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PREFACE

“It is an extraordinary fact that with many species, flowers fertilised with 
their own pollen are either absolutely or in some degree sterile; if fertilised 
with pollen from another flower on the same plant, they are sometimes, though 
rarely, a little more fertile; if fertilised with pollen from another individual or 
variety of the same species, they are fully fertile” 

—Cross and Self-Fertilisation (Darwin, 1878) 

In 1960 Sir Frank Macfarlane Burnet received the Noble Prize in Physiology 
and Medicine. He titled his Nobel Lecture “Immunological Recognition of Self” 
emphasizing the central argument of immunological tolerance in “How does the 
vertebrate organism recognize self from nonself in this the immunological sense—and 
how did the capacity evolve.”

The concept of self is linked to the concept of biological self identity. All organisms, 
from bacteria to higher animals, possess recognition systems to defend themselves from 
nonself. Even in the context of the limited number of metazoan phyla that have been 
studied in detail, we can now describe many of the alternative mechanism of immune 
recognition that have emerged at varying points in phylogeny. Two different arms—the 
innate and adaptive immune system—have emerged at different moments in evolution, 
and they are conceptually different. The ultimate goals of immune biology include 
reconstructing the molecular networks underlying immune processes. This volume covers 
different aspects of the emergence of immune systems in the evolution of life.

The first part of the book focuses on the origin of the immune response during 
the development of multicellularity (Chapters 1-4). Bacteria have developed defense 
systems against viruses and conversely, viruses have devised escape mechanisms that 
allow infection. Most of the archaea and numerous bacteria possess an elaborate system 
of adaptive immunity known as the CRISPR-Cas, that confers resistance to mobile 
genetic elements. This continuous phage-host interaction is a strong selective pressure that 
triggers a rapid co-evolution of both entities. Nevertheless, the evolution of metazoans 
from their unicellular ancestors emerged as a novel self-identity that required mechanisms 
for cell adhesion and cell-to-cell communication. One of the most important cell adhesion 
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mechanisms for metazoan development is based on carbohydrate to carbohydrate 
self-assessment. The large variability of carbohydrates as the most exposed and dominant 
components of plasma membranes are involved in many cellular interactions essential 
for self-nonself recognition. 

Since cnidarians are amongst the morphologically simplest metazoans, they are 
also the most suitable for studying the evolutionary origins of self-nonself recognition. A 
surprising characteristic is that they possess an exquisitely sophisticated histocompatibility 
system. When two allogeneic incompatible colonies come into direct contact, they develop 
inflammatory-like rejection lesions, called points of rejection (POR). The colonial 
ascidian Botryllus schlosseri manifests a unique allorecognition system that is controlled 
by a single histocompatibility Fu/HC locus, with a large number of expressed alleles, 
that also affects self-fertilization by sperm-egg incompatibility. 

The second part of this volume covers immunity aspects of innate sensors (Chapters 
5-11). Innate immunity is the dominant immune system found in plants, fungi, insects, 
and primitive multicellular organisms. In 1989, Janeway proposed that innate immune 
systems discriminate self and nonself through pathogen-associated molecular patterns 
(PAMPs). Some years later, Matzinger expanded Janeway’s theory proposing the “danger 
signal theory”, which states that the decision to respond or not to respond to a particular 
antigen depends on whether the antigen is “harmful or not” to our body.

Recognition is mainly based on a series of germ-line encoded pattern recognition 
receptors (PRRs) that have been selected during evolution to recognize nonself molecules 
present in microorganisms. Moreover, different types of intracellular sensors (Toll 
receptors) that recognize various forms of nucleic acids have been described in virus 
response. Similarly, plants utilize receptor-like proteins (kinases) as pattern recognition 
receptors which can detect conserved PAMPs. Charles Darwin made extensive observations 
of the pollination biology of a wide variety of plants. He carefully documented the 
consequences of self-pollination and described species that were self-sterile but that could 
easily be crossed with other plants of the same species. In fact, plants have evolved many 
complex mechanisms to prevent self-fertilization, and it is thought that this may partially 
explain the great success of the angiosperms. Self-incompatibility (SI) involves unique 
systems of cell-to-cell communication, cell-recognition and cell-to-cell rejection. Genetic 
studies show that a single polymorphic S-locus, encoding at least two components from 
both the pollen and pistil sides, controls the discrimination of self and nonself pollen. 

Cell death is vital to the life of multicellular organisms, and it plays a role in the 
maintenance of population homeostasis of unicellular organisms. Apoptosis is the best 
known of these programs, and it has been suggested that it originated as part of a host 
defense mechanism. During apoptosis, cells maintain the integrity of their plasma 
membrane. In contrast, cell death by ‘necrosis’, which occurs in situations of uncontrolled 
tissue damage, is a ‘passive’ form of cell death which triggers inflammation. The 
component released during tissue injury, called damage-associated molecular patterns 
(DAMPs), also triggers innate immune response. 

Recent evidence indicates that the cell homeostasis program is also triggered by 
inner sensors that intersect with the innate immune response. Here we also described 
how mechanisms such as the endoplasmic reticulum (ER) stress and “autophagy” are 
critical to restrict viral replication. Some viruses can also exploit these mechanisms. In 
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fact, regulating some aspects of these pathways, it is possible to favour viral replication 
and also inhibit the apoptotic machinery of infected cells.

The third part of this volume is dedicated to the emergence of adaptive systems in 
metazoans (Chapters 12-17). During vertebrate evolution, transposable elements have 
repeatedly contributed with regulatory and coding sequences to the host, leading to the 
emergence of new lineage-specific genes. Human endogenous retroviruses (as HERVs), 
represent vestiges of ancient infections that resulted in stable integration of the viral 
genome. These have occurred during the first evolutionary stages of jawed vertebrates 
due of the acquisition of different gene-related systems (Igs, MHC, TCR), and the 
recombinatorial mechanisms of generation of antigenic diversity (RAG genes) and 
lymphoid organs. Recent work has shown that jawless vertebrates have lymphocytes that 
express somatically diversified antigen receptors that contain leucine-rich-repeats, termed 
variable lymphocyte receptors (VLRs), and that the type of VLR expressed is specific to 
the lymphocyte lineage. However, during the millions of years of co-evolution with their 
respective hosts, viruses have extensively captured cellular genes. Cytomegaloviruses 
(CMVs) constitute an outstanding example of the many and varied encoded proteins 
directed to modulate both innate and adaptive immune responses 

The last part of the volume describes the emergence of the Major Histocompatibility 
Complex (MHC). The MHC is a multigene family that has arisen through recurrent 
expansion and contraction of genes, and a continuum of the evolutionary process is 
observed in the teleost fishes. This system contains genes encoding proteins involved 
with antigen presentation, playing an important role in the adaptive immune system. The 
study of how the MHC appeared in vertebrates during evolution and how it is organized 
in different species can help us clarify what features are essential for self-nonself 
recognition. On the other hand, the recent sequencing and assembly of the genomes of 
different organisms have shown that almost all vertebrates studied have one or more 
clusters of genes encoding odorant receptors (OR) in close physical linkage to MHC. 
Social signalling associated to MHC has been identified in over 20 species of vertebrates 
and is likely the basis for a vertebrate-wide chemosensory communication system.

This book presents an integrated view of self and nonself recognition systems in 
the context of evolution. I hope it will contribute to the conceptual discussion of the 
emergence of immune systems in nature. I am extremely grateful to all authors for their 
excellent contributions. 

Carlos López-Larrea
Department of Immunology 

Hospital Universitario Central de Asturias 
Oviedo, Spain



ix

ABOUT THE EDITOR...

CARLOS LÓPEZ-LARREA is Professor of Immunology (Oviedo, Spain) and 
currently Head of the Department of Immunology at the Hospital Universitario Central 
de Asturias (Oviedo, Spain). He is a world expert on spondyloarthropathies (SpA), 
in particular MHC and genetic factors that influence the development of the disease. 
The main research interests of his group also currently include the study of epigenetic 
mechanisms involved in autoimmune diseases and the role of innate immunity in organ 
transplantation tolerance. He is a member of several international scientific organizations 
and board member of several scientific journals. He has published more than 150 
international papers and book chapters related to immunology and spondylaorthropathies.



xi

PARTICIPANTS

Ana Angulo
Department of Cell Biology
Immunology and Neurosciences
Medical School
University of Barcelona
and
Institut d’Investigacions Biomèdiques 

August Pi i Sunyer (IDIBAPS)
Barcelona
Spain

Vincenzo Calvanese
Department of Immunology and Oncology
National Center for Biotechnology
CNB-CSIC
Madrid
Spain

Nadia Danilova
Department of Molecular Cell  

and Developmental Biology
University of California Los Angeles
Los Angeles, California
USA

Ian A. Dubery
Department of Biochemistry
University of Johannesburg
Auckland Park
South Africa

Pablo Engel
Department of Cell Biology
Immunology and Neurosciences
Medical School
University of Barcelona
and
Institut d’Investigacions Biomèdiques 

August Pi i Sunyer (IDIBAPS)
Barcelona
Spain

Mario F. Fraga
Department of Immunology and Oncology
National Center for Biotechnology
CNB-CSIC
Madrid
Spain

Segundo González
Department of Functional Biology
University of Oviedo
IUOPA
Oviedo
Spain

Ju-Chi Huang
Department of Biochemistry
University of Johannesburg
Auckland Park
South Africa



xii PARTICIPANTS

Nao Jounai
Department of Molecular Biodefense 

Research
Yokohama City University Graduate 

School of Medicine
Yokohama
Japan

Philip J. Kear
Division of Biochemistry
University of Missouri
Columbia, Missouri
USA
and
Germplasm Enhancement and Crop 

Improvement Division
International Potato Center
Lima
Peru

Kouji Kobiyama
Department of Molecular Biodefense 

Research
Yokohama City University Graduate 

School of Medicine
Yokohama
Japan

Jason L. Kubinak
Department of Biology
University of Utah
Salt Lake City, Utah
USA

Ester Lara
Cancer Epigenetics Laboratory
Instituto Universitario de Oncología  

del Principado de Asturias (IUOPA)
HUCA
Universidad de Oviedo
Oviedo
Spain

Carlos López-Larrea
Department of Immunology
Hospital Universitario Central de Asturias
Oviedo
Spain

Jesús Martínez-Borra
Department of Immunology
Hospital Universitario Central de Asturias
Oviedo
Spain

Bruce McClure
Division of Biochemistry
University of Missouri
Columbia, Missouri
USA

Gradimir N. Misevic
Gimmune GmbH
Zug
Switzerland

Nikola Misevic
Institute of Brain Research
University of Bremen
Bremen
Germany

Yasunobu Miyake
Division of Molecular Immunology
Medical Institute of Bioregulation
Kyushu University
Fukuoka
Japan

Cristina Muñoz-Pinedo
Bellvitge Biomedical Research Institute 

(IDIBELL)
L’Hospitalet
Barcelona
Spain

Aurora M. Nedelcu
University of New Brunswick
Biology Department
Fredericton, New Brunswick
Canada

Adam C. Nelson
Department of Biology
University of Utah
Salt Lake City, Utah
USA



xiiiPARTICIPANTS

Vipul M. Parmar
School of Biological and Biomedical 

Sciences
Durham University
Durham
UK

Octavian Popescu
Molecular Biology Center and Institute  

for Interdisciplinary Experimental 
Research

Babes-Bolyai University
Cluj-Napoca
and
Institute of Biology
Romanian Academy
Bucharest
Rumania

Wayne K. Potts
Department of Biology
University of Utah
Salt Lake City, Utah
USA

Baruch Rinkevich
Israel Oceanographic and Limnological 

Research
National Institute of Oceanography
Tel-Shikmona
Haifa
Israel

James S. Ruff
Department of Biology
University of Utah
Salt Lake City, Utah
USA

Natasha M. Sanabria
Department of Biochemistry
University of Johannesburg
Auckland Park
South Africa

Martin Schröder
School of Biological and Biomedical 

Sciences
Durham University
Durham
UK

Fumihiko Takeshita
Department of Molecular Biodefense 

Research
Yokohama City University Graduate 

School of Medicine
Yokohama
Japan

Luis Villarreal
Center for Virus Research
University of California
Irvine, California
USA

Sho Yamasaki
Division of Molecular Immunology
Medical Institute of Bioregulation
Kyushu University
Fukuoka
Japan



xv

CONTENTS

1. THE ORIGIN OF THE BACTERIAL IMMUNE RESPONSE ...........................1

Jesús Martínez-Borra, Segundo González and Carlos López-Larrea

Abstract ......................................................................................................................................... 1
Introduction .................................................................................................................................. 1
Bacteriophage Biology ................................................................................................................. 2
Phases of the Immune Response ................................................................................................. 5
Bacterial Immune Response before Phage Entry ..................................................................... 6
Bacterial Immune Response after Phage Entry ........................................................................ 7
CRISPRs ....................................................................................................................................... 8
Abortive Infection (Abi) Systems ............................................................................................. 11
Conclusion and Future Prospects ............................................................................................. 11

2. THE EVOLUTION OF SELF DURING THE TRANSITION  

TO MULTICELLULARITY .........................................................................14

Aurora M. Nedelcu

Abstract ....................................................................................................................................... 14
Introduction ................................................................................................................................ 14
The Volvocine Algae as a Case Study ....................................................................................... 16
Constraints.................................................................................................................................. 16
Selective Pressures ..................................................................................................................... 18
The Genetic Basis for Cell Differentiation in Volvox carteri .................................................. 18
Unicellularity versus Multicellularity ...................................................................................... 19
Transition to Multicellularity: The Emergence of a New Self ............................................... 21
Conclusion .................................................................................................................................. 28



xvi CONTENTS

3. GLYCONECTIN GLYCANS AS THE SELF-ASSEMBLING  

NANO-MOLECULAR-VELCROSYSTEM MEDIATING  

SELF-NONSELF RECOGNITION AND ADHESION  

IMPLICATED IN EVOLUTION OF MULTICELLULARITY ................31

Gradimir N. Misevic, Nikola Misevic and Octavian Popescu

Abstract ....................................................................................................................................... 31
Introduction ................................................................................................................................ 32
Q and A........................................................................................................................................ 32
Q: Why Does Self Recognition and Adhesion Exist in Complex  

Multicellular Organism? ................................................................................................... 33
Q: What is the Nature of the Molecules Operating in Self-Nonself Discrimination? .......... 34
Q: Where are Self-Nonself Cell Recognition and Adhesion Molecules Localized? ............. 38
Q: How Do the Cell Recognition and Adhesion Molecules Function  

in Self-Nonself Discrimination? ........................................................................................ 39
Q: When is Cell Recognition and Adhesion Active for Self-Nonself Discrimination? ......... 44
Conclusion .................................................................................................................................. 44

4. NEGLECTED BIOLOGICAL FEATURES IN CNIDARIANS  

SELF-NONSELF RECOGNITION ..............................................................46

Baruch Rinkevich

Abstract ....................................................................................................................................... 46
Introduction ................................................................................................................................ 47
���������	 .................................................................................................................................... 48
Immunological Memory ............................................................................................................ 50
Immunological Maturation ....................................................................................................... 51
Chimerism .................................................................................................................................. 53
Conclusion .................................................................................................................................. 54

5. INTRACELLULAR INFLAMMATORY SENSORS FOR FOREIGN  

INVADERS AND SUBSTANCES OF SELF-ORIGIN ................................60

Nao Jounai, Kouji Kobiyama and Fumihiko Takeshita

Abstract ....................................................................................................................................... 60
Introduction ................................................................................................................................ 60

�������������������	������� ........................................................................................... 61
Intracellular Sensors .................................................................................................................. 66
Conclusion .................................................................................................................................. 74

6. NONSELF PERCEPTION IN PLANT INNATE IMMUNITY..........................79

Ian A. Dubery, Natasha M. Sanabria and Ju-Chi Huang

Abstract ....................................................................................................................................... 79
Introduction: The Age Old Question of “What is Self?” ........................................................ 79
The Constant Battle between Self and Nonself: Principles of Immunity ............................. 81
Biochemistry of Perception and Recognition: Nonself Detection .......................................... 86
Up-Regulation of Surveillance and a Primed State .............................................................. 100
Dual Functioning in Plant Signaling ...................................................................................... 101
Conclusion ................................................................................................................................ 102



xviiCONTENTS

7. HOW DID FLOWERING PLANTS LEARN TO AVOID BLIND  

DATE MISTAKES? SELF-INCOMPATIBILITY IN PLANTS  

AND COMPARISONS WITH NONSELF REJECTION  

IN THE IMMUNE RESPONSE ..................................................................108

Philip J. Kear and Bruce McClure

Abstract ..................................................................................................................................... 108
Introduction .............................................................................................................................. 108
Self-Incompatibility Helps Plants Screen Potential Suitors ................................................. 109
Self-Incompatibility’s Contribution to the Success of the Angiosperms ............................. 109
Self-Incompatibility Acts as a Postpollination Mate Selection System ................................111
Self and Nonself-Rejection in Plant and Animal Innate Immunity ......................................111
Molecular Basis of Self-Recognition in Self-Incompatibility ............................................... 113
Case Study: S-RNase-Based Gametophytic Self-Incompatibility ....................................... 113
Could Parallels between Immunity and Self-Incompatibility Suggest  

an Evolutionary Relationship? ....................................................................................... 118
Conclusion ................................................................................................................................ 119

8. SIGNALING PATHWAYS THAT REGULATE LIFE  

AND CELL DEATH: EVOLUTION OF APOPTOSIS  

IN THE CONTEXT OF SELF-DEFENSE .................................................124

Cristina Muñoz-Pinedo

Abstract ..................................................................................................................................... 124
Introduction: Programmed Cell Death .................................................................................. 125
Apoptosis is Executed through Activation of Caspase Proteases ........................................ 125
Conserved Apoptotic Regulators in Vertebrates, Flies and Nematodes:  

Caspases, IAPs, Adapter Molecules and Bcl-2 Family Proteins .................................. 126
Cell Suicide: Mitochondria and Bcl-2 Family Proteins Regulate “Self-Induced”  

Cell Death in Mammals ................................................................................................... 129
Is There a Role of the Mitochondria in Apoptosis of Invertebrates? .................................. 131
Cell Death by Suicide Induction: The Death Receptor (Extrinsic) Apoptotic Pathway ....... 132
Cell Death by Murder: The Granzyme Pathway .................................................................. 133
Apoptosis is Not The Only Way to Die: Non-Apoptotic Forms of Programmed  

Cell Death in Metazoans .................................................................................................. 133
Cell Death in Plants, Fungi and Protists ................................................................................ 136
Host Defense and the Origins of Apoptosis. Pathogen-Sensing Complexes  

and Apoptosomes are Structurally Similar ................................................................... 138
Non-Apoptotic Functions of Apoptotic Proteins are Related to Immunity ........................ 139
Conclusion and Perspectives ................................................................................................... 141

9. SENSING NECROTIC CELLS ..........................................................................144

Yasunobu Miyake and Sho Yamasaki

Abstract ..................................................................................................................................... 144
Introduction .............................................................................................................................. 144
Danger Signals from Necrotic Cells ........................................................................................ 146
Danger Receptors for Sensing Necrotic Cells ........................................................................ 148
Conclusion and Future Prospects ........................................................................................... 150



xviii CONTENTS

10. SENSING ENDOPLASMIC RETICULUM STRESS ....................................153

Vipul M. Parmar and Martin Schröder

Abstract ..................................................................................................................................... 153
Introduction .............................................................................................................................. 153
Sensing of ER Stress By IRE1 ................................................................................................. 155
The Competition Model ........................................................................................................... 158
The BiP Release Model ............................................................................................................ 160
The Ligand Binding Model ..................................................................................................... 161
Sensing of ER Stress by PERK ............................................................................................... 162
Sensing of ER Stress by ATF6 ................................................................................................. 163
Conclusion ................................................................................................................................ 164

11. AUTOPHAGY AND SELF-DEFENSE .............................................................169

Jesús Martínez-Borra and Carlos López-Larrea

Abstract ..................................................................................................................................... 169
Introduction .............................................................................................................................. 169
Autophagy Machinery ............................................................................................................. 172
Regulation of Autophagy ......................................................................................................... 173
Signaling Regulation of Autophagy ........................................................................................ 175
Autophagy and Cell Death ...................................................................................................... 176
Autophagy and Aging .............................................................................................................. 176
Autophagy in Innate and Adaptive Immunology .................................................................. 177
Conclusion and Future Prospects ........................................................................................... 181

12. VIRUSES AND HOST EVOLUTION: VIRUS-MEDIATED  

SELF IDENTITY ..........................................................................................185

Luis Villarreal

Abstract ..................................................................................................................................... 185
Introduction: Identity—Lessons from the Bottom ............................................................... 186
The Consortia Story from Virus ............................................................................................. 188
Code Editors Must be Consortial ........................................................................................... 188
The Concept of Addiction Modules and Stable Group Identity .......................................... 189
Generality of Features ............................................................................................................. 190
Social Identity and Language Adhere to These Generalities ............................................... 192
The Nature of Prokaryotes ...................................................................................................... 194
The Nature of Eukaryotes ....................................................................................................... 199
The Exemplar of Adaptive Immunity: Complex Self Identity from Complex  

Virus Colonization ........................................................................................................... 201
����������������������������������ERV Colonization ................................................ 206
Virus Driven Human Evolution .............................................................................................. 207
Addiction Revisited: Social Bonds (Love) and Cognition .................................................... 207
A Large Social Brain as a Product of Group Identity .......................................................... 210
Conclusion ................................................................................................................................ 212



xixCONTENTS

13. THE EVOLUTION OF ADAPTIVE IMMUNITY ..........................................218

Nadia Danilova

Abstract ..................................................................................................................................... 218
Introduction .............................................................................................................................. 218
The Major Features of the Adaptive Immune System of Jaw Vertebrates ......................... 220
Adaptive Immune System of Jawless Vertebrates ................................................................ 223
Origin of the Rearranging Immune Receptors in Vertebrates ............................................ 225
Origin of Lymphoid Cells and Organs ................................................................................... 228
Innate-Adaptive Interactions .................................................................................................. 230
Conclusion ................................................................................................................................ 231

14. EPIGENETIC CODE AND SELF-IDENTITY ...............................................236

Vincenzo Calvanese, Ester Lara and Mario F. Fraga

Abstract ..................................................................................................................................... 236
Introduction: Epigenetics ........................................................................................................ 236
Epigenetics of Self .................................................................................................................... 240
Immune System Recognition of Self and Nonself ................................................................. 241
Nervous System: Self-Consciousness and Self-Identity ........................................................ 245
Conclusion: Epigenome, Technical Advances and Applications .......................................... 251

15. VIRAL IMMUNOMODULATORY PROTEINS:  

USURPING HOST GENES AS A SURVIVAL STRATEGY ....................256

Pablo Engel and Ana Angulo

Abstract ..................................................................................................................................... 256
Introduction .............................................................................................................................. 256
Cytomegaloviruses ................................................................................................................... 258
MHC Class I Homologues ....................................................................................................... 261
UL18 .......................................................................................................................................... 261
UL142 ........................................................................................................................................ 262
TNF Receptor Superfamily Homologues ............................................................................... 263
UL144 ........................................................................................................................................ 263
Cytokine Homologues .............................................................................................................. 264
UL111A ...................................................................................................................................... 264
Chemokine and Chemokine Receptors Homologues ............................................................ 265
Chemokine Homologues .......................................................................................................... 265
UL146 and UL147 .................................................................................................................... 266
UL128 ........................................................................................................................................ 266
Chemokine Receptor Homologues ......................................................................................... 267
US28 .......................................................................................................................................... 267
US27 .......................................................................................................................................... 268
UL33 .......................................................................................................................................... 268
UL78 .......................................................................................................................................... 269
Fc Receptor Homologues ......................................................................................................... 269
TRL11/IRL11 and UL119-118 ................................................................................................. 269
Molecular Mimicry and Autoimmunity ................................................................................. 270
Conclusion and Future Prospects ........................................................................................... 271



xx CONTENTS

16. THE EMERGENCE OF THE MAJOR  

HISTOCOMPATILIBILITY COMPLEX ..................................................277

Jesús Martínez-Borra and Carlos López-Larrea

Abstract ..................................................................................................................................... 277
Introduction .............................................................................................................................. 277
What is the MHC? ................................................................................................................... 278
Origin of the MHC ................................................................................................................... 279
The MHC and Emergence of the Adaptive Immune System ............................................... 281
MHCs in Fish............................................................................................................................ 282
Avian MHCs ............................................................................................................................. 283
Mammalian MHCs .................................................................................................................. 285
KIR Genes and MHC Evolution in Primates ......................................................................... 286
Conclusion and Future Prospects ........................................................................................... 287

17. MHC SIGNALING DURING SOCIAL COMMUNICATION ......................290

James S. Ruff, Adam C. Nelson, Jason L. Kubinak and Wayne K. Potts

Abstract ..................................................................................................................................... 290
Introduction .............................................................................................................................. 291
Signaling of MHC Genotype: Molecular Mechanisms ......................................................... 291
MHC as a Signal in Individual Recognition .......................................................................... 295
MHC as a Signal in Kin Recognition ..................................................................................... 298
MHC as a Signal of Genetic Compatibility in Mate Choice ................................................ 302
MHC and Signals of Quality in Mate Choice ........................................................................ 305
MHC Evolution: What are the Primordial Functions? ........................................................ 306
Conclusion ................................................................................................................................ 307

INDEX ........................................................................................................................315



xxi

ACKNOWLEDGMENTS

This work was supported in part by the Spanish grant FIS PI080566 from 
Instituto “Carlos III” (European FEDER founds), CAJASTUR and ASHISTO.



1

CHAPTER 1

THE ORIGIN OF THE BACTERIAL  
IMMUNE RESPONSE

Jesús Martínez-Borra,1 Segundo González2 and Carlos López-Larrea*,1,3

1Immunology Department. Hospital Universitario Central de Asturias, Oviedo, Spain; 2Department of Functional 
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Abstract: Bacteriophages are probably the oldest viruses, having appeared early during 
bacterial evolution. Therefore, bacteria and bacteriophages have a long history of 
co-evolution in which bacteria have developed multiple resistance mechanisms 
against bacteriophages. These mechanisms, that are very diverse and are in constant 
evolution, allow the survival of the bacteria. Bacteriophages have adapted to bacterial 
defense systems, devised strategies to evade these anti-phage mechanisms and 
restored their infective capacity. In this chapter, we review the bacterial strategies 
that hinder the phage infection as well as the counter-defense mechanisms developed 
by the bacteriophages as an evolutionary response to the antiviral systems.

INTRODUCTION

The immune system has developed during evolution to defend our organism against 
nonself entities such as microorganisms, some inert injurious materials and tumour cells. 
This system in jawed vertebrates (like mammals) is very complex and contains an innate 
and an adaptive immune response. Such a complex organization of immune system 
probably provided survival advantages: These animals are also complex anatomically, 
generally need a long time to reach their reproductive maturity, possess a higher mobility 
�������	������	����	����	�����	�	��������	���������	�	���	�������	��	�
����	����
�����	����
Other types of animals also possess an immune system, although more primitive. Thus, 
all metazoans, including plants and the simplest multicellular organisms like the Porifera, 
need to distinguish self from nonself to maintain their integrity. The distinction between self 
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and nonself prevent them from being deceived by pathogens, which, without the existence 
of the immune system, eventually would invade the body and destroy the individual. In the 
simplest metazoans, this destruction is avoided by distinguishing their cells from the cells 
coming from other colonies and maintaining their integrity, as happens in sponges.

��	������	�����	�������	��	��	����������������������������	������������������	��
from nonself, whose function is to preserve the individual integrity both from an excessive 
competition for nutrients and from pathogenic assaults. The unicellular microorganisms, like 
bacteria, are able to perform this distinction. They can detect the presence of competitors 
that use the same nutrients and kill them by secreting anti-microbial substances. They are 
also able to detect and eliminate their own intracellular parasites.1,2 This is, for example, 
the well-known function of the restriction enzymes, which evolved to destroy the invading 
bacteriophage genome while the bacterial DNA remained unharmed. In this chapter, we 
review the mechanisms used by bacteria to avoid a bacteriophage attack and destroy the 
phages once they enter inside the bacteria. The bacteriophages have an important role in 
bacterial evolution and have led to a great variety of defense mechanisms. Bacteriophages, 
for their part, have developed counter defense mechanisms to evade the bacterial antiviral 
mechanisms (Table 1, Fig. 1). We will also discuss how these defense mechanisms 
resemble those of more evolved forms of life.

BACTERIOPHAGE BIOLOGY

Most bacteria are infected by viruses called bacteriophages (also known as phages), 
which only have bacteria as a host (reviewed in ref. 3). Like other viruses, phages are 

Table 1. Summary of some of the phage defense mechanisms described in this chapter 
and their respective counter defense systems developed by phages

Bacteriophage Resistance 
Mechanisms

Counter Defense 
Mechanisms Examples

!�������������������������	�����

Type I Reduction of recognition sites  
�����	�����	�� 
Occlusion restriction sites  
Depletion of cofactors  
Inhibition R-M enzymes

Point mutations  
Hydroxymetiluracil  
DarA and DarB proteins  
S-adenosy metionine hydrolase  
OCR proteins

Type II Reduction of recognition sites  
�����	�����	�

Type III Reduction of recognition sites  
Occlusion restriction sites  
Inhibition R-M enzymes

DarA and DarB proteins  
OCR proteins

Type IV Inhibition of R-M enzymes IPI proteins for  
GmrS-GmrD system

CRISPR Inhibition of recognition Mutated proto-spacer  
sequences

Abortive infection systems

Lit proteins
Rex system

Reversion of Lit action  
rII exclusion

Reprocessing host tRNAlys  
rII gene
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Figure 1. Phage infection stages and antiphage mechanism. Each stage of the phage cycle can be 
�
	������� �������	�� ��� ��� ����
���	� �	��������� �!� �����
����� ��� ���"	�� ��� �	�	��� �����	��	�� �����
interfere with the recognition of a phage with its receptor. B) The DNA injection into the host also 
����������"	���#!�$	���������%����������������	�������	�	��������	���������	����&'�����	� ��	������
DNA remains undamaged. CRIPRS recognize phage DNA when the phage has infected previously 
the bacteria. D) Abortive infection systems affect the last stages of the phage cycle (replication, 
transcription or translation). These mechanisms lead to the death of the infected bacteria but protects 
the bacterial population.
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parasites that only can live in their host cell. However, many phages can survive in the 
absence of the appropriate host for years and remain able to infect bacteria. Phages need 
an appropriate host that is generally a group of bacteria of one species, although some 
phages can infect several related species. Their host range is very broad and so, they can 
infect any bacteria group, including gram positive, gram negative and archaea, the latter 
�	�������	��	������
	����������	���������	���	�������	
���	���<���	����	����=��������
distributed; they can be found in all habitats where the bacteria or archaea can proliferate, 
including places with extremes temperature, pH, or salinity. Phages are probably the most 
abundant biological entities. They are perhaps the oldest viruses, having appeared before 
the split of the two bacterial kingdoms, bacteria and archaea. They are very diverse in 
structure, which indicates they have a polyphyletic origin.

The phage virion consists of a capsid make up of proteins or lipoproteins that 
enclose the genetic material (the nucleocapsid). Their structure can be tailed, polyhedral, 
���	����������
	����
���������������	�
���	���	�����	��>?@\������
���	�!��	�������
the Order Caudovirales or tailed phages. The Caudovirales include the families Myoviridae, 
Siphoviridae and Podoviridae. Phages of these families are formed by an icosahedral head 
and a tail. The tail of the phage varies in length and can be contractile or not, depending on 
the family. These phages contain linear double-stranded DNA (dsDNA). The polyhedral, 
���	����������
	����
����
���	�����
���	������	���	�������	��������	���
���	��������
very few species described to date. A few species have not been assigned to any group 
yet. The phage capsid has different shapes and that include families with linear or circular 
dsDNA, two families with circular single-stranded DNA (ssDNA) and two families with 
RNA as genetic material, one of them with linear ssRNA and other with segmented dsRNA.4

The long period of time in contact between bacteria and phages could explain the 
lysogeny, a complex phenomenon that probably has required a long co-evolution of phages 
and their hosts.3 Phages can be grouped into virulent and temperate phenotypes on the 
basis of their infection cycle.5 After the infection, virulent phages have a lytic cycle: They 
immediately start the production of new viral particles using the bacterial molecular machinery 
and liberate new phages by lysing the host cell. Temperate phages have two alternative 
cycles when they infect the bacteria. They can follow a lytic cycle as aforementioned or 
alternatively, they can enter a lysogenic cycle: The phage remains in a quiescent state, their 
genetic material (known as a prophage) integrates into the bacterial genome or remains as 
a plasmid and replicates at the same time as the host. The phage stays in this state until a 
�
	������������>�	
	��	��������	�����^���	�����������	!������	�����	�
���	����	��	����������	�
and to enter a lytic cycle. Lytic phages affect all aspects of host metabolism: They modulate 
transcription and translation of proteins and alter the membrane and genomic integrity. 
On the contrary, the lysogenic cycle is not toxic to the host until it switches to the lytic 
���	����	�����	�������	������	��	�	�����������	�����	�������
�	�	���������	�����������
other phages and providing resistance to antibiotics. As a consequence of this long contact 
between phages and their host, the majority of gram-positive and gram-negative bacteria 
��������
��
���	���_��������
��
���	���������������	�̀ %{|\������	��	���	��������	���6 and 
are the main contributor to genomic diversity in some species. These prophages become a 
stable part of the bacteria genome and they can be functional or defective.

We will discuss the mechanisms developed by the bacteria to protect themselves 
from these viruses. For this, it is interesting to consider that the phage infection involves 
several steps and at each step, the bacteria have developed resistance mechanisms to try 
to avoid or stop the infection. The steps in a phage lytic cycle are adsorption, genome 
injection, genome replication, phage transcription, translation, assembly and lysis.
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In some cases, phage infection is possible only in a certain phase of the host’s 
growth cycle. For example, the infectious cycle of Bordetella, a bacterium that causes 
respiratory infections, has two phases: The Bvg� phase which expresses the virulence 
and colonization factors that are necessary for respiratory tract colonization and the 
Bvg- phase which expresses genes for ex vivo growth and survival but not genes for 
colonization. The bacteriophage BPP-1 can infect bacteria in the Bvg� phase because 
����
	�������	�
�	��	����	����	�����
���	���
	����������������������	�
�	��	�������	�
Bvg- phase. However, the BPP-1 phage has developed a mechanism to infect at different 
stages in the infectious cycles of Bordetella. The tropism in this phage is determined 
by the gene mtd (major tropism determinant), but mtd suffers the action of a reverse 
transcriptase enzyme that acts as a diversity-generating retroelement, since its only 
purpose appears to be to generate changes in the sequence of that gene. In fact, new 
phages have been found in which changes in the mtd gene have allowed the infection 
of the Bvg- phase Bordetella.7,8

PHASES OF THE IMMUNE RESPONSE

Bacteria, as the rest of organisms, are susceptible to being attacked by pathogens. 
Comparing the defense systems developed by the different organisms shows similarities 
between them, which indicates the existence of basic mechanisms that have appeared 
independently by convergent evolution both in higher muticellular organisms and in 
unicellular organisms. Considering the different aspects of the immune system, the 
self-nonself distinction is employed to maintain the host’s integrity by detecting the 
presence of competitors that use the same nutrients (a defense mechanism present in 
unicellular organisms) or by detecting pathogens that try to colonize the organism (a defense 
mechanism present in both unicellular and multicellular organisms). Bearing in mind the 
latter aspect, when a pathogenic agent tries to invade an organism, the defense mechanisms 
�����������
���	�}�>{!���	������
���	�����������������������
�	�	�������������	���~������	��
the microorganisms are outside the host and (2) a second phase in which the organism tries 
����	��������	����	�����	��
�����	����$	����������	�������	�����������	��������������
peptides (defensins) and proteins (hemolysin, lysozyme) are some of the earliest forms 
of defense. Thus, defensins or defensin-like antimicrobial peptides have been found in 
�������>
�������	��	��	����	���������
��������	������������������	��!��������
������
These types of peptides are also produced by bacteria, which use the peptides to thwart 
���
	����������������������������������
���	������"������������
���	����������	����	�
anatomical and physiological barriers that hinder the pathogen from penetrating the host 
body (skin or other membranes, mucus, etc). These barriers are present both in unicellular 
and pluricellular organisms and are a way to prohibit pathogens from gaining access to 
the inner tissues (or the cytoplasm) at the beginning of the infection. In jawed vertebrates 
��	������	��	�
���	��������		�
���	�����	������
���	������	����	����%�����	��>
�����	!�
��������
	������	�
���	�
����������	�
�����	�^��	������������	���������	��	�����
���	����
the innate response that occurs when the pathogen has been able to invade the organism. 
����������	��	�
���	��������	���������	�����
	������������	�����	������	�����	��
	�����
structures that are shared by a broad range of pathogens. The third phase consists of the 
���
���	� �����	� �	�
���	� ����� �	�	�
�� ������ �
	����� �	�
���	�� ������� �� �
	�����
pathogen. One of the characteristics of the adaptive immune response is the memory. 
Surprisingly, some bacterial defense mechanisms against phages possess this property. 
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Thus, as we describe below, in the Pgl and CRISPRs systems, the phage that infects a 
bacteria is recognized in the subsequent attacks, which allows a better response that avoid 
a new infection. In the following sections, we describe the different defense strategies 
used by the bacteria to respond to the biological agents that threaten them.

BACTERIAL IMMUNE RESPONSE BEFORE PHAGE ENTRY

As we mentioned above, microorganisms use antimicrobial peptides against a 
competing microorganism, especially under conditions of nutrient depletion. These peptides 
also play a role in the defense against bacteriophages in some cases. For example, the 
micromicin J25, a peptide secreted by Enterobacteria under conditions of nutrient depletion, 
are directed against related bacterial strains. The mechanism of action of Micromicin 
J25 involves the inhibition of RNA polymerase and altering the electric potential of cell 
membranes. This peptide has an additional function in the defense against phages: It affects 
FhuA, an E. coli outer membrane protein. FhuA is an iron transporter that serves as a 
receptor for the unrelated coliphages T1, T5 and �80. FhuA is required for injection of 
phage DNA into the target bacteria. Micromicin J25 blocks phage infection by inhibiting 
the binding of the phages to PhuA and preventing phage adhesion.9,10

The outer membrane protein OmpA serves as a receptor for several T-even-like 
phages in E. coli. Some E. coli strains inhibit the injection of these phages by producing 
a protein in the outer membrane called Trat, which interacts with OmpA. The interaction 
of Tract with OmpA decreases the binding of phage and its injection into the bacteria.11

Bacteriophage super infection refers to the same bacteria cell being infection by more 
than one bacteriophage in a sequential manner. We have mentioned previously that there is 
an abundance of prophage or prophage-remnant sequences in the bacterial genome. Some 

���	�����	��	������������
�	�	�������
	����	����������{����Streptococcus thermophilus 
temperate phage, encodes the superinfection exclusion gene orf203. This protection is 
effective against many virulent phages, but it does not affect their own infection.12 The 
mechanism of sie2009 exhibits the same characteristics as orf203, is expressed in the 
temperate Lactococcus lactic bacteriophage Tuc2009 and encodes bacteriophage resistance 
mechanism that blocks bacteriophages from injecting their genome and capsid.13

���������	�����	���	���������������	��	����	��������	��	������������	��	�	�����
the own microbes.14 The matrix is composed of an exopolysaccharide that is the main 
macromolecular component, although it can also contain proteins and other components. 
���	�	������	�������	��������������	��������	������������������	�����	������	�
���	����
certain external insults as a protection mechanism and require the bacterial community 
���
�����	���������������%�������	���	�
���������������	������^�����
��	�������	��
the complex has been formed, the bacterial cells are metabolically inactive, since the 
extracellular matrix only allows a slow diffusion of nutrients. There are relatively few 
�����	�������	�	��	������������������	���
���������
���	����	������15 Extracellular polymers 
may prevent access of the phage to the cell surface in some cases.16,17 However, some 
��������������	�
���	����	��������	�����	�����	�����	�������	��������������������^�
structures contain some ‘channels’ that can be used by the phages. Furthermore, many 

��
���	�����������	�	��	�������������%�	��������	����	�����������
�����������	�����
polysaccharide lyases. These enzymes allow the phage to spread through the extracellular 
�����������
�����	���������	��������	�����	����������	�������	����	�����������������������
as well as other activities like expression of virulence factors, sporulation, or antibiotic 
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formation is controlled by quorum sensing (QS). Quorum sensing is a process of intercellular 
communication that enables the bacteria to detect their population cell density and the 
population density prescribes a co-ordinated gene expression throughout the population. 
Indirect evidence links QS and the regulation of the lytic/lysogenic switch.18 Many 
pathologic bacteria use QS to escape host defense mechanisms.18 It would be interesting 
to elucidate whether QS have also any relationship with the bacterial antiphage response.

BACTERIAL IMMUNE RESPONSE AFTER PHAGE ENTRY

!�������������"�����������#	���

��	��	��������������������������>$%�!�����	����	�	�������	�	�������	�{?@|���������
investigations into the ability of certain bacteria to avoid the propagation of viruses that 
�	�	���	�������	������	�����������������	������������	����������	����	���	�	���	������	������
mechanisms involved in the microbial immune system to be discovered and appeared to 
be exclusive to unicellular organisms.19 The protection against invading DNA is probably 
the main function of these systems although they could also participate in other processes 
such as DNA repair.20 There is no clear evidence of these alternate functions. On the 
���	��������$%������	�����	����%	��	��������������	��������	����������	���	������������
system are defective only in the susceptibility to phage infection. R-M systems consist of 
two activities performed generally by separate enzymes: Restriction endonuclease (REase) 
and methyltransferase (MTase). The nonself DNA is recognized by the endonucleases that 
���	�����������
	�����&'���	=�	��	�����������	����	��	����	������	�����	��&'�����	���
own bacterial DNA is protected by the MTases that methylate the adenine or cytosine 
���������	��
	������	=�	��	��	������	�������	��	����������	����	�������	��	���������
generally confers protection from cleavage, only the foreign DNA is recognized by 
the endonuclease. The four groups of R-M systems (Type I-Type IV) differ in enzyme 
activity, cofactor requirements, recognition sequences and cleavage sites.21,22 Type 
I enzymes recognize unmethylated substrates, require ATP, S-adenosyl methionine 
(SAM) and Mg2�. They cleave the DNA at variable locations away from the recognition 
���	����
	�__�	����	����	���	���������	��������	���	������	��
	�����&'���	=�	��	��
and cleave it at a constant position, generally at the recognition site. They require Mg2� 
as a cofactor. Type III enzymes need ATP, SAM and Mg2�����	���	��	�������
	�����
distance away from the recognition site. Type IV enzymes require Mg2� and recognize 
���������	��&'��>�	�����	�����������	�����	������������%��������	�����	�!��
cleaving both DNA strands twice and excising the recognition site.

The R-M systems are common in bacteria from all taxonomic groups, which indicates 
the importance of this defensive system. However, phages have developed anti-restriction 
strategies to avoid cleavage of their DNA.1 The bacteriophage’s most simple approach is to 
avoid the endonuclease recognition. Phages have evolved by modifying their sequence and 
accumulating point mutations, which reduce the number of recognition sites.23 The genomes 
of some phages contain unusual bases like 5-hydroxymethyluracil instead of thymine or 
hydroxmethylcytosine (HMC) instead of cytosine and also glucosylated HMC. These 
bases, which are absent from the host genome, protect the phage genome against restriction 
enzymes since R-M systems are generally unable to recognize sequences containing this 
�����	�����	������	�	�������	�������	�	���	������	���	�����	������	���	�	������	��
���	�
&'����������	������������%�	
	��	�������	���>�&�!����������	����������	��	%���	��
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������	�	��	��	�����������	��	���������������	�����	������������������	��&���
����	�����	��	�����	�����	������	%�����	���	����������>���!��%���&�����	�������
	�_��
$%������	���������	������	���������	����������	����������	%�����	��&'��24,25 In 
this case, the host DNA is not recognized and there is no need for host DNA protection. 
The co-evolution of the attack and defense mechanisms has spurred the development 
of the internal protein I (IPI) which also inhibits the GmrS-GmrD system. When the 
bacteriophage T4 infects a E. coli strain encoding the gmrs/gmrd genes, its genome is 
degraded. However, some T4 bacteriophages possess the ip1 gene in their genome which 
encodes the IPI protein. In this case the Ip1-containing phage is able to successfully 
infect the bacteria. The gmrS/gmrD genes encode two proteins, GmrS and GmrD that 
����������
	�������	����	���	���������	����������	����������	%�����	��&'���
The IPI protein binds to the GmrS—GmrD complex, inhibits its activity and prevents 
the digestion of the T4 DNA.

Another phage resistance system is the phase-variable, phage-growth limitation 
(Pgl) system, which is an unusual phage resistance mechanism present in Streptomyces 
coelicolor.26 This phase variation mechanism is a method used by bacteria for adapting 
promptly to new environments. The Pgl system consists of reversible variations of protein 
expressions. S. coelicolor A3(2) frequently varies from Pgl� to Pgl��and vice versa. This 
variation mechanism allows changes in the phenotype much more quickly that those 
produced by mutational changes in the genome and is associated generally with bacterial 
immune evasion, especially against infection by phages. The phage �C31 can infect 
S. coelicolor (Pgl-) and produce viable progeny. In contrast, infection of a Pgl� strain 
produced phages that are severely attenuated in a subsequent infection. The mechanism 
of this resistance system is not completely understood, but has been proposed that Pgl� 
���������������
���	��������������������������	������	��������	��������	���������<���

hosts but not Pgl- hosts.27

Additional resistance mechanisms affect the enzymatic activity of the R-M systems. 
One of these mechanisms is the depletion of intracellular cofactors that are necessary 
for enzyme activity. For example, Type I and Type III R-M enzymes require SAM for 
their activity. Phage T3 encodes a SAM hydrolase which eliminates intracellular SAM 
pools, inhibits the enzyme activity and allows phage survival.28 Another strategy is the 
production of proteins that interfere directly with the enzyme activity. For example, phage 
�`��������	����	���	���	����	����������	����������>���!�
���	�����������������
	�������
to Type I R-M enzymes and inhibit their activity. Because dimeric Ocr protein mimics 
approximately 20 bp of B-form DNA in the shape and charge distribution, Ocr acts as 
an anti-restriction protein by binding to Type I DNA restriction enzymes. The binding 
of Ocr to the Type I restriction enzymes prevents their binding to their DNA target and 
competitively inhibiting the action of the enzymes.29 These resistance mechanisms are 
only effective when expressed soon after the entry of the phage bacteria into the host and 
�������������������������	���	����	������	������
���	��������	�	�
�	��	�����
���	����
and T3, respectively.

CRISPRs

Many prokaryotes can acquire heritable immunity to phages by incorporating viral 
DNA into their own genome. This mechanism of anti-viral defense is known by the 
acronym CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats). The phage 
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or plasmid DNA sequences are integrated between repeated sequences in the CRISPR 
locus of the genome of prokaryote. This integrated DNA provides further interference 
for the exogenous genetic elements in a manner analogous to RNA interference (RNAi) 
in eukaryotic organisms. CRISPRs system may evolve rapidly, by acquiring new phage 
sequences to adapt to highly dynamic viral population.30,31 Nevertheless, CRISPR system 
imposes a strong selective pressure on phages and has led to rapid mutation of viral 
genomes. CRISPR provides one explanation for the high evolutionary rates observed 
in phages. This primitive system of immune defense was discovered by comparative 
genome analysis in 1987 in the bacterium E.coli by Ishino and colleagues.32 They found 
14 repeats of 29 base pairs that were interspersed by 32-33 base pairs nonrepeating DNA 
sequences that were adjacent to the isozyme-converting alkaline phosphatase gene in 
E.coli. Computational analyses later revealed that the CRISPR system is present in the 
�	���	������

�������	���|\��������	��������?|\���������	��33,34

CRISPR systems are composed by multiple short DNA repeats that are separated by 
�����������	�����%�	
	�����	�&'���	=�	��	���	��	����
��	��������������	��������"	��
by a varying number of genes called CAS (CRISPR-associated) genes.32 Although many 
prokaryote genomes contain a single CRISPR locus, Mathanocaldococcus jannaschii 
����{�� ����� �����������	� �����{\���� ��	��	���	�35 DNA repeats are composed of 
24 to 47 base pairs.36 Despite being divergent between species, the number of repeats per 
array varies from 2 to 249. Some groups of repeats contain a short palindrome (5-7 base 
pairs), hence the name palindrome in the CRISPR acronym. These palindromes likely 
contribute to RNA stem-loop secondary structure. Many repeats also have a conserved 
3´terminus GAAA (C/G). Both structures are suggested to act as a binding site for cas 
proteins.37 DNA repeats are interspaced by non repetitive spacers of DNA sequence of 26 
to 72 base pairs.35 The spacers are usually unique in a genome; a few exceptions, which 
are thought to have resulted from duplications, have been found to match sequences in 
phage genomes.38 These spacers can be acquired from phages and subsequently help 
���
���	�����	��	���������	�������$	��������������������
����������
��	��������	��
the phage-resistance phenotype of the cell.30 CRISPR systems also comprise a leader 
���%�����������������	=�	��	���������������	�����	����	���
���	��������	�������	
	���
and likely acts as the promoter for the transcription of the repeat-spacer array into a 
CRISPR transcript, the precrRNA.39,40

Cas genes are present in genomes of prokaryotes containing CRISPRs, but are 
absent from genomes that lack CRISPRs. More than forty different cas protein families 
have been described.41 Particular combinations of Cas genes are found together, along 
with characteristic subclasses of CRISPR repeat sequences. These combinations appear 
to represent distinct CRISPR/Cas subtypes. Several different subtypes may occur in 
a single genome. Some Cas proteins are involved in the acquisition of novel spacers; 
others provide CRISPR-encoded phage resistance and interfere with invasive genetic 
elements. CRISPR-associated gene 1 (cas1) encodes the only universally conserved 
protein component of CRISPR systems.42 Cas1 appears to be a double-stranded DNA 
endonuclease that produces double-stranded DNA fragments of approximately 80 base 
pairs in length. Its endonuclease activity suggests that it is part of the machinery for 
processing foreign nucleic acids. CRISPR1-associated cas7 gene is involved in the 
integration of novel spacers after phage exposure.30�#������������������	=�	��	%�
	�����
endoribonuclease that cleaves uracil-rich single-stranded RNAs (ssRNAs).43

The exact mechanism of the anti-phage or anti-plasmid activity of the CRISPR system 
is not fully characterized (Fig. 2). However, exogenous DNA is apparently processed 
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by proteins encoded by some of the cas proteins into small elements (of about 30 base 
pairs in length), which are then inserted into the CRISPR locus near the leader sequence. 
The repeat-spacer array is constitutively transcribed into a full-length precrRNA and 
����	=�	����
���	��	��������
	���������$'����	��	�����������	�
����������
��	��
���"	�� ��� ���� 
������ �	
	����40,44,45� ��	� ��$'��� �		�� ��� �
	������� ����	� ��	� ����
interference machinery toward foreign nucleic acid molecules that match its sequence, 
which leads ultimately to degradation of the invading element.44 It has been proposed that 
they may act in a manner analogous to RNAi in eukaryotic organism. However, in spite of 
many similarities between CRISPR systems and eukaryotic system, key differences exist. 

Figure 2. CRIPRS mode of action. A) Viral infection starts with the injection of phage DNA. Cas protein 
complex recognizes viral DNA and generates small DNA fragments using an unknown mechanism. 
Some of the small DNA fragments generated from the virus can be incorporated in the CRISPR locus 
as a new spacer, having then acquired the bacterial immunity against that virus. B) CRISPR repeat 
and spacer cluster is transcribed into a precrRNA that is processed by the cas protein complex into 
crRNAs, which are composed of a spacer and two half repeats. A new infecting phage is recognized 
when there is a crRNAs complementary to it. In this case, the cas protein complex, along with the 
respective crRNA recognize and destroy the invading DNA by an unknown mechanism.
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First, the enzymatic machinery differs between RNAi and CRISPR system.46 Second, 
the crRNAs are larger than the short RNA duplexes generated by eukoryotic organisms 
(typically 21 to 28 nucleotides in length) because the CRISPR spacer (23 to 47 nucleotides) 
��� ���"	�� ��� 
������ �	
	����� ������� $'��� �����	�� $'�%�	
	��	��� ��������
������
generation of double stranded RNA and use of the cleaved target RNA, in contrast to 
the CRISPR systems.

Although CRISPRs represents an effector element of a very primitive immune 
system, prokaryotes have the same dilemma as eukaryotic organisms. They also have to 
discriminate between self and nonself to avoid autoimmune disease. CRISPR systems 
have to target foreign extra-chromosomal material, but they have to avoid targeting 
their own spacer DNA. The mechanism is not fully understood, nevertheless, it has 
been proposed that in Staphylococcus epidermidis,�����	����$'����������	������
	�����
positions outside of the spacer sequence leads to interference, but extensive pairing 
between crRNA and CRISPR DNA repeats prevents interference-targeting of their 
own prokaryote DNA and autoimmunity.47

ABORTIVE INFECTION (ABI) SYSTEMS

Abi sytems avoid phage infection in the remaining steps (replication, transcription 
and translation). They are peculiar in comparison with other resistance mechanisms as 
eventually they result in the death of the host bacteria. The Abi systems exhibit more 
�
	���������	���	�����������������	�����	�	�����	������	��������������	�$%������	����
However, the immune response preserves the individual but the Abi systems destroys not 
only the phage but eventually also the host. Contrarily to other defense mechanisms, the 
Abi system protects the population, but not the individual. Many types of Abi systems 
have been described, especially in lactic bacteria, in which the phage-resistance mechanism 
has been studied at length due to the bacteria’s economic importance. The mechanisms 
of these systems appear to be variable and details remain unclear. One example of this 
system in E. coli is the Rex system: Abi acts as a phage sensor and induces cell death by 
producing the loss of membrane potential. Another Abi system involves the PrrC protein, 
���������	��	��
	�����������	�������$'�lys: PrrC becomes active after T4 infection and 
produces cell death. The Lit protein is a metalloprotease that is also activated by T4. 
�����
	������������	����	��������	��	����	�����^��	����������������>��!%�������������
protein synthesis and induces bacterial death (reviewed in ref. 48).

As with the rest of the resistance mechanisms, phages also have developed methods 
to circumvent the Abi systems. The rII gene allows phage T4 to survive the action of the 
Rex system.49 The action of the Lit protein is reversed in some T4 phage by repairing the 
host tRNAlys with RNA ligase activity.50

CONCLUSION AND FUTURE PROSPECTS

The presence of an immune response is probably a characteristic of all living beings 
since all organisms can be attacked by pathogens. Regardless of the environment, bacteria 
are exposed to phages, which can infect them. Bacteriophages are the most abundant 
living entities and exceed the number of bacteria by about 10 times. For these reasons, 
they are very important in the regulation of the microbial balance and pose their most 
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serious threat. Bacteria have developed defense systems against these viruses and 
conversely, viruses have devised escape mechanisms that allow the infection. Therefore, 
this continuous phage-host interaction is a strong selective pressure that triggers a rapid 
co-evolution of both entities. There are a remarkable variety of phages as a result of the 
diversity in bacteria and many different viral defense mechanisms. Recently, important 
progress has been made in the knowledge of these phage resistance mechanisms. However, 
our understanding of these processes is not yet complete due to our ignorance of many 
aspects of phage biology. A better understanding of these antiviral mechanisms will have 
an important economical and medical impact.
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Abstract: The notion of “self” is intrinsically linked to the concepts of identity and individuality. 
During evolutionary transitions in individuality—such as, for instance, during the 
������������	�������	����	�������������	�	�"���������	�������	����������������	����
individuals—new kinds of individuals emerged from the interaction of previously 
independent entities. The question discussed here is: How can new types of 
individuals with qualities that cannot be reduced to the properties of their parts be 
created at a higher level? This question is addressed in the context of the transition 
to multicellularity and using the volvocine green algae—a group of closely related 
unicellular and multicellular species with various degrees of physiological and 
reproductive unity—as a model system. In this chapter, we review our framework 
to addressing the evolution of individuality during the transition to multicellularity, 
focusing on the reorganization of general life-traits and cellular processes and the 
cooption of environmentally-induced responses.

INTRODUCTION

_�� 
�����
���� ��	��� ��� ������� �	��	�� ��� ��	� 	��	����� =�����	�� ����� ��"	� ��
person distinct from all others; the particular characteristics of the self determine its 
identity. The notion of “self” is, thus, intrinsically linked to the concepts of identity 
and individuality. Individuals are entities that are distinct in space and time. In biology, 
��������������	��		���	��	�����	������	�	�����������������	��������������	�	����
uniqueness, genetic homogeneity, or physiological autonomy.1 Going back to the root 
of the word individual (i.e., “not divisible”), individuals can also be thought of as the 
smallest units that cannot be divided into parts that maintain the essential properties of 
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the whole. Lastly, from an evolutionary perspective, individuals are units of selection 
�����
���	�����	�
��
	���	������	�����	�����������������	���2

During evolutionary transitions in individuality—such as, for instance, during the 
������������	�������	����	�������������	�	�"���������	�������	����������������	����
individuals—new kinds of individuals emerged from the interaction of previously 
independent entities. Such associations can involve similar entities (such as during the 
transition to multicellularity) or rather distinct entities (such as during the evolution 
of the eukaryotic cell) and be based on a wide range of ecological interactions (from 
commensalism and mutualism to exploitation and parasitism; for discussion see ref. 
3). The initial interactions can be facilitated by either aggregation (e.g., the formation 
of multicellular fruiting bodies in slime molds and myxobacteria) or the failure of 
offspring individuals to separate (which is the case during the development of most 
multicellular organisms). The long-term stability of these associations and the subsequent 
integration of previously independent units into higher-level individuals are dependent 
�����	���	=�	����������
	�����	����	���������������	��	�������������	����	�	������������
among lower levels.3 At a mechanistic level, during transitions in individuality, a new 
�	����
	%
�	����
	���
����� ����	� ��	��	�� ��� �	�	��� ��	� 	�	��	��	���� ���	��"����
of individual (and a new “self”/identity) at the higher level. The way in which the 
��	�%	�	��	����
	%
�	����
	���
����	��	�������	�������	�����	��	�	���������	��	�
the potential for evolution of the newly emerged multilevel system.4

The question discussed here is: How can a new kind of individual with qualities that 
cannot be reduced to the properties of its parts be created at a higher level and how does 
this process affect the lower levels (i.e., the previously independent individuals) in terms 
of their own individualities and identities? We address this question in the context of the 
transition to multicellularity and using the volvocine green algae—a group of closely 
related unicellular and multicellular species with various degrees of physiological and 
�	
��������	���������������	�����	���������	�
��
��	����������������������	��	��	����
individual as the smallest unit that is physiologically and reproductively autonomous. 
������	���������	����������	��	��������	��������������������������������������
	�����
cells: reproductive (germ) cells and nonreproductive (somatic) sterile cells. In contrast 
to multicellular forms in which all cells have reproductive abilities—and thus each cell 
(part) can reproduce the group (the whole), in multicellular organisms with a germ-soma 
separation, not all cells are able to recreate the whole; the evolution of nonreproductive 
cells renders the group indivisible and thus a true individual.

We have approached the questions posed above from many perspectives: multilevel 
�		������>����	����������
	�����������������������������	�������!�3����	�������	%�����
�������	����	�������������2 life history trade-offs,5 reorganization of general life-traits 
and cellular processes4 and the cooption of environmentally-induced responses.6 Below, 
we review our framework to addressing the evolution of individuality during the 
�������������������	����������������������	��������	��
	��
	����	����
	���������	�
have argued that the emergence of individuality at a higher level (and the emergence 
of a new genotype-phenotype map) requires (i) the dissociation of certain processes, 
traits and functions at the lower level and their reorganization at the higher level, (ii) the 
cooption of lower-level processes and pathways for new functions at the higher level 
and (iii) changes in gene expression patterns, from a temporal into a spatial context.4,6,7 
We have also suggested that some of the differences among extant multicellular lineages 
(including differences in their evolutionary potential) can be explained by the way in 
which the reorganization of these processes and traits (and the emergence of the new 
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genotype-phenotype map) has been achieved during the transition to multicellularity 
and the evolution of individuality at the higher level.4 Volvocine algae exemplify well 
these suggestions. In this group, the transition to multicellularity embraced unique paths, 
partly due to the constraints inherited from their unicellular ancestors.

THE VOLVOCINE ALGAE AS A CASE STUDY

“Few groups of organisms hold such a fascination for evolutionary biologists as 
the Volvocales. It is almost as if these algae were designed to exemplify the process of 
evolution”.8

Diversity

�������	����	���	�
���������	���������	��	����		�����	������	����	��������	���
comprising closely related unicellular (Chlamydomonas-like) and multicellular forms 
that show a progressive increase in cell number, volume of extracellular matrix per cell, 
division of labor and ratios between somatic and reproductive cells9 (Fig. 1). Interestingly, 
somatic cell specialization and higher-level individuality evolved multiple times in 
this group and the different levels of complexity are thought to represent alternative 
stable states (among which evolutionary transitions have occurred several times 
during the evolutionary history of the group), rather than a monophyletic progression 
in organizational and developmental complexity.9,10 The observed morphological and 
developmental diversity among volvocine algae appears to result from the interaction 
��������������������������������������������������������������		����	�
�	����	��

CONSTRAINTS

���������	����	� ����	� ��	� ��%��	������	������������������11 which has a 
different structural basis than the one invoked in the origin of metazoans.12��
	��������
����������	����	���	����	������	������	�	����������	������	�
��������������	�����
��	��������������	����������	������������	���	����������"	���	�
��������	�
	��	��
�����	�����	����������	�������������	������	��������������	�������	����	��>�����	��
���������"	������%	�����		�����	��	�!����	�	���	���	��������������������������
��"	�
��	��������	��������������������������	�������	��������������������	������
����	��������	��>��	��������
������	��	����������!�

The presence of a coherent cell wall is coupled with the second conserved feature 
among volvocine algae—namely, their unique way of cell division. In this green algal 
����
���	�������������	�������	�������	�����	�������������������$���	���	�����	�
grows about 2n-fold in volume, followed by a rapid, synchronous series of n divisions 
���	����	�����	���	������������
	�����	��������������	�	��	������������
	��������
or palintomy (i.e., the process during which a giant parental cell undergoes a rapid 
sequence of repeated divisions, without intervening growth, to produce numerous small 
cells). Because clusters, rather than individual cells, are produced in this way, this 
type of division was suggested to have been an important precondition facilitating the 
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formation of multicellular colonies in this group.13 In the unicellular species, such as 
Chlamydomonas, the daughter cells (22-24 cells) separate from each other after division. 
However, in many species, the cluster of 2n daughter cells does not disintegrate and 
coenobial forms (i.e., a type of multicellular organization in which the number of cells 
is determined by the number of divisions that went into its initial formation, without 
any further cell additions)13 are produced. For instance, in Gonium, the resulting cells 
(22-25) stay together and form a convex discoidal colony. In Eudorina and Pleodorina the 
cells (24-26, 26-27, respectively) are separated by a considerable amount of extracellular 
matrix and form spherical colonies. Finally, in Volvox, a high number of cells (215-216) 
form colonies up to 3 mm in size (Fig. 1).

Figure 1. A subset of volvocine green algae that show a progressive increase in cell number, 
volume of extracellular matrix per cell, division of labor between somatic and reproductive cells and 
proportion of vegetative cells. A) Chlamydomonas reinhardtii; B) Gonium pectorale; C) Eudorina 
elegans; D) Pleodorina californica; E) Volvox carteri. Where two cell types are present, the smaller 
cells are the vegetative (somatic) cells, whereas the larger cells are the reproductive (gonidia) cells.
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SELECTIVE PRESSURES

The two selective pressures that are thought to have contributed to the increase in 
complexity in all volvocalean lineages are the advantages of a large size (potentially 
to escape predators, achieve faster motility, homeostasis, or better exploit eutrophic 
����������!�������	��		���������	�����������>	���������
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the water-column and to achieve better mixing of the surrounding environment).8,14,15 
Interestingly, given the background offered by the volvocalean type of organization 
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colonies increase in size and number of cells, also does the number of cell divisions (up 
to 15-16 in some Volvox species); consequently, the motility of the colony during the 
reproductive phase is negatively impacted for longer periods of time than are acceptable 
in terms of the need to access the euphotic zone. In larger species, this negative impact 
�����	����	����������������������	����	��������������������}����	��	����	������	��
mostly in motility, while the rest of the cells become specialized for reproduction. The 
proportion of cells that remain motile throughout most or all of the life cycle is directly 
correlated with the number of cells in a colony: from up to one-half in Pleodorina to 
�??\����Volvox.9 In Volvox, the division of labor is complete: the motile (somatic) cells 
are sterile, terminally differentiated and undergo cellular senescence and death once 
the progeny is released from the parental colony;16 only the reproductive cells (termed 
gonidia) form new colonies.17

THE GENETIC BASIS FOR CELL DIFFERENTIATION 

IN VOLVOX CARTERI

Volvox carteri is the most studied member of the multicellular volvocine algae13 
>�����{!�� _����������������|||%��|||�
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in V. carteri involves the expression of regA, a master regulatory gene that encodes 
a transcriptional repressor18 thought to suppress nuclear genes coding for chloroplast 
proteins.19 Consequently, the cell growth (dependent on photosynthesis) and division 
(dependent on cell growth) of somatic cells are suppressed. regA contain a SAND 
domain, which is found in a number of nuclear proteins, many of which function in 
���������%�	
	��	��� ��� &'�%�
	����� ��������
������ �������7 Proteins containing a 
SAND domain have been reported in both animal and land plants; one such protein, 
ULTRAPETALA1, acts as a key negative regulator of cell accumulation in Arabidopsis 
����������������	����	���20

Mutations in regA result in the somatic cells regaining reproductive abilities—which 
���������	����������	����������	������	�����
������	��21,22 As motility is very important 
for these algae, the survival and reproduction of V. carteri individuals in which such 
mutant somatic cells occur is negatively affected.14 Interestingly, although regA belongs 
to a gene family that comprises 14 members in V. carteri,23 regA is currently known as 
the only locus that can mutate to yield Reg mutants.18

The expression of regA is strictly determined by the size of cells at the end of 
embryogenesis; cells below a threshold size will develop into somatic cells.24 Which cells 
will not express regA and differentiate into germ cells is determined early in development 
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through a series of asymmetric cell divisions (Fig. 2). The asymmetric divisions ensure that 
some cells (i.e., the germ line precursors) remain above the threshold cell size associated 
with the expression of regA.25 RegA is induced in very young somatic cells immediately 
after the end of embryogenesis but is never expressed in gonidia.18 The mechanism 
underlying the differential expression of regA (i.e., ON in the somatic cells and OFF in 
��	��������!��������"��������������		��
������	��������
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to the cis%�	��������		�	������	����	��������		������	���������>��	�������	�����	�������
one silencer) and act in concert to either silence or induce regA expression.26

UNICELLULARITY VERSUS MULTICELLULARITY

Many general life-properties and traits (such as immortality, totipotency, growth and 
reproduction) as well as cellular processes (such as cell division) are expressed differently 

Figure 2. Schematic representation of asexual development and germ-soma separation in Volvox carteri. 
Gray ellipses denote totipotent (the “mother” gonidium—a and the 16 totipotent blastomeres—b), 
pluripotent cells (c and f ) and the next-generation gonidia (g); white ellipses indicate unipotent (i.e., 
the somatic blastomeres and the somatic initials: d and e, respectively); black ellipses denote terminally 
differentiated somatic cells (h). Numbers mark the succession of cell divisions in the embryo. Cells are 
not represented at scale (a is ca. 29-fold larger than g and there is a ½-reduction in cell size with every 
symmetric cell division); all divisions take place under the mother cell wall, in a rather rapid fashion 
�������� ���	��	����� ������� >��	��� 
�������� ���� ����
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in unicellular versus multicellular individuals (see below). In the next section we discuss 
how these basic life properties and cellular processes have been reorganized during the 
transition to multicellularity and the emergence of individuality at the higher level, and 
apply these concepts to the evolution of multicellularity in volvocine algae.

General Life-Properties and Traits

Vegetative and Reproductive Functions

Any biological entity features two main sets of functions, vegetative (i.e., nutrition 
����������!������	
��������	������������	�
���������	��������������
��	����������	����
survival and reproduction. These basic biological functions are coupled at the level 
of the individual, as a physiological and reproductive unit. However, the two sets of 
functions are realized differently between a unicellular and a multicellular individual. 
In unicellular forms, the same cell is responsible for both vegetative and reproductive 
activities (i.e., they are coupled at the cell level). Nevertheless, at the level of the 
individual, these functions do not take place simultaneously as they are dissociated 
in time: the vegetative phase precedes the reproductive phase. In undifferentiated 
multicellular forms, all cells perform both vegetative and reproductive functions 
and—as in their unicellular ancestors, these functions are separated in time, both at the 
cell level and multicellular entity level. On the other hand, in multicellular individuals 
with germ-soma separation, the two sets of functions are uncoupled at the cell level; 
some cells perform only vegetative functions, whereas other cells are specialized 
for reproductive functions. Consequently, the two sets of functions can take place 
simultaneously (i.e., they need not be separated in time anymore).

Growth is an important property of life. Interestingly, growth has different implications 
in unicellular versus multicellular individuals. In the former, growth is coupled with 
�	
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the individual and vice versa, reproduction requires achieving a preset cell size. In 
multicellular individuals, on the other hand, growth and reproduction of the individual 
can be uncoupled; reproduction is not necessarily dependent on growth and growth does 
not necessarily trigger reproduction.

Immortality and Totipotency

Immortality and totipotency are two basic life-traits. Here, immortality is used as 
��	���
������������	���������	����	����	����������
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cell to create a new individual. In contrast to totipotency, the term pluripotent denotes 
the ability of a cell lineage to produce cells that can differentiate into all cell types (but 
not into a new functional individual); lastly, multipotency refers to the potential of one 
cell to differentiate into more than one (but not any) cell type.

_������	������������	�����	��������	�
��	�������������	����	����	��>��	�����	��
are potentially immortal) and to create new individuals, either asexually or sexually 
(i.e., they are totipotent). In unicellular individuals, immortality and totipotency are thus 
coupled at the cell level. In differentiated multicellular individuals, on the other hand, 
only one or a few cell lineages manifest both immortality and totipotency; most other 
cell lineages have only certain degrees and combinations of potential for cell division 
and differentiation. For instance, in groups without an early segregated germ line (such 
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as plants and some simple metazoans like Hydra), the somatic cell lineages are incapable 
of continuous division or redifferentiation and thus they have to be replenished from one 
or a few pluripotent lineages that remain mitotically active throughout ontogeny and can 
also differentiate into germ cells (e.g., the interstitial I-cells in Hydra).27 In lineages with 
a germ line that is terminally differentiated early in the development (such as in many 
animals), various degrees of mitotic capacity (approaching immortality in some stem 
cell lineages) and/or potential for differentiation are maintained in the many multipotent 
somatic stem cells (i.e., secondary somatic differentiation).28

Cellular Processes and Life-Traits

Cell division is a basic process in all cellular life-forms. The mechanisms controlling 
cell division are, however, different between unicellular and multicellular individuals. In 
unicellular individuals, cell division is strictly dependent on cell growth (cells divide when 
���
	������	�����	��������	�	�!��_������������	��������������	�	���������������������
the case: factors other than cell size (such as intercellular or systemic signals) can trigger 
or inhibit cell division. In addition, in unicellular forms cells have an unlimited division 
potential (cell division is strictly coupled with immortality), whereas in multicellular 
individuals, cells have limited and variable potential in most cell lineages (i.e., they are 
mortal) and their division potential is under the control of the higher-level individual.

Cellular Processes and Higher-Level Functions

Interestingly, cell division and cell growth have different roles and consequences at 
the level of the individual in unicellular compared to multicellular forms. In unicellular 
forms, every cell division results in the reproduction of the individual (cell division 
is strictly coupled with reproduction). In multicellular forms, on the other, hand, cell 
division is uncoupled from the reproduction of the individual in most cells (i.e., cell 
divisions do not necessarily result in the reproduction of the higher level). Also, whereas 
in unicellular forms, cell growth is the main contributor to the growth of the individual 
(with the exception of extracellular deposits in some lineages), in multicellular forms, the 
growth of the individual is mostly achieved through increasing the number rather than 
��	����	�����	��>��������	�	��	
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volume of extracellular matrix, internal space or even cell size).

TRANSITION TO MULTICELLULARITY: THE EMERGENCE  

OF A NEW SELF

We have argued that the unicellular-multicellular transition and the emergence of 
individuality at a higher level requires: (i) reorganizing basic life-traits (such as immortality 
and totipotency) between and within lower levels, (ii) decoupling processes from one 
another at the lower level (e.g., cell division from cell growth), (iii) decoupling certain 
cellular processes from functions and traits (e.g., cell division from reproduction and 
immortality), (iv) coopting them for new functions at the higher level (e.g., the cooption 
of cell division for multicellular growth) and (iv) changing the temporal expression of 
vegetative and reproductive functions into a spatial context.4 Below, we discuss these 
concepts and apply them to our study case, the volvocine algae.



22 SELF AND NONSELF

Reorganizing Immortality and Totipotency

During the transition to multicellularity and the emergence of individuality at the 
����	��	�	���������������������
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lineages, namely those involved in the reproduction of the higher level. However, many 
cell lineages maintained various degrees and combinations of mitotic and differentiation 
potential. This required the reorganization (i.e., the differential expression) of these 
traits both among cell lineages and within a cell lineage. As discussed earlier, this 
reorganization has been achieved differently among the extant multicellular groups.

In V. carteri, immortality and totipotency are restricted to gonidia, the 16 cells 
����������	��������	����������	�����������>a and b in Fig. 2)24,29 and the zygote 
(after a sexual cycle; not shown). At the 32-cell stage, 16 cells (i.e., the germline 
blastomeres—c in Fig. 2) are pluripotent (i.e., they give rise to both germline precursors—f 
and somatic initials—e), while the other 16 cells (i.e., the somatic blastomeres—d in 
Fig. 2) are unipotent and produce solely somatic initials. The germline blastomeres 
divide asymmetrically for three or four times (each time renewing themselves and 
producing a somatic initial) and arrest mitosis two or three cell division cycles before 
the somatic blastomeres do. These 16 cells (g in Fig. 2) will differentiate into the germ 
cells of the next generation. After a total of 11-12 cell divisions, the somatic initials 
stop dividing and differentiate into somatic cells (h in Fig. 2), which have no mitotic 
or differentiation potential (they are terminally differentiated).

It is interesting that in Volvox, although immortality and totipotency have become 
fully restricted to the germ line (and reproduction and individuality at the higher level 
emerged), somatic lineages have no mitotic or redifferentiation potential. In other words, 
the two traits have been reorganized between germ and soma, but not within somatic 
cell lineages. The two sets of traits are still very linked in V. carteri; they are either 
both fully expressed (in gonidia) or both suppressed (in somatic cells). Noteworthy, the 
early-sequestration of the germ line was achieved without the evolution of secondary 
somatic differentiation processes; no multipotent somatic stem cells are present in the 
adult. This is rather surprising, because it has been suggested that the evolution of an 
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stem cells and secondary somatic differentiation, the ancestral pluripotent germinative 
lineage was released from the task of producing the somatic tissues and was able to 
terminally differentiate into germ cells early in development.28

Decoupling Cell Division from Cell Growth

In multicellular individuals, to ensure the functionality of the soma, factors other 
than cell size must be used to determine which cells divide, when and how often. This 
requirement necessitates decoupling cell division from cell growth; consequently, a 
�	��	���������	���	�����	��������������	��	
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��	����������	���	��	�	�����
be achieved. However, this has not been accomplished in V. carteri; cell division is 
still strictly dependent on cell growth; reproductive cells have to increase 210-12 fold 
��� ����	� �	���	� ��������� {|%{�� ���	�� ��� 
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multicellular individual.
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Decoupling Cell Division From Cell Reproduction

Furthermore, to ensure the reproduction of a cell-group (and the heritability of the 
group traits), cell division has to be uncoupled from cell reproduction (i.e., the reproduction 
of the previously independent unicellular individual) and be coopted for the reproduction 
of the higher level (the group). The ability to reproduce the group can be achieved either 
by all or only some members of the group.

The case in which all cells have higher-level reproductive capabilities is best 
	�	�
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the reproductive phase, each cell within the group produces a new group similar to the 
one to which it belongs; cell division no longer produces unicellular individuals but 
multicellular groups. This mode of reproduction characterizes the volvocine algae without 
a germ-soma separation, such as Gonium and Eudorina (Fig. 1).

In Eudorina, all cells (16 or 32) go through a vegetative (growth) and reproductive 
phase. However, cell division does not anymore result in a number of free unicellular 
individuals (such as in Chlamydomonas), but rather an embryo; cell division has been 
thus decoupled from cell reproduction and has been coupled with the reproduction of the 
group in all members of the group. Nevertheless, cell division is still strictly dependent 
on cell growth: each cell will start dividing only after a 24-5-fold increase in size was 
attained, and once cell divisions are initiated they will continue synchronously until all 
the new embryos are formed. Although the stability, heritability and the reproduction of 
the higher level are ensured in this way, its individuality is not; because every member 
can be separated from the group and create a new group, such a group is not the smallest 
physiological and reproductive autonomous unit, thus is not a true individual in the sense 
used here (i.e., it is divisible).

The case in which only some cells have higher-level reproductive capabilities 
characterizes lineages with a separation between germ and soma. To achieve this, the 
coupling between cell division and reproduction is broken in most cells, namely the somatic 
cells; they reproduce neither themselves (as former free-living unicellular individuals) 
nor the higher-level unit; cell division is thus decoupled from the reproduction of both 
the lower and higher levels. In this way, somatic cells loose their individuality as well 
as the right to participate in the next generation; but in doing so they contribute not only 
to the emergence of individuality at the higher level but also to the emergence of a new 
level of organization, the multicellular soma. Soma is thus the expected consequence of 
uncoupling cell division from reproduction in order to achieve individuality at the higher 
level. V. carteri follows this pathway; however, the way in which germ-soma separation 
was achieved is rather unique among multicellular forms.

Coopting Cell Division for Growth at the Higher Level

By decoupling cell division from reproduction, this very important process became 
available for new functions. We suggested that this event was paralleled by the co-option of 
cell division for a new function at the higher level, namely the growth of the multicellular 
individual. Later, the use of cell division for more than cell multiplication, (i.e., which 
“gives rise to more entities of the same kind”)30 may have provided multicellular lineages 
with an additional advantage, namely cell differentiation; indeed, in many multicellular 
lineages asymmetric cell divisions are involved in cell differentiation.
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Interestingly, in V. carteri, although the coupling between cell division and reproduction 
has been broken in the somatic cells, cell division was not coopted for the post-embryonic 
growth of the higher-level individual; rather, cell division was simply repressed in somatic 
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embryonic development (the further growth of the young spheroid is accomplished only 
through small increases in cell size and through a massive deposition of extracellular 
matrix). The implications of this outcome are multiple and profound. A direct implication 
is that soma in V. carteri differs from the soma of most multicellular organisms. Because 
somatic cells do not divide, further growth and/or regeneration of the individual are not 
possible during ontogeny; in addition, because the somatic cells undergo senescence and 
death at the age of 5 days,16,17 the life span of the higher-level individual is limited to the 
life span of the lower-level somatic cell. Due to this unique type of soma, V. carteri is 
missing more than the ability to grow, regenerate, or live longer. Without a mitotically 
active multipotent stem cell lineage or secondary somatic differentiation there is less 
potential for cell differentiation and further increases in complexity.4

Changing Expression Patterns from a Temporal to Spatial Context

As discussed above, during the transition to multicellularity and the emergence of 
individuality at a higher level, some cells loose both their own individuality as well as 
the right to participate in the next generation. But why would cells give up their own 
reproduction (i.e., reproductive altruism)? The evolution of specialized somatic and 
reproductive cells can be understood in terms of the need to break survival-reproduction 
trade-offs, such that the survival and reproduction of a multicellular group can be 
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phase is paralleled by the loss of motility—which can negatively affect the survival of 
the individual, especially in multicellualr groups whose reproduction will require a large 
number of cell divisions. On the other hand, in differentiated multicellular forms—such 
as Volvox, the spatial dissociation of reproductive and vegetative functions between 
gonidia and somatic cells allows the two sets of functions to take place simultaneously.

At a mechanistic level, we suggested that the evolution of germ-soma separation 
involved a change in the expression of vegetative and reproductive functions from a 
temporal (as in unicellular individuals) to a spatial context.4 We have further argued 
that the evolution of soma in multicellular lineages involved the cooption of life-history 
trade-off genes whose expression in their unicellular ancestors was conditioned on 
environmental cues (as an adaptive strategy to enhance survival at an immediate cost to 
reproduction), through shifting their expression from an environmentally-induced context 
into a developmental context4,7 (Fig. 3A).

Indeed, in volvocine algae—as in other photosynthetic organisms, nutrient-poor 
or stressful environments trigger a series of metabolic alterations—collectively known 
as acclimation, which favor survival when the potential for cell growth and division is 
reduced.31 One of the consequences of this complex series of responses is a temporary 
inhibition of cell division (and thus reproduction), to ensure long-term survival. Acclimation 
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responses. The general responses include: a decline in the rate of photosynthetic activities, 
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metabolic slowdown and cessation of cell division.31,32 Photosynthetic organisms use light 
energy to generate chemical energy (ATP) and reductants (NADPH) that are subsequently 
��	�� ��� ��� ������� ������	� >������ ��� �	�	�	���	� �&<� ���� '�&<�). This coupling 
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changes in various abiotic factors—including light, temperature, water and nutrient 

Figure 3. The evolution of germ-soma separation during the transition to multicellularity. A) General 
schematic representation of the change in expression pattern of a life-history trade-off gene from 
a temporal context (environmentally-induced)—in a unicellular individual, into a spatial context 
(developmentally-induced) in a multicellular individual. Adapted from Nedelcu AM et al. The evolutionary 
origin of an altruistic gene. Mol Biol Evol 2006; 23(8):1460-4; with permission of Oxford University 
Press. B) A model for the cooption of acclimation responses into somatic cell differentiation in Volvox 
carteri; see text for discussion. Although many components are involved, for simplicity, changes in 
redox status are symbolized by the over-reduction of the NADP pool due to either decreased NADPH 
consumption—in nutrient-deprived Chlamydomonas, or excess of excitation energy (owing to a higher 
surface/volume ratio)—in Volvox somatic cells. The switch to cyclic electron transport (CET), which 
can maintain ATP synthesis (and thus vital processes) in acclimated Chlamydomonas cells35 and possibly 
in Volvox somatic cells, is also indicated (adapted from ref. 6).
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availability have an immediate impact on photosynthetic activities and subsequently on 
other metabolic processes.33

The down-regulation of photosynthesis is critical for sustaining cell viability under 
conditions of nutrient deprivation.32,34 The lack of nutrients in the environment blocks cell 
growth and limits the consumption of NADPH and ATP generated via photosynthesis. 
Consequently, the photosynthetic electron transport becomes reduced and the redox 
potential of the cell increases.31,32 Furthermore, because NADPH is not rapidly recycled 
(due to the slowdown of anabolic processes and the decreased demand for reductant in 
nutrient-poor environments), excited chlorophyll molecules and high potential electrons 
will accumulate and could interact with oxygen to create reactive oxygen species (ROS). 
ROS refer to a series of partially reduced and highly reactive forms of oxygen, including 
the superoxide anion (O2

-), the hydroxyl radical (OH.) and the hydrogen peroxide (H2O2). 
Although ROS are byproducts of normal metabolism and can act as secondary messengers 
in various signal transduction pathways (e.g., see refs. 35-37 for a review), increased 
intracellular levels of ROS (i.e., oxidative stress) can alter cellular functions and damage 
many biological structures, most importantly, DNA.38

Consequently, the regulation of the photosynthetic electron transport is an important 
hallmark of the general response to nutrient deprivation in Chlamydomonas. A series of 
processes including reduced photosynthetic electron transport and the redirection of energy 
absorbed from photosystem II to photosystem I can decrease NADPH production, favor 
ATP production through cyclic electron transport and allow a more effective dissipation 
of the excess absorbed excitation energy. Altogether these changes decrease the potential 
toxic effect of excess light energy (and thus serve to increase survival) and help coordinate 
cellular metabolism and cell division with the growth potential of the cell.31,39

�	����	���	����	�����C. reinhardtii 7 the closest homolog of V. carteri regA—the 
gene responsible for the permanent suppression of division and reproduction in somatic 
cells (discussed earlier). Recently, we have also shown that this gene—currently known 
as rls1,23 is induced under nutrient limitation (including phosphorus-, sulfur-deprivation 
and during stationary phase) as well as light deprivation.6 Furthermore, we showed that the 
induction of rls1 coincides with the down-regulation of a nuclear-encoded light-harvesting 
protein7 and with the decline in the reproduction potential of the population under limiting 
conditions.6 The fact that rls1 is expressed under multiple environmental stresses and its 
induction corresponds with a decline in reproduction suggests that rls1 is part of the general 
acclimation response and might function as a regulator of acclimation in C. reinhardtii. 
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How can general acclimation responses in unicellular organisms be coopted for 
cell differentiation in multicellular groups? As we discussed above, in photosynthetic 
�������������	��������		�����������������	�		�����%�����
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balanced with the rate of ATP and NADPH consumption; imbalances between these 
processes can result in the generation of toxic ROS32. When a nutrient (e.g., sulfur, 
phosphorus) becomes limiting in the environment, ATP and NADPH consumption 
declines; this results in an excess of excitation energy and a subsequent change in the 
redox state of the photosynthetic apparatus, which will trigger a suite of short- and 
long-term acclimation responses32,33 (Fig. 3B). Other environmental factors (e.g., cold, 
water stress) are also known to result in changes in the cellular redox status and trigger 
similar acclimation responses.35 Thus, in principle, any factor that can elicit a similar 
redox change could prompt acclimation-like responses and ultimately induce cessation 
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of cell division. In a group context, if such a change is restricted to a subset of cells and 
�����	���

�	����������	
����������������������	������	������	�	����������	�����
����	��	�
���������	������	���	������	���	��

In V. carteri, the expression of regA is restricted (by an unknown mechanism) to 
cells whose size at the end of embryonic divisions falls below 8 	m.24 As cell surface 
area and volume change at different rates, we proposed that in these small cells the ratio 
between membrane-bound proteins (including ETS and ETS-associated components) 
and soluble factors (including NADP� and ADP) becomes skewed—relative to the ratio 
in larger cells, towards the former.6 Consequently, these small cells could experience an 
�������	��	��		����	��������		�������������	����������������������	
�����������������
result in a change in the intracellular redox status and the induction of acclimation-like 
responses, culminating with the suppression of division (Fig. 3B). To support this scenario 
is the fact that cytodifferentiation is light-dependent in V. carteri.40

Hence, by simulating the general acclimation signal (i.e., a change in the redox status 
of the cell) in a spatial rather than temporal context, an environmentally-induced trade-off 
gene can be differentially expressed between cell types, allowing for the two components 
������	�������	��������	�����	
	��	���������������	������������������������������
the higher level to emerge. This hypothesis also predicts that somatic cell differentiation 
is more likely to evolve in lineages with enhanced acclimation mechanisms—or more 
generally, in lineages that can trade-off reproduction for survival in stressful environments. 
Because environments that vary in time (such as those volvocine algae live in)13 will 
�		�������	�����	������	����	���������������	�
���	��>���	�������	�
�������������
environments have been shown to select for phenotypic plasticity—i.e., generalists, in 
C. reinhardtii),41 such environments are likely to be more conducive to the evolution of 
somatic cell differentiation.

A New Genotype-Phenotype Map

It is not known how the genotype-phenotype maps are formed nor how they are 
able to change in evolution.42 During the unicellular-multicellular transition, a new 
�	����
	%
�	����
	���
���������	���	��	������	�	�����	�	�	��	��	��������������������
the higher level. We argued that the way in which certain complex sets of traits and the 
genotype-phenotype maps associated with them are reorganized during the transition 
���	������	��	�������������������	��������	��	���	����
	%
�	����
	���
������	�����	��
level and can interfere with the potential for further evolution of the lineage.4

In this context, it is rather intriguing that in V. carteri, immortality can be regained 
and individuality can be destroyed by single mutations. As mentioned earlier, mutations 
in regA result in somatic cells regaining reproductive abilities. Although they start out as 
�������	��	���	�����	����	��	����	�����	����	�������	����	�	�����	��������������43 in 
other words, somatic cells regain both immortality and totipotency. In other multicellular 
lineages, such as humans, multiple mutations (each of which requires a minimum of 
20-30 cell divisions) are required for immortality (i.e., cancer cells) to be regained.44 The 
fact that single mutations have such large effects on individuality traits suggests that in 
V. carteri, the genotype-phenotype map at the higher level has been realized through 
a rather small number of genetic changes. Any attempt to increase the evolvability of 
��	�	���	��	�����������������	�����	�����	����	����
	%
�	����
	���
������������	��	��
variability of the traits associated with immortality and totipotency (so as to decouple them 
in the somatic cells) without affecting the individuality of the system (e.g., by evolving 
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mechanisms to control these traits independently, thereby allowing cell replication and/
or differentiation in the soma). In other words, the genotype-phenotype map has to at 
������	���	����	��������>�������������	�	���������	���������	��������	��	��	���������
the maps associated with the previously independent lower levels, as it is currently the 
���	!������	���	�>���������������
���	�	�������������������������		�����!�

To gain such properties a number of small-effect mutations, in a very precise order 
(such that the viability of the individual under selection is not affected) is required. 
However, the way in which cell division, cell growth, immortality and potency have 
been reorganized in Volvox, as well as the way the genotype-phenotype map has been 
��	��	�������	�����	��	�	����"	����	�	��������������������������	��������������	���
	��
the fact that i) the decoupling of cell division from reproduction in somatic cells was 
not achieved by inventing new ways to control cell division, but rather by blocking it 
altogether and ii) the suppression of cell division was not achieved through evolving some 
new mechanisms but rather through inhibiting the growth of the cell, strongly limits the 
evolution of traits that are dependent on these processes. These important complex sets 
of processes have not been decoupled from one another through their dissociation at the 
lower level and their cooption for new functions at the higher level, but rather through 
the suppression of some of the processes at the lower level; in this way, processes such 
as cell growth, cell division and differentiation are not represented in the higher-level 
map and thus cannot contribute to phenotypic variability.

Improvement is expected to come from mutations that, for instance, allow the somatic 
cells to regain controlled mitotic activity and some degree of differentiation potential during 
�����	�����������	�	���������	�����
	����������
	��������������������	��	
��	�������
binary type, such that cell divisions during adulthood do not result in the duplication of the 
entire organism (as they do in the V. carteri mutants in which somatic cells regain mitotic 
��
������	�!��������������������������
	�����	������������������������	���	�����	��
increase in body size, via small increments. In this way, more phenotypic variability can be 
����	�	�������	���	�������	������		�������_���������	��	�����	���������	�����
	��������
��
	�������������������	���	��������������������������������	�	���	������������	�������������
of the cell cycle via very conserved type of proteins involved in the key pathway that 
controls both cell division and differentiation in animal cells, namely, the retinoblastoma 
(RB) family of tumor suppressors.45 Mutations of this gene in Chlamydomonas reinhardtii 
result in the initiation of the cell cycle at a below-normal size, followed by an increased 
number of cell divisions.46 Such an alteration of the cell cycle might have been involved in 
��	�	�������������	�����
	����������
	�����	��������������������������	�	����
�	����������
for the origin of multicellularity in Volvox.13 If this is the case, it would argue for another 
example of achieving an important trait at the higher level (i.e., multicellularity) through 
����������	������	�	���������	�����������������	�
��	�������������������	���	�	������
the higher-level genotype-phenotype map emerged in this way.

CONCLUSION

During evolutionary transitions in individuality, a new identity (a new “self ”) emerges 
at the higher level from the re-organization of the properties displayed by the interacting 
entities. For instance, the transition from unicellular to multicellular individuals requires 
the re-organization at the higher level of certain basic life properties, such as growth, 
reproduction, immortality and totipotency, as well as of the cellular processes associated 
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with them (e.g., cell division and cell growth). The way in which this re-organization is 
����	�	���������	�����	��	�������������������	��������	��	����
	%
�	����
	���
������
emerges at the higher level and can interfere with the potential for further evolution of 
the lineage. During the evolution of multicellularity, some cells gave up not only their 
own individuality but also their ability to reproduce. This form of extreme reproductive 
altruism is instrumental to the emergence of individuality at the higher level, as the 
presence of cells that lack the ability to reproduce the group (i.e., to recreate the whole) 
renders the multicellular group indivisible and thus an individual. The evolution of 
soma involved the co-option of life-history genes whose expression in their unicellular 
ancestors was conditioned on environmental cues (as an adaptive strategy to enhance 
survival at an immediate cost to reproduction), through shifting their expression from a 
temporal (environmentally-induced) into a spatial (developmental) context.4,7 Interestingly, 
in eusocial insects, caste evolution is also thought to have involved the remodeling of 
pathways associated with basic life-history traits such as nutrition and reproduction present 
in their solitary ancestors,47,48 which argues that the two distinct evolutionary transitions 
in individuality can be understood in a common framework.
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as the self-assembling nano-molecular-velcro system mediating initial steps of 
�	�%����	���	���������������	����	��������<����	������	�������	��	������������	������
���
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and (ii) novel structures of the large and newly emerging family of glyconectin 
like glycan molecules. The emphasis will be put on the interdisciplinary approach 
for studying structure to function relationship at the different size scale levels by 
combining the knowledge and technologies (instrumentation and methods) of physics, 
chemistry, biology and mathematics. Applying such strategy which is crossing the 
boundaries of different science disciplines enabled us to develop a new Atomic Force 
��������
��>���!����	������%���%�	������������
	��������	������=����������	�
measurements of intermolecular binding forces at the single molecular level under 
physiological conditions. We propose that nano-velcro systems of the glyconectin 
glycans, which are the constituents on the cell surface that are the most exposed to 
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the environment, were responsible for the molecular self-nonself recognition and 
adhesion processes that underpinned the emergence of multicellular life forms.

INTRODUCTION

��	����������	������	����	����������	����������������	������������	�	��������
many different organisms, organs, tissues, cells and molecule types, as well as on the 
vast of physiological processes involving cellular interactions.1 Unfortunately, as an 
unnecessary consequence, often monodisciplinary approaches were dominant. Technically 
����	�� �	��������	��� �		����	� �	����
������ ���� �������������� �	�	� ���	� ��� �����
different ways and commonly were depending on the subjective interest, knowledge, 
������	��	����������������	��	������	�
�������������
�5-8 For the associated discipline 
of self-nonself recognition and adhesion similar research and reporting pattern is often 
evident. In this chapter we will present summary of our interdisciplinary approach with 
results about glyconectin glycan self-nonself recognition and adhesion system. Furthermore, 
we will compare glyconectins novel mechanisms and structures with other known types 
of cell recognition and adhesion molecules.

Our presentation will be based on practical but formally logical and simple Questions 
and Answers (Q and A) form: Why, What, Where, How and When.

Q AND A

Following the rules of didactic reasoning Q and A type description of self-nonself 
recognition and adhesion phenomenon will be presented here. The emphasis will be on a new 
and unique class of glyconectin glycans operating via novel mechanism of self-assembling 
nano-molecular-velcro and use of interdisciplinary approach which combines classical 
biochemical-molecular biology measurements with the new nano-bio-technology.

We will provide: (i) quantitative structure to function related Q and A comparisons 
between glyconectin glycans and other types of known molecules implicated in 
self-nonself recognition and adhesion processes relevant to evolution of multicellularity 
(ii) answers and discussion about the glyconectin glycans as the unique self-assembling 
nano-molecular-velcro and (iii) descriptions of interdisciplinary nano-sciences approaches 
combining physics, chemistry, biology and mathematics,

Following is the summary of the general Questions and contents to be answered and 
discussed in this chapter:

1. Why does self recognition and adhesion exist in complex multicellular organisms? 
Evolution of multicellularity, anatomical integrity with self-nonself distinguishing 
�	���������������	���	������������	�%����	��

2. What is the nature of the molecules operating in self-nonself discrimination? 
#�������������#�	����������	���	=�	��	���̀ &���������	���	�������������-
tions, novel glyconectin structures, variability of structures.

3. Where are self-nonself cell recognition and adhesion molecules localized? Spatial 
distribution at molecular, cellular, tissue, organ and whole organism level (Cell, 
Extracellular Matrices, Tissues).
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4. How do the cell recognition and adhesion molecules function in self-nonself 
discrimination? Description of different types of molecular mechanisms and 
principles of physiological functions during embryonal development (tissue 
and organ differentiation and formation), immunity (innate and acquired) 
associated with viral, bacterial and other parasite interaction with a host and 
pathological states such as tumor growth, metastasis, novel velcro like glycan 
to glycan self-assembly mechanisms of glyconectin mediated self recognition 
and adhesion.

5. When is cell recognition and adhesion active for self-nonself discrimination? 
Life cycles, fetus tolerance, fertilization, host-parasites, host-symbionts and 
auto immune disorders.

Q: WHY DOES SELF RECOGNITION AND ADHESION EXIST  

IN COMPLEX MULTICELLULAR ORGANISM?

A: Self recognition and adhesion in complex multicellular organisms enable functional 
and morphological identity throughout their life cycles as well as their reproduction.

&���������������	������������	��	�������	
���	�	��	�	���������	������������	�
emergence of cells via molecular self assemblies and the second subsequent one was 
the development of multicellular assemblies. Multicellular life is the most sophisticated 
form of changing patterns of matter and energy known so far. Their evolution required 
�	�����	�%����	������������������������	������#	����	������	��	����	�������
�������
state and consequently the functioning of all multicellular living systems. Intermolecular 
binding forces between cell adhesion molecules are intrinsic properties of such cohesive 
structures. Differences in the degree of binding strengths between diverse types of 
molecules at the given environmental thermodynamic conditions determine selectivity of 
their associations providing molecular mechanism for cellular recognition and self-nonself 
discrimination.2-5 Therefore, distinguishing self from nonself must operate via alogeneic 
and/or xenogeneic differences in types and/or spatial and temporal expression of cell 
recognition and adhesion molecules.

We proposed to use the intermolecular binding forces between cell recognition 
���� ���	����� ��	��	�� ��� ��	� ����� =����������	� ����	���� ���� ���	������ ���� �	������
their functional contribution to processes essential for distinguishing self from nonself 
during evolution, maintenance of the body architecture, reproduction and diversity of 
the complex biological life forms.2-5

Information technology engineers are implementing principles of biological 
self-nonself discrimination in order to ensuring the security of computer systems includes 
such activities as detecting unauthorized use of computer facilities, guaranteeing the 
integrity of data and preventing the spread of computer viruses.6 These protection problems 
are instances of the more general problem of distinguishing self (legitimate users, corrupted 
data, etc.) from other (unauthorized users, viruses, etc.). A change-detection algorithm 
based on the way that natural immune systems distinguish self from other were developed.6

�	�������������������	�������������������	�	����
	�����>�	�	��������	�����!�����
����	�����	���	���	���	�	����
	�����>�	���	����������������������������	�	����
	��	��
�	�	������������	������������	�	����
	�����>�	���	��������	
����	�����������������	�
same species—genetically not identical).
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&	������������	����������	���������������������	�������	�	����������	�������
way where size/scale aspect play very important role. To elaborate this notion we shall 
������	��	����	�������������	������	�������
��	��������������	�������	���	������������	��
units on the basis of their structural properties. Depending on the chosen size of the units 
and thus their components following are the size levels relevant to biological life: (i) 
molecule, (ii) organelle (iii) cell, (iv) tissue, (v) organ, (vi) organism, (vii) population 
����������������	�	��>����!�	������	��!������	�����	������	������������������	��	�
self-nonself discrimination at the organism level due to the unique genome structure of 
each individual. From philosophical point of view which includes biochemical and physical 
aspects, any of the above unit level can be chosen for self-nonself discrimination without 
selecting the genome as the basis but rather just a pure structural properties of the unit 
������	������
��	�����&	�������	������������������������������	���	=���	����	������	�
process of interaction between two units which has to be established involving exchange of 
information of the components content and quality. Finally decision process has to follow 
as recognizing self from nonself and consequent reactions or interactions. In conclusion, 
living biological systems self non recognition is decision process based on positive 
iteration and active rejection reaction (immunity of higher animals) alternatively may be 
������	������������	����������������������������	��		����	��	����������	����	�����

#�����������
���		�����	�
	���	��������	��	������	��	�����������������	�����
have used different experimental model system which usually did not involve careful 
vocabulary about the levels of self recognition which may occur within organism as 
�	�����	��		�������������������������	�	���
	������	���������	������	�������	����
cell sorting from the same organisms. At this level of organizations cells of two organs 
are independent self entities or non directly interaction sums of cells which are united in 
higher order of organism self via immune system. Therefore, as the complexity of units 
arise the new systems guiding the self must co-evolve to enable self recognition of the 
larger or higher level unit.

��
	���	����������	��	��������	������"���	��	����	���	���������������	��������
sense arguments results in the hypothesis that morphogenetic processes during embryonal 
development in each syngeneic individual life form, at least at the certain extent, follow the 
molecular and cellular self-assembly processes which have occurred during the evolution 
of unicellular and multicellular life forms involving important process self-nonself 
recognition at the molecular, cellular, tissue, organ and whole organism level.

'	������	�	���������	�����������
��	������������������������
���	�������	�������
reproducing organism by having generic developmental stage involving proliferation, 
growth and differentiation phase into sub-disciplines, followed by degeneration and 
redundantly carcinogenic proliferation with metastatic progressions useful only for 
itself. In the light of this book subject this may be biologically as well as sociologically 
interpreted as the new self creation within itself by rejecting the higher level of self.

Q: WHAT IS THE NATURE OF THE MOLECULES OPERATING  

IN SELF-NONSELF DISCRIMINATION?

A: Molecules operating in self-nonself discrimination are biological polymer 
molecules: (i) proteins, (ii) glycans, (iii) lipids and their naturally occurring covalently 
linked combinations known as (iv) glycoproteins and (v) glycolipids including few 
(vi) organic monomeric molecules.
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The self-nonself recognition molecules are part of the larger family of cell recognition 
�������	�������	��	�����	�������	�������	������������������������	�	�������	���������
as chemical composition, sequence, 3D structures, spatial and temporal expression and 
������������	�����������������
	����������� ��
	����������������� ������	����� ��	�
��	����������	������	��	����	�������	��	�����	�	���	���	����	�����
��������������
polymer molecules: (i) proteins, (ii) glycans (carbohydrates, polysaccharides), (iii) lipids, 
(iv) glycoproteins and (v) glycolypids. Last two groups are mostly common and naturally 
���������������������������	���������		�����
��

Within each category of cell adhesion and recognition molecules further 
���%������������������	����	����������������	��	=�	��	�>
���������������	!��������	�
�����	���	��	�����%��������������	�����	���	�	����������������������	�����	�������
Here we are listing all classes of cell adhesion and recognition molecules.

��� ���%����������������
���	�������������	���	���������������
���	������	����
coded by genes, are done acceding to their primary structure motifs-gene 
families. Note that most of this molecules are glycosilated and thus belong 
�������
���	��������	�	����	�	��	���	���������	���������������������������
the protein sequence part. There are four classes of adhesion and recognition 
�	�	������	����������
	�����
���	����	=�	��	�}�>�!���������������7,8 (b), 
cadherins,9 (c) integrins10 and (d) lectins.11 Each of the four classes has several 
sub-classes differing again in variation of primary sequences motifs.

ii. Glycans are linear and branched polymers of monosaccharides. They are not 
���	�������	������	�	������%������������������	����	���������	����	����
���	����
according to their primary sequence 3D structure and size into: (a) N-lynked 
small glycans branched and non branched, (b) O-linked small branched and non 
branched glycans, (c) glycosaminoglycans large non branched glycans and (d) 
glyconectinoglycans large branched and nonbranched glycans.

iii. Lipids category of adhesion and recognition molecules are saturated or unsaturated 
hydrocarbon chains with terminal polar groups and organic cyclic hydrophobic 
����������%��������������
��������	�	���������	�������	���	����������	������	�
polar groups, size and chemical nature of the chain and its saturation degree into: 
(a) fatty acids, (b) glycerolipids, (c) glycerophospholipids, (d) sphingolipids, 
(e) sterol lipids, (f) prenol lipids, (g) glycolipids and (h) polyketides.

iv. Glycoproteins are glycoconjugates; covalently linked glycans to proteins or 
���	� �������� "����� 
���� ������������ ������������ �����	�� 
���	�����
Five subcategories based on glycosylation type, nature of glycan linkage to 
protein and glycan size and glycan structure (not protein sequence motifs) can 
be distinguished: (a) N-linked glycoproteins of molecular mass lower then 
1 
 106 D, (b) O-linked glycoproteins of molecular mass lower then 1 
 106 D, (c) 
hybrids of (a) and (b) sub-category, (d) mucins large O-linked glycoconjugates 
of molecular mass larger then 1 
 106 D, (e) proteoglycans glycoconjugates 
O- and N- linked of molecular mass larger then 1 
 106 D, (f) peptidoglycans 
glycoconjugates crosslinked peptides and glycans found in bacteria of molecular 
mass larger then 1 
 106 D and (g) glyconectin glycoconjugates O- and N- linked 
of molecular mass larger then 1 
 106 D.

v. Glycolipids are lipids with covalently attached glycans. Major known 
sub-categories are: (i) glyceroglycolipids (galactolipids, sulfolipids), (ii) 
glycosphingolipids (cerebrosides, gangliosides, globosides, sulfatides, 
glycophosphosphingolipids), (iii) glycosylphosphatidylinositols.
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Figure 1.� <	��	� �		� ����	� 	�	��� ��� �������� 
��	��
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Extensive multidisciplinary approach was employed to isolate and structurally 
characterize glyconectin glycan and protein structures. On one hand this involves classical 
analytical and preparative biochemical and molecular biology techniques: (i) sedimentation 
and density ultracentrifugations, (ii) chromatography (molecular sieving, ion exchange, 
��������� �	�	��	� 
���	� �<�#�� ���� �����������
��!�� >���!� 		����
���	���� >�&�� ����
glycan sieving), (iv) mass spectrometry (electrospray ionization, matrix-assisted laser 
desorption/ionization, secondary ion mass spectrometry), (v) and nuclear magnetic 
resonance spectroscopy and (vi) gene cloning with polymerase chain reaction (Fig. 1). 
The results have shown that glyconectins are new emerging class of glycoconjugates 
structurally different in their protein and glycan part from glycoproteins, proteoglycans 
and mucines molecules (Fig. 1).

Glyconectins are found in different animal phyla ranging from the most simple Porifera 
�����������	����������������������������������������������	�������%�������������
of glyconectins is based on structural and functional analysis of the few above mentioned 
species from three phyla it is clear that some of glyconectin structures and shapes can either 
�	��	���	�	����
	�����>�	���	����������������������������	�	����
	��	���	�	����������
��	�����!�����	�	����
	�����>�	���	��������	
����	�����������������	����	��
	��	��
�	�	������������	�����!���������	�	����
	�����>�	�	��������	�����!���	���	�	����
	�����
glyconectin subclasses found in Porifera have common structural properties such as large 
size of over 10 
 106 D (largest natural occurring glycoconjugate biopolymers beside 
mucins and proteoglycans), repetitive block-polymeric protein and glycan sequences, 
large linear and branched N- and O- linked glycan structures of 100 
 103 D, presence 
of fucose and/or arabinose within glycan chain together with sulfated and/or pyruvilated 
galactose and uronic acids (Table 1). Glyconectin glycan repetitive structures are novel 
sequences resistant to any so far known glycosidases and are not cross reactive with other 
anti glycan antibodies. Monoclonal antibodies raised against glyconectin glycans do not 
cross react with glycosaminoglycans, the most similar charged polysaccharides polymers.2-5

���	������	��	���	�	�������
	��	���
	��������%����	����������	����������������
�	������	��	�������������%	�������������	����	���������	��	�����������������	�����
during embryonal development and tumor growth and metastasis within individual organism 

Figure 1, viewed on previous page. The fist panel shows Eelectron Microscopy (EM), Atomic 
Force Microscopy (AFM) and X-ray images of glycans dimensions at cellular, molecular and atomic 
level. EM; the Electron Microscope image of cells stained for acidic polysaccharides. These glycans 
are the most peripheral molecules (over 200 nm) from the cell surface with very high density and 
abundance. AFM; Atomic Force microscope image of glyconectin 1 sub-class with g200 glycan 
arms of 180 nm. X-ray; model of protein on plasma membrane in blue with small glycans in yellow 
and large glycan in green which is an order of magnitude longer then presented if the real length 
of g200 glycan would be taken in account. The second panel sows the second step of structural 
analyses by polyacrylamide gel electrophoresis of purified glyconectin glycan fraction is presented. 
�	����
���	���� ��� �����	����� ������� ���� 
	�����	�� ��� �� 
����������	� �����	��� �	� >��@%{@\!��
�	�� �	�	� �����	�� ����� |�`\� ������ ��	� ��� `\� ��	���� ����� ��� �=�	���� �@\� ���
��
����� ���	� ���
20 	g of glyconectin 1 glycans; lane b, 20 	g of glyconectin 2 glycans; lane c, 20 	g of glyconectin 
3 glycans.2-5 The third panel shows the third step of structural analyses of glycans by fingerprinting 
with trifluoroacetic acid hydrolyses. TLC analysis of hydrolyzed fractions of glyconectin 1 and 
glyconectin 2 stained by sulfuric orcinol. Lane 1, standard Glc degrees of polymerization (DP); lane 
2, 0.1 M trifluoroacetic acid hydrolysis of glyconectin 1; lane 3, 0.1 M trifluoroacetic acid hydrolysis 
of glyconectin 2; lane 4, 1 M hydrolysis of glyconectin 2. The forth step in structural analyses using 
Nuclear magmetic resonance (NMR) and Mass Spectrometry (MS) sequencing are shown in the forth 
panel. Complex sequencing procedure in combined NMR and MS complementary approach requires 
sophisticated instrumentation and high skills. 
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without involving self-nonself recognition. because their expression in variety of species 
is controlled during embryogenesis and they are re-expressed in several types of tumors.2-5

Variability of the recognition structures is the essential for enabling their function of 
recognizing self from nonself. Immunoglobulin family of molecules achieves variability 
through recombination of the variable region part of the gene during differentiation of 
lymphocytes. Variability of glycan structures as the secondary gene products is achieved 
via differential expression of glycosylation and glycosidases enzyme battery as well as 
via regulation of their kinetics. When theoretical calculation of the potentially existing 
variability of protein chemical structures with glycan structures is made astonishing 
differences can be noted that glycans are potentially far more variable structures. Two 
examples can be illustrative for this statement: (i) for dipeptide (two different L amino acid 
each used once) 2 linear isomers are possible where as for two different D hexoses each 
used once 128 linear disaccharides structures are theoretically possible, (ii) hexapeptides 
will give 7 
 102 structures where as hexasaccharides has 3 
 109 isomers.

Q: WHERE ARE SELF-NONSELF CELL RECOGNITION AND ADHESION 

MOLECULES LOCALIZED?

A: Self-nonself cell recognition and adhesion molecules have to be localized on 
the external surface of plasma membranes and on extracellular matrices due to their 
��������	��	
���	��	�����������	����	����������	�������	��	�	������	����������	����	���	
��	��	��	����	�������������	�������	���	�������	������	���	�������������	�����������	
of their interactions is based on the intermolecular binding forces which provides 
����������������	���������	�������	��	������������	��������	��������	����	����	�������	
discrimination.

The molecules guiding cellular self-nonself discrimination and adhesion should be 

�	�	��������	����	�������	�������	����	�	��	��������	���	������
�������������	�����
encounters of changing environment. By gaining such sensors with recognition and 
adhesion properties the primordial multicellular organisms could preserve functional 
and morphological identity throughout their life cycles.

The physical state and form of all multicellular living systems and consequently 
��	�����������������	��	��	������	����	������_��	���	�����������������	����	�����������
properties of such cohesive structures. The differences in binding strengths between 

Table 1. Glycan structures determined by nuclear magnetic resonance spectroscopy 
and mass spectrometry after mild hydrolyses of isolated glyconectin sub-classes of 
polysaccharides

Glyconectin Sub-Class 1 Glyconectin Sub-Class 2 Glyconectin Sub-Class 3

GlcNAc-Fuc- Py(4,6)Gal-(Hex)0-1-Fuc HexNAc-(SO3)Ara/Fuc-Fuc
GlcNAc-(SO3)Gal-Fuc Py(4,6)Gal-(Hex)0-3-GlcNAc Hex-HexNAc-(SO3)Ara/Fuc-
Gal-(SO3)Gal-GlcNAc- Py(4,6)Gal-(Hex)1-5

Py(4,6)Gal-GlcNAc-Fuc Py(4,6)Gal-(Hex)0-

(SO3)GlcNAc-[Fuc]Fuc Py(4,6)Gal-[Hex]Hex-Hex
Py(4,6)Gal-Hex-
(Hex)4-[Py(4,6)Gal]Hex
PyGal-Hex-[Hex]HexNAc
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receptor to ligand molecules at the given environmental thermodynamic conditions 
determine selectivity of their associations. These differences in intermolecular binding 
strength are providing molecular mechanism for self-nonself discrimination. Therefore, 
cell adhesion molecules should play the role in cellular self-nonself recognition processes. 
Since this has been demonstrated in most cases and since cell recognition molecules without 
adhesion properties associated with direct cell to cell interactions are unknown we will 
use in this chapter term cell recognition and adhesion molecules. In spite of the fact that 
cell recognition and adhesion represent the basis for distinguishing self from nonself not 
all of cell recognition and adhesion molecules are relevant for this process because: (i) 
several of them may be allogeneic or xenogeneic identical and/or (ii) may also be used 
by viruses, bacteria and other parasites as adhesive docking during the infective entry 
����������	���������������_����	���������	��	��	�����������������	��������	��	���������
sorting of the differentiating cells during morphological process in developing embryos 
which are similar in different organisms.

In multicellular organisms spatial expression of a particular type of syngeneic, 
���	�	�����������	���	�	����
	������	��	�����������������	�������	��	���������	�	���
tissues is genetically controlled. The resulting selectivity of expression pattern can 
together with intermolecular binding forces also provide molecular basis for recognition 
and adhesion function. Localization was usually determined in three ways: (a) direct 
biochemical isolation from the source tissues and cells, (b) indirect immunoassay by 
staining of cells and tissues with antibodies raised against particular cell adhesion and 
recognition molecules and/or by immunoprecipitation and (c) indirect RNA detection 
for a particular gene coding cell recognition and adhesion protein. This way does not 
provide evidence that the RNA is indeed translated into protein. However, this method 
enabled development of useful RNA tissue atlas for proteins.

Glyconectins are the largest cell surface and extracellular matrix macromolecules 
with length size of 1 micrometer and thus they are the most externally exposed molecules 
of the cell surface. Compared to glycoproteins, glyconectins are more then 200 times 
	��	��	�� �������	� �
�����%��	������	��	�����	�������	� ��	������ ��������	������	�
surfaces encountering the environment (Fig. 1). Consequently the initial self-nonself 
recognition via cell recognition and adhesion processes is physically unavoidable to 
occur via this type of molecules.

Q: HOW DO THE CELL RECOGNITION AND ADHESION MOLECULES 

FUNCTION IN SELF-NONSELF DISCRIMINATION?

A: Cell recognition and adhesion molecules functioning in self from nonself 
��������������	 ���	 ���������	 ���������	 ��������������	 �������	 �������	 �������	
�������������	��������	�����	���	��	����	�����	����	
���	����	��	�	������	����������	
form. The molecular mechanism may be based on either (i) classical and well known 
�����	��	�����������	��������	������	��	�������	�������	�������	����������	������	���	
receptor protein to protein or protein to glycan molecules or (ii) glyconectin like highly 
����������	����	���	�������	��	����������	����	��������	��	����������	��������������	
glycan to glycan binding. Therefore, subclass of glyconectin glycans with xenogeneic 
����������	 ���	 ��	 �����	 ����������	 ���������������	 ���������������������������	
mediating self-nonself recognition and adhesion implicated in evolution of multicellularity.
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During the evolution of primordial multicellular organism with a limited degree of cell 
differentiation primary function of most peripheral self surface molecules was self-nonself 
recognition and adhesion. The emergence of more complex multicellular organisms was 
based on the appearance of higher degrees of complexity and the multistep nature of 
self-recognition and adhesion systems. These can be related to (1) allogeneic self-nonself 
discrimination in the divergence of species,11�����>�!�����	�	������������������	��
	��������
during morphogenesis with cell recognition and adhesion molecules which may be similar 
or identical between different species and genetically different individuals (xenogeneic and 
���	�	��������
	������������������	������	�%����	����������������!�2-5

The major cell adhesion and recognition glycoprotein classes of immunoglobulin, 
cadherin and integrin families function via protein to protein intermolecular binding. 
These may be calcium ion dependent or independent. These interactions may be either 
�	�	����
�������������
	������	�	
��������������������������������
�����	����������
some immunoglobulins function via heterotypic protein to glycan binding. In both cases 
��	���	������	��������������	�����������	�������	�������������	���������

In mammals immunoglobulins play a crucial role in self-nonself discrimination by 
�
	��������������������	��
���	������������������	����������	����	����������
������
��
���������	���������	�����������>������������	�	�������
	������	���	�	����
	����!��
symbionts and parasite interactions.

Cadherins and integrins and many lectins are mediating cell recognition and adhesion 
associated with cell differentiation during development and in pathological cases such as 
������������������	������������������������	��	���	�	����������	�	����
	���������
����������		����������	�%����	����������������������	����������	���������_�������
����������
���	��������	�	���	��	����������������������������������		�����������	���
��������	�
recognition and adhesion function, which however may be target antigen for allogeneic 
and xenogeneic self-nonself discrimination via immunoglobulins.

Contrary to the above classes of cell recognition and adhesion molecules glyconectins 
operate via glycan to glycan interactions. These binding is calcium ion dependent and 
may either be homotypic or heterotypic. The molecular mechanism is based on highly 

����	��� ���� �
	����� ���	���	����� ������������� ����� 	���	�	�� ��� �������� ���
��	� ����	� ������ �������� ���	�� ��	�	���	�� �
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���������<����	��������	�����������������	��	��	����� �� �	�%���	������
nano-molecular-velcrosystems mediating self recognition by adhesion and nonself 
discrimination by no adhesion.2-5

The small structural xenogeneic and allogeneic variability in some subclasses of 
glyconectin glycans together with the velcro type intermolecular association mechanism 
provides and ideal and reversible cell recognition and adhesion mechanism relevant for 
cell recognition and adhesion during embryonal development and in tumor growth and 
metastasis as well as in self-nonself discrimination at the organism level.

Multidisciplinary approach was employed to functionally characterize glyconectins 
glycan and protein structures (Figs. 1-3). On one hand these involve semi quantitative 
classical in vitro inhibition and promotion of cell aggregation assays by using isolated 
�	�����������������	�������	��	�������
	���������	����������"�����������������
polyclonal antibodies against these molecules. On the other hand a new type of assay using 
�����������	���	��������	�������
	���������	�	����	���	�	�����
	����������	�����
glycans structures from three Porifera species was introduced. Adhesion assays with 
various combinations of these isolated glycans in a bead-bead and bead-cell assays under 
variable shear forces were used to more quantitatively test for self-nonself recognition 
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Figure 2.� �
	��	�%�
	����� �����	����� ��� �����	����� ���	��������� �	����	� �	��%�	� �	���������� ����
���	������ �	���	�	��� �����	����� �	�%�	���������� ��� �� ������	� ��� �������	���	%��	�� �	�� ����
glyconectin-coated beads in seawater buffered with Tris in the presence of 10 mM Ca2�. M. prolifera 
cells bearing glyconectin 1 were incubated with: glyconectin 1 (pink beads) (A), glyconectin 2 (yellow 
beads) (D) and glyconectin 3 (white beads) (G). H. panicea cells bearing glyconectin 2 were incubated 
with: glyconectin 1 (B), glyconectin 2 (E) and glyconectin 3 (H) color-coded beads. C. celata cells 
bearing glyconectin 3 were incubated with: glyconectin 1 (C), glyconectin 2 (F) and glyconectin 3 
>_!�����%���	���	����>�������	���	��������������	���	����������	������
����	���������	�����	������
white; H. panicea, white to yellowish brown; and C. celata, brown to brownish orange. We did not 
���	��	� ����	�	��	�� ��� ���	����� 
��
	���	�� �	��		�� ��	�� ���� ��	� �	��������� ���	����	�� �	�� ��� ��
������� ������� >�!� �������	���� �
	��	�%�
	����� �����	����� ��� �����	����� �	���������� ��� ���
	������
and blotting assay. Letters were drawn using 4 	l of 1.5 mg/ml glyconectins on a Hybond-C extra 
nitrocellulose membrane (Amersham Biosciences) and probed in seawater buffered with Tris with pink, 
��		��������	�����	��	����	��������	������������	�����{��������`���	�
	����	�������	����	������	�	��
with Tris without 10 mM Ca2�. B, seawater buffered with Tris with 10 mM Ca2� All photographs were 
taken after 30 min of mixing.
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functions (Figs. 2,3) Multiple color codes of beads and cells enabled us to perform triplet 
and quadruplet aggregation assay with different glyconectin subclasses and show their 
role in Porifera xenogeneic self-nonself discrimination.2-5

�������	����	���������	��������	���������	����	�������	�����������	���������
Force Microscopy (AFM)2,12 measurements of intermolecular binding strength between 
a single pair of complementary and non complementary adhesion glyconectin molecules 
���
��������������������>�����`!����������	����

������
�����	����	������=����������	�
evidence for glyconectin glycan to glycan self-nonself selective cohesive function.

Interactions between individual adhesion molecules (immunoglobulin, selectin, 
cadherin, integrins and extracellular matrix adhesions), were usually investigated by kinetic 
binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance and 
other spectroscopic analyses. These methods do not provide direct measurement of the 
intermolecular binding forces which are fundamental for ligan-receptor association related 
to cell adhesion and recognition. To measure glyconectin to glyconectin interaction forces, 
�	�����	����������	�������	������������	���
���	���
���������������	�������
�����������
mica surface. The attachment process involved only glyconectin proteins thus leaving 
���������������������	����	��������	���������	�����	������	�	����
��������������	��
�����	�������	��	���������	�����������
�	������������������	������	����������	��
surface and a series of approach-and-retract cycles were collected in physiological liquid 
medium (Fig. 3). Glyconectin glycan to glycan binding was characterized by measuring 
both the force necessary to separate the glyconectin-functionalized AFM sensor tip from 
��	������	����������	�������������	�������	�
	��	����	�������	��������	�	�������	��
different ionic conditions. These two indicators of glyconectin activity varied reversibly 
with the Ca2� concentration, in agreement with glyconectin promoted cell adhesion and 
Glyconectin-coated bead aggregation. At a physiological Ca2� concentration of 10 mM 
(physiological for marine organisms as sea water sponges), the average force between 

Figure 3. Schematic presentation of AFM measurements of intermolecular binding strength between 
glyconectin 1 glycans.
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glyconectin glycans was 125 pN, ranging up to 400 pN, with high probability of binding 
(60 ��{|\!�������#�2� concentration of 2 mM, cell adhesion and glyconectin-promoted 
bead aggregation were sharply reduced and the force (40 � 15 pN) and probability of 
binding (12 ��@\!��	�	������	���	�����	����	���������	��		�������	���������������
Ca2�-selective, as reported with a cell aggregation assay. Indeed, 10 mM Mg2� could not 
replace Ca2� in AFM experiments or in adhesion of glyconectin-coated beads.2-5

AFM measurements of intermolecular binding between several homotypic pairs of 
<����	���� �	���	�	��� �
	����� �������� {�� �� ���� `�� ����	�� ����� ���	���	����� ��������
forces per pair of molecules are all the range of 400 pN. Heterotypic combination of 
subclasses 1, 2 and 3 revealed intermolecular binding strength of 20 pN. Therefore, glycan 
to glycan interaction is responsible for self-nonself recognition and adhesion. In conclusion, 
measurement of binding forces intrinsic to adhesion molecules is necessary to assess their 
contribution to the maintenance of the anatomical integrity of multicellular organisms. Our 
atomic force microscopy results of the binding strength between cell adhesion glyconectin 
glycans under physiological conditions showed that homotypic adhesive force of 400 
piconewtons per molecular pair could hold the weight of 1600 cells assuring the integrity of 
the multicellular sponge organism. Interaction forces between heterotypic molecules were 
�|����	����	��������	����������������	��������������	����	��	�����	�	����
�������	���	��
under physiological hydrodynamic conditions of natural sea environment. Furthermore, 
��������������	�
�������������������	����
	���������	��������������	���	�����	��	��
during the initial stage of heterotypic mixing under mild agitation.2-5

In conclusion xenogeneic subclass of glyconectin glycans, as the most peripheral 
cell surface molecules of sponges (today’s simplest living Metazoa), are proposed to be 
the primary cell adhesive molecules possessing self-nonself discrimination essential for 
the evolution of the multicellularity.

Our novel AFM-based nanobiotechnology opened a molecular mechanic approach 
for studying structure- to function-related properties of any type of individual biological 
macromolecules related to self-nonself discrimination.

It is very important to note that the rupture force of a single covalent C–C bond 
is about 10 nN, whereas the strongest noncovalent binding forces measured with 
adhesion glyconectins are about 25 times weaker (400 pN).2-5���	�	���������	�
����
why the adhesion structures remain intact throughout AFM experiments. It is essential 
to covalently crosslink ligands and receptors to base supports and to the cantilevers via 
self-assembly layer of lipids and NOT to use (quick and dirty) noncovalent adsorptions 
of ligands. The use of covalent crosslinking and lipid shielding procedure ensures optimal 
�	����	�	����������	���	����������������	���������������������	�����	��	����������	��
and unrelated forces resulting from de-adsorption/adsorption of ligands and receptors 
and long-distance electrostatic forces between the mica and the cantilever and/or their 
interactions with the ligand and receptor. Unfortunately, several studies are ignoring 
this chemical-physical facts and are using adsorption methods without shielding where 
adsorption forces are wrongly declared as covalent attachment on gold.13,14 Do NOT use 
such procedure because they result in meaningless results, which poisons the literature 
and are very confusing and discouraging for biologists who are seeking to use these 
superb techniques of measurements of intermolecular binding strength and evaluation 
for their functional contribution. Ideally, measurements between single pair of ligand 
to a receptor should be performed by AFM. Considering the size of the AFM tip and its 
curvature angle in comparison with the size of the crosslinked molecule, caution must be 
taken when determining the number of molecules that are crosslinked to the tip. Usually 
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few nanometer diameter of smaller protein molecule will allow crosslinking under the 
standard described conditions of at least ten molecules per 10 nm2 surface of available 
��������	������	���
����	�	���	�����	����	�	�������������������	���������������	�
�	������
many ligand–receptor molecules will be contributing to the measured force.13-15 Use of 
serial dilution experiments is recommended to solve this problem.

Q: WHEN IS CELL RECOGNITION AND ADHESION ACTIVE  

FOR SELF-NONSELF DISCRIMINATION?

A: Self-nonself discrimination in multicelluar organisms must be operational through 
the life cycle via cellular recognition and adhesion. During the embryonal life of most 
mammals the rejection of the nonself fetus “mysteriously” does not occur.

The function of the adaptive immune system in the case of humans is the recognition 
of self and rejection of nonself. Fetus has different genome from a mother. Therefore, 
it is the new developing self different from mother self. However, fetus is tolerated and 
not rejected. Several non proven theories are suggested that non immunological barrier 
of uterus exist and that immunosuppression is activated with assumptions of using also 
endogenous retroviruses.16,17

In some pathological cases in mammals altered self recognition occurs. This leads 
������������	����	�����	������������	������������������	����	��	������	���	~	������

Unicellular and multicellular symbionts, parasites and other pathogens may avoid 
rejection by the host either by (i) using of a molecular mimicry principle which involves 
expression of similar host self antigens, thus enabling recognition as the host self and/or 
(ii) hiding of host nonself antigens and thus avoiding nonself rejection.

For propagation and diversity of species via sexual reproduction the essential 
�	�������������	
������	�����������������	���	��������	��	���	�����
	�������������
���	�	����
	�����

CONCLUSION

Self-nonself recognition and adhesion is fundamental prerequisite for evolution of 
multicellularity. The initial step of this process is based on carbohydrate to carbohydrate 
self-assembling nano-molecular-velcro system.We are proposing that large variability of 
carbohydrates as the most exposed and dominant components of plasma membranes are 
involved in many cellular interactions essential for self-nonself recognition. Unfortunately, 
chemical complexity of carbohydrates and need for interdisciplinary nano-technology 
approach resulted in the past decades to silent ignorance of carbohydrate role in biological 
self-nonself recognition processes.
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CHAPTER 4

NEGLECTED BIOLOGICAL FEATURES IN 
CNIDARIANS SELF-NONSELF RECOGNITION

Baruch Rinkevich
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Email: buki@ocean.org.il

Abstract: Cnidarian taxa, currently of the most morphologically simplest extant metazoans, 
exhibit many salient properties of innate immunity that are shared by most Animalia. 
One hallmark constituent of immunity exhibit by most cnidarians is histocompatibility, 
marked by wide spectrum of allogeneic and xenogeneic effector arms, progressing 
����������	�������������������������	~	�����������	������
��
	��������������������
immunity, while discussing historecognition as the ground for immunity in these 
organisms, concentrates on host-parasitic and disease oriented studies, or focuses 
on genome approaches that search for gene homologies with the vertebrates. Above 
tendency for mixing up between historecognition and host-parasitic/disease, highlights 
a serious obstacle for the progress in our understanding of cnidarian immunobiology. 
Here I critically overview four ‘forgotten’ cnidarian immune features, namely, 
�
	����������������������	���������	�	�����������������������������	������
presenting insights into perspectives that are prerequisite for any discussion on 
cnidarian evolution. It is evident that cnidarian historecognition embraces elements 
����� ��	� ����������� �	�� ��� �	��	����	� ���������� ���� �	�	�� 	������	�	�� >��	���
variety of cytotoxic outcomes, different types of effector mechanisms, chimerism, 
etc.). Also, cnidarian immune features dictating that different individuals within the 
same species seem to respond differently to the same immunological challenge, is 
far from that recorded in the vertebrates’ adaptive immunity. While above features 
may be connected to host-parasitic and disease phenomena and effector arms, they 
clearly attest to their unique critical roles in shaping cnidarians historecognition, 
calling for improved distinction between historecognition and host-response/
disease disciplines. The research on cnidarians immunity still suffers from the lack 
of accepted synthesis of what historecognition is or does. Mounting of an immune 
�	�
���	�������������
	����������	���	�	���������������������	�	���	��	��	����
demarcated from other paths of immunity, till cnidarian innate immunity as a whole 
is expounded.

Self and Nonself, edited by Carlos López-Larrea. 
©2012 Landes Bioscience and Springer Science+Business Media.
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INTRODUCTION

Ancestors of the vertebrates’ adaptive and innate immunities have recently been 
downgraded to simple multicellular marine invertebrates, thus reviving the questions as to 
the evolution of self-nonself recognition phenomenon. Although many salient properties 
of innate immunity systems are shared by all multicellular animals, the evolutionary origin 
remains poorly understood and some of the shared properties have been less explored.1 
Since cnidarians are currently of the most morphologically simplest extant metazoans, 
they are also of the most suitable for studying the evolutionary origins of self-nonself 
recognition.1-3 This is further manifested by their biological features. Most cnidarians 
(anthozoans and hydrozoans) are sessile creatures, with negligible competence to move 
away from points of settlement, sometimes living in densely populated communities. 
This leads to copious allogeneic and xenogeneic encounters with other permanently 
attached-to-hard-surfaces organisms, which settle in close proximity. When allogeneic 
and xenogeneic contacts start, they either develop tissue fusions (forming chimeric 
	�����	�!��������	����	���	�	�
��������������	~	�������>��	�������������������	��
recoded in nature), the latter resembling events occurring following allogeneic interactions 
in mammalian pregnancy and vertebrate transplantation.2-5 These agonistic reactions 
that demarcate physical barriers between genetically distinct organisms are hallmark 
to (a) competitive exclusion of other organisms that compete for limited available free 
substrate and (b) needs for keeping genome’s integrity, maintaining each organism’s 
individuality and preventing somatic and germ cell parasitism.1,5,6

Despite of the central dogma of immunologists stating that all invertebrates, which do 
not possess specialized lymphocytes (some of them, like cnidarians, even lack circulatory 
systems), rely entirely on innate immunity and the obvious cnidarians morphological 
simplicity, cnidarians do express complex epithelial cell-based effector mechanisms for 
allorecognition and xenorecognition as well as behavioural responses and specialized 
immune apparati. The effector mechanisms range from contact avoidance involving 
chemical sensing, allelopathy, barrier formation, tissue and skeletal overgrowths, 
�	�	�
�	��� ��� ��		
	�� �	����	��� 	�
���	��� ��� �	�	��	���� ���	����� ������� ���
hyperplastic stolons, creation of pseudofusions, morphological resorption of chimeric 
individuals, bleaching, retarded growth rates, transitory fusions, nematocyst shooting, 
�	�	�
��������	��	���	�
���	����	�����������������������	�����������������������������
attraction of motile phagocytic cells, retreat growths, allogeneic reversals and more 
(details and reviews in refs. 2,3-5,7-31).

Much of the largely phenomenological outcomes that are associated with cnidarians 
immunity1-31 offer little in terms of the cellular and molecular constituents that clarify 
morphological observations. As a result, while there are unequivocal results attesting 
��� ��	�	����	��	���� ���
���	%�"	� �����	� �	����	�� ��� ����������� >�
	����������	�����
and maturation;2,5,6,22,26,27 i.e., innate immunity with adaptive features32), much of the 
recent research on the Cnidaria has been neglecting these biological features in lieu of 
molecular comparisons with mammalian immune genes and by concentrating on host 
defence aspects, overlooking allorecognition. This emanates from recent genome sequence 
projects performed on marine invertebrates, including Cnidaria,33-35 that, while providing 
much improved sensitivity for the detection of gene homologs with the vertebrates 
(a usual deliverable considers the catalogue assemblage of immune related genes from 
a genome sequence), they do not delve into analyzing of unique immunological features. 
This chapter aims to provide a critical overview of four ‘forgotten’ cnidarian immune 
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�	����	�� >�
	��������� �������������	������ ���	�	�������������� ���� ����	����!��
presenting insights into perspectives that are prerequisite for any discussion on cnidarian 
evolutionary immunity.

SPECIFICITY

One of the hallmark characteristics of self-nonself recognition systems in the 
�	��	����	�������	���������
	�������������	��	��������������	��	����������	�	
����������
infer the recognition factors, regulatory factors and effector proteins.36 Whereas very little 
is known about the actual underlying mechanism or the cells involved in this process 
�����	�#�����������	�	���	����	�����	���
	��������	����	�	����	��	�����������
	�����
self- nonself recognition in this phylum. A general paradigm is that since immune 
responses are costly, potentially destructive to the host, generating an unlimited pool of 
recognition molecules that encompass many cell types, it will be a waist to have highly 
�
	����� ��������� �������������	� ���	��	����	�� �������	� ���� ��	����	�����
��	�� ���
the vertebrates (with limited numbers of cells) and are short living organisms.32,37 This 
was envisioned by the tenet manifesting that invertebrate immune systems are pathogen 
manipulated through immune evasion,3 not allorecognition inspired.

The ability of cnidarians to distinguish accurately between self and nonself had 
been clearly documented in anthozoans and hydrozoans.2,5,6,38 Such distinction could 
be exerted by recognizing either the presence or the absence of nonself attributes or by 
detecting the presence or absence of self-molecules.5,6,39 Several studies8,10,25 have already 
�	��������	�� ������	�	��������	���	�	���������� ����� �
	�����������	����
	������
elicit simultaneously or separately an array of different effector mechanisms, revealing 
the capacity for ‘nonself recognition pattern over ‘self recognition’.6 When evaluating 
allorecognition systems in cnidarians (mainly on corals) it was evident that the effector 
�������	��������	���	������	�������������������
	������	����������	�	�������	������	��
by extreme polymorphism (i.e., there was no single fusion obtained on hundreds of 
allorecognition assays performed between adult colonies of Stylophora pistillata, as 
�

��	����������������	�����
�����	�!����	���
��	�����	�	��������	�����	�	��	��	�	��
������"�����������������	�
�	��������������	����
	��
	�����	��	������	������������
well as a variety of cellular-morphological characteristics.

��	������	��	��������������	�����������
	����������	���������������������������������
���	��������������������������������	�����������������
	���������	����
	����������������

��	������	����	����	����������	��		�����		���������	��>��		�����������#!��������
	�����
effector mechanism that is relevant as an interactor for all possible combinations emerged 
between the three interacting partners and carries the property of fusion/rejection or an 
hierarchy. Transitivity will be determined in cases when A � B (fusion) and B � C then 
A � C; or when A � B, but A  C (rejection) then B  C. Nontransitive relationships will 
be established when A � B and A � C but B  C. The same rationale is implied for the 
hierarchy patterns in the expression of effector mechanisms. Linear hierarchy will be 
established when A ��B (A dominates B) and B ��C, then A ��C, or A ��C for circular 
hierarchy.6,39,40����	�������������������
	������������	��������	��	��	���
	��	�����	�
revealed the nontransitive nature of corals’ effector mechanisms,10,11,22,26,40 indicating 
nonself recognition.40 In these nontransitive hierarchies, the most dominant colony in a 
panel of allorecognition assays, could be found the subordinate or equal in aggression 
to the inferior colony. Following that, networks of hierarchies were established between 



49NEGLECTED BIOLOGICAL FEATURES IN CNIDARIANS

���	������������
	�������������	�������������	��������	�����	�	��������	�	������������
allorecognition groups according to their allorecognition responses.6 In a study on the coral 
Stylophora pistillata from Eilat, the Red Sea,22 three allorecognition groups (marked I 
to III) of nine interacting genotypes, were detected by pairwise combinations assays. 
Within each group, colonies overgrew each other in a linear hierarchy pattern. Between 
groups, they either rejected or overgrew each other; each of the four Group I colonies was 
engaged in nonfusion/overgrowth interactions with Group III and unilaterally rejected 
each of the three colonies of Group II. Interactions between Groups II and III were only 
rejections and directionality was dependent on allogeneic partner types. This complicated 
pattern of incompatibility in S. pistillata cannot be explained by the concept of simple 
“self recognition”, since incompatibility here seems to be coded as a series of discrete 
alternatives resulting from complex genetic elements of the partners involved. Results 
revealed also that all allogeneic effector arms and their directionality in S. pistillata were 
highly reproducible9,22 (Fig. 1). Therefore, types of allogeneic responses can be considered 
��� ���	����� �
	�����������	���� �	���������� ���� ��	� �	���� ���� �� ��������	�������	�
of external biological (i.e., predation, competition) cue or responses to environmental 
parameters. The same is implies in another study on nontransitive type of xenogeneic 
interactions developed between four species of marine sessile invertebrates, two of 
which were scleractinians10 and in other studies on reef corals16,41 (Fig. 1). Xenogeneic 
interactions, while nontransitive in nature,10,16,41 are also subjected to physiological/
behavioral responses in addition to histocompatibility borne outcomes. Results revealed 

Figure 1.� �� ���	������ ����������� ����� �	�	��� ��	� ����� ���	������ ���� ��	� 	����� �
	�������� ����
historecognition in the Cnidaria. A colony of the branching coral Stylophora pistillata is naturally 
encountered in various allogeneic (n � 11; centre, right panel of arrows) and xenogeneic (n � 9; left 
panel) types of interactions. Thus, a single coral genotype is not limited to a single mode of interaction 
in response to allogeneic/xenogeneic encounters. The coral’s wide catalogue of effector mechanisms is 
��
��	� ��	�	���	�����	�������
	�������������������	�����������¢����	�^���������	��������������������
	���� ����	�� 	������ �� �
	����� �	�
���	�� ������	���� 
����� ��� ��	� ���	�	����	���	�	��� ��	�������� ���
����� ���	�� >�
�� ������!� ��	� ��~��� �������	�� ����� 
��
	���	�� ��� ���	�	��� ���� �	���	�	��� �	�
���	��
are listed (immunological memory, chimerism, maturation, types of secondary responses and the ability 
to detect differences on the colony vs. the species levels). Bottom list (in bold) reveals four major 
properties shared between xenogeneic/allogeneic responses.
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�����	�
�	���������	����������	�����	�������	�����	��������������������	����������
temperature,42,43 the size of the neighboring xenogeneic partner25 and quantity and the 
	���������	�	��	�������	����13,44

A detailed historecognition test on the hydrocoral Millepora dichotoma26 has further 
	������	����	�	����	��	�����
	������	��������	��	������	�������������	����	
�������	�
�����	��������	������"		������	����������	�	��	����	�����������	������{|��		"�������
set of 42 allogeneic interactions, four additional types of secondary responses were later 
observed among most incompatible combinations: reversals in overgrowth directionality, 
tissue necroses, stand-offs and abnormal growth patterns, all characterized by high 
variability in type and intensity of response. Based on the outcomes of the primary 
overgrowths, a complex nontransitive hierarchy was constructed for this set of colonies.

_����	�����������������������	�	������	���������
	���������������
�����
����
effector arms, one of the most prominent features of adaptive immunity. However, 
recognition of ‘self ’ vs ‘nonself ’ in the cnidarians, while still representing two different 
enigmatic ways that immune systems may elicit (by detecting the presence or absence of 
��������	��������	��	��	���������	�	��������	�
�	�	��	�������	��	��������	����������	�39), 
could challenge traditional views on innate immunity. Mounting results attest to high 
degree of polymorphism in allogeneic and xenogeneic responses (albeit in some cases 
they are less polymorphic45), wide repertoire of responses, precise directionality of 
	��	����������	�����������
	������	�������������
	�����������	��������	������	�������
characterized by hypervariable allodeterminant.46 In fact, each allogeneic partner may be 
¢��	��	�^�����	�	���������
	�������������������	�	�>�����{!���		�������������	
�������������
with surprising delayed allogeneic responses such as cytotoxicity, overgrowth, reversal 
and secondary responses, which differ from a primary elicited outcome,26 altogether 
revealing that these organisms, lacking circulatory systems and excess immune cells, 
�	��	�
�	���	����	������	�	��������	���	�	�����������������
����	���������
	��
nature of cnidarians histocompatibility, cannot be explained thoroughly by the tenet of 
‘self recognition’, since it recognizes many nonselves, differently and only a single self. 
Moreover, incompatibility seems to be coded by a series of discrete alternative effector 
arms,6 resulting from complex allogeneic genetic elements.46 The self recognition for 
allorecognition implies that all different types of nonselves will be grouped into one 
uniform ‘nonself ’ entity, without individualizing each of these nonself attributes.6 This is 
������	����	��������	�#�������������������_������������	�	����	��
	���	�������������	�
documentations that ‘rely’ on recognition elements (not yet disclosed in cnidarians) are 
purely phenomenological, lacking our understanding on the molecular and cellular levels.

IMMUNOLOGICAL MEMORY

��	�	��������������������	��	����������������	���	��������		����	���
����������
������������������	�%�
	�������
�����	����	�����������	��������	�������������"�
characteristic of the vertebrate immune systems. Immunological memory enables an 
�������������	�	��������
����	�
	��	��	���������	���������	��������	�
�������������	
	��	��
��	���������������������	��	��=���"	���������	�	����	�����_������������������
enhanced secondary immune response to a previously encountered antigen may last a 
lifetime.47�����	��������������	����������		��
���������	��	�����������������
models, it may lead to potential errors in our interpretation of immunological phenomena 
in other groups of organisms, especially in invertebrates.48 As a result, innate immunity is 
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still generally considered as devoid of memory component, because the mechanisms and 
the effector arms (i.e., memory B cells, CD4 memory T cells, cytotoxic CD8 memory T 
cell) establishing this memory in adaptive immunity of the vertebrates are clearly missing 
in innate immunity systems.47 All memory components in the vertebrates are associated 
with research on adaptive immunity and concentrated in tuned reactions that enable the 
host to adapt to pathogens during its lifetime (xenogeneic interactions), not allorecognition. 
#	�������	��������	�����	�����������������"	�������	����	�	��������	�����
	��������>���
�������	������	!�����������
	����������������������	���������������	�	�������	��

The issue of immunological memory in invertebrates in general5,32,47,48 and in 
cnidarians, in particular,32,49 is a controversial issue as various studies clearly showed 
that allorecognition in these organisms is not completely devoid of induced effector 
arms.5,32,47-50 It is reasonable, however, to assume that immune memory is advantageous 
only if there is a chance of being exposed to a previously encountered challenge; a highly 
expected scenario for marine sessile organisms, like the cnidarians. A coral colony may 
�
	����	���	�������	����	��
	������
�������	����������������	����	�	��������	���	�	���
�
	�������������	���������������		����������	��������
��	������������	����������>���
memory will be advantageous where repeated encounters are commonly presented for 
long terms. This is not unlikely scenario1,2,5-7,9-11,16,19,20,22,23,25,26,28-31,41-45), following the 
��
����������
	������	�������������
�	�����������	����	��	��

Years ago,49 a suggestion had been raised for three minimal functional criteria 
�	�	�����������	��������������������������
	�	��	}�>{!���������������������������
�	����������	���	�������������>�!��		����	�����
	������	��������������>`!��������	��	�����
����	��������������������������������	����������	�	��������	�����������	��|� and 80� 
(reviewed in ref. 50) have demonstrated short memory component in corals’ and gorgonians’ 
allorecognition, as well as on a biochemical level in a sea anemone.51 More recently, a 
study on the gorgonian coral Swiftia exerta histocompatibility50 has revealed an allograft 
�
	������	~	������
���	����	�	�
��	�������
�������
����	����	��	���������	���������������
of tissue in the immediate contact area. First contacts required 7-9 days to produce 1 mm 
of necrosis; second contacts at a new tissue area, following a resting period, resulted with 
�
		���>`%������!��	���������_��	���������
����	������		"������
�����	����������������
accelerated secondary response, as opposed to third party allografts, all demonstrating 
�	�����������
	���������_��������������������
	�����	�������	�$	���	������������Millepora 
dichotoma27 could not demonstrate a memory component, as second-set and third-party 
��������	�	����������������	��������	�������	�����������	�	����������������	��	��

Studying immunological memory in other invertebrates,47,48 may reveal aspects not yet 
recorded in the Cnidaria. For example,52 exposure of the copepod Macrocyclops albidus 
to its tapeworm parasite, Schistocephalus solidus, reduced the chances of re-infection 
of the same host by siblings of the infecting tapeworm but not by unrelated genotypic 
parasites. Similarly, different Daphnia clones were found to be differently protected 
against diverse strains of the same pathogenic bacteria.53 Thus, this instrument of learning 
and memory could allow better protection.48

IMMUNOLOGICAL MATURATION

Possible ontogeny in immune responses of the cnidarians could shed an additional 
����������	��
	��������������	����
	�������	�������	������������������
�������	�	���
studies have documented allogeneic maturation in scleractinians,29,31,54-56 in soft corals57 
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and in colonial hydrozoans58,59 without identifying or characterizing the biological 
mechanisms that perpetuate immunological maturation. This is of special interest because 
allorecognition is thought to reduce costly tissue fusion with individuals other than 
self.1 Two studies29,57 demonstrated that a window in ontogeny allows fusion between 
newly settled polyps (before the allorecognition system matures), but a recent study56 
has surprisingly revealed erratic histoincompatible responses in the same coral species 
studied before29 (see below).

Generally speaking (not considering recent56 surprising results), allogeneic maturation 
comes about at earlier stages of development. Best example is the coral Stylophora pistillata, 
where adult colonies always distinguish accurately between “self” and “nonself” attributes 
�����	�
�����		����	������
	��������	�	������	��	����	�	����������	���������2,5,6 By 
establishing allogeneic contacts within groups of siblings or nonrelated offspring, three 
types of allogeneic responses, depending on the age of the interacting partners, had been 
documented.29���	���������������	��������������	��������������������	�����	�������	��	��
in partners less than two-month old. The second developed in contacts of 2-4-month 
old partners, started with tissue fusion and followed with separation between chimera 
partners when the oldest partner in the chimera reached the age of four months. The 
third type revealed regular histoincompatibility responses, as documented in allogeneic 
interactions of adult colonies,2,5,9,22 recorded in all allogeneic encounters with partners 
over the age of four months. Maturation of allorecognition in this species was therefore 
achieved through three time-dependent stages, four months following metamorphosis. 
Combinations of siblings or genetically unrelated partners did not affect the results. A 
follow-up study57��������������������	��������	����	�	����	��	�������	�	��������������
in the Cnidaria by documenting that tissue fusions could occur only between allogeneic 
young colonies. The lack of an active historecognition system in the early stages of 
ontogeny in the scleractinian and soft corals studied is probably universally connoted in 
other recent studies,31,54 including colonial hydrozoans.58-60

As aforementioned, a new study56 has revealed erratic responses in coral maturation. 
Whereas about half of kin allogeneic interactions of the coral Stylophora pistillata led 
to tissue fusions and chimera formations, none of the 83 nonsibling pair combinations 
was histocompatible and rejections between young siblings at the age of less than two 
months were documented, in contrast to previous results.29 More surprising were the 
results documenting fusions between siblings at ages older than four months (in contrast 
to former study29), even between more than one-year-old partners. It was suggested56 
�������	��	������	�	��	���	���	���	�	�����	�	���	�	�������������������
����������		�����
(caused by chronic anthropogenic impacts on shallow water coral populations), where 
planulae originating from the same mother colony or from different mother colonies that 
are genetic related, share increasing parts of their genomes. Offspring born to related 
parents may also reveal an increasing genomic homozygosity; altogether imposing erratic 
����������_��������	�	������������	�������	��	���	�	������	�������	���������Hydractinia 
symbiolongicarpus have revealed that the hydroid’s allorecognition resides in a single 
chromosomal region contains at least two loci,61 further illuminating the important role 
of heterozygosity in self/nonself expression. Ontogeny of historecognition was also 
found in two species of Hydractinia, where immature offspring fuse to parental strains 
and remained fused as opposed to reproductively mature offspring that initially fused 
with parental strains, only to separate 3-21 days post fusion.58 Late larval stage and early 
post metamorphosis are the stages at which individuals became allogeneic competent.59
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A similar phenomenon of erratic histoincompatible responses was described for 
allogeneic interactions in Pocillopora damicornis, another genus of the same family. 
While earlier studies55 had documented fusions between all combinations of young spat 
(sibling, nonsiblings and different colour morphs), a subsequent study31 documented a 
novel rejection type between young sibling colonies, a result that had not been previously 
recorded. This rejection was termed as ‘incompatible fusion’, marked by seemingly 
regular fusion between partners that develop into rejection and/or separation between 
individuals. A hypothesis was put forward31 that ontogenetic changes in Pocillopora 
damicornis histoincompatibility were variable, occurring in earlier or later stages of 
development. In contrast to Stylophora,29,56 allogeneic interactions between siblings or 
nonsibling partners of P. damicornis, Seriatopora caliendrum and Seriatopora hystrix31,62 
had not been affected by the partners’ age.

The ontogeny of allorecognition responses in the Cnidaria is not only interesting 
as a fundamental topic of invertebrate immune systems, but is also of ecological and 
	���������������������	��	����������	�	����	��	�������	�����������	�������������	�����
and the evolution of ‘self ’ versus ‘nonself ’ recognition.5,47

CHIMERISM

A wide spectrum of colonial organisms (i.e., sponges, cnidarians, bryozoans, 
�������	������	!����	���	��	�����������	���	�����
	��������������������	������������	�
followed by direct tissue contacts between allogeneic individuals. Often, self/nonself 
recognition mechanisms allow the development of tissue fusions between allogeneic 
���
����	�����
	������������	��	�	�
�	�����������������	���2,57,63-68 (a chimera � an 
�������������������� �����	������	�������� 	���� �����	�	�������������������
	�����!��
Many studies have documented the existence of naturally occurring chimeras in these 

����������������		��
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	�����	����������������������	�	����
are associated with chimeric colonies.63-68 As found in a variety of marine invertebrates, 
including the cnidarians,63-65 chimerism is a tool that precisely discriminates between 
��	��� ���������	���� 	�	���	��		�����	�� �	��	�� ����
	�������#���	��������� ��	�
events expressed morphologically by the effector arms differ fundamentally from one 
invertebrate group to another, best studied in botryllid ascidians.63,64,66-75

Studies on hard and soft corals31,45,55-57,62,65,76,77 showed high proportions of fusions 
between young partners that are engaged in allogeneic interactions, an outcome not 
documented in adult alloreacting partners. This is of special interest because allorecognition 
is thought to reduce costly tissue fusion with individuals other than self.1 Fusion between 
~��	��	�������	����������������������	������������������	����	�����	���	�	�������	���	�����
Pocillopora damicornis55 and then in other pocilloporid corals like Stylophora pistillata,45 
Seriatopora caliendrum and S. hystrix.62���������	��		������
	��������������	������	�����
corals and is commonly found in hydrozoans.26,78,79

Several studies64,67,72,73,75,80-82� ���	�� ��� �	��	� 	����������� ����������	� ��� �������
����	�������	�����������	����	��������������	�	�����������	�����������
��	�������	�
state of genetically homogeneous entities, or by analyzing chimeras of two partners vs. 
multi-partners chimeras. These include the expression of heterosis, increased genetic 
repertoire, reduced onset of reproduction, increased competitive capabilities, enhanced 
growth and survivorship rates, synergistic complementation and assurance of mate 
��������� '��� �� ����	� �	�	��� ���� �		�� �����	��	�� ��� �����	�� ���������� ����	�����



54 SELF AND NONSELF

>���������	���	�������	������������	������	�������	��	�	�	�����	����	�	�������	�	�����
��	����	�����!�������	����	�����������	���������	�	��������		�������	�������	�
�����	�	�	���
of germ cell parasitism, particularly relevant for organisms like cnidarians in which 
germ cell sequestration remains undetermined until late in ontogeny or when it is never 
fully attained along the life span of the organism (above references). No single study on 
cnidarians chimerism has revealed yet germ/somatic cell parasitism. On the other hand, 
several other costs were found. Gild et al,79 that followed long-term repeated fusion and 
separation cycles in Hydractinia colonies, revealed a slow-down of colonial growth rates 
following fusion and recovery in growth rates following separation. The result for rapid 
transfer of stained material between partners in the Hydractinia transitory chimeras, raised 
doubts whether separation guarantees protection against cell parasitism and whether 
��	�	���	��	�	������������	��������������������������_����������������	����57 chimerical 
partners were detached, or chimerism resulted in the death of one or more partners, 
or in morphological resorption of the partners. Long-term observations on soft corals 
chimeras (450 d) further documented slower growth and growth-retarding disorders such 
��������
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���	������
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�������������
��
���������������_�������
corals, mortality of some of the Maeandra partners within the chimera occurred 17 days 
after fusion83 and another earlier study84����������������	���������������	���	�������	��
were slower compared with that of isolated individuals. One of the allogeneic responses 
in the hydrocoral Hydractinia79 effector arms is transitory fusion, where colonies undergo 
tissue fusion, followed by tissue death at contact areas and colony separation. Long-term 
observations on repeated fusion and separation cycles in clones featuring transitory fusion 
showed a slow-down of growth rates following fusion and recovery in growth rates following 
separation. Experiments with mixed sex chimeras58,85 have revealed that in transitory 
chimeras both colonies expressed only their own sex whereas in permanent chimeras, 
deviations from the expected sex ratio was recorded. As in Hydractinia, multi-partner 
entities made of Stylophora pistillata aggregated spat increased in size, as compared to 
�����������
����	�
	����� ��� ��	������ �����������65 However, at the single genotype 
level, the multi-partner entities were the smallest, revealing highest-cost-per-genotype 
also when compared, for example, to bi-partner chimeras.65

Observations (unpubl.) documented frequent spat aggregations of the branching coral 
Stylophora pistillata in the wild. However, although widespread in marine invertebrates, 
the extent of chimerism in wild populations of reef corals is unknown. A recent study76 
����	������	��������@\�����	���������������
�
�����������A. millepora from Australia, 
suggesting that chimerism is more widespread in corals than previously thought.

CONCLUSION

This chapter presented an overview of four ‘forgotten’ cnidarian immune features, 
���	��� �
	��������� ������������ �	������ ���	�	��� ����������� ���� ����	������
providing insights into perspectives that are prerequisite for any discussion on comparative 
and evolutionary immunity. It is evident that historecognition systems of the cnidarians are 
highly polymorphic at the morphological level.1,2,5 Cnidarian inducible historecognition 
responses (both allorecognition and xenorecognition) are further characterized by a wide 
catalogue of effector mechanisms, by the employment, in many cases, of specialized 
structures that are constructed de novo or undergo changes upon contact and by using 
(not always, i.e., refs. 20,25) distinctive lines of nematocyst populations.85 This is 
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performed by effector arms that demonstrate all the variety of features found in the 
complex structure of the vertebrate immune systems.2 The literature clearly attests that 
the cnidarians possess highly diverse historecognition systems and effector mechanisms 
��
��	�����	������������
	���������	��������������	������	����� ������	�����������	������
challenges.5-7,10-15,19-23,25-31,39-51,55-62,65 It is therefore unfortunate that in contrast to discipline 
of main stream immunology, where availability of methods for studying genome-wide 
	�
�	������
���	������	�������
�	����	�����	�	�	�������	��	�	����������������������������
suffers from the lack of accepted synthesis of what historecognition is or does.2,3,86-88

Part of the ambiguity in historecognition synthesis emerged from the outcomes 
���������������������	����������	�����	��		�	�����������	�������������	������	��	����	�
immunology has not encountered1,5,6 (such as the variety of cytotoxic outcomes, different 
types of effector mechanisms, chimerism, etc.; Fig. 1). The hallmark cnidarian immune 
feature (also found in other marine invertebrates5,63,67,75,93) that different individuals within 
the same species seem to respond differently to different individuals5,48 (Fig. 1), is also 
far from that recorded in the vertebrates’ immune response repertoire. Same imply to 
�	�����"	�¢�	����^��¢����������^�����¢�
	�������^��������	����������	�����������	���
�	������������������	�������	����������%���	��	���	���������47,52

����	���������	��	�����������	�����	������������	�����	��������	�	�	�����������������
innate immunity may offer key insights into the complexities of higher metazoans’ immune 
systems,3-6,89 recent studies on cnidarians immunity, while discussing historecognition as 
the ground for immunity in these organisms, concentrate on diverse host-parasitic and 
���	��	����	��	������	�������������	����%
������������������
������������������������
responses of cnidarians,3,87,88,90-92 also linking between climate change, anthropogenic stress 
and coral diseases. Other studies focus on molecular biology aspects of innate immune 
repertoire in Cnidaria, including genome approaches and search for gene homologies with 
the vertebrates,3,33-35,86,93-97 underscoring our limited understanding of the mechanisms for 
self-nonself recognition in the cnidarians (the sequence data leave much to be deciphered 
with respect to relevant biological features93!����������	������
��
	������������������
�
between historecognition and host-parasitic/disease routes of immunity has been a serious 
obstacle for progress in our understanding of cnidarian immunology. Historecognition 
����	����������������
	��������
	������������
������	�������	��	������������
	���������
immunological memory, allogeneic maturation and chimerism may be connected or not 
to host-parasitic/disease responses in the cnidarians.

Immunity of cnidarian taxa, the most ancient groups of metazoans, is poorly known. 
However, despite the ubiquity of historecognition in hydrozoans and anthozoans, 
���� ��	����� ������ ���� ���� �		�� ��	����	�� ��� ���
������� ����� ����	���� "�����
histocompatibility genes in vertebrates and colonial tunicates, except for the unique case 
of Hydractinia.46,61 This Hydractinia historecognition system is made of hypervariable 
molecule bearing three extracellular domains with greatest sequence similarity to 
the immunoglobulin superfamily. Therefore, while the molecular study on Cnidaria 
������	�����������		���������	����	��������	���������	��	�	���������	��	���	��������
����	=���	��������	��������������������������	
������	�����������������	�	������������
���
emerged. Histocompatibility genes should encode for recognition factors, regulatory factors 
and effector proteins,33 with great diversity and routes. However, only historecognition 
function-based approach may elucidate the cascade of events participating in self-nonself 
recognition in the Cnidaria. By blurring the borders between above two disciplines, all 
‘ecological immunology’ approaches (i.e., refs. 98, 99) associated with host-parasitic and 
disease oriented studies in the cnidarians3,87,88,90-92,98,100 cannot be helpful in revealing the 
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secrets of cnidarian historecognition. The art of mounting an immune response against 
����
	����������	���	�	��������	����������	��	�����	��	�������	������	����������	��
paths of immunity, till cnidarian innate immunity as a whole is elucidated.
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Abstract: In order to survive, all organisms must recognize and eliminate foreign invaders 
such as infectious pathogens, chemicals, ultraviolet rays, metabolites and damaged 
or transformed self-tissues, as well as allogenic organs in cases of transplantation. 
$	�	����	�	�������������	��������������	������	���������	�	���	��	�����	�������������
sensors on spatiotemporal ‘sentry duty’ that recognize substances derived from both 
‘nonself’ and ‘self’, e.g., Toll-like receptors, retinoic acid-inducible gene-I-like 
receptors, nucleotide oligomerization domain-like receptors and c-type lectin 
receptors. Having acquired high-level functions through the development of multiple 
molecules, higher organisms have established both extracellular and intracellular 
sensors that can discriminate danger-associated molecular patterns from promiscuous, 
but biologically similar, molecular patterns. In addition, ‘loss-of-function’ or 
¢����%��%��������^����������������	�	��������������	���������	��		����"	��>���	����
���
���!��������	�	������������	�	�����������������	����	��	�������������������
diseases and immunocompromised diseases in humans. Further studies focusing 
�����	���	������	�	��������������	�����������	��	�	�
�	�����������	�������	���
would highlight new avenues for the development of novel diagnostic and therapeutic 
applications with regard to these diseases.

INTRODUCTION

The mammalian innate immune system possesses a variety of ‘arms’ that sense 
pathogens and dangerous substances derived from self-components and metabolites. 
Upon microbial infection, soluble factors such as antibodies and complement recognize 

Self and Nonself, edited by Carlos López-Larrea. 
©2012 Landes Bioscience and Springer Science+Business Media.
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various components of pathogens, while cell-surface receptors such as c-type lectin 
receptors (CLRs), scavenger receptors and immunoglobulin Fc receptors either directly 
or indirectly capture pathogens to facilitate intracellular bactericidal processes. Also, 
multi-cellular organisms higher than plants possess cell-surface signaling receptors that 
sense pathogen components and allosterically activate intracellular signaling through 
common adaptor molecules shared by such receptors. Recent research studies have found 
that several different types of intracellular sensors recognize both pathogen-derived 
(nonself) and native (self) substances as danger-associated molecular patterns and trigger 
divergent signaling pathways leading to the activation of innate immune responses. 
Although different types of intracellular sensors recognize various forms of nucleic 
acids, i.e., single-stranded (ss) DNA, double-stranded (ds) DNA, ssRNA and dsRNA, 
��	�������������	��	��		����	�������������������������������������������	��������	���
acids irrespective of their origin. Thus, extensive investigations have been undertaken 
into whether these intracellular sensors also play a role in the pathogenesis and severity 
������������	����	��	����������������������	��	���������������
�����	�����	��	��

LIGANDS FOR INFLAMMATORY SENSORS

Lipid Metabolites

There are many types of lipid metabolites produced by bacteria, since each bacterium 
�����	���%����������%�
	�����	����	������������	���	�����	����	�����������
	�����������
acids. These enzymes are essential for membrane lipid homeostasis, which allows 
bacterial cells to adapt to different environments.1 From an immunological point of view, 
several lipid metabolites have been investigated as potential stimuli of innate immunity, 
e.g., lipopolysaccharide (LPS), mycolic acid, lipoteichoic acid, lipoarabinomannan, 
lipoprotein/lipopeptide and glycosylphosphatidylinositol (GPI)-anchored lipids.2 These 

�����	�%�
	����� ���
��	���� ��	� �	������	�� ��� ��%�"	� �	�	
���� �	�	�����	���
(TLR2/TLR1 or TLR2/TLR6) present on the host cell surface (Table 1). According to 
previous studies, TLR2 appears to be the primary signaling receptor for lipoprotein and 
lipopeptides. A dimerizing partner, TLR1, predisposes TLR2 to sensing of triacylated 
lipoproteins and both TLR1 and TLR6 to sensing diacylated lipopeptides.3,4 The role 
�����${������	�
����������	���������	��		����$�������
�
	
���	�����������	�����
crystal structure analysis of the extracellular domain of TLR2, together with TLR1 and 
a synthetic triacylated lipopeptide.5 Although having agonistic potential, other TLR2 
ligands do not share structural similarity with triacylated lipoproteins, suggesting that 
����	�	�����	������	������������	��	���	������%�
	��������	���������������$�������
depend on the type of ligand, especially for crude lipid metabolites containing strongly 
hydrophobic moieties.6

LPS, a glycolipid present in the outer membrane of Gram-negative bacteria, is an 
amphiphilic molecule comprising two components: a hydrophobic lipid A and a hydrophilic 
polysaccharide. Lipid A is a phosphorylated diglucosamine disaccharide decorated with 
multiple fatty acids and plays an important role in anchoring LPS to the bacterial cell 
membrane. Lipid A is recognized by TLR4 together with coreceptors, MD2, CD14 and 
LPS-binding protein (LBP) (Table 1). LBP and CD14 facilitate the transmission of LPS 
to TLR4, while MD2 facilitates the dimerization of TLR4, culminating in the activation 
of cell signaling pathways.7,8
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It is also known that TLR2 and TLR4 recognize nonbacterial lipid metabolites 
(Table 1). Lee et al revealed that saturated fatty acids (SFAs), such as lauric acid, activate 
NF-�B and expression of cyclooxygenase-2 via TLR4.9 TLR4 recognition of lauric acid 
is co-operative with MD2 and possibly CD14, indicating that the sensing of lauric acid 
by TLR4 is processed by a similar mechanism to that of bacterial LPS.10 More direct 
evidence shows that SFAs released from adipocytes activate cocultured macrophages in a 
TLR4-dependent manner.11�_������������������������������	����$�%�	����	��������������
signaling along with TLR1 and TLR6, suggesting that TLR2 and TLR4 have the 
potential to recognize lipid metabolites originating from both the host and bacteria.12,13 
In contrast, SFAs are an important risk factor for metabolic syndromes such as obesity, 
��������	�������	��������	����	�������<�	�����������	���	�	���������������������������
is associated with the progression of some types of metabolic syndrome, suggesting 
that continuous activation of TLR2 and TLR4 by abundant SFAs and their metabolites 
leads to the onset of metabolic syndrome.14 Some studies show that, in contrast to SFAs, 
poly-unsaturated fatty acids (PUFAs) such as docosahexanoic acid (DHA) antagonize the 
signaling mediated by TLRs 2, 3, 4, 5 and 9.10,12 So, although the molecular mechanisms 
���	��������	���������������������<������������$%�	����	���������������	�
���	��
are still unclear, further in-depth studies may explain how metabolic syndrome is triggered 
����������������	�
���	���	����	�������$��

Peptidoglycan

Peptidoglycan (PG) is a component of bacterial cell walls. It comprises sugars and 
amino acids that form 3-dimentional mesh-like layer structures, thereby providing structural 
strength and stability. Since PG is not present on host cells, it is one of the key molecular 

Table 1. TLRs

Name Ligands Signal Activation Adaptor(s)

TLR1 Triacylated lipoprotein (with TLR2) NF-�B, MAPK MyD88
TLR2 Di- or triacylated lipoprotein, lipoteichoic 

acids, GPI-anchored lipids, peptidoglycan
NF-�B, MAPK MyD88, 

Mal
TLR3 dsRNA, poly(I:C) NF-�B, MAPK, IRF3, 

IRF7
TRIF

TLR4 LPS, lauric acid, fatty acids-metabolites NF-�B, MAPK, IRF3, 
IRF7

MyD88, 
Mal, 
TRIF, 
TRM

TLR5 Flagellin NF-�B, MAPK MyD88
TLR6 Diacylated lipopeptide (with TLR2) NF-�B, MAPK MyD88
TLR7 ssRNA, imidazoquinolin compounds NF-�B, MAPK, IRF3, 

IRF7
MyD88

TLR8 ssRNA, imidazoquinolin compounds NF-�B, MAPK, IRF3, 
IRF7

MyD88

TLR9 CpG motif-contiaining ssDNA NF-�B, MAPK, IRF3, 
IRF7

MyD88

TLR11 <�����%�"	�
���	�� NF-�B, MAPK MyD88

*Intracellular TLRs are in bold. 
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patterns that triggers host innate immunity.15 It has been demonstrated that PG is recognized 
by multiple sensors such as TLR2, CD14, nucleotide oligomerization domain (NOD)-like 
receptors (NLRs) such as NOD1 (also known as NLRC1 and CARD4) and NOD2 (also 
known as NLRC2 and CARD15), PG recognition proteins (PGLYRPs) and c-type lectin 
receptors (CLRs) (Table 2).16-20 The exact mechanisms of PG recognition used by each 
sensor have been studied. Inamura et al found that chemically synthesized PG is not 
recognized by TLR2 expressed by HEK293 cells.21 It has also been shown that pretreatment 
of crude bacterial cell wall extracts with NaOH or H2O2 abolishes their ability to activate 
TLR2. This suggests that thioethers present in lipoproteins or lipopeptides, known to be 
a key element of macrophage activating lipopeptide 2 (MALP-2), are crucial for TLR2 
activation.22�&�����"��	����
�	
��	��	��	����	��
����	��������	���������	�<�������
demonstrated that polymeric PG, but not muramidase-treated monomeric PG, is an essential 
element for cellular activation via TLR2 and CD14.23 While chemically synthesized PG 
��	�������������	���$��������	���������	��������������	�
���	���	����	�����'�&{�����
NOD2.21 It has been shown that NOD1 recognizes PG containing meso-diaminopimelic 
acid (meso-DAP), present in the cell wall of Gram-negative bacteria, while NOD2 senses 
muramyl dipeptide (MDP) that is a common PG motif in most bacteria.18-20 However, 
���������	�	������	����	��	����	
�	��������
��������	���������	����������	������	�}�
How are those partial components of PG processed and delivered for recognition by the 
intracellular cytosolic sensors, NOD1 and NOD2? It has been shown that extracellular 
ATP treatment activates both the P2X7 receptor and pannexin-1 to open an endogenous 
membrane pore, promoting the translocation of MDP to the cytosol.24 It is not clear, 
however, whether this happens in vivo during natural bacterial infections. Although one 
human transporter protein, hPepT1, has been shown to support MDP internalization, other 
�����	����������
���	��
���	��������<������������
��	�������	������	���		����	����	��25

Several reports show that PG is involved in the pathogenesis of autoimmune diseases 
such as psoriasis and arthritis.26,27 Psoriatic skin lesions characterized by hyper-proliferation 
������	�	������	�	������������"	���������	����������������������	�"����	�������������
the dermis and epidermis, which are caused and maintained by populations of CD8� and 
CD4� T cells, respectively.28,29 Dermal CD4� T cells in psoriasis patients are continuously 
activated by streptococcal cell wall components such as PG, which is supposed to be 

Table 2. NLRs

Name Ligands Signal Activation Adaptor(s)

NOD1 meso-diaminopimelic acid (me-
so-DAP)-containing PG

NF-�B, MAPK RIP2

NOD2 MDP NF-�B, MAPK,  
caspase-1

RIP2, 
CARD9

NLRC4 Flagellin Caspase-1 ASC

NLRP1 MDP, anthrax lethal toxin Caspase-1 ASC

NLRP3 �<���<����&<�����	�����	��������
bacterial RNA, viral DNA, poly(I:C), 
MSU, CPPD, hemozoin, imidazoquinolin 
compounds, aluminum salt, urushiol, 
TNCB, asbestos, silica, UVB

Caspase-1 ASC
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a crucial mechanism for establishing psoriatic skin lesions.26,27 Interestingly, epidermal 
CD8� T cells in psoriasis recognize the autoepitopes presented by keratinocytes, which 
are homologous to peptides derived from streptococcal M protein.30,31 Taken together, it 
appears that the presence of streptococci leads to the exacerbation of psoriatic skin lesions 
through molecular mimicry between autoantigens and bacterial cell wall components and 
���������������������������	�
���	����	�	�����	��������������	����������	������	�
responses activated by PG.

Arthritis is frequently seen in patients with microbial infections such as rheumatic 
�	�	��� �������� ������ ���	�������� �������	��� ������������ ���	� �������	� ���� ���	�
disease. Although the pathogenesis of arthritis associated with such infectious diseases is 
poorly understood, the common aspect is the presence of bacterial components deposited 
in the local joint lesions, despite the absence of live bacteria. Among many bacterial 

�����������	����������������<�����������	�����������	���	
����
��%����������������	�����
the severity of the arthritis correlates with the amount of PG deposited in the joints. Saha 
et al precisely analyzed PG-induced acute arthritis in several lines of knockout mice 
and found that PGLYRP-2 and NOD2 are both required for the development of joint 
lesions. They clearly demonstrated the sequence of arthritis progression: PG activates 
NOD2 leading to the local expression of PGLYRP-2. PGLYRP-2 then enhances the 
level of chemokine expression, which facilitates neutrophil recruitment into the tissues, 
resulting in arthritis.16

Proteins

Flagellin is a well-characterized bacterial protein, constituting the polymerized 
���	������	����������������	����	������������		������	���������	�������������
�����	�������	���������������������	��	��&|��&{��&������&`�32,33 While the D0 and 
D1 domains contribute to polymerization, the D2 and D3 domains are exposed on the 
������	������	����	������	���������������	�	������������	�������	�	��	�������	�	�
�
���	�����	��������������	��	������	����34������������	�������	������	�������	���=���	��
immune system as a protein antigen, it is also recognized by the extracellular sensor TLR5 
and the intracellular sensors NLRC4 (also termed as IPAF, CARD12 and CLAN) and 
NLR family apoptosis inhibitory protein (NAIP, also known as NAIP5/BIRC1/NLRB1) 
(Tables 1 and 2).35-37 TLR5 localizes to the cell surface and studies using polarized 
cells such as intestinal epithelia show that it is expressed exclusively on the basolateral 
������	�� ������� ��� �� ������	��� �	����� ��� ���	��	�� ����	���� ��� ��	� 	
���	���38,39 In 
���������������	��	������������	�����������������������$@��	������	����	�����	��	��
&{��������������	���������	���	�������	���	����	������	��������	�������������$@�
�	������	��������	�&{����������������	�������	������	���	���§�	����	������	������
depolymerized.40 Furthermore, a recent study using the human alveolar Type II epithelial 
cell line A549 shows that activation of TLR5 takes place in the intracellular compartment 
and is mediated by lipid raft formation.41 Taken together, these results suggest that the 
���	������	������	�������	��	���������	��	�����������	��	����	���������������	����
��	�	� ��	����	��	
���	���	�����	�
��	���	�&{��������������	���� �����������������
recognition by TLR5. In contrast, the cytosolic sensors NLRC4 and NAIP have been 
shown to transmit cellular signals for the processing of interleukin-1� (IL-1�) in response 
������	��������������36,37 Previous studies have shown that the virulence-associated 
Type III and Type IV secretion systems (T3SS and T4SS) of salmonella and listeria, 
�	�
	����	�����������	����	���������	���������	�������������	�������	��_����������������
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of S. Typhimurium��	���	��������`�������L. pneumophila��	���	����������������������
�����	�'�$#�%�	
	��	����������������	�
���	��36,37,42,43

<�����%�"	�
���	��� ��� ���� �	
���	�� ��� �������	� �����	� ����������<������ ��� ���
�����%��������
���	��������	�����
���	���������������������	���������	��������������
�������
	������	���<�����������������������	�"���������	���
	������	�
�����%�"	�
protein is found in the parasite, Toxoplasma gondii. Yarovinsky et al showed that a 

�����%�"	�
���	������Toxoplasma gondii, TgPRF, induces production of IL-12 from 
mouse splenic dendritic cells (DCs) in a TLR11-dependent manner (Table 1).44 Although 
a previous study showed that TLR11 also senses uropathogenic E. coli infections, the 
component of E. coli��	�
�����	�������������������	���		����	����	��45

���	���$@�����'�$#���	������	�����	�������	�������	�	�������������	��	�������
���	��%�	����	�������	��������������������	�������	�
�����	�	�������#����^�����	��	�
(CD).46�#&����������������������	����	��	�����	����������	%�������������
	�����
��� ��	� ���	������ �������� ������ ��� �����	�	�� ��� ����	���� ���������� ��� ��	� ���	����	��
����������������� 	���� ��� ������� ��	����	� ��� ��	����������������	������������
�����
of mucosal barrier function, resulting in the development of enteritis and/or colitis.47 
��������	�������	����������������%���	�����������	�����������	��������������		�����
a random peptide library with CD patients’ sera, also recognize TLR5 as an autoantigen.46 
Interestingly, a portion of such antibodies activate TLR5 per se, thereby inducing activation 
of monocytes and enhancement of intestinal permeability in CD. This suggests that the 
�	�	�������������������������	����������������	�����������	������	�	������������	�	�����
of CD through the activation of intestinal lamina propria DCs that express high levels of 
TLR5 and control Type 17- and Type 1-T helper cells and IgA-producing B cells.46,48 In 
�����������	�	�������
�����	���	����	����	�Nod2 gene as the susceptible gene for CD by 
showing that mutations in the leucine-rich repeat (LRR) domain cause ‘gain-of-function’ 
���'�&����������	��������������	�
���	��49,50 Although mutations in the Nod2 gene 
���	��		����	����	�������������������#&�
���	�������	�	����������������������	
�������
the pathogenesis of CD is strongly associated with the disruption of homeostasis, which 
������������	���������	������	��������������	�
���	��������������	�����������������
the intestine.

Nucleic Acids

Obligate intracellular pathogens replicate within the host cell by utilizing the host 
cellular machinery. During the early incubation period of viral infections, components 
of viral particles such as the capsid, envelope and other appendices disappear in the host 
cell and viruses only exists as their replicating genomes within the cell. Thus, it has been 
suggested that to detect viral infection and induce antiviral immune responses, intracellular 
sensors have been developed that recognize peculiar molecular patterns expressed by 
the genomes and replication byproducts of pathogens. These include GU- or AU-rich 
sequences, CpG motifs, 5�-triphosphospate RNA, dsRNA and right-handed helical 
structures of B-form DNA (B-DNA) (Fig. 1).2 Such molecular patterns of nucleic acids 
��	��	��	��������	��	��������	��	��������$���$�$������'�$�����������	�������	����	��
sensors, most of which have been shown to play essential roles in eliciting subsequent 
protective immune responses against pathogens (Tables 1, 2, 3 and Fig. 1). Further 
analysis of knockout mice and disease-associated gene mutations in humans suggests 
�������	�	��������������	��������	�����	�������
�����	���	�����	������������	���������	��
in the pathogenesis, development and severity of several types of autoimmune diseases.
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INTRACELLULAR SENSORS

TLRs 3, 7, 8 and 9 for the Recognition of Nucleic Acids

It has been suggested that TLR3 preferentially recognizes dsRNA derived from the 
viral genome presented extracellularly, i.e., the viral genome released from damaged host 
cells and/or viral particles (Table 1 and Fig. 1).51 TLR7 recognizes ssRNA viruses such as 
����	���������������	������������������������>���!�����	���������	������%�������$'��
and synthetic small molecule compounds such as imidazoquinoline, imiquimod and 
R-848 (Table 1 and Fig. 1).2 Human TLR8 also recognizes AU-rich ssRNA and R-848. 
However, the cellular and tissue distribution of TLR8 expression is different from that 
of TLR7. Human TLR7 is highly expressed in plasmacytoid DCs (pDCs) that produce 
robust amounts of Type I interferons (IFNs), while no, or low, levels are expressed in 
myeloid cells. In sharp contrast, the level of TLR8 expression is high in monocytes and 
in monocyte-derived DCs (mDCs), whereas no, or low, levels are expressed in pDCs.52 
TLR9 recognizes ssDNA expressing unmethylated CpG motifs whose frequency is 
higher in the genomic DNA derived from pathogens compared with that from vertebrates, 
suggesting that the CpG motif is a key signature that discriminates the origins of DNA 
(Table 1 and Fig. 1).53 Although the nucleic acid-sensors, TLRs 3, 7, 8 and 9 are highly 
homologous to each other, the subcellular localization pattern of TLR3 is different 
from that of TLRs 7, 8 and 9. While TLR3 is present in early endosomes even after 
ligand stimulation, TLRs 7, 8 and 9 reside in the ER under physiological conditions and 
recruit to late endosomes after ligand stimulation, which is a critical step for triggering 

Figure 1. Intracellular sensors for nucleic acids.
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consequent cellular signaling.54-56 In addition, it has been suggested that TLR3 plays 
diverse roles in a wide variety of viral infections caused by ssRNA-type viruses such as 
	��	
���������������������>��#�!������	������������	�
�������������������������	���
Nile virus and by dsDNA-type viruses such as MCMV and HSV1. This indicates that 
TLR3 plays an, as yet, uncharacterized role in viral infection other than recognition 
of dsRNA ligands.57-62 These TLR nucleic acid sensors mediate virus-induced Type I 
IFN production. TLR3 allosterically transmits signaling through its interaction with the 
Toll/IL-1 receptor domain-containing adaptor inducing IFN-� (TRIF), whereas TLRs 
7, 8 and 9 do so through myeloid differentiation factor 88 (MyD88).63 As is the case for 
TLR5, TLR9 is also expressed in the intestinal epithelia. Basolateral TLR9 transmits 
signals through a canonical NF-�B activation pathway by degrading I�B-�, whereas 
apical TLR9 induces the accumulation of ubiquitinated I�B in the cytoplasm, which 
prevents activation of NF-�B.39 This suggests that basolateral TLR9 plays an important 
��	����	��"��������������������	�
���	������	��������������	���������
�����	�������	�
�
������$?�������������

�	�����������������������������������	���������	�����������
�	���������������	����	����������������64

In addition to the anti-pathogen properties of these TLRs, their in vivo roles in the 
pathogenesis of autoimmune diseases have been examined. Systemic lupus erythematosus 
(SLE) is a major autoimmune disease characterized by production of autoantibodies such 
as anti-DNA antibodies, high levels of Type I IFNs in sera and systemic vasculitis in 
multiple organs.65 SLE autoantigens are composed of RNA, DNA and their associated 
proteins having the potential to activate TLR7 and/or 9, suggestive of the involvement of 
TLRs 7 and 9 in the etiology and development of SLE.66 Although abundantly present in 
the sera, such autoantigens must be transferred to the late endosome to activate TLRs 7 
and 9. Also, such nucleic acid-containing autoantigens are vulnerable to the degradation 
process mediated by extracellular nucleases before associating with TLRs 7 and 9.54,55 
Notably, ‘loss-of-function’ mutations in DNaseI are found in SLE patients, suggesting 
that undigested DNA fragments are involved in the pathogenesis of SLE.67,68 Tian 
et al found that high mobility group box protein 1 (HMGB1) binds to DNA-immune 
complexes, facilitating delivery of the complex to the target cells expressing the receptor 
for advanced glycation end-products (RAGE), which plays a pivotal role in triggering 
TLR9 activation in response to DNA-immune complexes.69 Moreover, Fc�RIIA and the 
anti-microbial peptide LL37 produced by keratinocytes and neutrophils in the injured skin, 
���	��		��������������������	������	��	��	���������������	�������	����	�����������������
TLRs 7 and 9.70-72 Finally, it has been suggested that production of Type I IFNs induced 
by autoantigens promotes the differentiation and survival of auto-reactive B cells to 
augment autoantibody production, which is supposed to be the malignant feedback cycle 
taking place in SLE patients.73

��	�����	��������������������$?�������������������&'���	���������	����������
redistribution of TLR9 to the plasma membrane confers cellular activation by self-DNA, 
suggesting that the TLR9 localization to the endosome, but not to the plasma membrane, is 
crucial for prohibition of self-DNA recognition and consequent innate immune activation. 
<�	�����������	����	����	�����		����
������	��	������?`�{��<$����������
?�������

�����
���������	�������	����������������������"���������$�������	������	�����������55,74-76 
���?`�{�����������%�	�����	�
���	����������������������"���������$��`��������?������
the ER to the endosome. PRAT4A is present in the ER and acts as a regulator of the 
subcellular distribution of most TLRs, except TLR3. Gp96 is the member of the HSP90 
family and resides in the ER where it controls the maturation of TLRs 2, 4, 5, 7 and 9.
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�����	��������	��	���	�������	���	����$�����?������	�������������	����	�����
���
provide us with complex evidence of their role in autoimmune disease. Christensen et al 
����	��������	���	���������$?��	��������	���	��������������	��	�������������������	�
model of lupus, despite the level of antibody production against DNA and chromatin 
being downregulated.77�_��������������$���	���	�����	����������	����	������������
���
symptoms.78 Although both TLR7 and TLR9 are expressed in the same cell types, i.e., 
pDCs and B cells and induce Type I IFN production via similar signaling machinery, 
a couple of studies show that TLR9-mediated production of IFN-� is suppressed by TLR7 
agonists, suggesting that activation of one is counteracted by the other.79 Furthermore, a 
pathogenic role for TLR7 in autoimmune disease has been suggested by demonstrating 
that the Y-chromosome-linked autoimmune accelerator (Yaa) mutation in mice results 
in an increase in TLR7 expression levels concomitant with the frequent development of 
lupus-like symptoms.80,81 In addition, a recent study shows that TLR7-mediated production 
of Type I IFNs is essential for the development of a mouse model of lupus induced by 
pristane, while disease progression is independent of cellular internalization of anti-DNA 
antibodies, which is a critical process for TLR9 activation.82

Retinoic Acid Inducible Gene-I (RIG-I)-Like Receptors (RLRs)

TLR nucleic acid sensors recognize a diverse set of virus-associated molecular patterns. 
However, Type I IFN production is induced by most viral infections independent of these 
��$���¡��	�����	�����	��������	��������	���������	������������
������$'���	����	��
RIG-I, senses infection by RNA viruses and induces innate antiviral immune responses 
mediated by Type I IFN production (Table 3 and Fig. 1).83���	������ ��	����	�� ����
additional cytoplasmic helicases structurally similar to RIG-I; melanoma differentiation 
factor-5 (MDA5) and laboratory of genetics and physiology-2 (LGP2), both of which 
have been referred to as RLRs (Table 3 and Fig. 1). RLRs localize to the cytosolic 
compartment, while TLR nucleic acid sensors are trans-membrane proteins associated 
with the endosome. This suggests that RLRs preferentially sense replicating viral genomes 
and/or their byproducts in the cytoplasm, while TLRs sense nucleic acids of pathogens 
taken up into the endosome. All RLRs contain a DExD/H box RNA helicase domain.83,84 

Table 3. RLRs and other nucleic acid sensors

Name Ligands Signal Activation Adaptor(s)

RIG-1 5’-triphosphate RNA, poly(I:C) NF-�B, MAPK, IRF3, 
IRF7

IPS-1

MDA5 dsRNA, poly(I:C) NF-�B, MAPK, IRF3, 
IRF7

IPS-1

LGP2 5’-triphosphate RNA, dsRNA, poly(I:C) Inhibit signaling  
mediated by RIG-1 
and MDA5

?

DAI dsDNA? NF-�B, IRF3 TBK1

AIM2 dsDNA Caspase-1 ASC

Histone 
H2B

dsDNA NF-�B, IRF3 CIAO
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RIG-I and MDA5, but not LGP2, have two caspase recruitment domains (CARDs). The 
CARD of these molecules plays an essential role in transmitting downstream signals 
through homophilic interaction with the CARD of a signaling adaptor molecule, IFN-� 
promoter stimulator-1 (IPS-1 and also named as MAVS, Cardif and VISA). This leads 
to the production of Type I IFNs upon viral infection.83-88

Knockout mice studies show that RIG-I senses ssRNA virus infections such as 
����	���������������������
��	�	�	��	
�������������>���!�����	�	����&�@�
�������
important role in inducing innate antiviral immune responses to other types of RNA virus 
such as encephalomyocarditis virus, Mengo virus and Theiler’s virus.89 Further analysis 
using synthetic RNA determined that the 5�-triphosphate end is one of the critical elements 
��� ��	� �	���������� 
���	��� ��� ����������	���� $'��� ��� $_�%_�� ���� ���� �&�@�90,91 
Both RIG-I and MDA5 recognize the synthetic dsRNA analog, poly(I:C), which has 
no phosphates at its 5�-end. RIG-I, however, preferentially recognizes a shorter form 
of poly(I:C), while MDA5 recognizes a longer form.92 Interestingly, RIG-I is involved 
in the recognition of transcribed RNA byproducts of poly(dA
dT)
poly(dT
dA) and 
Epstein-Barr virus genomic DNA generated by DNA-dependent RNA polymerase III 
endogenously present in human cells.93,94 In contrast, another member, LGP2, does not 
have the CARD and knockdown of LGP2 results in increased production of IFN-� in 
response to viral infection in vitro, suggesting that LGP2 serves as a negative regulator of 
RIG-I- and MDA5-mediated immune responses.95�#������	����������������<�%�	���	���
mice are resistant to VSV infection and higher anti-viral responses induced by poly(I:C). 
However, these mice are more susceptible to EMCV infection. Furthermore, a recent 
study demonstrated that V protein of paramyxovirus, a well-characterized suppressor of 
host innate immune responses, interacts with MDA5 as well as LGP2, but not with RIG-I 
and interferes with their ATP hydrolysis activity.96 Taken together, these data suggest 
that LGP2 modulates innate antiviral responses depending on types of invading viruses.

������������	���	��	�������	���������������������	������������������	�	�������������
����	���������	��	����	��������������������������	�
���	�������������	���
	��
�������������
Type I IFNs, are associated with the development of autoimmune diseases. A recent study 
examining disease-associated single nucleotide polymorphisms (SNPs) in the human genome 
has revealed that ‘loss-of-function’ mutations in MDA5 correlate with resistance to Type 
I diabetes.97 Although the precise mechanism has not been elucidated, it may suggest the 
involvement of viral-induced production of Type I IFNs in the pathogenesis of autoimmune 
isletitis. Cellular homeostasis is, in general, strictly controlled by negative-feedback 
������	���������	��������������	�
���	������������	�����	��	�	�	���������	����{�%@�
conjugate, an essential molecule for the canonical autophagic process, interferes with 
signaling mediated by RLRs by intercalating into the CARD-CARD interaction between 
RLR and IPS-1 under physiological conditions, suggesting a noncanonical role for the 
���{�%@����~����	��������

�	���������������������	�
���	��98,99

Nucleotide-Binding and Oligomerization Domain (NOD)-Like Receptors (NLRs)

'�$����	����	�����	��������������������������������������	������������������������
conserved domains. Twenty-three members in humans and 34 members in mice make up 
this family according to a genome-wide analysis of the putative genes and all have several 
����������������'�#���>����"��������'�&����'�&!����������������	����	�����
NAIP, MHC class II transactivator (CIITA), incompatibility locus protein from Podospora 
anserine (HET-E) and telomerase-associated protein (TP1). Each LLR consists of 20-29 
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amino acids and the number of LLRs vary in each NLR.100 The NACHT domain is required 
for ATP-dependent oligomerization (presumably 6–8-mer formation), which culminates 
in an ��||�"&��
���	������
	����	�����¢����������	^�101 while LRRs are supposed 
to be crucial for interaction with a variety of inter- and intra-molecular domains, as is the 
case with TLRs for their interaction with ligands.100 In addition, NLRs have a signaling 
domain that interacts with downstream adaptor molecules to transmit signals. Three 
different types of the signaling domain divide NLR family members into subfamilies. An 
NLRB subfamily member, NAIP, contains the Baculoviral IAP repeat (BIR) domain as a 
signaling domain. NLRC subfamily members contain the CARD, while NLRP subfamily 
members contain the pyrin (also known as PAAD, PYD, or DAPIN) domain. Typically, 
CARD and pyrin domains have six �-helices and signal via homophilic interactions, 
e.g., CARD–CARD and pyrin–pyrin. Therefore, NLRs interact with downstream adaptor 
molecules containing CARD and/or pyrin domains: RIP2 contains CARD and interacts 
with NOD1 and NOD2; CARD9 contains CARD and interacts with NOD2; CARD8 (also 
known as DACAR/CARDINAL/TUCAN) contains CARD and interacts with NLRP2 
and NLRP3 (also known as CIAS1/cryopyrin/Pypaf/NALP3);102 apoptosis-associated 
speck-like protein containing a carboxy-terminal CARD (ASC) contains both CARD 
and pyrin domain and interacts with NLRP1, NLRP2, NLRP3 and absent in melanoma 
2 (AIM2) through the pyrin domain.103 These adaptors subsequently interact with other 
CARD-containing molecules, such as caspase-1, leading to NF-�B activation and IL-1� 

���	��������������������������	�
���	��

��������������

��	�����������	�������������������
���	������
	������������������	��	�����
�������
�������������������	�	������������������
��	��������������
��	%{���	�
�����	�������	�
����������������	�
������������������"��	���_�%{���_�%{������_�%``��_���������	��
��	�����	�������������	�����	���	��	��	������	��������������������}�>{!�
�����	��
���
��	�������������<���<����&<�����	�����	����������������	���������������	����
$'�����������&'���>�!��������������	������	��������	�������������������������
monosodium urate (MSU), calcium pyrophosphate dihydrate (CPPD) and hemozoin, 
poly(I:C), R848, aluminum salts, urushiol, trinitrochlorobenzene (TNCB), asbestos and 
silica and (3) ultraviolet B (UVB).2,104���	�	���������������������	���		������	�������	��	��
����� ��	�������� ��� �������	� ��	�
���	������ ����������	������������ ����	�������������
extracellular ATP (at millimolar concentrations), or transfection of substances such as 
���	��������������	�����	��������������	������	�����	����������������	������������	�
responses. In fact, ATP triggers the opening of the nonselective purinergic cation channel 
P2X7 and the hemichannel pannexin-1 present in the membrane.105����	�
���������	�����
�����	�����	�����	���
	��	����	�����"�����������������	������	�������������������������	���
�	������	� �������� ����� �����������#<<&����� �������	� ��	�'�$<`� ����������	�
in the absence of transducing agents. Activation of caspase-1 and ASC, a hallmark of 
����������	��	�
���	�������
�����	���	��	����
���	��	�����	��¢
���
�����^�����
‘pyronecrosis’, respectively, which are distinct from apoptosis and necrosis. Pyroptosis 
proceeds via activation of caspase-1 and is accompanied by DNA damage and plasma 
membrane breakdown, while pyronecrosis is not accompanied by DNA damage nor 
caspase activation, but is mediated by ASC and lysosomal enzymes.106,107 Interestingly, 
cells seem to undergo either of these two different processes depending on the type 
and amount of invading bacteria such as shigella, listeria and salmonella. Therefore, 



71INTRACELLULAR SENSORS IN IMMUNITY

these processes are supposed to promote the inhibition of bacterial dissemination as a 
cell-autonomous anti-pathogen response.108,109

�	�	���������	�����������	��	���	�����������	�	���'�$�����	��������	���	�����������
����������	�� ����	�� ��� �	�
���	� �������	�	��� ��
	����� ����������������������	�
'�$#�� ����������	� ��� 
���	��	�� �
��� ���	������ ��� ��	� ������	���� 
�����	���
Salmonella typhimurium, Legionella pneumophila, Pseudomonas aeruginosa or Shigella 
���������36,37,108�'�$#���	��	�����	���
�	�	��������	����������������������������������
�������	����
��	%{�>���	��!������	�����	��
�	����������$@������	��	�����	�������
elicits cytokine production; however, it has been demonstrated that caspase-1 activation 
and IL-1��
�������������������������	������	�
���	�������	���������	��	������	����
�����$@%�	���	��������
���	�������	�������������	�'�$#������������	�����
	�����	��
to activate caspase-1-dependent IL-1� production. Both MDP and anthrax lethal toxin 
	����	���	�'�$<{�����������	������	����
��	%{������������
���	�����������������
mediated by adaptor proteins such as ASC, suggesting that NLRP1 directly interacts 
with caspase-1, as is the case for NLRC4 (Table 2).101,110,111���	�'�$<`�����������	�
promiscuously mediates IL-1��
���������������	����������	��	��	�����������������
stimuli such as LPS, MDP, nucleic acids, metabolite crystals, chemical irritants and 
UVB (Table 2).112,113�_����������������	����	������������	�����	�	����	��������������
��� ��	� '�$<`� ����������	�� ��� �	������ �������� ������ ��� �	����	�� ��� <���� ����
pannexin-1 as described previously, requires additional treatment with millimolar 
concentrations of ATP.24 IL-1� production is crucial for eliminating fungal infection, 
while exacerbating malarial infection. Although the direct interaction between NLRs 
and their cognate stimuli has not yet been determined, recognition of Candida albicans 
(C. albicans!����'�$<`�������	
	��	������	���	��<�������
���������	�������	�	����
analyses elucidated that Dectin-1, a member of the CLR family, senses C. albicans 
and transmits signals through the tyrosine kinase, Syk and an adaptor, CARD9, 
��	�	����������������	�'�$<`�����������	������������	����������������	��		��C. 
albicans components and NLRP3.114 Similarly, hemozoin, a byproduct of malarial 
infection, activates NLRP3 through Syk and Lyn.115 Activation mechanisms of the 
'�$<`�����������	�	����	����������������������	����������������		������	��	���
complicated. The requirement of LPS for optimal aluminum salt-mediated activation 
��� ��	� '�$<`� ����������	� ��� �������	�����116-118 Recently, AIM2 was found to 
�	��	������������&'������ ���������������� ����������	��������#� >���	�`� ����
Fig. 1).119-122 AIM2 is a member of hematopoietic interferon-inducible nuclear proteins 
with a 200-amino acid repeat (HIN-200) family that contains a pyrin domain at the 
NH2��	����������������	���	��	����������	��		���������	���	���������������	�
components, AIM2 is the only ‘sensor’ to directly interact with a cognate stimulus, 
i.e., dsDNA, through a HIN-200 domain present at the COOH terminus. Roberts 
et al also found that another member of the HIN-200 family, p202, binds to cytosolic 
dsDNA.122 According to their results, p202 appears to be a negative regulator of the 
�_��� ����������	���	����	�
�|�� ��"����
����������������"���"��������
�|��
results in increased levels of caspase-1 activation in response to dsDNA stimulation. 
Interestingly, recent reports show that leukocytes from SLE patients express higher levels 
of AIM2 relative to control individuals, suggesting the involvement of AIM2 in SLE 
pathogenesis.123 There also seem to be other bacterial components and corresponding 
'�$� ����������	�� ����� �����	�� ��#%� ���� ���
��	%{%�	����	�� �	���� �����������
processes. Francisca tularensis is a Gram-negative bacteria and replicates in the host 
����������	��	���
	��������	�
�������	��������������	��������	����������	��	���	���
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for either ASC or caspase-1, but not for NLRC4 and NLRP3, are more susceptible to 
Francisca tularensis infection.124 Atg16L, a regulator of the autophagic process, was 
����������	����	�����	��	�����������<�%�����	���������������	�
���	���	����	�����
����������	��������������������	���������	����	�������������������	�
���	�����������	�
model of dextran sodium sulfate-induced colitis and is consistent with the observation 
of various ‘loss-of-function’ mutations in the Atg16l gene in patients with CD.125-128

Recent research on NLR family members has focused on SNPs associated with 
���������������	��	���������	������¢���%��%��������^�����¢����%��%��������^�����������
�������'�$��������	��	���������	������
������	��	�����	��		����	����	�����
���	����
����� ���������������� ���	��	��� ���� "����� ��� �	�	������� 
	������� �	�	�� �������	��
Most of these diseases manifest with systemic skin rashes, abdominal pain, arthritis and 
prolonged episodes of periodic fever with no apparent infection. SNPs associated with 
familial Mediterranean fever were found in the Pyrin gene, whose native function is a 
�	�����	��	���������� ����������	�� �������� ��	� ���	���������������#��������
��	%{��
‘Loss-of-function’ mutations in mevalonate kinase, which regulates the metabolic pathways 
involved in cholesterol synthesis, are frequently detected in patients with hyper IgD with 

	��������	�	�������"���������	���������������������������
�	���	�����������	������	�
of this kinase remains to be elucidated, some metabolites accumulated in the cells might 
���	���	�
��	���������������	��������������	�������¢����%��%��������^��������������'�&��
found in the NACHT domain are associated with autosomal dominant Blau syndrome, 
which manifests as systemic granulomatous lesions. A variety of mutations of the Nlrp3 
�	�	����	��		���		�����
���	�������������������������������������������	�>�#��!��
Muckle-Wells syndrome and chronic infantile neurologic cutaneous and articular syndrome 
>#_'#�!������"���������	���������	����������	�����������������	��	�>'��_&!�129 
_��������	��	������������������������������������������	��	�����	����	����������������
symptoms such as deafness, uveitis and neurologic dysfunction. Mutations in the Nlrp12 gene 
have also been found in several patients with hereditary periodic fever syndrome.130 Most 
���
��������
���	���������������������������������	��	����	���
���	�������	���	��������
anti-IL-1� e.g., Anakinra® (Amgen), Rilonacept® (Regeneron) and canakinumab (Novartis), 
suggesting that IL-1�������
������
�����	����������������	�	��������������������	��	��

Cytosolic dsDNA Sensors That Trigger Production of Type I IFNs

While AIM2 senses dsDNA in the cytosol triggering production of IL-1�, TLR9 
recognizes unmethylated CpG motifs in ssDNA in the endosomal compartment and 
�����	����	�
��������������	�����	�
������������������"��	���	�
	�������
	�_�_�'�����
pDC. In human cells, RIG-I senses the transcribed RNA byproducts of DNA templates 
that are generated by RNA polymerase III (as is case for poly(dA�dT)�poly(dT�dA) 
and EBV genomic DNA), while we found that histone H2B acts as a sensor of 
�����������&'��������	������	�����������������������	��	�����	����	�����
�����
COOH-terminal importin 9-related adaptor, which organizes histone H2B and IPS-1 
(CIAO) in human cells (Table 3).131 However, accumulating evidence strongly suggests 
��������	���������������	��������	�	��	��������������	�������
	�_�_�'�
�������������
�	�
���	���������������&'�������	���
	��%&'���&'��	�__%�	���	������	��������	�
accumulation of undigested self-DNA in the cytoplasm of macrophages, triggering high 
levels of Type I IFN production, thereby developing lethal anemia in utero.132 Mice 
�	���	�������������	�Dnase II and Ifnr�/� genes are born healthy, but develop rheumatoid 
arthritis (RA)-like symptoms.133������	����	��������������		��������������	���	��������



73INTRACELLULAR SENSORS IN IMMUNITY

mutation, of other Dnase genes such as Dnase I and III (also known as the Trex gene) 
results in the development of either systemic, or local, autoimmune diseases similar 
��������$����� ������������������������67,68,134-136 Serum levels of IFN-� correlate 
with disease activity in SLE and mutations in the Dnase I gene are frequently found 
in SLE patients. Taken together, these observations suggest that the accumulation of 
aberrant self-DNA and exaggerated responses to this DNA, correlate with the etiology 
������������	����	��	��>������!�������	�������	�����	�������	�����������������%&'��
induces higher levels of Type I IFN production in a wide variety of cell types compared 
with the Z-form of dsDNA through the cellular signaling axis directing TANK-binding 
kinase-1 (TBK1) and its substrate, interferon regulatory factor 3 (IRF3), independent 
of TLRs, RLRs and NLRs.137 This phenomenon is biologically relevant to protective 
immune responses against infection by pathogens such as vaccinia virus and Listeria 
monocytogene and to the immunogenicity of DNA vaccines.137-139 One putative candidate 
receptor for the recognition of cytosolic dsDNA and the subsequent triggering of Type 
I IFN production is Z-DNA binding protein 1 (ZBP1), also known as DNA-dependent 
activator of IFN-regulatory factors (DAI), which associates with both TBK1 and IRF3 
(Table 3).140����	�	���&�_%�	���	������	��	�
���	�����������������������&'��
����������������	�������������<{�����������&'���	�����������	%��
	��
	�������������139 
Ishikawa et al demonstrated that stimulator of interferon genes (STING, also known as 
TMEM173, MPYS and MITA) plays a critical role for the production of Type I IFNs 
in response to cytosolic dsDNA.141 STING is an ER-resident transmembrane protein 
and translocates from the ER, together with TBK1, to the Sec5-containing vesicles 
�
�����&'������������������	�������������_'��������	��	�����������"��������	�����
TBK1 to initiate IRF3-dependent Type I IFN production.

Figure 2. Vicious cycle in autoimmune disease caused by nucleic acids.
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CONCLUSION

������	����� ������������ �	���������� ��	��� ���	������	����
������	��	�����	�
�		����	����	�������������	���	����	����������
����	�������������	����������	��	������
clinical research also provide us with a great opportunity to develop novel methodologies, 
especially for laborious investigations such as genome-wide SNP analysis. We have now 
started to obtain comprehensive knowledge about malfunctions of such sensors that result 
������
�����	���	�������	����
�����	�������	�������	�������������������������������
autoimmune diseases. Further progress in both basic science and clinical research into 
�������������	������������������"���	��	�������	�������	�	�
����	����������������
��	��
	������
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Abstract: The ability to distinguish ‘self’ from ‘nonself’ is the most fundamental aspect 
of any immune system. The evolutionary solution in plants to the problems 
of perceiving and responding to pathogens involves surveillance of nonself, 
�����	�%�	��������	�	�%�	���������	�������������������	�	��	�����������	�������	�
or nonhost resistance, which is the innate immune response that protects plants 
against the majority of pathogens. In the case of surveillance of nonself, plants 
utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors 
(PRRs), which can detect conserved pathogen/microbe-associated molecular 
pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning 
system for the presence of a wide range of potential pathogens and the timely 
activation of plant defense mechanisms. However, adapted microbes express a suite 
of effector proteins that often interfere or act as suppressors of these defenses. In 
response, plants have evolved a second line of defense that includes intracellular 
nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, 
�������	������	������	%�
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compromised. This host-immunity acts within the species level and is controlled by 
polymorphic host genes, where resistance protein-mediated activation of defense 
is based on an ‘altered-self’ recognition mechanism.

INTRODUCTION: THE AGE OLD QUESTION OF “WHAT IS SELF?”

The ability to distinguish self from nonself is the most fundamental aspect of an immune 
system. Although expressing an apparent passivity associated with their sedentary lifestyle 
and, being simultaneously exposed to evolving pathogens as well as environmental stresses, 
plants have evolved a unique metabolic plasticity that allows them to perceive pathogens and 
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unleash effective defense strategies.1 Since a plant’s entire immune response is not based 
on an adaptive/acquired system as seen in mammals, it would appear to be an evolutionary 
ancient defense mechanism able to genetically distinguish ‘self’ from ‘nonself’ and result 
in downstream cascades to counter pathogen attack or eliminate the pathogen. The question 
therefore arises how such a system could perceive so many diverse pathogen-derived 
signals when the mechanism originated before the evolving variables in potential invaders 
������	��
�������	�����	������=���	�������
���
	���������������������	������	����
	�
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during a defense response and to focus on how plants distinguish between self and nonself/
damaged-self/altered-self using the perception and signal transduction mechanisms available.

Self

The philosophical debate regarding self appears to be mute when considering plant 
cells that are surrounded by a cell wall. In this biological context everything originating 
from within the wall is self and all molecules of foreign origin outside the cell wall are 
����	���������	���������
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same species, from the same plant during self incompatibility (SI).

The established system of self/nonself recognition in SI systems utilizes receptor-ligand 
type interactions to perceive, recognize and reject incompatible pollen when the same 
S-haplotype is expressed by both pollen and pistil. Thus, SI prevents self-pollination. Although 
SI responses are generally comprised of a self/nonself recognition process, SI systems have 
	���	�����	
	��	����>���	�	�
��	�������	�������	�	��<�
��	���	�	��������������	�	!�
and do not utilize one molecular mechanism exclusively. Rather, SI encompasses a collection 
of divergent cellular responses leading to pollen rejection.2-4 In Brassicaceae, the recognition 
of self and self-incompatibility are components of a receptor-ligand based mechanism that 
utilizes an S receptor kinase (SRK) to perceive and reject self-pollen. SRK is an S-domain 
RLK, which in turn is part of the RLK family, some members of which represent PRRs 
involved in the detection of P/MAMPs (discussed below). S-domain RLKs also occur in 
species that do not exhibit self-incompatibility and exhibit up-regulated gene expression 

���	������	�
���	�����������������
�����	���	���������������	�������������	������������
role in perception and/or defense. Although evolution may have driven expansion of certain 
RLK families to serve roles in particular physiological processes, this may not exclude these 
receptor types from functioning in different programs.1 The evolutionary origins of plant 
SI, centered on the hypothesis that SI evolved from a defense pathway, was discussed by 
Nasrallah.5 Parallels exist where plant SI and plant immunity have similar outcomes, such 
as the elimination of undesirable cells or organisms. Interestingly, the process of pollen 
rejection is closely associated with rapid and effective proteolytic events, including the 
ubiquitin-proteasome pathway and the vacuolar sorting pathways; processes that are also 
of great importance in plant defense. SI is not further discussed and the reader is referred 
to Zhang et al4 for a recent review on the subject and to Sanabria et al1 for the conceptual 
and mechanistic links between microbial recognition and self-incompatibility.

Nonself

��	��	�������������	�������	�����	������	���������	����	��������	�������	�	��������
�	��������������	��	�
���	�������

	��������	����	������������	�����	��	������
�����
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	��	��	��������	��� _�� ��	����	��������������	��������	���������	��	�	��	�������
biological molecule/organism that the plant perceives to be (i) of different origin, e.g., 
pathogenic species recognized during a defense response (discussed in detail below) or (ii) 
of different state, e.g., altered or damaged cellular components recognized during routine 
‘house-keeping’ maintenance and regulatory metabolism (discussed in detail below).

THE CONSTANT BATTLE BETWEEN SELF AND NONSELF:  

PRINCIPLES OF IMMUNITY

During co-evolution with pathogens, plants have evolved systems to distinguish self 
and nonself based on the detection of P/MAMPs. PAMPs may be described as invariant 
	
���
	�����������	��	���������	�������	���������	�
�����	��^����	������	����	����	��
distributed among different microbes, absent from the host and recognized by a wide 
���������
��	�����������>���	�{!��<��<%�����	�	�����������><�_!�����������	����	������
line of inducible defense against infectious disease.10,11 In response, many Gram-negative 
bacteria inject effector proteins, previously termed avirulence (Avr) proteins, into the host 
cells, through Type III secretion systems, which suppress the P/MAMP-mediated immune 
responses.12-15�����������	�����	��
��������	���%	���	���
	������	�������	�>$!�
���	����
to recognize the effector proteins.10,13,14 This then leads to effector-triggered immunity 
(ETI) and/or the hypersensitive response (HR) representing a form of programmed cell 
death.14,16 Moreover, host inhibition of bacterial virulence effectors can trigger immunity 
to infection.17 And so the cycle continues, thus perpetuating the constant battle between 
pathogens and plants, described as an “arms race between pattern recognition receptors 
in plants and effectors in microbial pathogens.”18 (See Fig. 1.)

Innate Immunity

Plants possess an innate immune system consisting of PTI and ETI that detects 
and defends against potentially dangerous microbes.14,16,18,19 It draws its origins from 
a phylogenetically ancient form of immunity that is common to all Metazoa and 
Viridiplantae,20 which precedes SI.1,21 The innate immune system in plants is unable to 
��=���	�����
	����������
���"	���	����������
���	������	�����	��22 Rather, it relies 
on a spectrum of predetermined receptors expressed in nonmobile cells. These receptors 
may be proteins with similar morphologies or proteins that are able to multi-task between 
different functions, in order to compensate for the inability to acquire antibodies.

Basal Resistance, Nonhost and Host Immunity

Nonhost immunity refers to an evolutionary ancient, multilayered resistance mechanism 
consisting of constitutive and inducible components.23 Non-host immunity remains operative 
even in susceptible plants to limit pathogen growth and is associated with the release of 
molecules (ligands or elicitors) derived from the pathogen.24 In addition, it is also associated 
with peptides or oligouronides originating from hydrolytic events during the interaction 
between plants and pathogens and acting as endogenous elicitors, analogous to the ‘danger 
signals’ of the vertebrate immune system, such as heat-shock proteins, nucleotides, reactive 
oxygen intermediates, extracellular-matrix breakdown products, neuromediators and 
cytokines.25 Basal resistance is the innate immune response that protects plants against 
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the majority of pathogens. In addition, another, more recently evolved form of immunity 
is operative in plants. Host-immunity acts within the species level and is controlled by 
polymorphic host genes, such as the R genes, the products of which interact, directly or 
indirectly, with secreted avr proteins or effectors of the pathogen.20,26

Current Models of Plant Immunity; PAMP- vs Effector-Triggered Immunity

Two branches to the plant immune system are now recognized: PTI and ETI, associated 
with different perception mechanisms in the host.14,16

PTI

PTI refers to the inducible responses activated upon recognition of conserved 
<����<�����������
�
�����������	��>�<�!��
	
�����������������	����������	�����
or chitin and glucan of fungi, etc. It has been reported that P/MAMPs can interact, 
either directly or indirectly, with each other as well as the cell wall matrix of the 
������ ����� ���	�������� ����� ����	��	� ��	� �
		��� ��������	�� �	��������� ��� �	� ���
the organization of the defense response.27 Recent evidence indicates that some 
��	����	��<$$����	��	��	��������	�$����������	�������	����	����	�	
����>����!�
and elongation factor Tu (EF-Tu)-receptor (EFR).28,29���	����"��	�����������	�������
EF-Tu, indicates that there must be a requirement for numerous such signal perception 
and transduction systems in plants able to recognize all potential invaders.29,30 Indeed, 
sequencing of the Arabidopsis thaliana genome has revealed the presence of �400 
$��� �	=�	��	�� ����� �������� �	�	
���� ��������������� ��� ������ ����	� ����������� ��
leucine-rich repeat (LRR) in the extra-cellular domain constitute the largest group with 
216 members.30,32 The diversity and large number of plant RLKs suggest that they may 
be involved in the perception of a wide range of stimuli. Other PRRs are also found 
amongst nonRLK proteins such as Glycine max beta-glucan elicitor binding protein 
(GmGBP), Lycopersicon esculentum ethylene-inducing xylanase (LeEIX2) and chitin 
elicitor-binding protein (CeBIP) for perception of beta-glucans (soybean), xylanase 
(tomato) and chitin fragments (rice) respectively.33-35

ETI

The second branch of the plant immune system, ETI, in contrast acts mostly inside the 
cell, using polymorphic resistance proteins encoded by R genes, reviewed by Liu et al36 as 
well as Tameling and Takken.37 R gene-mediated resistance is a form of host-immunity 
activated upon recognition of an avirulence factor, a pathogen effector protein that elicits 
resistance (via direct recognition of the effector by the plant, or via their action on targeted 
host molecules, i.e., indirectly). Since R��	�	��������������	%�
	���������	�����	�	���	�
few that confer broad-spectrum resistance.

‘Zigzag’ Model and ETS

A ‘zigzag’ model to illustrate the quantitative output of the plant immune system 
as well as to illustrate the evolutionary relationship between PTI and ETI was recently 
proposed.16 In Phase 1, P/MAMPs are recognized by PRRs, resulting in PTI that can stop 
further colonization. In Phase 2, successful pathogens deploy effectors that contribute 
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towards pathogen virulence. When effectors suppress or interfere with PTI, it results in 
effector-triggered susceptibility (ETS).15,38�_��<���	�̀ �����	��	���������
	��������	������	��
������$�
���	�����������	����������_����_�����	����	�����������		���	��������
��	��
PTI response, which results in disease resistance and may lead to an HR at the infection 
site. In Phase 4, natural selection drives pathogens to avoid ETI. This is achieved by 
either shedding or diversifying the recognized effector gene, or by acquiring effectors that 
suppress ETI. Thereafter, natural selection results in the evolution of new R��
	�������	��
leading to ETI being triggered again.

Down-Stream Signaling

Similar to PTI, R-protein triggered immunity is also linked to reactive oxygen 
intermediate accumulation and activation of defense genes, but the two responses differ 
quantitatively and kinetically. The outcome of ETI can lead to programmed cell death of 
the host cell in the form of the HR in order to limit the spread of the infection. It results in 
local induced/acquired resistance (LAR), acting at the site of infection to contain the invader 
and systemic acquired resistance (SAR), which induces defenses in distal, non-infected 
parts of plants after activation of local resistance. Due to the fact that PTI and ETI have 
similar output responses, it is possible that the downstream signaling pathways converge.39 
It should be noted that SAR has also been demonstrated to be induced by recognition of 
PAMPs like LPS40�����������	������<��<���"	����	��������������������	�����$�41 Both 
salicylic acid (SA) and jasmonic acid (JA) are required for P/MAMP-induced defense 
responses.42 P/MAMP, as well as effector-triggered processes are linked to SA pathways, 
therefore, SA-mediated responses may be an important part of R gene-mediated defense.43

BIOCHEMISTRY OF PERCEPTION AND RECOGNITION:  

NONSELF DETECTION

Perception of Pathogens by Plants

The ability to monitor microbial presence at the cell surface is essential for plant 
defense mechanisms. Plant innate immunity is activated either upon perception of 
<����<�����<$$������
����	�������������
�����	�����	%�
	�����	��	�������	��	��
by R protein-mediated processes (Fig. 1). Recognition of potential pathogen-derived 
molecules or pathogen activity in planta, results in signal initiation and signal transduction, 
culminating in the activation or de-repression of defense-associated genes. The recognition 
�
	�������	�������	�����	�	���"��������
�����������	����	
	��	����������	������	������	�
highly conserved molecules.14,16

The Plant Cell Wall as a Sensor of Integrity

The structure of the plant cell wall distinguishes it from all other eukaryotic cells. 
_���	
�	�	������	�����������	�����������������
�����	���_����	����������������	����	����
damage is minimized and no other defensive actions are required. In this context the plant 
cell wall is not only a rigid or static structure used for mechanical support; it exists as 
a highly dynamic and responsive structure in a relationship with the plasma membrane 
and cytoskeleton, where the external and internal environments are joined and where 
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information from external stimuli is relayed.44 The plant cell is able to perceive changes 
to the cell wall, be responsive and adapt with regards to growth and development, as well 
as stresses, e.g., wounding and pathogen attack, which was reviewed by Humphrey et al.44

<�����	�� �����"� ���� 	��� ��� �	� �����	� ���� ����	��	� ��	� �	� ��� ���	�������
When the cell wall responds to stress or change, it may be due to the recognition of its 
‘damaged-self’, through damage-associated molecular pattern molecules (DAMPs). 
The stress or change is perceived by a sensor or sentinels and the plant responds to the 
change in a defensive manner. An example of recognition of the plants’ ‘damaged-self’ 
is when pathogen-secreted or endogenous plant polygalacturonases or pectate lyases 
cause enzymatic degradation of pectin in the plant cell wall, i.e., an altered/damaged state 
of self. Here, the polygalacturonase-inhibiting protein, an extracellular LRR R protein, 
interacts to generate oligogalacturonides, which are perceived by a sentinel in order 
to generate a signal, triggering defense related responses.45-47 Other potential DAMPs 
include cellodextrins and cutin monomers, originating as degradation products from the 

�����	�����	���	�������������	����<���������
	��	��	�������������������	������	�
and activate a multi-factorial defense response.48 However, sentinels that alert the plant 
to activate defense responses in response to DAMPs has only recently been explored.

In addition to signals generated due to cell wall degradation, conditions that lead to a 
decrease in cellulose content (e.g., due to loss of function mutations in cellulose synthase 
(CESA) or chemical inhibition of cellulose synthase/cell wall synthesis) are associated 
with a corresponding increase in defense-associated cell wall strengthening through lignin 
and callose synthesis.49-52 This implies a feedback mechanism involving sensors of wall 
integrity. In addition, these conditions cause constitutive expression of genes associated 
with JA or ethylene signalling.53 The synthesis of these hormones is usually associated 
with responses to pathogens, wounding and drought.54-56

The protein components in the cell wall probably play a determining role in perception 
and these include a variety of potential sensors. Arabinogalactan proteins (AGPs) are 
regarded as potential sensors of wall integrity.44 AGPs are glycosylphosphatidylinositol 
(GPI)-anchored proteins (GAPs). GAPs may play a role in cell surface signaling, adhesion, 
matrix remodeling and pathogen response.57 In addition, leucine-rich extensin (LRX) 

���	�������������������	��	���	����������������	������		����	����	�����
��	������	����
sensors. The wall-associated kinases (WAKs) are the best characterized of the potential cell 
wall receptors and are ideally situated for sensing and signaling from the cell wall.58 WAK 
expression can be induced in response to pathogen attack and, being able to bind pectin 
fragments and oligogalacturonides,59 may serve as potential sensors of damaged-self. Other 
RLKs found associated with the cell wall include lectin receptor kinases, a subset of which 
are found in plasma membrane-cell wall adhesions and proline-rich extensin-like receptor 
kinases (PERKs) involved in sensing of cell wall damage due to wounding by pathogens.60 
THESEUS1, a receptor kinase, is a new candidate for sensing cell wall integrity, but has not 
been proven to play a role in defense.44 Furthermore, various plasma membrane proteins 
with extracellular domains, such as RLPs and RLKs important in relaying information from 
external stimuli (discussed below), interact with and within the wall matrix.

Sentinels of Nonself: Pattern Recognition Receptors

Plants have evolved a large range of potential immune receptors (refer to Tables 2-5) 
that recognize P/MAMPs as determinants of nonself, or mediate effector perception in 
the form of ‘sentinels’. Sentinels may contain pattern recognition domains combined with 
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accessory domains that participate in signal relay. The diversity of P/MAMPs and the 
��	����������������	�����	�
�������<$$������	����	������������������������	�������	�	�
recently reviewed.19 Receptors, a term describing a molecular category, which detect 
microbial patterns can either be surface based or intracellular receptors (Fig. 1). Surface 
receptors are known to detect primarily microbe-derived elicitors (including P/MAMPs, 

Table 5. Dual functioning in plant signaling

Component Dual Function Reference

BAK1 Is associated with developmental regulation through the 
plant hormone receptor BRI1, but also has a functional role 
in PRR-dependant signaling which initiates innate immunity

105, 106

ERECTA Affects development of aerial organs by controlling organ 
size and shape and is also involved in disease resistance

142, 143

HAESE/

RLK5

Functions in both developmental processes (abscission) and 
defense (hypersensitive cell death)

100

LTP1 In wheat, it binds putative receptors for elicitins. In tobacco, 
it binds jasmonic acid providing protection against Phytoph-
thora parasitica similar to that invoked by elicitin

144

LysM type 

receptors

*CEBiP is a chitin oligosaccharide elicitor binding protein 
with two LysM motifs with a proposed role in chitin signal-
ing and transcriptional regulation 

35

*NRF1 and NRF5 are two LysM receptor kinases found in 
Lotus japonicus, which are putative receptors for lipochi-
tooligosaccharide Nod-factors

127

*LYK3, found in Medicago truncatula, is involved in spe-
������	�������������������	������	���������	�������	�����

145

Mi gene 

product

Confers resistance to nematodes as well as aphids 85

PERK Up-regulated by wounding and infection in Brassica and 
also plays a role in regulation of growth in Arabidopsis

146, 147

Plant gp91PHOX 

NADPH oxi-

dase

Although involved in the oxidative burst, it also functions in 
a variety of developmental and physiological processes

103

RIN4 Guardee—interacts with two different R genes, RPM1 and 
RPS2

92

RPM1 Able to recognize two different Avr effectors 85

RPP8/HRT Recognizes both viral and oomycete pathogens 85

Rx/Gpa gene Confer both viral and nematode resistance 85

WAK1

Involved with an epidermal growth factor EGF-like motif 
linked to plant growth, but also up-regulated in response to 
pathogen infection and exogenous salicylic acid

139
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if the molecule contains a conserved ‘pattern’), as well, in certain cases, avirulence 
effectors such as Xa21, in which case they are regarded as R gene products. The surface 
receptors include RLKs, RLPs and extracellular binding proteins that may form part of 
multi-component recognition complexes.61���	��	��<����<��	�	
�������	����	�������
far in plants are all surface receptors that physically interact with their cognate ligands.61 
In contrast, interaction between effectors and the intracellular R proteins (which can 
contain a LRR domain) probably occurs indirectly through a multi-member complex.62

Extracellular Sentinels—Receptor-Like Proteins/Kinases (RLP/Ks)

���������������	����%�������	��
��������������	�	�
��	�����
�����	�%�	���	��
elicitors or PAMPs, which upon perception will trigger PTI. Plants are therefore dependent 
on the initial local recognition of the invader to activate defenses and this is where 
perception by RLP/Ks can play a determining role.

In Arabidopsis�� �{|� $��� ���� @�� $�<� ���	� �		�� ��	����	��� ���� ���� �� ����	��
number have been functionally characterized and even fewer are reported to act as 
immune receptors.63,64 Many Arabidopsis genes encoding RLK and RLP were found to 
�	������	���
�����	������%�	�����������	���������	���>����!������%�����	���	����
suggesting that they may function as immune receptors.65 Indeed, 27 out of a total 216 
LRR-RLK in Arabidopsis were found to be transcriptionally induced upon treatment with 
����������%���61,65�_����������������������	���$�������	����	����������	�<$$��������
a LRR-RLK.28,29,66 Among the up-regulated genes, there also were three encoding RLK 
containing lysine motifs (LysM) in their extracellular domains, which potentially could 
recognize microbial carbohydrate structures containing N-acetyl glucosamine (GlcNAc). 
It appears that P/MAMPs also trigger enhanced expression of their own cognate receptors, 
����	
���	��������������%��������������29,35,65

��	��	�	
����
���	���"����	��>$<��!������	�������	�������������������	�	�����������	�
�
	�������	��>�������	���	���	����	����	������������	!������	�"����	���������67,68 RLKs form 
part of the receptor serine/threonine kinase (RSTK) family, also known as the interleukin-1 
receptor-associated kinase (IRAK/Pelle) family. The RLKs can be subdivided into 
transmembrane receptor kinases (TMRKs) and receptor-like cytoplasmic kinases (RLCKs) 
if an extracellular domain is absent.63 RLKs are transmembrane proteins with versatile 
N-terminal extracellular domains and a C-terminal intracellular kinase domain related 
to the Drosophila Pelle kinase.21,69���	����	�������	�����������������	���	�����	����
domains, except for those who do not have a signal peptide and/or a transmembrane 
region, referred to as RLCKs. TMRKs can be further grouped into arginine and aspartate 
(RD)-kinases, nonRD kinases and RD-minus kinases.68 Although only a few RLKs 
have been shown to play a role in either development, plant defense or even symbiotic 
interactions, their large number and diversity suggest that they may be able to recognize 
�����	�
�������������	��������������&	�
��	���	���������	��������$&�"����	��>{|\����
the Arabidopsis kinome), kinases known or predicted to function in PRR signaling fall 
into the nonRD class. The reader is referred to Dardick and Ronald,70 for a review on 
receptor signaling through nonRD kinases, predicted to function in PRR signaling and 
thought to be involved in pathogen recognition and innate immunity. RLPs differ from 
RLKs in that they contain an extracellular domain and a membrane-spanning domain, 
but they lack an intracellular activation domain. Therefore, they require interaction with 
adaptor molecule(s) or RLCKs for signal transduction.
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The proposed evolutionary relationships between receptor kinase family members 
arose from an ancient duplication event leading to the divergence of RLKs/Pelle from 
receptor tyrosine kinases (RTKs)/Raf.21,64 In the case of PTI, the evolutionary history 
of the plant RLKs indicate that the kinase domains were recruited numerous times by 
fusion with different extracellular domains to form the subfamilies found in Arabidopsis. 
Subfamilies are assigned based on kinase phylogeny and are shown according to the 
domain organization of the majority of members in a given subfamily.21,69

Diverse sequence motifs are present in the extracellular domains of RLKs and these 
motifs are potentially responsible for interactions with other proteins, carbohydrates or 
lipids.69 The data indicates that RLKs involved in resistance or defense responses may have 
�		����
����	������	����	���������	�����	���������	��	%�
	�������������31 The preferential 
expansion of defense/resistance-related RLKs could be the consequence of strong selection 
pressure for recognizing pathogens.31 The large family of plant RLK proteins, therefore, 
contain distinct protein kinases where each might play a unique role in cellular signalling.71 
These probably comprise receptors for further P/MAMP recognition.29 In addition, in 
certain cases plant defense mechanisms seem to exhibit ‘multi-tasking’, i.e., the use and 
application of pre-existing biochemical modules or systems to compensate for evolving 
variables in potential invaders (discussed below).

The members of the RLK family are divided into classes. The S-class/domain 
RLKs share homology with the self-incompatibility-locus glycoproteins (SLG) 
from Brassica.72 The extracellular domain has 12 characteristic conserved cysteines, 
CX5CX5CX7CXCXNCX7CXNCX3CX3CXCXNC. Usually, 10 cysteines are absolutely 
conserved.73 A conserved PTDT box was observed in 7 different S-domain RLKs.71 The 
LRR class contains conserved repeats of leucines, LX2LX2LX2LXLX2XNXLXGXIPX2 
and the regions are also surrounded by paired cysteines.74,75 The lectin-like class has an 
extracellular domain that shares homology with lectin proteins.63 Some RLKs bind to plant 
cell-wall components. The extracellular domains of cell wall-associated kinase (WAK)-type 
RLKs are associated with pectin, a structural component in the middle lamella and primary 
cell wall.21,76 WAKs contain an extracellular domain with similarity to epidermal growth 
factor (EGF)-like domains.44 The tumor necrosis factor receptor (TNFR) class has a repeat 
motif that resembles the extracellular domain of the mammalian tumor necrosis factor 
receptor.77 The pathogenesis-related (PR) class contains all 16 cysteines in the extracellular 
domain that are conserved in PR5 antimicrobial proteins.78 The chitinase-like class has an 
extracellular domain homologous to both class V tobacco and Bacillus WL-12 A chitinases.79 
The cysteine-rich repeat (CRR) class has one or more repeats of the C-X8-C-X2-C motif.80 
RLKs containing lysine motifs in their extracellular domains are characterized as the LysM 
class. The ‘miscellaneous’ or ‘other’ types of RLKs include those with extracellular domains 
that do not share homology with other known proteins, contain unique motifs and therefore 
cannot be grouped into the above mentioned classes.

$	�	
����
���	�������	������		����	����	���������"���	��������	�������$���"����	�
domain (i.e., RLPs), or, proteins that are functional kinases that lack extracellular ligand 
binding domains (RLCKs). In some cases the proteins have an intracellular kinase 
domain, as well as a transmembrane region, but only have a short extracellular domain. 
Tables 2 and 3 serve to summarize which RLKs are involved with disease resistance 
and/or associated with plant-microbe interactions. The role and regulation of RLKs that 
���	��		����	����	�����	������%�������	���	�	��	��	�
���	������������������R genes in 
���	%�
	�����
�����	���	�	��	�������	�	�����	��	�	��81
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Intracellular Sentinels—R Proteins

A second class of immune receptors encoded by R genes, which occur mainly 
������	������������	���
���������
	��	��	������	%�
	�����
�����	��	��	������	����	��
by AVR genes of the pathogen. This perception can occur either directly or indirectly 
by sensing the host proteins upon which effectors have acted.37,61,82,83 Some R proteins 
structurally resemble RLK and RLP receptors and probably evolved from P/MAMP 
receptors through the loss of a kinase domain.70 However, as exceptions, some intracellular 
R proteins can consist of one (Pto and Fen) or even two kinase domains (RPG1). 
Similar to RLKs, R genes subfamilies have evolutionary expansion patterns that show 
��	��	%�
	�����	�
�����������"	���������	����
����	��64,70 Some R genes are more 
rapidly evolving as components of the plant immune system, compared to the evolution 
of P/MAMP receptors.84

It has been recognized that plants might not possess enough R genes to intercept all 
potential avirulence determinants, due to the diversity of pathogens and their associated 
effectors. According to Dangl and Jones,85 the likelihood of the known R genes linked 
to defense being able to recognize all the possible effector signals, where ‘a surprisingly 
small number of genes mediate recognition of all possible pathogen-encoded effectors’ is 
questionable. For this reason, bacterial effector recognition has likely evolved as an indirect 
mechanism (within a complex),62 with a limited repertoire of plant resistance receptors.14

The mechanisms of R gene-mediated immunity may be explained by the 
‘gene-for-gene’ genetic model or the ‘guard hypothesis’ molecular model. A ‘guard’ 
can refer to a typical R protein, whereas the ‘guardee’ represents a target of pathogen 
effectors.85 Many plant R proteins might be activated indirectly by pathogen-encoded 
effectors and not by direct recognition.85 This form of ‘guard hypothesis’ implies that R 
proteins are able to indirectly recognize pathogen effectors by monitoring the structural 
integrity of the host cell targets following effector action. The R proteins in question are, 
thus, activated as sensors or sentinels of ‘pathogen-induced altered-self’ molecular patterns 
and can thereby potentially perceive the presence of more than one effector protein. Plants 
are able to sense an ‘infectious-self’, where the host molecules that are normally not 
available for recognition (but rather are released following microbe detection, wounding 
or during infection), are recognized as an altered-self.86 This ‘altered/nonself’ concept 
����	�
��������
����������	������	������	��	��	�����
�����	�������
�����	�%�
	�����
��	��	������������	����	������	������	�����
�����	���	�	
���������	�	���������������
to the model describes ‘decoys’ that mimic effector targets in the plant in order to trap 
the pathogen in a recognition event.87

Much information has been gained from molecular studies of R genes about their 
organization within genomes and their functional domains. Although polymorphic and 
divided into several classes, common structural modules found in intracellular plant R 
proteins are a C-terminal LRR domain, that is believed to sense microbe-derived signals 
and a central nucleotide-binding (NB) domain (refer to Table 4). The NB domain is part 
of a larger NB-ARC domain (due to its occurrence in plant R proteins, the apoptotic 
protease-activating factor, APAF-1 and its Caenorhabditis elegans homolog CED-4).88 
These NB-ARC domain proteins belong to the family of STAND (signal transduction 
ATPases with numerous domains) NTPases. STAND ATPases are modular proteins and 
display a wide range of fusions to domains involved in protein-protein or protein-DNA 
interactions, small molecule-binding domains, as well as catalytic domains involved in 
signal transduction.



100 SELF AND NONSELF

These immune sensor proteins are considered to act as regulatory signal transduction 
switches where the regulatory switch, scaffolding and occasionally, sensory as well as 
signal-generating moieties are integrated into a single multidomain protein.89,90 In addition, 
structurally diverse range of domains was co-opted during evolution and is found on the 
N-terminal side of the NB domain. These include the coiled coil (CC, formerly referred 
to as leucine zipper) or TOLL/interleukin-1 receptor (TIR) domains (Fig. 1). In the case 
of RRS1, a WRKY DNA-binding domain is located at the C-terminus.

Current data points to the existence of the R proteins in auto-repressed conformations 
in the absence of a cognate pathogen effector. Direct or indirect recognition of effectors by 
the polymorphic LRR regions initiates conformational changes and ADP/ATP exchange 
that renders the respective N-terminal effector domains accessible for interactions with 
downstream targets.91

Various studies have shown that the C-terminal part of the LRR domain provides 

�����	���	�����������
	����������	��	����	��$$�������������������������������
�����	��
auto-inhibition and it translates pathogen recognition into activation. How exactly the LRR 
domains recognize a pathogen or pathogen action is unclear. Whereas some R proteins bind 
effectors directly, others require an intermediary host factor(s). This factor often interacts 
with the N-terminal domain of the R protein and could represent either the virulence 
target (thereby acting as a guardee) or a target mimic (thereby acting as a decoy).87,92 
In this situation, the LRR domain is likely involved in sensing the effector-induced 
perturbations/altered-self of the target.

Many R genes contain nuclear localization signals.93,94 Recent data indicate that 
members of the TIR- and CC-type of R protein families function inside the nucleus 
with nucleocytoplasmic partitioning occurring upon activation. Inside the nucleus, the 
N-terminal domains of the activated receptor can act as signal relay to transcription factors 
of the WRKY class.94 The subgroup of R proteins that have co-opted a WRKY-domain, 
may exhibit direct DNA-binding capacity. Members of the WRKY transcription factors 
bind to cis-acting regulatory elements called W-boxes and can act as repressors of 
PAMP-triggered immune responses whilst others act as positive regulators.95,96

De-repression of defense genes could thus amplify PAMP-triggered responses 
and integrate signals generated by defense-associated RLKs and R proteins.38 It is 
considered likely that, in addition to interference with WRKY repressors, other potential 
convergence points between P/MAMP- and R protein-triggered signaling pathways 
exist.94 P/MAMP-triggered and mitogen-activated protein kinase (MAPK)-dependent 
phosphorylation of R proteins can modulate effector-triggered receptor-activity and/or 
nucleo-cytoplasmic receptor partitioning.38 This offers an explanation of how perception 
of nonself structures by RLP/Ks and R proteins can lead to transcriptional activation 
of defense-responsive genes, thereby linking receptor function to transcriptional 
reprogramming of the host cells for pathogen defense.38

UP-REGULATION OF SURVEILLANCE AND A PRIMED STATE

<	��	
���������	�	���	�����������������<���������	������������	�������
������
resembles recognition based on PAMPs in animals.97,98 As all types of plant immunity 
may be considered innate, the response to PAMPs should be considered as an expression 
of basal resistance. Genes expressed in Arabidopsis�����	�
���	����	������������������99 
�������	��������������	���	�����	�������	��
%�	����	���	�	�������	�������	������	����
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involved in signal perception (RLK and R genes) and signal transduction. This indicates a 
positive feedback regulation operating in innate immunity with transcriptional activation 
of the components involved in the perception and signalling.65 Similar results were found 
in a transcriptional micro-array analysis of genes expressed in Arabidopsis in response 
to elicitation by LPS (TAIR accession expression set 100808727, Nürnberger T 2006).

Many receptors are transcriptionally activated upon perception of their ligands as 
well as SA, an effector of SAR.100 Wang et al101 provided evidence for a model where 
the RPW8 resistance gene from Arabidopsis could be induced by invasion of powdery 
���	�������	��������
��	���������%�		����"����������	������������������������	�	��	�
�	�
���	�������������	��	��������	�������	�
������������������	%�
	���������	���_����	�
case of LRR-RLK genes, 49 were found to be up-regulated upon either PAMP elicitation 
and/or pathogen infection.83

Recent data indicate the existence of similar and complementary, but independent 
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PAMP at a binding site induces higher amounts of binding sites for a second PAMP and 
vice versa. Interestingly, the genes for the RLKs FLS2 and EFR, are also induced by LPS 
and other PAMPs.29 Signaling cascades generated by these independent receptors converge 
to lead to the activation of plant innate immunity systems.29 If that is generally applicable, 
plants seem to induce the gene products recognizing the attacking pathogen, thus activating 
the plant’s surveillance system and thereby sensitize or ‘prime’ the rest of the plant to control 
the spread of the pathogen. It would also imply sensitization of the innate immune system 
to perceive and respond to the attacking pathogen, analogous to what constitutes local and 
systemic induced resistance.102 The up-regulated expression of RLK and R genes presumably 
leads to an enhanced sensitivity of the plant to further stimuli, sensing the presence of invading 
micro-organisms with other PAMPs or effector signals, i.e., a primed or sensitized state.1

DUAL FUNCTIONING IN PLANT SIGNALING

There is currently no conclusive evidence for evolutionary conservation of an 
ancient P/MAMP detection system,32,85,103 and independent recruitment of components 
during evolution is equally plausible. Moreover, there are also various examples where a 
�
	�������
	���������	���������	����
���	����

	��������	���	������������	=���	�	���
in more than one process, i.e., dual functioning or ‘multi-tasking’. Since the pre-existing 
�	�����������������	����������������	��
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���������
pathogen, the question arises if it is possible that there might be a sharing of receptors 
between similar signal molecules, such as a general receptor and/or coreceptor complex 
for PAMPs with common molecular architectures.

The re-use of highly evolved processes for diverse functions was recently pointed 
out.103 It was concluded that a form of the ‘guard hypothesis’ best explains how plants 
����
��	�������	������	������	��	��	�����
�����	�������
�����	�%�
	�������	��	���
using a relatively limited number of pathogen receptors, but emphasizes that (in addition 
to PTI), the evolutionary solution in plants to identify pathogens involves surveillance of 
‘self vs altered-self’, whereas the evolutionary solution in the adaptive immune response 
in vertebrates involves detection of foreign antigens.

��	����"��	�������������	�����������������
	������	�	�	��	�������	��������	���
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������������	%��%��	��
	������	�������������
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(receptor) in plants, as also observed in animal and insect adaptive (and innate) immune 
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responses.29,30,99����	�	��������������	�	����������
	�������	%��%��	��	��������������	��
(such as the Avr-R model). Rather, plant defense mechanisms may follow an adaptation 
of the guard hypothesis, such as ‘one post, multiple guards’.92 In addition, many R 
proteins (guards) may perceive the presence of more than one effector protein, whether 
that protein comes from pathogens with similar or different lifestyles.85

An example of independent recruitment of biochemical components for different 
functions is the LRR motif. LRR domains are found in transmembrane proteins, -kinases 
and intracellular R proteins. Collectively, LRRs appear to be involved in a range of 
processes from development to intercellular communication and to disease resistance.14,104 
A number of LRR transmembrane and intracellular proteins act as integral components 
of ligand perception complexes during ETI.85 In addition, the LRR motif also plays an 
important role in PRRs in the evolutionary older PTI.83

Is it possible that the same type of receptor could perceive different signals, for example 
both PAMP signals for defense and MAMP rhizobial signals for symbiosis; although the 
downstream signaling and the outcome of the plant-microbe interactions are different?10 
An important recent discovery is the role that coreceptors might play in receptor-ligand 
���	���������������������		������	��	����������	�	
�����������������	��	�	
�����
	��������105 
The brassinosteroid receptor BRI1-associated kinase (BAK1), may be up-regulated and 
seems to be a crucial component of plant disease resistance and a positive regulator/general 
��������� ���
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	��	��� ���
brassinosteroids.86,106 In addition to BAK1 interacting with FLS2 in a stimulus-dependent 
manner, it may also have a common role as an adaptor or coreceptor for the regulation of 
various other receptors. BAK1 is thus not only associated with developmental regulation 
through the hormone receptor BRI1, but also has a functional role in PRR-dependent 
signaling which initiates innate immunity.11,105 Other examples of multifunctional proteins, 
������������������{����	����
�	��������	�@����������	�����
	��

�������������
	�����
motifs and the re-use of highly evolved processes for diverse functions.

CONCLUSION

The concept of innate immunity centers on the recognition of ‘nonself’ components, 
which is accomplished by sentinels. Plants have evolved a unique metabolic plasticity 
that allows them to perceive pathogens and unleash effective defense strategies, but how 
the plant can distinguish between itself and pathogens during a defense response has only 
recently been explored. This highly evolved surveillance system in plants is able to detect 
a broad range of signals originating from microbes or damaged plant tissues, initiating 
sophisticated molecular mechanisms that result in defense. Microbe/pathogen-associated 
molecular pattern molecules, damage-associated molecular pattern molecules, virulence 
factors, secreted proteins and processed peptides can be recognized directly or indirectly 
by this surveillance system. Together, receptor-like kinases or receptor like proteins, as 
membrane bound signaling molecules with an extracellular receptor domain and intracellular 
nucleotide binding-leucine-rich repeat proteins as receptors of pathogen-secreted effector 
proteins, provide an early warning system for the presence of potential pathogens and 
activate protective immune signaling in plants. Much remains to be discovered, e.g., how 
different perception mechanisms in plants, based on self, damaged-self, altered-self and 
nonself, are employed for different threats and how those signals are transduced within the 
inter-connected relay system observed during defense responses.
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Abstract: Self-incompatibility (SI) is a common form of genetically-controlled mate-selection 
that prevents mating between closely related plants of the same species. SI occurs 
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Papaveraceae (poppy), Brassicaceae (Arabidopsis, cabbage etc), Solanaceae (potato, 
tomato etc), Plantaginaceae (snapdragon) and Rosaceae (apple, cherry and peach 
etc). The self-recognition inherent in self-incompatibility has similarities with 
animal and plant immunity systems giving rise to speculation that the systems are 
related. Both systems display balancing selection, ‘self/nonself’ recognition, high 
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mechanisms deployed in the two systems. Whether these systems have diverged 
from a common predecessor is discussed, however similarities may be driven more 
by biological problems and the available molecular machinery to solve them than 
by an evolutionary relationship.

INTRODUCTION
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‘qualities’ that we are seeking when discriminating between potential mates? Or, indeed, 
what are the qualities that plants seek? Darwin’s investigations into plant reproduction 
noted the effects of inbreeding and that in some self-crosses healthy plants were unable 
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to produce offspring.1 Modern studies show that the ability to reject self-pollen enhances 
genetic diversity in a population. Thus, the qualities selected in individual mating choices 
have implications for the genetic trajectory of a species. Much research has been undertaken 
to understand why incompatibilities exist between potential parents and as research continues 
into the similarities between biological systems that control mate selection we are more 
able to observe the evolution of mechanisms to stop the ‘wrong’ mates having offspring. 
Similarities among these mechanisms could, in principle, indicate evolutionary relatedness 
across animals, plants and fungi. Animals, for instance, can turn away when the mate isn’t 
suitable, but in plants only the pollen is mobile so selection often operates at the level of 
biochemical pollen/pistil interactions. Plants, nevertheless, have genetic preferences and have 
evolved a diverse array of mechanisms to ensure the most suitable pollen fertilizes them. 
Self-incompatibility systems are mechanisms that have evolved to screen out undesirable 
matches by preventing mating between individuals of the same or similar genetic makeup. 
��	��	�%�	�������������	�	���������������	�������
	����������������������������	�����	���
and this has given rise to speculation that immunity and self-incompatibility are related. 
Clearly, both systems require ‘self’ recognition. Whether these systems diverged from a 
common predecessor is less clear. Similarities between the systems of self-incompatibility 
and innate immunity have been reviewed by Nasrallah (2005) and Sanabria et al (2008).2,3

SELF-INCOMPATIBILITY HELPS PLANTS SCREEN 

POTENTIAL SUITORS

<�����	
���������������	��������������	����	������
�����������������	������	����	�
pollen arrives at the stigma as a result of being carried by an anonymous agent like the 
wind or an insect pollinator. This pollen may be from many sources, such as closely or 
����������	��	��
��������	�	����	����	����	������	���������
�	�����	=�	�����	�����
very closely related pollen, may be unable to fertilize due to incompatibility. Some pollen 
will ‘germinate’ with pollen tubes growing unhindered, successfully fertilizing the ovary. 
In this way, the plant is screening for a viable partner with which to produce offspring.2 
Likewise, animals will often avoid mating with partners that are genetically similar, such 
as siblings or relatives although the range of mechanisms available to achieve this are 
completely different.4 With the evolution of biochemically based reproductive barriers 
that probe potential partners’ genetic makeup and determine compatibility, plants are able 
to effectively select among the various types of pollen that arrive at the stigma surface.5-7 
These plant barriers to the exchange of genetic information between self and closely 
related individuals evolved in response to similar genetic pressures as those in animals 
or any other group of sexually reproductive organisms. For example, inbreeding causes 
loss of alleles from a population and reduces vigor due to expressed genetic load.1,8,9

SELF-INCOMPATIBILITY’S CONTRIBUTION TO THE SUCCESS 

OF THE ANGIOSPERMS

The angiosperms dominate most terrestrial ecosystems. Today, this group includes 
250-300,000 species, a greater number than all other terrestrial plant groups combined.10 
The only other extant seed-plants are the gymnosperms (conifers etc).11 Angiosperms 
have not always dominated the land. Palaeobiologists propose a sudden transition from 
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gymnosperms to angiosperms in the early Cretaceous. This shift generated the majority 
of extant angiosperms families and implies a major innovation that greatly enhanced 
diversity and competitive ability.10,12

Although both angiosperms and gymnosperms bear seed they have very different 
�	
��������	� �������� ������
	��� ���	��� ������ �������� ����� ��	� ���� �	��	�
reproductive organs. Importantly, the ovules are always completely enclosed. Thus, 
sperm cells must be conveyed through nonsexual tissue for fertilization to occur. The 
group’s name—angiosperm—refers to this feature of reproduction. ‘Angio’ referring to 
the vessel or tube that carries the sperm to the ovule, the pollen tube.10,12,13 Pollination 
in angiosperms begins when a pollen grain arrives at the stigma surface.14 Then, when 
conditions are right, the pollen will hydrate and initiate pollen tube morphogenesis. An 
unhindered pollen tube will traverse the pistil via the central transmitting tract until 
reaching the ovary (see Fig. 1). As the pollen tube grows through the pistil it carries within 
it two sperm cells. Fertilization occurs when the pollen tube enters an ovule through the 
micropyle. One sperm cell unites with the egg cell to form the diploid embryo, while the 
other unites with the two central cells to form the triploid endosperm.15 As reviewed by de 
Nettancourt (1997), barriers to inhibit fertilization by self-pollen could, in principle, act 
at several stages in this process and be found at different stages of a plant’s reproductive 
life cycle.16-18 However, recognition systems that control pollen tube growth through the 
pistil offer an important level of control over mating in angiosperms.

Self-incompatibility (SI) is a common form of genetically-controlled mate-selection 
that prevents mating between closely related individuals of the same species. Thus, some of 
the angiosperm’s success can be attributed to SI, which forms partial to complete barriers 
during self or related pollen tube growth through the pistil.8,19,20 In most SI species a single 
locus controls compatibility and it is usually referred to as the S-locus even though different 

Figure 1. SI affects pollination at different stages, Left, Two types of SI are shown. In S-RNase-based 
SI incompatible pollen tubes do not penetrate the length of the style. In SSI in Brassica, pollen may 
fail to hydrate or penetrate the stigma. Right, In a compatible pollination pollen hydrates, a pollen tube 
grows through the stigma and the style to the ovary, penetrates an ovule and releases its two sperm 
cells to effect fertilization.
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species may have entirely different SI mechanisms at the genetic and biochemical levels. 
Thus, the term S%������	�	���	���	����	�������������������
����������
	����������	�
genes encoded by the S-locus in different families are often completely different.21

SELF-INCOMPATIBILITY ACTS AS A POSTPOLLINATION MATE 

SELECTION SYSTEM

SI comes in two broad forms: heteromorphic and homomorphic. Heteromorphic SI 
entails structural barriers to pollination such as the relative position of the pistil to the 
anthers. The ‘pin’ and ‘thrum’ forms of primulas are examples of this that were studied 
by Darwin.22 In the pin morph the stigma sits at the mouth of the corolla and the anthers 
are near the ovary while in the thrum morph these positions are reversed. A single locus 
����������������
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pin and thrum plants in a population. Darwin noticed that the two morphs deposit pollen 
on different parts of a bee’s body and thus, the pin and thrum morphologies promote 
between-morph crosses. However, he also discovered that even if this structural barrier 
is circumvented inter-morph crosses set few seed. We now know that primulas posess 
both structural and biochemical barriers to self-fertilization.

Homomorphic SI, in contrast, always entails a biochemical interaction that controls 
���
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����������������	������	���������
�����	�����	�
S-locus of homomorphic SI species is often very polymorphic. For example, a recent 
survey of SI in Solanum chilense detected 30 S-haplotypes in a population of 34 plants.23

Homomorphic SI is further subdivided into two types depending on when and where 
genetic control of compatibility is expressed. In sporophytic SI, the haploid pollen bears 
both S%�
	������	�	��������� ����� ��	���
���� �
���
���	� ����� 
�����	�� ��	�
�	��24 
In simple sporophytic SI systems pollen is rejected if either S-haplotype of the pollen 
parent matches either S-haplotype of the pistil parent. Such systems are highly restrictive 
since not only self-mating but also mating between two individuals sharing even 
one S-haplotype are prevented. The sporophytic SI system in the Brassicaceae (e.g., 
�������	��� �������� �����_� �
	��	�����Arabidopsis) has been studied in great detail 
and reviewed by Takayama et al (2005).25 In gametophytic SI, pollen is rejected if its 
single S-haplotype is the same as either of the two S-haplotypes in the diploid pistil. 
This makes gametophytic SI less restrictive than a sporophytic system. For example, 
progeny will normally be cross-compatible with their parents. Gametophytic SI is very 
widespread among angiosperms; it has been studied extensively in the Papaveraceae 
(poppy), Solanaceae (potato, tomato etc), Plantaginaceae (snapdragon) and Roseaceae 
(apple, cherry and peach etc). Reviews of gametophytic SI can be found in Takayama 
et al (2005), Franklin-Tong et al (1996) and McClure et al (2006).25-26

SELF AND NONSELF-REJECTION IN PLANT AND ANIMAL  

INNATE IMMUNITY

Plants have the capacity to recognize and reject pathogens at various stages of their 
attempted colonization. A type of passive resistance invokes failure of the plant to elicit 
a potentially pathogenic response and is referred to as nonhost resistance.27�'��%�
	�����
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rejection often arises as a consequence of the potential pathogen’s attempt to breach the 
�������	�����
�����	�	��	�

For some, this may be limited to molecular signals released outside the plant cell 
wall, but for others it includes penetration of the cell wall and the delivery of signal 
molecules to the plant cytosol. Direct or indirect recognition of these signals triggers 
����%�
	������	�������	���������	�����������������%�
	������	�������	���������
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about the nature and function of the molecules underpinning both kinds of resistance.27 
Furthermore, the ability to recognize ‘self’ and ‘nonself’ forms the basis of the immune 
response observed in many living organisms.28

The self-recognition inherent in SI is familiar to immunologists. Highly diverse 
�	�	
���������������������	����	��
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immunity in both plants and animals. The plant innate immune response, reviewed by 
Jones et al (2006), operates by a two-phase pathogen recognition mechanism.27���	������
phase recognizes and responds to common pathogens, whereas the second phase responds 
����
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plant, thus, plants need to respond to the invasion in similarly diverse ways.29 Compared 
to mammalian systems, the plant innate immune system is more localized in its response, 
nevertheless, it is extremely effective. As an initial recognition phase both plant and 
animal innate immunity systems often use trans-membrane pattern recognition receptors 
(PRRs) to respond to conserved PAMPs/MAMPS (pathogen/microbe associated molecular 
patterns) present in diverse pathogens. PAMPs are produced only by pathogens, not the 
host. Thus, allowing ‘self’ and ‘nonself’ recognition.30 Mammalian PAMP recognition is 
via a PRR; a family of toll-like-receptors (TLR) that recognize the ‘molecular signatures’ 
of a pathogen. TLRs are transmembrane receptors that recognize the PAMP infection and 
initiate signal transduction that activates immune cells.31 Upon activation immune cells 
can respond in various ways. For example, bacterial pathogens may be phagocytosed 
and digested, while viruses may initiate a programmed cell death response. Mammals 
also have mobile defender cells that respond to pathogen effectors by converging on 
the infected region. Plants lack mobile defender cells and innate immunity acts at the 
individual cell level, thus ensuing a localized defensive response in areas of infection. 
For a review see Ausubel (2005).32
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that activates defense mechanisms upon positive recognition of a conserved amino acid 
�	=�	��	������	����	���'%�	�������34 FLS2 signaling may be initiated by a 22 residue 
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and reactive oxygen species production that limit pathogen growth.35

A second type of plant pathogen response is associated with nucleotide-binding- 
�$$�>'�%�$$!�
���	���������
�����	��	�������	�>$!�����
	�����
�����	���31 Pathogens 
from diverse kingdoms express effectors described as ‘avirulence’ (avr) genes.32 The 
recognition systems between plant NB-LRR R genes and their cognate pathogen avr 
genes are collectively referred to as gene-for-gene systems.32
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MOLECULAR BASIS OF SELF-RECOGNITION 

IN SELF-INCOMPATIBILITY

The molecular interactions that give a plant the ability to recognize, accept or reject 
self-pollen are beginning to be understood.36-38 As previously mentioned two major 
homomorphic SI systems are known: gametophytic and sporophytic (GSI and SSI). SI 
systems may differ in the timing of the response. As shown in Figures 1 and 2, pollen 
tubes are rejected during growth in the style in gametophytic S-RNase-based systems while 
rejection occurs on the stigma in the Brassica SSI system.39 Stigmatic rejection is also a 
characteristic of SI in poppy, which displays a gametophytic SI system.40-42 However, in 
the Brassica system recognition occurs in the stigmatic papillar cells while in the poppy 
recognition occurs in the pollen tube (i.e., the gametophyte).40,43

Two forms of GSI, reviewed by McClure et al (2006), are being actively researched: 
Papaveraceae-type GSI and Solanaceae-type GSI.26 GSI in the Papaveraceae is well 
understood at the physiological level although much remains to be learnt about signaling. 
In Papaver rhoeas S-proteins (PrsS) are secreted by the cells of the stigma and initiate 
a signal transduction cascade in self pollen tubes. Rejection entails very rapid increases 
of cytosolic calcium (Ca2�) and changes in the actin cytoskeleton that cause an almost 
immediate cessation of pollen tube growth.44 Further signaling triggers long-term 
irreversible responses that eventually result in programmed cell death in self-pollen.45 
The corresponding pollen S-determinant, PrpS, has been cloned and encodes a 20kDa 
transmembrane protein.46 It is not yet known how interaction of PrsS and PrpS initiate 
these signaling events.

In contrast to GSI, pollen compatibility in SSI (Fig. 1) systems is determined by 
the haplotype of the pollen-producing parent, rather than the S-haplotype of the haploid 
gametophyte itself. The critical interaction occurs between proteins located in the pollen 
coat and papillar cells on the stigma surface.47 The S-locus encodes two highly polymorphic 
proteins—the S-receptor kinase (SRK) expressed in the stigma papillar cell’s plasma 
membrane and S-locus Cys-rich (SCR or SP11) protein deposited on the pollen coat. These 
����
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������	����������48 When pollen 
arrives on the stigma surface SCR proteins from the pollen coat bind to SRK signaling 
the papillar cell to interfere with pollen hydration, pollen tube emergence and growth.49

CASE STUDY: S-RNASE-BASED GAMETOPHYTIC 

SELF-INCOMPATIBILITY

S-RNase-based SI occurs in the Solanaceae (Fig. 2), Plantaginaceae and Rosaceaea.50 
����������	�
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the physiological process of pollen rejection are understood. However, much remains 
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case study we will summarize what is known about self-recognition and its consequences 
in this system.
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Figure 2. Gametophytic self-incompatible and self-compatible pollinations in Solanum goniocalyx 
(cultivated potato). Images taken at different areas of the pistil: stigma, mid-style and at the mouth 
��� ��	� ������� <������ �	�	� ��	�� ��� ������ ���	�� �	�%
��������� ���� �����	�� ��� �	������	�� �����	� ��	�



115HOW DID FLOWERING PLANTS LEARN TO AVOID BLIND DATE MISTAKES?

S-RNases—the Female Determinants

��	���	�~	��	����>{?�{!��	�	���	�������������	������	������
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���	�������Nictotiana 
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S-haplotypes.51 Anderson et al (1986) cloned a cDNA encoding one of these proteins 
enabling a series of studies that established many of the basic facts of S-RNase-based SI.52 
The pistil S%�
	�������� �	�	��������� ��	� 	�
�	��	�� ��� �	��� ����� 	�	�� ��� ��	� 
�����
transmitting tract and are secreted into the extra-cellular matrix (ECM).53,54 They possess 
variable amounts of N-linked glycan, although this is not required for function in SI.55,56

The discovery that the pistil determinants of S%�
	����������	��������	��	����%$'��	���
laid the foundation for the cytotoxic model.36,57,58 In this model S-RNases are taken to act 
���������	����������
���	������������������
	����������������������S-haplotype encodes 
a unique S-RNase that is expressed in the pistil and deposited in the ECM. Incompatible 
pollen with a matching S-haplotype (e.g., S1-pollen on an S1S2 pistil) is inhibited by the 
action of S-RNase. Degradation of RNA in incompatible pollen tubes would interfere 
with translation and, thus, eventually cause growth to cease (Fig. 2).53,54 All other pollen-S 
genotypes are compatible and evade this cytotoxic activity of S-RNase (e.g., Sx-pollen 
on an S1S2 pistil where Sx  S1 or S2). Thus, it is thought that the S%�
	���������	�	��������
in pollen functions to prevent the action of nonself-S-RNase.

Structural Features of the S-RNases

Figure 3 shows the pattern of conserved and variable sequences in S-RNases. Five 
conserved regions (C1 to C5) account for about 40 of the approximately 200 amino acids 
in a typical S-RNase. Conserved regions C2 and C3 each contain a histidine residue 
implicated in catalysis.59 The three dimensional structure of S3-RNase from Pyrus 
shows the conserved sequences contributing to the core of the protein and the catalytic 
histidine side chains extend into the active site grove.60 Sequence variability between 
allelic S-RNases can be very high and, of course, the variable residues are important 
for recognition. Zurek et al (1997) exchanged sequences between SA2—and SC10-RNase 
and concluded that all regions outside the conserved regions C1 to C5 contribute to 
recognition of this pair of S-RNases.61 In contrast, Matton et al (1997) found that by 
exchanging just four residues in HVa and HVb between Solanum chacoense S11—and 
S13—RNase could switch the S%�
	��������62 Thus the S11- chimeric gene, with the four 
substituted codons from S13-, was transformed in to S12S14 plants and transformants gained 
the ability to reject S13-pollen.63 The apparent contradiction between these two studies is 
explained by the choice of experimental system. The S-RNases examined by Zurek et al 
>{??�!���	���
�����������	����������
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pair examined by Matton et al (1997) were unusually similar, differing by only eleven 
residues.61,63 Overall, the data show that S%�
	������	�����������������������������	������	�
S-RNase protein. Residues needed to distinguish any particular pair of S-RNases may 
be scattered over the entire surface of the protein. HVa and HVb are the most variable 
regions but they are not unique in determining self-recognition. S–RNase is the only 
���������������	�����	�	����	��
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required for S-RNase function.64,65
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Nicotiana plumbaginifolia and SC Nicotiana alata. Previous genetic experiments 
demonstrated that SC N. alata expressed all the pistil-side factors needed for SI 
apart from the S%�
	���������	�	����������%$'��	�61 A sequence now named HT-B 
hybridized strongly to RNA from SC N. alata pistils but not to RNA from styles of 
N. plumbaginifolia. It was noted that HT-B transcript accumulation correlated exactly 
with the developmental onset of pollen rejection.63 The precise correlation of HT-B 
expression and S%�
	�����
�	���	~	������
�����	����������������	���	��	���������	�
in SI. Antisense experiments provided direct evidence. Plants with suppressed HT-B 
protein levels did not show S%�
	�����
�	�� �	~	������	�	�� ������� ��	��	�
�	��	��

Figure 3. Structural features of S-RNases. S-RNase conserved regions C1 to C5 are shown.59 Arrows, 
histidine residues implicated in ribonuclease activity. All other sequences are potentially variable when 
large numbers of S-RNase sequences are compared. The regions that show greatest variability, HVa 
and HVb, are boxed. Conserved S-RNase sequences contribute to functions common to all S-RNases. 
Variable regions contribute to S%�
	�������� �	����������� �������� ��� �	�	����	� ��� ��	� ���������� �	��		��
�� �	=�	��	��� &��"	�� ����	�� �	�	��� ��	��	�� ����������
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near normal amounts of S-RNase. Similar experiments in Solanum chacoense also 
demonstrate a role for HT-B in self-pollen recognition.66

The precise biochemical role of HT-B is still unknown, however sequence analysis 
shows that HT-B proteins possess an unusual C-terminal segment, usually 20-22 amino 
acids, composed entirely of asparagine and aspartic acid residues.67 This ‘ND-domain’ is 
���"	���������������	��	������	��	���������#��#�#�����#���##�68 The functional 
����������	������	�	��	=�	��	�������"��������	����������	�������	�������	����������
of HT-B are that a portion of the protein is associated with the membrane and that it is 
preferentially degraded in compatible pollinations.82�����������	�������������	����	�
alterations in the pollen tube endomembrane system are associated with SI and the 
S%�
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���	���������
����	�
�	�����	�������	������	�����
known consequences of SI, apart from degradation of pollen RNA in incompatible 
pollen tubes.

The 120kDa glycoprotein, 120K, is another factor required for SI on the pistil-side 
���������������	����	��������������������
��	��������	�
������#��69 It is a highly basic 
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that 120K, along with certain other abundant AGPs, is an S-RNase binding protein.70 
Under one hypothesis, S-RNase forms complexes with these AGPs in the ECM and this 
represents the form of S-RNase that interacts productively with pollen tubes. However, 
only 120K appears to be required for SI. Suppressing 120K expression by RNAi caused 
loss of S%�
	�����
�	���	~	������78 Unfortunately, like HT-B, the precise role of 120K 
is not known. However, immunolocalization experiments show that 120K is taken up 
by growing pollen tubes.71,82
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The male determinant of S%�
	�������� >
�	�%S) is less abundant than S-RNase 
and different approaches were required to identify it. Genomic sequencing of the region 
surrounding the S-RNase� �	�	� ��	����	�� ��	� ����� 
�	�%S gene in a member of the 
Plantaginaceae, Antirrhinum hispanicum.70,72 Sequence analysis revealed an F-box protein 
gene referred to as AhSLF-S2 (S-locus-F-box from A. hispanicum).73 Transformation 
experiments in !������	������ proved that SLF genes determine pollen-part S%�
	��������74 
An S%�
	�����	��	����������	����������	�	�
	��	��������������	�
�	�%S gene to confer 
resistance to nonself-S-RNase came from transforming SI S1S3 plants with the PiSLF2 
gene. As expected, these transformed plants became self-compatible. SLF proteins 
have been shown to bind S-RNase in vitro, however, this biochemical interaction in not 
S%�
	�����72,75 Thus, although the genetic function of SLF is established its biochemical 
function is not fully understood.

F-box proteins are best known for their function in ubiquitin-mediated protein 
degradation mediated by SCF (Skp-1, Cullin, F-box) complexes.76 Experiments in 
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of the complex in pollen are not yet clear. The Antirrhinum SLF proteins appear to 
interact with Skp-l-like proteins, AhSSK1, as expected.77 These may further associate 
with cullin to form an SCFSLF- like complex that functions as an E3 ubiquitin ligase. In 
contrast, experiments in petunia provide no evidence for binding to a Skp1-like protein 
and alternative SLF-binding proteins have been suggested to form E3 ubiquitin ligase 
complexes that function in SI.78,79
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Models for Self-Recognition in S-RNase-Based SI

Two models have been advanced to explain S-RNase based SI. The basic facts 
are that S-RNase and SLF determine S%�
	�������� ��� ��	� 
����� ���� 
�	�%���	���
respectively.65,80 Furthermore, HT-B and 120K are required for pistil-side function.81,82 
Finally, all current models propose that S-RNase causes a cytotoxic degradation of pollen 
RNA in incompatible pollen tubes and that compatibility involves preventing S-RNase 
cytotoxicity.53,54 It is not known when and where S-RNase and SLF interact, nor are the 
direct consequences of this interaction known. One model proposes that a compatible 
interaction leads to ubiquitylation and degradation of nonself-S-RNase.76,80,83 In support 
of this model, Hua et al (2006) provide evidence for three S-RNase binding domains 
in petunia SLF.75 Nonself-S-RNase is thought to bind to a common SLF domain, FD2, 
leading to ubiquitylation and subsequent degradation. A self-S-RNase is thought to interact 
with two S%�
	������������������&{������&`����������	��	�	���������=����������75 Thus, 
self-S-RNase is not degraded and its cytotoxic ribonuclease activity is expressed. This 
type of model explains the differential cytotoxic effects in SI as well as certain other 
effects, but it does not have a role for HT-B or 120K.84 An alternative model emphasizes 
S-RNase compartmentalization as the fundamental mechanism that allows compatible 
pollen tubes to evade S-RNase cytotoxicity.26 Goldraij et al (2006) showed that S-RNase 
is taken up and compartmentalized in vacuoles in both compatible and incompatible 
pollen tubes.85 However, in incompatible pollen tubes the vacuoles become disrupted. 
This could release S-RNase into the cytoplasm and cause rejection of self pollen tubes. 
�������������������~�	����>�||�!��	�	�����	�����	�	����	�����������������	�%�%$'��	�
in compatible pollen tubes, as predicted in the S-RNase degradation model.85 However, 
HT-B protein is degraded preferentially, albeit not exclusively, in compatible pollen tubes. 
Since HT-B protein is known to be required for self-pollen rejection, its degradation in 
compatible pollen tubes could contribute to compatibility, but this cannot be a direct 
effect. Goldraij et al (2006) suggest that a hypothetical pollen protein targets HT-B for 
degradation and that the self-S-RNase/SLF interaction interferes with this process, thus 
effectively stabilizing HT-B and contributing to rejection of self-pollen.85 Although the 
compartmentalization model explains features of SI that the S-RNase degradation model 
does not, it is not clear where or how S-RNase and SLF interact. It is possible that both 
S-RNase compartmentalization and S-RNase degradation contribute to SI.26

COULD PARALLELS BETWEEN IMMUNITY 

AND SELF-INCOMPATIBILITY SUGGEST 

AN EVOLUTIONARY RELATIONSHIP?

There are similarities and differences between SI and immune systems. Both are, in a 
sense, forms of protection or defense against undesirable invaders. However, the function 
of SI is to recognize and reject self while immune systems recognize and reject nonself. 
SI functions to maintain diversity by favoring nonself matings while immunity systems 
protect a host from attack. At the molecular level, both systems require a mechanism for 
�
	������	�����������������������	��	����"��������_���_��������������
���	�����S%�
	�����
�	���������������
���
	%�
	�����
���	����	�
�	��	�����
�	������
����������	��������
types are under frequency-dependant selection diversity is favored but generating new 
types is constrained by strict requirements for co-evolution of pollen and pistil factors. 
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Similarly, pathogens can increase their success by diversifying to avoid recognition. 
_����	�����	��������������%	���	��������������
	������	��������������������
�����	���
trigger rejection but self-factors do not. Finally, both SI and immunity entail rejection 
and while there are a variety of potential mechanisms to reject undesirable cells, whether 
�	���������	����������������������	�����	�����������������������
����������	������	���������
pathways such as programmed cell death or RNase-based cytotoxicity in both systems.27,45,86 
'�����������������	�����	�����	������	~	�������	��������������	���������	���	�����	�
speculate that SI and immunity share common ancestry. This begs the question of whether 
SI and immunity are related. Could an immunity protein active in self-recognition have 
been adapted for self-rejection in plant reproduction?2,3 Answering this question would 
help researchers understand the origins of SI, however, conclusive evidence is lacking. 
Yet, within the terrestrial plants plausible cases for common ancestry exist. The wheat 
leaf rust kinase (WLRK) is a possible example of divergence, as it is similar to the SRK 
deployed in the Brassica SSI system described earlier.87 Further, in animals, the Major 
Histocompatibility Complex (MHC) genes, share some parallels with SI genes because 
they both have ancient allelic lineages, a high allelic diversity, sequence divergence 
and display balancing selection.28,88 Also, resemblances can be found between the SSI 
pollen-determinant SCR and defensins. Defensins are involved in innate immunity in 
animals, plants, fungi and bacteria.89,90 SCR is structurally similar to defensins, but there 
is little or no primary sequence conservation.91 Nasrallah (2005) speculated that a family 
of ancient defense molecules, involved in nonself recognition may have been adopted 
for both self-recognition systems and cell-to-cell signaling and that regardless of any 
evolutionary relationship, natural environmental pressures, such as frequent exposure to 
diverse pathogens or unsuitable pollen, will have caused SI and immune systems to evolve 
similar mechanisms to defend themselves.2 Thus, similarities between SI and immunity 
�����	�	�������	��	���	������������	��������������	�������	����������
���	�������
the molecular machinery available to solve them. Therefore, the dissimilarities between 
SI and immunity are, perhaps, more noteworthy than the similarities. Fundamentally, 
the biochemistry of recognition and defense differ markedly.

CONCLUSION

Homomorphic SI provides reproductive barriers that prevent self-pollen from 
fertilizing ovules and producing offspring. This barrier has contributed to the success of 
the angiosperms and their colonization of niches on every continent. Homomorphic SI 
	��������	������	����������������������	�������	���
	�������	�	�����	���������	�
recognition. Recognition between SRK and SCR in sporophytic SI has clear similarities 
with transmembrane TLR recognition of PAMPs in innate immunity. Upon positive 
recognition both SI and immunity systems initiate defensive mechanisms that may include 
common mechanisms such as the programmed cell death response in Papaver GSI.

The parallels between SI and immunity have drawn some researchers to hypothesize 
that they diverged from a common ancestral recognition system. Whereas plants, fungi 
and animals use immunity systems to identify and reject nonself organisms, SI systems 
actively reject pollen tubes from self or closely related potential mates. As in immunity, 
the genes controlling SI are often very polymorphic and recognition consists of interactions 
�	����	������
	�����
���	�������	�������	���� �	���������� ���	�
�	��	������� ��������
compatibility in each case. In pollination, compatibility means fertilization is allowed. 
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In immunity compatibility may lead to disease or resistance depending on nomenclature, 
�����
	������	��������������������	���	�����	����	��	����	�	������	�����������	��	��	��	��
from a common mechanism is uncertain and presently the overriding fact is that they 
��	��	�������	�	�������	�����������
�����
	���������������	������	�	����������	������
necessarily mean that there is no relationship. Indeed, the small similarities may be the 
keys to elucidate an evolutionary relationship. Nevertheless, a putative evolutionary 
�����������������������������_�����	������������
���	��	����	����������	����	=���	�
diversifying selection.
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Abstract: Programmed Cell Death is essential for the life cycle of many organisms. Cell death 
in multicellular organisms can occur as a consequence of massive damage (necrosis) 
or in a controlled form, through engagement of diverse biochemical programs. The 
best well known form of programmed cell death is apoptosis. Apoptosis occurs in 
animals as a consequence of a variety of stimuli including stress and social signals 
and it plays essential roles in morphogenesis and immune defense. The machinery 
of apoptosis is well conserved among animals and it is composed of caspases (the 
proteases which execute cell death), adapter proteins (caspase activators), Bcl-2 family 
proteins and Inhibitor of Apoptosis Proteins (IAPs). We will describe in this chapter 
the main apoptotic pathways in animals: the extrinsic (death receptor-mediated), the 
intrinsic/mitochondrial and the Granzyme B pathway. Other forms of non-apoptotic 
Programmed Cell Death which occur in animals will also be discussed. We will 
summarize the current knowledge about apoptotic-like and other forms of cell death 
in other organisms such as plants and protists. 

  Additionally, we will discuss the hypothesis that apoptosis originated as part 
of a host defense mechanism. We will explore the similarities between the protein 
complexes which mediate apoptosis (apoptosomes) and complexes involved in 
��������}�����������	���������������������������
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immune function will be summarized, in an effort to explore the evolutionary origins 
of cell death.

Self and Nonself, edited by Carlos López-Larrea. 
©2012 Landes Bioscience and Springer Science+Business Media.
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INTRODUCTION: PROGRAMMED CELL DEATH

Cell death regulated by a genetic program, or Programmed Cell Death (PCD), is a 
fundamental mechanism of homeostasis of tissues. For this reason, it is a critical process for 
many multicellular organisms, which have developed different programs of programmed 
cell death such as apoptosis. Programmed cell death, however, does not only occur in 
multicellular organisms: it has also been shown to occur in yeast, protozoans, bacteria 
and unicellular algae. This suggests that a program designed for self killing of individual 
�	����������	����%�	����	�	�����������	����������¢����
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Programmed Cell Death (PCD) has been studied thoroughly in animals. In response to 
stress due to starvation or damage, animal cells engage a biochemical pahtway to destruct 
themselves. Moreover, upon detection of a virally infected cell, cytotoxic cells kill other 
cells from the same organism by inducing their suicide. Cell death is not only employed 
to remove damaged or infected cells, but it is also important for sculpting tissues. During 
embryonic development, animals produce many cells which are no longer needed in 
the adult animal and which therefore undergo PCD to eliminate themselves. Classical 
examples of this are the removal of the tadpole of frogs during metamorphosis or the 
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In the adult animal, unwanted cells are eliminated through PCD when they are no longer 
needed. For instance, during an immune response there is a rapid production of lymphocytes 
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pathogen has been cleared. For these reason, these cells are ‘programmed’ to eliminate 
themselves after a few days of life.

Programmed cell death can occur through different biochemical programs. Apoptosis 
is the best known of these programs and it is the major form of cell death in animals. 
This process occurs through a coordinated dismantling of a cell in a matter of hours. 
Cells shrink, detach and end up forming small pieces or ‘apoptotic bodies’, which are 
immediately cleared by phagocytes and are thus removed from the body in a silent 
way. During apoptosis, cells maintain integrity of their plasma membrane, which helps 
�������������������_�������������	��	�������¢�	������^��������������������������������
uncontrolled tissue damage (for instance after traumatic injury due to heat shock or 
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Apoptosis requires a number of genes that are well conserved across animal evolution. 
In the past few years, multiple genetic and cell biology experiments have shown that 
apoptosis is executed through similar biochemical pathways in vertebrates, Drosophila and 
C. elegans. These biochemical pathways lead to activation of proteins termed ‘caspases’. 
What distinguishes apoptosis from other forms of cell death is a number of morphological 
and biochemical features which are consequence of the activity of caspases.

APOPTOSIS IS EXECUTED THROUGH ACTIVATION OF CASPASE 

PROTEASES

Caspases are cysteine proteases (they have a cysteine in the active site) which achieve 
apoptotic cell death through the cleavage of several substrates. A few hundred caspase 
substrates have been described in human cells. Roughly, we can say that during apoptosis, 
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are necessary for maintenance of cellular structures (cytoskeletal components, organelle 



126 SELF AND NONSELF

proteins, etc.) and proteins whose cleavage induces activation of proteins that destroy 
the cells, such as nucleases. Cleavage of these substrates produces the morphological 
changes associated with apoptosis. The second group of apoptotic caspase substrates 
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(transcription and translation, metabolism, growth promoting signaling molecules etc.).1 
By cleaving these substrates, caspases ensure the termination of the life of the cell.

Caspases are normally present in the cytosol. Since killer proteases are obviously 
dangerous, they are kept in check by a number of safety mechanisms. The most important 
is that they are inactive until a ‘deadly’ stimulus activates them by promoting their 
oligomerization and subsequent cleavage. Cleavage of the caspase precursors, which 
we call the ‘procaspases’, allows the formation of the mature proteases. When activated, 
caspases can cleave and activate other caspase molecules and this leads to an irreversible 
proteolytic cascade that ends up killing the cell. It should be noted that not all caspases 
are involved in apoptosis; there is a group of caspases which includes caspase-1 which 
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which are apoptotic caspases. We can classify apoptotic caspases in two groups based 
on their sequence homology and their role in the proteolytic cascade: initiator (apical) 
and executioner (effector) caspases. Initiator caspases (caspase-8 and -9 in mammals) 
have a long domain in the N-terminus of the protein: the pro-domain. Pro-domains are 
responsible for interactions between initiator caspases and the molecules which activate 
them. These domains are mainly of two types: CARD (Caspase Recruitment Domain), 
present in caspase-9 and DED (Death Effector Domain), present in caspase-8. These 
domains are protein interaction modules composed of six alpha-helical bundles. Upon 
an apoptotic stimulus, homotypic CARD-CARD or DED-DED interactions bring two 
molecules of initiator caspases in close proximity to each other and this event leads to 
their activation and subsequent inter-molecule cleavage.

The so-called ‘executioner’ or ‘effector caspases’ (caspase-3 and -7 in mammals) 
are the ones that cleave the substrates required for death of the cell. These proteins are 
inactive until they are cleaved by ‘initiator’ caspases. Since activation of executioner 
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caspase activation are highly regulated events which determine the onset of apoptosis.

In vertebrates there are several biochemical pathways that can activate caspases. 
Notably, these pathways are quite similar to apoptotic pathways in other species such as 
C. elegans and D. melanogaster (Fig. 1). As a summary, a stimulus (coming either from 
within the cell or from the outside) triggers the formation of a multi-protein complex 
which recruits and activates an initiator caspase. Activation of these caspases occurs when 
several molecules are recruited to these ‘deadly complexes’ by oligomerization with the 
so-called ‘adapter molecules’ or caspase activators. Initiator caspases then cleave and 
activate effector caspases and this triggers death of the cell.

CONSERVED APOPTOTIC REGULATORS IN VERTEBRATES, 

FLIES AND NEMATODES: CASPASES, IAPS, ADAPTER 

MOLECULES AND BCL-2 FAMILY PROTEINS

Stress and developmental or social cues induce apoptosis through a biochemical 
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cascade begins when several molecules of initiator caspases are activated through 
oligomerization in a complex termed ‘apoptosome’. In mammalian cells, the apoptosome 
is nucleated by the adapter molecule Apaf-1, which recruits the initiator caspase-9 through 
interactions between the CARD domain present both in Apaf-1 and caspase-9 (Fig. 2). 
Caspase-9 bound to the apoptosome can cleave and activate effector caspases-3 and -7, 
which are responsible for the death of the cell.

In the nematode C. elegans, caspases are also activated through the formation of 
apoptosomes around Apaf-1-like molecules. In fact, the homolog of Apaf-1 in nematodes, 
Ced-4, was discovered before Apaf-1. C. elegans has been an invaluable tool to identify 
the proteins which participate in apoptosis. The reason is that adult animals all have 
exactly the same number of cells. During development, a number of cells that are no 
longer needed in the adult animal die by apoptosis. This way, it is easy to identify mutants 
with ‘extra’ cells (mutated in genes essential for apoptosis) or with an excess in cell death 
(possibly due to a mutation in a gene which inhibits apoptosis). This system led to the 
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machinery in the nematode and their homologs are also key for apoptosis in mammals.

The apoptotic pathway in C. elegans is relatively simple (Fig. 1). It comprises three 
proteins: a protein located in the mitochondrial membrane, Ced-9 (homolog of human 
Bcl-2 family proteins), a caspase activator, Ced-4 (Apaf-1 homolog) and a caspase, Ced-3.2 
Ced-9 holds the caspase activator Ced-4 inactive. At a point during development of the 

Figure 1. Apoptosis in animal models. The apoptotic machinery in insects (D. melanogaster), nematodes 
(C. elegans) and vertebrates is very similar. Adapter proteins such as Apaf-1 or FADD recruit activator 
caspases, which cleave and activate effector caspases. In vertebrates and C. elegans, Bcl-2 proteins 
control the pathway either directly by inhibiting the Apaf-1-like molecule (in C. elegans) or indirectly 
by controlling mitochondrial permeabilization, which in vertebrates is required for formation of the 
Apaf-1/caspase-9 complex (apoptosome).
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animal, an inhibitor of Ced-9 is synthesized in some cells and this promotes the release 
of Ced-4. Ced-4 then forms an apoptosome that recruits and activates the caspase Ced-3 
through CARD-CARD interactions and this triggers death of the cell. This pathway is 
simpler than in mammals, since no initiator caspases are needed: the caspase Ced-3 
functions as both activator and effector caspase and executes death upon activation.
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melanogaster. Caspase activation pathways are also quite similar, with caspases being 
activated through recruitment to an apoptosome, which is nucleated by a protein 
very similar to Ced-4 and Apaf-1: ARK. In Drosophila, however, activation of the 
apoptosome is triggered in a different form: during development, several proteins are 
synthesized that inactivate a caspase inhibitor: DIAP1. DIAP1 is holding the initiator 
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apoptosome formation and apoptosis. DIAP1 belongs to a family of proteins whose 
homologs have anti-apoptotic functions in mammals. These proteins, named IAPs 
(Inhibitor of Apoptosis Protein) bind and inactivate caspases directly or promote their 
ubiquitination and proteasomal degradation.

The genes encoding proteins of these four groups of apoptosis-related proteins (Bcl-2 
homologs, Apaf-1 homologs, IAPs and caspases) exist in all animals studied.3,4 This suggests 
that the apoptotic process existed in the precursor of animals (Table 1). To summarize, 

Figure 2. Two main pathways of apoptosis in vertebrates: the extrinsic and the mitochondrial pathway. 
In the extrinsic pathway (left), a death ligand such as TNF, TRAIL or Fas Ligand activates a death 
receptor, which recruits FADD through its Death Domain (DD). FADD recruits Caspase-8 through Death 
Effector Domain (DED) interactions. Caspase-8 can directly cleave and activate effectors caspases such 
as -3 and -7, or cleave Bid to induce Bax/Bak activation. In the mitochondrial pathway, a BH3-only 
protein (labeled “BH3”) such as Bid, Puma, Noxa etc. activates Bax and/or Bak which permeabilize 
mitochondria triggering cytochrome c release (depicted as small spheres). Cytochrome c triggers the 
oligomerization of Apaf-1 and formation of the apoptosome, where Caspase-9 is activated. Caspase-9 
cleaves and activates effector caspases.
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we can conclude that apoptotic pathways in animals from three different animal phyla are 
similar, but they differ in the form in which initiator caspases are activated. In Drosophila 
and C. elegans, apoptosomes are held constitutively inactive due to the presence of an 
inhibitor and they are activated upon the synthesis of a molecule that neutralizes this 
inhibitor. In Drosophila, this inhibitor is a caspase inhibitor (DIAP1). In C. elegans, the 
inhibitor is a Bcl-2 family protein, Ced-9. On the contrary, in mammals, the apoptosome 
is formed upon the presence of an activator. This activator is cytochrome c, which is a 
molecule which sits in the mitochondria in healthy cells and during apoptosis it is released 
to the cytosol where it activates the apoptosome (Fig. 2).

CELL SUICIDE: MITOCHONDRIA AND BCL-2 FAMILY PROTEINS 

REGULATE “SELF-INDUCED” CELL DEATH IN MAMMALS
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of proteins that belong to the family of the oncogene Bcl-2.5 As discussed above, in 
C. elegans, a Bcl-2 family protein (Ced-9) controls apoptosis in a direct manner by holding 

Table 1. Summary of presence of apoptotic proteins in animals

Ecdysozoa Cnidaria Deuterostomia

Phyla Arthropo-
da (insects 
and others)

Nematoda 
(round-
worms and 
others)

(jelly-
�����
Hydra)

Echino-
dermata 
>���������
sea 
 urchins)

Chordata: 
 Vertebrata 
>�����
mammals 
and others)

Chordata: 
Urochor-
data (tuni-
cates)

Caspases 7 in 
 Drosophila

� � � � �

Death 
receptors/
ligands

TNFR- 
like with-
out DD

� ? Several 
genes

Several 
proteins

?

Bcl-2-like 
proteins

� � � � � �

Apaf-1 � � � � � not  
detected

NOD-like 
proteins, 
non-Apaf

� � ? � � ?

IAPs or 
BIR- 
containing 
proteins

Several 
IAP genes

BIR- 
containing 
proteins

Several 
genes

Several 
genes

Several 
IAP genes

BIR- 
con-
taining 
proteins

Caspases are the proteases responsible for cell death and they exist in all animals studied. Death recep-
tors and their ligands activate the extrinsic apoptotic pathway in vertebrates and they are involved in 
immune responses in insects and mammals. Bcl-2 family proteins regulate apoptosis in vertebrates 
and C. elegans, but their role in other organisms is unclear. IAPs (Inhibitors of apoptosis proteins) 
inhibit apoptosis in Drosophila and mammals. BIR-containing proteins are homologs of IAPs which 
contain only the BIR domains present in IAPs, but not other domains. These proteins do not  necessarily 
play roles in apoptosis.
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the apoptosome-forming protein Ced-4 inactive. In vertebrates the situation is different. 
Bcl-2 proteins control caspase activation indirectly, through controlling mitochondrial 
permeabilization. Mitochondria are organelles which provide energy and metabolites to the 
cell. But these organelles also participate in apoptosis in several organisms, because they 
contain proteins which can activate caspases when the outer membrane is permeabilized. 
As discussed above, apoptosis is initiated upon the formation of the apoptosome, a 
cytosolic complex formed by multimers of Apaf-1, similar to the complex which initiates 
�
�
�����������	�������	�����	��6 This complex is formed by seven molecules of Apaf-1 
which recruit and activate Caspase-9 (Fig. 2). The stimulus which triggers the formation 
of the mammalian apoptosome is the binding of cytochrome c to Apaf-1. The discovery of 
the requirement of cytochrome c for apoptosis was surprising, since this is a protein of 
the mitochondrial respiratory chain. Cytochrome c is normally playing a role in cell 
metabolism, inside the mitochondria. If so, how does cytochrome c locate to the cytosol 
during apoptosis? A number of models have been proposed, including the formation of 
putative channels that would provoke mitochondrial swelling, leading to rupture of the 
outer mitocondrial membrane. However, the current model implies that two proteins of 
the Bcl-2 family, Bax and Bak, integrate in the mitochondria during apoptosis and form 
pores that allow the passage of intermembrane space proteins, including cytochrome c.7 
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membrane. These proteins, when activated, can form pores in liposomes.8

Bax and Bak are part of the Bcl-2 family of proteins. This family is divided in three 
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have an antiapoptotic function, including Bcl-2 itself. Members of this family such as Mcl-1 
and Bcl-xL, like Bcl-2, are overexpressed in many human tumors and protect tumor cells 
from apoptosis. The proapoptotic proteins Bax and Bak are part of the second subset of 
Bcl-2 family proteins: these proteins are called ‘multidomain’ proapoptotic Bcl-2 proteins 
because they share a number of domains with the antiapoptotic Bcl-2 homologs. In fact, 
the tridimensional structure of the anti-apoptotic and the pro-apoptotic multidomain Bcl-2 
proteins is remarkably similar, although they have opposite functions. Bax and Bak form 
pores in the mitochondrial membranes, Bcl-2, Bcl-xL and Mcl-1 inhibit the formation 
of these pores and the release of cytochrome c.

The third group of Bcl-2 family proteins comprises pro-apoptotic proteins such 
as Bid, Bim, Bad, Puma and Noxa. These proteins are less similar to Bcl-2 than Bax 
and Bak: they only share the BH3 domain, which is a short motive of around 25 amino 
acids. For these reason, these proteins are called ‘BH3-only’ proteins. The BH3 domain 
is required for these proteins to bind to the multidomain Bcl-2 proteins and exert their 
proapoptotic function. BH3 proteins can directly bind and activate Bax and Bak, while 
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number of BH3-only molecules inactivates the antiapoptotic proteins and activates the 
proapoptotic ones.9����	���`%����
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stress. For instance, Puma is induced in a p53-dependent manner after genotoxic stress 
and Bim is induced after endoplasmic reticulum stress. Other BH3-only proteins are 
constantly present in some cell types but they are kept inactive through posttranslational 
mechanisms such as phosphorylation, and certain stresses activate them through removal 
��� ��	�	���������������������������`%����
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determine whether a cell will die.

Social signals such as growth factor limitation or loss of cell-to-cell contact also induce 
apoptosis through activation of BH3-only proteins and induction of the mitochondrial 
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pathway. As discussed above, in multicellular organisms, cell death contributes to 
maintenance of tissue homeostasis. When cells lack proliferation factors due, for instance, 
to tissue overgrowth, they stop proliferating and in many cases, they die by apoptosis. 
This is critical for the maintenance of cell numbers in tissues with high cell turnover, 
particularly the immune system. Some immune cells are “addicted” to cytokines and 
when they are deprived of cytokines they stop growing and undergo apoptosis mediated 
by the activation of BH3-only proteins.10 Indeed, mutations of several components of the 
mitochondrial pathway produce a number of phenotypes related with hyperproliferation 
of immune cells in mice and mutations in BH3-only proteins are associated with human 
immune diseases.11

IS THERE A ROLE OF THE MITOCHONDRIA IN APOPTOSIS 

OF INVERTEBRATES?
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are required for apoptosis in all animals studied and so are their activators (Apaf-1-like 
molecules). In mammals, the mitochondrial pathway is of great relevance, because it is 
activated in response to multiple stimuli. Mitochondria (and cytochrome c) are required 
for apoptosome-mediated caspase activation in response to a diversity of stimuli, 
including developmental cues, growth factor withdrawal, heat shock, nutrient deprivation, 
endoplasmic reticulum stress and DNA damage. As discussed above, during apoptosis 
mitochondria release cytochrome c upon formation of pores composed of Bax and/or Bak. 
Cytochrome c then binds Apaf-1 and the subsequent conformational change of Apaf-1 
attracts Caspase-9, leading to the formation of the apoptosome.

But when did this connection between mitochondria and apoptosis arose? A role 
for cytochrome c has not yet been found in animals other than mammals. Our other two 
main animal models to study apoptosis, C. elegans and D. melanogaster, do not seem to 
require neither homologs of Bax/Bak proteins acting on mitochondria, nor mitochondrial 
permeabilization or the release of cytochrome c. In C. elegans, the Bcl-2 homolog Ced-9, 
which is a mitochondrial protein, controls apoptosis by keeping the Apaf-1 homolog 
Ced-4 inactive and not by releasing cytochrome c. Indeed, cytochrome c could not 
possibly activate Ced-4 in the same manner in which cytochrome c activates Apaf-1, 
because Ced-4 does not contain the domain which is responsible for Apaf-1 binding to 
cytochrome c: the WD40 domain. It is intriguing, though, that C. elegans Ced-9, which 
controls apoptosis, is a mitochondrial protein, like mammalian Bcl-2 proteins. This 
suggests an ancestral link between mitochondrial permeabilization and apoptosis that 
may have not been maintained in nematodes.12

Drosophila apoptosome does not require cytochrome c either. The Apaf-1 homolog, 
ARK, does contain the WD repeats which are responsible for the interaction of Apaf-1 
with cytochrome c. It is possible that during evolution of insects, an ancestral role for 
cytochrome c was lost in favor of a more direct way to control apoptosis: the synthesis 
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proceeds in other metazoan phyla in order to understand how the mitochondria-caspase 
connection arose. It is possible that it appeared early during evolution and that it was lost 
in nematodes and insects, which are relatively close groups in evolutionary terms. These 
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control, reducing this way the number of molecules implicated in induction of apoptosis. 
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This hypothesis is supported by the fact that cnidarians and equinoderms contain numerous 
Apaf-1 homologs, some of which can potentially interact with cytochrome c through 
their WD repeats.3 However, the alternative possibility, that mitochondrial control of 
apoptosis appeared during evolution of vertebrates, cannot be discarded at this point.

CELL DEATH BY SUICIDE INDUCTION: THE DEATH RECEPTOR 

(EXTRINSIC) APOPTOTIC PATHWAY

In vertebrates, the mitochondrial pathway is responsible for induction of apoptosis upon 
stress, or upon loss of survival signals such as cytokines or growth factors. As discussed, 
this pathway is regulated by Bcl-2 family proteins and it is mediated by cytochrome c 
release from mitochondria, apoptosome formation and activation of caspase-9, which 
is the apical or initiator caspase in this pathway. While the mitochondrial pathway is of 
vital importance for tissue homeostasis and stress responses, there is a second apoptotic 
pathway with important roles in immune response and tumorogenesis: the extrinsic pathway.

The extrinsic or death receptor-mediated pathway is induced upon activation of 
receptors related to Tumor Necrosis Factor (TNF) receptor. TNF-� is a cytokine which 
participates in immune responses through the activation of NF-kappaB. But under some 
circumstances, the outcome of stimulating a cell with TNF is death of the cell instead 
of NF-kappaB activation. TNF-� and its receptors belong to a family of proteins (the 
�'����
	������!����������
���	�����	�����	��
���	�����������	���������������������
immunity. A subset of the TNF-related proteins can induce cell death and are named 
death ligands. These proteins are TNF-�, Fas ligand (CD95L) and TRAIL (TNF-related 
apoptosis-inducing ligand). Death ligands are secreted proteins which behave as cytokines 
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in a membrane-bound form by lymphocytes and Natural Killer cells, which use them to 
kill infected or antigenic tumor cells through the induction of apoptosis in their targets.
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requires a few molecules that couple the signal from the ligand to caspase activation 
(Fig. 2). Death ligands induce oligomerization and conformational change of their 
receptors, the so-called ‘death receptors’. These receptors contain in the intracellular 
portion a ‘Death Domain’ (DD), which is evolutionarily related to the CARD domain 
present in caspase-9 and other caspases. Upon oligomerization, the receptor recruits 
through a homotypic interaction an adapter molecule that also contains a Death Domain. 
In most models, this molecule is FADD. The other portion of FADD comprises a Death 
Effector Domain (DED). This domain, which is also structurally and evolutionarily 
related to CARD domains, is present in the initiator caspase-8. When FADD aggregates 
in death receptor complexes, caspase-8 is recruited to the complex through homotypic 
DED-DED interactions, in a manner that resembles CARD-CARD interactions to form 
the apoptosome. The complex that contains the death receptor, FADD and caspase-8 is 
called the Death Receptor Signaling Complex (DISC).
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protease, upon activation, cleaves and activates effector caspases such as caspase-3 and 
this leads to death of the cell. In some cell lines, however, activation of caspase-8 is not 
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signal to induce effector caspase activation: it cleaves the BH3-only protein Bid. Bid 
then acts on Bax and/or Bak on the mitochondrial membrane to trigger the release of 
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cytochrome c and the formation of the apoptosome. For this reason, in some cell types 
Bcl-2 or Bcl-xL overexpression blocks death receptor-induced cell death.14

This apoptotic pathway seems to only be present in vertebrates. No death receptors 
have been found in C. elegans. In Drosophila, the TNF-receptor homolog, Wengen, 
can induce cell death, but as we will discuss later, this form of cell death is not classical 
apoptosis and it does not require caspase-8.15

CELL DEATH BY MURDER: THE GRANZYME PATHWAY

Cytotoxic lymphocytes (CTL) and Natural Killer (NK) cells owe their names to 
their ability to induce death of their target cells. In order to avoid propagation of a virus, 
cytotoxic cells attack and kill the infected cells and they use several effector mechanisms 
in order to do so. One mechanism is the induction of apoptosis in the target cell through 
the extrinsic pahtway. CTL and NK cells can express Fas Ligand in their surface. This 
death ligand, as discussed above, can activate the death receptor Fas in the target cell and 
thus induce its suicide through caspase-8 activation. Moreover, cytotoxic cells deliver 
the content of toxic granules towards the target cell. These granules contain, among other 
components, TNF, which in a manner similar to Fas Ligand can interact with its receptor, 
leading to activation of the TNF-receptor mediated extrinsic pathway and subsequent 
caspase-8-mediated death. Additionally, granules contain perforin, a protein that forms 
transmembrane channels and facilitates intracellular delivery of the protease Granzyme B, 
another component of cytotoxic granules.

Granzyme B can induce apoptosis through directly activating caspases.16 This 
protease is able to activate caspases through its proteolysis, in a similar manner than 
initiator caspases activate other caspases. Several caspases have shown to be activated 
after treatment with a combination of Granzyme B and perforin, including caspase-8 and 
the effector caspases -3 and -7. Cleavage and activation of caspase-3 can lead directly 
to ‘classical’ apoptosis. However, Granzyme B can also use a mitochondrial pathway to 
induce apoptosis, by cleaving the BH3-only protein Bid (Fig. 2). Bid cleavage activates 
the Bax/Bak mediated mitochondrial apoptotic pathway, with subsequent activation of 
the apoptosome and the caspase-9 mediated pathway. Granzyme B-mediated killing can 
be inhibited by overexpression of Bcl-2 in human cells, indicating that the mitochondrial 
pathway is more relevant than direct activation of effector caspases.

APOPTOSIS IS NOT THE ONLY WAY TO DIE: NON-APOPTOTIC FORMS 

OF PROGRAMMED CELL DEATH IN METAZOANS

Apoptosis is the main form of cell death in animals. However, it is not the only 
form of programmed cell death which has been observed in animals. Cells can die by 
pathways that do not involve caspase activation and the morphology of dying cells can 
be completely different from the classical morphology of apoptotic cells.17 It should 
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the physiological roles of some of these alternative forms of cell death. Traditionally, before 
we had been able to start the molecular characterization of apoptosis (which started in the 
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based on microscopic analysis of developing animals and has long been abandoned by 
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could characterize apoptosis more precisely than if we regarded morphology only. We 
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morphological changes which are consequences of caspase activation, including chromatin 
condensation and cell shrinkage.

After the beginning of the molecular characterization of apoptosis, for many years, other 
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death. However, in recent years, it has been acknowledged that non-apoptotic cell death can 
occur in a regulated fashion and some molecules that regulate non-apoptotic cell death 
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which proceeds without signs of apoptosis. But this includes true “accidental”, sudden, 
uncontrolled cell death (for instance, after severe heat shock, ischemia or mechanical 
rupture) but also other forms of non-apoptotic cell death such as necroptosis, which is 
regulated by a number of proteins which we are beginning to identify (Table 2).

Necroptosis (or death receptor-induced necrosis) is a form of cell death induced 
by death ligands and mediated by the protein RIP1.18,19 RIP (RIPK1) is a kinase which 
associates with death receptor/NF-kappaB-activating complexes. As discussed above, 
activation of death receptors usually kills cells through caspase-8 activation and the 
extrinsic pathway. However, in some cell types, ligation of death receptors –in particular, 
TNF-receptors- induces a form of cell death which is not mediated by caspases. Not only 
cells die in a caspase-independent manner, but indeed, caspase inhibition can enhance 
necroptotic cell death. Necroptosis is mediated by production of Reactive Oxygen 
Species (ROS) and by the JNK kinase. This form of cell death, although only described in 
mammals so far, resembles the way by which Drosophila TNF kills cells: in Drosophila, 
overexpression of Wengen (the TNF receptor homolog) or Eiger (its ligand) kill in an 
ROS and JNK-dependent manner, independently of caspase-8.15 The involvement of the 
apoptosome and caspases in Eiger-induced cell death is unclear, since several reports 
show contradictory results. The resemblance between Eiger-induced cell death and 
necroptosis is strengthened by the fact that a similar group of proteins (such as RIP1, 
JNK, CYLD and TRAFs) regulate necroptosis in mammals, as well as Eiger-induced 
cell death in Drosophila.20 This suggests a possible conservation of a non-apoptotic cell 
death pathway which role seems to be related to immune defense, since necroptosis has 
been shown to occur after treatment of virally infected cells with TNF and upon ligation 
of Toll-like receptors.

‘Autophagic cell death’ is a form of cell death observed during development of 
salivary glands in Drosophila.21 By morphological criteria, this form of cell death is 
different from apoptosis, since it is associated with massive vacuolization due to the 
presence of a great number of autophagic vesicles. These vesicles are doubled membrane 
vesicles which engulf organelles or cytoplasm to target them to lysosomes for degradation. 
Autophagic cell death is induced in salivary glands or the midgut of Drosophila upon 
developmental cues. Although this form of cell death has been shown to exist in the 
�������	���������	���	������		���	�	���	�� ��� ��	�
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autophagic cell death exists in mammals. In general, autophagy is a cytoprotective 
process. In some cases, autophagic vesicles are observed in cells that undergo apoptosis 
and in other cases, autophagic proteins have been shown to promote caspase activation 
and apoptosis. This had lead to the erroneous conclusion that cell death under some 
circumstances is “autophagic”. To complicate the issue, ‘autophagic cell death’ has been 
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described in mammalian cells in culture upon treatment with caspase inhibitors and it has 
been shown to be mediated by JNK and RIP1; all of these are features of necroptosis. 
This suggests that autophagic cell death and necroptosis are the same form of cell death. 
The involvement of autophagy –but not caspases– in a physiologically relevant cell death 
process in mammals remains to be proven.

A process involving programmed cell death which we are all familiar with is death of 
skin cells. The skin is constantly being renewed and this renovation involves death of cells 
in outer layers of the skin. These cells do not die by apoptosis, but by a process called 
¢������������^���� ¢"	������������^���� ��	����	�� ��	������ ��	�	
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involves caspases such as caspase-14 which do not play roles in apoptosis. Besides 

Table 2. Types of Programmed Cell Death

Type of 
Programmed Cell 

Death Organism Function
Key 

Molecules
Morphological 
Characteristics

Apoptosis— 
extrinsic  
pathway

Vertebrates Immune 
 homeostasis

Death 
recep-
tors, death 
ligands, 
caspases

Chromatin  
condensation, cell 
shrinkage,  
phosphatidyl- 
serine exposure, 
DNA degradation

Apoptosis— 
intrinsic/ 
mitochondrial 
pathway

Vertebrates, 
C. elegans

Development, 
elimination of 
damaged cells

Bcl-2 fam-
ily proteins, 
caspases

Same as above

Apoptosis Drosophila Development DIAP1, 
caspases

Same as above

Necroptosis Mammals Possibly, immune 
defense

RIPK1, 
ROS, JNK

Plasma membrane 
rupture

Necrosis All organisms Probably, no 
function

unknown Cytoplasmic 
swelling, plasma 
membrane rupture

Hypersensitive 
Response

Plants Immune response ROS, 
proteases, 
resistance 
(R) gene 
products

Large cytoplasmic 
vesicles, release 
of hydrolytic 
enzymes into the 
cytoplasm

Viral, aging or 
stress-induced 
cell death

Yeast Possibly, main-
�	����	�������	���
cells

ROS, prote-
ases

Chromatin 
condensation, 
shrinkage

Autophagic cell 
death

Dictiostelium Development Autophagy 
genes

Massive  
vacuolization of 
the cytoplasm

Autophagic cell 
death

Drosophila Organ  involution 
during 
 development

Autophagy 
(Atg) 
genes, 
caspases

Massive  
vacuolization of 
the cytoplasm  
(autophagic 
vesicles)
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keratinization, there is another form of cell death which involves non-apoptotic caspases. 
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not play a role in apoptosis. Pyroptosis, also called ‘caspase-1 dependent necrosis’, has 
been observed in macrophages upon infection or treatment with lipopolysaccharide. This 
form of death does not require effector caspases. Dying cells display mixed morphological 
features of apoptosis and necrosis. Because this form of death occurs upon infection and 
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the immune system.

CELL DEATH IN PLANTS, FUNGI AND PROTISTS

Apoptosis is not the only form of cell death in animals, which indicates that a number 
of alternative cell death programs exist in nature. Programmed cell death has been observed 
during development or in response to infection in a number of organisms (Table 2).

In plants, cell death is part of the normal cycle of the organism. Developmental 
cell death is observed in many plant tissues, being crucial for instance for senescence 
��� 	��	���������	���� �������������
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vascular elements. Moreover, plant cells undergo Programmed Cell Death in response 
to infection. When attacked by a pathogen, plants engage in a form of immune response 
which involves death of the tissue which surrounds the infected site. This phenomenon 
was named the ‘hypersensitive response’ because the plants which could respond and 
resist a pathogenic infection seemed to be “hypersensitive”, in the sense that abnormal 
cell death was observed in the sites of infection.22 Cell death is mediated by early 
massive production of Reactive Oxygen Species and by proteases. The morphology of 
dying cells in these tissues shares some characteristics of apoptosis such as chromatin 
condensation and protoplast retraction (shrinkage). However, the morphology of dying 
plant cells is in general more similar to necrosis of mammalian cells, with massive 
vacuolization. Intriguingly, caspase-like protease activities have been readily detected 
during several forms of cell death in plants and cell death can frequently be attenuated 
by the use of peptidic inhibitors of mammalian caspases. This has led to the proposal 
that cell death in plants can occur by apoptosis. Since there are no caspases in plants, it 
was proposed that their distant relatives, metacaspases, participate in apoptotic-like cell 
death of plants and unicellular organisms, but this is still under debate. Metacaspases 
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substrates.23 Moreover, it is unclear why plants would undergo apoptotic-like cell death, 
whose main purpose is, in opposition to other forms of cell death, to eliminate cells in 
����	��������	������������
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In animals, apoptotic bodies are rapidly eliminated by phagocytosis. However, the cell 
wall in plant cells would preclude any possible phagocytosis of dying cells.

¡	������	�����	����������������������������	�	����	��	����
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in unicellular organisms does not make much sense. However, yeast undergo a form 
of programmed cell death which resembles apoptosis. A number of stress-inducing 
agents such as UV radiation, acetic acid or antimicrobial peptides trigger apoptotic-like 
cell death which can be inhibited by inactivation of certain genes, including the yeast 
metacaspase Yca1. Moreover, apoptotic-like cell death has been shown to occur as 
a consequence of chronological aging. The “age” of the individual is determined, in 
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budding yeast, by the number of daughter cells that a mother cell produces. In strains 
which do not undergo asymmetric divisions, the concept of age is determined by the 
lifespan of postmitotic cells in culture media which is not replenished. It is believed 
�����
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because it saves limited nutrients for the healthy cells. Additionally, yeast cells infected 
with certain viruses secrete toxins which can induce necrotic-like or apoptotic-like 
features in neighboring non-infected cells. It can be hypothesized that programmed 
cell death contributes to limit the infection by isolating the virus, which would not be 
able to reproduce in neighboring dying cells. A number of apoptotic markers have been 
observed in dying yeast, including chromatin condensation, DNA fragmentation and 
phosphatidyl-serine exposure in the outer membrane, which is a feature of apoptosis 
which helps macrophages recognize and engulf apoptotic bodies. As in the case of 
plants, it is unclear why yeast would undergo an apoptotic-like form of programmed 
cell death, since they cannot phagocyte neighboring cells. And again, as with plants, 
it remains unclear whether the metacaspase present in S. cerevisiae is responsible for 
the caspase-like protease activities detected during yeast cell death.

Human unicellular eukaryotic parasites have also been shown to undergo cell death 
with apoptotic features.24�#	��	���������		��	��	����	�������	�� ��� ��	����	��	��
parasites Trypanosoma and Leishmania and it is frequently associated with production 
of Reactive Oxygen Species. The genes responsible for death, as well as the role in vivo 
of cell death still need characterization; for this reason, it might be a bit premature to 
assert that these organisms undergo programmed cell death. Cell death can frequently 
be inhibited by peptidic caspase inhibitors, but it has been shown in many cases that the 
metacaspases present in these organisms do not play a role in cell death in protozoans. 
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physiological role in trypanosomes and Leishmania is linked to cell cycle progression.25 
The putative role of a programmed form of cell death in unicellular parasites is unclear. 
Dying parasites have been detected inside infected macrophages and in the midgut 
of the insect vector which transmits the parasite to humans. It has been suggested 
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organisms in the insect. It could also contribute to limit parasite infection intensity in 
the human host, in order to reduce the risk of death of the host cell, which could boost 
an immune response.

Dictyostelium discoideum, or slime mold, is one of the non-animal organisms in 
which programmed cell death has been studied in more detail. Dictyostelium belongs 
to a group of eukaryotes named Amoebozoa. This organism is particularly interesting 
from an evolutionary point of view because it transitions from a unicellular to a 
pluricellular stage during its life cycle. Upon starvation, Dictyostelium individuals 
aggregate and form a fruiting body: a fungus-like structure with a stalk composed of 
dead cells. Massive autophagy is detected in dying cells and death has been shown to 
depend on autophagic genes but not on caspase-like activity. Dictyostelium is thus, 
with Drosophila and possibly some plant tissues, another organism whose cells undergo 
autophagic cell death during development.26

We can conclude that there are multiple programmed cell death programs in nature. 
Interestingly, cell death in some non-animal organisms is accompanied by features 
which resemble animal apoptosis. This suggests that an apoptotic-like program may 
have originated in primitive unicellular eukaryotes.
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HOST DEFENSE AND THE ORIGINS OF APOPTOSIS. 

PATHOGEN-SENSING COMPLEXES AND APOPTOSOMES 

ARE STRUCTURALLY SIMILAR
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which are no longer necessary, such as cells which played a role during development 
but are not needed in the adult, or immune cells after the pathogen has been cleared. The 
second purpose is the elimination of damaged cells, which may not be able to perform their 
function properly, or are potentially dangerous to the organism (for instance, cells with 
DNA damage which may lead to mutations). The third main function is the elimination 
of infected cells. Finding out which of these functions is older in evolutionary terms may 
help elucidate the origins of cell death. So, which one was the most ancestral function 
of apoptosis? Several pieces of evidence suggest that apoptosis originated as a means to 
eliminate infected cells and that this mechanism could have arisen in primitive organisms 
such as unicellular precursors of metazoans.

In 2002, James and Green27 proposed a theory to explain how a suicidal program 
could have originated in unicellular organisms: this would have occurred in the context 
of infection and self defense. The origins of a suicidal program in single-celled organisms 
are hard to understand, because the cells that acquired the ability to kill themselves would 
likely have a disadvantage and the emergence of “cheaters” with mutant genes would 
impair the maintenance of such a program. However, the emergence of such a process 
could be explained in the context of an infection. We can envision the situation as follows. 
In certain unicellular organisms, a program to detect a parasite engaged proteases, perhaps 
as a means to degrade pathogens upon infection. At certain point during evolution, these 
proteases acquired the ability to kill the infected cell upon detection of the pathogen. 
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genetically identical organisms, because this would limit the spread of the infection. 
And if the infected cell “cheated” or it contained a mutated version of the killer gene, 
it would die anyway from the infection. Therefore, in the long-term, the acquisition of 
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be maintained in multicellular organisms, in which the machinery could be “recycled” 
and used for more diverse funcions such as body sculpture. Let’s review some of the 
multiple links between the apoptotic machinery and immune responses which offer 
support to this hypothesis.

Perhaps the best piece of evidence in favor of an origin of apoptosis in the context 
of host defense is the fact that apoptosis-initiating complexes such as the apoptosome 
������������%��������������
	�	������������	�����������	����	��	�������������	����
other. Apaf-1, the nucleating component of the apoptosome, is very similar to a family 
of proteins that play immune roles: the NOD-like receptors. These proteins recognize 
intracellular pathogens and activate immune responses. Upon recognition of a pathogen 
or a danger signal, NOD-like receptors oligomerize and nucleate multiprotein complexes 
which then recruit caspase-1, which is a non-apoptotic caspase responsible for formation 
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interleukin-1.

NOD-like receptors are grouped in this family due to the presence of a conserved 
nucleotide-binding domain in the central regions of the molecule: a NOD domain, which 
is also present in Apaf-1. This domain is responsible for oligomerization of the molecule 
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and apoptosomes. Apart from the NOD domain, the other portions of NOD-like receptors 
contain a variety of different domains which include CARDs and Death Domains, which 
are domains present in apoptotic proteins. The structure of some NOD-like receptors 
resembles enormously the structure of Apaf-1, which contains a c-terminal WD40 domain 
(involved in the binding to cytochrome c), a NOD domain and an n-terminal CARD 
domain, responsible for recruitment of caspase-9 to the apoptosome.
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a Leucine Rich Repeat in the carboxyl termini, which is a ligand-recognition domain.28 
Apaf-1 differs from some human NOD-containing proteins because it contains the 
cytochrome c-binding WD40 domain instead of the Leucine Rich Repeat. This suggests 
an intriguing possibility. Is it possible that Apaf-1, like other NOD-containing proteins, 
was originally a molecule that recognized a bacterial component and triggered an immune 
response? This component would have been cytochrome c, which was a protein present 
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offer more pieces of evidence that point towards an immune origin of the Apaf-1-like 
proteins: some Apaf-1 homologs in cnidarians contain TIR domains. These domains are 
found in Toll-like receptors, which are proteins involved in recognition of extracellular 
pathogens.3 Moreover, the NOD domain in Apaf-1 is strikingly homologous to the 
NOD domain present in certain plant proteins which are involved in the Hypersensitive 
Response. These proteins, the R gene products, have Apaf-1 like NOD domains and also 
leucine rich repeats like mammalian NOD-like receptors. R gene products, upon pathogen 
detection, trigger an immune response that involves cell death, as discussed above. Given 
the similarity between all these proteins, it is very likely that Apaf-1 molecules were 
originally pathogen sensors.

As proposed by James and Green,27 molecules present in the surface of the mitochondrial 
endosymbiont such as cytochrome c may have originally triggered an immune response 
in the unicellular host, which was later suppressed when the association became mutually 
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certain point the cell “learnt” to control cytochrome c release, which perhaps became a 
signal associated with mitochondrial damage. This would then trigger a caspase cascade 
that would lead to cell death instead of an immune response. Cytochrome c release then 
became a central point of control of what became an essential mechanism to eliminate 
unnecessary cells: apoptosis.

NON-APOPTOTIC FUNCTIONS OF APOPTOTIC PROTEINS 

ARE RELATED TO IMMUNITY

As discussed above, there are four main groups of apoptotic proteins: caspases, 
Bcl-2 proteins, IAPs and Apaf-1- or FADD-like adapter molecules. Many of these 
proteins play roles in the immune response. Among the caspases, both the apoptotic 
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are activated when a pathogen or a danger signal is detected. Their proteolytic activity 
is linked to production of awareness signals to alert the immune system. However, these 
are not the only caspases with roles in immunity. Caspase-8, the apical caspase in the 



140 SELF AND NONSELF

�
�
�������	�����	�	
����
��������������������	��
�
���������
��	������������
������	��
in proliferation and immunity. As discussed above, pro-apoptotic activation of caspase-8 
usually occurs in response to a death ligand such as TNF. In most cells, however, the 
response to TNF-alpha (and to a lesser degree, to other death ligands) is not the induction 
of cell death but the activation of NF-kappaB, which occurs in a caspase-8-dependent 
manner. Caspase-8 is also required for proliferation of lymphocytes and activation of 
NF-kappaB after ligation of the T-cell receptor.29
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pathway similar to the mammalian extrinsic pathway, in which caspase-8 is the initiator 
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of the immune response against gram-negative bacteria, which is mediated through the 
_����	�&	���	����>_�&!����������������	�30 IMD is a protein which is activated after 
infection. Similar to death receptors, IMD contains a Death Domain and it presumably 
forms a DISC-like complex. IMD recruits Drosophila FADD (dFADD) and this leads to the 
activation of Dredd. The IMD pathway is thus very similar to the mammalian TNF-alpha 
signaling pathway as it involves Drosophila Caspase-8 (Dredd) and the FADD homolog. 
Similarly to what occurs in the human non-apoptotic TNF signaling pathway, the IMD 
pathway promotes the activation of NF-kappaB and this requires the caspase Dredd. The 
IMD pathway thus presents similarities with the TNF/apoptotic extrinsic pathway but 
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and adapter molecules in a complex with proteins that recognize pathogens. Thus, both 
caspases and the adapter protein FADD, which are apoptotic in humans, play roles in 
the immune response both in humans and insects.
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homology with a protein from a baculovirus which inhibits caspases. The well studied 
IAP from Drosophila DIAP1 is a caspase inhibitor which is critical for regulation of 
apoptosis during embryonic development. Its downregulation is enough to activate the 
initiator caspase DRONC and trigger apoptosis. In mammals, however, loss of IAPs per 
se usually does not lead to caspase activation and cell death. The main role of IAPs is 
related to immunity and activation of NF-kappaB. It has recently been shown that only 
one of the eight IAP proteins present in humans, XIAP, is a direct caspase inhibitor. 
cIAP1 and cIAP2 are evolutionarily related to XIAP and they inhibit apoptosis, although 
they do not inhibit caspase activity. These proteins have a similar structure to XIAP but 
they lack aminoacid residues involved in direct caspase activation, which suggests two 
possible scenarios: either some of these proteins lost the capability to directly inhibit 
caspases, or this function was acquired late during evolution.31 If this second scenario was 
true, what where their other, more ancient functions? In human cells, cIAPs participate 
in TNF receptor signaling. They are recruited to the DISC through indirect interactions 
with TNF receptors and they participate in TNF-mediated induction of NF-kappaB. cIAPs 
and paradoxically, also the sudden loss of cIAPs through chemical inhibition, activate 
both canonical and noncanonical NF-kappaB activation pathways.32

Activation of NF-�B seems to be a conserved function of IAP proteins even in 
invertebrates. DIAP1 is essential for apoptosis in Drosophila. It was recently acknowledged 
that another member of the IAP family, Drosophila IAP2, unlike DIAP1, is dispensable 
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gram-negative bacteria. DIAP2 mediates NF-�B activation in the IMD pathway.33 As 
mentioned before, the IMD pathway is activated in response to bacteria and it may involve 
the formation of a DISC-like complex with Drosophila FADD and Caspase-8 homologs.
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NAIP is another human IAP protein which does not play a role in apoptosis: it 
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Lastly, mammalian XIAP, which is a ����	��� caspase inhibitor, has also been shown to 
participate in NF-kappaB signaling after the detection of intracellular pathogens. Thus, 
IAPs and caspase-8, like other caspases and NOD-containing proteins, play major roles 
in immune signaling.

CONCLUSION AND PERSPECTIVES

Cell death is vital to life of multicellular organisms and it plays a role in maintenance 
of homeostasis of populations of unicellular organisms. It is unclear how cell death 
originated and it is possible that this process evolved independently in several lineages. 
The diversity of cell death programs described, which differ both in morphology of the 
dying cell and in the biochemical pathways responsible for their execution, suggests that 
there is not a common origin of all cell death programs. However, pathogen-recognition 
pathways are linked to cell death at least in animals and plants, which suggest that the 
origins of at least some forms of cell death are related to the ability of an organism to 
kill its own infected cells.

Apoptotic proteins have several alternative roles besides cell death. Some evidence 
suggests that these alternative roles were actually the ancestral functions of these proteins 
and that the currently ‘apoptotic’ proteins got recruited to the apoptotic machinery at 
different points during evolution. The exploration of these alternative roles would probably 
yield important information to solve the puzzle of the evolutionary origins of cell death.

Many questions remain to be solved. For instance, which are the most ancestral 
functions of caspases? Caspases do not only participate in immune function, but they also 
play roles in cell proliferation and differentiation.35 What are the roles of metacaspases? 
��	�
���	��	����
����	������	��	����������%�����������������		������	���	����	���
More intriguing is the issue of when Bcl-2 family proteins got recruited to the apoptotic 
machinery. Despite extensive searches, no Bcl-2 homolog has been found outside the 
animal kingdom. These proteins seem to have other conserved roles besides regulation 
of apoptosis; amongst these, the most relevant seem to be the regulation of mitochondrial 
dynamics and calcium homeostasis.36,37 Moreover, the role of these proteins in cell death 
has only been proven so far in C. elegans and vertebrates. Much work needs to be done 
in animals from other animal phyla to determine the ancestral role of these proteins, 
which are extremely relevant in human pathologies such as cancer. Maybe one day we 
will be able to explain how cell suicide, the most altruistic behavior possible, arose and 
was maintained during evolution.
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Abstract: Multicellular organisms have developed ways to recognize potentially life-threatening 
	�	����>����	��������!��#�������������	������������	��		���	��	�����	���	������
pathogen-associated molecular patterns (PAMPs) such as bacterial cell wall 
components (e.g., lipopolysaccharide and peptideglycan) or viral DNA/RNA. PAMPs 
interact with dedicated receptors on immune cells, so-called pattern recognition 
receptors (PRRs) and activate immune systems. A well-known family of PRRs 
�����	���%�"	��	�	
�����>��$�!����������	�����	��	���	������	�����
	������	��
of PAMPs. However, not only exogenous pathogens but also several endogenous 
molecules released from necrotic cells (damaged self) also activate immune systems. 
These endogenous adjuvants are called damage-associated molecular patterns 
(DAMPs). It has been reported that high-mobility group box 1 protein (HMGB1), 
uric acid, heat shock proteins (HSPs) and nucleotides act as endogenous adjuvants. 
&��<����	��	������	������
	������	�	
�����>����	���	�	
����!�	�
�	��	��������
on antigen-presenting cells such as dendritic cells and macrophages and induce cell 
�����������������	�
�����������������������������"��	������������������	�'�%�B 
pathway. In this chapter, we will review danger signals released from necrotic cells 
and its recognition receptors.

INTRODUCTION

In multicellular organisms, many unnecessary or harmful cells, such as those 
that are generated during development and normal tissue turn over, are eliminated by 
apoptosis.1,2 After undergoing apoptosis, cells are divided into small debris, called 
apoptotic bodies, with the plasma membrane remaining intact and then apoptotic cells 
are recognized and phagocytosed by ‘professional’ phagocytes, such as macrophages 
and dendritic cells (Fig. 1).3-5������
���	������	���	�	��	����	������������������������
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detect apoptotic cells that are not associated with phagocytes under physiological 
conditions. Rapid removal of apoptotic cells by phagocytes prevents the release of cellular 
components from dying cells (silent phagocytosis). Moreover, phagocytosis of apoptotic 
�	�������	���������%�������������	����������
�������������%����������������"��	��
(e.g., transforming growth factor � and IL-10).6,7 On the other hand, when cells are 
exposed to excessive physical or chemical stress (i.e., high or low temperature, strong 
acid or base, irregular osmotic pressure, mechanical damage and high concentration of 
detergent), cells die by necrosis.8�_�������������	���	���������	��	�����	�����
�
������
cells owing to extensive cell death induced by tissue injury/damage by bacterial or 
viral infection,9-12 ischemia,13,14 or acute myocardial infarction15,16 results in induction 
of secondary necrosis of dying cells.17 In necrotic cells, plasma membrane integrity 
is lost and cellular components are released into the extracellular space. Some of the 

Figure 1. Immune responses of phagocytes after engulfment of apoptotic and necrotic cells. Under 
physiological conditions, cells die by apoptosis. During apoptosis, cells are divided into small pieces 
(apoptotic bodies) with the plasma membrane integrity remaining intact. Then apoptotic cells are 
engulfed by phagocytes. In this process, phagocytes do not activate the immune system and maintain 
the anti-inflammatory condition (silent phagocytosis). On the other hand, when cells are exposed 
to excessive physical or chemical stresses, cells die by necrosis. In addition, defect of clearance 
of apoptotic cells leads to induction of secondary necrosis. Necrotic cells are also phagocytosed or 
endocytosed by phagocytes. However, the plasma membrane integrity of necrotic cells is lost and 
cellular components are leaked into the extracellular space. Among the released cellular components, 
immunostimulatory molecules are involved and these molecules are called danger signals. Danger 
signals activate phagocytes via danger receptors and induce the production of inflammatory cytokines.
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released components are potentially toxic or immunogenic and act as endogenous 
adjuvants that transmit danger signals from necrotic cells.18 Immune cells recognize 
����	��������������
	������	�	
��������	���%��	��¢����	���	�	
����^����������	���	�

�����������������������������"��	������������	�������������

DANGER SIGNALS FROM NECROTIC CELLS

High-Mobility Group Box 1 Protein (HMGB1)

HMGB1 is originally described as a DNA-binding protein that stabilizes 
nucleosomes and facilitates transcription in the nucleus.19 HMGB1 is normally bound 
loosely to chromatin, so when a cell becomes necrotic or leaky, HMGB1 is then 

�����	���		��	���������	����	�������
�����	���������������	�
���	��20 Released 
HMGB1 binds to the receptor for advanced glycated endproducts (RAGE), TLR2 
������$�����������	����	��	��	��������
������������������"��	��������	��"��	��
by immune cells.21-24�'	��������	����"��������{��������	����������������������
�	�
���	��� _�� �
�
������ �	��� ����{� ��� ������ ����� ��� ���������� �	����	� ���
generalized underacetylation of histone and is not released, which may help prevent 
���	�	������ ������������20 HMGB1 is also secreted actively by macrophages to 
act as a late mediator of endotoxaemia and sepsis.25 The production and secretion of 
HMGB1 is much later compared with those of tumor necrosis factor � (TNF-�) and 
���	�	�"��%{�>_�%{!��'	�������������������{�����������������������
	�������������	��
strongly protects against the lethal effects of endotoxin, suggesting that HMGB1 is 
a critical mediator in endotoxin shock.26 Although HMGB1 can promote directly the 
�	��	����� ��� 
�������������� ����"��	�� ���� ��	��"��	�� ��� �����	� �	��� ������

����	���	��������������{������	����	�"�
�����������������������27 One possible 
explanation for this discrepancy is that HMGB1 forms complexes with DNA, lipids and 

�����������������"��	��������	�	����������������������
	�	�����������������	�
cytokine production via TLRs or IL-1R.28-30

Uric Acid (UA)

To identify endogenous adjuvants, Shi et al fractionated cytosol from 
ultraviolet-irradiated BALB/c 3T3 cells by high-performance liquid chromatography 
>�<�#!������ ����������������� ��	����	����������
�����
�� 	����	�������~������
released from injured cells.31 UA is a natural product of the purine metabolic pathway 
and is soluble inside cells but once released from injured cells, uric acid readily forms 
into monosodium urate (MSU) microcrystals in the extracellular space. Crystalline uric 
acid stimulates dendritic cell maturation and, when coinjected with an antigen in vivo, 
������������	�����	����	��	�	�����������	�
���	�������#&�� T cells. Eliminating uric 
acid in vivo inhibits immune responses to antigens associated with transplanted syngeneic 
cells and the proliferation of autoreactive T cells in an experimental diabetes model.32 
In contrast, uric acid depletion does not attenuate the stimulation of T cells by mature, 
activated antigen-presenting cells, suggesting that uric acid affects antigen-presenting 
�	�������������	���������	������������������������~���������������
��
	���	���
most evident when it accumulates in tissues and causes gout. Interestingly, MSU 
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�������������	�����������	����	������������	�
������������������	�_�%{� and IL-18. 
�����
���	����������	��	���	������_�%{$������������������
��	�����������������	���
such as caspase-1, ASC and NALP3, are defective in MSU-induced cytokine secretion 
��������	=�	���������������33

Heat Shock Proteins (HSPs)

HSPs are a family of molecular chaperones which support the correct folding and 
refolding of nascent and misfolded proteins. Although HSPs are normally localized 
in the cytoplasmic region, once released from necrotic cells, extracellular HSPs have 
immunostimuratory properties. Basu et al reported that necrotic but not apoptotic cell death 
leads to the release of chaperones such as HSP70, HSP90, calreticulin and Gp96.34 Released 
��<���������	�&#�����������
���	�� ����	��	�	� ����������������"��	������ �����	�
expression of major histocompatibility complex (MHC) and costimulatory molecules (e.g., 
CD80 and CD86) through activation of NF-�B pathway. Several groups have reported 
that different HSPs can activate DCs and macrophages.35-37 To identify proteins that 
���������
?�������	��	���������	�������������������������
�����������������	���
?��
and found that CD91 is the surface receptor of Gp96.38 Basu et al subsequently reported 
that CD91 could be the common receptor for immunological HSPs, including HSP60, 
70, Gp96 and calreticulin.39 CD40 is a member of the tumor necrosis receptor family, 
plays a major role in antigen-presenting cell maturation and also functions as the HSP70 
receptor. Mycobacteria-derived HSP70 binds to CD40 and induces the maturation of 
antigen- presenting cells and the release of CC chemokines.40 It has also been reported that 
human HSP70 binds to CD40.41 Millar et al showed the essential role of CD40 in HSP70 
stimulation, which promotes antigen-presenting cell function and converts tolerogenic T 
cell to immunogenic T cell.42 HSP70 also binds to scavenger receptors, such as LOX-1, 
SREC-1 and FEEL-1, expressed on antigen-presenting cells and endothelial cells and 
each of these receptors can mediate HSP70 interaction.43-45 In addition, several C-type 
lectin receptor family members expressed on NK cells (NKG2A, NKG2C and NKD2D) 
interact with HSP70.46

DNA/RNA

RNA released from or associated with necrotic cells forms double-stranded structures 
that can stimulate TLR3 on dendritic cells, leading to interferon secretion.47,48 This 
�������������	�
���	�����	��������	�������	�������	�����
�	��	�������	��������	�������
RNAse. Genomic DNA is released from necrotic cells and stimulates antigen- presenting 
cells.49 Double-stranded but not single-stranded genomic DNA triggers antigen-presenting 
cells to up-regulate expression of MHC class I/II and various costimulatory molecules, 
enhances antigen-presenting cell function in vitro and improves primary cellular and 
humoral immune responses in vivo. These effects are dependent on the length and 
concentration of double-strand DNA but are independent of nucleotide sequence. 
Intracellular nucleotides such as ATP and UTP, which function in energy metabolism 
and are normally stored in the cytoplasm, are released from various cell types under 
conditions of hypoxia, ischemia and mechanical stress.50 Recently, it has been reported 
that ATP is released from the mitochondria of necrotic cells.51 These nucleotides can 
activate DCs mediated by the triggering of the purinergic receptors, P2Z/P2X7.52-54
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DANGER RECEPTORS FOR SENSING NECROTIC CELLS

Clec9A

C-type lectin Clec9A (DNGR-1) is selectively expressed at high levels by CD8�� 
dendritic cells.55,56 This subset of dendritic cells potently engulfs dead cells and 
cross-presents dead-cell-associated antigens to CD8� T cells.57,58 Clec9A preferentially 
�	��	�� ����	����	�� ����	�� ������ ����� ��� 	�
��	�� ��� �	������� �	��� #	�?�%�	���	���
CD8�� dendritic cells show a reduced ability of cross-presentation of necrotic-cell-derived 
�����	������������#	�?���	���	������	��������	����	�
�������������������������	�������
cells. Therefore, Clec9A is dispensable for the uptake of necrotic cells but necessary for 
	����	��������%
�	�	������������	��%�	%��������	�������	������#&��� dendritic cells. The 
cytoplasmic tail of Clec9A contains a hemITAM motif,59 which allows binding of SYK 
kinase.55 Loss of SYK kinase or substitution of tyrosine residue within the hemITAM 
of Clec9A blocks cross-presentation of necrotic cells, suggesting that SYK kinase is 
required for Clec9A signaling. The ligand of Clec9A is not characterized yet, which 
is predominantly localized in the cytoplasmic region and resistant to glycosidase and 
nuclease treatment but susceptible to the action of proteases, heat and acid.

Toll-Like Receptors (TLRs)

TLR3 has been shown to respond to double-stranded RNA derived from many viruses. 
Kariko et al reported that endogenous RNA released from or associated with necrotic 
cells stimulates TLR3 and induces immune activation of DCs, leading to interferon-alpha 
secretion, which could be abolished by pretreatment of necrotic cells with RNase.48 
Cavassani et al observed the involvement of TLR3 activation in the development of 
experimental polymicrobial septic peritonitis and ischemic gut injury in the absence of an 
exogenous viral stimulus.60�_����$`%�	���	������	������	��	����	��"��	�����"��	�	�	��
�����	����
����	������	����������	���	����	���������������������	�
���	������������~����
���	������	�	�����	�	�	�������������������	��"��	�������������	��������������=���"��
returned to the baseline in TLR3 KO mice and these mice were protected from the lethal 
	��	��������������	����������������������������������������%��$`�������������	����	��
��	������	���~������������	���������������	���������������������	��	��	���	
���%�����	��
������������	�	����	�������������	����������$`�������	������������	���
�����������������	�
responses and serves as an endogenous sensor of necrosis, independent of viral activation.

Mincle

Many of the C-type lectin receptor genes have been mapped to a cluster on mouse 
chromosome 6F2 and human chromosome 12p31.61 Among them is the gene encoding 
Mincle (also known as Clec4e or Clecsf9), a Type II transmembrane C-type lectin receptor 
expressed in macrophages. Mincle (macrophage-inducible C-type lectin) was originally 
��	����	���������<�%�������	�
���	��� ��������
���	������ ����	�
�	������ ������"	���
induced by several stresses in a C/EBP�-dependent manner.62��	�������	�	����	�������
Mincle possesses a positively charged arginine residue within the transmembrane region, 
suggesting that Mincle is associated with some ITAM-bearing adaptors, such as CD3�, 
FcR�, DAP12 or DAP10. Indeed, Mincle selectively associates with the FcR� chain but 
not with other adaptors. This association was mediated by charge because the elimination 
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of transmembrane charge by introducing R42I mutation in Mincle resulted in the complete 
loss of its binding capacity to the FcR� chain.63

To search for the physiological ligand for Mincle, we have established an indicator 
cell line expressing Mincle and FcR� together with the NFAT-GFP reporter. Intriguingly, 
when cells of this cell line were cultured without changing the medium for a few days, a 
large amount of GFP-positive population appeared. The generation of this GFP-positive 
population was blocked by incubation with a blocking antibody against Mincle, suggesting 
that ‘something’ in this culture condition acts as a Mincle ligand. Under this culture 
condition, a large number of propidium iodide (PI)-positive dead cells were continuously 
generated. In many cases, GFP� cells seem to be in the vicinity of PI� dead cells. 
We assumed that dead cells may provide a Mincle ligand. Indeed, the Ig-Mincle fusion 
protein selectively binds to AnnexinV�PI����	%�
�
����������	��������	���<��������������
��	�����	%��������
���	����������	�����	�����	��������	����	����	�������	���
���	����
splicing associating protein-130 (SAP-130) (Fig. 2).63 SAP-130 is a component of small 
nuclear ribonucleoprotein (snRNP), which is also a major autoantigen in autoimmune 
diseases such as SLE.64 One may ask how these nuclear proteins are recognized by 
Mincle. Interestingly, we found that a large amount of SAP130 is secreted into the 
supernatant from necrotic cells. Thus, the existence of SAP130 in the extracellular milieu 

Figure 2. Recognition of danger signals from self and nonself by Mincle receptor. A C-type lectin, 
Mincle, is expressed in activated macrophages and is constitutively associated with the ITAM-bearing 
adaptor molecule FcR�. Mincle binds to SAP130 released from necrotic cells and induces the production of 
����������������"��	�������	��������	�����������M. tuberculosis and the pathogenic fungus Malassezia. 
Mincle senses both self (necrotic cells from tissue damage) and nonself (invading pathogens) danger signals.
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would be a sign for massive cell death and Mincle may sense this sign. Experimentally, 
�����������%�����	����������	��	���������	��������	������������������	����
�����������	�
thymus.65����	�	���������	����
�������������������	������	����	������	�	�	�����"	�����
in vivo administration of anti-Mincle blocking mAb.63 Thus, Mincle is a critical receptor 
������	��	�������	���	�����	��"	�������������

In addition to damaged-self, we have recently determined that Mincle recognizes 
nonself pathogens as well, such as pathogenic fungi or Mycobacterium tuberculosis.66,67 
One of the ligands for Mincle was found to be a characteristic mycobacterial glycolipid, 
trehalose dimycolate (TDM).67 TDM-induced macrophage activation, such as NO 

���������� ��� �	��	����� ��� ������������ ����"��	��� ��� ���
	�	�� 	������	�� ���
����	%�	���	��������
���	����&���������������	����������������������������������
���������	����������	%�	���	������	�����	���
����������&�����	��		��"����������
major component of complete Freund’s adjuvant (CFA).68 Therefore, Mincle may be a 
critical transducer linking innate immunity to acquired immunity.

CONCLUSION AND FUTURE PROSPECTS

In 1989, Janeway proposed that innate immune systems discriminate self and nonself 
through pathogen-associated molecular patterns (PAMPs).69 Many PAMPs activate 
antigen-presenting cells mainly through TLR to evoke acquired immune responses.70 Some 
years later, Matzinger expanded Janeway’s theory; she proposed the “danger signal theory”, 
which states that the decision to respond or not to respond to a particular antigen depends 
on whether the antigen is “harmful or not” to our body. In this theory, damage-associated 
molecular patterns (DAMPs), which are released from damaged cells, are proposed to be 
determinants that trigger acquired immune responses.71 However, the precise molecular 
�	�������� ���	������ ����� �	���������� ���� ���� �	�� �		�� �����	��� ���	�� ����� ����	�
is markedly induced in the presence of several stresses, recognizes both PAMPs and 
DAMPs and activates antigen-presenting cells, Mincle might be a late-coming leading 
player mediating danger signals. The physiological advantages and potential risks of the 
�	�������������&��<������<��<���������	�������	����������������	������	������	��
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Abstract: This chapter provides an overview of our present understanding of mechanisms of 
sensing protein folding status and endoplasmic reticulum (ER) stress in eukaryotic 
cells. The ER folds and matures most secretory and transmembrane proteins. Mis- or 
unfolded proteins are sensed by specialized ER stress sensors, such as IRE1, PERK 
and ATF6, which initiate several cellular responses and signaling pathways to 
restore ER homeostasis. These intracellular signaling events are called the unfolded 
protein response (UPR). Here we focus on how ER stress and protein folding status 
in the ER are sensed by the ER stress sensors by summarizing results from recent 
structural, biochemical and genetic approaches.

INTRODUCTION

The accumulation of unfolded proteins in the lumen of the endoplasmic reticulum 
(ER) causes ER stress. The co-ordinated adaptive response to ER stress is called the 
unfolded protein response (UPR).1 The UPR is induced to re-establish ER homeostasis by 
upregulating the protein folding machinery of the ER and protein degradation pathways 
for ER-associated proteins, inhibiting general protein synthesis and degrading mRNAs 
encoding proteins targeted to the secretory pathway. Several transmembrane proteins of 
the ER, including the protein kinase-endoribonuclease IRE1, the protein kinase PERK 
and Type II transmembrane transcription factors such as ATF6 are activated by ER stress 
and co-ordinate these physiological responses to ER stress (Fig. 1). Of these ER stress 
sensors only IRE1 is conserved in all eukaryotes, including fungi, plants and animals. 
IRE1 possesses a cytosolic effector domain consisting of a serine/threonine protein kinase 
and endoribonuclease (RNase) domain with homology to RNase L.2-4 In response to ER 
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stress IRE1 autophosphorylates and activates its RNase domain.5 In the budding yeast 
Saccharomyces cerevisiae, the RNase domain of Ire1p cleaves exon-intron junctions in 
the mRNA encoding the basic leucine zipper (bZIP) transcription factor Hac1ip (Fig. 1).6 
The cleaved exons are ligated by tRNA ligase.7 Only spliced HAC1i��$'�����	����	����
translated into Hac1ip, which regulates a wide variety of genes to alleviate ER stress.8,9 Ire1p 
is the only known ER stress transducer in yeast. In contrast, mammalian cells possess two 
orthologs of Ire1p, IRE1� and IRE1�, another ER-localized Type I transmembrane protein 
kinase called PERK and several Type II transmembrane bZIP transcription factors that 
respond to ER stress. IRE1� and IRE1� cleave XBP1 mRNA in an analogous reaction to 
the HAC1 splicing reaction. Spliced XBP1 (XBP1s) activates expression of genes encoding 
ER-resident molecular chaperones, components of the ER-associated protein degradation 
(ERAD) machinery and phospholipid biosynthetic genes. IRE1 kinase activity-dependent 
formation of signaling complexes with the ubiquitin ligase TRAF2, the MAP kinase 
kinase kinase ASK1,10�������	�������������"����	�_��11��������	��������������������	�
immune response and apoptotic programs via the MAP kinases p38 and JNK and the 
transcription factor NF-�B. PERK attenuates general cap-dependent translation initiation 
by phosphorylating eukaryotic translation initiation factor 2� (eIF2�, Fig. 1).12-14 eIF2� 
phosphorylation-mediated translational arrest leads to the preferential translation of mRNAs 

Figure 1. A general overview of the unfolded protein response in yeast and mammals. Upon accumulation 
of unfolded proteins in the ER, IRE1 is activated and cleaves HAC1/XBP1 mRNA to remove an intron by 
a spliceosome-independent mechanism. The protein Hac1ip/XBP1s binds to UPRE or ERSE elements in 
promoters of target genes to activate transcription of these genes. Activated PERK phosphorylates eIF2� 
to attenuate cap-dependent translation. ATF6 is activated in response to ER stress and is translocated 
to the Golgi where it is cleaved by S1P and S2P proteases. Cleaved ATF6 translocates to the nucleus to 
activate transcription of target genes.
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containing several short upstream open reading frames (uORFs) in their 5� untranslated 
regions (5� UTRs), resulting in synthesis of the bZIP transcription factor ATF4.15-17 ATF4 
is mainly responsible for inducing the pro-apoptotic bZIP transcription factor CHOP in 
ER-stressed cells.18 PERK also phosphorylates the bZIP transcription factor NRF2, leading 
to disruption of cytosolic complexes between NRF2 and the cytoskeletal anchor protein 
KEAP1 and activation of an antioxidant response. Type II transmembrane transcription 
factors, such as ATF6, translocate to the Golgi complex upon ER stress,19,20 where their 
cytosolic bZIP transcription factor domains are released from the Golgi membrane by 
sequential cleavage by the Golgi-resident proteases S1P and S2P (Fig. 1).21,22 Activated 
ATF6 induces many ER chaperone genes, but also genes encoding proteins engaging in 
ERAD.23,24���	��������	
������	��<$���	�	���		���������	��	�	��������������	��
���	����
in the ER to activate downstream homeostatic, but also apoptotic responses, to ER stress. 
In this communication we will review mechanisms for how these diverse ER stress sensors 
sense the accumulation of unfolded proteins in the ER lumen.

SENSING OF ER STRESS BY IRE1

IRE1� ���� ��������� ��	����	�� ��� S. cerevisiae as a gene required for inositol 
prototrophy.25 Subsequently, two groups independently isolated mutations in IRE1 in 
screens for genes required for KAR2 activation by ER stress.2,3 Strains deleted for IRE1 
(ire1�!� ����� �� ������������ ���� ���� ���
	�	� �	�������� ��� ����������� ��� KAR2, PDI1 
>��
���	���������	�����	���	������	��$!�26 and �-galactosidase reporters under control 
of the Hac1ip binding site, the UPR element (UPRE).8,27,28 The IRE1 gene encodes an 
ER-resident Type I transmembrane protein with cytosolic serine/threonine protein kinase 
and RNase domains (Fig. 2A). The N-terminal domain resides in the ER, indicating that 
it may function in sensing ER stress.4,29-31 IRE1 is conserved in all eukaryotes with each 
two orthologs in mammals32,33 and plants.34-36 The ER luminal domains of these proteins 
share four regions of sequence conservation. This sequence conservation extends to 
the luminal domain of PERK, indicating that all IRE1 orthologs and PERK utilize a, 
common mechanism to survey protein folding status in the ER (Fig. 2B). Indeed, chimeras 
in which the ER luminal domains of mammalian or Caenorhabditis elegans IRE1, or 
C. elegans PERK were grafted onto the cytosolic effector domains of yeast Ire1p were 
fully functional.37 Because of this functional conservation between the ER luminal 
domains of IRE1 and PERK it is widely assumed that studies on the ER luminal domain 
of IRE1 will also provide insight into the function of the ER luminal domain of PERK. 
Mammalian IRE1� is expressed ubiquitously, for example in tissues such as placenta, 
liver and pancreas,32,38 whereas expression of IRE1� is limited to epithelial cells of the 
digestive tract.39 Disruption of the mouse IRE1� gene is embryonic lethal in homozygous 
ire1��/� offspring.38,40 In contrast, homozygous disruption of IRE1� has revealed no major 
abnormalities, but predisposes mice to colitis.39 A conceptual understanding for the need 
���������	
���	��%�
	�����_$�{�������������	�	�����	������	�����

Several models for ER stress sensing by IRE1 have been proposed. The most popular 
theory is the ‘competition’ model in which the ER luminal domain of IRE1 and unfolded 
proteins compete for binding to the molecular chaperone BiP.41,42 The crystal structure 
of a large portion of the ER luminal domain of Ire1p has led to the proposal of the major 
competing model, the direct ligand or unfolded protein binding model.43 These models 
will be discussed in the following section.
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Figure 2. ��	� ����	� ���� 	�	��� ��	� �������	�� ��� ��	� �������� 
��	�
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Figure 2, continued. Structure of the ER stress sensors. A) Schematic diagrams of IRE1, PERK 
and ATF6 (not to scale). Yeast (yBiP) and human (hBiP) BiP binding sites in IRE1 and PERK are 
indicated by lines. The core region required for signaling in Ire1p and the region in PERK required 
for oligomerization are also indicated by a line. Abbreviations: bZIP—basic leucine zipper domain, 
CD—conserved domain, GLS—Golgi localization sequence, LD—luminal domain, S1P—site 1 protease 
cleavage site, S2P—site 2 protease cleavage site, TAD—transcriptional activation domain, TM—
transmembrane domain. Glycosylation sites in ATF6 are indicated by branched trees. B) Sequence 
alignment of conserved regions in the luminal domains of IRE1 and PERK. Conserved residues are 
black underlined, similar residues grey underlined. Abbreviations: C.e.—Caenorhabditis elegans, 
H.s.—Homo sapiens, M.m.—Mus musculus and S.c.—Sacharomyces cerevisiae. Gen bank accession 
numbers: PERK (H.s.)—NP_004827, PERK (M.m.) NP_034251, PERK (C.e.)—AAL30829, IRE1� 
(H.s.)—O75460, IRE1� (H.s.)—Q76MJ5, IRE1 (C.e.)—NP_495701 and Ire1p (S.c.)—CAA77763. C) 
3.0 Å crystal structure of the luminal domain of yeast Ire1p (PDB entry 2BE1). D) 3.1 Å crystal 
structure of the luminal domain of human IRE1� (PDB entry 2HZ6). Arrows in (C) and (D) highlight 
the � helix that blocks access to the groove in human IRE1�.
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THE COMPETITION MODEL

The competition model is based on the law of mass action (Fig. 3A). In this model 
the ER luminal domain of IRE1 binds to the ER chaperone Kar2p/heavy chain-Binding 
Protein (BiP)/glucose-regulated protein of 78 kDa (GRP78) in the absence of ER 
stress. Upon ER stress an increase in unfolded proteins sequesters BiP away from 
the luminal domain of IRE1, unmasking di- or oligomerization motifs in the luminal 

Figure 3. Models for sensing of ER stress. A) The competition model. B) The BiP release model of 
Gething et al.65 C) The ligand binding model. D) The BiP ATPase restarting model of Prywes et al.94 
E) Activation of ATF6 by underglycosylation of newly synthesized ATF6. F) Activation of CREB-H 
by differential partitioning between ERAD and cleavage by S1P and S2P in the Golgi complex. 
Abbreviation: E/D—effector domain.
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domain. Considerable experimental evidence supports the competition model. Elevated 
expression of secretory proteins induces BiP.44,45 More slowly folding proteins displaying 
a prolonged interaction with BiP are stronger inducers of BiP than faster folding 
proteins.1,45-48 Overexpression of BiP, but not of the ER chaperone calreticulin or the 

���	���������	�����	���	�<&_�����	����	����	��<$�27,49-51 suggesting that BiP may be 
���
	������	�����	��	����������_$�{��&	��	��������	��$���������<�����	����������
for example by genetically removing its C-terminal HDEL retention sequence in yeast, 
induces expression of BiP52 and KAR2�HDEL ire1� yeast cells are not viable.53 Moreover, 
co-immunoprecipitation of BiP with IRE1 from ‘unstressed’ cells and a decrease in the 
amount of BiP co-immunoprecipitating with IRE1 in cells experiencing ER stress has 
been reported by several groups.41,42 Despite this large body of evidence in favor of 
the competition model, alternative explanations for these data weaken the conclusion 
that unfolded proteins activate IRE1 by sequestering BiP from its ER luminal domain. 
Overexpression of secretory cargo, especially slowly folding secretory pathway cargo, 
may induce an UPR and, therefore, provides little mechanistic insight into the mechanism 
of unfolded protein sensing utilized by the luminal domain of IRE1. Further, the function 
of the UPR is to restore homeostasis by adjusting the ER chaperone concentrations to 
the concentration of unfolded proteins in the ER. For this reason overexpression of BiP 
may attenuate the UPR because BiP overexpression decreases the unfolded protein 
concentration in the ER. Likewise, decreased BiP levels may increase the unfolded protein 
concentration, leading to activation of the UPR. Finally, interaction of BiP with IRE1 
may simply be a client-chaperone interaction that is decreased due to competition of an 
increased unfolded protein pool in ER stress due to competition for BiP. In conclusion, 
the current body of evidence does not separate the functions of BiP during ER luminal 
protein folding, and as a consequence unfolded protein concentration in the ER lumen, 
from a potential function of BiP as a direct regulator of IRE1.

In an attempt to separate these functions of BiP Kimata and coworkers54 used several 
temperature-sensitive mutations of BiP in yeast. BiP belongs to the HSP70 class of 
molecular chaperones which consist of a N-terminal ATPase and C-terminal substrate 
binding domain (SBD).55���<������������<�������������������������	��
���	�������	�	���
��<�����������&<���������������������������	��
���	�������������	��������������	��
	���
�������������������������������	����	���<��	���������������<��	��������������	������	�
SBD and capture of the bound substrate. ADP for ATP exchange, catalyzed by nucleotide 
exchange factors such as Sil1p and the GRP170 subfamily HSP70 of the ER, Lhs1p,56,57 
terminates the interaction of BiP with substrate. The KAR2 gene encoding BiP in yeast is 
an essential gene in yeast.58 Several conditional, temperature sensitive (ts) KAR2 alleles are 
available. ts mutations in the ATPase domain (kar2-113, kar2-159, kar2-191) trap Kar2p 
�����	���������������<%����������	����	�	�������������������������	���������	���������
domain (kar2-1, kar2-133) abolish interaction of Kar2p with unfolded substrates. At the 
restrictive temperature, ts mutations in the ATPase domain blocked activation of the UPR.54 
At the same time these mutants remained associated with Ire1p in ER-stressed cells. In 
contrast, ts mutations in the SBD constitutively activated the UPR and failed to interact with 
Ire1p.54 These data suggest that BiP is a negative regulator of Ire1p which interacts with 
Ire1p via its SBD. However, it again remains unclear to which extent these mutants allow 
separation of BiP functions in direct regulation of Ire1p and its functions in protein folding 
and polypeptide chain translocation into the ER. The ts SBD mutations should affect all 
substrate interactions thus leading to elevated unfolded protein levels even in the absence 
of ER stress. Kar2p ts mutations in the ATPase domain are severely defective in protein 
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translocation into the ER.59 This translocation defect may account for the severely blunted 
UPR in these mutants exposed to the ER stressor tunicamycin, which inhibits an early step 
in N-linked glycosylation60 and therefore requires protein synthesis and polypeptide chain 
translocation to cause ER stress.

Mapping and subsequent mutagenesis of BiP interaction regions in the luminal 
domain of Ire1p should address the shortcomings of the data supporting the competition 
model. To this end Kimata et al61������	����	��������	��������_�	{
��������	�����	������
based on a series of 10 amino acid deletion scanning mutants from the N-terminus of 
the luminal domain to the transmembrane domain. Subregion V near the transmembrane 
domain contains the BiP binding site in yeast Ire1p. Deletion of subregion V abolished 
co-immunoprecipitation of BiP with Ire1p, but also did, surprisingly, have no effect on the 
UPR. �V-Ire1p expressing cells retained full inducibility of the UPR and did not display 
an elevated basal UPR.62 These data strongly suggest that BiP release from Ire1p is not 
the primary event regulating Ire1p activity. Two other mutants, �145 and �226, were 
found to be constitutively bound to BiP, but ER stress still led to dimerization of these 
mutants, but not to activation of an UPRE-lacZ reporter.62 Deletion of the BiP binding 
sites in subregion V in �226 restored tunicamycin resistance to this mutant, but not to 
the �145 mutant. Either the �145 and ���������������	��������������������������������
inactive dimer, or BiP binding to the luminal domain controls another event than di- or 
oligomerization of Ire1p required for activation of the cytosolic domains. In contrast 
to subregions V and I, subregions II and IV were indispensable for activation. A ‘core’ 
mutant deleted for subregions I and V (also called a �I �V mutant) showed regulation 
by ER stress despite of constitutive self association and loss of the ability to bind BiP.63

These data suggest that subregions I and V redundantly control di- or oligomerization 
of Ire1p. Point mutations in S103 (S103P or S103R) rendered the core mutant constitutively 
active, which may involve conformational changes induced by these point mutations.63 
These data suggest the following activation model for yeast Ire1p. ER stress induces 
dimerization of Ire1p by inducing conformational changes in subregions I and V. Binding 
of BiP to subregion V may contribute to inhibition of dimerization of the core domain. 
After dimerization a second signal induces conformational changes in the core domain, 
explaining why �V-Ire1p and the core mutant are not constitutively active. BiP may 
inhibit reception of this second signal or conformational changes in the core domain, 
because the �145 and �226 mutants which form dimers and are bound to BiP do not 
signal.62���������	���������	����

���	�������	���������������	��{|`<�������������	�
did not constitutively activate Ire1p.63 Further, deletion of subregion V in the �226 
mutant restored the ability to signal to this mutant.62 In conclusion, the phenotypes of 
these Ire1p mutants, especially the phenotype of the �V mutant, strongly argue against 
the competition model.

THE BiP RELEASE MODEL

BiP may interact with Ire1p through its ATPase or substrate binding domain. In vitro, 
ATP dissociates BiP-Ire1p complexes,41,64 suggesting that the ADP-bound state of BiP 
interacts with Ire1p, which may not be consistent with the observation of ts ATPase 
mutants constitutively interacting with Ire1p.54 Gething and coworkers65 have shown 
that BiP interacts with Ire1p through lobe IB of its ATPase domain. These authors also 
showed that BiP mutants locked in the ATP-bound state, but not the ADP-bound state 
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interacted with Ire1p.65 These data are consistent with the behavior of the ts ATPase 
mutants reported by Kimata et al.54 The earlier reported ATP susceptibility of BiP-Ire1p 
���
	�	��������	�	���	��	�	���������������<���������	����	���������_���������������
an N-linked glycan into lobe IB of the ATPase domain did not affect the function of 
BiP in protein folding. However, this mutant (R85T) was not able to attenuate Ire1p 
signaling.65 A neighboring Q88E mutant was able to mitigate the UPR, whereas a 
Q88A mutant was not. The residue corresponding to Q88 displays chemical shift 
perturbations between the ATP- and ADP-bound states and after substrate binding in 
Thermus thermophilus DnaK suggesting that this residue undergoes conformational 
changes induced by substrate binding. Thus, movement of Q88 in BiP induced by 
binding of unfolded proteins to the substrate binding domain of ATP-bound BiP may 
induce ATP hydrolysis, conversion of BiP to the ADP-bound state and release from 
Ire1p. These data can be summarized in a ‘BiP release model’ (Fig. 3B). Whereas 
mechanistically more elegant than the competition model, the BiP release model has 
��������	�����	�
������	��	������������	��V Ire1p mutant.62 In addition, Q88E-Kar2p 
only rescued viability of kar2� ire1� cells, but not of kar2� cells, suggesting that the 
chaperone activity of Q88E-Kar2p may be compromised.

THE LIGAND BINDING MODEL

The 3.0 Å crystal structure of the yeast Ire1p core luminal domain revealed the 
presence of a major histocompatibility complex (MHC)-like peptide binding groove in 
the Ire1p dimer (Fig. 2C, D).43 Single point mutations in the dimer interface [interface 1 
(IF1), T226W or F247A] partially inactivated Ire1p, whereas the double mutant was nearly 
completely inactive. Likewise, mutation of amino acids forming the bottom of the groove of 
this MHC-like peptide binding pocket, M229, F285 and Y301, also interfered with 
activation of an UPRE-lacZ reporter, indicating the importance for the peptide binding 
pocket in function of Ire1p. Consistent with a peptide binding activity of this MHC-like 
������������	���������������	������������������	����_�	{
�
�	�	��������	����������
������	��������	�������	�������	���	����������61 indicating that the luminal domain may 
have chaperone activity. Credle and coworkers43 suggested that binding of unfolded 
proteins to Ire1p monomers induces dimerization via formation of the MHC-like peptide 
binding groove (Fig. 3C). The yeast luminal domain crystal structure also revealed a 
second crystallographic interface (IF2). Mutation of a residue in IF2 (W426A) severely 
attenuated activation of an UPRE-lacZ reporter,43������������������	���������	������������	��
order oligomeric cluster or at least linear array is formed by activated Ire1p in the ER 
�	�����	������������������	��	��	��������	���61 observed a punctuate staining for 
Ire1p in ER-stressed cells. In unstressed cells, a disperse, ER-localized staining for Ire1p 
was observed. Mutations leading to constitutive dimerization, i.e., the �I �V mutant, 
displayed a punctuate staining even in unstressed cells,61 whereas mutations in IF1 or IF2 
abolished this punctuate staining. These data suggest that Ire1p may form clusters and as 
a consequence signaling centers in vivo. Cluster formation of Ire1p using mCherry-tagged 
Ire1p was also reported by Aragón et al.66 HAC1 mRNA colocalizes with these clusters.66 
The reduced ability of IF1 and IF2 Ire1p mutants to activate UPRE-lacZ reporters suggests 
that cluster formation is a prerequisite for signaling by Ire1p. Strong co-operativity of 
RNase domains may provide an explanation for the requirement for clustering in signal 
transduction by Ire1p in vivo.67
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These data supporting direct interaction of Ire1p with unfolded proteins and clustering 
of Ire1p by unfolded proteins to form signaling centers are contradicted by the 3.1 Å crystal 
structure of the luminal domain of human IRE1�.68 The crystal structure of IRE1� also 
revealed an MHC-like groove formed by two monomers, but in contrast to the yeast 
protein this groove is too narrow to allow for peptide binding. Moreover, access to this 
groove is blocked by an � helix. Projection of the C termini indicates that the MHC-like 
grooves in yeast and human IRE1 face the ER membrane and hydrophobic residues lining 
the bottom of the groove of Ire1p are either buried in the groove of IRE1� or replaced 
by charged, hydrophilic amino acids, which are unlikely candidates for interaction with 
unfolded proteins.68 In solution, the luminal domain of IRE1� formed dimers and did not 
show any evidence for higher order arrangements in the crystal structure. For all these 
reasons, it seems unlikely that IRE1� directly interacts with unfolded proteins. Consistent 
with this conclusion is that the luminal domain of IRE1� does not possess chaperone 
activity in vitro.69 One possible explanation for these differences between the yeast and 
human proteins may be that both proteins use different mechanisms to sense unfolded 
proteins. However, conservation of function of the luminal domain from yeast to humans37 
����	�������	����	�������	��
�������������������������������	����	�������������	��	��
is that the leucine zippers of MafL and JunL could fully substitute for the luminal domain 
of Ire1p.37 The ability of heterologous dimerization domains, such as the leucine zipper 
domains, as a minimum suggests that one critical function of the luminal domain is to 

�����	��������
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������������	����������	=���	���������	�������������<�����	����	�	�
leucine zippers fold in the ER as in the cytosol, the ability of these chimeras to successfully 
splice HAC1 mRNA as well, if not better than WT Ire1p, also argues that clustering of 
the ER luminal domain may be dispensable, possibly because the cytosolic domains 
�	�����������	���������������	�������	����������	������	������������	�����	������������

SENSING OF ER STRESS BY PERK

Double stranded RNA activated protein kinase (PKR)-like ER kinase (PERK) or 
pancreatic eIF2�%��������"����	�><��!��������	
	��	������	����	�������������
��12-14 
PERK is a Type I transmembrane serine/threonine protein kinase. The protein kinase domain 
is localized in its cytosolic portion (Fig. 2A). The luminal domain of PERK has limited 
sequence homology to its counterpart in IRE1 (Fig. 2B). PERK phosphorylates Ser 51 
in eIF2� resulting in the attenuation of general protein synthesis.12,16 ER stress sensitivity 
of perk�/� cells can be partially rescued by the translation inhibitor cycloheximide.70 
Phosphorylation of eIF2� shuts down general translation by reducing the frequency of 
AUG codon recognition. However, a subset of mRNAs are selectively translated due to 
the presence of 5�UTR open reading frames in these mRNAs or the presence of internal 
ribosomal entry sites to promote cap independent translation initiation.71 Thus, PERK 
decreases the load of unfolded proteins in the ER by shutting off general protein synthesis. 
PERK also phosphorylates the bZIP transcription factor NRF2 to release NRF2 from 
cytoskeletal stores. NRF2 activates an antioxidant response to ER stress72-75 to deal with 
reactive oxygen species (ROS) produced in ER-stressed cells.76,77

The luminal domain of PERK oligomerizes in the presence of ER stress.41 The luminal 
domains of IRE1 and PERK show some homology (Fig. 2B). They are interchangeable 
in yeast and their function is evolutionary conserved.64 Compared to IRE1 considerably 
less work has been done on how PERK senses unfolded proteins, presumably because 
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lessons learnt from the luminal domain of IRE1 are thought to be applicable to the luminal 
domain of PERK. Nevertheless, informed by the competition model proposed for IRE1,41 
two groups have reported experimental data in support of such a model in regulation of 
PERK. Co-immunoprecipitation experiments have revealed that BiP and another molecular 
chaperone of the ER, the HSP90 family member GRP94, bind to the luminal domain of 
PERK in unstressed cells.41,78 In the presence of ER stress these interactions are lost.41,78 
The regions required for dimerization and BiP binding are separate in PERK.79 BiP may 
interfere with the oligomerization of the luminal domains by steric hindrance or inhibiting 
conformational changes in the luminal domain.80 The N-terminal domain lacking the BiP 
binding region is required for both oligomerization and activation of PERK. BiP may 
directly control PERK activation because PERK mutants lacking the BiP binding region 
were constitutively active.79

SENSING OF ER STRESS BY ATF6

Activating transcription factor 6 (ATF6) is the prototype for several Type II 
transmembrane basic leucine zipper (bZIP) transcription factors in the ER membrane 
that are activated by ER stress. There are two isoforms for ATF6, ATF6�21 (90 kDa) and 
ATF6�81 (110 kDa). Other Type II transmembrane bZIP proteins in the ER membrane are 
OASIS,82,83 CREB3/Luman,84 CREB-H,85,86 CREB487 and BBF2H7.88 These transcription 
factors consist of a bZIP and transcriptional activation domain in the cytosolic N-terminal 
region followed by a transmembrane segment and ER luminal domain (Fig. 2A). The ER 
luminal domains of these proteins serve as ER stress sensing domains. There is little to 
no sequence conservation between these luminal domains. Mechanistic studies on how 
these membrane-bound transcription factors sense ER stress have only been reported for 
a subset of these proteins.

Activation of ATF6 has been explained on the basis of the competition model 
(Fig. 3A). ATF6 is bound to BiP under nonstressed conditions, but upon ER stress it is 
released from BiP.20,89 BiP release unmasks two Golgi localization sequences, GLS1 and 
GLS2. GLS1 binds to BiP, while GLS2 stays inactive. On dissociation of BiP, GLS2 
translocates ATF6 to the Golgi. Thus BiP retains ATF6 in the ER by suppressing the 
activity of GLSs. BiP binding by itself is not responsible for retention of ATF6 in the ER 
�	����	����������<��������������	����	��	�����������������������������	���������������	�
ATF6 to the Golgi.20 These regions are conserved between ATF6� and ATF6�, suggesting 
that at least these two transcription factors share a common mechanism of activation. 
ATF6 is translocated to the Golgi via COPII vesicles89,90 and cleaved sequentially by the 
Golgi-resident proteases S1P and S2P. S1P cleaves in the luminal domain and S2P in 
the transmembrane domain,22 releasing the cytosolic transcription factor domain from 
the Golgi membrane. The activated, cytosolic fragment of ATF6 migrates to the nucleus 
and induces transcription of genes containing ATF/cAMP response elements (CRE) or 
ER stress elements (ERSE) I and II.91,92

Compared to its interaction with unfolded proteins the interaction of BiP with ATF6 
is stable,93 suggesting that BiP binds to ATF6 in its ADP-bound form. A point mutation 
in the SBD of human BiP (P495L), analogous to the kar2-1 mutation in yeast, inhibited 
binding of BiP to ATF6.93 A mutation in the BiP ATPase domain (T37G) prevented 
������������� ��� ��<� ����� ����� ��� ��<� ��	�� ��	�	� ���
	�	�� �	�	� 
����	�� ��� ��	�
presence of detergent. These data indicate that BiP recognizes ATF6 as an unfolded 
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client protein. However, ATP did not dissociate the BiP-ATF6 complex in vitro when 
this complex was isolated in the absence of detergent. Induction of ER stress with the 
�	���������	���&������������	����<%��������
	�	�����	�	����	������������
	�	��
of BiP with other unfolded substrates.93 Based on these data it has been suggested that 
ER stress restarts the ATP hydrolysis cycle of BiP bound to ATF6. Sequences in ATF6 
�	=���	�������	�����������	���<��������������	����	��		����	����	������	��	�	��������
required to understand why the ATP hydrolysis cycle of BiP bound to ATF6 is stalled.

An alternative mechanism for activation of ATF6 by ER stress has been proposed 
by Lee and coworkers.94,95 Lee et al reported that ATF6 is retained in the ER by the lectin 
chaperone calreticulin. ATF6 synthesized in ER-stressed cells is underglycosylated, which 
inhibits its interaction and retention by calreticulin in the ER. At the same time fully 
��������	�������������	����	����$�&���������	��������	�������������������������	��
ATF6 prevents retention of underglycosylated ATF6 in the ER through dimerization via 
the bZIP domains (Fig. 3E). For CREB-H, differential partitioning between ERAD and 
activating proteolytic release of its cytosolic transcription factor domain in unstressed 
and stressed cells has been proposed (Fig. 3F).86 Competitive inhibition of CREB-H 
targeting to the proteasome by elevated levels of unfolded proteins, which themselves 
are ERAD substrates, in stressed cells is one explanation for partitioning of CREB-H 
toward S1P and S2P cleavage in the Golgi of ER-stressed cells, provided that ERAD 
activity is limiting in ER-stressed cells. Alternatively, differential partitioning of CREB-H 
�����	��	����	�������	������	���	����	����
	�����#$��%������	�����������������������
selectively target CREB-H toward ERAD or activation in the Golgi by S1P and S2P. 
This model may also explain activation of other Type II transmembrane transcription 
factors, including ATF6� and ATF6�.

Another aspect of activation of these transcription factors is how they are distinguished 
from other unfolded proteins in the stressed ER to allow their sorting into COPII vesicles. 
��	���������������������������		�������������������	�%������������	�����������	�
bridges between two conserved cysteine residues. In the absence of ER stress, ATF6 is 
found as a monomer, dimer and oligomer in the ER.89,96,97 Under ER stress, reduction of 
������	������	����������	��������	�����	�������������������������������	������89,96,97 
This behavior is in contrast to other sensors of ER stress in that ATF6 depolymerizes 
on sensing ER stress, while IRE1 and PERK oligomerize. The authors suggested that 
reduction of ATF6 was carried out by an enzyme in the oxidizing environment of the ER 
in the presence of the reducing agent DTT and the nonreducing ER stressor tunicamycin. 
These data explain the longstanding observation that DTT is the most effective inducer of 
������	����	����	���	����������������	�	����	��	�
�����	�����������	
���	����������
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���	���������	�����	���	�������	��$�98 will provide 
further insights into the mechanism of ATF6 activation.

CONCLUSION

Three principal ER stress sensors exist in mammalian cells, IRE1, PERK and ATF6. 
Unfolded protein sensing for all three ER stress sensors has initially been explained on the 
basis of the competition model. For IRE1, and because of sequence and also functional 
conservation of luminal domain function between IRE1 and PERK, also PERK, more 
recent work has shown that the competition model cannot explain how these proteins 
sense ER stress. As an alternative explanation direct interaction with unfolded proteins of 
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the luminal domains of IRE1 and PERK was proposed. Experimental data supports this 
model for yeast Ire1p, but not human IRE1�. These discrepancies need to be resolved 
in future work. A conceptual problem with crosslinking of Ire1p by unfolded proteins 
is that rapid reversibility of the UPR, or in other words, inactivation of Ire1p by other 
�	����������	���������������	��������"	��_�	{
�����	�������������������	�����	������
����	���������������������
	�����¢�	����	����^���������	��	������$	�	������"���������
activation also suggests that ER stress sensing by ATF6 is more complex than predicted 
by the competition model. Here, experimental work needs to be extended to other 
Type II transmembrane transcription factors. In conclusion, despite considerable efforts 
to understand unfolded protein sensing by IRE1, PERK and ATF6 much more remains 
to be learnt.
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Abstract: Autophagy is a highly conserved mechanism which is essential for the maintenance 
of cellular homeostasis in response to cellular stress. Autophagy has been conserved 
from yeast to humans as a quality control process that is involved in the recognition 
and turnover of damaged proteins and organelles. It is also a response mechanism 
to nutrient starvation. In mammals, autophagy is involved in antigen presentation, 
��	����	�� ������������ ���� 
���	������ �������� �	����	�	�	�����	� ���	��	���
The decrease of autophagy during aging reduces the removal of damaged organelles 
and increases the accumulation of waste products in the cells. In this chapter, 
we review these aspects of autophagy along with their role in self-nonself distinction, 
their implication in innate and adaptive immune response, and its dysregulation in 
��	�
������������	�������������������������������	����	��	��

INTRODUCTION

Autophagy is a lysosomal-mediated process in which intracellular components 
are degraded. This adaptive mechanism occurs in response to stress and promotes 
the survival of the cell under these conditions. The stress conditions include nutrient 
starvation, invading microbes, or tumor formation. Autophagy is also involved 
in the clearing of defective proteins and damaged organelles. Therefore, it has an 
important physiological role in development, innate and adaptive immunity, cancer, 
neurodegenerative diseases, aging, and cell death. The importance of autophagy is 
�������	�������������	��������������	������������������������	��	�	���������	����	�����
the study of autophagy in yeast have orthologues in other eukaryotes, including human 
homologues. There are three forms of autophagy, designated as chaperone-mediated 
autophagy, microautophagy and macroautophage: (1) Chaperone-mediated autophagy 
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consists of the selective degradation of soluble proteins that are translocated into 
the lysosome by the chaperon hsc70 and the transmembrane protein LAMP-2A. (2) 
Microautophagy involves a direct capture of cytosolic components by the lysosome 
by invagination of its membrane. (3) Macroautophagy is a tightly regulated process in 
which a newly formed, double-membrane vesicle captures a proportion of cytoplasm 
that can include damaged organelles and eventually fuses with a lysosome.

Macroautophagy in yeast starts in the phagophore assembly site (PAS), which is a 
���	������
����������	������	��������	�
���	���������	�������	��������	
����������
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Here a new vesicle, the phagophore, appears, expands, and surrounds the portion 
of cytoplasm to be degraded. The vesicle enlargement and their fusion generates a 
double-membrane organelle, the autophagosome. Subsequently, the autophagosome 
fuses with a lysosome to form an autolysosome, and the autophagosome cargo, together 
with its inner membrane, is degraded by lysosomal enzymes. Eventually, the molecules 
generated in this process are released into the cytosol to be reused by the cell (Fig. 1A). 
Although a distinct PAS has not been found in humans and other higher eukaryotes, the 
phagophore, which is a group of multiple membranes throughout the cytosol, appears 
and eventually fuses to form a unique membrane around the material to be degraded.

Macrophagy (which we will call simply autophagy in this chapter) evolved in 
unicellular eukaryotes, in which the supply of nutrients depends on their availability 
in the environment. Unicellular eukaryotes must be able to react to unfavorable 
conditions in which precursors for proteins or other necessary components are not 
available. Autophagy is one mechanism that allows cell survival in these stressful 
situations. Autophagy recycles existing cytoplasmic components to generate the 
molecules that are required to sustain the most vital cellular functions. Surprisingly, 
autophagy is a highly conserved system that has been maintained in metazoans, in 
which the concentration of extracellular nutrients is normally controlled. Autophagy is 
essential during times of inadequate nutrients because cells need adequate precursors 
or building blocks to support basic functions to maintain their viability.1 For example, 
cells could need amino acids and ATP that can be obtained by the degradation of 
cytoplasmic components. These generated metabolites can be recycled to synthesize 
new proteins or to obtain ATP. One situation in which the reuse of cellular components 
is crucial for survival is during neonatal starvation. Soon after birth, mammals face a 
severe period of starvation until milk provides the nutrient supply. Autophagy remains 
at a low level throughout the embryonic period but is extensively induced in various 
tissues, such as heart muscle, diaphragm and alveolar cells, after birth. Several studies 
���	���������������	��	���	������
���	�����	��	�����������
����������������@�����
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In addition to its crucial role during starvation, autophagy also contributes to cell 
viability through the removal of damaged organelles, in particular mitochondria, and the 
disposal of aggregated proteins during hypoxia. Age-related accumulation of damaged 
organelles is related to a failure of autophagy which removes damaged organelles by a 
poorly understood mechanism.4 Suppression of autophagy can trigger the accumulation 
of aggregated proteins, which play an important role in age-related diseases, including 
neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease and 
Huntington’s disease.5 Hypoxia is also a stressful situation in which upregulation of 
autophagy appears to be protective. Its protective function against hypoxia has been 
studied especially in ischemic injury during heart failure.6
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For simplicity we will consider the proteins and protein complexes described in 
the human autophagy pathways. We will review the protein complexes involved in 
autophagy, the signals that regulate this process, and the signaling pathways implicated. 
�	��������������	���	���	��������
����������������������
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�������	��	��������	�
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against intracellular pathogens.

Figure 1. Cellular and molecular events in autophagy. A) Creation and expansion of the phagophore, 
formation of the autophagosome and fusion of the outer membrane of the autophagosome with a 
lysosome. The autolysosome content is degraded and the resulting molecules are released into the 
cytosol. B) Molecular events involved in the expansion of the phagophore membrane.
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AUTOPHAGY MACHINERY

The understanding of the molecular machinery implicated in autophagy began with the 
discovery of the autophagy-related (ATG) genes in yeast. Currently, more than 30 ATG 
�	�	�����	��		����	����	�����������	�����	��		����	����	���������������	�	��	�	�����
other eukaryotes. In humans, the pathways involve genes that are analogous to those 
found in yeast as well as other genes that do not have a known counterpart (Table 1). 
Proteins encoded by these genes generally form multi-protein complexes that comprise 
the ‘core’ autophagy machinery and are essential for autophagosome formation.7 Other 
proteins have a role in its regulation. The core machinery in mammals is composed of 
four complexes: The unc51-like kinase (ULK) complex, the phosphatidyl inositol 3-kinase 
(PI3K) complex, the ubiquitin-like proteins (Atg12 and LC3), and the membrane protein 
mATG9 and related proteins.

The ULK complex in humans contains the ULK1/2, mAtg13 and FIP200 proteins. 
ULK1 and ULK2 proteins are homologues of yeast Atg1; mAtg13 and FIP200 are 
homologues of yeast Atg13 and Atg17, respectively.8,9 mTORC1 regulates the activity 
of ULK complex by selective binding that is dependent on the nutrient conditions, as we 
will discuss later. The ULK complex is essential for the autophagy induction.

Table 1. Molecular machinery of autophagy. Mammalian genes and their orthologues 
in yeast

Function Mammals Yeast

Induction of autophagy
ULK1 Atg1
ULK2
FIP200 Atg17
Atg13 Atg13
Atg9 Atg9
WIPI Atg18

Vesicle nucleation
Class II PI3P
Beclin 1 Atg6
Barkor or Atg14L Atg14
URAG Vsp38
p150

Maduration
Atg12 Atg12
Atg5 Atg5
Atg7 Atg7
Atg10 Atg10
Atg16L Atg16
Atg4 Atg4
Atg3 Atg3
LC3 Atg8
Atg9 Atg9
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The mammalian class III PI3PK complex (PI3KC3) is composed of Vps34 (essential 
for the kinase activity), p150, Beclin 1 and Atg14-like protein (also known as Barkor). 
PI3KC3 phosphorylates phosphatidyl inositol (PI), generating phosphatidyl inositol 
3-phosphate (PI3P). PI3P is required for autophagosome formation since it mediates 
vesicle nucleation. There are two additional PI3PC3 complexes: The UVRAG complex 
includes UVRAG and the rubicon complex in place of Atg14L. These three complexes 
act differently: Atg14L complex has a role in the formation of autophagosomes, the 
UVRAG complex acts in autophagosome maturation, and the Rubicon complex inhibits 
autophagosome maturation.10

The conjugations of ubiquitin-like proteins, Atg12 and LC3, are mediated by 
several proteins (Atg7, Atg10 and Atg5 for Atg12; Atg7 and Atg3 for LC3) and have 
been proposed to occur during the expansion of the phagophore membrane.11,12 Atg7 and 
Atg10 mediate the conjugation of Atg12 and Atg5. The noncovalent association of 
multiple Atg12-Atg5 conjugates with Atg16L proteins generates the Atg16 complex 
(Fig. 1B). Atg4 cleaves LC3, which generates a protein fragment (LC3-I). LC3-1 binds 
covalently with a phosphatidyl ethanolamine (PE) molecule by the action of Atg7 and 
Atg3, and becomes a nonsoluble conjugate called LC3-II which is associated with the 
autophagosome’s outer membrane.

Atg9 is another core protein that is highly conserved across species. This 
transmembrane protein is also required for mammalian autophagy. It colocates with LC3 
positive autophagosomes, and is also found in several vesicles such as late endosomes and 
the trans-Golgi membranes. The function of mAtg9 protein is still unknown, although it 
might deliver lipids or other components to the forming autophagosomes.13-15

REGULATION OF AUTOPHAGY

Autophagy is a basal process that helps maintain cellular homeostasis. The 
elimination of defective proteins, aggregates of proteins and damaged organelles 
is part of the normal cellular turnover which involves autophagy. The importance 
of basal autophagy was revealed in animal models: The suppression of autophagy 
triggered neurodegenerative diseases.16,17 Autophagy is also required when critical 
changes occur in the environment and the organism cannot provide an appropriate 
physiological response, as in starvation conditions.1 These processes are regulated by 
several key components: mTOR and the kinases c-JUN N-terminal kinase 1 (JNK1) 
and the death-associated kinase (DAPK) (Fig. 2).18,19 mTOR (mammalian target of 
rapamycin) is a large protein kinase that forms two distinct multi-protein complexes, 
mTORC1 and mTORC2. The mTORC1 complex is involved in autophagy regulation 
��	�	�����	���	�������$#���������
������	������	����	������	�20 mTORC1 consists 
of the mTOR catalytic subunit and the four associated proteins, raptor, G�L/mLst8, 
PRAS40, and DEPTOR. mTORC1 a key inhibitor of autophagy, integrates multiple 
upstream signals associated with the regulation of autophagy (see below) and inhibits 
the ULK complex, an inducer of autophagy. mTORC1 interacts with the ULK complex 
and induces phosphorylation of ULK1/2 and Atg13, which inhibits ULK complex 
activity. Conversely, conditions that trigger autophagy such as nutrient starvation 
causes mTORC1 to dissociate from the ULK complex. The ULK complex undergoes 
conformational changes and becomes active.20-22
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JNK1 and DAPK are involved in the regulation of the PI3KC3 complex. During this 
process, the anti-apoptotic protein B-cell lymphoma/leukemia (Bcl)-2 binds Beclin 1 and 
inhibits the PI3KC3 complex. PI3KC3, which is essential for the nucleation and assembly 
of the phagophore, is only active when Beclin 1 dissociates from Bcl-2. This indicates that 
the anti-apoptotic activity of Bcl-2 is distinct from it anti-autophagic activity.10 JNK1 and 
DAPK induce autophagy by phosphorylating Beclin 1, which promotes dissociation of 
the Beclin-1/Bcl-2 complex. The JNK1 and DAPK kinases are involved in autophagy 
regulation in response to stress.10 Bcl-2 can also be dissociated from Beclin 1 by mechanisms 
independent of phosphorylation. For example, MyD88 and TRIF, two Toll-like receptor 
adaptor proteins, interact with Beclin 1, reduce Beclin 1 binding to Bcl-2 and lead to 
autophagy. In this way, Toll-like receptors can trigger autophagy.23

Figure 2. Regulation of autophagy in mammalian cells. Autophagy is regulated by nutrients, growth 
factors and stress. In this process mTORC1 has an essential role, although there are also some 
mTORC1-independent types of regulation, such as the regulation of the PI3KC3 by JNK-1 and DAPK.
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SIGNALING REGULATION OF AUTOPHAGY

Autophagy participates in the regulation of growth and metabolism in response to 
environmental changes. During starvation, a decline in the intracellular concentration 
��������������� �����	������
������������	������������������	��
	����� �����
���	��
proteins to enter cells. Their intracellular concentration is detected by the mTORC1 
complex. The increase of amino acid concentration leads to mTOC1 activation, which 
downregulates autophagy. mTORC1 may detect the different amino acids via diverse 
mechanisms. It has been proposed that Rag GTPases mediate amino acid activation of 
mTORC1 in a process mediated by the GTP-loaded Rheb (Ras homolog enriched in brain). 
The GTP-loaded Rheb interacts directly and activates mTORC1.24,25 PI3KC3 (hVps34) may 
also be involved in the regulation of mTORC1 by amino acids.26 Other unknown pathways 
may also be involved or amino acids concentrations may be sensed by mTORC1 directly.

mTORC1 is also involved in the regulation of autophagy by insulin or insulin-like 
growth factors (IGFs). These factors activate mTORC1 via the class I phosphatidyl 
inositol 3-kinase (PI3KC1) complex that inhibits autophagy, in contrast to PI3KC3 
(reviewed in ref. 7). The binding of insulin or IGFs to their receptor lead to its 
autophosporylation, which results in the recruitment and phosphorylation of the insulin 
receptor substrate (IRS) that binds to PI3KC1. Then, PI3KC1 catalyzes the generation of 
PI3P at the cell membrane, subsequently recruits PBK/Akt and PDK1 to the membrane, 
and activates PBK/Akt via PDK1. Activated PBK/Akt phosphorylates the heterodimer 
of tuberous sclerosis protein (TSC)-1 (hamartin) and TSC-2 (tuberin) which disrupts and 
inactivates the TSC-1/TSC-2 heterodimer. Functional TSC-1/TSC-2 is a GTPase-activating 
protein for Rheb, which binds to and activates mTORC1 in its GTP-bound form.

The level of cellular energy also regulates mTORC1. A reduction in the level of cellular 
energy (low ATP/AMP ratio) triggers its inactivation. The AMP-activated protein kinase 
(AMPK) in conjunction with LKB1 kinase acts as a sensor of the cellular energy. A low 
ATP/AMP ratio activates AMPK, which results in the subsequent phosphorylation and 
disruption of the TSC1/TSC2 heterodimer and ultimately the inhibition of mTORC1.27 
Activated AMPK also stimulates pathways that generate ATP as fatty acid oxidation.

There are other stress signals that induce autophagy such as hypoxia and endoplasmic 
reticulum (ER) stress. Hypoxia induces the hypoxia-induced factor (HIF)-1, a transcription 
factor that promotes the transcription of hundreds of genes in response to low levels of 
oxygen. One of these genes encoded the regulated in development and DNA damage 
(REDD)-1 protein,28 which downregulates mTORC1 via the TSC1-TSC2 complex.29 
The response to hypoxia also can be HIF-1 independent via the protein kinase C� 
(PKC�)-JNK1 pathway.30 ER-activated autophagy is triggered by the accumulation of 
unfolded proteins (reviewed in ref. 31). Many misfolded proteins show a tendency to 
polymerize and form insoluble aggregates that cannot be reached by enzymes normally 
involved in their degradation. This situation activates autophagy by multiple signals, 
such as PERK and IRE1 pathways and calcium-mediated signalling. The PERK 
pathway involves eIF2�, which is necessary for the conversion of LC3-I to LC3-II and 
increases the transcription of Atg12. JNK1 participate in the IRE1 pathway and induces 
autophagy by interfering in the interaction between Bcl-2 and Beclin 1. JNK1 triggers 
the liberation of Beclin 1 and induces autophagy.32,33 The release of Ca2� from the RE to 
the cytosol also induces autophagy. The increase in the cytosolic calcium activates the 
calmodulin-dependent kinase kinase-� (CaMKK�). CaMKK� activates AMPK which 
induces autophagy as seen previously.34
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AUTOPHAGY AND CELL DEATH

Cell death is a normal event that occurs in healthy organisms. Thus, just as cells 
destroy and renew their organelles or other molecular components, cells die and are 
renewed in a given organism. Several forms of cell death include apoptosis, autophagic cell 
death, and necrosis. Apoptosis, also known as Type I cell death or programmed cell death, 
results in the condensation of nuclear chromatin and DNA fragmentation. Autophagy is 
denoted as Type 2 cell death. Necrosis, also called Type 3 cell death, has been generally 
considered as an uncontrolled form of death, although it probably undergoes a type of 
regulation. Autophagy generally preserves cells when they are subjected to stress, protecting 
them from cell death under these conditions. However, in some cases autophagy acts 
as a distinct form of cell death and depends on the type and degree of environmental 
stimuli.35 Autophagy and apoptosis are different processes that generally use inverse 
regulatory signals. For example, autophagy induction in conditions of stress generally 
protects cells against apoptosis; conversely, inhibition of autophagy leads in many cases 
to a higher susceptibility to apoptosis.36 The molecular pathways involved in autophagy 
and apoptosis as far as their regulatory mechanisms are different. However, mammals 
(but not in unicellular organisms) have proteins that are involved in the regulation of 
both activities, such as the Bcl-2 protein family.10

Bcl-2 family of proteins contains at least one Bcl-2 homology (BH) region. In 
humans and other mammals, this family comprises (1) The anti-apoptotic multidomain 
proteins (such as Bcl-2 and Bcl-XL), which contain four BH domains (BH1, BH2, BH3 
and BH4), (2) The pro-apoptotic multidomain proteins (such as Bax and Bak), which 
contain three BH domains (BH1, BH2 and BH3), and (3) The pro-apoptotic BH3-only 
protein family (such as Bad and Noxa). Bax and Bak are necessary for the mitochondrial 
outer membrane permeabilization (MOMP). They form channels in this membrane, which 
release apoptosis-inducing proteins that are normally present in the space between the 
outer and inner membranes and induce apoptosis in this manner. On the contrary, the 
anti-apoptotic Bcl-2 and Bcl-XL reside in mitochondria, stabilize their membranes by 
an incompletely elucidated mechanism and prevent apoptosis.37 The pro-apoptotic protein 
BH3 domain can bind to a binding groove in Bcl-2 and Bcl-XL and inhibit the function of 
Bcl-2 and Bcl-XL. One component of the PI3KC3, the protein Beclin 1, also contains a 
BH3 domain that can interact with Bcl-2 and Bcl-XL. This interaction inhibits autophagy.

Two mechanisms disrupt the interaction between Bcl-2 proteins and Beclin 1, and 
therefore, induce autophagy. First, as aforementioned, cell stress activates JNK1 and 
DAPK proteins which phosphorylate Beclin 1. Second, proteins with BH3 domains that 
bind to the BH3-binding groove of Bcl-2 and Bcl-XL block their binding to Beclin 1. 
Although autophagy and apoptosis are interconnected by common regulatory proteins, 
we still need to elucidate the environmental or intracellular conditions that trigger cell 
death by apoptosis or by autophagy and the converse conditions that lead to the use of 
autophagy as a stress adaptation to maintain cell viability and therefore suppress apoptosis.

AUTOPHAGY AND AGING

aging involves an accumulation of intracellular waste consisting of defective and 
damaged cellular components that interfere with normal cellular activity. Accumulated 
waste is due to the decline of autophagic degradation since one of its functions is 
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to carry out a quality control surveillance and maintenance of the cell components. 
Therefore, autophagy has been suggested as a mechanism involved in aging and longevity 
(reviewed in refs. 38,39). There are several animal models that have been used in these 
studies. First, the nematode Caenorhabditis elegans����	���	����	���	�	����������������
�����	��������	�
��������	�	��	��	�����������
��������	��C elegans undergoes caloric 
restriction, a treatment that increases autophagy, its lifespan is increased. Conversely, 
the inhibition of genes required for autophagy using RNAi, such as Atg-7 or Atg-12, 
shortened it lifespan. Likewise, the knockout of bec-1 (ortholog of mammalian Beclin-1) 
also shortened the lifespan of C elegans.40

Several known longevity factors, such as SIRT1 and p53 have been implicated in 
autophagy. The Sir2 protein, which is a SIRT1 homolog in yeast, can extend the life span 
of yeast. SIRT1, a class III protein deacetylase ubiquitously expressed in different organs, 
regulates cellular metabolism, and has been associated with aging. Interestingly, SIRT1 
has a role in the regulation of autophagy.41 Chronic caloric restriction increases the level 
of SIRT1 and mice that are defective in SIRT1 do not completely activate autophagy. 
In these animals, the introduction of SIRT1 restores autophagy. SIRT1 deacetylates 
cytoplasmic proteins involved in autophagy, such as Atg5, Atg7 and LC3 although it 
also could act by deacetylating histones. This result indicates that the previously known 
effects of SIRT1 in longevity could be mediated by autophagy and, on the other hand, 
SIRT1 may be an important regulator of autophagy. With regard to p53, the knockout 
of its orthologue in C elegans, CEP-1, induces an extension of lifespan.42 CEP-1 is an 
inhibitor of autophagy. Thus, depletion or inhibition of p53 induces autophagy whereas 
cytoplasmic p53 represses it.43

Autophagy can also be related to the maintenance of balance. One study described 
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for autophagosome maturation, showed a balance disorder related with an inner ear 
developmental defect.44 These mice showed defects in the development of the calcium 
carbonate crystals (otoconia) essential for the sense of balance. This defect could be 
related to age-related degeneration of vestibular otoconia and therefore related with the 
decline of autophagy with age.

AUTOPHAGY IN INNATE AND ADAPTIVE IMMUNOLOGY

Autophagy Regulation by Immune Signals

Autophagy has important functions in many aspects of the immune response, both 
innate and adaptive. It is involved in processes such as Toll-like receptor (TLR) response 
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�����	���������	��
�	�	���������
�����	���	����������������	������������������������
Cytokines can induce autophagy in some cases or conversely, suppress it in other cases 
(reviewed in refs. 45-47). Likewise, autophagy is involved in the pathology of certain 
���������������	��	����������#����^�����	��	�>#&!�

Recently, the signaling pathways leading to activation of autophagy during the immune 
response have been described. Some of the immune signals that induce autophagy include 
IFN-�, TNF, CD40-CD40L interactions and TLRs. In contrast, autophagy is negatively 
regulated by T helper Type 2 cytokines, interleukin (IL)-4 and IL-13. TLRs are a type 
of pattern recognition receptors (PRRs), which detect molecular structures shared by 
pathogens. They are membrane receptors located at the cell surface, like TLR2, or 
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lipopolysaccharide (LPS) derived from cell walls or viral single strand RNA (ssRNA), 
they induce the maturation of phagosomes.48 The stimulation of TLR2 with zymosan 
(a cell wall component of fungi that is recognized by TLR2) triggers the recruitment 
of the autophagosome marker LC3 to the phagosome. The adaptor molecule MyD88 is 
not required, although possibly involved, in this process. These data indicate that the 
pathway involved in the TLR2 induction of autophagy is unknown.49 The induction of 
autophagy by LPS involves TLR4. The signaling pathways include the adaptor TRIF, 
the receptor-interacting protein (RIP)-1 and the p38 mitogen-activated protein kinase, 
but not MyD88.

TLR induction of autophagy is important in the destruction of mycobacterias.50 
TLR7 signalling also contributes to the induction of autophagy in macrophages and 
dendritic cells in response to pathogen invasion. TLR7 is expressed in endosomes where 
it detects viral ssRNA. TLR7 stimulation activates autophagy through MyD88 and also 
stimulates production of Type I IFNs, an important promoter of innate immune response. 
Therefore, viral recognition via TLR7 can induce IFN production during the innate 
immune response, and TLR7 stimulation reduces viability of mycobacteria in infected 
macrophages.51 The importance of autophagy during immune responses is also supported 
by the existence of evasive strategies developed by some pathogens. For example, the 
herpes simplex virus Type I (HSV-1) encodes a neurovirulence protein ICP34.5, which is 
expressed early, binds to Beclin 1, and inhibits autophagy function.52 Escape mechanisms 
have also been described in bacteria such as Brucella, Shigella, Listeria, and others.53,54 
Shigella evades autophagy by secreting IcsB that inhibits autophagy by competing with 
the protein VirG for the binding to the autophagic protein Atg5. Shigella needs VirG for 
intracellular actin-based motility. However, VirG binds to Atg5 and triggers autophagy, 
which can clear the infection.53

Type I IFN production is also induced by TLR9 in plamacytoid dendritic cells 
(pDCs) by the same signaling pathways induced by TLR7.55,56 These two receptors 
share the pathways involved in autophagy. TLR9 recognizes viral double-stranded 
DNA, such as herpes simplex virus, and is involved in antigen capture and presentation 
by pDCs. B cells constitutively express TLRs, such as TLR7 and TLR9, as well as 
their characteristic B-cell receptors (BCRs). Although both types of receptors initiate 
downstream independent signaling pathways, TLR9 and BCRs can act synergistically. 
For this reason, DNA-containing antigens can induce hyperactivation of B cells, which 
could produce a strong response to common antigens in these cells, as occurs in systemic 
lupus erythematosus (SLE).57� ���� ��� �� �������� ������������ ���	��	� ����� ���� ���	���
multiple organs such as skin, joints, and kidneys. SLE pathogenesis involves IFN� and 
autoantibodies that recognize self cellular components such as complexes of proteins and 
nucleic acids. The autoantibodies can form immune complexes that accumulate in the 
renal glomerulus, joints, and other tissues. Genetic studies indicate that TLR9 as well as 
some downstream TLR-signaling molecules could be involved in SLE.58 Chaturvedi et al 
have proposed a mechanism that integrates TLR9 signaling from endosomes with 
BCR signaling initiated at the plasma membrane and that could predispose genetically 
susceptible individuals to autoimmunity by connecting the innate and adaptive immune 
systems.59 In their model, synergism begins between BCR and TLR9 when the BCR is 
stimulated by a DNA-containing antigen. This binding triggers the internalization of the 
BCR-antigen complexes and their subsequent fusion with endosomes containing TLR9 
into autophagosomes. The internalized DNA is recognized by TLR9 and induces the TLR9 
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downstream signaling, together with the BCR signaling pathway, result in a synergistic 
activation through MAPK. This dual activation is useful for responding to pathogens, 
but autoimmunity can arise from incorrectly regulated dual activation.

[�������	�������������

Nucleotide-binding oligomerization-domain (NOD)-like receptors are intracellular, 
cytoplasmic receptors that detect specific bacterial molecules.60,61 NOD-like 
receptors, TLRs, and retinoid acid-inducible gene (RIG)-1, are the main classes of 
known PRRs. The minimal structure recognized by NOD1 is the bacterial dipeptide 
D-�-glutyamyl-meso-diaminolimelic acid (iE-DAP) whereas NOD2 recognizes the muramil 
dipeptide (MDP) moieties found in peptidoglycan. The activation of NOD1 and DOD2 by 
these bacterial components induces the production of cytokines, antimicrobial peptides, 
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as CD. Genetic studies have revealed the association of the NOD2 gene with CD and 
����	=�	������������������	�����	�������	��������	������	����	��	�62,63 NOD1 has also 
been involved in the susceptibility to CD.64 A recent study has revealed that NOD1 and 
NOD2 have an important role in the autophagic response to invasive bacteria, and have 
linked bacterial sensing through peptidoglycan detection to the initiation of autophagy.65 
Autophagy activation by NOD1 and NOD2 requires the recruitment of ATG16L1 to 
the plasma membrane, and it is independent of the adaptor protein RIP2 or activation 
of NF-�B. Interestingly, the NOD2 polymorphism L1007InsC is the most prevalent 
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decreases autophagy in response to bacteria. These results concur with the previously 
described association of a single nucleotide polymorphism in the ATG16L1 with CD 
and provide a mechanistic link between two of the most important genes associated 
with CD.66,67 Therefore, NOD1 and NOD2 trigger an unknown pathway in which the 
adaptor protein RIP2 and the transcription factor NF-�B are not involved. Perhaps these 
receptors are only related to the formation of bacteria autophagosomes since NOD1 and 
NOD2 are not necessary in autophagy induced by starvation or by rapamycin. Together, 
��	�	�������������	�����	��	�	���������������
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response found in some diseases, and may spur new approaches in their treatment.

Autophagy and Antigen Presentation

The implication of autophagy in antigen presentation could be crucial during the 
immune response to intracellular pathogens. Autophagy has also been implicated in cancer 
and tolerance.68 Most cells are able to display peptide antigens on their MHC class I or 
�����__���	��	�����	�
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which is the critical step for T-cell activation.69 Peptides presented by MHC class I and 
class II are different. Class I molecules join intracellular peptides originated from viral, 
bacterial, or cellular transformed proteins, and present it to CD8 T cells, whereas class II 
molecules present peptides from extracellular origin to CD4 T cells. Strong evidence 
indicates that autophagy is involved in class II presentation. It may also participate 
��������_�
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play a role in cross-presentation, which is the presentation of extracellular antigens by 
MHC class I molecules. This very important immune mechanism allows, for example, 
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antigen-presenting cells (APC) to present viral antigens that are not able to infect them. 
Autophagy also may be involved in cross-presentation of extracellular tumor antigens.70 
Tumor cells would include tumor antigens in the autophagosomes, where they would 
be degraded. These autophagosomes may be released into the extracellular milieu and 
be internalized by dendritic cells. However, this research does not explain how tumor 
antigens could reach class I cells.

Autophagy may also participate in the CD8 T-cell response against certain intracellular 
microorganisms. For example, Toxoplama gondii, survives in macrophages by residing 
in vacuoles that do not fuse with lysosomes. It is eliminated when autophagy triggers 
the fusion of vacuoles with lysosomes.71 On the other hand, CD8 T cells are required 
for protective immunity against T gondii.72 Therefore, cross-presentation is required to 
eliminate this pathogen. However, it is not known how peptides derived from it gain 
access to the class I molecules.

Similar to class I cross-presentation, some studies have described the presentation 
of endogenous antigens by the class II molecules. This cannot be explained solely by 
the classical route of presentation. The presentation of cytosolic antigens is possible by 
the continuous fusion of autophagosomes with the compartments originating from the 
ER and loaded with class II molecules.73 Class II presentation of endogenous antigens is 
necessary to generate a robust CD8 T-cell response, and thus, class I and class II molecules 
must present the same antigen.74 Indeed, the mechanisms of cross-presentation could 
have implications in self-tolerance. For example, autophagy was disrupted in thymic 
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multiple organs.75 TECs exhibit a high constitutive level of autophagy and the alteration 
to autophagy interferes with their endogenous class II-peptide repertoire, which reduces 
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selection and increases the possibility of autoimmunity.

Autophagy in Immunity Against Intracellular Pathogens

Autophagy contributes to immune response against intracellular bacteria, parasites, 
and viruses. Phagophores have the capacity to include large intracellular structures such 
as bacteria and the capability to destroying them when the phagophore fuses with the 
lysosome. This mechanism can act when other systems fail. For example, when group A 
Streptococcus infects nonphagocytic cells, it can escape from endosomes into the cytoplasm. 
However, the bacteria can be sequestered in an autophagosome and can then be destroyed 
with the fusion of this bacteria-containing compartment with a lysosome.76 The clearing 
of cytoplasmic pathogen by autophagy have been demonstrated in other bacteria such as 
Mycobacterium tuberculosis and Toxoplasma gondii, Salmonella, and others. M tuberculosis 
can survive within phagosomes unless interferon (IFN)-� activates autophagy pathways. The 
INF�-induced autophagy overrides the mycobacterial block of phagolysosome formation, 
perhaps induces the fusion of bacteria-containing phagosomes with autophagosomes, and 
the subsequent fusion with a lysosome.77 Similarly, T gondii survive within vacuoles after 
being ingested by macrophages. In this case, the induction of autophagy and the subsequent 
destruction of the pathogen are induced by CD40 stimulation.71

There is less evidence that autophagy participates in the degradation of virus during 
the immune response. However, herpes simplex virus (HVS)-I virions can be captured by 
autophagosomes and destroyed in an in vitro model.78 Hepatitis C virus (HCV) infection 
could also induce an autophagic response in hepatocytes. Infection of immortalized human 
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hepatocytes by HCV induces the formation of autophagic vacuoles.79 Autophagy is required 
in some cases for the recognition of virus, like the vesicular stomatitis virus (VSV). This 
ssRNA virus is recognized by TLR7, which is expressed on endolysosomes. Immune 
recognition requires the transport of cytosolic viral replication intermediates into the 
lysosome by autophagy.55�����
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(VIH) biogenesis. During HIV infection, autophagy appears to have an ambivalent role. 
Early stages of autophagy promote HIV infection in macrophages, and thus, induction of 
autophagy either with rapamycin or by starvation increase HIV production.80 Activation 
of TLR7 and TLR8 signaling induces autophagy during HIV infection.51 However, HIV 
during the maturation stages is not degraded by autophagy due to the protective effect 
of Nef, which inhibits terminal, degradative stages of autophagy. Nef colocalizes with 
Beclin 1, and increases the distribution of hVPS34 on the membranes. The protective effect 
of Nef during autophagy became evident by using HIV defective in Nef; these HIV mutants 
are degraded by autophagy. In other circumstances, HIV can inhibit autophagy. In DCs, 
HIV replication produces envelope proteins that activate mTOR, which in turn inhibits 
autophagy. This inhibition evades early immune control by DCs.81 Therefore, autophagy 
mediates a direct destruction of intracellular pathogens that has to be circumvented by 
the microorganisms to produce an effective infection. The importance of this process 
in whole immune responses to invading microorganisms still needs to be determined.

CONCLUSION AND FUTURE PROSPECTS

Autophagy has an important role in physiological and in pathological circumstances. 
The elimination of altered proteins and organelles by autophagy occurs during normal 
physiological conditions. However, it is also involved in stress situations in which it 
promotes the maintenance of cell integrity. A rapid advance in the knowledge of the 
molecular mechanisms implicated in this process has occurred during this last decade, 
and includes the discovery of their molecular pathways and insights into their regulation. 
However, our understanding of some aspects of autophagy is still limited. Many aspects 
of the autophagosome formation still have to be resolved. Autophagy is clearly involved 
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diseases, and aging. The knowledge of its regulatory mechanisms, the multiple inhibitory 
and stimulatory signals and their interactions remain incomplete. A better understanding 
of how autophagy is regulated would allow us to manipulate these signals, and in this 
way, develop strategies to modulate, prevent and treat the multiple diseases in which 
this mechanism is implicated. Autophagy is a highly conserved process involving 
proteins conserved from yeast to humans. However, in pluricellular organisms, autophagy 
has acquired new functions. The lack of these additional functions in simple organisms has 
made it challenging to elucidate some aspect of this process, especially those related with 
apoptosis and cell death. Probably the resolution of this and other aspects of autophagy 
will allow us to obtain valuable information to understand the pathological aspects of 
the diseases in which this process is involved.
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VIRUSES AND HOST EVOLUTION:

Virus-Mediated Self Identity
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Abstract: Virus evolution has become a topic that involves population based selection. Both 
quasispecies based populations and reticulated mosaic exchange of populations of genetic 
elements are now well established. This has led us to the understanding that a cooperative 
consortia can be a crucial aspect of virus driven evolution. Thus viruses exist in groups 
that can cooperate. However, consortial based evolution (group selection) has long been 
dismissed by evolutionary biologist. Recently, biocommunication theory has concluded 
that the evolution and editing of any code or language requires a consortial based process 
������	�� ������	�	� ���
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��!�����������	�������	���	������������	����	���	��������	�������
of biological codes or language. In this chapter, I present the view that the persistence 
of virus information in their host provides a natural process of host code editing that is 
inherently consortial. Since persistence requires mechanisms to attain stability and preclude 
competition, it also provided mechanisms that promote group identity. Accordingly, I 
review the viral origins of addiction modules and how these affect both persistence and 
group identity. The concepts emerging from addiction module based group identity are then 
generalized and applied to social identity systems as well. I then examine the prokaryotes 
and the involvement of viral elements in the emergence of their group identity systems 
>������!���	�	�����	����������&'����	����
�	���	���_����	�	�"�����	������	�	��������	�
shift in virus-host evolution occurred in which the role of dsDNA agents was diminished 
but the role of retroviruses and retroposons was greatly enhanced. These agents provided 
greatly expanded and network based regulatory complexity that was controlled by sensory 
inputs. From this perspective, the role of virus in the origin of the adaptive immune system 
is then outlined. I then consider human evolution from the perspective of the great HERV 
colonization. The origin of a large social brain able to support the learning of language 
is presented from this viral perspective. The role of addiction modules in the origin of 
extended social bonding of humans is outlined and applied to the emergence of language 
as a system of group identity.

Self and Nonself, edited by Carlos López-Larrea. 
©2012 Landes Bioscience and Springer Science+Business Media.



186 SELF AND NONSELF

INTRODUCTION: IDENTITY—LESSONS FROM THE BOTTOM
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study has not previously been considered as a separate or coherent body of knowledge. 
And yet, as a highly social species, humans are fascinated by the topic of identity 
and are often interested to know what biology may be able to tell us about the social 
and culture nature of human identity.1���������	�	�����������
	����������������	�������
It doesn’t require too much contemplation to realize that the concept of identity is a 
fundamental biological issue. Identity, therefore, must have been an ancient feature and 
all organisms will need such systems. Evan with the viruses (and sub-viral defectives), 
composed as they are of only genomes and capsids when outside of cells, they too must 
be able to identify themselves and to differentiate and replicate their genomes apart 
from those of host and other competing genetic parasites. Therefore, all organisms, 
including viruses, would fundamentally need to identify self from nonself and a whole 
array of molecular and other systems can be considered from this perspective. These 
systems would include all those involved in the innate and adaptive immune response 
as immunity is clearly identity related. Such systems also seem to be involved in cell 
fate and tissue identity for multicellular organisms. In the case of viruses with their 
basal simplicity, we may thus see the most elemental characteristics of identity systems 
involving groups or populations. Viruses might have a lot more to tell us about identity 
systems then had previously been realized. Recently, I have developed this idea into an 
extended evaluation of how the viruses were likely involved in the origin of many early 
identity systems, but also how the viruses help us understand some of the basic principles 
of group identity.2 We have only recently come to realize that many viruses (mostly 
RNA, retro, but also some DNA) exist and evolve in quasispecies based populations 
that are essentially consortial in character.3 This informs us that the population, not the 
��	���	��������	�����	�����
	�����	����	������������������
�����	����	���>�������	���	��
essential) selective advantage to the group.4 But in such a consortia, the population must 
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a population. Indeed, recent studies of the evolutionary dynamics of prokaryotic DNA 
has led some to propose that the DNA viruses of prokaryotes also operate as a ‘cloud’ or 
consortia of viral derived elements that will dynamically colonize host genomes.5 From 
the perspective of virus, it is the regulatory (essentially informational) relationships 
between population members that become crucial for group identity. Indeed, when 
any organisms exists in colonies or groups that maintain self identity, they too must 
maintain some mechanism to identify members from nonmembers. Members would 
need to be supported (maintained and/or replicated) whereas nonmembers would be 
precluded and/or destroyed if not consumed as prey. Such group based identity would 
thus include associative or altruistic features as well as preclusive or aggressive features. 
Previously, the existence of any such potentially altruistic systems had been rationalized 
���	�	������������		�����������	����	�����
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selection for individuals that support other (genetically related) individuals within a 
group. Numerous mathematical models have thus sought to account for the emergence of 
group related phenotype that did not violate the central tenant of neo Darwinian theory, 
���	�����������������������������		�����������	����	�����
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for references. In some cases, it indeed appeared that such theories could account for 
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some forms of group behavior. But the simple virus informs us differently. Quasispecies 
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consortia inherently results from what has been called ‘high error’ and recombination 
rates but these ‘errors’ also provides a much enhanced capacity for a genetic system 
to explore sequence space (which is astonishingly vast even for a small 10 kb RNA 
virus). This enhanced exploratory capacity is essential in order to attain solutions 
(which are sometimes dynamic and/or counteracting) by a genetic system whose genetic 
capacity is ironically also limited by high ‘error’ rates (via error threshold). Thus the 
high error rate both enhances and limits the genetic capacity of simple viral systems, 
but the enhancement is fundamentally consortial.3,7 In this realization, we may see 
an underlying general principle by which a group or colony of organisms can attain 
enhanced survival.4 A diverse population must be generated that can also provide a 
diversity of solutions (including counteracting solutions) to any particular issue. But 
this population must retain some degree of stability and still have someway to identify 
or include individual members of the population. In the context of humans and their 
inherently social group identities, it might seem implausible to propose the involvement 
of some type of genetic plasticity in group identity. But if we consider that behavior 
(including social bonding) is a central element of human group identity, then we only 
need to understand how behavioral diversity (plasticity) is generated or maintained in 
order to apply this concept to humans and to explain tendencies towards associative 
or altruistic behaviors.8 Thus, it is most ironic, that in the viruses, considered the most 
�	��������	�	����		�	������	������	��	���	�������	����
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��
can form cooperative consortia that work together. This chapter thus explores this idea 
and relates it to others presented in this volume.

Figure 1.� ���	������ ��� ������ ���	���� ��� 
�
������� ���	�� ����� ��������� ��	� ��	� ������	� �	�� ����	��
represent a host population free of the infectious virus in question. When exposed, many members 
will succumb to the toxic (acute), affects of virus infection (crossed lines). Some, however, may be 
stably colonized (shown with dark red center). This host population has acquired a new virus derived 
instruction set that also provided immunity to the same (and often other) viruses (shown by broken 
lines between cells). If this population retains some capacity to produce infectious virus, or if the virus 
remains prevalent, when it encounters another naive population (blue circles), the uncolonized population 
will crash due to virus toxicity. The virus colonized population will be favored. 
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THE CONSORTIA STORY FROM VIRUS

The existence of consortial genetic action is not a broadly accepted concept. Such a 
state appears equivalent to that of group selection, an idea that has been soundly rejected 
by most evolutionary biologist as having no sound theoretical foundation. In spite of 
this strong consensus, the consortial genetic action by viruses has been experimentally 
established9 ( see ref. 3). Most evolutionary biologist, however, would likely question 
the applicability of this virus genetic biology to their host organisms. Yet we now know 
viruses to be the most abundant and diverse genetic entities on Earth and that all life has 
survived the unending onslaught of these agents. So, if we can suspend our skepticism and 
accept the idea that consortial genetic action is selectively favored and broadly essential 
for group identity, we would still need to address how and why such group identity 
is established (mechanistically) and how its stability is maintained. Returning to the 
������	�������
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relationship of bacteria and their viruses to bacterial colony (group) behavior and survival, 
we can observe that some viruses colonize their host in stable relationships (persistent) 
but in so doing, alter the identity of their host. In bacteria, many persisting viruses are 
DNA viruses that integrate their DNA into their host to promote genetic stability. This 
addition also brings to the host capacity to resist similar viruses (self immunity). However, 
some persisting viruses of bacteria do not integrate their DNA yet also attain a highly 
stable extra chromosomal persistent infection (e.g., P1). It is with these viruses that we 
�����	��	���������	���������	��������
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CODE EDITORS MUST BE CONSORTIAL

A topic that has not previously received much attention concerns the need to originate 
and edit code in biological systems. It has long been assumed that the process of natural 
�		�������������������������������>���	�����
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code. In the context of human evolution and their social groups, this issue is of uniquely 
special interest as it is crucial to account for the biological origin of language.1 The 
application of and mathematical modeling of natural selection to explain the origin of 
�������������������������	������������
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was to understand how error prone replication systems (such as a precellular RNA world) 
might be able to conserve information content and syntax in order to get evolution by natural 
selection started. This line of reasoning was to lead to the quasispecies equations which 
described the population based behavior and error/information limits of such replication 
systems. Since then, the quasispecies theory has been much evaluated and developed in 
the context of RNA virus studies. However, early on it also became evident that the focus 
on only syntax and point changes presented basic problems for understanding code.12 
Essentially, it was appreciated that context, in addition to syntax, was as important for 
determining ‘meaning’ of code. This context dependence established that ‘pragmatics’ 
not simply syntax, was key to understand codes. However, after an extended period of 
evaluation, it was concluded that the pragmatic nature of code or language also required 
the participation of populations, not individuals for it was the living population of agents 
that would assign meaning to the context dependent code.12 A direct deduction from this 
��������������	��������������	�����
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by neodarwinian natural selection, could not have led to the origin and editing of code. 
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Code must have originated from a population based process and a similar population based 
process must also have contributed to the origin of human language. The problem with this 
conclusion, however, was that there was no accepted mechanism by which populations 
could operate as selective units to promote such code. Group selection, for example, 
had been dismissed as unsupported and lacking theory, see.4 However, the possibility 
that virus populations might provide the underlying ‘group-based’ mechanisms had not 
yet been developed or considered when group selection was dismissed. This was due to 
several reasons: one, early on these virus populations were assumed to also operate via 
���	�����
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scale occurrence of viral derived genetic information in the genomes of all life forms, had 
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However, during the 1990’s, an extended set of experimental studies established that viral 
populations showed much interaction (see ref. 3). And by 2005, compelling evidence 
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frequently affect the relationship of a host population with other viruses and that these 
elements also had to potential to superimpose a type of coordinated regulation onto the 
genetic loci they colonized. These two observations together led some to propose that the 
viruses provided the poplulations that were competent to edit and create code.12,6 Such 
a conclusion would place viruses in a central role as code (and genome) editors. What 
was then needed, was to mechanistically explain how a population of genetic colonizers 
could alter or create a population based group identity.

THE CONCEPT OF ADDICTION MODULES AND STABLE 

GROUP IDENTITY

It has long been realized that in the prokaryotes, colonization by prophage (genomic 
viruses) constitutes a major process by which prokaryotic DNA is changing. With the 
�	=�	����������	����{|||�
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their defective elements account for the majority of DNA variation between genomes.14,15 
It has also become very clear that the horizontal transfer of DNA is a major and ongoing 
process by which prokaryotes adapt (discussed below).16,17 Accordingly, it has been thought 
that by integrating into host DNA these viruses attain a stable relationship with their 
host. It had also long been recognized that such prophage integration normally involved 
immunity genes that control virus replication and provide immunity against related and 
sometimes unrelated (lytic) viruses. Thus, a prophage colonized host has altered its 
susceptibility to such viruses. In this relationship, we start to see how colonizing viruses 
can promote group identity. A bacterial colony that host a particular prophage, will be 
immune from (and likely also produce) that same prophage. However and identical 
colony that does not harbor the prophage (or its defectives) will be susceptible to lysis 
from that (and other) virus. Given that phage are the most abundant and diverse entities 
in most all habitats,18,19 viruses provide an inescapable selective pressure that due to their 
transmission, operates on groups of host. If an individual bacteria were to lose its resident 
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we see a form of group selection where on group (colonized) can threaten another group 
(uncolonized) via a transmissible agent. We might think that the colonized bacteria is 
addicted to its virus, since if it loses the virus, host death by lysis is likely. However, this 
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concept of addiction can be expanded to provide an even more fundamental way to think 
about group identity and its stability. In the 1990s, the idea of an ‘addiction module’ was 
proposed by Yamolinsky in order to explain the ability of a non-integrating phage to attain 
stable persistence in its host (see refs. 20,21). The virus was P1 phage, which does not 
integrate but can stably persist as an episome in its host for highly extended periods. P1 
thus establishes a noncovalent form of genetic stability and it does so by using various 
gene pairs that counteract one another (PhD/DOC) as well as other mechanisms. One 
gene in the pair is toxic to the host (such as an endonuclease) but its toxicity is inhibited 
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inhibitory gene is unstable. This then requires that the inhibitory gene be continuously 
expressed to prevent a toxic reaction. Thus, if the P1 DNA is lost, its transcription is 
also lost resulting in death to the cell. The cell is thus addicted in that it must maintain 
the P1 genome to avoid programmed cell death and continue living and the responsible 
gene pair is called an addiction module.22

GENERALITY OF FEATURES

Although such modules can promote stability of the virus and are thus crucial for 
persisting viruses, they can also respond to the infection of the colonized host by other 
agents. Both acute viruses (T4) and temperate viruses (lambda) will disrupt addiction 
modules when they infect a P1 colonized host (for example by affecting ongoing 
transcription or protein stability). The result is that before such an infection can produce 
new virus, the disrupted addiction module results in lethal toxicity to the newly infected 
host (programmed cell death). In this way, a population of P1 infected cells will be immune 
to these second transmissible agents by terminating the production and transmission of 
virus in individually infected cells and preventing transmission to neighbors, see.23 This 
viral addiction module has thus promoted three distinct states. (1) it compels the host to 
stably maintain P1 to avoid death, (2) by maintaining P1, established a state of immunity to 
lytic P1 infection that it can also produce and (3) by expressing the P1 addiction modules 
it has provided a form of immunity (via self destruction) against various other agents.2 
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these states. These three states can be considered to act together to from a new state of 
group identity (see Fig. 1). To envision this group identity situation, let us consider two 
adjacent populations of otherwise identical E. coli colonies, one colonized by P1 and 
the other not. Since all the P1 colonized E. coli have the potential to also produce lytic 
P1, only P1 colonized E. coli will make the needed immune functions to be able to grow 
within the colony. This virus has thus imposed a distinct state of group identity (P1 
immunity) to the colony. And the P1 addiction module has also imposed a new state of 
more generalized immunity to other viruses (e.g., T4 and Lambda). Given that such types 
of tailed prokaryotic DNA virus are the most numerous and diverse genetic entities in all 
aqueous habitats, a colony that has acquired a generalized resistance to other viruses will 
be highly favored. But in addition to favoring the survival of the colony, the persisting 
P1 can also disfavor the survival of any nearby colony that is not also P1 colonized. 
For example consider an adjacent E. coli colony that is not in direct contact with the P1 
colonized colony, but is near enough for some of the low level P1 virions made by the 
P1 colony to diffuse to them. Clearly, such an unprotected colony will be susceptible to 
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states of colonization. Since such states are completely stochastic, they will not likely 
be readily modeled. In this example, we therefore see the clear operation of group based 
selection in which the group identity has been determined by the colonizing viral agent. 
Thus we can now state the essential and generalized features of this version of group 
identity to evaluate if or how it might apply generally to group based identities in other 
living systems. These general features are the following:

1. In order for a parasitic genetic agent (e.g virus or defective) to successfully and 
persistently colonize its host, it requires a strategy that promotes the maintenance 
(stability) of this element. The colonization can be either genomic or epigenetic.

2. This strategy can be considered as an addiction module which compels the host 
to retain the agent in order to avoid harm that the agent or its associates will 
otherwise impose. That harm is generally a form of self destruction which is 
also prevented by the genetic parasite.

3. In molecular terms, an addiction module is composed of a gene pair encoded by 
the parasite in which a stable but toxic gene (or function) is counteracted by an 
unstable protecting gene that inactivates the toxic function. An addiction module 
can also be mediated by virus or ‘defective’ genetic parasites that colonize their 
host, but protect the host against destructive (lytic) consequences of prevalent 
acute nondefective viruses in the habitat.

4. Colonization by such genetic parasites superimposes a new form of group identity 
in that the harmful component of the addiction module can be transmitted to 
and harm those populations that are not similarly colonized.

5. The establishment of group identity in new populations or descendents is a 
time dependent process (i.e.,via a developmental window) and requires that the 
protective element of the addiction module be transmitted or activated before 
the destructive element or agent is active. Group identity is thus an acquired 
state that is not necessarily or directly determined by genetic composition of 
the population.
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inherent to other systems of group identity. One overarching generality that emerges is that 
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for or harmful to nonmembers. The nonmembers are often very similar to if not identical 
to the members. Thus the harm that results can often appear to be a from self destruction 
and can involve toxic genes made by the organisms itself (such as those of apoptosis). 
These toxic functions are sometimes actively transmitted or exported to harm populations 
that differ in identity (especially in prokaryotes and lower Eukaryotes). At its origin, viral 
derived lysis functions or toxins appear to have originated many identity systems in the 
prokaryotes (see below). Indeed, prokaryotic viruses still provide the most useful way to 
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In addition, the prevalent occurrence of toxin/antitoxin gene pairs (T/As) in prokaryotes 
can also be best understood from the perspective of group identity (see below). Thus in 
prokaryotes, the viral origins of many if not most group identity systems seems clear. 
However, in eukaryotes the origins of group identity are less apparent. This is because 
diffusible or transmissible feature of the group identity in Eukaryotes became mediated 
initially by sensory mechanisms involving signal transduction such as surface molecule 



192 SELF AND NONSELF

detection, then sensory odor detection (i.e., peptides and pheromones) but also evolved 
to be mediated by visual and audio sensory systems (requiring the evolution of learning 
and the associated neuronal CNS functions). Yet even in these more derived systems 
of Eukaryotic group identity, we can still see the essential features of group identity 
as outlined above. Thus the acquisition of group identity in Eukaryotes often has an 
inherently sensory dependent (epigenetic) character to it which seems unrelated to the more 
biochemically determined systems in prokaryotes. And in the more complex Eukaryotes, 
such as humans, group identity has become predominantly a learned state involving 
little apparent toxic biochemistry. However, even in the most complex of Eukaryotes 
we can still identity an essential role for viruses and genetic parasites in promoting the 
origin of new systems of group identity. A striking example of such an underlying viral 
role is found in the adaptive immune system of vertebrates. The acquisition of this most 
complex system of group identity was directly mediated by the action of endogenous 
viruses. Yet the adaptive immune system still adheres to all general features of group 
identity as outlined above (see below).

SOCIAL IDENTITY AND LANGUAGE ADHERE TO THESE 

GENERALITIES

What about the culturally acquired and highly social character of human based group 
identity? Can the general features of group identity outlined above still apply to such 
a highly social and learned states? On the surface of this question, it would not seem 
that some of the above features are applicable. For example, the toxic and anti toxic 
gene pairs involved in addiction module mediated identity would not seem relevant to 
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an idea. However, the more generalized state in which harmful and protective features 
work together to set a state of addiction and promote stable group identity clearly does 
appear applicable to human group identity, (ref. 8 see below). It has long been asserted 
by some social scientist that various features of Darwinian selection do not apply well 
to explaining the origin of the highly associative nature of human group interactions. 
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explain extended human social structures. Historically, evolutionary biologist have come 
to explain the existence of the highly associative nature of human group identity as a 
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to operate via mechanisms such as kin selection. Basically, the idea is that survival of the 
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linked human social structures might be explainable by such methods, broader social 
groups lacking any kin or genetic relationship that are characteristic of many human 
social structures are not explained by such models. However, possibly the most troubling 
of all human social capacities to explain is the evolution of language. Indeed, this was 
a troubling issue for Darwin himself. Language is the essential human trait that most 
distinguishes humans from the other great apes and required the evolution of a large 
social brain to learn, produce and use it. In evolutionary terms, the evolution of language 
is a very recent and essentially unique evolutionary phenomena. But with the evolution 
of language, we encounter a most fundamental theoretical problem that was not initially 
appreciated. Language, like any natural code, must convey meaning and meaning must 
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be learned. For some years, it was thought that meaning resided in the syntax (sign 
sequence) of the code, thus models of information theory that were focused on syntax 
were applied to understand the evolution of biological codes.24�������
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formally proposed in the 1970s . However, by the 1990s it had become apparent that 
meaning must also be context dependent and not simply syntax determined. This led to 
the dominance of pragmatics (context dependent meaning) as a way to understand the 
meaning of language (and the emergence of biocommunication theory). However, with 
the realization of the dominance of pragmatics, another direct conclusion was reached; 
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of new and collective meaning.12 This indicated that for language to have evolved, it must 
have involved a selective process that was population based. Thus, all of the prior theories 
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type. However, if we consider that language itself is a form of group identity, that adheres 
to the features outlined above, we can more easily understand why language must have 
evolved in a group based process.

Let us now consider how language and group identity relate to the general features 
as outlined above. Language can also be considered as an information parasite that has 
colonized a group of large social human brains, affected their development and group 
identity. In so doing, it provides this group of brains with a common social identity via a 
shared ability to communicate social traditions and membership (culture). Language also 
provides a large selective advantage to the group by providing a mechanism to socially 
communicate the memory of experience that can have big consequences on group survival 
(i.e., culture -relating to knowledge of food, shelter, survival etc.). Thus the maintenance 
of language is made essential for group survival. However, once colonized, the human 
host population is distinguished from other populations that have become colonized by 
other languages since social and other forms of communication are not supported. This 
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chimpanzee) brain goes through a period of early post birth brain development in which 
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to learn new languages, we can also see that language acquisition has both an underlying 
biological basis in brain development, but additionally has the needed temporal (open 
window) features of a system of group identity. That is, language acquisition requires a 
developmental window during which group identity can be transferred to new members 
but after which it becomes resistant to further transfers of language (as required for group 
identity). Thus the biologically based and addictive nature of language can be recognized. 
Its acquisition is associated with clear and crucial advantages to those groups that have 
learned it. And, it also provides a strong disadvantage to any individual that does not 
	����������	���������	����	����	�����������"	��
�����	�����������	��		������
��
with distinct social identity and communication.

So then, how does a language mediated from of group identity relate to forms of 
group identity that exist in other mammals. Are they biologically similar? Consider, 
for example, an encounter between human groups compared to that of other mammals. 
Humans will likely attempt conversations, that seek to learn language, cultural, tribal or 
religious based group identity. All these aspects of identity are learned socially. However, 
some of our close social companions of another species, such as the domestic dog (and 
most mammals), will not be as fully dependent on learned social states of group identity. 
They will also seek to evaluate identity by more biochemical means involving intense 
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sensing of odors (pheromones). Thus the marking urinary odors of a competing male or a 
competing pack of dogs or from a menstruating female will be of primary social interest 
to evaluate and this applies to essentially all terrestrial tetrapods. Thus at least some of 
these canine group based responses, although possibly learned, are not the products of 
culture but have a more basic biological basis to them. As we consider even less complex 
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group identity is prevalent in evolution and almost mechanical in its application to many 
vertebrate species.25,26 Yet this ancient biochemical sensory system used for social and 
group identity was essentially lost in the African primates, especially the great apes.27,28 
Indeed, the associated vomeronasal organ (VNO) involved in such social detection has 
been incapacitated in African primates (see ref. 2). This loss was not due to a single genetic 
locus, but involved numerous retroposon genetic alterations of all the relevant receptors. 
I have argued that such a loss was principally mediated by a great HERV colonization 
that occurred in the African primates. In addition, as presented below, we can also see 
evidence that the emergence of our large social brain was also promoted by the further 
action of such genomic viruses. Thus a great genetic upheaval in human evolution was 
involved in the transition of human group identity from an ancient process dependent on 
order detection to a social process dependent on language and social learning. Although 
what resulted was a socially learned form of group identity, it was still promoted by 
the most ancient of creative processes, the colonization of external genetic parasites we 
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dogs. In both cases identity is being communicated by invisible and transmittable agents 
(odor or vision compared language, thought and belief). But this media regardless of its 
physical characteristic must act via sensory channels and be able to elicit an appropriate 
biological response (such as behavior). That behavior will have a general character to it, 
being either be associative (supportive, friendly, emotionally positive) or antagonistic 
(aggressive, emotionally negative) towards groups. In this essential features, human and 
dogs (or bacteria) don’t seem so different. And it also appears that the action of externally 
derived genetic parasites was key in the origin of these group identity systems.

THE NATURE OF PROKARYOTES

The prokaryotes constitute the most ancient, numerous, diverse and dynamic 
genomes of all cellular life forms. We now appreciate that they can rapidly adapt 
via complex genetic alterations to a great number of selective shifts in their habitat. 
They are the ultimate inventors of genetic solutions. Indeed, it has been proposed 
that essentially all gene functions can be traced to prokaryotic origins. Yet with the 
completion of about 1000 prokaryotic genomes, comparative genomics informs us that 
this adaptability is most often mediated by viruses (external sources). The term horizontal 
gene transfer (HGT) has often been used to characterize how prokaryotic genomes are 
most frequently observed to change and adapt. Since it was noted long ago that many 
of the transferred genetic elements and gene sets involved were defective in their ability 
to function as an infectious agents (virus), it was assumed that nonviral mechanisms 
were prevalent in mobilizing such DNA. However, more recent reevaluations of this 
notion indicates that infectious agents (viruses) are indeed the main sources of HGT 
(see references above). And we have also come to realize that viruses themselves are 
the most numerous, diverse and ancient genetic entities in all aqueous and soil habitats 
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on Earth. Both in clinical, culture and also natural habitats, viruses have been reported 
to mediate the HGT associated with host genetic adaptability of prokaryotes. A more 
recent characterization of the dynamics of prokaryotic genomes suggest that an external 
‘cloud’ of mosaic viral elements is mediating host genetic adaptability.5 Indeed, it has 
been observed that in oceanic cyanobacteria, for example, phage islands characterize the 
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host and furthermore, that viruses are manipulating both the regulation and the core 
genes of photosynthesis.29-31 Similar observations have been reported for photosynthetic 
eukaryotic algae.32 The most sequenced of all prokaryotic genomes are those of E. coli, 
associated with clinical isolates. These have clearly been shown to vary by gene sets 
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clearly appear to have been acquired via the action of viruses. However, as noted above 
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has recently been most apparent from studies of the most intensely sequenced of all 
E. coli genomes, those of enteropathogenic and toxigenic strains of E. coli (serotypes 
0157:H7 0127:H6) whose genomes have been sequenced and compared to commensal 
E. coli strain (0152:H28).33-35 And in these studies, it has been shown that various and 
distinct external genetic elements that are phage/plasmid derived were found to stably 
colonize these strains, although most elements were individually defective. It was most 
interesting that these elements were shown to work in coordination with each other to 
mobilize and transmit infectious (albeit defective) DNA.36 And that this transmissive 
process also incorporated the use of phage mobilized insertion sequences to generate 
diversity in the host DNA.37,38 Furthermore, comparing the two distinct genomes of 
the sequenced pathogenic and commensal E. coli, established that although distinct 
viruses had been involved, all these genomes essentially followed parallel patterns of 
evolution.35 In addition, it was shown that the transcription of these regulated ‘horizontal’ 
oathogenic genes was orchestrated by the captured regulatory genes and regulatory 
elements.39 In this observation, we see direct evidence of how to edit and coordinate a 
complex code (the genome of E. coli). It involved stable colonization by a mixed and 
cooperative population of viral derived elements. In general, these observation directly 
support the views of Villarreal2���������	��������	������¡��������	������	5 regarding 
the mosaic mixture or ‘cloud’ like nature of virus mediated prokaryotic evolution. 
Thus the viral-host situation in prokaryotes is often more complex then envisioned by 
classical Darwinian thinking in which individual variation in virus and host combine 
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those above, is the likelihood that these persisting viral genetic elements have attained 
stability because that have imposed a viral derived addiction module onto their host. 
Yet this conclusion seems almost inevitable since at the very least these agents would 
likely provide immunity against similar nondefective lytic viruses. But if we accept 
this as a likely outcome of such mixed colonization, we also can infer that the group 
identity of such bacteria will also likely have been altered and attained. However, we 
are not accustomed to thinking about prokaryotes in terms of groups or populations.

For many years, bacteria were thought of in terms of clonal haploid organisms 
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single cell, group interactions or group identity systems seemed unnecessary to account 
for bacterial survival. As noted above, however, proviral and defective viral elements 
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(missing genes needed to make independent virus) can none the less provide most of 
the features of addiction modules, thus promote a from of prokaryotic group identity. In 
addition, there are frequent interactions with other colonizing viruses or their defectives, 
such as P2/P4, very much like that characterized for toxigenic E. coli noted above, that 
can function as a complementing network of agents that promotes host resistance to other 
agents, as well as adaptability to changing circumstances by promoting the mobilization 
of these viral derived but coordinated gene sets. Indeed, in my recent book I examine 
both the consequence of phage production/resistance and the origin of bacterial toxins 
to consider their likely role in prokaryotic group identity.2 One conclusion is that the 
bacteriocins (bacterial toxins active against other bacteria) can clearly mediate group based 
competition, but an examination of the likely origins of these toxins indicates that they 
have mainly originated from defective viral sources.40-44 Thus these transmissible toxins 
so common in may prokaryotes can be considered as components of identity systems that 
are harmful to similar bacterial populations. Along these lines, the frequent occurrence 
of toxin/antitoxin (TA) gene sets in most bacterial genomes can also be thought of as 
elements of addiction modules45,46�������
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However, these modules can promote the stability of group identity by providing counter 
measures to infection and colonization by viruses.48 Indeed, the emerging study of TA 
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cyanobacteria, it is especially noteworthy that these organisms are well known for being 
able to produce a large diversity of diffusible toxic molecules.49 Indeed, the synthesis of 
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cyanobacteria.50 The involvement of these molecules in group identity however, has not 
been explored.

The historic view of bacteria as essentially clonal organisms thus has changed 
considerable in the recent years. With the discovery of quorum sensing systems in 
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(that also involve other organism), we have witnessed a big shift in how we think of 
bacterial survival (for review see ref. 51). Indeed, clinically it appears that the most states 
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too, studies with toxigenic E. coli have been crucial in understanding how multidrug 
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that TA addiction modules are involved. It was noted by Bigger many years ago52 that a 
small population of bacteria in a community were able to resist various drugs (but with no 
known genetic alteration). These bacteria were called persisters (see refs. 53, 54). More 
recently, it has become clear that TA addiction modules are involved in these persisting 
(dormant) states of resistance,55-57 including the Phd-Doc TA system,58 described above 
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The existence of the altruistic-like self destruction associated with TA addiction 
modules and viral-stress exposure in a unicellular organism had long puzzled evolutionary 
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individual cells,47 their ubiquitous presence was hard to account for. Although the usual 
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TA modules, however, since the majority of known TA modules are phage or plasmid 
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persisting parasitic agent,61 not the E. coli genome itself. An like the P1 viral episome 
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addiction maintenance outlined abovem,62 other low level plasmid maintenance can also 
be supported by the plasmid encoded TA modules,63 (see ref. 46). Thus a general proposal 
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these TA modules were important for cellular resistance phage. In keeping with this, the 
highly studied mazEF TA module will cause individual cells to die upon P1 phage growth, 
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by excluding P1 propagation.64 The term abortive infection (Abi) systems has also been 
used to describe how TA modules would contribute to more generalized forms of phage 
exclusion or resistance.48 Similar TA mediated anti-phage altruistic suicide has also been 
reported to be encoded on parasitic plasmids in Erwinia bacteria.65 These observations 
allow us to present an alternative explanation for the origin and evolution of prokaryotic 
TA addiction modules. They are the products of persisting genetic colonizers (viruses 
and plasmids) that are essential and used to compel parasite persistence and stability, but 
are also active against and preclude other viral colonization by inducing self destruction. 
Thus, the vast, ever present diversity of viruses that all prokaryotes must always contend 
with, compels all surviving cells to have these viral derived systems in order to exclude 
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the absence of this virus habitat (or stress) will be misleading. In this way we can also 
understand another prokaryotic immune process: the ever present and highly adaptable 
clustered regular interspaced short palindromic repeats (CRIPSRs), are also essential in 
regulating lysogeny.66,67�_������������	�	�		�	���������
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based response to virus, but have themselves been acquired from and are the products of 
rapid evolution by lateral DNA transfer.68 Since the addiction modules outlined above can 
all stem from and also oppose transmissible/infectious agents, such infections provide 
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suggest that persisting phage are a principle driving force in the creation of prokaryotic 
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own viruses and TA modules (group identity) to continue its group living and oppose (by 
self destruction) the loss of this identity by common viruses in their habitat. Thus it is 
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are also important for some phage resistance.69,70�¡	�����	���
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���������������������������������������71 and in some cases, this phage can provide 
the very killer genes of the TA modules.72 It has also been observed that in pathogenic 
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density dependence regarding their ability to infect their host.74��������������������	���
very high cell densities, provide an ideal habitat for phage maintenance and transmission. 
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identity via their viruses, other genetic parasites and addiction modules.
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There is more to the idea that viruses and transmissible plasmids can be responsible 
for prokaryotic based group identity then can be covered in this chapter. For example, the 
well known ability of phage and plasmids to exclude each other has long been a basis of 
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is presented in greater detail in my book and will not be further developed at this chapter.2 
However, here too, strong arguments can also be made that a viral or infectious agents 
likely underlie the origin of these systems.

As outlined above, clear examples of group identity and group survival in bacteria 
has been established. Although such communities are of major clinical importance, 
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In addition, that viruses occupy such a central position in all habitats on Earth and 
provide such a basic role in the evolution of prokaryotes is also a realization that has 
only recently become clear. These realizations both come well after the development 
of most of the theory behind evolutionary biology. Thus historically, the evolutionary 
mechanisms that promoted the origination of group identity states did not invoke any 
HGT mediated mechanisms. Past theories were and remain exclusive of the possible 
role of viral populations in host group based adaptation. In no review that I am aware of 
on possible mechanisms behind group biology, has the perspective of viral involvement 
been evaluated or even presented. The only concept that appears relevant in the extant 
literature is that of natural selection of parental variation acting through survival of the 
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group identity) not originating from parental types is not considered. Colonization and 
preclusion of information, although now undeniable, was also considered only from an 
individual survival based perspective. This limited view is clearly wrong and inconsistent 
with current comparative genomics. Similarly, studies on bacteria that are known to 
undergo forms of cellular differentiation (e.g., dictyostelium) are also not evaluated 
from the perspective of possible viral involvement.78,79 However, dictyostelium are also 
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genetic parasites.83,84 Interestingly, in their stress response, we also see the example of 
G-coupled proteins receptors being used for signal transduction.85 Historically, the question 
of a possible viral role was simply not considered relevant to the issues of social biology. 
Yet in our postgenomic era, it has become clear that the dynamics of prokaryotic genomes 
are mostly viral mediated. And as presented below, the dynamics of eukaryotic genomes 
are also mostly viral mediated (albeit by distinct type of viruses).

Prior to the emergence of eukaryotes, followed by meazoans, there was a great global 
transformation that created the O2 atmosphere which became able to sustain metazoan 
organisms using O2 based oxidative metabolism, was a major development within the 
prokaryotes. However, this massive release of photosynthetic O2 was the product of 
community cyanobacteria living in stromatolites. We can expect that viruses were also 
crucial for this community development. This global transformation of Earth’s atmosphere 
from a reducing to oxidizing state was though to have occurred about 2.4 to 2.7 billion 
years ago86 and correlated with massive stramatolites found in the geological record, the 
product of large surface communities of cyanobacteria. And extant stramatolites that host 
cyanobacteria as well as other organisms are still to be found in some habitats, such as 
Sharks Bay Australia.87 These modern mats are composed of mixed species of bacteria, 
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extracellular matrix are though to provide that matrix from which the laminar community 
is built.88���	�������������������
���	����������������������
�	�	��	������	�����	����
������������������������	�����������	�	������������	�	������������������	��	��������
systems of group identity and what role viruses have in these cyanobacteria. Given the 
above discussion, we might that such group living involves the TA addiction modules. 
Indeed, in modern stomatolites, phage are present in highly numerous and diverse types.89 
However, their role in community structures remains unknown. In contrast, phage-host 
relationships of the free living cyanobacteria are much better understood, since their 
genomes are known and how they adapt has been examined. Cyanobacteria are susceptible 
to large population crashes that can be viral mediated. The free living cyanobacteria are 
also well known for making a inordinate diversity of toxins, an observation that seems 
relevant to group biology. And it is known that some cyanobacteria use cyanotoxin like 
molecules to establish host colonization.90 As also noted previously, it has been established 
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mostly mediated by virus colonization (phage islands) and involves viruses that can 
provide viral versions of core photosynthetic enzymes, as well as much light dependent 
gene regulation.91 Thus, we would fully expect that viruses and TA modules would also 
have been involved in the origin of stomatolite communities and their systems of group 
identity. But we await direct evidence for this view. However, with the photysynthetic 
oceanic bacteria, we also see the emergence of major new sensory systems, that of light 
detection.92 Coincidentally, light can also affect cyanophage production.93 As alluded to 
above, sensory systems are of special relevance to group identity in the eukaryotes which 
have evolved to depend heavily on such processes. But regarding the photosynthetic 
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system with its ability to both produce and detect light and to have this detection affect 
their group behavior.94 Such as a systems of quorum sensing and/or directional swimming, 
is most interesting to us from the perspective of group behavior.

THE NATURE OF EUKARYOTES

If we consider the emergence of eukaryotes from the perspective of viral involvement 
in creating identity systems, we can see that the eukaryotes generally represent a major 
transition in the host-virus relationship and in the dynamics of their genomes with respect 
to the nature of a viral involvement. Indeed we might call this the second big bang in 
��������>��	�������	������	�����������&'�95) that signals a fundamental transition in 
virus-host relationships.96,2 No longer would most host genomes evolve predominantly 
via the multi-gene acquisition of colonizing dsDNA proviruses and plasmids, as had 
been conserved in all prokaryotes. Instead, what emerged was the dominant role for 
retroviruses and retroposons in the evolution of multicellular host genomes, elements 
which were to numerically dominate the eukaryotes. We also see a major shift in the 
types of viruses that can infect or persist in their host, especially RNA viruses, including 
the emergence of negative strand RNA viruses, which were absent from the prokaryotes. 
Thus the ubiquitous integrating dsDNA viruses were mostly lost from Eukaryotes. 
This transition also correlates with a general shift away from large scale gene acquisition 
seen in Prokaryotes to the emergence of more complex and network-like regulatory 
control seen in Eukaryotes. In this light, we should recall the discussion above in which 
the problem of how to edit code was presented. In order to edit a complex regulatory 
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code, agents with the competence to read the code and assign meaning would be needed. 
Since this will require a pragmatic circumstance to assign meaning, the agents will need 
to function as a population or consortia. From this perspective we start to see a distinct 
and essential role for the retroviruses and retroposons as code editors as they are genetic 
agents that fundamentally operate and adapt via quasispecies based evolution, in which 
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The involvement of retroviruses as agents of dynamic change in eukaryotes, however, 
also implies that virus driven evolution acquired a new enhanced capacity with respect 
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agents that successfully colonized and persisted in host genomes were now also able to 
re-emerge (via reverse transcriptase) as elements of infectious populations and evolve 
very rapidly by quasispecies (QS) based adaptations then, possibly, recolonize as a 
QS population the genomes of other host. Thus both highly dynamic and highly stable 
information resulted. We now call this process endogenization. This is also a form of lateral 
information transfer, but one that is much less gene centric and much more associated with 
the superimposition of new sets of QS based regulatory networks. Thus, this retrovirus 
based colinization is much more prone to create and manipulate regulatory networks then 
the ‘gene-set’ (islands) evolution previously seen in prokaryotes. These new networks 
stem from the very identity (regulatory) regions that are used by the new colonizers for 
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the lineages of eukaryotes have their own peculiar version of endogenous retroviruses as 
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currently thought. Rather they were the successful and persisting competent editorial 
consortia that created the new regulatory networks that henceforth underlie the identity 
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characterization, including mice, chimpanzees and humans. Thus, with the emergence 
of the eukaryote, a transition from DNA virus driven to retrovirus driven host genome 
evolution was established. This transition set the stage for more complex, network and 
regulatory based evolution. Thus a more complex form of identity control using the same 
or similar gene set became possible. This complex identity was to promote the evolution 
of multicellular organisms from a common DNA via the action of TA addiction systems 
that can induce programmed death (such as apoptosis, oxidative burst, etc.). Such self 
identity systems could also now be mediated via small toxic RNA molecules, originally 
derived from retroviral regulatory elements (LTRs). This complex regulation in linkage to 
the more capable sensory systems, allowed the differentiation and emergence of neurons, 
whose purpose was initially to learn group identity via early olfactory based systems that 
could detect small identity peptides (pheromones) and affect neuron based learning (sex 
behavior, as seen in C. elegans). Social (and sexual) behavioral learning was thus at the 
origin of neuron based learning. This scenario thus outlines the steps that were to set the 
stage for evolution group (social) identity in vertebrates and ultimately in humans. With 
humans, group identity became a mostly learned state via the emergence of language 
and was no longer very dependent on biochemical cues (such as olfaction). Much more 
detail regarding this scenario can be found in my book.2

However, before the above scenario might get going in eukaryotic evolution, we 
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support larger genomes and allow more complex and epigenetic regulation that will be 
essential for the identity of multicellular organisms. The origin of the nucleus is enigmatic 
and has long occupied the interest of evolutionary biologist. Various scenarios involving 
symbiotic joining of different types of prokaryote cells and loss of a cell wall has been 
proposed to account for the nucleus and the a cytoplasm.97 Although still problematic, 
these scenarios are believed to provide the most likely explanation to the majority of 
current evolutionary biologist. More recently however, here too the enormous potential 
for viruses to manipulate host has been proposed to provide crucial solutions to complex 
problems. Indeed, one idea is that the nucleus itself is the product of successful and persistent 
colonization of a prokaryotic host by a large membrane bound dsDNA virus.98-101,95,96 Thus, 
the very distinct multi chromosome, the chromatin bound DNA and highly coordinated 
multi origin DNA replication (cell cycle), the separation of transcription from translation 
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be proposed to have originated from viral (not prokaryotic) systems. According to the 
principles of group identity as outlined above, however, such successful virus would also 
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the necessary stability. Indeed, we might seek to understand the strong selective pressure 
imposed onto this new symbiotic virus-cell organism from the perspective of virus. Thus 
we might evaluate if this new eukaryote would be able to resist the highly abundant dsDNA 
viruses that would have been so prevalent in this ancestral prokaryotic world. It does 
indeed appear to be the case that this resulting eukaryotic was now highly able to oppose 
the colonization and chromosomal integration by large DNA viruses. Integrating DNA 
viruses are rare in the eukaryotes. Possibly, the nucleus itself, with its internal membrane, 
pores that restrict access and distinct chromatin based replication process, could provide 
the essential features to oppose DNA virus colonization so common to prokaryotes. For 
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infection and integration, were not maintained in the eukaryotes. Nor was the CRIPSRs 
repeat system mentioned above maintained in Eukaryotes. These two highly prevalent 
anti-sviral ystems (which themselves most likely originate from virus) are no longer found 
in the eukaryotic decedents. Along with this, prophage like entities (remnants) , seen in 
all prokaryotes, are also not found in genomes of eukaryotes. Most DNA viruses (like 
the herpesviruses) would henceforth persist as episomal, extrachromosomal elements and 
require noncovalent strategies to maintain persistence, much like the episomal P1 phage. 
However, the resulting new systems of eukaryotic identity would allow the colonization 
by populations of retroviruses and retroposons (as seen in dictyostelium), which would 
mediate the establishment of complex regulatory networks. Retroviruses and retroposons, 
with their inherent consortial QS based capacity to adapt, would superimpose new 
regulatory networks and group identity onto their host. This process would establish 
a positive feedback state, that would further promote ever more complex and network 
based identity which is predominately regulatory in nature.

THE EXEMPLAR OF ADAPTIVE IMMUNITY: COMPLEX SELF IDENTITY 

FROM COMPLEX VIRUS COLONIZATION

It is clear in contrast to prokaryotes that eukaryotes have evolved a distinct set of 
����	��� ����� ���� 
�����	� ����
	����� �	�� ���� ����
� ��	������� ���� 	���
	�� ����� ��	�
emergence of the mitochondria and with the corresponding emergence of mitochondrial 
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pore and anti-pore proteins, we also see the emergence of the apoptosis system that will 
destroy self cells by oxidative damage when the dynamics of these two gene functions are 
perturbed (by virus infection, stress or differentiation, for example, see ref. 2). We also 
see other systems (called innate immunity) that also typically have toxic and anti-toxic 
elements working together to destroy self when signaled to do this. The complement 
����	���	����������	��������	����������������������������	�������������
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pore forming attack complex along with binding proteins that prevent the toxic activity of 
this pore. It is also clear that individual cells, such as macrophages, can recognize nonself 
by various means. For example, when a macrophage is observed under a microscope to 
chase and engulf individual motile bacteria it must recognize nonself. These mechanisms 
are likely to involve small molecule detection which directs cellular behavior (motility), 
similar to that of quorum sensing in many bacteria or olfaction invertebrate eukaryotes. 
These same innate systems are also often used to destroy virus infected self cells (such 
as natural killer cells), thus they must be able to recognize a change in status from self 
to nonself, as could result from interferon induction, for example. However, the most 
remarkable and complex of all these identity systems is that of adaptive immunity as found 
in jawed vertebrates. This system has the capacity for ‘anticipatory immunity’ in that it 
has evolved the mechanisms for the generation of diverse and novel recognition capacity 
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also retains a memory of this response which is the basis of immune memory. Yet, the 
origin of this system has also been enigmatic. Early vertebrates, such as tunicates, lack 
essentially all of the components of the adaptive immune systems. Yet they do have rather 
complex systems of self recognition (used for colony formation) that also depend on the 
generation of diversity.102 And it is clear that both these early vertebrates as well as the 
enormous numbers of oceanic invertebrate animal species all have lived successfully in 
a highly virus infested habitat of the ocean. Clearly all these species that lack an adaptive 
immune system have done well. Yet their immune systems lack any evolutionary homology 
to those of the adaptive immune system. Nor do invertebrates all live short lives as some 
have proposed since some species can live over 200 years. So then, what was the selective 
pressure to originate the complex adaptive immune system? The ability invertebrates to 
survive in the presence of infectious agents does not suggest that they are less successful 
with respect to virus. How and why did this complex system of self identity emerge? 
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infested. As we know that eukaryotic genomes are most susceptible to colonization by 
ERVs and retroposons, we can examine the possible origin of adaptive immunity from the 
perspective of these ERVs as an acquisition of complex group identity mediated (see ref. 
103). Although adaptive immunity currently involves diverse genetic elements and cell 
types, it is understood to be broadly composed of CTL mediated cellular immunity and 
B-cell mediated humoral immunity. Since the latter differentiates from components of 
the cellular immunity, it has long been thought that the T-cell receptor and the induction 
���#������������������	���	��������������������	���	�����������	��������	��������
��������������������������������"��������	���	��������	�����������������		�����	������
major transition in gypsy-like chromovirus ERV colonization relative to the tunicates 
and other invertebrate sea animals. A large and diverse set of such ERVs is found in the 
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(LINE) in jawed vertebrates.104,105 Along with this ERV colonization, the genomes of 
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at about 65-75 MBP and only about 15,000 genes are the smallest of all animal genomes. 
Tunicated did have some ERVs in their genomes, but only from 6 clades, compared to 
the much greater diversity (over 30 ERV families) in jawed vertebrates. The result of 
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density, but a much enhanced capacity for coordinated regulation. Thus it is clear that a 
great ERV colonization did indeed occur during the transition to the jawed vertebrates.

The core functions we seek to explain is the origin of the T-cell receptor (TCR) 
which is subjected to genetic rearrangement and surface expression in the context of 
MHC presentation and a peptide portion of the antigen. This results in a genetically 
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cells that are self reactive via a process of apoptosis (through immunological education). 
The resulting white blood cells is one that can recognize and kill virus infected cells, 
�����������	���	���������������	������������	��
	�����
���	�������������	�	�	�
�	�������
Basically, a white cell that kills virus infected cells can be considered as the original core 
function of adaptive immunity. We can now consider the origin of this antiviral state 
from the perspective of retrovirus: an ERV originated addiction module mediated system 
of identity that resulted from a complex (QS based) event of stable virus colonization. 
Since the T-cell receptor (TCR) can be considered as a basal element, we must consider 
the origin of this gene and how it might have become linked to the RAG1/2 mediated 
rearrangement system. Phylogenetically, TCR is a member of a large family of Ig-like 
proteins that is a membrane spanning, surface protein. It is composed of two chains 
from distinct loci; heavy and light. The light chain has multiple V, J and C domains that 
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chain. The heavy chain is similar but has an additional D domain between the V and 
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gene appears to be the heavy chain and phylogenetic analysis indicates that the JAM/
CTX/PVR (aka CTX-like) family of proteins are the most basal versions of these genes. 
Ciona does have a homologue of this protein, but it does not appear to have a role in 
immunity. Also, the VLR system of lampreys does not resemble the T-cell receptor nor 
does it use the RAG1/2 mechanism to generate VLR diversity. However, what is clear 
is that this CTX family of proteins are viral receptors of various types (e.g., poliovirus, 
reovirus). As previously presented, the origin of viral receptors can often be traced to 
the viruses themselves.2 Clearly, in bacteria, phage conversion in which viral encoded 
surface receptors are expressed and function as virus receptors is well established. And it 
is also known that these bacterial viral receptors can be linked with coordinated systems 
that generate genetic diversity of the viral receptors. These two observations allow us to 
lay out a scenario for how the TCR and its associated RAG based recombination system 
came to colonize the genomes of jawed vertebrates together via the action of viruses. 
A particularly enlightening example from bacterial viruses regarding this idea is found 
in the T7 related phage of Bordetella.106-109 This phage encodes a reverse transcriptase 
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surface receptor. This receptor (Mtd) has a C-type lectin fold, which like the Ig fold, is 
the only other protein domain known to be able to tolerate tremendous sequence diversity 
while still retaining its general structure.110 Lysogenic Bordetella harboring this virus 
�	�	����������������	���	�����	��������	������������	�������	��111 Thus, we can propose 
that a similar logic applied to the origin of the TCR, which along with the RAG1/2 gene 
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process, resulting in motile blood cells that were able to kill subsequent competing virus. 
Furthermore, both retroviruses and DNA viruses of acquatic animals (and avians) are well 
known for their ability to induce clonal expansion of virus infected hematopoetic stem 
cells. Thus these agents also bring with them the ability to reprogram host cells to both 
proliferate and express viral receptors. Such virus infected blood cells are also know to 
be susceptible to large scale induction of apoptosis.

From the above perspective, we can now evaluate the Rag1/2 integrase to see if a 
viral origin or addiction strategies appears likely. These integrases are members of the Mu 
family of integrases that operate via cut and paste mechanisms.112 With Mu, however, the 
���	����	����	��	����������������	
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of these types of integrases in related viruses, not host. Since the cut and paste process 
of integration is not like that seen in most retroviruses, however, some have suggested 
this argues against possible retrovirual origin of Rag1/2. Yet RAG 1 and 2 both conserve 
the DDE metal binding motif and have striking structural similarity to the RNAse H fold 
of retroviral integrase. Given how common virus mixtures (consortia) are involved in 
host evolution, these observations are still entirely consistent with the likely viral origin 
of RAG1/2. Also consistent with this view is that RAG 1 or 2 alone is toxic since it will 
cleave chromosomal DNA. Normally they are found associated to one another to hold 
them in inactive states. Only during T-cell differentiation is RAG active. Thus they clearly 
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integration has always posed a problem to explain by traditional (Darwinian) evolution. The 
integration site involves an RSS repeat with clear similarity to LTR mediated integration. 
But we know of numerous aquatic viruses (such as the phycodnaviruses), that conserve 
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DNA polymerase113,114). These are thought to function to preclude viruses with similar 
DNA polymerase genes. Other DNA viruses of invertebrates are also known to encode 
Tc1-like transposase, (granulovirus cydia pomonella; TCP3.2) which closely resembles 
the V(D)J recombination system and also result in the preclusion of similar viruses.115-117 
Such observations are entirely consistent with virus mediated addiction as the basis of the 
adaptive immune system whose initial objective was to preclude infection by other viruses.

There is another entirely distinct line of evidence that also supports the idea that viruses 
(ERVs) are especially involved in the evolution of the adaptive immune system.118-121 The 
MHC locus contains the TCR as well as many other rearrangeable Ig superfamily genes 
involved in antigen presentation. These are the Class I and II genes. These genes are also 
mostly absent from tunicate genomes. This loci is very gene dense. But it is especially 
interesting that the MHC locus is also the one region of the chromosome that is most 
dense with respect to ERV and LTR composition (outside of the Y chromosome). Such 
an observation suggest that viral mediated coordination of regulation is most responsible 
in driving the evolution of this region. Based on phylogenetic analysis, the MHC I locus 
appears to be ancertral to the MHC II locus. The MHC locus appears to have evolved 
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blocks of genes that have been called a duplicon. Thus it is revealing that the most basic 
duplicon unit of MHC evolution also contains one ERV and an ERV element that appeared 
essential to mobilize and duplicate this region. Nor has this ERV mediated process of 
��#� 	�������� ����	�� ������� 
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between human and chimpanzee MHC locus are also observed to be the result of ERV 
action. Thus the role of ERVs in the dynamic adaptations of the immune system have 
continued into more recent evolutionary periods.
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ideas. One, it is best thought of as a highly elaborate system of identity that originated 
the capacity of white blood cells to kill virus infected ‘self’ cells. It did not originate 
because of a distinct advantage regarding pathogens or selective sweeps by pahtogens. 
Two, it was the product of a complex colonization by viruses (especially ERVs) and 
other genetic parasites that superimposed complex and coordinated addiction modules 
that created the new system of identity. Ironically, this very system of cells also made 
��	����������	
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infect the immune system.

If we can indeed accept the idea that the immune system is really a complex identity 
system, then we can also start to understand some additional but otherwise curious 
associations. For one, it has been known for some time that the MHC locus also contains 
many genes that are olfactory receptors (OR genes).122-125 Their presence and conservation 
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constituents of a gene set associated with identity, then their presence in this locus makes 
sense. Along these lines, it is of particular interest that the specialized receptors genes for 
the vomeronasal organ (VNO) are also concentrated in the MHC locus. These genes are 
responsible for the detection of peptide pheromones that directly affect social interactions, 
including offspring recognition by mothers, mate identity and social identity. In Voles, for 
example, the VNO is essential for mate bonding. Indeed, in mice, there is also the known 
phenomena of the ‘Bruce effect’ that is mediated by both MHC peptide composition and 
olfactory detection.124 In this case, a pregnant mouse dam will reject (abort) her fetus if 
she becomes associated with a second male that was not the sire of the fetal pup. This is 
mediated by olfaction of different MHC peptides of the second male by the dam. Here 
we can clearly see the interface of olfaction, social bonding, MHC immunity and fetal 
immunity all in the context of the locus of the adaptive immune system. There is reason 
to think that this association of olfaction to MHC composition is ancient and seen in early 
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it is striking to realize that in the African primates, but especially in the great apes, this 
����	�����	��	�����������������	�	������	������������	����������28 Indeed, it appears that 
during the great HERV colonization of the African primate genomes (described below), 
there was also a great interruption of essentially all of the VNO receptors and many OR 
receptors in the African, but not New world primates. This event was especially true for 
the human MHC locus in which all the 7 VNO receptor families became psudogenes 
via the action of retroposons. In addition, of the 34 OR genes in the human MHC I 
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reading frames. This contrast with the mouse MHC I genome which has retained and 
even coduplicated the corresponding OR genes. Thus, African primates do not appear 
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‘Bruce’ effect in the primates. Nor is there the scent marking by urine so common to 
other mammals. Instead, the African primates have become much more dependent on 
visual communication and also on audio communication for social purposes. Thus, from 
a group identity perspective, we can note that the great HERV primate colonization was 
associated with a major transition in this ancient olfactory based systems used for group 
identity which were degraded via the action of retroviruses and retroposons, setting the 
stage for the emergence of a larger social brain that would depend more initially on vision 
��	��������	�>	������!���������
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group identity based selection, was crucial for the evolution of human social attributes.
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HUMAN SPECIFIC EVOLUTION: THE GREAT HERV COLONIZATION

This brings us to the doorstep of human evolution. And regardless of the likely 
negative visceral reactions by most evolutionary biologist that surely viruses are not 
relevant to human evolution or even members of the Tree of Life,126 we have laid 
out a clear path and rationale that retains this fundamental concept of viral mediated 
persistence via addiction that sets new systems of group identity. Viruses are central 
to the Tree of Life.127-129,15,6 Humans are no exception to this general process by which 
viruses affects all life.130 Viruses inform us that groups, not individuals (quasispecies 
or mosaic networks) can provide distinct selective advantages and can vastly accelerate 
adaptation. They provide edited, functional and coordinated text elements, not simply 
point errors, that can work together in networks. They also inform us of some of 
the strategies by which new information will persist, via addiction modules. Such 
modules inherently promote group identity. The result is an unending tendency to add 
coordinated code sets to their host which furthermore explains the general tendency 
for more complex organisms to have more complex identity systems along with 
more complex viral remnants in the DNA. Indeed, such complexity will not likely be 
attained without virus; they are essential participants.6 What we can now clearly see 
is the power of the diverse and many, made into one group by their common addiction 
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feature as derived from an individual or its direct kin. Individual cheaters, if they 
evolve, will simply lose their protective addiction module and become negatively 
selected. From these principles, the emergence of the highly social human brain does 
not seem so impossible. Human evolution is also the product of virus population based 
colonization and (social) addiction. There have long been doubts by those that study 
human and primate social interactions131,132��	����������	��
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based concepts.133,134 Since the great ape social structures are much more associative 
then competitive, it seemed much more likely that group associated positive aspects 
must underlie such structures. Primates simply like each other and like being together. 
They seem inherently social and not compelled by competition and spite.135 However, 
these doubts continue to be dismissed by evolutionary biologist since there appeared 
to be no underlying accepted theory (Darwinian based) that would directly promote 
social based or group based selection. Humans are even more social, so the discomfort 
of some social biologist regarding human evolution was even more troubling. However, 
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based changes associated with human evolution, before we might be able to understand 
resulting human group identity and addiction mechanisms. And when we do this, we are 
not disappointed for we see evidence of massive human genomic editing mediated by 
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primates and the evolution of the great African apes and humans, in all these genomes 
we see clear evidence of a transition mediated by major colonization event involving 
various types of retroviruses and retroposons. The African primates in particular 
underwent a great HERV-K colonization (which also incapacitated the importance 
of olfaction for group identity). Curiously, HERV-K represents a virus family that 
exists as an infectious endogenous viruses in numerous rodents, but not primates. This 
endogenization process has continued into human evolution, whose HERV-K, LTRs 
and Y chromosomal makeup is distinct from that of chimpanzees. This is the biggest 
genetic difference between us and our closest relative.
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VIRUS DRIVEN HUMAN EVOLUTION

There are numerous issues that relate to the idea that viruses were involved in 
driving human evolution and I recommend that the reader refer to my recent review on 
this topic for those references.2 The above presentation has been much more focused on 
genomic viruses (ERVs) and retroposon. However, it is likely that extra-chromosomal 
persisting viruses were also very important for human evolution. But a commonality for 
all persisting viruses is the need to establish a mechanism the compels stable persistence. 
Thus all these human-viral relationships should involve some form of an addiction 
module. And in this, the original phage P1 examplar still informs us regarding the link 
between the essential elements of addiction and group identity. Primates have many 
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persistent infections. These include primate foamy viruses (PFV), SIV, large DNA viruses 
(herpes family), adenoviruses, papillomaviruses and others. Indeed, most African monkey 
species are known to harbor their own peculiar versions of PFV and SIV, often together. 
With persistent viruses, however, sexual and group behaviors are often crucial for their 
maintenance. For example, SIV appears to generally be transmitted from mother to young 
in nursing monkeys. Also, human HIV-1 infection is clearly dependent on risky sexual 
and other group behaviors. Thus there is a direct link between social behavior and virus 
maintenance and transmission. With this realization, we start to see how more elaborate 
and learned social behaviors would also be highly affected by viruses. For example, the 
human behavioral response to the HIV pandemic is quite distinct from the essentially 
absent behavioral response of koala’s to the leukemia virus currently infecting them. 
Clearly learned group behaviors matter for virus. Group behavior in the chimpanzees are 
distinct from monkey species in that the males (after breaking maternal bonds) learn group 
hunting of monkeys from older males. But the consumption and sharing of monkeys as 
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persisting viruses harbored by their monkey prey. Thus this learned group hunting by 
chimpanzees would clearly alter the viral ecology, hence evolution of chimps. Yet, in fact, 
most wild chimp populations are not SIV infected. And it does indeed appear to be the 
case that the chimpanzee MHC locus shows evidence of recent selective sweeps, probably 
mediated by retroviruses (given their altered APOBEC3C makeup). And it is also known 
that gorilla and chimp social structures makes them susceptible to ebola virus as well as 
to various human viral infections.136 But the learning of adolescent chimpanzee males to 
group hunt is also used directly as a form a group identity. Groups of chimpanzee from 
the same troupe will hunt and attack chimpanzees from other groups (if the numbers are 
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group identity. Conversely, shared support (common defense, communal feeding etc), 
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group identities are mostly learned during social development of the young (not by HMC 
peptide imprinting as in mice). Thus, in the great apes, group identity is established by 
social learning.

ADDICTION REVISITED: SOCIAL BONDS (LOVE) AND COGNITION

What does it mean to establish a social bond? This question is of special relevance 
to human social evolution since it seems clear that humans have much more extended 
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social systems then the other great apes.137 In addition, our large social brain must be 
more adapted to such states. We would like to understand how selective pressures, 
possibly involving virus might affect this process and how language might be involved. 
The most fundamental social bond seems to be that of a mother and its offspring. In 
placental mammals, the need (obsession) to nurse the young is mediated by maternal 
bonds that initiate from the placenta producing various pheromones that emotionally 
affect the mother and the fetus, but continues after birth via lactation and milk.138 Clearly, 
molecules (peptide pheromones) such as oxytocin, vasopressin and others along with 
their cognate receptors are crucial for this process.139 Since all mammals must preserve 
this fundamental bond system, these bonding systems are not subjected to the type of 
evolutionary variation that could readily indicate the underlying genetic mechanisms 
involved. However, mate bonding is much more variable (uncommon) within the 
mammals and it is known that two otherwise very similar species can differ considerably 
in their mate bonding systems. This has been most evaluated in the voles in which 
similar species can be either monogamous or polygamous. Here it was reported that the 
role of vasopressin and its receptor that is expressed in the central nervous system are 
crucial for the bonding that occurs.140-142 Indeed, the regions expressing elevated levels 
of this receptor corresponded to brain regions that are also known to be involved in drug 
addiction.143��������	��	�	
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virus, in this case a recombinant DNA virus, that would over-express the receptor when 
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a degree of mate bonding into other rodent species (mice) that do not normally mate 
bond. The presence of a bonded mate is clearly comforting (and can be measured by 
reduced stress hormones). Interestingly, in bonded voles, the incorrect MHC olfaction 
of a strange mate will quickly induce negative response (angry attacks).146 Olfaction is 
clearly involved in these pair bonds.146-148 Evaluation of the genetic difference between 
these two vole species established that variations in regulatory DNA associated with the 
respective receptors was the notable difference.149 The usually simple repeat elements 
involved are called satellite DNA and are often thought to vary in length due to errors 
(strand slippage) during DNA replication, even in humans.150 However, the length (and 
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human, chimpanzee and bonobo VP promoter region151) which indicates that site 
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that this variation is more likely due to the action of retroposons resulting from unequal 
insertion and excision as originally proposed by Smith.153,2 The direct implication, is 
not only can a constructed virus directly manipulate social bonding, but it appears that 
viral action may have generated the underlying natural genetic regulatory variation 
involved in different social bonding states.

Given this information, let us now consider the situation with respect to human 
evolution and social bonding. In contrast to the chimpanzees and in addition to the 
maternal infant bond, humans also from strong extended social bonds. The two most 
apparent of these are paternal infant bond and mate bonding. But there are clearly more 
extended bonds as those that include family, tribal, cultural and religious bonds. All 
of these are forms of extended (not necessarily kin based) group identity. I have also 
suggested that they all have similar addiction elements as well. The presence of the 
bonds brings social pleasure and contentment. However, when broken, they rapidly 
induce a reproducible series of pathological emotional and physiological reactions 
known collectively as grief. Whether it be the death of an offspring, mate or tribal, 
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political or religious leader, similar responses will occur. These clearly have the features 
of an addiction module. Indeed, one of these social bonds has been studied in greater 
detail by using various brain imaging methods that can measure brain activity within 
various regions; that is romantic love. The pleasurable feelings of romantic love can 
be induced visually by showing the subjects pictures of their loved ones. Thus it is 
very interesting that the brain regions thus stimulated were similar to those of the 
vole study and also associated with the addiction centers of the brain. Indeed, this led 
some researchers to conclude that romantic love is a from of addiction.154,155 But these 
extended social bonds in humans also demonstrate a distinction between humans and 
the great apes. Clearly, chimpanzee mothers will experience a grief response when 
their offspring die. This usually requires the mother to experience the presence of her 
dead infant. However, in humans, these extended grief reactions can be induced with 
language. Being informed verbally of the death of a loved one will just as effectively 
induce a grief response. This informs us that humans have adapted language to be a 
potent media of social bonding. What types of genetic events might have allowed such 
extended social bonding to evolve so that emotional attachment centers and cognitive 
language centers are linked? We can assume that the underlying bonding system 
was that of the mother-infant. Somehow, this system which historically depended on 
placental and lactation pheromones to establish the bond, must have become activated 
by less biological (e.g., placental) but more cognitive processes. However, it would 
still likely involve the underlying addiction systems of the central nervous system 
would need to link to the needed basal emotional systems to generally (instinctively) 
affect behavior. What must have changed for this linkage to occur was the sensory 
and neuronal media by which the CNS addiction systems become engaged. Clearly 
vision can be involved (hence the ability of pictures to induce brain activity during 
love states). But if extended social bond maintenance became able to use language as a 
media, as well, then this requires the prefrontal cortex become part of the transmission 
or establishment system of group identity. This can only mean that learned states 
(belief states) must be also involved in bond maintenance. In this way, when language 
informs us that a love bond has been broken, we disrupt a belief state that maintains 
the social bond and induce the pathological and emotional grief response. Thus we 
can assert that language, belief and social bonding all must have become linked for 
extended human group identity.

The basic role of the placenta in maternal bonding and the assertion that this likely 
underlies other more extended social bonding systems is of particular interest from the 
perspective of ERVs. For the placenta has long been know to be the one tissue most 
active for the expression of old and recent ERVs (expressed mostly as RNA156-158). It is 
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(reproductive) biology which can require ERV expression,159 including distinctions 
between human and chimpanzee placentas. No other organ shows such variation. In 
addition it is also interesting that human placenta has an expanded set of pheromone 
genes that it can express. However, none of these observations has been linked to 
human social bonding. Such an evaluation now seems warranted. What we should 
seek to understand how the selective pressures associated with group identity led to 
an expanded neocortex which essentially doubled the size of the human brain,160 but 
greatly expanded human social and group identity.



210 SELF AND NONSELF

A LARGE SOCIAL BRAIN AS A PRODUCT OF GROUP IDENTITY

The scenario I have outlined above suggests that the African primates underwent 
a major viral mediate genomic colonization which led to the incapacitation of their 
olfaction based self and group identity systems (e.g., VNO social pheromone or MHC 
peptide detection). The selective pressure for this would be related to that associated 
with how viruses have always affected group identity. Primates shifted the prevalent 
mode of their group identity to become much more visual, involving the brain visual 
systems more so then most other mammals (hence visual cortex, color vision, eyes 
forward, reduced snout from ancestral primates). This must have also been the basis 
for the origin of mirror neurons which we now see visually connecting the mind of the 
African primates into groups. In the evolution of the Great apes, this trend continued 
such that the brain based learning became the predominant mode by which group 
identity was established. In humans, however, there was, in addition, another wave 
of HERV colonization which further incapacitated the remaining olfactory based 
identity as well as incapacitating some brain based systems of group identity that 
had been more ‘hard wired”. By this I mean that the various behavioral instincts that 
most mammals express immediately after birth were also mostly lost from humans. 
What resulted was a species that was much more dependent on learning from others 
via input sensory during early brain development, then was previously found in the 
other primates. Thus the hominid species was in many ways very incapacitated and 
depended more heavily on extended social bonds for the long-term maintenance and 
development of social capacity. These extended social bonds were mechanistically 
derived from the fundamental maternal bond, but also became based on social learning 
and brain development (via the neocortex). The mechanisms involved were related 
to those used by prolactin, oxytocin and vassopresin in that addiction regions of the 
CNS were linked to visual and language based sensory learning. From this, a positive 
feedback loop was established for the evolution of ever more brain based social 
learning that would result in an ever expanding group identity. But with this expanded 
learning capacity, there also occurred expanded capacity for humans to learn from their 
environment and socially communicate this to other group members, via a general 
intelligence which further developed a positive feedback loop for brain based social 
learning. It was under such social based selective pressure that we see the emergence of 
a large social brain whose underlying selective pressure was to be able to learn and use 
language as a major mode of group identity. With the emergence of language, however, 
a different type of nongenetic information system comes into existence. One that is 
no longer strictly tied to the genetic code for its continued (viral mediated) evolution. 
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no longer essential for the creation of new information and group identity. New group 
identity can now occur as a product of social learning. Thus human attained a sort of 
liberation from their biological origins regarding information they have acquired as 
well as how they establish their identity. All this was made possible by a large social 
brain that became dependent on learning language to establish social identity, but 
was initially made possible by the incapacitation following viral colonization. Thus, 
language (and other learned social/cultural and written information) became the 
equivalent of virus for the origins of new identity. And like virus, was dependent on 
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consortia (populations, not individuals) to assign meaning. Language retained some 
virus-like features. Language can be transmitted to and colonize groups of brains 
from older group members and imprint these brains with a social identity during an 
open developmental window. This colonization, like a virus, will also modify their 
development of their host brains such that these brain-host would become resistant to 
learning other identities (second language). In this we can see why early brain growth 
is biologically linked to language acquisition.

In the scenario I have outlined, HERVs (and likely other viruses) did the dirty 
work, they were the systemic editors of the underling human genome. They took out 
numerous regulatory systems and other functions. And in what seems like a distributed 
scramble of defective viral elements along with their ‘hyperparasites (Alu’s. LINES), 
created new networks of control whose main selective pressure was to generate new 
brain based (social/learned) systems of group identity. In this they succeeded. The 
resulting large brain was accomplished by viral promoted transformed basal layer of 
the neocortex. Although this was initially made less functional, the resulting layer 
was more proliferative, invasive and controlling of other brain structures that it could 
now use to control group learning. This was mainly accomplished via a viral mediated 
regulatory regime, not by the acquisition of many new genes. Thus we can possibly 
explain why HERV-K LTRs are often used as promoters. The capacity for neuron based 
control was also viral mediated by enhanced systems of neuron apoptotic development, 
a product of learning. Thus here too we can see examples of ERVs active in many 
brains transcription programs that control apoptotic genes and also in genes crucial for 
human brain development. Thus it seems possible that viral agents could have promoted 
the evolution of the enlarged and controlling prefrontal cortex, especially if this was 
essential for language meaning to be developed.

But how might a virus affect host behavior? For it is really in the resulting social 
behavior (and social bonds) that came to differ so much between humans and their 
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including affecting various memory systems. They are also known to affect emotional 
behaviors, such as being able to induce rage or obsessive behavior. Their transmission 
can also be closely associated with sexual and risky behavior and even be strongly 
affected by political behavior (such as in South Africa and HIV). However, it is not 
at all clear how such general viral effects might have affected the evolution of human 
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directly to virus selective pressures. Yet even with this issue we see some evidence of 
a relationship. Consider for example the languages currently spoken in the New World. 
Although hundreds of native languages were originally spoken by these populations, none 
of them have been maintained by large modern populations. Only European languages 
(English, Spanish, Portuguese) have prevailed following the European colonization. 
This outcome was strongly affected by the population based viruses (e.g., smallpox, 
measles) and the population crash and genetic sweep that followed the introduction 
of these European adapted viruses to the Americas.161 Thus the consequences of the 
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they did help select for a shift in population based language and identity.
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CONCLUSION

Although the study of viruses and disease has long been pursued, the deeper 
����������	����������	��	������������	�����������������		��������������	������	��������
theories of evolutionary biology have not incorporated the transmissive and horizontal 
capacity of viruses to colonize host populations and their genomes or how this affects 
host-virus relationships. The concept that viruses might also affect host identity systems 
has not previously been explored.

In the last 20 years, several lines of investigation have provided new perspectives on 
the nature and general importance of virus for all life. Comparative genomic sequencing 
and analysis has informed us that virus derived information represents the most dynamic 
information found in all domains of cellular life. This information has clear consequence 
to virus-host relationships and affects host population survival and identity. Metagenomic 
(shotgun) sequencing of various habitats has informed us that viruses are the most abundant 
and diverse genetic entities in these habitats. Comparative viral genomics has further 
informed us that the majority of genes found in various viral clades are virus derived, 
not derived from host.

It has also been experimentally observed that virus populations can often have mixed 
�������
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nature of DNA virus evolution, especially in prokaryotes, also indicates the importance 
of virus mixtures.

The persistence of viral derived information in its host has been explained here by 
the use of viral derived ‘addiction’ modules (linked toxin/antitoxin). Although these 
modules promote persistence, they also promote the establishment of new host population 
identities and affect the competition and survival of host populations. The existence of 
bacterial populations that employ these mechanisms is now being explored. The concept 
of an addiction module, however, can also be broadly generalized to explain the nature 
and origin of most systems of host identity, including the adaptive immune system of 
vertebrates. Such identity systems can also promote group identity.

These observations along with other analysis have led to various theories that 
viruses are providing new and complex information that fundamentally contributes to 
host evolution. However, there has emerged an entirely new line of theory based on 
essential requirements of any natural language and the premise that DNA is a natural 
genetic language that adheres to these same parameters. Thus, issues of syntax and context 
(pragmatics) apply to DNA as well as other languages. To understand the biological basis 
for the origin of DNA language and the ability to edit this language during evolution, 
the term ‘biocommunication’ has been introduced.12 However, one conclusion of this 
��	�������������������������>���	�����
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context dependence (pragmatics). Instead, this requires the participation of a “population 
of agents” that are competent to understand, use and edit DNA code.12
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identical host populations, viruses provide the population of agents that are competent to 
edit and create new code. And since stable virus colonization employs addiction modules, 
viruses also provide new population identity along with edited code. Using this concept, 
we can trace primate to human evolution in the context of endogenous retroviral (ERV) 
colonization. In so doing, we see much evidence for viral colonization directly associated 
with primate and human evolution. We also see the emergence of learned systems of 
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group identity that are linked to brain development, but still use CNS based addiction 
circuits to establish group (social) bonds. These primate social identities still adhere to 
the basic attributes of addiction modules, albeit resulting from learned, not new genetic 
information. It is from this perspective that we can propose that human language is a form 
of learned group identity which still adheres to the basic parameters of addiction modules.
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Abstract: The concept of adaptive immunity suggests de novo generation in each individual 
���	���	�	�����	��	
	�����	��������	����	���	�	
����������		����	�	�
����������
receptors that match the antigen/pathogen. Accordingly, adaptive immune system 
is also called “anticipatory”. It allows each individual to have a unique repertoire of 
immune receptors corresponding to its life history. The memory of an antigen gets 
encoded in the clonal composition of the organism’s immune cells instead of being 
encoded in the genome. Consequently, the immune response to repeated encounter 
with the same antigen becomes stronger, a phenomenon called immunological 
memory. Elements of adaptive immunity are found at all taxonomical levels, whereas 
in vertebrates, adaptive mechanisms have become the cornerstone of the immune 
system. In jaw vertebrates, adaptive immune receptors of T and B lymphoid cells 
belong to immunoglobulin superfamily and are created by rearrangement of gene 
�	��	�����_��~��	����	��	����	����
�	���������������	���������������	����	%�����
repeat modules is used to form variable lymphocyte receptors. Striking functional 
similarity of the cellular and humoral branches of these systems suggests similar 
driving forces underlying their development.

INTRODUCTION

The main challenge for the immune system is to create in an economic way a repertoire 
of receptors able to discriminate between “self” molecules and cells and the vast arrays of 
pathogens. Immune system also needs to detect defective, damaged and transformed “self”. 
Depending on the type of receptors, immune mechanisms are traditionally subdivided into 
innate and adaptive. The most ancient and universal innate immune mechanisms are based 
on germ-line encoded receptors that evolved to recognize molecular patterns common 

Self and Nonself, edited by Carlos López-Larrea. 
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for large groups of pathogens or for defective “self”.1,2 Pathogens, however, constantly 
develop mechanisms for escaping immune surveillance and new pathogens arise. One of 
��	������
�����	���	���
	������	�����	��������	��	����	����	����������������	���������	�
molecules. For example, the human malaria parasite Plasmodium falciparum generates 
diversity within the multi-copy variant antigen gene families by gene recombination.3

To meet the challenge, the host organisms need to maximize the scope of immune 
recognition. Extensive populational polymorphism is one strategy. In case of Drosophila 
melanogaster, variability in immune competence is associated with nucleotide 
polymorphism in at least 16 immunity genes.4 Duplication of receptors is another strategy 
widely used by invertebrates.5 Combinatorial use of receptors is employed to increase 
the range of recognition using the same number of receptors.6������������	�����������
of receptors such as gene recombination, conversion, or alternative splicing is used to 
increase the number of receptors produced from a limited number of genes. In insects and 
crustacean, large repertoire of receptors is generated through alternative splicing of the 
Downs syndrome adhesion molecule.7,8 185/333-gene family in the purple sea urchin is 
���	����	������	����������������
���������������9 Highly adaptive nucleic acids based 
immune mechanisms evolved in all phyla, including bacteria.10,11

�����������	�������������� �	�	
������	���	������������ �����	��� ��� ��	����
���	�
immune system of jaw vertebrates (gnathostomes). From sharks to humans, antigen 
receptors of T and B lymphoid cells (TCR and BCR) are encoded as gene segments,12 
and functional genes are produced by rearrangement of these segments by recombination 
activated genes (RAGs).13 Each lymphoid cell expresses unique receptors and can clonally 
expand in response to a matching antigen.14�$	������	���#$�������	������	�����	����	��
by gene conversion, class switch recombination and somatic hypermutation, mechanisms 
dependent on activation-induced cytidine deaminase (AID).15 Despite the similarity 
between TCR and BCR, T and B cells differ functionally and in the way they recognize 
antigens. B cells recognize antigens directly, in contrast, T cells recognize antigens 
in association with the major histocompatibility complex (MHC) proteins and related 
molecules serving as markers of “self”.16 T cells therefore combine recognition of self 
and nonself. T cells are responsible for the cellular immunity and regulatory functions, 
while B cells are involved in humoral immunity by producing antibodies.

Till recently, adaptive immune system was thought to be unique to jaw vertebrates.
However, recently a strikingly functionally similar, albeit based on a completely 

different type of receptors, adaptive immune system has been discovered in jawless 
�	��	����	�� >��������	�!� ��
�	�� ���� �������17 In this system, leucine-rich repeat 
(LRR) modules are incorporated into noncomplete variable lymphocyte receptor (VLR) 
gene to form a functional gene. Two types of receptors, VLRA and VLRB are expressed 
in different cell populations that seem to divide functions, as do T and B cells of jaw 
vertebrates and to mediate, correspondently, the cellular and humoral immunity.18 VLRB 
receptors can be secreted as antibodies. In contrast, VLRA resemble TCR in that they 
are found only in membrane-bound form and do not bind antigens directly. Moreover, 
VLRA positive lymphoid cells express genes typical for T cells of jaw vertebrates, while 
VLRB-bearing cells express B-cell types of genes. Remarkably, assembly of VLRs may 
depend on the agnatha’s homologue of AID.19

This discovery changes the view of the evolution of adaptive immune system. 
If both jaw and jawless vertebrates have B- and T-like cells and AID is involved in 
���	�������������� �	�	
����� �������� ����	���� ��	�� ��	��� ����������	��������������	�
already had subdivision of lymphoid cells into two branches. It is also possible that AID 
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������	���������	��������	�����������������	������	��	�	
������_����������	��������
�����������	�������������������	���	�	
�������"	��
��	������������	��	����	��
	��	��20 
Therefore the ancestors of vertebrates already had a sophisticated immune system. Two 
events likely contributed the most to the divergent evolution of the immune systems in 
jaw and jawless vertebrates; whole genome duplication (WGD)21 and the development 
��� ��	� $��%�	����	�� �	�	
���� ���	����������� ��� ~��� �	��	����	��22 The knowledge of 
two different adaptive immune systems opens new opportunities for understanding the 
principles of the underlying design and evolution of the immune mechanisms.

THE MAJOR FEATURES OF THE ADAPTIVE IMMUNE SYSTEM 

OF JAW VERTEBRATES

The adaptive immune system of jaw vertebrates combines strong conservation of its 
general features with fast evolution of immune genes. The structure of immune receptors 
������������	����	�������������	�	
�������	�������������������������	�����������	�
conserved from sharks to humans while sequences can have only residual similarity. The 
adaptive immune system is built around three major molecules, TCR, BCR and MHC. 
TCR and BCR are dimers.16 BCR contains immunoglobulin (Ig) heavy (H) and light (L) 
chains; TCR is composed of alpha and beta chains in ��T cells or gamma and delta chains 
in ��T cells. Antigen-binding site is formed by hypervariable complimentarity determining 
regions (CDRs) from both chains. Two CDRs are encoded by variable segments while 
CDR3 is created at V(D)J junctions. The signaling from TCR and BCR depends on the 
immunoreceptor tyrosine-based activation motif (ITAM) in accessory molecules, which 
is CD3 chain for TCR and immunoglobulin alpha and beta chains for BCR.23

The variable regions of TCR and BCR are encoded as segments, variable (V), diversity 
>&!�����~�������>�!����"	������	�������������������	=�	��	��>$���!12 (Fig. 1). During 
rearrangement, RAG1 and RAG2 together with other proteins complex on the RSS and 
nick the DNA at the border between the RSS and the gene segment.13 This leads to a DNA 
hairpin at the end of the coding sequence. Then, proteins from the nonhomologous end 
joining repair pathway open and ligate the hairpins. During this process, nucleotides can 
be removed or added to the junctions, increasing the variability of receptors. In addition, 
nontemplated nucleotides can be added by terminal deoxynucleotidyl transferase (TdT).24 
Each lymphoid cell typically expresses only one type of receptor by a mechanism known 
as allelic exclusion.25

�#$����	����	����	��������������������������
	������������	�	�����	����������
class-switch recombination.15,26,27 These processes start with deamination of cytidine to 
uridine by AID with subsequent steps performed by DNA repair enzymes. The RGYW 
motif (where R � purine, Y � pyrimidine and W � A or T) and the reciprocal WRCY motif 
are the preferred targets for AID.28,29 Somatic hypermutations coupled with selection by 
�����	��	�������	������������#$����������%�����������������	��>������!�������
���	������
	�
	�����	����	�����������������	�������%����	���	��	����	����������������	�����	�
structure of V regions has evolved to direct somatic hypermutations mostly to CDR1 by 
concentrating AID target sequences in this region.30 However, the relative density of such 
����	������������#&${�������������	������������	�����	�
��������	��������	=�	��	��31 
_�������	���	������	��	�����������������������������	��	�
���	�������	���������

��	�
���	�������	�	
�������	��������������������	�����	����������������������	����	�
�����	��	����	�	���	���	�	
����������	��	�%�	�����	����	�	��	�	
�������	������	�����
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Figure 2.��������
	��������������������	������������������	�	
���������������������		��������������	��

Figure 1.�&��	�������������� �����	��	�	
����� ��� ~����	��	����	����&���	������	�	����������
���	�����
immunoglobulin heavy chain is shown.
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editing/revision when the V segment in a rearranged receptor is completely or partially 
replaced by another V segment. This process is mediated by RAGs proteins and depends 
on cryptic RSS sites in V segments.32,33 Cells still bearing self-reactive receptors are 
removed by apoptotic death or silenced.

The variable and constant regions of lymphoid receptors evolve differently. 
V regions have evolved according to the “birth-and-death” model when duplication 
	�	�������	��	���������	��	%�
	��������������������������������	��	������������	����
��	���
������	���������������	�	��34 Constant regions are less constrained in the directions 
of their evolution, especially in immunoglobulins and have evolved to mediate various 
effector functions.

Interestingly, TCR� and TCR� are expressed by the different types of T cells but 
are, nevertheless, encoded by a single locus with the delta DJC cluster proximal to the 
array of V segments followed by the alpha JC cluster.16 This structure is preserved in 
evolution perhaps because it allows coordination of the expression of TCR� and TCR� 
and, in this way, regulates the ratio of �� to �� T cells. TCR���	������	�������������T 
�	����	���	����������

	���������������	����#����������������������������	��#$� is 
lower than that of the TCR�, because there are fewer DJ segments in the TCR� cluster and 
because of restrictions on V regions rearrangement to TCR�.35 During the fetal life, the 
����	����	�������������	�����~�����������	��������	����	�����	�	���	�	������T cells have 
����	�����������������	�	��������������	������	����	���������	��������	������������
the potential number of different delta chains is very large, since the two D segments may 
participate simultaneously in V delta assembly and random nucleotides may be added 
at all three junctions.36 This creates a sharp difference between the fetal and adult ��T 
repertoires, restricted in the fetus but variable in adults.

Immunoglobulins are much less conserved than TCRs with only IgM present in all 
species. The organization of Ig genomic loci also differs among species, especially that 
�������������������������_��������������������_�����	�	����	���������	����������	�
V segment, two or three D segments and a single C region; separate clusters encode IgM, 
IgW and IgNAR.37�#���	������������������_����������������������������������������	��
�
	��	�����	�_�����������������������������������������������&��������	��	����	����	��
in the same locus. Light chains are encoded by the cluster type of loci in cartilaginous 
��������������	��	���
	��������	���
	��	��38 Light chains are thought to have evolved to 
match heavy chains they pair up with in the BCR.

_�� �		��������� ���		� _�� ����	�� ��	� ������� _���� _������� _�&���		���� _��� �����
organization mimics the Tcrd-Tcra locus with an array of V segments followed by DJCzeta 
and DJCmuCdelta clusters.39 V segments rearrange alternatively to zeta or mu clusters. 
Similarly to TCR�, zeta has lower combinatorial variability and is expressed earlier in 
�	�	�
�	���������������	�	����������������	����������������	�'�������������������
Therefore close functional parallels exist between pairs of IgZ/IgM B cells and ����� T 
cells. Teleost IgD is expressed by alternative splicing of DJC	C� message often with 
��������������	������	�������#	.40

Coupling of mu and delta is preserved in tetrapods IgH loci. Contrary to teleost, 
tetrapods have several constant regions downstream from C�. These immunoglobulins 
are expressed by class switch recombination41�>�����{!�������������	���
���%�
	���������
����	�	
�������	�������������	��#	C� in the rearranged gene is replaced by one of the 
downstream constant regions. AID mediates this process through switch (S) regions located 
in front of each C region. Introduction of class switch recombination opened opportunities 
for evolution of various specialised immunoglobulins. For example IgA protects mucosal 
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surfaces and is adjusted for this function.42 Even closely related tetrapod species often 
���	�����	�	����	�������
	�����	����������	��	���	������	��	��
	�������
	��������"��

Hybrid molecules that have a double V structure with the N-terminal V domains 
similar to Ig V domain while the rest of the molecule is similar to the conventional TCR� 
have been found recently in sharks and marsupials.43,44 These receptors are thought to be a 
result of a recombination between the TCR and immunoglobulin loci. They combine the 
properties of Ig-like antigen binding with TCR effector function. They might have been 
present in mammalian ancestors but later were lost from most mammals.

T and B cells undergo V(D)J rearrangement and selection for the absence of 
self-reactivity in the primary lymphoid organs, which is thymus for T cells in all species 
and variable tissues for B cells.45 The newly formed T and B cells migrate via the 
bloodstream to peripheral lymphoid tissues, where, following antigen recognition, they 
undergo lymphoblastoid transformation, clonally expand and differentiate correspondently 
into effector cytotoxic or helper T-lymphocytes or plasma cells. T and B cells cannot 
function without MHC proteins, which are necessary for antigen presentation to T cells 
and communication of immune cells. MHC is discussed in Chapter 18 of this book.46

ADAPTIVE IMMUNE SYSTEM OF JAWLESS VERTEBRATES

���� �������	�� �������"���������� ��	� ~��	������	��>��
�	�������������!����	�
��
�����	%�"	� �	�� ���� 
�����	� �����	�%�
	����� ����������� ���	�� �������������
(reviewed in Amemiya and Saha47). However neither lymphoid organs similar to 
higher vertebrates no genes essential to the classical adaptive immunity such as Rags, 
��������������������#����	��		������������	��	�	��������	������������~��	�������
have adaptive immune system based on variable lymphocyte receptors (VLR).17

VLR is encoded as an empty cassette containing only 5� and 3�-ends of the gene 
(Fig. 3). Hundreds of various leucine-rich repeats (LRR) modules are encoded upstream 
and downstream of the VLR locus and variable numbers of them are recombined into 
the cassette to create a functional gene. A gene conversion mechanism is thought to 

Figure 3. Adaptive immune receptors of jawless vertebrates are generated by assembly of LRR modules 
into incomplete VLR gene.
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be responsible for copying the donor LRR sequences.19 Lamprey lymphocytes express 
two putative deaminases of the AID-APOBEC family that may be involved in VLR 
���	��������������	����	�����������$������	���	�	
��������������������	����
����	����
that generated in jaw vertebrates by Rag-mediated recombination.19,48

The structure of the VLR antibodies was predicted to resemble that of Toll-like receptors 
with typical LRR-containing solenoid structures.17 Analysis of VLR sequences suggested 
that the concave surface of the VLR solenoid would be the binding site of the receptor 
since the patterns of amino acid substitutions indicated positive Darwinian selection.48 This 
structure was validated after a VLR antibody was cocrystallized with the H antigen epitope 
from human “O” erythrocytes,49 the same antigen that was found almost 40 years ago to 
	��������
	�������������������	�
���	������
�	���50 Another structure resolved recently 
also demonstrated that an anti-lysozyme VLR was bound to the antigen by its concave 
surface.51 In addition, presence of a loop that penetrated into the enzyme active site was noted.

_�����������������
�	���	���������������������	������������	���	%��������>��#�!�

���	������
�����	������������	��	������
�
�������������	�������%�"	���
�����	��
and a concomitant increase in Vlr mRNA levels.48,52 Therefore, similar to the gnathostome 
lymphocytes, the agnathan lymphocytes undergo lymphoblastoid transformation following 
antigen and/or mitogen stimulation. Production of soluble VLRB was also noted. 
VLRB is bound to the membrane through glycosyl-phosphatidylinositol (GPI) anchor 
and the soluble protein can form via its cleavage. Immunization with several bacteria, 
polysaccharide antigens and some protein antigens elicited antibody with dissociation 
�������������
������������	��	=����	����������	��������%��������_�����������	��48,52,53

VLRA and VLRB receptors are expressed by separate lymphocyte populations.18 
Cytosine deaminase 1 (CDA1) is expressed only in VLRA and CDA2 only in VLRB 
lymphocytes. Similar to receptors of the classical adaptive system, VLR receptors are 
expressed in monoallelic way. A surprising discovery was that VLRA and VLRB-expressing 
cells resemble functionally T and B cells of jaw vertebrates. Both VLRA and VLRB cells 
respond to antigenic stimulation by proliferation. However only VLRB lymphocytes 
bind native antigens and differentiate into VLR antibody-secreting cells while no direct 
binding of VLRA proteins to antigens could be detected and no soluble VLRA is present 
in lamprey plasma.18 As a recombinant protein, VLRA is expressed exclusively as a 
transmembrane molecule similar to TCR. Another similarity to T cells is lymphoblastoid 
transformation of VLRA lymphocytes in response to phytohaemagglutinin while the 
response of VLRB cells is much weaker.
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of mammalian T and B cells. VLRA lymphocytes preferentially express a number of 
molecules characteristic of T cells in jawed vertebrates including GATA3, c-REL, aryl 
hydrocarbon receptor (AHR), BCL11b, NOTCH1, CD45, the IL-8 receptor CXCR2, 
IL-17 and MIF. In contrast, VLRB cells express CXCR4, TNFRSF14 that binds to 
LIGHT on T cells, two components of the BCR signaling cascade, SYK and the B-cell 
adaptor protein (BCAP), IL-8, the IL-17 receptor, TLR2, TLR7 and TLR10. Activated 
VLRB lymphocytes upregulate the expression of IL-8 while VLRA upregulate IL-17 
and macrophage migration inhibitory factor (MIF).

Therefore it seems that VLRA lymphocytes recognize processed antigens and 
undergo selection in a manner analogous to the T-lymphocyte repertoire selection in 
jawed vertebrates. Lampreys lack the MHC that is used to present peptide fragments 
to T cells in jawed vertebrates. However, another, yet unknown molecules can perform 
�����������������~��	�������
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The preferential expression of TLR2, TLR7 and TLR10 orthologues by the VLRB 
lymphocytes suggests that TLR ligands may facilitate activation of this population of 
lymphocytes in a manner similar to their roles in activating B lymphocytes. Some genes 
are expressed in a complementary way in VLRA and VLRB cells. Examples include 
expression of IL-17 in VLRA cells and IL-17 receptor in VLRB cells and expression of 
IL-8 in VLRB cells and IL-8 receptor in VLRA. Therefore VLRA and VLRB cells may 
communicate during immune response.

These data suggest that compartmentalization of lymphoid cells into the cellular 
and humoral branches have existed in ancestors of vertebrates before the appearance 
of different types of anticipatory receptors in jaw and jawless vertebrates and before 
separation of these vertebrate lineages.

ORIGIN OF THE REARRANGING IMMUNE RECEPTORS 

IN VERTEBRATES

Since the two vertebrate adaptive immune systems use the same type of immune cells 
the question arises: were these systems completely independent convergent evolutionary 
acquisitions,18 did they coexist in vertebrate ancestors,54 or did one precede the other?55 
There is currently some support for each of these hypotheses.

V(D)J recombination is very similar to the mechanisms of transpositional 
recombination and retroviral integration.56,57 This led to the hypothesis that V(D)J 
recombination originated by integration of a bacterial transposon or a retrovirus into a 
genome of an ancestor of jaw vertebrates.22 The integration resulted in cleavage of a gene 
encoding the V domain of an immune receptor into two recombinable fragments.58,59 The 
intruder transposase evolved later into RAGs proteins. In support of this view, a fragment 
������� ��� ��	����	��	��������$��{������		�� ��	����	�� ��� �����
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transposons.60 The terminal inverted repeats of Transib transposons are very similar to 
RSSs used by RAGs. However, only the RAG1 core resembles Transib transposase, so it 
was suggested that the N-terminal domain was assembled from a different protein. One 
candidate is a mobile element from a mollusk.61 Rag1 gene is tightly linked with Rag2 in 
all species. RAG2 protein bears no resemblance to transposases or any bacterial proteins, 
therefore it was suggested that RAG1 transposons landed in a vicinity of a primordial 
Rag2 gene and RAG2 was coopted by RAG1 to perform rearrangement. RAG1 core-like 
sequences were found in several protochordates. Strikingly, a Rag1/2-like linked gene 
pair is present in purple sea urchin genome that is similar in both sequence and genomic 
organization to the vertebrate Rag1/2 pair.22,62 Sea urchin RAGs are coexpressed during 
development and in adult tissues and form complex with RAG1 and RAG2 proteins 
from several vertebrate species. This discovery pushes the acquisition of the enzymes 
crucial for the origin of adaptive immunity many million years earlier than the origin of 
vertebrates. The role of sea urchin RAGs is unknown at present. Sea urchin RAGs are 
expressed in coelomocytes, which is consistent with the role of these proteins in immunity. 
No clusters of gene segments with similarity to the vertebrate V, D and J gene segments 
���$��%�"	��	=�	��	�����	��		����	����	����������	����������	���	�����	�	���������	��
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a single V and a single J region, such a gene could be overlooked.

'��$�������	��		����	����	�������	�#�����	����������������	��������������
�����	��
to vertebrates. However this species has a small genome and has likely underwent an 
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intensive gene loss. An alternative hypothesis is that a primordial herpes virus, rather than 
a transposon encoded the recombinase responsible for the origins of acquired immunity.63 
According to this hypothesis, the regulated expression of a viral recombinase in immune 
cells may have been positively selected for its ability to stimulate innate immunity to 
herpes virus infection. It provides a plausible explanation of the early and non-uniform 
appearance of RAGs in deuterostomata, although the sequence similarity between RAGs 
and herpes recombinases is low.

Another gene playing an important role in the adaptive immune system is AID.64 
AID and related APOBECs constitute a family of nucleic acid mutators.19,64 APOBEC1 
is a RNA-editing enzyme while the APOBEC3s are DNA mutators acting in defense 
against retroviruses. The AID/APOBECs are similar in structure and catalytic site to 
zinc-dependent deaminases, a large gene superfamily encoding enzymes involved in 
nucleic acid metabolism. The AID/APOBECs are thought to originate from tRNA 
adenosine deaminases (Tad/ADAT2) that edit adenosine to inosine in tRNAs in 
both eukaryotes and prokaryotes. The presence of two AID homologues in lamprey 
suggests that AID originated before the split of jaw and jawless vertebrates.18 No 
��%	������_&�������	����	�������
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sequence identity to the N- and C-terminal regions of human AID have been found.65 
AID was suggested to develop in vertebrate ancestors as an antiviral protein.19,59,66 
In support, AID is induced outside the germinal centers in response to infection by 
certain retroviruses and contributes to antiviral defence. NF-kappaB binds the AID 
promoter and is required for the expression of a virus-induced AID.67 NF-kappaB role 
in immune signaling is conserved in evolution, supporting the view that AID primordial 
role was antiviral defense. AID mutagenic activity could then become employed for 
somatic mutations in genes encoding immune receptors. Therefore the mechanism of 
�	������	%�	����	�� ���	����������� ��� �����	�� �	�	
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from V(D)J rearrangement. The AID/APOBECs family expanded in mammals and 
underwent complex gene duplications and positive selection.
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yet another unique mechanism, insertion of nontemplated nucleotides at V(D)J junctions. 
A closely related enzyme, polymerase 	, promotes repair of noncomplementary ends by 
nonhomologous end joining.68 A gene homologous to TdT and polymerase 	 is present 
in amphioxus and sea urchin.65,69���	�	���	���������
��	����������	������	�����������
machinery of the adaptive immune system are present in invertebrates.

Many candidates for a primordial receptor that was disrupted by a Rag-bearing 
transposon have been suggested from the members of IgSF involved in cell adhesion and 
innate immunity.70 All major molecules involved in the adaptive immune system including 
Ig, TCR, MHC, tapasin and beta2-microglobulin have C1 type of constant domain. From 
other proteins with C1-like domains are signal-regulatory proteins (SIRPs).71 SIRPs 
also encode V domains with a typical J motif and signal via ITAM-containing adaptor 
molecules. The expression of most members of this family is restricted to myeloid cells 
where they act as both inhibitory and activating receptors. SIRP� is an inhibitory receptor 
that interacts with the membrane protein CD47, which is a marker of self. CD47–SIRP 
interaction controls the effector functions of phagocytes protecting host cells against 
immune-mediated damage.72

In sea urchin, there are three V-C1-TM-cytoplasmic region genes.69 Their role is 
currently unknown. The receptor disrupted by Rag-bearing transposon is expected to 
be involved in immune recognition. The somatic recombination of the receptor would 
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increase its repertoire and provide a selective advantage. To evolve into a typical TCR 
and BCR, the gene encoding this receptor would need to be duplicated to become a dimer 
and be duplicated again to form T and B-cell receptors. This could happen during the 
whole genome duplication (WGD).

WGD is likely to have played a pivotal role in evolution of the adaptive immune 
systems. WGD generates enormous amounts of genetic raw material available for 
acquisition of novel functions. Vertebrates were suggested to have undergone two 
rounds of WGD after the split of the urochordate and cephalochordate lineages.21 Recent 
sequencing of invertebrate genomes has provided strong support for WGD hypothesis. 
In particular the genome of the cephalochordate amphioxus shows a high degree of 
synteny conservation with vertebrates. Amphioxus and the urochordate Ciona have 
a single MHC-like region that could be a precursor of the four MHC paralogons in 
jawed vertebrates.65,73 Many more genes involved in modern adaptive immune system 
may originate as a result of WGDs.54

VLRs were suggested to originate from the GPIba, a part of the receptor complex 
GPIb-V-IX, which has a critical role in hemostasis.19 This multifunctional receptor 
initiates platelet activation and thrombus formation at the sites of vascular injury and 
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platelet-mediated tumor metastasis.74 VLRs and GPIba share a unique insert between 
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absent from the LRRCT of other animal LRR-containing proteins.

The exact point in time when rearranging receptors originated is not known. 
The timing of divergence of cyclostomes from the gnathostome lineage is debated. 
Some molecular phylogenetic analyses suggest that the genome duplications occurred 
before the cyclostome-gnathostome split.75 It can be speculated that RAG-rearranging 
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dimer receptor. The second WGD led to duplication of the dimer receptor and created 
the grounds for the divergent evolution of TCR and BCR. The idea that all major 
components of both adaptive immune systems of vertebrates originated before the 
split of jawless vertebrates agrees with the presence in lamprey of such molecules as 
TCR-like, CD4-like, V-preB-like, CD3 epsilon etc.76,77 Recently, two VLR-like genes 
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at the time of the split.55 This agrees with the idea that the vertebrate ancestor had both 
BCR/TCR and VLR precursors.54 Their evolution might turn in opposite directions in 
jaw and jawless vertebrates with one system becoming dominant and the other being 
degenerated/lost.
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major difference from teleost and tetrapods is the cluster organization of their IgH loci. 
Is cluster organization a primordial feature as often was suggested? It may be not. The 
structural and functional similarity of Tcrd-Tcra loci and teleost IgH loci may point to 
an ancestral type of organization of the locus encoding TCR and BCR that existed in 
~����	��	����	���	���	���	����	��	��	������	��������������������	��	���������	������
assumes that the IgH locus organization observed now in the teleost precedes the IgH 
����	�����������������������������������31 Separation of IgM and IgZ loci in cartilaginous 
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IgM and IgW. Tetrapods could lose IgZ at some point in their evolution.
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ORIGIN OF LYMPHOID CELLS AND ORGANS

An essential component of the adaptive immune system is a lymphoid cell able to 
live long to provide immunological memory and able to proliferate in response to antigen 
stimulation. Precisely at what time in evolution the lymphocytes had originated is unknown. 
Immune cells of invertebrates are mostly an unexplored area despite the long time since 
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immune cells that are found in almost all animals (metazoans) that have been studied 
are phagocytic cells. Moreover, immune-like phagocyte activity has been observed in 
the social amoebas that aggregate when starved to form a migrating slug. Cells called 
“S cells” engulf bacteria and sequester toxins circulating within the slug.78 Phagocytes 
however, are relatively short-lived nondividing cells. Lymphocytes have emerged as 
a new type of immunocompetent cells. The evidence for two types of lymphocytes in 
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ancestor of vertebrates. Segregation of the erythroid lineage also happened before the 
split of jaw from jawless vertebrates since lamprey has distinct erythroid cells.79 Mussels 
have at least 3 types of hemocytes.80 Ascidians have 5 discernible types of hemocytes 
including lymphocyte-like cells.81

Jaw vertebrates have a subpopulation of lymphoid cells, natural killer (NK) cells, which 
do not express rearranging receptors. Instead, they express innate receptors, activating and 
inhibitory.82 Receptors recognizing MHCI on normal cells are inhibitory, those recognizing 
aberrant molecules are activating. NK response is the result of integration of activating 
and inhibitory signals. NK lyse virus infected and tumor cells. They also regulate other 
cell types through secretion of interferon (IFN)-� and other cytokines. NK cells resemble 
adaptive cells in that they express a unique pattern of receptors creating a repertoire of 
�
	�������	����	�%��	����	����'���	��������	�	�������	�����	���������������������
is also similar to T and B cells. Moreover, some data show that NK cells can expand 
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Furthermore, recent data show that NK cells can produce memory response lasting at 
least two months after stimulation.84,85 Therefore NK cells have characteristics of both 
innate and adaptive immune cells.

It is likely that cytotoxic lymphoid cells similar to NK cells developed quite early 
in evolution. Even the simplest animals such as corals, bryozoans and ascidians have 
systems for allorecognition although it is based on molecules other than MHC as “self” 
tags.86 Urochordates Botryllus schlosseri cytotoxic cells express receptors related to 
mammalian NK CD94/NKR-P1 receptors.87 Cytotoxic cells are present also in the sea 
urchin Paracentrotus lividus�� ��	� ��	����� ����� ����� ����� �
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coelomocyte types including amoebocytes and uncolored spherulocytes.88 Cell population 
enriched in uncolored spherulocytes exert high cytotoxic activity against rabbit erythrocytes 
in the presence of amoebocytes or extracts from these cells pointing to cooperation of 
different cell types.

An important feature of lymphoid cells is their ability to clonally expand in response to 
immunological challenge. There are indications that sea urchin immune cells are a dynamic 
population. In response to lipopolysaccharide, they transiently increase in number.89 The 
coelomocytes of individual sea urchins express scavenger receptor cysteine-rich genes 
from a multigene family encoding an estimated number of 1,200 SRCR domains in 
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1 week and up to 30-fold over a period of 3 months.90 It would be interesting to know is 
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Knowledge of ontogeny of T and B cells may help to understand their phylogeny. 
However, the exact path from hematopoietic stem cells to lymphoid cells is not that 
apparent and has recently been a subject for debate. The classical model of hematopoiesis 
postulates early separation of lymphoid fate from erythroid/myeloid one and the 
existence of a common progenitor (CLP) for T and B lymphoid cells.91 Some recent data 
support the existence of CLP population92����	����	�������������������	�#�<����	��
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macrophage potential as well as T, NK and dendritic cell potential.93,94�������`|\����
thymic macrophages are derived from early thymic progenitors. A close connection of 
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the ability to phagocyte.95 Recently, it was found that freshly isolated human peripheral 
blood ���T cells can phagocyte, process and present antigens on MHCII.96 It suggests a 
close connection of all immune cells. An alternative picture of hematopoesis suggests that 
both the innate (myeloid) and adaptive (lymphoid) lineages of the immune system arise 
from a common progenitor.97,98 Many transcriptional factors involved in development of 
lymphoid and myeloid cells are shared.99

Until recently, it was believed that T cells are evolutionary older than B cells.45 
However B cell seems to be a default fate of lymphocyte development in absence of 
NOTCH signaling. NOTCH increases the frequency of multipotent progenitors; skews 
the T and NK potential of CLP and inhibits the differentiation of B cells.100 Low doses 
of NOTCH ligands increase frequency of NK, whereas higher doses are required for 
increasing the frequency of T-cell clones. So it seems possible that B cells are evolutionary 
older than T cells.

T cells in all jaw vertebrates develop in thymus. Expression of NOTCH ligands by 
thymic epithelial cells is necessary for T-cell development. The fact that T-like cells in 
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the same signaling pathways as classical T cells. VLRA lymphocytes are enriched in the 
lamprey’s gill regions suggesting that development of this cell population may take place 
in the same region, where T cell develop in jaw vertebrates.18 Foxn1 gene is expressed 
in epithelial cells of thymic primordium and is crucial for thymus development.101 The 
agnatha ortholog of this gene, Foxn4L, is expressed in pharyngeal region in lamprey. 
Moreover, this expression overlaps NOTCH ligand DELTA-like 4, which is necessary for 
differentiation of lymphocyte progenitor cells into the T-cell lineage and is a downstream 
target of FOXN1.101 In the same study, pharyngeal epithelial structures have been examined 
by in situ hybridization for the presence of lymphoid aggregates and none were found. 
This led to the conclusion that lamprey does not possess a lymphoid organ resembling 
the thymus of jawed vertebrates. However, the probe used for in situ hybridization was 
from VLRB gene, which is expressed in B-like cells. Usage of VLRA probe may clarify 
if T-like cells develop in lamprey’s pharyngeal region.

The places where B cells develop vary among species and even among developmental 
stages in the same species. In jaw vertebrates, sites of B-cell development are often 
associated with the gut.102,103 In developing lamprey, blood forms in the typhlosole 
(an invagination of the intestinal epithelium) and nephric fold, while in adults, blood 
forms in the protovertebral arch.47 The development of cytotoxic T and NK cell in the 
gill region and antibody-producing B cells in the gut region may represent the ancient 
division of labor in protection of the regions most exposed to pathogens.
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INNATE-ADAPTIVE INTERACTIONS

Adaptive immune system evolved from the innate immune mechanisms and it cannot 
function without their help.104�_����	������	��	����	���	�����������������
�����	�������
they secrete various cytokines instructing adaptive cells about the nature of pathogen. 
For example, bacterial infections induce interleukin-12 (IL-12), while helminthes induce 
IL-4 and IL-13. In response, T cells develop into different subsets of helper cells; it is 
T-helper 1 (Th1) in case of intracellular bacteria, Th2 in case of helminthes and Th17 
in case of extracellular bacteria and fungi.105 Innate immune cells such as dendritic cells 
present antigens to T cells. Although B cells can recognize soluble antigens directly, 
antigen presentation to them is often mediated by macrophages and dendritic cells.106 
B-cell memory response is supported by basophils.107 Therefore, innate immune modules 
control the adaptive cells so that the response is tailored to the pathogen, including 
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Many features of the adaptive immune system have developed to communicate 
with older innate mechanisms. For example, special regions of Ig evolved to bind the 
complement. B cells, in addition to adaptive receptors, express innate immune receptors 
such as TLRs. These receptors cooperate with BCRs in antigen recognition. B cells 
usually need T-cell help to be activated after BCR binds an antigen but if both BCR and 
TLR recognize the same antigen, B cells respond without T-cells help.108

On the other side, innate cells in species with adaptive immunity have also been 
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express MHCI and II genes, which are an integral part of the adaptive immune system. 
The machinery for antigen presentation was introduced in the innate immune cells. 
New cytokines to communicate with adaptive cells and the corresponding receptors 
have evolved. The complement system evolved to accept antibody-antigen complexes 
as activators. Phagocytes evolved receptors recognizing antibody bound to antigens. 
Introduction of T and B cells resulted in reduction of innate receptors. For comparison, 
there are 10 TLR in humans and 222 in sea urchin.109

Therefore innate modules in species with adaptive immune system differ from 
analogous modules in species without such system. Rightly, there are no pure innate or 
pure adaptive cells in our immune system, they turned into a nonseparable blend unable 
to function without one another. There is always some redundancy between individual 
immune mechanisms. In absence/defects of adaptive immune system, innate mechanisms 
are upregulated.110 The relative contribution of innate and adaptive mechanisms into defense 
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corresponding absence of T and B cells, are viable and can be kept at usual condition;111 
while humans develop severe disease in absence of T and B cells.112

Recent studies have highlighted the role that helminth infection may have played 
in evolution of the adaptive immune system.113 Helminth infections are very common in 
vertebrates. Helminths produce high levels of tissue damage, nevertheless the infection 
is usually well tolerated. Helminths modulate the host immune system by suppressing 
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in wound healing and tissue remodeling. Helminth-infected populations show increased 
susceptibility to microbial infection, while helminth-free populations have increased frequency 
of allergy and autoimmunity. A popular hypothesis is that the immune system evolved in 
the presence of helminths and developed a dependence on factors produced by the parasites. 
Helminths-derived products are intensively studied now as potential immunomodulators.114
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CONCLUSION

There have been many speculations why the adaptive system evolved at all and 
why in vertebrates. The assumption has been that there should be something special in 
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One hypothesis was that the predator life-style of early vertebrates created a necessity 
for gut protection.115 Another hypothesis also assumes that there was a special need for 
adaptive immunity in vertebrates. It suggests that the maintenance of symbiotic microbial 
communities, especially in the gut, was the primary force driving the evolution of the 
adaptive immune system.116,117 The basis for this hypothesis is that vertebrates harbor 
hundreds of symbiotic bacteria species while invertebrates do not form such relationships. 
Another idea is that the appearance of anticipatory immunity in vertebrates might have been 
driven by a need to facilitate the developmental and morphological plasticity in addition 
to increasing the scope of pathogen recognition.118 Fewer offspring in jaw vertebrates in 
comparison to invertebrates was also suggested to play a role.54
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receptors and the fact that some species without adaptive immune system such as 
mollusks still have long life span is interpreted sometimes as evidence that the origin 
of adaptive immunity is just an evolutionary serendipity, which left us with an overly 
complex, costly and self-harmful immune system.119� ¡	�� ��	� ������� ����� ��	� ����
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jawed vertebrates both developed adaptive immune systems based on different receptors 
yet strikingly similar functionally suggests that adaptive immunity provided a great 
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invertebrates suggests that similar driving forces act on all species leading to unique 
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Abstract: Epigenetics is a new and expanding science that studies the chromatin-based 
regulation of gene expression. It is achieving considerable importance, especially 
with regard to developmental mechanisms that drive cell and organ differentiation, 
as well as in all those biological processes that involve response and adaptation to 
environmental stimuli. One of the most interesting biological questions concerning 
animals, especially human beings, is the ability to distinguish self from nonself. 
This ability has developed throughout evolution, both as the main function of the 
immune system, which defends against attack by foreign organisms and at the level 
of consciousness of oneself as an individual, one of the highest functions of the brain 
that enables social life. Here we will attempt to dissect the epigenetic mechanisms 
involved in establishing these higher functions and describe some alterations of the 
epigenetic machinery responsible for the impairment of correct self-recognition and 
self-identity.

INTRODUCTION: EPIGENETICS

In recent decades, biology has welcomed a new science to the classical disciplines 
of cell and molecular biology, biochemistry and genetics; it is termed epigenetics and 
�����		����	����	��	������������������	�����	�������������	���	���
������	���������
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the dictates of the epigenetic machinery that, by altering the physical structure of the 
genetic information, makes it readable or unreadable. The structure of the chromatin, 
like the genetic information itself, can be inherited by cellular progeny, creating a new 
and stable level of information for the unwinding of the genetic program.

Self and Nonself, edited by Carlos López-Larrea. 
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the study of how genotypes give rise to phenotypes through programmed changes during 
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epigenetic event would be something that affects gene expression without changing the 
nucleotide sequence, in a way that can be inherited through cell division and possibly 
through gamete formation. Today, epigenetics refers to heritable changes in gene activity 
and expression, as well as to stable, long-term alterations in the transcriptional potential 
of a cell that are not necessarily heritable (http://nihroadmap.nih.gov/epigenomics/index.
asp). In this sense, epigenetics would include all mechanisms for unfolding the  genetic 
programme in processes such as development, differentiation, stress response and 
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plastic, as they can be modulated by cellular or environmental factors.2 This nuance of 
plasticity is the most striking feature of epigenetics, as it enables elaboration of the genetic 
information and its integration with the environment.

�
��	�	�����	��������������	�����	�����	��������������������&'��>�	��������!�
�������������>������	������������!�3 An increasing number of additional mechanisms 
are being reported, mostly related to the former two, which regulate gene expression and 
chromatin structure (noncoding RNA, among others).

DNA, like a book, is organised into modules. All the epigenetic machinery can 
be seen as a complex system of enzymes or structural proteins; in response to a cell’s 
internal and external status, these proteins are able to write the instructions in their own 
language for the accessibility of the basic book of each cell, i.e., the genome. Each page is 
represented by the nucleosome core particle, which consists of 147 bp of DNA organized 
in approximately two superhelical turns of DNA wrapped around an octamer of core 
histone proteins (two copies each of H2A, H2B, H3 and H4 or their histone variants). 
When associated with other components, higher-order nucleosomal structures are formed, 
like chapters or sections of a book. The epigenetic machinery is in charge of determining 
the accessibility of the pages to the readers of DNA, for example RNA polymerase. 
This ensures that the genetic information is stored, organized and read out in a correct 
spatial and temporal sequence during cell differentiation and organism development. 
��	�	
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on DNA or histones. Among epigenetic proteins, we recognise enzymes that perform 
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the “erasers”. Finally, other proteins, the “readers” of the epigenetic code, are able to 
�	������	���	�	������������������~������	�������	�	��	�������������}��
	���������������
the chapter of the book. Variations introduced into nucleosome array structures by this 
machinery determine differences in chromatin compaction that correlate closely with 
“open” versus “closed” states, which in general coincide with “active” versus “inactive” 
states of gene expression.

DNA Methylation
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In mammals, it consists of the addition of a methyl group to the 5 carbon of a cytosine 
that is followed by a guanine in the DNA sequence. The CpG dinucleotide is found at 
very low frequency in the genome, but is particularly concentrated in gene promoters, 
where it mostly regulates gene expression, blocking transcription when the methyl group 
is present. Most of these regions, called CpG islands, are subject to dynamic methylation 
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maintained throughout the cell’s life. Promoter methylation accounts for only a small part 
of global genome methylation: the bulk of methylated CpG in the genome is located in 
repetitive sequences, most of which are derived from transposable elements. Methylation 
"		
�� ��	�	��	=�	��	����	������"������	�	�	��������
��������������	�����	���������
the genome extremely rare.4 At least two additional genetic mechanisms rely on DNA 
methylation in normal cells: genomic imprinting and X-inactivation. Genomic imprinting 
occurs in some genes whose expression is always restricted to either the maternal or the 
paternal allele. It requires DNA methylation at one of the two parental alleles to ensure 
monoallelic expression. A similar gene-dosage reduction is involved in X-chromosome 
inactivation in females.5

��	������	���������	�	����������������	��	��	���������	����	���������	��&'��
methyltransferases (DNMT). DNMT1 is responsible for maintaining methylation in DNA 
replication. When a new DNA strand is synthesized, the methyl-CpG site is copied to an 
�����	��	�#
�������	����	������������	���������	��%�	�����	�����	��&'��{��
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recognizes these hemi-methylated CpG and transfers a methyl group to the unmethylated 
cytosine ring. In this way, methylation can be transmitted to both daughter cells. These 
�	����	��	�
������	���������������	��������������������	���	���������	����	���	������	�
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����6); some candidates 
have been proposed,7-9 but we still await clear demonstrations. Even though there are 
numerous exceptions, most genome methylation is not maintained during meiosis and 
gamete formation.10 The entire genome undergoes global demethylation in gametes and 
methylation is subsequently re-established in early embryonic stages by the de novo 
&'���	���������	���	��&'��`������`�����������	�	�
�	��	���
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the methyl-binding domain (MBD). These proteins link the CpG methyl group to 
chromatin remodelling machinery that turns off transcription and locks the chromatin 
in a condensed state.12
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interactions between DNA and histone proteins in a nucleosome lead to a high degree 
of structural condensation that, by default, impedes gene transcription. Histone proteins 
have positively charged tails that protrude from the core structure of the nucleosome 
���� ���� �	� �����	�� ��� ����� ������ ����� �	����	��� �	�	������� �� ���	� ��� ������	�
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ubiquitylation, sumoylation and proline isomerization), some of which can occur in 
����	�	����������������� >����	���
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huge number of combinations are thus possible.13
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of histone N-terminal tails, which often differ between active and silenced chromatin. 
��	�������������	������	��	����	�������	����������������������	��	����	������	��	�
gene expression. Acetylation of lysine 14 or 9 in histone H3 (H3K14, H3K9) and/or 
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of H4K16 are generally associated with active gene transcription. Gene activation by 
histone acetylation has a biophysical explanation. The lysine side chain is positively 
charged and can bind tightly to the negatively charged DNA to form a closed chromatin 
structure that impedes access of transcription factors. Acetylation of lysine residues 
removes their positive charge and attenuates the charge interaction between histone 
tails and DNA.14 In addition to this simple mechanism, acetylated lysines also act 
as docking sites for other proteins that play the role of “readers”, mainly other 
chromatin-modifying enzymes and basal transcription machinery. One protein domain, 
�	��	����	���������������������
	������������	����	������	��15 The bromodomain 
is often found in enzymes that help activate transcription, including SWI/SNF, an 
ATP-dependent chromatin-remodelling complex. Acetylated lysine can recruit this 
complex to facilitate transcription activation. Histones are acetylated in lysines by 
“writer” enzymes called histone acetyl transferases (HAT) that add an acetyl group from 
the high-energy donor acetyl-coenzymeA to a lysine�-amino group and deacetylated 
by the “eraser” histone deacetylases (HDAC).
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others for several reasons: (i) within any histone, multiple lysines or arginines can 
�	������	���>��!���������������	��	����	�������	�����%����%���������	�����	���>���!�
similarly, arginine residues can be mono- or dimethylated and these can be dimethylated 
in a symmetric or asymmetric fashion, (iv) all the core histones can be methylated 
depending upon physiological setting16�����������>�!��	����������������������	����	��
has opposite functional consequences on gene activation. For example, trimethylation 
of H3K4 and methylation of H3 arginine (R)17 are associated with active chromatin, 
whereas H3K27 or H3K9 methylation is associated with transcriptional silencing.

In the case of methylation, global charge of the residue is unaffected by the 
���������������	�����	��	������������	�	����	���������	�	�����	��	�����������"���	�	�
marks with other effectors. Proteins with a chromodomain, such as HP1, can bind 
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with histone deacetylase (HDAC); its binding to methylated H3K9 results in histone 
deacetylation that eventually leads to gene silencing. H3K4 trimethylation is recognized 
by the chromodomain protein CHD1, which can further recruit HAT to activate target 
gene transcription.

These various methylation reactions are mediated by “writers” termed histone 
methyltransferases (HMT), enzymes that use an S-adenosyl methionine (SAM) 
high-energy methyl-donor to transfer the methyl group onto the histone residue. Each 
�����	�	�	����	�������������������������
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the methyltransferase Suv39h1/2 selectively methylates H3K9, whereas mixed lineage 
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LSD1 is an H3K4 mono- and didemethylase, whereas UTX is an H3K27 demethylase.

���	����������������������	��	�����������������������������	���	����������
as the phosphorylation of H3S10, which confers an open chromatin conformation 
that facilitates transcription. For a broader view of histone phosphorylation, see the 
review by Ito.17

There is increasing evidence that, in many circumstances, DNA methylation and 
������	����������������	����	��	��	������	�	��	���������&'��������	���
	�����	��
associate with HDAC and other proteins to form silencing complexes, which are recruited 
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to heterochromatin or silenced promoters. In summary, there is extensive crosstalk and 
���	����
	��������	��		��&'���	�������������������	�������������������	��	��������
of gene activity during development: histone marks and DNA methylation contribute 
to the generation of a code that regulates chromatin structure.

The above are only a few of the epigenetic marks and pathways involved in chromatin 
���������������	�����	����������������	����������	����	����������������������"��
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EPIGENETICS OF SELF
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and self-recognition from different points of view. For instance, epigenetics lends a further 
degree of individual variability to the genetic background. In all sexually reproducing 
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the genetic information, in the sense in that they determine which parts of the genome are 
to be expressed and which are to be silenced throughout ontogenic development. Recent 
epigenomic studies have shown that epigenetics introduces a further degree of difference 
between two individuals. This aspect was demonstrated in monozygotic twins, individuals 
with an identical genetic background, a classical model used to discern environmental from 
genetic factors. Epigenetics is the level at which the effects of environment and lifestyle of 
each person can be translated as gene expression levels into biological differences: older 
twins have more epigenetic differences than younger ones, indicating that an epigenetic 
drift can be observed during an individual’s lifetime. Moreover, greater differences in 
lifestyles between members of a twin pair accentuate distances in the global epigenetic 
landscape, implying that the environment has a considerable effect on this epigenetic drift.18

From the cellular viewpoint, each cell is committed to a specialised function, 
�
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developmental stage, spatial localisation and physiopathological state.

At the organism level, multicellular organisms need to discriminate self from 
nonself. First, the individual needs to distinguish self from nonself at the molecular 
level, to be able to set up a defence against attack by other organisms. For this reason, 
multicellular organisms have developed a very complex system able to recognise self 
��������	���������
���	�����	����������	����	���������	��	������~���	����	������	����
individual must recognise itself and its role to enable a social life. In this context, one of 
the highest functions of the brain is the ability to discriminate self identity as different 
from other beings.

All these complex functions have developed to distinct degrees on different branches 
of the evolutionary tree and we now have a considerable amount of molecular and 
mechanistic information about how these functions are achieved. Nevertheless, because 
of the extreme complexity of the self-recognition mechanisms in the immune and the 
nervous systems, we are far from understanding molecular details of these functions. In 
the following sections, we will try to see the role of epigenetic mechanisms in immune 
and nervous system development and that epigenetics is extremely important for the 
����	���	��������	��������	�	�����������������������������������������	��	����
	�����
epigenetic phenomenon directly with the establishment of self-identity, we will show 
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that such events are fundamental in creating the complexity that makes possible the 
development of immune and nervous systems. We will also describe some pathologies in 
�����������
����������	�	
��	�	����������	���	���������	������������	�����	����	��������
of self and nonself at all the levels considered.

IMMUNE SYSTEM RECOGNITION OF SELF AND NONSELF

The immune system is constituted by a variety of cell types circulating in the blood/
lymph or residing in tissues or specialised organs. The system must be able to discriminate 
external and dangerous agents from the organism’s own cells and molecules. Different 
levels of defence have evolved for this function. The most ancestral and least specialised 
is termed the innate immune system, which reacts to simple molecular patterns typically 
present in pathogens. This system is comprised of specialised phagocytic cells resident 
in tissues (macrophages and related cells) or in circulation (granulocytes, monocytes) as 
well as soluble proteins activated in cascades (complement, defensins). These elements 
immediately establish a primary response to destroy the invading agents. In this case, 
self/nonself recognition relies simply on ancestral innate molecular recognition that has 
evolved with each species. A more specialised set of responses, called adaptive immunity, 
is often required for the complete neutralization and long-term protection against each 
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presented on the surface of professional antigen-presenting cells (APC). An effective clone 
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maintain immunological memory of the immune response. This type of immunity relies 
on a complex genetic strategy, termed somatic or V(D)J recombination (from the name 
of the gene modules that join in this process), that allows the generation of molecules 
(T and B-cell receptors [TCR, BCR] and antibodies) able to recognise every existing 
antigen and subsequent selection against the self-reactive molecules.

The key for correct immune function is thus the discrimination between self 
antigens, those that are physiologically present in the organism and nonself antigens. 
����� ����	
�� ����	�� ����� ����	�^�� ����� 
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model in immunology. Although this theory was found to be overly simplistic in some 
aspects, it is still generally accepted19 and is helpful for understanding the functions 
and mechanisms of the immune system.

All immune cells in charge of the aforementioned functions are derived from a 
common progenitor, called the haematopoietic stem cell (HSC). HSC constitute a small 
cell population that is able to proliferate and maintain itself in a multipotent state and 
to generate more differentiated cells that will gradually convert into all the mature cells 
that constitute the immune system and other blood cells.
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Correct distinction between dangerous external antigens and self antigens is mediated 
by a wide range of specialised cells. This equilibrium implies a high degree specialization 
of distinct cell populations that is achieved by epigenetic patterning. Just by observing 
the difference between the nucleus of a lymphocyte and of a neutrophil, we realize that 
������������������	����	���	�	����
�������������	��	��
	���������������	���	����
��	����
����	���������	��������	����	��	���	��������
	������������������	��	�������	�
���������



242 SELF AND NONSELF

set of genes expressed; the epigenetic machinery is responsible for establishing these 
gene expression patterns during differentiation.
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of cell differentiation. HSC must go through many epigenetic steps before reaching the 
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factors must be expressed sequentially: the HSC relies on the presence of Ikaros and 
PU.1 to generate the common lymphoid progenitor.20-21 Transcription factors generally 
act by recruiting the chromatin remodelling machinery (coactivators or corepressors) 
to turn gene expression on or off. In the case of B-cell commitment, these essential 
factors are E2A, EBF1 and Pax5.22���	�������������	������������	���	��%�	%�
	�����
transcription programme, but Pax5 is perhaps the most important, not only because it 
is indispensable for further differentiation but also because it locks the cells into the 
B-cell-committed lineage. In fact, Pax5-/- mice show B-cell differentiation arrest at 
the early pro-B stage and also maintain the ability to reprogram these pro-B cells to 
the myeloid lineage if ectopic expression of myeloid factors is forced. Pax5 activates 
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the preBCR CD79a (Ig�) and the costimulatory coreceptors CD19 and CD21, while 
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T lymphoid). The promoter of the CD79a gene is a model of the epigenetic changes 
of a developmentally regulated gene. This promoter has binding sites for the basic 
B-lymphoid transcription factors (E2A, EBF1, Pax5 and RUNX1); it is hypermethylated 
in the HSC stage and undergoes demethylation during B-cell differentiation.23 Since 
E2A�/� and EBF1�/����
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demethylation step is probably necessary for gene activation; it is mediated by the 
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Chromatin structure must subsequently be remodelled to allow gene expression; 
Pax5 enables such changes by recruiting HAT such as SAGA and p300/CBP to open 
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Figure 1. Epigenetics of B-cell differentiation. Steps in which epigenetic mechanisms are involved are 
indicated in shadowed ovals.
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gene expression by interacting with HDAC of the Groucho protein family.24 Many 
���	���	�����������	���������������	�������	������	��������������	���������	��
generally obey these basic rules.

Epigenetics of Antibody Generation

During lymphopoiesis, B and T cells must “establish and declare their identity”, 
��	�����	��������	���
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is achieved by genetic means, through immunoglobulin and TCR gene recombination. 
This process in lymphocyte development is another instructive example of the importance 
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which they become accessible to the recombination machinery (RAG1 and 2 and other 
companion proteins).25 Chromatin surrounding these loci is normally inaccessible to the 
recombination machinery; in immature lymphoid-committed cells and in nonlymphoid 
cells, chromatin exposure to the recombination machinery does not lead to productive 
recombination of the Ig locus.26 The correct spatio-temporal pattern for recombination 
�������	�	������
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when recombination of one of the IgH or TCR� alleles is complete, allowing expression 
of the preBCR and -TCR complexes, recombination of the second allele is blocked 
by epigenetic inactivation; the IgL and TCR� loci are remodelled and exposed to the 
recombination machinery. Histone acetylation in the IgH locus is important for DNA 
accessibility: when the recombination process begins, a large region encompassing 
&����������#����������������
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histone acetylation of the DH-proximal VH genes. The distal region is subsequently 
activated.27 A similar process is observed in TCR recombination.28 Nonetheless, 
��	�������� ��� ���� ������	��� ��� 	�
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recombination complex, as many other regions are hyperacetylated in the genome but 
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regulates this process,29 as does the dimethylation of H3K4,30 whereas dimethylation 
of H3K9 correlates inversely with somatic recombination.31�_���
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chromatin signature is needed to recruit the recombination machinery to these sites. A 
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histone marks.32

Finally, other processes related to the epigenetic machinery are needed for correct 
recombination, including the subnuclear relocation of Ig genes and locus contraction of 
immunoglobulins. In non-B cells, the IgH and the IgK loci are located in an extended 
conformation in the nuclear peripheral heterochromatin.33 When B-cell differentiation 
begins, these loci move toward the centre of the nucleus. In committed pro-B cells, this 
region undergoes a long-range contraction that juxtaposes the recombining segments. 
��	�	�
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especially Pax5, because Pax5�/� pro-B cells are unable to contract the locus even if 
chromatin is accessible for recombination.34 EZH2 is also necessary; it might mediate 
physical contact between distant regions by means of the notorious Polycomb repressive 
complexes, PRC2, which methylates H3K27 and PRC1, which might bind to this mark 
and mediate contraction of this region.35
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Epigenetic Alterations in Immune Disorders

We showed some examples of how the epigenetic machinery is important for the 
correct establishment of cell identity and function. It should be now easy to understand 
how alterations in epigenetic processes give rise to misregulation of immune system 
function and incorrect recognition of self and nonself. A good example can be found in 
a disease that affects the epigenetic machinery and leads to marked immune alterations: 
��	��������	���	������	�����	�����������������������������������	��>_#�!��������	����
rare autosomal recessive pathology caused by mutations in the gene encoding DNMT3B.36 
It is characterised clinically (among other symptoms that include facial dysmorphism, 
mental retardation and centromeric instability typically in chromosomes 1,9 and 16) by 
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produced correctly, so the lack of DNA methylation might generate a problem in late 
B-cell maturation and Ig isotype switch.

We have also begun to observe the importance of epigenetics in various other 
aspects of immune system pathology. With regard to self/nonself discrimination, 
immune system activation against self underlies many common pathologies categorised 
as autoimmune diseases (AID). In general, these are multifactorial diseases that develop 
due to a combination of genetic predisposition, environmental factors and, occasionally, 
as the result of a microbial infection that induces an abnormal immune response to self 
antigens.37 Epigenetics has recently been implicated in the pathogenesis of systemic lupus 
erythematosus (SLE) and rheumatoid arthritis (RA) and less directly in Type 1 diabetes 
and multiple sclerosis. T cells from SLE and RA patients show a loss in global DNA 
methylation;38����������������
	������	�	����	���
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in these cells. In CD4� T cells from SLE patients, for example, demethylation-mediated 
perforin overexpression could contribute to altered monocyte killing,39 while increased 
expression of CD70 in the same cells drives overstimulation of B cells.40 In vitro experiments 
�������������	���	����&'���	������������������������������	�#&�� T cells become 
autoreactive after treatment with DNA demethylating drugs such 5-azacytidine; these 
cells are activated even in the absence of a nonself peptide presented in the MHC class 
II complex on APC.41 This could be due to hypomethylation-mediated overexpression of 
the integrin CD11a,42 which drives T helper cell:APC interactions.43 The mechanism for 
altered methylation in AID remains unknown; the discovery of a “DNA demethylase” 
would possibly shed new light on these questions.

���	��	���	��	������������������	����������������	���
����	������_&�
�����	�	�����
For instance, the autoimmune regulator (AIRE) is a transcription factor that interacts 
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important in the clonal deletion of self-reactive T cells; its mutations cause autoimmune 
polyendocrinopathy syndrome Type 1 (APS-1).44

Escape of Cancer Cells and Embryos from Immune Nonself Recognition

The concept of self/nonself in immunology is challenged by the immune response 
�������	���_����	����	��������	�������	�����������	������	
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metaplastic cells can be regarded as infected cells and express nonself antigens. In all 
other cases, cancer cells are self cells that can only be distinguished by certain patterns 
of molecular mutation or altered expression. To eliminate the cancer, the immune system 
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must be able to recognise these altered patterns in a self context. From another viewpoint, 
a successful cancer must escape immune system recognition, basically in two ways: they 
hide these altered molecules by avoiding their presentation at the cell surface, or they 
����������	��������������
	����������	��	�����	���������������	������	���	����������
cell. Many tumours show impaired antigen presentation; MHC class I, the molecular 
complex responsible for antigen presentation in all cells and for activation of the CD8� 
T-cell cytotoxic response, is often downregulated in tumours. Mechanisms for this 
downregulation include total, haplotypic or allelic loss of the MHC heavy chain gene, 
as well as deletion or point mutations in �2-microglobulin (�2m) or other components 
of the antigen presentation machinery such as TAP1 and 2.45 No structural gene defect 
is detectable in many tumours, however and gene repression is achieved by epigenetic 
�	�����������	�	����&'���	�������������	
�	����	�������	��������������<�����	��
hypermethylation of the human MHC class I gene has been described in oesophageal 
squamous cell carcinoma46 and treatment of melanomas with the DNA demethylating 
�����@%���%�#��������������
�	����	����#������_�	�
�	������47 Similarly, expression 
of MHC class II is downregulated in leukaemic T cells; in this case, the mechanism is 
based on hypermethylation of the transactivator CIITA, essential for membrane expression 
of MHC class II.48 Other mechanisms have been described for immune escape, which 
involve inhibition of cytotoxic immune function, some of which are also epigenetically 
regulated (reviewed in ref. 49). Epigenetic regulation of immune tolerance to cancer cells 
is of particular interest for its potential therapeutic applications. DNA demethylating drugs 
and HDAC inhibitors are currently used for cancer therapy or are in clinical trials, given 
their ability to restore the skewed expression of tumour suppressor genes. If a clear role is 
�	��	��������	�	�����������	����������������������	����������	�
�����������������������
�������	���	�����������������	��
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	���	����	��	�������	������������������	��

A very similar process, albeit physiological, occurs in embryonic and extraembryonic 
tissues in pregnancy; to escape the maternal immune response, the embryo must hide 
its antigenic self-identity. Epigenetics is again involved in this process, as demonstrated 
by studies in human embryonic stem cells (hESC) and trophoblast. Trophoblast cells 
achieve immune tolerance by epigenetic repression of classical MHC class I (HLA-A, -B) 
and MHC class II50 and by expressing nonclassical HLA genes such as HLA-G and E, 
which inhibit NK cell function.51-52 hESC also downregulate expression of these genes 
by epigenetic repression of TAP-1, TAP-2, TPN and the �2m gene; in addition, hESC 
repress NK recognition through expression of the NKG2D ligands MICA, MICB and 
ULBP (Suárez-Álvarez et al unpublished results).

NERVOUS SYSTEM: SELF-CONSCIOUSNESS AND SELF-IDENTITY

The complexity of the human brain allows the development of sophisticated 
behavioural skills such as language, tool use, symbolic thought, cultural learning 
and, of course, self-consciousness. This last concept has been discussed intensely by 
psychologists, neuroscientists and philosophers and has been dissected at different levels 
and to different degrees. In general, we can consider self-consciousness as one’s ability 
to be aware of oneself as a “subject” and of one’s own states, physical and mental. In 
������	%���
	�	����	��������������	��������	���������	������������	�	�������	�	����������
person. There is controversy as to when and how this skill was acquired in evolution and 
to what extent any living organism can somehow be conscious and able to differentiate 
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itself from other beings. Evidence from embryology and genetics of the brain as well as 
from psychological studies of human behaviour and learning, especially in human infants, 
indicates that the capacity for cooperative imagination and joint interest in objects and 
tasks is determined long before birth by expression of genes and epigenetic elaboration 
of neural systems. These original innate mechanisms in the embryonic brain are needed 
later for generating intelligent exploration of the environment and for the emergence of an 
additional dialogic mechanism that represents the self-subject, as opposed to other-subjects. 
Recent imaging studies in humans53-54 show that brain regions located in the subcortical 
midline form a highly wired network directly involved in self-related processing. Apart 
from anatomical data, however, we cannot describe any complete molecular mechanism 
������	�	��������	�������	�%����������	������	������	�	���	�	���������������	����������
analysis of higher brain functions. Data from basic developmental biology, from animal 
models and from human psychiatric dysfunctions that interfere with self representation, 
behaviour and emotions, hint at the importance of epigenetics in these superior functions, 
both in cells (in neuron differentiation and generation of neural diversity) and in systems 
(during establishment of neural connections in the brain).

Epigenetics of Neural Differentiation

As in the case of the immune system, epigenetics plays a major role in the correct 
anatomical and functional development of the nervous system. All nervous functions 
are mediated by highly specialised cells, the neurons and by the highly wired web of 
contacts that they establish during ontogenic development. Epigenetics is one of the main 
�	���������������	����	���	��	��
	����������������	���	�����������	�	������������	���
that characterises cells in this system (Fig. 2).
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to generate the three major CNS cell types: neurons, astrocytes and oligodendrocytes. 

Figure 2. Epigenetics of neuron differentiation. Steps in which epigenetic mechanisms are involved 
are indicated in shadowed ovals.
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Only small NPC populations, called adult neural stem cells, have been found to persist 
to adult life and are located in two principal neurogenic regions, the subgranular zone in 
the dentate gyrus of the hippocampus and the subventricular zone.

Terminal differentiation of neurons during development requires the simultaneous 
upregulation of neurogenic factors and downregulation of antineural factors, accompanied 
�����	��
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main objectives are maintenance of multipotency and the correct induction of neural or 
��������	�	��������������	��
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epigenetic signature; in hESC, this is termed the bivalent domain and is obtained by the 
concomitant presence on many promoters of developmental genes of both a repression 
(3me-H3K27) and an activation mark (3me-H3K4);55 these genes are silenced but 
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differentiation induced are enriched in the activation mark, while those for other 
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of epigenetic regulation in gene orchestration during differentiation; similar conditions 
prevail for NPC differentiating into neurons. As we described for the immune system, the 
process of neurogenic differentiation is driven by the stepwise activation of transcription 
factors that work together with the epigenetic machinery to regulate the activation of 
�
	������	�������	�	�
�	�����	�	���������
�����������	�
�����

Factors in charge of maintaining the stem cell state by inhibiting neural differentiation 
involve mainly bHLH (basic-helix-loop-helix) proteins, members of the Hes and Id 
families, which are highly expressed in NPC. The Hes proteins bind to short DNA 
sequences called N-boxes in promoters of neural differentiation genes such as Mash1 and 
the neurogenins. They interact with HDAC directly or indirectly through corepressors 
such as Gro/TLE1,56 inducing histone hypoacetylation and transcriptional repression, 
thus preventing precocious neurogenesis.57-58 Another important system is that based on 
REST/NRSF.59���������������������������	�
���	�		�	������
�����	�������	����%�
	�����
genes including Mash1 and Bdnf. It recruits a large complex of enzymes that includes 
HDAC, histone demethylases (LSD1), corepressors such as coREST and BRAF35, the 
methyl-CpG-binding protein MeCP2 and a potent chromatin remodelling enzyme called 
Brg160 and induces a strong repressive structure in chromatin. The REST complex silences 
�	���%�
	������	�	����������'<#���������	�����	�������������	������	������	��	
�	����	�
complex differs according to cell type, as does the degree of promoter inactivation. 
REST complex-bound promoters in nonneural differentiated cells are strongly repressed, 
presenting heterochromatin features such as methylated H3K9 and DNA methylation.61 
In NPC in which these genes are also silenced, these “strong” inactivation marks are 
absent and the coexistence of activation marks (3me-H3K4) has been observed.59 This 
bivalent state could resemble that described for hESC, as these genes are repressed in 
NPC but poised for activation, since these precursors retain the possibility to become 
neurons whereas other differentiated cells cannot.62

When the neural differentiation program is switched on, several changes are observed 
in these cells, in the epigenetic machinery as well as in regulatory mechanisms such as 
alternative splicing, with the objective of turning the undifferentiated cell into a neuron. 
The basic mechanisms are again the downregulation of stem cell maintenance factors 
and the upregulation of neurogenic factors. Downregulation of REST is essential63 and 
occurs in different ways including inhibition of synthesis and degradation. A switch is 
also observed in the composition of the REST complex; a noncoding dsRNA, termed 
NRSE, is produced at the time of neurogenesis and associates to the REST complex.64 
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This event converts the enzyme complex from a repressor to an activator; MeCP2 and 
HDAC leave the complex and histone acetylation increases, the corepressor BRAF35 is 
replaced by iBRAF,65 which recruits histone methylase MLL, responsible for the addition 
of the gene activation-associated histone mark 3meH3K4 to these promoters. In this 
way, proneural bHLH including neurogenins, Mash1 and NeuroD are induced and can 
heterodimerise with the ubiquitous factor E2A to bind their response element (E-boxes). 
This initiates the proneural transcription program.66-67

The proneural transcription program is based on the same regulatory mechanism as 
in NPC and in fact shares many common epigenetic factors with the previous pathway, 
but on different promoters. Brg1, which in NPC is associated to the REST complex, in 
neurons is reported to interact with certain neurogenic TF such Ngn1 or NeuroD.68 Some 
chromatin remodelling complexes adapt to the change of transcriptional program by a 
slight change in composition: the SWI/SNF-like BAF chromatin remodelling complex 
replaces the subunits BAF45a and 53a in NPC with BAF45b and 45c in neurons, in this way 
��~�������������������������
	��������69 These are only a few of the molecular mechanisms 
in early neurogenic differentiation; these examples help understand the importance of the 
epigenetic machinery in neural differentiation. A small defect in one of these systems 
can alter the correct timing and location of differentiation and is detrimental for the 
establishment of the neural networks that create the high functions of the human brain.

Generation of Neural Complexity

Human brain is constituted of around 1012 neurons, which form approximately 
1015 specialised functional connections termed synapses.70 The high degree of neuron 
heterogeneity and that of their interconnections makes each individual unique and 
unrepeatable; it is the product of the ability of these cells to generate this variability and 
organise a complex selective process. Neurons formed in embryonic life are in principle 
genetically equal; nonetheless, at the end of CNS formation a considerable variety of 
neurons can be distinguished.

_�����	������	�����������{@%�|\���������	��	������������	�����������	�71 indicating 
an ongoing selective process similar to that in the immune system. In lymphocyte 
V(D)J recombination and selection, diversity is created genetically and stochastically 
��� �������� �	�������������������������	�
��� ����	��	��� �������
���	��� ����	������
have been unsuccessful. Other mechanisms, genetic and epigenetic, appear to drive the 
�	�	������������������	�����������	���
	���������``\����'<#��������	����������
���
chromosomal aneuploidy,72-73 that is, the loss or gain of at least one entire chromosome. 
These cells can mature correctly into neurons or glial cells and integrate functionally 
in neural circuits;74 these neurons will obviously have considerable differences in gene 
expression compared to euploid cells. Another recently discovered mechanism that 
generates genetic diversity in the neuron population is the retrotransposition of the 
long interspersed element-1 (LINE-1) in NPC. Demonstrated in rat75�����������	�����
humans,76 these 6kb retrotransposons are activated by downregulation of the LINE-1 
repressor factor Sox2 during neural differentiation and by the loss of methylation in the 
LINE-1 UTR. Widespread de novo retrotransposition is then observed in the genome, 
generating insertional mutagenesis or deregulation of genes. These events occur with 
�	�������
	���������	����	�������	�	�������������������	%��������	���	�	�������	�����
receptors. As the LINE-1 recombination protein machinery can function in trans, it can 
also mobilise other repetitive sequences such as Alu repeats and cellular RNA, creating 
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processed pseudogenes. In general, these mechanisms contribute to the constitution of 
���������	��	�����������������������

Other nongenetic mechanisms of gene regulation have been implicated in the 
generation of neural diversity. Well-known examples are alternative promoter usage, 
as is the case of the glutamate receptor ion channel genes77 and the BDNF gene,78 an 
important neurotrophic factor. Alternative splicing is also involved, as clearly shown 
by the classical example of the DSCAM gene (discussed elsewhere in this book). 
Events such as these are strictly dependent on the chromatin environment of the gene 
and are thus in some way connected to the epigenetic machinery. Other mechanisms 
��������$'��	�����������
��������������������������������	�����������	����	�����	�
this diversity.

Epigenetics of Synaptic Plasticity

A general property of cells, especially of neurons, is their ability to store information 
over a long period of time, commonly referred to as cellular memory. This effect 
��� ����	�	�� �������� ��	� ����	� ����������� ��� �� �
	����� �	�	� 	�
�	������ 
���	��� �����
ensures maintenance of cell identity and dictates the pathways to be followed during 
differentiation. In neurons, this higher-level information, combined with its integration 
into intercellular networks, allows the more complex cognitive and behavioural functions. 
Yet environmental stimuli, injury and other factors show that even a committed cell can 
revert in its differentiation processes and to some extent establish new networks and 
functions. This cellular reprogramming process implies that a cell can maintain certain 
�	������������������	��	�	�������������
��������������	���	���������	�����������
�����	��	����
stimuli. This ability can be ascribed mainly to epigenetic mechanisms.

In a physiological context, many neurons must be able to reprogram their function in 
response to repeated patterns of synaptic transmission, creating a means of long-lasting 
information storage. Various forms of synaptic plasticity have been described at 
excitatory and inhibitory synapses: the best known are long-term potentiation (LTP) 
���� ���%�	��� �	
�	������ >��&!�� ��	�	��� ��	� 	������� ��� ����
���� ������������� ���
up- or downregulated, respectively. Certain forms of LTP and LTD are long-lived 
and are thought to be dependent on lasting changes in gene expression. Increasing 
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HDAC inhibitors promote LTP in mammalian neurons.80 In addition, during synaptic 
transmission, neurotransmitters trigger responses in target neurons by activating 
receptors such as ligand-gated ion channels and G protein-coupled receptors, which 
can trigger more long-lasting effects than simple synaptic transmission. These effects 
include changes in gene expression via control of transcription and thereby, chromatin 
remodelling. An example involves the transcription factor CREB which, once activated 
by signalling-induced phosphorylation, recruits CREB-binding protein (CBP), a 
coactivator with intrinsic HAT activity.81 An increase in cytoplasmic Ca2� levels also 
activates Ca2�/calmodulin-dependent kinases, which phosphorylate class II HDAC. This 
phosphorylation provides a docking site for 14-3-3 protein, which mediates export of 
phosphorylated HDAC from the nucleus.82
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rapid and dynamic regulation in the nervous system;83�������������������	�
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activity-dependent control of Bdnf gene expression, which correlates with reduced DNA 
methylation and release of a repressor complex comprising methyl-CpG-binding protein 
2 (MeCP2).84 It is proposed that neural activity, increased cell Ca2� levels and activation 
of Ca2�/calmodulin kinases lead to MeCP2 phosphorylation and release from the Bdnf 
promoter. This induces Bdnf expression and concomitant dendritic outgrowth.85
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restore normal long-term memory formation in these mutants and even enhance it in 
normal animals.80 Contextual fear conditioning, a classical model for the study of memory 
formation in animals, increases H3S10-K14 phospho-acetylation levels in the CA1 area 
of the hippocampus without affecting H4 acetylation.86 In addition, it induces Dnmt3A 
and -3B expression in CA1 neurons and administration of DNMT inhibitors blocks induction 
of both contextual fear conditioning87 and hippocampal LTP.83 It nonetheless remains 
unknown how these drugs, thought to regulate DNA methylation in dividing cells only, 
affect gene expression in mature neurons. Fear conditioning causes rapid methylation 
and silencing of the protein phosphatase 1 (Pp1) gene promoter,87 important for LTP 
and memory formation. Interestingly, fear conditioning also induces demethylation of 
the reelin promoter,88 indicating that both DNA methylation and demethylation might 
be highly regulated in the adult brain.

Epigenetic Alterations in Neuro-Psychiatric Disorders

�������������������	���
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establishment of self-consciousness in the human brain derives from molecular psychiatry. 
Given the involvement of epigenetic mechanisms in nervous system function, it is not 
surprising that a growing number of disorders, including mental retardation and autism 
spectrum syndromes, are linked to chromatin remodelling defects. There are well known 
epigenetic alterations that have profound consequences on the correct establishment of 
these higher functions, leading to mental retardation and behavioural problems.89-90

The best-studied “epigenetic disease” associated with altered neurological function 
is Rett syndrome, a relatively common (1:10000-15000 prevalence in the USA) X-linked 
postnatal autism spectrum disorder characterized by microencephaly, with motor, 
learning and social abnormalities that generally worsen with time. Candidate gene 
�����	����	����	��MeCP2 as the causative gene. MeCP2 is one of the MBD-containing 
proteins described as the methyl-CpG “reader”; it binds selectively to methylated-CpG 
dinucleotides in heterochromatic regions, where it interacts with corepressors and 
�&�#��_������	�������%�
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and, in mice bearing a truncated endogenous MeCP2 form, mild overexpression of 
wild-type MeCP2 enhances synaptic plasticity in the hippocampus and improves 
spatial memory.94

In Rubinstein-Taybi syndrome, a rare congenital disorder (1:100,000 prevalence in 
the US) characterized by mental retardation and developmental abnormalities, causative 
mutations map to the CBP gene and can result in impairment of HAT activity.95 Mice 
��
���������	�������CBP show impaired cognitive function, altered neuron plasticity 
and aberrant histone acetylation at target promoters;96 these behavioural symptoms can 
be ameliorated by administration of HDAC inhibitors.97
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#����%�������������	������
	�����������	�����	����������98 is another genetic 
disease involving Rsk2, a kinase responsible for H3S10 phosphorylation. Chromatin 
changes, in part brought about by H3S10 phosphorylation, have been directly demonstrated 
in the hippocampal neurons of these patients.99

Besides these genetic syndromes involving epigenetic components, a role for epigenetics 
is being highlighted in other psychiatric disorders. In general terms, psychiatric diseases 
include disorders such as drug addiction, depression, bipolar disease and schizophrenia. 
A common attribute of psychiatric disorders is the long-term nature of the behavioural 
anomalies; symptoms usually develop gradually and are long-lasting. Psychiatric drugs are 
���=�	�������������������	���	�������	�	����������	����������	���	��	������	�����
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for weeks or months after the beginning of treatment. These features suggest that both the 
pathologies and the therapeutic effect of psychiatric drugs are probably mediated by stable 
gene regulation changes, in all likelihood through the epigenetic machinery.

In schizophrenia, the extracellular matrix protein reelin is reported to show aberrant 
epigenetic repression. Reelin is a glycoprotein expressed normally by GABA-containing 
neurons; its promoter contains a large CpG island that regulates its expression. Postmortem 
studies showed that reelin expression is considerably repressed in different regions, 
with no association to neural loss.100 Strikingly, drugs that enhance DNA methylation, 
such as SAM, can induce psychotic events in schizophrenic patients.101 Other data 
that support an epigenetic role in this disease come from psychopharmacology; 
antipsychotic drugs such as haloperidol and raclopride (both dopamine receptor D2 
antagonists) induce increased phospho-acetylation of H3 at a global level and of certain 
�
	�����
�����	����"	���	��%�����	�	�102 Moreover, the well-known HDAC inhibitor 
valproate, used in psychiatry as an anticonvulsivant and mood stabiliser, increases 
reelin expression and diminishes methylation of its promoter. Co-administration of 
valproate with antipsychotic drugs accelerates the onset of their therapeutic action.103 
Other HDAC inhibitors have the same effect,104 suggesting that crosstalk between DNA 
methylation and histone acetylation acts in the pathogenesis of the disease, even if the 
molecular mechanism is still unclear.

CONCLUSION: EPIGENOME, TECHNICAL ADVANCES 

AND APPLICATIONS

Until only a few years ago, epigenetic analysis was limited to studying a single 
mark in a single genome location at a time. Recent technological innovations such as 
microarrays and ultra-high-throughput sequencing have enabled description of the global 
epigenetic landscape, multiplying the amount of information that can be obtained from 
a given sample. These advances enable the organization epigenome projects, which 
aim to describe the totality of the epigenetic marks in a cell; these data will be useful to 
better understand normal processes such as development and abnormal processes like 
pathologies with an epigenetic component. Numerous limitations still curb scientists 
���"�������������	�������	����	����	�
�	������	�����	������������
�	���	
��	�	�������"��
different from one cell type to another as well as within each cell type, depending on 
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analysis of individual cells or homogeneous groups of cells. Finally, new possibilities 
are opening up that involve the use of imaging techniques in live whole organisms.105 It 
is hoped that these techniques will provide new information about the epigenetic dynamics 
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of the living cell. In any case, the complexity of the systems such as those that regulate 
self-recognition, self-sensing and self-awareness is the major limitation to exploring the 
molecular mechanisms that drive these processes.
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Abstract: Large DNA-containing viruses encode a plethora of gene products that are homologous 
to cellular proteins and key for their success in nature. During the millions of years 
of co-evolution with their respective hosts, viruses have extensively captured cellular 
genes, frequently duplicated them and insidiously shaped them to yield optimized 
�
	�������	��	����
��	����	���	�������"����������	��	������������	��������������
function and/or of executing novel tasks. A vast number of these gene products have 
become an integral part of the elaborated counteracting immune evasion strategies 
developed by viruses to withstand with the selective evolutionary pressure imposed 
by the host immune system. Cytomegaloviruses (CMVs) constitute an outstanding 
example of the many and varied encoded proteins directed to modulate both innate 
and adaptive immune responses, which determine their ability to establish life-long 
latency with sporadic shedding in their hosts. This chapter focuses on the current 
understanding of those genes encoded by human CMV (HCMV) with a known 
homology to cell proteins of the immune system. A systematic study of these genes, 
��������������������	�����
	����������%��������	����������������

�������	������
to dissect the molecular basis of immune responses.

INTRODUCTION

Large genome DNA viruses, such as poxviruses and herpesviruses, in addition to encode 
proteins required for replication of the viral DNA and their assembly into virions, they 
also bear genes encoding a number of proteins that are not essential for in vitro replication 
and which are primarily involved in direct interaction with the host. Most of these genes, 
�������������������	����	� �����@|\���� ��	�
�����	�%���������
������� ��	��	�	�	�� ���
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have undergone capture by the viruses during co-evolution with their hosts.1 The fact that 
gene capture has been a major hallmark of large DNA viruses (ranging from 100 kb to 
more than 200 kb genomes) evolution is apparent by the abundance of viral proteins that 
��	��������	������	����
���	���������	���
	���

�������	��{`\������	��	�
	�������
proteins have clear sequence similarities to products of their host genomes.2 The estimated 
evolutionary rate of large DNA viral genomes is roughly more than 10 fold higher than 
that of the host genomes.3���������	��	����	�����	�������
���	���	�	�������	�������������
higher since many of these genes have evolved a long way from their original cellular 
counterparts, rendering any degree of relatedness almost undetectable. Phylogenetic studies 
in large DNA viruses indicate that host genes have been acquired at widely different times 
during evolution. While certain genes may have been captured early in their evolutionary 
history since they are common in most members of a viral family, others appear to have 
been acquired much more recently, based on the fact that they are present only in viruses 
belonging to a unique lineage or are capable of infecting a single species.4,5

Various mechanisms that might account for cellular gene acquisition by viruses, 
also known as horizontal transfer, have been postulated. The most likely one is believed 
to involve the recombination of viral genomes with cDNA copies of cellular transcripts. 
The reverse transcriptase required for this process could presumably derive from the 
host cells co-infected with retroviruses.6 This genetic mechanism is supported by the 
fact that, unlike their cellular counterparts, a vast number of captured genes are encoded 
by exons without introns, which would have arisen from insertion of intron-less cDNA 
copies of spliced RNAs. The presence of introns in some captured genes would indicate 
that the inserted cDNA may, in fact, derive from a partially spliced RNA.7 An alternative 
mechanism, at least in large DNA viruses that replicate in the nucleus, involves the 
acquisition of cellular genes via the capture of host genomic DNA. This is supported 
by the observation that some virally encoded genes retain the exact intact cellular gene 
structure of introns and exons.8

In some instances, stolen gene products may maintain the same functionality of the 
original ancestral host. In most cases, however, they diverge and though they may retain 
some fundamental structural characteristics of the host homologue, they also gain one or 
more novel functions that confer additional advantages to ensure pathogen survival.9 Yet 
another potential mechanism for generating new protein functions is gene duplication 
with subsequent divergence from the original captured gene. This process often results in 
families of related genes, which in many cases remain clustered together within the viral 
genome. Finally, viruses may become equipped with novel functions through genetic 
capture from other viruses; a process termed lateral transfer.9 Given the strong evolutionary 

�	����	�������	��	������	�������	���� ��	����	���	����	�������������������
	�������
�����
����	���	�	��������������	�����	���	������	�����	�������"	����
�����������	��

����	���� ��	�������������� �	�����	�	��������	��	����	����������	����	����
depends on the methods used to scrutinize and compare the viral and cellular genomes. In 
addition, homologies are not always found throughout the entire protein, but are instead 
�	������	������
	��������������_���	�	������������	����	���	�����	�	��������	����
�	�������	�	������������	��������������������������������������	=�	��	��������������
cellular protein or when possessing a highly conserved amino acid motif. Homologues 
of cellular proteins found in viruses include enzymes associated with nucleic acid 
metabolism and replication, proteins involved in apoptopsis regulation and cell cycle 
control mechanisms, although a large number of them have also been implicated in 
different aspects of the immune defense.10,11
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This chapter focuses primarily on those proteins encoded by human cytomegalovirus 
(HCMV) that bear a known homology to cellular proteins associated with immune 
�	�
���	��� ����
	�� ��� �
	����� ������ �����	��������� >#��!� 
���	���� ���	� �		��
included, particularly when they either provide relevant in vivo information or their 
mechanism of action differs from their HCMV counterparts.

CYTOMEGALOVIRUSES

CMVs, the principal members of the betaherpesvirus subfamily, are ubiquitous, 
�������
	��	�%�
	�����
�����	�����������	�	����	������������
�����������	�������
in immunocompetent hosts.12 Although CMVs elicit an immune response, this response 
is typically unable to thoroughly clear the infection, thus allowing the virus to persist 
in the host in a latent state. Recurrence from latency as well as primary infection of 
�#���>������	�	��	���������������	�
	������%@�¶���%@·!����������	������������������	�
of morbidity and mortality in immature or immunocompromised host; e.g., transplant 
recipients and AIDS patients. In order to ensure their survival, particularly in the face 
of an active immune system, HCMV has developed various ways of modulating both 
the innate and adaptive arms of the immune system. Thus, HCMV encodes an elaborate 
array of proteins directed to block antigen presentation, interfere with NK cellular 
responses, disrupt cytokine/chemokine-signaling networks, evade antibody recognition 
and inhibit apoptosis.13,14���������	�	�
���	������	�	������	��		����	����	������	����
homologues (Table 1).10,11,15 Recently, a HCMV noncoding microRNA was also 
reported to subvert NK activation.16 The redundant mechanisms, employed by HCMV 
to counteract a number of immune molecular processes, emphasize the importance of 
such responses in viral control.

The lytic growth cycle of HCMV is relatively slow, lasting around three days. 
Following cell entry, HCMV capsids travel to the nucleus where they release their 
genomes with viral transcription and replication then taking place.12 HCMV genes 
are expressed in a temporally regulated transcription cascade, which leads to the 
synthesis of three classes of viral proteins designated as immediate early, early and 
late. The viral DNA is encapsidated and the infectious virus is then released from 
the host cell. HCMV particles contain the linear genome enclosed in an icosahedral 
capsid, surrounded by a layer of proteins termed tegument.17 This, in turn is bound 
by an outer lipid envelope with glycoproteins. HCMV exhibits a broad cell tropism 
�����������������	������������	
���	����	���	�����	����	������������������������
muscle cells being the major targets for viral replication.18 Myelomonocytic cells 
provide an important reservoir for latent infection. As studies examining HCMV in 
human subjects have obvious limitations and since the virus cannot infect experimental 
animals, rodent CMVs (in particular murine CMV-MCMV) have been extensively 
used to analyze virus-host interactions.19

With a complex linear double-stranded DNA genome of approximately 230 kb, 
encoding more than 200 predicted ORFs, HCMV is the largest of the known human 
viruses.20 The genome is comprised of two regions with unique sequences (unique long 
¶��·��������=�	�������¶��·!����"	������	
	��	���	��	��������	��	���	�������	�	������
the complete genome (TRL and TRS), or internally at the joining point of the two unique 
components (IRL and IRS). Compared to the reference HCMV strain AD169, clinical 
isolates contain a region of around 15 kbp near the edge of the UL sequence (referred to 
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as UL/b´) encoding at least 19 ORFs which are absent in the laboratory-adapted strains 
extensively passaged in cell culture.21 ORFs are designated by letters indicating their 
location within the unique and repeated regions of the genome and are sequentially 
numbered. To date, the precise function(s) of a great proportion of the HCMV gene 
products remains unknown. A set of 46 core genes, which primarily encode essential 
functions conserved among all herpesviruses (e.g., those involved in DNA replication, 
packaging and processing), resides in the central part of the genome within the UL 
�	��	���� ��� ���������� ��	� �	������ �	������ 	������� �� ����������� ���	��	��	� ������
����	�	��� �����	��� �	������ ��� ������� #��%�
	����� �	�	�� ����� ��	� ���%	��	����� ����
replication in tissue culture and which are mainly devoted to interaction with the host, 
particularly in the modulation of innate and adaptive immune responses. Nine related 
�	�	������	�����	��		����	����	������#�����	�	�����

	�������������	����	
	��	��
copies as a result of gene duplication and subsequent divergence.22

Figure 1. Immune modulation by HCMV-encoded cellular homologues. Some examples of  cellular 
homologues expressed by HCMV infected cells that interfere with the host immune response are shown. 
UL18 (upper-left panel), UL142 (upper-centre panel), UL144 (upper-right panel), cmvIL-10 (lower-left 
panel), UL146(lower-centre panel), and US28 (lower-right panel).
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MHC CLASS I HOMOLOGUES

MHC class I molecules play a central role in the initiation of adaptative immune 
responses to infection by presenting foreign peptides to cytotoxic CD8 T-lymphocytes 
(CTLs). Classical MHC class I molecules consist of a glycosylated transmembrane heavy 
chain with three extracellular domains (�1, �2, and �3) and the �2-microglobulin (�2m) 
light chain. Viral infected cells express on their cell surface MHC class I molecules 
��������������{{������
	
���	�����������	��	������	�����#��������������	��������	�%�
	�����
receptor (TCR). After antigen recognition, activated CTLs proliferate and differentiate into 
cytotoxic cells, resulting in the eradication of the infected cells and hindering subsequent 
propagation of the virus. Thus, as with many other viruses, the evolution of HCMV has 
empowered it to employ a variety of strategies to down-modulate MHC class I expression 
in order to avoid CTL-mediated lysis.23,24 However, NK cells, which do not express 
TCRs, are able to kill viral infected cells presenting low levels of MHC class I, since 
these molecules also act as ligands for NK inhibitory receptors. Therefore, to avoid NK 
killing, HCMV encodes molecules capable of directly engaging inhibitory receptors or 
of impeding the triggering of activating receptors on NK cells.25-27��������������
	�����
HCMV proteins down-regulate the cell-surface expression of stress-induced ligands that 
activate NK cells. As part of these tactics, HCMV encodes structural homologues of 
MHC class I-like molecules.

UL18

��{����������#������_��������	������������	����	�������	��#��������������������
AD169 around 20 years ago.28 It is a Type I transmembrane protein, whose extracellular 
�	���������	����\�������������	=�	��	���	���������������	�����	����		��1, �2, and �3 
domains, with the extracellular regions of human MHC class I (Fig. 1). Like classical MHC 
class I molecules, UL18 associates with �2m and present endogenous peptides.29,30 This 
later characteristic makes UL18 unique among viral MHC class I homologues. However, 
in contrast to MHC class I molecules which contain one N-glycosylation site, UL18 is 
highly glycosylated, with 13 potential N-glycosylation sites.28 All HCMVs analyzed thus 
far contain the UL18 gene and this protein is conserved in Chimpanzee CMV (chCMV).20 
UL18 has been reported to both activate and inhibit NK cell functions.31-34 Its inhibitory 
properties are dependent on the interaction that occurs through its �3 domain with the 
leukocyte immunoglobulin-like receptor (LIR-1, also known as ILT-2 or CD85j).35 
This inhibitory receptor binds a broad range of classical and nonclassical MHC class I 
molecules and is mostly present on monocytes, dendritic and B lymphoid cell types and 
����	������'���������	�����{������������_$%{������{�|||%���%����	���������������
MHC class I molecules.36,37 In addition, genetic variations of UL18 in HCMV genomes 
result in marked differences in the avidity of binding to LIR-1.38,39 The mechanism by 
which UL18 enhances NK cell responses remains to be elucidated. Finally, UL18 has 
also been reported to play a role in T-cell stimulation.40 Despite the intensive research 
carried out on UL18, at present there is still no clear understanding of the activatory and 
inhibitory activities displayed by this viral protein in the context of the infection. Levels 
of UL18 expression, its cellular localization and the receptor repertoire of the target cell 
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have all been proposed as determinants of the different functions that UL18 may play in 
immune modulation.41 The possibility that UL18 interacts with another unknown receptor 
on NK or T cells remains an open question.

UL142

HCMV encodes an additional MHC class I related protein, UL142, within its 
UL/b region present in clinical isolates and low passage strains.42 UL142 possesses 
MHC class I-related �1 and �2 domains, while it differs from classical MHC class I 
molecules in that its �3 domain is truncated and that it is extensively glycosylated. 
UL142 inhibits NK cell cytotoxicity by downregulating the cell-surface expression 
of the MHC class I-related chain MICA, a stress-inducible ligand of the activating 
NK cell receptor NKG2D that can also be found on CD8 T cells as well as in certain 
T-cell subsets (Fig. 1). MICA exhibits a substantial sequence polymorphism and it has 
been shown that UL142 discriminates among MICA alleles.43 A recent study indicates 
that UL142 acts by retaining full-length MICA alleles in the cis-Golgi.44 The fact that 
UL142 is not present in HCMV laboratory-adapted strains that nevertheless retain the 
��
�������������%�	����	��_#����	�	������	������������	���������	������	�������	�
�������������	���
	����������	�
��������

���	���������������	����	��	����	��	������
��������������������������������	=�	��	�
similarity to HCMV UL18, MCMV also encodes an MHC class I homologue, m144.45 The 

������	�	�����	�����	���������{������
�������?\���%��	=�	��	���	�����������������
MHC class I molecules, with the predicted �1 and �3 domain structures of cellular MHC 
class I retained, but with the �2 domain containing considerable deletions. Although 
m144 can bind �2m, unlike UL18 it is unable to associate with endogenous peptides due 
to its truncated �2 domain.46 These observations are supported by data obtained from the 
crystal structure of the UL144/�������
	�����	��������������	�������������#������_�
to be resolved.47 That m144 contributes to immune modulation was clearly shown by 
its ability to interfere with NK recognition.48,49 Indeed, a mutant MCMV with an m144 
disruption exhibited severe attenuation during acute infection when compared to its 
wild-type counterpart, which could be reversed by NK cell depletion of the mouse.48 In 
addition, expression of m144 in different cell types can confer partial resistance to NK cell 
cytotoxicity.49,50 Although it has been suggested that m144 acts via the engagement of 
inhibitory NK receptors, neither the exact mechanism of action nor the nature of the 

������	��	�	
���������		����	����	��

It is of interest that other members of the MCMV m145 family to which m144 belongs 
have also been predicted to contain an MHC class I structure and thus are thought to 
possess immunomodulatory functions.51 Accordingly, four such MCMV m145 family 
members have been already reported to interfere with NK function. m157 has been shown 
to differentially bind to two NK receptors: to the activating Ly-49H receptor in MCMV 
resistant mouse strains and to the inhibitory Ly49-I receptor in sensitive murine strains.52,53 
m145, m152 and m155 down-regulate surface expression of the three distinct ligands 
�����	������������'���	��	�	
����'���&}�����%{��$��%{�>������������	�����	�	���
isoforms) and H60 respectively.54-57 Consequently, MCMV mutants with deletions in 
m145, m152, or m155 are associated with augmented virus sensitivity to NK control 
in vivo. An additional role for m152, retaining MHC class I molecules in the ER/Golgy 
compartment and inhibiting CTL lysis has also been reported.58,59
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TNF RECEPTOR SUPERFAMILY HOMOLOGUES

TNF and TNF receptor (TNFR) molecules are two large superfamilies containing 
more than 30 receptors and 19 ligands.60 Signals mediated through these receptor-ligand 
���	���������������	������	������������������	�
���	����	�	����'�$������������
molecules have been shown to control T-cell activation by regulating T-cell proliferation, 
cytokine production, cytotoxicity, T-cell apoptosis and survival. Some TNFRs activate 
�	���	�"����	�����	�	���
�����������	�	�
�	�����������������������������
��������������
genes through the transcription factors NF-�B and AP-1, whereas other TNFRs 
induce apoptosis, negatively regulating T cells by cellular elimination.61,62 Viruses 
can block TNF and TNF-mediated responses at multiple levels; e.g., by inhibiting 
the TNF ligand or its receptors, or by modulating key transduction molecules of the 
TNF signaling pathway.63

UL144

HCMV encodes a TNFR homolog, UL144, which is the only TNFR homolog 
��	����	���������������	�
	������	�����������
�������	��	����	��	�����'�$�������
contain amino acid sequences similar to the extracellular TNF-binding domains of 
their cellular counterparts, they lack the transmembrane and cytoplasmic domains. As a 
result, they are secreted and are capable of neutralizing TNF-alpha activity.64 In contrast 
to the poxvirus secreted TNFR homologues, UL144 encodes a Type I transmembrane 
protein with an ectodomain encompassing a leader peptide, a cysteine-rich region, a 
membrane extension region, a transmembrane domain and a short cytoplasmic tail. 
The UL144 ectodomain shows the highest amino acid sequence homology to the 
TNFR superfamily member HVEM (or Herpesvirus Entry Mediator, also known as 
�'�$��{�!�>`�\!�����	��������	���	��	�������������
	�������>������?\���'�$%{��
��\�����$���@\���$�_�%$���{@\!�65 HVEM can operate as a molecular switch that 
modulates T-cell activation by transmitting positive signals from the TNF-related 
ligands LIGHT and lymphotoxin , or inhibitory signals through the Ig superfamily 
member B and T-lymphocyte attenuator (BTLA).66 Although the UL144 protein does 
not bind any known TNF ligands including LIGHT, similar to HVEM it does bind to 
BTLA (Fig. 1).67���	�����
�����������{���������	�����������_����������������	��	��	��
adaptation process that has been attained by CMV during co-evolution with its host, 
usurping the negative cosignaling functions of the HVEM-BTLA interaction, while 
losing the positive costimulating signals of the HVEM-LIGHT interaction.67 Binding 
of UL144 to BTLA blocks T-cell proliferation and reduces lymphocyte responses to 
HCMV, selectively mimicking the inhibitory cosignaling function of HVEM. A distinct 
function assigned to UL144 is to activate NF-�B by sequestering the TNFR-activator 
factor TRAF6, causing up-regulation of the chemokine CCL22 (MDC).68 CCL22 is a 
chemoattractant of Th2 and regulatory T cells. Activation and attraction of these cells 
may aid HCMV in evading T-cell-mediated antiviral activity. Moreover, CCL22 also 
acts as a chemoattractant of those myeloid cells that may promote viral dissemination. 
UL144, like other genes located in the UL/b region, exhibits a high degree of amino acid 
sequence variation among clinical isolates and hence a number of studies have addressed 
the potential correlation of polymorphisms in this molecule and CMV pathogenesis.69 In 
most cases, however, a clear association between genotypes of distinct HCMV strains 
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and disease outcome has not been observed. In this connection, it is noteworthy that 
despite the sequence variability found in the ectodomains, UL144 from different viral 
�����	����������������
����	��������	����������70

CYTOKINE HOMOLOGUES

#���"��	����	��	��	�	��
���	����������	����	����������������������	�����������������
responses, of both the innate and the adaptive immune systems. Many viruses have 
developed strategies to antagonize cytokine activity over a range of different mechanisms. 
As part of these strategies, large DNA viruses—in addition to expressing cytokine 
receptors (as seen in the preceding section on HCMV) or cytokine-binding proteins- 
they are capable of secreting their own cytokines, also known as virokines.64

IL-10 is a cytokine with potent immunosuppressive functions, which include 
���"������	�
�������������
��%����������������"��	����������%�	�������������#�
molecules and costimulatory molecules.71 IL-10 is normally produced late after pathogen 
infection when it functions to attenuate the immune response. However, IL-10 has been 
shown to stimulate B-cell survival, proliferation and differentiation.72 Herpesviruses and 
poxviruses encode interleukin-10 homologues, which in some instances (e.g., in the case 
����
��	��%����������!���������	���	���|\���	�������������	��	����_�%{|���	��	�73 
The fact that distinct viruses have independently captured host IL-10 genes supports 
the hypothesis that bearing an IL-10 molecule confers an advantage to the pathogen, 
plausibly steming from its ability to modulate cell-mediated immune responses and 
enhance viral dissemination and growth.74

UL111A

HCMV encompasses an IL-10 homologue, known as cvmIL-10; encoded by the 
UL111A gene, it is secreted during viral infection.7 This viral gene product arises from 
a transcript consisting of three exons and two introns. cmvIL-10 has been shown to bind 
�������������	�_�%{|��	�	
�����	�
��	��������������@\��������������������_�%{|�
>�����{!��_�����������_�%{|������������	�_�%{|��	�	
�����������	��	���������������������
IL-10 or the Epstein-Barr virus IL-10.73 Therefore, it is not surprising that cmvIL-10 is as 
	����	������������_�%{|������

�	������
������������������"��	�����������_�%{�, IL-6, 
granulocyte-macrophage colony-stimulating factor (GM-CSF) and TNF in peripheral 
blood mononuclear cells and monocytes.75 In addition, a number of other modulatory 
activities (including both immunosuppressive and immunostimulatory) are shared, 
in a cell-type dependent manner, by cmvIL-10 and the human IL-10, some of which 
are outlined here. The CMV encoded IL-10 homologue is also able to alter dendritic 
cell maturation and prevent the up-regulation of the costimulatory molecules CD40, 
CD80, CD86, B7-DC and B7-H1.76,77 Moreover, the synthesis of Type I INFs has been 
reported to be directly abrogated by cmvIL-10 in plasmocitoid dendritic cells. Another 
function assigned to this viral molecule is to induce B-cell growth and differentiation.78 
One recent study reported that cmvIL-10 suppressed CD4 T-cell recognition of latently 
infected myeloid progenitor cells in vitro, thus implying that this gene contributes to 
the persistence of HCMV in the immunocompromised host.79
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An alternative spliced transcript from the UL111A gene, denoted as latency-associated 
LAcmvIL-10, has been detected during the latent phase of HCMV infection.80 The repertoire 
of immunomodulatory properties of LAcmvIL-10 is however more restrictive than that 
of UL111A, retaining only its capacity to downregulate MHC class II expression.81

In evolutionary terms, it is worth noting the conservation of splicing patterns, which 
can even be identical, between certain virally encoded IL-10s and host IL-10. To some 
	��	����������

�	�������{{{������	��	�������������		����������	���	�	����������	�
human IL-10, UL111A retains identical boundaries between exons. Homologues of 
_�%{|����	������		����	����	��������	�
�����	�#����	���	��>�����	��������=�	��
African green monkey and baboon, but not in chimpanzee). The pronounced amino acid 
sequence divergence found not only between the CMV encoded IL-10 homologues and 
their corresponding host´s IL-10, but also among these proteins in even closely related 
#����>���������#�������$�	����#��!������	�����������	�	��
	�������
���	��	�	����
occurred early in the co-evolution of primates and their respective CMVs.

CHEMOKINE AND CHEMOKINE RECEPTORS HOMOLOGUES

Chemokines and their receptors play a key role in immune homeostasis regulating 
leukocyte migration, differentiation and function. More than 50 chemokines and 20 
chemokine receptors have been described thus far.82-85 Chemokines are small cytokines 
(8-10 kDa) that induce chemotaxis in leukocyte populations. They are divided into 
four subfamilies (CC, CXC, C and CX3C) based on the conserved cysteine motifs they 
possess. Chemokine receptors, which belong to the large family of 7-transmembrane 
G-protein-coupled receptors (GPCRs), propagate intracellular signals, such as calcium 
mobilization and phosphorylation of serine/threonine kinases, in response to chemokine 
���������#�	��"��	�����������	����	�������������
���	��	����������	�������	����	���
�����������	��������	�"����	�������	�������������������	�������������	���	�	��	�����
mechanisms of lymphocytes.

�����	�����	�����	�
	���	�����������
	������	�	%�		�	�����	���������������"����
antibodies of chemokine system members have demonstrated that these are essential 
�	�����������������������������
�������������	�������������������	�������86 The existence 
of more than 30 known virally encoded chemokine and chemokine receptor mimics is 
the best indication that chemokines and their receptors are crucial for antiviral defense.87 
Among herpesviruses, genes encoding for proteins with homology to chemokines or 
��	��"��	��	�	
��������	��		����	����	�����������	�� and � herpesviruses subfamilies 
and not in the  herpesviruses. HCMV encodes two known CXC-like chemokines, UL146 
and UL147, as well as one CC-like chemokine, UL128. In addition, it harbors four 
chemokine receptors homologues: UL33, UL78, US27 and US28.

CHEMOKINE HOMOLOGUES

Viral-encoded chemokine homologues may exhibit two distinct properties: they can 
mimic the activity of the host chemokine by attracting selected leukocyte subsets through 
host chemokine receptors, thereby facilitating dissemination of the virus; or/and they can 
act as chemokine receptor antagonists.88
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UL146 AND UL147

UL146 and UL147 share important characteristics with cellular CXC chemokines, 
including the spacing of the four conserved cysteines and the ELR-like motif known to 
be relevant in receptor binding and activation of neutrophils.89 Consequently, the protein 
	����	�������{��������
��	���#�#%��	��"��	�����������������������������������	������
#�#$���	�	
�����	����	����������������������������������������	���������
��
	���	��
in a manner similar to those of the cellular CXCL1 (also known as GRO-alpha) (Fig. 1).90 
UL146 is able to attract neutrophils in vitro and inhibit apoptosis. The function of the 
closely related UL147 has not been independently studied and it is not known whether 
the two genes are functionally redundant. Work with HCMV mutants lacking both UL146 
������{����������	�������	���	����	��������������	�
���	��������	�	����������	����	��������
transmission to polymorphonuclear leukocytes, but not to monocytes.91 Although UL146 
������{����	=�	��	���������������#��������	��
�	�	����������������������������������
correlation between the polymorphisms in these molecules and disease outcome has as 
yet been appreciated.92

Phylogenetic studies suggest that HCMV UL146 and UL147 arose from a gene 
duplication event that most likely occurred subsequently after gene capture. UL146 
and UL147 are present in chCMV together with another CXC chemokine-like protein 
(UL146A) and chCMV UL146 has been reported to have biological properties similar 
to that of its HCMV counterpart.93 Interestingly, CXC chemokine-related genes appear 
to be restricted to simian CMVs. Moreover, detailed analysis of a number of primate 
CMV genomes indicates that they contain tandemly repeated gene clusters encoding a 
number of divergent CXC chemokine-like proteins along with GPCR–like protein clusters. 
These gene clusters appear to have considerable variation in CXC chemokine-like and 
GPCR-like protein copy numbers among the different CMVs. Based on the number and 
organization of these two cluster types in viral genomes (e.g., two, six and eight genes 
compose the CXC chemokine-like cluster in the owl monkey, rhesus and green monkey 
CMV respectively), the emerging picture is that the CXC chemokine-like gene cluster 
evolved from a CXCL chemokine (probably CXCL1) that was captured in an incomplete 
spliced form by an ancestor of Old and New World primate CMVs (more than 42 Mya), 
subsequently evolving via complex duplication and deletion events.94 This same process 
of duplication and deletion that appears to be associated to the evolution of the viral 
CXC chemokine-like cluster may also have played a role in the generation of the human 
CXC cluster that comprises the nine human CXCL genes (including CXCL1 and IL-8) 
on chromosome 4.94

UL128

Although UL128 exhibits limited amino acid homology to CC-chemokines, it does 
display hallmarks of these molecules, containing four conserved cisteine residues.95 The 
activities of this protein, including its potential chemotactic function, are not yet known. 
Independently of its possible role as a chemokine, however, UL128 has been implicated, 
together with the HCMV proteins UL130 and UL131A, in determining endothelial cell 
tropism, viral transmission to leukocytes and infection of dendritic cells.91,95,96 UL128, 
UL130 and UL131A proteins form a molecular complex with the glycoproteins H (gH) 
and L (gL) and localize in virion particles mediating entry into cell types such as epithelial 
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conserved among clinical HCMV isolates, although it is disrupted in certain strains.97,98

The mouse CMV also bears a gene, m131/m129, encoding a protein with potent 
chemokine activity.99 It has been found to induce calcium signalling and adherence in murine 
peritoneal macrophages.100 In addition, human chemokine receptor CCR3-expressing cells 
as well as the human macrophage cell line THP1, have been shown to be responsive to this 
viral CC-chemokine homologue.100 Moreover, using an MCMV with alterations in m131/
�{�?���������		���	��������	���������	������
���	���
�����	���������������������������	�
site of inoculation, but also monocyte-associated viremia and subsequent dissemination 
of the virus to the mouse salivary glands.99-101 Interestingly, a homologue of the CC 
��	��"��	��_<�>�����
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which is capable of signaling and inducing chemotaxis in cells expressing the human 
chemokine receptor CCR1.102

CHEMOKINE RECEPTOR HOMOLOGUES

Upon the onset of agonistic binding, the chemokine family of G-coupled receptors 
regulates a number of physiological processes by inducing signal transduction networks 
via activation of heterotrimeric G proteins. Chemokine receptors (CCR, CXCR, CR, or 
CX3CR) interact with a set of chemokines belonging to their respective subfamilies. 
A number of viruses encode cellular homologues of chemokine receptors which can 
��	��������	����������
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immune evasion. In contrast to their host counterparts, a remarkable trait of virus-encoded 
chemokine receptors is their capacity to bind a broader spectrum of chemokines. However, 
some of these viral molecules remain orphan receptors, as yet no chemokines have been 
reported to bind or modulate their activity. Nevertheless, such orphan receptors might 
be functional, since in many instances virally encoded chemokine receptors work in 
a ligand-independent manner by being constitutively activated.103-106 Among the four 
chemokine receptor homologues encoded by HCMV, UL33 and UL78 appear to be 
present in all sequenced CMVs, presumably having being pirated from an ancient host by 
an ancestral CMV, while US27 and US28 are only encoded by primate CMVs, pointing 
to a more recent incorporation event.

US28

US28 is closely related to receptors for CC chemokine; indeed, it can bind a number 
���
��%������������##%��	��"��	��>##�@��##�%`��##�������##��!������	���������	�
C3X-chemokine CX3CL1 (Fig. 1).107-110 Despite this broad spectrum of ligands, US28 
presents high levels of constitutively activated signal transduction cascades, including 
phospholipase C, MAP kinase pathways and various transcription factors, such as NF�B 
and CREB. The intracellular carboxi-terminal tail of US28 is constitutively phosphorylated 
>��������������������	=���	��������������������������	��"��	��	�	
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protein stimulation and subsequent signaling.104 In addition, ligand binding to US28 can 
�����������	��	%��
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of agonist-dependent and agonist-independent signaling activity appears to be important 
for the biological effects of this molecule. In vitro studies have demonstrated roles played 
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by US28 that could potentially contribute to both immune evasion and viral dissemination 
in the host. US28 prevents leukocyte recruitment by degrading chemokines through 
constitutive endocytosis and recycling thereby acting as a chemokine decoy and scavenger 
receptor preventing the activation of endogenous host receptors.111,112 It has been shown 
that ligand stimulation of US28 promotes smooth muscle cell migration.113 This might 
lead to enhanced viral spread and reveal a molecular mechanism implicating HCMV in 
the development of vascular disease, such as arteriosclerosis.114 In addition, expression 
�������������
���	��������		���������������	��	�������������������������������������
viral oncogene.115 Interestingly, US28 may serve as a coreceptor for HIV entry into cells 
and mediate cell fusion.116,117

US27

Considerably less is known about US27, a gene related and adjacent to US28. Although 
the similarities between these two proteins have led to the hypothesis that US27 is also a 
functional chemokine receptor no constitutive and/or ligand-induced signaling has been 
reported for this viral molecule.118,119 US27 is expressed with late kinetics in the infected 
cell and is present in enveloped virus particles which suggests that this protein may play 
a role during the early stages of infection.120,121 Dimerization of chemokine receptors has 
been documented to be a relevant event for signaling.122 Hence, one possibility is that 
some of the viral encoded-chemokine receptor homologues might exert their actions by 
���	��������������
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UL33

Despite its sequence similarity to CC-chemokine receptors (with a high conservation 
of both individual amino acids and secondary structure distributed throughout the entire 
protein), UL33 does not appear to interact with chemokines. Thus, potential ligand(s) 
��������������
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cellular signaling, including inositol phosphate production and activation of both NF-kB 
and the nuclear factor of activated T cells (NFAT), in a constitutive manner.106 UL33 
is expressed with late kinetics in infected cells and forms part of the viral envelope.123 
This protein is highly conserved among beta herpesviruses. In this regard, the murine 
and rat homologues of UL33, M33 and R33, respectively, have also been shown to 
���
��������������	����������������������������������	�	��	�������	�����������	���������
(mainly associated with the activation of distinct G protein types) between UL33 and its 
rodent homologs have been observed. In fact, M33 and R33 appear to activate signaling 
pathways similar to those activated by US28. Hence, it has been hypothesized that 
primate UL33-like proteins have lost some signaling properties as similar functions may 
have become redundant due to the presence of US28 genes.124 Disruption of both R33 
and M33 in their respective viruses results in severely attenuated viruses in vivo, unable 
to replicate in and disseminate to the salivary glands.125,126 Thus, these results provide 
	���	��	��������	�	�
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host. Interestingly, it has been shown that HCMV UL33 was able to partially compensate 
for the lack of M33 in vivo, suggesting that the biological roles of these genes have been 
conserved.127 It is worth noting, however, that M33 has been reported to bind to mouse 
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chemokine CCL5, inducing vascular smooth muscle cell migration and activating the 
small G protein Rac1, as well as the extracellular signal-related kinase.128

UL78

_����������������	��#�����``����������������
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sequence identity to chemokine receptors or any other GPCR, but does share some 
general conserved GPCR features. However, no constitutive and/or ligand-induced 
signaling has been reported for UL78. Hints as to the role of HCMV UL78 during 
viral infection come from UL78 homologues existing in other animal CMVs. In this 
regard, gene knockout experiments of the rodent CMV homologues M78 and R78 
have shown that these genes contribute to the cell–cell spread of these viruses in 
vitro and to viral growth in target organs in the in vivo context.129,130 In addition, the 
fact that M78 is present in virions has lead to the postulation that M78 may facilitate 
immediate-early mRNA accumulation.130 It is noteworthy that UL78 counterparts 
in two other �-herpesviruses, human herpesvirus (HHV)-6 and HHV-7, which are 
encoded by U51, have been shown to bind a number of CC-chemokines.131,132 Indeed, 
they are capable of activating or regulating signal transduction although this has not 
been demonstrated with any other UL78 viral homologues.133 Thus, the most plausible 
scenario is that UL78-viral homologues might have evolved into disparate functions 
in their respective �-herpesvirus members.

Fc RECEPTOR HOMOLOGUES

Fc receptors (FcR) are molecules of the immunoglobulin superfamily present on 
the cell surface of most immune cells. They bind the Fc region of antibodies, triggering 
a number of effector mechanisms including NK cell-mediated antibody-dependent 
cellular cytotoxicity (ADCC), phagocytosis, cytokine-release and/or the regulation of 
lymphocyte proliferation.134 By connecting cell-mediated and humoral immune responses, 
FcRs participate in the host defense against viral infections. Thus, viruses have evolved 
mechanisms to modulate antibody responses via FcRs. In the case of HCMV, both 
infected cells and virions display Fc-binding activity and HCMV has been shown to 
encode proteins with homology to Fc�Rs.135,136

TRL11/IRL11 AND UL119-118

Two predicted Type I transmembrane glycoproteins encoded in the HCMV genome, 
TRL11/IRL11 and UL119-118 share structural characteristics with cellular Fc� receptors, 
including the Ig-like domains with conserved key amino acid residues.137,138 The closest 
cellular homologue of UL119-118 is Fc�$_�>�|\���	�������������	�������������!�����	�
TRL11/IRL11 shows the highest level of homology to the second domain of the Fc� 
�	�	
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as well as their disparate positions in the HCMV genome, most likely might indicate the 
occurrence of independent capture events during co-evolution with the host. Both gene 
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distinct isotype, but not IgA or IgM. Potentially, these viral Fc receptors could function 
by eliminating circulating anti-CMV antibodies transporting them from the cell surface 
to the endolysosomes for destruction. In addition, CMV Fc receptor homologues could be 
used by antibody-coated viral particles to enter cells contributing to virus dissemination. 
However, despite all these speculations, the functional role of these proteins still remains 
to be elucidated.

More enlightening thus far has been the IgG Fc-binding protein expressed by MCMV, 
m138.139 m138 is a Type I glycoprotein that exhibits the same structural properties as 
cellular Fc�R, although it does not share any homology with its counterparts in the HCMV 
genome. The in vivo relevance of this protein is supported by the impaired replication 
exhibited by an MCMV containing a mutation in m138. Surprisingly, however, m138´s 
mechanism of action has been shown to be independent of the humoral response due 
to the fact that reduced MCMV titers in different organs in the absence of m138 were 
�		�������������%��
	������%�	��	���	������	�140 Interestingly, m138 downregulates 
the cell-surface expression of three ligands of the activating NK receptor NKG2D: H60, 
$��%{	
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the observation that the m138 MCMV mutant grows to levels comparable to that of 
wild-type MCMV in NK cell-depleted mice.141,142 The downregulation of MULT-1 and 
H60 appears to involve two different domains at the N-terminal region of m138 and in 
��	����	��������%{��������	�������������������"�����	�������������	��������	����������
of the protein in lysosomes.141��{`�����������	� ����	���	��	%������	� ������"�������
the costimulatory molecule B7-1 (CD80) on dendritic cells, intercepting the capacity 
of these cells to activate CD8 T cells.143 Thus, m138 is another excellent example of a 
CMV-encoded gene that exerts various independent immune evasion activities.

MOLECULAR MIMICRY AND AUTOIMMUNITY

The concept of molecular mimicry in viral infection was introduced in the 80´s by 
Fujinami and Oldstone.144���	��
��
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microbe antigens could cross-react with self antigens, thereby achieving the potential 
to cause autoimmunity. A number of epidemiological, clinical and experimental studies 
now support an association between viral infections and autoimmune disease through the 
mechanism of molecular mimicry (for recent reviews see refs.145, 146). This could be of 
particular relevance for viruses such as HCMV or other herpesviruses due to their inherent 
capacity to remain life-long in their hosts. In that respect, HCMV has been implicated 
in the pathogenesis of a variety of autoimmune disorders. In theory, viral homologues 
of cellular genes may represent potential candidates for triggering autoimmunity via a 
process of molecular mimicry. Direct evidence for a molecular mimicry mechanism, 
by which antibodies against the HCMV protein (UL94) that recognize the cell-surface 
��	��	� '��%�� ����	� 	�����	��� �	� �����	� ���� ��������� ����������� ��� 
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with systemic sclerosis, has been reported.147,148 Moreover, in atherosclerosis, it has been 
shown that antibodies against the HCMV proteins UL122 and US28, which are capable 
of cross-reacting with the human heat-shock protein 60, can induce the apoptosis of 
nonstressed endothelial cells.149 It must be pointed out, however, that molecular mimicry 
alone may not be capable of causing clinical disease and may do so only in conjunction 
��������	�����������������������	�
�����	��������	�����
	�������������������������
by virally induced immune stimulation in genetically susceptible individuals.150
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CONCLUSION AND FUTURE PROSPECTS

As reviewed here, part of the immune evasion strategies employed by CMVs are based 
on gene products with homology to host proteins, skilfully tailored during co-evolution to 
become sophisticated weapons with unique properties. The possibility to undertake more 
elaborated bioinformatic searches, together with the availability of increasing numbers 
���#����	=�	��	��������� ���� �	�	����	��� ��������	�� ��������	����	��	�� �����
may have considerably diverged from the original captured gene, expanding the list of 
��	���	����	��������	��������	��	����	�������	�	������	���_��������	����������������
products ressembling host proteins involved in immune responses have been distinguished 
in the HCMV genome although these await to be explored.2,151 It must be noted however, 
that only a few of the CMV-encoded cellular homologues have been characterized with 
respect to their biological functions and mechanisms of action. Frequently, the properties 
of these viral molecules have been assessed using recombinant proteins and therefore 
the role they play during the viral life cycle remains unclear. Moreover, the strict species 
�
	����������������	�������#������������	�	��������������	������������	��������������
pathogenesis. While in some instances this will prove a complicated undertaking, the 
combination of detailed clinical studies together with the availability of small animal 
models and advances in viral genetics, may aid future attempts to decipher their functions 
in vivo. The study of these immunomodulatory proteins is crucial not only for obtaining 
a better understanding of viral pathogenesis, but also for fully comprehending the critical 
host immunological pathways, goals which may well contribute to an elucidation of 
previously unknown cellular functions. Finally, serious consideration must be given to 
the potential use of these viral factors in the treatment of disease.
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Abstract: The Major Histocompatibility Complex (MHC) is a genomic region that contains 
genes that encode proteins involved with antigen presentation and, therefore, plays 
an important role in the adaptive immune system. The origin of these genes was 
probably an ancestral MHC that appeared before the emergence of the adaptive 
immune system and contained genes related to immunity. The organization of 
MHC genes varies in different groups of vertebrates; although, there are some 
characteristics that are maintained in all groups, which indicates that they confer 
some evolutionary advantage: Organization of the genes to form clusters and genetic 
polymorphisms. The study of how the MHC appeared during evolution and how 
it is organized in different species can help us clarify what features are essential in 
their participation in self-nonself recognition.

INTRODUCTION

One feature of the adaptive immune system is that it appears to have originated 
suddenly in a short period of time, during the emergence of the jawed vertebrates. All 
��� ��	�		�	���� ������	��	���	����
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including the T-cell receptor (TCR), Immunoglobulins (Ig) and the major histocompatibility 
complex (MHC). The MHC is a genomic region that contains genes that encode for the 
polymorphic class I and class II proteins, as well as other proteins related to the generation 
and transport of the peptides presented by class I molecules: Transporters associated 
with antigen processing (TAP1 and TAP2), immunoproteasome components (LMN2 and 
LMP7) and tapasin (TAPBP).

Self and Nonself, edited by Carlos López-Larrea. 
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T cells recognize foreign antigens found in infected cells, which are presented to 
them by polymorphic MHC molecules (class I or class II), by using TCRs that are also 
polymorphic. Apparently, there have been evolutionary pressures that, compared with 
other genes, made MHC genes evolve rapidly. The polymorphisms of these genes cause 
a diverse genetic susceptibility to infection; thus, individuals with different class I genes 
select different peptides to activate the immune system. This represents a population 
advantage by avoiding the possibility that a pathogen could kill an entire population. To 
elude their recognition by the immune system, many pathogens have developed strategies 
to interfere with class I presentation and, in this way, not be detected by T cells.1

To avoid this immune evasion, natural killer (NK) cells have receptors that recognize 
the altered expressions of class I molecules and, thus, allow them to distinguish infected 
from uninfected cells. In humans, this recognition occurs via the use of two types of 
class I receptors that are found in the NK cell membrane: CD94/NKG2A, which belongs 
to the C-type lectin-like family and killer-cell immunoglobulin-like receptors (KIRs), 
which belong to the immunoglobulin superfamily (IgSF). KIRs are polymorphic and 
bind directly to class I molecules.2,3 The study of the KIR and MHC genes in apes has 
revealed that the interaction of these two polymorphic molecules was another mechanism 
that triggered the rapid evolution of the MHC in this group of animals.4

WHAT IS THE MHC?

We can describe the human leukocyte antigen (HLA) system, the human MHC, 
by considering the characteristics it shares with the MHCs found in other animals. 
The HLA system is a 4-megabase (Mb) region located on chromosome 6. It contains 
more than 200 genes, many of them related to the immune system and the remainder 
having roles not related to immunity.5,6 In humans, the MHC can be divided into class 
I, class II and class III regions. The class I region contains three class I genes that 
encode for the heavy-chains of the class I molecules and several nonclassical class I 
genes. The class II region includes the genes for three class II �- and �-chains. These 
genes are arranged in pairs, which together comprise each class II molecule �- and 
�-chain loci. The class II region also includes the TAP, LMP and TAPBP genes that 
encode molecules involved with the production of peptides that will be loaded onto the 
class I molecules and the HLA-DM gene that encodes a protein involved with loading 
peptides onto the class II molecules. The class III region also contains genes related 
to the immune system, such as the complement factors C2, C3 and Bf and the tumor 
necrosis factor (TNF) gene.

The function of the class I and class II molecules is to capture peptides from pathogens 
�������
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peptide-MHC complex and initiate an adaptive immune response. The class I proteins 
capture peptides derived from endogenous antigens located in the cytoplasm, particularly 
those derived from viruses, while the peptides presented by the class II molecules originate 
from exogenous antigens.

Some features characteristic of the MHC are worth mentioning here: Class I 
and class II polymorphisms, the existence of genes that encode proteins with similar 
functions and genetic linkage. The amazingly high amounts of polymorphisms found in 
class I and class II genes are generated, basically, by two mechanisms: Point mutations 
and recombination.7 Point mutations appear due to mistakes that are made during 
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DNA replication. More extensive changes are produced by recombination, sometimes 
producing the interchange of an entire exon between two alleles. Positive selection, 
driven by pathogens, promotes the survival of new alleles with differences in their antigen 
presentation properties, whereas the sequences in other regions tend to be conserved to 
maintain the structure of the HLA molecules.

Another mechanism for generating polymorphism is gene duplication. This duplication 
generates loci that produce similar proteins. Thus, in humans, there are three class I 
genes, HLA-A, -B and -C, which produce proteins with similar functions. Therefore, the 
existence of several class I or class II genes also increases the level of polymorphism 
and, for this reason, their presence would be advantageous for an individual. However, 
there is an apparent limitation to the number of functional HLA genes in an organism 
and, perhaps, an incremental increase in this number could increase the possibility of the 
appearance of autoreactive T cells. Gene duplication also produces genes that eventually 
acquire new functions, as has happened with the nonclassical class I molecules that are 
produced from the classical class I molecules when they acquire a certain number of 
changes that cannot maintain their function.

Another characteristic of the MHC is its genetic linkage, which is the consequence of 
the presence of the class I, class II, TAP, LMP and tapasin genes on the same chromosome 
that form a cluster; although, this is not a constant feature in all animals, as, in bony 
���	��������_����������__���	�������"	��>�		��	��!����	�������������������	���#����
a gene cluster has allowed the co-evolution of different genes involved in the same 
function to form haplotypes. Thus, genetic studies have revealed that alleles at different 
loci can form nonrandom combinations of alleles, probably because the loci proximity 
facilitates the preservation of a given combination of alleles when it is effective in a 
response to a particular pathogen. Linkage disequilibrium has been found in different 
groups of animals.8-10

ORIGIN OF THE MHC

The origin of the MHC was probably a “proto-MHC”, an ancestral MHC that 
appeared before the emergence of the adaptive immune system in the jawed vertebrates 
(gnathostomes), as all jawed vertebrates possess a complete MHC region.11 The hypothesis 
for the existence of an ancestral MHC is supported by the presence of MHC-like 
regions in nonvertebrates, such as amphioxus12 and also by the presence of three MHC 
paralogous regions in humans. Thus, the human genome contains regions paralogous to 
the MHC on chromosomes 9q32-q34, 19p13.1-p13.3 and 1q21-q25/1p11-p32.13,14

The term paralogous indicates that a gene (or region) has arisen from a duplication 
of another gene, to distinguish it from the relationship of genes that arise from a common 
ancestor (orthologous).15 Therefore, paralogous genes appear within a single species, while 
orthologous genes arise in different species as a result of the divergence in genes with the 
same ancestor. The MHC paralogous region is located on the 6p21.3 chromosomal region 
and comprises the extended HLA,5 an 8 Mb fragment consisting of the traditional HLA 
region and four additional telomeric Mbs, including the HFE gene. This region contains 
over 40 genes with paralogous counterparts in one, two, or three of the paralogous regions 
on chromosomes 1, 9 and 19.16 The extended HLA also has paralogous genes outside 
these three regions and, in total, about 80 genes within the extended HLA are paralogous 
throughout the human genome.17
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A cogent theory to explain how these MHC paralogous regions were produced is the 
“block duplication hypothesis”; that is, large-scale duplications of genome fragments.18 
According to this hypothesis, the MHC paralogous regions were produced from a 
common ancestral region by duplication. Because there are four paralogous regions, 
they should have appeared by two cycles of duplications. This process of duplication 
could have exclusively involved the ancestral MHC region or could have been part of 
a more general process in which all of a genome was involved. This latter theory is 
based on the 2R hypothesis formulated by Susumu Ohno in 1970 (ref. 19; reviewed 
in ref. 20). He proposed that the vertebrate genome underwent two rounds of whole 
genome duplication during its evolution. This would have occurred by two rounds of 
polyploidization (in different species).

The MHC paralogous regions strongly support the 2R hypothesis and allow for 
the determination of when the two rounds of polyploidization could have occurred, 
considering the number of paralogous clusters that are present in each vertebrate/
prevertebrate group. Studies of Ciona (urochordate) and amphioxus (cephalochordate) 
indicate that, in these animals, there is only one copy of the genes represented in the MHC 
paralogous regions.11,18 Thus, the duplications would have taken place after the divergence 
����	
����������	�������	��	����	�������	���	���	�~��	���	��	����	��������������	������
duplication would have occurred in an ancestor common to all vertebrates, before the 
emergence of jawed vertebrates and the second would have occurred after the separation 
�	��		����	�~��	�������~��	���	��	����	���	����	���

��	�����~��	��������������	�
two paralogous regions.16,20

The 2R hypothesis remains a matter of controversy and, indeed, there are those who 
have proposed only a single round of entire genome duplication.21 However, whatever 
the mechanism (entire genome duplication or more limited duplication), large-scale 
genomic duplications have a great potential for generating evolutionary processes,22 as 
the presence of a large amount of gene duplicates would allow for redundant copies of 
a gene to acquire new functions. This probably promoted vertebrate evolution and the 
emergence of the genes for the adaptive immune system.

The gene families present in each paralogous region and their comparisons with 
certain animals’ MHC-like regions, like amphioxus, have provided for reconstruction of 
the ancestral proto-MHC region.23,11 To carry this out, anchor genes have been particularly 
useful; these genes are highly conserved in the MHC, its paralogous regions and in 
MHC-like regions in cephalochordates18,11,24 (Fig. 1). The order and number of paralogous 
genes are not conserved among the four paralogous regions in humans and between these 
regions and the MHC-like regions in prochordates. The human paralogous region on 
chromosome 9 contains a higher number of genes derived from the proto-MHC than the 
other three and could be structurally closer to the ancestral region.23 The other three have 
���	����	����	�������������������	���������������������������	�	����	�����������������
to other chromosomal regions, inversions and deletions; indeed, the paralogous region on 
chromosome 1 has been divided in two, with one part in each arm, while the remainder 
of the paralogous regions are exclusively in one of the chromosome arms. For all of these 
�	������������������������	�	����	���	�
�	���	����	�������������	��	�	���	�	�����	�����
the ancestral proto-MHC.

It is not known why the genes that comprised the proto-MHC were together and 
what their functions could have been, although the fact that they formed a group would 
indicate some kind of co-ordinated purpose not necessarily related to the immune system. 
If the latter was true, the immune function of the MHC would have appeared after the 
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duplications. An alternative theory is that the proto-MHC contained genes that encoded 
for proteins related to an innate immune system. The presence of these genes in the 
proto-MHC, which would have appeared before the development of the adaptive immune 
system, would suggest that there may have been a “primordial immune complex” in this 
area. The maintenance of this cluster of genes involved with the same immune function 
had to occur because it would have to entail some evolutionary advantage.16

THE MHC AND EMERGENCE OF THE ADAPTIVE IMMUNE SYSTEM

Whether or not there were genes involved with an innate immune system in the 
proto-MHC has not yet been elucidated. Regardless, genes encoding for receptors that 
������	����	���������_���������	��#$����	��		����	����	�������	�����������	�Ciona 
intestinalis25 and in the cephalochordate "����������	������� (amphioxus).26 The Igs 
and the TCR are members of the IgSF, a family of genes involved not only with immune 
function that are extensively distributed in the animal kingdom, plants and bacteria.

��	� _���� �������� ���� �	� ������	�� ����� �� �������� >�	�	������ _�� ������	�
regions), I domains (for intermediate) and C1 and C2 domains (resembling Ig Constant 
regions). The antibody heavy and light chains and the TCR � and � chains (or � and � 
chains) contain V domains and C1 domains, while MHC class I and class II contain 
C1 domains. C1 domains are found in few other proteins. The more widespread C2 
domains are present, for example, in CD8 molecules. We have limited knowledge for 

Figure 1. Large-scale duplications during vertebrate evolution. The MHC paralogous regions suggest 
that two large-scaled duplications of the genome took place after the divergence of cephalochordates 
and vertebrates and before the jawed vertebrate radiation (indicated with arrows). The comparison of 
the paralogous regions with the cephalochordata MHC-like regions has allowed the reconstruction of 
the ancestral proto-MHC by using anchor genes (genes conserved that are located in these regions). 
We have indicated only anchor genes that have at least three copies in the MHC paralogous regions.
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the existence of these domains in vertebrate ancestors. Analysis of the Ciona genome has 
revealed four genes with a “V-C” structure; two of them have C1-like domains plus C2 
domains (V-C1-C2-TM-CY) and the other two have C2 domains only (V-C2-TM-CY 
and V-V-C2-C2-C2-TM-CY).25 Because the C1 domains are present in Igs and the TCR, 
it is probable that the basic structure of the molecule that provided an origin for these 
receptors was V-C1.

Adaptive immunity appeared within a short period of time, 450 million years ago, in 
some ancestor of the jawed vertebrates after the division of this vertebrate ancestor into 
jawed and jawless vertebrates, as the molecules that form the adaptive immune system 
are present in all jawed vertebrates, but not in other groups. It is believed that adaptive 
immunity appeared after the insertion of a RAG transposon into the germ line of a 
vertebrate ancestor,27 presumably into an existing gene with a V domain. This transposon 
could have been a DNA fragment with a terminal inverted repeat (recombinase signals) 
carrying the ancestral RAG recombinases.

This insertion would have interrupted the gene, which later would have suffered the 
loss of its RAG genes. Subsequent duplication events may have led to the multi-segmented 
immunoglobulin and T-cell receptor genes. Another RAG transposon integrated elsewhere 
�����	��	���	���������	����	�������	��	��������	����������"������	�	��	�	��	��	����
>������!�������	����	����	����	��%�	��	�	
�����
	��������������������	��

	��	�}���#�
class I and class II molecules. There is no information about how these molecules appeared 
because there are no intermediate molecules that may give us information about their 
	���������_�����������"�������	��	�������_���������__�����	���������	��������

MHCs IN FISH

The ancestral MHC presumably had class I and class II genes that originated from 
a common ancestor and closely linked to genes like those of the immunoproteasome 
(LMP) genes and the TAP genes; these would have evolved in a co-ordinate manner. In 
����������������	�����	�������	��	����	����������	��	���������	���������	��	����	����	������
class I, class II and class III genes are genetically linked28 (Fig. 3). This association is 
lost in the teleosts, where class II genes underwent a translocation and are in different 
linkage groups. This allowed for class II genes to evolve independently,16 while class I 
genes remained linked to LMP/TAP (Fig. 3). The close association of these genes forms 
a true class I region in which the genes co-evolved in a concerted fashion.

�������"��	����������������������	��	������	�	�������������	������_����������__�
genes and, therefore, because the class II genes are not linked to other MHC genes in 
teleosts, they could have evolved faster (e.g., by infection pressures). This has been 
illustrated by studies of the MHC in two salmonid species in which the class II genes 
had different evolutionary histories in each species. The class II genes did not form old 
lineages (i.e., class I or class II genes with sequence homologies and a common ancestor) 
and had evolved recently and rapidly, due to differential exposures to pathogens.29 In 
this respect, class II genes behave like class I genes in mammals. A higher evolutionary 
potential could also explain the appearance of “nonclassical” class II molecules in certain 
��������	��30 which were probably generated as nonclassical class I genes in mammals 
due to the lack of linkage of class II genes with other MHC genes. Teleosts comprise 
about one-half of all vertebrates and although there are some differences in the MHCs 
among the species,31-35 as for example the number of class I and class II loci, the lack of 
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��"��	��

	��������	��������������������������	�������8 This indicates that this linkage 
did not necessarily provide an evolutionary advantage in all cases.

AVIAN MHCs

The chicken MHC, known as the B locus, is a small 92-kb region that contains only 19 
genes.36 This region is quite compact with no repetitive elements. There are genes with only 
a few introns and, in some cases, genes that are only separated by 30 nucleotides. The 

Figure 2. Model for the origin of the receptor genes implicated in the adaptive response. 1) A transposon 
containing the ancestral RAG recombinases could has been inserted in the germ line of any ancestor of 
the jawed vertebrates. 2) Then, the transposon could have produced defective copies of this element: 
A copy with the RAG genes and a copy with the recombination signals sequences (indicated as triangles). 
3) The RAG proteins could have produced the excision of the recombination signals and their insertion 
�������	��	=�	��	������������	%�"	�������������
����������	�	
�����	�	����������	�	��	��	�������"	��
by the recombination signal, as happen with the V, J elements. Alternatively, the transposon could 
���	����	��	���������	��	�	
�����	�	��������	����������	�������	�$����	�	��>���������������	�����	!��
4) Subsequent gene duplications could have risen to the structure characteristic of the immunoglobulin 
or the T-cell receptor genes. We have represented the structure of T-cell receptor gene.
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chicken B locus has two class I genes, with the TAP1 and TAP2 genes located between them. 
These four genes comprise the class I region. There are two class II� genes surrounding 
the tapasin gene. The class II� gene is on the same chromosome, but located far from 
the B locus. The class II� and tapasin genes, along with the RING3 and three DM genes, 
constitute the class II region. The proteasome genes (LMP) appear to be absent in the 
chicken genome, which would explain the atypical peptides bound to class I molecules 
in this species (Fig. 3). The compact structure of the chicken MHC dictated infrequent 
recombinations among genes and allowed for a functional evolution of the polymorphic 
�	�	��������������	�	���	���
���
	��������	�	���	�������������	�����
�	�	����
	�����
peptides and, therefore, provide lowered susceptibility to certain infections.37

Although the chicken MHC is the best studied, it is not representative of the avian 
MHC.38 Other species that have been studied have higher numbers of genes, which do 
not form the compact structure of the chicken MHC, although, at least in some cases, 
the overall organization is similar.39

Figure 3. Comparative maps of different MHCs. A) Ancestral MHC. B) Teleosts. C) Chicken. D) Human.
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MAMMALIAN MHCs

The linkage of LMP/TAP with class I genes is missing in mammals. The translocation 
of the class I locus to an area with lower gene density allowed for duplication of 
these genes, while in other groups in which the linkage is maintained, class I genes 
do not undergo important duplications/deletions.40 The MHCs are quite similar in all 
mammalian species.41

The MHC is generally divided into a class I region, which contains the classical (Ia) 
and nonclassical (Ib) class I genes, a class II region, which contains the class II genes, two 
proteasome genes, TAP and TAPBP genes and a class III region containing a large density 
of immune and non-immune genes (Fig. 3). However, although the organization and genes 
of the mammalian MHCs are quite conserved, the genomic regions that contain the class 
_����������__��	�	����	���	�	��������	��	��
������_���������
�����	�������������������
relationships among the class I genes within the same mammalian order (although not 
always), but not among different mammalian orders. Thus, comparing the maps of the 
class I regions in mice and humans, the nonclass I genes are orthologous; however, the 
class I genes in this region are not related.41

The sites at which the class I genes are located have undergone duplications, lost 
�	���	������	���������������	����������������������	�����������	�	�
���	��	�����	�

�����	���	�������_��	�	��>
�����������
��������!���������	������	�����	�����	�������
in a replacement of the ancestral genes.42 This rapid evolution of the class I genes is the 
�	�����������	��������������������������������	��������
�������������_��	�	������		���
even in related species.

With regard to the primates, loci orthologous to the human HLA-A, -B and -C have 
been found in the great apes. Some of these genes have also been detected in lesser 
apes (gibbons) and old world monkeys (rhesus macaques, baboons).43 Thus, HLA-A 
related loci have been found in apes and old world monkeys, but not in the New World 
monkeys. However, orthologies with HLA-A only can be found in chimpanzees, gorillas 
and humans.44,45 Phylogenic analyses for these latter three species have made it possible 
to group the HLA-A related genes into six lineages. However, due to the ability of 
class I genes to generate new alleles, as well as duplication and loss of genes, it is not 

�����	��������������������	��������
���������	��	���	�	��������	�����	�����������	�
HLA-B related genes, the most polymorphic of the class I genes, cannot be grouped into 
�	%�	��	����	��	��43

It is remarkable that orangutans and old world monkeys have multiple B loci.46,47 
It is interesting for the interaction of KIR receptors with MHC-B molecules that the 
human epitope Bw4 is found in chimpanzees, gorillas and gibbons, while variants of 
this motif are found in orangutans and macaques. As for HLA-C related loci, these 
appeared due to a duplication of a MHC-B precursor gene after the divergence between 
apes and old world monkeys.48 This gene has been found in chimpanzees, bonobos, 
gorillas and orangutans.43 In contrast to the other species in which the MHC-C is 
always present, the orangutan MHC-C�������������
�	�	�������

�������	��@|\����
the MHC haplotypes.49

The class II genes are more conserved in mammals than are the class I genes. 
The DQA1 and DQB1 genes have been found in most mammals.50,51 DP genes are less 
conserved and in mice and cats they are pseudogenes. In primates, the DP region is quite 
conserved.52 The number of DR genes varies among different mammals and, indeed, in 
the same species. Thus, in humans, the DRB locus can contain from two to six genes.
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KIR GENES AND MHC EVOLUTION IN PRIMATES

Although KIR genes can be found in a great number of mammals, from mice to 
humans, the expansion of these genes has happened almost exclusively in primates. In 
these animals, KIR genes are encoded by gene families that form clusters. In humans they 
are on chromosome 19q and form part of the Leukocyte Receptor Complex (LRC).53,54 
This family of genes probably appeared from a unique primordial KIR gene as a result 
of multiple cis-duplications. Because KIR genes have considerable sequence similarities 
������	�������	�������	����	����	������������	�	��������
��������������	��������	��		��
followed by other genetic processes, such as sequence exchange by gene conversion, 
������������������������	��
������������	������������������	���������
���	�����������
these genes.55

KIR genes encode Type I transmembrane glycoproteins with Ig domains. These 
proteins are formed by 2 (KIR2D) or 3 (KIR3D) extracellular Ig domains, a stem 
sequence, a transmembrane region and a cytoplasmic tail. Depending on the cytoplasmic 
tail, they can be subdivided into Long-tailed (L) and Short-tailed (S). The inhibitory 
KIRs generally possess long cytoplasmic tails, whereas those with short tails typically 
�	�	���	����������������������	���������������	�	��	�	
������������
	��������	������	�
class I molecules, which generates activating or inhibitory signals. As has occurred with 
the MHC, the KIR cluster is very polymorphic; thus, there are more than 100 different 
haplotypes distributed among different populations.56 Each individual possesses two 
different haplotypes, each having a variable number of genes. There is also an allelic 
variability, as KIR genes are polymorphic.

Part of the MHC class I molecules are the only known ligands for KIR receptors. 
�_$��	�	�����	������
	�������������	������������	��	������������%����	��	��
with the serological Bw4 motif are ligands for KIR3DL1. These interactions are stronger 
when the Bw4 motif has an isoleucine residue at position 80. No HLA-B belonging to 
serological Bw6 is known to be a ligand for any KIR. In contrast, both groups in which 
HLA-C can be divided (C1 and C2) can be ligands for KIR genes: Group C1 binds to 
KIR2DL2 and KIR2DL3 and group C2 binds to KIR3DL1. Some HLA-A alleles and the 
nonclassical HLA-G molecule can also be ligands for certain KIR receptors.

Phylogenetic studies of the KIR� �	�	� ������ �������	� ����� ��	�� ���	� ���	����	��
��
�������
�����	��������
�������������	���	�	�������������������	�������������

	�	�������
co-ordinate manner with the MHC. Comparing the gene organizations of KIR haplotypes 
described thus far (rhesus macaque, orangutan, chimpanzee and human), it is possible 
to observe a similar structure.57,58

The rhesus macaque (Macaca mulatta) KIR genes are characterized by a considerable 
number of Mm-KIR3DL genes, two Mm-KIR2DL4 genes and two novel families of KIR 
genes, Mm-KIR3DH and Mn-KIR1D.59 The increase in the number of Mm-KIR3DL genes 
was probably a consequence of the co-evolution of KIR genes with their class I ligands. 
The class I gene family in the rhesus macaque consists of multiple A and B loci and the 
��#���
���
	���������������������	������	����������_��	�	���_��������������	�MHC-C 
gene is not present in this species.

The diversity of the class I genes could have resulted from a need for a higher 
number of KIR genes.60 In the orangutan (Pongo pygmaeus), three KIR lineages have 
��	�����		���	��	���������	�
�	�	����������
���		�������������>�	���	����	��	��_��__�
and III), although Popy-KIR2DL4 is the only ortholog of the KIR genes present in these 
two species.61 The evolution of the KIR��	�	�������	��������������������		������	��	�����
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the evolution of the MHC genes. In this species, appearance of KIR genes coincided with 
the appearance of the MHC-C gene, the most important class I ligand and an increased 
number of lineage III genes, which included the MHC-C��
	�����KIR.

This co-evolution is also evident in that the orangutan apparently only has KIR genes 
�������	��
	�����������#%#{��		�����	�����	���������		�����������	���
���	��������
of KIR genes is also evident upon analyzing the KIR genes in the common chimpanzee 
(Pan troglodytes). Although the chimpanzee is the most closely related animal to humans, 
there are only three genes that are orthologous in both species: KIR2DL4, KIR2DL5 and 
KIR2DS4.62 In the chimpanzee and humans, the MHC-C��	�	������	������	�������
�	�	���
in all haplotypes. On the other hand, the two categories of MHC-C alleles, C1 and C2, 
�������	��	���	�����	�
�����������
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It has been determined that the Pt-KIR2DL6��	�	������	��
	�����������������	�#{�����
��
whereas Pt-KIR3DL4 recognizes the C2 group. The Bw4/Bw6 motifs in the MHC-B 
alleles are also present in chimpanzees.

CONCLUSION AND FUTURE PROSPECTS

The analyses of the MHC paralogous regions in humans, as well as the studies of 
urochordates and cephalocordates, have allowed for the reconstruction of a proto-MHC, 
an ancestral region that was a precursor of the MHC. It is not known how this ancestral 
region acquired the genes involved with the adaptive immune system and whether it 
contained genes implicated with the innate immune system. However, the synteny of 
their genes indicates that they should have a co-ordinate activity and is suggestive of 
functions possibly related with innate immunology.

The study of the MHC region in different vertebrates suggests that, in the ancestral 
MHC, the class I genes, class II genes and the genes related with antigen presentation 
were linked. This linkage has been lost in some vertebrates. However, the MHC has only 
been analyzed for a very small proportion of species. Thus, it will require more studies to 
determine, with greater precision, the characteristics of the proto-MHC, the organization 
of the ancestral MHC and how their evolution occurred in the different groups. The 
sequencing techniques that have been recently developed will be a great aid in this task.63
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Abstract: The major histocompatibility complex (MHC) has been known to play a critical role 
in immune recognition since the 1950s. It was a surprise, then, in the 1970s when 
��	�������	
�����

	��	���������������#���������������������������������������
Since this seminal discovery, MHC signaling has been found throughout vertebrates 
and its known functions have expanded beyond mate choice to include a suite of 
behaviors from kin-biased cooperation, parent-progeny recognition to pregnancy 
block. The widespread occurrence of MHC in social signaling has revealed conserved 
behavioral-genetic mechanisms that span vertebrates and includes humans. The 
identity of the signal’s chemical constituents and the receptors responsible for the 
perception of the signal have remained elusive, but recent advances have enabled 
��	���	����������������	�"	�����
��	���������	��	�����������������_����������
�	��
�	��������	��	�	������������������	���	�����	���������������	������	��������������
nonmutually exclusive models wherein MHC functions as a signal of (i) individuality, 
(ii) relatedness, (iii) genetic compatibility and (iv) quality. We also synthesize 
current mechanistic studies, showing how knowledge about the molecular basis of 
MHC signaling can lead to elegant and informative experimental manipulations. 
Finally, we discuss current evidence relating to the primordial functions of the 
MHC, including the possibility that its role in social signaling may be ancestral to 
its central role in adaptive immunity.

Self and Nonself, edited by Carlos López-Larrea. 
©2012 Landes Bioscience and Springer Science+Business Media.
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INTRODUCTION

MHC (also known as HLA in humans and H-2 in mice) signaling mediates both 
immune recognition during the adaptive immune response (discussed in the previous 
chapter) and social signaling that enhances both the recognition of optimal mates and 
kin-biased behaviors.1�����������������	�����	�������	���#����������������	�	�����
regards to mate preferences in laboratory mice (Mus musculus),2 a full three decades 
after the histocompatibility functions were described by George Snell.3 Thirty years later, 
social signaling via MHC has been described throughout vertebrates including mammals, 
��������	
��	�����
�������������		��������>�		����	�{!����#���������������������		��
��	����	�������	���|��
	��	������	��	����	����������"	����	��������������	��	����	%���	�
chemosensory communication system. The original observation of MHC disassortative 
mating preferences seems to be common, but not omnipresent in vertebrates;4 it by 
no means is the only behavior facilitated by MHC, nor is it the only type of observed 
MHC-based mate preference. MHC signaling also facilitates cooperative behavior with 
kin, parent-progeny recognition and pregnancy block. In the following sections we will 
present the current evidence for MHC as a signal of relatedness, individuality, genetic 
compatibility and quality. MHC-mediated behaviors are diverse and though general 
patterns exist within vertebrates, the exact function of MHC-based social signaling will 
�	��
	��	���
	�������������������	����	
	������

SIGNALING OF MHC GENOTYPE: MOLECULAR MECHANISMS

For three decades after the discovery of MHC-mediated social singling in laboratory 
mice,2���	��������	�����������������#��	����
	�����
	��	��	���������
	�������	����	��
a mystery. Early on it was discovered that MHC genotype could be discriminated by 
chemical cues detected by the olfactory system. These studies showed that mice could 
discriminate MHC odortypes either through training5 or in the absence of training.6 
However, the nature of the signaling odorants remained elusive. This mystery was at 
least partially solved by the discovery that peptides known to bind MHC molecules also 
bound receptors in the vomeronasal organ (VNO).7 It was later shown that a similar 
process was working in the main olfactory epithelium (MOE).8

The critical role of MHC-presented peptides during adaptive immune recognition is 
well established.9 MHC-bound peptides are presented at the cell surface for interrogation 
by T cells; when the peptides are of foreign origin (e.g., from a pathogen) an immune 
response is initiated. The majority of MHC alleles encode unique structural aspects of 
��	�
	
���	����������	����������	���	��	�������	�	����������
�����	���	����
	�����������
the peptides they present. Because there is physical correspondence between MHC allelic 
variants and the anchor positions of the amino acid sequence of their bound peptides, it 
was hypothesized that MHC peptides could serve as ligands for odorant receptors that 
��������������������
	�����������������������������������������#��	����
	�����	�
conveyed. Physiological recordings from vomeronasal sensory neurons (VSNs) stimulated 
with synthetic peptides proved this to be the case.7
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294 SELF AND NONSELF

Detection of Peptides in the Olfactory System

The olfactory system of mammals is anatomically divided into two regions: the main 
olfactory epithelia (MOE) and the vomeronasal organ (VNO). Traditionally these two 
organs were viewed as functioning in largely non-overlapping modalities with the VNO 
being specialized for detection of nonvolatile small molecules and proteins that typically 
�����	����	��	����������������������������
	������>
�	�����	�!�����	���	���������
thought to specialize as a general detection system for volatile substances.

The initial experiments to determine if the olfactory system was capable of detecting 
peptides were conducted in the VNO of mice. Leinders-Zufall and coworkers (2004) tested 
the hypothesis that dissociated MHC class I peptides could be detected in the VNO Two 
peptides known to be presented either by the H-2Db haplotype (AAPDNRETF) or H-2Kd 
haplotype (SYFPEITHI) were synthesized. These peptides were applied individually to 
	�%�����
�	
����������������	��'��������
	
���	���������	�����	����	���
	���������	��
�����$%
������	��	�����������	���������	������	��'������	�	�	�����	�����	�����	��

��	������	�����������������	��	��	������������	���'���	�
���	�������������	����������
at concentrations down to 10-12M.

As predicted by the hypothesis that peptides can signal MHC genotype, the peptide 
�������������	���'���	�
���	����������#��		%�
	���������	���'�������������	�
��'��	�
���	��
	����������	�������������	=�	��	����	����
	
���	��������	�
���	������
�
	�������������"	����	���������
��
	���	�������#���	��	����������������������������
(underlined) at non-anchor positions (e.g., SYIPSAEKI) usually continued to stimulate 
the same neurons. In contrast, substitution of peptide anchor residues (underlined) with 
alanine (e.g., AAPDARETA or SAFPEITHA) abolished stimulation of these neurons. 
These VSN binding properties provide a neurophysiological basis for identifying the 
MHC genotype of individuals, because peptides are reverse-image “molds” of the 
antigen-binding site of MHC molecules. Thus, sensory receptors that detect peptides 
in an MHC-like fashion could in principle function as an MHC genotyping system.10 
These results point to the structural importance of peptide anchor residues in binding 
VSN receptors and, given the similar binding properties of MHC molecules, reveal the 
convergent ligand-binding properties of these unrelated molecules.

The same lab group applied the same hypotheses to the MOE sensory neurons, 
traditionally viewed as generalist receptors of volatile chemosignals.8 Contrary to 
����	�����������������	��������	�	���������������	������	��	�������	����#�
	
���	��
��������	��� ��� ��	����������������	�������� �������� ��� ��	�
	
���	������������������
Most importantly, these peptides activated neurons at subnanomolar concentrations in 
����		��
	��������������������������	�
���	���������������	��'�����	�	���	�����	�	���
some important physiological differences in peptide detection between the two olfactory 
organs.11 First, a different transduction mechanism is used in the MOE during recognition 
of peptides.12 Second, when anchor residues are substituted with alanine (eg. AAPDARETA 
and SAFPEITHA!������������	�������	������>��'�!��	��	���������������������������
����	����������������������	���	���������	������	���������������������%�	
	��	���
	
���	�
recognition does not induce pregnancy block,13 despite normal MHC odor (mating) 
preferences. These experiments show that discrimination of MHC genotype by the two 
olfactory systems is achieved with separate neurological, physiological and behavioral 
response pathways.

If peptides are the odorants that allow MHC genotype to be discriminated, then 
experimental manipulation of peptides should alter behavioral responses in a fashion 
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�������	����������#%�	����	���	�����������	����������������	�����������	��'������
�	�	���
	
���	����������#%�"	����������������	���	�	�����������������������������	�
��������"	���"�����>Gasterosteus aculeatus) behavior is manipulated by the addition of 
peptides. The experimental addition of peptides to an MHC similar odor source causes 
animals to respond as if it were an MHC dissimilar odor source for both mating- and 
odor-preferences8,14 and pregnancy block.7

Signaling of MHC Genotype without Peptides

Due to the general nonvolatility of peptides,15,16 the question has remained whether 
peptides can explain all of the observed MHC-mediated behavioral patterns. This question 
was recently addressed by experimentally removing all of the peptide components from 
the urine of two MHC-congenic strains of mice. Mice that had been trained to discriminate 
between the urine odors of these two strains could continue to discriminate using the 
peptide-free urine.17 These results suggest that nonpeptide volatile odorants also provide 
signals conveying MHC genotype information. However, odor-training experiments 
can introduce confounding behavioral artifacts18�����������	�����������	�������	�����
��
���������������	��������	�����������_����	�	��	�������	�������	�����"�����	����������
independent mechanism for identifying MHC genotype, it underscores the functional 
importance of this olfactory ability and the importance of the associated behavioral 
responses.

Though it has been shown that peptides signal MHC genotype in mammals (mice) and 
����>����"	���"�!����	���������������
	
���	��������	���	��	����	������������	��	���_�������		��
questioned weather olfaction can explain MHC-mediated behavior in birds whose olfactory 
prowess has long been questioned.19 No other mechanisms have been as thoroughly tested 
as peptide and volatile olfaction signaling of MHC genotype and more work is needed to 
test whether these mechanisms drive MHC mediated behavior in other taxa.

MHC AS A SIGNAL IN INDIVIDUAL RECOGNITION

Individual recognition is an important component of social behavior. Traits that 
�
	�������������������������	��������	�
�	����	������	��	�	�������	�	����	���������
variable, cheap to produce (i.e., not condition-dependent) and signal variants are expected 
������	�	=������	������	=���������>�	��	�	���������	��������&�	��||���	���@�!����#����
an ideal candidate gene for understanding the mechanistic bases of individual recognition 
because it is a genetically determined trait associated with social behavior and is extremely 
variable (there are 109 MHC phenotypes in mice53). MHC was hypothesized to contribute to 
individual recognition as early as 1975.54 Since then, the concept of individual recognition 
has been invoked in many studies addressing MHC-associated cues in social signaling 
>	������	���{�!�����	�	�������������������������	�����	�	����	������������������	�������
do not distinguish between individual recognition in the strict sense52 and other forms of 
�������	��������������������������	��������������������������������������������
	�������
kin vs nonkin, same-genotype vs different-genotype and genetically compatible vs 
�����
����	�����	����	��	��	������������	��������������	�����������	���	���������������
�
	��������������		�		�	��������������������������}�����������������
	��	
���������
template matching by the signal receiver; and a functional response by the receiver.55 
������	�������������	���������	���	�	��	�	��	������	����	�
��	�������
	���������������
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based on a learned signal and differs from kin-recognition where the template is based on 
phenotype matching (see below). Here, we review studies that have sought to characterize 
���������%�
	����� ��#� ������
	��� ������ ���	� ������ �����	�� ��� ��#%����	��	��
�����	�
���	��������	����	���������
�	����������"�������	������"����

MHC congenic strains of mice, which share the same background genome, but have 
unique MHC haplotypes, are a model system with which to understand behavioral responses 
to individuals of same- or different-haplotype at a single locus. One extrapolation from 
studies demonstrating MHC haplotype-dependent behavior17 in congenic strains is the 
possibility that, in outbred populations where MHC allelic polymorphism is likely to 
be very high, MHC phenotypes would be key mediators of individual recognition. For 
example, it has long been understood that MHC congenic strains have unique volatile 
organic compound signatures that are used in chemical communication.15 More recently, 
�	�	�������
�����	���	����	������	����������	������������
�������������	��	����	�����
MHC odortypes.15,16,56 As predicted by a model of individual recognition, some of these 
suites are unaffected by environmental variation;57������	����	�������	�
���	�������
MHC congenic mice activate overlapping but distinct subsets of neurons in the mouse 
main olfactory bulb.58 The authors of such studies in congenic strains often conclude that 
��	�
�����������������	���������
��	����������	�
���	������	����	����������%�
	�����
behaviors (e.g., ref. 57). However, counter-part experiments using outbred wild mice in a 
more ecologically realistic setting are lacking. Given that some genotypes will inevitably 
be shared between individuals, more naturalistic work is needed to understand how these 
�����	���������	�������������������������������������>����	��	������	!��������������
of relatedness or genotype.

Pregnancy Block

Pregnancy block, also known as the Bruce effect, occurs when recently mated female 
laboratory mice are exposed to the odors of an unfamiliar male.59 Upon exposure to an 
unfamiliar male odor, prolactin release from the anterior pituitary in the mated female 
is suppressed, resulting in pregnancy failure, reabsorption of the fetus and the onset of 
estrus.60���	��������	�
�����	�����
�	����������"����������	�	������	������������
	�����
because the unfamiliar male and the mate both express odors capable of inducing pregnancy 
block. Thus, females have to learn the identity of their mate (i.e., form a memory) in 
order to suppress pregnancy block upon perception of the mate’s odors.

Pregnancy block can be induced by the presence of an unfamiliar male or simply his 
soiled bedding or urine and direct physical contact with the odorant seems necessary.60 
However, in at least one case volatiles alone (i.e., no direct contact) can induce pregnancy 
block.61 The memory developed during pregnancy block is dependent on activation 
����	�������	�����������	��'������	�	�����	��
	�������	�������������	��������������
�	�	
����� ��� ��	�	� �	������ ���	� 
���	�� �������� ��� ����� ���		� ����	�	��� ����	�� ���
molecules associated with individual odors have recently been investigated: MHC and 
MHC peptides, major urinary proteins (MUPs) and volatiles. Peele and colleagues recently 
investigated the relative roles of MUPs and volatiles.62 They found that low molecular 
weight fractionations (which excludes MUPs) from urine were more effective in blocking 
pregnancy than those of high molecular weight, suggesting a role of volatile compounds 
in the odor. However, the low molecular weight fraction from the unfamiliar male resulted 
�������@|\�
�	����������"������

��	�����?|\�
�	����������"�����������������	�
���	�����	�����	��	������	�	�����������	����	�	�������������������������������������
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���������������������	^����������������������	�������������	�����~��	��	���	������
������	�����������	�
�	����������"����	�	��	���������	����������������������	������
contribute to the occurrence of pregnancy block, they are not necessary to induce it.63

��#%��������	�����������	������		������������	�������	�����������	�
�	�������
block in several studies, implicating it’s involvement during individual recognition. 
These odors were originally observed to block pregnancy when unfamiliar males 
differing only at the MHC could induce pregnancy block.61 Since then, searches for an 
MHC-odortype mechanism have targeted MHC molecules themselves, MHC peptides 
����
�����	���������	�������	�����#�
	
���	���	�	���	�������
	����������������������
induce pregnancy block7 (see above).

��	��������������	�������	�����������	��'���	�
�����		����	�������#�
	
���	��
was biologically validated by demonstrating the role of peptides in producing pregnancy 
block.7 As predicted, it was found that pregnancy block upon exposure to MHC peptides 
from an unfamiliar, MHC-dissimilar male was equally effective as exposure to whole urine 
from an unfamiliar, MHC-dissimilar male. In this case, the peptides had to be delivered on 
a urinary background (regardless of whether the urine was from a familiar or unfamiliar 
male). A more recent study, however, found that peptides alone (administered more 
��	=�	�������������	����!��	�	�������	�����������	�
�	����������"�63 These studies show 
that the suite of peptides presented by an individual’s MHC molecules can, when excreted 
in urine, be used as odorants in chemical signaling. Because of the large diversity of MHC 
��
���
	�������
�
����������	�	����
��	��������������������
	�����������
	�����
��
in excreted MHC peptides. Such odortypes are detectable by VSNs that have binding 
�
	��������������	�	�
	
���	����������������������#���	��	��7 Where these peptide 
signals originate, however, remains to be found. Surprisingly, there is disagreement about 
whether peptides can be found in mouse urine.7,60,64 Peptides have not been reported in 
other mediums of chemical communication such as saliva, tears, or skin excretions, but 
we are not aware of any directed searches for peptides in these secretions.

����������#�
	
���	����	��	����������	�����������	�
�	����������"��������	��
mice, it should be noted that the experiments described above do not demonstrate 
individual recognition in a strict sense. Because peptides from an unfamiliar male with 
the same MHC genotype as the female’s mate would not be expected to induce pregnancy 
block, MHC peptides in the context of pregnancy block might be more likely to signal 
the presence of an unfamiliar male. If individuality is perceived during pregnancy block, 
it would likely be conveyed via coupling with sensory neurons activated by the urinary 
background and neurons in the VNO have been found to be capable of discriminating 
individual mice of the same laboratory strain.64 Finally, while pregnancy block provides 
an attractive system in which to test hypotheses concerning social signaling and behavior, 
��	�����	�����������	������	�	�������	�������������	����
���	�����������	����
�	�������
block, which is only observed in certain laboratory strains of mice, has not been determined 
for natural populations. It has been suggested that the Bruce effect functions to prevent 
infanticide from males who have recently displaced the dominant, territorial male.4,65

Scent-Marking

In addition to the MHC, growing evidence indicates that major urinary proteins 
(MUPs) are another chemical signal critical to social communication and individual 
recognition in mice. MUPs are protein pheromones encoded by a polymorphic, multi-gene 
family. In a series of experiments, the laboratory of Jane Hurst has tested the relative 
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roles of MUPs and MHC in individual recognition in mice using a scent-marking 
behavioral paradigm. First, it was shown that wild-derived males presented with a 
scent mark from another male expressing a different MUP-type will investigate and 
�����	�%���"���	����"�����������������	��������	��������66 Second, it was shown 
that scent-marks associated with MHC haplotype (in MHC-congenic strains) were 
�����	�	���������������	����������	��	����	�������������	������	����	��������	����
MHC strains. Rather, investigation time was increased only when the stimulus odor 
differed from the genomic background of the test animal.67 A third experiment tested 
whether wild female mice could discriminate between scent marks from congenic males 
whose MHC and MUP genotype were controlled. Results showed that females could 
discriminate between individual males only when the males differed with respect to 
MUP haplotype; females could not discriminate between individual males that had the 
same MUP haplotype and could not discriminate between males that had different MHC 
haplotypes.68 These three experiments indicate that, in the context of scent-marking and 
countermarking, MUP genotype and not MHC genotype, is the greatest determinant 
of individuality in urinary odors. However, it should be noted that in light of previous 
research, it is anomalous that the mice in these experiments did not discriminate between 
urinary odors that differed with respect to MHC genotype.67,68 Previous studies have 
documented the ability of either MHC-congenics (e.g., ref. 5) or wild-derived mice69 
to distinguish urinary odors that only differed genetically at the MHC.

Because MUPs are likely to be polygenic, polymorphic signals only in a few rodent 
species it is unlikely that the functions discovered in Mus will have generality across 
vertebrates. The results from the Hurst group studies suggest that there are key differences 
�����������������	�����	��	��������������>	�������#!�������������������	��
	��	�%�
	�����
>	����� ��<�!� ���� ��	� ��	����������� ��� ���������� ����
	������68 They also reveal the 
���������������������������������������������	�����	������
	������	�����������	���������

Taken together, the individual recognition studies reviewed above show that MHC 
may play an important role in individual recognition in certain instances (for example in 
pregnancy block), but also indicate that they may not be used for individual recognition 
in the strict sense. Many of the studies focusing on individual recognition and the MHC 
have utilized congenic strains of mice, which provide a unique opportunity to study the 
role of a single locus or haplotype in chemical communication. However, the use of 
inbred stains of animals may limit our broader understanding of behavior and ecology, as 
�|��	����������	�������������������	����	����	�������70 So, more studies will be needed 
to determine the role of MHC in individual recognition in outbred populations; we know 
of no such examples except for the aforementioned examples from the Hurst lab.

MHC AS A SIGNAL IN KIN RECOGNITION

Kin recognition using polymorphic genetic systems allows individuals to engage in 
�	���������
	��������"���������"����������������^�����	��������
�����������������������
�	
��������	�����	���>��	������	������	��!�������	��	
����������������	��	����	��>��	��������	���
���	��!��������
��
	����	��������������"�����������	�����
	�������>������	�����	��	��	��
����������!�������	����	������
�����	���	�����������������	��	����	���71 Additionally, 
recognition of kin allows for the prevention of inbreeding, and therefore reduces the 
homozygous expression of deleterious recessive alleles. In order for a genetic system to 
be used accurately to recognize kin, it must contain enough allelic polymorphism to allow 
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discrimination between related and unrelated individuals. Kin recognition systems that 
can discriminate among a range of different-degree relatives have been reported.72 MHC 
is the most polymorphic genetic system in vertebrates4 and has long been considered to 
play a role in kin recognition by mediating cooperation,1�
��	��%����
�������	����������73 
and mating preferences that prevent inbreeding.74

Two major phenotype matching mechanisms exist for MHC-based kin recognition 
��������	��	����	��>�����{!����	������������	���	�	�	��	�����	������������������������	�
their own MHC odortype as a template to recognize other individuals as kin.39,43,46,49,50 
The second is familial imprinting where individuals imprint upon the MHC odortypes 
of kin early in development and afterwards apply the learned MHC signals to unfamiliar 
individuals.20,42,75 The degree to which familial imprinting and self reference systems 
identify kin differ remarkably (Fig. 1). Only familial imprinting systems can identify kin 
that do not share odortypes with a focal individual. However, the ability to recognize kin 
that do not share odortypes also allows for the false recognition of unrelated individuals 
as relatives; this could occur in mixed litters where odortypes produced by half siblings 
are based on haplotypes from an unrelated individual. Both phenotype matching systems 
�����	���	�������	������"�����������������
	�����	�����	���	���
	�������#���
���
	��
>�������
���
	��
������������
	���������!�������������
	�����	��������	��	����������
�������
���
	�������	���
	��	���	�	�	��	�����	����	������	�	���	���@�����@\�������
���������	
	�����������	��	���
	�������
���
	����	��	������	�����������	��	����
���
odor of the blended haplotypes76 (Fig. 1). Currently few studies have been conducted to 
�	�	����	���	��
	���������
�	����
	��������������	�����	����������	��������	��	�	�����
is needed to determine the relative prevalence of familial imprinting vs self reference 
����	��� ���� ��	� �����	� ��� ��	� ������
	�� >�
	����� ��
���
	�� ��� �	��	�� �	����
	�!�
used. Interestingly, the two systems most described in nature are familial imprinting on 
haplotypes and self reference based on blended genotype odors which are the best and 
worst of the theorized kin recognition systems respectively (Fig. 1). Regardless of the 
phenotype matching system used, kin recognition is likely one of the major functions 
of MHC-mediated signaling and the very existence of familial imprinting is evidence 
supporting this hypothesis because kin recognition is the only function that is enhanced 
by familial imprinting; self reference will be superior for functions involving genetic 
compatibility, individuality, or quality.65

Phenotype matching systems can identify more kin if multiple polymorphic unlinked 
loci are used, presuming a match at any locus is a signal of relatedness.77 Though the 
impact of multiple unlinked loci has minimal impact on familial imprinting systems it 
has profound consequences on self reference systems, where multiple loci dramatically 
��
���	�"����	����������>�����{!���������������		�������	��������
����������������	�	�
self reference systems are common, the MHC is not inherited as a single unit but rather 
as two or four separate unlinked loci.78,79 Whether this is coincidence or represents 
	���	��	� ����� ��	� ��	����	���� ��� �	�� �	�	�	��	� ����	��� ������� �������������� �����
breakup the MHC linkage group will await more phylogenetic data. Within both teleost 
���	��������
����������������		���������������#�#����__��	�	����	�������	��������
not necessary, for kin recognition. It has been proposed that other unlinked MHC genes 
provide additional information used in kin recognition.46,49 Likewise, in house mice it 
has been observed that when MHC signals of relatedness are controlled for, signals 
from a different polymorphic locus (MUPs, see below) can also be used as signals of 
relatedness. In nature, it is highly likely that both MUPs and MHC are utilized for kin 
recognition in tandem.80
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Figure 1. Possible phenotype matching systems using MHC-based odors and their effectiveness for the 
recognition of kin. Two kin recognition mechanisms that exist in nature are self reference (A, C, E) and 
familial imprinting (B,D,F). Phenotype matching can be based on genotypes (i.e. blended haplotype odor), 
��������
���
	��>��	���		%�
	����������!���	���	�	�	��	�������	�������������������	�������������������^��
own genotype (A) or both haplotypes (C). Familial imprinting is based on odors associated with the 
genotypes (B) or haplotypes (D) present in the natal nest (e.g. parents or siblings). The prevalence of 
these systems in nature is largely untested; current evidence suggests that the primary phenotype matching 
system in mice is haplotype-based familial imprinting (D). The effectiveness of each phenotype matching 
system for recognizing three classes of kin are plotted for one or two unlinked polymorphic loci (E & 
F). MHC haplotypes are inherited as a linked locus or as multiple unlinked loci depending on taxa. Each 
point represents the percentage of full siblings, half siblings, and cousins an individual would be able 
to recognize (points are connected by lines to help visualize patterns). Haplotype-based mechanisms are 
almost always superior to genotype mechanisms for kin recognition. Adding loci to self reference systems 
improves kin recognition more than in familial imprinting systems. Familial imprinting (F) generally 
allows an individual to recognize more kin than self reference (E). Models assume that all individuals 
are heterozygous, that no alleles are shared between unrelated individuals and that all combinations of 
parental genotypes are found within litters. (Illustrations by J.L.K; graphic design by Linda Morrison).
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Cooperative Behavior

<��
	����	��������������"��������	����������
	�����	��	���������	��		���	����	�����#�
mediated signaling has been shown to both promote cooperation and deter antagonism 
�	��		�������������>���	�{!�������������������
����������
	�����	��	������������������
tadpoles that results in enhanced foraging and predator avoidance. Several salmonid species 
along with the African clawed frog (Xenopus laevis) have been shown to preferentially 
form schools with relatives that share MHC haplotypes39,46,49 and it has been previously 
shown that kin-based schools have higher survival rates and larger territories.81 A second 
MHC-mediated cooperative behavior has been documented in house mice; female 
mice communally nest and nurse offspring and it has been demonstrated that females 
preferentially nest with familiar sisters. When no familiar sisters are available, they 
preferentially nest with MHC-similar females.1 Finally, competition over territories is 
�	��	����������
	��	������	��	����	�����������	��������	��������~�����	���	��	�����	������
that MHC signaling prevents territorial competition between kin has recently been 
demonstrated in tuataras (Sphenodon punctatus).38 Scores of other kin-based cooperative 
behaviors have been documented within vertebrates and it is quite probable that we have 
only just begun to document those that are mediated by MHC signaling; however, it is 
not our intent to imply that all cooperative behaviors will be MHC-mediated. In fact, 
the precision of kin recognition systems will be enhanced as more polymorphic systems 
are used in signaling.

Parent-Progeny Recognition

Parent-progeny recognition prevents the expense associated with parental investment 
into unrelated individuals. This is especially true under conditions of communal living or 
�������	�������������	�	����%
����������������	����	�	������������	�������	�����������
system that could ensure parental care was only provided to genetic offspring would be 
highly adaptive and many such systems have been documented.82 Female house mice 
nest communally and are therefore at risk of providing parental care to unrelated pups. 
Yamazaki and others73 showed that female house mice can identify pups with which 
they share an MHC haplotype from congenic pups (genetically identical individuals 
with the exception of MHC type). Pups at the age of 15-21 days were also capable of 
recognizing and preferring their parents bedding to that of a MHC dissimilar congenic 
individual. This preference was reversible by cross-fostering, again showing the role of 
familial imprinting within MHC signaling in house mice. Currently this study offers the 
only evidence that MHC-mediated signaling is involved in parent-progeny recognition 
and though it was conducted with inbred strains of mouse, it reveals the potential of 
MHC signaling in nature.

Inbreeding Avoidance

&	����������������	�����	��������		�����������	�����������	��	������������������
deleterious recessive alleles that are identical by descent. These alleles combine more 
frequently when related individuals reproduce compared to outbred matings. Early 
���	���	��������	����	��������������%�������	�	�����		�������������	��	����	��>���	!�
���	��		���������	������	���������	������	����{|\��	���	�������	�����	�83,84 However, 
��	�	�	�
	���	���������	����	�����	�����	��	���������������	�����	��������	�����	����	���
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consequences of the inbred progeny in their natural context. In an experiment where 
��	����	�����
��������������	��	�	������������%�����������		������	�	����	��	�����	��
�	��������������������������������������������	����	����	�������	%��������	�����	���
than inbred males, with the consequences effectively approaching lethality for inbred 
������&�����	�������	�	����������������|\��	��������������	������
��	�����
�	������
assessments.85���"	���	�������%	�	�����		�������������������	���	���	����	������
`�\� ���� ��	�� ��	� ���	������� ��	��� Salmonella was present in the populations, the 
���	����	���	������	������@�\�86 Since the true negative consequences of inbreeding 
were only revealed under direct competition within a seminatural environment, we now 
refer to this experimental system as a phenotron because it allows the observers “to see” 
��	� ���	����	�������	=�	��	�� >
�	����
	!���� �� ��	���	����&������������	���#%���	��
mating preferences function as a mechanism of inbreeding avoidance due to their highly 
polymorphic nature. Only closely related individuals are likely to share MHC haplotypes; 
thus a mating preference for MHC-dissimilar individuals will decrease the likelihood of 
inbreeding. The extent to which inbreeding can be avoided is dictated by whether a self 
reference or familial imprinting mechanism is utilized by a particular species.76

An indirect piece of evidence supporting MHC haplotype based familial imprinting 
and inbreeding avoidance within house mice has come from a study by Sherborne and 
colleagues.80 This experiment investigated the relative importance of MHC and MUPs 
in mediating inbreeding avoidance behavior and its conclusion was that MHC is not 
involved in inbreeding avoidance behavior. House mice were released into seminatural 
enclosures with only full-sibling and half-sibling counterparts; inbreeding avoidance was 
assessed by the proportion of full-sibling vs half-sibling matings and genetic analysis was 
used to determine if there was either an MHC or MUP-based signal mediating inbreeding 
avoidance. The data showed that although no full-sibling inbreeding avoidance occurred, 
mice sharing exact MUP genotypes avoided mating with each other. This led the authors 
to conclude that MUPs are exclusively responsible for inbreeding avoidance in house 
mice and that MHC plays no role. However, this conclusion is unwarranted due to a 
���������	�	�
	���	�����	�������
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test animals had been caged (since birth) with other individuals that possessed MHC 
haplotypes that were present in the enclosures. This design unintentionally allowed 
MHC familial imprinting to occur on all of the tested haplotypes; thus, animals upon 
entering the enclosures found themselves surrounded by individuals that would all be 
recognized as relatives by MHC-based systems. This situation forced the mice to make 
mate choices based on other non MHC cues and they utilized MUPs, preferring to mate 
with individuals that did not share exact genotypes. These results suggest MUPs are 
utilized in mate choice, but contrary to the conclusions of the paper, the design does not 
allow for the exclusion of a role for MHC. Furthermore, MUP-based mating preferences 
are based on self reference and not familial imprinting,80 thus they do not offer the same 
protection against inbreeding that familial imprinted MHC preferences do.

MHC AS A SIGNAL OF GENETIC COMPATIBILITY IN MATE CHOICE

�	�	�������
������������������	��	����	�	��������	��	��		���������������������^��
�	�	���>������������������	��		����
�����	���	�!�����	������������	��	�����	��	��	����	����
Consequences of genetic incompatibility include inviable offspring (e.g. between species 
������!���	�	�	���	���	�����	���>	��������		����!����������	�	�����	����������������	���
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associated with the combination of incompatible alleles (e.g. MHC homozygosity). The 
���	�������	=�	��	������	�	�������
����������������	�����	�	�	������������������	������
��	���������	�	���������
��	������	^�������	���	�
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���������	���	����	�	���������������=�����������������87 In order to make MHC-based 
mate choice (or gamete fusion88,89) decisions in regards to genetic compatibility, individuals 
must possess the means to assess their own MHC types (see section on phenotype matching 
systems above). MHC-mediated odors readily signal information about the genetic 
compatibility between mates, and MHC-disassortative mating preferences (Table 1) lead 
to the production of offspring with compatible genotypes both at the MHC and throughout 
the genome.76 The mechanisms of MHC-mediated genetic compatibility described below 
are MHC heterozygote advantage, offspring harboring different MHC genotypes than 
their parents (moving target) and the avoidance of inbreeding.

Heterozygote Advantage/Superiority

MHC-disassortative mate preferences by their very nature produce MHC heterozygous 
offspring, which are hypothesized to have superior immunocompetence.90,91 Multiple 
��	�����	���	��	�������

������	����	��%	�����������	������#%�	�	�����������92-98 It 
was initially argued that MHC heterozygotes would have an advantage (overdominance) 
because they could present a wider variety of peptide antigens to the immune system 
making them more likely than MHC-homozygotes to recognize and mount an immune 
response against disease-causing agents. However, this mechanistic hypothesis has 
largely been rejected since experimental infections with single pathogens reveal 
that heterozygotes do not generally have an advantage over both homozygotes.99 An 
alternative mechanism postulated that heterozygote advantage emerges over multiple 
���	��������	����	��	�������	�����	�	������������������	�	�������	������	�	��������
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	���	����
�����������	������������
������	����������

����	���#��	�������	�����	
��������
���	���
�������	��������	��������	�	�������	����	����	���������	���	�����������	�99 Recent 
studies on wild salmon100 and vole101 populations demonstrate that MHC heterozygotes 
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Moving Target

In addition to heterozygote advantage, selection could also favor MHC-disassortative 
mate preferences if the offspring genotype provided a moving target against pathogen 
adaptation, causing pathogens adapted to either parent to be at a disadvantage in progeny 
that are MHC-dissimilar to both parents.102 This hypothesis predicts that pathogens 
evolve to partially escape MHC-mediated immune recognition and that MHC-dissimilar 
����
�������	����	�����������	���
��	������	�����	��	�������
��	��%���
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Like heterozygote advantage, mate choice decisions driven by moving target processes 
function to maximize genetic compatibility and are thus most effectively achieved using 
an MHC, self reference phenotype matching system.

Numerous examples highlight the capacity of pathogens to rapidly adapt to escape 
MHC-mediated immune recognition.103-110 There has been one experimental study designed 
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to test the other prediction of the moving target hypothesis—that MHC-dissimilar offspring 
����	����	�����������	���
��	������	�����	��	�������
��	��%���
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�����	��>Cryptococcus neoformans), 
������	����	�����	��	�����	��	����
���
�����	�
�����	����	������	������
	������������
the host MHC genotype of passage.111 The most likely explanation is that this pathogen is 
a generalist that infects most birds and mammals. The passages in mice therefore selected 
for adaptations to “mouseness”, which likely swamped any adaptations to MHC. Future 
passage studies should use pathogens specialized on the host of passage.

There is anecdotal evidence from human studies demonstrating the importance of 
offspring genetic diversity in reducing the probability of mother-to-child-transmission 
of chronic infectious disease agents (e.g., HIV-1112,113), and suggest that there would 
�	���������������		����	���������	�������	������	�������
�����	���	�	�������	���������
offspring. There is also evidence linking increased HLA dissimilarity between mother 
��������
�����������������������	���	�������	������	�����������������������_�%{114,115). 
The extent of pathogen adaptation during chronic infection of the parent and its impact 
on mother-to-child transmission dynamics was not addressed in the above studies. 
Despite this, they do support the possible role of MHC- disassortative mate preferences 
in producing offspring of higher quality that are more resistant to infection by chronic 
parasites of their parents.

Optimal MHC Heterozygosity

MHC-disassortative mate choice may carry a cost if maximal MHC diversity in 
offspring is not optimal. For instance, during the process of negative selection in the 
�����������	��������������������������#%
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themselves via apoptosis.9 It follows then that MHC diversity may have an upper limit 
�	����������� ��	����	����	�	�����������������
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foreign invaders is offset by the cost of an increasingly limited T-cell repertoire.116 If 
����������	��������	���������	�����������	���
���������
��������������	�	�����������
MHC disassortative mating preferences. Indeed, it has been observed that individuals 
with intermediate versus maximal MHC diversity harbor lower parasite burdens in 
experimental infections.117 Additionally, it was recently shown that intermediate and 
�����������	�	�������#����	������	����������������������	����	���	��	
��������	�
success in stickleback offspring.118 Thus, it seems that maximum MHC diversity can 
be a costly trait.

If intermediate rather than maximal MHC diversity is optimal then an MHC-typing 
system could allow individuals to “optimize” the MHC diversity within their offspring. 
Studies with sticklebacks have shown that females are in fact capable of such quantitative 
estimates of MHC diversity (also known as allele counting).119 Additionally, by estimating 
the extent of intra-individual MHC class IIB allele diversity within a population, it was 
also demonstrated that individuals with intermediate rather than maximal MHC diversity 
were most frequent, indicating selection for intermediate levels of MHC diversity. 
����	=�	���	�
	���	�������������������"	���"�43 and brown trout50 suggest that much 
of the selection for individuals with intermediate MHC diversity derives from female 
preference for MHC-dissimilar mates. Together, these studies indicate that maximal 
MHC diversity is not always optimal and that female preference for MHC-dissimilar 
mates is a primary driving force behind selection for the production of individuals with 
intermediate rather than maximal MHC diversity.
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Inbreeding Avoidance

Though inbreeding avoidance has already been covered within the kin recognition 
section it is important to stress that it also falls under the umbrella of MHC as a signal 
of genetic compatibility. In fact, inbreeding avoidance may be the single most adaptive 
result of MHC-disassortative mating preferences in many species of vertebrates, as both 
sibling and cousin level inbreeding have been found to have devastating effects on the 
���	����������
�����85,86 In addition, as covered in the evolution of MHC section below, 
growing evidence suggests that MHC mediated kin recognition to avoid inbreeding may 
have been the ancestral function of MHC molecules, which were later co-opted for use 
in the adaptive immune system.120

MHC AND SIGNALS OF QUALITY IN MATE CHOICE

In contrast to MHC-mediated signals that directly convey MHC genotype information 
(relatedness, compatibility or individuality), the disease resistance functions of MHC 
������������	��	�������������������������������	�	�
�	����������	���������	����
characters. Only high-quality, disease-resistant individuals should be able to invest in 
costly, sexually selected advertisements,121 thus creating a correlation between MHC 
genotype and these condition-dependent traits (Table 2). By endowing an individual with 
�	�	�����	�������	����
������	�����#��	����
	����������	��������	��	�����������=������
by allowing more physiological resources to be devoted to signaling rather than to the 
immune response.122 von Schantz and colleagues123��	�	���	����������	
�������������������
between MHC and a sexually selected trait; they found that spur length in male pheasants 
(Phasianus colchicus!���������	��	����������	��������	
	��	��������#��	����
	��_����
study on great snipes (Gallinago media!���	��	��
�	�	��	����	������������
	�������#�
allelic lineages. Males with these genotypes were also larger and females of this species 
are generally known to favor larger males.124 A study in white-tailed deer (Odocoileus 
virginianus) found that MHC divergent heterozygous males had larger antlers and body 
size, which was correlated with lower abundance of abomasal nematodes.122 Finally, a study 

Table 2. MHC correlations with secondary sexual traits and mating preferences

Species
MHC Correlation  

with Mate Preference

MHC Correlation 
with Traits  
of Quality Sources

Great snipe 
 (Gallinago media)

��#��		%�
	�����
preference

Body size Ekblom et al 
2004124

Peafowl (Pavo 
 cristatus)

MHC heterozygosity Train length Hale et al 200936

Pheasants (Phasianus 
colchicus)

MHC genotype Spur length von Schantz 
et al 1996123

White-tailed 
deer (Odocoileus 
 virginianus)

MHC divergent 
 heterozygotes

Antler and body 
size; reduced 
parasitism

Ditchkoff et al 
2001122
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on a canonical sexually selected trait, trains in male peacocks (Pavo cristatus), showed 
�������	�������	������	�	�����	�	�������	�����������	���#�36 The above examples show 
�������#%�	����
	���������	��	���	�	�
�	����������	���������	������������������	���	��
as signals of quality. However, MHC-genotype itself is not necessarily used in the signal.

��� ��	������	� ���� ����� ��#%�	����
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�	������
of secondary sexual characteristics is if MHC social signals are themselves costly to 
produce. This hypothesis has recently been tested by the laboratory of Manfred Milinski, 
��������	����	����	������	���
	�������������%�	
	��	�����#����������125 They had 
previously shown that female three-spined sticklebacks prefer males with optimal, rather 
than maximal, MHC allelic differences (relative to her own genotype) and that this mate 
choice is mediated by excreted MHC peptides (discussed above).14,44 Now, they show that 
females do not send this signal at all and that, remarkably, males only send this signal when 
they are in the reproductive state. These data suggest that MHC signaling is not simply 
a byproduct of MHC-peptide presentation, but that it is actively regulated in a fashion 
consistent with it being a costly signal. The authors suggest that shedding MHC-peptide 
���
	�	�������	��	������	���	���	���	���������������������������������
��	���
and therefore represents a trade off between immune defense and social signaling.125
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an opportunity for parasites to transmit to new hosts; in turn, hosts will gradually develop 
behavioral mechanisms to avoid parasites.126 Individuals of a particular MHC-genotype 
may be resistant to local parasites at any given time and choosing such an individual as 
�����	������
�����	������	����	�	�������	���	�����"����
���������������������	�	���	�
several examples of mate choice for parasite-free individuals,127-129 there are surprisingly 
few examples of studies that link MHC-dependent resistance to pathogens and subsequent 
mate choice.117

MHC EVOLUTION: WHAT ARE THE PRIMORDIAL FUNCTIONS?

Since the immune recognition function of MHC genes in adaptive immunity was 
discovered far earlier than MHC-mediated behaviors, and since it was so central to 
the complex system of vertebrate adaptive immunity, it was initially assumed that 
MHC-mediated behaviors were a derived function. However, Brown argued that since 
kin-selected behaviors (inbreeding avoidance and kin-biased cooperation) are present 
in the ancestral lineages leading to vertebrates and that adaptive immunity is a derived 
character in vertebrates, it is most parsimonious to hypothesize that MHC-mediated kin 
recognition functions were primordial.74 This controversy continues to this day.

Boehm has recently written a tour-de-force, synthetic review that evaluates self and 
nonself recognition systems that exist across plants, fungi and animals, with a special 
	�
�������������=�������	���������������������	�������	����	������	���
������	��������������
these highly polymorphic systems.120 Quality control (the ability to accurately discriminate 
between self and nonself) is of particular importance in immune recognition systems that 
must achieve self tolerance to protect against auto-immune disease.120,130

���	���������	���	���	���	��	�����	��	����	��������

	���������	���������#����	��
adaptive immune recognition system.131,132 A high diversity of lymphocyte receptors in this 
group is created by combinatorial assembly of receptor modules, but the critical difference 
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from other vertebrates is that there is no junctional diversity created by mutagenic joining 
mechanisms.133���������	���
�����	��	�	
�����	
	�����	�����~��	����������
�	������	�
and self tolerance could be achieved by Darwinian selection for self-compatible receptor 
modules.120 In contrast, jawed vertebrates achieve higher lymphocyte receptor diversity 
by the mutagenic VDJ combinatorial joining process, which creates the problem of 
��
�	������	� �	�	
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	�������	�� ��������� 	��� �������%������������	�	�
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harmful receptors are eliminated during the evaluation of lymphocytes receptors in the 
thymus of jawed vertebrates. Boehm argues that it seems unlikely that an MHC-peptide 
presentation system could emerge de-novo to create the modern jawed vertebrate immune 
recognition system, which allows self-tolerance in the face of somatic generation of 
unpredictable lymphocyte receptors. It would be far more likely that a pre-existing 
MHC-peptide kin recognition system could be co-opted for immune recognition.120 
&�����	��������	���#��������	��������	���������������~��	����������	�����	������	������
promising approaches for discriminating between these two hypotheses and identifying 
the primordial function of MHC genes. Tunicates (a close relative of vertebrates) have 
a highly polymorphic histocompatibility-type (fusion) locus that functions both in 
allo-recognition to control colony fusion and gamete fusion,134 at least in some species.135 
It was thought that identifying the nature of this locus might clarify the early history of 
��#��	�	������	�������%�	���	��	�������	������������	����	������	����	��	�������	�
immunoglobulin super family, but it appears to not have homology to MHC genes.136-138 
��	�	��������������	����������	��	���������
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The facts that within vertebrates there are completely different mechanisms 
controlling adaptive immune recognition and that in tunicates histocompatibility functions 
are controlled by genes unrelated to vertebrate histocompatibility genes, highlight the 
	������������	�������������������������������������	�����	�	��������������	�	����	�	����
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function of MHC genes. However, the initial assumption that immune recognition must 
be the primordial function of MHC genes, should no longer be the default assumption.

CONCLUSION

_����������
�	���	����	��	��������	����	�����������	������#��������������	������
to four aspects of social communication. First, studies in mice show that MHC peptides 
and to a lesser extent MHC-associated urinary odors, signal individuality in the context of 
pregnancy block. MHC does not signal individuality during mouse scent-marking, rather, 
���
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and inbreeding avoidance via two different phenotype matching mechanisms: self reference 
or familial imprinting. Third, MHC signals are used to determine the genetic compatibility 
of a potential mate and can result in the production of heterozygous offspring. In some 
�����������	������	�������#����
�����������������	�����	���������	�������
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the degree of MHC heterozygosity in their offspring. Fourth, information regarding 
MHC genotype can be signaled indirectly through correlated characters (Table 2) and a 
recent study demonstrated that, at least within one species, MHC signaling itself may be 
condition-dependent and therefore a signal of individual quality. Taken together, these 
studies suggest that MHC-mediated signaling is conserved across vertebrates, but takes 
on unique functions depending on the life-history of a given species. 
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Appreciating the distinction between both modes of phenotype matching (self 
reference and familial imprinting) is paramount in understanding the role MHC-mediated 
signaling plays in social communication. Though substantial overlap in functionality 
exists between these phenotype matching systems, there are tradeoffs. Self reference 
systems facilitate mating preferences that generate offspring with an immunological 
advantage by allowing the assessment of genetic compatibility. Familial imprinting 
����	������
�	����
	������������������	���	���	��������������������������%������������
cousins; in species where either cooperative behavior or avoiding inbreeding is important 
(e.g., communal nesting species or species that live in high-density populations), a 
familial imprinting system provides an advantage over a self reference system because 
�	������	�������������������������	=���	���������	��	������	������	�����������	�	�����
systems are differentially utilized by different groups of vertebrates highlights the 
highly context-dependent nature of social signaling. It is important to note, however, 
that phenotype matching mechanisms have been described in a relatively small number 
of species (Table 1) and more studies are needed.

The remarkable fact that a single genetic system controls major components of both 
immune recognition and social recognition begs the question of which recognition system 
constituted the primordial function of MHC genes. The convergent evolution of similar 
peptide binding properties of MHC, VSN and OSN receptor molecules provides the 
��	����������������������#��	����
	�����	��	������������	������������	�����������
it also implies that these distinct receptor families have responded to selective pressures 
that required information regarding MHC genotype (bound peptides) be associated with 
discriminatory sensory systems. Finally, the ubiquitous presence of various modes of self 
versus nonself discrimination across all three domains of life, coupled with the derived 
nature of the adaptive immune system in vertebrates, further suggests that MHC-mediated 
���������������	���	��������	�
��
��	��������������������	��		������
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represent the ancestral state. Tracing the function of MHC molecules across vertebrate 
evolution holds the greatest promise of resolving the relative importance of immune 
versus social communication in MHC evolution.
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