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Preface

The new experimental and imaging techniques of the past few decades allow us
to observe, study and ponder the world of cells and molecules inside our bodies,
stimulating the development of new mathematics and putting a new perspective on
our view of our own world.

Whole new areas of immunological research are emerging from the analysis
of experimental data, going beyond statistics and parameter estimation into what
an applied mathematician would recognise as modelling of dynamical systems.
Stochastic methods are increasingly important, because stochastic models are closer
to the Brownian reality of the cellular and sub-cellular world.

This volume contains chapters on mathematical modelling, on immunology, and
on mathematical modelling in immunology. Although there is a bias towards the
adaptive immune system, and towards T cells in particular, the reader will find
Chapters on dendritic cells, B cells and germinal centres.

We hope the list of abbreviations will help to indicate the type of research that is
being carried out at the interface of mathematics and immunology.

This book would not have been possible without the passion and perseverance of
Joseph Burns. We are extremely grateful for the support, assistance and patience of
Andrea Macaluso, Jeffrey Ciprioni and Melanie Wilichinsky.

That the two of us are doing research in mathematical immunology at all is due
to the influence of David Rand, Nigel Burroughs and Hugo van de Berg.

2011 Carmen Molina-Parı́s
Grant Lythe
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Chapter 1
Thymocyte Development

William Jenkinson, Eric Jenkinson, and Graham Anderson

Abstract T cell development within the thymus involves the dynamic interaction of
thymocytes with a unique heterogeneous microenvironment formed predominantly
by a three-dimensional network of specialized thymic epithelium. Multiple devel-
opmental checkpoints have been identified during thymocyte maturation, including
selective recruitment to the thymus, ˛ˇ versus �ı T cell fate decisions, positive
and negative selection and finally regulated egress of mature T cells from the thy-
mus to the periphery. The controlled migration of thymocytes within the thymus
ensures that developing T cells undergo a series of tightly-regulated interactions
with stromal cells of the thymus, ensuring that, firstly, only cells bearing a func-
tional TCR are selected for survival and onward differentiation via positive selection
and, secondly, that autoreactive T cells capable of responding to self-antigens and
causing autoimmune disease are deleted via negative selection. The stringent selec-
tion mechanisms enforced within the thymus are demonstrated by the fact that only
2–5% of thymocytes generated within the thymus mature to form naı̈ve T cells ca-
pable of forming a functional, self-tolerant component of the peripheral adaptive
immune system. Whilst many of the developmental processes occurring during thy-
mocyte development have become elucidated over the past several years, systems
directed towards modelling the dynamic migratory patterns and real-time cellular
interactions will radically advance our understanding of how such pivotal cells of
the immune system are generated.

Introduction

During T cell development, thymocytes undergo a programme of sequential
interactions with stromal cells of the thymus, predominantly of an epithelial na-
ture, providing essential developmental cues to ensure a carefully orchestrated

W. Jenkinson (�)
Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research,
Medical School, University of Birmingham, Birmingham B15 2TT, UK
e-mail: w.e.jenkinson@bham.ac.uk
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maturational programme lasting 3–4 weeks [1]. Similar to B cells, thymocytes bear
a cell surface receptor capable of recognizing antigen, inducing cellular activation
and driving adaptive immune responses, although unlike B cells, T cells require
presentation of antigen by MHC class I and II. The huge diversity of potential
antigen that a single individual may encounter over the course of a lifetime requires
a highly efficient and specialized mechanism to ensure the production of sufficient
T cells, each bearing a receptor of a single specificity, to confer the ability to rec-
ognize and respond to such diversity of antigen. This variety of T cell receptors
(TCR) is generated during thymocyte development via the ability of individual cells
to rearrange multiple gene segments encoding the ˛ and ˇ-chains of the TCR in
a random fashion. Whilst the capacity to generate TCR diversity via random gene
recombination provides the capacity to produce a huge range of TCR specificities,
estimated at 1015, an intrinsic drawback of such a system is the potential to generate
multiple non-functional TCR arrangements and also TCRs capable of recognizing
the host’s own tissue and driving potential autoimmune responses. It is therefore
essential that a strict quality-control mechanism operates within organisms capable
of generating lymphocytes bearing randomly generated receptors. In most verte-
brates the thymus represents the site of selection, sorting the good from the bad and
ensuring that only useful T cells progress to populate the periphery and contribute
to immunological defence. As a result of this, while approximately 50 million thy-
mocytes are generated within the thymus every day, only around 1 in 20 thymocytes
survive the stringent selection events required to become a mature T cell.

The thymus until relatively recently, remained an organ of mystery. The essen-
tial function of the thymus in the generation of lymphocytes was established in the
1960s through pioneering research by Jacques Miller, demonstrating that neonatal
thymectomy resulted in immunodeficiency and furthermore indicating that the thy-
mus was a site where lymphocytes were selected and tolerance induced. Extensive
research into thymocyte development and thymus biology have begun to uncover the
nature of the mechanisms regulating T cell development and the cellular interactions
involved in this process. In this chapter, an overview of thymocyte development will
be provided summarizing the relationship between thymocyte and thymic microen-
vironment resulting in the generation of functional, self-tolerant T cells.

Thymic Microenvironments

The thymus represents a bilobed organ, located in the superior mediastinum of
the thorax anterior to the outflow tract of the heart. The mature thymus shows a
clear degree of compartmentalization, displaying both anatomically and function-
ally distinct regions of cortex and medulla (Fig. 1.1). A fibrous capsule surrounds the
mature thymus, with a rich vascular network penetrating throughout the organ. The
parenchyma of the thymus consists predominantly of a unique three-dimensional
arrangement of epithelial cells providing a mesh-like network, within which de-
veloping T cells are able to migrate and receive essential signalling interactions.



1 Thymocyte Development 3

Fig. 1.1 The thymus displays a high degree of organization. Confocal analysis of mouse thy-
mus for CD4 (green), CD8 (red) and CD25 (white) reveals the distinct thymic compartments of
outer subcapsular region (SC), cortex (C) and inner medulla (M). Thymocytes at different stages
of development differentially express the cell surface markers CD4, CD8 and CD25 and specif-
ically localize to defined thymic regions. The subcapsular region is predominantly populated by
immature CD4�8�25C thymocytes (white), forming a discrete rim to the thymus. The cortex is
visualized as a densely packed region predominantly populated by CD4�8� double positive thy-
mocytes (appearing yellow), which undergo interactions with a network of interspersing cortical
thymic epithelial cells. The inner thymic medulla consists of a more sparsely populated region
formed by thymocytes at the single positive CD4C8� (green) and CD4�8C (red) undergoing
maturational interactions with a combination of medullary thymic epithelium and dendritic cells

In addition to thymic epithelium and thymocytes, a heterogeneous mixture of
additional cell types reside within the thymus, including stromal fibroblasts, thymic
macrophages and dendritic cells, all of which play an important role in thymus
biology.

During embryogenesis, the thymus develops as a bilateral outgrowth of endo-
derm, which buds off from a region of the foregut termed the third pharyngeal
pouch. A series of reciprocal signalling interactions with neural crest-derived mes-
enchyme ensheathing the thymic rudiment leads to a cascade of transcription factor
activity within the endoderm-derived thymus primordium, resulting in both out-
growth and differentiation of the thymus. Recent experimental data indicate that
endoderm-derived thymic epithelium producing cortex and medulla is not only gen-
erated from a single embryonic origin, but that both cortical and medullary thymic
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epithelium derive from a bipotent progenitor population. Whether such a common
thymic epithelial progenitor population persists within the adult thymus and whether
such a population may represent a potential stem cell population with clinical ma-
nipulation implications remains an open area of research.

T cell development is not a cell autonomous process. The thymic microenviron-
ment nurtures the development of thymocytes, providing a wide range of signalling
interactions at defined developmental checkpoints in discrete anatomical locations.
Signals provided by thymic stromal cells regulate commitment to the T cell lin-
eage, regulation of proliferation, survival and importantly, selection of functional
T cells that are self-tolerant on the basis of thymocyte T cell receptor capability and
specificity. Due to the strict compartmentalization of thymic epithelial cells provid-
ing defined signals required at specific stages of thymocyte maturation, developing
T cells display a highly ordered pattern of migration within the thymus regulat-
ing stepwise interactions and sequential maturation. Amongst the important signals
provided by thymic epithelium to developing thymocytes, Delta-like 4 (Dl4) a lig-
and for the Notch signalling pathway is expressed by thymic epithelium. Signalling
through the Notch receptor, expressed by thymus colonizing thymocyte precursors,
is critical for commitment to the T cell lineage. Mice demonstrating defects in the
Notch signalling pathway lack the capacity to generate thymic T cells, instead B
cells are found to populate the thymus indicating that Notch plays an essential role
in the commitment of lymphoid precursors to the T cell lineage [2]. In addition,
thymic epithelium provides essential survival factors to developing thymocytes, in-
cluding IL-7 and stem cell factor [3]. Interestingly, the requirement for IL-7 appears
to be less important for thymocyte development within the fetal thymus compared to
the adult thymus, highlighting subtle differences in the developmental requirements
of T cells at defined temporal stages [4]. Of critical importance, thymic epithelium
also expresses high levels of both MHC class I and MHC class II. MHC expression
within the thymus plays an essential role in the selection of both CD4 and CD8
T cells through the capacity to test whether thymocytes with randomly generated
T cell receptors are able to recognise MHC presenting self-peptides with sufficient
affinity to ensure the TCR is functional but also ensure that those cells recognizing
MHC–self-peptide complexes with too high affinity are deleted to avoid potentially
autoreactive immune responses. Lack of MHC molecules on thymic epithelium re-
sults in a complete block in thymocyte development at the CD4C8C double positive
(DP) stage, as developing thymocytes are unable to test their randomly generated
receptors and fail to receive TCR transmitted survival signals.

It is clear that thymic epithelium provides essential signals to developing thymo-
cytes in a highly ordered stepwise manner. However, such signalling interactions
are not simply a one-way process. Analysis of the thymi of mice demonstrating
blocks in thymocyte development at defined stages demonstrates a clear correspond-
ing defect in differentiation, organization and maintenance of cortical and medullary
epithelium. Such findings highlight a complex reciprocal signalling mechanism op-
erating within the thymus whereby thymocytes provide important signals, such as
through the Lymphotoxin signalling pathway, that act to regulate the microenviron-
ments that regulate their own survival and maturation [5].
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The thymus is not an organ that is maintained at a constant size throughout life.
A programmed decrease in the proportion of functional thymic tissue ensues gen-
erally from the onset of puberty, resulting in a consequent decrease in T cell output
from the thymus of older individuals. The decrease in functional thymic tissue is
termed thymic involution or atrophy. The precise mechanics of thymus involution
remains unclear although several lines of evidence point to a pivotal role for sex
steroids in this process [6]. During thymocyte development, approximately 95% of
thymocytes are deleted due to production of either non-functional or auto-reactive
T cell receptors. Such huge wastage may provide an explanation as to the reason
for thymic involution, the necessity to maintain such a wasteful organ following
the establishment of a peripheral T cell pool of sufficient size and diversity as to
maintain immune protection may no longer be required. In support of this, thymec-
tomy of young individuals does not lead to significant immunodeficiency, indicating
that maintenance of a fully functional thymus with increasing age is not strictly
necessary. However, improving healthcare and associated increases in lifespan of in-
dividuals may present problems in the future as elderly individuals may demonstrate
a reduction in the T cell repertoire as a result of reduced thymic output. In addition,
the advent of clinical therapies resulting in depletion of lymphoid compartments
followed by bone marrow transplant presents a problem in terms of the reduced
presence of functional thymic microenvironments capable of supporting rapid re-
constitution of T cell compartments. Indeed, post-bone marrow transplant patients
demonstrate a high susceptibility to opportunistic infection due to a severely re-
duced capacity to produce T cells. Identification of potential thymic epithelial stem
cell populations and the precise signalling pathways involved in regulating thymic
epithelial development and expansion currently present intense areas of research
aimed at developing methods of regenerating functional thymic tissue and T cell
reconstitution.

Colonization and Export from the Thymus

The thymus lacks a resident population of self-renewing haematopoietic stem cells
(HSC). Unlike B cell development, where HSC exist within the same localized mi-
croenvironment as their B cell progeny, the remote location of the thymus therefore
requires the selected recruitment of T cell progenitors throughout life to ensure a
continuous supply of mature T cells. Recruitment of T cell progenitors to the thy-
mus, whilst continuous throughout life, does not occur in a steady stream but rather
entry is regulated in a periodically-gated manner [7]. The precise mechanisms reg-
ulating such stop-start thymic entry remains unclear, although evidence suggests
that this may at least in part be regulated by the availability of space within intra-
thymic niches capable of nurturing developing thymocytes [8]. Following entry to
the thymus, T cell precursors undergo a series of maturational events including
bursts of proliferation resulting in a single thymus colonizing cell generating up to
one million progeny [9]. The recruitment and specific entry of lymphoid progenitor
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cells into the thymus therefore forms the first hurdle that potential thymocytes must
overcome in their journey to becoming a mature T cell.

Colonization of the thymus within the mouse appears to occur via two different
mechanisms operating within temporally defined windows. At approximately day
11.5 of gestation, recruitment of circulating fetal liver and AGM-region haematopoi-
etic cells to the embryonic thymus initiates and continues for a period of approx-
imately 2 days. During the initial window of thymus colonization, the thymus
remains an avascular structure, with entry of blood vessels into the thymus proper
occurring after day 14 of gestation. As a result, specific recruitment of haematopoi-
etic precursors occurs via the induction of haematopoietic precursor extravasa-
tion from capillaries in proximity to the thymus followed by migration through
perithymic mesenchyme and finally entry to the thymus through the presumptive
capsule. Attraction of haematopoietic cells to the early fetal thymus appears to be a
highly specific process regulated by the action of a restricted set of chemokines com-
prising CCL25, CCL21 and CXLC12. Absence of expression of CCR7 and CCR9,
the receptors for CCL21 and CCL25 respectively, on haematopoietic cells results
in a severe reduction in pre-vascularized thymus colonization and an associated ab-
sence of T cell subsets normally generated from these cells [10]. The importance
of CCL25 in mediating colonization of the fetal thymus is further highlighted in
Nude mice. Nude mice display a mutation in the transcription factor Foxn1. Lack of
functional Foxn1 expression results in a cell-autonomous defect in thymic epithelial
differentiation after day 11.5 of gestation and a corresponding absence of thymic
epithelial CCL25 expression. Whilst CCL25 expression is absent in Nude thymic
epithelium, CCL21 is expressed normally in a Foxn1-independent manner in cells
of the adjacent parathyroid. Importantly, whilst haematopoietic cells are attracted to
the proximity of the Nude thymus, no cells enter into the thymus itself. Such findings
suggest a differential two-step role for CCL21 and CCL25, whereby CCL21 attracts
haematopoietic cells into proximity of the thymus, whereupon CCL25 mediates en-
try of cells into the epithelial microenvironment of the thymus itself. Whilst the
diversity of chemokine expression within the embryonic thymus appears relatively
restricted, analysis of the chemokine receptors expressed by thymus colonizing cells
demonstrates a diverse heterogeneous mixture of cells, whether such cells demon-
strate differential developmental potential remains unclear [11].

Within the mature adult thymus a rich network of blood vessels penetrate into
the thymic tissue. Colonization of the thymus in vascularized adult stages occurs
via extravasation of thymus colonizing cells at post-capillary venules located pre-
dominantly at the junction between cortex and medulla. The role of chemokines in
the control of adult thymus colonization remains less clear than for the fetal thy-
mus. Recent evidence however, suggests that CCL25-CCR9 signalling may also be
involved in recruitment of cells to the adult thymus. In addition to chemokine action,
the protein P-selectin expressed on the endothelium of thymic post-capillary venules
binds the carbohydrate P-selectin ligand-1 (PSGL1) expressed by thymus coloniz-
ing cells, absence of either receptor or ligand results in a significantly reduced entry
of cells into the mature thymus highly implicating this pairing in thymus coloniza-
tion. Importantly, expression of P-selectin has been shown to be regulated by the
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availability of thymic stromal niches identifying a potential mechanism regulating
the gated entry of haematopoietic precursors into the thymus [12].

Until recently, the mechanisms regulating T cell exit from the thymus have re-
mained ill-defined. Again, chemokines have been implicated in the regulation of this
process. CCL19, an additional ligand for the chemokine receptor CCR7 expressed
by mature thymocytes, has been identified on blood vessels present within thymic
medulla. Whilst such chemokine expression is able to attract mature thymocytes
to exit thymic parenchyma into perivascular spaces within the thymus, additional
signals are required to facilitate full thymic egress. The cell surface receptor sphin-
gosine 1-phosphate type 1 (S1P1) appears to play an essential role in exit from the
thymus in response to a gradient of expression of the ligand S1P between thymus
and blood. As such, mice lacking the capacity to signal through the S1P1 receptor
expressed on haematopoietic cells demonstrate a traffic jam of mature thymocytes
within the thymus and perivascular spaces [13] as cells are unable to receive the cor-
rect signals to exit the thymus. Together, such data imply that thymic exit of mature
thymocytes occurs in a two step process driven firstly via initial chemokine attrac-
tion to blood vessels and into perivascular spaces followed secondarily by S1P1
receptor mediated exit into the bloodstream. Previous reports have also suggested
that exit from the thymus occurs in a lucky-dip haphazard manner whereby some
thymocytes leave early in maturation and some thymocytes leave late [14]. How-
ever, recent data now suggest that thymic emigration is a strictly ordered process
ensuring that only the most mature thymocytes, having completed the full develop-
mental program, have a preferential ability to leave the thymus. Such mechanisms
are thought to operate at least partly based on differential thymocyte expression of
the S1P1 receptor [15].

˛ˇ Versus �ı T Cell Development

Two main lineages of T cells are produced within the thymus, a prevailing ˛ˇ T cell
lineage, and a minor �ı T cells lineage. Whilst multiple aspects of ˛ˇ T cell de-
velopment and function have been defined, those relating to the �ı T cell lineage
remain vague. Both ˛ˇ and �ı T cells develop from a common haematopoietic
progenitor population colonizing the thymus. Branching of the �ı T cell lineage
from ˛ˇ T cell lineage is though to occur within the window of the late DN2 to
DN3 stage [16]. During DN thymocyte development, Recombinase activating gene
(RAG) complex activity results in TCR gene rearrangement, in addition to ˇ-chain
rearrangements, DN thymocytes also undergo rearrangements of both � - and ı-TCR
chains. The fact that ˇ-chain rearrangements may be found within mature �ı T cells
and conversely, �ı-chain rearrangements within ˛ˇ T cells strongly supports the no-
tion of a common precursor origin for both T cell lineages [17, 18].

The precise developmental requirements of the �ı T cell lineage within the thy-
mus remain uncertain. However, recent studies have indicated that a subset of �ı

T cells bearing a canonical TCR of restricted diversity, generated exclusively during
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fetal development, may undergo positive selection in response to interactions with
thymic epithelium. In contrast, the interactions of �ı T cells, bearing diverse TCR
specificities, with thymic stromal elements are unclear. Within this chapter, we will
therefore concentrate on describing development of the ˛ˇ T cell lineage, which
form the majority of thymocytes developing within the thymus and also mature
T cells within the periphery.

Developmental Changes During Thymocyte Development

During thymocyte development, the linear progression of maturation can be charac-
terised by the differential expression of numerous cell surface molecules. Initially,
as thymic settling haematopoietic precursors colonize the thymus, the cells lack ex-
pression of both the T cell co-receptor molecules CD4 and CD8, as such these cells
are termed double negative CD4�8� (DN) and represent the most immature thy-
mocyte subset. The precise identity of thymus settling cells remains contentious.
While cells have been found within both bone marrow and blood with a lymphoid
bias, thymus-settling cells are capable of generating multiple different lineages, with
current data suggesting that multiple populations of haematopoietic cells colonize
the thymus, with each subset displaying different degrees of T cell potential. Upon
entry into the thymus, thymic settling progenitors undergo a series of interactions
with thymic stromal cells that regulate the proliferation, survival and progressive
differentiation of the haematopoietic cells. DN CD4�8� thymocytes subsequently
upregulate both CD4 and CD8 to become double positive CD4C8C (DP) thymo-
cytes, and finally mature to become single positive CD4C or CD8C (SP) cells
following stringent selection events. Development of thymocytes is strictly regu-
lated by sequential reciprocal signalling interactions with stromal cells of the thymic
microenvironment. Consequently, it is essential that developing thymocytes are lo-
cated in the right place at the right time to receive the right signals to drive efficient
maturational events.

Double negative thymocytes can be further subdivided into subpopulations on the
basis of CD25 and CD44 expression. The most immature thymocytes express CD44
but lack CD25 expression being termed CD44C25� DN1 cells. After approximately
10 days, thymocytes next upregulate CD25 to become CD44C25C DN2 cells. The
DN2 stage lasts 2 days, during which thymocytes begin the process of gene rear-
rangement within the TCRˇ chain locus. Downregulation of CD44 follows, marking
the transition to the CD44�25C DN3 stage, accompanied by ongoing V(D)J TCRˇ

gene rearrangement mediated by RAG1 and RAG2. Successful completion of TCRˇ

chain gene rearrangement leads to pairing of the TCRˇ chain with the invariant sur-
rogate pre-TCR˛ chain (pT˛) at the cell surface in conjunction with CD3 molecules.
Due to the imprecise nature of random TCRˇ gene rearrangement, a high proportion
of DN thymocytes are unable to generate a functional TCRˇ chain due to failed gene
rearrangement. The creation of the preTCR provides an early screening mechanism
to eliminate thymocytes bearing non-functional TCRs through the process termed
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ˇ-selection. Transient expression of the preTCR at the cell surface in conjunction
with CD3 elements results in the transmission of signal through the assembled re-
ceptor in what is currently thought to be a ligand-independent process. Successful
preTCR signals result in several important outcomes:

(a) Prevention of apoptosis
(b) Initiation of cell division
(c) Inhibition of TCR ˇ-chain rearrangement and
(d) Progression of differentiation through downregulation of CD25 to briefly

become CD44�25� DN4 thymocytes

The DN3 stage of development again lasts for approximately 2 days.
Following ˇ-selection and multiple rounds of cell replication, DN4 thymocytes

upregulate both CD4 and CD8 becoming double positive (DP) CD4C8C thymo-
cytes. During transit to the DP stage, cellular replication ends and rearrangement of
TCR˛ genes is initiated through re-expression of the RAG complexes responsible
for driving TCR gene rearrangement. During TCR ˛-chain rearrangement, thymo-
cytes are provided with multiple opportunities to express a functional TCR˛ chain.
Only thymocytes expressing a functional TCR of correct specificity receive survival
signals allowing escape from programmed cell death. During this period, thymo-
cytes will continue to rearrange ˛-chain genes until a functional ˛-chain paired with
the ˇ-chain allows for positive selection, or alternatively thymocytes run out of time
and are subsequently deleted as a result of failure to generate a functional TCR capa-
ble of interacting correctly with thymic stromal elements. The precise mechanisms
regulating DP thymocyte lifespan remain unclear. However, one potential mecha-
nism regulating the lifespan of DP thymocytes is thought to operate via the action
of the orphan nuclear receptor ROR� regulating expression of the anti-apoptotic
factor Bcl-XL. Under steady-state conditions, it is thought that the pre-selection DP
stage of thymocyte development may last in the region of 2–3 days. Regulation of
DP thymocyte lifespan therefore plays an essential role in determining the diver-
sity of the T cell repertoire through the linked interplay with the amount of time
that thymocytes receive to continue TCR ˛-chain gene rearrangement and potential
for creating a functional TCR [19]. Once thymocytes are generated bearing a func-
tional TCR consisting of rearranged ˛- and ˇ-chain subunits expressed at the cell
surface, positive selection of thymocytes ensues assuming appropriate recognition
of self-peptide:MHC complexes, resulting in downregulation of RAG and cessation
of further TCR˛ gene rearrangement.

Up until the DP stage of development, thymocytes are confined to and mature
within the cortex. Post-positive selection DP thymocytes upregulate CD69 and sub-
sequently down regulate either CD4 or CD8 becoming single positive (SP) CD4C8�
or CD4-8C. In addition, SP CD4 and CD8 thymocytes demonstrate a redistribution
of compartmentalization, being primarily located within medullary areas. Within
the medulla , thymocytes undergo further maturational events thought to last up
to 12–14 days, although recent estimates suggest this may last as little as 4–5
days [15]. Within the medullary residency period, newly formed SP thymocytes
demonstrate a CD69HICD62LLOW phenotype and exhibit relatively functionally
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immature properties, following a period of maturation involving as yet poorly
defined events, SP thymocytes lose CD69 expression and increase CD62L
expression at which stage thymocytes become functionally mature and exhibit
a heightened responsiveness to thymic export signals.

Intrathymic Migration

After entry to the mature thymus at the cortico-medullary junction, thymocytes
demonstrate a clear pattern of migration. Such migration helps to establish compart-
mentalization of cells at different stages of maturation. This process acts to ensure
that cells are in the correct microenvironment at the right stage of development to
ensure access to the signals provided by stromal cells that dictate whether individual
thymocytes survive and differentiate or alternatively meet an early death through in-
duction of apoptosis (Fig. 1.2). The most immature thymocytes being CD4�8� DN
exhibit an outward pattern of migration moving from the cortico-medullary junction
towards a sub-capsular location. As such, DN1 thymocytes are located in relation
to the cortico-medullary junction, extending into the deep cortex, DN2 thymocytes
are present within mid-cortex and DN3 cells are present within the outer cortical
region [20]. Within the DN3 population, ˇ-selection induces proliferation and accu-
mulation of pre-DP thymocytes within the subcapsular region. Following transition
to the subcapsular region, progression to the CD4C8C DP stage is initiated resulting
in TCR ˛-chain rearrangement and cessation of proliferation. Subcapsular microen-
vironments may play a role in regulating the progression of DN thymocytes to the
DP stage through production of TGFˇ, which has been shown to negatively regulate
pre-DP thymocyte proliferation [21]. The outward migration of thymocytes across
the cortex is mediated by the action of several chemokine receptors inducing di-
rected cellular migration. Mice lacking the chemokine receptors CXCR4 or CCR7
both display an accumulation of early DN thymocytes near the cortico-medullary
junction and aberrant thymocyte development [22, 23]. In addition, mice lacking
CCR9, whilst demonstrating normal DN2 and DN3 localization within mid- and
outer-cortical regions display an inefficient localization of pre-DP thymocytes at
subcapsular sites [24]. However, CCR9-deficient mice do not appear to demonstrate
any gross defects in early thymocyte development suggesting that sub-capsular mi-
gration is not essential for thymocyte development.

In addition to directional cues provided by chemokine signalling gradients,
thymic stromal cells provide a defined matrix over which immature thymocytes are
able to crawl. Thymocytes express adhesion molecules differentially during their
maturational program, with studies demonstrating that expression of the adhesion
molecule VCAM1 by cortical stromal cells is necessary for normal thymocyte pre-
cursor migration [25].

As thymocytes enter the DP stage, they begin to rearrange the TCR ˛-chain and
test the function of newly generated TCR˛ˇ receptors to recognize peptide:MHC
complexes. DP thymocytes accumulate near the cortico-medullary junction but are
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Fig. 1.2 Thymus settling cells enter the thymus through post-capillary venules located at the
cortico-medullary junction (CMJ) as DN1 (CD4�CD8�CD44CCD25�) cells. Differentiation
of thymocytes into DN2 (CD4�CD8�CD44CCD25C) and DN3 (CD4�CD8�CD44�CD25C)
subsets is accompanied by outwards-directed migration towards the subcapsular region. DN3
thymocytes passing the ˇ-selection checkpoint undergo both differentiation and extensive pro-
liferation whilst passing through the DN4 (CD4�CD8�CD44�CD25�) stage. Double positive
CD4CCD8C thymocytes subsequently undergo inwards-directed migration back through the cor-
tex, whilst undergoing a series of cognate interactions with cortical thymic epithelial cells in search
of positively selecting ligands. Positive selection of thymocytes results in rapid relocation to thymic
medulla where SP CD4C8� and CD4�8C thymocytes pass through further developmental check-
points prior to export from the thymus. Presentation of self-antigens by medullary thymic epithelial
cells (mTEC) and dendritic cells (DC) ensure that potentially auto-reactive thymocytes are deleted
via the mechanism of negative selection. Functional, self-tolerant SP T cells subsequently exit the
thymus through blood and lymphatic vessels via a combination of chemokine and S1P mediated
signals

unable to migrate into medullary areas. Thymocytes receiving positive signals con-
firming the generation of a functional TCR forming low affinity interactions with
self-peptide:MHC exhibit upregulation of the chemokine receptor CCR7 [26] and
begin rapid migration towards thymic medullary areas preferentially expressing the
CCR7 associated ligands CCL19 and CCL21. In support of this, mice lacking either
CCR7 or both ligands CCL19 and CCL21 exhibit a clear block in cortex to medulla
migration as a result of inhibited chemotaxis towards medullary regions. However,
SP thymocytes are still capable of entering medullary areas albeit in a seemingly
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inefficient random manner occurring as a result of an absence of directed chemo-
taxis to medullary CCR7-ligands. Recent studies have further suggested that while
CCR7 is required for SP thymocyte chemotaxis towards medullary areas, a second
undefined G-protein coupled receptor mediated signal is required to enter thymic
medulla and migrate on medullary substrates possibly via activation of specific ad-
hesion molecules on SP thymocytes.

Positive Selection

The random nature of T cell receptor generation is accompanied by the intrinsic
drawback of the potential for T cells to be generated bearing receptors that either are

(a) Incapable of recognizing peptide presented by MHC, therefore being non-
functional or

(b) Capable of recognizing self-antigens to such an extent that they pose the dan-
gerous potential to generate autoimmune actions against the bodies own tissues

The quality control process operating within the thymus provides essential mech-
anisms acting to eliminate both non-functional and auto-reactive thymocytes yet
retain and facilitate the maturation of functional, self-tolerant T cells. Following
rearrangement and pairing of TCR˛ and ˇ-chains, three developmental outcomes
are open to DP thymocytes. Thymocytes generating TCR pairings incapable of
identifying self-peptide:MHC complexes with sufficient strength fail to generate
TCR transduced signals of sufficient level to cross the threshold required to induce
cell survival. In such cells, further TCR ˛-chain rearrangement provides a second-
chance for DP thymocytes via continued generation of alternative new TCR˛ˇ

pairings in order to try and generate a functional TCR. Alternatively thymocytes
may fail to win a reprieve and undergo deletion via neglect due to a lack of sur-
vival signal provision. On the flip-side to lack of sufficient TCR signalling inducing
death by neglect, an overly strong interaction between thymocytes bearing TCR and
self-peptide:MHC complexes presented by antigen presenting cells again results in
the induction of cell death in a process termed negative selection or clonal dele-
tion, thought to be an important factor in preventing the generation of potentially
autoreactive T cells. Interestingly, the threshold for TCR stimulation within DP thy-
mocytes undergoing selection events in the thymus appears to be lower than that
required by mature T cells responding to peptide in the periphery.

Sitting in a happy medium between these two negative outcomes of thymocyte
deletion lies the third potential fate of DP thymocytes, positive selection. Positive
selection occurs following engagement of DP thymocyte-expressed TCR with self-
peptide:MHC complexes with low affinity recognition remaining below the signal
strength threshold responsible for inducing negative selection. The three poten-
tial developmental outcomes open to developing thymocytes during selection has
been described as following the Goldilocks hypothesis. The Goldilocks conditions
command that positive selection and onwards development of thymocytes within
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the thymus may only proceed when the selecting signal is just right, as opposed
to too little or too much signal leading to death by neglect and negative selection
respectively [27]. Following positive selection, DP thymocytes undergo a host of
developmental changes including termination of TCR ˛-chain rearrangement, re-
duction in the expression of the RAG complexes, downregulation of either CD4 or
CD8 and induction of chemotaxis from the cortex towards the thymic medulla. In
addition, positive selection ensures the viability of functional thymocytes through
upregulation of the survival-related factors Bcl-2 and IL-7R˛. Interestingly, it is
thought that following positive selection by self-peptide:MHC low affinity inter-
actions, mature T cells subsequently generated reduce their sensitivity to such
ligands, whilst retaining their capacity to respond to high affinity peptide:MHC
antigens [28, 29]. Such alterations in the differential threshold levels of TCR sensi-
tivity may reflect mechanisms operating to ensure that mature T cells do not retain
a capacity to respond to self-antigen consequently reducing the risk of autoimmune
reactions, yet ensure that mature T cells are capable of responding to foreign insult.

The precise nature and kinetics of the selecting signals involved within positive
selection remain unclear. However, recent studies utilising two-photon real-time
imaging techniques have begun to address the interactions between thymocytes
and thymic epithelium to investigate the dynamics involved in thymocyte selection
events. Within a thymic environment lacking a positively selecting capacity, thy-
mocyte migration appeared random, presumably as thymocytes sample numerous
surrounding thymic epithelial cells in search of a selecting MHC-self-peptide
complex. Conversely, within a positively selecting environment, thymocyte migra-
tion appears restricted with sustained interactions occurring with thymic epithelial
cells demonstrating both stable, persistent cell–cell contacts and shorter, dynamic
interactions. The precise reasons for the mixture of interaction types and durations
between thymocytes and epithelium remains unclear, although it has been proposed
that such differences may result from the provision of signal variants and sub-stages
of positive selection occurring [30, 31].

Further studies utilising two-photon microscopy have additionally demonstrated
that within a wildtype thymus, the majority of cortical thymocytes display relatively
slow and random patterns of migration. Within such wildtype mice, a small pro-
portion of thymocytes demonstrated an increase in speed of movement and specific
direction of movement towards thymic medullary areas, suggesting that positive
selection induces a capacity for instructed directional migration from cortex to
medulla as cells pass an important hurdle in development. Complementing this
theory, analysis of mice bearing transgenic T cell receptors and a corresponding
positively selecting thymic microenvironment demonstrated an increased proportion
of rapidly migrating thymocytes demonstrating apparent guided chemotaxis [32].
Such experiments demonstrate the dynamic nature of thymocyte development dur-
ing positive selection and highlight the complexity of getting the right cells together
at the right time to ensure the provision of the right signals to drive thymocyte
development.

An open question that remains however, is how does a rare thymocyte with a
single receptor specificity sample enough self-peptide:MHC bearing cortical thymic
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epithelial cells in order to identify rare complexes of the corresponding type to
receive positive selection and consequently survival signals before the estimated
2–3 day window prior to apoptosis induction. Recent studies suggest that during
positive selection, thymocytes scan many thymic epithelial cells receiving multi-
ple transient encounters with numerous cortical thymic epithelial cells in a manner
independent of the formation of an immunological synapse [33] which sustains thy-
mocyte survival. The requirement for re-exposure to multiple positively selecting
complexes may explain the short, dynamic interactions between thymocytes and
thymic epithelial cells observed in the two-photon studies by Bousso et al. [30]. In
addition, the requirement for thymocytes to make numerous continued interactions
with different thymic epithelial cells may help to prevent the selection of thymocytes
bearing TCR with a restriction to a rare peptide:MHC specificity thus enforcing the
onward development of only T cells tolerant to self-antigen. The huge potential ar-
ray of peptides that the randomly generated TCR repertoire can recognize is easily
likely to outnumber the capacity for a single antigen-presenting cell to provide to
a developing thymocytes. As such, it would make sense that developing thymo-
cytes would need to generate interactions with numerous thymic cells presenting a
combined wide array of antigen in order to screen sufficient ligand combinations to
ensure tolerance induction. The ability of such selective events would likely be far
less efficient in the case of sustained interactions where thymocytes bound tightly
to APC presenting a limited array of peptide–MHC combinations rather than in a
system relying on transient, promiscuous interactions. The regulation of positive
selection and receptor diversity appears to be controlled by competition amongst
developing thymocytes for niches providing appropriate positively selecting lig-
ands. This hypothesis is supported by studies utilizing transgenic mouse models,
whereby competition for selecting ligands stimulates TCR editing [34]. Such find-
ings indicate that positive selection is limited by the abundance of selecting ligands,
highlighting the advantages of a dynamic system of numerous short-lived thymo-
cyte:APC interactions.

Specificity of cTEC for Positive Selection

Positive selection of thymocytes requires specific cognate interactions with radio-
resistant epithelial cells making up the thymic cortex. Importantly, the unique
three-dimensional mesh-like organization of cortical thymic epithelium (cTEC) ap-
pears to play an important role in the capacity to mediate positive selection as culture
of cortical thymic epithelium in two-dimensional adherence cultures abrogates the
capacity of cTEC to mediate positive selection most likely as a result of the down-
regulation of specific cell surface molecule expression. Cortical thymic epithelium
appears to be unique in its capacity to mediate positive selection efficiently. In ad-
dition to expression of MHC class I and II molecules, it would appear that cTEC
provide additional specialized signals to mediate positive selection that other cell
types are unable to provide. The precise nature of such additional accessory signals
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remains unclear, although it is likely that any such signals will be cell surface asso-
ciated due to the specific requirement for cell–cell cognate interactions.

In addition to accessory signalling molecules at the cell surface, the nature of
mechanisms used by cTEC to allow association of MHC class II and self-peptides
appears distinctive, in that cTEC utilize the protease Cathepsin L as opposed to
the differential usage of protease Cathepsin S in the periphery. Recent studies have
also identified a unique proteasome subunit ˇ5t specifically within cTEC [35]. The
function of ˇ5t has been shown to play a highly important role in the processing
of peptides for presentation via MHC class I and consequently CD8 T cell positive
selection. Such differential processing of self-peptide–MHC complexes in the thy-
mus may play a role in determining the differential signalling thresholds involved in
positive selection in the thymus versus activation of mature T cells in the periphery
to foreign-antigen:MHC complexes.

CD4 Versus CD8 Cell Fate Decisions

Within the periphery, mature CD4 and CD8 T cells generate specific immune res-
ponses through ˛ˇTCR recognition of antigen presented by either MHC class II and
MHC class I respectively. In addition to TCR mediated recognition of antigen, the
TCR co-receptor glycoproteins CD4 and CD8 facilitate TCR peptide:MHC interac-
tions through specific recognition and binding of either MHC class II or MHC class
I molecules respectively. As such, CD4 T cells demonstrate an exclusive restric-
tion to MHC class II presented antigens whereas CD8 T cells display a restriction to
MHC class I presented antigens. During positive selection, DP CD4C8C thymocytes
undergo interactions with thymic epithelial cells selecting functional thymocytes
through provision of survival and differentiation signals resulting in the generation
of CD4 and CD8 ˛ˇTCR thymocytes. A major maturational event during the stage
of positive selection is the decision of selected thymocytes to become restricted to
either the CD4 SP or CD8 SP sub-lineage. Studies analyzing mice with transgenic
TCRs specific for peptide associated with MHC class I, demonstrate that all SP thy-
mocytes within the thymus and SP T cells in the periphery are restricted to the CD8
branch, conversely, mice with TCRs specific for MHC class II associated peptides
generate only CD4 T cells. It would appear therefore that whether a T cell expresses
either CD4 or CD8 is determined by the aptitude of a ˛ˇTCR pairing on a sin-
gle T cell to recognize peptide provided in the context of either MHC class II or I
respectively.

The management of CD4 versus CD8 lineage at the transcriptional level has
recently begun to be unravelled. The zinc finger transcription factor cKrox (alter-
natively termed ThPOK) demonstrates specific upregulation during the selection
of CD4 SP thymocytes but not CD8 SP thymocytes. In addition, experiments per-
formed whereby imposed expression of cKrox within TCR transgenic thymocytes
normally restricted to the CD8 lineage, have demonstrated that the cKrox tran-
scription factor is capable of diverting such thymocytes to a CD4-expressing T
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cell fate [36]. In relation to enforcement of CD8 SP cell fate, the transcription fac-
tors TOX and Runx3 have been implicated [37, 38]. Whilst the identity of specific
transcription involved in CD4:CD8 cell fate have begun to be revealed, further in-
vestigation is required to determine how signals transmitted through a single TCR
activate specific transcription factor cascades and subsequently divert thymocytes to
either a CD4 or CD8 fate. However, clues to this question are provided by studies
suggesting that the strength of TCR transmitted signals may contribute to the deci-
sion of a thymocyte to assume either a CD4 or CD8 cell identity, thereby helping
to co-ordinate TCR specificity for MHC class I or II antigens and CD4 or CD8 ex-
pression. Transient, low-level TCR signals have been suggested to induce a CD8
specification, whereas stronger, prolonged TCR signals are thought to result in CD4
lineage commitment [39]. In addition to TCR mediated signals, signalling through
the Notch receptor on developing thymocytes may also play a role in supplement-
ing CD4 versus CD8 cell fate decisions by active signalling promoting CD8 lineage
commitment, although this view has been challenged [39, 40].

Negative Selection

Positive selection within the thymus operates via the induced survival of developing
thymocytes capable of recognizing self-peptide:MHC complexes with the correct
degree of affinity. Such low affinity ligands however, in general lack the capacity to
stimulate and activate mature peripheral T cells, although continuous sub-optimal
TCR mediated stimulation via low affinity interactions with self-peptide:MHC com-
plexes are required for continued peripheral T cell survival [41]. Activation of
mature T cells operates via recognition of foreign peptide:MHC complexes, thought
to bear a structural relation to positively selecting ligands presented within the thy-
mus, with a high level of affinity such that TCR stimulation crosses the threshold of
T cell activation. The corresponding stimulation of thymocytes within the thymus
by self-antigen:MHC complexes with high affinity however, leads to a very different
outcome, inducing programmed cell death of the corresponding thymocyte, thereby
ensuring that potentially auto-reactive thymocytes with a high level of specificity
for self-antigen are deleted thereby enforcing central tolerance.

As indicated, positive and negative selection both operate via recognition of self-
antigen:MHC complexes. However, these two events lead to two very different cell
fates, on the one-hand survival and differentiation and conversely on the other hand
cellular deletion. How these differential outcomes are induced via the same type of
ligand has yet to be fully elucidated. Evidence suggests however, that the induction
of negative versus positive selection may relate to the strength of signal propagated
through the TCR in response to self-peptide:MHC. In response to TCR stimulation
via ligation of self-peptide:MHC, it is thought that intracellular signalling cascades
utilising MAP kinase activation is differentially induced. In this setting, a prolonged
activation of the protein ERK at a low level is induced in positive selection , whereas
negative selection is associated with ERK activated for a short period but at a high
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level. In addition, during negative selection, ERK activation is thought to synergize
with the action of the additional protein kinases JNK and p38 [42, 43]. The uti-
lization of different potential signalling pathways during either positive or negative
selection may again relate to differences in the dynamics of TCR stimulation as
previously described, in that positively selecting thymocytes endure short-lived in-
teractions with thymic epithelium whereas negatively selecting thymocytes undergo
sustained interactions. How the dynamics of TCR binding change the intracellular
signalling pathways utilized during positive versus negative selection remains an
open area of research.

Central tolerance imprinted within the thymus ensures that T cells with the po-
tential to generate autoimmune responses through recognition of self-antigens and
activation against the bodies own tissues are deleted. However, one potential bar-
rier to this system is how are thymocytes within the restricted environment of the
thymus exposed to the plethora of self-antigens associated with spatially diverse pe-
ripheral tissues. Mechanisms operating within the thymus provide a route around
this problem through the action of the transcriptional regulator Aire. Within the
thymic medulla, multiple populations of medullary epithelial cells express proteins
normally associated with peripheral tissues, such that the thymus provides a minia-
ture reflection of the bodies own tissues thereby providing a microenvironment
in which autoreactive thymocytes can be deleted (Fig. 1.3). Absence of Aire ex-
pression results in multi-organ cellular infiltrates and autoimmune disease in both

Fig. 1.3 The thymic medulla imposes central tolerance. (Left panel) The transcriptional regula-
tor Aire (red), responsible for the control of ectopic peripheral tissue antigen expression within
the thymus, is specifically expressed within medullary thymic epithelium, identified by reactivity
for cytokeratin 5 (green). (Right panel) Dendritic cells, identified by expression of the cell sur-
face marker CD11c (red) predominantly cluster within medullary thymic areas. Staining for CD4
(green) discriminates densely populated cortical regions and more sparsely populated medullary
areas. Thymocytes are screened for auto-reactive specificities via their ability to recognize self-
antigen. T cell recognition of self-antigen, provided by the combinatory action of mTEC and
dendritic cells, with sufficiently high affinity results in deletion of auto-reactive T cells
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mice and humans where Aire deficiency results in the autoimmune disorder au-
toimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) [44].
In addition, the loss of a single Aire-regulated eye-related antigen within the thymus
specifically leads to ocular-associated autoimmunity, highlighting the importance of
peripheral tissue antigen expression within the thymus for the maintenance of self-
tolerance [45]. Importantly, not all peripheral tissue antigen expression within the
thymus appears to be regulated by Aire, although additional regulators of nega-
tive selection have yet to be identified. Development of Aire expressing medullary
thymic epithelial cells is dependent on cellular interactions with lymphoid tissue
inducer cells (LTi), previously demonstrated to be essential for secondary lymphoid
tissue formation. Such interactions regulate AireC mTEC generation via provision
of RANK-ligand binding the RANK receptor on epithelial cells. In addition to LTi
cells regulating Aire expression, mature CD4C SP thymocytes may also play a role
in maintaining Aire expression in mTEC through provision of CD40-ligand to CD40
expressing epithelium [46].

As well as cell fate decisions generating CD4 and CD8 ˛ˇTCR SP thymo-
cytes during selection events, a distinct subset of thymocytes develop bearing
a CD4CCD25C phenotype, being termed regulatory cells (Treg). CD4CCD25C
T cells generated within the thymus display a regulatory function in the periph-
ery, acting to suppress autoimmune T cells that have managed to bypass and evade
negative selection mechanisms within the thymus. Regulatory T cells therefore act
to provide a safety net of peripheral tolerance maintenance, acting to supplement
negative selection and central tolerance induction imposed within the thymus. In
addition to the cell surface phenotype of CD4 and CD25 expression, regulatory
T cells may also be identified by the transcription factor Foxp3. Foxp3 acts as the
master regulator of Treg development and also confers the capacity for a regulatory
function. The exact mechanisms operating in the generation and commitment of
Treg within the thymus remains unclear at present. It is thought that such regulatory
cells are generated in response to high-affinity interactions with self-peptide:MHC
complexes [47]. The basis for how some developing thymocytes generating high
affinity interactions with self-peptide:MHC escape negative selection to become
Treg remains unknown although again this may be related to narrow differences
in the threshold of TCR stimulation.

The kinetics and progression of positive and negative selection whilst unclear
do not seem to follow a linear path. Studies utilizing mice transgenic for specific
TCR ˇ-chain demonstrate that negative selection of MHC-peptide specific thy-
mocytes within a polyclonal compartment occurring in response to the presence
of a deleting peptide occurs throughout thymic development suggesting that pas-
sage through positive selection is not a prerequisite for negative selection [48].
As previously mentioned, expression of peripheral tissue antigens is thought to be
restricted to medullary epithelium partially under the control of Aire. In addition to
compartmentalization of peripheral tissue antigens, thymocytes display clear organi-
zation, such that DP thymocytes occur within the cortex and SP thymocytes within
the medulla. However, if negative selection of thymocytes can occur throughout
thymocyte development and even prior to positive selection, it follows that negative
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selection must also occur within the cortex. Multiple studies have demonstrated that
the thymic medulla provides a unique site for negative selection, emphasized by
studies demonstrating autoimmunity in mice lacking formation of normal medulla
or inability of thymocytes to enter medullary areas [26,49]. Whilst medullary thymic
epithelial cells play an essential role in the production and expression of peripheral
tissue antigens in an Aire dependent manner, medullary epithelial cells themselves
appear to be poor mediators of negative selection. Medullary thymic epithelial cells
are capable of negatively selecting CD8 thymocytes, although they are unable to
delete CD4 thymocytes. Bone marrow-derived dendritic cells represent efficient
antigen presenting cells (APC), not only in the periphery but also within the thy-
mus efficiently negatively selecting both CD4 and CD8 SP thymocytes. Efficient
negative selection of thymocytes by dendritic cells may in part be related to the pro-
vision of co-stimulatory molecules such as B7-1/2 and CD40 providing an essential
secondary signal supplementing that provided through TCR peptide:MHC interac-
tions [50]. Such negative selection mediated by dendritic cells is thought to rely on
production of peripheral tissue antigens by mTEC, transfer to and capture of anti-
gen by dendritic cells and subsequent presentation to and screening of developing
thymocytes [51]. Such cross-presentation of antigens from mTEC to dendritic cells
potentially increases the number of cells presenting rare peripheral tissue antigens
improving screening efficiencies and tolerance induction. In addition, migration of
dendritic cells into the thymus from the periphery also raises the possibility that
self-antigens may be brought into the thymus from anatomically distant sites. Whilst
such mechanisms may aid in the deletion of autoreactive cells, it remains to be deter-
mined whether importation of antigen into the thymus by migrating dendritic cells
influences selection of developing thymocytes during infection of the periphery.

Whilst it is clear that the thymic medulla provides an essential microenvironment
for the negative selection of thymocytes through provision of peripheral tissue anti-
gens, it has also been suggested that many thymocytes may be reactive to ubiquitous
self-antigens expressed within cortical regions. Model systems have demonstrated
that clonal deletion of thymocytes may occur within the cortex in response to ubiqui-
tous self-antigens without any medullary involvement [52]. However, while cortical
thymic epithelium is able to trigger signalling through the TCR, again it is only when
dendritic cells are present that full negative selection of responding thymocytes is
completed, resulting in the deletion of such reactive cells.

During thymocyte development, random patterns of movement are observed in
pre-selection cells as thymocytes screen multiple cortical epithelial cells in a series
of dynamic interactions before exhibiting directed migration to medulla following
positive selection [30,32]. In relation to negative selection, recent studies have begun
to model thymocyte dendritic cell interactions via two-photon microscopy real-
time imaging techniques highlighting important interactions between these two cell
types within the thymic cortex [53]. Thymocytes receiving positive selection signals
demonstrate increased association with dendritic cells located near to cortical vas-
culature mediated by chemokine signalling via CCR7 expression on thymocytes.
The purpose of such interactions between thymocytes and cortical dendritic cells
may involve negative selection to ubiquitously expressed self-antigens found in the
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cortex as previously mentioned and may also involve negative selection of thymo-
cytes responsive to peripheral tissue antigens provided to dendritic cells derived not
only from medullary epithelial cells but also from peripheral tissues themselves.
Together, such mechanisms may explain how negative selection is able to occur
throughout the development of thymocytes and also overcome the anatomical bar-
riers of compartmentalization of both thymocytes at defined stages of development
and their corresponding negatively selecting ligands.

It would appear clear that bone marrow-derived dendritic cells play a key role
in negative selection. The efficiency of dendritic cells to mediate negative selection
of developing thymocytes has been demonstrated in studies utilizing reaggregate

Table 1.1 Models to study thymocyte development

Model type Advantages Disadvantages

In vitro
Fetal thymus organ

culture (FTOC)
Allows study of T cell

development in 3-dimensional
thymic environment in the
absence of external influences.
Easily manipulated via addition
of growth factors, viral delivery
systems etc. Can be depleted of
thymocytes via addition of
dGuO. Easy to image

Limited to fetal thymus. Loss of
normal thymus organization.
Relatively expensive
requirement for timed pregnant
mice

Reaggregate thymus
organ culture
(RTOC)

Allows isolation and reaggregation
of defined thymic cellular
elements allowing study of
specific cellular interactions and
requirements. Easy to image

Limited to fetal thymus. Loss of
normal thymus organization

OP9-DL1 bone
marrow culture
system

Provides simple, uniform stromal
environment. Allows easy
analysis of single cell clonal
assays of T cell development.
Easy to image

Lacks 3-dimensional organization
of thymus. Utilizes DL-1 ligand,
whilst physiologically relevant
Notch ligand expressed by
thymic epithelium is DL4.
Failure to support normal
selection events by absence of
MHC class II and Aire
expression. Absence of normal
thymocyte migration patterns

In vivo
Bone marrow

chimeras
Physiologically relevant. Allows

study of adult thymus and T cell
development. Provides capacity
to study thymus colonization
and T cell egress. Allows study
of competitive T cell
development in mixed bone
marrow chimeras

Wide diversity of cell types
present, external influences and
waves of thymus colonization
hamper study of isolated cellular
interactions. Sub-lethal
irradiation sometimes performed
prior to bone marrow transplant
may alter thymus biology due to
creation of an empty thymus.
Very difficult to image
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thymic organ cultures (RTOC) [54]. In RTOC, fetal thymi were digested and pop-
ulations of thymic epithelium and pre-selection DP thymocytes were reaggregated
to form a composite thymus organ culture in the presence of carefully titrated pro-
portions of dendritic cells. Analysis of dendritic cell numbers on negative selection
remarkably revealed that maximal negative selection was achievable with dendritic
cells representing just 1% of total cell numbers, highlighting the efficiency of den-
dritic cells in mediation of negative selection. In addition, within the same studies,
the impact of peptide diversity on negative selection indicated that in a setting of
reduced peptide diversity, negative selection was reduced when compared to nega-
tive selection in the presence of a diverse peptide repertoire. Such findings highlight
the fact that a large degree of positively selected cells within the thymus display a
potentially autoreactive repertoire and emphasize the importance of dendritic cell
mediated negative selection in the presence of a diverse peptide repertoire in order
to negate potential autoimmune disease.
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Chapter 2
A Review of Mathematical Models for T Cell
Receptor Triggering and Antigen Discrimination

Daniel Coombs, Omer Dushek, and P. Anton van der Merwe

Abstract Theoretical studies of T cell receptor signalling and T cell activation have
become a well-known part of immunology and the models described in this chapter
provide a good basis for future studies. Nonetheless it is crucial that, over the next
few years, modelers seek to expand the scope of their efforts and provide a more
comprehensive, predictive and multifaceted approach to T cell receptor signalling.
Currently available models usually provide qualitative results and cannot be confi-
dently parameterized. To obtain more precise and predictive models will be difficult
but is plausible given improvements in quantitative experimental techniques and
their quick adoption by experimentalists.

Introduction

The central event in the generation of adaptive immune responses is the binding
of T cell receptors (TCR) to peptide-major-histocompatibility-complex (pMHC)
molecules at the T cell-antigen-presenting-cell (APC) interface. It is important to
understand how features of the molecular interaction determine the T cell response
(potentially leading to a large-scale immune response in the body). This molecu-
lar recognition event is remarkably sensitive (as few as 5–10 antigenic pMHC can
cause a robust cellular response) but also specific (a single amino-acid change in
the presented peptide can dramatically alter the cellular response). Furthermore, the
sensitivity to very small quantities of antigenic pMHC occurs in the context of a
vast number of chemically similar but functionally irrelevant pMHC. These pMHC
are derived from self proteins and are thought to weakly interact with TCR at the T
cell-APC contact interface. Understanding the specificity and sensitivity of pMHC
recognition in the presence of many self pMHC by T cells is further complicated by
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the fact that we do not understand how pMHC binding to TCR transmits a signal
across the plasma membrane, a process termed TCR triggering. In this chapter we
will review models that attempt to explain the interplay between sensitivity, speci-
ficity and TCR triggering.

In particular, we will focus on the organization of TCR proximal signalling
events, that underlie three major classes of TCR triggering models (conformational
change, aggregation, and segregation) and how the details of the TCR–pMHC inter-
action can affect signalling. We will begin the chapter with a very brief summary of
the key experimental results that motivated these models.

Sensitivity and Specificity

T cells are challenged to detect the molecular signatures of infection, in the form of
antigenic pMHC, from the background of noise, in the form of endogenous (self)
pMHC. Antigen-presenting-cells express 105–106 diverse pMHC on their cell sur-
faces, of which relatively few are antigenic, capable of activating a T cell via its
TCR. The key experiments on sensitivity, showing that very low numbers of anti-
genic pMHC can stimulate T cells were by Sykulev et al. (1996) [1] and Irvine
et al. (2002) [2]. In the 2002 experiments, pMHC were individually labelled with
a fluorescent marker, showing that CD4 and CD8 T cells will transiently respond
(flux calcium) in response to a single antigenic pMHC. The level of calcium re-
sponse correlated with the number of presented pMHC up to about 10. After this
many pMHC are detected, a more complete response occurs. A further finding of
this study was that cytotoxic T cells can kill antigen presenting cells after recogniz-
ing as few as three antigenic pMHC. This hair-trigger level of sensitivity is amazing
and perhaps frightening given our knowledge of autoimmune disease. The speci-
ficity of the T cell response has been known for some time by the observation that
a single amino acid substitution in the presented peptide can substantially alter the
T cell response [3, 4]. Taken together, these experiments showed that T cells are
able to respond to a few specific pMHC amidst a background of chemically similar
endogenous pMHC, which when presented in the absence of specific pMHC do not
elicit a T cell response.

Parametric Descriptions of TCR–pMHC Binding

It is natural to ask what quantitatively measurable features of the TCR–pMHC
interaction determine the cellular response. The simplest model of the TCR–pMHC
binding interaction treats it as a simple chemical binding with binding rate kon and
unbinding rate koff. It is then possible to define the half-life t1=2 D .ln 2/=koff and
the dissociation constant KD D koff=kon. It is important to note that kon is a two-
dimensional rate (units of �m2s�1), reflecting the fact that the pMHC and TCR are
restricted to their respective cell membranes.
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Commonly used methods for measuring biochemical rates, such as those using
surface plasmon resonance [5, 6], yield three-dimensional rates which may or may
not correlate well with the actual rates of binding and unbinding within the tight
region of contact between a T cell and an APC. For example, it is possible that
the bond in a physiological situation is stressed and therefore that koff would be
higher than a 3-d measurement would suggest [7]. On the other hand, experiments
that directly measured the two-dimensional rates of CD2–CD58 and CD16–IgG Fc
interactions found a 2-d off-rate that is 100-fold smaller than the 3-d measurement
[8]. This observation may be due to rapid rebinding of the same ligand-receptor pair
in the 2-d environment which is a consequence of diffusion-limited reactions [9,10].

In any case, 3-d measurements must be converted to two dimensions for use in
mathematical models. The most commonly implemented method is to keep koff the
same, but modify kon by dividing by an appropriate length scale (typically 5–10 nm)
[11]. An additional effect was proposed by Qi et al. [12] based on the work of
Krogsgaard et al. [13], who used thermodynamic methods and a cartoon model of
the TCR to obtain a formula for converting experimentally measured 3-d off-rates to
2-d parameters. This method requires additional measurements of the heat capacity
of the bond to be made. Both of these methods still require experimental validation
or refutation.

Importance of Stable TCR–pMHC Binding

With the caveat that the parameters still need to be measured in a physiological 2-d
situation, the majority of authors have focused on the stability of the TCR–pMHC
interaction (presumed to be governed by koff from 3-d measurements) as the key de-
terminant of T cell activation. Experimentally, this is supported by a range of studies
showing T cell activation, as measured by cytokine production, is well correlated to
koff (reviewed in [14, 15]) but these results were challenged by others [16, 17] who
did not find such correlations. In terms of signalling, the kinetic proofreading model
(discussed in detail below) gives a rationale for superior signalling by long-lived
complexes in terms of a series of essential signalling steps.

In order to explain experimentally-observed deviations from this rule, more com-
plex models have been devised that take into account additional aspects of the
interaction. For instance, it appears that the TCR coreceptor CD8 stabilizes the
TCR–pMHC complex by binding in a peptide-independent fashion to MHC and
therefore supports TCR signalling on cytotoxic T cells [18]. An alternative ap-
proach was taken by Krogsgaard et al. [13], who measured the heat capacity of
the TCR–pMHC bond and found that this could be used, along with koff, to provide
an improved fit of T cell activation data. This is consistent with the importance of
effects of molecular reorientation during bond formation [12].

We now move on to describe models for TCR signalling following pMHC bind-
ing. In turn, we look at the following:

– Kinetic proofreading models based on a linear sequence of signalling events
proximal to the TCR and dependent on pMHC binding
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– Detailed biochemical models for TCR signalling, involving more complex
reaction networks and feedbacks

– Conformational change of the TCR upon binding
– Models that take special account of TCR aggregation into multimeric complexes
– Segregation-based models

These models should not be viewed as contradictory. TCR signalling is a multi-
faceted process and each class of models takes into account only aspects of the
biological situation. A full model that reconciles all experimental findings is a chal-
lenging task that will build on existing models and will only develop in tandem with
appropriate experimental data.

Kinetic Proofreading Models for Antigen Discrimination

Kinetic proofreading models for TCR signalling are, at their heart, phenomeno-
logical models based on a cartoon version of biochemical signalling initiated upon
TCR/pMHC binding. During signal transduction after receptor ligation, a series of
biochemical events occur at the cytoplasmic tail of the receptor. These events build
a signalling structure of modified components that eventually gives a complete sig-
nal. However if the ligand dissociates from the receptor, the chemical reactions are
aborted and do not go to completion. The essence of the kinetic proofreading model
is therefore to provide a reasonable mechanism for a time lag separating ligand bind-
ing from receptor signalling and hence allowing a receptor to discriminate between
ligands with small differences in off-rate.

As a simple quantitative example, consider a receptor that signals after � D 1 s
of engagement, and two potential ligands with kA

off D 1 s�1 and kB
off D 5 s�1.

The probability of signalling following a single engagement by ligand A is
exp.�kA

off�/ D e�1 while for ligand B it is exp.�kB
off�/ D e�5. Ligand A is

thus exp.4/ ' 55 times as likely to signal as ligand B, based on one binding event.
Observe that this mechanism allows discrimination based on half-life (or equiva-
lently, koff) and that small differences in the half-life can be translated into large
differences in signalling. A time-lag model of receptor signalling was considered in
a more general context in [19].

Despite their simple nature, kinetic proofreading models have been extensively
used in a variety of contexts. McKeithan introduced the kinetic proofreading model
for TCR in his seminal paper [20], following on from earlier work in a differ-
ent context [21, 22]. McKeithan’s original scheme is illustrated in Fig. 2.1a. In
this model, the TCR begins in an inactive state. Upon binding, it undergoes N

sequential modifications, each representing an intermediary on the path to signal
transduction. Upon completing N modifications, a signal is assumed to have been
completely transduced. Furthermore, McKeithan supposed that if the pMHC un-
binds from the TCR prior to the N th step being reached, the TCR immediately
reverts back to the inactive state. Mathematically speaking, this model essentially
generates a sigmoidal response to pMHC based on their mean lifetime of binding to
the TCR (1=koff). We may therefore say that the kinetic proofreading model allows
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Fig. 2.1 Schematic descriptions of kinetic proofreading and feedback models. (a) We show the
original kinetic proofreading model [20]. Black dots indicate unspecified signalling steps occuring
at the cytosolic tail of the receptor. A full signal is transduced at the end of the signalling sequence.
(b) A positive/negative feedback model of TCR signalling [36–38]. Schematic shown most closely
resembles the feedback model by Lipniacki et al. [38]

the T cell to discriminate pMHC based on their chemical off-rate for the TCR. This
model has been used by many researchers as a simple model of TCR signalling
(e.g. [9, 23–27]).

One of McKeithan’s observations about his model was that the specificity of
discrimination grows with N , but at the expense of sensitivity (i.e. as N increases,
the number of signalling events due to pMHC with high off-rates decreases, but
the total number of signalling events from any pMHC also decreases). This point
was examined in more detail in critical reviews of the kinetic proofreading model
[25,28], and shown to be an unavoidable feature of the basic model. It was proposed
that to resolve this issue, fully activated TCR could have a decreased off-rate for the
pMHC – requiring that the signalling machinery be able somehow lock the pMHC
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in place at the TCR [20]. Although we note that there is no experimental evidence
for this effect at present, we can speculate as to how this might be achieved. Possible
non-exclusive mechanisms could include

– A direct mechanical modification of the TCR upon signalling (possibly related to
the piston action or receptor deformation described below). We note that, since
single amino-acid substitutions on the presented peptide can change the cellular
response, it is not inconceivable that small changes in the geometry of the TCR
could have an effect.

– Introduction of additional nonspecific MHC-binding coreceptors CD4 and CD8
to the signalling complex, increasing the effective affinity of the signalling com-
plex for pMHC and fixing the pMHC in place.

– Recruitment of additional TCR to the signalling region. For this idea to make
sense, nearby TCR would need to be able to act effectively to share, or integrate
signals. The pMHC would then serially ligate different TCR within the signalling
cluster, but the kinetic proofreading steps would take place as if via a single
receptor. Experimentally, TCR are known to form clusters in response to cognate
presented pMHC [29, 30].

– By modulating the local geometry of the cell membranes at the signalling re-
ceptor to optimize the intermembrane separation from the point of view of the
TCR–pMHC bond, and reduce the unbinding rate. We note that TCR signalling
is known to be linked to the cortical actin cytoskeleton of the T cell, that could
provide a feasible mechanism for some local control. An alternative or comple-
mentary means of control would be via the removal of cell-surface molecules
with large extracellular domains from the local area.

We note that mechanisms for holding pMHC fixed and bound to a single TCR
contradict the serial engagement hypothesis [31] which argues that the signalling
capacity of rare agonist pMHC multiplies when each pMHC binds to multiple TCR
during the cellular interaction. However, serial engagement of TCR by pMHC could
occur within a TCR microcluster or other localized signalling region [32].

It is also important to note that within the basic model, ligands with lower prob-
abilities of generating a signal can compensate for this weakness by being present
in larger quantities. This is critical for the TCR given the large numbers of irrele-
vant peptides present on the APC. This problem is partially overcome by the strong
nonlinearity in response achieved if there are many proofreading steps (albeit at the
expense of sensitivity) but remains a point to be addressed by more complex models.

The biological basis for the kinetic proofreading model in the case of the TCR
remains unclear. We may, however, draw some inspiration from the signalling path-
way of the high affinity IgE receptor Fc�RI on mast cells. This receptor, closely
related to the TCR, binds IgE with high affinity and the IgE on different recep-
tors can then be crosslinked by an appropriate ligand. The subsequent signalling
cascade has been studied in great detail, allowing a detailed mathematical model
to be built [33, 34]. Experimental and modelling results reflect many aspects of
kinetic proofreading, but certainly do not allow us to fit the parameters of McKei-
than’s formulation of the model, or obtain a clear biological interpretation of the
parameters (reviewed in [35]).
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To summarize our discussion of kinetic proofreading, we observe that a literal
interpretation of McKeithan’s kinetic proofreading model is certainly not correct.
The basic model is unable to reconcile specificity and sensitivity, and the interme-
diate steps have not been found. However, detailed modelling of the Fc�RI receptor
shows that the basic idea of kinetic proofreading in terms of a set of molecular
events that must happen proximal to the receptor should remain a useful paradigm
for describing TCR signalling. New models can be described in terms of their devi-
ations from the kinetic proofreading model. Additionally, the kinetic proofreading
model is a useful and easily implemented component that can be incorporated into
larger or more complex models of TCR signalling. A good example of this is the
model of Wedagedera and Burroughs (2006) which examines the whole process of
T cell activation from a queuing theory perspective [27]. The kinetic proofreading
component is a simple and natural choice to capture the essence of the signalling
cascade without getting bogged down in the details.

Extensions of Kinetic Proofreading

TCR–pMHC Rebinding

The reactions between many cytosolic proteins are thought to be reaction-limited
because diffusion coefficients in the cytosol are relatively large. In this regime
the dynamics can be accurately captured by simple ordinary-differential-equations
(ODEs) which rely on the so called well-mixed assumption. In contrast, the reac-
tions between many membrane confined proteins are thought to be diffusion-limited,
whereby molecular collisions occur at much lower frequencies but often lead to a
reaction owing to the reaction on-rate being larger than an appropriate measure of
diffusion, see for example Lauffenburger and Linderman [39]. A consequence of
diffusion-limited reactions is that a receptor-ligand complex will break and reform
several times before each binding partner diffuses apart. As discussed above, the 2D
reaction rates between TCR and pMHC are presently unknown but it is reasonable
that their binding rate, like the binding rate for other membrane confined proteins, is
diffusion-limited. Therefore it is expected that a TCR–pMHC pair will unbind and
rebind many times before the TCR and pMHC move apart. Incorporating this effect
into the canonical kinetic proofreading model proposed by McKeithan [20] it was
found that TCR–pMHC rebinding has only a small effect on productive signalling,
Fig. 2.2a. However, by supposing that the TCR signal is not lost during the brief
interval between rebinding events, pMHC rebinding can have a large effect on pro-
ductive signalling, Fig. 2.2b. In particular, it was found that in addition to koff, the
on-rate can also have a critical role in determining signalling. Therefore this simple
extension to the kinetic proofreading model showed that by explicitly modelling re-
binding and signal persistence at the TCR, T cells are able to discriminate pMHC
based on both koff and kon. This theoretical work is summarized in Dushek et al. [9].
In support of this model, the potency of pMHC can be well-predicted by an effective
off-rate that accounts for rebinding but not by the off-rate alone [10].
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Fig. 2.2 Incorporating rebinding and signal persistence in kinetic proofreading models allows for
pMHC discrimination based on both koff and kon. (a) Schematic of the canonical kinetic proof-
reading model modified to include the possibility of TCR–pMHC rebinding. In this model pMHC
dissociation from TCR results in state U0 which allows the two molecules to rebind or diffuse
away at rate k

�

. (b) Contours of the probability that at least 1 of 10 presented pMHC will trans-
duce a productive signal (final step in the proofreading scheme) after t D 30 s as a function of
koff and kon on a log–log plot. As expected, koff is critical in determining productive signalling but
increasing rebinding events, by increasing kon, has little effect on productive signalling. (c) The
scheme shown in panel (a) is modified to include the possibility that TCR signals persist during
the brief intervals between rebinding events (states Ui ). This modification is plausible given the
finite time required for phosphatases to revert the phosphosphorylation state of the TCR to basal
levels. (d) In this modified scheme (shown in panel (c)) it is found that kon may also have a critical
role in determining productive signals. For further details see Dushek et al. [9]

Ligand Antagonism

Certain pMHC are known to desensitize T cells to further stimulation. These pMHC
are called antagonists and we should seek to understand how they work in forming a
complete theory of TCR signal transduction. A 1996 study by Rabinowitz et al. [40]
used a modified kinetic proofreading model to allow for partial and incomplete sig-
nals leading to cellular desensitization. They modelled TCR as existing in three
states – inactive, partially modified, and fully modified. A receptor must be fully
modified to generate a positive signal. Partially modified receptors are taken to give
negative signals. The existence of the intermediate state can be motivated by the ob-
servation that ZAP-70 is not activated by antagonist pMHC, indicating that pMHC
discrimination occurs upstream of ZAP-70 activation and so intermediate state(s)
must exist. Further experimental work shows that the membrane phosphatase SHP-1
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is recruited to TCR during pMHC binding, and that this leads to the inactivation of
Lck kinase, but that as binding continues, this process is inhibited by recruitment of
the MAP kinase ERK-1 [36] (discussed further below).

Theoretical modelling of ligand antagonism was also performed by van den
Berg, Burroughs and Rand [23]. This work proposed a method whereby careful
experimentation and data analysis could be used to distinguish between passive an-
tagonism (where antagonist pMHC successfully compete with agonists in terms of
binding TCR) and active antagonism (where the signalling ability of individual TCR
is reduced after antagonist binding). The strength and mode of ligand antagonism
was shown to depend on the density of presented pMHC, also suggesting that T cells
may control their signalling capacity by modulating surface presentation of TCR.

Spatially Extended Models of TCR Activation

The basic ideas described by Rabinowitz et al. [40] were extended in a mathematical
modelling paper by Cliburn Chan et al. [41]. In this model, a spatial Monte Carlo
simulation of pMHC-induced TCR activation was used to examine spatial spread of
activation and inhibition from a ligated TCR to its neighbours. Individual TCR in the
model were supposed to exist in different states – empty, bound, partially activated,
and fully activated. Furthermore, signals were supposed to spread to neighbouring
TCR. These signals could be inhibitory (prohibiting further activation) or protec-
tive (protecting the TCR against inhibition). Biologically, these effects could occur
via recruitment of SHP-1 phosphatase to the signalling region (inhibiting Lck acti-
vation) and ERK-1 activation (which protects Lck from SHP-1). Inhibitory signal
spreading (“receptor crosstalk”) improves the specificity of signalling based on koff

of the TCR–pMHC bond, although it decreases sensitivity to low numbers of pre-
sented pMHC. The loss of sensitivity in the model is restored in the full model
by protective signal spreading. Importantly, this model addresses a crucial short-
coming of the basic kinetic proofreading model in that it shows how a low-density,
long-lived (small koff) ligand can be discriminated from a very high density, but
short-lived (large koff) ligand.

Detailed Biochemical Models and Feedback Control
of the Signalling Cascade

A development of the kinetic proofreading model based on signalling feedbacks has
been advanced by Germain and coworkers [15, 36, 37]. This model contains four
TCR states – unbound, bound, partially activated and completely activated. Two
feedback loops are proposed: a negative feedback from the partially activated state,
reducing further activation steps, and a positive feedback from the fully activated
state, enhancing further signalling. The model identifies the mediator of negative
feedback as SHP-1, while the positive feedback is mediated by ERK-1. The model
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is described using ordinary differential equations, and broadly represents a spatially
homogenized version of earlier models of Chan et al. [41, 42]. However, the focus
here is on short-time (1–3 min) responses to ligand, rather than over 60 min as in
Chan et al. The combination of positive and negative feedback responses in the
model leads to a bistability in the T cell response. The power of this work is in
the integration of modelling and detailed experimental work within a single labora-
tory. The model is shown to make a number of predictions, which are then tested
experimentally, verifying the model. For example, the feedback model shows the
response time decreases sharply as the number of pMHC is reduced. By measuring
the ERK-1 response at different ligand densities, Altan-Bonnet and Germain were
able to verify this behaviour [37]. Wylie et al. (2007) incorporated the same feed-
back mechanisms in another model for the role of CD4 coreceptors (constitutively
associated with Lck) and nonagonist ligands in T cell activation [43]. This latter
paper also emphasizes the importance of considering stochastic fluctuations when
analyzing receptor signalling models.

The basic idea of combining kinetic proofreading with positive and negative
feedbacks received further attention in a modelling paper by Lipniacki et al. [38]. In
this model, TCR can exist in six states: (1) unbound; (2) bound; (3) associated with
unphosphorylated Lck; (4) associated with phosphorylated Lck; (5) with phospho-
rylated Lck and TCR-� chain singly phosphorylated; (6) with phosphorylated Lck
and TCR-� chain doubly phosphorylated, leading to cellular activation. The model
also incorporates negative feedback via phosphorylated SHP from state (4) onto it-
self, and positive feedback from state (6) via a pathway from the receptor to ZAP-70,
MEK and ultimately doubly phosphorylated ERK onto the negative feedback. The
model, which explicitly contains SHP and ERK, is expressed as a set of ordinary
differential equations which are solved deterministically and also in a stochastic
framework. The results indicate that the T cell will respond, most of the time, to
5–10 agonist pMHC, but that the sensitivity is substantially reduced in the presence
of antagonist pMHC. The modelling indicates a bistability in response (activation or
nonactivation with no intermediate) but that the barrier between the basins of attrac-
tion is low enough that small fluctuations can change the response. It is shown that
the deterministic solution of the system is therefore a poor descriptor of the actual
behaviour in the presence of noise.

To summarize, models based on known biochemical events, and particularly the
SHP-1 / ERK-1 feedback loops, allow experimentally testable predictions to be
made (and tested), and surely represent the future of TCR signalling models. How-
ever, substantial challenges remain:

– The accurate parameterization of the models remains a thorny issue, especially
given the multitude of interacting chemical species. This means that sensitivity
analysis becomes extremely important (discussed in [43]). However, the fact that
we can speak of measuring identifiable parameters at all is a major step forward.

– The models must handle the presence of two kinds of stochastic effects. First,
the obviously stochastic nature of any biochemical reaction network with small
numbers of players. Second, there is substantial variation in expression levels of
signalling components between cells. This second point was examined in detail
in a theoretical-computational study of Feinerman et al. [44].
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– The role of spatial effects such as TCR clustering and segregation of signalling
molecules must be carefully addressed. This requires the intelligent use of mod-
els defined by partial differential equations or (more likely) spatial Monte Carlo
simulations. The development of efficient algorithms is an important ongoing
concern [45–47].

The authors of competing feedback models are sometimes at pains to distinguish
their work from kinetic proofreading. We find this, to some extent, to be a false
dichotomy since in every model we have described, a core pathway can be dis-
tinguished, which is essentially determining a kinetic proofreading process. This
scheme is modified by the presence of feedback loops, of course. As stated above,
the paradigm of kinetic proofreading remains useful in describing the basic features
of these models.

Models of TCR Triggering

The mathematical models described above have assumed that TCR proximal sig-
nalling is initiated upon pMHC binding to the TCR. For example, kinetic proof-
reading models assume that proofreading initiates when pMHC binds TCR and
is terminated when pMHC unbinds. However, the exact mechanism by which the
pMHC signal is communicated across the plasma membrane and initiates signalling
is presently unknown. We now review three broad classes of TCR triggering models
and discuss how kinetic proofreading is modified in these systems.

Models Relying on a Conformational Change

Conformational change models postulate that TCR binding to pMHC somehow
results in a conformational change in the CD3 cytoplasmic portions. Early confor-
mational change models postulated that a conformational change was transmitted
allosterically through the TCR˛ˇ subunits. However this is implausible given the
huge semi-random structural diversity of TCR/pMHC interfaces, and structural
studies of the TCR/pMHC complexes have failed to identify any such long-range
conformational change which is common to many TCR upon pMHC binding. More
recent models have postulated that the TCR binding leads to a conformational
change of two TCR/CD3 complexes with respect to each other, the TCR˛ˇ module
with respect to the CD3 chains or a ‘piston-like’ change in the TCR/CD3 com-
plex with respect to the plasma membrane. How could pMHC binding lead to such
changes? We have noted that pMHC binding will automatically subject the TCR to a
mechanical pulling force [7] and proposed that this pulling could be responsible for
such conformational changes [48,49]. A very similar ‘receptor-deformation’ model
has been proposed more recently by others [50].
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Support for conformational change models has come from the demonstration
that the cytoplasmic portions of the CD3 chains undergo conformational change
[51–53]. In one case the conformational change in a proline-rich motif of the CD3�

was shown to be induced by TCR binding to pMHC [54], although subsequent func-
tional studies indicated that this motif is not required for TCR signalling but is
instead involved in regulation of TCR/CD3 surface density in thymocytes [55]. The
recent evidence that the CD3� chain binds to the membrane, with the two ITAM
tyrosine residues sequestered deep therein, suggests how conformational change
might regulate tyrosine phosphorylation [53]. It is possible, however that phos-
phorylation of CD3� regulates membrane association rather than vice versa, and
it remains to be shown that TCR binding to pMHC can influence this CD3� binding
to the membrane.

In this model of TCR triggering, the basic kinetic proofreading scheme does not
need any modification. The binding of pMHC to TCR transduces a conformational
change at the TCR which initiates kinetic proofreading (signalling) while pMHC
unbinding reverses the TCR conformational change which terminates kinetic proof-
reading (signalling). In this way, TCR triggering by a conformational change is the
simplest kinetic proofreading mechanism.

Molecular Aggregation Models

A common mechanism of signal transduction across the plasma membrane is
the dimerization (or oligomerization) of cell surface proteins [56]. For example,
receptor tyrosine kinases (RTKs) are transmembrane receptors composed of an
extracellular ligand binding site and an intracellular tyrosine residue which can
become phosphorylated by a specific kinase domain also located on the RTK. Typi-
cally, a single RTK cannot phosphorylate itself because these intracellular domains
are physically separated. Ligand binding induces RTK dimerization which brings
these domains into close proximity and allows each receptor to phosphorylate the
other, a process known as trans-autophosphorylation. Unlike RTKs, the TCR does
not have intrinsic kinase domains that allow for autophosphorylation. However, ty-
rosine kinases of the Src family (SFKs) (e.g. Lck, Fyn) may associate with the
TCR/CD3 complex even in the basal state such that subsequent dimerization of
TCRs bring SFKs into close proximity of tyrosine residues on the other TCR. There-
fore it is possible that signal transduction is initiated by TCR aggregation.

Several experimental studies have demonstrated that TCR aggregation is suf-
ficient for TCR triggering. Stern and colleagues [57] have used soluble pMHC
oligomers to demonstrate that homo-dimers, -trimers, and -tetramers are able to
induce T cell activation (by crosslinking TCR) but monomeric pMHC cannot. How-
ever, in a physiological setting agonist pMHC are present at low concentrations
making it improbable to find agonist pMHC homodimers. To address this, a subse-
quent study revealed that even agonist-endogenous pMHC heterodimers can drive
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T cell activation [58]. These studies have convincingly demonstrated that TCR
aggregation via pMHC oligomers can drive TCR triggering.

A key drawback to a model where pMHC oligomers drive TCR triggering by
aggregation is that, to date, there is little evidence that pMHC form oligomers when
presented to T cells on the APC membrane [49]. However, quantitative analysis of
the dependence of TCR internalization rates on TCR surface density suggests that
TCR internalization following exposure to pMHC pulsed APCs is preceded by TCR
dimerization [59,60]. Since only triggered TCR are marked for internalization, these
result imply that TCR triggering is accompanied by TCR dimerization. Although
suggestive, it does not follow that TCR triggering is the result of and follows dimer-
ization/aggregation. Moreover, it is possible that TCR dimerization/aggregation
follows and is the result of TCR triggering.

Assuming that TCR aggregation via pMHC binding is required for TCR trig-
gering, it is natural to ask what are the effects of TCR aggregation on pMHC
discrimination. This question was investigated using a mathematical model by Salz-
mann and Bachmann [61] (reviewed by Bachmann and Ohashi [62]). The model
assumes that two pMHC species, denoted with superscript plus and minus, undergo
reversible reactions with TCR,

CC D KCPCT

C� D K�P�T

where T , P , and C represent the free TCR, free pMHC, and bound TCR–pMHC
concentrations. Assuming that all TCR–pMHC complexes rapidly partition into
dimers they approximate the dimer concentrations as

DC=C D ˇ.CC/2=Ctot

DC=� D 2ˇCCC�=Ctot

D�=� D ˇ.C�/2=Ctot:

where Ctot D CC C C�, ˇ is a dimensionless proportionality constant, and the
subscripts indicate the dimer composition. The model next assumes that both TCR
in the newly formed dimer undergo basic kinetic proofreading and that a productive
signal is transduced only if both TCR remain bound to pMHC. They do not model
kinetic proofreading explicitly, but instead assume a simple lag time (�) between
TCR/pMHC binding and full TCR activation. The probability that both TCR in

an agonist homodimer remain bound after time t is simply e�k
C

offt e�k
C

offt . Signals
generated by each pMHC can be computed as

AC=C D ˇ
.CC/2

Ctot
exp�2k

C

offt

A�=� D ˇ
.C�/2

Ctot
exp�2k�

offt :
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Extending the analysis for an oligomer consisting of n TCR–pMHC complexes the
relative signal obtained from the two pMHC species is then

AnC
An�

D
�

CC

C�

�n

exp�n.k
C

off�k�

off/� (2.1)

where � is the lag phase required for signalling. The equation is further simplified by
assuming 1) both pMHC are present at concentrations that exceed the TCR concen-
tration and 2) both pMHC are present at equal concentrations. The ratio of signals
generated becomes

AnC
An�

D
"

kCon=kCoff

k�on=k�off

#n

exp�n.k
C

off�k�

off/� :

Note that molecular concentrations do not appear in the equation. Based on the
form of this equation the authors argue that the discriminatory capacity of T cells
increases more rapidly with the oligomer size n (appearing in both exponents) than
the proofreading lag � . This result is important because increasing � will, in general,
reduce the total signals obtained by the T cells (equivalent to reducing sensitivity by
additional proofreading steps). By requiring both TCR in a dimer to be bound to
pMHC, they propose that a further increase in specificity can be achieved.

There are several shortcomings to the model. The most critical shortcoming is
the omission of kinetic processes, mainly serial binding. We expect that pMHC with
large off-rates will be less likely to transduce productive signals (as predicted by the
model) but in addition, these pMHC will be able to rapidly form and reform many
dimers effectively increasing the probability of transducing productive signals. We
suspect that including this effect will remove the n dependence in the first fraction
above, reducing specificity obtained by oligomers. Additionally, it is unclear how
these results will be altered if the two pMHC species are present in unequal num-
bers (e.g. ŒPC� � ŒP��). In the future, it will be important to extend the model to
the physiological scenario where the agonist pMHC is expressed at low numbers,
possibly revealing the importance of agonist-endogenous pMHC heterodimers. In
addition, any future model should account for the process of aggregation as a kinetic
process that allows for the formation and also disassembly of TCR oligomers.

We briefly mention that models have been proposed based on the aggregation of
T cell coreceptors (CD4/CD8) and TCR [49]. T cell coreceptors are able to bind
pMHC directly at a site that is independent of the TCR binding site and therefore
complexes composed of TCR–pMHC–coreceptor are expected to form. This core-
ceptor heterodimerization model posits that only once this complex forms can a
productive signal be transduced. This mechanism is possible because Lck, an im-
portant kinase that can phosphorylate the TCR signalling modules, is constitutively
associated with T cell coreceptors. However, many studies have shown that TCR
triggering is possible in the complete absence of the T cell coreceptors, suggest-
ing that coreceptors may enhance triggering by recruiting additional Lck to the
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TCR–pMHC complex [16] or stabilizing the TCR/pMHC interaction [63]. A model
incorporating the effects of agonist-endogenous pMHC heterodimers and corecep-
tors has also been proposed [58]. This pseudodimer model, although plausible in
principle, cannot account for TCR triggering in the complete absence of coreceptors.

In summary, studies have shown that TCR aggregation, by TCR crosslinking with
soluble pMHC oligomers, can activate T cells and therefore trigger TCR. However,
the mechanism of TCR crosslinking at the T cell–APC interface remains elusive
because pMHC do not form oligomers. Under the assumption that TCR–pMHC
complexes aggregate, mathematical modelling has attempted to determine the ef-
fects of oligomerization on T cell specificity. Future experiments and modelling is
required to determine the physiological mechanism of TCR aggregation and the
effects that aggregation may have on pMHC detection and discrimination.

In recent years, experiments have demonstrated that TCR rapidly aggregate into
sub-micron scale clusters when stimulated by pMHC on a supported planar bilayer
[29,30,64]. These studies demonstrated the importance of TCR clusters by showing
that signalling molecules localize to them. However, it is unclear if TCR cluster
formation is required for TCR triggering (via aggregation) or if TCR clusters form
once triggering has already taken place, possibly allowing for signal amplification.
In addition to the aggregation of TCR (and signalling molecules) in clusters, studies
have also revealed that certain molecules (e.g. the membrane phosphatase CD45)
are excluded from clusters [30]. This raises the possibility that TCR clusters may
be important for molecular segregation. The role of molecular segregation in TCR
triggering and pMHC discrimination is the topic of the next section.

Segregation

Given the inability of the conformational change and aggregation mechanisms to
fully account for TCR triggering, a third type of mechanism has been proposed,
namely that triggering is the result of segregation of the engaged TCR/CD3 com-
plex from inhibitory molecules [65–67]. This kinetic-segregation model of TCR
triggering was inspired by two observation. Firstly, exposure of T cells to tyrosine
phosphatase inhibitors stimulates a dramatic increase in tyrosine phosphorylation
on the TCR/CD3 complex and results in full T cell activation. This observation in-
dicates that there is constitutive tyrosine phosphorylation of the TCR/CD3 complex
which is normally balanced by tyrosine phosphatases (reviewed in [66]). Sec-
ondly, the most abundant receptor tyrosine phosphatase, CD45, has a much larger
ectodomain than the TCR and would therefore be expected to segregate from the
engaged TCR at the T cell/APC contact interface [68]. As a result of this local
segregation, the kinase/phosphatase balance is shifted decisively towards phospho-
rylation which triggers a signal cascade.

This model of TCR triggering was explored using stochastic simulations by
Burroughs et al. [69]. The simulation domain was taken to be a square of area
of 1 �m2 with periodic boundary condition. In the absence of agonist pMHC,
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TCR randomly diffuse on a lattice and are continually phosphorylated (kinases) and
dephosphorylated (phosphatases). Since there are multiple phosphorylation sites on
the TCR they use kinetic proofreading to represent each phosphorylated state of the
TCR but unlike previous schemes, they account for the ability of phosphatases to
reverse individual kinetic proofreading steps. In the basal state, an individual TCR
cannot reach the final step in the kinetic proofreading scheme because phosphatases
rapidly reverse each step. Therefore this study accounts for phosphatase activity by
implementing a dual-track (reversible) kinetic proofreading mechanism.

In the presence of agonist pMHC, TCR/pMHC complexes will form which will
segregate membrane proteins with large ectodomains, such as the membrane phos-
phatase CD45. For simplicity the model does not account for the formation of areas
depleted of CD45, herein referred to as kinase rich domains (KRD), and instead
models nine identical and static KRDs within the simulation domain, Fig. 2.3a.
KRDs have two major effects that collectively allow for TCR triggering. First, the
rate to traverse forward steps in the reversible kinetic proofreading scheme is in-
creased while the backward rate decreases, due to the depletion and enrichment
of phosphatases and kinases, respectively. Secondly, TCR that bind pMHC within
KRDs are expected to become trapped for longer periods of time due to mem-
brane deformation. This effect is modelled by assuming that the TCR/pMHC bond
is spring-like, favoring an optimal intermembrane separation. Departing a close-
contact zone will stress the bond and therefore effectively confines complexes to
KRDs. Longer durations in KRDs will increase the probability of TCR triggering.
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Fig. 2.3 T cell receptor triggering via kinetic segregation. (a) Stochastic spatial simulations of
diffusing TCRs (red traces) are performed on a periodic boundary consisting of nine kinase rich
domains (KRDs). (b) The probability of the TCR being in the ith proofreading step is shown with-
out any pMHC (black line), low activity self pMHC with koff D 5s�1 and [pMHC]D300 �m�2

(dark blue), self pMHC with koff D 3s�1 and [pMHC]D 50 �m�2 (light blue), high density self
pMHC with koff D 3s�1 and [pMHC]D300 �m�2 (orange), and high density self pMHC with
agonist pMHC having koff D 0:1s�1 and [pMHC]D1 �m�2 (red). The physiologically relevant
comparisons are the light blue curve (little productive signalling) and red curve, showing substan-
tial productive signalling only when agonist pMHC are present. For further details see Burroughs
et al. [69]
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The critical results from the model are shown in Fig. 2.3b, where the kinetic
proofreading steps are plotted against the occupancy probability. First, we see that
TCR are able to reach the final activation state (S) and hence become triggered by
remaining in KRDs for sufficiently long. Second, TCR triggering by self pMHC
is minimal and therefore kinetic-segregation is also able to minimize noise from a
high density of such pMHC. Lastly, small changes in the off-rate of agonist pMHC
alters the number of triggered TCR and therefore allow for pMHC discrimination
(not shown).

The model itself has several shortcomings. For simplicity, forward and re-
verse kinetic proofreading steps are assumed to be first order. However, these
kinase/phosphatase enzymatic interactions are bimolecular two-step reactions. In
the future it will be important to investigate the role of these nonlinearities in pMHC
detection. The model is also sensitive to the size of KRDs, whereby KRDs with a
radius of over 300 nm lead to TCR triggering from self pMHC. It will be important
to determine which factors determine the size of KRDs and whether they reach this
critical size on the T cell surface.

In addition to kinetic-segregation, another class of TCR triggering model based
on segregation invokes lipid rafts, which are lipid microdomains thought to be en-
riched tyrosine kinases such as Lck and deficient in tyrosine phosphatases such as
CD45. These models postulate that TCR engagement of pMHC results in associ-
ation of the TCR/CD3 complex with lipid rafts, resulting in enhances phospho-
rylation because of the altered kinase/phosphatase balance within rafts. The main
drawback of lipid raft models is that they do not provide a plausible molecular
mechanism by which TCR engagement of pMHC drives association with rafts.

Concluding Remarks

Experiments have shown that T cells respond to very few and very specific pMHC
presented on antigen presenting cells. In order to understand these observations var-
ious mathematical models have been formulated based on the known biophysics
and biochemistry of TCR/pMHC interactions and the signalling events that are
triggered within the T cell upon pMHC binding to TCR. The backbone of all math-
ematical models to date is the kinetic proofreading model which is able to explain
pMHC discrimination based on the TCR/pMHC bond off-rate. Over the past decade,
this simple model has been extended and modified to explain various experimental
observations. In parallel to this research aimed at understanding antigen discrimi-
nation, molecular immunologists have been investigating the mechanism by which
pMHC binding to TCR transduces a signal across the plasma membrane that initi-
ates the very first steps intracellular signalling. This process of TCR triggering is
intricately linked to antigen discrimination and we believe that additional insights
can be made by future mathematical modelling that couples the two processes.
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Chapter 3
Dynamic Tuning of T Cell Receptor Specificity
by Co-Receptors and Costimulation

Hugo A. van den Berg and Andrew K. Sewell

Abstract Mounting evidence that each clonotype of T cell antigen receptor can
productively interact with hundreds or even thousands of peptide antigens would
appear to conflict, prima facie, with the immune system’s primary task of guarding
against auto-immunity and singling out harmful “non-self” epitopes against a back-
ground of “self” epitopes. This paradox dissolves somewhat once it is appreciated
that, at any one time, a TCR will only have high functional sensitivity to a small
subset of all its potential agonists, that is, when presented at low copy numbers,
only this small subset will be able to activate the T cell. In this light, the self-nonself
problem becomes a matter of keeping the TCR trained on the appropriate subset of
salient epitopes. We review evidence and models that show how the co-receptors
CD4 and CD8, as well as the “signal 2” costimulatory system, act to keep the TCR
focussed on the appropriate agonist subset. On the theory of dynamic tuning of
TCR specificity, both immune tolerance and specific reactivity against salient epi-
topes rely on continual regulation by other components of the immune system. We
present a model of “avidity maturation” during the early phase of a T cell response.

The TCR repertoire, while vast, is thought to be too small by at least one order
of magnitude to encompass a specific TCR against any pathogen-derived peptide
the host may ever encounter [1, 2]. Several lines of evidence suggest that a given
TCR may recognise a wide variety of peptides, a phenomenon known as TCR de-
generacy [3, 4]. This raises the questions of how the immune system ensures that
such degeneracy does not engender autoimmunity, and if any of these mechanisms
may also play a role in TCR maturation. This chapter reviews models of T cell ac-
tivation that propose that the degeneracy of a TCR is not merely a static property
determined by the molecular identity of its CDRs, but instead a highly malleable
property of the TCR/pMHC/co-receptor complex, subject to dynamic modulation
that can restrict or expand the set of ligands for which the TCR has high functional
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sensitivity, and which, moreover, can act to focus the TCR on one particular ligand,
suggestive of an avidity maturation mechanism analogous to affinity maturation in
humoral immunity.

A key variable in the analysis is functional sensitivity, a term coined by Wool-
dridge et al. [5]. This quantity corresponds to what has been termed TCR avidity
by some immunologists (e.g. [6]), although use of this latter term may invite confu-
sion, since avidity already has an established biochemical meaning. Quantification
of TCR signalling strength has been controversial, which is perhaps not surpris-
ing since a read-out at the cellular/population level must somehow be related to
biomolecular parameters. The importance of both the TCR/pMHC off-rate (equiv-
alently, the mean TCR/pMHC interaction time) and the affinity (off-rate divided
by on-rate) has been emphasised, as well as that of TCR and pMHC densities
on the surfaces of, respectively, the T cell and the APC. The TCR triggering rate
model of functional sensitivity due to Rand and co-workers [7–9] is perhaps the
simplest mathematical model that combines all these parameters, and is briefly
reviewed below.

When one considers TCR degeneracy in statistical terms, each TCR is viewed
as functionally sensitive to every possible peptide ligand, and characterised by its
distribution over these ligands. Almost all of the probability mass is concentrated
about zero sensitivity; these null peptides trivially include those that cannot bind
to the appropriate MHC isoform. On the order of 10�5 of the probability mass is
concentrated over the non-null range of functional sensitivities, with � 10�6–10�7

found at the maximum functional sensitivity end of the spectrum.
Looking at TCR degeneracy in statistical terms is necessary because a T cell can

actively alter its functional sensitivity distribution, and hence its TCR degeneracy.
That is to say that a T cell can tune itself to become more broad-spectrum promis-
cuous, or sensitive only to a very small set of peptide ligands.1 Moreover, it seems
possible that the T cell can select this ligand from among a set of potential strong
agonists. These abilities can be understood, in mechanistic terms, on the basis of the
TCR triggering rate model, as will be explained below.

Dynamic degeneracy would vastly amplify the flexibility of the T cell response
and allow it to mount a specific response to virtually every antigen even with a lim-
ited repertoire. However, dynamic degeneracy might equally well allow a substantial
portion of T cells to become autoreactive – even those who have been exposed to
negative selection. This underlines the importance of costimulation in regulating the
T cell’s functional sensitivity, in both health and disease. The role of costimulation
and threshold adaptation in the maintenance of the naı̈ve T cell repertoire has been
analysed elsewhere [10, 11]; we consider the role of costimulation in adjusting the
functional sensitivity spectrum associated with an immune response.

1 A residual level of promiscuity is inherent in the physico-chemical properties of the TCR/pMHC
contact; one might say that a TCR tuned to minimal degeneracy is sensitive to a single molecular
fingerprint.
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The Triggering Rate Model for Functional Sensitivity

The T cell integrates, at the whole-cell level, intracellular signals emanating from in-
dividual TCR/CD3 complexes that have been triggered by a peptide/MHC molecule
(the triggered TCR corresponds to a signalosome, a complex involving several ki-
nases and adapter linkers). The philosophy of the triggering model, due to Rand and
co-workers, is that any pMHC can trigger a given TCR, but will do so with widely
varying likelihood. In particular, the rate at which TCRs are triggered on the surface
of a given T cell is given by a simple formula:

X
j

˝ijPtrig.i; j /

where the sum ranges over all pMHC species j ; ˝ij denotes the rate at which cou-
plings occur between the TCR of clonotype i and a ligand of species j , whereas
Ptrig.i; j / denotes the probability that a given interaction between a TCR of type i

and a pMHC of type j results in the TCR being triggered.
The kinetic pre-factor ˝ij generally depends on several factors: the density of

free (unbound) TCR molecules on the T cell surface; the density of free pMHC
molecules on the APC surface; and the affinity constant of the TCR/pMHC interac-
tion. A detailed derivation of these dependencies is given by van den Berg et al. [8].
The kinetic pre-factor depends only on the free TCR density when the latter is suf-
ficiently low relative to the affinity constant; in this TCR-limited triggering regime
the expression levels of ligand are immaterial. This regime may prevail during pos-
itive selection in the thymus, and is perhaps also important in CTLs. On the other
hand, interactions between T cells and APCs in secondary lymphoid tissues may be
expected to take place in the MHC-limited triggering regime, where the rate factor
depends only on the pMHC levels:

˝ij D Zj

Tij
(3.1)

where Zj is the copy number of pMHC species j engaged by the T cell and Tij

denotes the mean interaction time of the TCR/pMHC interaction (that is, 1=Tij is
the off-rate). Although the affinity constant does not appear explicitly in this ex-
pression, it plays an important role in governing the change-over between TCR- and
MHC-limited triggering; a theoretical prediction that was borne out by experimental
observations [12]. The theory postulates that the T cell response is a functional of
the triggering rate

P
j ˝ijPtrig.i; j / (cf. [13–15]); e.g. the T cell is activated if the

integrated rate
P

j ˝ijPtrig.i; j / exceeds a certain value, called the cellular activa-
tion threshold, during the T cell:APC conjugation [16].

Equation (3.1) forms a link between theory and experiment. Write the TCR trig-
gering rate due to pMHC species j as Wij and assume MHC-limited triggering. Then

Wij D Zj
Ptrig.i; j /

Tij
: (3.2)
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Also assume that the T cell responds when Wij > Wact where Wact > 0 denotes the
cellular activation threshold. The functional sensitivity is determined experimentally
by exposing T cells to APCs with various ligand levels and determining the midpoint
of the dose-response curve.2 Let Zcrit

j denote this midpoint level. Then the reciprocal
is taken as a measure of functional sensitivity: the higher the pMHC copy number
required, the lower the functional sensitivity of the TCR for that ligand. In formula:

1

Zcrit
j

D 1

Wact
� Ptrig.i; j /

Tij
(3.3)

which shows that functional sensitivity is proportional to the MHC-specific TCR
triggering rate3 Ptrig.i; j /=Tij. Moreover, (3.3) shows how functional sensitivity
might be modulated: through changes of Ptrig.i; j / and Tij at the receptor level and
through changes of Wact at the cellular level. We discuss modulation of Ptrig.i; j /

and Tij via the co-receptor and then modulation of Wact via the costimulatory ligands.

Co-Receptor Tuning of Functional Sensitivity

T cells vary considerably with respect to the amount of stimulation that is re-
quired to elicit a response: naı̈ve, nearly quiescent T cells require an interaction
with a professional APC that may last for hours, whereas fully differentiated CTLs
may be triggered by very few ligand molecules [17, 18]. These differences re-
flect differences in the expression of the TCR, various kinases, phosphorylases,
including CD45 which occurs in isoforms that correlate with the cellular activa-
tion threshold of the T cell, as well as different forms of costimulation which
modulate the strength of the cognate TCR/pMHC interaction. The T cell sur-
face glycoproteins CD4 and CD8 interact with invariable regions of the MHC
molecule, independently of the cognate contact [19], and hence termed co-receptors
(see Fig. 3.1). This section focuses on the effects exerted by these co-receptors on
TCR triggering.

2 The width of the dose-response curve is attributable to natural variability in Zj among the APCs
and Wact among the T cells; this variation comes into play because a population-level response is
measured.
3 In fact, an additional step intervenes between experiment and theory: the immunologist does
not control the presentation level Z directly, but rather the concentration at which the APC is
incubated with peptide ligand. The latter may be assumed to increase with Z and will often be
simply proportional.



3 Tuning of TCR Specificity by Co-Receptors 51

pMHCI pMHCII CD80 CD86

TCRCD8 CD4 CD28 CD152

antigen-presenting cell

T cell

Fig. 3.1 Receptors and co-receptors at the T cell:APC interface

The TCR Triggering Probability

The probability that the TCR/CD3 complex achieves signalosome status (i.e. starts
to contribute to the activation signal that is conveyed through intracellular signalling
pathways) following an interaction with a pMHC molecule is given by the following
formula4:

Ptrig D
Z 1

0

Pn.t/fT .t/dt (3.4)

where fT .t/ is the probability density function of the TCR/pMHC residence time,
that is, the probability that the TCR remains bound to the pMHC molecule for at
least an amount of time t equals

R1
t

fT .u/du, and Pn.t/ is the probability that the
TCR/CD3 complex is phosphorylated at all n sites at time t . If the dissociation rate
is not influenced by the age of the ternary complex, the TCR/pMHC interaction
time follows the exponential distribution:

fT .t/ D exp
��t=Tij

�
Tij

(3.5)

where Tij denotes the average docking time of a TCR/pMHC complex constituting
a TCR molecule of clonotype i and a pMHC molecule of species j ; the half-life of
the interaction is log.2/Tij.

If there are a large number of individual reaction steps that all have to occur in
order for the TCR to be triggered, the waiting time for completion of all steps may
be expected to be well-approximated by a narrow Gaussian, in view of the Central
Limit Theorem. Such steps include phosphorylations of ITAMs, binding of kinases

4 For the sake of simplicity, the dependence on i and j will be suppressed if it is less important in
the immediate context.
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and linker proteins, which themselves may need to undergo phosphorylations for
further steps to happen [20, 21]. The narrow Gaussian may be expected to be
obtained if the steps are strictly ordered in a linear succession. For more complex
transition graphs, the narrow Gaussian remains a good approximation if all steps
are forward and all completion paths through the graph contain many steps; in this
case the shortest path dominates. The T cell can modulate which path is shortest by
diverting certain routes through the transition graph by means of ITIM phosphory-
lation. If backward steps, such as dephosphorylations, are allowed, the waiting time
distribution widens.

In the limit for large n, the narrow Gaussian becomes degenerate. The func-
tion Pn.t/ is then well-approximated by the Heaviside step function:

Pn.t/ D
�

0 for t � TR

1 for t > TR

(3.6)

where TR denotes the receptor threshold duration: whenever the TCR remains lig-
ated with a pMHC molecule for longer than this threshold time TR, the TCR/CD3
complex is triggered. Equations (3.4)–(3.6) together give:

Ptrig D
Z 1

TR

exp.�t=Tij/

Tij
dt D exp.�TR=Tij/ : (3.7)

Recall from (3.2) that the MHC-limited kinetic co-factor is inversely propor-
tional to Tij. The TCR triggering rate is then proportional to exp.�TR=Tij/=Tij,
which implies that the TCR triggering rate depends non-monotonically on Tij, with
a maximum at TR. This is the serial triggering effect first proposed by Valitutti &
Lanzacecchia [22] and experimentally confirmed by Kalergis et al. [23]. Clearly, the
serial triggering effect will only be found under MHC-limited conditions.

The Classic Proof-Reading Model

One may question how robust approximation (3.7) is, given the simplifying assump-
tions. Some support is lent by the classic kinetic proof-reading model [24], which
approaches the narrow Gaussian very neatly via a sequence of Gamma distributions.
On this model, the TCR/CD3 complex has to undergo n ITAM phosphorylations
before it acquires the ability to mediate intracellular signal transduction, leading to
various cellular responses (notably gene activation in the naı̈ve T cell) [25, 26]. It is
assumed that the i th phosphorylation can take place only after phosphorylations 1

through i � 1 have taken place. Let the ITAM phosphorylation rate � be nil if the
TCR is not bound to a peptide/MHC (pMHC) complex, and take � > 0 during
TCR/pMHC ligation. The probability Pi .t/ that there are i phosphorylated ITAMs
at time t then obeys the following differential equations during ligation:
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8<
:

d
dt

P0 D ��P0
d
dt

Pi D � .Pi�1 � Pi / for i D 1; : : : ; n � 1
d
dt

Pn D �Pn�1

(3.8)

with initial conditions P0.0/ D 1, Pi .0/ D 0 for i > 0. These equations are readily
solved to give

Pi .t/ D exp.��t/
.�t/i

i Š
(3.9)

for i D 0; : : : ; n � 1 and

Pn.t/ D 1 � exp.��t/

n�1X
iD0

.�t/i

i Š
(3.10)

for the nth phosphorylation. Substituting this result in the general expression for the
triggering probability, (3.4), with an exponentially distributed dwell time, (3.5), we
obtain

Ptrig D
�

n

TR=Tij C n

�n

where TR D n

�
(3.11)

and limn!1 Ptrig D exp.�TR=Tij/ in accordance with the threshold model, (3.7).
The latter is already an excellent approximation to the n-step proof-reading model
when n is of order 10, even if the corresponding Gamma distribution does not ade-
quately approximate a step function for n this low.

Co-Receptor Kinetics

The co-receptors CD4 and CD8 modulate the rate of TCR triggering by pMHC
engagement [27–29] and thereby the TCR’s functional avidity [30]. Various dis-
tinct modulatory roles of the co-receptor, possibly acting in concert, have been
proposed: (1) promoting the association of TCR and pMHCI [31]; (2) stabilising
the TCR/pMHCI interaction [28, 32], thus prolonging the mean dwell time of the
interaction which alters the efficacy of the pMHCI ligand [23]; and (3) enhancing
the rate at which the TCR/CD3 complex attains signalling status [29, 33], by asso-
ciation of TCR/CD3 with protein tyrosine kinases such as p56lck [34] and adaptor
molecules such as LAT [35] and LIME [36].

The first of these two mechanisms affects the affinity of the TCR/pMHC inter-
action, whereas the third affects the TCR triggering threshold. Thus, let T ?

ij denote
the mean lifetime of the TCR/pMHC interaction when the MHC molecule is bound
to the co-receptor. The stabilising effect is expressed by the inequality T ?

ij > Tij.
Similarly, let T ?

R denote the TCR triggering threshold when the MHC molecule is
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bound to the co-receptor. Co-receptor enhancement is expressed by the inequality
T ?

R < TR. There is evidence that CD8 acts through all three mechanisms [32, 37],
whereas CD4 seems to act only through the third mechanism [38]. Moreover, the
CD8 ˛ˇ heterodimer is considerably more potent as a co-receptor than the ˛˛ ho-
modimer [34, 39, 40], which stresses the importance of the third function, which is
strongly dependent on the presence of the CD8ˇ chain [39, 41].

During any particular interaction between TCR/pMHC, the co-receptor may bind
and unbind the MHC molecule any number of times. It will be assumed that the co-
receptor-dependent effects (viz. reduced TCR/pMHC off-rate and enhanced rate of
ITAM phosphorylations and so on) hold instantaneously and momentarily whenever
the co-receptor is bound. Let s denote the number of transitions between the co-
receptor-bound and unbound forms of the TCR/pMHC complex during the lifetime
of the latter. The triggering probability, conditioned on this number of transitions, is
then expressed as follows:

Ptrig D
1X

sD0

P.trig j s; CC/P.s j CC/P.CC/ C P.trig j s; C�/P.s j C�/P.C�/

(3.12)

where P.CC/ and P.C�/ are the probabilities that the TCR/pMHC complex is
bound (CC) or unbound (C�) to the co-receptor when the cognate contact forms.
Equilibrium considerations give the following:

P.CC/ D �

� C 	
and P.C�/ D 	

� C 	
(3.13)

where � is the co-receptor association rate and 	 the dissociation rate. The co-
receptor may engage the TCR/pMHC complex via a TCR/CD3 binding site as
well as an MHC biding site, making association and dissociation two-stage pro-
cesses [5, 34, 42]. Provided the kinetics of the second step are sufficiently rapid, the
kinetics may be treated as first-order (see [37] for a detailed argument).

The probability of s transitions can be readily calculated by considering the geo-
metric distribution associated with the embedded Markov chain (the “jump chain”).
For s even, one finds:

P.s j CC/ D 1

1 C 	T ?
ij

 
�	TijT

?
ij

.1 C �Tij/.1 C 	T ?
ij /

!s=2

(3.14)

P.s j C�/ D 1

1 C �Tij

 
�	TijT

?
ij

.1 C �Tij/.1 C 	T ?
ij /

!s=2

(3.15)

whereas for s odd, these probabilities are:

P.s j CC/ D �
�Tij

�.s�1/=2

 
	T ?

ij

.1 C �Tij/.1 C 	T ?
ij /

!.sC1/=2

(3.16)
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P.s j C�/ D �
	T ?

ij

�.s�1/=2

 
�Tij

.1 C �Tij/.1 C 	T ?
ij /

!.sC1/=2

: (3.17)

The triggering probabilities can be computed, in general, from a Markov chain
whose transition graph is obtained by doubling the original TCR/CD3 transition
graph as discussed above, and inserting directed arcs linking corresponding nodes
bidirectionally, expressing the processes of co-receptor association and dissocia-
tion.5 Since the off-rate is affected by co-receptor engagement, the lifetime T of
the TCR/pMHC complex is no longer an exponential variate. The mixture of two
off-rates gives rise to a bi-exponential distribution:

P.T > t/ D 1

2

	
e��

C

t C e��
�

t



C
	
.� C 	/2 C .T �1

ij � T ?
ij
�1

/.� � 	/

 �

e��
C

t � e��
�

t
�

2.� C 	/

q
.� C 	 C T �1

ij C T ?
ij
�1

/2 � 4.�=T ?
ij C 	=Tij C .TijT

?
ij /�1/

(3.18)

where

�˙ D �1

2
.� C 	 C T �1

ij C T ?
ij
�1

/

˙ 1

2

q
.� C 	 C T �1

ij C T ?
ij
�1

/2 � 4.�=T ?
ij C 	=Tij C .TijT

?
ij /�1/ :

The mean lifetime is readily obtained:

E.T / D 1

2

�
1

�
C

C 1

�
�

�

C
	
.� C 	/2 C .T �1

ij � T ?
ij

�1/.� � 	/



.1=�
C

� 1=�
�

/

2.� C 	/

r	
� C 	 C T �1

ij C T ?
ij

�1

2 � 4

	
�=T ?

ij C 	=Tij C .TijT
?

ij /�1

 :

(3.19)

5 A simple formula is obtained using the Heaviside simplification, (3.6):

P.trig j s; C ˙/ D P

�eT C TR

T ?
R

eT ? > TR j s; C ˙

�

whereeT is a Gamma-distributed random variable with location parameter Tij=.1C�Tij/ and shape
parameter ~ D 1C ent..s C 1/=2/ iff s is even and C ˙ D C �, whereas ~ D ent..s C 1/=2/

otherwise (where ent.x/ is the largest integer smaller than x), andeT ? is another Gamma-distributed
random variable with location parameter T ?

ij =.1C 	T ?
ij / and shape parameter ~ D 1C ent..s C

1/=2/ iff s is even and C ˙ D C C, whereas ~ D ent..s C 1/=2/ otherwise.



56 H.A. van den Berg and A.K. Sewell

Co-Receptor Kinetics in the ‘Slow’ and ‘Fast’ Limits

More insight into the above results can be gained by considering two special cases,
which form the endpoints of a continuum of possibilities. The first is the case where
the co-receptor kinetics is slow with respect to the TCR/pMHC kinetics, so that the
MHC molecule either retains its contact with the co-receptor during the cognate in-
teraction or remains unbound during its comparatively short docking with the TCR.
Then (3.19) reduces to:

E.T / D 	

� C 	
Tij C �

� C 	
T ?

ij

as one would expect from elementary considerations.6 On the other hand, if the
co-receptor kinetics is very rapid compared to the cognate interaction, many transi-
tions happen during a TCR/pMHC docking, and the lifetime becomes exponential
again, with an effective off-rate determined by the co-receptor binding equilibrium.
Thus (3.19) reduces to

E.T / D
 

	

� C 	
� 1

Tij
C �

� C 	
� 1

T ?
ij

!�1

:

Simple expressions for the triggering probability are similarly obtained for these
special cases. If the co-receptor is slow relative to the TCR, the s D 0 term in (3.12)
dominates and one finds:

Ptrig D 	

� C 	
exp

��TR=Tij
�C �

� C 	
exp

��T ?
R=T ?

ij

�
(3.20)

whereas for rapid co-receptor kinetics one obtains:

Ptrig D exp

 
� 	=Tij C �=T ?

ij

	=TR C �=T ?
R

!
:

The parameter � is proportional to the surface density of co-receptor molecules;
if ŒCD(4—8)� denotes this surface density and KD is the dissociation constant of
the co-receptor–MHC interaction, the following holds:

�

� C 	
D ŒCD(4—8)�

ŒCD(4—8)� C KD

:

6 This presupposes a co-receptor binding equilibrium, which is realistic for CD8/TCR or CD4/TCR
adducts, but may not be realistic for CD8/MHCI or CD4/MHCII couplings, whose stability may
depend on the TCR/pMHC docking.
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Thus, by varying the co-receptor levels, the T cell modulates interaction time and
triggering probability as well as the functional sensitivity Ptrig=E.T /. Interestingly,
the effect of increased co-receptor levels is not necessarily to increase Ptrig=E.T /.
An increase at high co-receptor levels (i.e. ŒCD(4—8)� � KD) compared to low
co-receptor levels (ŒCD(4—8)� � KD) is only found if the following condition is
satisfied:

T ?
R

TR

<
T ?

ij

Tij

�
1 � Tij

TR

ln
T ?

ij

Tij

�
: (3.21)

This means that, should the co-receptor only exert the TCR/pMHC stabilisation ef-
fect (i.e. T ?

R D TR, no threshold effect), an increase of the functional sensitivity is
possible only if Tij < TR (ligands which satisfy this condition are sub-optimal ag-
onists at ŒCD(4—8)� � KD). This is illustrated in the left panel of Fig. 3.2, which
shows scaled functional sensitivity expŒ�TR=Tij�.TR=Tij/ as a function of Tij=TR.
The co-receptor stabilisation effect amounts to a shift to the right in this graph;
it is clear that the TCR’s functional sensitivity to sub-optimal agonists can be en-
hanced by such a shift. The opposite will be true of ligands such that Tij > TR (the
so-called heteroclitic agonists). The right panel of Fig. 3.2 shows the percentage
co-receptor enhancement obtained when saturating levels of co-receptor are com-
pared to zero levels. It is assumed that T ?

ij D 2Tij, as suggested by the data of the
Sewell group [32]; the leftmost curve corresponds to the case where there is no ef-
fect on the receptor threshold, while the middle curve corresponds to T ?

R D TR=2

and the rightmost to T ?
R D TR=10. This illustrates that the receptor-level effect en-

larges the range of ligands that are positively boosted by the co-receptor, and that
the receptor-level boost factor T ?

R=TR need not be much larger than the stabilisa-
tion factor Tij=T ?

ij ; van den Berg et al. [37] estimate that this boost is twofold for
the pMHCI/CD8 interaction.

For slow co-receptor kinetics, condition (3.21) applies at all co-receptor den-
sities, whereas for rapid kinetics, an enhancement relative to nil co-receptor may
occur even when condition (3.21) is not satisfied; in this case, the functional sensitiv-
ity Ptrig=EŒT � first increases with increasing co-receptor levels and then decreases at
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Fig. 3.2 Co-receptor-mediated enhancement of functional sensitivity
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higher levels. This effect7 is qualitatively important only for marginally sub-optimal
agonists whose ‘unboosted’ Tij is lower than, but close to TR.

The present analysis suggests that T cells can use co-receptor expression lev-
els not only to modulate the functional sensitivity (“avidity”) to a given peptide
ligand, but, moreover, that co-receptor level variation should enable differential reg-
ulation of TCR sensitivity. That is to say: the functional sensitivity for some ligands
goes down while that for others goes up as the T cell up- or down-regulates its co-
receptor. All these ligands have the potential to be good agonists, but at any one
time, the T cell is tuned in on only a few, or just one, of them.

While the above theory suggests the possibility of differential regulation of TCR
avidity, such a phenomenon remains to be experimentally observed. One would
have to find a TCR X and two ligands A and B such that A is a good agonist for X
at low levels of the co-receptor whereas B is a good agonist for X at high levels
of the co-receptor, such that the ordering of functional sensitivities reverses as the
co-receptor levels are varied. Since good agonists at nil co-receptor levels will be
rare and are highly unlikely to be the index ligand through which any given clone is
initially identified, it is perhaps not too surprising that the predicted effect has not
yet been observed.

If it can be confirmed that differential regulation of TCR avidity occurs, there
are two far-reaching consequences: (1) T cells have an – albeit limited – ability
for “avidity maturation” which effectively multiplies the diversity of the repertoire
(cf. [45]), in terms of enhancing its ability to match any pathogenic challenge to a
highly sensitive TCR; (2) costimulation plays a pivotal role in supplying the T cell
with accessory information: in the absence of disease, the T cell should be kept
from tuning in (at least not too strongly) to the ligands it encounters,8 whereas the
opposite response is required when the APC carries a salient epitope. The remainder
of this chapter focuses on the latter case, and describes how the unique properties of
the ‘signal 2’ system help shape the T cell response.

Costimulatory Tuning of the Responder Spectrum

The professional APC involved in the initiation of an immune response presents the
harm-associated epitope on the MHC molecule, together with an accessory costim-
ulus (‘signal 2’9) which it transmits via the receptors CD80 and CD86 [54]. The

7 A mathematically equivalent effect is obtained by keeping co-receptor levels constant, but in-
creasing KD ; this has been achieved by mutating the ˛2 domain of the MHCI molecule [43, 44],
which interacts with the co-receptor.
8 Since such ligands are “self” or in some cases “harmless non-self”; co-receptor expression is up-
and down-regulated by, respectively, interferon-� and interleukin-4 [46], which is thought to be
directly involved in modulating the autoreactivity of the quiescent repertoire [47]. Costimulation
also governs CD25C regulatory T cells which are important in maintaining immune tolerance to
autoligands [48].
9 Depending on the nature of this costimulus, a naı̈ve T cell may induced to undergo cell divi-
sion and differentiation, to take part in an immune response [16, 49, 50]. Alternatively, it may be
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two main10 costimulatory receptors on the T cell are CD28 and CD152 (Fig. 3.1);
the former being a key activator and the latter a key attenuator for the activation
of naı̈ve T cells [49, 58]. Costimulation through CD28 and CD152 regulates the
expansion of the T cell clones that take part in the immune response [59, 60].

The characteristics of the CD80/CD86–CD28/CD152 costimulatory system are
discussed below. It has been observed that both CD80 and CD86 can interact with
CD28 as well as CD152 [61]. One could interpret this finding as mere redundancy,
or, alternatively, one could regard this as a system which exploits differences in
affinities as a means to transmit information encoded in the CD80/CD86 ratio on
the APC. We analyse this (relatively novel) differential affinity signalling paradigm.

It has been proposed that the CD80/CD86–CD28/CD152 costimulatory system
modulates the spectrum of functional sensitivities for the antigenic peptide, among
the responding clones [62,63]. This seems plausible, since costimulation is known to
modulate the cellular activation threshold11 [65], and (3.3) suggests a link between
activation threshold and functional sensitivity; Sect. 3 analyses this idea in detail,
based on the following model:

Wact D mAPC � mT cell � bWact (3.22)

where bWact expresses the baseline activation threshold (for a naı̈ve T cell interacting
with a mature professional APC) and mAPC � mT cell is multiplier expressing modu-
lation of the activation threshold. It is assumed here that modulation of bWact by the
APC (mAPC) and by the T cell (mT cell) combine multiplicatively; this assumption,
which forms the basis for our dynamic model, will be examined first.

Differential Affinity Signalling in the CD80/CD86–CD28/CD152
System

Engagement of CD28 potentiates T cell survival, proliferation, and activation [66].
CD28 appears to reduce the cellular activation threshold (Wact) in naı̈ve T cells12

induced to enter an unresponsive anergic state [51], from which it may further differentiate into an
immunoregulatory phenotype [52, 53].
10 Another receptor important in T cell priming is CD27, which binds CD70 [55]; CD278 as well
as members of the TNF receptor family are expressed in activated T cells and are important in
regulating the size of the expansion [56, 57].
11 In the absence of CD28, the activation threshold is large and can only be attained by prolonged
stimulation [50] or by high presentation levels of the antigenic ligand [64].
12 CD28-mediated costimulation regulates the number of mitotic events that responding T cells
undergo [67]; acting through phosphatidylinositol 3’-kinase (PI3K) and Akt, the costimulatory
receptor CD28 increases the rate of glucose uptake and glycolysis, preparing the T cell for pro-
liferation [68]. It is unclear whether CD28 can have a direct effect on the TCR triggering rate or
the rate of pMHC engagement [16,69]; CD28 could enhance TCR triggering by Itk/Emt-mediated
activation of tyrosine kinase, as well as by recruitment and clustering of such kinases in membrane
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while CD152 generally counteracts the effects of CD28 [58, 76]; its engagement
increases the cellular activation threshold [77].13 Up-regulation of CD152 is de-
pendent on TCR signalling [63] as well as CD28 [85]; this constitutes a negative
feedback effect which limits clonal expansion and may broaden the avidity spec-
trum among the responding clones by being strongest in high-avidity T cells, which
receive the strongest cognate stimulation [62, 86].

The APC costimulates the T cell through two counter-receptors CD80 and CD86,
each of which interact with both CD28 and CD152. CD80 binds both costimulatory
receptors more strongly than CD86, and, moreover, markedly favours engagement
of CD152 over CD28, whereas the more weakly binding CD86 shows much less
bias [61]. While CD28 has a single binding site for CD80(86), CD152 has two
identical binding sites which exhibit negative cooperativity; the site which binds
first has a much higher affinity for both CD80 and CD86 than CD28’s single
site [61].

To represent these interactions in a simple14 mathematical model, assume that
CD28 has a single binding site for CD80 and CD86, with two distinct affinities ex-
pressed by the two-dimensional dissociation constants K28/80 and K28/86. For the
CD152 dimer assume two identical, interdependent binding sites. The cooperativity
between binding to one of the sites and the occupancy of the other is represented by
the following two-dimensional dissociation constants: Kı152/80 (Kı152/86) for binding
to CD80 (CD86) when the other site is still unoccupied, and K�152/80 (K�152/86) for
binding to CD80 (CD86) when the other site is already occupied by either CD80
or CD86.15 At equilibrium, the following conditions then govern the surface densi-
ties of the various species in the area of contact between the T cell and the APC:

microdomains [70–73]. Various T cell activation genes depend on the nuclear factor of activation in
T cells (the transcription factor NFAT). The relevant active form of this intracellular messenger is
unphosphorylated NFAT, localised in the nucleus. The enzyme glycogen synthase kinase-3 (GSK3)
is thought to phosphorylate serine residues on NFAT, which causes it to be exported from the nu-
cleus. It is thought that the general effect of CD28 costimulation is to depress the level of active
GSK3, while CD152 costimulation may elevate GSK3 activity [62, 74, 75].
13 Engagement of CD152, also known as CTLA-4, also restricts clonal expansion, i.e. the num-
ber of mitotic events following activation [78–81]. Furthermore, CD152 interferes with TCR
signalling, possibly by a direct interaction with the TCR/CD3�-chain, thus negatively regulat-
ing recruitment of the TCR to kinase-rich membrane microdomains [82, 83]. CD152 can recruit
PP2A-family serine/threonine phosphatases that may attenuate intracellular signalling cascades, or
interfere directly with CD28 by targeting PP2A activity to CD28 [84]. While the cytoplasmic tail
of CD152 contains a binding motif for Scr homology-2 domain containing tyrosine phosphatases,
the involvement of such phosphatases in CD152 signalling remains unclear [77].
14 Spatial aspects related to CD80 dimerization, as proposed by Schwartz et al. [87], are ignored.
15 Collins et al. [61] furnish the following relations between the dissociation constants, based
on 3D measurements: K28/80=K28/86 D 0:2I Kı

152/80=K28/86 D 0:0185I Kı

152/86=K28/86 D
0:2845I K�

152/80=K28/86 D 0:065I K�

152/86=K28/86 D 0:725: These values indicate negative co-
operativity: the dissociation constants for the second ligands are over two times higher than the
corresponding first ligand value (i.e. K� as compared to Kı).
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8̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

ŒCD28�free � ŒCD80�free D K28/80 � ŒCD28/CD80�

ŒCD28�free � ŒCD86�free D K28/86 � ŒCD28/CD86�

ŒCD152�free � ŒCD80�free D Kı152/80 � ŒCD152/CD80�

ŒCD152�free � ŒCD86�free D Kı152/86 � ŒCD152/CD86�

ŒCD152/CD80�free � ŒCD80�free D K�152/80 � ŒCD152/CD80/CD80�

ŒCD152/CD86�free � ŒCD80�free D K�152/80 � ŒCD152/CD86/CD80�

ŒCD152/CD80�free � ŒCD86�free D K�152/86 � ŒCD152/CD80/CD86�

ŒCD152/CD86�free � ŒCD86�free D K�152/86 � ŒCD152/CD86/CD86�

(3.23)

where square brackets indicate surface densities and ‘free’ means ‘unoccupied’. Let
AA denote the total surface area of the APC, AT the total surface area of the T cell,
and AC the surface area of the conjugate interface. Then the relevant conservation
laws can be written as follows:

jCD28j D ATŒCD28�free C AC .ŒCD28/CD80� C ŒCD28/CD86�/ (3.24)

jCD152j D ATŒCD152�free C AC .ŒCD152/CD80� C ŒCD152/CD86�

C ŒCD152/CD80/CD80� C ŒCD152/CD80/CD86�

C ŒCD152/CD86/CD80� C ŒCD152/CD86/CD86�/ (3.25)

jCD80j D AAŒCD80�free C AC .ŒCD28/CD80� C ŒCD152/CD80�

C ŒCD152/CD80/CD86� C ŒCD152/CD86/CD80�

C 2 ŒCD152/CD80/CD80�/ (3.26)

jCD86j D AAŒCD86�free C AC .ŒCD28/CD86� C ŒCD152/CD86�

C ŒCD152/CD80/CD86� C ŒCD152/CD86/CD80�

C 2 ŒCD152/CD86/CD86�/ (3.27)

where j � j denotes the total number of molecules present on the cell’s surface.
It is straightforward to reduce these equations to a system of only two non-
linear equations, which are readily solved numerically by means of a fixed-point
algorithm.16

The hypothesis of differential affinity signalling is embodied in the following
three parameters:

APC 
 D jCD86j
jCD80j C jCD86j I (3.28)

T cell � D jCD28j
jCD152j C jCD28j I (3.29)

T cell:APC � D .jCD152j C jCD28j/=AT

.jCD80j C jCD86j/=AA
: (3.30)

16 The species CD152/CD86/CD80 and CD152/CD80/CD86 are physically identical, and distin-
guished in the calculations by the order in which they engaged their ligands; the two densities are
added to give the density of the single molecular species they represent.
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The parameter 
 represents the balance between CD80 and CD86 on the APC. The
APC can influence the nature of signal transmission between APC and T cell by
adjusting 
 . Similarly, � represents the balance between CD28 and CD152, and
this balance is under the control of the T cell. The third parameter � represents the
balance between CD28/152 and CD80/86; this parameter is jointly determined by
the two interacting cells. The costimulatory status of the APC is expressed by the
following dimensionless parameter:

� D K28/86

.jCD80j C jCD86j/=AA
:

The discussion at the start of this section motivates the following assumptions:
(1) both CD28 and CD152, when expressed, make a constitutive contribution to
intracellular processing of the TCR-stimulus; and (2) the strength of the stimula-
tory effect of CD28 (and, similarly, of the inhibitory effect of CD152) depends on
the relative enrichment of these receptors in the T cell:APC contact area, where the
TCR signal arises. These enrichment effects can be expressed as sequestration ra-
tios, defined as the contact area density of all species relative to the density prior to
the cell–cell contact:

%CD28
defD .jCD28j=AT/

�1
.ŒCD28�free C ŒCD28/CD80� C ŒCD28/CD86�/

and

%CD152
defD .jCD152j=AT/�1 .ŒCD152�free C ŒCD152/CD80� C ŒCD152/CD86�

C ŒCD152/CD80/CD80� C ŒCD152/CD80/CD86�

C ŒCD152/CD86/CD80� C ŒCD152/CD86/CD86�/ :

This sequestration effect corresponds to the increase in signalling intensity.
The effective stimulation of the T cell depends on the balance between positive

stimulation (due to the combined CD28 species in the cell–cell contact area) and
negative stimulation (due to the combined CD152 species in the cell–cell contact
area), which is expressed by the ratio %CD28�=.%CD152.1 � �//. This quantity can be
identified with the multiplier in (3.22) under the following identifications:

mAPC 	 %CD28

%CD152
and mT cell 	 �

.1 � �/

that is, the T cell sets the balance between CD28 and CD152 whereas the APC
determines the sequestering ratios by varying � and 
 . Comparison of the top and
bottom panels in Fig. 3.3 indicates that these two factors combine multiplicatively,
as assumed by (3.22); the effect of changing mT cell amounts – to a very good ap-
proximation – to a simple scaling. As the left and middle panels of Fig. 3.3 show,
sequestering of both co-receptors decreases with an increasing proportion of CD86,
but at different rates, which leads to either an increase or a decrease of the stimula-
tory balance (right panels), depending on the value of �.
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Fig. 3.3 Differential affinity signalling. Left: CD28 sequestering (%CD28); middle: CD152 seques-
tering (%CD152); right: strength of stimulation (%CD28�=.%CD152.1 � �//) all as a function of 
 .
AC=AT D 0:05, AC=AA D 0:005, � D 0:9 (top panels), 0:5 (lower panels); � D 1. Curves
for (top to bottom in the sequestering graphs) � D 1

16
; 1

8
; 1

4
; 1

2
; 1; 2; 4; 8 (lowest curves for lowest

CD80(86) densities). The costimulatory balance (in favour of T cell activation) increases with 


when � is large (i.e. when CD80(86) densities are low)

Evolution of the Responder Functional Sensitivity Spectrum

Clonal expansion involves antigen-driven selection of TCR clonotypes that have the
highest functional sensitivity for the pathogen-derived epitopes presented on profes-
sional APCs [88]. Costimulation through CD28 and CD152 is thought to influence
the shape of the TCR avidity spectrum among the clones responding to a given
pMHC antigen. In some instances, the most efficacious T cell response may be com-
posed of a few (or one) dominating clonotypes of very high functional sensitivity
(a narrow spectrum response), whereas in other cases the immune response needs
to maintain T cell diversity, with a broader spectrum [62]. The professional antigen
presenting cells involved in priming naı̈ve T cells may play an active role in guiding
the evolution of the ‘avidity spectrum’ during the primary expansion, employing the
differential affinity properties of the CD80/CD86–CD28/CD152 system. This sec-
tion describes a model for the dynamics of the ‘avidity spectrum’ which elucidates
the possible roles of APCs and co-stimulation.
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Let wij denote the functional sensitivity of the interaction between a TCR of
clonotype i and a pMHC ligand of species j :

wij
defD Ptrig.i; j /

Tij

(the quantities on the right are those for the prevailing levels of co-receptor, not the
‘unboosted’ values; a slight abuse of notation for the sake of simplicity). The aim is
to describe the statistical distribution of wij-values among the TCR clones that are
activated by a given pMHC ligand j . The probability that a T cell is activated during
a given encounter with a professional APC is calculated as follows:

P.Zj wij > Wact/ D P

�
Zj

mAPCbWact

>
mT cell

wij

�
(3.31)

(with (3.22)). For the random variable Zj =.mAPCbWact/, it is convenient and rea-
sonable to choose a log-logistic distribution. With location parameter $ and scale
parameter # one then has:

P

�
Zj

mAPC bWact

>
mT cell

wij

�
D
	
1 C .mT cell$=wij/

#

�1

:

Responding T cells will experience a number of encounters with pAPCs, each of
which may activate the T cell to undergo further proliferation or terminal differen-
tiation. It is believed that a T cell responds to such an activation event by increasing
its activation threshold Wact through up-regulation of CD152 [79]. Consider a T cell
with functional sensitivity wij which has thus far experienced k activating encoun-
ters. The probability that this T cell will be activated in the next encounter is
given by:

Pact.k C 1I wij/ D
Z 1

1

P

	
Zj =.mAPCbWact/ > m=wij



dFk.mI wij/ (3.32)

which is obtained by conditioning the activation probability, (3.31), on the distribu-
tion Fk , defined as follows:

Fk.mI wij/
defD P.mT cell � m after k encounters, with functional specificity wij/:

If the encounter is successful, the T cell’s threshold multiplier changes as follows:

mT cell.k C 1I wij/ D mT cell.kI wij/f0

�
Zj wij=Wact.kI wij/

��
:

Egen et al. [62] proposed that the increment of the activation threshold depends on
the strength of the TCR signal; this effect is represented in the above equation by
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the non-negative parameter 
 (for 
 D 0, the Egen effect is absent and the threshold
increase is always by a factor f0 > 1).

Equation (3.32) gives the activation probability for a T cell with a given func-
tional sensitivity wij; the probability that any of the T cells that were activated in the
k previous rounds is activated during the next encounter is found by conditioning
on the distribution of functional sensitivities among T cells that have been activated
k times. Denote this distribution as Gk.w/. Then:

Pact.k C 1/ D
Z

Pact.k C 1I w/dGk.w/ (3.33)

where

Gk.!/
defD 1

Pact.k/

Z !

0

Pact.kI w/dGk�1.w/ : (3.34)

The initial condition for this recurrence relation is the distribution G0.w/ of func-
tional sensitivities among antigen-inexperienced T cells17; this distribution has been
described in detail by van den Berg & Rand [89]. To complete the mathematical
description, a recurrence relationship for Fk must be found. Straightforward proba-
bility considerations give the following expression:

FkC1.mI wij/ D 1 �
"Z m=f0

1

P

 
Zj

mAPCbWact

>
�

wij

�
�=f0

�

�1=�
!

dFk.�I wij/

�
Z 1

m=f0

P

�
Zj

mAPC bWact

>
�

wij

�
dFk.�I wij/

#
1

Pact.kI wij/
(3.35)

The initial condition F0.mI wij/ is the degenerate distribution at m D 1 for all val-
ues of wij. Equations (3.32), (3.33)–(3.35) constitute a system of integro-difference
equations which can be solved numerically.

By the avidity principle, a T cell whose TCR has comparatively low functional
sensitivity wij for the relevant ligand can still be activated if the presentation level Zj

is sufficiently high. Professional APCs (mature dendritic cells) that activate T cells
from the naı̈ve repertoire can, in principle, prevent T cells from exploiting this avid-
ity advantage, by correlating high presentation levels with high multiplier (mAPC)
values,18 whereas a negative correlation would emphasise the avidity advantage. In
the present model this correlation is expressed by the parameter # . The variance of

17 It is reasonable to assume that this function does not depend on the ligand at hand. This naı̈ve
distribution G0 has the following features: most of its probability mass is concentrated near zero
avidity (wij � 0 for almost all clonotypes i , as the vast majority of naı̈ve T cells have no or
very little sensitivity for any given ligand j ), while a minute fraction of the probability mass is
concentrated near the maximum avidity; these latter cells constitute likely responders.
18 Such correlations require a connection between the antigen presentation pathways and co-
receptor expression; such a correlation may be induced by DC maturation, which sees an increase
in presentation levels as well as a shift from CD80 to CD86 expression [90, 91], which appears to
depend on stimulation of CD80 [92].
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the random variable Zj =.mAPCbWact/, which represents the modulated influence of
the APC, is minimised (i.e. # is large) when high mAPC correlate positively with Zj ,
so that a high threshold tends to cancel out the higher number of ligand molecules
presented to the T cell. By contrast, a negative correlation tends to increase this
variance (i.e. to lower #). The effect of this parameter is shown in Fig. 3.4. The top
panel shows that large variability of Zj =.mAPCbWact/ gives rise to a broad spectrum
centred on bWact.

During successive rounds of activation, this spectrum shifts toward the right,
that is, becomes enriched with TCRs with greater functional sensitivity.19 When
the variance is low (Fig. 3.4, bottom panel) the spectrum is just the naı̈ve spectrum,
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Fig. 3.4 Functional sensitivity spectra among responding clonotypes: the effect of APC variability
alone. $ D 0:25; f0 D 1; 
 D 0; # D 10, 50, 500 (top to bottom); abscissa is scaled functional
sensitivity TRwij; ordinate is probability density

19 Generally, the avidity spectrum among the responders at any given moment in time is a weighted
sum of the spectra for k D 1; 2; 3; : : : . However, if the number of divisions between activation
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left-truncated at bWact. It is interesting that successive rounds do not lead to an enrich-
ment of strong TCRs in this case; this is because clones just above bWact are likely to
be re-activated in later rounds when the APC-related variance is low, whereas only
those with high functional sensitivity are secure when APC-related variance is high.

Thus, selection for high functional sensitivity can be driven by APC variability
alone, in the absence of threshold increases on the part of the T cell. Figure 3.5
shows the effect of changing f0 from 1 to 1:05. As one would expect, this improves
the drive to select stronger clonotypes. At low APC variability the threshold eventu-
ally becomes too stringent for any of the responding T cells to receive stimulation,
whereas high APC variability ensures that a left tail of intermediate-strength TCRs
is retained.
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Fig. 3.5 Functional sensitivity spectra among responding clonotypes: the effect of activation-
dependent threshold increments. $ D 0:25; f0 D 1:05; 
 D 0; # D 10, 50, 500 (top to bottom);
abscissa is scaled functional sensitivity TRwij; ordinate is probability density

events is sufficiently large, the actual spectrum will be dominated by that corresponding to the
latest activation round.
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The effect of stimulation-dependent threshold increments is demonstrated in
Fig. 3.6, for various positive values of 
. As Egen et al. [62] predicted, the effect
of ‘penalising’ high-strength TCRs is to make the spectrum more uniform, so that
it acquires the appearance of a plateau. Moreover, the spectrum converges quickly
after �10 activation rounds.

The spectrum Gk is continuous probability density function, effectively describ-
ing an ensemble of identically prepared immune systems; in any one of these
systems, the spectrum will be a histogram describing a relatively small20 number
of responding clones. This number is Poisson distributed21 with parameter
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Fig. 3.6 Functional sensitivity spectra among responding clonotypes: the effect of stimulation-
dependent threshold increments. $ D 0:25; f0 D 1; 
 D 0:1, 0:5, 0:9 (top to bottom); # D 50;
abscissa is scaled functional sensitivity TRwij; ordinate is probability density

20 The detectable expansion consists of on the order of 10 clones [93]; clonotypical heterogeneity
typically has a “quasi-species” structure with only one or a few clones constituting the bulk [94];
the number of clones initially activated may be up to an order of magnitude larger.
21 As may easily be shown using a technique called compounding.
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�k D NC

kY
`D1

Pact.`/

after k rounds; here, NC denotes the number of TCR clonotypes in the naı̈ve reper-
toire. The number of clones whose functional sensitivity exceeds a given value !

is similarly Poisson distributed, with parameter �k.!/ D .1 � Gk.!//�k after k

rounds (clearly �k 	 �k.0/). An open problem is to specify the parameters bWact,
f0, 
, and # so that �k.!/ is maximised, given !.
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Chapter 4
T Cell Activation and Function:
Role of Signal Strength

Asma Ahmed and Dipankar Nandi

Abstract Optimal T cell function lies at the heart of an efficient adaptive response.
T cell activation is a highly regulated process and it is important to ensure that acti-
vation occurs in the proper context to prevent the development of harmful conditions
such as autoimmunity and excessive inflammatory responses. One of the important
factors in this process is the strength of the primary activating signal which is de-
livered upon ligation of the T cell receptor (TCR) with the major histocompatibility
complex (MHC) encoded class I or class II molecules bearing the antigenic peptide.
The strength of signal (SOS), in turn, depends on several factors: the affinity/avidity
of the TCR for the MHC–peptide complex, the time of engagement, antigen con-
centrations, costimulatory interactions, etc. This chapter reviews the effects of SOS
on thymocyte selection and education, T cell costimulation, proliferation, survival,
formation of T helper TH 1 and TH 2 subsets, responses to infectious agents etc. The
role of the SOS in modulating diverse T cell responses is well appreciated. However,
further studies are required to understand the mechanisms by which SOS signals
are relayed from the TCR to downstream effectors to modulate T cell activation and
responses.

Introduction

Higher vertebrates have complex immune systems which allow them to survive in an
environment teeming with infectious agents and also to combat internal abnormali-
ties such as tumors. Immune cells, irrespective of whether they belong to the innate
or adaptive arms, remain quiescent in a healthy individual and swing into action
only when the body is under threat, for example during infections. Usually, the cells
belonging to the innate arm, e.g. neutrophils and macrophages, are the first to come
in contact with an invading microbe. These cells produce non-specific effectors,
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for example free radicals, to contain the infection. In addition, antigen processing
cells (APC) process and present peptides derived from microbial proteins to initiate
the T cell response. Unlike the initial non-specific innate immune response, the
adaptive immune response is relatively delayed but highly antigen-specific due to
the presence of clone specific B cell receptors or T cell receptors (TCR) on B cells
and T cells respectively. The subsequent activation and expansion of specific T and
B cell clones followed by the secretion of effector molecules, for example antibod-
ies secreted by plasma cells, cytokines by CD4C T cells, granzymes and perforins
by CD8C T cells, play important roles in protecting the host. Subsequently, im-
mune responses are down modulated (involving death of activated cells) although
some memory B cells and T cells survive. Clearly, the ability to induce a specific
immune response against antigens is an important hallmark of the immune system
in higher organisms.

T cells are one of the most versatile immune cells and perform several functions
ranging from providing B cell help, killing infected/tumor cells and regulating im-
mune responses. The study of T cells becomes important because any perturbation in
their function leads to severe disorders. Hyperactive T cells are observed in several
autoimmune diseases such as multiple sclerosis, insulin dependent diabetes melli-
tus etc. On the other hand, reduced T cell function makes individuals susceptible to
pathogens and tumors as observed in patients with the acquired immunodeficiency
syndrome. The importance of the T cell response is highlighted by the fact that im-
munotherapy is very often targeted towards modulating T cell function, for example
suppressing the response during autoimmunity, hypersensitivity and transplantation
or boosting it for successful vaccination purposes.

The adaptive immune response mediated by T cells begins in the secondary lym-
phoid organs with the interaction of dendritic cells (DCs) bearing surface antigen
loaded MHC molecules with specific TCR bearing T cells. A productive interaction
leads to clonal expansion and differentiation of naı̈ve T cells into effector T cells.
Depending on their surface homing receptors, these effectors migrate to specific tis-
sues, under the influence of chemokine gradients, to perform their functions. There
are several outcomes downstream of T cell activation and multiple factors deter-
mine the differentiation program of naı̈ve T cells, whether they proliferate or die
and, finally, whether a productive T cell response clears the infection/tumor. One of
these factors is the strength of the activating signal delivered to the cell upon interac-
tion of the TCR with the MHC–peptide complex on APCs. The strength or potency
(weak or strong) of the signal is, primarily, determined by the affinity/avidity of the
TCR–MHC interaction, the duration of the interaction, the dose of antigen available
and presence of costimulatory signals. This chapter will give a brief introduction
to T cell activation and will delve deeper into the mechanisms by which the SOS
impacts cell fate decisions in the thymus and influences T cell function and death in
the periphery.
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The T Cell Receptor

A T cell recognizes processed antigenic peptides presented on MHC class I or class
II molecules with the help of specific cell surface receptors known as the TCR. It is
important to point out that the TCR is different from the B cell receptor in that it does
not bind antigen alone but only does so in the context of self MHC molecules. This
attribute is known as self-MHC restriction, which was first described by Doherty and
Zinkernagel [1]. The TCR is a heterodimer of two disulphide linked chains, either
˛ˇ or �ı. About 95% of TCRs are a heterodimer of ˛ and ˇ chains and a small frac-
tion (2–5%) expresses the �ı heterodimer. On account of having an immunoglobulin
like domain structure, TCRs are considered members of the immunoglobulin super-
family. Each ˛ and ˇ chain has an amino terminal variable (V) and a constant (C)
region much like an antibody. In addition, each chain has a transmembrane region
of 21 or 22 amino acids and a very short 5–12 amino acid long cytoplasmic tail. In
humans the ˛ and ı gene segments are located on chromosome 14 and the ˇ and �

segments on chromosome 7. The generation of functional TCR molecules is due to
rearrangement of V and J segments of the ˛ and � chains and V, D and J segments
of the ˇ and ı chains. This mechanism is similar to antibody gene rearrangements
and occurs in the thymus.

As TCRs contain a very short cytoplasmic tail, signal transduction after MHC–
TCR binding occurs via the CD3 molecule. In fact, TCRs are associated with the
CD3 complex (Fig. 4.1) consisting of five invariant chains which form two het-
erodimers (�" and "ı) and one homodimer (��). The cytoplasmic tails of the CD3
chains contain special immunoreceptor tyrosine-based activation motifs (ITAM)
which interact with tyrosine kinases and play important roles in signal transduc-
tion. The sequence of a typical ITAM is YXXL/IX6�8YXXL. � , ı and " have single
ITAMs while � has three in a row, taking the tally up to ten ITAMs per TCR–CD3
complex.

Apart from the TCR–CD3 complex, T cells express several other important sur-
face molecules, the most vital among them being the CD4 and CD8 co-receptors,
which are also members of the immunoglobulin superfamily. T cells are, broadly, di-
vided into two subsets: CD4C T cells recognize antigen in context of MHC class II,
and CD8C in context of MHC class I (Fig. 4.2). CD4 is a monomer whereas CD8
is a heterodimer of ˛ and ˇ chains. These co-receptors perform two functions: first,
their extracellular domains bind regions on the MHC molecule thus strengthening
interaction with the TCR. Second, their intracellular domains associate with the
Src family tyrosine kinase, Lck, and this association helps in signal transduction.
Mice lacking CD4 generate reduced MHC class II restricted T cells, produce less
Interleukin (IL)-2 upon activation and are unable to mount an efficient antibody
response [2, 3].
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Fig. 4.1 Structure of the T cell receptor–CD3 complex. Most T cells express a cell surface TCR
consisting of a heterodimer of ˛ and ˇ chains bearing variable antigen binding (blue) and constant
(pink) regions. The TCR does not transduce a signal upon antigen binding and this function is
performed by the associated CD3 complex comprising of �, � , ı and � chains. CD3 subunits have
long cytoplasmic tails bearing ITAMs (green) which assist in signal transduction

Signalling Pathways Leading to T Cell Activation

T cell activation is initiated when a naı̈ve circulating T cell comes in contact with
an APC expressing on its surface the cognate MHC–peptide complex. The TCR
binds to the MHC–peptide complex and a cascade of signalling events is triggered,
the end result of which is the secretion of IL-2 and clonal expansion (Fig. 4.3).
Events downstream of the binding of the TCR upon activation can be classified as
early and late. Early responses include formation of the immunological synapse, a
specialized structure at the contact point(s) between the T cell and APC, phosphory-
lation and activation of kinases and other proteins, massive remodelling of the actin
cytoskeleton, changes in cytosolic Ca2C concentrations and, finally, activation of
transcription factors such as NF-AT and their translocation into the nucleus [4].
Subsequent events include transcription and translation of genes, such as IL-2,
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Fig. 4.2 Optimal T cell activation requires a combination of primary and secondary signals.
CD4C and CD8C T cells recognize antigenic peptides in context of MHC class II and MHC class I
molecules, respectively. CD4 and CD8 co-receptors stabilize the TCR–MHC peptide interaction
which sends signal 1 to the T cell. Binding of CD28 on T cells with CD80/CD86 on the APCs
or target cells delivers signal 2 which drives T cell cytokine secretion and clonal expansion. Also
important is the interaction between CD40 on APCs and CD40L on CD4C T cells for T dependent
B cell responses and isotype switching

appearance of activation markers such as the CD25 (the high affinity IL-2 receptors),
DNA replication and cell division. Further down the line are events which lead to
differentiation of cells into effector and memory types and the eventual clearance of
effector cells to maintain homeostasis.

The first signalling event downstream of the TCR is the phosphorylation of
the ITAMs by the kinases Lck and Fyn. Multiple pathways might be operating
in coupling the binding of TCR and the cognate-MHC–peptide complex to phos-
phorylation of ITAMs in CD3: First, the proximity of CD4 linked Lck to the
TCR–CD3 complex may be responsible. Second, conformational changes in the
CD3 polypeptides induced by TCR ligation may make the ITAMs more accessible
to phosphorylation. Alternately, the exclusion of Csk and other phosphatases may



80 A. Ahmed and D. Nandi

Fig. 4.3 An overview of
T cell signalling pathways
leading to transcription
of IL-2. Activation via the
TCR–CD3 complex
stimulates multiple pathways
that upregulate three major
transcription factors (shown
in red), leading to enhanced
IL-2 production in T cells

push the momentum towards phosphorylation. Phosphorylated ITAMs now serve as
docking sites for Src homology (SH)2 domain containing protein tyrosine kinases,
e.g. Zeta associated protein 70 kDa (ZAP70), spleen tyrosine kinase (Syk), and a
Tec family member, IL-2 induced tyrosine kinase (Itk) and Receptor like kinase
(Rlk) [4, 5].

A dramatic increase in cytosolic Ca2C due to release from ER stores is one of
the early events which takes place after ligation of the TCR–CD3 complex with the
cognate MHC–peptide complex. The trigger for release of Ca2C from smooth endo-
plasmic reticulum stores is the binding of IP3 (generated by the activation of PLC� )
to its receptors (Fig. 4.4). Cytosolic Ca2Camounts in a resting T cell are about
0.1 mM but increase to 0.5–2 mM as soon as the smooth endoplasmic reticulum
Ca2C stores are opened. However, these stores are soon exhausted and this depletion
acts as a trigger for Ca2C from the extracellular milieu to flow into the cell through
Ca2C release activated channels (CRAC). This process known as capacitative Ca2C
entry ensures that cytosolic Ca2C levels are maintained at higher than basal amounts,
e.g. �0.2–0.5 mM, which is required for sustained T cell activation [6].

The Immunological Synapse

The immunological synapse (IS) is a highly specialized structure which is formed
at the interface of a T cell and APC. Molecules present in the IS are the TCR,
CD4 associated with Lck, CD28, PKC� and LFA-1 on the T cell side and pMHC,
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Fig. 4.4 A simplified overview of the Ca2C signalling pathway. First, signals downstream of the
TCR–CD3 complex lead to generation of InsP3. Second, the InsP3 binds to its receptors on the
SER leading to release of Ca2C in to the cytosol. Soon, the intracellular Ca2Cstores are exhausted.
Third, this depletion is sensed and conveyed by stromal interaction molecule 1 (STIM1) to the
plasma membrane CRAC channels, which now open and allow Ca2C influx from extrcellular en-
vironment. Fourth, sufficient Ca2C is now present to bind calmodulin and enable activation of
phosphatase calcineurin. Finally, calcineurin dephosphorylates cytosolic NF-AT (cNF-AT), leads
to its nuclear translocation and nNF-AT, along with other transcription factors, enhances transcrip-
tion of IL-2

CD80/CD86 and ICAM-1 on the APC side. Circulating T cells which have not
encountered antigen are symmetrical, round and non-polarized. Also, their adhe-
sion molecules are in a low activity state. However, when they migrate to inflamed
tissue or extravasate into secondary lymphoid tissue they become polarized, possi-
bly under the influence of chemokine gradients. These T cells now have a leading
F-actin rich lamellipodium and a myosin-II rich uropod (lagging end), migrating
with a speed of 5–10 �m/min. The lamellipodium is five- to tenfold more sensi-
tive to antigen than the uropod. Enhanced actin polymerization at the leading edge
also leads to the activation of integrins. The chances of adhesion and formation of
a synapse between the T cell and APC bearing the agonist MHC–peptide complex
are now increased manifold. Recognition of agonist MHC–peptide complex by the
TCR leads to elevation of Ca2C, which serves as a stop signal for T cell migration.
Formation of the IS begins with a few TCR–MHC–peptide complexes and, subse-
quently, these clusters come together to form a supra-molecular complex [7].
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Costimulation

Optimal T cell activation, in addition to the signal generated by TCR–MHC–peptide
complex ligation, requires a second costimulatory signal. This interaction involves
costimulatory receptors like CD28 on the T cells and their ligands CD80/CD86 on
APCs. This is known as the two signal hypothesis [8] and is required to drive T cell
proliferation and effector functions. In addition, it prevents anergy, a state of unre-
sponsiveness during a secondary encounter with antigen [9]. In vitro experiments
performed to study anergy primarily characterized it as a condition of reduced pro-
liferation and cytokine production (mainly IL-2) upon restimulation of T cells. The
situation is slightly different in vivo where the phenomenon of un-responsiveness is
termed as adaptive tolerance and is required to prevent autoreactivity.

CD28, a 44 kDa glycoprotein homodimer, is a member of the immunoglobulin
superfamily and is constitutively expressed on T cells [10]. Structurally, it has a
leader sequence, an extracellular domain comprising of three complementarity de-
termining regions (CDRs), a transmembrane region and an intracellular domain. Its
ligands are CD80 and CD86 expressed on APCs. CD86 is constitutively expressed
on APCs but CD80, almost absent on resting cells, is upregulated during inflamma-
tion. The ligand binding motif of CD28 consists of MYPPY which is present in the
CDR3 region and shows high conservation in CD28 from different species. CD28
is present at the immunological synapse and functions mainly as an amplifier of
TCR signals [11] and enhances recruitment and redistribution of lipid rafts [12]. It
boosts Ca2C signalling and prolongs T cell–APC interactions [13]. The signalling
molecules, Itk, PI3K and PLC� , assemble on the CD28 intracellular tail to form a
signalling unit [13]. Consequently, CD28 signalling leads to higher nuclear levels
of transcription factors like NF-AT and AP-1 and enhanced transcription of Il-2.
Also, CD28 signalling stabilizes IL-2 mRNA levels. All this leads to enhanced IL-2
levels and cell cycle progression in cells which receive both the first and the second
signal [14]. CD28 prolongs T cell responses as is highlighted by the phenotype of
Cd28�=� mice which can initiate but not sustain T cell activation [15].

CD28 also enhances T cell survival by upregulating anti-apoptotic proteins such
as Bcl-2 and BclXL and inhibiting FasL expression [16]. CD28 apart from amplify-
ing TCR signals can generate its own unique signal. After it has bound to its ligand,
Tyr residues on its cytoplasmic tail get phosphorylated and lead to the recruitment
of PI3K [17]. Among other molecules that get activated downstream of CD28 are
Tec, Itk [18] and the guanine nucleotide exchange factor Vav-1 (involved in actin
polymerization) and PLC�1 [19]. A comparative study of expression in cells ac-
tivated with TCR alone, CD28 alone or the two together showed both quantitative
and qualitative differences in genes modulated by CD28 [11].

While CD28 is the prototypic positive costimulatory receptor, at the other end
of the spectrum is the cytotoxic T lymphocyte associated molecule 4 (CTLA4 or
CD152). Interestingly, CD28 and CTLA4 bind to the same ligands, i.e. CD80 and
CD86. CTLA4, a 33–45 kDa glycoprotein, binds to CD80 and CD86 but with a man-
ifold higher affinity than CD28. Also, CTLA4 is expressed only on activated T cells,
unlike CD28. CTLA4 is a negative regulator of T cell responses as concluded from
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the phenotype of Ctla4�=� mice which die from hyperproliferation of lymphocytes
by 4–6 weeks of age [20, 21]. Reducing Ctla4 expression in mice using small in-
terfering RNA causes onset of diabetes in mice [22]. This is important in light
of the fact that several autoimmune disorders map to mutations in CTLA4 in hu-
mans [23]. Several mechanisms have been proposed to explain the inhibition of
T cell activation by CTLA4. These can be broadly classified into two categories:
(1) by competing with CD28 for CD80/CD86 ligands or (2) generating its unique
set of signals. CTLA4 inhibits the TCR and CD28 induced raft formation, asso-
ciation with the tyrosine phosphatase SHP-2 and the serine/threonie phosphatase
PP2A which downregulates MAPK and ERK signalling. Increase in TGFˇ secre-
tion and increment in indoleamine dioxygenase (IDO) activity have been observed
with CTLA4 ligation. More recently, CTLA4 has been shown to decrease T cell–
APC dwell times by modulating intracellular Ca2C levels. Overall, the net effect of
CTLA4 ligation results in a decrease in IL-2 production and cell cycle progression
[24–27].

Some other positive costimulatory receptors are CD40, inducible-costimulator
(ICOS), OX40, 4-1BB, signalling lymphocyte activation molecule (SLAM). CD40
is expressed on B cells and other professional APCs and binds to its ligand CD40L
on T cells (Fig. 4.2) [28]. Productive T dependent B cell responses and isotype
switching requires CD40-CD40L interactions [29]. Cd40l�=� mice show reduced
antigen-induced inflammatory responses, e.g. lower IgE and IgG amounts, and are
unable to clear some microbial infections, e.g. Leishmania major [30, 31]. ICOS
is a member of the B7 family and binds to its ligand ICOS-L. It is induced on ac-
tivated T cells and Icos�=� mice have impaired germinal centre and Peyer’s patch
formation [32,33]. OX40 is a member of the tumor necrosis factor (TNF) family and
binding to its ligand, OX40L, sustains proliferation of T cell effectors. OX40 sig-
nalling enhances IL-2 and TH 2 cytokine production. Ox40�=�mice have impaired
effector and primary response to keyhole limpet hemocyanin [34]. Also, OX40 sig-
nalling dampens Treg function, increases symptoms of autoimmunity but lowers
anti-tumor responses [35]. 4-1BB (CD137) is another tumor necrosis factor fam-
ily member which binds to its ligand 4-1BBL to enhance CD4C and CD8C T cell
responses and promote IFN� production. Importantly, 4-1bb�=� mice have defec-
tive recall CD8C responses to some viruses like influenza [36]. Binding of CD27, a
member of the TNF family, to its ligand CD70 promotes proliferation and survival
of activated T cells. Constitutive activation of CD27 results in immunopathology
during autoimmunity and viral infections [37]. Signalling lymphocyte activation
molecule (SLAM) deficiency reduces IL-4 and marginally increases IFN� produc-
tion in mice [38].

Other negative regulators of T cell activation, apart from CTLA4, are pro-
grammed death (PD)1 and B and T lymphocyte attenuator (BTLA). PD1 is a B7
family member and binds to its ligand PD-L1 and PD-L2. Pd1 �=� mice develop
lupus-like disorders [39]. BTLA is also a B7 family member and a negative regula-
tor of B and T cell responses and Btla�=� mice develop exacerbated experimental
autoimmune encephalomyelitis (EAE) [40]. A regulatory role has recently been as-
signed to the T-cell Ig domain and mucin domain (TIM) family members TIM-1, 2, 3
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and 4. TIM1, 2 and 3 are expressed on T cells while TIM4 is primarily expressed on
APCs [41]. TIM-3 was identified as TH 1 specific molecule responsible for regulat-
ing autoimmunity [42]. TIM-1, 3 and 4 can costimulate T cells, regulate apoptosis,
tolerance and clearance of apoptotic cells [41]. Links have been found between TIM
proteins and allergy, asthma and autoimmunity [43].

The proper functioning of positive and negative costimulatory molecules is cru-
cial for an optimal T cell response and is highlighted by the phenotypes of mice
deficient in any of these molecules. It is important to point out that costimulation
ensures that T cell activation occurs in a proper context e.g. during an ongoing im-
munological response and this safeguards against development of autoimmunity.

SOS and Its Intracellular Modulators

Two important factors during T cell activation are the affinity/avidity of the TCR
for the MHC–peptide complex and the time for which the two are engaged. Both
these factors along with the availability of co-stimulation determine the overall SOS
that is delivered to a T cell during activation. T cells express heterogeneous TCRs
which may bind to the same antigen with different affinities. Therefore, T cells get
activated with varying SOS, which has a profound impact during thymic education
and modulate T cell responses in the periphery with respect to proliferation, cytokine
secretion, survival and death. It is thought that optimal T cell activation requires
sustained signalling for several hours. To achieve this, TCRs need to be continuously
engaged or triggered at periodic intervals (serial triggering). The model of ‘temporal
summation’ proposes that each short-term TCR–MHC–peptide interaction leads to
accumulation of intracellular signalling intermediates until a threshold for optimal
activation is reached [44].

One of the signalling intermediates robustly modulated by signal strength is in-
tracellular Ca2C. The stronger the signal, the higher is the Ca2C flux [45]. Also,
intracellular amounts of Ca2C and ROS increase with the SOS in primary mouse
CD4C T cells [46]. The TCR interacting molecule (TRIM), a transmembrane adap-
tor protein expressed on T cells, stabilizes TCR surface levels after engagement
with MHC–peptide complexes and leads to higher intracellular Ca2C amounts, lead-
ing to enhanced activation [47]. The other intracellular integrator of signal strength
is ERK. There is evidence to suggest that strong signals lead to greater but tran-
sient ERK activation. On the other hand, weak signals result in lower but sustained
ERK phosphorylation [48]. Proteins such as Fos which have an ERK targeting DEF
motif are sensitive to transient versus sustained ERK activation and can trigger
gene transcription in accordance with the SOS [49]. Disruption of Mekk2 (an up-
stream MAPK kinase) in mice leads to enhanced IL-2 and IFN� . In these mice
JNK activation, but not ERK activation, is affected and it is possible that MEKK
acts as a negative regulator of TCR signal strength by activating JNK [50]. An-
other negative regulator of TCR signal strength was identified as cyclophillin A, a



4 T Cell Activation and Function: Role of Signal Strength 85

peptidyl-prolyl isomerase (Ppia). Ppia interacts and inhibits Itk and Ppia�=� mice
have elevated levels IgE, develop allergic disorders and their T cells are hypersensi-
tive to activation [51].

Other cell surface molecules that are regulators of signal strength are CD5 and
the co-receptor CD8. CD5 is a negative regulator of TCR signalling and, hence,
protects against autoimmunity. T cells from Cd5�=� mice are hyperresponsive to
anti-CD3 mediated activation [52]. CD5 expression levels are also controlled by
the avidity of the TCR–MHC–peptide interaction and a strong interaction leads to
higher surface amounts of CD5. Massive deletion of thymocytes in transgenic mice
expressing high affinity TCR in a Cd5�=� background is observed due to a shift
from positive to negative selection [53]. Unlike CD5, CD8 expression is inversely
proportional to TCR signal strength. Experiments done to study this relationship
found that, as the affinity of TCR and self MHC–peptide complexes increased, CD8
surface expression is reduced. It is possible that reducing surface CD8 amounts
lowers the avidity of T cells for self ligands and prevents autoimmunity [54].

Although the molecular mechanisms and the intracellular modulators of signal
strength are not completely understood, progress has been made in identifying
several molecules that influence the SOS. However, the modulation of expression
of these molecules under varying SOS and their interaction with other molecules
affecting T cell responses need to be understood in greater detail. Nevertheless, the
impact of SOS on almost every aspect of T cell life is well established and discussed
below.

Role of Signal Strength in Cell Fate Decisions in the Thymus

The thymus is a bilobed structure located just above the heart comprised of support-
ing cells which constitute the stroma and T cells, in various stages of development,
known as thymocytes. Progenitor bone marrow cells migrate to the thymus under
the influence of chemotactic factors by day 11 of gestation in mice and the eighth
or ninth week in humans. Once in the thymus, progenitor T cells undergo a process
of maturation and education to yield mature single positive (SP) CD4C or CD8CT
cells that enter the peripheral circulation (Fig. 4.5). Approximately 99% of thymo-
cytes die by apoptosis during this process and only mature T cells that recognize
peptides presented in the context of either MHC class I or MHC class II are selected.
The importance of the thymus is highlighted in children suffering from DiGeorge
syndrome which results from deletions in chromosome 22q11.2. Similar deletions
in mice chromosome have highlighted the importance of the transcription factor
Tbx1 in this disorder. These children have an underdeveloped or completely absent
thymus and, along with several other defects, are highly susceptible to viral, fungal
and protozoan infections [55].

The development and maturation of thymocytes can be tracked by following the
changes in expression of cell surface molecules. During the early stages of differ-
entiation, thymocytes lack surface expression of CD4 and CD8 and are referred
to as CD4�CD8� or “double negative (DN)”. A small fraction of CD4�CD8�
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Fig. 4.5 A simplified overview of thymic development and education. T cell precursors that enter
the thymus undergo a rigorous programme of development and education involving positive and
negative selection to emerge into the periphery as �ı T cells or ˛ˇ TCR bearing CD4C or CD8C

T cells

thymocytes make productive rearrangements of their � and ı chain genes to ex-
press surface �ı TCR together with the CD3 complex. �ı T cells represent about
0.5–10% of peripheral T lymphocytes and are quite abundant in the skin, intestinal
epithelium and pulmonary epithelium in mice. These cells are capable of recogniz-
ing a broad range of peptide and non-peptide antigens but not necessarily in the
context of the MHC class I and class II molecules. They are believed to be members
of the earliest cell-mediated immune system and may have evolved to protect the
integrity of epithelial tissues [56].

A vast majority of thymocytes productively rearrange ˛ and ˇ TCR genes to ex-
press on their surface the ˛ˇ TCR–CD3 complex. TCR gene rearrangement occurs
in a manner similar to antibody gene rearrangement in B cells with the help of RAG-
1 and RAG-2 and other proteins required for DNA recombination. During these
stages, thymocytes also acquire surface CD4 and CD8 molecules and are referred to
as CD4CCD8C or “double positive (DP)” thymocytes. This stage is important for
thymic education as only those thymocytes which recognize self MHC molecules
are selected by a process known as “positive selection.” Thymocytes which bind to
self-MHC molecules with very high affinity are deleted by a process known as “neg-
ative selection.” This process is important as it reduces the risk of autoimmunity and
is well illustrated by the master transcription factor, AIRE, which is responsible for
expression of several self proteins in the thymus. The deficiency of AIRE results in
a multi-organ autoimmune disease known as autoimmune polyglandular syndrome,
type 1 [57]. Thymocytes that fail these selection processes die by apoptosis. The
MHC restricted self tolerant double-positive thymocytes lose either CD4 or CD8
co-receptor to become mature SP CD4C (TH ) or CD8C (TC) T cells and enter the
peripheral circulation [3].
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Apart from positive and negative selection, two more cell fate decisions relevant
in terms of the SOS in the thymus are: (1) the development of T cells express-
ing either �ı TCR or the ˛ˇ TCR and (2) differentiation of ˛ˇ TCRC cells
into CD4C or CD8C lineages. In both these cell fate decisions, the SOS deliv-
ered via the TCR plays crucial roles. Precursor cells in the thymus consisting of
c-kitCCD44CCD25CCD24CCD4�CD8– can differentiate into different lineages
and the DN stage is divided into 4 stages (1–4). As development progresses, thy-
mocytes express less c-kit, CD44, CD25 and CD24, acquire Thy1, CD4, CD8 and
begin to rearrange their TCR genes. Commitment to the T cell lineage takes place at
the DN stage 3 once precursors acquire Thy1 and express a fully functional preT˛

(an invariant ˛ chain of the TCR which is expressed early in the thymus) and rear-
range their � and ı chains. This is also the stage when the choice between the two
development programs, i.e. ˛ˇ and �ı, needs to be made. Those cells which fail to
productively rearrange their TCR genes or do not express surface TCR die by apop-
tosis. Two models have been proposed to explain how the choice between the ˛ˇ

TCR versus the �ı TCR is made. The first model is the stochastic/selection model
according to which cell fate specification is made independent of signals induced
by the TCR, i.e. fate is decided before fully functional TCRs (�ı and preT˛ˇ) are
expressed [58]. The second is the instructive model in which fate is decided based
on distinct signals generated through the preT˛ˇ and �ı TCRs. One of the distin-
guishing factors in the generation of these two TCRs is SOS and the development
of one lineage should affect the development of the other, according to this model
[58–60]. The SOS model for lineage commitment was put forward by Hayes
et al. [61]. Using a model where fate specification was entirely mediated by the �ı

TCR, this group showed that increasing signal strength through the �ı TCR en-
hanced the development of �ı T cells. Conversely, weakening of signal strength
resulted in the development of T cells belonging to the ˛ˇ lineage. Similar results
were reported by another group [62]. One way in which signal strength through
�ı and preT˛ could be altered is through differences in their surface expression.
Reduction in �ı TCR surface expression skewed development towards ˛ˇ T cells.
Concomitantly, increasing expression of the �ı TCR increased the development
of �ı T cells and reduced the development of ˛ˇ T cells [63]. Also, reducing �ı

TCR signalling by reducing the number of ITAMs on the CD3� chain enhances ˛ˇ

commitment [64]. It has been shown that the magnitude of signalling downstream
of the �ı TCR is greater compared to that generated by the pre-TCR [65].

A biochemical basis for the lineage commitment has also been explained in terms
of ERK activation. A strong signal as delivered by the �ı TCR leads to sustained
activation of ERK, while transient ERK activation by the weak pre-TCR signal
is more conducive for proliferation and transit of cells to the DP stage [61, 62].
Sustained ERK activation leads to enhanced induction of early growth response fac-
tor (Egr), a Zn2C finger transcription factor. Egr proteins are induced by both �ı

and pre-TCR signals; however, the level of induction is regulated by the SOS. Over-
expression of Egr leads to more �ı T cells and a decrease in ˛ˇ T cell numbers.
Downstream to Egr is Id3, a helix-loop-helix (HLH) protein. Induction of Id3 is
found to be concomitant with �ı T cell lineage commitment [62]. One mechanism
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by which Id3 nudges cells towards the �ı T cell lineage is by suppressing the activ-
ity of basic helix-loop-helix E proteins which are required for VDJ recombination
by the TCR ˇ chain [60, 62].

In addition to differing SOS in determining ˛ˇ ‘vs’ �ı cell fate, a role for Notch
signalling has also been proposed. According to this model, moderate pre-TCR sig-
nals synergize with Notch signals enabling generation and proliferation of ˛ˇ T
cells. While strong �ı TCR signals are sufficient for the lineage commitment of �ı

T cells, weak �ı TCR signals can synergize with strong Notch signals to give rise
to ˛ˇ cells. In other words, it appears that development of ˛ˇ T cells depends more
on Notch signalling compared to �ı T cells [66].

After commitment to the ˛ˇ lineage, DN stage 4 cells become CD4CCD8C or
DP in addition to the expression of the TCR ˇ chain. The ˛ TCR chain now un-
dergoes rearrangement. In fact, DP cells continue to express RAG proteins for an
extended period of time and multiple V/J recombinations occur at the same ˛ locus
so that several ˛ˇ TCRs can be produced per cell. DP thymocytes in the cortex
bearing the ˛ˇ TCR undergo selection processes that are dependent on signals
generated through the binding of TCR to the MHC–peptide complex. The affin-
ity/avidity model for positive and negative selection is the most widely accepted.
˛ˇ TCRs which have low to intermediate affinity for self MHC, undergo positive se-
lection and differentiate into CD4C or CD8C SP cells while those TCRs which have
high affinities are negatively selected and undergo clonal deletion. There are several
lines of evidence that indicate that the SOS through the TCR determines the fate of
DP thymocytes. Cells which are unable to engage MHC or do so with a very low
affinity die by neglect, a fate which befalls most DP thymocytes. Those which en-
gage MHC with an intermediate intensity are positively selected and those that bind
with too high an intensity are either clonally deleted, become anergic or differentiate
into regulatory T cells (Treg), which are peripheral immune regulators [67]. Those
thymocytes that survive the rigorous selection process and are MHC restricted are
present in the medulla and enter the peripheral circulation as mature T cells.

The binding affinities of TCR–MHC peptide complexes are reflected in the signal
strengths generated downstream of the TCR which trigger specific programs leading
to either positive or negative selection. Experiments have shown that by varying the
SOS, positive and negative selection decisions can be altered. In a study to exam-
ine the role of TCR signal intensity on positive and negative selection, TCR signal
potency was varied by substituting transgenic TCRs having 1, 2, 3 or no ITAMs
on the CD3� chain. Interestingly, decreasing the signalling ability in cells with low
affinity led to reduced selection. However, in cells which bound self-MHC with very
high affinity and would normally have undergone clonal deletion, decreasing TCR
signal potency by varying the number of ITAMs increased the chances of positive
selection [68]. Low affinity ligands generate the p21 form of CD3 � which has only
2/3 ITAMs phosphorylated while high affinity ligands lead to phosphorylation of
all 3 � ITAMs resulting in formation of the p23 form. The signalling molecules and
adaptor proteins recruited by p21 and p23 are different and may explain the dif-
ferences in the distinct signalling programs triggered during positive and negative
selection [69].
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The activation of ERK has been shown to integrate signal strength and cell fate
decisions in the thymus. Positive selecting ligands trigger low but sustained ERK
activation whereas negative selecting ligands lead to strong but transient ERK ac-
tivation. Also, in foetal thymic organ cultures, negative selection stimuli can be
converted to positive selection signals by use of pharmacological inhibitors of ERK.
One of the reasons behind differences in ERK activation during positive and nega-
tive selection is thought to be the time for which TCRs remain on the surface. High
affinity/negative selection ligands induce rapid internalization of TCR. However,
during low affinity interactions TCRs stay on the surface for longer times, lead-
ing to prolonged ERK activation which is essential for survival and proliferation
of positively selected DP thymocytes. Sustained ERK activation leads to phospho-
rylation and ubiquitin mediated proteosomal degradation of pro-apoptotic protein
Bim. On the other hand strong and transient ERK activation leads to upregulation of
genes such as Nur77 that lead to apoptosis [70–72]. Another line of evidence sug-
gesting the involvement of TCR-Ras-MEK-ERK pathway is the fact that targeted
deletion of RasGRP, a guanine nucleotide exchange factor for Ras, has a profound
effect on positive selection by virtue of reduced ERK activation [73]. A germline
knockout of ERK1 having a conditional deletion of ERK2 at the DN stage re-
sulted in developmental arrest at the DP stage, suggesting a role for ERK in positive
selection [74].

The process of commitment to either the helper (CD4C) or cytotoxic (CD8C) lin-
eages is crucial and DP thymocytes downregulate either CD4 or CD8 co-receptors
to become MHC class II or class I restricted. This process could be random and
independent of TCR signals such that cells which down regulate the mismatched
co-receptor are eliminated. However, the stochastic model could not explain why
constitutive co-receptor expression could not rescue cells which had mismatched
CD4 or CD8 expression. The instructive model, on the other hand, suggests that
commitment to the CD4 and CD8 lineage occurs in response to specific TCR sig-
nals [75]. Lck associates with CD4 more compared to CD8 and this may lead to
stronger signals being delivered by MHC class II compared to MHC class I re-
stricted cells [76]. Strong and weak signals lead to selective downmodulation of
either CD4 or CD8. Evidence suggests that weak signal stimulated cells develop into
CD8C T cells whereas strong signals stimulate differentiation into CD4C T cells.
Mice expressing an inactive Lck contain MHC class II restricted cells differenti-
ating into CD8C T cells and constitutively active Lck can direct MHC-I restricted
cells to differentiate into the CD4 lineage [77]. Lineage commitment can also be de-
cided by signal duration where, longer and shorter duration signals lead to CD4 and
CD8 lineage commitment respectively [78]. Another model termed the ‘kinetic sig-
nalling model’ proposes that the duration of TCR signalling rather than the strength
plays a key role in determining the CD4C or CD8C T cell lineage. However, in this
case too, the quantity of signal delivered to a cell is the deciding factor. What this
model proposes is that all DP cells transiently terminate CD8 expression so that they
become CD4CCD8lo. If this transient population of cells receives sustained TCR
signalling, it develops to form CD4C cells. If the signalling is of a short duration,
transcription of CD8 is reinitiated, CD4 is silenced and CD8C SP cells develop [79].
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Consistent with this model, mice which expressed CD4 under the control of CD8
E8III enhancer, showed progressive downmodulation of CD4 after the DP stage.
Positive selection of MHC-II restricted cells was normal but the differentiation of
these cells was skewed towards the CD8 subtype by virtue of co-receptor downmod-
ulation [80].

Overall, the strength or duration of signal plays crucial roles during thymic de-
velopment and education: First, the conversion of DN cells to �ı T cells or ˛ˇ T
cells; second, positive and negative selection of ˛ˇ TCRC DP cells and, finally, the
generation of mature CD4C or CD8C SP T cells.

Signal Strength Influences TH 1/TH 2 Dichotomy

The encounter of an antigenic peptide presented on MHC class II triggers a series
of events leading to the differentiation of CD4C T cells into different TH subtypes,
which are characterized by distinct cytokine secretion patterns. Two primary sub-
types identified are TH 1 which secrete IFN� , IL-2, lymphotoxin ˇ and TH 2 which
secrete IL-4, IL-5, IL-6 and IL-13 [81,82]. Another recently identified effector sub-
set is TH 17 which, primarily, produces IL-17. Their generation is regulated by IL-6
and TGFˇ [83] and their development is regulated by the master transcription fac-
tors Stat3 and ROR� [84]. TH 17 cells are crucial for combating several pathogens.
Mice lacking IL-17 are highly susceptible to infection with Klebsiella and Candida.
More importantly, TH 17 cells have been associated with several autoimmune con-
ditions such as multiple sclerosis and rheumatoid arthritis. Indeed IL-17 deficient
mice develop less severe experimental autoimmune encephalomyelitis [85].

TH 1 responses are crucial for clearing intracellular pathogens while TH 2 re-
sponses are effective during parasite infections and antibody production. Abnormal
or excessive TH activation leads to autoimmune disorders (TH 1) or atopy (TH 2).
The local cytokine milieu, co-stimulatory interactions, antigen concentration and
strength of TCR signals are the factors which govern TH differentiation. The
cytokine environment existing during priming has a far reaching effect on differ-
entiation. The presence of IL-12 skews differentiation towards TH 1 whereas IL-4
results in greater TH 2 responses [86]. The SOS, in terms of duration of engage-
ment and antigen dose, is a key determinant in TH fate decision [87, 88]. T cells
from allergic individuals produce IL-4 only when stimulated with a low dose of al-
lergen. When the allergen dose is increased, IL-4 production is reduced and may
form the basis for allergen immunotherapy [87]. On the other hand, IL-12 coupled
with a short duration TCR signal is sufficient for TH 1 polarisation; however, pro-
longed TCR signalling is required for TH 2 responses [88]. A weak intensity signal
provided by a low affinity altered peptide ligand favors TH 2 whereas optimal con-
centrations of an agonist peptide which transduce a relatively strong signal favors
TH 1 differentiation [89–91]. Agonist peptides trigger strong and more sustained
signalling events such as CD3� phosphorylation, Ca2C mobilization, JNK and
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MAPK activation as compared to altered peptide ligands [92–95]. The magnitude of
Ca2Cfluxes downstream of weak and strong TCR signals is an important determi-
nant of TH subtypes. Weak TCR stimulation induce Ca2C signals that promote IL-4
production whereas strong signals induce MAPK activation that induce IFN� [96].
Consistent with this observation, inhibition of MAPK and JNK in both human and
mouse T cells promotes TH 2 and inhibits TH 1 differentiation [97]. Constitutive ac-
tivation of p38 MAPK promotes TH 1 but expression of a dominant negative form
of p38 MAPK inhibits TH 1 differentiation [98]. Stimulation of JNK1 deficient cells
with a combination of anti-CD3 C anti-CD28 enhances TH 2 differentiation [99].
JNK2 deficiency enhances TH 2 differentiation but suppresses TH 1 primarily due
to a lack of upregulation of the IL-12Rˇ2 subunit [100].

The key transcription factors required for TH 1 differentiation are T-bet and Stat4
and those involved in TH 2 differentiation are Stat6, c-Maf and GATA-3. T-bet and
GATA-3 are master regulators of TH 1 and TH 2 differentiation respectively [86].
Over expression of T-bet induces TH 2 cells to make IFN� and T-bet�=� mice have
impaired TH 1 differentiation, show increase in TH 2 cytokines and develop asthma
like symptoms [101, 102]. On the other hand, deletion of GATA-3 leads to TH 2
cytokine defects [103]. Stat4 is an amplifier of IL-12 signals and can induce TH 1
differentiation even in absence of TCR signals, whereas Stat6, activated by IL-4, in
turn is essential for activation of GATA-3 [82, 86]. However, the transcription fac-
tors that are primarily modulated by the SOS belong to the NF-AT class. Activation
and nuclear localization of NF-AT is dependent on the Ca2C signal. Stronger Ca2C
signals ensure longer nuclear dwell times for NF-AT. The SOS regulates amounts
of NF-ATp (NF-ATc2 or NF-AT1) and NF-ATc (NF-ATc1 or NF-AT2) in the nu-
cleus. Strong signals as opposed to weak ones lead to more NF-ATp accumulation
in the nucleus, which promotes GATA-3 suppression and TH 1 differentiation. Al-
tered peptide ligands on the other hand have low NF-ATp but sufficient NF-ATc in
the nucleus to drive IL-4 transcription and TH 2 differentiation. Both IL-4 and IL-2
have been shown to be essential for TH 2 differentiation in response to low dose
antigenic peptide. Cells receiving low intensity signals upregulate GATA-3 which
can, in turn, enhance its own levels. GATA-3, along with IL-2 activated Stat5, drives
IL-4 transcription and TH 2 differentiation [104].

Co-stimulation through CD28 has not been found to independently contribute
to TH differentiation. The addition of anti-CD28 enhances cytokine secretion but
does not change the kind of cytokines secreted. However, the ability of anti-CD28
to enhance IL-4 production in cells which receive a low intensity signal results in
greater differentiation of TH 2 differentiated cells [91,95]. However what does have
a qualitative effect on cytokine pattern is interaction between LFA-1 and ICAM.
Blockade of this interaction promotes TH 2 whereas increasing the LFA-1-ICAM
interaction promotes TH 1 development due to a sustained Ca2C signal [105, 106].
Overall, it appears that SOS, along with other factors, is important during TH cell
differentiation. This aspect is relevant during TH responses as the dose and potency
of the antigen clearly modulate immune responses.
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Role of Signal Strength in Treg Function

Treg cells are important in the maintenance of peripheral tolerance. They have
been characterized as a subset (5–10%) of CD4C T cells expressing high levels
of CD25, the IL-2R˛ chain, and are capable of suppressing in vivo and in vitro T
cell responses [107]. The primary function of Treg cells is to regulate autoimmu-
nity and depletion of this population in mice has been shown to precipitate several
autoimmune disorders. Injection of CD4CCD25C cells reduces symptoms of sev-
eral autoimmune diseases such as colitis, gastritis, insulin dependent autoimmune
diabetes and thyroiditis in mouse models [107, 108].

Treg cells do not proliferate or produce IL-2 in response to TCR mediated stim-
ulation [109]. Most Treg cells are CD4C, express the transcription factor Foxp3 and
can be divided into two groups: natural Treg (nTreg) and induced Treg (iTreg). The
former arise in the thymus whereas the latter are derived from peripheral CD25�
SP CD4C T cells under the influence of IL-2 and TGFˇ. Both express high levels
of CD25, glucocorticoid-induced tumor necrosis factor inhibitor (GITR), CTLA4,
CCR4, and CD62L [110]. Tregs are CD45RBlow (mice) and CD45ROlow (humans),
a sign that they are pre-activated [110]. Apart from the site of their generation, the
conditions that give rise to natural and induced Tregs are quite different. nTregs are
the result of strong TCR signals delivered by self peptides in the thymus [111]. Also
required for their generation are strong costimulatory signals because, in the absence
of CD28, the numbers of nTreg are reduced [112–114]. On the other hand, iTregs
arise in the periphery due to weak or suboptimal primary and secondary signals
[115, 116]. However, absolutely essential in this case is CTLA4 signalling because
mice lacking CTLA4 do not have this category of Tregs [117]. IL-2 is the cytokine
that is crucial for generation and maintenance of Treg cells [118] as the expression
of Foxp3 is dependent on IL-2 signalling [119]. Indeed, Il-2�=� mice suffer from
fatal autoimmunity [120]. Treg cells are thought to mediate their suppressive effects
via direct cell–cell contact. Numerous mechanisms, including secretion of suppres-
sive cytokines IL-10 and TGFˇ, repression of IL-2 transcription and induction of
the tryptophan depleting enzyme indoleamine 2, 3 dioxygenase in target cells, have
been proposed to explain their mode of action [121].

Tregs, when isolated from peripheral blood, are anergic. As they have immense
therapeutic potential, the possibility of expanding them in vitro would be of great
benefit. What has been found is that TCR and costimulatory signals that drive pro-
liferation of naı̈ve CD4C T cells are insufficient for propagation of Tregs bearing
very high avidity TCRs for self antigens. Apart from strong TCR signals, Tregs re-
quire high intensity CD28 signals for expansion, but high amounts of IL-2 cannot
substitute for CD28 signalling [122]. These results are consistent with results ob-
tained with a superagonist anti-CD28 that selectively increased Treg numbers and
their suppressive activity in rats suffering from EAE. In fact, treatment with this an-
tibody was found to confer protection against EAE and was proposed as a therapy
for treating autoimmune disorders [123].

Signal strength, apart from controlling Treg expansion, also dictates resistance
or susceptibility to Treg mediated suppression. Using an in vitro model, it has been
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shown that human T cells became more and more resistant to Treg suppression as
the SOS, in terms of anti-CD3 mode (soluble ‘vs’ plate-immobilised) and antigen
concentration, was increased [124]. Using this information, a model was proposed
according to which Tregs suppress T cells which receive low intensity signals but
not those that are activated with a stronger signal. The former would be the case
of autoreactive T cells binding to self-peptides and the latter of T cells binding
antigenic peptides derived from pathogens. This mechanism might help Tregs to
control autoimmunity and at the same time avoid suppressing pathogen specific T
cell responses that are essential for the host [125]. Another mechanism by which
Treg function is suppressed during infection is by IL-6 secretion by DCs in response
to Toll like receptor (TLR) ligands. Depletion of CD25C cells restores effector T cell
priming in Il-6�=� mice, suggesting a role for this cytokine in suppression of Treg
function [126]. This aspect is important during the generation of immune responses
during infections.

Role of Signal Strength in Effector and Memory
Phenotype Delineation

Retaining memory long after an infection has been cleared is an important hallmark
of the adaptive immune response. The frequency of a particular CD8C T cell clone
in a normal healthy individual is around 1 in 100,000. Once a clone is exposed to
a specific antigen, it undergoes a burst of expansion dividing several times so that
its numbers increase by about 50,000-fold. After expansion these cells migrate to
inflamed tissue, perform effector functions such as cytokine secretion and cytolysis.
Once the infection is cleared and the antigen is no longer present most (90–95%)
effectors die by apoptosis to maintain homeostasis and prevent damage to self tis-
sue. However, some survive and develop a memory phenotype and are capable of
providing protection during subsequent infections. This entire program of expan-
sion of effector cells and commitment to the memory phenotype requires 2–3 days
after first encounter with antigen. Memory T cells are much faster in responding to
an antigenic challenge compared to naı̈ve T cells. Unlike naı̈ve T cells, a fraction
of memory cells known as effector memory cells (CD62LloCCR7�) resides in non-
lymphoid mucosal sites so that they can encounter antigen immediately. The other
subset is the central memory cells (CD62LhiCCR7C) that reside in secondary lym-
phoid tissue. The balance between effector and central memory cells is dependent
on the dose of antigen and frequency of TCR stimulation [127, 128].

It is unclear whether effector and memory differentiation are coupled. Experi-
ments where effector cells were tagged and then tracked showed that these tagged
effectors appeared in the memory population [129]. However, in some cases it has
been seen that conditions during priming dictate effector/memory differentiation.
A combination of a primary and co-stimulatory signals in presence of cytokines
such as IL-12, IL-21 and IFN˛/ˇ early on during infection promotes effector cell
generation while the primary and secondary signals in absence of an inflammatory
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milieu, when antigen concentrations are lower, reduce the differentiation of memory
cells [130, 131]. Also important during memory phenotype acquisition is help from
CD4C cells. CD8C memory cells which form without CD4C help are qualitatively
poor, do not respond efficiently to secondary antigenic challenge, and die by ac-
tivation induced cell death (AICD). CD4C T cell interaction with DCs generates
chemokines that attract CD8C cells to appropriate niches where they can receive
the entire gamut of signals essential for differentiation into the memory phenotype.
CD4C T cells are essential for long survival of memory cells as CD4 knock-out
mice show gradual decline in memory CD8C cells [127].

Qualitatively good and functional memory cells arise only under conditions of
optimal antigen dose. Chronic infection conditions, such as infection with My-
cobacterium tuberculosis or human immunodeficiency virus (HIV), result in the
persistence of antigens for a very long time. This condition leads to unresponsive
effector cells that are ‘exhausted’ and do not give rise to functional memory cells
but undergo deletion [132]. The degree of CD8C T cell exhaustion depends directly
on the persisting antigen load [127, 133] and with increasing antigen dose, CD8C
effector T cells undergo more rounds of cell divisions and the frequency of memory
cells progressively decreases. Exhaustion results from interaction of programmed
death-1 (PD-1) with its ligand PD-L1, which is highly expressed on chronically in-
fected cells [134]. This line of therapy i.e. blockade of PD-1-PD-L1 interactions,
is being pursued to boost immune responses during vaccination and immunother-
apy [127, 135].

Another important factor in memory cell generation is IL-7 because, in the ab-
sence of signalling by this cytokine, memory cells do not form in mice [136].
Memory cell precursors can be identified by the presence of IL-7R [137]. What has
also been found is that memory cell characteristics i.e. IL-7R˛ expression, prolifer-
ation and expansion in response to IL-7 via a PI3K dependent signalling pathway
are acquired as a function of increasing signal strength. However, the ability to pro-
liferate and secrete IL-2 in response to TCR stimulation decreases when high signal
strengths are used for priming. These results demonstrate that qualitatively good
memory cells arise when priming is done at intermediate signal strengths [138].

Long lived CD4C memory cells are very high avidity clones suggesting that,
during differentiation, cells which receive the strongest stimulus acquire the mem-
ory phenotype. The SOS during priming has a profound impact on the generation
of memory CD4C T cells. This was shown using a model of adoptive transfer
in which transgenic SMARTA cells specific for I-Ab-restricted GP61–80 epitope of
lymphocytic choriomeningitis virus were injected into normal C57BL/6 mice and
challenged with either the virus or Listeria monocytogenes expressing the viral pep-
tide. When these mice were challenged with virus, SMARTA cells along with the
endogenous viral specific CD4C T cells expanded normally, contracted and de-
veloped into long lived memory cells. However, when mice were injected with
a recombinant Listeria monocytogenes secreting GP61–80, unlike the endogenous
C57BL/6 CD4 population, SMARTA cells failed to develop memory cells after the
initial expansion. Also, post expansion SMARTA cells had high Bim and low Bcl-2
levels and eventually died by apoptosis. Compared to the endogenous CD4C T cell
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population SMARTA cells had lower affinity TCRs and the signals they received
during priming were, most likely, sufficient to drive proliferation but insufficient for
memory differentiation [139].

SOS Modulates the Outcome of Costimulatory Interactions

As mentioned earlier, CD28 by binding to CD80/CD86 molecules delivers the cos-
timulatory signal essential for clonal expansion of T cells and preventing anergy.
The strength of the CD28 signal can alter responses to weak and strong TCR sig-
nals. Increasing the strength of CD28 costimulation can change a weak signal and a
strong signal into a strong and super strong signal respectively [140]. On the other
hand, it has also been shown that absence of CD28 signals affects blastogenesis
and frequency of cell division equally in T cells activated with a weak and strong
signal [141].

As described earlier, several lines of evidence and the phenotype of Ctla4�=�
mice suggest that CTLA4 is a negative regulator of T cell activation. On the other
hand there are several reports that suggest that there could be a degree of plasticity in
CTLA4 responses: First, CTLA4–CD80/CD86 interactions were found capable of
costimulating T cells [142]. Second, CTLA4 could be converted from a negative to
a positive costimulator by use of a recombinant single chain Fv ligand [143]. Third,
CTLA4 lacking the cytoplasmic domain was found to costimulate IL-2 production
in T cell hybridomas [144]. It has been found that the SOS is a key determinant
of effects downstream of CTLA4. Using an in vitro system where CD4C T cells
were activated with varying SOS, it was found that CTLA4 function switches from
positive to negative in terms of IL-2 production and cell cycle progression as the
strength of the primary signal is increased [145, 146]. The downstream effectors of
CTLA4 in this system of study were found to be Ca2C and reactive oxygen species
(ROS) whose intracellular levels were found to be directly proportional to the SOS.
CTLA4, under both weak and strong activation conditions, increased intracellular
Ca2C and ROS levels but with distinct outcomes: T cells activated with a weak
signal possess low amounts of Ca2C and ROS and CTLA4–CD80/CD86 interac-
tion enhances activation. However, cells activated with a strong signal already have
substantially high levels of ROS and Ca2C and their further increase by CTLA4–
CD80/CD86 interactions lowers cell cycling [46].

It is possible that the plasticity displayed by CTLA4 in vitro also has physiolog-
ical roles. In a pool of heterogenous T cells, CTLA4 has differential effects: T cells
from multiple sclerosis patients when stimulated with myelin basic protein in the
presence of CTLA4 blockade showed unequal expansion of high and low affinity
clones. CTLA4 ligation enhances expansion of clones with low affinity TCRs but
inhibits that of high affinity TCRs [147]. In another in vivo mouse model of EAE,
immunization with a disease antagonist peptide along with CTLA4 blockade leads
to lowered frequency of clones reactive to the disease agonist peptide [148]. Taking
these results together, it is possible that CTLA4 inhibits expansion of high affinity
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TCR clones which might dominate the T cell response. It also enhances expansion
of low affinity clones which may promote the generation of a broader cross re-
active immune response that may play important roles to clear rapidly mutating
pathogens [149].

SOS Controls Survival and Death of T Cells in the Periphery

Circulating naı̈ve T cells are fairly long lived owing to cytokines such as IL-7, IL-6
and IL-15. When T cells encounter antigen, they undergo a phase of rapid expan-
sion which enables them to perform their effector functions and clear the infection.
Expansion is followed by contraction where most effectors are deleted to maintain
homeostasis and prevent conditions such as autoimmunity. From the expansion to
the contraction state, T cells become increasingly susceptible to apoptosis. There
are two apoptotic pathways operating during the contraction phase: activation in-
duced cell death (AICD) and activated T cell autonomous death or ACAD [150].
The former relies on extrinsic death signals transmitted through surface death recep-
tors such as Fas (CD95) and TNFR1 and occurs when pre-activated cells undergo
secondary stimulation. The role of CD95 in T cell homeostasis is observed in lpr
(mutated CD95 or Fas) and gld (mutated CD95L or FasL) mice which suffer from
autoantibody production and excessive lymphoproliferation. On the other hand,
ACAD relies on death signals arising from the mitochondria. Death in this case
depends on the ratio of pro- and anti-apoptotic proteins. However, both AICD and
ACAD pathways converge on caspase 3 activation and eventual cell death [150,151].

One of the factors that regulates resistance and sensitivity to death during expan-
sion and contraction is the cytokine milieu. IL-2, which is an important cytokine
during the expansion phase, is also responsible for priming cells for death by mod-
ulating expression of pro-apoptotic factors such as c-FLIP and CD95L [152]. IFN�

limits expansion of activated cells and promotes apoptosis by upregulating caspases
[151, 153]. Once antigen is withdrawn, T cells become susceptible to death by ne-
glect and their survival depends on how well they are able to respond to survival
signals provided by ubiquitous cytokines IL-7 and IL-15. This ability of T cells to
survive post the expansion phase is termed as ‘T cell fitness’ and is directly propor-
tional to the SOS [154]. Human and mouse CD4C and CD8C cells activated with
a weak activating signal expand but die by neglect as soon as the antigen is with-
drawn because they are unable to respond to IL-15. On the other hand, cells which
receive a relatively strong signal not only proliferate during the expansion phase
but also survive in vitro and in vivo even in absence of the signal by upregulating
the anti-apoptotic protein, BclXL. In addition, IL-15R expression is enhanced so
that the response to IL-15 survival signals continues. Together, these mechanisms
ensure these cells are ‘fit’ [154]. However, there can be conditions where signals
can be weaker or stronger than those that are used. In some cases, T cells become
anergic whereas in other cases the cells die due to excessive activation [155–157].
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Fig. 4.6 Summary of the effects of signal strength on T cell differentiation and function

Summary

The relative SOS perceived by a T cell is translated into differential amounts of
intracellular mediators, e.g. Ca2C, ERK etc, which leads to distinct responses. Con-
sequently, these changes decide the fate and nature of T cell responses in terms
of differentiation into various subsets, survival and death (Fig. 4.6). During thymic
differentiation, immature thymocytes which receive strong TCR signals are more
likely to become �ı T cells compared to ˛ˇ T cells. CD4CCD8C thymocytes that
express low amounts of the ˛ˇ TCR and bind to self peptide–MHC complexes with
very high affinity, i.e high SOS, are negatively selected and die by apoptosis. This
process reduces the risk of auto-reactivity in the periphery. Only those thymocytes
that bind with the “right” affinity to self peptide–MHC complexes are positively
selected. Once again, SOS plays a role and those thymocytes that receive a strong
signal are likely to differentiate into CD4C T cells whereas those that receive a
weaker signal differentiate into CD8C T cell. Only SP thymocytes are mature and
enter the peripheral circulation.

In the periphery, a combination of TCR signal strength and local cytokine mi-
lieu determine TH 1 and TH 2 differentiation pathways. Strong signals drive TH 1
whereas weak signals result in generation of TH 2 cells. During an ongoing im-
mune response, T cells activated with a strong signal are better equipped to survive
during the contraction phase and develop into memory cells compared to cells that
are primed with a comparatively weaker signal. There can be signals that are too
weak or too strong to drive productive T cell responses. In case of the former, cells
become unresponsive or anergic and the latter usually results in cell death. This
implies that a T cell should receive the optimal amount of signal (as determined
by antigen dose, receptor affinity and occupancy) for the desired response. This
aspect becomes important during vaccination and autoimmune disorders. There-
fore, the intensity/potency of the TCR signal is a simple and elegant mechanism to
regulate several T cell processes. It is possible that modelling of T cell responses
taking into account the role of SOS may be an important criterion to predict in
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vivo T cell responses. Further experimental verification of these modelling profiles
will be important in devising better immunotherapeutic strategies to enhance T cell
responses.
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Chapter 5
The Cyton Model for Lymphocyte Proliferation
and Differentiation

Cameron Wellard, John F. Markham, Edwin D. Hawkins,
and Phillip D. Hodgkin

Abstract We discuss a stochastic model for lymphocyte population dynamics
based on the interaction of sub-cellular mechanisms responsible for cell death, di-
vision and differentiation. Competition between these mechanisms determines the
fate of an individual, and their stochastic nature allows a range of outcomes, gener-
ating the large-scale diversity that is characteristic of an immune response.

Mathematically the function of each mechanism can be expressed as a prob-
ability density function for the time for the particular event to occur, and it is
the parameters that define these distributions that are the free parameters of the
model.

We formulate the problem as a branching process, and derive an expression for
the probability generating function for the number of live cells of each type in all
divisions, as a function of time. This allows the calculation of arbitrary moments for
the live cell numbers, giving quantification not just of the mean system behaviour,
but of the random fluctuations that are a consequence of the stochasticity of the
underlying mechanisms.

Introduction

In this chapter we present a mathematical model for lymphocyte proliferation and
differentiation based on the notion that individual cellular processes are controlled
by independent molecular mechanisms. On a molecular level these mechanisms are
incredibly complex, however we find that for the purposes of describing their effect
on cell dynamics it is sufficient to take a statistical approach. In this way we can
ignore the complex molecular pathways responsible for apoptosis and simply use
an empirically derived probability density function (PDF) for the observed death
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times of a particular cell type. Thus we summarise each cellular function as a PDF
for the time-to-transformation, and each process is considered to act independently,
competing to determine the fate of the cell.

This approach naturally encompasses the observed diversity of immune re-
sponses, with the stochastic nature of the independent mechanisms ensuring dif-
ferent trajectories for individual cells, generating a diverse response from the
stimulation of a homogeneous population.

We begin with a discussion of the cyton model of the population dynamics of B
lymphocytes. Here we use the model to derive a set of integro-differential equations
for the expected number of cells in each division as a function of time. We apply the
theory of branching processes to the model, and derive a recursion relation for the
probability generating function (PGF) for the population size in each generation.
In addition to the mean population dynamics, the PGF allows description of the
fluctuations around the mean due to the stochastic nature of the cell dynamics. To
illustrate this we derive a set of integral equations for both the mean, and the stan-
dard deviation, of the population size of each generation as a function of time. We
introduce differentiation into the model, showing how the modules used to describe
division and death can be generalised to include various differentiation processes.
We then use the branching process approach to derive equations for the population
dynamics of each of the subsets defined by the differentiation process. Finally, we
briefly discuss some of the issues involved with direct simulation of such a system
using an agent-based approach.

Proliferation

CFSE and Cell Population Dynamics

The study of cell proliferation has been facilitated by the use of the fluorescent
dye Carboxyfluorescein diacetate succinimidyl ester (CFSE) [1]. CFSE is uniformly
distributed throughout the cellular cytoplasm and on division is distributed approx-
imately evenly between the two daughter cells. Thus each generation of cells has
approximately half the CFSE of the previous generation, and this will appear half
as bright when measured using flow-cytometry.

Stochastic Lymphocyte Division

CFSE studies have shown an element of randomness in the proliferation of lympho-
cytes. In a typical assay a system of lymphocytes are stained with CFSE and then
stimulated, the CFSE intensity is measured at various time-points after stimulation
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Fig. 5.1 Sample CFSE intensity profiles showing the asynchronous progression of cells through
divisions

using flow-cytometry. An example profile is shown in Fig. 5.1. Immediately after
stimulation the profile shows one distinct peak, indicating that none of the cells have
divided. At a later time however, it is generally found that the profile shows sev-
eral distinct peaks, indicating that not all of the cells in the culture have undergone
the same number of divisions. This implies some element of randomness control-
ling the process of cell division [2, 3], with the division time distributed according
to some probability density function (PDF), that may be characteristic of both the
cell type, and the experimental conditions.

Death and Division as Competing Random Processes

Similar to division, cell death is a stochastic process. This has been demonstrated
by measuring the survival curve of a system of cells and observing that individual
cells die in a non-deterministic fashion, and that the death times of a system of
cells describe some PDF. Often this PDF is, for mathematical convenience, treated
as exponential however evidence suggests that a right-skewed distribution gives a
better fit in many circumstances [4].

For the purposes of modelling, the processes of death and division can be treated
as competing random events. On stimulation, each cell randomly draws a time-to-
die and a time-to-divide from the relevant PDFs, and the earliest of these determines
the fate of the cell. On division these process clocks are reset, possibly from new
PDFs characteristic of the division number of the cell.
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Division Destiny and Progressor Fraction

There is evidence that there exists a mechanism that intrinsically limits the maxi-
mum number of division rounds that cells will undergo in a response. Experiments
performed on cells in which the apoptotic machinery has been disabled show that
after a certain number of divisions, cells stop dividing and enter a state of quies-
cence [5]. The division destiny, the ultimate number of division reached by a cell in
a response, is not uniform but is usually distributed over several generations.

Division Dependence

In general the mechanisms for death and division within a cell seem to be dependent
on the number of division rounds that the cell has undergone since initial stimula-
tion. In particular, the average times for both death and division are much longer
for undivided cells, than they are for cells in subsequent generations. Further, the
progressor fraction, that is the fraction of cells that are division capable, is strongly
dependent on the generation number, tending to decrease as cells progress through
the response.

The Cyton Model

The cyton model [4] is a stochastic model for lymphocyte proliferation based on
these observations; namely that

– Death and division are stochastic processes, characterised by a PDF for the time
to divide or die respectively

– These processes are independent, and compete to determine the fate of the cell
– Division events reset the mechanism responsible for these processes
– Only a fraction of cells in each division are division capable
– These mechanisms are division dependent

Let �i , called the progressor fraction, be the fraction of cells that, after i divisions,
are capable of further division. Let pB

i .t/; pD
i .t/ be the PDFs for the division and

death times of cells in generation i . Given that a cell arrives in generation i , the
probability that it dies at a time between t and tCdt after the i th division is qD

i .t/dt ,
where qD

i .t/ equals pD
i .t/ multiplied by the probability that no cell division occurs

before t :

qD
i .t/ D pD

i .t/

�
1 � �i

Z t

0

pB
i .�/d�

�
I (5.1)



5 The Cyton Model 111

Similarly, the conditional probability of cell division at a time between t and t C dt

after the i th division is

qB
i .t/ D �ip

B
i .t/

�
1 �

Z t

0

pD
i .�/d�

�
: (5.2)

The cyton model can thus be expressed as a set of integro-differential equations for
the expected number of cells ni .t/, in division i , as a function of time:

Pn0.t/ D �n0.0/
	
qD

0 .t/ C qB
0 .t/



(5.3)

and, for i > 1; 2; : : : ;

Pni .t/ D 2 PnB
i�1.t/ � PnB

i .t/ � PnD
i .t/;

PnB
i .t/ D ni .0/qB

i .t/ C 2

Z t

0

PnB
i�1.�/qB

i .t � �/d�;

PnD
i .t/ D ni .0/qD

i .t/ C 2

Z t

0

PnB
i�1.�/qD

i .t � �/d�: (5.4)

In this form the model is completely general. With judicious choice of the forms
of the PDFs in each division, as well as their defining parameters, and for the values
of the progressor fractions, this model could describe the mean population dynam-
ics of any cell system. Leaving all of these parameters free however, means that
the model is over parameterised for most data sets. To be of any use as a predictive
tool requires that we use system-specific knowledge to reduce the number of free
parameters.

Right Skewed Distributions for Division and Death Times

Many models of cell division use exponential rates for cell death and division,
usually for reasons of mathematical convenience rather than from any biological
motivation [6]. Such a choice implies that both processes are age-independent, and
are equally likely to occur in any given time-interval. Evidence suggests this is not
the case. In particular cells are much less likely to either die, or to divide, immedi-
ately after a previous division event [4]. Careful examination of the data suggests
that death and division times are well described by a right skewed distribution, such
as lognormal or gamma distribution [7]. For example, in Fig. 5.2 we show a plot
obtained from a course of tritiated thymidine pulses. The count rate is proportional
to the number of cells taking up the thymidine during DNA replication in S-phase.
Treatment with colcemid prevents divisions, preventing the pollution of the sig-
nal from further division. Thus the signal is proportional to the number of cells in
S-phase of the first mitotic cycle after stimulation, and the distribution is well de-
scribed by a lognormal PDF. Note that the proportion of cells participating in the
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Fig. 5.2 Distribution of division times for B cells stimulated with 10 �g=ml; 3:3 �g=ml;
1:1 �g=ml of ˛-CD40 in the presence of IL4. The cells were cultured in the presence of colcemid,
and a time course of 1 h

�
3H
�
thymidine pulses was conducted. The measured count rate (counts

per minute) is proportional to the number of cells in S-phase. The distributions are well fit by a
lognormal PDF. The figure is taken from [4]

Fig. 5.3 A survival curve for B cells isolated from lymph nodes. The data have been fit to a
lognormal survival curve, the corresponding distribution of death times is shown in the top right.
The figure is taken from [4]

response increases with increasing concentration of the mitogen, illustrating how
these PDFs can be changed by external signals. Similarly, the death times of undi-
vided lymphocytes can also be described using a lognormal PDF. Figure 5.3 shows
a survival curve for B cells isolated from a lymph node. The data have been fit to a
lognormal survival curve, with the corresponding PDF shown above.
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First and Subsequent Divisions and Progressor Fraction

Although the PDFs for death and division may, in principle, vary for each division,
we find that for most cases it is sufficient to distinguish between undivided cells,
and those in subsequent generations. Detailed analysis of a CpG-stimulated B cell
approach in vitro shows that the PDFs for death and division times vary only slightly
with generation after initial division [8].

We introduced the concept of the progressor fraction and discussed its division
dependence. Here we apply a functional form to this division dependence, thus re-
ducing the number of free parameters that are necessary to specify the progressor
fraction in the model. The form used in [4], is based on the observation that the
ultimate division number achieved by a cohort of cells is approximately normally
distributed over the generations [5]. As is the case with death and division times, the
undivided cells behave in a way that is different from cells in subsequent genera-
tions, and for this reason we let the progressor fraction for undivided cells remain a
free parameter unconstrained by the functional form used for the subsequent gener-
ations. This implies that the fraction of cells in generation i that are division capable
is given by

�i D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�0 if i D 0,Z 1
iC1

N .n; �dest; 
dest/dnZ 1
i

N .n; �dest; 
dest/dn
if i > 0,

(5.5)

where �dest; 
dest are the mean and standard deviation of the Gaussian PDF that
describes division destiny:

N .n; �; 
/ D 1p
2�
2

exp

�
� .n � �/2

2
2

�
:

Comparison with Experiment

This gives a model with 11 free parameters, listed in Table 5.1, which are obtained
empirically by fitting to experimental data in the form of CFSE timecourses. The
values of these parameters will be dependent on experimental conditions such as the
strength and type of stimulus, as well as the presence of different cytokines and their
concentrations. In Fig. 5.4 we show a comparison between the best-fit model pre-
diction for the population of cells in each division compared with experimental time
course. The data was obtained from CFSE analysis of a system of LPS stimulated
B cells. The best-fit values for the free parameters were obtained by minimising the
sum of the squared residuals between predicted and measured values.
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Table 5.1 A list of free parameters used in the cyton model of lymphocyte proliferation

Parameter Description Parameter Description

�0
B Mean time to first division �

C

D Mean time to die for cells
in subsequent divisions


0
B Standard deviation of the time

to first division



C

D Standard deviation of the time
to die in subsequent division

�0
D Mean time to die for undivided

cells
�0 Progressor fraction for undivided

cells


0
D Standard deviation of the time

to die for undivided cells
�dist Mean generation number for the

PDF characterising the division
destiny

�
C

B Mean time to subsequent division 
dist Standard deviation of the generation
number for the PDF
characterising the division
destiny



C

B Standard deviation of the time
to subsequent division

Fig. 5.4 A fit to time course data obtained from CFSE analysis of LPS stimulated B cells. Here
we show the best-fit prediction for the populations of each generation as a function of time (line),
compared to the measured values (points)
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Stochastic Variation in Population Number

Although the cyton model is based on the idea that the fundamental cellular
processes of death and division are inherently stochastic, we have only presented
a solution for the average behaviour of the system. The solution of these equa-
tions gives an estimate for the number of cells that would be expected over many
replicates of an identical experiment, but does not give any information about fluctu-
ations in this result due to the stochastic nature of the underlying processes. In large
systems the variation between replicates due to these fluctuations will usually be
small, generally much lower than the variation due to experimental considerations,
however in small systems these stochastic fluctuations can be observed. In [8], the
authors present multiple time course experiments obtained from the time-lapse mi-
croscopy of CpG-stimulated B cells. In each case the clone produced from a single
progenitor was followed throughout the duration of the response, and the number of
cells in each generation recorded as the response progressed. In this experiment sig-
nificant variation was observed in the population sizes of the different clones. While
the model as formulated in (5.4) is sufficient to reproduce the average behaviour of
these clones, it is not sufficient to encapsulate the stochastic variation. To do this
requires a new approach.

Branching Process Models

The theory of branching process [9] has been used extensively in mathematical
biology to simulate cell population dynamics, from discrete time models [10] to
more complex continuous time models [11–13]. Here we use a generalisation of the
Bellman–Harris model to obtain a set of recursion relations for the probability gen-
erating function (PGF) for the number of cells in each generation as a function of
time. This PGF can be used to calculate the mean population dynamics, as well as
the expected stochastic fluctuations around this mean.

We begin by defining the random variable Zi .t/ to denote the number of live
cells in generation i at time t . The PGF for the number of cells in each generation,
given a single cell in generation i at time t D 0 is defined as

Fi .s; t/ D E

"Y
i 0

s
Zi 0

.t/

i 0

ˇ̌
ˇZi .0/ D 1; Zj .0/ D 0 8j ¤ i

#
; (5.6)

where EŒx� denotes the expectation value of the random variable x. Following the
prescription for a generalised Bellman–Harris model [12,13] gives a recursion rela-
tion for this PGF

Fi .s; t/ D .1�QB
i .t//.1�QD

i .t//si CQD
i .t/C

Z t

0

FiC1.s; t ��/2qB
i .�/d�: (5.7)
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Here the qB
i .t/; qD

i .t/ are the effective probability distributions defined in (5.1),
and QB

i .t/; QD
i .t/ are the corresponding cumulative functions. The first term in

the above equation takes into account the case in which the cell has neither died
nor divided, the contribution for this case is si . The second term takes into account
the case in which the cell has died, here the contribution is one. Finally the third
term takes into account the cases in which the cell divided at a time t � � , and the
contribution here is equal to the product of two PGFs for cells in the subsequent
generation,born at t � � .

Mean Population Dynamics

The mean dynamics of the model can be obtained using �
j
i .t/ D @Fi .s;t/

@sj

ˇ̌
ˇ
sD0

, where

�
j
i .t/ gives the expected number of cells of generation j at time t given a single

progenitor of generation i at t D 0. When applied to (5.7) this gives

�
j
i .t/ D .1 � QB

i .t//.1 � QD
i .t//ıi;j C 2

Z t

0

�
j
iC1.t � �/qB

i .�/d�: (5.8)

This recursion relation can be evaluated by noting that �
j
i .t/ D 0; 8j < i , and by

assuming some limit on the number of divisions that a cell has undergone. This limit
may be imposed either by a progressor fraction that effectively vanishes beyond a
certain generation, or by assuming a minimum division time for cells.

Stochastic Fluctuations

The advantage of the branching process approach is that, in principle, it is possible
to calculate the entire probability distribution for the populations size at any point
in time. In practice this is quite difficult, and usually unnecessary. A much easier
prospect, and one that offers great utility, is to calculate the variance in population
size. This variance will give a measure of the uncertainty in the population size
resulting from the stochastic nature of the underlying processes. To calculate the

variance, we begin with the second derivative of the PGF �
j;k
i .t/ D @2Fi .s;t/

@sk@sj

ˇ̌̌
sD0

.

When applied to (5.7) this gives

�
j;k
i .t/ D 2

Z t

0

	
�

j;k
iC1.t � �/ C �

j
iC1.t � �/�k

iC1.t � �/



qB
i .�/d�: (5.9)

From this we can use the relations



j;k
i .t/ D

(
�

j;k
i .t/ � �

j
i .t/�k

i .t/ j ¤ k

�
j;j
i .t/ C �

j
i .t/ � �

j
i .t/2 j D k

(5.10)
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to calculate the covariances of the population of cells in generations j; k at time t

resulting from an initial cell of generation i .

Differentiation

Branching process models have been used to model differentiation in neuronal
cells [11]. Here we extend our model to include possible differentiation processes
for lymphocytes. The cyton model can be generalised to treat general differentiation
processes in the same way as it treats death and division. To motivate this generali-
sation we note that various differentiation events in activated B cells, such as isotype
switching and commitment to antibody-secreting cells, have been shown to be divi-
sion linked [14, 15]. Similarly we assume that the death and division processes are
dependent on the differentiation state, or type of the cell, and that the probability of
differentiating to a particular state is dependent on the current state of the cell.

Thus we hypothesise the existence of a molecular mechanism responsible for
each possible differentiation process, that acts independently of all other process,
and acts in a stochastic manner. In analogy to death and division these processes
can be characterised by a PDF for the differentiation time, which is dependent on
the state of the cell, as well as its generation number. We define the PDF for time-
to-differentiation from type j to type k for a cell in division i as pk

i;j .t/. In analogy

with progressor fraction, we define a division dependent differentiation fraction 
k
i;j

which gives the fraction of cells of type j that are capable of differentiation to type
k in division i . In this case the effective distributions, which give the probability
density at time t , are given by

qB
i;j .t/ D �i;j pB

i;j .t/
�
1 � P D

i;j .t/
�Y

k

�
1 � 
k

i;j P k
i;j .t/

�
;

qD
i;j .t/ D pD

i;j .t/
�
1 � �i;j P B

i;j .t/
�Y

k

�
1 � 
k

i;j P k
i;j .t/

�
;

qk
i;j .t/ D 
k

i;j pk
i;j .t/.1 � P D

i;j .t//
�
1 � �i;j P B

i;j .t/
� Y

k0¤k;j

�
1 � 
k0

i;j P k0

i;j .t/
�
:

Here P.t/ denotes the cumulative distribution of the relevant PDF.
Using the same methodology as previously we can derive a recursion relation for

the PGF

Fi;j .s; t/ D �
1 � QB

i;j .t/
��

1 � QD
i;j .t/

� Y
k¤j

�
1 � Qk

i;j .t/
�
si;j C QD

i;j .t/

C
Z t

0

FiC1;j .s; t � �/2qB
i;j .�/d� C

X
k¤j

Z t

0

Fi;k.s; t � �/qk
i;j .�/d�:

(5.11)
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As previously, we can use this relation to derive an expression for the expected
population of cells of type j 0 in generation i 0 given an initial cell of type j in
generation i

�
i 0;j 0

i;j .t/ D .1 � QB
i;j .t//.1 � QD

i;j .t//
Y
k¤j

.1 � Qk
i;j .t//ıi;i 0ıj;j 0

C2

Z t

0

�
i 0;j 0

iC1;j .t � �/qB
i;j .�/d� C

X
k¤j

Z t

0

�
i 0;j 0

i;k
.; t � �/qk

i;j .�/d�:

Similarly we can use

�
i 0;j 0Ii 00;j 00

i;j .t/ D 2

Z t

0

	
�

i 0;j 0

iC1;j .t � �/�
i 00;j 00

iC1;j .t � �/ C �
i 0;j 0Ii 00;j 00

iC1;j .t � �/



qB
i;j .�/d�

C
X
k¤j

Z t

0

�
i 0;j 0Ii 00;j 00

i;k
.t � �/qk

i;j .�/d�;

to calculate values for the covariances.

Simulation

The methods mentioned so far require numerical solution of a set of deterministic
integral equations for the mean number of cells or the variance. Higher order mo-
ments can also be calculated however each comes at further computational expense
to the previous. An alternative approach is to simulate the cells directly. Although
this approach is generally slower to calculate the mean value, there is no further cost
in calculating the variance and higher moments. Further, it is more flexible and can
be quickly adapted to different sorts of models. Also it can be readily extended to
provide readouts of common experimentally observed quantities.

Modelling Cell Properties

Each cell being simulated carries with it a set of numbers which represent its physi-
cal state. In some cases these numbers are decided when the cell is created, in others
they vary over (simulated) time. The following is a non-exhaustive list of what might
be stored:

– When the cell was created. This allows age related properties of the cell to be
calculated.
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– A unique ID. This way relationships between cells can be kept so that correlations
and clonal effects can be explored.

– Cell fate. In the case of the Cyton model, whether a cell dies or divides and when
this happens can be decided at the time a cell is created.

– Cell type. Whether the cell has committed to becoming antibody secreting cell
and if isotype switching has occurred.

– Stage of cell cycle and cell size. By storing where a cell is in the cell cycle
the amount of DNA can be calculated. This allows comparison to be made with
flow cytometry techniques that can measure DNA content such as DAPI and
Hoechst stains which bind to the DNA in a stoichiometric manner. Estimating
cell size allows connection to be made with forward scatter measurements from
flow cytometry.

– Fluorophore content. If the stage of the cell cycle and DNA content are known
then it is also possible to make connection with Bromodeoxyuridine (BrdU)
experiments. BrdU is a molecule that can replace thymidine during DNA repli-
cation. In BrdU experiments, cells’ exposure to BrdU is limited to certain times.
Its incorporation can be measured using immunohistochemistry techniques. Nor-
mally it is used to provide confirmation that cells are dividing during a particular
time (when BrdU is present) but potentially it can be used to provide more infor-
mation about the parameters for a model such as Cyton [16–18].

– Affinity for antigen. This enables the models to be implemented which link a
cell’s ability to proliferate to its affinity, thereby addressing repertoire issues.

Implementation

In practice the simulation of cells is done using a discrete event simulator. This
requires the maintenance of a list of cells and their associated states and a time-
ordered list of events that can occur to them. Simulation is done asynchronously.
That is, instead of stepping through time, the programme processes a sequence of
queued events. In this way, time resolution can be made arbitrarily small (within
machine precision) without incurring computational expense. Examples of events
that need to be queued are

– Cell division and death
– Changing of some cell property such as a cell type and phase
– Making measurement corresponding to those made at experimental time points

Assuming that there are no interactions between cells then the computational cost
of this method scales no worse than O.N / times the cost of insertion into the event
list where N is the number of cells.
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Chapter 6
Modelling Intravital Two-Photon Data
of Lymphocyte Migration and Interaction

Marc Thilo Figge and Michael Meyer-Hermann

Abstract Multi-photon microscopy is a powerful tool for imaging lymphocyte
migration and interaction in intact biological organs. These experiments gener-
ate quantitative data on the cell motility, shape dynamics, and contact duration of
cellular interactions. In this chapter we review mathematical models that have suc-
cessfully contributed to the interpretation of these data with regard to lymphocyte
migration and interaction. The examples involve different modelling approaches and
range from T cell priming in secondary lymphoid tissue to B cell affinity maturation
in germinal centres.

Introduction

Adaptive immunity implies the diligent communication of specific information that
is facilitated by lymphocyte migration in lymphoid tissue and their interaction with
other components of the immune system. For example, T cells scan antigen present-
ing cells and may become activated if the T cell receptors recognize specific foreign
peptides embedded in major histocompatibility molecules. T cell priming by den-
dritic cells in lymph nodes occurs in subsequent phases that clearly differ in the T
cell behaviour with regard to migration and interaction [1]. Differences in the mi-
gration behaviour of the distinct types of T cells in diverse lymphoid tissues remain
to be explained [2].

The salient feature of B cells is that the B cell receptors undergo affinity matu-
ration in order to optimize the immune response against pathogenic antigens. This
process takes place in follicular structures of lymphoid organs, referred to as ger-
minal centres [3, 4], and involves intercellular interactions in the selection process
for high-affinity B cells. Germinal centres have a peculiar morphology consisting of
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two distinct zones, termed the dark and the light zone. The dark zone is the region
of B cell proliferation, while in the light zone B cells undergo selection. How B cell
migration between the zones is realized is still a matter of debate today [5–8].

For the last few years, lymphocyte migration and interaction have been exten-
sively explored by non-invasive intravital microscopy [9]. The main achievement
of this technique is that lymphocytes can be followed in real time and within their
natural cellular environment. The generated data include records of cell tracks, i.e.
the time-dependent position of single cells, as well as cellular contact times of in-
teractions. The working principle of imaging by multi-photon microscopy is briefly
summarized, together with an overview of dynamical cell properties that can be ex-
plored by this experimental technique. The rapidly growing body of experimental
data is calling for mathematical methods that are suitable for analyzing these data
in order to extract meaningful conclusions initiating new insights and experiments.

The art of mathematical modelling is to choose an adequate modelling approach.
This process starts by specifying the questions to be answered and continues by
identifying all variables and connections between them that are relevant for answer-
ing these questions. Each modelling approach has its assets and drawbacks. As a
rule of thumb, computationally cheap methods often only give a very rough repre-
sentation of reality and, therefore, they often only provide answers to questions of a
very general kind. Questions with regard to specific system properties typically re-
quire detailed calculations involving sophisticated computational methods. In many
cases, however, a detailed modelling approach also demands knowledge about pro-
cesses and parameters that are not yet accessible experimentally. Estimating the
quantitative impact of these processes ultimately leaves the questioner with the task
to decide whether or not the obtained answers are reasonable. Ideally, different mod-
elling approaches can be combined where answers to questions obtained at a certain
level of resolution serve as input for modelling at a level of higher resolution.

We consider three modelling approaches of lymphocyte migration and interac-
tion that differ in the level of resolution with respect to the functional properties of
the cells. The first is a statistical modelling approach for the analysis of cell tracks as
observed in two-photon experiments. Single cells are viewed as independent point
particles and the only functional aspect that is taken into account is their ability to
migrate. Next, we consider cellular systems in which different types of cells migrate
and interact with each other. This is captured by an agent-based modelling approach,
where each cell represents a discrete agent that interacts with other cells and is mon-
itored during its whole lifetime. Finally, the agent-based modelling approach is used
with a sufficiently high spatial resolution to go beyond the point particle represen-
tation of cells in order to study the dynamics of cellular shape deformations under
migration and interaction.
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Imaging Lymphocyte Migration and Interaction

Intravital Microscopy

Optical multi-photon microscopy is today’s method of choice for in vivo imaging
of single-cell dynamics and cellular interactions within intact tissue. Conventional
methods employing fluorescence techniques, such as wide-field and confocal mi-
croscopy, are based on light excitations of fluorophores by single photons. A flu-
orophore is a functional molecule which absorbs and re-emits light at different
wavelengths. The single-photon excitation typically requires photon wavelengths in
the order of 400 nm corresponding to photon energies that give rise to phototoxicity
and strong scattering in biological tissue.

Multi-photon microscopy is based on the virtually simultaneous light excitation
by two or more photons. For example, in two-photon microscopy the fluorophore is
excited by two photons, each of which contributes one half of the energy required to
induce fluorescence. The required photon density at the focal spot of the microscope
objective is generated by a pulsed laser, which is adjusted such that the density is
sufficiently high but yet not so high as to damage the biological sample. The main
advantage of this method is that using low-energetic photons with long wavelengths
in the order of 800 nm strongly decreases the absorption and scattering of light in
biological tissue. Moreover, since the impact of phototoxicity and photobleaching is
negligible for infrared photons, imaging up to millimeter-depths into the biological
tissue can be realized without inducing significant damage to the biological sample.

As with conventional microscopes, image sequences can be built up by scanning
the focal spot across the sample. Since the requirement on the photon density for the
induction of multi-photon fluorescence is only met within the confined volume of
the focal spot, the resulting images are free of out-of-focus fluorescence and there-
fore have higher image contrast as compared to single-photon techniques. With the
help of advanced tracking software, individual cells can be identified and followed
in the three-dimensional stacks of image sequences. This makes laser scanning
multi-photon microscopy the state-of-the-art technique for intravital cell imaging
in biological tissue with high spatial and temporal resolution.

Exploring Dynamic Cell Properties

At each time point, multi-photon imaging yields data on the position and on the
geometric shape of every cell within the three-dimensional focal spot. For an image
sequence consisting of N C 1 measurements that are recorded with the time step
�t , the position of the i th cell, .xi .n/; yi .n/; zi .n//, is determined at the time points
tn D n�t with n D 0; 1; 2; : : : ; N . Similarly, the geometric shape of the i th cell
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may be quantified by a shape index si .n/ characterizing the time-dependent cell
geometry. The data on the cell track and cell shape can be combined into the lists

Ti 	
0
@xi .0/ xi .1/ xi .2/ : : : xi .N /

yi .0/ yi .1/ yi .2/ : : : yi .N /

zi .0/ zi .1/ zi .2/ : : : zi .N /

1
A and Si 	 �

si .0/ si .1/ si .2/ : : : si .N /
�

(6.1)
for each cell i D 1; 2; : : : ; I , respectively.

Various definitions of the shape index may be envisaged. For example, repre-
senting the cell geometry by an ellipsoid with equatorial radii a, b, and c that is
approximated by an oblate (a D b > c) or a prolate (a D b < c) spheroid, the
shape index may be defined as the ratio of the long to the short axis. This gives rise
to values si .n/ 
 1, where si .n/ D 1 for a spherical and si .n/ > 1 for an elongated
cell shape.

The cell migration is characterized by quantities that can be computed from the
cell track lists Ti . These lists may be viewed as 3 � N matrices, where the nth
column contains the position vector of the i th cell at time tn:

Ri .n/ 	
0
@xi .n/

yi .n/

zi .n/

1
A : (6.2)

Observables of interest are often averaged over all monitored cells. This is done by
summation of the corresponding quantity for each cell i and division by their total
number I . In passing we note that for practical reasons the number of cells may be
a function of time, I D I.n/, since cells may exit the focal spot at longer times
and cannot be imaged anymore. The fewer remaining cells give rise to standard
deviations of the averaged quantities that are increasing with the measurement time.

The time-dependent displacement vector of a cell relative to its starting point is
given by

r i .n/ 	 Ri .n/ � Ri .0/ (6.3)

and is used in the calculation of the mean cell velocity

hvi;m.n/i 	 hr i .n/i � hr i .n � m/i
m�t

(6.4)

at times tn D n�t with n 
 m. Here, the brackets h: : :i denote the average over
all monitored cells. Note that vi;m.n/ depends on the choice of the time interval
m�t and the interpretation of a cell’s speed, vi;m.n/ D jvi;m.n/j, may actually
lead to wrong conclusions. For small time intervals m�t the cell speed may be
overestimated due to the jitter motion of otherwise stationary cells. On the other
hand, if the cells perform random walk migration, the actual cell speed may be
underestimated for long time intervals.

Random walk migration refers to cells that do not move unidirectional but ran-
domly change their migration direction. These random changes may either occur
at each time step of the measurement, or only after a number of time steps have
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elapsed. In the latter case, a directional persistence time exists corresponding to the
time interval �tp during which cells migrate in the same direction before randomly
turning into another direction.

Unidirectional migration and random walk migration can be distinguished by
analyzing the time-dependence of the mean displacement hjr i .n/ji. For cells per-
forming unidirectional migration, e.g. by following chemokine gradients, the mean
cell velocity is a constant, such that

hjr i .n/ji D hjvi;n.n/ji tn: (6.5)

In other words, hjr i .n/ji equals exactly the mean path length hli .n/i, which is de-
fined by:

hli .n/i 	 1

n

nX
n0D1

hjr i .n
0/ � r i .n

0 � 1/ji : (6.6)

In contrast, for cells performing random walk migration the mean path length be-
comes significantly larger than the mean displacement, hli .n/i � hjr i .n/ji for
times tn � �t , since cells randomly change their migration direction and even-
tually re-approach their starting point. This is schematically shown in Fig. 6.1a. The
corresponding mean displacement does not scale linearly with time, but only with
the square-root of time,

hjr i .n/ji D p
2DM

p
tn ; (6.7)

where the proportionality constant depends on the system’s spatial dimension D and
the motility coefficient M . Note that random walk migration with a directional per-
sistence time is a combination of unidirectional migration on small time scales and
random walk migration on large time scales. The time scale is set by the directional
persistence time: at times tn < �tp, hjr i .n/ji scales linear with time but assumes
scaling with the square-root of time for tn > �tp . The time-dependence of the mean
displacement is shown in Fig. 6.1b for the three different migration behaviours.

Taken together, multi-photon imaging provides a firm data basis to characterize
the migration behaviour and the shape dynamics of cells in intact biological tissue.

Statistical Cell Track Models

Statistical cell track models aim at re-constructing experimentally observed cell
tracks in order to identify underlying migration mechanisms. In this modelling
approach cells are treated as independently migrating point particles that are char-
acterized by their speed and polarity. The re-construction of cell tracks is achieved
by calculating the position vector r i .nC1/ of the i th cell at time tnC1 D .nC1/�t

from its position r i .n/ and its velocity vi .n/ at time tn:

r i .n C 1/ D r i .n/ C �tvi .n/ : (6.8)
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Fig. 6.1 Schematic representation of a cell track and the cellular migration behaviour in terms
of the mean displacement. (a): The first 11 time steps of a three-dimensional cell track are shown.
The cell performs random walk migration, where the length of the displacement vector r i .11/

is much smaller than the path length li .11/. Three cell positions at times tn�1 to tnC1 span a
plane that defines the turning angle ˛i .n/ between the displacement vectors r i .n/ � r i .n � 1/

and r i .nC 1/ � r i .n/, as indicated for n D 5. (b): The cellular migration behaviour in terms of
the mean displacement as a function of the square-root of time. Cells performing unidirectional

migration scale like
p

t
2

(dotted line), whereas random walk migration scales linear with
p

t

(solid line). Random walk migration with a directional persistence time �tp (dashed-dotted line)

is characterized by a scaling behaviour
p

t
2

at times smaller than �tp and
p

t for larger times.
If the migration is constrained to a finite volume, the mean displacement curves level off after
sufficiently long times. This is depicted for the two curves showing random walk migration
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Thus, at each time step �t of the measurement, the new cell position is calculated
by updating the velocity,

vi .n/ D vi .n/ei .n/ ; (6.9)

in terms of the cell speed vi .n/ and the cell polarity vector ei .n/. In spherical coor-
dinates the unit vector ei .n/ is given by

ei .n/ D

0
B@

sin.#n/ cos.'n/

sin.#n/ sin.'n/

cos.#n/

1
CA ; (6.10)

where #n 2 Œ0; �Œ and 'n 2 Œ0; 2�Œ denote the spherical angles.
So far we did not specify the procedure according to which (6.8) is updated.

In fact, depending on the available data basis, different procedures may be applied
in different situations. In what follows we review two procedures that have been
applied to re-construct cell tracks for T cells in lymphoid tissue and for B cells in
germinal centres.

T Cell Migration in Lymphoid Tissue

Imaging individual T cells within lymphoid organs has been the subject of vari-
ous studies in recent years [1, 10–12]. The experimental results on T cell migration
have been presented in terms of the mean displacement curve as a function of the
square-root of time. In general, these curves show the characteristics of random walk
migration with a directional persistence time.

Using the statistical cell track model approach, a mathematical analysis was
performed with the goal to estimate values of parameters underlying T cell mi-
gration [2]. In this analysis, the three-dimensional T cell tracks were projected on a
two-dimensional plane by neglecting the z-component of the polarity vector (6.10).
The new polarity vector, which does not have the property of being a unit vector,
reads

ei .n/ D

0
B@

sin.#n/ cos.'n/

sin.#n/ sin.'n/

0

1
CA : (6.11)

The re-construction of cell tracks was then performed according to (6.8) and (6.9),
where the cell speed was set to a constant value,

vi .n/ D v ; (6.12)

for all cells. Furthermore, the time step �t was decomposed into the persistence
time �tp during which cells migrate with constant speed and the re-polarization
time �tr during which cells do not move but are thought to reposition their
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lamellipods and uropod. After having paused, T cells randomly pick a new direction
of migration, which was realized by choosing new angles #n and 'n from uniform
distributions.

For each parameter set fv; �tp; �trg, a number of 106 individual cell tracks
was generated in a randomized fashion. The parameters were explored in the range
v D Œ5; 50� �m/min, �tp D Œ0:5; 20� min, and �tr D Œ0; 3:5� min and the optimal
values were determined from a fitting procedure to the experimental data.

Combining the T cell tracks of different experimental data sets [1, 10–12]
yielded the optimal values of the parameter set to be fv D 18:8 �m/min; �tp D
2 min; �tr D 0:5 ming. Thus, T cells perform random walk migration with a per-
sistence time of 2 min and the time for re-polarization is 30 s. Interestingly, under
the constraint that the re-polarization time is neglected, �tr D 0 min, the optimal
values changed into fv D 16:6 �m/min; �tp D 2 ming. Thus, while the T cell speed
attains a somewhat smaller value, the persistence time does not change. A general
conclusion of this analysis was that the re-polarization time does not play a central
role in improving the agreement with the experimental data. The cell re-polarization
is further discussed below and in Section “Cell Shape Dynamics of Migrating T and
B Cells” within a modelling approach that resolves the shape of migrating cells.

B Cell Trans-Zone Migration in Germinal Centres

The migration of B cells between the light and dark zone in germinal centres was
investigated by several experimental groups using two-photon microscopy [13–15].
All three experimental groups agree that during measurements of 1 h, 5–10% of the
observed B cells will have migrated from one zone to the other. Furthermore, the
three experimental groups agree on the interpretation that B cell motility follows
random walk migration with a directional persistence time of about 1 min.

Based on the measured turning angle and speed distributions [13], a statistical
cell track model was applied to check whether the persistent random walk hypoth-
esis can be reconciled with the measured trans-zone migration frequency of B cells
in germinal centres [7]. The persistent random walk hypothesis was incorporated in
the velocity (6.9) by choosing the speed and turning angle independently. In prac-
tice, this was realized by a Monte Carlo acceptance-rejection method that generates
random cell speeds vi .n/ and random turning angles ˛i .n/ from the respective ex-
perimental distributions [7, 13].

It should be noted, however, that the turning angle (see Fig. 6.1a) provides infor-
mation on the angle between polarity vectors ei .n/ and ei .n C 1/ within the same
plane:

˛i .n/ D arccos .ei .n/ � ei .n C 1// : (6.13)

Thus, in three spatial dimensions, ei .nC1/ is not uniquely determined by (6.13) but
may refer to any point on a cone with axis ei .n/ and radius r˛i .n/ D j sin.˛i .n//j.
In the spirit of the persistent random walk hypothesis, the point on this circle was
chosen at random from a uniform distribution.
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The turning angle and the speed are permanently changing after characteristic
time steps �tp and �tv, respectively. A new speed value was randomly drawn from
the corresponding distribution at every time step �t D �tv D 20 s, corresponding
to the time interval between two consecutive speed measurements [13]. The time
step �tp was determined such that the measured curve of the mean displacement
versus the square-root of time is reproduced. It is important to note that even though
the directional persistence time �tp is not known a priori, turning angles can never-
theless be drawn from the experimental distribution that was evaluated with a time
resolution of 20 s. It has been shown that the turning angle distribution is extremely
robust and represents a reasonable approximation for different values of �tp rang-
ing from 20 s up to 160 s [7].

Re-constructing 105 B cell tracks and fitting �tp under the constraint that the
experimentally observed mean displacement curve is recovered, yields the reason-
able value �tp D 1:24 min for B cells in wildtype mice. Using this value, it was
confirmed that the persistent random walk hypothesis can be reconciled with the
trans-zone migration frequency for B cells migrating between the light and dark
zone in germinal centres. This can be seen in Fig. 6.2a, where we plot the frac-
tion of 105 monitored cells that migrate during a one-hour measurement across
the zone boundary of 40 �m thickness within a spherical germinal centre of radius
R D 160 �m.

The position distribution P.r; tn/ was calculated from the re-constructed cell
tracks and represents the probability to find a cell after time tn at a radial distance r

from its initial position. The result is plotted in Fig. 6.2b at tn D 10 min and tn D 3 h
for a spherical germinal centre of radius R D 160 �m and cellular starting posi-
tions at the centre of the sphere. Interestingly, for B cells that perform random walk
migration with a directional persistence time, it was found that within 3 h B cells
will be equally distributed over the whole germinal centre. This result is in con-
flict with the observation of a zonal structure in germinal centres, where more B
cells are found in the dark zone than in the light zone. In other words, these results
suggest that additional mechanisms must be present that prohibit the quick intermix-
ture of the germinal centre by the B cells. A natural candidate for this mechanism is
chemotaxis and its implications on the germinal centre morphology will be further
discussed below.

Agent-Based Models of Interacting Cell Systems

Cellular systems exhibit complex phenomena that require a modelling approach
where different types of cells are represented as discrete objects with specific prop-
erties and characteristic functions. This is realized in agent-based models where
each cell is an agent that can migrate and interact with other agents in space and
time. It is convenient to impose a lattice of space points that mimics the spatial
environment of the cells, where the distance between neighboring lattice points de-
termines the spatial resolution. The advantage of the spatial discretization by the
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Fig. 6.2 Trans-zone
migration and probability
distribution of B cells in a
spherical germinal centre of
radius R D 160 �m.
(a): The fraction of 105

monitored cells that migrate
across the zone boundary of
40 �m thickness during a
one-hour measurement. The
position of the intercepting
plane at the centre of the zone
boundary is changed between
�R andCR across the whole
germinal centre. Over a large
regime of plane intercepts the
trans-zone migration
frequency is found to be
within the experimentally
expected range of 5–10% per
1 h. (b): Position distribution
P.r; tn/ as a function of the
radial distance r at times
tn D 10 min and tn D 3 h.
After 3 h, the quadratic
dependence of P.r; tn/ on r

indicates the homogeneous
distribution of B cells
throughout the whole
germinal centre. (This figure
was modified after [7].)

lattice representation is that the neighborhood topology is kept fixed during the sim-
ulation, whereas lattice-free agent-based models with continuous space coordinates
require additional measures to identify the neighbors of a cell in each time step of
the simulation [16].

The procedure according to which the system evolves in time depends on the type
of implemented agent-based model. In the next section, we consider a Potts-model
approach, where the system dynamics is governed by minimizing a pre-defined en-
ergy functional. In contrast, we will also consider a model that is based on rules for
stochastic events that determine the time-evolution on the basis of rates associated
with the occurrence of these events.
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T Cell Migration and Interaction with Dendritic Cells

On the basis of two-photon imaging data from lymph nodes of mice, the migration
of T cells and their interaction with dendritic cells was studied using a Potts model
[17, 18]. In this model, cells are represented by several connected points in a three-
dimensional lattice. The cell types taken into account are T cells, dendritic cells
and static fibroblastic reticular cells forming the reticular network in lymph nodes.
Surface and volume energies are assigned to cells that are in contact with other cells
and changes in the cellular configuration are determined by minimizing an energy
functional.

The energy functional is given in terms of the Hamiltonian

H D
X
ijk

X
i 0j 0j 0

J
�
�.
ijk/; �.
i 0j 0j 0/

� 	
1 � ı�ijk ;�i 0j 0j 0




C
X

�

�
�v.v� � V� /2 C �p.p� � P� /2

�
: (6.14)

The first term represents the surface energy J depending on the interacting cell types
�.� / with � the identification number of the cells on the lattice. The summation
runs over all lattice points fijkg and neighboring lattice points fi 0j 0j 0g with the
Kronecker delta excluding self-terms of the surface energy. The volume energy is
determined by �v and is a measure for the cell inelasticity driving the actual cell
volume v� to a pre-defined target cell volume V� . For dendritic cells the large surface
to volume area is imposed by the �p-term in the Hamiltonian with actual dendritic
cell surface p� and target surface P� .

The system is advanced in time by random changes in the cellular configura-
tion that give rise to the energy difference �H between the two configurations. In
addition, for motile T cells the direction of migration is measured by the angle ˛

relative to a pre-defined target direction. This gives rise to an additional contribu-
tion �HT D �� cos.˛/ for T cells, such that the total energy difference is given
by �Ht D �H C �HT . A Metropolis Monte Carlo algorithm is used to decide
whether or not the new cellular configuration is accepted. The details of this proce-
dure together with the chosen model parameters can be found in [17].

In the model, T cells perform random walk migration with a directional per-
sistence time in the order of 2 min that was fitted to reproduce the experimental
data [11]. This agreement was obtained without the requirement that T cells reg-
ularly pause and subsequently choose a new random direction. Instead, the model
suggests that this migration behaviour is a consequence of T cells having a preferred
direction of motion that is adjusted by the reticular network and dendritic cells in
the nearby environment. According to the simulations, T cells migrate preferentially
along the fibers of the reticular network unless they see obstacles on their migration
path. It was proposed that this behaviour gives rise to small, dynamic streams of T
cells through the lymph node.
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The model has also been used to estimate the scanning rates of dendritic cells by
T cells. The simulations revealed that T cells are able to scan 100 different dendritic
cells per hour. This implies that, during negative selection in the thymic medulla,
maturing T cells scan about 3:4 � 104 different dendritic cells in 14 days. This
number involves many brief contacts lasting less than 1 min and the simultaneous
interaction between a T cell and multiple dendritic cells. The average contact dura-
tion was between 1 and 2 min according to the simulations, with rare interactions
that took up to 10 min. It should be noted, however, that the contact duration and the
scanning estimate depend on the imposed densities of the different cell types.

The cellular Potts model has also been applied to investigate the three dis-
tinct phases of T cell stimulation that have been observed in two-photon ex-
periments [18]. In the first phase, T cells rapidly migrate trough lymph nodes
experiencing only brief encounters with dendritic cells. Several hours after T cells
are first exposed to their cognate antigen, they enter into the second phase, which is
characterized by T cells being clustered around dendritic cells for more than 30 min.
It is likely that immunological synapses form during this phase that ultimately re-
sults into the stimulation of T cells. The third phase is characterized by T cells that
are again rapidly migrating and proliferating in response to antigen stimulation.

Simulations suggest that, in order to enter the second phase of T cell stimulation,
the assumption of adhesion between specific T cells and antigen-bearing dendritic
cells alone is not sufficient. Rather, it was concluded from the simulations that stop
signals have to be provided by dendritic cells that are integrated by the T cells during
the first phase and enable the transition to the second phase. It was speculated that
stop signals may be provided during the first and second phase of T cell priming,
but are absent or ignored with the onset of the third phase, in which T cells resume
rapid migration behaviour.

Transient Chemotaxis of B Cells in Germinal Centres

During the last decade, the germinal centre reaction has been simulated by var-
ious implementations of agent-based models that describe cell migration and in-
teraction as the result of stochastic events occurring with characteristic reaction
rates [8, 19–22]. Recent two-photon imaging of in vivo B cell migration in ger-
minal centres [13–15] has re-initiated the functional analysis of the germinal centre
reaction for different assumptions on the B cell migration behaviour [7].

We have discussed that the statistical cell track model, based on the hypothesis
of B cells performing persistent random walk migration, reveals a conflict. On the
one hand, this hypothesis is sufficient to explain the experimentally observed fre-
quency of B cell trans-zone migration in germinal centres, on the other hand the
high motility of B cells results in a quick intermixture of the germinal centre that
cannot be reconciled with the observed zonal structure in germinal centres. How-
ever, performing a functional analysis within an agent-based modelling approach,
this conflict can be resolved under the additional assumption that persistent random
walk migration of B cells is subject to transient chemotaxis [7].
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The applied agent-based model consists of the following three coupled levels:

(a) The first level contains the main lattice corresponding to the three-dimensional
physical space in which cells can migrate and interact. Each lattice point can
carry up to one biological cell that evolves according to reaction rates defining
a probability of action or interaction with neighboring cells on the lattice. In
addition, cells migrate according to a chemokine distribution that is calculated
on a separate lattice (see third level below).

(b) The second level refers to the antibody shape space, which is represented by
a four-dimensional lattice encoding the antibody type of each B cell. Somatic
hypermutation is represented by switching the antibody type to a neighboring
point in the shape space. Each point in the shape space is associated with an
antibody–antigen affinity and determines the binding probability of a B cell to
an antigen-presenting follicular dendritic cell.

(c) The third level deals with solving a system of reaction-diffusion equations for
the chemokines CXCL12 and CXCL13. The source for CXCL12 are stromal
cells at the border of the follicle in the dark zone, and follicular dendritic cells
in the light zone for CXCL13.

The essential feature of this agent-based model is that it captures the whole ger-
minal centre reaction comprising the population kinetics, cellular interactions, and
affinity maturation. This level of description allows to distinguish between centrob-
lasts, proliferating B cells that undergo somatic hypermutation, and centrocytes,
nondividing B cells with activated apoptosis competing for survival signals. The
included mechanisms follow, to a large extent, the classical model of the germi-
nal centre reaction [3] and the simulations are validated by numerous experimental
facts [7].

The preferred direction of B cell migration is defined by a polarity vector that is
renewed after the persistence time of 1:24 min, which was obtained from the statis-
tical cell track model that was discussed in Section “B Cell Trans-Zone Migration
in Germinal Centres”. The polarity vector consists of two contributions. A random
contribution according to the turning angle distribution as measured in two-photon
experiment [13] and a contribution that depends on the chemokine gradients.

The simulations predicted a novel migration model for B cells in germinal cen-
tres, referred to as “transient chemotaxis model” that reconciles all experimental
and theoretical data [7,8]. According to this model, most of the cells in the dark and
light zone actively perform persistent random walk migration. Centrocytes acquire
additional sensitivity to CXCL13 after or during differentiation from centroblasts
and orient toward the network of follicular dendritic cells in the light zone. In the
network, the centrocytes lose CXCL13 sensitivity. This might be induced by contact
with follicular dendritic cells, by overcritical CXCL13 concentrations and CXCR5
internalization, or simply by down-regulation of CXCR5 after a characteristic time.
Similarly, a return to the dark zone of positively selected centrocytes is facilitated by
a transient chemotactic sensitivity for CXCL12. However, random walk migration
remains the dominant pathway of re-polarization since B cells undergo directed mi-
gration only temporarily. Therefore, transient chemotaxis might well be hidden in
the experimental motility data that seemingly support pure persistent random walk
migration.
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Furthermore, the functional analysis of germinal centre simulations revealed
insight about the interaction between B cells and follicular dendritic cells. Cen-
trocytes bind antigen on follicular dendritic cells to obtain survival signals and this
binding process is affinity dependent. Contacts observed in vivo have rarely been
found to be longer than 5 min [14]. In the agent-based model it was assumed that,
depending on the affinity of the encoded antibody, the B cells either contact fol-
licular dendritic cells in a static condition of 30 min or in a transient manner that
lasted until the B cell continued to migrate. A distribution of contact durations was
obtained from the simulations and is plotted in Fig. 6.3. It was found that the ma-
jority of B cells exhibit only short contacts with follicular dendritic cells, i.e. less
than 5 min (see Fig. 6.3a), and only 2–4% of the cells are in a static contact dur-
ing the germinal centre reaction (see Fig. 6.3b). These results of the simulations
are in agreement with the two-photon measurements [14]. Therefore, it cannot be

Fig. 6.3 Simulation results
on the overall contact time
and the number of static
contacts between centrocytes
and follicular dendritic cells.
(a) The vast majority of
contacts between centrocytes
and follicular dendritic cells
during a one-hour
measurement is of dynamic
nature and lasts around 3 min.
(b) During the germinal
centre reaction, the fraction of
centrocytes that drive the
affinity maturation and are in
static contact with follicular
dendritic cells for 30 min is
only 2–4%. (This figure was
modified after [7])

a

b



6 Modelling Intravital Two-Photon Data 135

concluded from the experimental contact data that centrocytes integrate signals from
short contacts with follicular dendritic cells [14]. Instead, even though signal inte-
gration cannot be ruled out, the simulations were consistent with the idea that rare
static contacts are sufficient to drive affinity maturation.

Agent-Based Models of Cell Shape Dynamics

Two-photon microscopy data reveal that cell motility and cell shape are closely in-
terlinked with each other, since the re-polarization of cells involves the repositioning
of the cellular cytoskeleton. Several modelling approaches exists that capture the
shape dynamics of migrating cells [17, 18, 23]. In this chapter, we concentrate on
the approach that has been applied to analyze the experimentally observed shape
dynamics of migrating cells in lymphoid organs [23].

Two-photon data show a stochastic variation of lymphocyte motility that is
closely interlinked with the cell shape [10]. Therefore, to analyze these data, cells
cannot be treated as point particles but have to be modelled in a spatially resolved
fashion. This is realized by an agent-based model with a sufficiently high lattice
resolution that represents each cell by a collection of subunits corresponding to
connected lattice points. In addition, updating rules have to be implemented in the
agent-based model that mimic realistic shape deformations of migrating cells.

Cell Shape Dynamics of Migrating T and B Cells

Following a reductionalist point of view, cells may be represented by the cell vol-
ume, the cell polarity and a list of connected cell subunits that constitute the cell
shape on the lattice. The cell volume determines the number of cell subunits accord-
ing to the chosen space resolution, while velocity states translate into probabilities
of subunit movements in the direction of the cell polarity according to the chosen
time resolution.

Two main contributions of cell dynamics have been identified [23]:

(1) The rearrangement of subunits with respect to a virtually shifted barycentre of
the cell (active movement). A normalized polarization vector determines the di-
rection of the active movement of a cell, which in reality is a complex function
of the cytoskeleton organization as well as localized signalling pathways. This
vector is considered as an approximation for the direction in which cell protru-
sions are developed and is assumed to change randomly with a probability that
is associated with the persistence time.

(2) The rearrangement of the subunits with respect to the actual barycentre (re-
shaping forces). The subunit movement is realized according to heuristic rules
that are interpretable as physical quantities. This ingredient of the cell motil-
ity model concerns the cell shape stability. During the procedure of active
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cell movement the details of forces that reshape the cell towards a sphere, i.e.
hydrostatic pressure, reduced actin filament assembly, actomyosin contraction,
or membrane surface tension, are ignored. Within a phenomenological approx-
imation, all these forces are included in a single reshaping force. This overall
elastic force drives the subunits of an elongated cell back to the current barycen-
tre and promotes a spherical shape.

The simulation of active movement was performed by the following procedure:
The barycentre of the cell is virtually shifted in the direction of the polarization vec-
tor towards the membrane of the cell. Then every subunit representing a membrane
point of the cell is moved in random order towards free lattice points near the virtual
barycentre. Moving a border subunit which is not a direct neighbor of its target point
(e.g. a subunit on the back of the cell) is considered to correspond to the cytosol shift
through the whole cell. Note that in this model all subunits carried the same proper-
ties and if the movement of a membrane subunit would have caused the subunits of
the cell to become disconnected this movement was suppressed. The displacement
of subunits was stopped when either no membrane subunit remained to be moved or
the barycentre of the cell was displaced by one lattice constant. In the new state the
cell had reorganized its membrane and thus changed its shape. Thereby the total cell
volume (or, the total cell area in a two-dimensional implementation) was conserved.
Thus, the movement of the cell barycentre was realized by subunit rearrangements,
and inherently coupled the cell movement to its deformation.

The comparison of the model results with experiment revealed that the two in-
gredients active movement and reshaping forces are sufficient in order to describe
lymphocyte motility data as found by two-photon imaging. Here, we concentrate
on the shape index that was calculated from the data obtained for T cell and B
cell migration in lymph nodes of mice [10]. Projecting the cell volume on a two-
dimensional plane, the area was approximated by an ellipse, which is characterized
by its two axes. The shape index si .n/ of the i th cell was calculated as the ratio of
the long to the short axis at each time step tn, such that si .n/ > 1 corresponds to an
elongated cell shape that becomes circular for si .n/ D 1.

In Fig. 6.4 the shape index distributions are plotted as obtained from the mea-
surement of I D 46 T cells and B cells. The average shape index is around 2:3 for
T cells and 1:6 for B cells, indicating that the cellular elongation is about a factor
1:5 larger for T cells compared to B cells. The differences in the shape index are
in agreement with observations by two-photon microscopy [10]. It was speculated
that this may point to cardinal differences in the cytoskeleton dynamics of migrat-
ing T and B cells [23]. Nevertheless, in the simulations both cell types dynamically
round up and take a symmetric shape during the process of re-polarization. It should
be noted that this result has not been enforced by assuming a pausing time in the
agent-based model, as was done in the statistical cell track model combined with
the assumption of a single speed state for the cells. Rather, in the agent-based model
the shape index is a direct consequence of the reshaping forces that cells experience
while they are continuing to migrate and the shape index is closely connected with
a significant width in the underlying speed distributions [23].
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Fig. 6.4 Simulation results
on the distribution of the
shape index for 46 T cells and
B cells. The error bars
correspond to one standard
deviation and stars indicate
the mean values of the
distributions. (a) The T cell
shape index distribution has a
mean shape index of 2:3 and
shows that T cells reach
peak elongations between
4 and 5. (b) The B cell shape
index distribution has a mean
shape index of 1:6, which
corresponds to only 70% of
the mean value for T cells.
Peak elongations in B cells
occur between 2:5 and 3:5

Summary

Multi-photon microscopy is a powerful tool for imaging lymphocyte migration and
interaction in intact biological organs. Quantitative information on the cell motility,
shape dynamics and contact durations are derived from these data by mathematical
analysis that shape our interpretation of these data.

It is important to realize that mathematical analysis is not merely a descriptive
approach, rather, its valuable contribution is to constitute a predictive consistency
check of the working hypothesis that is underlying the interpretation of the experi-
mental data. For example, a simple statistical cell track model was used to analyze
the trans-zone migration of B cells in germinal centres. This revealed, on the one
hand, that the measured trans-zone frequency is in agreement with the working
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hypothesis of B cells performing a persistent random walk migration in germinal
centres. On the other hand, the same analysis disclosed an inconsistency with re-
spect to the observed zonal morphology in germinal centres. This initiated further
analysis using an agent-based model approach that captures the functional aspects
of the germinal centre reaction. It then turned out that, hidden behind the experi-
mental data from which the working hypothesis was derived, transient chemotaxis
restores the zonal morphology in germinal centres. Since transient chemotaxis is
still compatible with the B cell motility data, this implied that the initial working
hypothesis of pure random walk migration with directional persistence time was ac-
tually formulated too narrow. This development of insight is a prime example for
experiment and theory working hand in hand [8].

A firm experimental data basis is the mandatory prerequisite for realistic models
of cellular dynamics in complex biological systems. Including more detailed aspects
of cell dynamics into mathematical models reveals new system features and is be-
coming more feasible due to the continuously growing computer resources in terms
of memory and processor speed. At the same time experimental techniques are de-
veloping fast and highly accurate data on cellular dynamics that are recorded over
several hours time can be expected in the near future. The real challenge, however,
is for modelers and experimentalists to keep pace in working hand in hand achieving
the highest benefit from the symbiotic effects of theory and experiment.

References

1. Mempel T, Henrickson S, von Adrian U (2004) T-cell priming by dendritic cells in lymph
nodes occurs in three distinct phases. Nature 427:154–159

2. Beauchemin C, Dixit NM, Perelson AS (2007) Characterizing T cell movement within lymph
nodes in the absence of antigen. J Immunol 178:5505–5512

3. MacLennan ICM (1994) Germinal centers. Annu Rev Immunol 12:117–139
4. Manser T (2004) Textbook germinal centers? J Immunol 172:3369–3375
5. Hauser A, Shlomchik M, Haberman A (2007) In vivo imaging studies shed light on germinal-

centre development. Nat Rev Immunol 7:499–504
6. Allen C, Okada T, Cyster J (2007) Germinal-center organization and cellular dynamics.

Immunity 27:190–202
7. Figge MT, Garin A, Gunzer M, Kosco-Vilbois M, Toellner KM, Meyer-Hermann M (2008)

Deriving a germinal center lymphocyte migration model from two-photon data. J Exp Med
205:3019–3029

8. Meyer-Hermann M, Figge MT, Toellner KM (2009) Germinal centres seen through the math-
ematical eye: B cell models on the catwalk. Trends Immunol 30:157–164

9. Cahalan M, Parker I (2008) Choreography of cell motility and interaction dynamics imaged by
two-photon microscopy in lymphoid organs. Annu Rev Immunol 26:585–626

10. Miller M, Wei S, Parker I, Cahalan M (2002) Two-photon imaging of lymphocyte motility and
antigen response in intact lymph node. Science 296:1869–1873

11. Miller M, Wei S, Cahalan M, Parker I (2003) Autonomous T cell trafficking examined in vivo
with intravital two-photon microscopy. Proc Natl Acad Sci USA 100:2604–2609

12. Miller M, Safrina O, Parker I, Cahalan M (2004) Imaging the single cell dynamics of CD4C T
cell activation by dendritic cells in lymph nodes. J Exp Med 200:847–856

13. Allen C, Okada T, Tang HL, Cyster J (2007) Imaging of germinal center selection events during
affinity maturation. Science 315:528–531



6 Modelling Intravital Two-Photon Data 139

14. Schwickert T, Lindquist R, Shakhar G, Livshits G, Skokos D, Kosco-Vilbois M, Dustin M,
Nussenzweig M (2007) In vivo germinal center imaging reveals a dynamic open structure.
Nature 446:83–87

15. Hauser A, Junt T, Mempel T, Sneddon M, Kleinstein S, Henrickson S, von Andrian U,
Shlomchik M, Haberman A (2007) Definition of germinal-center B cell migration in vivo re-
veals predominant intrazonal circulation patterns. Immunity 26:655–667

16. Meyer-Hermann M (2008) Delaunay-object-dynamics: cell mechanics with a 3D kinetic and
dynamic weighted Delaunay-triangulation. Curr Top Dev Biol 373–399

17. Beltman JB, Marée AF, Lynch JN, Miller MJ, de Boer RJ (2007) Lymph node topolgy dictates
T cell migration behavior. J Exp Med 204:771–780

18. Beltman JB, Marée AF, de Boer RJ (2007) Spatial modelling of brief and long interactions
between T cells and dendritic cells. Immunol Cell Biol 85:306–314

19. Meyer-Hermann M (2002) A mathematical model for the germinal center morphology and
affinity maturation. J Theor Biol 216:273–300

20. Meyer-Hermann M, Maini P (2005) Back to one-way germinal centers. J Immunol 174:2489–
2493

21. Figge MT (2005) Stochastic discrete event simulation of germinal center reactions. Phys Rev
E 71:051907

22. Meyer-Hermann M, Maini PK, Iber D (2006) An analysis of B cell selection mechanisms in
germinal centers. Math Med Biol 23:255–277

23. Meyer-Hermann M, Maini P (2005) Interpreting two-photon imaging data of lymphocyte
motility. Phys Rev E 71:061912



Chapter 7
Modelling Lymphocyte Dynamics In Vivo

Becca Asquith and José A.M. Borghans

Abstract Quantification of lymphocyte dynamics contributes greatly to our under-
standing of many fundamental processes in immunology, including homeostasis,
ageing, immunological memory and pathogenesis. Recently developed experimen-
tal techniques to label lymphocytes and mathematical models to interpret the re-
sulting data enable us to accurately measure the rate of T and B lymphocyte
proliferation and disappearance in humans in vivo. Here we describe some of the
experimental and mathematical techniques involved, including a discussion of the
advantages and disadvantages of the most popular methods available, as well as a
practical guide to modelling labelling data, and a discussion of future challenges in
this rapidly-moving area.

Why Quantify Lymphocyte Dynamics?

Lymphocytes are the key cells of our adaptive immune system and their dynamics
determine our health. The correct balance between the production of lymphocytes
(de novo in the thymus and by peripheral proliferation) and lymphocyte loss (by
cell death or differentiation) is essential for immune function. Dysregulation of
lymphocyte dynamics results in a broad spectrum of pathologies including AIDS
(precipitated by CD4C T lymphocyte loss), leukemia (aberrant growth of B or T
lymphocytes) and autoimmune conditions such as multiple sclerosis or arthritis
(inappropriate activity of self-reactive lymphocytes). Even though lymphocyte pro-
liferation and death rates are often regarded as textbook immunology, estimates of
these rates can easily vary by a 100-fold. Nevertheless, researchers are trying to un-
derstand how human diseases like HIV infection, and therapeutic interventions such
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as haematopoietic stem cell transplantation, affect lymphocyte kinetics. As long as
there is controversy about lymphocyte kinetics in healthy individuals, such ques-
tions will remain hard to address.

Why Are Mathematical Models Needed?

Thanks to recent experimental advances, including the application of stable isotope
labelling to label and trace cells that undergo proliferation, the time is now ripe to
determine these rates of lymphocyte turnover. Proper interpretation of labelling ex-
perimental data hinges upon the use of mathematical models. Without mathematical
models, labelling curves remain merely descriptive and do not yield the quantitative
turnover parameters that are needed. Moreover, mathematical modelling helps to ob-
tain insights into the complicated dynamical processes underlying the functioning
of the immune system.

Mathematical models are often criticized because of the assumptions that are
made. Indeed, as Lee Segel, a distinguished mathematical biologist himself, once
said “mathematical biologists are people who make oversimplified models”, but
importantly he added “and do not even feel embarrassed”. It is important to re-
alize, that any interpretation of data incorporates assumptions. The danger with
intuitive, model-free interpretations is that the assumptions are often implicit. Im-
plicit assumptions lack transparency and researchers themselves may be unaware
that they are making these assumptions and so their accuracy is never addressed.
Indeed, as will be repeatedly seen in the following examples, intuitive “assumption-
free” approaches that initially seem persuasive have frequently been demonstrated
to give incorrect results. The fact that mathematical models make their assumptions
explicit, and thereby visible, makes it easier to scrutinise them. Additionally, making
simplifications and eliminating free parameters has the considerable advantage that
it becomes possible to estimate key parameters such as lymphocyte proliferation and
disappearance rates with limited amounts of data, which would be impossible with
highly complex models (see the Section on Parameter Identifiability). Finally, sim-
plified models can provide real insights into complex and highly dynamical systems
such as the immune system.

Different Methods to Study Lymphocyte Dynamics

In recent decades, a large number of different methods have been applied to estimate
the rates of production and death of different lymphocyte populations. These meth-
ods differ widely and include the interpretation of “experiments of nature”, such as
lymphocyte reconstitution after severe lymphopenia, as well as different markers to
study lymphocyte populations that undergo proliferation and death. Some of those
markers occur naturally, including the expression of the proliferation marker Ki67,
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or the length of a cell’s telomeres. Others are administered for research purposes
and include the nucleoside analogue BrdU and different stable isotopes. Here we
will give an overview of these experimental methods, as well as some of the mathe-
matical models that have been developed to interpret the data.

Experiments of Nature

In the absence of specific labelling techniques, investigators have estimated the rate
of production and loss of different lymphocyte populations by following changes in
the numbers of cells under specific extreme “natural” circumstances. In patients with
extremely low lymphocyte numbers, e.g. because of severe regimens of chemother-
apy as treatment for cancer or prior to stem cell transplantation, the reconstitution of
the different lymphocyte compartments was followed over time and translated into
net rates of lymphocyte production [1, 2]. On the one hand, such rates may under-
estimate the true lymphocyte production rate, because cells may also die during the
reconstitution period, a process that may go unnoticed but which will decrease the
net rate of reconstitution. On the other hand, production rates in lymphopenic pa-
tients may exceed the actual rate at which cells are produced in a fully reconstituted
lymphocyte compartment in steady state, because cells undergo little competition
for survival factors.

Another extreme case that has been used to study the rate of lymphocyte turnover
is by measuring the loss of lymphocytes with chromosomal damage in patients after
treatment with radiotherapy for cancer. Assuming that no new lymphocytes with
chromosomal damage are produced after stopping radiotherapy, the average loss rate
of different lymphocyte populations has been estimated [3]. Again, extrapolation of
these estimates to the healthy situation has to be done cautiously, because these loss
rates may be influenced by the DNA damage of the cells under investigation and by
the low numbers of lymphocytes in these patients.

Despite the fact that the quantitative parameters resulting from these “experi-
ments of nature” may not translate exactly to the natural situation, these studies have
had a large impact on our insights into immunological memory. Both approaches
have clearly shown that the turnover rate of memory T lymphocytes exceeds that
of naive T cells, and have thereby suggested that immunological memory is not
maintained by a pool of long-lived memory cells, but by a highly dynamic pool of
memory T cells with a rapid rate of cellular turnover.

Static Markers of Cell Proliferation and Death

Instead of measuring net production rates or net loss rates of lymphocytes under
specific extreme circumstances, one can measure the natural expression of mark-
ers for cells undergoing cell proliferation or death. Ki67, for example, is a protein
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whose expression is restricted to proliferating cells. It is expressed during all ac-
tive phases of the cell cycle, i.e. during the G1, S, G2 and mitotic phase, but not
during the G0 phase. Measuring the fraction of Ki67-expressing cells thus gives
insights into the fraction of cells that is undergoing proliferation. Similarly, cells
undergoing apoptosis can be measured by different methods. One of the plasma
membrane alterations characteristic of cells in the early phase of apoptosis is the
translocation of phosphatidylserines from the inner side of the membrane to the
outer side. This expression can be measured by Annexin V staining, a protein that
binds phosphatidylserine with high affinity. Alternatively, cells in apoptosis can be
distinguished by intracellular staining for certain caspases, which are proteases in-
volved in the cleavage of cellular proteins in cells undergoing apoptosis.

Measuring cell death and proliferation by such naturally expressed markers has
the advantage that the immune system does not need to be disturbed. These mea-
sures are therefore very useful in comparisons of lymphocyte dynamics between
individuals. Such static markers are, however, hard to translate into quantitative bi-
ological parameters such as the fraction of cells that proliferate or die per day. The
fraction of cells expressing markers of death or proliferation reflects not only the
fraction of cells undergoing death or proliferation per day, but is also influenced by
the period during which these markers are expressed. The problem becomes even
larger when the period of expression is not constant, e.g. because it is influenced
by the immunological situation under investigation. For example, if T cells in HIV
infected individuals were to die very rapidly, one might measure low fractions of
Annexin V positive T cells, while in fact many cells are killed. Likewise, it has been
suggested that T cells undergoing proliferation in HIV infected individuals may
get stuck in the cell cycle [4], and thereby cause higher levels of Ki67 expression
than one would expect from the fraction of cells that is actually producing progeny.
Avoiding such problems and obtaining more quantitative biological parameters re-
quires dynamic markers for cell proliferation and death.

Dynamic Markers of Cell Proliferation and Death

In order to study T lymphocyte production and death dynamically, a large number
of markers have been used, all with their own characteristics, advantages and dis-
advantages. Naturally occurring dynamic markers of T cell production and death
include the telomere length of a T cell population, a marker that is typically inter-
preted as reflecting the proliferative history of a cell population, and the expression
of T cell receptor excision circles (TRECs), a marker that has been proposed for the
measurement of T cell production in the thymus. Other dynamic markers are not
naturally expressed and include the administration of the nucleoside analogue BrdU
or stable isotopes such as deuterated water or deuterated glucose. By administration
of such labels and by following their incorporation in the DNA of newly-produced
cells during and after label administration, one can measure both the rate of pro-
liferation and loss of different lymphocyte populations. Below we will provide a
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short summary of these different experimental techniques, as well as our favoured
mathematical interpretation of the resulting data. Note that for all these techniques
a number of different mathematical models have been developed. We focus on the
ones that we think most clearly illustrate the impact of mathematics on our insights
into lymphocyte dynamics.

T Cell Receptor Excision Circles

For decades, investigators have tried to quantify the contribution of T cells that are
newly formed by the thymus to the maintenance of the peripheral T cell pool. In
the late nineties a new assay was introduced to measure the number of cells that are
produced by the thymus. This assay is based on the occurrence of T cell receptor ex-
cision circles (TRECs) [5,6]. TRECs are by-products of V(D)J rearrangements that
occur in the thymus when the T cell receptor (TCR) is formed. During this genetic
rearrangement process, parts of the TCR genome are excised and form stable DNA
circles (Fig. 7.1a). These TRECs are not copied when a cell divides; they are simply
passed on to one of the daughter cells (Fig. 7.1b). TRECs are thus uniquely formed
in the thymus. Measurement of the average number of TRECs in a cell population
by quantitative PCR was therefore proposed as a direct measure for thymus output.

TREC DNA

V J 

V J 

TREC

a

b

Fig. 7.1 (a) TRECs are excised from the DNA, during T cell receptor V(D)J gene rearrangement
in the thymus. The excised pieces of DNA form stable circular DNA products, which fail to be
copied during DNA duplication. (b) As a consequence, the average number of TRECs (in blue) per
cell in a cell population decreases when cells proliferate



146 B. Asquith and J.A.M. Borghans

When the average number of TRECs per T cell was measured in individuals of
different ages, an exponential decline was observed [6]. These findings fitted exactly
to the common view that the thymus undergoes involution, and its output thereby de-
creases exponentially with age. Decreased TRECs per cell in HIV-infected patients
were similarly interpreted as evidence for impaired thymic output [6], and increased
TRECs per cell in individuals after haematopoietic stem cell transplantation as evi-
dence for thymic rebound to compensate for the lack of T lymphocytes [7].

A simple mathematical model pointed out, however, that TRECs do not directly
reflect thymic output [8–10]. The change in the average TREC content of a pop-
ulation of cells with age can be calculated from the change in the total number of
TRECs, T , and the change in the total number of cells N with age. The total number
of cells decreases by cell death at rate ı per day, and increases by T cell proliferation
at rate p per day and by thymic output, 
.t/, which itself decreases exponentially
with age at rate v per day:

dN

dt
D 
.t/ C pN � ıN (7.1)

where


.t/ D 
.0/e�vt :

The total number of TRECs also decreases by cell death and increases by thymic
output, but is not affected by T cell proliferation:

dT

dt
D c
.t/ � ıT; (7.2)

where c is the average TREC content of a cell that leaves the thymus. The average
TREC content A of a cell population can be calculated as A D T=N . It is easy to
demonstrate that when T and N are at equilibrium, the average TREC content A is:

A D c.ı � p/=ı: (7.3)

In other words, the average TREC content of this cell population is totally inde-
pendent of the number of cells that are generated by the thymus per day. This
equation demonstrates that the rate of proliferation and death of this cell popula-
tion strongly influence its average TREC content. The more proliferation the cells
undergo, the lower their TREC content, and the larger the death rate of the cells,
the higher their TREC content. With hindsight, this can be understood intuitively,
because cell proliferation increases the number of cells but not TRECs, and because
cell death influences the average age of a cell population. The larger the death rate,
the younger the cell population, and hence the fewer rounds of proliferation have
occurred and diluted the average TREC content.

One thus has to be extremely careful when interpreting TREC data [8–10]. The
fact that T cell TREC contents decline with age probably reflects a homeostatic
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response of the immune system to decreasing thymus output. While increased rates
of T cell proliferation or decreased rates of T cell death, both possibly contributing
to T cell homeostasis, strongly affect TREC contents, changes in thymic output per
se will not. Likewise, low TREC contents in HIV patients are more likely to reflect
increased rates of proliferation rather than decreased thymic output [8], an insight
with considerable implications for the HIV field. The above equations illustrate that
part of the problem can be solved by not only measuring average TREC contents
of cell populations (i.e. A), but also measuring total TREC numbers per ml blood
(i.e. T ), a measure that is independent of the proliferation rate of the population.
Nevertheless, even total TREC numbers do not directly reflect thymus output, be-
cause they are also influenced by cellular death rates. In summary, these analyses
have demonstrated that a marker that is so unique for T cell generation by the thy-
mus nevertheless also reflects all dynamical processes that T cells undergo in the
periphery.

Telomere Length

Another naturally occurring dynamic marker for cell proliferation and loss is the
length of a cell’s telomeres. Telomeres are unique structures at the end of chro-
mosomes, which consist of tandem DNA repeats. Because DNA polymerases fail
to copy the very ends of the chromosomes during cell division, telomeres shorten
with each cell division and thereby provide a record of a cell’s proliferation history
(Fig. 7.2) [11, 12]. Although it is very tempting to translate the decline in the aver-
age telomere length of a cell population directly into the number of cell divisions
the population has undergone, describing telomere dynamics with a mathematical
model has demonstrated that one has to be extremely cautious when interpreting
telomere data [13]. Furthermore, the activity of the enzyme telomerase which effec-
tively elongates telomeres can potentially destroy the relationship between telomere
length and the number of divisions a cell has undergone [14, 15].

If one assumes that telomerase is not active then one can describe the shortening
of telomeres in a population of cells by giving each cell an index i , depending on
the number of cell divisions the cell has undergone, the so-called division index
[13]. When a cell with division index i divides, it produces two daughter cells with
division index i C 1. If the number of cells with division index i is denoted by
ni , and the total number of cells by N , the average division index � of such a cell
population is:

� D 1

N

1X
iD0

ini : (7.4)

The average division index of a population increases with time. Its change over
time (d�=dt) can be calculated by differentiating � with respect to time, and by
substituting dN=dt , the change in the total number of cells N over time, and dni=dt ,
the change in the number of cells ni with division index i over time. If (7.4) applies
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Fig. 7.2 Telomeres are
repetitive DNA patterns
found at the ends of the
chromosomes. During DNA
replication, the leading strand
(blue) can make a full copy of
the DNA, while the lagging
strand (green) fails to copy
the very end of the
chromosome, leading to
progressive telomere
shortening

to memory T cells, the change in the total number of memory T cells (N D M ) is
described by [13]:

dM

dt
D
X

i

dmi

dt
D M.pM � ıM / C �C V; (7.5)

where pM denotes the proliferation rate of memory T cells, ıM denotes the rate at
which memory T cells die, � the rate at which naive T cells are primed and enter the
memory compartment, C is the average number of cell divisions occurring during
clonal expansion (i.e. when naive T cells are triggered to become memory T cells)
and V is the number of naive T cells. See Fig. 7.3. The change in the number of
memory cells mi with division index i is described by the following differential
equation [13]:

dmi

dt
D 2pM mi�1 � .pM C ıM /mi C �V ni�K ; (7.6)
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Fig. 7.3 The total memory T cell population, M , consists of sub-populations of cells mi that have
undergone i cell divisions. Memory cells in any sub-population i divide at rate pM and produce
two daughter cells with division index i C 1, they die at rate ıM , and are produced when naive T
cells V are activated at rate � and clonally expand into C memory cells

where K is the number of divisions made during clonal expansion. Substituting
these two equations into the derivative of (7.4), yields that the average division index
�M of the memory T cell population changes according to:

d�M

dt
D 2pM � �C

V

M
.�M � �V � K/: (7.7)

The latter equation gives the important insight that the average telomere length of
the memory T cell population does not only reflect the proliferative history of the
memory T cell population, but also the transition of naive T cells into the memory
compartment [13]. Telomere loss in the memory T cell pool is in part compensated
by the influx of cells from the naive compartment, which – on average – have longer
telomeres than memory cells. Thus, the rate of telomere loss in the memory popu-
lation is to a large extent determined by the rate of telomere loss in the naive T cell
pool. It is therefore perhaps not surprising that the telomere loss of naive and mem-
ory T cells was found to occur at similar rates [16], even though naive and memory
T cells are thought to proliferate at different rates.

Similarly, one can argue that the rate at which naive T cells shorten their telom-
eres may not directly reflect their proliferation rate, but may also be influenced to a
large extent by the rate of telomere loss of progenitor cells that are exported from
the thymus into the periphery [13]. Since recent thymus emigrants form a permanent
source of cells with relatively long telomeres, they increase the average telomere
length of the naive T cell population. Ignoring this influx of cells from the thymus
into the periphery may therefore lead to an underestimation of the naive T cell divi-
sion rate.

In summary, although telomeric lengths may seem to be the best marker for the
proliferative history of a cell population, again, just like TREC contents, they are
not only influenced by T cell proliferation, but also by cellular death rates and input
from the thymus. In fact, TREC contents and telomere lengths thus reflect very
similar processes, even though they were originally proposed to be discriminative
for thymic output and cellular proliferation, respectively.
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BrdU Labelling

T cell turnover rates have extensively been studied by the use of 5-bromo-20-
deoxyuridine (BrdU), a nucleoside analogue that is incorporated into the DNA of
cells that are dividing, instead of the nucleoside thymidine [17–20]. Because of its
potential toxicity, BrdU has mainly been applied to rodents and non-human pri-
mates. It is typically administered via the drinking water and its incorporation in
cells can be detected by flow cytometry. When cells divide in the presence of BrdU,
newly-formed DNA strands build in BrdU and are subsequently randomly dis-
tributed over the two daughter cells, resulting in two BrdU-labelled cells (Fig. 7.4).
When BrdU-labelled cells divide in the absence of BrdU, their label intensity de-
creases with every cell division. Nevertheless, BrdU labelling studies typically
report the percentage of BrdU-positive cells, i.e. the percentage of cells in which the
BrdU intensity exceeds a certain threshold, irrespective of their exact label intensity.

During BrdU intake, the percentage of cells that are BrdU-positive gradually
increases, and after BrdU is withdrawn from the drinking water the percentage of
BrdU-positive cells typically decreases. Simple, intuitive analyses interpret the rate
of increase of labelled cells during the labelling period as reflecting the rate of cell
proliferation and the rate of loss of labelled cells during the delabelling period as
the rate of cell death. Although this may sound very persuasive, in fact it is not so
straightforward. A simple mathematical model demonstrates where intuition goes
wrong [21–25]. One can describe the accrual of label during BrdU administration
either by the rate at which the fraction of labelled cells increases or by the rate at
which the fraction of unlabelled cells decreases. Since both rates should be equal,
one can simply use the easiest equation. During BrdU administration, it is easiest
to describe the number of unlabelled cells, U . Unlabelled cells are lost when they

a b

BrdU administration Deuterium administration

Fig. 7.4 BrdU labelling experiments follow the fraction of labelled cells, while stable isotope la-
belling experiments follow the fraction of labelled DNA strands. During BrdU administration (light
blue box), dividing cells build BrdU into their newly-formed DNA strands. Labelled DNA strands
(blue) are randomly distributed over the daughter cells. Upon BrdU-withdrawal, the label intensity
of the cells decreases with every cell division, but the fraction of BrdUC cells (dark green) does
not decrease. During stable isotope labelling (light blue box), dividing cells build deuterium into
their newly-formed DNA strands. Labelled DNA strands (blue) are randomly distributed over the
daughter cells. Upon deuterium withdrawal, the fraction of labelled DNA decreases with every cell
division
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divide (because they become BrdU-labelled) at rate p per day, or when they die at
rate ı per day:

dU

dt
D �pU � ıU: (7.8)

This equation demonstrates that the fraction of unlabelled cells decreases, and hence
the fraction of labelled cells increases, during label administration at rate p Cı. Im-
portantly, and rather counter-intuitively, label accrual during label administration
thus does not only reflect proliferation but also loss of cells through death or matu-
ration.

When BrdU is no longer administered, it is easier to follow the loss of labelled
cells. Labelled cells are lost from the population by cell death at rate ı per day, but
they are also gained, by cell proliferation at rate p per day, even in the absence of
BrdU. Because previously labelled chromosomes are randomly distributed among
daughter cells, both daughter cells will be BrdU labelled (see Fig. 7.4), albeit with
lower BrdU intensity. Each BrdU labelled cell that divides thus adds another labelled
cell to the population, even in the absence of BrdU:

dL

dt
D pL � ıL: (7.9)

The latter equation demonstrates that the fraction of labelled cells decreases at rate
p � ı per day when label administration is stopped [21, 24]. Importantly, the rate
at which the fraction of labelled cells decreases after label cessation thus does not
directly reflect the rate of cell loss. For a population at steady state, one would
expect the rate of cell production p to be equal to the rate of cell loss ı, in other
words p � ı D 0. Consequently, one would expect the fraction of BrdU labelled
cells to remain constant after label cessation. This is in contrast to what is routinely
observed: that labelled cells decrease after the end of the labelling period.

It is therefore rather surprising that most BrdU studies show a significant decline
in the proportion of labelled cells during de-labelling, suggesting that the average
proliferation rate of lymphocytes, p, is smaller than the average loss rate of BrdU
labelled cells, ı. Indeed, separate estimates of ı and p have shown up to tenfold
larger rates of cell loss compared to the rate of T cell proliferation [21]. One possible
explanation for this discrepancy is that dividing cells are not at equilibrium although
the whole population is. Alternatively, if cell proliferation occurs in “bursts,” BrdU
labelling may have diluted to such an extent that cells are no longer recognized as
label-positive, after extensive T cell proliferation in the absence of label. Currently
ongoing research is aiming to distinguish between these options.

Stable Isotope Labelling

The most recently developed method to study lymphocyte kinetics in vivo is based
on stable isotope labelling. Stable isotopes are non-radioactive variants of a chemi-
cal element, with a different mass because of the presence of extra neutrons in the
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nucleus. The stable isotope that is typically used in lymphocyte dynamic studies is
deuterium, the heavier variant of hydrogen, which contains one proton and one neu-
tron, and has twice the mass of hydrogen, which contains no neutrons. Deuterium
has been administered in the form of deuterated glucose (2H2-glucose) [26–33] or
deuterated water (2H2O) [34–36], and has proven to be safe and non-toxic when
given in low concentrations. The deuterium atoms from these stable isotope labelled
compounds are incorporated into the DNA of cells when they divide. Deuterium
incorporation can be measured by a combination of gas chromatography and mass
spectrometry (GC–MS) on the extracted DNA from sorted cells. In contrast to BrdU
labelling studies, in which the fraction of labelled cells is measured, stable isotope
labelling is measured in terms of fractions of labelled DNA fragments, not cells.
The mathematics required to analyse stable isotope labelling data therefore deviate
from those used in BrdU experiments [36–38].

The number of labelled DNA fragments in a population of cells increases by cell
proliferation at rate p per day, independent of whether the proliferating cells had
already incorporated deuterium or not. The extent to which label is incorporated
during cell proliferation depends on the availability of deuterium, D. In deuterated
glucose experiments, the availability is assumed to be either maximal, during label
intake, or zero, after label cessation, because the turnover rate of glucose is very
fast. In case of heavy water labelling, however, the supply of deuterium is more
variable, and hence should be explicitly taken into account (see below). The number
of labelled DNA fragments decreases by loss of labelled cells from the population
at rate ı per day, through differentiation, maturation or cell death. The change in the
total number of labelled DNA fragments per day can hence be described by [37]:

dL

dt
D pcND.t/ � ıL (7.10)

where N denotes the total number of DNA fragments in the population, and c

reflects an amplification factor which needs to be introduced, because there are mul-
tiple hydrogen atoms in a single DNA fragment that can be replaced by deuterium.
Typically, deuterium is given in such low concentrations that the chance to double-
label a DNA fragment (and thereby miss it during mass spectrometry) is close to
zero. However, the presence of multiple hydrogen atoms does increase the chance
of labelling a DNA fragment at one position. Translating (7.10) into the fraction of
labelled DNA fragments (l D L=N ) yields:

dl

dt
D pcD.t/ � ıl: (7.11)

If labelling is performed with deuterated glucose, then we can assume that D D 1

during the labelling period and D D 0 during the delabelling period and (7.11) has
the following solutions [37]:

l D pc

ı
.1 � e�ıt /; during label administration .t < �/
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and

l D pc

ı
.1 � e�ı� /e�ı.t��/ after label administration .t 
 �/: (7.12)

where � represents the time point at which label administration is stopped.
If labelling is performed with deuterated water then, as mentioned above, the

availability of deuterium needs to be explicitly taken into account. To this end, the
heavy water enrichment in the serum of mice or the urine of humans can be mea-
sured and fitted to a simple exponential accrual and loss function:

D.t/ D f .1 � e��t / C ˇe��t during label administration .t < �/

(7.13)

and

D.t/ D .f .1 � e��� / C ˇe��� / e��.t��/ after label administration .t 
 �/;

where f represents the fraction of deuterated water in the drinking water, t denotes
time in days, � represents the turnover rate of body water per day, and ˇ is the
body water enrichment that is attained after a boost of label by the end of day 0.
These equations can be substituted into (7.11) (and solved) to obtain a model for
label enrichment in deuterated water experiments [36], which is an extension of the
deuterated glucose model [37].

Equation (7.11) shows that in the absence of label, i.e. when D D 0, the decay of
labelled DNA directly reflects the loss of labelled cells ı, and not – as in the case of
BrdU – the difference between cell loss and proliferation. Typically, the loss rate of
labelled cells ı appears to be several-fold higher than the estimated rate p at which
cells proliferate. Although at first sight this may seem surprising for a population
at steady state, the kinetics of cells that have recently divided (and hence picked up
label) may be intrinsically different from those that have not [37,39,40]. It has been
shown that cells that have recently divided are more likely to undergo activation-
induced cell death than cells that have not. Even in the absence of such differences,
the loss of label may exceed the accrual of label, because the uplabelling phase is
representative of the cell population as a whole, including cells that will and cells
that will not go into division during the labelling period. Loss rates, on the other
hand, are based on the loss of cells that have picked up the label, and hence only
involve the part of the lymphocyte pool that has recently divided. As a consequence,
especially in short-term labelling experiments, rapidly turning over cells are over-
represented during the downlabelling phase. Long labelling periods will give rise
to lower rates of T cell loss, because the population that has picked up the label
becomes more representative of the T cell population as a whole. Indeed, meta-
analysis of stable isotope labelling studies with different labelling periods showed
a negative correlation between the length of the labelling period and the estimated
death rate [37]. Importantly, however, the average proliferation rate – which is esti-
mated from the uplabelling phase – should in principle not be affected by the length
of the labelling period.
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Although stable isotope labelling has provided a large step forward in the analysis
of lymphocyte dynamics, quite large discrepancies have been observed between sta-
ble isotope labelling studies from different laboratories [41]. Despite the fact that
average proliferation rates should not depend on the length of the labelling period,
there seems to be a tendency for deuterated glucose experiments, which typically
have short labelling periods, to give rise to higher average proliferation rates than
studies using deuterated water, which is typically administered for much longer pe-
riods of time. The source of this discrepancy is the subject of active research.

Mathematical and Statistical Methods of Parameter Estimation

The basis of all of the work discussed in the last Section is regression. In each case a
model is formulated, usually from first principles based on an understanding of the
system, and then fitted to the experimental data in order to estimate the kinetic pa-
rameters using regression. In this Section we discuss the basic techniques of model
formulation and fitting for the purposes of parameter estimation focussing on the
method of least squares. Our emphasis is on a practical rather than a theoretical ap-
proach. Basic techniques will be illustrated via an example taken from stable-isotope
labelling studies (see the worked example later in this chapter).

Model Formulation and Selection

The fundamental requirement of a mathematical model for analysing lymphocyte
kinetics is that it predicts the observed state variable(s), e.g. the fraction of labelled
lymphocytes, as a function of the parameter(s) that we wish to estimate, for example,
the proliferation rate. The most appropriate type of model will depend on the system
being analysed: difference equations for a synchronised population, partial differen-
tial equations for a population with continuous spatial variation, multi-compartment
ordinary differential equations for a population with discrete spatial variation and
ordinary differential equations for a population where spatial homogeneity is as-
sumed. It is not necessary for the model to be soluble analytically in order to fit it
to experimental data. Whilst it is tempting to construct models that reflect the true
complexity of the biological system, there is invariably a trade-off between the com-
plexity of the model, in particular the number of free parameters of the model, and
the ability to estimate the parameter(s) of interest. As a minimum requirement, the
number of degrees of freedom D, where

D D number of data points N � number of free parameters P

must be greater than zero and ideally should be considerably higher than zero (see
the Section on Parameter Identifiability). The biological world is complex and a
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“true” model of an in vivo biological system would need a very large, arguably infi-
nite, number of parameters to describe it fully. Such a model could never be used to
estimate parameters from a finite data set. A model for parameter estimation should
capture all phenomena likely to impact significantly on the observable being pre-
dicted but introducing further complexity is usually detrimental. When more than
one model is possible, model selection should first be based on biological plausibil-
ity. If there are alternative models that are all biologically realistic then an objective
selection can be made based on the goodness of fit of the models to the data. The
goodness of fit of the models i.e. the discrepancy between the observed and the pre-
dicted values (often measured as the sum of squared residuals, that is the sum of the
squares of the differences between the observed and predicted data) can be tested
via the F test for nested models or the Akaike Information Criterion in the general
case [42].

Parameter Identifiability

A parameter is identifiable if the measurements made of the state variable contain
sufficient information to allow unique and accurate estimation of the parameter.
Identifiability encompasses two concepts: theoretical identifiability and practical
identifiability. Theoretical identifiability analyses parameter uniqueness based on
the model structure and schedule of measurements, it assumes that the measure-
ments are error free. Practical identifiability analyses parameter estimate accuracy
also taking into account measurement noise. Theoretical identifiability is a neces-
sary but not sufficient condition for practical identifiability. Theoretical identifiabil-
ity (strictly speaking local theoretical identifiability) is calculated from the Jacobian
or parameter sensitivity matrix. If X is the state variable observed at N timepoints
t1; t2; : : : tN and � is the vector of P parameters � D .�1; �2; : : : ; �P / then the
Jacobian J is the N � P matrix

J D

2
6666666666664

@X

@�1

ˇ̌
ˇ̌
tDt1

@X

@�2

ˇ̌
ˇ̌
tDt1

� � � @X

@�P

ˇ̌
ˇ̌
tDt1

@X

@�1

ˇ̌
ˇ̌
tDt2

@X

@�2

ˇ̌
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tDt2
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@X
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@X

@�2

ˇ̌
ˇ̌
tDtN

� � � @X

@�P

ˇ̌
ˇ̌
tDtN

3
7777777777775

: (7.14)

If the product of the transpose of the Jacobian with the Jacobian, J TJ , is evaluated
for a given choice of parameters and written in reduced row echelon form [43] then
the rows that are zero except for the diagonal indicate an identifiable parameter with
that row index.
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Practical identifiability can be assessed via the covariance matrix C

C D 
2.J TJ /�1; (7.15)

where 
 D .
PN

iD1.Xi� OXi /2

N�P
/

1
2 and OXi is the predicted value of the state variable Xi

at time i . The j th diagonal element of the covariance matrix, Cjj , approximates the
variance of the estimator of the j th parameter �j (see the Section below on Esti-
mating parameter errors). For the assumed noise and parameter choice this will thus
provide a direct estimate of the accuracy with which a parameter can be estimated.
Both theoretical and (provided a reasonable estimate of the size of the parameters
and measurement error can be made) practical identifiability can be assessed prior
to data collection and this should be done wherever possible to ensure that the ex-
periment design (choice of observables and schedule of measurements) will allow
identification of the parameter(s) of interest with sufficient accuracy. There are a
number of factors that reduce parameter identifiability and these should be identi-
fied and minimised before conducting the experiment.

Degrees of Freedom

The variance of a parameter estimator is approximately inversely proportional to the
number of degrees of freedom N � P . Identifiability can therefore be increased by
decreasing the number of free parameters P or increasing the number of measure-
ments N . The number of parameters can be reduced by reducing the complexity
of the model or by replacing free parameters by numerical estimates where prior
information is available. The number of data points can be increased by changing
the experiment design to include more time points or measuring a greater num-
ber of different state variables or, if data is available for a number of individuals,
using population (mixed effects) methods. The relative efficiency of the different
options for increasing the effective number of degrees of freedom depends on the
problem in hand. Population methods involve pooling all data from a number of
individuals, which greatly increases the number of data points, and then fitting
assuming that these parameters are drawn from a single distribution, so instead of
needing to estimate k separate parameters for each of k individuals and for each
parameter of interest (i.e. a total of kP parameters) it is only necessary to estimate
one or two parameters that describe the parameter distribution, e.g. the mean and
standard deviation for each parameter of interest (i.e. a total of P or 2P parameters).
A detailed description of population methods is beyond the scope of this chapter
and interested readers are referred to one of a large number of excellent textbooks
including [44–46].

Sensitivity of Observations to Parameter Change

Clearly if a parameter is to be determined from the behaviour of an observable it is
essential that the observable is sensitive to changes in the parameter. Sensitivity can
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only be optimised by a change of experiment design, e.g. using a different observ-
able or, more realistically, using different timepoints where the observable is more
sensitive to parameter changes.

Parameter Correlations

Even if an observable is sensitive to changes in a parameter it is often the case that
the observable will also depend on other parameters of the model and thus there
may not be a unique combination of parameters that give rise to a certain observed
value. For example if

fraction of labelled cells at time t D .proliferation rate � death rate / � t;

then a given time course of the fraction of labelled cells can be attained for a range
of different combinations of proliferation and death, and the proliferation and death
rates are said to be correlated. In this case it will not be possible to distinguish,
based solely on the goodness of fit of the model to the data, which is the true value
of proliferation and death. The correlation between the i th and j th parameters is
approximated by the i thj th element of the correlation matrix:

	ij D Cij

.Ci iCjj /0:5
;

where C is the covariance matrix defined previously. In the above example, prolifer-
ation rate and death rate would be perfectly correlated, that is the correlation would
be C1. High (magnitude of) correlations between parameters can be reduced by
simplifying the model, by changing the measurement schedule to improve param-
eter separability or by constructing alternative parameters that are a combination
or transformation of the highly correlated parameters, e.g. in the above example
neither proliferation rate nor death rate can be accurately estimated (whatever the
measurement schedule in this case) but the “net growth rate”

net growth rate D proliferation rate � death rate

can be estimated.

Model Fitting

We restrict ourselves to the case where both the predictor (independent) variables
and the state (dependent) variables are continuous. If a model is linear in the free
parameters then analytical multiple linear regression should be used to estimate the
parameters (see any introductory statistics book, e.g. [45,47]). In general, if models
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cannot or should not (because of bias) be transformed to a linear form then non-
linear regression should be used to the fit the model to the data. There are two basic
statistical frameworks for fitting models to data: the frequentist (maximum likeli-
hood) approach and the Bayesian approach. The well known least squares method
is equivalent to a special case of the maximum likelihood approach.

Least Squares Estimate of Parameters

Consider a system with an observable X measured at time t so we have a set of N

observations,

f.t1; X1/; .t2; X2/ � � � .tn; XN /g;
and we believe that this system is described by a model f .t; �/ where � is the vector
of parameters of the model so that

Xi D f .ti ; �/ C �i i D 1; : : : N;

where �i is the random noise on the i th measurement. The least squares estimator
of the parameters is the vector of parameters that minimises the sum of the squared
differences between the observed and the predicted variables, i.e. that minimisesPN

iD1.Xif .ti ; �//2. In general this minimum cannot be found analytically and it
is necessary to use numerical searching algorithms (see the Section on Choice of
software). When searching numerically for minima it is important to check that the
true global minimum rather than a local minimum has been found. It is therefore ad-
visable to start the search from a number of different initial conditions and to check
that they find the same global minimum. Additionally, the convergence criteria of
the search algorithms should be checked.

Maximum Likelihood Estimate of Parameters

For the system described above we wish to estimate the parameters � given the
observations, i.e. we want to find � that is most likely to describe the system given
the set of observations and the model. The likelihood of � given fti ; Xig and f is
denoted L.� jti ; Xi ; f / and can be calculated from:

L.� jfti ; Xig; f / D
Y

i

P.Xi j�; ti /;

giving

lnŒL.� jfti ; Xig; f /� D
NX

iD1

lnŒP.Xi j�; ti /�: (7.16)
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If the errors are independent and normally distributed with mean zero and constant
variance 
2 then

Xi � Normal.f .ti ; �/; 
2/; since f .ti ; �/ is constant for given i:

The probability density function for the Normal distribution is

P.Xi j�; ti / D 1



p

2�
exp

��.Xi � f .ti ; �//2

2
2

�
: (7.17)

So, substituting (7.17) into equation (7.16) yields

lnŒL.� jfti ; Xi g; f /� D N ln
1



p

2�
�
X

i

.Xi � f .ti ; �//2

2
2
:

And it can be seen that the likelihood is maximised (or equivalently the lnŒL� is

maximised since the logarithm function is monotonic) when
P

i
.Xi�f .ti ;�//2

2�2 is
minimised and the problem is reduced to the standard least squares problem. That is,
when the errors are independent and normally distributed the maximum likelihood
estimator of a parameter is equal to the least squares estimator.

Bayesian Parameter Inference

In the Bayesian approach parameter inference is informed not just by the data
but by prior knowledge of the parameters, entered as prior distributions. The in-
fluence of prior information will depend on our confidence in the information as
well as the size of the current data set. Prior data will naturally be most influen-
tial when the data set is small and the prior is strong. In the case when the prior is
non-informative and the data set is infinite the Bayesian estimator is numerically
equivalent to the maximum likelihood estimator. The advantages of a Bayesian
approach include the ability to incorporate prior information, removal of the as-
sumption that parameters are drawn from a normal distribution and in many cases
a simpler implementation for fitting complex models with a hierarchical structure.
There are numerous books that discuss Bayesian methods, those that emphasise a
practical treatment include Congdon et al. [44] and Gilks et al. [46].

Choice of Software

There are numerous software packages that can be used to automate model fitting
via least squares and just a few of the more popular options are listed here. As with
all software there is an inverse correlation between the power and flexibility of the
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language and the initial investment of time to become competent in handling the
software. Packages with a short learning curve include SPSS and ScoP. SPSS and
SCoP are both difficult to run in batch mode so fitting a large number of datasets
sequentially can involve a lot of manual data handling. Importantly, SPSS does not
have a numerical differential equation solver and so cannot be used for models with-
out an analytical solution. Probably the best balance of relatively short learning
curve with software flexibility and ease of automation is offered by dedicated high
level mathematical or statistical languages such as Maple (where the global optimi-
sation package needs to be purchased as an additional add-on), Mathematica or R.
For optimal flexibility and speed (balanced by a longer learning curve) the mid-level
language C or CCC should be used. Software that implements a general maximum
likelihood (i.e. non-normal errors) or Baysian approach are less common. Both R
and C/CCC are sufficiently flexible to enable maximum likelihood or Bayesian
methods, alternatively for Bayesian methods the BUGS software can be used. The
software described can be downloaded from the following sites; R, C/CCC and
BUGS are free.

SPSS http://www.spss.com/
SCoP http://www.simresinc.com/
Maple http://www.maplesoft.com/
Mathematica http://www.wolfram.com/
R http://cran.r-project.org/
C / CCC http://gcc.gnu.org/
BUGS http://www.mrc-bsu.cam.ac.uk/bugs/

Estimating Parameter Errors

There are two methods that are widely used to estimate the errors on parameter
estimates: the asymptotic covariance matrix method and the bootstrap method.

Asymptotic Covariance Matrix Method

The asymptotic covariance matrix (ACM) method is based on the calculation of
the covariance matrix defined in (7.15). It is only strictly true for models that are
linear in the parameters of interest and when the errors on the measurements are
independent and identically distributed; however if the deviation from linearity is
“small” the ACM method also provides a reasonable approximation to the parameter
error for nonlinear models. The covariance matrix (also known as the variance–
covariance matrix or the inverse of the Fisher information matrix) is calculated from
the Jacobian. The diagonal elements of the covariance matrix are the variances of
the parameter estimates.
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Bootstrap Method

Bootstrapping is a framework for statistical inference based on resampling and
has widespread applicability beyond regression [48, 49]. In the field of regres-
sion, bootstrapping can be used to estimate the variance(s) of parameter estimates
with no restrictions on the nature of the model. Here we describe case-resampling
(bootstrapping the data) rather than model-based resampling (bootstrapping of the
residuals).

Consider a system where there are N measurements of an observable Xi made
for N predictor values ti , that is there are N pairs .ti ; Xi /. A bootstrap estimate of
the variance(s) of the model parameter(s) is made by creating a bootstrap sample of
size N by random sampling with replacement from the original dataset, that is from
the set of N pairs .ti ; Xi /. The model is fitted to the bootstrap sample and the pa-
rameters of interest estimated. This is repeated R times (typically R is of the order
of 100) and the distribution of the parameter estimates constructed. The bootstrap
estimate of the parameter variance is simply the variance of the bootstrapped param-
eters over the R runs. The number of bootstrap runs R that need to be performed can
be ascertained by checking for the stabilisation of the variance with increasing R.

Choice of Method

Both the bootstrap method and the ACM method are easy to implement although
the bootstrap method can be computationally intensive; which method is optimal
depends on the model and data of interest. For any given model, parameter values
and data schedule, the deviation from linearity can be assessed by calculating the
intrinsic nonlinearity and the root mean square curvature. Details of the calculation
are beyond the scope of this chapter, see [50] for an excellent description. How-
ever, whilst the curvature and intrinsic nonlinearity need to be “small” for the linear
approximation of the ACM method to be applicable, how small is rather poorly
defined. In practice it is often more useful to determine the optimal method of er-
ror calculation by generating “data” for known parameters using the model, adding
noise by random sampling from a plausible distribution, fitting the model to the
“data” and estimating the errors using both the bootstrap method and the ACM
method. How often the known parameter lies within the confidence interval of the
estimate of the parameter can then be assessed.

A Worked Example

As a concrete example we provide a step-by-step explanation of the fitting of the
model to describe deuterated glucose labelling (see (7.11)) to experimental data
taken from Macallan [29] and reproduced in Table 7.1. The data were obtained
by infusing an individual with deuterated glucose for 1 day and then quantifying
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Table 7.1 Deuterated glucose labelling data. The fraction of labelled DNA frag-
ments in the CD8CCD45ROC T cell population sorted from PBMC at successive
timepoints following 1 day labelling starting at time 0. The standard deviation of
three technical replicates is shown. Data is reproduced from Macallan et al. [29]

Time (days) Fraction of labelled DNA fragments, l Standard deviation

4 0.0141 0.0017
10 0.0093 0.0008
16 0.0096 0.0008

the fraction of labelled DNA fragments in CD8CCD45ROC T lymphocytes from
peripheral blood mononuclear cells. Measurements were made at three time points
during the delabelling phase; the standard deviation of three technical replicates is
provided.

Parameter Identifiability

If the measurement schedule is to be 4 days, 10 days and 16 days then, prior to
data collection, we should investigate parameter identifiability to assess whether the
parameters of interest can be estimated with the required accuracy.

Theoretical identifiability: Rewriting the problem in the notation of (7.14), we
have � D .p; ı/, t1 D 4, t2 D 10, t3 D 16 and X D p

ı
.1 � e�ı1/e�ı.t�1/.

The expression for X is the solution (7.12) of the model (7.11), where the labelling
period � D 1; as all the time points are taken during the delabelling phase after label
administration we only use the second half of the solution. Substituting this into the
expression for the Jacobian (7.14) yields
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J TJ is then the 2 � 2 matrix with the following elements

J TJ11 D
3X

iD1

J 2
i1

D
X

tD4;6;10

 
.1 � e�ı/e�ı.t�1/

ı

!2

J TJ12 D
3X

iD1

Ji2Ji1 etc:

Rewiting J TJ in reduced row echelon form (i.e. applying elementary matrix oper-
ations to the rows and columns of J TJ until it is transformed into a matrix with all
of the nonzero rows preceding all of the zero rows, the first nonzero element in each
row is 1, the first non-zero element in each row appears in the column to the right
of the first nonzero element in the preceding row, and the first nonzero element in a
row is the only nonzero element in its column) gives

�
1 0

0 1

�
;

indicating that the parameters with index 1, i.e. p, and index 2, i.e. ı, are theoreti-
cally identifiable.

Practical identifiability: In order to assess the practical identifiability prior to data
collection it is necessary to make estimates of the error 
 and the parameters p and
ı. If the discrepancy between the observed and predicted value of the state variable,
Xi

OXi , is estimated to be, for example, 10% of the predicted value at each time
point, then


 D
 

1

3 � 2

3X
iD1

.0:1 OXi /
2

!1=2

and the variance of the estimates of p and ı can be calculated from the diagonal
elements of the covariance matrix C (7.15).

As an example we investigate our ability to estimate p. By examining the expres-
sion for the variance of p it can be seen that the standard error (square root of the
variance) is linear in p and so the coefficient of variation (standard error expressed
as a fraction of p) is independent of p. The numerical value of the coefficient of
variation of p is plotted as a function of ı in Fig. 7.5 (red line). Previous studies typ-
ically measure ı to be in the range 0–0.3 day�1 so we focus on this range. Figure 7.5
reveals that for ı in the range 0–0.3 day�1, the coefficient of variation is between
20–40%. This is rather a large coefficient of variation and it is worth considering
how the experimental design can be modified to reduce the error on the estimates. Of
course experimental design will be constrained by logistic, financial and, in the case
of human and animal experiments, ethical considerations. It is essential that these
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Fig. 7.5 The coefficient of variation of the estimate of p (i.e. standard error of the estimate divided
by the estimate) is plotted for three different measurement schedules. Red: original measurement
schedule t D4, 10, 16 days. Blue: alternative measurement schedule t D4, 8, 10, 16 days. Green:
alternative measurement schedule t D40, 50, 60, 70 days. It can clearly be seen that the first
alternative measurement schedule (t D4, 8, 10, 16 days) gives systematically lower errors in p than
the original schedule for a wide range of values of ı, whilst the second alternative measurement
schedule (t D40, 50 , 60, 70 days) gives systematically higher errors in p than the original schedule

points are considered when designing an experiment, because there is no point in
designing the perfect experiment for parameter estimation if the experiment cannot
be conducted! Conversely however, there is no point in conducting an experiment
to estimate parameters if the expected error on the estimate is unacceptably high.
In the example considered, the measurements are taken at days 4, 10, and 16; if the
experimental design is adapted to include one extra time point at day 8, then it can
be seen (Fig. 7.5, blue line) that the coefficient of variation of p falls for all values
of ı considered and is between 15 and 20% for ı in the range 0–0.3 day�1. This im-
provement in our ability to estimate p is due to the increased number of degrees of
freedom as a consequence of having four data points rather than three. However, the
choice of time points is also important. It is not the case that any choice of 4 time-
points will give a reduced coefficient of variation of p. For example, an alternative
schedule of day 40, 50, 60, and 70 increases the coefficient of variation dramatically
(Fig. 7.5, green line). This is because at later time points the observed variable, i.e.
the fraction of labelled DNA, is low and rather insensitive to changes in p. This
preliminary analysis suggests that it may be worth considering taking an extra time
point if possible, as it is likely to significantly improve the accuracy with which p

can be measured. However, later time points contribute very little to the estimates
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and so are effectively a waste of resources. Before making any final decisions re-
garding experiment design, it would be prudent to consider a wider range of possible
measurement schedules. Of course a comprehensive analysis is best conducted by
studying the analytical expressions for the coefficient of variation.

Model Fit

We assume that in this case it was not possible to adapt the measurement schedule
and the experiment proceeded with the original design yielding the data in Table 7.1.
If we fit the solution (7.12) of the model (7.11) to the data by least squares regression
we estimate that p D 0:015 day�1 and ı D 0:037 day�1. So the doubling time
of CD8CCD45ROC T lymphocytes is ln(2)/0:015 D 46 days and the half-life of
labelled CD8CCD45ROC T lymphocytes is ln(0.5)/0:037 D 18:7 days. That is,
in the absence of cell death, the CD8CCD45ROC T-lymphocyte population would
double in just over a month and (in the absence of cell proliferation) the labelled
CD8CCD45ROC T-lymphocyte population would halve in just over a fortnight. The
fit of the model to the data is given in Fig. 7.6 (green line). To calculate the standard
errors on the estimates via the ACM method we substitute our estimates of p and
ı into the expression for the covariance matrix C (7.15). To ensure accuracy we
retained a high number of decimal places on p and ı; specifically we use p D
0:015343 and ı D 0:036929. We find that the error is 
 D 0:00182 and

C D
�

0:00000791 0:0000487
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Fig. 7.6 The least squares fit of the model describing deuterated glucose labelling, (7.10), to the
experimental data in Table 7.1
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The standard errors on the estimates are therefore 0.003 on p and 0.020 on ı.
Using the bootstrap method with 30 random samples, the errors are 0.002 and
0.016 respectively (the bootstrap method relies on random resampling, so do not
be concerned if your estimates of the bootstrap errors differ slightly). Examining
the covariance matrix, it can be seen that the correlation between p and ı is 0.857.
The fact that the correlation is positive indicates that if p is overestimated then ı

will be overestimated. The fact that the correlation is rather high indicates that it is
relatively difficult to estimate p and ı uniquely as they tend to compensate for each
other, i.e. a high estimate of p and a high estimate of ı will give a similar labelling
pattern to a lower estimate of p and a lower estimate of ı, making it difficult to
distinguish between the pairs of values. This is manifest as rather high errors on the
estimates of p and ı.

Weighted Fit

In this experiment technical replicates were performed. The standard deviation of
the experimental data points can be taken as a reflection of our confidence in those
points. When fitting the model to the data we may wish to take into account our
confidence in the points; this can be achieved by weighting the fit by an appropriate
value, for instance the inverse of the variance of the replicates, i.e. instead of min-
imizing

PN
iD1.Xi � f .ti ; �//2, we minimize

PN
iD1 wi .Xi � f .ti ; �//2, where wi

is the inverse of the variance of the i th measurement. Performing this weighted fit
to the data in Table 7.1 yields estimates of p D 0:013 day�1 and ı=0.037 day�1.
The plot of this fit (Fig. 7.6, blue line) shows that, as expected, the predicted curve
is weighted towards those points in which we have the most confidence, i.e. those
with a lower standard deviation.

Future Challenges

Despite significant advances that have been made during the past decade in our un-
derstanding and quantification of lymphocyte dynamics, several important questions
remain. For example, even though the measurement of telemore lengths and TREC
contents were originally introduced to quantify cellular proliferation and thymic
output, respectively, we have shown in this chapter that the kinetic behaviour of
both measures is in fact determined by a combination of production of lymphocytes
in the thymus and in the periphery. It is therefore very puzzling that telomeres and
TREC contents of CD4C T lymphocytes are differently affected by HIV infection.
While TREC contents of CD4C T lymphocytes have been shown to be reduced in
HIV-infected individuals [6, 8, 51, 52], CD4C T cell telomere lengths turned out to
be normal [53]. Understanding these discrepancies is the topic of ongoing research.

Also in the field of stable isotope labelling several open questions remain. Even
though stable isotope labelling forms the best method that is currently available to
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quantify lymphocyte dynamics, several laboratories have reported quite different es-
timates of lymphocyte turnover. In fact, estimated proliferation and death rates based
on heavy water and deuterated glucose labelling differ systematically, with higher
values being obtained with deuterated glucose and with shorter labelling times [41].
The cause of these discrepancies between studies is currently being investigated.
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Chapter 8
Continuous-Time Birth and Death Processes:
Diversity Maintenance of Naı̈ve T Cells
in the Periphery

Carmen Molina-Parı́s, Emily Stirk, Katie Quinn, and Grant Lythe

Abstract We construct a birth and death process for the number of T cells
belonging to one clonotype. Cells are released from the thymus into the periph-
eral lymphoid organs. We assume that after this time, no more T cells of this
clonotype are exported by the thymus, so that further T cells of this clonotype can
only be generated by homeostatic proliferation, when a T cell receives a survival
signal and undergoes a single round of cell division. We show that eventual extinc-
tion is guaranteed. The late-time behaviour of the process before extinction takes
place is described by the limiting conditional probability distribution (LCD), which
we prove exists. We show how approximations are related to the LCD of the original
process and use them to study the LCD in two special cases.

T cells mature in the thymus, a small organ close to the heart, where they undergo
two tests called positive and negative selection [1]. Cells that survive then migrate
to the peripheral lymphoid organs such as the spleen and the lymph nodes where
they become part of the naı̈ve T cell repertoire, so called because the T cells have
not yet encountered their specific antigen. T cells have molecules on their surface
called T cell receptors (TCRs) which are responsible for recognising antigen. Each
T cell expresses many identical copies of the TCR and T cells with differing TCR
structures are said to belong to different clonotypes, i.e., each clonotype has one
specificity of receptor. The number of T cells in a healthy adult human is approx-
imately 1011 [2] and this total includes around 107–108 different clonotypes [3].
This diverse repertoire is produced by random rearrangements of the TCR genes
during the T cell maturation process in the thymus [4].

Peptides are presented to T cells by specialised cells called antigen presenting
cells (APCs). These peptides are displayed on the major histocompatibility com-
plex (MHC) molecules that are found on the surface of the APC. The peptide–MHC
(pMHC) complex interacts with the T cell via the TCR (see Fig. 8.1) and this en-
counter occurs in the lymph nodes when the T cell and the APC come into contact.
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Fig. 8.1 APC and T cell surfaces. These cells interact in the lymph nodes

An APC can present around 103 different peptides at any given instant [5], each
occurring in differing numbers, and the peptides displayed change over time. The
array of peptides presented at a single point in time is referred to as an antigen pre-
sentation profile (APP) [6]. The peptides presented are mostly self-peptides, i.e.,
peptides derived from the body’s own proteins. However, in the case of infection,
foreign peptides will also be displayed. Each peptide may be capable of interacting
with several T cell clonotypes and, in turn, each TCR can interact with many differ-
ent peptides [7]. (If there were a one-to-one correspondence between peptides and
TCRs then a very large number of T cells would be required, far greater than can be
accommodated in the body.)

A diverse and balanced repertoire of T cells is essential for a functional adaptive
immune response [8]. This is because the immune system is unable to predict which
pathogens the organism will be exposed to during its lifetime. How is this large
diversity of naı̈ve T cells maintained over the lifetime of the host?

In the periphery, the number of naı̈ve T cells is subject to homeostatic con-
trol [10]. This means that the number of T cells remains approximately constant and
returns to the steady state following a perturbation, e.g., following infection. How-
ever, homeostatic mechanisms appear to break down in old age and the diversity of
the naı̈ve T cell repertoire declines as T cell clonotypes become extinct [2]. This
may leave gaps in the repertoire and result in increased susceptibility to infection.

Peripheral naı̈ve T cells can be produced in two ways: (1) output of new cells
from the thymus and (2) homeostatic proliferation of existing cells in the periph-
ery. Experimental evidence suggests that this proliferation occurs after the T cell
receives a survival signal from an APP presenting self pMHC complexes [11]. In
this chapter we use a continuous-time Markov chain to model the number of T cells
belonging to a particular clonotype, which includes T cell division after receiving
a survival signal from an APP and cell death. A stochastic model is more appro-
priate than a deterministic model because it enables us to study the probability of
clonotype extinction which, as described above, is important biologically. Also, the
number of T cells belonging to a given clonotype may be small, in which case
stochastic fluctuations are important.
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Continuous-Time Markov Chains

A stochastic process fXt W t 2 T g is a collection of random variables indexed by a
set T , the elements of which usually correspond to time values. The state-space S

of the process is the range of all possible values that the random variables Xt can
take. In this chapter, the values of the random variables will represent the number
of T cells belonging to a particular clonotype and so the state-space will be discrete.
Production of a new cell or death of an existing cell may occur at any time and so
the set T will be continuous.

A stochastic process fXt W t 
 t0g on the state-space S D f0; 1; : : :g is called a
continuous-time Markov chain if it satisfies the following condition. For any 0 �
t0 < t1 < : : : < tj < tjC1,

P.Xtj C1
D njC1jXt0 D n0; : : : ; Xtj D nj / D P.Xtj C1

D njC1jXtj D nj /:

This is the Markov property. It says that, given the current state of the process, the
probability of future behaviour is not influenced by any additional knowledge of the
past history of the process.

The transition probabilities are denoted by

pnm.t1; t2/ D P.Xt2 D mjXt1 D n/

for t1 < t2 and n, m 2 S. That is, pnm.t1; t2/ is the probability that the process
is in state m at time t2 given that it was in state n at time t1. We will say that the
transition probabilities are stationary (homogeneous) if the transition probabilities
depend, not on both t1 and t2, but only on t2 � t1. Then the notation becomes

pnm.t2 � t1/ D P.Xt2 D mjXt1 D n/:

The transition probabilities have the property

C1X
mD0

pnm.t/ D 1 for t 
 t0; n 2 S;

and satisfy the equations

pnm.t C s/ D
C1X
kD0

pnk.t/pkm.s/; (8.1)

for all s, t 2 Œt0; C1/ and all n, m 2 S, which are known as the Chapman–
Kolmogorov equations.
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Birth and Death Processes

A birth and death process is a continuous-time Markov chain where transitions are
only allowed to adjacent states. The state-space of the process may be finite i.e.,
S D f0; 1; : : : ; N g or infinite i.e., S D f0; 1; : : :g. A birth and death process has the
following transition probabilities as �t ! 0C:

pnm.�t/ D P.XtC�t D mjXt D n/

D

8̂
<̂
ˆ̂:

�n�t C o.�t/ m D n C 1

�n�t C o.�t/ m D n � 1

1 � .�n C �n/�t C o.�t/ m D n

o.�t/ otherwise,

(8.2)

where f .�t/ D o.�t/ as �t ! 0C if lim
�t!0C

f .�t/

�t
D 0. The birth rate, �n, is

the rate of transition from state n to n C 1 while the death rate, �n, is the rate of
transition from state n to n � 1. The birth and death rates satisfy �n 
 0, �n 
 0

for n D 0; 1; 2; : : :, but �0 D 0 so that transitions outside of the state-space cannot
occur. The process can be represented as

0 1 2 3

m1 m2 mn mn+1m3

··· n ···n−1 n+1

Let
pn.t/ D P.Xt D njXt0 D n0/; n 2 S; (8.3)

which is the probability that the birth and death process is in state n at time t , given
that the initial state of the process is n0. If the state-space of the process is finite and
�N D 0 so that transitions outside of the state-space cannot occur, the equation for
the endpoint, n D N , is

pN .t C �t/ D �N�1�tpN�1.t/ C .1 � �N �t/pN .t/ C o.�t/: (8.4)

Taking the limit �t ! 0C, results in

dpn.t/

dt
D �n�1pn�1.t/ C �nC1pnC1.t/ � .�n C �n/pn.t/; 1 � n � N � 1:

(8.5)
Similarly,

dp0.t/

dt
D �1p1.t/ � �0p0.t/; (8.6)

dpN .t/

dt
D �N�1pN�1.t/ � �N pN .t/: (8.7)

The differential equations (8.5)–(8.7) are known as the forward Kolmogorov
equations.
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Stationary Probability Distribution

A stationary probability distribution � D .�0; �1; : : :/, where �n 
 0 for n 2 S,
�n D 0 for n … S and

P1
nD0 �n D 1, satisfies the equations

0 D �1�1 � �0�0;

0 D �n�1�n�1 C �nC1�nC1 � .�n C �n/�n; 1 � n � N � 1;

0 D �N�1�N�1 � �N �N ;

which are the forward Kolmogorov equations with the time derivatives set to zero.
If the state-space of the birth and death process fXt W t 
 t0g is infinite i.e., S D
f0; 1; : : :g, a unique positive stationary probability distribution, � , exists if and only
if [12]

�n�1 > 0 and �n > 0 for n D 1; 2; : : : (8.8)

and

C1X
nD1

�0�1 : : : �n�1

�1�2 : : : �n

< C1: (8.9)

If these conditions are satisfied, the stationary probability distribution is given by

�0 D 1

1 CPC1
nD1

�0�1:::�n�1

	1	2:::	n

; (8.10)

�n D �0�1 : : : �n�1

�1�2 : : : �n

�0 for n D 1; 2; : : : : (8.11)

If the state space of the birth and death process is finite i.e., S D f0; 1; 2; : : : ; N g,
then a unique positive stationary probability distribution � exists if and only if

�n�1 > 0 and �n > 0 for n D 1; 2; : : : ; N:

Then the stationary probability distribution is given by (8.10)–(8.11), where the
index n and the summation on n extend from 1 to N .

Continuous-Time Birth and Death Process with Absorbing States

If �0 D �0 D 0 then n D 0 is an absorbing state, meaning that once the process
reaches this state, it remains there forever. The process can be represented as

0 1 2 3 · · · · · ·
m1 m2 mn mn+1

m3

nn−1 n+1
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The stationary probability distribution of the process has all its mass at the absorbing
state, i.e., � D .1; 0; 0; : : :/T . The probability of the process reaching the absorbing
state is given by lim

t!C1p0.t/. If the state-space of the process is infinite i.e., S D
f0; 1; : : : g and

C1X
nD1

�1�2 : : : �n

�1�2 : : : �n

D C1; (8.12)

then lim
t!C1p0.t/ D 1 ; which means that eventual absorption at n D 0 is guaran-

teed [13]. On the other hand, if (8.12) does not hold, then

lim
t!C1p0.t/ D

PC1
nDm

	1	2:::	n

�1�2:::�n

1 CPC1
nD1

	1	2:::	n

�1�2:::�n

; (8.13)

where m is the initial state of the process.

The Limiting Conditional Probability Distribution

Prior to extinction at n D 0 occurring, the probability distribution of a birth and
death process may adopt a stationary shape for a long period of time, especially
if the expected time until absorption is relatively large. In order to study the be-
haviour of the process before extinction occurs, we define the following conditional
probabilities:

qn.t/ D P.Xt D n j Xt ¤ 0/ D pn.t/

1 � p0.t/
for n D 1; 2; : : : ; (8.14)

which is the probability that the process is in state n at time t , given that absorption
has not yet occurred. These conditional probabilities satisfy:

dqn.t/

dt
D 1

1 � p0.t/

dpn.t/

dt
C pn.t/

1 � p0.t/

1

1 � p0.t/

dp0.t/

dt

D �n�1qn�1.t/ � .�n C �n/qn.t/

C�nC1qnC1.t/ C �1q1.t/qn.t/; (8.15)

for n 
 2 and

dq1.t/

dt
D 1

1 � p0.t/

dp1.t/

dt
C p1.t/

1 � p0.t/

1

1 � p0.t/

dp0.t/

dt

D �2q2.t/ � .�1 C �1/q1.t/ C �1q1.t/q1.t/: (8.16)
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If the state space is finite, we have

dqN .t/

dt
D 1

1 � p0.t/

dpN .t/

dt
C pN .t/

1 � p0.t/

1

1 � p0.t/

dp0.t/

dt

D �N�1qN�1.t/ � �N qN .t/ C �1q1.t/qN .t/: (8.17)

A distribution Nq is called a quasi-stationary probability distribution (QSD) if it is
a solution of (8.15)–(8.17) where the time derivatives are set to zero. The limiting
conditional probability distribution (LCD) of the process is defined as

lim
t!C1 qn.t/; n 
 1: (8.18)

Since the LCD is independent of time, it is also a QSD. If the state-space of the
process is finite, there is a unique QSD, which is also the LCD of the process.
However, if the process has an infinite state-space, there may be no QSD and, if a
QSD does exist, it is not necessarily unique [14]. In most cases, it is not possible
to find an explicit solution for the QSD or the LCD, but numerical methods can be
used (see [15] for an iterative procedure).

The LCD can be approximated analytically by setting �1 D 0 [15]. This results
in a new birth and death process which has no absorbing state and can be repre-
sented as

· · · · · ·0 1 2 3
m2 mn mn+1

m3

nn−1 n+1

If �n�1 > 0 and �n > 0 for n D 2; 3; : : : ; and

C1X
nD2

�1�2 : : : �n�1

�2�3 : : : �n

< C1 (8.19)

the new process has a unique positive stationary probability distribution which is
given by

�
.1/
1 D 1

1 CPC1
nD2

�1�2:::�n�1

	2	3:::	n

;

�.1/
n D �1�2 : : : �n�1

�2�3 : : : �n

�
.1/
1 for n 
 2: (8.20)

This distribution is an approximation to the true LCD of the process.
The LCD may also be approximated by the stationary distribution of a birth and

death process which has the same birth rates as the original process, but where the
death rates �n are replaced by �n�1 to allow for one immortal individual [15]. This
can be represented as
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· · · · · ·0 1 2 3

m1 mn−1m2 mn

nn−1 n+1

If �n > 0 and �n > 0 for n D 1; 2; : : : ; and

C1X
nD2

�1�2 : : : �n�1

�1�2 : : : �n�1

< C1 (8.21)

this process has a unique positive stationary probability distribution which is
given by

�
.2/
1 D 1

1 CPC1
nD2

�1�2:::�n�1

	1	2:::	n�1

;

�.2/
n D �1�2 : : : �n�1

�1�2 : : : �n�1

�
.2/
1 for n 
 2: (8.22)

In general, �.1/ is a better approximation to the LCD when the mean time until
extinction is long, whereas �.2/ provides a better approximation when the mean
extinction time is short [15].

Mathematical Model of Peripheral Maintenance

We will use the index i to label T cell clonotypes and the index q to label APPs. Let
C be the set of all T cells in the naı̈ve repertoire. Whether or not a T cell of clonotype
i can receive a survival signal from a given APP q depends on the particular TCR
it expresses on its surface. The subset Cq is defined to be the set of all T cells that
are capable of receiving a survival signal from APP q. Also, Q is the set of all APPs
which may occur in the periphery and Qi is the subset of APPs from which T cells
of clonotype i can receive a survival signal. We define nq D jCqj, which is the
total number of T cells that can receive a survival signal from APP q. These sets are
illustrated in Fig. 8.2.

Let �q be the rate of survival signals from all the APCs presenting APP q, which
we assume remains constant in time. We will also assume that the survival signals
from any APP q are shared equally among all the T cells capable of receiving them.
Now define �.i/ to be the per cell birth rate for T cells of clonotype i . Then

�.i/ D
X
q2Qi

�q

jCqj : (8.23)
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q

i

Qi

Cq

APPs T cell clonotypes

Fig. 8.2 The sets of APPs and T cell clonotypes. Each circle on the left represents an APP, while
each circle on the right represents a T cell clonotype (containing all the T cells with an identical
TCR). A line between the two circles indicates that T cells of this clonotype receive a survival
signal from the APP

Let ni be the number of T cells belonging to clonotype i and niq be the number of
T cells not of clonotype i that receive a survival signal from an APP q 2 Qi . Then
nq D ni C niq so that

�.i/ D
X
q2Qi

�

ni C niq

; (8.24)

where we have assumed that �q D � for simplicity. Next, we partition the set Qi

into disjoint subsets as follows:

Qi D
C1[
rD0

Qir ; (8.25)

where Qir is the set of APPs which provide survival signals to T cells of clonotype i

and to r other distinct clonotypes in the repertoire. Then Qir \Qir0 D ; for r ¤ r 0,
and hence,

�.i/ D �

C1X
rD0

X
q2Qir

1

ni C niq

: (8.26)

The previous equation implies that the birth rate per T cell of clonotype i depends
not only on the number of T cells of clonotype i , but also on the number of T cells
of any other clonotype that receives a survival signal from an APP q 2 Qi through
the term niq .

We proceed to develop a mean field approximation to decouple the birth rates so
that the expression for �.i/ depends only on the number of T cells of clonotype i .
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Treating the mean number of T cells per clonotype as a parameter, hni, the approx-
imation is [9]

�.i/ D �

C1X
rD0

jQir j
rhni C ni

: (8.27)

Let �i be the number of clonotypes that compete with T cells of clonotype i for
survival signals from an APP, with the average taken over all the APPs belonging to
the set Qi . Assuming that

jQir j D jQi j�
r
i e�
i

rŠ
(8.28)

completes the model.

Summary of the Model

Using the mean field approximation, we have modelled the number of T cells
belonging to a given clonotype, i , as a continuous-time birth and death process
fXt W t 
 t0g on the state-space S D f0; 1; 2; : : :g with the birth and death rates

�0 D 0; (8.29)

�n D 'ne�


C1X
rD0

�r

rŠ

1

rhni C n
; n 
 1; (8.30)

�n D �n ; n 
 0; (8.31)

where the clonotype label i has been dropped for notational convenience. The model
has four parameters:

(1) ' is a parameter proportional to the number of APPs which can provide survival
stimuli to T cells of the fixed clonotype i . Then '�1 is proportional to the mean
time until a T cell of this clonotype receives a survival signal from an APP in
the absence of competition with T cells of other clonotypes.

(2) � is the “mean niche overlap” and encodes competition for survival stimuli be-
tween T cells of the fixed clonotype, i , and T cells of other clonotypes.

(3) hni is the average clonotype size over the naı̈ve T cell repertoire.
(4) � is the death rate per T cell of clonotype i .

Special Cases

We introduce two special cases of the model which are defined by the value of the
mean niche overlap parameter �, which encodes competition. If � � 1 we say that
the clone occupies a “hard niche”, while if � � 1 we say that it occupies a “soft
niche”. Biologically, a clonotype with � � 1 possesses a TCR that is very different
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from the other clonotypes in the repertoire, while a clonotype with � � 1 has a
TCR that is similar to the TCRs of many other clonotypes in terms of the APPs
from which it is able to receive survival signals. We now derive expressions for the
forms of the birth rates in these special cases.

For � � 1, the first term in the sum in (8.30) dominates so that

�n � 'ne�
 �0

0Š

1

n
� '; for n 
 1;

which means that the birth rate is approximately constant in this case. On the other
hand, for � � 1 we have

�n D 'n

C1X
rD0

e�
�r

rŠ

1

rhni C n
D 'nE

�
1

Yhni C n

�
; (8.32)

where Y is Poisson distributed with mean �. Carrying out a Taylor expansion about
the mean gives

�n D 'n

�
1

�hni C n
C hni2�

.�hni C n/3
C : : :

�
: (8.33)

Since � � 1, the second and subsequent terms in the above expansion may be
neglected, which results in

�n D 'n

�hni C n
: (8.34)

Clonal Extinction and Mean Extinction Times

Since �0 D �0 D 0, the birth and death process has an absorbing state at n D 0.
Clonal extinction occurs if the process reaches this state. We now calculate the prob-
ability of extinction using condition (8.12).

Firstly, note that the birth rate is bounded from above as follows:

�n D 'ne�


C1X
rD0

�r

rŠ

1

rhni C n

� 'ne�


C1X
rD0

�r

rŠ

1

n

D 'e�
e


D ': (8.35)
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Therefore
C1X
nD1

�1�2 : : : �n

�1�2 : : : �n



C1X
nD1

�nnŠ

'n
; (8.36)

using the upper bound (8.35). Let an D 	nnŠ
'n . Then

anC1

an

D �.n C 1/

'
! C1 as n ! C1;

and so
PC1

nD1 an diverges by the ratio test. Hence, condition (8.12) holds by the
comparison test and we conclude that absorption at n D 0 is certain for all values
of the parameters. This means that the eventual fate of any clone is extinction and
disappearance from the repertoire.

We now compute the mean times to extinction. The mean time to extinction from
initial state m is given by [12]

�m D

8̂
ˆ̂̂̂<
ˆ̂̂̂
:̂

1
	1

C
C1X
nD2

�1�2 : : : �n�1

�1�2 : : : �n

; m D 1;

�1 C
m�1X
kD1

2
4�1 : : : �k

�1 : : : �k

C1X
nDkC1

�1 : : : �n�1

�1 : : : �n

3
5 ; m D 2; 3; : : : :

(8.37)

We first calculate the mean time to extinction for the hard niche case (� � 1). Sub-
stituting the birth and death rates �n D ' and �n D �n into the above expressions
results in

�1 D 1

'

	
e

'
� � 1



; (8.38)

�m D �1 C
m�1X
kD1

kŠ

�

�
�

'

�kC1
"

e
'
� �

kX
nD0

�
'

�

�n
1

nŠ

#
for m 
 2: (8.39)

We now consider the most general form of the birth and death rates given by (8.30)–
(8.31). Then

�1 D
C1X
nD1

�1�2 : : : �n�1

�1�2 : : : �n

�
C1X
nD1

'n�1

�nnŠ
using the bound �n � '

D 1

'

	
e

'
� � 1



; (8.40)
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and

�m D �1 C
m�1X
kD1

�1�2 : : : �k

�1�2 : : : �k

C1X
nDkC1

�1�2 : : : �n�1

�1�2 : : : �n

� �1 C
m�1X
kD1

�1�2 : : : �k

�1�2 : : : �k

C1X
nDkC1

1

'nŠ

�
'

�

�n

� �1 C
m�1X
kD1

C1X
nDkC1

kŠ

'nŠ

�
'

�

�n�k

D �1 C
m�1X
kD1

kŠ

�

�
�

'

�kC1
"

e
'
� �

kX
nD0

�
'

�

�n
1

nŠ

#
for m 
 2; (8.41)

so the mean extinction times in the most general case are bounded by (8.38)–(8.39).
Therefore, the hard niche case provides an upper bound on the mean extinction
times. This is shown in Fig. 8.3 where �1 (calculated numerically) is plotted as a
function of � for fixed ', � and hni. For � � 1, �1 is independent of �, in agreement
with (8.38). Clones with � � 1 have the longest lifetimes in the repertoire. These
are the clonotypes that are most different from other T cells in the repertoire in terms
of the APPs they are able to receive survival signals from and so their long residence
times in the repertoire ensure that diversity is maintained.

1
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Fig. 8.3 �1 as a function of � for ' D 10; 50, hni D 10 and � D 1
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Homeostasis and the Limiting Conditional Distribution

Since extinction is guaranteed with probability one, the limiting distribution of the
process is given by .1; 0; 0; : : :/T . To investigate the behaviour of the system before
extinction takes place, we consider the limiting conditional probability distribution
(LCD) of the process, which represents the homeostatic distribution of T cells.

Case � � 1

In the hard niche case, the birth and death rates are given by �0 D 0, �n D ', for
n 
 1 and �n D �n, for n 
 0. Then

C1X
nD2

�1�2 : : : �n�1

�2�3 : : : �n

D
C1X
nD2

�
'

�

�n�1
1

nŠ

D �

'

C1X
nD2

�
'

�

�n
1

nŠ

D �

'

�
e

'
� � 1 � '

�

�
:

The first approximation (8.20) to the LCD is given by

�
.1/
1 D 1

1 CPC1
nD2

�1�2:::�n�1

	2	3:::	n

D '

�.e
'
� � 1/

;

�.1/
n D �1�2 : : : �n�1

�2�3 : : : �n

�
.1/
1 D

�
'

�

�n
1

nŠ.e
'
� � 1/

for n 
 2:

This distribution has mean

C1X
nD1

n�.1/
n D '

�
	
1 � e�

'
�


 ;

and variance

C1X
nD1

n2�.1/
n �

 C1X
nD1

n�.1/
n

!2

D 1	
1 � e�

'
�



�

'

�

�2 �
1 C �

'
� 1

1 � e�
'
�

�
:
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The second approximating distribution (8.22) to the LCD is:

C1X
nD2

�1�2 : : : �n�1

�1�2 : : : �n�1

D
C1X
nD2

�
'

�

�n�1
1

.n � 1/Š
D e

'
� � 1:

This means that

�
.2/
1 D 1

1 CPC1
nD2

�1�2:::�n�1

	1	2:::	n�1

D e�
'
� ;

�.2/
n D �1�2 : : : �n�1

�1�2 : : : �n�1

�
.2/
1 D

�
'

�

�n�1
1

.n � 1/Š
e�

'
� ; for n 
 2:

This distribution has mean

C1X
nD1

n�.2/
n D '

�
C 1;

and variance

C1X
nD1

n2�.2/
n �

 C1X
nD1

n�.2/
n

!2

D '

�
:

The mean time to extinction increases as ' increases. Hence, �.2/ is the best
approximation when the mean time to extinction is short, while the accuracy of
approximation �.1/ improves with increasing mean time to extinction.

Case � � 1

In the soft niche case, the birth rates are given by (8.34) and the first approximating
distribution to the LCD is given by

�
.1/
1 D 1

1 CPC1
nD2

1
n

�
'
	

�n�1Qn�1
kD1

1
kC
hni

;

�.1/
n D 1

n

�
'

�

�n�1

�
.1/
1

n�1Y
kD1

1

k C �hni for n 
 2;

while the second approximating distribution is given by

�
.2/
1 D 1

1 CPC1
nD2

�
'
	

�n�1Qn�1
kD1

1
kC
hni

;

�.2/
n D

�
'

�

�n�1

�
.2/
1

n�1Y
kD1

1

k C �hni for n 
 2:
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If ' is large enough, the clonotype behaves as a hard niche clone even though � � 1,
and �.1/ is a good approximation to the LCD for long mean extinction times, while
�.2/ is a better approximation than �.1/ when the mean time to extinction is short,
as for the case � � 1.
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Chapter 9
Multivariate Competition Processes: A Model
for Two Competing T Cell Clonotypes

Carmen Molina-Parı́s, Grant Lythe, and Emily Stirk

Abstract Diversity in the naı̈ve T cell repertoire is maintained throughout the
majority of an individual’s lifetime. The homeostatic mechanisms involved include
competition for survival stimuli furnished by antigen-presenting cells, dependent on
weak recognition of arrays of self-peptides by the T cell antigen receptor. We study
the dynamics of this process from the point of view of stochastic competitive exclu-
sion between a pair of T cell clonotypes which are similar in terms of the specific
survival stimuli which they are able to receive. This dynamics is formulated as a bi-
variate continuous-time Markov process for the number of T cells belonging to the
pair of clonotypes. We prove that the ultimate fate of both clonotypes is extinction
and provide a bound on mean extinction times. We concentrate mainly on the case
where the two clonotypes exhibit little competition with other T cell clonotypes in
the repertoire, since this case provides an upper bound on the mean extinction times.
As the two clonotypes become more similar in terms of the proportion of their re-
sources which are shared between them, one clonotype quickly becomes extinct in
a process resembling the ecological principle of classical competitive exclusion. We
consider the limiting probability distribution for the bivariate process, conditioned
on non-extinction of both clonotypes.

Introduction: Bivariate Competition Processes

A healthy adult human possesses approximately 1011 naı̈ve T cells [1], which
belong to around 107–108 different clonotypes (all T cells with identical T cell
antigen receptor) [2]. The number of naı̈ve T cells is controlled homeostatically,
meaning that it remains approximately constant throughout much of an individ-
ual’s lifetime [3]. Experimental evidence suggests that T cell homeostasis is driven
by interactions with self-antigens (antigens derived from the body’s own proteins)
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displayed on the surface of antigen-presenting cells [4–6]. Naı̈ve T cells undergo
infrequent cell divisions after receiving a survival signal from an antigen-presenting
cell (APC). Whether or not a particular T cell can receive a survival signal from a
given APC depends on the TCR it expresses and the array of self-antigens presented
on the APC surface [7]. Competition amongst T cells for these interactions regulates
the diversity of the T cell repertoire [8].

In Chap. 9, we constructed a univariate birth and death process to model the num-
ber of T cells belonging to a particular clonotype. The model relied upon a mean
field approximation of the competition between different clonotypes. It was assumed
that, even though a given T cell may compete with T cells of many other clonotypes
for access to survival signals from an antigen-presentation profile (APP), individual
competitive interactions between pairs of clonotypes are weak and do not have a
significant impact on the fate of either clonotype. In terms of the sets defined in the
previous chapter, this means that jQi \ Qj j � jQi j for i ¤ j (see Fig. 9.1). In this
chapter, we introduce a model for the case when this condition does not hold. This
means that the two clonotypes i and j overlap significantly in terms of the APPs
from which they can receive survival signals and so the number of T cells of one
clonotype affects the level of survival signals available to T cells of the other clono-
type. We will assume that jQi \ Qkj � jQi j, jQj \ Qkj � jQj j for k ¤ i; j and
so competition between pairs of clonotypes (other than the pair i and j ) is small.
Therefore, the birth rates for the two competing clonotypes are coupled and we re-
quire a bivariate continuous-time Markov process to model the number of T cells
belonging to both clonotypes [9, 10].

In the next section, a type of bivariate continuous-time Markov chain called a
competition process is defined. This type of process is then used to model the num-
ber of T cells belonging to two closely competing clonotypes. It is then shown

Fig. 9.1 The diagram on the left represents pairs of clonotypes for which the mean field approx-
imation, described in the previous chapter, is reasonable. In this chapter, we consider a pair of
clonotypes such as that represented on the right
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that both clonotypes eventually become extinct with probability one. The model
is extended to include any number of clonotypes for which the mean field approx-
imation introduced in the previous chapter does not hold. Finally, we conclude the
chapter with a numerical simulation of the full model using the Gillespie algorithm,
where it is not necessary to make any mean field assumptions regarding the compe-
tition between different clonotypes.

We will construct a mathematical model for the number of T cells belonging
to two different clonotypes, which we refer to as clonotypes 1 and 2, for which
jQ1 \ Q2j � jQ1j. This means that the two clonotypes overlap significantly in
terms of the APPs from which they are able to receive survival signals. The random
variable X.t/ describes the number of T cells of clonotype 1 at time t , while the
random variable Y.t/ describes the number of T cells of clonotype 2 at time t . At
time t D Qt1, Qn1 cells of clonotype 1 are released from the thymus and at time t D Qt2,
Qn2 cells of clonotype 2 are released from the thymus. It is assumed that after Qt1 no
T cells of clonotype 1 are produced from the thymus and similarly, after Qt2 no T cells
of clonotype 2 are produced from the thymus. Without loss of generality we may

assume that Qt1 � Qt2 defD t0. For t < t0, only one of the clonotypes is present in the
T cell repertoire and so the univariate model introduced in the previous chapter may
be used. After this time we model the number of T cells belonging to clonotype 1

and 2 as a bivariate competition process.

Competition Processes

Let f.X.t/; Y.t// W t 
 t0g be a continuous-time bivariate Markov process on the
state-space S D f.n1; n2/ W n1; n2 D 0; 1; : : :g. The transition probabilities are
defined by

pnm.�t/ D PfX.t C �t/ D m1; Y.t C �t/ D m2jX.t/ D n1; Y.t/ D n2g (9.1)

for n D .n1; n2/ 2 S and m D .m1; m2/ 2 S, where it is assumed that the tran-
sition probabilities are stationary (they only depend on the time interval between
transitions and not the time at which transitions occur), as in the previous chapter.

A bivariate competition process is a continuous-time Markov process where tran-
sitions are only allowed to adjacent states. Then the transition probabilities satisfy
pnn.�t/ D 1 � .�

.1/
n1;n2

C �
.2/
n1;n2

C �
.1/
n1;n2

C �
.2/
n1;n2

/�t C o.�t/ and

pnm.�t/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

�
.1/
n1;n2

�t C o.�t/ m D .n1 C 1; n2/

�
.2/
n1;n2

�t C o.�t/ m D .n1; n2 C 1/

�
.1/
n1;n2

�t C o.�t/ m D .n1 � 1; n2/

�
.2/
n1;n2

�t C o.�t/ m D .n1; n2 � 1/

o.�t/ otherwise,

(9.2)

where f .�t/ D o.�t/ if lim�t!0C

f .�t/
�t

D 0.
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Fig. 9.2 A schematic representation of the bivariate competition process and the transitions
between different states

A schematic representation of the process is given in Fig. 9.2. The quantity �
.1/
n1;n2

is the birth rate of T cells of clonotype 1 and is the rate of transition from state
.n1; n2/ to .n1 C 1; n2/. Similarly, the birth rate of T cells of clonotype 2, denoted
�

.2/
n1;n2

, is the rate of transition from state .n1; n2/ to .n1; n2 C 1/. The death rate

for T cells of clonotype 1 is given by �
.1/
n1;n2

and this is the rate of transition from

state .n1; n2/ to .n1 � 1; n2/. The death rate of T cells of clonotype 2, �
.2/
n1;n2

, is the

rate of transition from state .n1; n2/ to .n1; n2 � 1/. We set �
.1/
0;j D �

.2/
j;0 D 0 for all

j 
 0 so that transitions outside of the state space S cannot occur.
Let pn1;n2

be the probability that the process is in state .n1; n2/ at time t . These
probabilities satisfy the forward Kolmogorov equations, which are given by
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dpn1;n2
.t/

dt
D �

.1/
n1�1;n2

pn1�1;n2
.t/ C �

.2/
n1;n2�1pn1;n2�1.t/ C �

.1/
n1C1;n2

pn1C1;n2
.t/

C �
.2/
n1;n2C1pn1;n2C1.t/ �

	
�.1/

n1;n2
C �.2/

n1;n2
C �.1/

n1;n2

C�.2/
n1;n2



pn1;n2

.t/; (9.3)

for n1 
 1; n2 
 1, plus

dp0;0.t/

dt
D �

.1/
1;0p1;0.t/ C �

.2/
0;1p0;1.t/ �

	
�

.1/
0;0 C �

.2/
0;0



p0;0.t/;

dp0;n2
.t/

dt
D �

.2/
0;n2�1p0;n2�1.t/ C �

.1/
1;n2

p1;n2
.t/ C �

.2/
0;n2C1p0;n2C1.t/

�
	
�

.1/
0;n2

C �
.2/
0;n2

C �
.2/
0;n2



p0;n2

.t/; n2 
 1;

dpn1;0.t/

dt
D �

.1/
n1�1;0pn1�1;0.t/ C �

.1/
n1C1;0pn1C1;0.t/ C �

.2/
n1;1pn1;1.t/

�
	
�

.1/
n1;0 C �

.2/
n1;0 C �

.1/
n1;0



pn1;0.t/; n1 
 1: (9.4)

If the state-space of the process is finite, i.e., S D f.n1; n2/ W n1; n2 D 0; 1; : : : ; N g
and �

.1/
N;n2

D �
.2/
n1;N D 0 for n1; n2 D 0; 1; : : : ; N so that transitions outside of

the state-space cannot occur, there are additional equations for the states on the
boundary which are given by

dpN;0.t/

dt
D �

.1/
N�1;0pN�1;0.t/ C �

.2/
N;1pN;1.t/ �

	
�

.2/
N;0 C �

.1/
N;0



pN;0.t/;

dp0;N .t/

dt
D �

.2/
0;N�1p0;N�1.t/ C �

.1/
1;N p1;N .t/ �

	
�

.1/
0;N C �

.2/
0;N



p0;N .t/;

dpN;n2
.t/

dt
D �

.1/
N�1;n2

pN�1;n2
.t/ C �

.2/
N;n2�1pN;n2�1.t/ C �

.2/
N;n2C1pN;n2C1.t/

�
	
�

.2/
N;n2

C �
.1/
N;n2

C �
.2/
N;n2



pN;n2

.t/; 1 � n2 � N � 1;

dpn1;N .t/

dt
D �

.1/
n1�1;N pn1�1;N .t/ C �

.2/
n1;N�1pn1;N�1.t/ C �

.1/
n1C1;N pn1C1;N

�
	
�

.1/
n1;N C �

.1/
n1;N C �

.2/
n1;N



pn1;N .t/; 1 � n1 � N � 1;

dpN;N .t/

dt
D �

.1/
N�1;N pN�1;N .t/ C �

.2/
N;N�1pN;N�1.t/

�
	
�

.1/
N;N C �

.2/
N;N



pN;N .t/: (9.5)
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Mathematical Model for Two Competing Clonotypes

The transition probabilities defining the competition process take the form of those
in (9.2) and are now derived. Recall that C is the set of all T cells in the naı̈ve
repertoire and Cq is the set of all T cells that are capable of receiving a survival
signal from APP q. Also, Q is the set of all APPs which may occur in the periphery
and Qi is the subset of APPs from which T cells of clonotype i can receive a survival
signal. We define nq D jCqj, which is the total number of T cells that can receive a
survival signal from APP q. Let �q be the rate of survival signals from all the APCs
presenting APP q, and �.1/ be the per-cell birth rate of T cells of clonotype 1. Then,
assuming that �q D � and that the survival signals from APP q are shared equally
among all the T cells capable of receiving them, we have that

�.1/ D
X

q2Q1

�

jCqj D
X

q2Q1

�

nq

; (9.6)

as for the univariate case. Let n1 be the number of T cells belonging to clonotype 1,
and n1q be the number of T cells not belonging to clonotype 1 that receive a survival
signal from an APP q 2 Q1. Hence, nq D n1 C n1q .

We next divide the set Q1 into two disjoint subsets by defining

Q12 D Q1 \ Q2; (9.7)

which is the set of APPs from which T cells of both clonotype 1 and clonotype 2

can receive a survival signal, and

Q1=2 D Q1 \ NQ2; (9.8)

which is the set of APPs from which T cells of clonotype 1 receive a survival signal,
but T cells of clonotype 2 do not. Here, NQ2 denotes the complement of the set Q2.
Then, Q1 D Q12 [ Q1=2 and Q12 \ Q1=2 D ;. Therefore,

�.1/ D
X

q2Q12

�

n1 C n2 C n12q

C
X

q2Q1=2

�

n1 C n1q

;

where n2 denotes the number of T cells belonging to clonotype 2 and n12q D nq �
n1 � n2.

Now, we partition the sets Q12 and Q1=2 into disjoint subsets as follows:

Q12 D
C1[
rD0

Q12r and Q1=2 D
C1[
rD0

Q1r=2;

where Q12r is the set of APPs which provide survival signals to T cells of clono-
type 1 and clonotype 2 and to r other distinct clonotypes in the repertoire, and Q1r=2
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is the set of APPs which provide survival signals to T cells of clonotype 1 and to r

other distinct clonotypes, none of which is clonotype 2. Hence,

�.1/ D �

C1X
rD0

0
@ X

q2Q12r

1

n1 C n2 C n12q

C
X

q2Q1r=2

1

n1 C n1q

1
A : (9.9)

Note that the birth rate of T cells of clonotype 1 depends on the number of T cells
of any other clonotype that competes with clonotype 1 for access to survival signals
from an APP, through the terms n1q and n12q .

We now introduce a mean field approximation so that this birth rate depends only
on the number of T cells belonging to clonotypes 1 and 2. We denote by

– p1 the probability that a randomly chosen APP provides a survival stimulus to
T cells of clonotype 2, given that it provides a survival stimulus to T cells of
clonotype 1

– p2 the probability that a randomly chosen APP provides a survival stimulus to
T cells of clonotype 1, given that it provides a survival stimulus to T cells of
clonotype 2

– p�ji=j the probability that an APP chosen at random from Qi=j will belong to the
set Qk of a different clonotype k selected at random

With the mean field approximation we write

�.1/ D �

C1X
rD0

� jQ12r j
n1 C n2 C rhni C jQ1r=2j

n1 C rhni
�

; (9.10)

where

jQ12r j D p1jQ1j�
r
12e�
12

rŠ
and jQ1r=2j D .1 � p1/jQ1j�

r
1e�
1

rŠ
:

The parameter �12 is the mean niche overlap for APPs in the set Q12, which is the
average number of clonotypes that are competing with clonotype 1 and clonotype
2 for an APP in the set Q12, whereas �1 is the mean niche overlap for APPs in
the set Q1=2, which is the average number of clonotypes that are competing with
clonotype 1 for an APP in the set Q1=2. Hence, these parameters represent the
strength of competition between T cells of clonotype 1 and T cells of other clono-
types in the repertoire (other than clonotype 2) for APPs in these sets, Q12 and
Q1=2, respectively. These parameters are not the same as the mean niche overlap
parameter for all APPs in the set Q1, �, which is a parameter of the corresponding
univariate model described in the previous chapter. However, these parameters are
related by

� D �12p1 C �1.1 � p1/: (9.11)
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Hence, the per-cell birth rate of T cells of clonotype 1 is given by

�.1/ D '1

 
p1e�
12

C1X
rD0

�r
12

rŠ

1

n1 C n2 C rhniC.1 � p1/e�
1

C1X
rD0

�r
1

rŠ

1

n1 C rhni

!
;

(9.12)

where '1 D � jQ1j is a parameter proportional to the number of APPs from which
T cells of clonotype 1 receive a survival signal. By a similar derivation, the per-cell
birth rate of T cells of clonotype 2 is given by

�.2/ D '2

 
p2e�
12

C1X
rD0

�r
12

rŠ

1

n1 C n2 C rhni C .1 � p2/e�
2

C1X
rD0

�r
2

rŠ

1

n2 C rhni

!
;

(9.13)

where '2 D � jQ2j and p2 D P.q 2 Q1jq 2 Q2/. The per-cell death rate of a given
clonotype is assumed to be constant and is given by �1 for T cells of clonotype 1

and �2 for T cells of clonotype 2. Therefore, the birth and death rates of the bivariate
competition process are given by

�.1/
n1;n2

D �.1/n1; �.2/
n1;n2

D �.2/n2; �.1/ D �1n1 and �.2/ D �2n2:

Summary of the Model

We have constructed a bivariate competition process fX.t/; Y.t/ W t 
 t0g on the
state-space f.n1; n2/ W n1; n2 D 0; 1; : : :g which models the number of T cells
belonging to clonotypes 1 and 2 at time t . The birth rates are given by (9.12), (9.13)
plus �

.1/
0;n2

D 0 for n2 
 0 and �
.2/
n1;0 D 0 for n1 
 0. The death rates are given

by �
.1/
n1;n2

D �1n1 and �
.2/
n1;n2

D �2n2 for n1; n2 
 0. By definition, Q1 \ Q2 D
Q12 D Q21 D Q2 \ Q1. We also have that � jQ12j D �p1jQ1j D '1p1 and,
similarly, � jQ21j D �p2jQ2j D '2p2. This leads to the constraint on the parameters

'1p1 D '2p2; (9.14)

where 0 � p1 � 1 and 0 � p2 � 1, as the parameters p1 and p2 represent
probabilities. Hence, the model has nine independent parameters,

'1; '2; p1; �12; �1; �2; �1; �2; hni;

compared to the four parameters of the univariate model described in the previous
chapter.
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Clonal Extinction and Mean Extinction Times

Since we have that �
.1/
0;j D �

.2/
j;0 D �

.1/
0;j D �

.2/
j;0 D 0 for all j 
 0, the set of

states A D f.n1; n2/ W n1 D 0 or n2 D 0g forms an absorbing set. (Once the
process enters this set, it will never leave.) This corresponds to extinction of one of
the clonotypes from the T cell repertoire. The state .n1; n2/ D .0; 0/ is an absorbing
state corresponding to extinction of both clonotypes. In this section, we prove that
the probability of the process eventually reaching this absorbing state is one and
show that the mean time until the absorbing state is reached is finite. In order to do
this, we require the following upper bound on the birth rates:

�.1/
n1;n2

� '1n1

 
p1e�
12

C1X
rD0

�r
12

rŠ

1

n1

C .1 � p1/e�
1

C1X
rD0

�r
1

rŠ

1

n1

!

D '1n1

�
p1e�
12

e
12

n1

C .1 � p1/e�
1
e
1

n1

�

D '1 : (9.15)

Similarly, we can show that �
.2/
n1;n2

� '2.

Both Clonotypes Become Extinct with Probability One

In order to prove that the absorbing state at .n1; n2/ D .0; 0/ is reached with prob-
ability one, we use the method of Iglehart [11] and bound the bivariate competition
process with a univariate birth and death process which moves towards the absorb-
ing state at the origin at a slower rate than the bivariate process. We then show that
the univariate process reaches the absorbing state with certainty, and hence we may
conclude that the bivariate competition process also reaches state .0; 0/ with proba-
bility one. We first divide the state-space S of the process into the following disjoint
subsets:

Sk D f.n1; n2/ W n1 C n2 D kg for k 
 0:

A schematic diagram of these sets is given in Fig. 9.3. The birth and death rates for
the univariate birth and death process are now defined in such a way that this new
process moves towards the origin at a slower rate than the bivariate process. Let

�0k D max
.n1;n2/2Sk

n
�.1/

n1;n2
C �.2/

n1;n2

o
and �0k D min

.n1;n2/2Sk

n
�.1/

n1;n2
C �.2/

n1;n2

o
;

with �0
k

D �0
k

D 0 when k D 0. If the process is in the set Sk , at the next transition
it moves to either Sk�1 or SkC1. The rate �0

k
is the maximum rate at which the

bivariate process moves upwards from the set Sk to SkC1 and the rate �0
k

is the
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S0 S1 S2 S3 S4

n2

n1

Fig. 9.3 Diagram of the sets Sk for k � 0

minimum rate at which the bivariate process moves downwards from the set Sk to
Sk�1. Hence, these rates define a univariate birth and death process on the state
space fS0; S1; S2; : : :g where S0 is an absorbing state and Sk is now treated as an
element rather than a set. This process moves towards the absorbing state at a slower
rate than the bivariate process and can be represented by the following diagram:

A sufficient condition for this process to reach the absorbing state with probability
one is that the series

C1X
kD1

�01�02 : : : �0
k

�01�02 : : : �0
k

(9.16)

diverges (see previous chapter). In order to prove this, we first observe that

�0k D max
.n1;n2/2Sk

n
�.1/

n1;n2
C �.2/

n1;n2

o
� '1 C '2; (9.17)

from (9.15) and

�0k D min
.n1;n2/2Sk

f�1n1 C �2n2g D k min.�1; �2/: (9.18)
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Therefore,
C1X
kD1

�01�02 : : : �0
k

�01�02 : : : �0
k



C1X
kD1

kŠŒmin.�1; �2/�k

.'1 C '2/k
: (9.19)

Let

ak D kŠŒmin.�1; �2/�k

.'1 C '2/k
; (9.20)

so that
akC1

ak

D .k C 1/ min.�1; �2/

.'1 C '2/
! C1 as k ! C1: (9.21)

Hence, the series
PC1

kD1 ak diverges by the ratio test and so the series (9.16) diverges
by comparison. Therefore, the univariate process reaches the origin with certainty
and so we conclude that the bivariate competition process ultimately reaches the ab-
sorbing state .n1; n2/ D .0; 0/ with probability one for all values of the parameters,
corresponding to extinction of both clonotypes from the repertoire.

Finite Mean Extinction Times

The mean time until both clonotypes become extinct, when the initial state of the
process is .n1; n2/, is denoted by �n1;n2

. This quantity is finite for all .n1; n2/ 2
S n f.0; 0/g if the series

C1X
kD1

�01�02 : : : �0
k�1

�01�02 : : : �0
k

(9.22)

converges [11]. For the rates (9.17)–(9.18),

C1X
kD1

�01�02 : : : �0
k�1

�01�02 : : : �0
k

�
C1X
kD1

.'1 C '2/k�1

kŠŒmin.�1; �2/�k
: (9.23)

Let

bk D .'1 C '2/k�1

kŠŒmin.�1; �2/�k
: (9.24)

Then,
bkC1

bk

D .'1 C '2/

.k C 1/ min.�1; �2/
! 0 as k ! C1; (9.25)

which means that the series
PC1

kD1 bk converges by the ratio test. Hence, the series
(9.22) converges by comparison and therefore the mean time to reach the absorb-
ing state from all initial states .n1; n2/ 2 S n f.0; 0/g is finite for all values of
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the parameters. This is because the convergence of the series (9.22) is sufficient
to prove that the univariate process with the birth and death rates �0

k
and �0

k

reaches the absorbing state in finite time from all initial states, and this process
moves towards the absorbing state at a slower rate than the bivariate competition
process.

The Limiting Conditional Probability Distribution

The limiting conditional probability distribution of the process represents the late-
time behaviour of the system before extinction occurs. Since extinction of both
clonotypes occurs with certainty in finite time, the limiting probability distribution
of the process, limt!C1 pn1;n2

.t/, has all its mass at the state .n1; n2/ D .0; 0/. In
order to study the behaviour of the process before extinction takes place, we condi-
tion on the event that the process has not yet reached the absorbing set A. Let pA.t/

denote the probability that the process is not in set A at time t . We define

qn1;n2
.t/ D pn1;n2

.t/

pA.t/
; (9.26)

which is the probability that the process is in state .n1; n2/ at time t , given that
extinction of either clonotype has not yet occurred. Then

dqn1;n2
.t/

dt
D 1

pA.t/

dpn1;n2
.t/

dt
� pn1;n2

.t/

.pA.t//2

dpA.t/

dt
: (9.27)

Using the fact that
PC1

n1D0

PC1
n2D0 pn1;n2

D 1, we have

pA.t/ D 1 �
C1X

n2D0

p0;n2
.t/ �

C1X
n1D0

pn1;0.t/ C p0;0.t/; (9.28)

and hence

dpA.t/

dt
D � d

dt

C1X
n2D0

p0;n2
.t/ � d

dt

C1X
n1D0

pn1;0.t/ C dp0;0.t/

dt
: (9.29)

We now derive expressions for the terms on the right hand side of this equation.

d

dt

C1X
n2D0

p0;n2
.t/ D �1

C1X
n2D0

p1;n2
.t/ and

d

dt

C1X
n1D0

pn1;0.t/ D �2

C1X
n1D0

pn1;1.t/:
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Therefore,

dpA.t/

dt
D ��1

C1X
n2D1

p1;n2
.t/ � �2

C1X
n1D1

pn1;1.t/;

and

dqn1;n2
.t/

dt
D �

.1/
n1�1;n2

qn1�1;n2
.t/ C �

.2/
n1;n2�1qn1;n2�1.t/ C �

.1/
n1C1;n2

qn1C1;n2
.t/

C �
.2/
n1;n2C1qn1;n2C1.t/ �

	
�.1/

n1;n2
C �.2/

n1;n2
C �.1/

n1;n2

C�.2/
n1;n2



qn1;n2

.t/

C�1qn1;n2
.t/

C1X
n2D1

q1;n2
.t/ C �2qn1;n2

.t/

C1X
n1D1

qn1;1.t/; (9.30)

for n1 
 1, n2 
 1. A distribution, Nq, is called a quasi-stationary probability distri-
bution (QSD) if it is a solution of the equations obtained from (9.30) by setting the
time derivatives to zero. The limiting conditional probability distribution (LCD) is
defined by

lim
t!C1 qn1;n2

.t/; (9.31)

where n1 
 1, n2 
 1. This distribution is independent of time and so is a QSD.
For a process where the state-space is finite, the QSD of the process is unique and
is equal to the LCD [12]. This will always be the case when the LCD of the process
is calculated numerically.

A Process with m Competing Clonotypes

In previous sections we have studied a process modelling the number of T cells
belonging to two competing clonotypes. In this section we extend the model to
include m competing clonotypes for which the mean field approximation does not
hold, and prove that all clonotypes eventually become extinct with probability one
and that the mean time until extinction is finite. In this case, we do not make use of
a mean field approximation.

The number of T cell of clonotypes 1; 2; : : : , m at time t is modelled as a
continuous-time multivariate Markov process fX1.t/; X2.t/; : : : ; Xm.t/ W t 
 t0g
on the state-space S D f.n1; n2; : : : ; nm/ W n1; n2; : : : ; nm D 0; 1; 2; : : :g. As be-
fore, transitions are only allowed to adjacent states and so we have an m-dimensional
generalisation of the birth and death process, which we call a multivariate competi-
tion process [13].
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For n D .n1; n2; : : : ; nm/, n0 D .n01; n02; : : : ; n0m/ we introduce the transition
probabilities

pnn0.�t/ D PfX1.t C �t/ D n01; X2.t C �t/ D n02; : : : ;

Xm.t C �t/ D n0mjX1.t/ D n1; X2.t/ D n2; : : : ; Xm.t/ D nmg

for n and n0 2 S. As �t ! 0C these probabilities satisfy

pnn.�t/ D 1 �
	
�.1/

n C : : : C �.m/
n C �.1/

n C : : : C �.m/
n



�t C o.�t/

and

pnn0.�t/ D

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

�
.1/
n �t C o.�t/ n0 D .n1 C 1; n2; : : : ; nm/

�
.2/
n �t C o.�t/ n0 D .n1; n2 C 1; : : : ; nm/

:::
:::

�
.m/
n �t C o.�t/ n0 D .n1; n2; : : : ; nm C 1/

�
.1/
n �t C o.�t/ n0 D .n1 � 1; n2; : : : ; nm/

�
.2/
n �t C o.�t/ n0 D .n1; n2 � 1; : : : ; nm/

:::
:::

�
.m/
n �t C o.�t/ n0 D .n1; n2; : : : ; nm � 1/

o.�t/ otherwise

and pnn0.�t/ D 0 for n … S or n0 … S. Here, �
.s/
n is the birth rate of T cells of

clonotype s and is the rate of transition from state .n1; n2; : : : ; ns ; : : : ; nm/ to state
.n1; n2; : : : ; ns C 1; : : : ; nm/ for 1 � s � m. Similarly, �

.s/
n is the death rate of T

cells of clonotype s and is the rate of transition from state .n1; n2; : : : ; ns ; : : : ; nm/

to state .n1; n2; : : : ; ns � 1; : : : ; nm/ for 1 � s � m. Setting �
.s/
n D 0 for ns D 0

and 1 � s � m ensures that transitions outside of the state-space cannot occur.
We will assume that, after the initial time, the thymus does not produce any more
T cells of clonotypes 1; 2; : : : ; m. Hence, �

.s/
n D 0 for ns D 0 where 1 � s � m.

This means that the set of states A D f.n1; n2; : : : ; nm/ W ns D 0 for 1 � s � mg is
an absorbing set and the state .n1; n2; : : : ; nm/ D .0; 0; : : : ; 0/ is an absorbing state.

Rather than explicitly deriving an expression for the birth rate of each clonotype
in the multivariate competition process, we instead formulate a bound on each of
these rates. Let Qs be the set of all APPs from which T cells of clonotype s can
receive a survival signal. We define �.s/ to be the per-cell birth rate for T cells of
clonotype s, where 1 � s � m. Then

�.s/ D
X

q2Qs

�

jCqj D
X

q2Qs

�

ns C nsq

; (9.32)
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where ns is the number of T cells belonging to clonotype s and nsq is the number
of T cells in Cq that are not of clonotype s. Then

�.s/ � �
X

q2Qs

1

ns

D � jQsj
ns

D 's

ns

;

where 's D � jQsj is a parameter representing the strength of the stimulation. There-
fore,

�.s/
n D �.s/ns � '.s/; (9.33)

for 1 � s � m. To obtain the death rates, we assume there is a constant per-cell
death rate, which for clonotype s is denoted by �s . Hence,

�.s/
n D �sns ; (9.34)

for 1 � s � m.

Extinction Occurs with Probability One

Using the bound on the birth rates derived in the previous section, we now show
that the probability of eventual absorption at state .n1; n2; : : : ; nm/ D .0; 0; : : : ; 0/

is 1 for all values of the parameters. We first introduce the following disjoint subsets
of S:

Sk D f.n1; n2; : : : ; nm/ W n1 C : : : C nm D kg for k 
 0:

We now define the birth rates for a univariate birth and death process on the state-
space fS0; S1; : : :g in such a way that it moves towards the absorbing state at the
origin at a slower rate than the multivariate process. Let

�0k D max
.n1;:::;nm/2Sk

n
�.1/

n C �.2/
n C : : : C �.m/

n

o
; (9.35)

�0k D min
.n1;:::;nm/2Sk

n
�.1/

n C �.2/
n C : : : C �.m/

n

o
: (9.36)

From (9.33) we have that

�0k D max
.n1;:::;nm/2Sk

n
�.1/

n C �.2/
n C : : : C �.m/

n

o
� '1 C '2 C : : : C 'm;

�0k D min
.n1;:::;nm/2Sk

f�1n1 C �2n2 C : : : C �mnmg D k min.�1; �2; : : : ; �m/:

As in the bivariate case, �0
k

is the maximum rate at which the multivariate process
moves from the set Sk to SkC1 and �0

k
is the minimum rate at which the multivariate

process moves from the set Sk to Sk�1. Hence, the univariate birth and death process
with rates �0

k
and �0

k
on the state-space fS0; S1; : : :g moves towards the absorbing
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state at S0 at a slower rate than the multivariate one. The univariate process reaches
the absorbing state with certainty if

C1X
kD1

�01�02 : : : �0
k

�01�02 : : : �0
k

(9.37)

diverges. We have

C1X
kD1

�01�02 : : : �0
k

�01�02 : : : �0
k



C1X
kD1

kŠŒmin.�1; �2; : : : ; �m/�k

.'1 C '2 C : : : C 'm/k
:

Let

ck D kŠŒmin.�1; �2; : : : ; �m/�k

.'1 C '2 C : : : C 'm/k
;

so that

ckC1

ck

D .k C 1/ min.�1; �2; : : : ; �m/

'1 C '2 C : : : C 'm

! C1 as k ! C1;

which means that
PC1

kD1 ck diverges by the ratio test. Hence, the series (9.37) di-
verges by comparison and so the univariate process reaches the absorbing state with
probability one. Since this process moves towards the absorbing state at a slower
rate than the multivariate competition process, we conclude that absorption at the
origin is also certain for this process for all values of the parameters.

Let �n be the mean extinction time if the initial state of the process is
n D .n1; n2; : : : ; nm/. This time is finite for all n 2 S n f.0; 0; : : : ; 0/g if the
series

C1X
kD1

�01�02 : : : �0
k�1

�01�02 : : : �0
k

(9.38)

converges [11]. We have

C1X
kD1

�01�02 : : : �0
k�1

�01�02 : : : �0
k

� .'1 C '2 C : : : C 'm/k�1

kŠŒmin.�1; �2; : : : ; �m/�k
:

Let

dk D .'1 C '2 C : : : C 'm/k�1

kŠŒmin.�1; �2; : : : ; �m/�k
:

Then
dkC1

dk

D '1 C '2 C : : : C 'm

.k C 1/ min.�1; �2; : : : ; �m/
! 0 as k ! C1;



9 Competing T Cell Clonotypes 203

and so
PC1

kD1 dk converges by the ratio test. Hence, the series (9.38) converges by
comparison and so �n is finite for all n 2 S n f.0; 0; : : : ; 0/g for all values of the
parameters.

Numerical Results

We have carried out numerical solutions of the competition model, without any type
of mean field approximation, using the Gillespie algorithm [14]. A number of T cell
clonotypes, Nc, a number of APPs, jQj, and a set of connections between them, are
input at the start of a numerical run. In the run used to produce the data in Figs. 9.4
and 9.5, the initial number of T cell clonotypes is 1,000 and there are 100 cells of
each clonotype at t D 0. Connections between T cell clonotypes and APPs, meaning
that the clonotype receives a signal from the APP, are assigned independently with
probability p at the beginning of the run and not changed thereafter. The death rate
� is constant; the birth rate of each clonotype is calculated using (9.6) at each time
during the numerical run. Each clonotype’s value of � is a function of time that is the
average, over the APPs from which it receives a stimulus, of the number of other
surviving clonotypes also stimulated by an APP. A clonotype that only receives
signals from APPs that do not signal to any other clonotype will have � D 0; a
clonotype that receives signals from two APPs, one of which signals to one other
clonotype and one of which signals to two other clonotypes, will have � D 1:5.

0
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800 N (t)

0

50

100

0

2

4

0 200 400 600 800

ν

t

〈ν〉

〈n〉

Fig. 9.4 Numerical results, showing the time evolution of the number of clonotypes with at least
one living cell, the mean number of cells per clonotype, and the mean value of �. The T cell
clonotype–APP connections are randomly assigned at the beginning of the numerical run. The
parameters for the run are Nc D 1;000, jQj D 2;000, � D 0:1, � D 1 and p D 0:0025
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Fig. 9.5 Competition, and extinction of some clonotypes, leads to more uniform coverage of the
set of APPs by the repertoire of T cell clonotypes. The upper panel shows a histogram of the
number of clonotypes that recognise an APP at the beginning of the numerical run. The lower
panel shows a histogram of the number of clonotypes that recognise an APP at t D 1;000

Figure 9.4 shows several properties of the repertoire of T cells as a function of
time. The upper panel shows the number of surviving clonotypes (those with at least
one living cell) as a function of time. The central panel shows the mean number of
cells per surviving clonotype and the lower panel the mean value of � in the set of
surviving clonotypes. Each dot in the lower panel indicates the time of extinction
of a clonotype (horizontal coordinate) and its � value. Note that the majority of
the clonotypes that die out have above-average values of �. The hypothesis of the
existence of a well-defined mean number of cells per clonotype, necessary for the
approximate mean field model, is supported by numerical results on this “exact”
model. The conjecture that competition is unfavourable to clonotypes with large
values of � is also supported.

It is illuminating to examine the dynamics from the point of view of the set of
APPs. This set does not change with time, but the number of T cell clonotypes in
the repertoire that recognise any one APP (the number of clonotypes in the set Cq)
does change over time because some clonotypes die out. In Fig. 9.5 we illustrate
the effect of competition in producing an increasingly uniform coverage of the set,
which may be envisaged as a space of epitopes. At the start of the numerical run,
the distribution of the number of clonotypes that recognise an APP is wide and the
most common value is 2; at the end of the run, it is much narrower, and the most
common value is 1. Competition for survival signals forces T cell clonotypes and
their APPs to be increasingly monogamous.
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Chapter 10
Stochastic Modelling of T Cell Homeostasis
for Two Competing Clonotypes Via the Master
Equation

Shev MacNamara and Kevin Burrage

Abstract Stochastic models for competing clonotypes of T cells by multivariate,
continuous-time, discrete state, Markov processes have been proposed in the lit-
erature by Stirk, Molina-Parı́s and van den Berg (2008). A stochastic modelling
framework is important because of rare events associated with small populations
of some critical cell types. Usually, computational methods for these problems
employ a trajectory-based approach, based on Monte Carlo simulation. This is
partly because the complementary, probability density function (PDF) approaches
can be expensive but here we describe some efficient PDF approaches by directly
solving the governing equations, known as the Master Equation. These computa-
tions are made very efficient through an approximation of the state space by the
Finite State Projection and through the use of Krylov subspace methods when
evolving the matrix exponential. These computational methods allow us to explore
the evolution of the PDFs associated with these stochastic models, and bimodal
distributions arise in some parameter regimes. Time-dependent propensities natu-
rally arise in immunological processes due to, for example, age-dependent effects.
Incorporating time-dependent propensities into the framework of the Master Equa-
tion significantly complicates the corresponding computational methods but here
we describe an efficient approach via Magnus formulas. Although this contribu-
tion focuses on the example of competing clonotypes, the general principles are
relevant to multivariate Markov processes and provide fundamental techniques
for computational immunology.
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Introduction

In order to survive, an organism must constantly monitor itself for invading entities
or cells. This monitoring role is fulfilled by the immune system, which responds
to infections from a variety of pathogens, such as viruses, bacteria, protozoa, and
fungi. Immunology is a broad field but this contribution focuses on one important
part of the immune system, namely T cells. These cells choreograph what is known
as the adaptive immune response [1, 2].

Briefly, T cells are released from the thymus after undergoing a series of pos-
itive and negative selection processes. They recognize foreign epitopes present in
an organism by scanning the organism’s own cells – which display signature pep-
tide fragments of what is inside on special membrane proteins, together known
as Major Histocompatibility Complex (MHC) – with T cell receptors (TCR) on
the T cell membrane. The T cell population can be partitioned into clonotypes
with the same TCR. Different T cell clonotypes have different receptors that are
capable of recognizing peptide fragments. The T cell population is the subject
of homeostatic regulation and a particular clonotype population may rise or fall
depending on the stimulus that it receives. The unique peptide fragments recog-
nized by a particular TCR are known as the epitopes for that clonotype. There is
also some overlap, in the sense that different clonotypes are cross-reactive with
other epitopes to varying extents. Clonotype populations receive a stimulus to in-
crease their population from epitopes that they recognize, so this overlap leads
to competition amongst clonotypes for survival stimulus. When a pathogen is
detected through one of these recognition events, the T cell involved becomes
activated and, through a complex series of events, can trigger an immune re-
sponse [2, 3].

The space of all possible epitopes that an organism may potentially be chal-
lenged with is enormous so an organism needs to maintain diversity amongst
its T cell population so that it is capable of recognizing as many different types
of pathogens as possible. Also, while scanning itself, the larger the clonotype
population, the sooner the invading pathogen is found. Thus, on the one hand,
the more different clonotypes, and the larger the populations, the better; on the
other hand, there are limits to the size of the population of T cells that an or-
ganism can maintain. In order to cover as much as possible of this epitope
space with only a limited population of T cells an organism must minimize
the overlap of different clonotypes. As an indication of the magnitude of the
numbers involved it has been estimated that the human repertoire has up to
�3 � 107 distinct TCR clonotypes but that the complexity of the space of all
possible peptide-MHC 11mers is �6 � 1012 [4]. This large difference in num-
bers shows that the correspondence cannot be one-to-one and that there is a need
for great diversity and for some cross-reactivity in the T cell repertoire. This
motivates the competitive models of T cell clonotype homeostasis considered
here but see Stirk, Molina-Parı́s and van den Berg for more background to this
problem [5].
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Mathematical Background

Mathematical models in immunology often consist of ordinary differential equa-
tions (ODEs), based on rates of production and decay of pertinent species. However,
when some species are present in small numbers, such as T cell clonotypes, a dis-
crete and stochastic framework is more appropriate. In particular, Stirk et al. argue
that the appearance and disappearance of clonotypes in the peripheral pool of naı̈ve
T cells is an inherently stochastic phenomena and that maintenance functional diver-
sity depends critically on these chance events [5, Sect. 2]. Markov processes provide
such a stochastic framework [6] and Stirk et al. employ a continuous-time, discrete
state, multivariate Markov process to model T cell populations [5]. Allen provides
a nice survey of the different modelling approaches [7].

In our framework, a Markov process consists of N species and the state of the
system, x D Œx1; : : : ; xN �, records the integer population of each. Each state may
transition to M other states, x C �j , for j D 1; : : : ; M . Here the �j are a set of M

vectors that define the geometry of the Markov process. Associated with each state
is a set of M propensities, ˛j .x/ 
 0, that determine the relative chance of each
transition occurring. The propensities are defined by the requirement that, given
x.t/ D x, ˛j .x/dt is the probability of transition j , in the next infinitesimal time
interval Œt; t C dt/. This contribution focuses on numerical methods for studying
such immunological models and we now describe two complementary approaches.

Trajectory Approaches

The Stochastic Simulation Algorithm (SSA) is a statistically exact algorithm for
simulating strong trajectories of discrete stochastic Markov processes. Algorithm 1
summarizes the SSA. The inputs to the algorithm are: tf , the amount of time that
the simulation should run for; x0, the initial state of the process; �, N and M as
defined above. The output of the algorithm is the state of the system at time tf .
The algorithm needs a way to compute the values of the propensities of each of
the M possible transitions. In Algorithm 1 this is done by making a function call.
Often these propensities are functions of the current state, parameterized by some
constants determined from the application being modelled. We denote the vector of
these parameters by c, which must also be given as input to the Algorithm. At each
step, the SSA samples the waiting time until the next change occurs from an ex-
ponential distribution, and samples from a uniform distribution to determine which
of the M possible changes occurs, based on the relative sizes of the propensity
functions [8, 9]. Note that in Algorithm 1, r1; r2, denote random numbers from the
uniform distribution on Œ0; 1�, and log. 1

r1
/ arises because we employ the inverse-

transform method for sampling from the exponential distribution. If an absorbing
state is reached then ˛ is zero and the algorithm may terminate and simply return
the absorbing state. On average, the time step, denoted by � , is of the order of the
reciprocal of the sum of the propensity functions, which may be very small if either
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ALGORITHM 1: SSA .tf ; x0; c; �; N; M )
x x0

t  0

while t < tf do
˛ propensities(x, c)
if .˛ DD 0/

t  tf
break

end if
˛0  PM

jD1 ˛j

r1; r2 � U Œ0; 1�

�  . 1
˛0

/ log. 1
r1

/

if (t C � > tf )
t  tf
break

end if
t  t C �

choose j such that
Pj�1

kD1 ˛k < ˛0r2 	PM
kDj ˛k

x xC �j

end while
return x

some of the rate constants are large or some of the species occur in large numbers.
Since many thousands, even hundreds of thousands, of simulations may be neces-
sary to compute statistics about the dynamics it may be computationally cheaper to
directly compute the probability density function (PDF).

PDF Approaches

Associated with the Markov process is a PDF that evolves according to the forward
Kolmogorov equations, which, in this setting, are known as the Master Equations
(MEs) [10]. Given an initial condition x.t0/ D x0, the probability of being in state x

at time t , P.xI t/, satisfies the following discrete partial differential equation (PDE),

@P.xI t/

@t
D

MX
jD1

˛j .x � �j /P.x � �j I t/ � P.xI t/

MX
jD1

˛j .x/:

This ME may be written in an equivalent matrix-vector form so that the evolution
of the probability density p.t/ (which is a vector of probabilities P.xI t/, indexed
by the states x) is described by a system of linear, constant coefficient, ordinary
differential equations,

Pp.t/ D Ap.t/; (10.1)
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where the matrix A D Œaij � is populated by the propensities and represents the
infinitesimal generator of the Markov process, with ajj D �Pi¤j aij [11].

Remark. It is common in the literature to work with the Q-matrix: Q D AT .

Given an initial distribution p.0/, the solution at time t is

p.t/ D exp.tA/p.0/; (10.2)

where the exponential of a bounded operator is usually defined via a Taylor series:
exp.tA/ D I CP1

nD1
.tA/n

nŠ
� The numerical solution of (10.2), for the special class

of matrices arising in immunology applications, is the focus of this work. In this
context, the matrices often represent birth-death processes and are large and sparse.
The matrix exponential is well studied [12, 13] and numerical methods for linear
ODEs [14] are closely related. There are some technical considerations when the
system is infinite, as noted in [15–17]. Recently, the Finite State Projection (FSP)
algorithm was suggested as a way of handling the large matrices that arise in MEs
associated with chemical kinetic processes [18].

The FSP algorithm In the FSP algorithm the matrix in (10.2) is replaced by Ak

where

A D
 

Ak �
� �

!
(10.3)

i.e. Ak is a k �k submatrix of the true operator A. The states indexed by f1; : : : ; kg
then form the finite state projection. The FSP algorithm replaces (10.2) with the
approximation

p.tf / �
�

exp.tf Ak/pk.0/

0

�
;

which, by [18, Theorem 2.1], is nonnegative. The subscript k denotes the truncation
just described and we note that a similar truncation is applied to the initial distribu-
tion. Consider the column sum �k D 11T exp.tf Ak/pk.0/; where 11 D .1; :::; 1/T

with appropriate length. Normally the exact solution (10.2) is a probability vec-
tor with unit column sum, however due to the truncation, the sum �k may be less
than one, because in the approximate system, probability is no longer conserved.
However, as k increases, �k increases too, so that the approximation is gradually
improved [18]. Additionally it is shown in [18, Theorem 2.2] that if �k 
 1 � � for
some pre-specified tolerance �, then

�
exp.tf Ak/pk.0/

0

�
� p.tf / �

�
exp.tf Ak/pk.0/

0

�
C �11:

For simplicity we described the algorithm as if it merely increases k but it can be
generalized so that the projection is expanded around the initial state in a way that
respects the reachability [18] of the Markov model.
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The Krylov FSP Algorithm The FSP method was recently improved to a Krylov-
based approach [15, 19, 20] by adapting Sidje’s Expokit codes [21, 22]. The Krylov
FSP converts the problem of exponentiating a large sparse matrix to that of expo-
nentiating a small, dense matrix in the Krylov subspace. Given an initial vector and
matrix the Krylov subspace of dimension m is

Km D Km.A; v/ D span
˚
v; Av; A2v; : : : ; Am�1v



:

The dimension m of the Krylov subspace is typically small and m D 30 was used
in this implementation. The Krylov approximation to exp.�A/v is

ˇV mC1 exp
�
�H mC1

�
e1;

where ˇ 	 kvk2, e1 is the first unit basis vector, and V mC1 and H mC1 are the
orthonormal basis and upper Hessenberg matrix, respectively, resulting from the
well-known Arnoldi process. The exponential in the smaller subspace is computed
via the diagonal Padé approximation with degree p D 6, together with scaling and
squaring.

A description of the Arnoldi process may be found in the classic text of Golub
and Van Loan [23] and is often employed as a numerical scheme for eigenvalue
problems, for example. In our context, we employ the Arnoldi process to build a
basis for the Krylov subspace Km. This is similar to the usual mathematical Gram–
Schmidt process for building a basis but involves a small change which makes the
Arnoldi process preferable numerically. It results in a matrix V m whose columns
form an orthonormal basis of Km.

The Krylov FSP is a general purpose ME-solver. In this work we describe how
to apply it to immunological models. Also, we will demonstrate how to generalize
the algorithm to the case of time-dependent or age-dependent propensities.

Numerical experiments All numerical experiments were performed in MATLAB on
a 2 GHz processor running the Windows XP operating system. For the numerical
purposes here it is enough to report the values of the parameters used but for other
applications appropriate scalings and units of measurement would be required.

T Cell Homeostasis for Two Competing Clonotypes

We now review the Stirk et al. model and adopt their notation [5]. The model con-
sists of N T cell clonotypes and the state of the system records the nonnegative
population of each. The model is a multivariate birth-death process [6]: the popu-
lation of a particular clonotype may change by an increase or decrease of precisely
one cell at a time. Thus associated with each state is a set of M D 2N propensi-
ties and corresponding vectors. The vectors, previously denoted �j , are all of the
form Œ0; : : : ; ˙1; 0; : : : ; 0�, where the ˙1 occurs in the i th component to denote an
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increase or decrease of the i th species. Here we consider a two-dimensional version
so N D 2, M D 4 and x D Œn; n0�. With n T cells of clonotype i and n0 T cells of
clonotype i 0, the birth and death rate of cells of clonotype n are denoted �nn0 and
�nn0 , respectively. These propensities were previously denoted ˛j .Œn; n0�/. A simi-
lar notion denotes the corresponding rates for cells of clonotype i 0. Naturally, when
there are zero cells of a clonotype the birth and death rates for that clonotype are
both zero, i.e., �0n0 D �0n0 D �n0 D �n0 D 0. Otherwise, for n; n0 D 1; 2 : : : , we
define the birth and death rates to have the following functional form:

�nn0 D �nf .n; n0; �i i 0; �i=i 0; p/

�
0

nn0

D �
0

n
0

f .n0; n; �i 0i ; �i 0=i ; p0/
�nn0 D �n

�
0

nn0

D �
0

n0;

where

f .n; n0; x; y; p/ D pe�x

1X
rD0

xr

rŠ

1

r hni C n C n0
C .1 � p/e�y

1X
rD0

yr

rŠ

1

r hni C n
:

(10.4)

The form of the birth rates reflects the competition between clonotypes for survival
stimulus, so that clonotypes that overlap more with other clonotypes in terms of
the set of APPs that they depend on, receive less stimulus overall than clonotypes
that overlap less with other clonotypes. The summation over r arises because of
the way that the sets of APPs are partitioned. In general the rth term corresponds
to the stimulus that the clonotype receives from those APPs that it shares with r

other clonotypes. For example, the r D 0 term corresponds to the stimulus that the
clonotype receives from APPs that it shares with no other clonotypes, the r D 1 term
corresponds to the stimulus that the clonotype receives from one other clonotype,
etc. In any particular organism the number of distinct clonotypes will be finite, albeit
possibly very large, so after finitely many terms in the summation, the rest of the
terms are zero. This function may be approximated, for example, by truncating each
of the two summations, or by employing a Poisson approximation [5]. Notice that
the model has an absorbing state at Œ0; 0�. Here hni is the average clone size over
the naı̈ve repertoire, �i i 0 is the mean niche overlap for antigen presentation profiles
(APPs) that can provide survival signals to T cells of clonotype i and clonotype i 0,
and �i=i 0 is the mean niche overlap for APPs that provide survival signals to T cells
of clonotype i but not T cells of clonotype i 0. See Stirk et al. for more details.

This describes the model in its full generality but we consider the special case

�i=i 0 � 1; �i 0=i � 1:

In this case the authors [5] observe that a good approximation to (10.4) is

f .n; n0; x; y; p/ D p

n C n0
C .1 � p/

1

n C hni y
: (10.5)
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Parameters We fix hni D 10. We begin with 10 cells of each clonotype and con-
sider the solution at tf D 30. We choose:

� D �0 D 60

� D �
0 D 1

�i=i 0 D �i 0=i D 100

p D p0 D 0:5 : (10.6)

Thus the model is symmetric.

Simulations

Figure 10.1 shows an SSA simulation of the model with these parameters. One
clonotype reaches extinction before t D 30, while the other clonotype remains and
fluctuates about an average of approximately 32 cells for a very long time. At first
we may think that the simulation has settled down to its stationary distribution but
this is not the case because extinction of both species is guaranteed in this model.
Thus we instead associate the long period with n > 0 shown in Fig. 10.1 with a
quasi-stationary distribution (QSD).

Here we give a simple argument to show that the simulation in Fig. 10.1 is in-
deed eventually absorbed. Note that Stirk et al. give a more sophisticated analysis
and establish that absorption is guaranteed in general. After extinction of one of the
clonotypes, we are left with a one-dimensional, infinite state, birth-death process for
the remaining clonotype. There is an absorbing state at 0, and an irreducible class
f1; 2; : : : g, from which the absorbing state is accessible. Following standard nota-
tion and standard theory for birth-death processes [6], absorption with probability
one is equivalent to divergence of the series

1X
iD1

�1�2 : : : �i

�1�2 : : : �i

:
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Fig. 10.1 A simulation of the T cell clonotype populations
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In the simulation in Fig. 10.1, after extinction of clonotype n0, the death rate is �n D
�n and the function in (10.5) is

p

n
C 1 � p

n C hni �i=i 0

� 1

n
;

for large n, so the birth rate �n � �n.1=n/ D � for large n. With these observa-
tions it is straight-forward to show that the series diverges, for example by the nth
term test.

Although absorption is guaranteed, we can see from Fig. 10.1 that the time to
extinction for both species is very large (at least t D 105 in this case). The length
of time that a clonotype spends in a QSD before being absorbed is identified as an
important issue and discussed in depth by Stirk et al. [5]. Bounds for the mean time
until absorption are given [5, Sect. 3]. Also, the work of Nåsell [24] is applied to this
process to find the form of the QSD [5, Sect. 3.2.2]. Significantly, it is shown that
clones with a smaller niche overlap last longer, because they face less competition
for survival stimuli. This mechanism drives the T cell repertoire towards greater
diversity and thus endows the immune system with a greater functional capacity for
recognizing a larger variety of foreign pathogens.

Figure 10.2 shows the evolution of the PDF associated with the model, computed
via a Krylov FSP algorithm for the solution of the Master Equation [20]. The PDF
starts as a delta distribution on the initial state, as seen in the figure labelled t D 0.
However, after a very short time, t D 1, it spreads out to resemble a Gaussian
distribution. By t D 5, it is trimodal. The middle peak then gradually disappears
so that by t D 30, only two of the original peaks remain. The remaining peaks
correspond to the QSD. Each peak corresponds to moderate levels of one T cell
clonotype and extinction of the other. The distribution is symmetric about the line
n D n0, reflecting the symmetry of this model.

Time-Dependent Propensity Functions

Thus far � has been a constant but Stirk et al. identify this as an issue for future
research and discuss the desire to consider it as a time-dependent parameter, be-
cause �, which represents the strength of the stimulation that a T cell receives from
the relevant APPs, depends on the T cell repertoire, which changes with time as
some clones go extinct and new clones are released from the thymus [5]. It is well-
recognized that older individuals often have a weaker immune system, as evidenced
by the greater susceptibility of the aged to infection [2]. Very complicated processes
in immunobiology underly this aging effect but it may be due in part to a decline in
the strength of the birth rates. For example, there are limits to how many times that
a T cell may replicate, perhaps partly due to the shortening of the telomeres with
each replication [5, 25, 26], and the level of stimulation felt by a T cell clonotype
may decline with age [27]. This motivates us to consider a variation of the original
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Fig. 10.2 The initial delta distribution, at t D 0, on the initial state Œ10; 10�, and the solution to
the Master Equation at times t D 1; 5; 10; 15; 30

model in which the birth rates decline with time. As Stirk et al. and others point out,
similar numbers of T cells are found in older and younger individuals [28]. Thus we
must bear in mind with what follows that we consider a reduction in birth rates for
some clonotypes but not all. Here we consider just two clonotypes, which is only a
small fraction of the total number of clones in the full T cell repertoire.
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Fig. 10.3 (a) The time dependence of �.t/ in (10.7). (b) A simulation of the T cell clonotype
populations, with the time-dependent propensities scaled as described near (10.7)

We represent time dependence by the hill function

�.t/ D 1

1 C �
t
K

�m ; (10.7)

where K D 15 and m D 5. The function declines with time, with a steep sigmoidal
shape, as shown in Fig. 10.3a. We scale the propensities for the birth rates by �.t/.
For this example, we replace � and �0 in (10.6) with 60�.t/. Thus at t D 0 the new
birth rates are the same as the old ones and remain similar for small values of t , but
for large values of t the new birth rates are much less than the old birth rates.

Figure 10.3b shows a simulation of the time-dependent process. This simulation
is obtained by a slight variation of the algorithm for the time-independent case [29].
The main subtlety here is in choosing the time step based on the exponential of
the integral of the propensity functions. We see the populations decline sharply at
t � 15, corresponding to the decline in �.t/. In contrast to the time-independent
case, both populations are extinct by t D 30.

Numerical Solution of the Time-Dependent Master Equation

Having considered a trajectory approach we now discuss complementary PDF ap-
proaches to the time-dependent case. Consider the system

p0.t/ D A.t/p.t/;

which is the same as in (10.1) except that here the matrix A.t/ is time-dependent.
In analogy with the constant-coefficient case, we would like to find a solution of the
form

p.t/ D exp
	
� .t/



p.0/:
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If, 8t; t 0, A.t/ commutes with A.t 0/, we have

� .t/ D
Z t

0

A.s/ds:

In the constant-coefficient case, the integral is � .t/ D tA, thus recovering (10.2) as
an important special case. Magnus [30] derived a formula for the general case:

� .t/ D
Z t

0

A.s1/ds1 � 1

2

Z t

0

Z s1

0

ŒA.s2/; A.s1/�ds2ds1

C1

4

Z t

0

Z s1

0

Z s2

0

h
ŒA.s3/; A.s2/�; A.s1/

i
ds3ds2ds1

C 1

12

Z t

0

Z s1

0

Z s1

0

h
A.s3/; ŒA.s2/; A.s1/�

i
ds3ds2ds1 C : : : (10.8)

Here the commutator ŒA; B� is defined as AB � BA. This infinite series contin-
ues with higher order terms containing progressively higher order commutators and
higher order multiple integrals. Burrage has discussed the Magnus formula in the
context of stochastic differential equations [31]. It has been widely used for theo-
retical purposes but for numerical purposes, it is awkward to evaluate in this form.
For example, one may consider the approximation obtained by truncating the series
after suitably many terms. However, it is expensive to evaluate the many multiple in-
tegrals, and higher commutators, and it is not trivial to decide where to truncate the
series, or which terms should be selected to obtain the highest order approximation
for the least computational effort. Fortunately, in a series of papers on numerical
methods based on the Magnus formula, Iserles et al. [32] showed that the scheme

A1 D A

 
tN C

 
1

2
�

p
3

6

!
h

!
; A2 D A

 
tN C

 
1

2
C

p
3

6

!
h

!
;

� NC1 D 1

2
h.A1 C A2/ C

p
3

12
h2ŒA2; A1�; (10.9)

p.tNC1/ D e� N C1p.tN /; (10.10)

where tNC1 D tN C h, is an order four approximation. Notice A1 and A2 are the
evaluation of the matrix at Gaussian quadrature points.

For this work, we implement this scheme in combination with a Krylov FSP
approach. The algorithm repeats two steps until the desired time point is reached:
first, with a fixed step size of h D 0:5, we form A1, A2 and � NC1 in (10.9);
then pass � NC1 to the Krylov FSP solver and apply the update rule (10.10). We
refer to this procedure as the Magnus Krylov FSP algorithm. It is summarized in
Algorithm 2.

The algorithm requires the following inputs: the initial distribution, p.0/; the
time tf , at which the solution is required; and the matrix A representing the Markov
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ALGORITHM 2: Magnus Krylov FSP.A; p.0/; tf ; h)
t  0;
p.t / p.0/;
while t < tf do

Compute A1, A2 and � N C1 in (10.9) with tN D t ;
Compute e� N C1p.t / by Krylov FSP
p.t / e� N C1p.t / as in (10.10);
t  t C h ;

end while
return p.t /;

chain. The initial distribution will often be a delta distribution on the initial state,
as in the examples in this paper. The algorithm also requires a way to evaluate the
matrix A.t/ at various time points. Although Algorithm 2 is described as if it re-
quires the full matrix A, in fact it does not need this. A function representing the
action of the matrix on a vector is sufficient for a Krylov method. At any instant the
algorithm only requires a finite principal submatrix of the full matrix A. This finite
state projection can be dynamic so that it tracks most of the support of the distribu-
tion [18, 20]. The algorithm also requires a step size h and for this implementation
a fixed step size of h D 0:5 was used. However this is a simplification and in future
work adaptive step size strategies will be investigated.

Remarks. – In general Algorithm 2 expands the projection at each step as nec-
essary. However for the particular application in this paper we implemented a
simplified version of the algorithm. First, we truncate the state space to a size of
approximately 10;000. We use this same state space to form OA.t/ (8t). Note that
OA.t/ is only an approximation to A.t/ but we will abuse notation and denote

both by A.t/.
– Due to the expansion around the initial state in whole numbers of steps of reach-

ability [20], the precise size of the state space employed by the algorithm is
10;076. Repeating the experiments with a smaller truncation size of 5;000 gives
results that are visually indistinguishable from the larger system.

– The sum of the conserved probability at each step is monitored and remains
> 1 � 10�5. In the constant coefficient case this would guarantee accuracy, with
the computed solution being a lower bound on the true solution, within � D 10�5

in a component-wise sense. This suggests that the solution in our time-dependent
case is also very accurate. However, this is only a heuristic algorithm and a for-
mal analysis of the error behaviour is still to be considered.

– In the current implementation, at each step, A1, A2, ŒA1; A2� and finally � are
formed as sparse matrices and then � is passed to the Krylov solver, which em-
ploys an Arnoldi process together with an adaptive time step integration scheme.
The matrices A1, A2 share the same sparsity pattern and are very sparse: the
density of non zeros is �5 � 10�4. The commutator is about twice as dense, at
�10�3, but this is still very sparse. So the problem is well-suited to a Krylov
approach.
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– The solutions are computed within a few minutes. Matrices such as A1 can be
formed in less than one second.

– In many applications A.t/ ! A1 as t ! 1 so that for sufficiently large t the
problem reduces to (10.1) with A replaced by the constant equilibrium matrix
A1. In these situations it is desirable to combine the Magnus Krylov FSP with
the standard Krylov FSP described in the previous section: initially, we employ
the Magnus method but after sufficiently large t is reached, we switch to the
cheaper, standard Krylov FSP. The successful application of this combination
requires a way to recognize when sufficiently large t has been reached. For the
application at hand, �.t/ ! 0 for large t so we could employ this strategy for,
say t > 100, for example.

Figure 10.4 shows the evolution of the PDF in the time-dependent case. Ini-
tially, the distribution is similar to the time-independent case: compare, for example,
Fig. 10.4 at t D 5 with Fig. 10.2. However, at t � 8 the evolution starts to diverge
and by t D 13 the PDF is noticeably different. In particular we see the distribu-
tion gradually moving towards the origin at the snapshots in t D 13; 17; 23; 25, and
by t D 30 about 80% of the distribution is in the absorbing state. This is in con-
trast to the time-independent case for which the QSD lasts for a very long time. This
attenuation of the time spent in the QSD is significant in understanding the immuno-
logical implications of the age-dependent case. As noted in above, diversity in the T
cell repertoire is maintained because clonotypes with a smaller niche overlap tend
to last longer because they face less competition for survival stimuli. However for
clonotype populations that show an age-dependent decline in � as in (10.7), the QSD
may not last very long even if the clonotype has a small niche overlap. This results
in an abnormal loss of diversity from the T cell repertoire. corresponding decrease
in the functional capacity of the immune system to recognize foreign epitopes.

The Mean Time to Extinction of Both Clonotypes

In this section we quantify how the survival time of a clonotype depends on the
time-dependence of the birth-rates. Assuming that the process begins in the quasi-
stationary distribution, the mean time until absorption is given by 1=�C , where �C is
the decay parameter associated with the Markov chain. For many applications, after
a brief initial transient the process is approximately in the QSD so this is a reason-
able assumption. The theory of the decay parameter and QSDs is presented in [33].
Thus we use 1=�C as an indication of the survival time of a clonotype. For the bi-
variate clonotype model, we compute the eigenvalue, �, with smallest magnitude, of
the matrix AC . Here AC is same as the FSP (10.3), except that the absorbing state
has also been removed. One way to compute � is to use the inverse power method,
or to call the MATLAB sparse eigenvalue routine, eigs.AC ; 1; 0/. We approximate
the decay parameter by �C � ��. Note that there are some technical issues with
this approximation for infinite models [33–36]. Although the clonotype models are
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Fig. 10.4 The solution to the ME at t D 5; 13; 17; 23; 25; 30 in the time-dependent case

infinite this is because bounds are not known and may be large. Real applications
will have finite numbers of clonotypes so it is reasonable to focus on the finite case.

Figure 10.5 shows the change in the mean time to absorption, from the QSD, as a
function of time. It can be seen that the time-dependence resembles that of the time-
dependent birth rates in Fig. 10.3a, although on a log scale. At t D 0, the average
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Fig. 10.5 The mean time until extinction of both clonotypes in the two-dimensional model

lifetime of a clonotype is �1011 but at t D 20 the lifetime is only �102. This shows
that the simulation in Fig. 10.1 would probably not go extinct until �1011. Also, this
shows that the reduction in the birth rates over time, by about an order of magnitude,
leads to a much larger effect on the life expectancy of a clonotype, which decreases
by several orders of magnitude.

Discussion

This work has focused on the implications of a particular functional form of the
time-dependence for diversity maintenance but future work will consider the signif-
icance of different functional forms for �.t/. Furthermore it would be interesting to
explore parameter space and models that have more clonotypes. For example this
work focused on the case that � � 1 but it would be interesting to relax this assump-
tion and consider the model with appropriate approximations to the birth rates. We
identify a number of important areas for refining the numerical methods described
here:

– Generalizing the error analysis of the Krylov FSP approximation to:


 A time-dependent matrix

 A combination of the Krylov FSP with the order 4 approximation

– Employing adaptive time-steps in the Magnus Krylov FSP integrator.
– Identifying a more sophisticated embedding of the Magnus formula in the

Krylov methods, for improved computational efficiency. For example, as a
Krylov method, only a function that returns the action of � on a given vector, v,
is required, so we do not need to form the matrix, or the commutator in (10.9).
Instead, one possibility is to employ the following scheme. First form the vectors,

w1 D A1v; w2 D A2v; w3 D A2w1; w4 D A1w2;
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then form � v as

h

2

 
w1 C w2 C

p
3h

6
.w3 � w4/

!
:

– However a more advanced embedding is desired. series (10.8) by a vector. For
example, perhaps the Magnus formula can be more deeply incorporated into
the fabric of the numerical time stepping procedure; the Arnoldi process; or
the approximation of the exponential of the small, dense, matrix H m. This
will be important for larger scale problems arising in models of more than two
clonotypes.

– Finally, in the time-dependent case, the PDF approach can be extremely com-
petitive with the trajectory approach [29]. For example, we could run only a few
100 simulations in the same time that it takes for the Magnus Krylov FSP to
compute the PDF. However no attempt was made to optimize the trajectory algo-
rithm, which is significantly slower than its constant-coefficient counterpart, so a
thorough investigation of the relative efficiency of the approaches is deferred to
future work.

This chapter is based on a technical computing article in SIAM Multiscale Mod-
elling and Simulation by the same authors that would normally only be read by the
computational mathematics community but which is not accessible to the immunol-
ogy community. More technical details can be found there, where some of the issues
are addressed. It is the authors’ hope that by appearing in the present context, this
chapter may raise awareness amongst the immunology community of the potential
of computational and interdisciplinary techniques to contribute to immunology.

Conclusions

We have demonstrated a number of novel numerical strategies to be relevant to com-
putational immunology. First, it has been demonstrated that the Krylov FSP can be
applied to models in immunology, so that PDF approaches to the governing master
equations are now feasible. Second, Magnus formulas allow the Krylov FSP to be
applied to systems with time or age-dependent rates. Previously, Iserles, Nørsett and
Rasmussen demonstrated a clever order four approximation based on the Magnus
expansion. We have combined the approximation with a Krylov method, allowing us
to handle matrices of larger size. For example, we have dealt with 10;000 � 10;000

matrices. This has allowed us to handle interesting applications in computational im-
munology with age-dependent birth rates. Furthermore, it will be straight-forward to
apply the numerical methods developed here to other applications in computational
immunology and also to the chemical master equation for biochemical kinetics with
time-dependent propensities.

We have applied the novel computational methods, to investigate one model of
aging effects on the immune system. In some cases, quasi-stationary distributions
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for the populations of a particular clonotype – that would otherwise be sustained for
extended periods – may have their life spans significantly attenuated by a decline in
the birth rates due to aging. This would seem to be a very important factor in under-
standing the effects of aging on health. Finally, this work concentrated on a special
case of the Stirk, Molina-Parı́s and van den Berg model [5] of T cell homeostasis
but in future work it is planned to investigate the model more generally.
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Chapter 11
Dendritic Cell Migration in the Intestinal Tract

Rowann Bowcutt and Sheena Cruickshank

Abstract T cells are critical cells for the development of adaptive immune
responses and protective immunity. However, before T cells can act, they must
be switched on which is done by professional antigen presenting cells such as
dendritic cells (DCs). DCs are found in all parts of the body and their main role
is to detect pathogens or injury, take up antigens, process them and present them
to T cells. Thus, DCs represent the beginning of a well orchestrated immune re-
sponse. In order for effective immune function, DCs need to both get to the sites
of injury or pathogen invasion as well as the sites of T cell activation. DC move-
ment or migration is a complex multi-step process which also involves phenotypic
and functional changes to the DC itself to facilitate movement. In response to an
injury or infection, DCs are recruited both locally and from the blood to the site of
injury. As DCs exit the tissue they also must be replenished. Dysregulation of the
DC migratory response can result in chronic inflammation and the development of
inappropriate immune responses. DC migratory behaviour varies depending on the
anatomical location. One of the most significant areas of antigen uptake in the body
is the intestinal tract. Here we address the process of DC migration within the large
and small intestine.

Dendritic cells (DCs) act as a bridge between the innate and the adaptive im-
mune response. DCs are professional antigen presenting cells that are unique in
their ability to educate or prime naive T cells in order to generate effector T cells
and establish adaptive immunity. DCs arise from progenitor cells in the bone mar-
row and migrate via the blood to tissues in the body. DCs are found in almost
all tissues, for example the intestinal tract, skin and lungs. Such tissue-resident
DCs are termed immature DCs. Immature DCs are able to recognise and ingest
pathogens and are efficient at taking up antigens via several mechanisms including
phagocytosis. Once the immature DC has sensed and taken up an antigen, the DC
goes through a well-characterised process of maturation. During DC maturation,
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the DC is re-programmed and becomes less efficient at taking up antigen and better
at presenting antigen to T cells. Following maturation, the DC then migrates via
the lymphatics to secondary lymphoid structures such as the lymph nodes where
it can interact with T cells and prime them for effector T cell responses. Thus,
DCs are highly motile cells which enable them to acquire the antigens needed to
prime T cells, interact with other innate cells such as natural killer cells and mi-
grate to secondary lymphoid organs where T cell priming occurs. DC migration
is of special significance in the gastrointestinal tract (GIT) in particular the small
and large intestine. The GIT has an enormous antigenic burden, the biggest in the
body, consisting of dietary food antigens and bacterial antigens which derive from
the large resident, commensal bacteria population. The GIT also represents a major
site of pathogen attack with gastrointestinal infections amongst the most prevalent
in the world. Thus, the immune system of the GIT must be adapted to ignore ben-
eficial antigens from food and friendly bacteria whilst recognising and eradicating
pathogens. Furthermore, there is significant diversity of DC function within the GIT
which may be related to differences in antigenic burden. For example some DCs
in the small intestine are actively involved with the maintenance of oral tolerance
and may be exposed to a wide array of dietary antigens. In contrast, DCs appear to
be more sequestered away in the large intestine. This difference may be due to the
large population of resident commensal bacteria present in the large intestine which
is largely absent from the small intestine.

Factors Mediating DC Migration

The GIT is essentially a long tube approximately 9 m in length, the inner lining
of which is covered by a continuous layer of epithelial cells (Fig. 11.1). The small
intestine extends from the stomach to the ileocecal junction. In humans it is about
720 cm in length and is divided into three parts: the duodenum which is fixed to the
abdominal wall and only comprises about 20 cm of the small intestine, the jejunum
(approximately the next two fifths) and the ileum (the remaining three fifths). The
large intestine of the human is much shorter and is approximately 180 cm in length
and consists of the caecum (which is continuous with the ileum), the appendix and
the colon (which is divided into the ascending, transverse and descending colon),
the rectum and anal canal and terminates as the anus. The epithelium acts as a bar-
rier separating the antigenic contents of the intestinal lumen from the immune cells
found underneath the epithelium within the sub-mucosa. Some DCs and immune
cells can also be found within the intestinal epithelial layer [1, 2] and they also help
maintain the barrier integrity of the intestine. The epithelium by virtue of its posi-
tion is therefore the most common initial site of pathogen invasion. DC migration
is triggered by a number of events such as infection or damage to the epithelium.
Infection and damage result in the release of mobilisation signals that can be de-
tected by receptors on DCs. These signals include pathogen derived factors, soluble
proteins called chemokines and even some anti-bacterial peptides [3, 4] (Fig. 11.2).
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Fig. 11.1 Structure of the gut. (a) Cartoon showing the different regions of the gut. The images
in (b–e) are histology micrographs showing the small intestine (b and c) and colon (d and e) at
low magnification (b, d) and higher magnification (c, e). The position of the gut lumen is indicated
with L. Note the presence of faecal debris within the lumen. The epithelial layer is indicated with
e, lamina propria with lp and the muscularis with m in the higher magnification images
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Fig. 11.2 Distribution of Dendritic Cells in the Gut. Distribution of DCs in the intestine. Immuno-
histochemistry images demonstrating the relative abundance of DCs in the different regions of the
gut. The images are taken from normal small intestine and show the villi (a) and the colon (b) and
show the crypts. The sections have been stained so that the epithelium is green , the dendritic cells
are red and the cell nuclei are blue

Highly conserved structures on bacteria and pathogens are recognised by families
of pattern recognition receptors (PRR) that are expressed by DCs as well as epithe-
lial cells. Once the PRR has been triggered, cell signalling pathways are triggered
that favour the production of chemokines and cytokines [5–7]. Although PRR lig-
ation does trigger DC migration [8, 9], the most important mobilisation factors are
thought to be chemokines [10–14]. The expression profile of chemokine receptors
on DCs changes upon DC maturation; immature DCs typically express high levels
of CCR2, CCR5 and CCR6 [4]. Upon DC maturation these chemokine receptors are
down-regulated and the DC expresses the chemokine receptor CCR7. Even though
CCR7 has been identified as being crucial in DC migration to the MLN other medi-
ators such as cysteinyl leukotrienes and prostaglandin E2 are needed to make CCR7
responsive to its ligands [15, 16]. However, CCR7 is also expressed on so- called
semi-mature DCs that for example have phagocytosed apoptotic cells [12]. Lym-
phatic endothelial cells express high levels of the CCR7 ligands CCL19 and CCL21,
and CCR7 is important in migration of mature and possibly semi-mature DCs to
lymph nodes for T cell priming [15, 16]. This means that the type of signal recog-
nised by mature and immature DCs is potentially different. Overall, the mobilisation
signals will help:

1. Maintain immune homeostasis by preventing inappropriate immune responses to
beneficial antigens

2. Alert DCs to the site of damage/infection
3. Recruit DC progenitors and DCs in order to maintain the resident population or

respond to damage or infection [16]

In response to the mobilisation signals cell signalling cascades are triggered in
the DC resulting in multiple internal and external phenotypic and functional changes
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[8,16]. For example, the interaction with pathogen- derived antigens not only causes
the DCs to mature but also increases their motility [8, 17]. In order for the DC to
physically move, the DC interacts with the gut substrate, blood vessels or lymphat-
ics. These interactions are facilitated by adhesion molecules on both the DCs and
the substrate it is moving through. Examples include adhesion molecules such as
ICAM-1, JAM-1 and integrins which recognise substrate components such as col-
lagen. The adhesion molecules act to enable the DC to either anchor to or detach
from the cell substrate it is in contact with [16]. Changes in the expression of ad-
hesion molecules can affect how DCs move including the speed and direction of
migration [16].

Another factor that may influence the speed of DC migration to lymph nodes is
the rate of the lymph flow within the lymphatic vessels. Histamine and cysteinyl
leukotrienes promote DC migration and can also increase lymph flow rate. Further-
more factors that inhibit DC migration have also been shown to decrease lymph flow
rate [12, 18].

DC Localisation Within the GIT

The GIT has a large population of DCs which are located in the small intestine,
large intestine and the MLNs (Fig. 11.3). The majority of DCs are found in the
small intestine. DCs in the small intestine are found distributed throughout the lam-
ina propria and in defined lymphoid structures called Peyers patches. Notably, a
proportion of small intestinal DCs expressing CX3CR1 are found at the epithelial
layer and extend dendrites between epithelial cells and into the gut lumen. These
dendrite structures are called transepithelial dendrites and may represent primary
routes of antigen uptake for DCs [19]. DC with transepithelial dendrites are rare or
absent in the ileum and terminal ileum of the small intestine.

Generally, DCs in the large intestine are much rarer than the small intestine. Here,
the majority of resident DCs are found in small isolated lymphoid follicle structures
(ILF) and colonic patches (CP) [20] with occasional DCs within the lamina propria
[4,21,22]. In health there are few if any DCs in the colonic epithelial layer [21]. The
formation of transepithelial dendrites in the large intestine has not been observed in
healthy mice and is rare even in infection [4, 23].

DC Antigen Sampling and Migration in the Normal
Non-Inflamed Intestine

Two of the main reasons DCs need to migrate are to acquire antigens or prime
T cells. In the small intestine, there are three major routes by which DCs can ac-
quire antigens: via specialised epithelial cells called microfold or M cells which are
mostly found in the Peyers patches, via the intestinal epithelium within the lamina
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Fig. 11.3 Epithelial barrier function and Trigger for DC recruitment. Cartoon showing the main
pathways that can trigger DC mobilisation in the intestine

propria or via transepithelial dendrites [2, 19, 24]. In the large intestine, the path-
ways of DC antigen uptake are not well-defined as there are no Peyers patches, few
DCs in the epithelium and no obvious population of DCs with transepithelial den-
drites [3, 23]. However, the ILFs and CPs may have an analogous role to the Peyers
patches thus representing a primary site of antigen uptake for DCs in the normal
un-inflamed large intestine [25, 26].
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As stated previously the intestine has a considerable antigenic burden consisting
of dietary antigens and bacterial antigens from the commensal bacteria. The lack
of a pro-inflammatory immune response to such antigens is called immunological
tolerance. It is thought that in the normal gut, DCs contribute to immunologi-
cal tolerance. As well as local mechanisms of tolerance within the small intestine
[27–32], it has been shown that there is a constant low level of DC traffic from the
small intestinal lamina propria via the lymphatics to the MLNs [33]. Such traffick-
ing is referred to as steady state migration. In addition it is thought that DCs within
the Peyers patches are recruited in steady state migration. The chemokines CCL9
and CCL20 and the mucosal homing integrin MAdCAM-1, which are recognised
by receptors on immature DCs, are thought to be critical for steady state sampling
[34–36].

That intestinal DCs are involved in sampling luminal antigens is supported by the
observation that non-invasive and non-pathogenic Escherichia coli can be cultured
from the MLN of mice that have intestinal DCs with transepithelial dendrites [19].
The chemokine receptor CCR7 on DCs is thought to be important in this steady-
state DC trafficking. In mice lacking CCR7, there is impaired trafficking of DCs and
defective induction of tolerance [37]. The majority of DCs in the normal intestine
are immature and do not express CCR7 whereas DCs in the MLN have been shown
to be more mature [38, 39]. As the immune response primed by these steady state
DCs is a tolerogenic one, it is not clear whether this is because the DCs respond
differently to beneficial antigens, do not fully mature e.g. are semi-mature or only
a specific subset of DCs respond. Recently, it has been shown that a subset of DCs
expressing CD103 represent the motile DCs that migrate to the secondary lymphoid
structures and initiate immune responses [40].

There is less data on the function of DCs in the normal non-inflamed colon.
Although ILFs and CPs may represent a site of luminal sampling, it is worth noting
that their formation is unaffected in the absence of the commensal bacteria [25].
DCs have not been observed with transepithelial dendrites in the normal large intes-
tine therefore the transepithelial dendrite route is highly unlikely to be involved
in steady state sampling. Furthermore, there are very few DCs at the epithelial
layer; on average between zero and 1 DCs are observed per crypt adjacent to the
epithelium [7]. However, a small subset of DCs express CCR7 (<5%) in the nor-
mal large intestine [7] so it is possible that there is some trafficking of DCs to the
MLNs in the steady state. This small subset of CCR7C DCs may be semi-mature
[7]. It does appear that in contrast to the small intestine DCs are sequestered away
from potential contact with luminal antigens. This may be due to the fact that the
large intestine has a significantly higher antigenic burden with the bulk of the com-
mensal flora residing there, therefore it is beneficial to keep the most significant
antigen presenting cell (APC) away from this major source of antigen. Similarly,
in the lower small intestine which has the most bacteria, DCs with transepithelial
dendrites are less frequently observed in normal healthy mice [2]. Certainly, inap-
propriate immune responses to the commensal bacteria have been shown to lead to
the development of inflammatory bowel disease (reviewed in [41]). Furthermore,
DCs have been strongly implicated in this dysregulated immune response in the
large intestine [21, 42].
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DC Migration in Response to Infection or Injury

DC migration within the gut in response to infection or damage is critical for
resistance to infection. This migration may represent the movement of resident DCs
to the site of injury of infection (usually at or near the epithelial layer) as well as the
recruitment of DCs from the periphery and bone marrow that will move through the
tissue to the site of damage. The latter cells are often termed inflammatory DCs and
express CD103 [40].

In the small intestine, as we have discussed, many of the DCs are situated where
they are readily able to access antigens such as those with transepithelial dendrites.
In the terminal ileum there are much fewer DCs with transepithelial dendrites con-
stitutively. However, the number of DCs with transepithelial dendrites increases
dramatically upon infection in the small intestine and in particular the ileum [2].
This is thought to occur as a consequence of recruitment of inflammatory DCs
[2]. The large intestine does not have normally have DCs in the epithelial layer.
However, it is known that DCs are critical for immunity to a strain of colitogenic
Salmonella typhimurium. Experiments in which DCs were depleted revealed that
DCs were needed for invasion of S. typhimurium across the epithelium. The mech-
anisms by which the bacteria targeted the DCs was not clear as DCs were not
observed with transepithelial dendrites in the large intestine [23]. Currently it is
unclear whether DCs ever extend transepithelial dendrites in the large intestine in
response to S. typhimurium. However, as DCs are normally found distant from the
large intestinal epithelium the immunity to S.typhimurium must occur due to migra-
tion of DCs to the epithelium. The mouse model of the human whipworm infection
Trichuris trichiura (Trichuris muris) was used to investigate DC interactions with
the epithelium in the large intestine. T. muris resides only in the large intestine.
The studies revealed that, 24 h after infection, in hosts that would be resistant to
infection, there were occasional DCs (< 5%) with transepithelial dendrites in the
colon [7]. This analysis was performed using confocal and electron microscopy
which effectively analyses only a snapshot of the immune response so is somewhat
limited. With the advent of better techniques to visualise immune responses in vivo
such as multiphoton microscopy, it may be possible to resolve the issue of transep-
ithelial dendrites in the large intestine. For example, we will be able to determine
the frequency and duration with which large intestinal DCs can form transepithelial
dendrites in response to infection and whether there are ever DCs with transepithe-
lial dendrites in the steady state.

Although, there are DCs present at the epithelial layer in the small intestine con-
stitutively, a number of infections and pathogen derived antigens have been shown
to promote further DC migration to the Peyers patches [43] and lamina propria
epithelium of the small intestine [33, 44–47]. One chemokine receptor has been
specifically linked with homing to the small intestine and this is CCL25 which
is recognised by the receptor CCR9 [47]. CCL25 is expressed by small intestinal
epithelial cells. CCR9 has been shown to recruit a subset of DCs called plasmacy-
toid DCs to the small intestine in response to PRR triggers [48]. Interestingly, this
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subset of DCs appeared to be necessary for the recruitment of other DC types to the
small intestine epithelium but only in response to a select set of PRRs [48]. A num-
ber of other chemokines are upregulated by epithelial cells in response to infection
including CCL20, CCL5 and CCL2 [4, 45, 49, 50]. In particular CCR6-dependent
recruitment of DCs has been shown to facilitate better immunity to S. typhimurium.
The mechanism for improved immunity was due to increased trafficking of anti-
gen carried by the phagocytic DCs to the lymph nodes which then increased the
efficiency of antigen presentation to T cells [42]. The migratory DCs were not nec-
essarily involved directly in antigen presentation. The migratory DCs appeared to
be blood-derived rather than tissue derived and were therefore of the inflammatory
DC subset.

There is relatively little literature on DC trafficking within the large intestine but
DC mobilisation and trafficking to the epithelium has been shown to be vital for
effective immunity to infection [4]. In mice that are susceptible to the mouse para-
sitic worm infection T. muris it has been shown that delayed DC mobilisation in the
large intestine is strongly associated with susceptibility to infection whereas resis-
tant hosts have a rapid DC migratory response. This delayed response in susceptible
hosts was linked to reduced secretion of chemokines by the intestinal epithelium
within the first twenty four hours of infection [7]. The most important chemokines
were CCL5 and CCL20 and blocking of these chemokines prevented DC mobilisa-
tion in response to infection [7]. Similarly, in mice with a defect in the secretion of
epithelial chemokines, there is reduced DC migratory response which is associated
with increased susceptibility to S. typhimurium infection (Cruickshank, unpublished
observations). Unlike, the small intestine however, where there is a rapid trafficking
of DCs to the MLNs following infection, few DCs were found in the MLNs post-
infection within the first 7 days. However, the size and frequency of the DC-rich
lymphoid aggregates (the isolated lymphoid follicles and colonic patches) increased
suggesting that DCs can be retained in the colon following antigen stimulation
[4, 51]. Similarly, the colonic patches and isolated lymphoid follicles of the colon
have been confirmed as important sites for the generation of protective mucosal IgA
induction following intrarectal administration of antigen [26]. In this study, CCR7
was involved in homing to another lymph node site, the iliac lymph nodes which are
found below the mesenteric lymph nodes closer to the rectum (the terminal part of
the large intestine).

Rapid DC mobilisation in the intestine is not always associated with a posi-
tive outcome however. Some pathogens utilise DCs to disseminate around the body
such as Toxoplasma gondii which can directly exploit the way in which DCs move.
T.gondii secretes chemokine mimics that are strongly chemotactic to intestinal DCs
[52] as well as directly targeting the mechanisms of DC migration in order to pro-
mote faster cell migration [53]. The accumulation of DCs in the large intestine,
particularly mature DCs, has also been associated with the development of chronic
inflammation seen in inflammatory bowel disease [21, 42, 54, 55]. All the factors
underlying the accumulation of mature DCs in IBD are not elucidated currently but
clearly this demonstrates an alteration in migratory behaviour.
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Recruitment of DC Progenitors

DC precursors such as monocytes are rapidly recruited from the vasculature to the
site of injury or infection (reviewed in [56]). Monocytes have been shown to give
rise to inflammatory DCs and actually are derived from a common precursor to con-
ventional DCs. Within the first few hours and days of infection it has been shown
that there is a massive wave of CCR2 dependent recruitment of Gr1C monocytes
from the bone marrow to the bloodstream and thence to the tissues [57–59]. Under
the influence of pathogen derived factors and cytokines, these cells are able to differ-
entiate into inflammatory DCs [59, 60]. As well as acting as DC progenitors, these
monocyte cells may have anti-microbial functions (reviewed in [56]).

In addition to the inflammatory subset of DCs, it is likely that monocytes may
be involved in steady state replenishment of local resident DCs. There is some de-
bate about whether the Gr1C monocytes that act as inflammatory DCs progenitors
are also progenitor cells for conventional tissue resident DCs. It is generally be-
lieved that is not the case however. Gr1lo monocytes may act as progenitors for
resident conventional DCs although the chemokines involved in their recruitment
are not fully elucidated and there is still relatively little information on this subset
(reviewed in [61]).

It is apparent that the migration of DCs both to the sites of injury or infection as
well as sites of T cell priming represents critical stages in the development of ef-
fective immunity. Not only is DC migration essential for effector immunity, it also
appears to be vital to maintain normal homeostasis in the gut by preventing inap-
propriate immune responses to normal antigens. Dysregulation of the DC migratory
response can also result in significant problems leading to chronic inflammation and
the development of inappropriate immune responses. Another important considera-
tion is that the immune responses within the small intestine and large intestine are
not the same as is commonly assumed. DC migration is a complex process that in-
volves multiple factors all of which can have profound effects on the outcome of the
immune response. This area of research is still in its infancy and represents an area
of rapid development in the immunological field.
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Chapter 12
Reassessing Germinal Centre Reaction Concepts

Jose Faro and Michal Or-Guil

Abstract To determine the number of B cells seeding germinal centres, different
authors have used immunohistology of germinal centre sections in conjunction with
assuming a binomial distribution of the fractions of two phenotypically distinct
B cell populations participating in a given immune response. This approach fur-
ther assumed that germinal centres are closed to continuous B cell entry. Using such
a model, it has been concluded that germinal centres contain two to eight clones,
a figure that is usually taken and cited as being essentially correct. The present
re-evaluation of those and related experiments lead to an extended mathematical
model. This model includes an estimation of errors created by data sampling, two
new parameters that take into account possible mistakes in classification of single
population GC sections, and the likely variability in the number of seeding B cells.
Fitting this new model to experimental data resulted in an estimated mean number
of hni D 23–37 seeder B cells.

Introduction

Vertebrates have evolved a complex immune system (IS) that efficiently contributes
to protecting them from many infectious and toxic agents. To cope with such a huge
variety of agents the IS generates a large diversity of lymphocyte receptors. This
occurs throughout life by various mechanisms that, in higher vertebrates, are acti-
vated in two waves. The first one takes place during lymphocyte development, is
antigen (Ag) independent, and comprises the random recombination of relatively
few gene segments into a fully variable (V) region exon of immunoglobulin (Ig)

J. Faro (�)
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heavy or light chains and T cell receptor chains [1]. In birds and mammals the
relevance of this mechanism for generating primary B-cell repertoire diversity varies
with different species. Thus other mechanisms such as gene conversion and somatic
hypermutation (SHM) which act on rearranged V-region exons may contribute to
most of the B-cell repertoire diversity [1, 2]. The second wave of repertoire diversi-
fication in B cells is Ag dependent and triggered during immune responses (IRs) to
protein-containing Ags, the major mechanism responsible being SHM. This process
takes place, in higher vertebrates, in germinal centres (GCs) of secondary lymphoid
organs [2, 3].

Germinal centres are dynamic, short-lived anatomical structures generated within
primary follicles during humoral IRs. Since their discovery in 1884 as sites of in-
tense mitosis [4, 5] they have been increasingly implicated in IRs [6–9]. In the
1960s studies were initiated into their cellular and anatomical dynamics during IRs
[10–13] leading to current terminology. It was then also shown that they are spe-
cial areas where protein Ag accumulates by an active transport mechanism [14–19].
Within the next decade the so-called follicular dendritic cell (FDC) was confirmed
as a key GC cell component, essential for the follicular Ag-trapping process. It was
also shown that Ag remained in GCs in a native form, in large complexes with anti-
bodies (Ab) and complement factors, and associated with the membrane of the long
dendritic arms of FDCs [16, 17, 20, 21]. At the beginning of the 1980s the role of
GCs in memory B-cell generation was well established [22], but a few years later
it appeared that GCs might be more profoundly involved in IRs than previously
thought. It was proposed [5, 23, 24] that they could be the functional environment
for two processes, well-known at that time, namely somatic hypermutation of Abs
[25] and affinity maturation [26]. Their involvement in SHM was confirmed in 1991
[27, 28]. Since then, accumulated data clearly indicate that a selection process be-
tween Ag-specific B cells takes place in GCs, accounting at least partially for affinity
maturation [29–31].

Current View of GCs

A consensus picture of evolving GCs in primary IRs emerged from the mid 1980s
to the 1990s. This picture, still dominant in textbooks [3] and most reviews, can be
described in a roughly temporal fashion as follows:

1. Foci of Ag-reactive B cells are formed
2. Seeding and initiation of GCs by B cells: this seeding is oligoclonal
3. Seeding of GCs by T cells
4. Founding centroblasts start proliferating with division times of 6–12 h
5. SHM starts
6. Some centroblasts stop dividing and become centrocytes. These cells accumu-

late in the apical zone, creating the light zone, while centroblasts remain mostly
in the basal, dark zone. SHM takes place only in centroblasts. Ag-driven selec-
tion affects mostly centrocytes
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7. Recycling: the original idea, proposed by MacLennan et al. in 1991 [32],
suggested that centroblasts migrate from the dark to the light zone, become cen-
trocytes and as such stop SHM. They are then submitted to selection; surviving
cells migrate from the light to the dark zone where they again become cen-
troblasts activating the SHM mechanism. This cycle is supposed to be repeated
several times. A later theoretical analysis of the affinity maturation process,
based on an optimization criterion [33], was taken as support for this hypotheti-
cal view (see discussion). The original recycling idea was later modified so that
no physical migration between zones was required

8. High(er) affinity centrocytes are induced to differentiate into either memory
B cells or long-lived plasma cells, exiting the GC

9. Gradual decrease of the dark zone, until a single, smaller zone remains where
centrocytes and centroblasts are mixed

10. Gradual decrease by death/migration of centrocytes and centroblasts, so that the
secondary follicle gradually recovers the phenotype of a primary follicle

11. The whole process takes about 3 weeks

The population dynamics and transient nature of GCs as well as the mutation-
selection processes taking place there, raise very interesting problems, amenable
to analysis by mathematical and computational tools. Such analyses can focus on
different points of view, for instance, on developmental (tissue organization and
remodelling), ecological, microevolutionary or health aspects.

However, empirical descriptions of the kinetics applying to different aspects of
GC dynamics, such as initiation, maturation and decline, compartmentalization or
B-cell selection, are based on experimental procedures that are technically limited
with respect to the kinetics of individual GCs. This means many relevant processes
can either not be observed directly or not in the relevant time scales. Thus, most if
not all of the dynamic data relates to the global GC reaction and not to the average
individual GC [34], leaving essential questions open [3].

In the ideal case, questions are answered directly from experimental data (“Do
GCs contain T cells? Yes, immunohistology shows that they do”). If direct exper-
imental observation is not possible, then assumptions have to be made in order to
draw inferences from indirect experimental data. Often, mathematical models are
used to obtain indirect estimates from these assumptions. For instance, assuming
that B cells do not enter the GC after its formation, and proliferate at a constant rate,
with certain assumptions on the selection process, one can set up a mathematical
model where the results are compared to V region Ig sequences from GC B cells in
order to estimate the rate of SHM [35].

However, some problems can arise in interpreting data. Firstly, measurement er-
rors can be large enough to give misleading results. Secondly, if data only comprises
a small sample, effects of sampling have to be considered. Thirdly, if the conclusion
stems from indirect experimental observation, then the validity of the assumptions
has to be assessed. Finally, averages over many events can be erroneously taken to
reflect the behaviour of individual events [34].

An additional problem is that concepts resulting from data observation are
usually presented without clearly distinguishing between truly established facts
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and those that are hypotheses, observational interpretations, assumptions or even
“reasonable” beliefs. As a consequence, scientists can be easily mislead, particularly
newcomers to the field. This is highly relevant because such potential interpretations
or assumptions may impinge on models of GC dynamics or affinity maturation. Pre-
senting those assumptions as facts prevents their own analysis and constrains future
analysis of the models.

As a way to clarify this conundrum, we wanted to critically reassess key papers
that contributed to the dominant picture of GC dynamics. We sought to disclose
potential interpretations, hypotheses or assumptions that may have been accepted
later as facts.

In this paper, we focus on a particular issue, namely, the proposal that GCs are
founded oligoclonally. This is to exemplify how apparently good and simple quan-
titative experimental designs can provide results that are in fact ambiguous with a
large margin of error, thus leaving the original question unresolved.

An oligoclonal GC is one that was founded and then populated by only a few
clones. A clone comprises cells that originate from the same precursor cell. Hence, a
B cell clone will consist of B cells with the same rearranged Ig heavy (Igh) and light
(Igl) V-region sequences, although these sequences might have acquired mutations
due to SHM.

Clonal diversity and clonal size distribution of GCs are a consequence of the
interplay of migration, proliferation, selection, and differentiation processes, and
hence provide information that can help unveil underlying dynamic processes.
Therefore, investigators initially focused on determining the clonal composition of
GCs. Both direct and indirect methods were used to assess this question. The first ex-
perimental approach to the question of clonal diversity that comes to mind is directly
measuring Igh and/or Igl V-region sequence diversity in individual GCs. However,
probably due to technical limitations at the time, this approach was not the first to
be developed. A second, clever approach, and historically the first to be followed, is
to estimate the clonal diversity indirectly by measuring only a qualitative GC trait.
The conclusion drawn from these analyses is that GCs are founded oligoclonally
by around two to eight precursor cells. Reading the original papers, however, one
realizes that the data included potentially important sources of error, thus casting
reasonable doubts on the reliability of the authors’ interpretations. We will present
the data in question and discuss their interpretation in the following sections.

Analysis of the Experimental Basis for the Concept
of Oligoclonal Seeding of GCs

Indirect Experimental Evidence

The concept of oligoclonal GCs originated from evaluating indirect evidence based
on the assumption that all GCs are founded by n B cells, and become virtually
closed structures for Ag-specific B cells arriving later. Within this closed structure,
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the founder B cell populations expand at the same rate. Under these assumptions,
the theoretical approach behind the indirect method is the following. Assume there
are two B cell populations named A and B with, in principle, the same diversity,
but with two different phenotypic traits – for instance, a plasma membrane allelic
marker without functional differences between alleles. Let us call q and p .D1 � q/

the fractions corresponding to populations A and B , respectively. If GCs are seeded
by a similar number n of cells then the expected fraction of GCs seeded by k cells
of type A and n � k cells of type B is:

 
n

k

!
pn�k qk : (12.1)

In particular, the expected fractions of GCs seeded by only A cells (f
A

), only B

cells (f
B

) or a mixture of A and B cells (fMix
) are, respectively,

f
A

D qn (12.2)

f
B

D pn (12.3)

fMix
D 1 � qn � pn: (12.4)

The number n of founder B cells can then be calculated using (12.2), (12.3) or
(12.4) alone from knowing the fraction p and the observed value for f

A
, f

B
or fMix

(denoted here as f ob
A

, f ob
B

and f ob
Mix

). Two experimental system variants have been
used that allow identification of two B cell populations and hence measurement of
p, f ob

A
, f ob

B
and f ob

Mix
:

(1) Immunization with two Ags. This strategy involves analyzing the GC reactions
triggered by two different Ags injected simultaneously [36,37]. In the paper by
Liu et al. [36] rats primed with spider crab hemocyanin (MSH) were boosted 4
weeks later with a mixture of dinitrophenyl (DNP) and 2-phenyloxazolone (Ox)
coupled independently to MSH. The fractions of splenic GCs monospecific for
either Ox or DNP were determined by immunohistology 3 days later. In the
experimental setting of Jacob et al. [37] (C57BL/6�BALB/c)F1 mice (Ighb/a)
were immunized with nitrophenyl (NP) coupled to chicken gamma globulin
(NP–CG). In this system it is expected that the majority of anti-NP B cells bear
the �1 L chain and that this is Ighb-associated. Then the fractions of GCs with
B cells expressing �1, binding CG, or both were determined.

A general problem with those two experimental settings is that the responses
to each Ag are not comparable. This is due to likely differences in the number
of Ag-specific precursor B cells, the affinities of the responding cells for their
respective Ag, and Ag valence (Ox vs DNP in the first case, and NP vs CG
epitopes in the second case). These are important unknown factors that affect
estimates of the proportions of pre-response B cells specific for each Ag (as-
sumed to be 1:1 in [37]), and the differential quality of activated Ag-specific
B cells’ response before the GC reaction starts. For instance, small fluctuations
in the in situ proportions of B cells specific for each Ag may be highly amplified
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by higher affinity/avidity of B cell–Ag interactions leading mostly to extrafol-
licular plasma cell differentiation [38,39]. Due to all of the above, these settings
are inadequate because they introduce too many uncertainties.

(2) Two phenotypically different B-cell populations. Historically this was the first
approach, and the most cited original papers are those of Kroese and colleagues
[40–42]. In their experiments they used rats with two populations of lympho-
cytes bearing different alleles of a given membrane protein. In the first paper
[40] lethally X-irradiated rats of AO strain were reconstituted with different
proportions of thoracic duct lymphocytes (TDL) from (AO�BN)F1 rats (with
MHC class II molecules of hybrid allotypes RT1u=n) and AO!(AO�BN)F1

chimeras (with MHC class II molecules of allotype RT1u). The reconstituted
rats were immunized with sheep erythrocytes (SRBC) and their spleens ana-
lyzed for GCs 5 days later.

As the authors acknowledged, a major drawback of that system is the dif-
ference in MHC between TDL rat donors and rat hosts, which would lead to a
graft-vs-host reaction. This was circumvented by using TDL derived from bone
marrow chimeras. However, these cells were still weakly reactive against host
type cells [40].

The weak reactivity in the above system was avoided in a second paper by
using PVG rats congenic for the RT7.2 allotype (CD45, a cell-membrane phos-
phatase). Lethally X-irradiated PVG rats (RT7.1) were reconstituted with a 1:1
mixture of TDL from both allotypes, immunized with SRBC and their spleens
analyzed for GCs 7 or 10 days later.

A common source of error in those two papers was that, manipulating cells
ex vivo and injecting particular ratios of them into X-irradiated hosts, meant
that the real proportion of surviving, functional B cells of each allotype able
to respond to the immunizing Ag becomes highly uncertain. In the 1988 paper
[41], this is reflected in the widely different measured percentages of pure RT7.1
and pure RT7.2 GCs, 19% and 45%, respectively, in animals receiving a 1:1
ratio of RT7.1 and RT7.2 B cells. This strongly contrasts with the expected
similar frequencies for both types of GCs. Finally, in both reports only one of
the cell types was scored for presence/absence. All this makes the data [40, 41]
highly unreliable for estimating the number of GC founding B cells.

In contrast to the above two experimental systems, another animal model [42]
used rat hemopoietic chimeras. Those were obtained by transferring congenic
PVG RT7.2 embryonic liver cells into PVG (RT7.1) newborn rats. As in the
previous papers, only the presence/absence of RT7.2 cells was analyzed. For
our present purpose the best set of data in that paper corresponds to a chimera
where the allelic B cell population fractions were p D 0:21 (population B)
and q D 0:79 (population A). In this case, the fractions of pure GC sections
were found to be f ob

A
D 0:14 for population A (allotype RT7.1), f ob

B
D 0:06

for population B (allotype RT7.2), while 80 % of GC sections showed a mixed
population. Using this simple model, the number of founder cells is estimated
by (12.3) to be nA � 8 and by (12.4) to be nB � 2.
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This system has the advantage of using normal animals, without ex vivo
manipulation of cells, which leads to an accurate determination of allelic
B-cell population fractions. We therefore considered this work best from a
methodological point of view and will focus on their data in the following
analyses.

Consistency Test

We first asked if experimental findings and model assumptions are internally con-
sistent. Does the data reported by Hermans et al. point to a binomial distribution of
B cell population fractions in GCs? Table 12.1 shows the percentage of GCs with
cells of types A, B , and mixed populations determined experimentally, as well as
the expected values calculated from (12.2) to (12.4) using the estimation of nA or
nB , along with the corresponding �2 values. In all cases, �2 is much larger than
10.827 (corresponding to a probability of 0.001 and 1 df). This indicates that the
reported values are inconsistent with the model assumption.

A first source of error is that the authors of the above papers took sections as to
represent whole GCs. However, sections are small samples of GCs, and as such do
not always reflect the true GC composition. Consider, for instance, a GC seeded by
k cells of type A and n � k cells of type B , and totaling M cells. This GC will have
M k

n
cells of type A. However, a section containing m cells (with m � M.1 � k

n
/)

will consist, with a probability
�

M.1� k
n /

m

�
=
�

M
m

�
, exclusively of type B cells, feigning

a single population GC. This shows that sampling errors lead to overestimating the
number of single population GCs.

Additionally, errors of observation can lead to a further overestimation. For one
thing, the experimenter sets a subjective and arbitrary cut-off due to T cells possibly
being counted as B cells [42]. As a consequence, estimating the absence of one of the

Table 12.1 Analysis of internal consistency of data in [42] used to
estimate n from chimera with pD 0:21. X2 of observed vs expected
fractions fA , fB and fMix were calculated taking either observed fA (f ob

A
)

or observed fB (f ob
B

) as the reference values

nA D log.1�p/.f
ob

A
/ nB D logp.f ob

B
/

(%) (%)

Observed Expecteda Observed Expectedb

fA 14 – 14 65.4
fB 6 2:2
 10�4 6 –
fMix 80 86.0 80 28.6

X2 161996c 132:6c

aExpected fB was calculated as pnA

bExpected fA was calculated as .1� p/nB

c�2(prob.: 0.001; df: 1)D 10:827
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two B cell populations in sections may dismiss 10–30% of that population. Finally,
if only one population is positively analyzed for presence/absence, and the other
B cell population is simply inferred, as in [40–42], GC sections scored as 100%
positive for the former population because all cells were apparently labelled could
in fact contain cells of the other population. Real absence of the second population
can only be determined by staining for that population.

We propose the following modified, refined model to take measurement and
sampling errors into account. Our aim is to more accurately estimate the expected
fractions of single and mixed GCs.

An Extension of the Basic Model

To take the above sources of errors into account, we introduced a parameter lT � m

representing the maximum number of cells that can be overlooked, that is, sections
with up to lT B cells of one type are scored as pure sections of the other type.

Now taking into account both sampling and observation errors, we extend (12.1)
and find that the probability of a mixed GC, seeded by k cells of type B (1 � k < n),
yielding an apparently pure section of type A is:
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Hence, the total fractions of sections expected to be scored as pure A, pure B and
mixed are, respectively:
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fMix
.n/ D 1 � f

A
.n/ � f

B
.n/ (12.8)

A further extension of the basic model addresses its simplifying assumption that
all GCs are seeded by the same number n of cells. In fact, it can be expected a
priori that the number of cells seeding GCs covers a relatively wide, rather than a
very narrow distribution. We therefore replaced this assumption by considering an
exponential distribution with mean hni D 1=�, such that the fraction of GCs seeded
by ni B cells is:

P
�
.ni / D

Z ni

ni�1

�e��ndn (12.9)
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Then the fractions of sections expected to be scored as pure A, pure B and mixed
from GCs seeded by n B cells are, respectively:

F
A

.�; n/ D P
�
.n/f

A
.n/; F

B
.�; n/ D P

�
.n/f

B
.n/; FMix

.�; n/ D P
�
.n/fMix

.n/:

(12.10)

Finally, the total fractions of sections expected to be scored as pure A, pure B and
mixed are given by the equations:

F
A

.�/ D
1X

nD1

F
A

.�; n/ ; F
B

.�/ D
1X

nD1

F
B

.�; n/ ; FMix
.�/ D

1X
nD1

FMix
.�; n/ :

(12.11)

This refined model can now be used to estimate the fractions of GC sections
expected to be scored as type A, type B or mixed, for different values of the average
number hni of GC founder B cells, the size m of GC sections and scoring errors,
lTA

and lTB
. The results of a systematic analysis of (12.6)–(12.11), taking lTA

D
lTB

D lT are shown in Fig. 12.1.
Consistent with the observed data shown in Table 12.1, the results with the ex-

tended model indicate that the scoring error must have been lTA
� 10% for counting

“pure” GC sections of type A ( i.e., truly pure + false positives). However, this error
for cells of type B must have been much higher than 30%, since the estimated F

B
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Fig. 12.1 Fractions of GC sections estimated as being scored type A .FA /, type B .FB / or mixed
.FMix /, using the extended model (12.6)–(12.11). hni, Average number of GC founding B cells; lT ,
scoring error; m, size of GC sections. Horizontal lines correspond to the observed fractions in [42]
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should reach at least the observed value f ob
B

D 0:06. Hence, we need to assume that
the observation errors are different for each of the two populations if the extended
model is compatible with the observed data.

In addition, we can ask if the extended model and the data on pure and mixed
GC sections in [42] are consistent. The values reported in the original paper were
compared with the expected values according to the extended model (12.6)–(12.11).
Figure 12.2 shows the corresponding X2 for different average numbers of seeding
B cells and different error thresholds lT (once more taking lTA

D lTB
D lT ).

Consistent with the previous result, in all cases the �2 test indicates that the reported
values are too different from the expected ones to be due to random variations. We
therefore re-estimated F

A
for lTA

D 5%, 10% and 15%, and F
B

for lTB
D 50%,

55% and 60%. The results clearly show that only scoring errors of 5 � 10% for
lTA

and 55 � 60% for lTB
generate values of F

A
, F

B
and FMix

compatible with the
observed values and predict the same value for hni (Fig. 12.3). Applying the �2 test
for observation errors lTA

D 5% and lTB
D 55%, we obtain a minimum value of
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Fig. 12.2 �2 test of observed vs expected fractions of GC sections of type A .FA /, type B .FB /

or mixed .FMix /, using the extended model (12.6)–(12.11). hni, average number of GC founder
B cells. Horizontal line, �2 for a probability of 0.001 and 2 df. Blue, green and yellow bars are
results obtained with lT D 10, 20 and 30%, respectively. Calculations made assuming a GC size
of M D 5;000 cells, and a GC section size of m D 200 B cells
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X2 D 0:064 for hni D 23, while lTA
D 10% and lTB

D 60% gives a minimum
value of X2 D 0:094 for hni D 37. This indicates that the model is now sufficiently
accurate to explain the data. Thus the predicted average number of GC founder B
cells given by this refined model is hni D 23 � 37 cells.

Direct Experimental Evidence

Direct experimental observation of the B cell clonal diversity in GCs involves de-
termining the number of distinct Igh and/or Igl sequences in individual GCs. Small
clusters of B cells from single GC sections are isolated and then analyzed for the se-
quence diversity of rearranged VH or VL gene segments from particular V families.
The data usually cited is that of Igh CDR3 region sequences obtained at different
times in a primary IR [29, 43]. The experimental procedure for each GC analyzed
involved the following steps: (a) sampling (sample A) of a cell cluster (�50 cells)
from a GC section; (b) PCR amplification of sequences related to a particular ref-
erence VH gene segment; (c) extremely small sampling (sample B) of the PCR
products (the sample size was typically a fraction 10�12-10�10 of the total se-
quences); (d) sequencing of sample B .

The published diversity within sample B from GC sections harvested at day 16
or earlier is one to nine different sequences, corresponding to one to nine different
clones. The data on frequency distribution of the different sequences per GC section
can be analyzed to estimate clonal diversity using methods borrowed from ecol-
ogy, such as the abundant coverage estimator (ACE) [44] or the statistical model
of Yule–Simon [45,46]. Those methods have already been applied to estimate TCR
diversity in murine splenic CD4C T cell populations [47, JF, unpublished]. Note
that these methods underestimate true diversity, specially ACE which usually gives
particularly low estimates [JF, unpublished]. The results of such analyses applied
to V-region sequences from GCs are shown in Tables 12.2 and 12.3. Interestingly,
the Yule estimator suggests a severe reduction of diversity after day 10 of a primary
IR (Table 12.3), a time when selection likely starts to reduce, as well as bias the
clonal composition of GCs [35]. Before such contraction ( i.e., for GCs before day
14 of the response) the diversity is estimated to be in the range of 20–30 clones
(Table 12.3; Yule estimator).

Note that again these diversity estimates are for GC sections, which are them-
selves small samples of GCs. Therefore the GC diversity can be expected to

Table 12.2 Clonal diversity
estimation of GC B cells
using the ACE and Yule
methods. GCs are from day
10 of a primary IR. Data
from [43]

Diversity

Estimated Estimated
GC Observed (ACE) (Yule)

B8 5 6 19
B12 4 13 13
B15 2 2 3
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Table 12.3 Clonal diversity estimation of GC B cells using the ACE
and Yule methods. GCs are from a primary IR. Data from [29]

Diversity

Estimated Estimated
Day GC Observed (ACE) (Yule)

4 H4 3 4 7
6 J5 9 >45 29
8 M16 1 – 18
10 B8 6 9 32
14 D2 2 3 3
16 61AA02 2 3 4

be larger than the values estimated. Moreover, the experimental studies further
underestimated polyclonality by restricting the analysis to particular V to J rear-
rangements. Thus, in contrast to the original interpretation that the data provided
additional support for the pauciclonal/oligoclonal view of GC seeding, our diversity
analysis of the little data available from individual GCs points to a clonal diversity
before day 14 that is at least tenfold larger than the minimum values (2–5 clones)
previously suggested.

Examples of Other Issues Worth Re-Assessing

As with the oligoclonal seeding of GCs, there are other issues that, being determi-
nant elements in the GC scheme, lack strong experimental support (or any support
at all) but are also generally presented as given facts.

Maximally efficient, affinity-dependent selection of GC B cells. This is at the
heart of the recycling idea in most of its various versions. Initially proposed by
MacLennan et al. [32], the recycling hypothesis gained great popularity after a rig-
orous analysis of the affinity maturation process based on SHM and selection in
GCs [33]. Although not explicitly stated by Kepler and Perelson, the essence of
their analysis can be summarized as follows:


 It assumes that GC B cells are subject to continuous selection for competitive Ag
binding.


 It applies optimization theory to find the temporal mutational regime that, under
the previous assumption, will maximize affinity increase within a relatively short
time period.

The crux of the above analysis lies in the “hidden hypothesis” that affinity mat-
uration is maximized in GCs. Despite its importance, this concept has never been
put to test. Thus, this concept and the linked initial recycling idea, far from be-
ing established facts, are working hypotheses with many implications, and as such
worth testing experimentally. Moreover, existing data are also consistent with the
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alternative hypothesis that selection is only moderately efficient, allowing for diver-
sity generation in the memory B-cell pool in order to cope with antigenic variants
of the original infectious Ag [48–50].

Affinity-based selection. This idea has been challenged by a few authors, based on
very solid observations indicating that selection depends to a larger extent on koff

rates than on affinity [51, 52].

All-or-none behaviour of GCs. Available data on the distribution of GCs with re-
spect to their relative content of B cells with key mutations (i.e., conferring higher
affinity to an Ab) have been interpreted as indicating that once a key mutation is
fixed in a GC population, it will rapidly take over all or most of the GC [35, 53].
These data, however, are still very limited [35, 53], and so do not allow one to
draw major conclusions. Moreover, that data are yet to be investigated in the light
of other statistical models, such as uniform distribution of the percentage of key-
mutant B cells in GCs for values higher than 10%.

GC’s lifespan. The global GC reaction in a primary IR to protein Ags lasts �3
weeks. However, such kinetics of GC reactions are derived from analysis of dif-
ferent sets of GCs. In other words, they must be obtained from different animals
at different time points after immunization. Therefore, these studies do not allow
one to infer the average (and variance) of the lifespan of individual GCs [34].
Experimental work with current methods aimed at elucidating this question will
likely require an elaborate experimental design supported by previous theoretical
analyses.

Cell death in GCs. Mutant, low affinity B cells in GCs are assumed to undergo
massive cell death “in situ” by apoptosis. However, little is known about migra-
tion of Ag-specific B cells in and out of GCs at different stages of the reaction. For
instance, within 1–2 days after a primary immunization, the total number of GCs de-
crease (“GC dissociation”) [11, 54–56, our unpublished observations]. The number
of GCs start to increase again at day 2–3 postimmunization, reaching a maximum at
about day 10. However, it has been proposed that some GC dissociation continues
up to day 4 based on the fact that continuous trails of PNAhi cells can be observed
between the newly formed GCs and the medullary cords [57]. A related observation
is that a second immunization with an unrelated protein Ag administered less than
9 days after the first immunization seems to prevent the full development of the pre-
vious GC reaction [19]. Also, T-independent Ags can induce GC formation, but at
about day 5 postimmunization these GC reactions are aborted within 24 h [58–60].
Finally, blocking B-T cell interactions with an anti-CD40 Ab, aborts ongoing GC
reactions within 24 h [61]. This was initially interpreted as being due to massive B-
cell death caused by the lack of rescuing T cell derived signals. However, the same
authors subsequently showed that blocking CD40 rescuing signals in this way in
fact induced GC dissociation by B cell migration and not massive cell death [62].
In conclusion, the relative contribution of apoptosis vs migration to the rise-and-fall
dynamics of GCs and to selection remains unclear.
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Discussion

Here, we re-evaluated the methodology of assessing GC clonal diversity, putting
special emphasis on the claim that GCs are oligoclonal. In an indirect approach,
immunohistology of GC sections was used in conjunction with assuming a bino-
mial distribution of the fractions of two phenotypically distinct B cell populations
to determine the number of seeding B cells. This approach further assumed that
GCs are closed to continuous B cell entry. Using such a model, Hermans et al. con-
cluded from their data that GCs contain 2–8 clones [42]. Re-evaluation led to the
present extended mathematical model. This model includes an estimation of errors
created by data sampling, two new parameters that take into account possible mis-
takes in classification of single population GC sections, and the likely variability
in the number of seeding B cells. Fitting this new model to experimental data re-
sulted in an estimated mean number of hni D 23 � 37 seeder B cells and scoring
errors of lTA

D 5 � 10% and lTB
D 55 � 60%. A �2-test confirmed that under these

conditions the extended model is consistent both internally and externally with the
experimental data.

Furthermore, these results on the number of seeding B cells match well with the
estimates obtained from directly observed numbers of clones. Although 1–9 clones
were detected in GC sections of mice 4–10 days after immunization [29, 43], data
analysis using the Yule estimator of diversity shows that these findings more likely
reflect the fact that more than 20–30 clones are present in individual GC sections.

Previous reports indicated that very low affinity B cells can be recruited into
the GC reaction, and then outcompeted later by higher affinity B cells unless they
acquire higher affinity by mutation [63, 64]. Moreover, studies of the primary IR in
BSA immunized chickens, following the direct method, found that GCs are seeded
by more than 20 founder B cells [65]. Finally, modelling simulations of GC affinity
maturation by Shlomchik and colleagues also suggested that GCs are seeded by 40–
50 B cells [66]. The analysis described here is in agreement with these results and
conclusions.

Remarkably, the present work is strictly based on classic experimental results of-
ten cited to support the oligoclonality idea as if it was an established fact. Here we
reveal a number of drawbacks. Besides the problem that observations with GC sec-
tions were taken as representative of whole GCs, these experimental data must have
high measurement errors. In addition, the analysis of the indirect evidence might
include erroneous model assumptions, and B-cell receptor sequences of the direct
evidence were poorly analyzed in terms of diversity. We conclude that although ap-
parently pure sections are often observed, this is more likely a reflection of the fact
that clonal sizes are unequally distributed and that a few clones are especially large,
rather than diversity being restricted to a few clones.

The potential for changes in the basic model’s assumptions is not exhausted with
the present work. For instance, a model permitting B cells to constantly enter the
GC would allow completely different interpretation of the data on GC B cell clonal
diversity. Indeed, very recently, studies by Nussenzweig and colleagues [67] and
Haberman and colleagues [68] on in vivo imaging of murine GCs suggest that these
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are open structures, receiving frequent visits from follicular B cells, and capable of
recruiting high affinity Ag-specific B cells. This is in full agreement with another
recent study of GC samples microdissected from three reactive human lymph nodes
[69]. Here, analysis of IgM and IgG VH transcripts detected single B cell clones
in multiple GCs. One clone was even found in as many as 19 GCs, including IgM
and IgG variants of the same clonal origin and the offspring of individual hyper-
mutated IgG clones. Finally, when high affinity cells are deleted from mature GCs,
a diverse lower affinity subpopulation re-emerges [62], indicating that either they
were already there, or they continually enter GCs, or both.

The present analysis, in our opinion, is an example of what should be a widely
used critical technique. We hope that it will stimulate and help in the design of
more robust experimental settings able to provide clear-cut answers to immunolog-
ical questions. It is our belief that the scientific community should remain aware of
how a concept arose. If conclusions are based on direct observation of large enough
data samples, then the concept can be considered established. However, a conclu-
sion derived from a small data set and/or based on additional, as yet unverified
assumptions, has to be constantly re-evaluated, specially in the light of new data
and analysis techniques, as well as regarding consistency with other concepts.
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Abstract From the old good times in which pioneering immunologists were simply
specialised in either T or B lymphocytes, to the current lymphoid complexities that
powerful quantitative technologies have revealed, the adaptive immune system has
become a highly complicated subject of study. Also, as a part of the hematopoietic
system, the lymphoid tissue is constituted by cells that undergo great turnover rates,
with continuous renewal during an individual’s lifespan, extending from immature,
bone marrow-derived precursors up to the final exhaustion of highly-differentiated
cells. To exert their functions, B and T lymphocytes first need to recognise small
molecular epitopes, through their highly diverse clonotypic receptors, with different
degrees of specificity (the result of combinatorial gene rearrangements, with inex-
act joining ends). But lymphocytes also bear an evolutionary history that “informs”
them about those more or less efficient receptor choices that previously influenced
the survival of the species. Those cellular adjustments that were previously suc-
cessful have remained preserved and are therefore preferentially exploited by the
immune system (IS). Subsequently, immune strategies to “see” the antigenic world
(self or foreign, harmless or dangerous) are balanced between an unrestricted open-
ness to novelty (which has been named the promethean character of the IS [1])
and the evolutionary preservation of cellular activities and receptors that have al-
ready been tested and demonstrated their utility. In the following pages, we try
to provide a few insights regarding when and where those functional polarisa-
tions are at work, with a special focus on B lymphocytes. We will leave out the
differentiation steps and genetic programmes leading to the production of mature
B lymphocytes, except in those selected cases when they may provide relevant
information.
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The Life and Death of a B Lymphocyte

More than other organs of the body, the lympho-hematopoietic system is
characterised by the continuous regeneration of most of its cellular components
(with half-lives extending from 12 h for neutrophils up to several months for
macrophages or red blood cells). Mature lymphocytes are also constantly replen-
ished by newly-emerging cells that result from the differentiation of self-renewing
hematopoietic stem cells (HSCs) located in endosteal and, perhaps, in vascular-
related niches from the adult Bone marrow (BM). Even intermediate cell-precursor
stages cannot maintain themselves without the refuelling from HSCs. The adult
B cell compartments are preserved in homeostatic conditions by means of recent
cellular input, proliferation, survival, inter-clonal competition for “resources” and
final differentiation to death; this lively cellular dynamics demands check-points
to maintain the immune physiology. During an individual’s lifetime, the steady
state equilibrium of B cell compartments is also punctuated by vigorous antigenic
encounters, which frequently occur in the context of innate inflammatory reactions,
and trigger conventional immune responses (Fig. 13.1).

The persistence of functional B cell compartments requires the influx of im-
mature precursors. If this input is blocked, B cells become exhausted, although
to a variable cell subset-specific degree. The generation of new mature B cells
(10–20�106 day�1) markedly overcomes the peripheral homeostatic demands: only
one-tenth of maturing B cells are exported to the periphery and, from those, one-
half are included in the functional B cell compartments [2]. This implies that B
cell newcomers need to compete with both emerging and available B cell clones
for limiting “resources” in order to successfully engraft in the periphery, expand
and/or survive, and differentiate [3, 4]. The competitors are clones of the same cell
lineage, given that B, T or NK cells have specific requirements for survival (IL-7,
IL-15, IL-2, BAFF, antigens, etc.), and, in particular, the emerging B cells only
“sense” B cell deficiencies [5–8]. As we will discuss below, discrete cell subsets
of the same B cell lineage show maintenance requirements that differ from those
of other B cell populations. Various kinds of resources exist, which extend from
antigens (Ags) that trigger B cell receptor (BCR) signalling up to innate Toll-like
receptor (TLR) ligands, selected cytokines or restricted access to survival niches.
The surface receptors involved in rescuing B cell subsets can be classified as BCRs,
immune TLRs [9] and members of the TNF-receptor family, such as BCMA, TACI
and BAFF-R [10]. Both BCR and TLR signals can be transmitted through Btk-
related intracellular pathways (absent in xid mice), while BAFF-transducing signals
are Btk-independent. Also, BCR and BAFF signal pathways may be coupled at
the level of classical and non-classical NF-�B complexes [6]. Ag-specific inter-
clonal competition has been demonstrated in immunoglobulin (Ig) transgenic and
xid mouse models: in the former case, the endogenous, polyclonal Ig repertoire
rapidly displaces the initially-predominant Ig-transgenic clone from functional roles
in the IS; also, xid B cells are able to replenish B cell devoid hosts, except in the
case when they are simultaneously reconstituted by normal B cells [11, 12]. It is
important to remark that not all mature B cells and Ig repertoires are the result of
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Fig. 13.1 Stratified B cell dynamics. Stochastically generated B cell clones are selected in the BM
by Ag/BCR signals, and lead to the generation of naı̈ve B cell clones. These naı̈ve B cells migrate
to the peripheral B cell compartments, and engraft there on distinctive niches after interclonal com-
petition for resources that direct their proliferation, survival and/or maturation. Mature functional
B cells respond to Ag encounters generating immune responses in the context of the GC, and gen-
erate memory and plasma cells. These plasma cells migrate again to the BM, where they engraft in
limited niches to allow their long-term survival. Small numbers of innate-like lymphocytes are also
present in peripheral organs, participating in different functions of the adaptive immune responses

Ag/BCR-specific selection steps but that, in selected scenarios or cell types, they
also may be produced by Ag-independent, TLR- or BAFF-dependent pathways, for
example B1 and marginal zone (MZ) B cells. Finally, superantigen-like ligands that
recognise VH/Vˇ common framework determinants may provide “tonic” signals
that influence the establishment/survival of some mature lymphocytes [13, 14].

Classical experiments of both immuno-exhaustion by cytotoxic drugs and of
adoptive cell transfers revealed two discrete B cell populations, with low- and high-
cell turnover behaviour, respectively [15, 16]. In those protocols, around two-thirds
of B cells were highly cycling and short-lived, while the remaining were more
quiescent and persisted for long time periods. The first component reminded us
of emerging, highly-proliferating, immature B cells (now defined as transitional),
where new specificities are stochastically bred and submitted to selective processes,
and the second one mimicked the already successful, established B cell clones in
the immune periphery. The experimental replenishment of B cell compartments af-
ter adoptive B cell transfers has also been used as a recapitulation of normal B
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cell development and a surrogate of immune B cell dynamics in homeostasis. An
important aspect revealed by later experiments is that the transfer of limited B cell
numbers in a B cell-devoid host is initially biased to the reconstitution of normal
amounts of IgM-secreting plasma cells and serum IgM levels. In a second phase,
the subset of naturally activated B cells is predominantly reconstituted and, finally,
significant, but not normal numbers of mature B cells (which would require con-
tinuous BM-derived cell input) become established [17, 18]. Alternatively, when B
cell production is arrested in the BM, the most persistent populations are also Ig-
secreting plasma cells and activated B cells [2, 19] (including B1 and MZ B cells;
see below). The absolute numbers of these different B cell populations are self-
regulated, such as, for instance, the replenishment of IgM-secreting plasma cells (or
of B1 cells) in a first B cell transfer selectively blocks the inclusion of cells derived
from a second transfer into the same compartment [18, 20].

Peripheral B Cell Dynamics

The fate of recently emerged BM B cells relies on BCR–Ag interactions (Fig. 13.2).
Analyses made on different Ig transgenic mice have shown that recognition of high-
affinity self-Ags mainly results in negative selection of the responding autoreactive
B cell clones (through either apoptosis or functional anergy), subsequently eliminat-
ing pathogenic autoantibodies. Alternatively, the IgL chains from autoreactive BCRs

Fig. 13.2 Selection mechanisms induced by Ag/BCR interactions in the BM. During the gener-
ation of naı̈ve B cells, those bearing high affinity BCR for self-Ags are eliminated by negative
selection processes or by changing their BCR specificities by IgL edition. These B cells bearing
weak affinity BCRs for self-Ag are positively selected and expanded
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can be edited by re-expressing the recombination-activating gene (RAG) enzymatic
machinery, and then give rise to new clonotypic specificities that escape to autoim-
munity. However, BCR–self-Ag interactions of weak affinity are also essential to
induce positive selection of the complementary B cell clones and to engraft them
into the functional B cell periphery [21]. Actually, up to two-thirds of emerging B
cells in humans bear poly- and autoreactive Ig specificities [22]. As also postulated
for thymic T cell development (apoptosis by neglect), Ag-driven BCR signals are
absolutely required to maintain the pools of mature B cells [23, 24].

Without attempting an exhaustive phenotypical dissection of all kinds of minor
cell types, a progression of peripheral B cell subsets could be defined as follows:
transitional B, mature B, Ig-secreting plasma and memory B cells [25]. The early
transitional B cells are highly cycling, very sensitive to BCR interactions with low
apoptosis thresholds, and they lack survival-promoting receptors such as CD21; late
transitional B cells, by contrast, become progressively resistant to BCR-induced
death and are expanded through low-affinity, self-Ag stimulation plus other en-
vironmental cues [26]. Among these later, BAFF-receptors are up-regulated and
BAFF becomes the most critical B-specific survival signal from now on, being able
even to overcome BCR negative signals [27]. Transitional B cells rapidly differ-
entiate into more mature cellular stages, but do not include any long-lived cell, as
shown by BrdU pulse-chase experiments. Mature B cells, predominantly of the fol-
licular type, are established in response to Ag- and BAFF-dependent stimuli [28],
and most of them are quiescent, although they also include a minor component of
activated B cells (likely subjected to differential selection pressures). In the context
of immune responses, plasma and memory B cells are generated inside the germinal
centre (GC) reaction (Fig. 13.1). Early after Ag immunisation, Ag-cognate and non-
cognate B cell clones proliferate and expand, differentiating into highly-proliferative
centroblasts in the dark zone, a fraction of which will migrate and mature into qui-
escent centrocytes in the light zone, where they are in contact with T cells and
immunocomplex-bearing follicular dendritic cells. An initial wave of cycling plas-
mablasts results into short-lived plasma cells that secrete a first antibody (Ab) barrier
against the pathogen. Highly regulated processes of both inter- and intraclonal cell
competition occur in the GC for selecting high-affinity, Ig-secreting cells [29, 30].
The early plasmablasts may be or not the source for Ag-selected, long-lived plasma
cells that migrate towards chemokine gradients and home into a finite pool of BM
survival niches; new plasmablasts only become established if they displace previ-
ous clones that are sitting in these BM niches. The longevity of BM plasma cells
subsequently is not an intrinsic cell property, but the result of selective engrafting
into the available survival niches that are calculated to be around 106/mouse; the
signals involved in plasma cell survival are yet unclear [31]. A second branching of
the GC-responding B cells leads to the formation of memory B cells, which display
long half-lives that may extend up to the whole lifespan of an individual [32,33]. The
differentiation pathways to both memory B and long-lived plasma cells require not
only TLR signals, but also Ag binding and T cell help [34]. It seems that the gener-
ation of these two latter cell types are mutually independent: the selective depletion
of memory B cells leaves untouched the compartment of long-lived BM plasma
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cells [35]. After immunisation with particulate Ag, discrete memory cell subsets
have been recently identified both in GC-like structures and outside B cell folli-
cles, bearing different effector functions for differentiation to plasmocytes and/or
reinitiation of GC reactions [36]. It has been suggested that the expression ratios
between the BCL-6 and Blimp-1 transcription factors inside the GC modulate the
fates between memory and plasma cells [37].

Interestingly, the cell biology strategies that evolve inside the GC reaction do not
substantially differ from those exploited in the establishment of naı̈ve B cells and Ig
repertoires:

– In both cases, Ig diversity is stimulated by either the process of RAG-dependent,
Ig gene rearrangements in pre-B cells, or through the activation-induced deami-
nase (AID)-dependent mechanisms of Ig class switch and Ig somatic hypermu-
tation in GC B cells, thus offering novel specificities to improve the chances of
fitting the Ag (although some of them may need to be filtered out to preserve
tolerance)

– Both transitional B cells and centroblasts display high rates of proliferation and,
simultaneously, are very sensitive to apoptosis

– They both require BCR–Ag interactions for positive selection, establishment and
longevity of the responding B cell clones

Mature B cell compartments are not only the consequence of cell proliferation but
also the result of pro-survival signals. Transitional B cells are positively selected
by low-affinity Ag interactions that lead them to the stage of BAFF responsiveness.
This later is the crucial factor that maintains most naı̈ve and peripheral B cells,
and dictates their longevity in competition with other B cell clones. By contrast, it
seems that the survival of memory B cells and natural Ab-secreting plasma cells is
BAFF-independent [38].

The adult B cell immune compartment subsequently represents an heterogeneous
mixture of clones (Fig. 13.1) derived from:

– Homeostatic signals, where the basal level of immune activity is likely main-
tained by weak interactions with Ag determinants that move in small concen-
tration ranges [6] (somatic self-Ags, colonising microbes in epithelial layers,
immune clonotypic epitopes, etc.), and from

– B cell clones that are secondary to encounters with high input of life-threatening
pathogens, that have overcome the innate mechanisms of inflammation and gen-
erate Ag-specific, conventional immune responses [39].

In both situations, lymphoid cell proliferation includes an initial stage of exponen-
tial B cell growth and death (e.g., the early phase of B cell adoptive transfers into
B-deficient hosts or the early wave of short-lived plasmablasts after Ag immunisa-
tion), and a second period of steady state, low proliferation rates (e.g., long-lived
follicular B cells or BM-homed plasma cells). In general, homeostatic B cell prolif-
eration (Table 13.1) is characterised by low cell division rates, T cell independency,
preservation of the naı̈ve cell phenotype (although with a transient up-regulation
of activation markers), absence or low rates of Ig mutation, competition for BAFF
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Table 13.1 Differential B cell proliferation

Homeostasis Immune responses

T cell dependence � C
Response to Ag Low [Ag] High [Ag]
Ag/BCR mediated C CCC
BAFF-mediated CCC C
Usage of Ig sequences Germline Diversified
AID-dependence � C (CSR/SHM)
Cells generated Naive phenotype Memory and plasma cells

Fig. 13.3 The homeostatic equilibrium of peripheral B cell compartments. HSC differentiate into
naı̈ve B cells and replenish peripheral organs in the absence of Ag stimulation. These cellular
inputs are high during the fetal/neonatal period, and most of the cells present in the periphery are
naı̈ve B cells. Innate-like cells, too, are mostly generated in this period (left balance). Exposure
to Ag encounters induces the generation of experienced B cells in such a way that, in a stable
adult IS, both newly arriving naı̈ve cells and Ag experienced cells are present, as well as innate-
like subpopulations that are self-maintained (middle balance). Aged individuals that have been
exposed to continuous Ag-encounters accumulate experienced Ag-specific B cell clones. Also, a
progressive exhaustion in the BM for the generation of new naı̈ve B cells takes place, both facts
producing a restricted repertoire of specificities (right balance)

and use of specific signal transduction pathways. By contrast, the proliferation rates
accompanying immune responses tend to be greater, the process is predominantly
T cell dependent, the responding clones become experienced B cells that mature
to both memory and plasma cells, the AID-mediated process of Ig class switch
recombination (CSR) and somatic hypermutation (SHM) becomes activated, and
high-affinity BCR clonotypes are selected by binding to the specific Ag [6]. The sta-
bility and robustness of the immune behaviour (Fig. 13.3) likely has a lot to do with
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maintaining the equilibrium between those clones selected in homeostasis (naı̈ve?)
and those preserving the memory of dangerous Ag encounters (experienced?). With
ageing, the production of polyclonal naı̈ve B cells from HSCs becomes much
smaller, and the mature B cell compartments mainly accumulate expanded clones
of Ag-experienced cells. Both mechanisms lead to a progressive restriction in Ig
diversity and to reduced potential of response to new Ag demands [40].

Evolutionary Forces Designing the Adaptive Immune System

The adaptive IS is not only a homogeneous cellular complex in which the exclu-
sive driving force is the constant renewal of stochastically produced clones that
are submitted to somatic Ag selection. It also includes a conservative component
represented by discrete cellular subsets, so-called unconventional, innate-like or
bridge lymphocytes (to remark their shared features with innate immune cells [41]),
and cells with clonotypic specificities that are positively selected and highly ex-
panded, in some cases, before any Ag encounter [42, 43]. The list of innate-like
lymphocytes includes: �ıC T cells [44], B1 B, MZ B, NKT [45], some intestinal,
intraepithelial CD8˛˛C˛ˇCT, Bw B [46], CD19C CD45R� pre-plasma B [47], ex-
trafollicular B cells, etc. Without extending into minor, cell subset-specific details,
we would like to underline a few relevant characteristics that are common to these
lymphocytes (Table 13.2):

1. They are either oligoclonal and/or frequently include clonally dominant speci-
ficities, which might be (at least, in part) the result of Ag-independent selection

Table 13.2 Cells in the adaptive immune system

Innate-like lymphocytes Conventional B cells

Embryo-fetal precursors: self-renewal in
adult life

BM precursors: highly proliferating emerging
B cells

Oligoclonal. Evolutionarily-tested dominant
specificities (self-Ag/common pathogens/
commensal bacteria)

Unrestricted, random generation of
clonotypic diversity

Ag-independent selection Ag-dependent selection. Affinity and
specificity improvement. AID mediated
CSR and SHM

Relevant in homeostatic conditions and initial
phases of immune responses.
Immunomodulatory roles

Involved in specific immune responses

Particular niches (gut epithelia, liver,
coelomic cavities, extrafollicular splenic
areas)

Classical secondary lymphoid organs: spleen,
lymph nodes

Pre-activated state. Rapid, multi-specific
responses, limitation of tissue damage

Quiescent status in peripheral organs. Slow
and highly specific responses after
Ag-stimulation
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2. They are more functionally relevant in homeostatic conditions and in initial
phases of the immune response, and display powerful immuno-modulatory roles
over other lymphocyte subsets

3. They exploit niches different from those of conventional lymphocytes, such as
gut epithelia, liver, coelomic cavities, extrafollicular splenic areas, etc.

4. In the cases studied, the signals involved in the proliferation/survival of innate-
like lymphocytes differ from those of other lymphocytes

5. Frequently, innate-like lymphocytes are generated early in life from embryo-fetal
precursors that are exhausted or highly reduced in the adult BM, leading to the
suggestion that these mature lymphocytes should maintain their cell numbers by
self-renewal mechanisms

To select just a few examples, immature multipotential progenitors from the early
mouse ontogeny are highly efficient in the generation of B1, MZ B and the recently
described CD19C CD45R� splenic B cells, although minor subsets of B1-specific
pro-B cells may persist in the adult BM (yet, unexpectedly translating self-renewal
behaviour to intermediate precursors [48]). When BM B cell input is arrested, these
B cell subsets selectively persist for extended periods [2, 19]. Both B1 and MZ
B cells (as well as IL-4 producing, adult �ıC T cells) include high fractions of
N-negative V(D)J joints in their Ig repertoires, likely deriving from TdT-negative
perinatal precursors [49, 50], although selection against N additions has also been
suggested [51]. The clonal dominance of B1-enriched anti-phosphatidylcholine Abs
(VH11-V�9) is pre-established before Ig expression [43]. An essential aspect of
innate-like B cells is that they are highly biased to plasma cell differentiation and,
more specifically, that they support most of the natural serum Abs, which likely
have protective functions early after birth (together to mother-derived IgGs) and im-
portant immunoregulatory roles in the adult [52–54]. The first �ıC T cells emerge
in developmentally-controlled, monoclonal waves that home to selected body ar-
eas (e.g., V�5Vı1 to the epidermis, V�6Vı1 to the uterine epithelium, V�1Vı6 to
the liver), although other specificities are also generated in the adult thymus [44].
The vast majority of NKT cells express the V˛14–J˛18 chain, preferentially bound
to Vˇ8, Vˇ7 and Vˇ2 chains and recognise glycolipids presented on CD1d, al-
though they seem to emerge weeks after birth in the mice [45]. Even if the restricted
clonotypic repertoires of innate-like cell populations are modulated by Ag selection,
they are definitively constrained by developmental mechanisms and/or particular
niche homing. This later aspect is highly influential in the formation of the gut-
associated lymphoid tissue (GALT), which dominates the B cell system of avians,
rabbits and sheep (but also cattle, pigs, dogs, etc.) In the GALT, gene conversion
and SHM mechanisms play more relevant roles in establishing Ig diversity than
gene rearrangements. Recently, the presence of discrete B cells associated to the
intestine has also been reported in mice and humans, whose Ig repertoires diversify
in Ag-independent manners [55, 56]. Compared to conventional B-lymphocytes,
BCR signals are particularly deleterious to B1 and MZ B cells, leading them to
death; by contrast, B1/MZ B cells are good responders to TLR-specific ligands that
promote their survival and polyclonal cell expansion, through Btk-dependent intra-
cellular signals [57]. While follicular B cells require both BCR and TLR signals to
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Fig. 13.4 Strategies of response used by the adaptive IS. Two complementary pathways are used
to recognise Ags and to develop efficient immune responses. The Innate-like cells represent a
rapid, albeit low efficient, way to cope with antigenic exposures. This ensures time for the conven-
tional mature B- and T cells to develop slower but highly specific immune responses, capable to
completely eliminate the antigens and to generate long term memory cells

differentiate into Ab-secreting cells [34], B1 and MZ B cells are able to differenti-
ate even after single TLR stimuli [58]. Also, these two later B cell subsets rapidly
respond to bacterial mitogens by modifying their adhesive properties and migrate
from the coelomic cavities to the bloodstream [59] or from the marginal zone into
the GC, to collaborate in the early aspects of immune responses [60].

We are now immersed into a scenario in which two complementary strategies of
Ag recognition are present inside the adaptive IS (Fig. 13.4): firstly, an immune
compartment that displays an unrestricted, random generation of clonotypic di-
versity on highly-proliferating emerging B cells, from which the Ag selects and
expands those specificities displaying the highest complementarities. Further Ag
encounter in the periphery refines the initial choice to further improve the affin-
ity and specificity of naı̈ve Abs. The whole process guarantees the deployment of
specific immune responses, but it is somewhat slow to defeat highly-duplicating,
invasive microorganisms. Alternatively and before the RAG evolutionary innova-
tion, mechanisms of innate defence have demonstrated their survival value from
insects up to jawless fishes, in different kinds of hemocytes (macrophage-like cells).
They are also used by lymphocytes of the RAG-dependent, adaptive IS in upper
vertebrates. In line with other authors, we suggest that a core of evolutionarily-
tested cells and clonotypes, which are developmentally preserved to respond to
either life-threatening pathogens present in early life and/or to developing self-
somatic Ags (roles in tissue remodelling, scavenging apoptotic bodies, etc.), make
use of mechanisms which are characteristic of the innate system. These innate-
like lymphocytes exploit both the abilities of inflammation and innate immunity
(speed of response, limitation of tissue damage, pre-activated state, etc.) and the fo-
cused clonotypic specificity of the adaptive system. This later feature is restricted
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to pre-defined receptors that recognise molecular patterns frequently present in
common pathogens, in commensal bacteria and in self-Ags, perhaps as a result of
biological convergence between the three life forms, which might be required for
their mutual survival.

The Imprints of the Ontogeny in the Adult Immune System

The first mature sIgMC B cells appear at the end of mouse gestation. From then
on and concerning B cell biology, two distinctive life periods are defined, that is,
perinatal (up to 2–4 weeks of postnatal life in mice) and adult. The perinatal IS
and, particularly, the Ig repertoires there expressed, are considered to be naı̈ve or
immature: they are little diversified, enriched in polyreactivities and in self-reactive,
germline IgM with weak affinities for the Ag [61, 62] (Fig. 13.3). It is thought that
newborns are mostly protected by mother-derived IgG Abs. By contrast, the adult
IS deploys all the genetic mechanisms of clonotypic diversity that endow it with
the ability to recognise and efficiently eliminate any kind of pathogen. However,
the adult Ig clonotypic repertoires emerge over the “scaffold” of neonatal ones, and
these later are preserved along the whole lifespan. But, how “immature” or “naı̈ve”
is the perinatal Ig repertoire? Alternatively, is it the result of selective pressures
established during fetal development? In recent years, we have obtained some in-
sight (Fig. 13.5): the lymphoid-specific programmes of differentiation and the first
B-lineage precursors do emerge very early on in fetal ontogeny, at 10–12 gesta-
tional days, in both liver and extra-liver niches [47, 63–65]. The RAG [66] and
non-homologous end-joining (NHEJ) enzymatic machineries are present at those
early periods, and B-lineage specific genes are already expressed (Pax5,� 5, VpreB,
CD19, etc.). Also, the Ig gene rearrangement process starts and the first embry-
onic DJH joints, displaying multiple mechanisms of diversity, are detected in the
post-gastrulation mouse embryo [63,67]. An extensive analysis of these early, unse-
lectable DJH joints in normal mouse embryos and in heterozygous embryos derived
from RAG2�=� mothers, has revealed unexpected features, such as the frequent
addition of non-templated N nucleotides (in the absence of TdT), large coding
joint deletions and a random usage of stretches of sequence micro-homology in
the joining process of N� sequences [68]. These genetic patterns change around
E14 when full VDJH and VJL chain gene rearrangement and transcription, and
pre-BCRs, are detected [64]. The embryo N additions are due to the activity of
the DNA polymerase �(Pol �), a member of the X family of DNA polymerases
(where TdT is included [69]. The differences between random versus predominant
micro-homology usage in both embryo and perinatal N� DJH rearrangements, re-
spectively, further suggested the existence of a process of positive selection of those
micro-homology-bearing DJH s along the last third of gestation. We have reasoned
that, similar to what happens with DNA repair mechanisms acting on other NHEJ
processes, the joining enzymatic machinery (including Pol�) used in the early em-
bryos may be preferentially focused onto the ligation of dangerous, free DNA ends
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introduced by RAG in this highly-proliferative cellular context of the ontogeny [70],
although at the price of creating many “useless” products. Later on, the emergence
of perinatal Ig repertoires might be due either (1) to an autonomous compartment
of perinatal cell subsets, using different genetic machineries of gene rearrangement
(unlikely), and/or (2) to the establishment of mechanisms both of positive selec-
tion of open-reading frame 1C sequence homologyC, germline V(D)JH s and/or
negative selection of open-reading frame 2C, NC, and highly-deleted joints, per-
haps related to selective pairing of emerging V(D)JH s to �5/Vpre-B surrogate light
chain, along the last third of mouse gestation (Fig. 13.5). On these bases, we are
tempted to suggest that the perinatal IS is not simply immature and non-functional,
but rather the result of selective pressures at work during late gestation acting on the
random gene rearrangements that first emerge in the post-gastrulation mouse em-
bryo. Many aspects of the perinatal clonotypic repertoire will become later fixed in

Fig. 13.5 Left, multicolour rectangle represents the stochastic DJH diversity displayed in the
early post-gastrulation mouse embryo, as a consequence of the genetical attempts to ligate RAG-
mediated double-strand DNA breaks in an ontogenical period when cells are highly proliferative.
Most of these “useless” DJH joints are filtered out during the last third of gestation, and novel
selective mechanisms are set at work, to generate the germline, restricted Ig repertoires present
in perinatal life (central rectangle). Many of the perinatal Ig specificities are maintained inside
the innate-like lymphocyte populations along the whole lifespan of the individual. In parallel, the
mechanisms leading to the predominant, adult-type, immune diversity are up-regulated (TdT, Ig
CSR, SHM, etc.) (right, multicolour polygons)
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the innate-like lymphocytes, partly, because they derive from the same precursors in
the early ontogeny and they persist for very long periods. Actually, selective experi-
mental manipulations over specific clonotypes restricted to early life periods, remain
established for the whole lifespan of the individual. In newborns, Ag is able to
both positively and negatively select B cells, a phenomenon that becomes restricted
to B1 B cells, these latter being able to rescue autoreactive B2 cells in the adult
by yet unclear mechanisms. A developmental switch takes place around 4 weeks
post-birth, when most of BM-derived B2 cells become submitted to Ag-driven neg-
ative selection [71], and these changes are likely on the basis of neonatal tolerance.
Whatever the fine molecular mechanisms are involved in the process (and, probably,
there are many, from somatic microenvironmental factors to differential thresholds
of lymphocyte responses), the early generation/selection of long-lived cell popula-
tions of innate-like lymphocytes that preserve functional strategies of great survival
value could contribute to the efficient protection of the individual against common
pathogens, while limiting “collateral” damages to the normal tissues. Maybe these
innate-like lymphocytes have also been evolutionarily exploited to maintain under
control the unrestricted, molecular consequences (VDJ diversity) of the selfish RAG
transposon “infection” that leaded to the generation of the adaptive IS.
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Chapter 14
Dynamics of Peripheral Regulatory
and Effector T Cells Competing for Antigen
Presenting Cells

Nuno Sepúlveda and Jorge Carneiro

Abstract A healthy immune system requires a balance between effector T (TE )
cells that mount immune responses, and regulatory T (TR) cells that prevent them.
Understanding this balance requires knowing how the repertoires of TE and TR

cells in the periphery are patterned and related to each other. The present work
addresses this issue in the framework of the Crossregulation model, which was
formulated to contemplate the dynamics of a large number of T cell clones recogniz-
ing a non-exclusive set of antigen-presenting cells (APCs). Assuming a continuous
thymic export, three distinct patterns for the peripheral repertoire emerge from the
simulations. These patterns are distinguished by the composition of the resident pop-
ulation, i.e., the subset of clones that can persist in the periphery. On one extreme,
there is a repertoire pattern characterised by a predominance of TE cell clones and
a too small TR-cell pool only maintained in the periphery by the continuous thymus
export. Thus, this repertoire pattern cannot be the basis of a healthy immune system,
because peripheral tolerance to self antigens is not ensured. On the other extreme,
there is a repertoire pattern showing a predominance of TR cells maintained by
their TE counterparts coming from the thymus. In spite of ensuring peripheral tol-
erance, this repertoire pattern does not appear efficient to fight infections occurring
throughout life. In the middle of these two extremes lies a third repertoire pattern
exhibiting a partition of the peripheral compartment similar to the one suggested in
a previous work. In this repertoire structure, a small subset of highly crossreactive
TR-cell clones prevents expansion of TE -cell clones driven by body antigens, and
a more diverse subset of TE -cell clones remains uncontrolled by TR cells, which
allows the setup of immune responses against harmful pathogens. This repertoire
pattern seems then the most adequate to represent a healthy immune system. For
each emergent repertoire pattern, clear and testable predictions are given for differ-
ent properties related to the diversity of TE and TR cells. For the most adequate
repertoire pattern, a higher diversity of TE cells than of TR cells is expected as well
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as a negative correlation between clonal size distributions for clones belonging to
the overlapping repertoire. These predictions can then be compared to available data
on T cell receptor diversity.

Introduction

A complete characterization of the peripheral T cell repertoire is fundamental to un-
derstand how the immune system avoids deleterious autoimmune responses during
the lifespan of the organism and, at the same time, reacts efficiently to the harmful
pathogens it faces. The interest on T cell repertoires has recently increased with
the discovery of opposing roles of the so-called regulatory CD4CCD25CFoxp3C T
(TR) cells in the immune system [1, 2]. On the one hand, TR cells are beneficial to
the host owing to the fact that they control autoimmunity, graft-vs-host rejection,
and inflammation [3]. On the other hand, they can also be detrimental to the host by
suppressing protective immune responses against potentially harmful pathogens or
cancer [4, 5].

Several experimental studies attempted to quantify the main properties of T cell
receptor (TCR) repertoire of TR and conventional effector (TE ) T cells from dif-
ferent mouse models [6–10]. All these studies showed that TCR samples of TR

cells were more diverse than those of TE cells, both in the thymus and periphery,
suggesting a higher TCR diversity of the sampled TR-cell populations. Moreover,
samples of both cell types show some similarity in terms of shared TCR variants and
their respective sample abundances. Yet, this similarity considerably varies from one
study to another and, therefore, it is difficult to ascertain the exact extension of the
overlap between the respective sampled repertoires.

Besides the basic knowledge of the TCR repertoire, it is also important to deter-
mine which antigens are recognized by TR cells. Two lines of evidence support
the notion that these cells preferentially react to body antigens. First, TR cells
can prevent autoimmune pathologies when transferred to animals lacking these
cells [11, 12]. Second, thymic TR-cell differentiation seems to be driven by high
TCR affinity/avidity towards self antigens [13, 14]. However, TR cells also retain
some reactivity to exogenous antigens since only heterologous and not autologous
antigen-presenting cells (APCs) could activate T cell hybridomas loaded with TR-
driven TCRs [9]. Therefore, it is still unclear what are in fact the main targets of TR

cells, either body or foreign antigens.
Crossreactivity of TR cells is yet another important property to be characterized

when studying the role of these cells in the immune system. However, due to the
lack of accurate experimental techniques that can simultaneously deal with a large
diversity of T cells and antigens, this aspect of TR-cell physiology is just a matter
of speculation. In theory, all T cells should be highly crossreactive because their
number is dramatically low in comparison with the number of antigens [15]. The
same argument can be applied to TR cells but how their crossreactivity relates to
that of TE cells remains unclear.
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Since powerful experimental assays are still lacking to properly characterise
structural and functional properties of T cell repertoires at the same time, mathemat-
ical modelling provides an alternative tool to perform such task. This was recently
illustrated with the usage of the Crossregulation model in the study of the peripheral
TR-cell repertoire [16]. The Crossregulation model essentially describes a basic in-
teraction network between APCs, TR, and TE cells, in which T cell proliferation
is promoted upon conjugation with APCs [17–21]; a distinct interaction network
between these three cellular key players was recently proposed, providing though
similar qualitative behaviours [22]. To study the peripheral T cell repertoire, the
Crossregulation model was previously formulated under the assumption that every
T cell clone in the periphery could only recognize an exclusive set of APCs [16].
In this simple scenario, several predictions for the repertoire structure were put for-
ward. Peripheral T cell repertoire should then be partitioned into three subsets. The
first one is composed of few clones with short life-span that interact with few APCs
and, thus, cannot be sustained in the periphery. The second subset refers to a di-
verse set of barely autoreactive TE cell clones, whose expansion is limited only by
APC availability. The third subset is composed of a less diverse set of highly au-
toreactive T cell clones, exhibiting both TR and TE cells that regulate each other’s
growth. Since the majority of TR cells belong to this third subset, the peripheral
TR pool is expected to be less diverse than its TE counterpart, in clear contrast to
what observed in experimental TCR samples. Moreover, since the amount of APCs
recognized by each T cell clone can be related to crossreactivity, it is expected that
TR-cell clones would be highly crossreactive and targeted to self antigens. However,
these predictions were obtained under the strong assumption of no interclonal com-
petition for APCs. It is then important to know whether they would hold in a more
general scenario, in which distinct T cell clones could share some APC specificity
with each other. This is the goal of the present work.

The Crossregulation Model

The Crossregulation model describes the peripheral T cell population dynamics
taking into account three mutually interacting cell types: APCs displaying mem-
brane MHC-peptide complexes; TE cells that can potentially induce autoimmunity
or mount immune responses against pathogens depending on their specificity; and
TR cells with the same antigen specificity that may prevent clonal expansion of
TE cells.

The model satisfies a set of postulates concerning the life cycle of the above-
mentioned three cell types and the interactions they make with each other. The
postulates are the following:

1. There are A distinct APC subpopulations in the periphery, distinguished by the
set of peptides they present. Each subpopulation presents a unique but non-
exclusive set of peptides, as also assumed in a stochastic model describing the
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dynamics of the naive T cell repertoire [23]. Every APC of a particular subpop-
ulation presents the same set of peptides, being equivalent as far as recognition
by and conjugation with T cells is concerned.

2. Each APC subpopulation is continuously renewed from precursors, and we
assume that its cell density is stationary. Thus, the density of each APC sub-
population is a fixed parameter in the model.

3. TE and TR cells are also classified into a subpopulations according to their cog-
nate APCs, defined as the set of different APC subpopulations they recognize. To
study T cell repertoire dynamics, it is useful to aggregate T cells into subpopula-
tions, which are equivalent with respect to the interactions they make with their
cognate APCs. For short, we will refer to these equivalent classes of T cells as
‘clones’, although it should be noticed that these ‘clones’ may not be identical to
real ‘clones’ defined by sequence of the TCR.

4. The thymus exports clones to periphery at a constant rate sc .
5. Free TE and TR cells die with a constant rate ı in the periphery, independently

of their antigen specificity.
6. Activation of TE and TR cells requires productive conjugation with cognate

APCs, and depends on interactions these T cells make with each other in multi-
cellular conjugates.

7. TE and TR cells interact indirectly by competition for cognate APCs and directly
by molecular processes that require the co-localization on the same multicellular
conjugate with APCs.

8. Proliferation of specific TE cell populations is promoted by productive conjuga-
tion with cognate APCs, and is inhibited by TR cells on the same multicellular
conjugates.

9. TR-cell proliferation depends on interactions with cognate APCs and TE cells
on the same multicellular conjugates.

A more detailed discussion of these postulates can be found elsewhere [16].

Mathematical Formulation

Let Ei;t�t�

i
and Ri;t�t�

i
be the densities of TE and TR cells in clone i , respectively,

at time t given that this clone had entered the periphery at time t�i . Let also E�
i;t�t�

i

and R�
i;t�t�

i

be their activated cell densities. The basic dynamics of each clone is

described by the following set ordinary differential equations

8̂
ˆ̂̂<
ˆ̂̂̂:

dEi;t�t�

i

dt
D �eE�

i;t�t�

i

� ıEi;t�t�

i

dRi;t�t�

i

dt
D �rR�

i;t�t�

i

� ıRi;t�t�

i
;

i D 1; : : : ;Dt ; (14.1)
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where Dt is the number of different T cell clones in the periphery at time t (i.e.,
T cell diversity), ı is the T cell death rate, �e and �r are the proliferation rates of
activated TE and TR cells, respectively.

The densities of activated TE and TR cells of each clone are calculated in a
stepwise manner [17, 24]. Let the i -th T cell clone recognize the j -th APC subpop-
ulation. Let Cij;t be the total density of conjugates formed by T cells from clone
i and APCs from subpopulation j at time t . The dynamics of these conjugates is
generically described by the following system of equations

dCij;t

dt
D �c

 
Aj �

DtX
iD1

Cij

!0
@Ti;t�t�

i
�

AX
jD1

Cij

1
A � �d Cij; (14.2)

where �c and �d are the conjugation and deconjugation rates between APCs and
T cells, respectively. These rates are assumed to be identical for any T cell clone i

and cognate APC j . In the above equation, new conjugates are formed by the free
sites on APCs of population j with free T cells of clone i at rate �c , while existing
conjugates deconjugate at rate �d . Assuming that the conjugation and deconjugation
of T cells from the APCs is a fast process with respect to the overall T cell dynamics,
we solve in each time step the steady state of the above equation system by the Euler
method, which is slow but with guaranteed convergence.

Given the conjugate density Cij;t , we next calculate the density of conjugated TE

and TR cells as being proportional to the relative frequency of TE and TR in the
clone, i.e.,

eij;t D Cij;t � Ei;t�t�

i

Ei;t�t�

i
C Ri;t�t�

i

and rij;t D Cij;t � Ri;t�t�

i

Ei;t�t�

i
C Ri;t�t�

i

: (14.3)

To calculate the amount of conjugated T cells becoming activated, we assume
that an APC has s independent conjugation sites, each one with the possibility of
being occupied by a T cell [18]. With this assumption, we can determine, respec-
tively, the fractions of sites per APC occupied by TE and TR cells

Qeij;t D eij;t

Aj s
and Qrij;t D rij;t

Aj s
: (14.4)

The next step is to compute the fraction of activated TE and TR cells upon conju-
gation with the APCs. For the sake of simplicity, we consider only 2 sites per APC.
The fraction of activate TE cells is equivalent to the fraction of TE cells conjugated
alone or with other TE cell. In turn the fraction of activated TR cells corresponds
to the fraction of TR conjugated together with a TR cell. We approximate these
fractions based on multinomial distribution with probabilities given by the fractions
of APC sites occupied by TE and TR cells, and introduce factors that increase the
efficiency of suppression. These extra factors allow the simplistic scenario s D 2

to capture the higher efficiency of suppression obtained with larger more realistic
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s values, when assuming that a single TR cell per APC is sufficient to suppress all
the TE cells (one or more) on the same multicellular conjugate. Thus, we calculate
the fraction of conjugated TE and TR cells that will be activated by the following
expressions, respectively:

e�ij;t D 1 � 2 Qrij;t

2 � Qeij;t
and r�ij;t D 2 Qeij;t

2 � Qrij;t
: (14.5)

Finally, we calculate the densities of activated TE and TR in the clone i at time t as:

E�i;t D
AX

jD1

˛ijeij;t � e�ij;t and R�i;t D
AX

jD1

˛ijrij;t � r�ij;t ; (14.6)

where ˛ij is a dummy variable indicating whether the i -th T cell clone recognizes
or not the APC population j .

Relevant Properties of the Basic Crossregulation Model

Before we describe how the crossreactivity distribution is generated in the model, it
is better to recall some of the basic dynamical properties of the model when APCs,
TE , and TR cells are assumed to be homogeneous populations. This is useful to
understand how APC-related parameters were specified in the simulations. A fun-
damental property of this model is the dependence of TR- and TE -cell steady states
on the APC density [16]. Bifurcation analysis of this parameter reveals three qual-
itatively distinct regimes for the dynamical system (Fig. 14.2a). The first regime
refers to the trivial situation where the APC density is too low to sustain either
TE or TR cell populations in the system (that is, TR- and TE -cell densities are
equal to 0 in steady state). When the APC density reaches a critical point (aE in
Fig. 14.2a), the system leads to the competitive exclusion of TR cells by their TE

counterparts. When APC density is high enough (aR in Fig. 14.2a), the system en-
ters into a bistable regime in which, depending on the initial condition for TR and
TE cell densities, one can obtain either the coexistence of both cell types or the
competitive exclusion of TR cells by their TE counterparts.

For the sake of simplicity, we performed all simulations by generating every T
cell clone under the same initial conditions for TE and TR cells (that is, Ei;t�

i
D E

and Ri;t�

i
D R, 8i ). To understand these complex simulations, it is important to

know the behaviour of the simplified system in the bistable parameter regime, as
illustrated in Fig. 14.2b. When specifying a particular initial condition for TR and
TE cells, the parameter region where TR cells cannot be sustained in the system
is extended to the interval between aE to QaR in Fig. 14.2b. When the APC density
reaches QaR, the system falls into a steady state where both cell types coexist. Finally,
when the APC density is too high, the system falls again into a state in which TE

cells outcompete their TR counterparts (not shown in Fig. 14.2b; [16]).



14 Dynamics of Peripheral Regulatory and Effector T Cells 281

APC Subpopulations and Their Density

In the model, the peripheral APC pool is divided into different subpopulations, each
one presenting a distinct yet overlapping set of peptides. In this scenario, the abun-
dance of each APC subpopulation is somehow dependent on the availability of the
respective set of peptides in the periphery. Moreover, by postulate 2, the abundance
of each APC subpopulation in the periphery is assumed to be stationary. Therefore,
every APC subpopulation and its respective density in the periphery is generated in
the beginning of the simulations. For the sake of simplicity, we assume that most
APC subpopulations are at low densities reflecting the presentation of diverse and
rare antigens in the body, and few APC subsets at high densities (that present ubiq-
uitious antigens or abundant antigens). With this rationale in mind, we assumed
that the density of each APC subpopulation in the periphery follows an Exponential
distribution with mean value �a, i.e.,

Aj j�a  Exp.�a/; j D 1; : : : ;A: (14.7)

Connecting T Cell Clones with APC Subpopulations

When new T cell clones enter the periphery, we need to define their respective sets
of cognate APCs (Fig. 14.3a). Since any T cell must pass through positive and neg-
ative selection in the thymus, it is reasonable to assume that every generated T cell
clone would recognize a limited set of APC subpopulations in the periphery. On
the one hand, positive selection seems to ensure that any T cell clone coming out
of the thymus recognizes at least some APC subpopulations in the periphery. On
the other hand, negative selection purges from the repertoire clones that recognize
too many APC subpopulations. With this in mind, we constructed an appropriate
Markov chain model with discrete steps to generate a narrow connectivity distri-
bution around its mean. The states of this Markov chain are the number of APC
subpopulations recognized by a clone (number of connections, for short), rang-
ing from 0 to A. The initial state of a clone is zero connections. In each step of
the chain, we test whether an APC subpopulation will be recognized or not by the
newly-generated T cell clone. Therefore, there are as many chain steps as APC sub-
populations. Moreover, the number of APC subpopulations recognized by a given
T cell clone can only be maintained or increase along the steps of the chain. We
assume that the transition matrix .A C 1/ � .A C 1/ is given by

pi;j D
8<
:

1 � �e��c
j ; j D i

�e��c
j ; j D i C 1

0; otherwise
; i; j D 0; : : : ;A (14.8)

where � is the initial probability of generating a connection with a newly-generated
clone, and �c is the exponential decay by which the probability of making a new
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connection decreases (Fig. 14.3b). By standard Markov chain theory, the connec-
tivity distribution is then given by the vector that indicates the process started with
zero connections multiplied by transition matrix after A steps. Figure 14.3c gives
an example of the connectivity distribution produced by this stochastic process. In
practical terms, we connect the different APC subpopulations to the new clone as
follows: (1) sample successively without replacement each APC subpopulation; (2)
connect randomly each one to the new clone with the probability of increasing con-
nectivity included in (14.8).

In all simulations, the parameter � was setup at 0.90 to ensure that every newly-
generated clone recognizes with a high probability at least one APC subpopulation,
in agreement with thymic positive selection. Furthermore, the parameter �c can be
determined to generate a connectivity distribution with a given mean value. Since
this distribution cannot be calculated analytically, except for the case of few APC
populations, we used numerical equation-solving methods through the software
Mathematica.

As discussed above, the persistence of a T cell clone in the periphery is critically
dependent on the total density of its cognate APCs, denoted as AT;i . Therefore, it is
of interest to determine the probability distribution of AT;i in order to control how
many T cell clones would be in the different regimes of the system, as illustrated
in Fig. 14.3d. To this end, we first note that the density of each APC subpopula-
tion comes from an Exponential distribution. Thus, the total APC density given the
number of connections ki is a sum of independent and identical Exponential dis-
tributions, which leads to a Gamma distribution with shape parameter ki and scale
parameter �a, that is,

AT;i jKi D ki  Ga .ki ; �a/ ; ki D 1; : : : ;A: (14.9)

where Ki is the random variable indicating the number of connections with clone i .
We then apply the well-known total probability theorem to obtain the proba-

bility density distribution of AT;i given that a clone recognizes at least one APC
subpopulation

fAT;i
.a/ D

AX
kiD1

fAT;i
.ajKi D ki /

P ŒKi D ki j�; �c�

1 � P ŒKi D 0j�; �c�
; (14.10)

where fAT;i
.ajKi D ki / is the probability density function of the Gamma distri-

bution given in equation (14.9), and P ŒKi D i j�; �c� is the probability of having
a clone that recognizes ki distinct APC subpopulations. The above probability dis-
tribution is then a mixture of appropriate Gamma distributions (Fig. 14.3d). In the
simulations, we control the parameter �a to obtain a probability distribution of AT;i

that implies, for example, that 10% of the clones generated lie in the bistable regime
(Fig. 14.3d). To this end, we again used the numerical methods implemented in the
software Mathematica to determine �a that satisfy the above condition.

The model has many parameters, summarized in Table 14.1. Some of the param-
eters were chosen according to previous work [16]. The remaining ones are set in
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Table 14.1 Parameters and variables of the T cell dynamics model. The values adopted here
for some parameters were taken from Carneiro et al. [16]. The remaining parameters were de-
termined in order to satisfy specific conditions on the crossreactivity distribution, as explained in
the main text

Parameter/variable Values Description

Basic T cell dynamics
Dt — Number of T cell clones at time t (T cell diversity)
t�

i — Time of entrance of the i -th T cell clone in the periphery
Ei;t�

i
, Ri;t�

i
— TR- and TE -cell densities from T cell clone i when entering

the periphery
Ei;t�t�

i
, Ri;t�t�

i
— TE and TR cell densities from T cell clone i at time t given

that the clone entered in the periphery at time t�

i

E�

i;t , R�

i;t — Activated TE - and TR-cell densities from i -th clone at time t

�e 1.00 TE -cell proliferation rate upon stimulation by APCs
�r 1.10 TR-cell proliferation rate upon stimulation by APCs
ı 0.02 T cell death rate
sc — Number of T cell clones entering the periphery per unit of time

Characterization of APC population
A — Number of distinct APC subpopulations in the periphery (APC

diversity)
Aj — APC density of subpopulation j

s 2 Number of conjugation sites per APC
�a — Mean of the exponential deviate of APC subpopulation density

Interaction between T cells and APCs

Cij;t — Density of APC-T cell conjugates formed by i -th T cell clone
and j -th APC population

�c 1.00 Rate at which T cells conjugate with cognate APCs
�d 1.00 Rate at which T cells deconjugate from cognate APCs
ki — Number of APC subpopulations recognized by the i -th T cell

clone (crossreactivity of the i -th T cell clone)
� 0.90 Initial probability of connecting an APC population with

a new clone
�c — Exponential decay in the probability of increasing

crossreactivity of a clone given that it recognizes a certain
number of APC subpopulations

AT;i — Total APC density recognized by the i -th T cell clone

order to specify the proportion of clones falling in the bistable regime at the time
of their entrance in the periphery (Fig. 14.3d). For simplicity in the simulations, we
generate all T cell clones with similar initial conditions, Ei;t�

i
D E and Ri;t�

i
D R,

8i . Clonal extinction is assumed when the overall density of a clone drops below a
certain threshold (e.g., 10�3). The corresponding equations are then removed from
the system, as previously done [19, 25].
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Results

Dynamics and Structure of the Peripheral T Cell Repertoire
in the Absence of Thymic Export

We first study the simplest situation where the whole T cell repertoire is generated at
the beginning of the simulations. This situation is conceptually related to an adoptive
transfer experiment, in which a pool of T cells is transferred into an animal lacking
T cells, such as nude or rag�=� mouse [11, 26].

Less Crossreactive T Cell Clones are Outcompeted from the Repertoire

It has been suggested that T cell competition is one of the major forces shaping the
T cell repertoire [27]. T cell competition was studied before but not accounting for
the presence of TR cells in the repertoire [28, 29] and the heterogeneity of the APC
pool [19]. In the present model, T cells should form multicellular conjugates with
their cognate APCs in order to survive and proliferate (Fig. 14.1). Thus, the model
features competition among T cells within the same clone and also between different
clones partaking the same APC. Since we assume that the pairwise conjugation rate
has the same value for all clones and APC subpopulations, the competitiveness of
a clone depends on its cognate APC density relatively to those of the remaining
clones. In general, it is expected that T cell clones that can conjugate with more
APCs will outcompete the ones with lower cognate APCs. Yet, this expectation
may not hold true owing to the fact that T cell clones share different sets of APC
subpopulations, forming a complex network of interactions between these two cell
types (Fig. 14.3a). In this scenario, the persistence of a given T cell clone in the
periphery is dependent not only on the APC density but also on the different APC
subsets shared with the remaining clones. It is then reasonable to conceive a situation
where a T cell clone recognizing a large density of APCs can be outcompeted if it
has to partake these APCs with many different T cell clones.

It is clear from the simulations that the mean APC density per T cell clone in-
creases in time until reaching a plateau (Fig. 14.4a). This result suggests that clones
that can form more multicellular conjugates tend to persist longer in the simula-
tions. A similar result can be extracted from the temporal evolution of the mean
crossreactivity of T cell clones (Fig. 14.4b). Since less crossreactive T cell clones
are purged from the repertoire, T cell diversity decreases in time (Fig. 14.4c). This
decrease is more pronounced in the beginning of the simulation, where the differ-
ence between T cell clones with low and high level of crossreactivity is larger, and
less pronounced in the end of the simulation, where this difference is smaller. In
terms of total T cell density, the respective steady-state is reached very early in the
simulation (Fig. 14.4d), maintaining it even when T cell diversity is still decreasing
and far from its final value (Fig. 14.4c).
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Fig. 14.1 The Crossregulation Model. The reaction diagram indicates the events and interactions
underlying the dynamics of APCs, TE cells and TR cells as assumed in the model. In this simple
scenario the APC can only form conjugates with a maximum of two T cells, which can belong to
any of the clones that recognize this specific APC subpopulation

Partition of the T Cell Repertoire

We previously studied the T cell repertoire assuming that T cells recognize indepen-
dent mutually exclusive APC subsets [16]. In this particular case, if all clones are
generated with similar initial composition, the structure of the repertoire is straight-
forwardly predicted from the bifurcation diagram shown in Fig. 14.2b. This shaping
of the repertoire leads to a partition of the peripheral compartment in three distinct
T cell clone subsets. The first subset contains T cell clones that eventually go ex-
tinct in the periphery, because they can conjugate with just a few APCs (at densities
lower than aE ). The second subset is made of T cell clones that can conjugate with
APCs at densities between aE and QaR . At equilibrium, these clones are composed
of TE cells only, because TR-cell populations cannot be sustained. Therefore, this
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Fig. 14.2 Steady state analysis of the Crossregulation model as a function of APC density per
T cell clone. (a) Bifurcation diagram where stable (solid lines) and unstable (dashed lines) steady
states for TE (thick lines) and TR (thin lines) cells are represented. The system qualitatively changes
its dynamic behaviour in the critical points aE and aR, defining three distinct parameter regimes.
First, for APC density less than aE , the stable steady state is . QE0; QR0/ D .0; 0/ (not labelled).
Second, for APC density between aE and aR, the stable steady state is given by . QE1; QR1/ withQR1 D 0. Third, for APC density higher than aR, the system enters in a bistable regime that,
depending on the initial conditions for TR and TE cells, the system either goes to . QE1; QR1/ or
. QE3; QR3/. These two separated by the saddle point . QE2; QR2/. (b) Stable steady states of TE and TR

cells for a given initial condition: E.0/D R.0/ D 0:50. Parameters values are given in Table 14.1

subset represents an exclusive TE -cell repertoire. The third subset includes clones
that recognize cognate APCs in densities higher than QaR. Because of the specified
initial condition, the TR-cell populations can be sustained in this parameter regime,
coexisting with their TE counterparts. Therefore, this subset comprises the overlap
repertoire between TE and TR cells, characterized by a higher average TR-cell den-
sity than that of TE cells and a negative correlation between the respective TR and
TE -cell densities (Fig. 14.2b). Since there is no parameter regime in which TR cells
can be sustained alone, the previously-studied model provides no means of forming
an exclusive TR-cell repertoire.

With these previous results, we ask whether they are robust under interclonal
competition for APCs. Can a similar partition of the repertoire be obtained in
these conditions? Can T cell competition generate an exclusive TR-cell repertoire?
Representative results of the simulation of peripheral repertoire dynamics contem-
plating interclonal competition in the absence of thymic export are illustrated in
Fig. 14.5.

It is clear that, at equilibrium, a partition of the peripheral repertoire is also ob-
tained in the presence of interclonal competition (Fig. 14.5a). Clones whose cognate
APCs are in densities less than aE vanish. Moreover, since highly crossreactive T
cell clones can outcompete less crossreactive ones (Fig. 14.4a and b), the effective
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Fig. 14.3 Network between T cell clones and APC subpopulations. (a) T cell clones recognize a
different subset of APC subpopulations; (b) Probability of generating a new connection (i C 1)
given a clone has already i connections (14.8); (c) Probability distribution of the number of
connections per T cell clone; (d) Probability distribution of APC density recognized per T cell
clone. Parameters were specified in order to generate 0.2% T cell clones in an extinction regime
(At < aE ), 89.8% T cell clones in immunity regime (aE 	 At 	 aR) and 10% T cell clones in
the bistable regime (At > aR). Parameter values of plots B, C and D: A D 100, �a D 2:8
 10�3,
� D 0:90, and �c D 1:07

limit for T cell survival is higher than aE , as shown by the respective APC density
associated to the clone that recognizes the smallest APC density. The exact value for
this threshold cannot be computed because it is dependent on the actual connectivity
structure between APC subpopulations and T cell clones, which is randomly gener-
ated in each simulation. A similar result is obtained for the threshold that allows TR

cells to be sustained within a clone. In this case, clones recognizing APCs at den-
sities higher than QaR will help to maintain TR cells in less crossreactive clones. As
a consequence, the threshold for TR-cell persistence decreases, being closer to aR,
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a b

c d

Fig. 14.4 Peripheral T cell repertoire dynamics without thymic export. The panel shows the time
course of several quantities during a representative simulation in which 500 distinct clones were
generated at time t D 0, with similar initial conditions, competing for A D 100 APC subpopu-
lations (thick line - T cells; solid line - TE cells; dashed line - TR cells; Initial condition for each
clone: t�

i D 0, Ei;0 D Ri;0 D 0:50;8i D 1; : : : ; 500). The parameters �a and �c were specified
in order to generate T cell clones with a mean crossreactivity of five cognate APCs and 10% prob-
ability of recognizing APC densities necessary for a bistable dynamics, as illustrated in Fig. 14.3
(�a D 2:8
 10�3 and �c D 1:07). The remaining parameters are given in Table 14.1

the lower APC density limit that defines the bistable regime for the homogeneous
population case (Fig. 14.2a). It is worth noting that, in this scenario, the equilibrium
T cell density of each clone driven by a given APC density is lower than in the
scenario without interclonal competition for APCs.

Since a similar partition of the peripheral repertoire is observed in the context of
interclonal competition, previous suggestions for the diversity and related proper-
ties of TR and TE cells also hold [16]. Therefore, TR cells seem to be less diverse
than their TE counterparts (Fig. 14.5b). As a corollary, the diversity of the TE -cell
exclusive repertoire has the largest contribution to the total diversity (Fig. 14.5c).
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Fig. 14.5 Partition of the peripheral T cell repertoire in simulations without thymic export.
(a) A representative snapshot of a T cell repertoire at equilibrium (t D 50000), where solid and
empty circles represent TE and TR clones, respectively. (b) Diversity of TR and TE cells, where
the diagonal line corresponds to equal diversity of both cell types. (c) Ternary diagram represent-
ing the contribution of the diversities of TR-exclusive, TE -exclusive, and overlap repertoires to the
total T cell repertoire diversity. (d) Diversity of the TR /TE overlap repertoire plotted as a fraction
of total TR-cell diversity, where the horizontal line corresponds to the case in which TR-cell exclu-
sive and overlap repertoires are equally diverse. (e) Spearman’s correlation coefficient calculated
between TR and TE -cell densities in clones of the overlap repertoire. Each dot in plots B, C, D and
E represents a distinct simulation of the T cell repertoire (20 simulations in total). The parameters
of these simulations are given in Fig. 14.4 and Table 14.1

Interestingly, the TR-cell repertoire can now be divided into an exclusive subset
and a subset overlapping with the repertoire of TE -cells (Fig. 14.5c). Therefore,
in contrast to the previous model [16], competition between T cell clones with
different specificities can give rise to an exclusive TR-cell repertoire. The contri-
bution of this repertoire to the overall TR-cell diversity varies across simulations.
The diversity of the exclusive TR-cell repertoire can be lower, equal or higher
than the diversity of overlap between TE and TR repertoire (Fig. 14.5d). Finally,
as predicted by Fig. 14.2b, TR and TE -cell densities of clones belonging to the
intersection repertoire tend to be negatively correlated according to Spearman’s co-
efficient (Fig. 14.5e).
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Dynamics and Structure of the T Cell Repertoire in the Presence
of a Constant Thymic Export

We now present the results of simulations with a continuous thymic export. These
simulations are more complex than the previous ones and, as we will see below, it is
important to distinguish two pools within the total peripheral T cell repertoire: the
pool of recent thymic emigrants and the pool of resident T-clones. The repertoire of
resident clones can exhibit a structure similar to that obtained without thymic export,
while the repertoire of recent thymic emigrant clones will exhibit a structure related
to the initial conditions imposed for the generation of each clone.

Three Distinct Classes of T Cell Repertoire Patterns Arise in the Presence
of a Continuous Thymic Export

The peripheral T cell repertoires emerging in simulations with interclonal competi-
tion and constant thymic export can be classified into three classes according to their
overall structure and the partitioning of clones made exclusively of TR or TE cells,
or containing both cell types (Fig. 14.6a, e and i). These three classes for repertoire
structures can be obtained even for the same parameter values.

The first class of repertoire structure is characterised by clones containing only
TE cells, even if these clones recognize cognate APCs at densities within the bista-
bility regime (Fig. 14.6a). Newly generated TR-cell clones persist transiently in the
periphery until their extinction, and the TR-cell repertoire is maintained only by
thymic influx. All TR-cell clones are in the subset regarding the newly-generated
T cells clones (i.e., recent thymic emigrant population). Nonetheless, TR-cell mean
connectivity, density, and diversity increase in the initial phase of the simulations
until a plateau is reached (Fig. 14.6b, c and d). This is explained by the fact that,
even if all TR cells eventually become extinct, TR-cell clones that recognize few
APCs vanish faster than the ones recognizing more APCs, resulting in an apparent
increase of the above properties.

The second class of repertoire structure is associated with a partition similar to
that shown in Fig. 14.5a. The total repertoire is partitioned into three subsets, even
though recent thymic emigrants are present in all of them (Fig. 14.6e). The first
subset comprises a set of transient T cell clones that recognize cognate APCs at
low densities and, thus, eventually go extinct after entering periphery. This subset is
maintained by thymic influx. The second subset refers to T cell clones that recognize
intermediate densities of APCs and form the TE -cell exclusive repertoire. The third
subset encompasses T cell clones that recognize APCs at sufficiently high amounts.
In most cases, these clones are regulated by TR cells. Occasionally, this third subset
might include some expanded clones containing exclusively TE cells. As for the
previous repertoire class, the mean connectivity increases in time (Fig. 14.6f), but
now due to a highly crossreactive TR and TE -cell resident population. Therefore,
the mean connectivity of both cell types increases not only due to the initial purging
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Fig. 14.6 Three distinct classes of T cell repertoire patterns arise in the simulations with thymic
export (thick line - T cells; solid line - TE cells; dashed line - TR cells; sc D 0:3, initial condition
for each clone: Ei;t�

i
D 0:75; Ri;t�

i
D 0:25;8i ). Plots in first row represent total repertoire

structures where TE -cell clones predominate within repertoire (repertoire structure of class I). In
this scenario, TR cells are mostly maintained by continuous thymic export. Plots in second row
represent total repertoires showing a partition similar to the one shown in Fig. 14.5a (repertoire
structure of class II). Plots in third row represent total repertoire structures in which TR cell clones
predominate (repertoire structure of class III). In this case, TE cells are mostly maintained by the
constant thymic export. Parameters �a and �c were setup in order to generate T cell clones with
a average connectivity of 3.75 APC species and a 10% probability of recognizing APC densities
in the bistable regime (�a D 3:6 
 10�3 and �c D 0:72). The remaining parameters are given in
Table 14.1

of more specific clones from the repertoire, but also to the formation and maturation
of a TR and TE resident pool with increasingly high crossreactivity. Crossreactivity
increases slowly in this resident pool, as old resident clones are replaced by newly
arrived clones, which happen to be more crossreactive. As in Fig. 14.4c, TE -cell
diversity is higher than that of TR cells (Fig. 14.6g). Interestingly, the total T cell
density reaches its peak very early in the simulation but after that, with the matura-
tion of the resident TR-cell pool, decreases slowly in time (Fig. 14.6h), eventually
reaching a steady state determined by an overall regulation of all resident clones
by TR cells. Thus, while the total T cell density decreases the total TR-cell density
increases.

The third class of repertoire structure refers to a predominance of TR cells within
the clones early on in simulations (Fig. 14.6i and l). The repertoire is composed of a
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recent thymic emigrant population and a resident population made almost exclusive
of clones with TR cells and without TE cells (Fig. 14.6i). Few TE -cell clones are
maintained in the intermediate APC density region. However, the populations of TR

cells, which require TE cells for growth, can only persist in the periphery due to the
source of TE cells coming from the thymus. Since T cell clones are exported to the
periphery with both cell types, TR-cell diversity tends to be close to that of TE cells
(Fig. 14.6k). In some cases, TR-cell diversity can be even higher (simulations not
shown). Finally, as in the previous class, the evolution of total T cell density has a
biphasic behaviour: it reaches a peak early in the simulations, followed by an abrupt
drop. This drop correlates with the overtaking of the repertoire by TR-cell clones
(Fig. 14.6l). Therefore, these repertoires can be interpreted as a situation where all
the immune responses are globally regulated by TR cells.

At this point, it is worth noting that the first and third classes of repertoire pat-
terns have deleterious functional consequences for the organism. The organism’s
phenotype corresponding to the first class of repertoire structures, in which TE -cell
predominate in all the clones and TR-cells cannot expand and persist in the periph-
ery, is that of a massive systemic autoimmune pathology, akin to what is observed
in animals or humans deficient in the foxp3 gene. [30]. Conversely, in the third class
of repertoire structures, in which TE -cells are under strong control of highly cross-
reactive TR-cell clones, the phenotype of the organism would be effectively that
of an immunocompromised individual unable to mount immune responses. There-
fore, the repertoire structure of class II seems to be the most adequate to describe
the structure and function of the peripheral T cell repertoire in a healthy individual,
as suggested in a previous work [16]. Yet, there is a price to pay in this class. In these
simulations, some occasional clonal expansions containing exclusively TE cells are
observed, which might be interpreted as organ-specific autoimmune diseases.

The Three Repertoire Classes are Better Distinguished by the Structure
of Their Resident Populations

As mentioned above, any peripheral T cell repertoire is composed of a recent thymic
emigrant population and a resident one. The latter population is represented by a
small number of clones that expand and persist at TR and/or TE densities above
those initially set (as can be observed in Fig. 14.6a, e and i). Nevertheless, it is
difficult to define exactly which clones effectively form the resident population.
For the sake of simplicity, the 25 oldest clones in the simulations are considered
representative of the resident population. In contrast, recent thymic emigrant clones
represent the majority of the repertoire by the large number of clones with densities
equal or lower than the initial ones (as also observed in Fig. 14.6a, e and i). It is
worth noting that most of these recent thymic emigrant clones will eventually go
extinct.

Due to the predominance of recent thymic emigrant clones, all three reper-
toire classes show similar structures when the whole T cell repertoire is analyzed
(Fig. 14.7a, b and c). That is, TE -cell diversity tends to be higher than that of TR
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Fig. 14.7 The three T cell repertoire classes are better distinguished within the structure resident
cell populations. Plots A, B, and C refer to the analysis of the whole T cell repertoire, while plots
D, E, and F correspond to the analysis of the resident T cell population, represented by the 25 oldest
clones in the simulations. Each dot in the plot represents a distinct simulation (20 simulations in
total). See Fig. 14.6 for further details

cells but with no clear distinction between these three classes of repertoire structures
(Fig. 14.7a). The same happens when analyzing the contribution of the exclusive
repertoires of TR and TE cells, and their overlapping repertoire, to the total T cell
diversity (Fig. 14.7b). As expected, the overlap between the repertoires of TR and
TE recent thymic emigrants represents the larger fraction of the total repertoire. This
implies in turn a positive correlation between TR and TE -cell clones belonging to
the overlapping repertoire (Fig. 14.7c).

The main differences between the three repertoire classes are found within the
minor pool of resident T cell clones. In fact, the first class of repertoires has a
resident population with a large difference between TR and TE -cell diversities
(Fig. 14.7d). In this class, the resident repertoire is mainly composed of TE -cell
exclusive repertoire. The second class of repertoires has an intermediate difference
between TR and TE -cell diversities. Using a ternary diagram representation we plot
simultaneously the diversities of the TR and TE exclusive repertoires as well as
that of the overlap. The points representing the resident population in the second
class of repertoires lay almost in the central region of the triangle, which means
that exclusive TR-cell and TE -cell diversities and the shared diversity contribute
almost equally to the overall T cell diversity (Fig. 14.7e). Since the third class of
repertoires is characterized by a strong predominance of TR cells, the diversity of
these cells within the resident population is equal or higher than that of the TE cells
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(Fig. 14.7d). The repertoire of the resident population is then mostly composed of T
cell clones in the overlapping repertoire and few clones from the exclusive TR-cell
repertoire (Fig. 14.7e). Notwithstanding the differences between the three classes
of repertoire, they all tend to show a negative correlation between TR and TE -cell
densities within the clones that represent the overlap. A positive correlation can also
be obtained when some of the clones in the resident population are replaced by
newly arising T cell clones.

Parameter Dependence of the Peripheral T Cell
Repertoire Structure

We now ask how the structure of the peripheral T cell repertoire changes with some
of the parameters in the simulations, such as the average clonal connectivity coming
from the thymus, number of APC subpopulations (APC diversity), and the num-
ber of clones exported from the thymus (Fig. 14.8). We pay special attention to the
probability of obtaining each of the three classes of T cell repertoire structures and
the decomposition of T cell diversity into their three components. To calculate the
proportion of each repertoire structure for a given parameter set, we visually clas-
sified the repertoires according to the diversity composition exhibited by their 25
oldest clones at the end of the simulation (t D 10;000), as illustrated in Fig. 14.7e.

In the simulations, for fixed values of APC diversity and thymic export, increas-
ing the average connectivity per clone increases the chance of obtaining repertoire
structures of class III (Fig. 14.8a). Because repertoires in this class are character-
ized by a predominance of TR cells, the overall T cell diversity tends to decrease
as connectivity increases (Fig. 14.8b), and the repertoire of the resident population
becomes increasingly dominated by the TR-cell exclusive repertoire (Fig. 14.8c). In
fact, with a higher average connectivity for clones coming from the thymus, the ratio
of TR cells per APC increases, promoting in this way peripheral tolerance.

Fixing the parameters controlling connectivity and thymic export, a higher APC
diversity increases the overall T cell diversity (Fig. 14.8e). This is just a consequence
of a higher number of combinations of different APCs that can be recognized by the
T cell clones. In theory, this parameter when increased should transiently decrease
interclonal competition, unless compensated by an increase of the thymic export. TE

cells would then benefit of this diminished interclonal competition in the beginning
of the simulation to proliferate and competitively exclude TR-cell within the same
clone. Therefore, individuals with a higher APC diversity but with similar thymic
output tend to exhibit repertoires of class I (Fig. 14.8d). For this reason, the diversity
of the TE -cell exclusive repertoire (Fig. 14.8e) and its relative contribution to the
diversity of the resident population (Fig. 14.8f) tend to increase as a function of the
APC diversity.

The overall T cell diversity is also positively correlated with the thymic export
(Fig. 14.8h), as expected from the fact that there is more clones from the thymus.
Since clones enter the periphery with both TR and TE cells, diversity of the overlap
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Fig. 14.8 Effect of some parameters on the structure of the repertoire. First, second and third rows
refer to the effect of mean connectivity coming from the thymus, APC diversity, and thymic export,
respectively. First, second, and third columns refer to the probability of generating each repertoire
structure (classes I, II, and III), the diversity of each T cell repertoire, and diversity composition
for the 25 oldest clones at the end of the simulations (t D 10;000). Parameters: sc D 0:30 and
A D 100 (plots a, b, and c); sc D 0:30, �a D 2:08
10�3 and �c D 1:07 (plots d, e, and f; thymic
average connectivity of five APC populations); A D 100, �a D 2:08
10�3 and �c D 1:07 (plots
g, h, and i; thymic average connectivity of five APC populations). The parameter �a was calculated
in order to generate 10% of clones in the bistable regime. For each parameter set, we performed 20
simulations

repertoire also increases with this parameter (Fig. 14.8h). A priori, a higher thymic
export is expected to exhibit two major effects. On the one hand, it increases the
chance of generating highly crossreactive clones. On the other hand, as it was the
case for increased connectivity, it promotes the control by TR cells by favoring
the ratio of TR cells per APC and, at the same time, increasing interclonal com-
petition, which slows down the taking over of APC by TE cells. Because of these
effects, high values of thymic export favor the emergence of repertoires of class
III (Fig. 14.8g), leading to a high contribution of TR-cell diversity in the resident
population (Fig. 14.8i).
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Discussion

Recently, there is a growing interest in the structure of the T cell repertoire, in
particular in its decomposition in subsets that are exclusive of either TR- or TE -cell
populations, and the subset corresponding to the overlap between the two popula-
tions. Here, we tried to understand how this decomposition comes about based on
the simulations of the Crossregulation model [16], describing the peripheral dynam-
ics of TR- or TE -cell populations.

We previously studied a scenario in which the peripheral T cell repertoire was,
by construction, composed of independent clones that recognize mutually exclusive
sets of cognate APCs [16]. This model precluded the possibility of generating a TR-
cell exclusive repertoire, because the persistence of TR-cell populations requires
their TE counterparts in the same clone. To overcome this limitation of the model,
each T cell clone in the repertoire was interpreted as an independent functional
class of T cells exhibiting similar TCR specificity but that may contain distinct TE

and TR-cells with different specificities. According to this possibility, a TR-cell
exclusive repertoire was implicitly included, but the model could not be used to
make predictions about the fractions of exclusive or overlapping repertoires.

We now show that shared specificity between different clones is enough to orig-
inate a TR-cell exclusive repertoire. Shared specificity is then a sufficient but not a
necessary condition for the generation of a TR-cell exclusive repertoire, since the
mechanism of differentiation in the thymus of TE and TR cells might produce in
the first place exclusive repertoires of each cell type. Studies on the fate of individ-
ual thymocytes bearing a specific transgenic TCR demonstrated the differentiation
of cells with the same specificity to both TR and TE phenotypes [31]. However,
a small overlap was observed between thymic TR and TE TCR samples in recent
studies on animal models with limited TCR diversity [7, 8]. At first glance, this
observation suggests that the thymus is actually able to seed the periphery with
a TR-cell exclusive repertoire. Yet, a small overlap in these small samples might
not imply a similar interpretation for the whole repertoire of an individual, as dis-
cussed in depth in Sepúlveda [32]. Small or no overlap between pairs of samples can
arise by chance due to small or different sample sizes. Venturi [33] alluded to this
problem when studying the evolution of TCR repertoire of an individual during an
influenza infection, and provided a method to standardize the calculations. A small
overlap was observed in small peripheral TR and TE TCR samples, which was also
interpreted as evidence for the existence of peripheral TR-cell exclusive repertoire
[6, 8]. Yet, the cautionary note on the interpretation of these observations based on
small samples also hold here. We then conclude that current statistical analysis of
available data is not sufficiently accurate to determine whether or not an exclusive
TR-cell repertoire exists in the thymus or periphery.

Notwithstanding this conclusion, our simulations of peripheral T cell clone
dynamics with continuous thymic export suggest that a small TR-cell exclusive
repertoire may arise in the periphery, irrespective of how the repertoire is struc-
tured (Fig. 14.7e). This result can be further extended to the more general situation
in which the thymus exports TR-cell exclusive specificities. In fact, we demonstrate
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that peripheral repertoire selection would purge those specificities that are less cross-
reactive, maintaining only the highly crossreactive ones. At this point, it is worth to
recall that current models and observations of thymic TR-cell development suggest
that these cells are educated or selected on high affinity/avidity interactions with
thymic APC [13]. Therefore, it is tempting to speculate that thymic TR-cell differ-
entiation process has been ‘optimized’ in order to generate TR-cell clones that, in
theory, would have a higher chance to survive peripheral selection.

Three distinct structures of the peripheral T cell repertoire emerged in our sim-
ulations. On the one extreme, repertoire structures of class I are characterized by a
dominance of TE cell and exclusion of TR cells in most of the resident clones. This
scenario can be interpreted as the devastating systemic autoimmune pathology ob-
served in foxp3-deficient individuals. On the other extreme, there are repertoires
patterned in such a way (class III repertoires) that, in the vast majority of resi-
dent clones, TR cells predominate over their TE counterparts, which often vanish.
A repertoire patterned in this way is expected to avoid autoimmunity but will be
mostly likely inappropriate to fight infections. From previous studies of the Cross-
regulation model in the presence of growing antigen [20, 21], one expects this
repertoire pattern would benefit mild and moderate growing infections that should
become chronic due the inhibition of specific immune responses by (specific) TR

cells [20]. In contrast, strong acute infections that elicit an overwhelming increase
in specific APC subpopulations, might break the global regulation state of the reper-
toire, as demonstrated in Leon et al. [20]. The last repertoire structure arising in
simulations lies in the middle of the above two extremes, showing a similar struc-
ture to that discussed in Carneiro et al. [16] and obtained here in simulations without
thymic export (class II repertoire). The repertoire is partitioned in three subsets of
clones: (1) a small resident subset avoiding autoimmune responses against recurrent
body antigens by the presence of TR cells; (2) a relatively large subset lacking TR

cells that allows TE cells to respond to non-recurrent foreign antigens; (3) a third
subset solely maintained by the thymus that would otherwise go extinct.

As argued above, repertoire structures of class II seem the most adequate to
describe a healthy immune system. Assuming that the parameters used in the sim-
ulations are more or less realistic, this pattern for peripheral T cell repertoire has
a small chance of being generated in the context of a continuous thymic export, as
shown in Fig. 14.8. In fact, this repertoire structure should be better understood as
quasi-stationary transient rather than a true steady state. Since TR cells are present
in the resident population of this repertoire structure, a continuous thymic export
would help the system to reach asymptotically the above-mentioned global regu-
lation repertoire structure. This is evident by the sustained increase in time of the
fraction of TR cells during the simulations in which the repertoire were character-
ized as class II. As a consequence, we expect that aged animals would be in general
more susceptible to infections due to a higher fraction of TR-dominated clones in the
peripheral repertoire. Interestingly, TR cells seem to be at a higher fraction in older
individuals than in young ones both in humans and mice (refs. [34, 35]; R. Paiva
and colleagues, unpublished results). For example, Nishioka et al. [35] reported that
aged C57BL/6 mice show a fraction of TR cells in the CD4C pool around 30%,
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which is statistically higher than the 14% observed in young mice. Moreover, these
TR cells in older mice seem to maintain their suppressive function. In agreement
with our above interpretation, it was suggested that the increased fraction of TR

cells in the peripheral repertoire might be an explanation for the increased incidence
of infectious diseases in the elderly [34, 35].

One of the simplifications introduced in our simulations was to assume that
thymic export is constant. However, thymic output could be controlled in order to
maintain the repertoire as much time as possible in its healthy structure. Since it was
more easy to obtain such repertoire structures in simulations without thymic export
(data not shown), one can raise the hypothesis that in healthy organisms the thymic
export should be divided into two distinct phases. First, during early ontogeny of
the organism, the thymic export should be strong (perhaps enriched with multire-
active clones) to fill up the periphery and seed it with sustainable TR-cell clones.
Then, thymic export should decrease to avoid the filling of the periphery with fur-
ther TR-cell clones that, “helped” by early resident TR-cell clones, ultimately push
the system to a global regulation repertoire structure. This biphasic thymic export
is a well established fact both in humans and mice, the so-called thymic involu-
tion. Yet, this phenomenon is generally viewed as being deleterious, as remarked by
Dowling and Hodgkin [36], since it is usually associated with a decline in immune
function in the elderly. In the vein of the above discussion, we suggest that thymic
involution might be crucial to seed and maintain the repertoire in a healthy structure.
Dowling and Hodgkin [36] also argue that thymic involution is an important pro-
cess shaping the T cell repertoire in young individuals. In their view, T cell clones
exhibiting TCR specificities close to positive and negative thresholds have a shorter
lifespan. In this scenario, the thymus involutes to allow to peripherally select T cell
clones exhibiting TCR with affinities lying between positive and negative thresholds
and, thus, have longer lifespans and are more useful for immunity.

Interestingly, a biphasic thymus export has been previously proposed but using
a different argument [13]. It was suggested that TR cells against ubiquitious pep-
tides are produced in the thymus during perinatal period in order to cover every
available tissue-specific antigen. Then, it was assumed that the thymus stops produc-
ing TR cells, exporting only naive TE cells, which undergo a process of education
upon encountering antigen that converts them to the TR pool in the periphery. In
this line of thought, this process of peripheral education assumes a key role in the
maintenance of the TR pool in adulthood. Although peripheral education is now
known to occur in the periphery [26, 37–39], its exact contribution to the structure
of the peripheral repertoire is still unclear, since current estimates for the fraction of
peripherally-converted TR cells are disparate across different experimental settings,
and furthermore, TR cells are known to be continuously produced in the thymus
(reviewed in [40]).

The long-term outcome of our simulations was somehow dependent on the early
history of repertoire formation. In this regard, if TE -cell clones take over the reper-
toire in the first place, it would be difficult to maintain later-generated TR-cell clones
in the periphery. This would lead to a repertoire structure of class I with its delete-
rious consequences to the host. In contrast, if early-generated TR-cell clones could
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be sustained in the periphery, they would help later-generated ones to survive in the
repertoire, giving rise to repertoire structures of class III. This dependence on the
early history of repertoire formation seems in agreement with previous studies on
neonatally thymectomized animals [41], where thymus ablation between 2 and 4
days of life but not later can generate an autoimmune condition in adults. This short
time window for the consequences of thymectomy suggests that very early events
of repertoire formation are crucial to determine the respective long-term outcome.
This is in line with the functional significance of thymic involution alluded above,
since a large thymic output in early life would favor the emergence of a repertoire
with a healthy pattern.

It is well known that autoimmune diseases are affected by multiple genetic and
environmental factors, which lead to a complex inheritance pattern [42]. Complex-
ity in these diseases arises due to the incomplete penetrance phenomenon, that is,
only a proportion of individuals with risk-associated genotypes will manifest dis-
ease. Traditionally, one invokes environmental factors to explain this observation,
such as the occurrence of specific infections. Interestingly, twins maintained in
the same environment do not show a 100% concordance rate for disease status.
Moreover, different autoimmune-disease animal models also show incomplete pen-
etrance, even under strict environmental conditions. This is particularly evident in
the NOD mouse strain that spontaneously develops type I diabetes with incomplete
penetrance in both males and females [43]. To explain this phenomenon, we and
others have previously argued that a fraction of incomplete penetrance could be
attributed to an internal stochastic component governing the expression of the phe-
notype, such as a stochastic allelic expression [44–47]. In the case of autoimmune
diseases, we invoked the stochasticity in T cell repertoire generation as a putative
explanation for this internal component of penetrance [45], following the observa-
tions in monozygotic twins when studying different autoimmune diseases [48, 49].
In this line of reasoning, the simulations reported here showed that the three above-
mentioned repertoire patterns can arise in simulations with the same parameter set
(Fig. 14.8). If one interprets these simulations as different individuals with the same
genetics, they indicate that the stochasticity in the T cell repertoire formation can
indeed be an important factor in the understanding of incomplete penetrance in the
context of complex autoimmune diseases. Recently, a lower TR-cell TCR diversity
in NOD mice than in non-diabetic C57BL6 mice was reported, suggesting impor-
tant differences between the T cell repertoires of these mouse models [50]. However,
the comparison of TCR diversity between unaffected and affected NOD mice was
not performed, which would allow to assess the putative role of stochastic T cell
repertoire formation in incomplete penetrance. In this scenario, one would expect
to observe clear differences in the T cell repertoire between unaffected and affected
NOD mice.

Our simulations provide simple predictions for some structural properties of
the peripheral repertoire. These predictions are distinct for each repertoire class,
namely, in what concerns to the resident T cell population. For instance, reper-
toire structures of class I exhibit a higher diversity of resident TE cells than that
of TR cells, and a small overlap between the respective resident repertoires. Class II
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repertoires also predict a higher diversity of resident TE cells but the difference
between TE and TR-cell diversity should be smaller than in class I. Repertoire
structures of class III would in turn show comparable diversities of TR and TE cells.
Besides these predictions, our simulations suggest that, when there is an overlap be-
tween resident TR and TE -cell specificities, the respective clonal size distributions
tend to be negatively correlated.

Since the three classes repertoire patterns are fairly distinguished by their resi-
dent population, a way to discriminate them experimentally is to study the evolution
of the T cell repertoire in time. In theory, one can detect the resident population
by following the TCR specificities that consistently appear in different time points.
However, current peripheral TR-cell repertoire studies just take a snapshot of the
repertoire at a given time point [6, 8–10, 51], which might obscure the underly-
ing complexities [52]. These studies show that TCR samples of TR cells are more
diverse than those from their TE counterparts, which prompted the authors to ex-
tend this conclusion to the whole repertoire of an individual [6, 8–10]. However,
we demonstrate that this conclusion might not be true [32, 53]. In fact, when re-
analyzing data from Hsieh et al. [6, 7], we could not reject the hypothesis of equal
diversity between peripheral TR and TE cells at the level of the whole peripheral
repertoire. Since there is no information available on the resident T cell popula-
tion, the comparable diversity of peripheral TR and TE cells might be due to a
situation where the thymus preferentially exports clones with both cell types, as
in simulations performed here. If this holds true, little can be said about the un-
derlying repertoire structure, as illustrated in Fig. 14.7a and b. In fact, stochastic
simulations demonstrate that the available data of Hsieh et al. [6, 7] could not rule
out a complete overlap between thymic TR and TE -cell repertoires and, thus, little
information about the underlying structure can be extracted by a snapshot of the
repertoire [32]. In line with these results, we conclude that current TR-cell studies
need to be redesigned in order to gain more insight on peripheral TR-cell repertoire
structure.

Acknowledgements This work was supported by Fundação para a Ciência e a Tecnologia (grants
PTDC/SAU-MII/71402/2006) and a fellowship to NS (SFRH/BD/19810/2004). The authors would
like to thank Prof. Ramit Mehr (Bar-Ilan University) for many comments on an early version of
this paper.

References

1. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the tran-
scription factor Foxp3. Science 299:1057–1061

2. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function
of CD4CCD25C regulatory T cells. Nat Immunol 4:330–336

3. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y,
Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25C CD4C

regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and trans-
plantation tolerance. Immunol Rev 182:18–32



14 Dynamics of Peripheral Regulatory and Effector T Cells 301

4. Mills KHG (2004) Regulatory T cells: friend or foe in immunity to infection? Nat Rev Im-
munol 4:841–855

5. Belkaid Y (2007) Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol
7:875–888

6. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the
peripheral self by naturally arising CD25C CD4C T cell receptors. Immunity 21:267–277

7. Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY (2006) An intersection between the
self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7:401–410

8. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T cell receptor diversity
of Foxp3CCD4CCD25C T cells. Immunity 25:249–259

9. Pacholczyk R, Kern J, Singh N, Iwashima M, Kraj P, Ignatowicz L (2007) Nonself-antigens
are the cognate specificities of Foxp3C regulatory T cells. Immunity 27:493–504

10. Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C (2007) Adaptation of
TCR repertoires to self-peptides in regulatory and nonregulatory CD4C T cells. J Immunol
178:7032–7041

11. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance
maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of
a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:
1151–1164

12. Sakaguchi S, Wing K, Miyara M (2007) Regulatory T cells - a brief history and perspective.
Eur J Immunol 37:S116–S123

13. Modigliani Y, Bandeira A, Coutinho A (1996) A model for developmentally acquired thymus-
dependent tolerance to central and peripheral antigens. Immunol Rev 149:155–200

14. van Santen HM, Benoist C, Mathis D (2004) Number of Treg cells that differentiate does not
increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med 200:1221–
1230

15. Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell
receptor. Immunol Today 19:395–404

16. Carneiro J, León K, Caramalho I, van den Dool C, Gardner R, Oliveira V, Bergman ML,
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Chapter 15
Mathematical Models of the Role of IL-2
in the Interactions Between Helper
and Regulatory CD4C T Cells

Kalet León and Karina Garcı́a-Martı́nez

Abstract Mathematical models for the role of IL-2 in the dynamic interplay
between CD4C helper and regulatory T cells are studied. These models are ex-
tensions of the crossregulation model of CD4C T cell dynamics including IL-2
molecules. The goal is to understand how the immune system is dynamically or-
ganized, structured by this interaction with self antigens, and how such organization
might determine its overall function. We consider two model variants. In the first,
regulatory T cells suppress helper T cells by competing with them for IL-2 in the
lymph node. The second variant adds a direct inhibition of helper T cell activation
which requires their co-localized activation on the APCs. We use the models to study
the impact of treatments that either sequester or inject IL-2 in the immune system
response. We show that treatment sequestering IL-2 could be used in particular con-
ditions, both to render tolerant a preexistent immune/autoimmune system or to break
a preexistent tolerant state, inducing an immune response. However, IL-2 injections
will always reinforce the preexistent state, further expanding either the regulatory
or helper T cells for a preexistent tolerant or immune state.

Interleukin-2 (IL-2) was the first T cell growth factor to be identified and molecu-
larly cloned. Since its discovery, it was shown to promote T cell proliferation and
survival in vitro [1], and to enhance T cell immunity in vivo in particular instance
of viral infection [2] and vaccination [3–5]. However, this classical role of IL-2
in promoting T cell immunity has been recently challenged by experiments using
the IL-2 or IL-2R KO mice [6], which have shown that in vivo IL-2 is an essen-
tial homeostatic growth factor for the CD4CCD25CFoxP3C (regulatory) T cells,
supporting an additional role for this cytokine in the maintenance of natural and
induced tolerance.

CD4CCD25�FoxP3� (helper) T cells have been identified as the principal source
of IL-2 in vivo, while CD4CCD25CFoxp3C regulatory T cells are unable to pro-
duce this cytokine [7], suggesting that they have to sequester the IL-2 produced by
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the helper cells in order to proliferate and survive. Moreover, in vitro and in vivo
experiments have shown that regulatory T cells inhibit the production of IL-2 in
the responder’s helper cells [8–10], limiting also in this way their own source of
this cytokine. Altogether, the latter facts reveal a complex dynamic relationship be-
tween IL-2 and CD4C T cells. On one hand, IL-2 promotes the proliferation of the
helper T cells, which may drive effective immunity and foster IL-2 production. But,
on the other hand, it promotes the expansion of regulatory T cells, which may turn
off the immune reaction, as well as the IL-2 production on its own. The dynamic
balance between these opposing forces might result in a complex response to IL-2
modulation treatments, such as those ones being investigated in clinical [11,12] and
preclinical [2, 13] studies.

In this chapter, mathematical models describing the regulatory role of IL-2 in
CD4C T cell dynamics are studied. We review modelling of the dynamical aspects of
interleukin-2 interaction with T cells. Then, recently developed mathematical mod-
els, which were designed to study the interplay of IL-2 with helper and regulatory
CD4C T cells, are described. These models are used to compare different hypothe-
ses regarding the specific role of IL-2 in the mechanism by which regulatory T cells
suppress helper T cells, and to explore the effect of IL-2 modulating therapies on
the dynamics. Overall, this chapter will illustrate, through these particular examples,
how mathematical models can be used to analyze a specific biological problem, ex-
plaining known experimental facts and deriving predictions that might guide new
experimentation.

Brief Review of Mathematical Models of IL-2 Dynamics

Several mathematical models have addressed molecular and cellular aspects of
IL-2 interaction with its specific receptor at the T cell surface. IL-2 was one of
the first biological molecules discovered to signal through interactions with a re-
ceptor composed of multiple protein chains, the ˛, the ˇ and the � chains [14].
Debate continues [15] on the detailed dynamics of IL-2 molecular interaction with
these receptor chains. Some evidence suggests, for instance, the existence of a pre-
assembled form of the ˛ and ˇ subunit of IL-2 receptor; while other evidence
suggests that the latter dimer is dynamically formed upon IL-2 ligations. Mathe-
matical models like the one developed by Goldstein et al. [16], call attention to the
potential pitfalls of using classical Scatchard plot technique to study the binding
properties of dynamically assembled receptors. Later models [17] directly analyzed
experimental data of the IL-2/IL-2 receptor interaction.

Mathematical models from the group of Lauffenberger [18] have significantly
contributed to elucidating the dynamics of IL-2 and IL-2 receptor internalization
and degradation by T cells upon signalling. These models help to understand and
quantify the dynamics and have practical implications, predicting the effect of par-
ticular IL-2 mutants, which, by altering the latter dynamics, exhibits super-agonist
effects [19, 20].
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Svirshchevskaya et al. [21] developed a mathematical model of IL-2 dependent
proliferation for the CTLL2 T cell line. This model can be used to quantify IL-2 or
IL-2-inhibitor activity in an in vitro proliferation assay. Borisova et al. [22] integrate
different aspect of IL-2 and IL-2 receptor dynamics, in a model for the cell-cycle
of T cells. This model was used to analyze experimental data [23], predicting the
effect of different concentrations of IL-2 in the cultures, both for the expression of
IL-2/IL-2 receptor complexes at T cell surface and the overall dynamics of cell cycle
progression. Morel et al. [24] also developed a mathematical model of lymphocyte
proliferation, including the effect of both IL-2 and IL-4 cytokines. They used the
model to study synergistic and antagonistic effects of these cytokines, which might
derive from the competition of these molecules at the cell surface for the common
� chain that integrate their receptors. A more recent model, developed by De Boer
et al. [25], analyzes also experimental data of T cell proliferation in vitro in the
presence of different levels of IL-2. However they use data from a more informa-
tive technique to score T cell proliferation. This technique uses a fluorescent dye,
known as CFSE, to allow a dissection of the generational structure of proliferating
T cell populations. The analysis of available data, with the model, suggests that IL-2
levels significantly influence T cell death rate in the culture, but as a function of the
division history of individual T cells (i.e. the number of division cycles each T cell
has undergone).

Published modelling results, either on the regulatory role of IL-2 in the dynamics
of helper and regulatory CD4C T cells or on the biological impact of therapies based
on modulating IL-2 activity, are rare. Burroughs et al. [26], proposed a model to
study the dynamic interaction of helper and regulatory T cells, including IL-2 as
a homeostatic factor shared by these T cell populations. This model predicts an
interesting quorum threshold effect, which regulates helper T cell activation and
is dynamically controlled by the presence of regulatory T cells in different situa-
tions. However, the latter model relies on some biologically unrealistic assumptions,
which might limit its applications (it assumes the existence of an unknown home-
ostatic cytokine which is exclusively used by regulatory T cells in the absence of
IL-2, contradicting existing experimental observations). Our group has recently de-
veloped a mathematical model for helper and regulatory CD4C T cell dynamics
[29], accounting for many aspects of IL-2 dynamics. This model is an extension of
the crossregulation model of immunity [27,28], used to investigate the dynamics of
the interactions between regulatory and helper CD4C T cells. The following sec-
tion in this chapter will review the mathematical formulation and properties of this
model.

IL-2 in Helper and Regulatory CD4 T Cell Dynamics

The models introduced in this section are a natural extension of the crossregula-
tion model [29]. They model the interaction between helper and regulatory T cell
populations inside a lymph node, which contain a constant amount of their cognate
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antigen presenting cells (APCs) and homeostatic cytokines. The processes of IL-2
production, degradation and function, which are relevant to CD4C T cell dynam-
ics, are explicitly included. Two model variants, with different mechanisms for the
role of IL-2 in T cell mediated suppression, are studied. In the first model variant,
regulatory T cells suppress helper T cell proliferation by effectively reducing IL-2
concentration, producing competition for this cytokine [8–10, 30, 31]. The regula-
tory T cells exploit, therefore, their natural over-expression of the high-affinity IL-2
receptor to dominate the system. The second model variant includes, in addition to
competition for IL-2, that the regulatory T cells inhibit the activation of helper cells
on the APCs, perhaps by temporally conditioning the APCs [32–34], as postulated
in the original crossregulation model.

Postulates of the Models

The models rely on eight postulates which capture current knowledge regarding the
relationship between IL-2 and CD4C T cells. Bellow we enunciate each postulate;
provide a brief biological justification with relevant references, and explain how
each postulate is implemented in the models.

1. Helper and regulatory cells go through at least three different functional states
during their life cycle.
The cell cycle for T cells has been extensively studied [35]. It is well estab-
lished that T cells require signalling through their T cell receptor (TCR) in order
to leave the G0 phase and enter the G1 phase of cell cycle. However TCR sig-
nalling is not enough to proceed into the cell cycle. These cells are arrested at the
G1 checkpoint, if insufficient levels of relevant cytokines are encountered. IL-2,
IL-4, IL-7 and other � chain family of cytokines are potent growth factors for
T cells.

The models here assume that both helper (E) and regulatory (R) T cells pass
through the same three functional states during their life cycles. These functional
states are:

(a) Resting T cells which have not received signal through TCR recently (since
its last division or its de novo generation)

(b) Activated T cells which are in the functional state derived from the interac-
tion of resting T cells and cognate APCs

(c) Cycling T cells, irreversibly committed to cell division, derived from the
activated T cells that receive enough cytokine-related signal

2. Helper cells produce IL-2, upon activation with APCs, being the major source
for this cytokine in vivo.
In vitro studies have shown that CD4CCD25� T cells, cultured with APC and
anti-CD3, produce large amounts of IL-2 [36]. Moreover, in vivo experiments
[37] have shown that CD4CCD25�FoxP3� (helper) T cells capable of pro-
ducing IL-2 are mandatory to produce the IL-2, which sustain a functional
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CD4CCD25CFoxP3C (regulatory) T cell population. In the models, only helper
T cells produce IL-2. This IL-2 production is explicitly modelled here as a burst
associated with the transition of helper T cells, from the resting state to the ac-
tivated state (although qualitatively similar results are obtained in the model if
IL-2 is assumed to be produced continuously by helper T cells while in the acti-
vated state). No other source of IL-2 is considered, since we are interested on the
interplay between helper and regulatory T cells.

3. Helper T cells proliferate and survive, upon TCR ligation on APCs and sig-
nalling received from IL-2 or other homeostatic cytokines.
In vitro experiments have shown that IL-2 is a growth/survival factor for activated
CD4C T cells [1]. However, normal T cells response can be obtained in vivo in
IL-2 deficient mice [38,39], suggesting that helper T cells can use other cytokines
to proliferate/survive in vivo additionally to IL-2 (perhaps IL-7 [40–42], IL-15
[42, 43] or IL-21 [44]). In the model, resting helper T cells are activated after
conjugation with APCs, which provide MHC-peptide and other costimulatory
signals. Once activated, these cells can proceed into the cell cycle if enough
cytokine signal is received. This required signal comes, for this cell type, either
from available IL-2 or from an alternative cytokine, referred as IL-˛, which is
present at a constant homeostatic level in the lymph node. The amount of IL-˛
is a control parameter of the model, whose value is assumed to be set by cellular
subsets not included in the model.

4. Regulatory T cells do not produce IL-2, but their proliferation and survival is
strictly dependent on both TCR ligation and IL-2-derived signalling.
Regulatory T cells do not express IL-2 mRNA in vitro [36] or in vivo [7],
even after activation. In vitro, they proliferate when stimulated simultaneously
with APCs and external IL-2. The required IL-2 mediated signal can be recov-
ered by co-culturing regulatory cells with helper cells capable of producing
IL-2 [36]. Moreover, in vivo experiments have shown that the absence of
CD4CCD25�FoxP3� T cells capable of producing IL-2 leads to the absence
of regulatory T cell population and furthermore to the development of autoim-
munity [36]. Thus, in the model regulatory T cells do not produce IL-2. Like
helper T cells, they are activated after conjugation with cognate APCs. How-
ever, to proceed into the cell cycle, they need a cytokine related signal provided
exclusively by available IL-2.

5. Regulatory T cells inhibit IL-2 production by helper T cells upon their co-
localized activation on the APCs. This interaction might also inhibit other
processes on helper T cell proliferation.
Regulatory T cells have been shown to inhibit the proliferation of helper T cells
both in vitro [8,10,45,46] and in vivo [6,47,48]. In vitro, this interaction requires
cell to cell contact between Regulatory T cells, Helper T cells and APCs [8,
10, 46, 49]. This interaction reduces IL-2 production and mRNA expression by
CD4CCD25� T cells [8, 10]. However, regulatory T cells have been shown to
control autoimmunity [6, 47] and to inhibit in vivo expansion of CD4CCD25�
T cells from IL-2 or IL-2R KO mice [48], suggesting that inhibition is more than
just suppression of IL-2 production.
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Accounting for the suppressive interaction exerted by regulatory T cells over
the helper T cell is the core of the crossregulation model [28, 50]. In that model
suppression was considered as dependent on multicellular conjugate formation.
That is, helper T cells activation is assumed effective only when these cells
are conjugated to APCs that are not simultaneously conjugated to regulatory
T cells. However, as discussed in [27], such a modelling strategy accounts for
many detailed mechanisms of suppression, which assume that suppression oc-
curs upon the colocalized activation of helper and regulatory T cells. The two
model variants in this chapter use the latter formalism to treat suppression. The
first model variant assumes that suppression exerted by regulatory cells does not
affect the rate of helper T cell activation (transitions from resting to activated
state), but does affect the burst of IL-2 production associated with it. The second
model variant assumes, however, that suppression does reduce the activation rate
of helper T cells, also affecting IL-2 production.

6. IL-2 signal upon ligation to specific receptors which are differentially
expressed on helper and regulatory T cells.
In the model, a single class of IL-2 receptor is included, resembling the high
affinity form of the receptor, which is the most relevant for CD4C T cell biology.
The numbers of IL-2 receptors on helper and regulatory T cells in different
activation states (resting, activated and cycling) are controlled by independent
parameters, which may be chosen to fulfil desired biological constraints. Sig-
nalling through IL-2 receptors is taken to be equivalent to its binding to IL-2. The
model equation computes the mean number of receptors bound per cell, for each
cell type at a given time. The fraction of particular cells taking action, depending
on the IL-2 derived signal, is computed with a sigmoid function (a Hill function)
of the mean level of bound IL-2 receptors per cell. The sigmoid type of function
was selected following in vitro studies [51], which have shown this type of dose
response curve for activated T cell proliferation in response to external IL-2.

The signalling machineries of helper and regulatory T cells are assumed to be
similar. Thus we use the same sigmoid type of function for these cells: i.e with
a similar value of Hill coefficient h. Differences between IL-2 signalling on
these cell types are assumed to rely mainly on their differential expression of
IL-2 receptor and in the value of the control parameters SE and SR which set the
sensitivity threshold of each specific cell type to the signal. In the case of helper
T cells, IL-˛ is assumed to provide an additional signal, which is equivalent to
the IL-2 mediated signal. Therefore, we modelled the presence of a constant
level of this cytokine in the system as equivalent to the signalling through a fixed
number of IL-2 receptors.

7. IL-2 is internalized and degraded upon ligation to its receptor.
In vitro kinetic experiments have shown internalization of IL-2 by T cells [18].
A fraction of the internalized IL-2 is recycled back, bound to an ˛ chain of the
receptor, while another fraction is degraded along with the ˇ and � chain of
the receptor [19,52]. Mathematical models [18] and experiments have estimated
rates of internalization and degradation of 0:04 min�1 [19] and 0:035 min�1

[53]. Consequently, the model includes, in the equations for IL-2 dynamics,
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a degradation term proportional to the total number of IL-2 molecules bounded
to the receptors. This term sums the net effect of internalizing and recycling IL-2
at the cell surface. Different cell types may have different IL-2 degradation rates.

8. Processes, such as diffusion inside the Lymph Node, IL-2 association and
dissociation to receptors, or T cell conjugation and dissociation from APCs,
are assumed to be quasi steady-state equilibrium.
Characteristic free movement of T cells inside the lymph node has a typical
observed velocity of 10 �m/min [54]. Thus if the diameter of a Lymph Node is
around 1 mm, a lymphocyte can go through it in less than 2 h. IL-2 association
and dissociation to its receptor is a process with a time scale of seconds, while
T cell conjugation to APCs can last for around 1 h [54]. These processes are,
in any case, faster than those cellular processes in the model, which alter T cell
population sizes, for instance cell proliferation (8–12 h) [55–58] and cell life
span (at least 7 days). Quasi steady-state assumptions are common in mathe-
matical biology [59]. They rely on identifying fast and slow processes in the
same dynamics. The approximation allow then to uncouple the fast and slow
dynamics, essentially by following the slow dynamic with ordinary differential
equations, where the variables of the fast dynamics are computed at equilibrium
as function of the slow dynamical variables for each given time. Quasi steady
state assumptions were already included in the crossregulation model [28],
taking T cells movement and conjugation to APCs as the fast dynamics process.
In the models here, this assumption is extended by assuming processes of IL-2
diffusion and its binding to IL-2 receptor also as fast processes.

Equations for the Dynamics of T Cell Population
in the Lymph Node

The model equations for the dynamics of CD4C helper (E) and regulatory (R) T cells
are:
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Variables and parameters are defined in Tables 15.1 and 15.2. Note that, two model
variants are encoded in these equations, being its realization dependent of the value
of switching parameter 
.

Equations (15.1)–(15.6) represent the following processes and interactions which
implement models postulates (see Fig. 15.1):

(a) Resting E and R cells are produced by an external source term, the thymus [first
term of (15.1) and (15.4)]; They die at a constant rate [last term of (15.1) and

Table 15.1 Description of model variables and intermediate quantities

Item Description

Independent variables

EN ; EA; EC Total number of resting, activated and cycling E Cells
RN ; RA; RC Total number of resting, activated and cycling R cells
IL-2 Total number of IL-2 molecules in the Lymph Node

Intermediate quantities

EB
N ; EB

A ; EB
C Total number of resting, activated and cycling E Cells conjugated to

APCs
EB

T D EB
N CEB

A C EB
C

EF
N ; EF

A ; EF
C Number of resting, activated and cycling E cells not conjugated to the

APCs (note that, free cellsD total cells-conjugated cells)
RB

N ; RB
A; RB

C Total number of resting, activated and cycling R Cells conjugated to
APCs

RB
T D RB

N C RB
A CRB

C

RF
N ; RF

A ; RF
C Number of resting, activated and cycling R cells not conjugated to the

APCs (note that, free cellsD total cells-conjugated cells)
IL2

EN

B ; IL2
EA

B ; IL2
EC

B Mean number of IL-2 molecules bound per cell, respectively for the
resting, activated or cycling E cells

IL2
RN

B ; IL2
RA

B ; IL2
RC

B Mean number of IL-2 molecules bound per cell, respectively for the
resting, activated or cycling R cells

IL2T
B Total IL-2 bound to receptors (D IL2

EN

B CIL2
EA

B CIL2
EC

B CIL2
RN

B C
IL2

RA

B C IL2
RC

B )
IL2F Number of IL-2 molecules not conjugated to the receptors (D IL2 �

IL2T
B )
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Table 15.2 Description of parameters

Parameters Description Value

�E , �R Influx rate of new resting E and R cells from the
thymus

10�2; 10�2

A; s Number of antigen presenting cells (APCs) and
conjugations sites for T cells on them

105; 6

KE
A ; KR

A Activation rate for resting E and R cells conjugated
to APCs

0:69 h�1; 0:09 h�1

KE
P ; KR

P Division rate for cycling E and R cells 0.17 h�1

KE
S ; KR

S Deactivation rate for activated E and R cells 0.69 h�1

KE
d ; KR

d Death rate for free resting E and R cells 0.004 h�1

˛ Fraction of activated E and R cells that return to the
resting state without receiving successfully the
IL-2 related signal

0.95

Il˛ Level of homeostatic cytokine, additional to IL-2,
that the activated E cells, but not the R cells, can
use to become cycling cells

250

SE; SR Sensitivities thresholds for E and R cells to
cytokines signal

500


 Switch parameter that determines the existence
(
 D 1) or not (
 D 0) of direct regulation by
the R cells of the activation of E cells

0, 1

�i External influx of IL-2, typically used to simulate
treatments

0.002

Ki
P Rate of IL-2 production by helper cells upon

activation
45.38 h�1

Ki
d Degradation rate of IL-2 not conjugated to its

receptor
0.138 h�1

KE
in; KR

in Internalization/degradation rate of IL-2 by E and R
cells

610�10min�1

RI EN ; RI EA , RI EC Number of IL-2 receptors in each resting, activated
or cycling E cells

0, 103; 103

RI RN ; RI RA , RI RC Number of IL-2 receptors in each resting, activated
or cycling R cells

103; 104; 103

(15.4)]; and they become activated following conjugation to APCs [second term
in (15.1) and (15.4), and their complementary terms in (15.2) and (15.5)]. The
activation process can be inhibited for a helper T cell (model case 
 D 1) if a
regulatory T cell is conjugated on the same APC. Note the factor inversely pro-
portional to the total number of R cells bound to APCs (RB

T ) which is included
on the activation terms for the helper cells. The mathematical form of this factor
follows the formalism developed in [60].

(b) The activated E and R cells require enough cytokine-derived signals to become
cycling cells [first terms on (15.3) and (15.6)]. The activated R cells receive this
signal only from IL-2, while the E cells could also use an unknown homeostatic
cytokines referred as IL-˛. In the absence of enough cytokine derived signal a
fraction ˛ of the activated cells revert to the resting state [see the fourth terms
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Fig. 15.1 Diagram of helper (E) and regulatory (R) T cells life cycle in the model. New resting E
(EN ) and R (RN ) cells are constantly generated by the thymus. These resting T cells are activated
by interaction with their cognate APCs (upon conjugation to APCs). During activation the E cells
produce IL-2, although the whole process can be inhibited by the presence of co-localized R cells.
Activated E (EA) and R (RA) enter cell cycle (becoming cycling cells) when receiving enough
signal from IL-2, or another external cytokine (IL-˛) in the case of E cells. In the absence of
enough cytokines, activated T cells become deactivated, a fraction ˛ return back to the resting
state an the fraction (1-˛) simply die. Cycling E (EC ) and R (RC ) cells divide at a constant rate
generating two new resting E or R cell respectively. The process related to T cell conjugation and
deconjugation to APCs (processes inside dashed squares) are assumed to be fast and are modelled
in quasi-steady state equilibrium

of (15.1) and (15.4)] and the remaining fraction (1-˛) simply die. The fraction
of activated T cells getting enough cytokine derived signal to proceed with the
cell cycle at any given time is computed with a sigmoid function of the mean
number of bound IL-2 receptors per activated cell. This sigmoid function con-
tains parameters SE and SR to set different sensitivities thresholds, respectively
for E and R cells, to the delivered signal. The cycling E and R cells divide pro-
ducing two new resting cells with constant rate [last terms of (15.3) and (15.6)
and third terms in (15.1) and (15.4)].

The numbers of helper and regulatory T cells conjugated to APCs (EB
N ; EB

A ; EB
C ;

RB
N ; RB

A ; RB
C ) are computed in quasi-steady state equilibrium following postulate 8.

Briefly [28] equations for the conjugation and deconjugation of T cells to APCs
(see Fig. 15.1) are formulated, assuming these individual processes obey first-order
kinetics events with characteristic association and dissociation rates. Then, in virtue
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of the fast time scale of these processes, the equations are taken to equilibrium, for
a fixed number of T cells of each given type at time t , obtaining the following set of
equations:

KE

VLN

D EB
l

EF
l

F

KR

VLN

D RB
l

RF
l

F
F D sA �

X
l

EB
l �

X
l

RB
l ;

where the label l takes values denoting the functional states of the T cells: lDN rest-
ing state, lDA activated state and lDC cycling state; KE , KR are the equilibrium
conjugation constant to APC sites for helper and regulatory T cells .KE D KR D
10�9L � cell�1/I VLN is the volume of the lymph node. This set of algebraic equa-
tions is solved numerically to obtain the number of conjugated T cells of each type
as a function of model parameters and independent variables.

Model Equations for the Dynamics of IL-2 in the Lymph Node

The dynamics for IL-2 molecules is given by the following equation:

dIL2

dt
D �i C K i

pEB
N

 
1 � RB

T

sA

!.s�1/

� K i
d IL2

� KE
in

	
IL2

EA

B EA C IL2
EC

B EC




� KR
in

	
IL2

RN

B RN C IL2
RA

B RA C IL2
RC

B RC



I

Variables and parameters are defined in Tables 15.1 and 15.2. This equation consi-
ders that (see Fig. 15.2):

1. IL-2 is produced by helper T cells upon activation (second term). This IL-2 pro-
duction can be inhibited by the co-localized activation of regulatory T cells (note:
the part of this term, which is inversely proportional to the total number of regu-
latory cells bound to APCs in the system, RB

T );
2. That IL-2 is degraded spontaneously most likely because of unspecific consump-

tion by non-T cells or because of migration out of the lymph node and renal
elimination (third term in the equation);

3. IL-2 is also degraded by E and R cells, after being internalized in the form of
complexes with its receptor (fourth and fifth terms).

The mean number of IL-2 molecules bound to the receptors per cell in each cell
type is computed in quasi steady-state equilibrium. For this, the parameter RI Xl

is defined as the number of IL-2 receptors a cell of type X in the state l has on
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Fig. 15.2 IL-2 interaction cycle in the model. IL-2 is produced as a burst upon E cells activation
on cognate APCs. This production of IL-2 can be inhibited by the presence of co-localized R cells.
IL-2 is conjugated to the receptor (IL2r) at the E or R cell’s surface, being subsequently inter-
nalized and degraded. IL-2 is further degraded in model because of renal elimination or because
of internalization/degradations by non-T cells. The processes of IL-2 association and dissociation
from IL-2 receptors (processes inside dashed squares) are assumed to be fast and are modelled in
quasi-steady state equilibrium

its surface. Then the following equations are written down, for the formation and
dissociation of IL-2/IL-2-receptor complexes:

dIL2F

dt
D �kI

on

IL2F

�
RI T � IL2T

B

�
.VLN /2

C kI
off

IL2T
B

VLN

dIL2T
B

dt
D kI

on

IL2F

�
RI T � IL2T

B

�
.VLN /2

� kI
off

IL2T
B

VLN

and

RI T D RI EAEA C RI EC EC C RI RN RN C RI RARA C RI RC RC :

Where, imposing the condition of equilibrium, the total amount of bound IL-2
(IL2T

B ) is computed as:

IL2T
B D KI .IL2 C RI T / C VLN

�
�
q�

KI .IL2 C RI T / C VLN

�2 � 4.KI /2IL2RI T

2KI
;

where KI D kI
on/kI

off
is the affinity of IL-2 for its receptor .KI D 1011M�1/ and

VLN is the volume of the lymph node. Finally, the mean number of IL-2 receptors
bound to IL-2 per cell for each cell type is obtained as:

IL2
El

B D RI El

RI T
IL2T

B IL2
Rl

B D RI Rl

RI T
IL2T

B 8l 2 fN; A; C g:
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Parameter Values Used in Simulations

The analyses performed in this chapter are mostly qualitative and therefore describe
properties of the models which do not rely on particular parameter values. However
in order to minimally test the realism of our model behaviour, and to provide figures
with values for the different variables with have a clear biological meaning, we have
used the parameter set provided in Table 15.2. This particular set of parameter values
was estimated using the experimental data and biologically reasonable assumptions
as explained on [29]. All simulations were performed using software Mathematica
4.1 from Wolfram Research Inc.

Dynamical Properties of the Models

The models in this chapter are primarily used to study the dynamics of polyclonal
CD4CCD25CFoxP3C (Regulatory) and CD4CCD25�FoxP3� (Helper) T cells
populations which interact, in the lymph node, where multiple self-antigens are
presented to the T cells, by a constant population of antigen presenting cells
(APCs). They study the dynamics of the immune system in the absence of in-
vading pathogens, when the CD4C T cells interact with normal body components
(self-antigens). The goal is to understand how the immune system is dynamically
organized, structured by this interaction with self antigens, and how such organi-
zation might determine its overall function. We focus on CD4C T cell dynamics
assuming, on the one hand, that the expansion of helper CD4 T cells implies an
increase of immune effectors functions, which are mediated by the CD4 T cells
themselves as well as B cells and CD8 T cells that cooperate with them. The expan-
sion of regulatory T cells, on the other hand, is assumed to induce tolerance with no
expansion of immune effectors.

In the following subsection, the main dynamical properties of the formulated
models are analyzed. The biological implications, of these properties, are discussed.
In particular, we pinpoint, how these models conserve the most relevant dynamical
properties of the crossregulation model [28], further gaining new interesting fea-
tures, which derives from the explicit introduction of IL-2 dynamics.

Steady State Analysis: Searching for Bi-Stability

A key dynamical property of the models is the existence of a parameter regime of
bi-stable behaviour, with two stable steady states of clear biological interpretation
(Fig. 15.3). That is:

– a steady state, which is interpreted as an immune/autoimmune state (Fig. 15.3a),
label IS), because the helper T cells (E) are substantially expanded out-competing
the regulatory T cells (R) from the system; and
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Fig. 15.3 Steady states obtained in numerical simulations of the model and their dependence on
nondimensional parameters. The graphs (a)–(c) show examples of kinetic evolution of the total
number of effectors T cells (ET D EN C EA C EC ), the total number of regulatory T cells
(RT D RN C RA C RC ) and the free IL-2 concentration (IL2F ), where the system evolves
into: (a) the immune/autoimmune steady state (IS), (b) the tolerant steady state (TS), and (c) the
reinforced tolerant steady state (rTS). The graph in (d) show five regions delimiting parameter
values of Ki

d and IL-˛, at which the system can evolve into the indicated types of steady states,
depending on the initial condition chosen in the simulation. The most relevant parameter region
is the bistable region (lower right region) where both the tolerant (TS) and the immune (IS) states
coexist in the system. The particular simulations in (a)–(c) used values of Ki

d and IL-˛ inside
this bistable region (Ki

d D 0:138 h�1, IL-˛ D 250), but differ in the initial number of resting
regulatory T cells and the size of the external source of IL-2 ((a) RN .0/ D 50; �i D 10�6;
(b) RN .0/ D 2500; �i D 10�6; (c) RN .0/ D 2500; �i D 105). Other parameter values were
taken from Table 15.2. The remaining initial conditions were taken as EN .0/ D 500; EA.0/ D 0;

EC .0/ D 0; RA.0/ D 0; RC .0/ D 0; IL2.0/ D 80pM

– a second steady state, which is interpreted as tolerance (Fig. 15.3b), label TS),
because the helper and regulatory T cells coexist at low amounts, being the
expansion of the helper T cells actively controlled by the interaction with the
regulatory cells.

The existence of such a bistable parameter regime is one of the properties inherited
from the original crossregulation model [27, 28]. Two other types of stable steady
states are possible in the models, but in other parameter regimes. These states are: a
trivial steady state (label OS), where both helper and regulatory population collapse
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to very small values, which are proportional to the size of the external source term
of new resting T cells (the size of thymic output); and a steady state interpreted
as reinforced tolerance (Fig. 15.3c), label rTS), because the helper T cells collapse
to very small values dictated by thymic output, while the regulatory T cells are
expanded and sustained in the system by the influence of an external source of IL-2.

The existence of the bistable regime of parameters referred above is essential,
in these models, to properly explain the phenomenology of dominant tolerance,
particularly the results of in vivo adoptive transfer experiments. In these experiments
[61] the adoptive transference of different proportions of helper and regulatory
T cells, extracted from the lymph node of normal healthy mice, into immune de-
ficient mice (those primarily lacking T cells, i.e. Rag�=� or Nu�=�), results either
in the reconstitution of a normal immune system (tolerant to the self-body com-
ponents), containing both helper and regulatory T cells, or in the development of
autoimmune diseases which are mediated by the uncontrolled expansion of the
transferred helper T cells and the absence of the counteracting regulatory popu-
lations. Note that to simulate adoptive transfer experiment in the models, one will
have to start the system with no T cells (neither E nor R), but with a fixed popu-
lation of APCs. Then different proportions of the E and R populations have to be
introduced and the outcome of the system has to be simulated numerically. In other
to obtain as results that the system could either go to the autoimmune steady state
or to the tolerant steady state, such states have to exist and to be stable for the same
set of parameter values. That is the system have to be bistable.

Parameter Constraints for Biologically Reasonable Model
Behaviour

Only those parameter values leading to the bistable behaviour (lower right region
in Fig. 15.3d), will be compatible with the results of adoptive transfer experiments.
This argument can be then used to derive parameter constraints with interesting
biological meaning. Three of these parameter constraints, analytically derived in
[29] are:

SE

RI EA
>

SR

RI RA
I l˛ > 0 and KE KE

A

KE
d

> KR KR
A

KR
d

:

The first of these parameter constraints means that regulatory T cells have to be
more efficient using IL-2 at low concentrations than helper T cells. This can be
either because the regulatory cells have a larger sensitivity to IL-2 signal (low value
of SR) or a higher number of IL-2 receptors (large RI RA). This constraint is strictly
required in the first model variant (
 D 0), but it is dispensable in the second one
(
 D 1). However, current experimental data would most likely support its validity.
The main argument favoring that indeed regulatory T cells use IL-2 more efficiently
than helper T cells, is that they naturally over express the alpha chain of the high
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affinity receptor for this cytokine [62]. Interestingly, upon activation the helper cells
also up regulate this alpha chain of the receptor, but always to a lessser extent than
their activated regulatory counterparts [62]. Moreover, in vitro studies have shown
that regulatory T cells can capture, internalizes and degrades IL-2 more efficiently
than helper T cells [63], supporting that indeed this over expression of the receptor
can result in a more efficient capture of the IL-2.

The second parameter constraint expresses the need for a cytokine, alternative
to IL-2, that can promote helper T cell proliferation and survival. This constraint
is strictly required for both the first model variant (
 D 0) and the second model
variant (
 D 1), if the regulatory T cells are assumed equal or more sensitive to IL-2
than the helper T cells. Experimental support for the existence of such alternative
cytokines comes, indirectly, from the observation both in vivo (IL-2�=� [38, 39];
IL-2R˛�=� [64]; IL-2Rˇ�=� [65]) and in vitro ([66–69]) of significant proliferation
and survival of IL-2�=� or IL-2R˛�=� or IL-2Rˇ�=� helper CD4C T cells. This
alternative cytokine has been proposed to belong to the � chain family of cytokine
[70], with candidates including IL-7, IL-15 and IL-21. In the models, however, the
absence of this cytokine prevents the existence of a tolerant equilibrium (lower left
region Fig. 15.3d). That is, for low values of IL-˛ only the immune or the trivial
immune state could exist, predicting a severe effect of knocking out this cytokine
in the peripheral CD4 T cell compartment. Actually the KO animal is expected to
be either autoimmune (falling into the autoimmune steady state) or to have few
T cells in the peripheral lymph nodes (falling into the trivial immune state). Of
the candidate cytokines, only IL-7 has been shown to have an important role in
peripheral CD4C T cell dynamics. IL-7 knockout mice have no peripheral T cells
[41, 42], and moreover prevent the homeostatic proliferation and accumulations of
freshly-transferred naı̈ve CD4C T cells [42]. Therefore, the models strongly suggest
IL-7 as the likely � chain family cytokine that supports the proliferation and survival
of peripheral helper CD4C T cells in conditions of IL-2 limitation. Other � chain
related cytokines might contribute, as well, to helper T cell proliferation, but perhaps
in more specific situations or in more specific CD4C T cells subsets.

The third and last parameter constraint means, on biological grounds, that helper
T cells must expand faster than their regulatory counterpart on conditions of IL-2
excess, either because helper T cells have a faster activation rate (large KE

A ); or a
larger capacity to E conjugate to the APCs (large KE ), or a larger live spans (low
KE

d
). This parameter condition is strictly required by the first model variant (
 D 0)

and is most likely required in the second model variant (
 D 1), if the regulatory T
cells are assumed equal or more sensitive to IL-2 than the helper T cells. To our
knowledge there are no direct experimental observations supporting or invalidating
this parameter constraint. An indirect observation suggesting, perhaps, that helper
T cells might indeed expands faster in vivo than regulatory T cells is that, in typical
adoptive transfer experiments, regulatory and helper T cells are mixed in 50 W 50

ratio to recover a final tolerant animal (an autoimmune disease free animal). The
ratio of this mixture is heavily biased in favor of regulatory T cells, compared to
the 10 W 90 ratio (R W E) in the normal or reconstituted tolerant mice. A simple
explanation for the necessity of such a bias is that one has to give advantage to the
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regulatory T cells to compensate the larger expansion capacity of the helper T cells
if autoimmunity is to be prevented. Nevertheless, a simple direct experiment can
be designed to test some aspects of this constraint. For instance, the kinetics of
proliferation of mouse CD4CCD25�FoxP3� and CD4CCD25CFoxP3C T cells can
be compared, stimulating them in vitro with anti-CD3CAPCs and supplementing
different concentrations of human IL-2, while blocking endogenous mouse IL-2
with commercial mAbs S4B6.

Model Dependence on the Level of Cognate APC Stimulation

Other key properties of the models in this chapter, inherited from the crossregula-
tion model [27], rely on their peculiar dependencies on the level of cognate APC
stimulation in the system, via the number of cognate APC in the lymph node, model
parameter A.

The first important component on this dependence is that the bifurcation diagram
of model steady states, with the value of parameter A, shows three qualitatively
different regions (Fig. 15.4a):

– There is an initial region of low values of parameter A (region I), where neither
the immune nor the tolerant state can exist

– There is an intermediate range of values of A (region II) where the immune but
not the tolerant state can exist

– There is a final range for higher number of APCs (region III) where the system
is bistable and both the tolerant and immune state can exist
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Fig. 15.4 Dependence on APC numbers. The graph (a) shows bifurcations diagram of model
steady states with the number of APCs in the system. Dashed line indicates the total number of
T cells (ET C RT ) in the immune state (IS); the solid line indicate the total T cell number in
the stable tolerant state TS; and the dotted line give the total T cell number in an unstable saddle
node state US. The regions I, II and II indicated in the graph exhibit different model dynamics as
discussed in the main text. The graphs (b) and (c) show kinetic evolution of the total number of
effectors (ET ) and regulatory (RT ) cells and the free IL-2 concentration (IL2F ), when starting
in the tolerant steady state reached in Fig. 15.3b. The number of APCs is increased 100 times.
(b) Illustrate the effect of an abrupt increase that break the pre-existent tolerance and take the
system into an immune steady state. (c) Illustrate the effect of a slow increase where T cells are
expanded but tolerance is always preserved. Vertical arrows indicate the starting-point of the APCs
increase in the simulation and the inserted graphs show the particular kinetics of the APCs number
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Such bifurcation structure is critical to argue an impact of these models [27] in
dynamically partitioning T cell repertoires based on the interaction with different
self-antigens, which might reach different levels of presentations by the APCs.
Briefly, the models, like the crossregulation model, proposes that the composition
of peripheral T cell repertoire, in terms of the proportions of regulatory and helper
T cells, for each particular T cell clone (TCR specificities, recognizing the same
antigens), is determined both by the initial proportion of regulatory to helper T cells
from the thymus and the peripheral selection mediated by their interactions with
cognate APCs (those ones presenting self-body components). Only for those T cell
clones recognizing a sufficiently large number of cognate APCs, a tolerant steady
state can be attained in the periphery, sustaining a large number of regulatory T cells.
Therefore the peripheral T cell repertoire will be dynamically partitioned [27] by
these interactions, into at least two subsets of clones: Those T cell clones recog-
nizing high level of self-antigen in the APCs, which will contain many regulatory
T cells and therefore enforce tolerance to self-body-components, and those clones
recognizing lower levels of self-antigens in the APCs, which will be enriched of
helper T cells and could them be used for mounting effective immune reactions to
newly incoming antigens (those from pathogens).

The second important aspect of the dependence of the models with parameter
A, is that, in these models, an abrupt (Fig. 15.4b), but not a slow (Fig. 15.4c), in-
crease in the number of APCs, in simulations which have being parameterized inside
the bistable parameter regime and have been initialized in the tolerant steady state,
can drive the system into the immune steady state. This property is relevant to ar-
gue [27, 71] a cooperative dynamic interplay between the innate and the adaptive
immune system components in the T cell response to incoming pathogens or well-
adjuvated vaccines. Briefly, innate immune system is composed of several subsets
of immune cells (non T cells) that have receptors detecting specific pathogens com-
ponents and triggering the fast maturation of precursor of the antigen presenting
cell, which process and present the specific antigens of the pathogens to the T cells.
Therefore, in the models, as in the crossregulation model, the fast increase in the
number of APCs induced by the activation of innate immune system (inflammation)
facilitate the induction of the immune response by helper T cells, since it weaken the
activity of any possible pre-existent regulatory T cells. Interestingly, this property
of the models, also explains a phenomena known as adjuvant induced autoimmu-
nity [71], where in some animal models the injection of adjuvant or the infection
with some specific pathogens, which contain many substance able to activate in-
nate immune system, causes the induction of autoimmune disorders as arthritis. In
contrast, other natural variations in the level of antigen presentation (driving slow
variations on APCs numbers), like those induced by developmental chains in self
component concentrations (i.e. the expression of some hormones in the puberty),
which do not involve inflammation and are gradual (slow kinetics) will not facilitate
immunity.
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Local Versus Global Regulation

Perhaps the most relevant theoretical aspect of the models presented in this chapter
is that the introduction of IL-2 in T cell dynamics breaks the local/specific character
of interaction in the original crossregulation model. In the cross regulation model
all the interactions required co-localizations of helper T cells, regulatory T cells and
APCs. The locality of these interactions implies at least partial specificity, because
T cell clones recognizing APCs that present different sets of antigens will never
interfere with each other. However in the models analyzed here, since IL-2 is shared
inside the lymph node, different T cell clones in the same lymph node will use it
in common and therefore will interfere with each other’s dynamics. To study the
implication of the mixture of local/specific and non-local/unspecific interactions in
the models, this section explores the situation of two set of APCs (A1 and A2)
recognized by two different clones containing both helper and regulatory T cells
(E1; R1 and E2; R2) which share the same lymph node. That is sharing the same
pool of IL-2 in the lymph node. In particular, we simulate a system were R1 and
R2 cells are set to initially control the E1 and E2 populations (in their respective
tolerant states), but the number of APCs of type 1 (A1) is abruptly increased. We
analyze them, how responses induced by a perturbation directed towards antigens
on APCs of type 1 might influence the response to antigens on APCs of types 2.

In the first model variant, where regulation is mediated only by competition for
IL-2 (case 
 D 0), the response to APCs of type 1 and of type 2 are fully coupled
to each other. Therefore it is impossible to break tolerance expanding an immune
response to APCs of type 1, without breaking tolerance in response to APCs of type
2. An illustration of such coupling is given on Fig. 15.5a, where an abrupt increase in
A1 values is shown to induce the expansion of both E1 and E2 cells, with a conse-
quent elimination of both R1 and R2 cells. The absolute character of this dynamical
coupling was formally proved on [29]. On biological grounds this dynamical cou-
pling will mean that all clones inside a given lymph node will have to be in the
same dynamical state. If one particular clone expands the helper T cells, reaching
the immune state, then all the other clones in the same lymph node will also have
to reach the immune state. Moreover, to keep one clone in the tolerant state, domi-
nated by regulatory T cells, every clone in the same lymph node will have to be in
the same state. Therefore, this sort of global coupling of the response of different
clonal specificities is obviously unrealistic, since tolerance and immunity do coexist
toward different antigens in the real immune system. An argument to overcome this
problem is to claim further locality on the use of IL-2 inside the lymph nodes. Cy-
tokines does not diffuse instantaneously and therefore might be preferentially used
close to its initial production site. However, it is difficult to defend such argument,
in this model variant, because competing for the paracrine IL-2 is precisely what the
regulatory T cells inside a given clone do to control their helper T cell counterpart.
Thus unless one find a way to argue a sorting in small local clusters inside the lymph
node of the APCs presenting different sets of antigens, the latter argument would be
unrealistic.



324 K. León and K. Garcı́a-Martı́nez

Fig. 15.5 Simulations of lymph nodes containing two sets of APCs (A1 and A2) recognized by
two different T cell clones (fE1; R1g and fE2; R2g). Figures shows the characteristic kinetic
outcomes obtained from simulations were R1 and R2 cells are set to initially control the E1 and
E2 cell populations (i.e. in their respective tolerant states), and the number of APCs of type 1 (A1)
is abruptly increased. (a) Result of simulation for model variant 
 D 0, where the breakdown of
tolerance for clone 1 is always followed by a breakdown of tolerance for clone 2. (b) Result of
simulation for model variant 
 D 1, where tolerance can be broken for clone 1 keeping, and even
reinforcing, tolerance in clone 2. In these particular simulations the number of APCs of type 1
increase from it basal value 5:104 to 5:106 (a) and 107 (b), while the number of APCs of type 2
is maintained constant in 5:104 . In both graphs, the kinetics of free IL-2 is indicated by a dotted
curve, and the number of T cells of type 1 and 2 with continuous and dashed curves respectively.
Vertical arrow inserted in (a) and (b) indicates the starting-point of the increase of APCs of type 1

In the second model variant, which include, additionally to competition for IL-2,
a direct regulation of helper T cell activation by regulatory T cells (case 
 D 1),
the response to APCs of type 1 and of type 2 also influence each other. How-
ever in this case one can easily get mixed responses, such as the one illustrated
in Fig. 15.5b, where an abrupt increase of A1 values is shown to induce the ex-
pansion of E1 cells with a consequence elimination of R1 cells, but retaining an
expanded dominant population of R2 cells. Interestingly, as can be also observed
in Fig. 15.5b, the expansion of E1 cells reinforce the tolerance to antigens in APCs
of type 2, since it leads to a net increase of R2 cells, with a concomitant reduc-
tion of the E2 cells (this second T cell clone falls into a reinforced tolerant state
such as the one showed in Fig. 15.3c). Therefore, on biological grounds, for this
second model variant T cell clones inside the same lymph node interfere with each
others, but mixed immune and tolerant responses can be achieved. This property
solves the problem posed to the first model variant, suggesting the requirement of
some local/specific suppressive interaction between helper and regulatory T cells
for a biologically reasonable model behaviour. Moreover, in this model variant the
existence of an expanded immune response of a given clone could reinforce the tol-
erant state of other T cell clones in the same lymph node. This property does not
exist in the original crossregulation model and it is a direct consequence of the mix-
ture of local/specific suppressive interactions with non-local/unspecific interaction
in this model variant. This property is, in our view, biologically relevant since it
might help to focus an immune reaction in the immune system to some undesirable
foreign antigen, avoiding damage to some concomitant self-antigens that needs to
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be tolerated. Nevertheless a complete study of the implication of this new property
in the theoretical framework of this model will require a more complete study, in-
cluding in the model perhaps several T cell clones, allowing some crossreactivity
on their recognition of different APCs sets and taking into account the variability
of lymph node volume with the T cell content. Future studies might address this
issue, which could be intuitively expected to explain phenomena like epitope domi-
nance in immunity, antigen spreading in some cases of autoimmunity, which are all
phenomena that can not be explained by the original crossregulation model.

Overall the latter analysis suggests that suppression exerted by regulatory T cells
over the helper T cells can not be reduced to competition for IL-2 (case 
 D 0).
It further requires that the regulatory T cells inhibit helper T cell activation by
a mechanism involving some locality and therefore some level of specificity
(case 
 D 1). However, this conclusion does not mean that competition for IL-2
is irrelevant. It is quite probable that in some experimental system, the observed
suppression can be explained by such competition for IL-2. This notion might
reconcile some in vitro studies [7, 8] which have claimed an unspecific suppression
by regulatory T cells, with the bulk of data supporting the specificity of T cells
mediated suppression [72]. Interestingly, the analysis in this work further suggests
that the combination of competition for IL-2 with some local/specific inhibition of
helper T cell activation might confer some biologically relevant properties to the
modelled system.

The Effect of IL-2 Modulating Therapies

In this section, the effects of IL-2 modulating therapies are studied in the second
model variant (
 D 1), which according to the analysis in previous sections exhibits
a more realistic behaviour. Two classes of therapies are studied:

1. Therapies where IL-2 activity is increased, by injecting an excess of this cytokine
into the system. Such type of therapy is simulated by increasing the external
source of IL-2 molecules in the model (increasing the value of model parameter
�i ).

2. Therapies that limit IL-2 activity, by effectively reducing the availability of this
cytokine in the system, for instance, by using drugs that sequester IL-2 in circu-
lation or simply block its binding to the IL-2 receptor. This latter type of therapy
is simulated by increasing the degradation rate of IL-2 in the model (increasing
the value of model parameter Kd ).

In the following subsections, the effects of these therapies are explored in two par-
ticular treatment scenarios: Long term continuous treatments and acute (transient)
treatments. In each case, the impact of the dose of the applied treatment is deter-
mined, and the implications of the obtained results are discussed.



326 K. León and K. Garcı́a-Martı́nez

The Effect of Long-Lasting Modulation of IL-2

The effect of long term (continuous) treatments, which modulate IL-2 activity, are
simulated as a permanent change in the parameter values, �i or K i

d
, for the two

different types of therapies studied here. We explore whether changes in these
parameters compromise the existence and/or the stability of model steady states
equilibrium. In particular, those ones interpreted, in previous sections, as the tolerant
(Fig. 15.3b) and the immune/autoimmune (Fig. 15.3a) states of the modelled sys-
tem. To this end, the bifurcation diagrams of model steady states with the parameter
�i and K i

d
, were computed in a broad, but reasonable, range of values for the

remaining model parameters. The typical (robust) structure found on these bifur-
cation diagrams is shown in Fig. 15.6. There, different regions of the parameter
space, defined according to the subset of model stable steady states that exist
in the system, are identified and labelled. The region labelled B corresponds to
parameter values leading to a bistable regime, with a stable tolerant state and a
stable immune/autoimmune state. This parameter regime, following the discussion
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Fig. 15.6 Two dimensional bifurcation diagrams for model steady states, with the value of
treatment-related parameters Ki

d (a) and �i (b) versus the parameter IL-˛. Continuous lines in
the graphs demark regions of parameter values, which differ on the set of stable steady states exist-
ing in the modelled system. Region label B is a parameter region of bistable behaviour where the
tolerant (TS) and the immune (IS) steady states exists; Region label I is a parameter region where
only the immune (IS) steady state exists; Region label T is a parameter region where only the toler-
ant (TS) steady state exists; Region label B1 is a parameter region of bistable behaviour, where the
reinforce tolerant (rTS) and the immune (IS) steady states exists; Region label C1 is a parameter
region of bistable behaviour, where the trivial (OS) and the immune (IS) steady states exists; and
Region label O is a parameter region, where only the trivial (OS) state exist. The specific graphs
given in (a) and (b) were computed, using the default set of parameter provided in Table 15.2,
except for the parameters indicated in the axes. They show the typical form/structure observed in
these bifurcation diagrams for many other parameter values computed. The small arrows in the
graphs indicate transitions in parameter space induced by specific treatment as discussed in the
main text
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in previous sections, is the expected situation in normal immune systems in the
absence of perturbation, treatment or diseases. Thus, the model system is assumed
to be parameterized inside this region before the application of any treatment. Other
parameter regions in Fig. 15.6 could be only reached in the model by perturbations
(like the one induced by long lasting treatments) which modify particular parameter
values, conditioning certain types of responses as result in the system. In particu-
lar, interesting cases could be, (1) Perturbations taking the system into parameter
region label T, which lead to reinforcement or reestablishment of tolerance, since
inside this parameter region only the tolerant state or the reinforced tolerant state
exist and/or are stable; and (2) Perturbations taking the system into parameter re-
gion label I, which unavoidably lead to immune reaction, since in this region the
immune/autoimmune state is the only stable steady state.

Based on the diagrams of Fig. 15.6, the effect of long-lasting treatments modulat-
ing IL-2 activity can be analyzed. It can be seen, that IL-2 depletion treatments have
a strong, dose-dependent impact on the system dynamics, by changing the structure
of possible steady states. This treatment could lead, at intermediate doses (the dose
being assumed proportional to the magnitude of the increment in K i

d
value), to the

unavoidable reinforcement or reestablishment of tolerance, by taking the system into
parameter region T (see transition p1–p2 in Fig. 15.6a). However, at higher doses
(see transition p1–p3 in Fig. 15.6a) this treatment leads to immunity/autoimmunity,
by taking the system into parameter region I. The latter dependence, is the case
for low values of IL-˛ (transitions p1–p2–p3 in Fig. 15.6a), because for larger
values of IL-˛ the study treatment could only induce immunity, with a direct tran-
sition between parameter regions B and I, without ever passing through region T
(transition p4–p5 in Fig. 15.6a). In sharp contrast to the latter case, treatments in-
creasing IL-2 activity have a negligible impact on the structure of steady states of
the system. They could at most take the system, at high dose, into region B1 (see in
Fig. 15.6b transition p1–p2), where the system remains bistable, with a stable im-
mune state (as in region B) and a stable state of reinforced tolerance (very similar to
the tolerant state of region B, see Fig. 15.3c). This result suggests, in practical terms,
that this latter type of treatment would neither break tolerance inducing immunity
nor reestablish tolerance in ongoing immune/autoimmune response. It must likely
further expand the preexistent class of response in the system either tolerance or
immunity.

The bifurcation analysis carried out in this section provides intuition on the po-
tential effect of different treatments in the modelled system. It predicts a strong
impact of IL-2 depletion treatments, which could forcedly take the system into the
tolerant or the immune/autoimmune steady state, depending on the treatment dose
and exact model parameterization (values of IL-˛). It predicts, in contrast, a dis-
crete, rather negligible, effect of IL-2 addition treatments, which most likely left the
system in their starting steady state, either the tolerant or the immune/autoimmune
state. Despite its general value, bifurcation analysis, only give a rough approxima-
tion of the effect of desired treatments. They could hide kinetics effects of treatments
applications and, they only approximate long term effect of treatments that induce
permanent or long lasting change on model parameters. Real treatments, however,
typically induce a transient effect over the system. They transiently affect the value
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of some relevant parameter, which sooner or later returns back to its original value.
In the next sections, these limitations are overcome by simulating the effect of treat-
ment as transient perturbations in model parameters.

The Effect of Transient IL-2 Depletion Treatments

The effects of treatments that transiently reduce IL-2 activity are simulated here,
by a sudden (instantaneous) increase in the value of model parameter K i

d
(to take

the values K i
d

+ DosS ), which is followed by its exponential decay, towards its ini-
tial value K i

d
. Such exponential decay, on treatment effect, is assumed to account

for the clearance of the used drugs and it is controlled in the simulations by pa-
rameter Ka (which set the rate of this decay). For instance, let’s say the drug is an
antibody, which sequesters IL-2 on circulation, then once injected into the system
this antibody will be cleared from it, with a typical clearance rate, Ka. The latter
treatment is applied in simulation, where the model has been parameterized inside
the parameter regime B of Fig. 15.6 and has been initialized either in the tolerant
or the immune/autoimmune steady state. The overall goal in these simulations is
to explore, if the applied treatment can trigger a switch of system steady state: a
switch from tolerant state to immune/autoimmune state or vice versa. The results
are illustrated on Fig. 15.7.

IL-2 depletion treatment applied in the context of an ongoing immune/ auto-
immune reaction (model initialized in the immune state) could reestablish tolerance
(Fig. 15.7a), if the dose of the treatment (value of DosS ) is large enough and the rate
of drug clearance (Ka) is low enough (Fig. 15.7b). This result can be qualitatively
explained using the bifurcation analysis of the previous section. Note that, this treat-
ment could take the system (by increasing parameter K i

d
) transiently into region T

(Fig. 15.6a), where tolerant state is the only steady state of the system. Thus, if the
clearance rate Ka is small enough, the perturbed system, will spend enough time
in region T, as to reach tolerant steady state. Then by the time the drug is fully
cleared, the system will be already locked into tolerant equilibrium. In consonance
with the latter analysis, the tolerating effect of IL-2 depletion is observed, only, for
low values of IL-˛.

IL-2 depletion treatments applied in the context of immune tolerance (model
set in the tolerant state), can breakdown this preexistent tolerance, inducing an im-
mune/autoimmune reaction (Fig. 15.7c). This effect is observed in a broad range
of parameter IL-˛ values, but with different dependencies of treatment efficacy
with the drug clearance rate Ka (Fig. 15.7d). For high values of parameter IL-˛,
the treatment requires a sufficiently slow clearance rate Ka to be effective (dashed
line Fig. 15.7d), but for lower values of IL-˛, its effectiveness is further restricted
to a window of intermediate K a values (solid line Fig. 15.7d). These treatment
effects and parameter dependencies can be explained from the bifurcation analysis
in previous sections. Note that, an increase in K i

d
values can take the system into

the region label I (where only the immune steady state exists), for a broad range
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Fig. 15.7 Result of numerical simulations of the effect of transient IL-2 depletion treatments.
The panels (a, c) show examples of kinetic evolution of the number of E cells, the number of R
cells and the concentration of free IL-2 (IL2F ) in model simulations, where the system is pa-
rameterized inside region B of Fig. 15.6 and initialized either in the immune steady state (a) or
the tolerant steady state (c), being then perturbed by transient increase of the value of model pa-
rameter Ki

d (see main text for details). Panel (a) illustrate the case in which the applied treatment
(DosS D 103; t1=2 D 7:6 weeks), induce a switch from the immune steady state to the tolerant
steady state. i.e. it reverts a pre-existence immune/autoimmune state, re-establishing tolerance.
Panel (c) illustrates the case, in which the applied treatment (DosS D 2:106; t1=2 D 5 days),
induces a switch from the tolerant steady state to the immune steady state. i.e. it induces an
immune/autoimmune response in an initially tolerant system. The panels (b) and (d) show the
dependence of treatment effects with the parameter DosS (proportional to the dose of the applied
drug) and t1=2 (proportional to drug clearance rate, Ka D ln2=t1=2), which control treatment ap-
plication in the simulations. These panels shows parameter conditions leading, upon treatment
application, either to immunity or to tolerance in a system initialized in the immune state (panel
b) or the tolerant state (panel d). In panel (d) the solid line divide parameter condition leading to
immunity or tolerance for a system with a low value of IL-˛ (D250) and the dashed line dose so
for a system with a higher value of IL-˛ (D400)

of IL-˛ values (Fig. 15.6a). However, for large values of Ka, the applied drug is
cleared so fast, that it does not affect T cell population dynamics, setting up a gen-
eral upper limit for the Ka values, which are compatible with effective treatment.
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Interestingly, for low values of IL-˛ treatment takes the system into parameter
region I (Fig. 15.6a transition p1–p3), but, it always pass through region T while the
drug is cleared (transition p3 to p2 in Fig. 15.6a). Therefore, if drug clearance is slow
enough, tolerance state is always reached inside regions T, setting up an additional
lower limit for Ka in this parameter case. Other relevant parameter dependence for
the predicted efficacy of IL-2 depletion treatments to induced immune/autoimmune
responses is obtained with the parameters �E ,�R, which sets the size of thymic
output in the model (Fig. 15.8). As thymic output is increased (keeping �E ,�R

constants) the effectiveness of the treatment is dramatically reduced (Fig. 15.8).
Actually, if thymic output became large enough, treatment effect is completely lost.
Such parameter dependence derives, qualitatively, from the dependence with �E ,�R

values of the amount of regulatory T cells, remaining in the system in the absence of
IL-2 induced by depletion therapy. The higher the size of thymic output, the higher
the number of R cells remaining in the system, and therefore the higher their ca-
pacity to prevent a driving of the system towards the immune state, once the acute
effect of IL-2 depletion has stopped.

Summarizing, the results here confirm those of the previous section, predict-
ing that IL-2 depletion treatments could be used in appropriate conditions both to
break a preexistent tolerant state, inducing immune/autoimmune reactions and to
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Fig. 15.8 The effect of thymus, on preventing the induction of an immune/autoimmune response
in an initially tolerant system, by IL-2 depletion treatment. The panel shows parameter conditions
(value of DosS and Ka) leading, upon IL-2 depletion treatment, either to immunity or to tolerance
in a system initialized in the tolerant steady state. The solid lines in the graph corresponds to
different interfaces between the immune and the tolerant outcome regions, for simulation which
differ on the indicated value of parameter �T D �E D �R. This parameter set the size of thymic
output in the model simulations. Thus, the graph shows, that the larger the size of thymic output
in the modelled system the smaller the region where immunity/autoimmunity could be induced by
treatment application
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render tolerant a preexistent immune/autoimmune system. These results, apparently
counter-intuitive and of potential practical implication, derive from the highly non-
linear relationship of IL-2 with CD4C T cell dynamics in the immune system.
Interestingly, these model predictions are indeed compatible with existent experi-
mental observations. On the one hand, the predicted capacity of treatments blocking
IL-2 activity to promote immunity, explains observations where monoclonal anti-
bodies, against IL-2, have been shown to promote effective immune responses to
tumors [13] and to induce autoimmune disease in mice [73]. In both cases, the
model explains the observed effects as being associated to the treatment capacity
to weaken regulatory cell activity, as argued by their original authors. Moreover, the
model explains the requirement of thymectomy in the induction of autoimmunity
as reported in [73], suggesting that the apparent tolerating effect of thymic output is
rooted in system dynamics, and might not be easily overcome by increasing the dose
of anti-IL-2 MAbs. Relevantly the model, further, predicts an ideal IL-2 depletion
scheme to enhance/optimize this treatment immune stimulatory capacity. This ideal
scheme will require sustaining a high constant concentration of the IL-2 depleting
drug in the system, for an initial long enough period of time, clearing it fast from
the system afterwards (as fast as possible).

On the other hand, the model predicted capacity of IL-2 blocking therapies to
reestablish tolerance in the context of ongoing immune/autoimmune reactions, is
less well documented in the literature. This prediction might explains experimental
data, supporting the use for the therapy [74, 75] of autoimmune diseases and some
instance of allograft rejection of non-depleting antibodies against CD25 (the ˛ chain
of IL-2 receptor), which do block IL-2 signalling in vivo. Moreover, this prediction
could also explain some experimental data, which show a positive effect of anti-IL-2
antibodies in the treatment of atherosclerosis (a disease of elderly people involving
inflammation in the arteries). However, one must be aware, that in none of the latter
observations a direct participation of regulatory T cells, as proposed by the model
here, has been proved. In any case this second model prediction is very interesting
from the practical perspectives for the treatment of autoimmune diseases. In partic-
ular, the fact the predicted treatment effect only occurs, in the model, for high drugs
doses and low degradation rates, provides interesting guidelines for its practical im-
plementation.

Simulating the Effect of IL-2 Injection Treatments

Treatments that transiently increase IL-2 levels in the system are simulated here as a
sudden, but transient increase of the value of model parameter �i , which stands for
an external source of IL-2. Two parameters are used to control treatment application.
The parameter DosI, which sets the total amount of IL-2 injected and the parameter
Ti , which sets the length of the time period in which the sets total amount of IL-2 is
administered. The study of this treatment, in model simulations, confirms the result
of previous sections, predicting that it is unable to induce a switch of preexistent
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Fig. 15.9 Result of numerical simulations of the effect of transient IL-2 addition treatments. The
panels (a, b) show examples of kinetic evolution of the number of E cells, the number of R cells
and the free IL-2 concentration (IL2F ) in model simulations, where the system is parameterized
inside region B of Fig. 15.6 and initialized either in the immune steady state (a) or the tolerant
steady state (b), being then perturbed by transient increase of the value of model parameter �i (see
main text for details). Panel (a) illustrates how the applied treatment (DosS D 104; td D 20 weeks),
slightly reinforce the pre-existent immune steady state, being unable to switch the system into the
tolerant steady state. Panel (b) illustrate, how the applied treatment (DosS D 103; td D 20 weeks),
reinforces the pre-existent tolerant steady state, being unable to switch the system into the tolerant
steady state

steady state at any dose (DosI) or timing Ti . When this treatment was applied in a
system with a preexistent immune reaction (initialized in the immune state), it was
unable, to revert the system to the tolerant state. Furthermore it promotes a tran-
sient slight expansion of helper T cells (Fig. 15.9a). Moreover, when the treatment
was applied to a previously tolerant system (initialized in the tolerant state) it tran-
siently, but significantly, reinforces the preexistent tolerant state, further expanding
the regulatory T cell population (Fig. 15.9b). The length of the transient effect in-
duced by the treatment relates directly to the timing of treatment application (value
of Ti ) as soon as the treatment is stopped the reinforcement effect is rapidly lost.

The latter results are somehow counter-intuitive, since, in this model where IL-2
is the key molecule in immune regulation, its external addition to the system appears
with little, or almost irrelevant, dynamical effect. However, the specific model pre-
dictions for this type of treatment are indeed compatible with existing experimental
observations and further provide a guide for its further practical application. On
one hand, the first model prediction, the reinforcement of ongoing immune reac-
tions by IL-2 addition, explains classical observations on in vivo animal models,
where IL-2 has been shown to augment immune reactions to viral infection [2]
and to well-adjuvated vaccines [3–5]. In these systems the immune response, in-
duced to the involved foreign antigens, which are controlled weakly if at all by
regulatory T cell activity, is further promoted by the injected IL-2. Furthermore,
the observed enhancement of immunity, in these experimental systems, might not
rely only on the model predicted expansion of helper CD4C T cells. It might also
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involve important direct effects of IL-2 on CD8C T cell and NK cells, which are
known to be relevant in many of these particular systems. In any case, the models
here will further predict that optimal application of IL-2 for the purpose of enhanc-
ing immunity, will be obtained when providing IL-2 after the immune reaction has
already started and not before, because some remnant of immune regulation might
still exist. On the other hand the second model prediction, the capacity of IL-2 ad-
dition to reinforce natural tolerance mediated by regulatory T cells, also explains
several experimental observations. In particular, it explains clinical data stating that
regulatory T cell populations are significantly expanded, both in cancer [11, 76] or
HIV [12] patients, treated with IL-2. Such effect might be related to the poor effi-
cacy observed in these clinical applications of IL-2. In the case of cancer, less than
20% of the treated patients show some anti-tumor effect, perhaps, according to the
model here, because a small fraction of the patients, happen to have a naturally pre-
existent immune response against tumor antigens, which could be further enhanced
by the added IL-2. In the case of HIV patients, IL-2 based therapy have led to the
recovery of CD4CT cell counts, but the patients do not seem to recover their ca-
pacity to fight general infections, perhaps, according to the model here, because
this treatment is simply reinforcing tolerance mediated by regulatory T cell activity.
Furthermore, this second model prediction also explains results in preclinical animal
models. It explains, for instance, that IL-2 injections can prevent allograph rejection
[77] and attenuate the induction of Experimental Autoimmune Encephalomyelitis
(EAE) [77]. Interestingly, as clearly expected from the model here, the latter effects
are observed for schemes of IL-2 applications where this cytokine is used in the
system before implanting the halogenic tissue or before vaccinating to induce EAE.
This is before there will be any ongoing immune reaction in the system, thus when
preexistent natural tolerance could be reinforced by the applied treatment.

Finally we would like to quote here the current accumulation of preclini-
cal data [78, 79] regarding the biological effects of immunocomplexes of IL-2
(AntibodyCIL-2). This novel therapeutic strategy has shown very interest results,
especially on the prevention of autoimmune diseases. This therapeutic strategy
seems to be more effective than therapies with IL-2 or antibody anti-IL-2 alone and
it has the extra dimension of the relevant role conferred to the immunocomplexes
by the particular site of the IL-2 recognized by the antibody. The model studied
here is not appropriate to study the effects of such relevant therapies, thus further
model development is currently on the way to address this issue.
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Chapter 16
A Physicist’s Approach to Immunology

Mario Castro

Abstract In this chapter some heuristic techniques borrowed from Physics are used
to formulate some hypotheses and validate them through available experimental
data. The main goal is to present a quantitative approach to motility and antigen
presentation from simple energetic and statistical arguments.

Introduction

How Biology Works

Biology is an experimental science: observations are made and put in the fundamen-
tal framework of some basic underlying principle. Most of the current knowledge
in the field has been achieved in the last 50 years (catalyzed by the discovery
of the DNA double helix structure). Traditionally, Biology problems have been
approached from two independent points of view: geneticists tried to unveil the fun-
damental mechanisms of the cell by expressing or inhibiting this or that gene and
analyzing what changes they produced. Alternatively, biochemists focus primarily
on proteins, their structure, or their interactions, to cite a few.

With the advent of DNA recombination techniques, both fields merged (in which
we now call Molecular Biology) and the synergy of both fields has been the respon-
sible of the explosion of knowledge since the mid-seventies. A similar pattern has
occurred in the last two decades with Theoretical Biology.

On the other hand, Physics and its practitioners (physicists) were comfortable
with the so-called reductionism: living bodies are made of organs, which are made
of tissues, which are made of cells, which are made of molecules, which are made of
atoms, who obey quantum mechanics. So, Physics explains everything! On the other
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hand, biologists claimed that the laws of Physics have not been able to explain even
the simplest living organism. These antagonistic points of view are, naturally, far
being completely true, and Theoretical Biology (in which biologists, mathemati-
cians and physicists have found a niche) has reached some successful milestones in
last years.

One of the aims of the book you are reading is to try to show that Theoretical
Biology, in general, and Theoretical Immunology, in particular, can be a crucial in-
gredient (perhaps a third leg in the study of Biology) in the field of Immunology and,
hopefully, it may be able to shed some light on what directions the experimentation
should go.

How Physics Works: How Physicists Work

An interesting question is if fundamentals laws in Biology can be put in a quantita-
tive mathematical predictable language so we can make Biology a science which is
a little more like Physics or Chemistry where we can actually analyze mathemati-
cally a given problem and make predictions. The great success of Physics in the last
century was that it was able to explain, in a quantitative way, all events known to
occur in the inanimate world. In contrast, as I mentioned above, it cannot explain
or predict any behaviour in even the simplest living organisms using those funda-
mental laws. The reason is that atoms or galaxies are intrinsically predictable, and
experiments are essentially reproducible. Thus, Physics formalizes the relationships
between those inanimate objects in the form of mathematical equations. These equa-
tions (or laws) are obtained combining experimental evidence and some intellectual
abstractions such as conservation laws or symmetries.

The reason why living systems are essentially unpredictable is that their interac-
tions with the environment are governed by nonlinear dynamical laws. Moreover,
cells (unlike atoms) are closer in essence to engineering devices: they accomplish a
specific function which cannot be predicted from its constituents (like the flight of
an airplane cannot be inferred from the knowledge of every screw, engine, or metal
sheet it has). In summary, a biology understood in terms of universal reproducible
laws simply doesn’t work.

But what about physicists? Well, behind the rigorous, precise and exact physi-
cal theories there are physicists which do not consider reductionism too seriously.
Thus, their main aim is to find the relationships between physical observables, pay-
ing attention to their relative scales, orders of magnitude and simplicity principles.
So, the structure of the nucleus is irrelevant to understand how a fish can swim or
knowing the amount of energy released by ATP does not really help to understand
the time needed for a mammal to mount an effective immune response. So the whole
is more than the parts. Prominent examples of this way of thinking can be found in
Physics. For instance, a fluid vortex or a phase-transition belong to this realm of
science where microscopic knowledge is not as important as collective behaviour.
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Theoretical Biology shares this viewpoint: the way in which it can be effective is
through the concept of hierarchy of biological entities: different scales need different
models and tools. Essentially, all the levels of description must be related, but this
separation of scales provides accurate descriptions of the phenomena and, more
importantly, with predictive power. In Biology perhaps the best we can do is to
obtain a coarse-grained description of the phenomena and put that description in the
form of a law. As an example, if we were able to write the number of T cells, NT in
a (mature) mammal as function of its mass, M , [1] in the form

NT D aM b; (16.1)

where a and b are positive constants, we would gain some insight about the differ-
ences between the immune system in mice and humans.

So, I want to emphasize that my aim in this chapter is to illustrate, naively, the
way in which Physics, or more precisely, physical tools can be applied as a first
approach to certain immunology problems. By naively I mean that detailed models
(based on, for instance, stochastic methods or differential equations) are still manda-
tory to really understand the underlying biological processes but, however, those
traditional models can be supplemented with some physically meaningful reason-
ing. Fortunately for the mathematician, those standard models will be presented in
subsequent chapters in companion with novel experimental results (fortunately for
the biologist).

A Naive Approach to Quantitative Immunology:
Divide and Conquer

The immune system is one of the most complex system in Biology. Globally, it
works with precision identifying a potential menace, preparing an adequate response
and eliminating it. Of course, a model of the whole system cannot be easily formu-
lated. Hence, we need to divide the problem in well-defined subproblems and, at the
same time, be able to draw a general picture in order to not lose perspective.

Following this programme, here I summarize some evidence that can help us to
make that division:

1. The immune system is formed by a hierarchy of biological entities

(a) At small scales, those entities are heterogeneous and posses a high degree of
specialisation (lymphocytes, leukocytes, . . . )

(b) At large scales, those entities can be described as (statistical) populations

2. Stability

(a) The cells and the whole body are open systems (energy and entropy are ex-
changed with the environment)

(b) The systems self-regulate (homeostasis)
(c) After an immune response it returns to a steady state
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3. Adaptation

(a) Adaptive amplification (populations)
(b) Antigen recognition (and presentation)
(c) Information (learning, memory, . . . )

4. Replication

(a) Evolution
(b) Adapted diversity
(c) Natural selection

This list is far from being exhaustive (or rigorous) but one can recognize dif-
ferent problems in Theoretical Immunology (such as clonal selection, lymphocyte
homeostasis, . . . ) but more importantly it stresses the fact that multiple scales are in-
volved in the process. Again, this hierarchy will help me to identify some problems
in which something quantitative can be said in very simple terms.

In this chapter I will focus on three different aspects (operating at different scales
of energy, length and time) of one of those problems: antigen presentation. The
sequence of events that I am interested in proceeds as follows:

– First, the lymphocyte and the antigen or the dendritic cell (DC) must meet.
– Subsequently, at least in the case of the dendritic cell, its surface needs to be

scanned by the T cell.
– Finally, the ligand (peptide-Major Histocompatibility Complex, pMHC) and the

T cell receptor (TCR) must fit.

These problems will be addressed with the use of some tools borrowed from
Physics: order of magnitude estimation, dimensional analysis, statistical partition
function,. . . .

Case Study: Motility and Antigen Presentation

Immunity depends crucially on how antigens are recognized by the cells of the im-
mune system. In order to do this efficient and accurately three conflicting conditions
have to be accomplished [2]: the number of presented peptides must be large; the
specificity of recognition must be large and, finally, the frequency of naive T cells
that can recognize a foreign peptide must also be sufficiently large.

Consider presentation: It occurs whenever an antigen (both in free or bound to a
presentation cell) meets a lymphocyte and a ligand on the former binds to a receptor
on the latter. Following our divide-and-conquer strategy, we recognize two inde-
pendent events: transport (meeting) and binding (chemical attraction). In chemical
notation, the reaction

X C Y $ Z; (16.2)
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where X is the antigen or dendritic cell, for instance, Y the immune cell and Z the
complex X C Y , can be split into

X C Y $ XY $ Z; (16.3)

where the first reaction contains the transport information and the second one the
binding information. Let us consider both mechanisms separately.

Cell Motility

Cells (in general) are small bodies with sizes ranging from a few to a few tens of
microns (�m), namely 10�6 � 105 m. The transport may be persistent (directed) or
diffusive (random). Let us explore the differences.

In the first case, the cells are directed towards larger gradients of some substances
(generically referred to as chemokines). The higher the gradient the higher the force
experimented by the cell.

On the contrary, if cells (or large molecules) move diffusively, they may be
locally in thermal equilibrium with their environment. Thus the erratic motion
(fluctuation) is closely related to the resistance of the environment to motion (dissi-
pation). Then, one can determine the diffusivity (assuming that the cell is an sphere
of radius R) as [3]:

D D kT

6��R
: (16.4)

Thus, the diffusion coefficient or motility (D) emerges as the capacity to extract
thermal energy from the environment and dissipate it producing motion. As mass
scales as M � R3 (assuming constant density), one would expect that diffusivity
scales as:

d � M�1=3: (16.5)

In Table 16.1, I collect some values of D for large molecules and cells taken from
[4]. In Fig. 16.1, I show that the agreement with (16.5) is remarkable (at least in the
shaded region).

However, for a dendritic cell with a typical size of 20 �m, (16.4) gives DDC '
1 �m2 min�1 and for a T cell, DT ' 4 �m2 min�1. Those values are not close to
the values reported from the experiments [5], where DT ' 50 � 100 �m2 min�1.

Indeed this discrepancy must have a biological explanation. Two choices appear
naturally at those scales: the T cell is either advected (chemotaxis) to specific targets
or the diffusion theory must be refined. For instance, many bacteria diffuse randomly
but with some persistence in their motion.

If T cells respond to external signalling (e.g., chemokine gradients), the motion
would be less random and more directed. In addition, one would expect higher cell
velocities and, as a side effect, collective motion towards the source of chemokines
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Table 16.1 Diffusivities of some molecules and cells. Adapted from [4]

M (g mole�1) D(�m2 min�1) Name M (g mole�1) D(�m2 min�1) Name

18 139,200 H20 43,500 4,860 Ovalbumin
32 120,000 O2 68,000 4,380 Hemogoblin
32 90,000 Methanol 68,430 3,900 Serum
36.5 216,000 HCl 74,000 3,720 Transferrin
44 114,000 CO2 98,630 2,820 Gonadotropin
58.5 90,000 NaCl 109,000 2,700 Collagenase
60 78,000 Urea 130,000 3,180 Actin
75 60,000 Glycine 140,000 1,860 Plasminogen
89 57,000 ˛-alanine 143,000 3,000 Ceruloplasmin
89 58,200 ˇ-alanine 153,100 2,520 �-globulin
92 52,800 Glycerol 158,500 2,520 immunoglobulin
111 72,000 CaCl2 190,000 2,160 Glucose
180 42,600 Glucose 339,700 1,260 Fibrinogen
182 42,600 Mannitol 482,700 2,220 Urease
192 41,400 Citric 529,800 2,280 Cytochrome
342 32,400 Sucrose 820,000 1,500 ˛-macroglobulin
6,660 9,000 Milk 2,663,000 1,080 ˇ-lipoprotein
13,683 7,800 Ribonuclease 4,200,000 780 ribosome
24,430 4,620 Insulin 31,340,000 336 Tobacco
27,100 5,640 Somatotropin �8eC 11 24.6 1 �m nanodevice
30,640 6,600 Carbonic �4eC 12 9.6 Platelet
44,070 3,240 Plasma �6eC 13 4.1 Red blood cell

(because the signalling would be shared by many similar cells). Let us revise recent
evidence that supports this idea. In [5, 6], the authors showed that B and T cells
migrate as autonomous agents and there is no trace of collective motion that sup-
port the chemokine hypothesis. Paradoxically, they also report travelling persistence
times of 1–2 min (see also [7, 8]).

What about the second choice? If pure diffusion is considered, persistent motion
is sustained with velocities of the order of D=R. For a T cell (using the experimental
DT � 75 �m2 min�1 and R � 3:5 �m) v � 20 �m min�1. This velocity means that
the persistence time is on the order of 1–2 s. So we need to consider persistence in
the description of the random motion. One simple approach is to assume that the
changes in the velocity of the cell are at an angle, � , randomly chose from a given
distribution, P.�/ . In this case the diffusivity is corrected by:

QDT D DT

1 � ˛
; (16.6)

where ˛ is mean value of the cosine of the angle between successive runs [9]. If the
distribution of successive angles is completely random ˛ D 0. If it is peaked at 0

(ballistic motion instead of diffusive motion), ˛ ! 1.
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Fig. 16.1 Log–log plot of the diffusivity and the mass (data taken from Table 16.1). The dashed
straight line is a fit to D �M �1=3. The shaded region is a visual help to identify where the scaling
law (16.5) is valid

At this point, we need to support or discard the hypothesis made through the
experiments. In summary,

1. There is a discrepancy between the theoretical 4 �m2 min�1 and the experimental
50–100�m2 min�1 diffusivities.

2. Persistence may be an essential ingredient behind pure diffusion.

Again, in [5] it is reported that the distribution of successive angles is not at
all random and that the cells can reach velocities about 25 �m min�1, in good
agreement with our rough arguments. Moreover, agent based modelling [8] of cell
diffusion with persistence produce excellent agreement with the experiments.

Biologically, this means that, in the short term, the cells are somehow directed
but at long times (distances) they seem to diffuse randomly. The quantitative separa-
tion between these scales deserves further experimental development. For instance,
chemokines could be introduced artificially in lymph nodes to change the variability
of, for instance, the parameter ˛. The heterogeneity if the lymph node needs also to
be taken into account as it can influence locally the value of the effective D.

Moreover, as shown in [1] the average time, � , until first contact between the
lymphocyte and the antigen (or the dendritic cell), initially a distance R apart, is
given by:

� D R3

3DT .RT C Ra/
; (16.7)

where Ra is the radius of the antigen. Thus, controlling DT can be an strategy to
control � and consequently the mean response time of the adaptive immune system.
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Another biological implication of this analysis is that T cells do not spend all
their available energy finding DCs or antigens. Thus, diffusion is an effective way
to explore (instead of self-propulsion, for instance). A simple energetic calculation
can illustrate this. The energy dissipated per unit time (power) by friction with its
surroundings is given by:

P D Ff riction � V D 6��RV 2 (W); (16.8)

where V is the mean velocity of the cell, R its size and � the viscosity of the medium
(let us assume that it is mainly water). The order of magnitude of the latter quantity
is much smaller than the average power available per cell. This power can be roughly
estimated from the human metabolic rate (about 100 W) and its total number of cells
(about 1014) [10].

T Cell and Dendritic Cell Encounters

When a dendritic cell and a T cell meet, the latter scans the surface of the former in
the so called selection phase. Cells, unlike engineering devices, are not programmed
(in the common meaning of the expression) to localize a target. Instead, the process
is somehow driven by fluctuations (that’s why stochastic modelling is a promising
approach at this level of description, see Chap. 17). This scanning time can last from
a few minutes to hours [11]. This variability is due to the dynamics over the dendritic
cell surface.

Let us try to gain some insight in this number. If we assume that the T cell dif-
fusivity is DT D 75 �m2 min�1, the average time for scanning without any kind
of binding is on the order of 1 h (assuming that the radius of a dendritic cell is
RDC D 20 �m [5] and that its surface is 4�R2

DC ). If there were any kind of binding
between the T cell receptor and the pMHC complex (peptide-Major Histocompat-
ibility Complex) this time would be even larger. This suggest that the T cell do no
scan completely the surface of the dendritic cell or, alternatively, that the diffusiv-
ity of the T cell surrounding a dendritic cell is larger (an order of magnitude) than
moving freely. Notwithstanding, this second choice is less probable.

Then the conclusion is that the T cell do no scan completely the dendritic cell
in each encounter but, rather, it must do it in independent events. This speculation
seem to be supported by the experiments (see [12]).

Ligand–Receptor Dynamics

Ligand–receptor dynamics takes place at the level of the protein. As in other fields
in Biology, the structure and function of T cells depend crucially on the physical

interaction at the atomic level. Typical distances are about 2
ı

A and the energies
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depend on the type of bond. For instance, covalent bonds are strong (on the order
of 80 kcal mol�1). This strength guarantees that the proteins preserve their primary
structure. On the contrary, hydrogen bonds are about 1=20th of the energy of the co-
valent ones. Thus, translations, rotations, twisting and deformations are statistically
probable. The factor 1=20 is important because, at temperatures that are relevant for
life, a population of proteins will have enough energy to break that bond even in the
absence of a tensile forces.

Being more specific, I am interested in the binding process which, schematically,
can be written as

XY $ Z

The left and right reactions have independent rates kon and koff . Traditionally, the
most important factor is the affinity

K D kon

koff

(M�1): (16.9)

Thermodynamically, it depends on temperature and the so-called free-energy of as-
sociation through the relation

K D e��F=RT ; (16.10)

where R D 8:31 J K�1 mol�1 is the perfect gas constant.
The free energy �F has both energetic and entropic contributions. The former

are related with the binding energies and the latter with the number of possible
configurations of the rotation, translation, vibration and conformation degrees of
freedom.

In addition,
�F D �E � T�S (16.11)

(if we consider that process is at constant pressure, F ! G D H � TS , where
H D E C P V is the enthalpy).

Equation (16.10) is quite useful since it allows to calculate microscopic prop-
erties (�E and �S ) from kinetic experiments and, in addition, it emphasized that
bond rupture is a stochastic event (16.10) can be seen as a probability of an event to
happen).

From the point of view adopted here the entropic term makes the estimation
rather complicated. Notwithstanding I shall adopt the same divide-and-conquer
strategy as before. The following steps are more involved so I will anticipate that
strategy.

1. The free energy difference �F has two contributions. Binding energetic are on
the order of magnitude of 5 kcal mol�1 (typical of hydrogen bonds), so it is rea-
sonable to expect that energies are that of 1 or 2 bonds (typical of TCR-pMHC
binding). Thus �E is the range Œ�10; 0� kcal mol�1 (the negative sign is because
binding energies are negative).



348 M. Castro

2. Statistical Mechanics allows to calculate �F in some ideal cases. Those cases
will help me to set upper bounds to entropic calculations under certain restrictive
assumptions.

3. Finally, using the latter estimations, I will provide some orders of magnitude of
variation of the affinity and, more importantly, emphasize the way in which this
particular problem should be addressed.

From an Statistical Mechanics perspective, when the pMHC and the TCR bind,
there are, apparently a loss of degrees of freedom related to the lack of relative
motion between them. Thus, a possible approach to estimate the free energy change
is consider what happens when the, for instance, pMHC goes from free to bound.
For simplicity, I will consider that it is a rigid molecule (and discuss the implications
of relaxing this assumption below).

All the statistical information is contained in the so-called partition function, Z.
The partition function is related to the free energy as:

F D �kBT log Z; (16.12)

where kB is the Boltzmann’s constant and T the temperature in Kelvin.
Thus, following any basic textbook in Statistical Mechanics we find that the par-

tition function of the translational degrees of freedom.

Z D 1

N Šh3N

Z
dpN exp

�
� jpi j2

2mkBT

�
(16.13)

So it can deduced that the variation of the free energy is:

�F D �kBT log

"
.2�mkBT=h2/3=2

Vp

#
� kBT (16.14)

The molecular weight of the TCR-pMHC can be on the order of 106 and the typical
length scales around 3 nm [13] so, at T D 310 K, �F ' 6 kcal mol�1. This is the
contribution of the translational degrees of freedom.

The rotational degrees of freedom can be computed provided that the principal
moments of inertia of the ligand are known. From our hand-waving perspective, we
can assume that each rotational mode carries the same change in the free energy than
the translational (because the moment of inertial approximately mass�distance2 and
the calculation of the partition function are the same).

So, I have found that, if the ligand–receptor complex is rigid, the total change in
the free energy is about

�F ' 6 C 3 � 6 D 24 kcal mol�1:

Finally, from that value, �S is in the range Œ�110; �80� cal mol�1 K�1. The value
of �F estimated from Statistical Mechanics is large compared to �E so, at the
light of the experiments, we will be able to determine if its really so large or if it
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is an overestimate. In the latter case it would mean that, despite the loss of trans-
lational and rotational degrees of freedom, new configurational degrees of freedom
are relevant (presumably vibrational). If that is the case, �S could even take pos-
itive values, thus supporting the idea of the relevance of other degrees of freedom
that compensate the loss of translational and rotational mobility.

At this point the heuristic approach cannot be stressed further so experimental
data is need to test the assumptions made. In [14] some values of �S are reported
and �S ranges, typically, between �90 to 40 cal mol�1 K�1.

In the most negative case, (�S D �90), the value calculated from the partition
function is in good agreement, but note that the agreement seems to break down in
general. As I mentioned above, this would indicate that the flexibility (as opposite
to rigidity) and the vibrational modes are key ingredients in the theory. In [14] some
other mechanisms are discussed but, again, the heuristic method of reasoning has
provided some hypotheses that are worth studying experimentally.

Conclusion

In this introductory chapter, the main message that I want to convey is that, far from
the useless reductionism of traditional Physics or the quest for universal laws in
Biology, Physics often address the problems by combining different tools: separa-
tion of scales (divide and conquer) and coarse-grained modelling. Here, I have only
illustrated the surface of this fruitful strategy with simple arguments.

The choice of problems in this chapter has been made to emphasize that the
underlying physical principles are valid at many different scales. Other simple argu-
ments such as scaling can be used to determine the connection between experiments
in mice and humans (see, for instance [1] and [15]).

So, Theoretical Biology models can be enriched with this knowledge: finding
mathematical relationships between biological quantities (for instance, differential
equations) is the main task of Theoretical Biology but, in many situations, those
relationships may be full of physical meaning.

Mathematics and Physics are already part of other disciplines of Biology, such
as Ecology or Neurology. In those fields, it is customary to include mathematical
concepts even in textbooks. Thus, Lotka–Volterra or Hodgkin–Huxley models co-
exist with biological descriptions. In the case of Immunology, it appears that this
symbiosis between fields is emerging. It is our hope in this book to establish roots
that could help the field evolve in that direction. Hopefully, in a few years we could
find some of the ideas, experiments and theories collected in the present book in
general textbooks of Immunology.

The naive approach presented here tries to exemplify the formulation of sim-
ple hypotheses and some basic methods to grant those hypotheses useful physical
meaning.
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Chapter 17
Timescales of the Adaptive Immune Response

Mark Day and Grant Lythe

Abstract We discuss continuum (lattice-free) and inherently stochastic models
of immune cellular interactions, using the simplest hypothesis, that cells follow
Brownian paths. The timescale for a cell to explore a volume such as a lymph node is
L2=D, where L is the radius of the region andD the diffusivity of a cell. The average
time a cell spends in a volume with an exit is proportional to L3=aD, where a is the
radius of the exit. The mean time before a cell encounters a zone of attraction with
radius b around, for example, an antigen presenting cell, is proportional to L3=bD.

Introduction

Interactions between T lymphocytes and antigen-presenting cells (APCs) in lymph
nodes are an essential step in the initiation of cell-mediated immune responses.
T cells need to come into physical contact with APCs [1, 2]. In fact, the antigen-
specific T cell can become activated only if it encounters an APC bearing cognate
antigen in the midst of millions of unspecific lymphoid cells [3].

In the twenty-first century, observation of cell–cell contacts and cell migration
in lymphoid tissues has become possible in vivo, with the technique of intravital
two-photon microscopy [4–10]. Pioneering in vivo studies have raised a new set of
questions, relating to cell–cell dynamics in secondary lymphoid organs and to the
data sets produced in imaging experiments [11,12]. What happens during the day or
days that a T cell spends in a lymph node? What is the role of the reticular network
in the movement of T cells? How do T cells collect and integrate signals from
cognate antigen? Is a long (hours) contact with a Dendritic Cell (DC) necessary
for activation, or is a series of short-lived (minutes) encounters sufficient [13]?
To what extent do molecular mechanisms (amount and quality of peptide–MHC
ligands) govern the length of time spent in contact? What are the roles of adhesion
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molecules, co-stimulatory molecules and strength of affinity? Does clustering of
T cells play a role in mounting an immune response? What controls differentiation
into effector and memory cells? In the case of infection, what strategies can be used
to maximise the time that lymphocytes spend in the particular lymph node draining
the currently infected site? What is the role of inflammation [14] and expansion of
the vascular input?

We will think of a lymphocyte as a particle undergoing Brownian motion inside
a lymph node. Brownian motion is imagined here as the result of many constantly-
changing influences that jostle the cell, without any consistently preferred direction.
It can be expected, from the central limit theorem, to be a quantitatively correct
description of T cell movement on some timescales, and most analyses of in vivo cell
movement data seem to support this [4]. However, there are reasons to suspect that
other descriptions may be needed, on short timescales (less than a minute in a lymph
node) and perhaps on longer timescales, if phenomena such as microstreaming [15]
and a preference for moving along the stromal network [16] are widespread. Even
so, the end result will still appear to be Brownian motion if the stromal network or
microstreams are themselves randomly-oriented [17].

The purpose of this chapter is to calculate timescales from the simple hypothesis
that T cells move, and may encounter APCs, along Brownian paths. By not attempt-
ing to explicitly model the crowded environment of a lymph node, timescales are
expressed in terms of very few parameters: the diffusivity of a cell, the size of the
volume that the cell explores, and the radii of the efferent vessel (or other exit) and
of the zone of attraction of an APC.

Brownian Motion

Each of the Cartesian components of a Brownian motion in three dimensions is
independent. We use x to represent a position in three-dimensional space, and r

its distance from the point .0; 0; 0/. If the position at time t of a cell undergoing
Brownian motion is denoted by Bt , and if there is no preferred direction and there
are no boundaries or barriers, the probability density function of Bt is

P .n/.x; t/ D .4�Dt/�3=2 exp
��r2=4Dt

�
:

The parameter D is the diffusivity.
The total distance travelled in a time t is Xt D jBt j (Fig. 17.1). This is a random

variable with probability density, 	.r/ D d
dr
P ŒXt < r�, given by

	.r/ D r2

2
p

�.Dt/3=2
e�r2=4Dt :
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r

ρ(r)

√
4Dt

Fig. 17.1 The probability density of Xt , the distance travelled in time t by a Brownian motion in
three dimensions with diffusivity D

The mean distance travelled in time interval t is

IE.Xt / D
�

16Dt

�

� 1
2

I

the variance of Xt is IE.Xt
2/ � .IE.Xt //

2 D .3 � 8
�

/2Dt . Note that IE.Xt / is not
proportional to t as t ! 0, so no well-defined velocity exists. Under the assump-
tion of Brownian motion, the appropriate quantity to report is the diffusivity D,
obtained by plotting mean displacement versus the square root of the time between
measurements [4, 18].

First Passage to a Sphere

We’ll suppose, in the spirit of the infamous spherical cow, that the lymph node, or
its T cell zone, is spherical with radius R. How long does it take a T cell, executing
Brownian motion in three dimensions with diffusivity D, to reach the edge of the
sphere (Fig. 17.2)? In general, the mean time T to hit the boundary of a region is
a function of the starting point, x0, that satisfies the partial differential equation
(PDE) known as Poisson’s equation [19]:

Dr2T .x0/ D �1: (17.1)

The spherical approximation means that, instead of solving (17.1) by the general
method of separation of variables, we can look for a function of r0 D jx0j only:

T .x0/ D F.r0/;

which satisfies

D
1

r2

@

@r
r2 @

@r
F.r/ D �1: (17.2)
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Fig. 17.2 Brownian motion
inside a sphere of radius R:
illustration of a sample path,
starting at x0

x0

R

The general solution is

F.r/ D � 1

6D
r2 � c1

r
C c2; (17.3)

where c1 and c2 are constants. Requiring that the mean time to reach the surface
starting from the centre of the sphere, F.0/, is not infinite, means that that c1 D 0.
We also know that F.R/ D 0 because, if the starting point is already on the surface,
then the time to reach the surface is certainly zero. The mean time to hit the surface
of the sphere, starting a distance r0 from its centre, is thus

T .x0/ D F.r0/ D 1

6D
.R2 � r2

0 /: (17.4)

To derive a characteristic mean time that doesn’t depend on initial conditions, we
average (17.4) over all possible starting points in the sphere, by integrating over the
sphere, and dividing by the volume of the sphere:

� D 1
4
3
�R3

Z R

0

1

6D
.R2 � r2/4�r2dr D 1

15D
R2:

Before moving on, we also consider the slightly more difficult question of where
the particle first hits the sphere. If the particle starts in the centre, then all parts are
equally likely to be hit; if not, the probability density is maximised at the point on
the surface closest to the initial condition.

Suppose the surface of the lymph node, S , contains a part that is special (an exit
for example). The probability that our Brownian particle, starting at position x, hits
a part, H , of the surface is a function, p.x/, that satisfies Laplace’s equation [19,20]

r2p.x/ D 0; (17.5)
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with boundary conditions

p.x/ D
(

1 x 2 H

0 elsewhere on S:
(17.6)

This applies whatever the shape of the lymph node, but we will continue to make
life easier for ourselves by considering it to be spherical.

A useful method for constructing solutions of equations like (17.1) and (17.5) is
as follows. The solution of

(
Dr2˚.x/ D �ı.x � x0/; jxj < R

˚.x/ D 0 jxj D R
(17.7)

is

˚.x/ D 1

4�D

0
@ 1

jx � x0j � R=r0

j R2

r2
0

x0 � xj

1
A : (17.8)

The solution ˚.x/ is called a Green function and may be written G.x; x0/ to em-
phasise that it is a function of the initial condition x0 as well as of x. (We have
written it ˚.x/ because it is identical to the electric potential at x, due to a point
charge at x0, inside a grounded sphere.)

Once we have ˚.x/, we can calculate two quantities of interest. The mean exit
time (the mean time until a particle following Brownian motion started at x0 hits the
sphere) is the integral

IE.�/ D
Z

˚.x/dx; (17.9)

over the interior of the sphere. Thus ˚.x/ has the nice interpretation of an occupa-
tion density: to find the average amount of time spent in some region of the interior
of the sphere, before the sphere is hit, we integrate ˚.x/ over that region. To find
the total mean time, we integrate over the whole sphere, which is what (17.9) does.

The probability density of where on the sphere the first exit occurs is obtained by
differentiating ˚.x/ in the outward radial direction:

h.y/ D �D
@

@r
˚.x/jrDR D 1

4�R

R2 � r2
0

jx � yj3 ; (17.10)

where y is a position on the surface of the sphere. To obtain the probability that the
exit occurs in some region on the surface, we integrate the function h.y/ over that
region. Suppose that � is the angle between the lines from the origin through x0 and
x, r0 D jx0j and r D jxj. Then, using jx � x0j2 D r2 C r2

0 � 2rr0 cos � ,
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˚.x/ D 1

4�D

0
BB@ 1�

r2 C r2
0 � 2rr0 cos �

� 1
2

� R=r0	
R4=r2

0 C r2 � 2R2 r
r0

cos �

 1

2

1
CCA :

For example, we can evaluate the probability that the first part of the sphere that is
hit is in the polar region with � < �e [19]:

P Œhit polar region� D 1

4�R

Z �e

0

R2 � r2
0

.r2 C r2
0 � 2rr0 cos �/3=2

2�R2 sin �d�

D R2 � r2
0

2r0

�
1

R � r0

� 1

.R2 C r2
0 � 2Rr0 cos �e/1=2

�
:

Escape Through a Small Hole

We can expand our model by adding an exit to the sphere. If a particle hits the exit,
it will leave; if it hits the surface anywhere else it will be reflected back into the
sphere (Fig. 17.3). This changes the boundary conditions in PDEs such as (17.7),
and means that there is no longer symmetry in one of the angles. We now need
T .x0/ D f .r; �/ such that

r2f D 1

r2

@

@r

�
r2 @f

@r

�
C 1

r2 sin �

@

@�

�
sin �

@f

@�

�
D � 1

D
; (17.11)

with boundary conditions

f .R; �/ D 0 if 0 � � < �e

@f

@r
.R; �/ D 0 if �e � � � �;

Fig. 17.3 A simple model:
a sphere of radius R, whose
surface is reflecting except
in a polar region

a

θe
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where �e is the angle of the exit, given by �e D arcsin a
R

(Fig. 17.3). We can
construct a solution using the Legendre polynomials:

f .r; �/ D 1

6D
.R2 � r2/ C

1X
nD0

AnrnPn.cos �/;

provided we can find coefficients An such that

1X
nD0

AnRnPn.cos �/ D0 0 � � < �e (17.12)

1X
nD0

nAnRn�1Pn.cos �/ D1

3

R

D
�e � � < �: (17.13)

For example, taking � D 0 gives
X

n
An D 0. � D � gives

X
n
.�1/nnAn D 2

3

R

D
.

However, we will use the solution of a simpler problem. An exact solution exists
for the steady-state probability density in the case of a flat reflecting surface with a
circular absorbing hole, with radius a, using oblate spheroidal coordinates [21]. The
circular hole is z D 0, x2 C y2 < a2 and the reflecting surface is the remainder of
the plane z D 0. The probability density is [22]

	.x; y; z/ D 2

�
	1 atan �;

which is constant along ellipsoids

x2 C y2

1 C �2
C z2

�2
D a2:

On the absorbing circle, � D 0. Elsewhere on z D 0, a2.�2 C 1/ D x2 C y2 and,
because the ellipsoids intersect the plane at right angles, @�

@z D 0. On the absorbing

circle @�
@z D 2

�
	1
�
x2 C y2

�� 1
2 . Thus, the probability current [23] out of the hole,

obtained by integrating D @�
@z over the disc x2 C y2 < a2, z D 0, is [21]

J D 4D	1a: (17.14)

If a=R�1 then (17.14) will be a good approximation to the mean exit time from
a volume V D 4

3
�R3. A single particle, started at a random position inside the

lymph node, corresponds to a probability density equal to 1=V [24]. The probability
per unit time, or rate, of escape is thus

k D 4Da

V
D D

3

�

a

R3
:

The next term, in the small parameter a=R, can also be calculated [25].
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Fig. 17.4 Sample path of
Brownian motion, reflected
on the surface of the sphere,
run until hitting a spherical
zone of attraction (green)

Cell–Cell Encounters

If the surface of a lymph node is reflecting, how long does it take a T cell to find
an APC? A simple approximation can be obtained by assuming that the T cell is a
point particle, moving with diffusivity D, and the APC has radius b, is stationary and
situated at the centre of a spherical lymph node with radius R (Fig. 17.4). Then the
radially-symmetric version of the Poisson equation (17.2) and its general solution
(17.3), yields the mean time, but with the conditions

F.b/ D 0 and F 0.R/ D 0:

The mean time to hit the stationary central cell with radius b, starting a distance r

from the centre, is

F.r/ D R3

3D

�
1

b
� 1

r

�
� 1

6D
.r2 � b2/:

We obtain the average over all starting positions by taking the integral, and expand-
ing in powers of b=R:

� D 1
4
3
�.R3 � b3/

Z R

b

4�r2F.r/dr D R3

3Db
� 3

5

R2

D
C 2

3

b2

D
C : : : : (17.15)

Modelling Interactions

While Brownian motion will undoubtedly be only an approximate description of
lymphocyte motion, it has the advantage of simplicity. The only parameter is the
diffusivity, which has been estimated from analysis of imaging data in vivo as
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Fig. 17.5 Snapshot of a spatial model of cellular dynamics in a lymph node. The green spheres
represent the zone of attraction of an APC. The smaller blue spheres represent T cells

50–100 �m2min�1 [26–28]. It has also been reported that dendritic cells diffuse
less rapidly [4, 27]. The assumption of Brownian motion is convenient for the con-
struction of multi-cell lymph node models (Fig. 17.5).

In our computational model, T cells and DCs diffuse independently, unless they
collide, inside a sphere. In a timestep �t , the position of each cell is moved in-
dependently, with a displacement in each of the three space dimensions that is
drawn from the zero-mean Gaussian distribution with variance 2D�t . Physical
contacts between cells are deemed to occur when two or more cells are closer
than a defined radius of attraction, that takes the sweeping effect of dendrites
and local effect of chemokines into account. When a T cell and a DC meet, they
remain together for a time that is an exponentially-distributed random variable:
Pr.�contact > t/ D exp.��t/. The parameter � is the inverse of the mean contact
time. The choice of exponential distribution corresponds to a constant probability
per unit time of the contact, if still formed, being broken.

With computational models it is possible to explore “sampling strategies” of
T cells in the lymph nodes [29–36], for example numerous, short, contacts ver-
sus longer contacts [13] and strategies that maximise the time that T cells spend
in the particular lymph node draining an infected site. It has been suggested that
T cell priming by DCs follows three sequential stages [26]. The first, activation,
phase is characterised by transient serial T cell–DC contacts, the second phase in-
volves longer contacts and cytokine production and the last phase is characterised by
high T cell motility and rapid proliferation. Three hypotheses have been proposed to
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explain how T cell–DC contacts change from being transient to long-lived [10]. In
the first, DCs mature over time, increasing their expression of adhesion and costim-
ulatory molecules, and so gain the ability to establish long-lived interactions with
T cells. In the second, it is T cells that gain the ability to establish long-lived interac-
tions, by summing signals received during short contacts with DCs until a threshold
is reached. The third hypothesis is that, with a certain probability, each T cell–DC
encounter can become a stable, long-lived interaction.

We intend to extend the computational model of T cells and DCs and their con-
tacts to more realistic representations of lymph nodes, including reticular network
and internal partitions. We hope that stochastic modelling of this type will help to
identify relevant parameters that characterise T cells and their interactions with DCs
in the lymph nodes.
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Chapter 18
Using Mathematical Models to Explore the Role
of Cytotoxic T Lymphocytes in HIV Infection

Helen Fryer and Angela McLean

Abstract The combination of mathematical modelling and data analysis to under-
stand the within-host dynamics of human immunodeficiency virus (HIV) infections
has been one of the most informative uses of mathematical biology in the last
decade. Simple models of viral dynamics together with viral load measurements
provided an early estimate that the turnover of HIV infected cells is very rapid:
most do not survive beyond 1 day. Although this estimate was initially a surprise
to the field, further corroborating evidence has made it widely accepted. More
recently, within-host models have been used to investigate the efficacy of cyto-
toxic T-lymphocytes (CTLs) in controlling HIV infection. Though there is clear
experimental evidence that they play some role, the magnitude of this role remains
contentious. Models have offered three insights on this topic. Firstly, in chronically
infected humans fewer than 20% of HIV-infected cell death is attributed to killing by
CTLs. Secondly, CTLs are more efficient in acute infection than chronic infection,
but not dramatically so, and thirdly, CTLs are markedly more efficient in simian than
human immunodeficiency viral infection. Although based on simple models and re-
peatable data, the main prediction of this work that CTL vaccines might work in
macaques but not in humans is yet to gain recognition. This is despite the fact that
this prediction was borne out by the failure of STEP vaccine. We contend that in
time this assertion too will become more widely accepted.

With an estimated 33 million people affected by HIV/AIDS across the world [1],
a huge research effort is now focussed on understanding the immune response to
Human Immunodeficiency Virus (HIV) in a bid to creating an effective vaccine.
Early HIV vaccines aimed to elicit antibodies, but quickly proved to be completely
ineffective [2]. The reason for this is now clear: even during natural infection, HIV
is able to evade antibody neutralisation, primarily by obstructing antibody binding
sites. Over the last 15 years, several pieces of evidence have demonstrated that cy-
totoxic T lymphocytes contribute to the control of HIV infection in vivo. These
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include a temporal correlation between the reduction of viremia in acute infection
and the appearance of HIV-specific CTLs [3, 4]; the selection of viral mutants that
evade killing by CTLs [5, 6]; and associations between particular HLA class I alle-
les and life expectancy [7–9]. Though the magnitude of CTLs’ contribution to viral
regulation is contentious, these findings have encouraged the vaccine field to direct
research towards developing a vaccine that elicits CTLs. The aim of such a vaccine
would be to dampen viral replication in hosts who become infected.

In 2004 the first large-scale human efficacy trial (the STEP Study) of a CTL-
based vaccine candidate began. Considerable hope was pinned on this vaccine, but
in 2007 the trial was halted when interim results showed the vaccine to be en-
tirely ineffective both at preventing infection and reducing viral load in those who
become infected [10, 11] (Table 18.1 and Fig. 18.1). This result is regarded as a

Table 18.1 Results of the STEP study. The number of HIV infections ac-
cording to baseline Ad5 antibody titre. The Merck vaccine trial was halted
early when it became apparent that the infection rate in individuals with
high immunity to the Ad5 vector was higher in those who were vaccinated
than in those who received the placebo. Even in individuals with low Ad5
immunity, the vaccine provided no protection [15]

Number of HIV infections

Ad5 antibody titre prior to innoculation Vaccine Placebo

<18 20/382 20/394
18 < Ad5	 200 8/140 4/142
200 < Ad5	 1000 14/229 7/229
Ad5 > 1000 7/163 2/157
Total 49/914 33/922

Fig. 18.1 Boxplots of the viral setpoints measured in individuals who became infected in the
STEP study. There was no difference in the viral setpoints measured in the vaccine (N D 46)
and placebo recipients (N D 30). When this analysis was restricted to patients who had low Ad5
immunity, the same result was obtained (data not shown) [15]
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major setback for the HIV vaccine field, not least because the candidate (the Merck
HIV DNA/adenovirus complex) had shown the most promise of several proposed
CTL-based vaccines that were tested in monkeys challenged with simian-human
immunodeficiency virus (SHIV)[12]. The failure of this vaccine has reignited doubt
that CTLs play a pivotal role in controlling HIV replication and has thus led the field
to question whether CTLs will ever prove a useful tool for an HIV vaccine. In addi-
tion, the failure has highlighted the inconsistency between CTL efficacy in monkeys
and humans. In light of these issues, this chapter reviews how mathematical mod-
els have been used together with experimental results to address the question: how
effective are CTLs are in controlling HIV-1 infection?

The chapter begins with a discussion of experimental and observational results
that provide insight into the role of CTLs in controlling HIV infection. This is fol-
lowed by a review of models of viral dynamics that have been used to interpret
patient viral load data in relation to this question. Finally, a model of the infection of
CD4 T cells with either the wildtype viral strain or a CTL escape mutant strain [13]
is discussed. We show how this model has been used to analyse CTL escape mutant
outgrowth data to quantify the magnitude of the CTL response. Further, we show
how it has been used to compare the strength of the HIV-specific CTL response in
humans to that of the SIV/SHIV-specific response in macaques [14].

Experimental and Observational Results that Provide Insight
into the Role of CTLs in Controlling HIV Infection

Today there is considerable evidence to suggest that CTLs contribute to the control
of HIV infection in vivo. What is not clear is exactly how important their contribu-
tion is at each stage of infection. Measuring their contribution directly is not possible
and there is some evidence against a significant role for CTLs; notably certain corre-
lations predicted on the basis of a strong CTL response have not been observed. Data
indicating an important role for CTLs in controlling HIV in infected individuals are
summarised in Fig. 18.2.

One of the early observations in favour of a role for CTLs came in 1994 when
a temporal correlation was established between the reduction in viremia in acute
infection and the appearance of HIV-specific CTLs [3, 4]. The appearance of the
CTLs preceded the appearance of antibodies, indicating that antibodies were not
responsible for the observed effect (Fig. 18.2(a)). Other evidence is provided by
the selection of CTL escape mutations in vivo [5, 6]; by in vitro experiments that
have revealed CTLs capable of exerting potent antiviral effects towards HIV [16–19]
(Fig. 18.2(b)); and by the high levels of anti-HIV-1 CTLs seen in established HIV-1
infection. These can often be detected directly from the peripheral blood without
in vitro stimulation. This confirms that the CTLs are ‘at work’, rather than simply
waiting to be stimulated into action.

Probably the best evidence in favour of a significant contribution by CTLs, how-
ever, comes from clear associations between progression to AIDS and different



366 H. Fryer and A. McLean

Fig. 18.2 (a) The time course of natural HIV infection in a typical individual. A temporal cor-
relation exists between the containment of viremia during acute infection and the appearance of
HIV-specific CTLs. The measurements shown are the CD4C T cell count (cells/�l), the plasma
viral load (RNA copies/ml), the CTL response (% effector CTL in PBMC) and the neutralising
antibody titre [31]. (b) Evidence that CTLs target HIV-infected cells in vitro. The mean percent
specific CTL cytotoxicity and corresponding standard error is presented for four seropositive and
five seronegative individuals. The percent specific cytotoxicity is shown for the effector:target ra-
tio 25:1. Cytotoxicity is measured in vitro against two vaccinia recombinants: one containing the
env region of the HIV genome and one containing the bacterial lacZ gene used as a control. The
HIV-specific response to the env/Vac complex was significantly elevated in seropositive individu-
als compared to the response to the lacZ/Vac (control) complex in the same hosts and compared to
the env/Vac complex in seronegative individuals. Note that some background cytotoxicity directed
against the Vaccinia virus is expected in all hosts [16]. (c) The association between the HLA B35Px
allele and progression to AIDS. Infected individuals who carry at least one copy of the HLA B35Px
allele progress to AIDS more rapidly than those who contain no copies of HLA B35px [20, 22].
(d) The effect of depletion of CTLs during primary SIV infection in macaques. The early control
of virus fails when CTLs are depleted [20, 22]
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HLA alleles. These alleles encode for the HLA molecules involved in the process
that results in CTL targeting. Notably, HLA types B57, B51 and B27 are associ-
ated with slow progression and HLA B35Px is associated with rapid progression
(Fig. 18.2(c)). Patients who are homozygous at any of the three HLA class I loci
also progress substantially more rapidly to disease [7–9]. More recently, Kiepiela
and colleagues have also shown that the part of the genome targeted by CTLs
is an important determinant of disease progression. They found that an increased
breadth of gag-specific responses is associated with lower levels of viremia, whereas
an increased breadth of env-specific and accessory/regulatory-specific responses is
associated with increased levels of viremia. The reason for these protein-specific
differences is unclear.

HIV research that cannot be conducted in humans is instead tested in non-human
primates infected either with simian immunodeficiency virus (SIV) or the hybrid
virus simian-human immunodeficiency virus (SHIV). The primates used for these
tests are typically rhesus macaques or pigtail macaques, chosen because upon in-
fection they reproduce many of the key elements of HIV infection in humans. Not
only do they experience CD4C T cell depletion leading eventually to AIDS-like
symptoms, but they also have similar immune systems to humans. Like humans,
macaques have been shown to elicit CTL responses against immunodeficiency virus
infection. Furthermore, when antibodies specific for CTLs were used to experimen-
tally deplete CTLs during acute SIV/SHIV infection, the early control of virus failed
[20–22] (Fig. 18.2(d)). When the antibodies were instead given in the chronic phase,
the virus level rose until the effects of the antibody wore off. Depletion of B-cells
had no effect. These results favour a role for CTLs in controlling the set point in
natural HIV infection, though should be viewed in light of the unknown extent to
which results from macaques can be extrapolated to humans.

Evidence of CTL involvement in controlling HIV infection is therefore clear.
Exactly how important they are in this process, however, is put into question by
the absence of certain results. If CTLs were crucial in containing HIV, one might
expect that counts of HIV-specific CTLs would correlate with viral load. Despite
early reports to this effect [23–25], it is now accepted that no such simple correla-
tion exists [26, 27]. In an examination of CTL responses directed against the entire
HIV genome in 57 patients, no correlation was found between either the breadth or
the magnitude of the CTL responses and viral load [27]. A second study into the
effects of drug therapy interruptions also showed no correlation between CTL count
and either viral rebound rates at the start of the interruption, or viral clearance rates
at the restart of therapy [26]. Furthermore, neither measures of absolute numbers
nor changes in numbers of CTLs were able to predict viral load in this experiment.
At the very least, these results indicate that different CTLs have different efficacies,
a finding supported by the study by Kiepiela et al. [28] and by two recent stud-
ies that suggest that a correlation may exist between the number of polyfunctional
CTL (as measured by five different immunological markers) and plasma viral load
[29, 30].
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Modelling HIV-1 Viral Dynamics to Understand What Patient
Viral Load Data Tells Us About the Importance of CTLs
in Controlling HIV

One way in which the importance of CTLs in controlling HIV infection can begin to
be addressed is by investigating how well observed viral load data can be explained
by mathematical models of viral dynamics. Viral dynamics during HIV infection
have been widely analysed and it is now accepted that there are three main phases
to the dynamics in natural infection [31] (Fig. 18.2(a)). During the first few weeks
(acute infection), viral load rises to a peak before declining and settling to an equi-
librium called the viral set point. The start of this decline is typically associated with
the appearance of CTLs specific for HIV. Once at the set point, viral load remains at
that level for a period of several years (the chronic phase), during which there is
both rapid viral replication and rapid viral loss. The set point differs between hosts
and is predictive of life expectancy – higher set points correlate with shorter life ex-
pectancies. Eventually this balance is disrupted and viral load gradually increases
in concordance with a decline in CD4 count that eventually results in AIDS. Infor-
mation about viral dynamics can also be attained by disrupting the natural course of
infection. This can be achieved when antiretroviral therapy is started. These drugs
disrupt the viral life cycle and when given during chronic infection, lead to viral
load decaying in an exponential manner.

A Simple Model of Virus Infection

A simple model that has been proposed to explain some of the observed HIV viral
dynamics is shown in Fig. 18.3 [32]. The model consists of three variables: the

Fig. 18.3 A simple
within-host model of viral
infection. T, I and V represent
the number of target cells,
infected cells and free virions,
respectively. Free virions are
produced at a rate, ˛, per
infected cell and infect target
cells at a rate proportional to
the abundance of free virions,
ˇV. In addition, target cells
are produced at rate � and die
at a rate d per cell; free
virions are cleared at rate �

per virion; and infected cells
die at rate ı per cell
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population size of target cells (i.e. uninfected CD4C T cells), T, infected cells, I,
and free virions, V. Free virions are produced at a rate, ˛, per infected cell and in-
fect target cells at a rate proportional to the abundance of free virus, ˇV. In addition,
target cells are produced at rate � and die at a rate d per cell; free virions are cleared
at rate � per virion and infected cells die at rate ı per cell. The model is prescribed
by the following set of coupled ordinary differential equations.

PT D � � dT � ˇV T

PI D ˇV T � ıI

PV D ˛I � �V: (18.1)

Fitting the Simple Target-Cell-Limited Model to Viral Load Data
from Hosts with Natural HIV Infection

In the simplest form of this model, the death rate of infected cells, ı, can be as-
sumed to be constant through time. As such, the model includes no explicit CTL
response. Despite this, the model is nevertheless able to reproduce many of the viral
dynamics observed in HIV-infected individuals; namely it predicts that virus will
grow rapidly up to a peak before declining and settling at a stable equilibrium at
which there is continuous production and loss of virus. It is perhaps surprising that
a model that includes no explicit introduction of a CTL response during acute infec-
tion is able to reproduce the early containment of virus so often attributed to CTLs.
In fact, in this model it is saturation of the target cell population that is the cause of
viral suppression. The simple model of infection of target cells therefore puts into
question the hypothesis that acute viral containment is due to CTLs and suggests
that the observed temporal correlation may be coincidental. In support of this asser-
tion, Phillips [33] has cited three studies in which infected individuals suppressed
their primary viremia without mounting any detectable specific anti-viral immune
responses.

Although saturation can explain the drop in viral load qualitatively, how well it
can explain the drop quantitatively has been questioned. Stafford et al. [34] fitted
viral load data from ten patients in acute infection. They showed that, by assuming
only small variations in different model parameters across patients, the model could
accurately explain both the increase in viremia up to the peak and the set point that
was eventually reached, but could not explain the seemingly overly-rapid rates of
viral decay seen in some individuals. These fast decay rates could be explained by
the appearance of CTLs during acute infection. The fact that viral set points can
be explained without inclusion of a CTL response, however, implies that even if
the CTL response is important during acute infection, it is not explicitly important
during chronic infection.
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Does Progression to AIDS Happen Because of a Failing
CTL Response?

It has often been suggested that it is the failure of the CTL response that eventu-
ally disrupts the equilibrium observed during chronic phase and leads to increasing
viremia and eventual progression to AIDS. If this were true, it would favour the the-
ory that CTLs are crucial in controlling HIV during chronic infection, as has been
shown to be true in SIV/SHIV infected in macaques. In these monkeys, depletion of
CTLs during chronic infection leads to an increase in viremia.

It has been proposed that, if progression to AIDS results from a failing CTL
response, then individuals with more advanced disease would kill infected cells
more slowly. Conversely if AIDS results from the virus evolving to infect cells more
quickly, infected cells would be cleared more quickly in individuals with more ad-
vanced disease. To investigate this issue, curves showing the decay of viremia
following treatment with a protease inhibitor (PI) – a type of antiretroviral – in
chronically infected humans have been compared to decay curves predicted by a
version of the simple target-cell limited model that is adapted to include PI ther-
apy during chronic infection. Protease inhibitors do not affect the survival or rate of
virion production of infected cells, but do prevent the production of infectious viri-
ons. To model the impact of PI therapy, infectious virions VI and non-infectious
virions VNI are regarded separately and the production rate of infectious virions
is set to zero. Furthermore, for the short period over which viral decay has been
measured (approximately 1 week) the number of target cells is assumed to remain
constant at the steady state value attained prior to therapy, T0. Equations represent-
ing the adapted model are given by:

PI D ˇVIT0 � ıI

PVI D ��VI

PVNI D ˛I � �VNI: (18.2)

During the steady state achieved prior to therapy, the abundance of target cells, pro-
ductively infected cells and free virus can be regarded as constant. Thus by setting
T D I D V D 0 in the original model (18.1), expressions can be found for ˛ and
I0 (˛ D ı�=ˇT0 and I0 D ˇV0T0=ı) which enable (18.2) to be solved to give an
expression for the decay of virus (V D VNI C VI) upon commencement of therapy:

V.t/ D V0e�	t C �V0

� � ı

�
�

� � ı
.e�ıt � e�	t / � ıte�	t

�
(18.3)

This function fits patient data in which plasma viral load after PI treatment is seen
to decay in an exponential fashion following an initial lag [35] (Fig.18.4(a)). Im-
portantly, this equation shows that the exponential viral decay rate will be faster
if clearance of infected cells (rate ı) is faster. It is noteworthy that this correlation
would hold true irrespective of whether clearance is CTL mediated. The hypothesis
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Fig. 18.4 The decline of viremia upon commencement of treatment with a protease inhibitor in
individuals with chronic HIV infection. (a) An example of the predicted decline in viral load fol-
lowing therapy in patients late in chronic infection and in patients early in chronic infection under
the assumption that patients with further progressed disease clear infected cells more slowly (see
(18.3)). The rate of viral decline would be faster in patients early on during chronic infection. (b) A
comparison of pre-therapy CD4 counts and viral clearance rates in 20 individuals. No relationship
exists between these two variables, implying that progression to AIDS does not result from a failing
CTL response [36]

that individuals with more advanced disease clear infected cells more slowly can
therefore be tested by comparing therapy-induced viral decay rates to pre-therapy
CD4 T cell counts. Interestingly, a comparison of such data shows that not only is
there no relationship between pre-therapy CD4 T cell counts and infected cell clear-
ance rates, but that infected cell clearance rates are remarkably consistent across
different individuals [36]. These results imply that people do not progress to AIDS
because clearance of infected cells diminishes. They therefore also provide no evi-
dence that CTLs are important in controlling HIV during chronic infection.

In summary, a simple within-host mathematical model of viral dynamics can
be used to understand what observed viral dynamics reveal about the importance
of the CTL response in HIV infection. This analysis shows that much of the ob-
served viral dynamics seen in natural infection can be explained qualitatively by a
model that includes no explicit CTL response. This includes containment of virus
during acute infection through saturation of the target cells. When the model and
the data are compared quantitatively, there remains no explicit evidence that CTLs
are important during chronic infection; however, in some individuals, rates of viral
containment during acute infection are faster than predicted by the simple model,
suggesting that CTLs may indeed be functionally important during acute infection,
as has been shown to be to be the case for macaques using CTL depletion experi-
ments. To investigate further whether CTLs are important during chronic infection,
viral clearance rates have been compared to pre-therapy CD4 T cell counts. No rela-
tionship has been found between these two variables, suggesting that progression to
AIDS does not occur because of a failing CTL response. This comparison therefore
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also provides no evidence in support of CTLs being functionally important dur-
ing chronic HIV infection. This is in disagreement with results from macaques in
which depletion of CTLs during chronic SIV/SHIV infection leads to significantly
increased levels of viremia.

Modelling Within-Host Dynamics of CTL Escape and Reversion
to Estimate the Proportion of Cell Lysis Attributable to CTLs

There is good evidence to show that the average life expectancy of productively
infected CD4C T cells is considerably less than that of CD4C T cells present in
uninfected individuals [35–40]. What is not known is what proportion of this cell
death is attributable to CTLs and what proportion is attributable to other factors–
notably viral cytotopathicity and by-stander activation.

Longitudinal data relating to the outgrowth of CTL escape mutants within indi-
viduals is able to provide us with insight into this issue (Fig. 18.5(a)). For a start,
it is clear from the fact that selection of CTL escape mutants occurs, that CTLs are
responsible for some proportion of infected cell death. Secondly, it is intuitive that
the rate of outgrowth of a particular CTL escape mutant should reflect three main
quantities: the strength of the CTL response that is being evaded, the fitness con-
straints associated with the mutant and the rate of cell turnover. Fitness costs cannot
be measured directly. However, fitness costs are believed to drive the reversion of

Fig. 18.5 Escape and reversion data and theoretical fits. (a) Three examples of the selection of
an escape mutant in an individual who makes an immune response to the epitope of interest. The
function 1=.ge�ktC1/ is fitted to each of the escape curves to estimate the value of the escape rate,
k. The estimated escape rates for these three events are, 0.012, 0.119 and 0.41 day�1 . (b) Three
examples of the reversion of an escape mutant in an individual who does not make an immune
response to the epitope of interest. The function 1=.ge�t C 1/ is fitted to each the reversion curves
to estimate the value of the fitness cost (or reversion rate), �. The estimated fitness costs for these
three events are, 0.016, 0.005 and 0.005 day�1
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escape mutants back to the wildtype form in hosts who do not mount an immune
response to the epitope [41, 42] (Fig. 19.5b). This would be most probable when
an escape mutant selected in one host is transmitted to a different host who does
not carry the selecting HLA and so cannot recognise the epitope. Longitudinal data
on the reversion of escape mutants is therefore able to provide information on fit-
ness costs, given that it is again intuitive that the rate at which reversion occurs in
this setting is an indication of the fitness cost of the mutant–faster reversion implies
higher cost.

Asquith et al. [13] recently formulised these ideas into a mathematical model.
The model enables a quantitative estimate to be made from longitudinal CTL escape
and reversion data on the proportion of infected cell lysis that can be attributed to
CTLs. Here we describe the model and show how it can be used to derive this
important result.

A Within-Host Model of Outgrowth of Escape Mutants

The model encapsulates the dynamics of outgrowth of an escape mutant at a sin-
gle CTL epitope and includes two different types of productively infected CD4C T
cells – those that are infected with a wildtype viral strain, y, and those that are in-
fected with a viral strain that has an escape mutation in the epitope, x. Cells infected
with the wildtype strain replicate at rate a, (the net contribution of all factors except
CTL-mediated death), are killed by CTLs specific for epitopes other that the epi-
tope of interest at rate b, and are killed by CTLs specific for the epitope of interest
at rate c. For hosts who target the epitope c has a positive value (c > 0), whereas for
hosts who do not target the epitope, c equals zero (c D 0). Cells infected with the
mutant strain replicate at rate a0 and are killed by CTLs specific for epitopes other
than the epitope of interest at rate b. See Fig. 18.6. The pair of first-order ordinary
differential equations that define the model are

Py D ay � by � cy

Px D a0x � bx (18.4)

It is therefore assumed that in any given host, the number of CD4 cells infected
with the wildtype strain changes in an exponential manner at rate a � b � c

(y D y.0/e.a�b�c/t ) and that the number of CD4 cells infected with the mutant
strain change in an exponential manner at rate a0 � b (x D x.0/e.a0�b/t ); note
that these growth rates can be negative. In order to understand how effective CTLs
are, the first aim is to estimate an average value for c, the rate of CTL-mediated
lysis directed against an epitope. This quantity cannot be measured directly, but
can be estimated indirectly from longitudinal escape and reversion data using two
expressions derived from the model. These are the rate of escape of a mutant (given
by k) and the fitness cost of a mutant (given by �). To estimate these values, the
model must first be manipulated to extract an expression for the quantity that can
be measured in hosts, namely the proportion of virus that has the escape mutant,
p.t/ D x.t/=.x.t/ C y.t//.
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Fig. 18.6 A model of the dynamics of productively infected CD4C T cells. Cells can either be
infected with virus that has an escape mutant at the epitope of interest, x, or with virus that is
wildtype at the epitope, y. Cells infected with an escape mutant replicate at rate a0 per cell and are
killed at rate b per cell. Cells infected with wildtype virus replicate at rate a per cell and are killed
at a faster rate, b C c per cell

The Rate of Escape

In hosts who mount an immune response to the epitope (c > 0), p.t/ is able to
increase over time as the mutant strain outgrows the wildtype strain. In the context
of the model this can be expressed as

p.t/D
1

ge�kt C 1
(18.5)

where g D y.0/=x.0/ and k D c � a C a0 (the rate of escape) is the difference
between the growth rate of the escape variant, a0 � b, and growth rate of the wild-
type variant, a � b � c. The rate of escape, k, can thus be estimated by fitting the
longitudinal escape mutant outgrowth data to the function 1=.ge�kt C1/ (Fig. 19.5).

Using this method Asquith et al.[14] derived estimates of the rate of escape, k,
for 21 reported CTL escape variants. The rates were consistently slow across the
different escape variants: in 20 of the 21 datasets the rate of escape was less than
1 day�1 and the median rate was 0.01 day�1.

The Fitness Cost of an Escape Mutant (�)

In hosts who are infected with an escape mutant strain but do not mount a CTL
response to the epitope, the proportion of virus that is mutant, p.t/, can decline over
time as the fitness-compromised mutant strain is replaced by the wildtype strain.
Assuming c D 0 (no CTL directed against epitope), p.t/ can be expressed as
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p.t/ D 1

ge
t C 1
(18.6)

where � D a � a0 (the fitness cost or reversion rate of the escape mutant) is the
difference in the replication rate between the wildtype strain, a, and the escape mu-
tant strain, a0. The fitness cost � can thus be estimated by fitting the longitudinal
reversion data to the function 1=.ge
t C 1/ (Fig. 19.5b).

To see if the slow escape rates could be explained by high fitness costs, Asquith
et al. estimated the fitness costs from seven reversion datasets using this method.
Their analysis revealed that the fitness cost of an average CTL escape mutation is
very low – approximately 0.005 day�1. This slow rate is consistent both with data
from in vitro competition assays [43] and with the observation that many escape
mutants accumulate in the population over time [44–46].

The Rate of Killing of Productively Infected Cells by a CTL
Response Against a Single CTL Epitope (c)

Since k D c � a C a0 and � D a � a0, the rate of escape can be simplified to equal
k D c ��. The rate of lysis of infected cells by CTLs against a particular epitope, c,
can therefore be derived directly from estimates of the escape rate, k, and the fitness
cost, �:

c D k C �:

Asquith et al. found that the estimated escape rates and fitness costs are consistent
across different individuals. It is therefore meaningful to use the average estimate for
each of these quantities to estimate the rate of lysis of infected cells by a single CTL
response. Given that the escape rate is estimated to be 0.01 day�1 and the fitness cost
is estimated to be 0.005 day�1, the rate of lysis by CTLs specific for a single epitope
is estimated to be 0.02 day�1. This means that an infected cell would have a lifespan
of approximately 50 days if it were subject only to lysis by CTLs specific for one
epitope. The estimated average lifespan of a productively infected cell is consider-
ably shorter at approximately 1 day [35–38, 40]. Taken together these figures imply
that only about 2% of infected cell death is attributable to the CTL response directed
against a single epitope.

The Rate of Killing of Productively Infected Cells by CTL:
Estimating the Total Response Against Different Epitopes

Most infected individuals do not just elicit a CTL response against a single epitope,
therefore the total degree of cell death attributable to CTL-mediated lysis within
any individual is likely to be more than 2%. To extrapolate the single-epitope figure
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to understand the total strength of the CTL response within a typical individual, an
estimate is needed for the number of epitopes targeted by CTLs within a typical
host. Comprehensive epitope analysis put this average at between 14 and 19 epi-
topes [27, 47], however, typically less than five of these epitopes will be sufficiently
strong to drive CTL escape [48]. Given that the data upon which the single-epitope
killing rate was based related to CTL responses strong enough to drive escape – in
fact most were the patient’s immunodomiant response – Asquith et al. used a range
of between 5 and 14 epitopes to estimate that CTL-mediated lysis of infected cells
contributes to only about 10–20% of all infected cell death.

Comparing the Strength of the CTL Response in Primary
Infection and Chronic Infection

It is often assumed that the strength of CTL response in HIV infection is consis-
tent between primary and chronic infection. For each of the 21 datasets, Asquith et
al. estimated the epitope-specific rate of the killing by CTL. For this calculation a
uniform fitness cost of 0.005 day�1 was assumed for each dataset. The results show
that the rate of killing by a single CTL response is markedly slower in chronic in-
fection compared to primary infection. This is consistent with the findings derived
from analysing viral load dynamics using the target-cell limited model; namely that
CTLs have some impact during acute infection, but there is no explicit evidence that
they are important during chronic infection.

Comparing the Strength of the CTL Response in Humans
and Macaques

Before HIV vaccine candidates are tested in humans, they undergo efficacy tests
in non-human primates – typically macaques – challenged with SIV or SHIV. It
is clear that, like humans, they produce a CTL response against the virus, though
it is not clear how the strength of this response compares to the strength of the
CTL response in humans. This is a pertinent question in view of the recent (and
unequivocal) failure in humans of the Merck vaccine [11] that had previously proved
to be effective in SHIV challenged macaques [12].

To compare the strength of the CTL response between humans and macaques,
longitudinal CTL escape and reversion data from macaques can be analysed in
exactly the same way as has been described for the human data. Asquith et al.
[14] presented a summary of 35 escape events and 9 reversion events observed in
macaques that were used for this comparison. In the majority (23/35) of the escape
events, the outgrowth of the CTL escape variant was so rapid in comparison to the
sampling interval that it was only possible to put a lower bound on the rate of es-
cape. In the humans the same was true for 10/21 escape events. Across all of these



18 CTL in HIV Infection 377

Fig. 18.7 A comparison of escape and reversion rates in humans and macaques. (a) To compare
escape rates the data is stratified according to the average time interval between observations. For
each grouping the rate of escape is faster in macaques than in humans. (b) A direct comparison of
reversion rates reveals that reversion is faster in macaques than in humans [13]

events (amongst both human and macaque), a strong negative correlation was found
between the rate of escape and the average sampling interval. To compare the rate
of escape in humans with the rate of escape in macaques, Asquith et al. controlled
for the length of the sampling interval by dividing the dataset into four groups with
similar average sampling intervals. For each group the rate of escape in humans was
compared to the corresponding rate of escape in macaques (Fig. 18.7). The rate in
macaques was found to be significantly faster than the rate in humans. This result
held true even when data relating to acutely infected macaques were excluded. In
fact, unlike in humans, there was no statistical difference between the rate of escape
in acute and chronic infection.

To determine whether the faster escape rates observed in macaques could simply
be explained by lower fitness costs, fitness costs for nine reversion events were es-
timated in the same way as described for humans. For the majority of events (6/9)
the fitness cost could be determined precisely, therefore a direct comparison was
made between the macaque and human estimates (Fig. 18.7). This analysis revealed
that fitness costs of escape mutants are significantly higher in macaques than in hu-
mans. The faster escape rates observed in macaques therefore cannot be explained
by differences in fitness costs.

Since both the escape rate, k, and fitness cost, �, are higher in macaques than
in humans, the rate at which a CTL response to one epitope kills productively in-
fected cells (c D k C �) is also higher in macaques. The mean difference in the
escape rate between macaques and humans is estimated to be 0.02 day�1. The mean
difference in fitness cost is estimated to be 0.2 day�1. The difference in the rate of
CTL-mediated lysis can therefore be estimated to be 0.22 day�1 (0:02C0:2), mean-
ing that infected cells are killed almost ten times more rapidly in macaques than in
humans.
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In summary, this model has been used to estimate the selection pressure exerted
by CTL responses that drive the emergence of immune escape variants, thereby en-
abling the efficiency of HIV-1 specific CTLs to be quantified. Firstly, this analysis
has revealed that only around 2% of productively infected cell death is attributable
to CTLs recognising a single epitope. When this figure is scaled up to consider the
total CTL response by an individual, the implication is that CTLs are not respon-
sible for the majority of infected cell death, thus the basis upon which hopes of a
CTL-based vaccine are pinned, may be flawed. Secondly, the analysis has revealed
that the killing rate is significantly faster during acute infection than during chronic
infection. The CTL response therefore may be functionally important during acute
HIV infection, but not during chronic infection. Finally, the analysis has shown that
infected cells are killed by CTLs almost ten times more rapidly in macaques than
in humans, highlighting that SIV/SHIV infected macaques are a less than perfect
model for testing HIV vaccines. This may explain the recent failure of the CTL-
based Merck vaccine that was efficacious in macaques, but entirely ineffective in
humans.

Discussion

The combination of mathematical modelling and data analysis to elucidate various
aspects of the within-host dynamics of HIV infections has been one of the great
success stories of mathematical biology in the last decade. A number of factors have
contributed to this success. First, data on the within host dynamics of HIV is amply
available. HIV circulates in the blood and there are reliable quantitative methods
of detecting viral load in the blood. Thus longitudinal measures of viral abundance
in the blood of infected individuals are quite common. Second, the models that
have been developed to interrogate that data have remained really rather simple and
transparent with many of their important parameters accessible from observed data.
Despite this simplicity these models have had substantial explanatory power for
the observed data. In combination these good data and good models have yielded
new insights that would not have been available unless both models and data were
brought to bear upon the questions. Because of this, the study of ‘viral dynamics’
in HIV infection (often meaning mathematical modelling of immune system-virus
interactions) is very widely accepted in a broad church of HIV biologists.

Probably the first new insight generated by these interdisciplinary interactions
was that, during HIV infection, infected cells turnover on a very rapid timescale,
most of them not surviving beyond 1 day after infection. At the time this was a
big surprise to many researchers in the field. With time, repeated observation of
the same phenomena and further corroborating data this once novel insight is now
widely accepted.

The mathematical models presented here offer three insights about the role of
CTLs in immunodeficiency virus infections:

1. In chronically infected humans fewer than 20% of cells are killed by specific
CTL responses.
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2. In acutely infected humans CTL killing is more efficient, but not dramatically so.
3. In simian infections CTL efficacy is very dramatically higher.

The insights described in this chapter, although also based on simple models and
abundant, repeatable data, are yet to gain widespread acceptance. This is despite
the fact that their major prediction (that CTL vaccines might work in macaques but
not in humans) was amply borne out by the STEP vaccine trial. Nevertheless we
contend that this is another example of modelling elucidating previously confusing
biological data that will, in time, gain wide acceptance.
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Chapter 19
Viral Immunity and Persistence

Stephen Hickling and Rodney Phillips

Abstract Viruses survive and propagate in human populations, despite the
anti-viral immune response. Viruses have developed two principal mechanisms
in order to persist within populations. Some viruses, such as measles, are highly
infectious and quickly spread through susceptible populations. However measles is
rapidly cleared by the immune response. In contrast other less transmissible viruses
such as Epstein-Barr Virus (EBV) have developed a strategy of persisting within a
population by subverting or escaping from the host immune response.

The immune response has a number of defensive layers, which inhibit viral repli-
cation. The innate response is non-specific and mediated by cytokines that prevent
the spread of virus through tissues and promote the initiation of highly specific
adaptive immune responses. The adaptive response consists of antibodies, which
bind and neutralise free virus, and CD8C T cells that identify virally infected cells
and eradicate them.

Different immune mechanisms can by evaded by viruses. Cytokines can be in-
hibited either through preventing cytokine expression or reducing cytokine potency
through the production of viroreceptors. Additionally, immune evasion can occur
through antigenic variation. The adaptive immune response may cope with anti-
genic variation but some variability can defy the capacity of the response. Human
Immunodeficiency Virus (HIV) escapes adaptive immune responses by generating
antigens unrecognizable by CD8C T cell and antibody responses.

The interaction between the virus and host is a constant evolutionary struggle,
which imposes forces that drive out adapted viruses. The ability of viruses to adapt
allows them to persist and propagate within different populations.

Viruses are obligate intracellular parasites that hijack the infected cell machinery
in order to replicate and be transmitted. The balance between the pathogenicity of a
virus infection and its resolution by the immune response shapes viral survival strat-
egy. It is not to the viruses’ advantage to be highly pathogenic, as rapidly killing the
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host would prevent transmission and survival within a population. However, the
virus needs to be sufficiently pathogenic in order to replicate and be transmitted in
a population, so a balance needs to be achieved. Consequently viruses have evolved
two principal strategies for promoting their survival within a population, which can
acquire immunity. Some viruses such as Morbilivirus (Measles) have a survival
strategy described as hit and run [1]. They are able to infect a large number of
potential hosts before being resolved by the immune response [2,3]. However, other
viruses have evolved the alternative strategy of persistence. These viruses such as
the Herpes viruses have low transmissibility but are generally poorly resolved by the
immune response. This tactic allows them to persist within a population. Countering
viral proliferation is the host immune response. The antiviral immune response con-
sists of both innate and adaptive immune responses. In terms of antiviral immunity
the innate response refers to the action of cytokines and natural killer cells (NK).
The adaptive immune response to viruses includes the production of specific antivi-
ral antibodies by B cells and the CD8C T lymphocyte response, which eliminate
virally infected cells.

Immunological Mechanisms in Antiviral Responses

The innate immune response to viral infection is mediated through the action of cy-
tokines. Cells of the innate immune response, such as macrophage and monocytes,
produce a range of antiviral cytokines. The most important being Interleukin-1, -2,
Tumour Necrosis Factor (TNF), Interferon (IFN)-˛ˇ and � [4–6]. The action of
these cytokines can promote an antiviral state in bystander cells, inducing the
expression of proteins that destroy viral genomes and inhibit replication [6–8].
Cytokines such as IFN� can also upregulate the surface expression of Major His-
tocompatibility Complex molecules (MHC) – termed Human leukocyte antigens
(HLA) in humans [9].

The innate immune response also comprises NK cells. These cells are able to kill
virally infected cells. NK cells act by killing targets that lack HLA molecules which
act as the inhibitor self signal [10]. This is important for viral infections that attempt
to subvert the CD8C T cell response by downregulation of HLA class I molecules.

Adaptive Immune Responses

The adaptive immune response, unlike the innate response, is highly specific. The
production of antibody by B cells is an important effector of the adaptive im-
mune response [11, 12]. Specific antibody can bind to viral surface glycoproteins
or viral capsids [11]. Antibody binding can promote viral destruction either by an-
tibody dependent cell mediated cytotoxicity or induction of phagocytosis [11, 12].
Additionally, antibody binding can inhibit viral entry by physically blocking viral
receptors binding to complementary receptors [12].
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The role of antiviral antibody is crucial for protection from a particular virus
upon repeated exposure, such as measles [2, 3]. The importance of the protective
effect of antibody is highlighted by the fact that all successful viral vaccinations
induce protective antibody responses. In addition to antibody, CD8C T lympho-
cytes are crucial to the adaptive antiviral immune response. CD8C T lymphocytes
are able to kill cells infected with viruses. CD8C T cells recognise virally infected
cells because HLA Class I molecules display viral peptide antigens on the cell
surface [13]. Class I HLA molecules are found on the surface of all nucleated
cells. The CD8C T lymphocyte recognises this epitope/HLA complex through its
unique T Cell Receptor (TCR) [14, 15]. This interaction can result in CD8C T cell
activation. Activated CD8C T lymphocytes are able to kill the target cell (express-
ing the Class I HLA with viral epitope) and are termed Cytotoxic T lymphocytes
(CTL) [13].

The CTL response is crucial for protection from viral infections, highlighted by
individuals with Severe Combined Immunodeficiency disease and DiGeorges syn-
drome who lack CTL. These individuals are extremely susceptible to viral infections
which are non-pathogenic in healthy people (reviewed in [16]).

HLA Class 1 Molecules and the Presentation of Viral Epitopes
to the Adaptive Immune Response

Structure of the HLA Molecules

The critical role that Class I murine MHC molecules play in the presentation of en-
dogenous, nonself peptides was first identified in 1982 [13]. At this time it became
clear that Class I molecules present only short fragments of peptides, termed epi-
topes, to CD8C T lymphocytes. This was later confirmed in 1987 when the crystal
structure of HLA Class I molecules was resolved [17].

HLA molecules are encoded within the highly polymorphic major histocompata-
bility complex loci, located in chromosome 6p. This complex spans over 3.6 Mbp
and contains approximately 118 genes. In addition to HLA Class I, the MHC also
encodes Class II HLA molecules as well as a number of cytokines and elements of
the innate immune system.

Since the initial discovery of HLA Class I molecules it became evident that there
is huge diversity in HLA Class I molecules, with 702 alleles identified to date. These
alleles can be further divided into HLA Class IA, IB and IC isotypes. Each individ-
ual has the potential to express up to two different HLA molecules of each isotype,
six in total. It is thought that most CTL are reactive against peptides presented on
HLA-A and B molecules.

The HLA Class I molecule is a non-covalently linked trimer (Fig. 19.1). The
trimer consists of the polymorphic heavy chain (encoded in the MHC), ˇ2 mi-
croglobulin (ˇ2m) and the bound epitope [17]. The heavy chain consists of three
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Fig. 19.1 Structure of HLA class 1 molecule. The HLA heavy chain is shown in purple (˛1 , ˛2 and
˛3 domains). The Heavy chain forms a binding groove, where the specific peptide binds, between
the 1 and 2 domains. The Heavy chain/peptide complex is associated with 2 microglobulin (ˇ2m),
shown in red

domains ˛1, ˛2 and ˛3 with a molecular weight of approximately 43 kDa. The ˛3

domain spans the cell membrane [17]. The ˛1 and ˛2 domains form eight ˇ-pleated
sheets, upon which sit two anti-parallel ˛ helices [17]. This structure forms a plat-
form with a groove, within which the epitope sits [17, 18]. It is the ˛2 and ˛3

domains that form this structure which have highly polymorphic regions, allowing
a greater range of peptides to bind the groove [18].

The structure of the groove places biochemical restrictions on the peptides that
can stably bind. The groove can only accommodate peptide between 8 and 12 amino
acids in length [18]. The peptide and HLA groove interact through the formation of
hydrogen bonds at both the N- and C-terminals. The residues in the peptide that
form the hydrogen bonds are termed anchor residues.

These anchor residues are determined by the amino acids found both in the ˇ-
pleated sheets and ˛ helices of the HLA molecule. The amino acid sequence in the
rest of the bound peptide interact with the groove, however there is much greater
flexibility in these amino acid sequences [17, 18].

HLA Class I Antigen Presentation

Presentation of peptides on HLA Class I molecules is crucial for an effective im-
mune response. The cellular process for the production and presentation of optimal
peptides is a highly orchestrated process, which can be broadly divided into peptide
cleavage and HLA loading and surface expression (Fig. 19.2).
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Fig. 19.2 Mechanisms of CD8C T cell killing. (a) Schematic showing the granzyme exocytosis
model of killing. Granzyme B enters the target cell by perforin. Granzyme triggers the pro-
apoptotic caspase cascade in the target cell. (b) Schematic depicts receptor mediated target cell
death. Engagement of receptors containing death domains (such as Fas) with the appropriate lig-
and on the CTL causes trimerisation of death domains, which triggers the pro-apoptotic caspase
cascade

The majority of peptides loaded into HLA Class I molecules are derived from
the cytoplasm including self-peptides [20]. In non-infected cells, proteins are con-
stitutively cleaved into peptide fragments by the cylindrical proteasome, also called
the 20S or core particle proteasome [21]. The 20S proteasome cleaves proteins into
oligo-peptides between 3 and 15 amino acids in length [22]. The proteasome’s cylin-
drical shape is formed from two ˛ rings, between which are two ˇ rings [21, 23].
Each ring is composed of either seven ˛ or seven ˇ subunits [23]. The ˇ1,ˇ2 and ˇ5

subunits of the 20S proteasome have peptidylglutamyl, trypsin and chymotrypsin
activities, which primarily act at the C terminus of the peptide [24, 25]. The re-
maining ˇ subunits are N-terminal acting threonine proteases [25]. The ˛ rings
are thought to control the entry of peptides into the catalytic ˇ rings, with poly-
ubiquitinated peptides being preferentially cleaved [21].

Under the influence of IFN� , the 20S proteasome is modulated by the addition of
19S subunits, which can bind to either one, or both ends of the 20S proteasome [21].
IFN� also upregulates the expression of other catalytic subunits, LMP2, LMP7 and
MECL-1 [26, 27]. These subunits are incorporated into the ˇ rings, replacing the
ˇ1, ˇ2 and ˇ5 subunits. This IFN� induced complex forms the 26S immunopro-
teasomes. The modified ˇ subunits alter the peptide cleavage specificity of the
immunoproteasome [26, 27]. The trypsin and chymotrpsin activity is increased at
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the carboxy side of basic and hydrophobic residues while caspase activity at acidic
residues is reduced. This consequently causes the immunoproteasome to produce
longer peptides, which have more hydrophobic and basic residues at the Carboxy
termini [26,27]. Residues with these biochemical characteristics tend to have higher
binding affinity for HLA Class I molecules [17, 28]. Since basic and hydrophobic
residues are more likely to form anchor residues.

Peptides produced by the immunoproteasome are transported into the Endoplas-
mic Reticulum (ER) [29]. The ER is where newly synthesised HLA Class I heavy
chains are located. Peptides are actively transported into the ER via the Trans-
porter Associated with Antigen presentation (TAP) [29]. TAP is a transmembrane
heterodimer, encoded in the MHC [30] which preferentially transports basic and
hydrophobic peptides into the ER lumen [30,31]. In the ER peptides are further opti-
mized at the N-terminus by ER amino-peptidase (ERAAP) [32,33]. ERAAP cleaves
peptides of different lengths at different rates. 10mers are cleaved at higher rate then
9mers and little activity is directed against 8mers. This hierarchy of ERAAP activity
increases the production of optimal peptides for HLA Class I loading [34, 35].

TAP is also a crucial component in the peptide loading complex (PLC) [36]. The
PLC allows HLA Class I heavy chains to maintain structural conformation before
peptide loading [36]. The complex comprises TAP, unloaded Class I Heavy chain
associated with ˇ2m and the molecular chaperone tapasin [37]. This complex is al-
ways found with the same stoichiometry of 1 TAP: 4 tapasin: 4 heavy chains [38].
Binding of the optimal peptides to the PLC confers conformational change, re-
leasing the Class I trimer complex from the PLC. This release consequently allow
trafficking of peptide loaded Class I HLA molecules to the cell surface, to be sam-
pled by patrolling CD8C T lymphocytes [39].

Activation of CD8C T Lymphocytes and Killing of Virally
Infected Cells

Interaction of MHC Class 1 and the TCR

Loaded HLA Class I molecules expressed on the cell surface are sampled by CD8C
T lymphocytes. The CD8C T lymphocyte TCR transiently binds the surface of HLA
Class I molecules, contacting both the ˛2 and ˛3 domains and the epitope [14, 15].
When a particular TCR encounters its complementary HLA Class I-epitope com-
plex, CD8C T lymphocyte activation can occur (Fig. 19.3).

Despite TCR engagement, TCRs lack the ability to initiate intracellular sig-
nalling. To overcome this TCRs are non-covalently associated with the trans-
membrane CD3 complex [40]. The CD3 complex is composed of single � and ı

sub-units in addition to two � and two � subunits [40, 41] (Fig. 19.4). Each CD3
associates with two TCR dimers [40]. Consequently the overall structure of the com-
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Fig. 19.3 The CD8C T cell interacts with the HLA class I molecule through its T cell receptor
(TCR). The TCR binding groove, formed by the V˛ and Vˇ chains of the TCR, contact the surface
of the HLA/peptide molecule. The TCR contacts the HLA heavy chain ˛1, ˛2 and the presented
peptide. (Picture taken and modified from: Atlas of Genetics and cytogenetics Atlasgeneticsoncol-
ogy.org/Deep/mapping Author Gerald. J. Mizejewski)

plex is TCR2CD3�ı�2�2 [42]. The cytoplasmic domains of CD3 subunits contain
immuno-receptor tyrosine based motifs (ITAMS). These ITAMS can phosphorylate
intracellular kinases, which facilitate intracellular signalling [43, 44].

The TCR–HLA interaction alone however is not sufficient to activate CD8C
T lymphocytes. A substantial number of other receptors, termed co-receptors, are
also involved; CD8 itself is involved in amplifying the signal [45]. The CD8 co-
stimulatory molecule localizes to the engaged TCR and amplifies CD8C T cell acti-
vation [46]. This occurs through CD8 binding in an epitope independent manner to
the ˛3 domain of the HLA Class I molecule so prolonging cell engagement [45,46].
The degree that the CD8 interaction influences activation is thought to be a func-
tion of the affinity of the TCR for the HLA-epitope complex [47, 48]. TCR/HLA
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Fig. 19.4 The TCR complexes with CD3, that comprises of single and sub-units in addition to two
� and two � subunits. The overall structure of the complex is TCR2CD3�ı�2�2. The cytoplasmic
domains of CD3 subunits contain immuno-receptor tyrosine based motifs (ITAMS) which facilitate
intracellular signalling

and co-receptor engagement leads to surface protein rearrangement [49]. HLA
molecules and co-receptors tend to be polarized to the point of initial HLA/TCR
engagement [49, 50]. This leads to multiple HLA/TCR engagements. These multi-
ple interactions form an immunological synapse, bringing the CD8C T lymphocyte
and the target cell membranes into close contact [49, 50]. Multiple molecular inter-
actions promote CD8C T cell activation [51].

Mechanisms of CTL Killing

Once activated, CD8C T lymphocytes have cytotoxic capability and are conse-
quently termed cytotoxic T Lymphocytes (CTL). Both CTL and NK cells employ
a number of different mechanisms in order to destroy virally infected cells. Cy-
totoxicity is mediated by direct cellular interactions such as granule exocytosis or
engagement of death domains [52,53]. All these mechanisms direct target killing by
inducing cellular apoptosis.

Apoptosis is an energy dependent, highly ordered process of cell death. Apopto-
sis causes cells to detach from the local environment, condense and lose membrane
integrity. Apoptosis is orchestrated by a subset of proteases called caspases [54].
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Caspases cleave substrates at C-terminal aspartate residues, and disrupt intracellu-
lar structure and DNA integrity [54]. This highly controlled process limits cell death
to the target. This is in contrast to necrosis, which results in uncontrolled cellular
damage resulting in inflammation (reviewed in [55]).

Granule Mediate Cytotoxicity

CTL contain granules containing effector molecules that can induce apoptosis to
the target cells. The most important of these are perforin and granzyme B, members
of the caspase family [56]. When CTL interact with target cells the lytic granules
are polarized towards the contact point with the target [57]. This led to the granule
exocytosis model of CTL-induced killing, which postulates that the CTL exocytose
perforin and granzyme B into the cleft between the T cell membrane and the tar-
get cell. It was originally hypothesised that perforin monomers polymerise in the
target cell membrane in the presence of Ca2C [58–60]. This results in the forma-
tion of transmembrane pores in the target, allowing activated granzyme B to enter
the target cell cytoplasm [61]. However, in perforin deficient mice, CTL can still
kill target cells via granzyme B [62]. This, along with other observations, has led
to the hypothesis that granzyme B can be internalised into target cells by recep-
tor mediated endocytosis, with perforin playing a role in granzyme B release from
vesicles [63, 64].

Granzyme B cleaves procaspase-3 and procaspase-8 [65,66]. Both these procas-
pases require cleavage for activation, and form part of the caspase cascade which
induce apoptosis. However, granzyme B can also induce apoptosis in a caspase in-
dependent manner [67]. Granzyme B signals through the mitochondria, disrupting
energy metabolism resulting in the release of cytochrome c, a pro-apoptotic pro-
tein [67].

Although granzyme B is the main effector molecule for the induction of apop-
tosis other granzymes (A–H) and serine esterases are also released into the cell
cytoplasm. These effector molecules are also members of the caspase family and
help to induce apoptosis though cleavage of their molecular targets [67, 68].

Signalling Induced Apoptosis

In addition to the granule exocytosis model of cyotoxicity, it has been shown that
CTL can kill targets independently of granzyme B, by receptor mediated cytotox-
icity [52, 53]. This mechanism of cytotoxicity is principally used in lymphocyte
selection, but has recently been associated with auto-immunity [69].

CTL kill through the CD95 (Fas) pathway [52]. Fas is a member of the tumour-
necrosis factor receptor family of death receptors [70, 71]. Fas is expressed on the
surface of many cell types; however, Fas ligand (FasL) is only expressed on the
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surface of activated CTL [52]. Ligation of Fas by FasL causes trimerization of Fas
on the cell surface. Each Fas molecule has an intracellular death domain, which
recruits and activates caspase 8, inducing the caspase signalling cascade [71].

Viral Persistence and Subversion of the Immune Response

Viral Subversion of the Immune System

The coexistence of the viral pathogen and the host is an extremely fine balance. The
virus needs a large enough host population in order to survive and propagate, so
rapidly killing the host is not a successful evolutionary strategy. Viruses with low
transmission rates tend to be poorly resolved by the immune response. Thee viruses
persist within hosts in order to survive. In order to do this viruses have developed
strategies, which can interfere with the immune response designed to eliminate it.
Interference occurs against both the innate and the adaptive responses.

Subversion of Cytokine Action

Cytokines are critical for immune signalling and promoting immunological re-
sponses. Consequently, viruses have evolved a varied number of strategies to either
inhibit cytokine production or prevent their action [66]. The most common cytokines
targeted are inevitably the cytokines with the most potent antiviral effects. These in-
clude Interleukin (IL)-1, -2, Tumour necrosis factor (TNF), Interferon (IFN)-˛-ˇ
and � [4, 6, 8].

IFN� signalling causes the induction and expression of a number of genes,
termed IFN stimulated genes (ISG). This occurs through IFN regulatory factor 3
(IRF-3), that translocates to the nucleus and binds the transcription co-activator
CBP [72]. The Adenovirus E1A protein binds to and inhibits the IRF–CBP inter-
action preventing ISG expression [72]. Hepatitis B employs a similar strategy with
the terminal protein inhibiting the IRF–CBP interaction [73].

In addition to reducing the production of cytokines, a number of other viruses
prevent their action. One mechanism, employed by the Pox family of viruses, is the
secretion of viroreceptors [74]. Viroreceptors can mimic the receptor for a given
cytokine and have potent cytokine binding capability [74]. The myxoma virus vi-
roreceptor, M-T2, and cowpox virus crmB both mimic the TNF receptor [75, 76].
Viroreceptors compete with and sequester secreted TNF [75]. This consequently
reduces the influence of TNF. Other viroreceptors, such as MT-7 produced by myx-
oma are thought to be promiscuous for a number of cytokines including IFN� , IL2
and IL5 [77, 78].
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Herpes viruses, such as the Human Cytomegalovirus (HCMV), also express
viroreceptors [79]. The HCMV viroreceptor US28 is expressed in the infected cell
membrane and has cell-signalling capabilities [79]. US28 binds Macrophapge
Inflammatory Protein (MIP)-1˛/ˇ and RANTES (Chemokine ligand 5) [79].
This binding capability of US28 has two principle effects. Firstly, binding of
the chemokine causes US28 internalization and thus reduces cytokine concen-
tration in the local environment. Secondly, signalling through US28 causes an
intracellular calcium flux, which can inhibit cellular apoptosis and enhances viral
replication [79].

Subversion of the Adaptive Immune Response

Antibody can bind to viral surface glycoproteins or viral capsids [11]. Antibody
binding can opsonisize viral clearance either by antibody dependent cell mediated
cytotoxicity or promotion of phagocytosis. Additionally, antibody binding can in-
hibit viral entry into target cells, by physically blocking the viral receptor interacting
with its complementary receptor [11, 12].

Consequently, viruses have evolved to inhibit the antiviral effects of antibody.
One evolutionary strategy is that closely related viruses bear antigenic diversity.
Viruses with antigenic variation elicit a different antibody response defining them
as different serotypes [80]. Examples of viruses with different serotypes include in-
fluenza A and Poliovirus [81]. Consequently, an individual primed with one serotype
may not have cross protective antibody protection against another serotype of the
same virus [80, 81].

Viral serotypes may also carry further antigenic diversity. This mainly occurs
through antigenic drift, a process where viral antigens acquire mutations over time.
Influenza surface variation is targeted by antibody [1, 81]. Antibody-binding site
variation may inhibit antibody binding [1, 81]. HIV also displays antigenic drift to
escape antibody responses [82]. However, HIV escapes antibody at a much faster
pace than Influenza. Antibody taken from a HIV patient at a particular time cannot
neutralize the viral isolate taken at the same time. However, that antibody can neu-
tralize HIV isolates taken from the same patient 3–6 months earlier [83, 84]. This
indicates that HIV is continually escaping the antibody response through antigenic
drift and the antibody response is continually playing ‘catch up’.

Antigenic drift causes small changes in antigenic variation, but major changes
can occur by antigenic shift. Antigenic shift occurs when two or more viruses of
different serotypes infect the same cell. This allows recombination of genetic mate-
rial between viruses, creating a new serotype [85, 86]. This new serotype will have
the surface antigens derived from both strains of virus. This genetically distinct virus
can, consequently, escape any antibody responses present in the general population
to either of the progenitor viruses. This type of antigenic shift is mostly associated
with Influenza A and is the main source of new influenza pandemic strains [81,85].
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Subversion of the CD8 Response

For persistent viruses, escape from the CD8 response and its effector mechanisms
is a crucial survival mechanism. Viruses have evolved diverse mechanisms that in-
terfere with both the presentation of viral antigens and the apoptotic effects of CTL.
See Table 19.1.

Inhibiting Protease Function

The proteasome is responsible for the degradation of self and virally derived
peptides, and allows them to be presented on HLA Class I molecules [20,21]. Con-
sequently, interfering with the degradation and production of optimal peptides is an
effective evasion mechanism for viruses

Epstein Barr Virus (EBV), a member of the Herpes family, expresses an early
nuclear protein called EBNA 1. EBNA 1 expression dominates during latent EBV
infection, but elicits a poor CTL response [93]. This is mainly as EBNA-1 has long
repeats of glycine and alanine at the C-terminus. This makes the protein resistant to
proteasomal cleavage [94], so EBNA-1 epitopes are rarely presented.

Table 19.1 Viral subversion targets in the innate immune response

Target
Pathway Virus

Effector
Protein Mechanism of Action Reference

IFN�

signalling
Adenovirus E1A Prevents IRF-3 induced

gene expression
[72]

Hepatitis B Terminal
protein

Prevents IRF-3 induced
gene expression

[73]

Epstein-Barr Virus EBNA-2 Downregulates
transcription

[87]

Vaccinia B8R Secretion of IFN�

viroreceptor
[88]

Myxoma MT-7 Secretion of viroreceptor [67, 78]
Human herpes virus VIRF-2 Prevents expression [89]

IFN˛

signalling
Vaccinia B18R Secretion of IFN˛

viroreceptor
[88]

TNF signalling Myxoma MT-2 Secretion of TNF
viroreceptor

[90]

Cowpox CrmB Secretion of viroreceptor [48, 75, 76]
Human

cytomegalovirus
UL144 Viroreceptor, retained in

infected cell
[91]

Interleukin
signalling

Myxoma MT-2 Viroreceptor binds IL-2
and 5

[90]

Herpes simplex virus UL37 Modulates IL-8 signalling [92]
Human

cytomegalovirus
UL28 MIP-1˛=ˇ Viroreceptor [79]
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Inhibition of TAP Dependent Transport and the PLC

TAP is crucial for the translocation of proteasomal derived peptides into the ER
[29–31, 95]. TAP also plays a crucial role in the PLC for efficient HLA Class I
molecule loading [36]. Herpes Simplex virus expresses ICP-47, a protein, which is
a pseudosubstate for TAP [96]. ICP-47 binds to TAP and induces conformational
changes. This conformational change inhibits the ability of TAP to translocate pep-
tides into the ER [96]. Consequently, HLA Class I molecules remain unloaded and
are retained in the ER.

HCMV also targets TAP to reduce surface expression of virally loaded HLA.
HCMV expresses US6, which binds to the TAP heterodimer, like ICP-47 [97]. How-
ever, US6 prevents TAP from recruiting ATP and thus inhibits active transport of
peptide into the ER [97]. HCMV also expresses other proteins that interfere with
the protein loading complex [98, 99]. US2 and US11 redirect HLA expressed in
the ER into the cytoplasm, to the proteasome. This promotes degradation of HLA
heavy chains [98]. US3 interferes with the peptide loading pathway by an unknown
mechanism [99].

Modulation of HLA Class I Surface Expression

In addition to interfering with the processing of peptide and subsequent HLA Class I
loading, HLA surface expression can also be inhibited. The HIV accessory protein,
Nef, downregulates surface expression of HLA [100]. Nef binds to a specific mo-
tif on the cytoplasmic tail of HLA molecules. This motif is only found on the tails
of HLA-A and B molecules, but not HLA-C [101]. The binding of Nef prevents
trafficking of the HLA molecules to the cell surface [100]. Most CTL are reactive
against peptides presented on HLA-A and B molecules so reduction of their sur-
face expression inhibits CTL action. However, by not downregulating HLA class C,
NK cells also receive the inhibitory self signal and thus do not kill the target cell.
Thus, by selectively downregulating HLA-A and B, Nef inhibits CTL action and
NK mediated cytotoxicity.

HCMV downregulates the surface expression of MHC by interfering with anti-
gen processing. However, in order to avoid NK cell killing due to lack of surface
HLA, HCMV expresses a HLA homolog [102]. This homolog, UL18 has 25%
homology to HLA Class I molecules with a similar ˛1, ˛2 and ˛3 structure.
UL18 associates with ˇ2m, binds peptide and is stably expressed on the cell sur-
face [103, 104]. It is thought that UL18 acts to inhibit NK cell function by binding
inhibitory NK cell receptors [105]. The presence of this homologue may also act as
competition for TCR binding of patrolling CTL from HLA Class I loaded with viral
peptides [105].
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Inhibition of Cellular Apoptosis

Preventing the effector mechanisms of CTL is crucial for survival; consequently
viruses have evolved mechanisms to inhibit cellular apoptosis. This can either be
through modulation of apoptotic protein expression or inhibition of caspases.

Adenoviruses express the protein E3. E3 upregulates the internalisation and
degradation of Fas from the cell surface [106,107]. This inhibits the Fas/FasL cyto-
toxic pathway [107]. Additionally, the Adenovirus E1A and E1B protein expression
prevents the accumulation of p53 [108]. p53 is crucial in controlling the cell cy-
cle and controlling apoptosis. Thus by preventing its accumulation the induction of
apoptosis is inhibited [109]. Papilloma virus employs a similar strategy by targeting
p53 for proteasomal degradation [110].

As caspases are the cellular mediators of apoptosis, they are common targets for
inhibiting apoptosis. A number of viruses including the Herpes and Pox family of
viruses encode a homologue of the mammalian caspase inhibitor Flice caspase-8
inhibitor (FLIP) [111]. The FLIP proteins contain death effector domains (DED),
which bind and inhibit caspase 8. This consequently inhibits apoptosis induced
through death domains associated with Fas [111]. However, FLIP proteins do not
inhibit apoptosis induced by granzyme B.

The CrmA protein expressed by the Pox family of viruses is a potent inhibitor of
caspase-1 [112, 113]. CrmA inhibits the action of caspase 1 by being a pseudosub-
strate, which binds irreversibly to the caspase enzyme [94]. In addition to caspase 1,
CrmA has also been shown to be a potent inhibitor of caspase 8, 9 and 10 [114].
Importantly the CrmA caspase inhibition prevents the induction of the apoptotic
caspase cascade induced by granzyme B [114].

CTL Immune Escape Through Antigenic Variation

DNA based viruses possess genes for many of the mechanisms described to in-
hibit the actions of CTL. They have large genomes which can accommodate a
larger number of viral genes. RNA based viruses such as Human Immunodeficiency
Virus (HIV) have small genomes and cannot accommodate many of these adap-
tations [115]. However, these viruses have evolved strategies to escape the CTL
response through antigenic variation.

In order to successfully replicate, HIV must transcribe its RNA genome into
DNA, using Reverse Transcriptase (RT). RT has a high replication error rate, es-
timated to be 1 error every 20,000 bases [116]. This is in comparison the DNA
polymerase which has an error rate of approximately 1 error every 106 bases [117].
The errors generated by RT introduce antigenic variation in the HIV genome by
altering the amino acid sequence. These sequence variations create huge variation
in the viral population within a single host [116, 118, 119].

Amino acid sequence variations can alter proteasomal cleavage [120, 121], epi-
tope binding and the conformation of epitopes within the HLA groove [122, 123].
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This can result in loss of epitope presentation, or recognition by TCRs [120, 122–
124]. CTL evasion contributes to HIV persistence and is apparent as adaptability
within human populations.

Alteration of amino acid sequences either side of an optimal epitope can alter
a peptide’s biochemistry and change the cleavage points of the immunoprotea-
some [120, 121]. Alteration in immunoproteasome cleavage can diminish the gen-
eration of the optimal epitopes [120, 121]. Consequently, this reduces Class I HLA
that can be loaded with viral epitopes, reducing CTL antiviral activity.

Amino acid changes within an optimal peptide also alter their presentation [123,
124]. The HLA binding groove places biochemical restrictions on the peptide
sequence that can be accommodated [18]. Amino acid mutations occurring at an-
chor residues reduce or inhibit the ability of peptides to bind stably in the HLA
groove (Fig. 19.5). This consequently prevents the HLA molecules from being
loaded and presented to the CTL, allowing the virus to escape the immune re-
sponse [42, 119, 125].

Other amino acid polymorphisms within HIV epitopes, which do not occur at
anchor residues, can also alter CTL recognition [122, 123]. Changes in the peptide
sequence can change the conformation the peptide adopts within the HLA groove.
As the HLA-epitope TCR interaction is highly specific any conformational changes
may alter the affinity of this interaction [120, 122–124]. This can consequently im-
pede the formation of immunological synapses or prevent the ability of the TCR to
recognise its complementary ligand.

Infected cell

HLA molecule

Peptide

T cell receptor

Cytotoxic T cell

a b c

Fig. 19.5 (a) Activated immune response: Peptide from virus fits HLA and T cell receptor. Lead-
ing to a immune response. (b) Partial or no immune response: Peptide from mutated virus fits
HLA but changed shape leads to a poor fit to T cell receptor. (c) No immune response: Peptide
from mutated virus does not fit into HLA molecule
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Generation of antigenic variants allows HIV to evolve continuously a in the face
of immunological pressure created by by the CTL response [119]. However, al-
terations in the amino acid sequence can also influence the replication fitness of
the virus [126, 127]. Consequently, the fixation of a particular escape mutation is
a balance between the advantage conferred by escaping the CTL response and the
replication fitness of the virus.
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