely
one cell at a time. Thus associated with each state is a set of M = 2N propensi-
ties and corresponding vectors. The vectors, previously denoted v ;, are all of the
form [0,...,+£1,0,...,0], where the £1 occurs in the ith component to denote an
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increase or decrease of the i th species. Here we consider a two-dimensional version
soN =2,M =4and x = [n,n’]. With n T cells of clonotype i and n’ T cells of
clonotype i’, the birth and death rate of cells of clonotype n are denoted A, and
Unn', respectively. These propensities were previously denoted «; ([, n']). A simi-
lar notion denotes the corresponding rates for cells of clonotype i’. Naturally, when
there are zero cells of a clonotype the birth and death rates for that clonotype are
both zero, i.e., Ao’ = Mon’ = Ano = Hno = 0. Otherwise, forn,n’ = 1,2..., we
define the birth and death rates to have the following functional form:

Annw = @nf(n,n’, viir,vijir, p)
’ ’ ’
A =@ n f(' 0, v, v, p")

Hnn' = KN
Hpp = K I’l/,
where
0o r > r
/ X * ! N ; 1
) ’ ’ ’ = N L 1_ ’ ! '
f(n,n',x,y, p) = pe r=0r!r(n)+n+n/+( p)e rzz;)r!r(n)+n
(10.4)

The form of the birth rates reflects the competition between clonotypes for survival
stimulus, so that clonotypes that overlap more with other clonotypes in terms of
the set of APPs that they depend on, receive less stimulus overall than clonotypes
that overlap less with other clonotypes. The summation over r arises because of
the way that the sets of APPs are partitioned. In general the 7/ term corresponds
to the stimulus that the clonotype receives from those APPs that it shares with r
other clonotypes. For example, the r = 0 term corresponds to the stimulus that the
clonotype receives from APPs that it shares with no other clonotypes, the r = 1 term
corresponds to the stimulus that the clonotype receives from one other clonotype,
etc. In any particular organism the number of distinct clonotypes will be finite, albeit
possibly very large, so after finitely many terms in the summation, the rest of the
terms are zero. This function may be approximated, for example, by truncating each
of the two summations, or by employing a Poisson approximation [5]. Notice that
the model has an absorbing state at [0, 0]. Here (n) is the average clone size over
the naive repertoire, v;;/ is the mean niche overlap for antigen presentation profiles
(APPs) that can provide survival signals to T cells of clonotype i and clonotype i’,
and v;/; is the mean niche overlap for APPs that provide survival signals to T cells
of clonotype i but not T cells of clonotype i’. See Stirk et al. for more details.
This describes the model in its full generality but we consider the special case

visir > 1, virgi > 1.
In this case the authors [5] observe that a good approximation to (10.4) is

p
n+n

1
f.n' . x,y,p) = +(1-p—-. (10.5)
n+

(n)y
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Parameters We fix (n) = 10. We begin with 10 cells of each clonotype and con-
sider the solution at 7 y = 30. We choose:

¢ =¢ =60
p=p =1
Vijir = Virji = 100
p=p =05. (10.6)

Thus the model is symmetric.

Simulations

Figure 10.1 shows an SSA simulation of the model with these parameters. One
clonotype reaches extinction before = 30, while the other clonotype remains and
fluctuates about an average of approximately 32 cells for a very long time. At first
we may think that the simulation has settled down to its stationary distribution but
this is not the case because extinction of both species is guaranteed in this model.
Thus we instead associate the long period with n > 0 shown in Fig. 10.1 with a
quasi-stationary distribution (QSD).

Here we give a simple argument to show that the simulation in Fig. 10.1 is in-
deed eventually absorbed. Note that Stirk et al. give a more sophisticated analysis
and establish that absorption is guaranteed in general. After extinction of one of the
clonotypes, we are left with a one-dimensional, infinite state, birth-death process for
the remaining clonotype. There is an absorbing state at 0, and an irreducible class
{1,2, ...}, from which the absorbing state is accessible. Following standard nota-
tion and standard theory for birth-death processes [6], absorption with probability
one is equivalent to divergence of the series

o0
K1 ... i
AAz. A

i=1

40
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L 25 =
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£ 20 [S
= N Yl z
5 {{;;,.?.’.’ Ainylh
i d L
or ey VR
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0 5 10 15 20 25 30
Time Time x 10*

Fig. 10.1 A simulation of the T cell clonotype populations
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In the simulation in Fig. 10.1, after extinction of clonotype n’, the death rate is u,, =
pn and the function in (10.5) is

1- 1
Py l-p 1
n n+nyvypy n

for large n, so the birth rate A,, ~ ¢n(1/n) = ¢ for large n. With these observa-
tions it is straight-forward to show that the series diverges, for example by the nth
term test.

Although absorption is guaranteed, we can see from Fig. 10.1 that the time to
extinction for both species is very large (at least = 10° in this case). The length
of time that a clonotype spends in a QSD before being absorbed is identified as an
important issue and discussed in depth by Stirk et al. [5]. Bounds for the mean time
until absorption are given [5, Sect. 3]. Also, the work of Nasell [24] is applied to this
process to find the form of the QSD [5, Sect. 3.2.2]. Significantly, it is shown that
clones with a smaller niche overlap last longer, because they face less competition
for survival stimuli. This mechanism drives the T cell repertoire towards greater
diversity and thus endows the immune system with a greater functional capacity for
recognizing a larger variety of foreign pathogens.

Figure 10.2 shows the evolution of the PDF associated with the model, computed
via a Krylov FSP algorithm for the solution of the Master Equation [20]. The PDF
starts as a delta distribution on the initial state, as seen in the figure labelled 1 = 0.
However, after a very short time, t+ = 1, it spreads out to resemble a Gaussian
distribution. By t = 5, it is trimodal. The middle peak then gradually disappears
so that by + = 30, only two of the original peaks remain. The remaining peaks
correspond to the QSD. Each peak corresponds to moderate levels of one T cell
clonotype and extinction of the other. The distribution is symmetric about the line
n = n’, reflecting the symmetry of this model.

Time-Dependent Propensity Functions

Thus far ¢ has been a constant but Stirk et al. identify this as an issue for future
research and discuss the desire to consider it as a time-dependent parameter, be-
cause ¢, which represents the strength of the stimulation that a T cell receives from
the relevant APPs, depends on the T cell repertoire, which changes with time as
some clones go extinct and new clones are released from the thymus [5]. It is well-
recognized that older individuals often have a weaker immune system, as evidenced
by the greater susceptibility of the aged to infection [2]. Very complicated processes
in immunobiology underly this aging effect but it may be due in part to a decline in
the strength of the birth rates. For example, there are limits to how many times that
a T cell may replicate, perhaps partly due to the shortening of the telomeres with
each replication [5, 25, 26], and the level of stimulation felt by a T cell clonotype
may decline with age [27]. This motivates us to consider a variation of the original
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Fig. 10.2 The initial delta distribution, at # = 0, on the initial state [10, 10], and the solution to
the Master Equation at times ¢ = 1,5, 10, 15, 30

model in which the birth rates decline with time. As Stirk et al. and others point out,
similar numbers of T cells are found in older and younger individuals [28]. Thus we
must bear in mind with what follows that we consider a reduction in birth rates for
some clonotypes but not all. Here we consider just two clonotypes, which is only a
small fraction of the total number of clones in the full T cell repertoire.
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Fig. 10.3 (a) The time dependence of ¢(¢) in (10.7). (b) A simulation of the T cell clonotype
populations, with the time-dependent propensities scaled as described near (10.7)

We represent time dependence by the hill function

1
¢(1) ()™
where K = 15 and m = 5. The function declines with time, with a steep sigmoidal
shape, as shown in Fig. 10.3a. We scale the propensities for the birth rates by ¢ (7).
For this example, we replace ¢ and ¢’ in (10.6) with 60¢ (¢). Thus at ¢ = 0 the new
birth rates are the same as the old ones and remain similar for small values of ¢, but
for large values of 7 the new birth rates are much less than the old birth rates.
Figure 10.3b shows a simulation of the time-dependent process. This simulation
is obtained by a slight variation of the algorithm for the time-independent case [29].
The main subtlety here is in choosing the time step based on the exponential of
the integral of the propensity functions. We see the populations decline sharply at
t ~ 15, corresponding to the decline in ¢ (¢). In contrast to the time-independent
case, both populations are extinct by ¢ = 30.

(10.7)

Numerical Solution of the Time-Dependent Master Equation

Having considered a trajectory approach we now discuss complementary PDF ap-
proaches to the time-dependent case. Consider the system

p'(t)=A@)p(),

which is the same as in (10.1) except that here the matrix A4 (¢) is time-dependent.
In analogy with the constant-coefficient case, we would like to find a solution of the
form

p(0) = exp (a(0) p(0).
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If, Vi,t', A(t) commutes with A (¢'), we have

o(t) = /Ot A(s)ds.

In the constant-coefficient case, the integral is o (1) = t A, thus recovering (10.2) as
an important special case. Magnus [30] derived a formula for the general case:

or) = /0 Ats1)dsi 3 /0 /0 A (s2). A(s1)]dsdsy

+i/0t /OSI /032 I:[A(S3)aA(SZ)]’A(Sl)]dS3dS2dS1

+%/Oz /Osl /Osl [A653).14(s2), A(sp)] [dssdsadss + ... (10.8)

Here the commutator [A, B] is defined as AB — BA. This infinite series contin-
ues with higher order terms containing progressively higher order commutators and
higher order multiple integrals. Burrage has discussed the Magnus formula in the
context of stochastic differential equations [31]. It has been widely used for theo-
retical purposes but for numerical purposes, it is awkward to evaluate in this form.
For example, one may consider the approximation obtained by truncating the series
after suitably many terms. However, it is expensive to evaluate the many multiple in-
tegrals, and higher commutators, and it is not trivial to decide where to truncate the
series, or which terms should be selected to obtain the highest order approximation
for the least computational effort. Fortunately, in a series of papers on numerical
methods based on the Magnus formula, Iserles et al. [32] showed that the scheme

A1:A(IN+(%—\/?§)}1), AZZA(IN"F(%‘F?)/’I),

1 3
ON+1 = Eh(Al + Az) + {—;hz[Az, Al], (109)
p(tns1) = e’ NHlp(ty), (10.10)

where ty4+1 = ty + h, is an order four approximation. Notice A1 and A, are the
evaluation of the matrix at Gaussian quadrature points.

For this work, we implement this scheme in combination with a Krylov FSP
approach. The algorithm repeats two steps until the desired time point is reached:
first, with a fixed step size of & = 0.5, we form Aq, A, and o y4+1 in (10.9);
then pass o y 4+ to the Krylov FSP solver and apply the update rule (10.10). We
refer to this procedure as the Magnus Krylov FSP algorithm. It is summarized in
Algorithm 2.

The algorithm requires the following inputs: the initial distribution, p(0); the
time 7 ¢, at which the solution is required; and the matrix A representing the Markov
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ALGORITHM 2: Magnus Krylov FSP(A4, p(0),17, h)
t <0
p(t) < p(0);
while 7 < 7/ do
Compute A, A, and ¢ y 4 in (10.9) with ty = 1;
Compute e°~+! p(t) by Krylov FSP
p(t) <—e’V+ip(t)asin (10.10);
t<t+h;
end while
return p(7);

chain. The initial distribution will often be a delta distribution on the initial state,
as in the examples in this paper. The algorithm also requires a way to evaluate the
matrix A (¢) at various time points. Although Algorithm 2 is described as if it re-
quires the full matrix A, in fact it does not need this. A function representing the
action of the matrix on a vector is sufficient for a Krylov method. At any instant the
algorithm only requires a finite principal submatrix of the full matrix A. This finite
state projection can be dynamic so that it tracks most of the support of the distribu-
tion [18,20]. The algorithm also requires a step size & and for this implementation
a fixed step size of & = 0.5 was used. However this is a simplification and in future
work adaptive step size strategies will be investigated.

Remarks. — In general Algorithm 2 expands the projection at each step as nec-
essary. However for the particular application in this paper we implemented a
simplified version of the algorithm. First, we truncate the state space to a size of
approximately 10,000. We use this same state space to form 4 (¢) (V7). Note that
A(t) is only an approximation to A (¢) but we will abuse notation and denote
both by A (¢).

— Due to the expansion around the initial state in whole numbers of steps of reach-
ability [20], the precise size of the state space employed by the algorithm is
10,076. Repeating the experiments with a smaller truncation size of 5,000 gives
results that are visually indistinguishable from the larger system.

— The sum of the conserved probability at each step is monitored and remains
> 1 — 107>, In the constant coefficient case this would guarantee accuracy, with
the computed solution being a lower bound on the true solution, within € = 107>
in a component-wise sense. This suggests that the solution in our time-dependent
case is also very accurate. However, this is only a heuristic algorithm and a for-
mal analysis of the error behaviour is still to be considered.

— In the current implementation, at each step, A1, A, [A1, A»] and finally o are
formed as sparse matrices and then o is passed to the Krylov solver, which em-
ploys an Arnoldi process together with an adaptive time step integration scheme.
The matrices A1, A, share the same sparsity pattern and are very sparse: the
density of non zeros is ~~5 x 10™*. The commutator is about twice as dense, at
~1073, but this is still very sparse. So the problem is well-suited to a Krylov
approach.
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— The solutions are computed within a few minutes. Matrices such as A can be
formed in less than one second.

— In many applications A (1) — A ast — oo so that for sufficiently large ¢ the
problem reduces to (10.1) with A replaced by the constant equilibrium matrix
A . In these situations it is desirable to combine the Magnus Krylov FSP with
the standard Krylov FSP described in the previous section: initially, we employ
the Magnus method but after sufficiently large ¢ is reached, we switch to the
cheaper, standard Krylov FSP. The successful application of this combination
requires a way to recognize when sufficiently large ¢ has been reached. For the
application at hand, ¢(t) — 0 for large ¢ so we could employ this strategy for,
say t > 100, for example.

Figure 10.4 shows the evolution of the PDF in the time-dependent case. Ini-
tially, the distribution is similar to the time-independent case: compare, for example,
Fig.10.4 at ¢+ = 5 with Fig. 10.2. However, at t & 8 the evolution starts to diverge
and by ¢+ = 13 the PDF is noticeably different. In particular we see the distribu-
tion gradually moving towards the origin at the snapshots in r = 13, 17,23, 25, and
by ¢ = 30 about 80% of the distribution is in the absorbing state. This is in con-
trast to the time-independent case for which the QSD lasts for a very long time. This
attenuation of the time spent in the QSD is significant in understanding the immuno-
logical implications of the age-dependent case. As noted in above, diversity in the T
cell repertoire is maintained because clonotypes with a smaller niche overlap tend
to last longer because they face less competition for survival stimuli. However for
clonotype populations that show an age-dependentdecline in ¢ as in (10.7), the QSD
may not last very long even if the clonotype has a small niche overlap. This results
in an abnormal loss of diversity from the T cell repertoire. corresponding decrease
in the functional capacity of the immune system to recognize foreign epitopes.

The Mean Time to Extinction of Both Clonotypes

In this section we quantify how the survival time of a clonotype depends on the
time-dependence of the birth-rates. Assuming that the process begins in the quasi-
stationary distribution, the mean time until absorption is givenby 1/A¢, where A¢ is
the decay parameter associated with the Markov chain. For many applications, after
a brief initial transient the process is approximately in the QSD so this is a reason-
able assumption. The theory of the decay parameter and QSDs is presented in [33].
Thus we use 1/A¢ as an indication of the survival time of a clonotype. For the bi-
variate clonotype model, we compute the eigenvalue, A, with smallest magnitude, of
the matrix A¢. Here A is same as the FSP (10.3), except that the absorbing state
has also been removed. One way to compute A is to use the inverse power method,
or to call the MATLAB sparse eigenvalue routine, eigs(Ac, 1,0). We approximate
the decay parameter by Ac ~ —A. Note that there are some technical issues with
this approximation for infinite models [33-36]. Although the clonotype models are
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Fig. 10.4 The solution to the ME at ¢t = 5, 13, 17, 23, 25, 30 in the time-dependent case

infinite this is because bounds are not known and may be large. Real applications
will have finite numbers of clonotypes so it is reasonable to focus on the finite case.

Figure 10.5 shows the change in the mean time to absorption, from the QSD, as a
function of time. It can be seen that the time-dependence resembles that of the time-
dependent birth rates in Fig. 10.3a, although on a log scale. At ¢ = 0, the average
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Fig. 10.5 The mean time until extinction of both clonotypes in the two-dimensional model

lifetime of a clonotype is ~10'! but at # = 20 the lifetime is only ~102. This shows
that the simulation in Fig. 10.1 would probably not go extinct until ~10'!. Also, this
shows that the reduction in the birth rates over time, by about an order of magnitude,
leads to a much larger effect on the life expectancy of a clonotype, which decreases
by several orders of magnitude.

Discussion

This work has focused on the implications of a particular functional form of the
time-dependence for diversity maintenance but future work will consider the signif-
icance of different functional forms for ¢ (¢). Furthermore it would be interesting to
explore parameter space and models that have more clonotypes. For example this
work focused on the case that v >> 1 but it would be interesting to relax this assump-
tion and consider the model with appropriate approximations to the birth rates. We
identify a number of important areas for refining the numerical methods described
here:

— Generalizing the error analysis of the Krylov FSP approximation to:

e A time-dependent matrix
e A combination of the Krylov FSP with the order 4 approximation

— Employing adaptive time-steps in the Magnus Krylov FSP integrator.

— Identifying a more sophisticated embedding of the Magnus formula in the
Krylov methods, for improved computational efficiency. For example, as a
Krylov method, only a function that returns the action of ¢ on a given vector, v,
is required, so we do not need to form the matrix, or the commutator in (10.9).
Instead, one possibility is to employ the following scheme. First form the vectors,

wi=Awv, wy=Ayw, w3z=Awi, ws= AWy,
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then form ov as
h 3h
3 (Wl +wy + \/_T(Ws —W4)) :

— However a more advanced embedding is desired. series (10.8) by a vector. For
example, perhaps the Magnus formula can be more deeply incorporated into
the fabric of the numerical time stepping procedure; the Arnoldi process; or
the approximation of the exponential of the small, dense, matrix H ,. This
will be important for larger scale problems arising in models of more than two
clonotypes.

— Finally, in the time-dependent case, the PDF approach can be extremely com-
petitive with the trajectory approach [29]. For example, we could run only a few
100 simulations in the same time that it takes for the Magnus Krylov FSP to
compute the PDF. However no attempt was made to optimize the trajectory algo-
rithm, which is significantly slower than its constant-coefficient counterpart, so a
thorough investigation of the relative efficiency of the approaches is deferred to
future work.

This chapter is based on a technical computing article in SIAM Multiscale Mod-
elling and Simulation by the same authors that would normally only be read by the
computational mathematics community but which is not accessible to the immunol-
ogy community. More technical details can be found there, where some of the issues
are addressed. It is the authors’ hope that by appearing in the present context, this
chapter may raise awareness amongst the immunology community of the potential
of computational and interdisciplinary techniques to contribute to immunology.

Conclusions

We have demonstrated a number of novel numerical strategies to be relevant to com-
putational immunology. First, it has been demonstrated that the Krylov FSP can be
applied to models in immunology, so that PDF approaches to the governing master
equations are now feasible. Second, Magnus formulas allow the Krylov FSP to be
applied to systems with time or age-dependent rates. Previously, Iserles, Ngrsett and
Rasmussen demonstrated a clever order four approximation based on the Magnus
expansion. We have combined the approximation with a Krylov method, allowing us
to handle matrices of larger size. For example, we have dealt with 10,000 x 10,000
matrices. This has allowed us to handle interesting applications in computational im-
munology with age-dependent birth rates. Furthermore, it will be straight-forward to
apply the numerical methods developed here to other applications in computational
immunology and also to the chemical master equation for biochemical kinetics with
time-dependent propensities.

We have applied the novel computational methods, to investigate one model of
aging effects on the immune system. In some cases, quasi-stationary distributions
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for the populations of a particular clonotype — that would otherwise be sustained for
extended periods — may have their life spans significantly attenuated by a decline in
the birth rates due to aging. This would seem to be a very important factor in under-
standing the effects of aging on health. Finally, this work concentrated on a special
case of the Stirk, Molina-Parfs and van den Berg model [5] of T cell homeostasis
but in future work it is planned to investigate the model more generally.
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Chapter 11
Dendritic Cell Migration in the Intestinal Tract

Rowann Bowcutt and Sheena Cruickshank

Abstract T cells are critical cells for the development of adaptive immune
responses and protective immunity. However, before T cells can act, they must
be switched on which is done by professional antigen presenting cells such as
dendritic cells (DCs). DCs are found in all parts of the body and their main role
is to detect pathogens or injury, take up antigens, process them and present them
to T cells. Thus, DCs represent the beginning of a well orchestrated immune re-
sponse. In order for effective immune function, DCs need to both get to the sites
of injury or pathogen invasion as well as the sites of T cell activation. DC move-
ment or migration is a complex multi-step process which also involves phenotypic
and functional changes to the DC itself to facilitate movement. In response to an
injury or infection, DCs are recruited both locally and from the blood to the site of
injury. As DCs exit the tissue they also must be replenished. Dysregulation of the
DC migratory response can result in chronic inflammation and the development of
inappropriate immune responses. DC migratory behaviour varies depending on the
anatomical location. One of the most significant areas of antigen uptake in the body
is the intestinal tract. Here we address the process of DC migration within the large
and small intestine.

Dendritic cells (DCs) act as a bridge between the innate and the adaptive im-
mune response. DCs are professional antigen presenting cells that are unique in
their ability to educate or prime naive T cells in order to generate effector T cells
and establish adaptive immunity. DCs arise from progenitor cells in the bone mar-
row and migrate via the blood to tissues in the body. DCs are found in almost
all tissues, for example the intestinal tract, skin and lungs. Such tissue-resident
DCs are termed immature DCs. Immature DCs are able to recognise and ingest
pathogens and are efficient at taking up antigens via several mechanisms including
phagocytosis. Once the immature DC has sensed and taken up an antigen, the DC
goes through a well-characterised process of maturation. During DC maturation,
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the DC is re-programmed and becomes less efficient at taking up antigen and better
at presenting antigen to T cells. Following maturation, the DC then migrates via
the lymphatics to secondary lymphoid structures such as the lymph nodes where
it can interact with T cells and prime them for effector T cell responses. Thus,
DCs are highly motile cells which enable them to acquire the antigens needed to
prime T cells, interact with other innate cells such as natural killer cells and mi-
grate to secondary lymphoid organs where T cell priming occurs. DC migration
is of special significance in the gastrointestinal tract (GIT) in particular the small
and large intestine. The GIT has an enormous antigenic burden, the biggest in the
body, consisting of dietary food antigens and bacterial antigens which derive from
the large resident, commensal bacteria population. The GIT also represents a major
site of pathogen attack with gastrointestinal infections amongst the most prevalent
in the world. Thus, the immune system of the GIT must be adapted to ignore ben-
eficial antigens from food and friendly bacteria whilst recognising and eradicating
pathogens. Furthermore, there is significant diversity of DC function within the GIT
which may be related to differences in antigenic burden. For example some DCs
in the small intestine are actively involved with the maintenance of oral tolerance
and may be exposed to a wide array of dietary antigens. In contrast, DCs appear to
be more sequestered away in the large intestine. This difference may be due to the
large population of resident commensal bacteria present in the large intestine which
is largely absent from the small intestine.

Factors Mediating DC Migration

The GIT is essentially a long tube approximately 9 m in length, the inner lining
of which is covered by a continuous layer of epithelial cells (Fig. 11.1). The small
intestine extends from the stomach to the ileocecal junction. In humans it is about
720 cm in length and is divided into three parts: the duodenum which is fixed to the
abdominal wall and only comprises about 20 cm of the small intestine, the jejunum
(approximately the next two fifths) and the ileum (the remaining three fifths). The
large intestine of the human is much shorter and is approximately 180 cm in length
and consists of the caecum (which is continuous with the ileum), the appendix and
the colon (which is divided into the ascending, transverse and descending colon),
the rectum and anal canal and terminates as the anus. The epithelium acts as a bar-
rier separating the antigenic contents of the intestinal lumen from the immune cells
found underneath the epithelium within the sub-mucosa. Some DCs and immune
cells can also be found within the intestinal epithelial layer [1,2] and they also help
maintain the barrier integrity of the intestine. The epithelium by virtue of its posi-
tion is therefore the most common initial site of pathogen invasion. DC migration
is triggered by a number of events such as infection or damage to the epithelium.
Infection and damage result in the release of mobilisation signals that can be de-
tected by receptors on DCs. These signals include pathogen derived factors, soluble
proteins called chemokines and even some anti-bacterial peptides [3,4] (Fig. 11.2).
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Transverse Colon Small Intestine

Ascending colon

M= muscularis, Ip- lamina propria, e= epithelium, L=lumen

Fig. 11.1 Structure of the gut. (a) Cartoon showing the different regions of the gut. The images
in (b-e) are histology micrographs showing the small intestine (b and ¢) and colon (d and e) at
low magnification (b, d) and higher magnification (c, e). The position of the gut lumen is indicated
with L. Note the presence of faecal debris within the lumen. The epithelial layer is indicated with
e, lamina propria with lp and the muscularis with m in the higher magnification images
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Fig. 11.2 Distribution of Dendritic Cells in the Gut. Distribution of DCs in the intestine. Immuno-
histochemistry images demonstrating the relative abundance of DCs in the different regions of the
gut. The images are taken from normal small intestine and show the villi (a) and the colon (b) and
show the crypts. The sections have been stained so that the epithelium is green , the dendritic cells
are red and the cell nuclei are blue

Highly conserved structures on bacteria and pathogens are recognised by families
of pattern recognition receptors (PRR) that are expressed by DCs as well as epithe-
lial cells. Once the PRR has been triggered, cell signalling pathways are triggered
that favour the production of chemokines and cytokines [5—7]. Although PRR lig-
ation does trigger DC migration [8, 9], the most important mobilisation factors are
thought to be chemokines [10—14]. The expression profile of chemokine receptors
on DCs changes upon DC maturation; immature DCs typically express high levels
of CCR2, CCRS and CCR6 [4]. Upon DC maturation these chemokine receptors are
down-regulated and the DC expresses the chemokine receptor CCR7. Even though
CCR7 has been identified as being crucial in DC migration to the MLN other medi-
ators such as cysteinyl leukotrienes and prostaglandin E2 are needed to make CCR7
responsive to its ligands [15, 16]. However, CCR7 is also expressed on so- called
semi-mature DCs that for example have phagocytosed apoptotic cells [12]. Lym-
phatic endothelial cells express high levels of the CCR7 ligands CCL19 and CCL21,
and CCR7 is important in migration of mature and possibly semi-mature DCs to
lymph nodes for T cell priming [15, 16]. This means that the type of signal recog-
nised by mature and immature DCs is potentially different. Overall, the mobilisation
signals will help:

1. Maintain immune homeostasis by preventing inappropriate immune responses to
beneficial antigens

2. Alert DCs to the site of damage/infection

3. Recruit DC progenitors and DCs in order to maintain the resident population or
respond to damage or infection [16]

In response to the mobilisation signals cell signalling cascades are triggered in
the DC resulting in multiple internal and external phenotypic and functional changes



11 Dendritic Cell Migration in the Intestinal Tract 231

[8,16]. For example, the interaction with pathogen- derived antigens not only causes
the DCs to mature but also increases their motility [8, 17]. In order for the DC to
physically move, the DC interacts with the gut substrate, blood vessels or lymphat-
ics. These interactions are facilitated by adhesion molecules on both the DCs and
the substrate it is moving through. Examples include adhesion molecules such as
ICAM-1, JAM-1 and integrins which recognise substrate components such as col-
lagen. The adhesion molecules act to enable the DC to either anchor to or detach
from the cell substrate it is in contact with [16]. Changes in the expression of ad-
hesion molecules can affect how DCs move including the speed and direction of
migration [16].

Another factor that may influence the speed of DC migration to lymph nodes is
the rate of the lymph flow within the lymphatic vessels. Histamine and cysteinyl
leukotrienes promote DC migration and can also increase lymph flow rate. Further-
more factors that inhibit DC migration have also been shown to decrease lymph flow
rate [12, 18].

DC Localisation Within the GIT

The GIT has a large population of DCs which are located in the small intestine,
large intestine and the MLNs (Fig. 11.3). The majority of DCs are found in the
small intestine. DCs in the small intestine are found distributed throughout the lam-
ina propria and in defined lymphoid structures called Peyers patches. Notably, a
proportion of small intestinal DCs expressing CX3CR1 are found at the epithelial
layer and extend dendrites between epithelial cells and into the gut lumen. These
dendrite structures are called transepithelial dendrites and may represent primary
routes of antigen uptake for DCs [19]. DC with transepithelial dendrites are rare or
absent in the ileum and terminal ileum of the small intestine.

Generally, DCs in the large intestine are much rarer than the small intestine. Here,
the majority of resident DCs are found in small isolated lymphoid follicle structures
(ILF) and colonic patches (CP) [20] with occasional DCs within the lamina propria
[4,21,22]. In health there are few if any DCs in the colonic epithelial layer [21]. The
formation of transepithelial dendrites in the large intestine has not been observed in
healthy mice and is rare even in infection [4,23].

DC Antigen Sampling and Migration in the Normal
Non-Inflamed Intestine

Two of the main reasons DCs need to migrate are to acquire antigens or prime
T cells. In the small intestine, there are three major routes by which DCs can ac-
quire antigens: via specialised epithelial cells called microfold or M cells which are
mostly found in the Peyers patches, via the intestinal epithelium within the lamina
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Fig. 11.3 Epithelial barrier function and Trigger for DC recruitment. Cartoon showing the main
pathways that can trigger DC mobilisation in the intestine

propria or via transepithelial dendrites [2, 19, 24]. In the large intestine, the path-
ways of DC antigen uptake are not well-defined as there are no Peyers patches, few
DC:s in the epithelium and no obvious population of DCs with transepithelial den-
drites [3,23]. However, the ILFs and CPs may have an analogous role to the Peyers
patches thus representing a primary site of antigen uptake for DCs in the normal
un-inflamed large intestine [25, 26].
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As stated previously the intestine has a considerable antigenic burden consisting
of dietary antigens and bacterial antigens from the commensal bacteria. The lack
of a pro-inflammatory immune response to such antigens is called immunological
tolerance. It is thought that in the normal gut, DCs contribute to immunologi-
cal tolerance. As well as local mechanisms of tolerance within the small intestine
[27-32], it has been shown that there is a constant low level of DC traffic from the
small intestinal lamina propria via the lymphatics to the MLNs [33]. Such traffick-
ing is referred to as steady state migration. In addition it is thought that DCs within
the Peyers patches are recruited in steady state migration. The chemokines CCL9
and CCL20 and the mucosal homing integrin MAdCAM-1, which are recognised
by receptors on immature DCs, are thought to be critical for steady state sampling
[34-36].

That intestinal DCs are involved in sampling luminal antigens is supported by the
observation that non-invasive and non-pathogenic Escherichia coli can be cultured
from the MLN of mice that have intestinal DCs with transepithelial dendrites [19].
The chemokine receptor CCR7 on DCs is thought to be important in this steady-
state DC trafficking. In mice lacking CCR7, there is impaired trafficking of DCs and
defective induction of tolerance [37]. The majority of DCs in the normal intestine
are immature and do not express CCR7 whereas DCs in the MLN have been shown
to be more mature [38,39]. As the immune response primed by these steady state
DCs is a tolerogenic one, it is not clear whether this is because the DCs respond
differently to beneficial antigens, do not fully mature e.g. are semi-mature or only
a specific subset of DCs respond. Recently, it has been shown that a subset of DCs
expressing CD103 represent the motile DCs that migrate to the secondary lymphoid
structures and initiate immune responses [40].

There is less data on the function of DCs in the normal non-inflamed colon.
Although ILFs and CPs may represent a site of luminal sampling, it is worth noting
that their formation is unaffected in the absence of the commensal bacteria [25].
DCs have not been observed with transepithelial dendrites in the normal large intes-
tine therefore the transepithelial dendrite route is highly unlikely to be involved
in steady state sampling. Furthermore, there are very few DCs at the epithelial
layer; on average between zero and 1 DCs are observed per crypt adjacent to the
epithelium [7]. However, a small subset of DCs express CCR7 (<5%) in the nor-
mal large intestine [7] so it is possible that there is some trafficking of DCs to the
MLNS in the steady state. This small subset of CCR7" DCs may be semi-mature
[7]. It does appear that in contrast to the small intestine DCs are sequestered away
from potential contact with luminal antigens. This may be due to the fact that the
large intestine has a significantly higher antigenic burden with the bulk of the com-
mensal flora residing there, therefore it is beneficial to keep the most significant
antigen presenting cell (APC) away from this major source of antigen. Similarly,
in the lower small intestine which has the most bacteria, DCs with transepithelial
dendrites are less frequently observed in normal healthy mice [2]. Certainly, inap-
propriate immune responses to the commensal bacteria have been shown to lead to
the development of inflammatory bowel disease (reviewed in [41]). Furthermore,
DCs have been strongly implicated in this dysregulated immune response in the
large intestine [21,42].
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DC Migration in Response to Infection or Injury

DC migration within the gut in response to infection or damage is critical for
resistance to infection. This migration may represent the movement of resident DCs
to the site of injury of infection (usually at or near the epithelial layer) as well as the
recruitment of DCs from the periphery and bone marrow that will move through the
tissue to the site of damage. The latter cells are often termed inflammatory DCs and
express CD103 [40].

In the small intestine, as we have discussed, many of the DCs are situated where
they are readily able to access antigens such as those with transepithelial dendrites.
In the terminal ileum there are much fewer DCs with transepithelial dendrites con-
stitutively. However, the number of DCs with transepithelial dendrites increases
dramatically upon infection in the small intestine and in particular the ileum [2].
This is thought to occur as a consequence of recruitment of inflammatory DCs
[2]. The large intestine does not have normally have DCs in the epithelial layer.
However, it is known that DCs are critical for immunity to a strain of colitogenic
Salmonella typhimurium. Experiments in which DCs were depleted revealed that
DCs were needed for invasion of S. typhimurium across the epithelium. The mech-
anisms by which the bacteria targeted the DCs was not clear as DCs were not
observed with transepithelial dendrites in the large intestine [23]. Currently it is
unclear whether DCs ever extend transepithelial dendrites in the large intestine in
response to S. typhimurium. However, as DCs are normally found distant from the
large intestinal epithelium the immunity to S.typhimurium must occur due to migra-
tion of DCs to the epithelium. The mouse model of the human whipworm infection
Trichuris trichiura (Trichuris muris) was used to investigate DC interactions with
the epithelium in the large intestine. 7. muris resides only in the large intestine.
The studies revealed that, 24 h after infection, in hosts that would be resistant to
infection, there were occasional DCs (< 5%) with transepithelial dendrites in the
colon [7]. This analysis was performed using confocal and electron microscopy
which effectively analyses only a snapshot of the immune response so is somewhat
limited. With the advent of better techniques to visualise immune responses in vivo
such as multiphoton microscopy, it may be possible to resolve the issue of transep-
ithelial dendrites in the large intestine. For example, we will be able to determine
the frequency and duration with which large intestinal DCs can form transepithelial
dendrites in response to infection and whether there are ever DCs with transepithe-
lial dendrites in the steady state.

Although, there are DCs present at the epithelial layer in the small intestine con-
stitutively, a number of infections and pathogen derived antigens have been shown
to promote further DC migration to the Peyers patches [43] and lamina propria
epithelium of the small intestine [33, 44—47]. One chemokine receptor has been
specifically linked with homing to the small intestine and this is CCL25 which
is recognised by the receptor CCR9 [47]. CCL25 is expressed by small intestinal
epithelial cells. CCR9 has been shown to recruit a subset of DCs called plasmacy-
toid DCs to the small intestine in response to PRR triggers [48]. Interestingly, this
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subset of DCs appeared to be necessary for the recruitment of other DC types to the
small intestine epithelium but only in response to a select set of PRRs [48]. A num-
ber of other chemokines are upregulated by epithelial cells in response to infection
including CCL20, CCLS5 and CCL2 [4, 45,49, 50]. In particular CCR6-dependent
recruitment of DCs has been shown to facilitate better immunity to S. typhimurium.
The mechanism for improved immunity was due to increased trafficking of anti-
gen carried by the phagocytic DCs to the lymph nodes which then increased the
efficiency of antigen presentation to T cells [42]. The migratory DCs were not nec-
essarily involved directly in antigen presentation. The migratory DCs appeared to
be blood-derived rather than tissue derived and were therefore of the inflammatory
DC subset.

There is relatively little literature on DC trafficking within the large intestine but
DC mobilisation and trafficking to the epithelium has been shown to be vital for
effective immunity to infection [4]. In mice that are susceptible to the mouse para-
sitic worm infection 7. muris it has been shown that delayed DC mobilisation in the
large intestine is strongly associated with susceptibility to infection whereas resis-
tant hosts have a rapid DC migratory response. This delayed response in susceptible
hosts was linked to reduced secretion of chemokines by the intestinal epithelium
within the first twenty four hours of infection [7]. The most important chemokines
were CCLS and CCL20 and blocking of these chemokines prevented DC mobilisa-
tion in response to infection [7]. Similarly, in mice with a defect in the secretion of
epithelial chemokines, there is reduced DC migratory response which is associated
with increased susceptibility to S. typhimurium infection (Cruickshank, unpublished
observations). Unlike, the small intestine however, where there is a rapid trafficking
of DCs to the MLNs following infection, few DCs were found in the MLNs post-
infection within the first 7 days. However, the size and frequency of the DC-rich
lymphoid aggregates (the isolated lymphoid follicles and colonic patches) increased
suggesting that DCs can be retained in the colon following antigen stimulation
[4,51]. Similarly, the colonic patches and isolated lymphoid follicles of the colon
have been confirmed as important sites for the generation of protective mucosal IgA
induction following intrarectal administration of antigen [26]. In this study, CCR7
was involved in homing to another lymph node site, the iliac lymph nodes which are
found below the mesenteric lymph nodes closer to the rectum (the terminal part of
the large intestine).

Rapid DC mobilisation in the intestine is not always associated with a posi-
tive outcome however. Some pathogens utilise DCs to disseminate around the body
such as Toxoplasma gondii which can directly exploit the way in which DCs move.
T.gondii secretes chemokine mimics that are strongly chemotactic to intestinal DCs
[52] as well as directly targeting the mechanisms of DC migration in order to pro-
mote faster cell migration [53]. The accumulation of DCs in the large intestine,
particularly mature DCs, has also been associated with the development of chronic
inflammation seen in inflammatory bowel disease [21, 42, 54, 55]. All the factors
underlying the accumulation of mature DCs in IBD are not elucidated currently but
clearly this demonstrates an alteration in migratory behaviour.
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Recruitment of DC Progenitors

DC precursors such as monocytes are rapidly recruited from the vasculature to the
site of injury or infection (reviewed in [56]). Monocytes have been shown to give
rise to inflammatory DCs and actually are derived from a common precursor to con-
ventional DCs. Within the first few hours and days of infection it has been shown
that there is a massive wave of CCR2 dependent recruitment of Grl™ monocytes
from the bone marrow to the bloodstream and thence to the tissues [57-59]. Under
the influence of pathogen derived factors and cytokines, these cells are able to differ-
entiate into inflammatory DCs [59, 60]. As well as acting as DC progenitors, these
monocyte cells may have anti-microbial functions (reviewed in [56]).

In addition to the inflammatory subset of DCs, it is likely that monocytes may
be involved in steady state replenishment of local resident DCs. There is some de-
bate about whether the Gr1™ monocytes that act as inflammatory DCs progenitors
are also progenitor cells for conventional tissue resident DCs. It is generally be-
lieved that is not the case however. Grllo monocytes may act as progenitors for
resident conventional DCs although the chemokines involved in their recruitment
are not fully elucidated and there is still relatively little information on this subset
(reviewed in [61]).

It is apparent that the migration of DCs both to the sites of injury or infection as
well as sites of T cell priming represents critical stages in the development of ef-
fective immunity. Not only is DC migration essential for effector immunity, it also
appears to be vital to maintain normal homeostasis in the gut by preventing inap-
propriate immune responses to normal antigens. Dysregulation of the DC migratory
response can also result in significant problems leading to chronic inflammation and
the development of inappropriate immune responses. Another important considera-
tion is that the immune responses within the small intestine and large intestine are
not the same as is commonly assumed. DC migration is a complex process that in-
volves multiple factors all of which can have profound effects on the outcome of the
immune response. This area of research is still in its infancy and represents an area
of rapid development in the immunological field.
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Chapter 12
Reassessing Germinal Centre Reaction Concepts

Jose Faro and Michal Or-Guil

Abstract To determine the number of B cells seeding germinal centres, different
authors have used immunohistology of germinal centre sections in conjunction with
assuming a binomial distribution of the fractions of two phenotypically distinct
B cell populations participating in a given immune response. This approach fur-
ther assumed that germinal centres are closed to continuous B cell entry. Using such
a model, it has been concluded that germinal centres contain two to eight clones,
a figure that is usually taken and cited as being essentially correct. The present
re-evaluation of those and related experiments lead to an extended mathematical
model. This model includes an estimation of errors created by data sampling, two
new parameters that take into account possible mistakes in classification of single
population GC sections, and the likely variability in the number of seeding B cells.
Fitting this new model to experimental data resulted in an estimated mean number
of (n) = 23-37 seeder B cells.

Introduction

Vertebrates have evolved a complex immune system (IS) that efficiently contributes
to protecting them from many infectious and toxic agents. To cope with such a huge
variety of agents the IS generates a large diversity of lymphocyte receptors. This
occurs throughout life by various mechanisms that, in higher vertebrates, are acti-
vated in two waves. The first one takes place during lymphocyte development, is
antigen (Ag) independent, and comprises the random recombination of relatively
few gene segments into a fully variable (V) region exon of immunoglobulin (Ig)
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heavy or light chains and T cell receptor chains [1]. In birds and mammals the
relevance of this mechanism for generating primary B-cell repertoire diversity varies
with different species. Thus other mechanisms such as gene conversion and somatic
hypermutation (SHM) which act on rearranged V-region exons may contribute to
most of the B-cell repertoire diversity [1,2]. The second wave of repertoire diversi-
fication in B cells is Ag dependent and triggered during immune responses (IRs) to
protein-containing Ags, the major mechanism responsible being SHM. This process
takes place, in higher vertebrates, in germinal centres (GCs) of secondary lymphoid
organs [2,3].

Germinal centres are dynamic, short-lived anatomical structures generated within
primary follicles during humoral IRs. Since their discovery in 1884 as sites of in-
tense mitosis [4, 5] they have been increasingly implicated in IRs [6-9]. In the
1960s studies were initiated into their cellular and anatomical dynamics during IRs
[10-13] leading to current terminology. It was then also shown that they are spe-
cial areas where protein Ag accumulates by an active transport mechanism [14—19].
Within the next decade the so-called follicular dendritic cell (FDC) was confirmed
as a key GC cell component, essential for the follicular Ag-trapping process. It was
also shown that Ag remained in GCs in a native form, in large complexes with anti-
bodies (Ab) and complement factors, and associated with the membrane of the long
dendritic arms of FDCs [16, 17,20, 21]. At the beginning of the 1980s the role of
GCs in memory B-cell generation was well established [22], but a few years later
it appeared that GCs might be more profoundly involved in IRs than previously
thought. It was proposed [5, 23, 24] that they could be the functional environment
for two processes, well-known at that time, namely somatic hypermutation of Abs
[25] and affinity maturation [26]. Their involvement in SHM was confirmed in 1991
[27,28]. Since then, accumulated data clearly indicate that a selection process be-
tween Ag-specific B cells takes place in GCs, accounting at least partially for affinity
maturation [29-31].

Current View of GCs

A consensus picture of evolving GCs in primary IRs emerged from the mid 1980s
to the 1990s. This picture, still dominant in textbooks [3] and most reviews, can be
described in a roughly temporal fashion as follows:

. Foci of Ag-reactive B cells are formed

. Seeding and initiation of GCs by B cells: this seeding is oligoclonal

. Seeding of GCs by T cells

. Founding centroblasts start proliferating with division times of 6-12h

. SHM starts

. Some centroblasts stop dividing and become centrocytes. These cells accumu-
late in the apical zone, creating the light zone, while centroblasts remain mostly
in the basal, dark zone. SHM takes place only in centroblasts. Ag-driven selec-
tion affects mostly centrocytes

AN AW =
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7. Recycling: the original idea, proposed by MacLennan et al. in 1991 [32],
suggested that centroblasts migrate from the dark to the light zone, become cen-
trocytes and as such stop SHM. They are then submitted to selection; surviving
cells migrate from the light to the dark zone where they again become cen-
troblasts activating the SHM mechanism. This cycle is supposed to be repeated
several times. A later theoretical analysis of the affinity maturation process,
based on an optimization criterion [33], was taken as support for this hypotheti-
cal view (see discussion). The original recycling idea was later modified so that
no physical migration between zones was required

8. High(er) affinity centrocytes are induced to differentiate into either memory
B cells or long-lived plasma cells, exiting the GC

9. Gradual decrease of the dark zone, until a single, smaller zone remains where
centrocytes and centroblasts are mixed

10. Gradual decrease by death/migration of centrocytes and centroblasts, so that the
secondary follicle gradually recovers the phenotype of a primary follicle
11. The whole process takes about 3 weeks

The population dynamics and transient nature of GCs as well as the mutation-
selection processes taking place there, raise very interesting problems, amenable
to analysis by mathematical and computational tools. Such analyses can focus on
different points of view, for instance, on developmental (tissue organization and
remodelling), ecological, microevolutionary or health aspects.

However, empirical descriptions of the kinetics applying to different aspects of
GC dynamics, such as initiation, maturation and decline, compartmentalization or
B-cell selection, are based on experimental procedures that are technically limited
with respect to the kinetics of individual GCs. This means many relevant processes
can either not be observed directly or not in the relevant time scales. Thus, most if
not all of the dynamic data relates to the global GC reaction and not to the average
individual GC [34], leaving essential questions open [3].

In the ideal case, questions are answered directly from experimental data (“Do
GCs contain T cells? Yes, immunohistology shows that they do”). If direct exper-
imental observation is not possible, then assumptions have to be made in order to
draw inferences from indirect experimental data. Often, mathematical models are
used to obtain indirect estimates from these assumptions. For instance, assuming
that B cells do not enter the GC after its formation, and proliferate at a constant rate,
with certain assumptions on the selection process, one can set up a mathematical
model where the results are compared to V region Ig sequences from GC B cells in
order to estimate the rate of SHM [35].

However, some problems can arise in interpreting data. Firstly, measurement er-
rors can be large enough to give misleading results. Secondly, if data only comprises
a small sample, effects of sampling have to be considered. Thirdly, if the conclusion
stems from indirect experimental observation, then the validity of the assumptions
has to be assessed. Finally, averages over many events can be erroneously taken to
reflect the behaviour of individual events [34].

An additional problem is that concepts resulting from data observation are
usually presented without clearly distinguishing between truly established facts
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and those that are hypotheses, observational interpretations, assumptions or even
“reasonable” beliefs. As a consequence, scientists can be easily mislead, particularly
newcomers to the field. This is highly relevant because such potential interpretations
or assumptions may impinge on models of GC dynamics or affinity maturation. Pre-
senting those assumptions as facts prevents their own analysis and constrains future
analysis of the models.

As a way to clarify this conundrum, we wanted to critically reassess key papers
that contributed to the dominant picture of GC dynamics. We sought to disclose
potential interpretations, hypotheses or assumptions that may have been accepted
later as facts.

In this paper, we focus on a particular issue, namely, the proposal that GCs are
founded oligoclonally. This is to exemplify how apparently good and simple quan-
titative experimental designs can provide results that are in fact ambiguous with a
large margin of error, thus leaving the original question unresolved.

An oligoclonal GC is one that was founded and then populated by only a few
clones. A clone comprises cells that originate from the same precursor cell. Hence, a
B cell clone will consist of B cells with the same rearranged Ig heavy (Igh) and light
(Igl) V-region sequences, although these sequences might have acquired mutations
due to SHM.

Clonal diversity and clonal size distribution of GCs are a consequence of the
interplay of migration, proliferation, selection, and differentiation processes, and
hence provide information that can help unveil underlying dynamic processes.
Therefore, investigators initially focused on determining the clonal composition of
GCs. Both direct and indirect methods were used to assess this question. The first ex-
perimental approach to the question of clonal diversity that comes to mind is directly
measuring Igh and/or Igl V-region sequence diversity in individual GCs. However,
probably due to technical limitations at the time, this approach was not the first to
be developed. A second, clever approach, and historically the first to be followed, is
to estimate the clonal diversity indirectly by measuring only a qualitative GC trait.
The conclusion drawn from these analyses is that GCs are founded oligoclonally
by around two to eight precursor cells. Reading the original papers, however, one
realizes that the data included potentially important sources of error, thus casting
reasonable doubts on the reliability of the authors’ interpretations. We will present
the data in question and discuss their interpretation in the following sections.

Analysis of the Experimental Basis for the Concept
of Oligoclonal Seeding of GCs

Indirect Experimental Evidence

The concept of oligoclonal GCs originated from evaluating indirect evidence based
on the assumption that all GCs are founded by n B cells, and become virtually
closed structures for Ag-specific B cells arriving later. Within this closed structure,
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the founder B cell populations expand at the same rate. Under these assumptions,
the theoretical approach behind the indirect method is the following. Assume there
are two B cell populations named A and B with, in principle, the same diversity,
but with two different phenotypic traits — for instance, a plasma membrane allelic
marker without functional differences between alleles. Let us call ¢ and p (=1 —gq)
the fractions corresponding to populations A and B, respectively. If GCs are seeded
by a similar number n of cells then the expected fraction of GCs seeded by k cells
of type A and n — k cells of type B is:

Y n—k k
(k)p q*. (12.1)

In particular, the expected fractions of GCs seeded by only A4 cells (f,), only B
cells (f;) or a mixture of A and B cells ( f;, ) are, respectively,

fi=4q" (12.2)
fz=Dr" (12.3)
foo =1—q" = p". (12.4)

The number n of founder B cells can then be calculated using (12.2), (12.3) or
(12.4) alone from knowing the fraction p and the observed value for f,, f, or f.
(denoted here as f ob . Iy °b and I ob 7). Two experimental system variants have been
used that allow 1dent1ﬁcat10n of two B cell populations and hence measurement of

ob ob ob
p. f°, 17 and f27:

(1) Immunization with two Ags. This strategy involves analyzing the GC reactions
triggered by two different Ags injected simultaneously [36,37]. In the paper by
Liu et al. [36] rats primed with spider crab hemocyanin (MSH) were boosted 4
weeks later with a mixture of dinitrophenyl (DNP) and 2-phenyloxazolone (Ox)
coupled independently to MSH. The fractions of splenic GCs monospecific for
either Ox or DNP were determined by immunohistology 3 days later. In the
experimental setting of Jacob et al. [37] (C57BL/6xBALB/c)F; mice (Igh™)
were immunized with nitrophenyl (NP) coupled to chicken gamma globulin
(NP-CQ). In this system it is expected that the majority of anti-NP B cells bear
the A1 L chain and that this is Igh"-associated. Then the fractions of GCs with
B cells expressing A1, binding CG, or both were determined.

A general problem with those two experimental settings is that the responses
to each Ag are not comparable. This is due to likely differences in the number
of Ag-specific precursor B cells, the affinities of the responding cells for their
respective Ag, and Ag valence (Ox vs DNP in the first case, and NP vs CG
epitopes in the second case). These are important unknown factors that affect
estimates of the proportions of pre-response B cells specific for each Ag (as-
sumed to be 1:1 in [37]), and the differential quality of activated Ag-specific
B cells’ response before the GC reaction starts. For instance, small fluctuations
in the in situ proportions of B cells specific for each Ag may be highly amplified
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by higher affinity/avidity of B cell-Ag interactions leading mostly to extrafol-
licular plasma cell differentiation [38,39]. Due to all of the above, these settings
are inadequate because they introduce too many uncertainties.

(2) Two phenotypically different B-cell populations. Historically this was the first
approach, and the most cited original papers are those of Kroese and colleagues
[40—42]. In their experiments they used rats with two populations of lympho-
cytes bearing different alleles of a given membrane protein. In the first paper
[40] lethally X-irradiated rats of AO strain were reconstituted with different
proportions of thoracic duct lymphocytes (TDL) from (AOxBN)F; rats (with
MHC class IT molecules of hybrid allotypes RT1%/") and AO—(AOxBN)F;
chimeras (with MHC class II molecules of allotype RT1%). The reconstituted
rats were immunized with sheep erythrocytes (SRBC) and their spleens ana-
lyzed for GCs 5 days later.

As the authors acknowledged, a major drawback of that system is the dif-
ference in MHC between TDL rat donors and rat hosts, which would lead to a
graft-vs-host reaction. This was circumvented by using TDL derived from bone
marrow chimeras. However, these cells were still weakly reactive against host
type cells [40].

The weak reactivity in the above system was avoided in a second paper by
using PVG rats congenic for the RT7.2 allotype (CD45, a cell-membrane phos-
phatase). Lethally X-irradiated PVG rats (RT7.1) were reconstituted with a 1:1
mixture of TDL from both allotypes, immunized with SRBC and their spleens
analyzed for GCs 7 or 10 days later.

A common source of error in those two papers was that, manipulating cells
ex vivo and injecting particular ratios of them into X-irradiated hosts, meant
that the real proportion of surviving, functional B cells of each allotype able
to respond to the immunizing Ag becomes highly uncertain. In the 1988 paper
[41], this is reflected in the widely different measured percentages of pure RT7.1
and pure RT7.2 GCs, 19% and 45%, respectively, in animals receiving a 1:1
ratio of RT7.1 and RT7.2 B cells. This strongly contrasts with the expected
similar frequencies for both types of GCs. Finally, in both reports only one of
the cell types was scored for presence/absence. All this makes the data [40,41]
highly unreliable for estimating the number of GC founding B cells.

In contrast to the above two experimental systems, another animal model [42]
used rat hemopoietic chimeras. Those were obtained by transferring congenic
PVG RT7.2 embryonic liver cells into PVG (RT7.1) newborn rats. As in the
previous papers, only the presence/absence of RT7.2 cells was analyzed. For
our present purpose the best set of data in that paper corresponds to a chimera
where the allelic B cell population fractions were p = 0.21 (population B)
and ¢ = 0.79 (population A). In this case, the fractions of pure GC sections
were found to be fA"b = 0.14 for population A (allotype RT7.1), fB"b = 0.06
for population B (allotype RT7.2), while 80 % of GC sections showed a mixed
population. Using this simple model, the number of founder cells is estimated
by (12.3)tobenyg ~ 8 and by (12.4)tobe np ~ 2.
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This system has the advantage of using normal animals, without ex vivo
manipulation of cells, which leads to an accurate determination of allelic
B-cell population fractions. We therefore considered this work best from a
methodological point of view and will focus on their data in the following
analyses.

Consistency Test

We first asked if experimental findings and model assumptions are internally con-
sistent. Does the data reported by Hermans et al. point to a binomial distribution of
B cell population fractions in GCs? Table 12.1 shows the percentage of GCs with
cells of types A, B, and mixed populations determined experimentally, as well as
the expected values calculated from (12.2) to (12.4) using the estimation of n 4 or
np, along with the corresponding x? values. In all cases, y? is much larger than
10.827 (corresponding to a probability of 0.001 and 1 df). This indicates that the
reported values are inconsistent with the model assumption.

A first source of error is that the authors of the above papers took sections as to
represent whole GCs. However, sections are small samples of GCs, and as such do
not always reflect the true GC composition. Consider, for instance, a GC seeded by
k cells of type A and n — k cells of type B, and totaling M cells. This GC will have
M % cells of type A. However, a section containing m cells (with m < M (1 — ’ni))

k
will consist, with a probability (M (1; W)) / (A”{ ), exclusively of type B cells, feigning
a single population GC. This shows that sampling errors lead to overestimating the
number of single population GCs.

Additionally, errors of observation can lead to a further overestimation. For one
thing, the experimenter sets a subjective and arbitrary cut-off due to T cells possibly

being counted as B cells [42]. As a consequence, estimating the absence of one of the

Table 12.1 Analysis of internal consistency of data in [42] used to
estimate n from chimera with p =0.21. X? of observed vs expected
fractions f,, f, and f, were calculated taking either observed f, (‘/‘;"b)
or observed f, ( j;”” ) as the reference values

n, =log_, (1) ny = log,(f,"")
(%) (%)
Observed Expected” Observed Expected”
i 14 - 14 65.4
Js 6 2.2x 1074 6 -
Joie 80 86.0 80 28.6
X2 161996¢ 132.6¢

“Expected f, was calculated as p
bExpected f, was calculated as (1 — p)”s
¢ x*(prob.: 0.001; df: 1) = 10.827
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two B cell populations in sections may dismiss 10-30% of that population. Finally,
if only one population is positively analyzed for presence/absence, and the other
B cell population is simply inferred, as in [40-42], GC sections scored as 100%
positive for the former population because all cells were apparently labelled could
in fact contain cells of the other population. Real absence of the second population
can only be determined by staining for that population.

We propose the following modified, refined model to take measurement and
sampling errors into account. Our aim is to more accurately estimate the expected
fractions of single and mixed GCs.

An Extension of the Basic Model

To take the above sources of errors into account, we introduced a parameter Iz < m
representing the maximum number of cells that can be overlooked, that is, sections
with up to /7 B cells of one type are scored as pure sections of the other type.

Now taking into account both sampling and observation errors, we extend (12.1)
and find that the probability of a mixed GC, seeded by k cells of type B (1 < k < n),
yielding an apparently pure section of type A is:

min[l7,% M] M-Kpm\ (Em
(Z) Pr gk Ii: Y %M (12.5)
I=max[0,m—M(1—£)] (m)

Hence, the total fractions of sections expected to be scored as pure A, pure B and
mixed are, respectively:

- wiliy im]  (M=5ay (kb
&(n)=i(z> g IZM M (12.6)

M
k=0 I=max[0,m—M(1—£)] m

min[lT,M(l—g)] M_%M

fy(n) = Xn: (n) AV M (12.7)

k M
k=1 l=max[0,m—%M] m

Jux () = 1= f,(n) — f5(n) (12.8)

A further extension of the basic model addresses its simplifying assumption that
all GCs are seeded by the same number n of cells. In fact, it can be expected a
priori that the number of cells seeding GCs covers a relatively wide, rather than a
very narrow distribution. We therefore replaced this assumption by considering an
exponential distribution with mean (n) = 1/A, such that the fraction of GCs seeded
by n; B cells is:

P(n;) = / de *dn (12.9)
n;—1



12 Reassessing Germinal Centre Reaction Concepts 249

Then the fractions of sections expected to be scored as pure A, pure B and mixed
from GCs seeded by n B cells are, respectively:

F,(A,n) = P, (n) f,(n), Fy(A,n) =P, (n)fy(n), F, (A,n)=P(n)f, (n).
(12.10)

Finally, the fotal fractions of sections expected to be scored as pure A4, pure B and
mixed are given by the equations:

F,M) =) F,(An). F,0)=) FGln. F, )= Z (A,n).
! ! (12.11)

This refined model can now be used to estimate the fractions of GC sections
expected to be scored as type A, type B or mixed, for different values of the average
number (n) of GC founder B cells, the size m of GC sections and scoring errors,
IT, and I7,. The results of a systematic analysis of (12.6)-(12.11), taking /7, =
Ity = Ir are shown in Fig. 12.1.

Consistent with the observed data shown in Table 12.1, the results with the ex-
tended model indicate that the scoring error must have been /7, < 10% for counting
“pure” GC sections of type A4 (i.e., truly pure + false positives). However, this error
for cells of type B must have been much higher than 30%, since the estimated Fj,

m =50 cells m =100 cells m =200 cells
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Fig. 12.1 Fractions of GC sections estimated as being scored type A (F,), type B (F,) or mixed

(E,,). using the extended model (12.6)-(12.11). (n), Average number of GC founding B cells; /7,
scoring error; m, size of GC sections. Horizontal lines correspond to the observed fractions in [42]
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should reach at least the observed value ];"b = 0.06. Hence, we need to assume that
the observation errors are different for each of the two populations if the extended
model is compatible with the observed data.

In addition, we can ask if the extended model and the data on pure and mixed
GC sections in [42] are consistent. The values reported in the original paper were
compared with the expected values according to the extended model (12.6)—(12.11).
Figure 12.2 shows the corresponding X 2 for different average numbers of seeding
B cells and different error thresholds /7 (once more taking /7, = Ir, = Ir).
Consistent with the previous result, in all cases the y? test indicates that the reported
values are too different from the expected ones to be due to random variations. We
therefore re-estimated F, for I7, = 5%, 10% and 15%, and F, for I7, = 50%,
55% and 60%. The results clearly show that only scoring errors of 5 — 10% for
IT, and 55 — 60% for /T, generate values of F,, F, and F, . compatible with the
observed values and predict the same value for (n) (Fig. 12.3). Applying the y? test
for observation errors /7, = 5% and I, = 55%, we obtain a minimum value of

200 _ annNNNnn

100

50

=13.815

2
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Fig. 12.2 2 test of observed vs expected fractions of GC sections of type 4 (F,), type B (F,)
or mixed (F,, ), using the extended model (12.6)—(12.11). (n), average number of GC founder
B cells. Horizontal line, y* for a probability of 0.001 and 2 df. Blue, green and yellow bars are
results obtained with /7 = 10, 20 and 30%, respectively. Calculations made assuming a GC size
of M = 5,000 cells, and a GC section size of m = 200 B cells
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Fig. 12.3 Fractions of GC sections estimated as being scored type A (F,), type B (F,) or mixed
(E,,) for the indicated values of /7, and /1, g, using the extended model (12.6)—(12.11). (n}), aver-
age numbe