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Basic Results and Concepts

I. GENERAL INFORMATION

1. Greek Letters Used

o alpha 0 theta k kappa T tau

B beta ¢ phi p mu x, chi

y gamma y psi v nu ® omega

3 delta € xi n pi I" cap. gamma

€ epsilon 1 eta p rho A cap. delta

1iota £ zeta C sigma Z cap. sigma
A lambda

2. Some Notations

€ belongs to \J union ¢ doesnot belong to

N intersection => implies / such that

< implies and implied

by

3. Unit Prefixes Used

Multiples and Prefixes Symbols

Submultiples

103 kilo k

102 hecto h

10 deca da

10-1 deci* d

10-2 centi* c

10-3 milli m

10-6 micro y

* The prefixes 'deci’ and 'centi' are only used with the metre, e.g., Centimeter is a
recognized unit of length but Centigram is not a recognized unit of mass.
4. Useful Data

e=27183 1/e=0.3679 loge2 = 0.6931 loge 3 = 1.0986
n=23.1416 1/7=0.3183 loge10 = 2.3026 logioe = 0.4343
J2=14142 3=1732 1 rad. = 57017'45" 10 =0.0174 rad.
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5. Systems of Units

Quantily F.P.S. System C.G.S. System M.K.S. System
Length foot (ft) centimetre (cm) | metre (m)
Mass pound (Ib) gram (gm) kilogram (kg)
Time second (sec) second (sec) second (sec)
Force Ib. wt. dyne newton (nt)

6. Conversion Factors

1 ft. = 30.48 cm = 0.3048 m 1m =100 cm = 3.2804 ft.

1 ft2 = 0.0929 m2 1 acre = 4840 yd?= 4046.77 m2
1ft3= 0.0283 m3 1 m3=35.32 ft3

1 m/sec = 3.2804 ft/sec. 1 mile /h =1.609 km/h.

II. ALGEBRA

1. Quadratic Equation : ax2 + bx + ¢ = 0 has roots

—b + J(b* — 4ac) —b — J(b? - 4ac)
a = ’ p =
2a 2a

_ b _c
o+ p= " ap "
Roots are equal if b2 — 4ac=0
Roots are real and distinctif b2 — 4ac>0
Roots are imaginary if b2 — 4ac<0

2. Progressions
(i) Numbers a, a + d, a + 2d. ..... are said to be in Arithmetic Progression (A.P.)

f —_— —_—
ItsnthtermTh=a+ n— 1dandsumS, = —2— (2a+ n — 14d)

(ii) Numbers a, ar, ar?, ...... are said to be in Geometric Progression (G.P.)

n
and sum 5, =a(_1:_r_),sw = 1 2 (r<1

Ll § -~ T

1

Its nth term T, = ar"~

(iii) Numbers 1/a,1/(a + d), 1/(a + 2d),.... are said to be in Harmonic Progression
(H.P.) (i.e., a sequence is said to be in H.P. if its reciprocals are in A.P. Its nth term

T,=1/(@a+n —1d).)
(iv) If a and b be two numbers then their

Arithmetic mean = % (a + b), Geometric mean = ,/ab, Harmonic mean = 2ab/(a
+b)

(v) Natural numbers are 1,2,3 ...n.

2
S = n(n2+ 1) g = n(n + 1)6(211 + 1)’ sn3 = {n(n2+ l)}

v
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(vi) Stirling's approximation. When nis largen !~ v2n . n" e™".
3. Permutations and Combinations

n
n n! n n! P
Pr

Tm=n!’ " rin-n! 1!

ne =nc,nc =1=n¢

4. Binomial Theorem

(i) When n is a positive integer

(1+x)p=1+nCyx +nCox2+nC3x3+ ... + nCpxn,

(if) When n is a negative integer or a fraction

n(n — l)xz + n(n—1)(n — 2)X3 +
1.2 1.23

1+x)"=1+nx+

5. Indices

(i) am . an = am*n

(ii) (@m)n = amn

(iii) a-n = 1/an

(iv) n Va (i.e., nth rootof a) =a'/™.

6. Logarithms

(i) Natural logarithm log x has base e and is inverse of ex.

Common logarithm logiox = M log x where M = logioe = 0.4343.

(ii) loga 1= 0; loga0 = - o(a > 1) ; logaa = 1.

(iii) log (mn) = log m + logn ; log (m/n) = log m - log n; log (m") = nlog m.
IIIl. GEOMETRY

1. Coordinates of a point : Cartesian (x ,y) and polar (r , 6).

Then x =r cos 6, y =rsin 0
or r= \/(xz + y2), 6 = tan™! (lj
X
Y 1;
P
r
y
) >
© X X
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Distance between two points
(x1,y1) and (x3,52) = [ (k2 = % + (v2 = y1)? ]
Points of division of the line joining (x1, y1) and (x2, y2) in the ration m; : mz is

m;x, +myX; m,;y, + myy,
’
m; +m, m; +m,

In a triangle having vertices (x1, y1), (x2, y2) and (x3, y3)
b 1
(i) area = lx; }2,21 1|.
2{x3 y3 1

(if) Centroid (point of intersection of medians) is
(x1+x2 tXs Y1ty +Y3J
3 3
(iii) Incentre (point of intersection of the internal bisectors of the angles) is
ax, +bx, +cx; ay,+by, +cy;
[ a+b+c ' a+b+c )

where a, b, ¢ are the lengths of the sides of the triangle.

(iv) Circumcentre is the point of intersection of the right bisectors of the sides of
the triangle.

(v) Orthocentre is the point of intersection of the perpendiculars drawn from the
vertices to the opposite sides of the triangle.

2. Straight Line

(i) Slope of the line joining the points (x1, y1) and (x2, y2) = 3’(2 - Z1
27X

Slope of the line ax + by + ¢ =0is — %i.e., — %Z:;:—Zi;

(if) Equation of a line:
(a) having slope m and cutting an intercept cony - axis is y = mx + c.
(b) cutting intercepts a and b from the axes is faigrt % =1.
a

(c) passing through (x1, y1) and having slope m is y - y1 = m(x - x1)
(d) Passing through (x1, y2) and making an £0 with the x - axis is

XX _ Y=YV,

cos@ sin®
(e) through the point of intersection of the lines aix + byy + c1 = 0 and axx + bay +
c2=0isaix + by + 1 + k (axx + bay + c2) =0

. : . m, —m
(iii) Angle between two lines having slopes m; and m; is tan-! ———2-
— m;m;

Vi
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Two lines are parallel if mi; = mj

Two lines are perpendicular if mimz = —1
Any line parallel to the line ax+tby+c=0isax+by +k=0
Any line perpendicular to ax+by+c=0isbx —ay+k=0

(iv) Length of the perpendicular from (x1, y1)of the line ax + by + ¢ = 0. is
ax; +by; +c¢
(a® +b?)
Y s P (x,y)

© X

3. Circle

(i) Equation of the circle having centre (h, k) and radius r is

(x = hp+(y — ke =r

(ii) Equation x2 + y2 + 2gx + 2fy + ¢ = 0 represents a circle having centre (-g, -f)
and radius = /(g2 + f* — ¢).

(iif) Equation of the tangent at the point (x1, y1) to the circle x2 + y2 = a2 is xx; + yy1
= al

(iv) Condition for the line y = mx + ¢ to touch the circle

x2+y2=aZisc=a /(1+m?).

(v) Length of the tangent from the point (x1, y1) to the circle
x2+y2+2gx+2fy+c=0is \/(xf— yi +2gx; +2fy, +c).

4. Parabola

(i) Standard equation of the parabola is y2? = 4ax.

Its parametric equations are x = at?, y = 2at.

Latus - rectum LL' = 4a, Focus is S (a,0)

Directrix ZM is x + a = 0.

vii
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M L7 P (x,y)

o

]

4]

+

X

Z| A S(a, 0) X

IJ!

(ii) Focal distance of any point P (x1, y1 ) on the parabola

y2=4axisSP=x; + a

(iii) Equation of the tangent at (x1' y1) to the parabola

y2 =4ax is yy: = 2a (x + x1)

(iv) Condition for the line y = mx + ¢ to touch the parabola

y =4axisc=a/m.

(v) Equation of the normal to the parabola y? = 4ax in terms of its slope m is
y =mx — 2am - am?.

5. Ellipse

(i) Standard equation of the ellipse is

2 2
_x__ + .Y_. ='1.
az b2

viil
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Its parametric equations are
X =acos0, y =bsin 6.

Eccentricity e = /(1 — b / a?).

Latus - rectum LSL' = 2b2/a.

Foci S (— ae, 0) and S' (ae, 0)

Directrices ZM (x =-a/e)and Z’M' (x =a/e.)

(ii) Sum of the focal distances of any point on the ellipse is equal to the major axis

ie.,

SP + S'P = 2a.

(iif) Equation of the tangent at the point (x1' y1) to the ellipse

ﬁ-‘-z.z_:lis_).(_)(_l-l-y_yl_:l_

a® b’ a®> b’

(iv) Condition for the line y = mx + c to touch the ellipse
2 2

:—2+ I =lisc=(a’m? + b?).

6. Hyperbola

(i) Standard equation of the hyperbola is
2 2

X_ — y_ =1

a’ b? '

Its parametric equations are
x=asecH y=Dbtan 6.

Eccentricity e = /(1 + b? / a?),
Ya

Ml

Z'l C

Latus - rectum LSL' = 2b2/a.
Directrices ZM (x = a/e)and Z'M' (x = - a/e).
(ii) Equation of the tangent at the point (x1 y1) to the hyperbola

1X
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2

2
X Y —qie X1 YY1
N
(iii) Condition for the line y = mx + ¢ to touch the hyperbola
2 2
X . B
- %2— =1lisc=/(a’m’ — b?)

2

2
. X y _ X+ Yo X_Y
(iv) Asymptotes of the hyperbola peaiie 1are = + e 0and 7% 0.

(v) Equation of the rectangular hyperbola with asymptotes as axes is xy = c2. Its
parametric equations are x =ct, y = c/t.

7. Nature of the a Conic

The equation ax? + 2hxy + by? + 2gx + 2fy + ¢ = 0 represents

ah
hb ?
gfc
(if) acircle,ifa=b, h=0,A=0

(iii) a parabola, if ab — h2=0,c A =0

(iv) an ellipse, if ab — h2>0, A =0

(v) a hyperbola, ifab—h?>0,A#0

and a rectangular hyperbola if in addition, a + b =0.
8. Volumes and Surface Areas

(i) a pair of lines, if (=A8)=0

Solid Volume Curved Surface | Total Surface
Area Area
Cube (side a) a’ 4a? 6a?
Cuboid (length 1, | Ibh 2(I+Db)h 2(Ib+ bh+hl)
breadth b, height
h)
Sphere (radiusr) | 4 - - 4nr2
3
Cylinder (base nrzh 2nrh 2nr (r+ h)
radius r, height
h)
Cone 1 1r2h nrl nr (r + 1)
3
where slant height ! is given by [ = |/(r* + h?).
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IV. TRIGONOMETRY

1.
6o=0 |0 30 45 60 90 180 270 | 360
sin® |0 Ya 1/V2 | 3 1 0 -1]/0
2
cos® |1 J3 1/J2 |1/2 0 -1 0 1
2
tan 6 0 1/3 |1 J3 o 0 - |0

2. Any t-ratio of (n. 900 £ 6) = £ same ratio of 6, when n is even.

=t co - ratio of 8, when n is odd.

The sign + or — is to be decided from the quadrant in which n. 90° 1 6 lies.
e.g., sin5700=sin (6 x 900+ 300) = —sin 300 = — %;

tan 3159 = tan (3 x 900 + 450) = -~ cot 450 = — 1.

3.sin (A £ B) =sin A cos B+ cos AsinB

cos (A £B)=cos A cos B +sin AsinB

sin 2A = cos” A cos A =2 tan A/(1 + tan’ A)

2
cos 2A = cos’A —sin® A=1—2si” A=2cos’ A — 1= 1o fan tanz A——.
1+tan® A
Azt
4.tan(AiB)=M_§~_;tan2A= 2 tan A .
1+ tan A tan B 1 — tan2 A

5.sinAcosB= —;—[sin (A +B) +sin (A — B)]
cos A sinB = % [sin (A + B) — sin (A —B)]
coa A cos B = % [cos (A + B) + cos (A — B)]

sin A sin B = %[cos (A — B) — cos (A + B)].

+ —
6.sin C + sin D =2 sin C2D cos ¢ 2D

. . +D -D

smC—st=2cosC2 sinC2
+ -

cos C+cos D =2 cos C2D cos S 2D

+ —
cosC — cos D= — 2sin C2D sin < 2D
7.asinx+ bcosx =rsin (x + 6)

acos x + bsinx=rcos (x — 0)

X1
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where a =r cos, 6, b =r sinf so thatr = ,/(az +b?), 6tan-1 (b/a)
8. In any AABC:
(i) a/sin A =b/sin B = ¢/sin C (sin formula)

b2 + C2 2
2bc
(iii) a=b cos C + c cos B (Projection formula)

(ii) cos A = . (cosine formula)

(iv) Area of AABC = —;—bc sin A = Js(s —a)(s—Db)(s — c) wheres= -;—(a +b+0¢).

9. Series
. . . X X2 X3
(i) Exponential Series: ex=1+ — + — + —+ ...©
20 3
(ii) sin x, cos x, sin hx, cos hx series
. x> X
SINX =X — —— + — — ... o©,
3t 5!
X2 X4
cosx=1-———'+—'— ...... ©
3 5 2 .4
sinhx=x+ =+ X+ .. 0, coshx=1+21+2X 4+  w
31 5! 2! 4!
(iii) Log series
2.3 23
X X X X
log(1+xX)=x — —+ — — ..o, log(l ~x)=— | x+ —+ — + ...©
g (1+x) >3 g (1 —x) [ 53 )
(iv) Gregory series
3 5 3.5
tan~! x=x — —+ 2 — oo,tanh‘lx=—1-log =x+ 2+ 24 o
3 5 2 1~-x 3

10. (i) Complex number : z = x + iy = r (cos 0 + i sin 6) = re®®
(ii) Euler's theorem: cos 6 + i sin 8 = e
(iif) Demoivre's theorem: (cos 8 + isin 8)* = cos nO + i sin n 6.

. ) . . e — e e* +e7¥
11. (i) Hyperbolic functions: sin h x = ——y icos hx= —
tanhx=smhx;cothx=C?th;sechx= 1 ; cosech x = 1
cosh x sin h x cos h x sin hx

(ii) Relations between hyperbolic and trigonometric functions:
sinix=isinhx;coshx=coshx;tanix =1itan h x.
(iii) Inverse hyperbolic functions;

sin h™'x = log[x + ¥x* + 1 ]; cosh™'x = log[x + Vx* —1]; tanh™! x = %— log

1—x

xii
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V. CALCULUS
1. Standard limits:

n n .
@ Lt Z"2 =na", () Lt X =1
X —a X—a x>0 X
n any rational number
(iii) Lt (1+x)/*=e (iv) Lt x/*=1
x—>0 X—> o
X
(v) xL_.)t() a -1 =log.a.
2. Differentiation
(i)—d—(uv)=ud—v+vgl—l— d (u)_ vdu/dx — udv/dx
dx dx dx dx (v v2
du _ du dy (chain Rule) 4 (ax+b)" =n(ax+b)"1.a
dx dy dx dx
(if) i(e") =X -9-(a") =a”* log.a
dx dx
d d
— (1 =1 — (1 = .
= (logx) =1/ 3 (8= S
(iii) 4 (sin x) = cos x 4 (cos x) = — sinx
dx dx
4 (tan x) = sec? x 4 (cot x) = — cosec2x
dx dx
4 (sec x) = sec x tan x 4 (cosec x) = — cosec x cot x.
dx dx
(iv) 4 (sin~'x) = L 4 (cos™'x) = et BN
dx (1 — %) dx (1—x%)
d » 1 d . -1
— (t = —_— t =
dx (tfan™"x) 1+ x? dx (cot™) 1+ x2
d -1 1 d 1 ~1
— (sec” X)) T ——— — (cosec™ 'x) = ———==.
dx xy(x* = 1) dx x,/(x2 -1)
(v)ii—(sinhx)=coshx i(coshx)=sinhx
dx dx
4 (tan h x) = sech? x 4 (coth x) = —cosec h2 x.
dx dx

(vi)Dr(ax+b)m=m (m -1) (m - 2) ...... (m —n+1)(ax+bym-n_an
Drlog(ax +b)=(— 1)»~1(n — 1)!ar/(ax + b)
Dr (emx) = mre Dr (amx) = mn (loga)n. amx

Xiii
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Dn[

cOos

sin ﬁ;’(‘ + lé;] _ (a2 +b2)V/2 X {

(vii) Leibnitz theorem: (uv)n
= up +"Crun—1v1+ "Coun—2v2 + ..... + "Crttn—rVr + ... + "Cqvp.
3. Integration

n+1l

n+1

(n #2-1)

(i) jsin x dx = — cos x

Itan x dx = — log cos x

Isec x dx = log(sec x + tan x ) = log tan [Z- + 5)

sin(bx +c+ntan~1b/a)
cos(bx+c:+ntan'-1 b/a)|

F— dx = log,x

X

Ia" dx =a"/log,a
j‘cos x dx = sin x

jcot x dx = log sin x

2

Icosec x dx = log(cosec x — cot x ) = log tan (—;)

Isecz x dx = tanx J.cosecz xdx = — cot x.
(ili) J._zfl_?(_z_ = l tan_1 i j_.._d...x_...... = Sin_1 i
a” +x a a (az—x) a
+
I2dx 2.—..;1-log arx I—————-—dx =sinh~? X
a® — x 2a a—x (@* +x%) a
I dx 1 X —a J dx —cosh-1 X
x? —a? 2a a+x =2 — a?) a
2 2 2
a —Xx
(iv) |J@* = x?) dx= ( )+i\—sm“1 -
2 2 a
2 2 2 2
[ o) dx= SNE XD L a” n1 X o X ey + A
j(a +x°) dx 5 +2smh " > (a+x)+210g
2 .2 2 2
v[(xz—az)d = XV a)+a cosh! X =X (xz—az)-—?—-—lo
2 a 2 2

ax

v) Iea" sin bx dx = —ie—gi—(a sin bx — b cos bx)
a’ +

jea" cos bx dx =

ax

a’ +b?

(a cos bx + b sin bx)

Xiv
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(vi) J‘sin h x dx = cos h x J.cos hxdx =sinhx

Itan h x dx = log cos h x J.cot h x dx = log sin h x

Isec h? x dx = tan h x Jcosechz xdx= — cothx.
. /2 /2

(vii) f sin” x dx = f cos" x dx

_(-=11n-=3)(n-75).. N
n(n — 2)(n — 4)

n P
(E' only if nis even)

(m — 1) (m — 3) ... x (n — 1) (n — 3)...
(mM+n)(m+n—-2)(m+n—4)..

/2 1M n
f sin” xcos’ xdx=
X (g , only if both m and n are even)

(vii) f £ (x) dx = Ef(a — x) dx

ff(x) dx=2 J:f(x) dx, if f (x) is an even function.
=0, if f(x) is an odd function.

2a

L f(x) dx =2 l:f(x) dx, if f(2a — x) = f(x)

=0, if f(2a — x) = - f(x).
VI. VECTIORS

1. (i) IfR =xi + yj + zk thenr = R| = {(x* +y* + 2%)

(ii) PQ = position vector of Q-position vector of P.

2IfA=a11+ axJ + asK, B=bil+ bz] + bsK, then

(i) Scalar product: A . B = abcos8 = aibi+ azb2+ asbs

(ii) Vector product: A x B = ab sin 8 N = Area of the parallelogram having A + B
as sides

I JK
=la; a, a
b, b, by
(i) BALIFA.B=0and A is parallel to Bif AxB=0
a, a, a
3. (i) Scalar triple product [A B C] = b]] b, b33 = Volume of parallelopiped

(ii) If [A BC] = 0, then A, B, C are coplanar
(iii) Vector triple product Ax (BxC)=(A.C)B -~ (A.B)C
(AxB)xC=(C.A)B—-(C.B)A

XV


a
Typewritten Text
xv

a
Typewritten Text

a
Typewritten Text

a
Typewritten Text


of of of
4. (i df=Vf=—I+ —J+ —K
) gra x oy a
divF=VF=ﬁ+%+§3—
dx oy oz

curl F=V xF

il

where F = fil + f5] + £3K

(it) If div F = 0, then F is called a solenoidal vector
(iii) If curl F = 0 then F is called an irrotational vector
5. Velocity = dR/dt; Acceleration = d2R/dt
Tangent vector = dR/dt; Normal vector = V¢

6. Green's theorem : j(¢dx+q1dy)= IJC [%‘i - %J dxdy
X
C

Stoke's theorem: IF .dR= Icurl F.Nds
C S

Gauss divergence theorem: IF .Nds= Idiv Fdv
s v

7. Coordinate systems

Polar coordinates | Cylindrical Spherical polar

(r, 0) coordinates (p, ¢, z) | coordinates (r, 6, ¢)
Coordinate X=r cos0 X=pcosd X = r sin cos ¢
transformations | y =r sin 6 y=psin¢ y =1 sin 0 sin ¢

z=z z=rcos9
Jacobian 3(x.,y) _ ; aAx, y,2) _ ox,y,z) _ 2 sin 0
a(r, 0) 2o, 6, 2) 3z, 0,9)

(Arc - length)? (ds)2=(dr)2+r2 | (ds)2=(d p)2 + p2 (ds)2 = (dr)2 + r2

(de)? (d¢)?2 + (dz)? (d6)2 + (r sin 8)2

dx dy =rd6 dr (do)?
Volume- element dV=pdpdddz dV =r2sin 6 dr do

do

XVl
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Chapter 1

Succesive Differentiation and
Leibnitz's Theorm

Successive Differentiation

Definition and Notation :- If y be a function of x, its differential coefficient
dy/dx will be in general a function of x which can be differentiated. The
differential coefficient of dy/dx is called the second differential coefficient of y.
Similarly, the differential coefficient of the second differential coefficient is called
the third differential coefficient, and so on. The successive differential coefficients
of y are denoted by

dy d’y d’y

dx’dx?’ dx’

the nth differential coefficient of y being : Z
X

Alternative methods of writing the nth differential coefficient are

dyY d"y
-5 an I 4" ’ (n)
EN I

The Process to find the differential coefficient of a function again and again is
called successive Differentiation.
Thus, if y = f(x), the successive differential coefficients of f(x) are
dy &y dy d'y
o DT G o
These are also denoted by :
@D yLy2zys.oonnnnn. Vn
@)y, y" y".yn
(iii) Dy, D2y, D3y............ Dry
(iv) £(x), £'(x), £'(X), cvnreinnnnn fn(x)
nth Derivatives of some standard functions :-
(1) nth derivative of (ax+b)m :-
Lety = (ax+b)m
Differentiating it w.r.t. x in succession, we get
y1 = m(ax+b)™l.a
y2 = m(m-1)(ax+b)m2 a2
y3 = m(m-1) (m-2) (ax+b)m3 a3
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Similarly, we can write
¥n = m(m-1) (m-2) (ax+b)mn an
Dr (ax+b)m = m(m-1) (m-2)......... (m-n+1) (ax +b)mn, an
If m is a positive integer then R.H.S of the above can be written as
|m
(m-n)

Hence Dr(ax+b)m =

(ax +b)mn, an

|m
|(m-n)
Deductions :

(a) If m = n, then D*(ax+b)» = |n .an
In particular, D" x» ={n

.a" (ax +bymn

Dn-2 xh = 2 x2

n
Dn-3 xn =% x3 etc.

(b) If m = -p, where p is a positive integer, then
(p+n-1)

Dr(ax+b)P = (-1)» “(_p'___l—)—

an (ax+b)pn

(© D" (ax+byt = IR,
(ax+b)™
(d) If m< n, then D (ax+b)m™ =0
2. nth Derivative of eax:
Lety = e
Differentiating w.r.t. x in succession we get
yi=a eax, y2= a2 eax, y3= ad e,
Similarly we can write y, = an ea
. Dn eax = gn gax
3. nth derivative of am~ :-
Let y = amx
Differentiation w.r.t x in succession, we get
y1=ma™ log a
y2 = m?2 am™ (log a)?
Similarly, we can write yn = m® a™ (log a)"
. Dnamx = mn amx (log a)"
In particular,
Dr ax = ax (log a)"
4. nth Derivative of log (ax+b)
Lety = log (ax+b)
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= = +b)t
n ax+b a(ax+b)

y2 = (-1) (ax+b)2 a2

y3=(-1) (-2) (ax+b)2a’

Similarly we can write

Vo= (-1) (-2)......... (-n+1) (ax+b)™ an

=(-1)1123...n (n-1) (ax+b)m an
= (-1~ [(n-1). (ax+b)™. an
_(=D)a’n-1

© (ax+b)°

(-1)'a"|(n-1)
(ax +b)"

5. ntt Derivative of sin (ax+b):-

Let y = sin (ax+b)

’. y1=acos (ax+b)

.. Dnlog (ax+b) =

y1=asin (ax+b+—12E )
y2 = a2 cos (ax+b+ 12[— )
y2 = a2 sin (ax+b+ 2—:—)

y3 = a3 sin (ax+b+ %73 )
Similarly, we can write

Yn = a® sin (ax+b+ n?n)

-, D"sin (ax+b) = an sin(ax+b+ “—2")
In particular,
D" sin x = sin (x+ n_zn)

6. nth Derivative of cos (ax+b) :
Lety = cos (ax+b)
" y1 = -a sin (ax+b)

= a cos (ax+b+ z )
2

y2 = -a2sin (ax+b+-7—2t— )
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= a2 cos (ax+b+2. g )
3 o 21
y3 = -a3 sin (ax+b+ ?)

= a3 cos (ax+b+ 3—272 )
Similarly, we can write

Yn = a® cos (ax+b+ %n-)

. D" cos (ax+b) = an cos (ax+b+ %E)
In particular,
. D" cos x = cos (x+ nz_n)

7. nth Derivative of e sin (bx+c)

Lety = ex sin (bx +c)

y1 = a e2x sin (bx+c)+ b e2x cos (bx+c)
puta=rcosp and b = r sind

. r2=a2tb?and ¢ = tan! (b/a)

y1=r e [cos¢ sin (bx+c) +sing cos (bx+c)]
Similarly, we can obtain

y2 = 12 e2xsin (bx+c+2¢)

y3 = 13 eax sin (bx+c+3¢)

Continuingthis process n times, we get

¥n = 1" e sin (bx+c+no)

. D" {ea sin (bx+c)} = 17, e2x sin(bx+c+no)
where r = (a2+b?)1/2 and ¢ = tan’! [5)
8. nth Derivative of e* cos (bx+c) :

Proceeding exactly as above, we get

Dn {eax cos(bx+c)}= r™. e2x cos (bx+c+n¢)

where r and ¢ have the same meaning as above.

Example 1: if y = , find yn

I S
1-5x + 6x*

Solution :
1

(U.P.T.U. 2005)
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1
T (2x-1)(3x-1)
2 3

2x-1 3x-1

1 1
S Ya=2Dn -3Dn
y (ZX—I) (3x—1)

_ 2[(—1)“ [n(2)" ]_ 3[(—1)" LIO) }
@x-1)™"

(3X_—1)n+l
@ e
=) LI-‘[(2x—1)"” (3x—1)"”] Ans.
X2

(x=1)* (x+2)

Example 2:ify = , find nt derivative of y.

(U.P.T.U. 2002)
Solution :- To split y into partial fractions
Let x-1 =z, then
1 1+2z+7°

2} 34z

1(1 5z 4 2°
- -t —+ —
z°\3 9 93+z
1 5 4
=——+4—+
322 9z 9(3+2z)

1 5 4
= + +

3(x=1*  9Hx-1) 9(x+2)
Hence

_(D[(n+1)  5-1)"In | 4C1)In
Yo S Bx—1y" ox—1)"  Yx+ 2™

Answer,

Example 3 : Find the nth derivative of tan-! (H—zlz—)]
-X
(U.P.T.U. 2001)
Solution :- we have

tan! (—(1—2)52—)] =2 tan'1x
-X

Hence we have to find yq if y = 2 tan"'x
Now, y = 2 tanrlx
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2 2[1 1
—1+x2—-2_fl:x—i_x+i:l
_1[1 1
-5
Hence,

1 .., 1 1
Yo=7(1) I(i_—l)[(x—i)“ (x+i)"J

Suppose x = r cos@ and 1 = r sinf so that

rz=x2+1 and 6 = tan! (1)
X

Y1

Thus,
= n-1 —
Yo = S_&.n'_“_—_l{(cose ~isin®)™" —~(cosB + isine)'"}

ir
=y, = (—1).—:1|——_—1.2isinn9

ir
=y, =2(-1)""|(n-1).sinnb.sin" O

Where 6 = tan! (—1-) Answer

X

Example 4:If y = x log , show that

-2 X-n  x+n
n=c4)|mfz{&_nn u+nd

(U.P.T.U 2003)
Solution :-

y = x[ log(x-1) - log (x+1) ] (i)
Differentiating y w.r.t x, we get

1 1
Ve -x(x 1 x+1\Jw“log (x-1) - log (x+1)
1

x~1
Again, Differentiating (ii), (n-1) times w.r.t. x we gets

_E7e-) (D) (D fn-2) (D7n-2)
I T Ty (x+1y x-17"  (xe1)"

2 (1)(n D, -1 x+1
=)™ 2)[ Y (x+1)" (x 1) _(x+1)"}

+

il +log (x-1) - log (x+1) (i)




Succestve Differentiation and Letbnitz's Theorm

n X+n

= (_1)n-2|(n - 2)|:(X T1y - <1 }Answer

Leibnitz's Theorem :-
Statement :- If u and v are functions of x then
Dr (uv)=(Dru).v + nC; D1 u. Dv + nC; Dn2u. D2v + ... +nC; Dnru, Drv

Proof :- We shall prove this theorem by mathematical induction method. By
differentiation, we have
D(uv) = (Du). v + u. (Dv)
=(Du). v + (1C1u) (Dv)
Thus the theorem is true forn = 1.
Let the theorem be true forn=m .e.
Dm (uv) = (Dmu). v+ mC; Dmlu. Dv + mCo D2y, D2v + ..., +m_ Dmru. Drv

Differentiating the above once again, we get
Dm*l(uv) = (Dm+1u). v+Dmu. Dv+mCy{Dmu. Dv+Dmlu, D2vi+mCo{Dmly, D2v+
Dm2y, D3vi+........... +mC {Dmr+ly, Dry+Dmery, Drlyl+. L Forinn +{Du.
Dmyv+uDm*ly}
Rearranging the terms, we get
Dm+l(uv) = (Dm*tu)v+(1+mCq) Dmu. Dv+(mCi+mCy) Dmlu, D2v+........... + (mC,
+mCryq) Dmery, Dy, +u. Dm*ly,
Now using mC; + mCy41 = ™*1C,4q, we have
Dm#l(yv)= (Dm*ly).v +m1CDmu.Dv+......... +mHC Dy Dl v+ +
u.Dmly
Thus we have seen that if the theorem is true for n = m, it is also true for n = m+1.
Therefore by principle of induction, the theorem is true for every positive integral
value of n.
Example 5 : If y = cos(m sin! x) prove that
(1-x2) yn+2 - (2n+1) Xyn+1 + (M2 - n2)yn =0
Solution : y = cos (m sin’! x)
1

1-x2
or (1-x2) y12 = m2 sin? (m sin! x)
=m?2[1 - cos? (m sin’! x)]
=m?2 - m2 cos? (m sin! x)
5 (1-x2) y12=m?2 - m2y?2
or (1-x?) y12 + m?y2- m2 =0
Differentiating again, we have (1-x2). 2y1y2tyi1? (-2x)+m?2. 2yy; =0
or (1-x2)yz-xy1 +m?2y=0

.~ y1 =- sin (m sin‘lx). m
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Differentiating n times by Leibnitz's theorem, we get
Yne2 (1-x2)+ C1 yne1 (-2%) + "C2 yn(-2) - {yn+1. X+ n, yn.1} +m? yn =0

or (1-x2)yn+2 - 2NX Yn+1 - N(N-1)yn - XY n+1 - Nyn + M2y, =0
or (1-x2)yns+2 - (2n+1) xy n+1 + (m2-n2) = 0 Hence proved.

Example 6 : Ify = e*™, show that (1-x2) yns2 - (2n+1)Xy ne1 - (n2+a?) yn =0

Solution : Given y = easi1x (i)
Differentiating,
y _ easin'lx a 1
1=
1-x2
ay .

= — 11

o) (ii)

Squaring and cross-multiplying, we get

y1¥(1-x2) = aZy2

Differentiating both sides with respect to x, we get

y1¥(-2x) + 2y1y(1-x?) =a2 . 2yy:

or (1-x2)y2-xy1 - a2y =0 (iii)

Differentiating each term of this equation n times with respect to x, we get

Dr[(1-x2)y2] - Dn(x y1) - @2 Dr(y) =0

n(n-1)’
1,2

or (1-x2) yn+2 - (2x+1) Xyn+1- (N2 + a2) yn =0

Hence proved.

Example 7: If y = (x°-1)", Prove that

(x1)yn+2 +2Xyn+1 - n(n+1)yn =0

Solution : Given y = (x>1)n

Differentiating, y1 = n(x2-1)™1. 2x

or yi(x%-1) = n(x2-1)»-1, 2x

=ny. 2x

= 2n xy

Differentiating again both sides with respect to x, we get

y1(2x) + y2(x2-1) = 2n(xy1+y)

or (x2-1) y2 + 2x(1-n)y1 - 2ny = 0

Differentiating each term of this equation n times with respect to x (by Leibnitz's

theorem), we get

Dr[(x2-1)y2]+Dr[2x(1 - n)y] - 2nDry =0

n(n-1)

2
or (x2-1)yn+2 + 2xyn+1 - n(n+1)yn =0 Hence proved

or [(1-x?)yn+2 + nyn+1(-2x)+ ¥n (-2)] - [Xyn+1 + nyn.1] - a2y, =0

or [(x2-1)yn+2 +nyn+1 (2x)+ yn(2)]+ 2(1 - n)[Xyn+1+nyn] - 2ny,=0

10
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x n
Example 8 : If cos! (%) =log (‘;) . Prove that

X2yne2 + (2n+1)Xyne1 + 2n2yn =0
Solution : Given cos™ (y/b) = log(x/n)"
or cos?(y/b) = nlog(x/n)
ory =b cos{ nlog(x/n)}
Differentiating,

1

(x/n)
or xy1 = - b n sin{n log (x/n)}
Again differentiating both sides with respect to x, we get

y1 =-bsin {n log (x/n)} n. —11;

xy2 + y1=-bn cos { nlog(%) In. (x;n);\—
or x2yz + xy1 = - n?b cos { nlog (x/n)}

= -n2y, from (i)

orx2yz+ xy1 + n2y =0

Differentiating each term of this equation n terms, with respect to x, we get

Dr(x2y2)+Dn (xy1) +n2Dr (y) =0

n(n-1)
1.2

or x2 yp+2 + (2n+1) xyn+1 + 2n? yn =0 Hence proved

O Yn+2 X2+ Nyn+1 (2X) + Yn(2) + (Yn+1 X +nyn) + N2y, =0

Example 9:If x=cosh [(l)log y] Prove that
m

(x2-1)y2 + xy1 - m?y =0
and (x2 -1) yns2 + (2n+1) Xyns1 + (N2 - m2) yo =0

Solution : Here x = cos h [(i) log y]
m

1
h'l = — 10
or cos h'lx = gy

ormcos hlx =logy

meos h™'x

ory= ¢ (i)

. _emcosh“'x m 1
Sy = —
’ 1)

ory1(x* ~1) =my

or (x2-1) y12 = m? y? (if)
Again differentiating (ii) we get

11
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(1) 2y1 y2 + (2X)y2? = m2. 2yys

or (x2-1) y2 +xy1 - m2y =0 (iify

Differentiating (iii) n times by Leibnitz's theorem, we get

n(n-1)
2

or (x2-1) yn+2 + (2n+1) Xyn+1 + (n2 - m2) yn =0 Hence Proved

Example 10 : If y!/m +y -1/m = 2x Prove that (x2 -1) yn+2 + (20 +1)Xyn+1+(n2 - m2) =0

= 2x

[(-1)yn+2 + 1 (2X)yns2t

(2) yol + [Xy ne1 + n(1)yn] - m2 yn =0

Solution : Giveny 1/m + — 7m

or yZ/m. 2xyl/m + 1 =0

2x *\J(4x* - 4)

2
or yi/m = x 1,/(x* - 1)

ory= l:xi-\/(xz —l)]m (1)
wheny =[x+ JO& = 1)]m , we have

y1= m[x +0¢ —l)}m_1 |i1 +§—(X22X—_l)}

ory; {J(x* -1) =my
or y12 (x2-1) = m2y? (ii)

when y =[x — (3 _1)].“ , we have

yr=m [x= ¢ —1)]"'I [1 —2—(\/;—"__1—)}

_ —m[x—\/(x2 _1)}.“
- s -1
or y1(x* 1) =-my

or y13(x2-1) = m?2y? (iii)
which is the same result as (ii).

Hence for both the values of y given by (i) we get y12 (x2 -1) = m?y?
Differentiating both sides of this with respect to x, we get

12 (2x) + 2y1y2 (x*-1) = m2.2yy,

or y2 (x2-1) + xy1 - m?y =0

or yl/m:

12
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Differentiating each term of this equation n times (by Leibnitz's theorem) with

respect to x, we get

Drfy2(x2-1)}+ Dr(xy1) - m? Dx(y) =0

n(n-1)
1.2

or (x2-1) yn+2 + (2n +1) Xyn+1 + (n2 - m?) yn =0 Hence Proved

Example 11 : If y = (x2-1)" Prove that (x2 -1)yn+2 + 2Xyn+1 - n(n+1)yn =0

or {(x2 -1) yns+2 +nyn+ (2x) + ¥n (2)} + {xyn+1 + nyn.1} - m2 yn =0

n

Hence If P, = d

(x2- 1)», show that

dx"
d dpP
—{(1-x*)—==} +n (n+1)P, =0
dx{( X )dx} n(n+1)
Solution : Given y = (x* -1)"
Differentiating

y1 =n(x2-1)~1 2x

or y1 (x2-1) = n (x2-1) 2x

or y1(x2-1) = ny.2x

= 2nxy

Differentiating again both sides with respect to x, we get

y1(2x) +y2 (x2-1) = 2n [xy1 +y]

or (x2-1) y2 + 2x(1 - n) y1 - 2ny =0

Differentiating each term of this equation n times with respect to x (by Leibnitz's
theorem), we get

Dr{(x2 -1)y2} +Dn{2x(1 - n)y} -2nDr y) =0

or [(x2-1)yn+2 + nyns1 (2X) + “(‘1‘ ; 1) 0 @)1 + 201 - n){xyns + nyn} 20y =0
or (x2 -1)yn+2 + 2Xyn+1 - N (n+1)y, =0 ()
which Proves the first part.
Again P = d —(x* - 1)"
dn
V)
= yn
. d ndP | _d 2
. a—)—({(l -X )Ex—} = a—;{(l - X ).yn”}
“Ph= ¥n
= (1-X2)yn+2 - 2xyn+1
= -[(x2 -1)yn+2 + 2X yn+1]
=-n(n+1)yn from (i)
=-n (n+1)Pn " Pn=yn

13
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d 2 dP, _
or — {(1 X ) T } + n(n+1) P, =0. Hence proved
Problem 12: If y = sin'! x, find (yn)o
(U.P.T.U. 2009)

Solution : Given y = sin'! x (1)

. . 1 "
Differentiating, y, - (ii)
or y13(1 -x?) =1
Differentiating both sides again w.r.t x we get
2y1y2 (1 - x?) + y12(-2x) =0
or y,(1-x?) - xy1 =0......... (iii)
Differentiating both sides of (iii) n imes with respect to x by Leibnitz's theorem,
we get
n(n-1)

2

or (1-x2)yn+2 - (2n+1)xyn+1 - n?yn =0 (iv)
putting x = 0 in (i), (ii), (iii) and (iv) we get
(¥)o = sinc? 0 =0; (y1)o =1; (y2)o =0

[yn+2(1-x2)+n.yne1(-2%)+ Vn (-2)] - [Xyn+1 1.1, yn] =0

and (ynv2)o = n(yn)o (v)
If niseven, putingn=2,4,6............ , we get

(ya)o =22 (y2)o = 0 <+ (y2)o =0

(Ye)o = 4%(ya)o = O, <+ (ya)o =0

In this way we can show that for all even values of n, (yn)o =0 Answer
If nis odd, putting n=1,3,5,7............ (n-2) in (v) we get

(y3)o = (y1)o = L; (ys)o = 32 (ys)o = 32.1, (y7)o = 52(ys)o = 52 32.1 etc

(Yn)o = (n - 2)? (yn-2)o
=(n-2)2 (n-4)2(yn-4)o
=(n-2)n-4)2....... 52, 32,12, Answer.

Example 13 : If y = [log{x+ /(1 +x*) }]2 show that
(Yn+2)o = - n2 (yn)o, hence find (yn)o.

Solution : Lety = [log x+/(1+x%) ]2 (i)

.'.y1=2l:log{x+\/(—1—472)}:|————{ 1 }{1 2x ]

+
x+\/(1+x2) 2J1+x3

ory, =|i(—1i;—2—)-j|[log{x+‘/(1+x2)}]

14
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or y?(1+x2?) = 4 [log {x+/(1+x*) }]2

or y12(1+x?)= 4y (if)
Again differentiating,

yi2 (2x) + (1+x?) 2y1y2 = 4y1

or y2 (1+x?) + xy1 -2 =0 (iii)

Differentiating each term of this equation n times, by Leibnitz's theorem, with
respect to x, we have

{yne2 (14x2) + nyne (2x)+ —n—(n—;-l—)

¥n.2} + {yna1(x) + nyn(1) } =0
or (1+x9)yn+2 + (2n+1) Xyns1 +12yn =0 ........... (iv)

putting x =0 in (iv) we have

(1+0) (yn+2)o + n2 (yn)o =0

Or (Yn+2)0 = = NAYn)o.cevvvrvnnrnnnnn (v)
Puttingn=n-2,n-4,n-6.......... in (v), we get

(yn)o = - (n - 2)2(y n-2)o;

(Yn- 2)0 = - (n - 4)2 (Yn-4)o;

(Yn-4)o=- (n- 6)%(yn-6)o;

where we have (on multiplying side wise)

(yn)o = - - 2/ {- (n- 4)2} {-(n - 6)} {(yn-6)o}

- Ifnis odd,
(Yo)o={-(m-22H-(n-42}{-(n-6)3}.......0c...... {-32} {-12}(y1)o
Now from (i) putting x =0, we get

(y)o = [log (0+1)]? = (log 1)> =0

. From (ii) putting x =0, we get

(v:); =4()0 =0 or (y1)o =0

Hence when n is odd (yn)o =0 Answer

And if n is even, as before

(Yn)o={-1(n- 22 -(n-4)} {-(n-6)3}................ {-42} {-22}(y2)o
Also from (iii) putting x =0, we get

(y2)o (1+0) +0-2 =0

or (y2)o =0

. where n is even, we have

(yn)o={- (-2} {- (n-4)2} {- (n-6)3............. (-2)2)2

= (-1)2)/2 (n-2)2 (n-4)2 (n-6)....... 42,222 Answer

Example 14: Ify = [x +(1+ xz)}m , find (yn)o
Solution : Given y = [x +(1+ xz)]m ........... (i)

15
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m[x+ (1+x2)] l: \/i+_xﬂ}
| VA )
ol ] ]

[x +4(1 +x2)]m

(1+x%)
-y
J1exd)
Again differentiating
Y3 (2x) + (1+x2) 2y1y2 = m2. 2yy
or y2 (1+x2) + xy1 - m2y =0...................(iii)
Differentiating this equation n time by Leibnitz's theorem, we get

n(T ; D ¥n (2)] + [Xyn+1 + nyn] - m2 yn =0

[yn+2 (1+x2) + nyn+1 (2x)+
or (1+x3)yn+2 +(2n+1) Xyn+1 + (N2 - m2)yn =0

putting x =0 we get

(Yn+2)0 = (m2 - n2) (Yn)O- cerrieaaes (IV)

If nis odd, puttingn=1,3,5,7............. (n-2), we get
When n =1, (y3)o = (m2-12) (y1)o

And from (i) and (ii), putting x =0, we get

(o =1; (y1)y =m’ (y), = m? or (yr)o = m

5 (y5) 0= (m=1) m

when n = 3, from (iv) we get (ys)o = (m2 -32)(y3)o

or (ys)o = (m2-3?) (m?-1) m

when n =5, from (iv) we get (y7)o = (m2-5?) (ys)o

or (y7)o = (m?2 -52) (m2 -32) (m2 -12)m.

Proceeding in this manner, when n = n - 2 from (iv) we get
(yn)o = {m? - (n-2)2} (yn-2)o

={m2-(n-2)?2} {m2- (n-4P2} {m2-(n-6)2}................ (m?2-32) (m2-12) m Answer.
If nis even, puttingn=2,4,6,8,............... (n-2) is (iv), we get
when n =2, (y4)o = (m2 - 22) (y2)o

And from (iii) putting x =0, we get

(y2)o +0+m? (y)o = 0 or (y2)o = m? (y)o = m?

(¥4 = (m2 - 22)m?

When n =4, from (iv) we get (ys)o = (m2 - 42) (y4)o

or (ye)o = (m? - 42) (m?- 29 m?
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Succesive Differentiation and Leibnitz's Theorm

when n =6, from (iv), we get (ys)o = (m2 - 62) (ys)o
or (ys)o = (m2 -62) (m? - 42) (m2 -22)m?
Proceeding in this manner, when n = n-2 from (iv) we have

(yn)o = {m? - (n-2)2} (yn 2)o
={m2- (n-2)2} {m2- (n-4)2}................ (m2 - 42) (m? -22)m2,
Answer

Exercise

1. If e™*™*, prove that
(1-x?) yne2 = x (20+1) yne1 - (N2 + M2) yn =0
2. Ify =sin(asin!x) prove that
(1-x2) yn+2 <(2n +1) Xyn+1 - (N2-a2) yn = 0
U.P.T.U (CO) 2007
3. Ify=acos (log x) + bsin (log x) show that
X%yn+2 + (20 +1) Xyne1 (n?+1) y, =0
(U.P.T.U 2004)
4. Ify = sin (m sin! x) prove that
(1-x?) yn+2 - (20+1) Xyne1 + (m=n2)y =0
(U.P.T.U 2003. 05)
5. Ify=e™*"*, show that
(1-x))yn+2 - (2n+1) XY qe1 - (m**+n2) y =0
and hence evaluate (y»)0

Ans: (yn)o = -{(n-2)2 +m?} {(n-4)2+m?}........... {(12+m?) me% }, for odd values of n

(Yn)o = {(n-2)2 +m?} {(n-4)2+m?2}.............. {m2e % } for even values of n.

17
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Chapter 2

Partial Differentiation

Partial differential coefficients : The Partial differential coefficient of f(x,y) with
respect to x is the ordinary differential coefficient of f(x,y) when y is regarded as a
constant. It is written as

-?ior Of/ Ox or Dyf
ox

Thus oA lim fix+h,y) = fx,y)
ax h-0 h
Again, the partial differential coefficient df/dy of f(x,y) with respect to y is the
ordinary differential coefficient of f(x,y) when x is regarded as a constant.
Ths & - (05 #0105

y k=0

Similarly, if f is a function of the n variables xy, xz,......... xn, the partial differential
coefficient of f with respect to x; is the ordinary differential coefficient of f when

all the variables except x1 are regarded as constants and is written as of/dx1.

of and aif— are also denoted by fx and f; respectively.

ox y
The partial differential coefficients of fx and fy are fy, fuy, fyx, fyy
or if- _fo_ izf— —a—zi respectivel

' axdy ' dyox' a2’ | CPECHVEY:

2 2
It should be specially noted that Jf means —a—(ﬁj and of means 9[of :
dyox dy \ dx oxdy ax\ dy

The student will be able to convince himself that in all ordinary cases
o%f  9f

Jydx  oxdy

Example 1: If u = log (x3 + y3 +z3- 3xyz) show that

(_«'9_+.a_+_a_]zu_____9__
ox dy 0z (x+y+x)’

(U.P.T.U. 2004, B.P.S.C. 2007)
(U.P.P.C.S. 2003)
Solution : The given relation is
u = log(x3 + y3+ x3- 3xyz)
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Differentiate it w.r.t. x partially, we get
du _ 3x* -3yz
x X +y +2°-3xyz

3y® - 3xz
x* +y* +2° -3xyz

similarly 9u_

du 3z* - 3xyz
and ——= 3,3
0z x’+y*+2z’-3xyz

au du Odu_ 3(x* +y* +2° —-yz-zx - xy)

ay 0z x’+y® +2° -3xyz
3( +y*+z ——yz—xz—xy)
(x+y+z)(x* +y* +2* - y* - zx—xy)
3
=x+y+z

Now [2+2 42 ) ue[2, 2,22,
dx dy oz dx dy 0z /{ox

(9,0 ,09du du du
“lox 9y oz ){ox dy oz

d a9 0 3
=l —+—+=
ox dy 0z ){x+y+z

9 1 a( 1 d
=3 — +— +—
|Ox\x+y+z) dy\x+y+z) dz\x+y+z

_3l- 1 N -1 + -1
x+y+z) (x+ +zV  (x+y+z)
| (x+y+2) y y
-3
=3 —
_(x+y+z)2j|
= —-(——9——52— Hence Proved.
X+y+z

Example 2: If u = exz, show that
*u
dxdyodz

= (1+3xyz+x2y2z2) exyz

20
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Partial Differentiation

Solution : Given u = exy?z

. ._u. = XV exyz

=Xy

azu a XYz a xyz
sy 3y () gy
= x[y xz exyz + exy?]
= exyz (x2yz + X)

3

Hence du _9 [exyz (x2yz+x)]

oxdyoz 0dx
=exyz (2xyz+1) + yz exvz (x2yz+x)
= ez [2xyz +1 + x?y2z2 + xyz]

= ez (1+3xyz + x2y2z2) Hence Proved.
2 2 2

X y z
Example 3 : If e +b2 o +C2 v =1, prove that,
ul +ul +ul =2 (xux +yuy + zuy)
(U.P.T.U. 2003)
XZ y2 Z2
Solution : Given ———+ t—=1. ()

a’+u b’+u ?+u
where u is a function of x,y and z,
Differentiating (i) partially with respect to x, we get

2 _ 29& 2 _ 2_8_‘{ 2 _ 2a_u

(a® +u).2x - x 3 (b"+u)0-y 5 (¢ +u)0-z > _q
(a2 +u)2 (b2 + u)2 (c?+ u)2

or 2% _ X’ N y? z_ |ou _

a’+u (a? +u)2 (b? +u)2 (c? +u)2 ox

du 2x/(a” +u)
or —= 2 2 77

ox [xz/(a2 +u) +y*/(b* +u) +27 /(c* +u) :l
_ 2x/a’*+u

Zlixz/(a2 +u)2}

2y /(b* +u)

Similarl du_
imilarly — = El:xz /(az +u)2]

and 8_u= 22/(c2+u)

dz 2[x2/(a2+u)2]
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[xz /(az-t-u)2 +y* /(b +u)2 +28 /(c +u)2:|

(Au), (ou)  (ouY _
LR

o Z[{xz/(a2 +u)2}]

Also xux + yuy + zu, =
dy
1 2x 2y? 2z’
= + +
Z[xz /(a®+ u)z] (@*+u) (b*+u) (+u)
2 y§ [T (i)

- i
2[x2 /(@ + u)z]
From (i), (ii) (iii) and we have
u? +u? +u’ = 2(xux +yuy + zu,) Hence Proved.
Example 4 : If u = f(r) and x = r cos6, y = r sin6 i.e. r2 = x2+y?2, Prove that

u Pu _, 1,
&—2“4-?:1: (r) +; f(l')
(U.P.T.U. 2000, 2005)

Solution : Given u = f(r)
Differentiating (i) partially w.r.t. x, we get

Ju or
= fY(r).—
ox (1) ox

= f(r). ? wor2=x2+y?
or
2r —=2
= 2r Ei
or x
=—==
ox 1
o or 'y
Similarly — ==
dy r

Differentiating above once again, we get

22



Partial Differentiation

Pa_200)

x> ox| r
_ r[f'(r).1+xf"(r)(3r / 9x) ] - xf'(r)(9r / Ox)
)
or —gx—l: = rlz frf' (r) + x2£'(r) - XT f'(r)] (ii)
Similarly, %:— = —32— [rf'(r) + y2£'(r) - —y;z— f(r] (iii)
Adding (ii) and (iii), we get
g% +-g;‘2i = -rl?{m'(r) +(x* +y?)f"(r) - (+y7) : ) £(r)

1

[2r f'(r) + r2 f'(r) - 1 £'(1)]

r2
1
—f'(r) + f"(r), Hence proved.

r
Example 5 : If xxyy zz = ¢, show that atx = y =z,
0’z
dxdy

= —(xlogex)”

(U.P.P.C.5.1994; P.T.U. 1999)
Solution : Given x* yy zZ = ¢, where z is a function of x and y
Taking logarithms, x log x + y log y + zlog z = log ¢ (@
Differentiating (i) partially with respect to x, we get

[x(%)+(logx)1:|+liz(-i—)+(log z)l]g_i= 0

oz  (1+logx)

o x (1 +log z) (1)
Similarly from (i) we have

1+1
oz _ (1+logy) i)

$“~(1+logz)
P2 _2(%
Toxdy  dx |\ dy

29| [1+108Y 1| Erom (iif)
dax 1+logz
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2

2 = —(1+log y)—(%[(l +logz)'1]

oxay
=-(1+log y).[—(l +logz)” —1—?}
z

X

? 1+1

or G = (+ ogY)z. _[1+logx) , using (ii)
axay z(l + log z) 1+ log Z

2 1+logx)’
Atx =y =z, we have Iz __ (1+1ogx) =
oxdy  x(1+logx)
Substituting x for y and z
. 9z 1
ie. =-
oxdy  x(1+logx)
1
= - ——— ~loge=1
x(loge +log x) o8¢
1
xlog(ex)

= - {x log (ex)}"* Hence Proved.

or

Example 6 : If u = sin’! (-’i) + tan-! (%) , show that

y
ax ) dy
Solution : We have u = sin’! (i} + tan’! (%) ............. (1)
y

Differentiating (i) partially w.r.t. x and y, we get.

%E=\/1_1[XJZ %+1+(1y)2_(;_¥) '

. X

y

24
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Partial Differentiation

Ju 1 X 1 1
and—a—-—=————2———2+ 2.-;
T e

1—; x
_ X X
y\/yz—xz X+y2
du _ X Xy

- +
dy \/y2 —x2 X*+y
on adding (i) and (iii), we have
du Jdu

—a——+y5;— 0 Answer.

Euler's Theorem on Homogeneous Functions :
Statement : If f(x,y) is a homogeneous function of x and y of degree n, then

(U.P.T.U. 2006; P.T.U. 2004)
Proof : Since f(x,y) is a homogeneous function of degree n, it can be expressed in
the form
f(x,y) = xn F(y/X)eeiiiininnnnn. (i)
of

A pery /o= mer B/ oo (L))

af_ el L -4 .
or x&—nx F(xj-yx 1F(X) ................. (if)

Again from (i), we have
of 0

oy oy {xn E(y/x)}

Adding (ii) and (iii), we get
of

x5;+yg£ = nx" F(y/x)

= nf using(i) Hence Proved.
Note. In general if f (x1, X2............... xn) be a homogeneous function of degree n,
then by Euler's theorem, we have
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X —a—f-+x i"l' +x i—nf
1axl zax2 .............. naxn—
2 2
Example7:Ifu=log(X +y J,Prove that
xX+y
du du
X—+y—=
ox ~ dy

(U.P.T.U. 2009)
Solution : We are given that

2 2
u=log(x +y)
x+y
2+y2
Soeu= =f
= (say)

Clearly f is a homogeneous function in x and y of degree 2-1i.e. 1
.. By Euler's theorem for f, we should have

KL
ox yay
x%(e“)+y%(e“)=e” f=eu
u Uau u
or xe' — +ye =e
X dy
or x—aB+y§E=1 Hence Proved.
ox ~dy
. X+y
Example 8 : If u = sin'! { ———", show that
" =5
x§E+ a—u=ltar1u
ox yay 2

+
Solution : Here u = sin‘! { Xy }

Iy

. X+y
=D sinu=—==f(sa
Faly e

Here f is a homogeneous function in x and y of degree (1 - -;—) ie %

~. By Euler's theorem for f, we have
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x£+ ﬁ—-l—f
ox yay 2

or x% (sin u) +y%(sinu)= -;—sinu
s f=sinu

orxcosuél-l‘+ cosuili =lsinu
FVR A

X y
or x u +y u 1 tanu. Hence Proved
ox “dy 2

2 2

Example 9:If u =tan™ (X Iy ], then prove that
X+y

xa—u + du_ —1—sin 2u
x Yoy 2
(U.P.P.CS. 2005)
2 2
Solution : Here tan u = :Y = f (say)
y
X’ +y* . o .
Then for —oisa homogeneous function in x and y of degree 2-1i.e 1.
XTy
~. By Euler's theorem for f, we have
x-ai + of 1.f
ax dy

orxga;(tan u) + y%(tan u) =tanu

- f=tanu

du Ju
orxsec2ua— +ysec?u a—=tanu

. 1.
5 5 s— =sinucosu= E sin2u. Hence Proved
X y sec‘u

Example 10 : If u be a homogeneous function of degree n, then prove that

do*u d*u du

N x2U, oY (o™
) x5z Y50, = (15
d’u d’u Jou
- 9Y _h-™
(if) x 0xdy Ty dy® (n )ay
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o 2071 o’u ’u
(lll) X -a—2+2 yaxay +yza—y2—=n(n—l)u

(U.P.T.U. 2005; Uttarakhand T. U. 2006)
Solution : Since u is a homogenous function of degree n, therefore by Euler's
theorem

Differentiating (i) partially w.r.t. x, we get
a u du 1 82 du

T Vaxay Mo
v P o
FRNE dxdy  Ox oOx
2 2
x%)(—‘2‘+ya—i5‘iy-=(n-1)%;i ........... @)
which prove the result (i)
Now differentiating (i) partially w.r.t. y, we get

o*u d*u du du

or X

+y—+1l.—=n—

“oyox Yoyr oy oy

or o*u du_ du du

dyox ° 9y’ dy oy

*u d*u du
orxa 3 +yayz (n—l)g ................ 3)

Which proves the result (ii)
Multiplying (2) by x and (3) by y and then adding, we get

62u d’u ’u 282 U _n-1) Xa_u+ _a_u_

e Vaxay Vayax Y o ox Y 3y
2 2

orxaz+2xyaa; yZ%yB-—(n 1) nu

which proves the result (iii). Hence Proved
Example 11 : If u = xf; (Xj +fo (XJ , prove that
X X

pu o Fu oo
o Y axoy v

(I.A.S. 2006; U.P.P.C.S. 1997; Uttarkhand T.U. 2006)
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Solution : Let v = xf; (X) and w = fg[l)
X X

Thenu=v+w.............. (1)
Now v = x f1 (y/x) is a homogeneous function in x and y of degree one and we
prove that if u is a homogeneous function of x and y of degree n then

, 0*u d*u o*u
x 8—2+2Xyaxay +y25—y-2-=n(n—1) u
(see Example 11 (iii))
.. Here we have
2 2 2
N W A Y Y S (i)

e Y Ixdy Yy 3y’
Also w = fo(y/x) is a homogeneous function of x and y of degree zero so we have

2 2
X 3 k +2><y§;’y+y2 E;yvzv=0(0—1)w=0 ................ (i)

Adding (ii) and (iii) we have
2

2
(V+w)+y2%2—(v+w)=0

9* d
2 7(u +V)+2xy oxdy

or x? -Ei+2 u +  'u
7Y axdy Y 57 3y

»+ from (i) we haveu=v + w. Hence Proved

=0

X+2y+3z
U +yP+2°

x5x—+y—;+z%§+3tanu=0

Example 12 : Ifu = sin-l[ :l, show that

(U.P.T.U. 2003)

Solution : Here given u =sin™ ‘i x+2y+3z }

It +y®t +2°

X+2y+3z

= sinu = ———==——=== f (say)
JxE+y® +2° Y

Now here f is a homogeneous function in x, y, z of degree (1 - 4) i.e -3.
Hence, by Euler's theorem

ML Y
ox yay dz
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or x-—a— (sin u)+y 2 (sin u)+z 9 (sinu)=-3sinu
ox ay 0z
s f=sinu

du du du .
orxcosu —+ycosu —+zcosu— =-3sinu
0 dy oz

X
or x 2=+ 8_u+za_u___3sinu
ax yay oz cosu
orxa—u+yéli+za—u+3tanu=0. Hence Proved
ox ~dy o0z

Example 13 : If u(x,y,z) = log (tan x + tan y + tan z) Prove that

Ju du du
in2x—+sin2y — +sin2z—=
sin xax sin yay in zaZ

Solution : we have

u(x,y,z) =log (tanx + tany + tan z)................. (1)
Differentiating (i) w.r.t. 'x' partially, we get
du _ sec” x

x tanx+tany +tanz
Differentiating (i) w.r.t. 'y’ partially we get
du _ sec’y

5y__ tanx +tany + tanz
Again differentiating (i) w.r.t 'z' partially we get
du _ sec’ z

az tanx +tany +tanz

(U.P.T.U. 2006)

Multiplying (ii), (iii) and (iv) by sin 2x, sin 2y and sin 2z respectively and adding

them, we get

du _ sin2x sec’ x +sin2y sec’ y +sin2z sec’z

sin 2xa—u + sin2y g_u +sin2z— =

X y oz tanx +tany +tanz

2sinx cosx.sec’ x +2siny cosy.sec’ y + 2sinz cosz.sec’ z

tanx +tany + tanz

_ 2(tanx +tany + tan z)
tanx+tany +tanz
=2

= sin 2x21—1— +sin 2y ou +sin ZZ—a—2 = 2. Hence Proved
ox ady 0z
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Total Differentiation

Introduction : In partial differentiation of a function of two or more variables,
only one variable varies. But in total differentiation, increments are given in all
the variables.

Total differential Coefficient : If u = f(x,y)

where x = ¢(t), and y = ¥(t) then we can find the value of u in terms of t by
substituting from the last two equations in the first equation. Hence we can
regard u as a function of the single variable t, and find the ordinary differential

coefficient —d—l—l- .

Then%l:—is called the total differential coefficient of u, to distinguish it from the

partial differential coefficient g_u and ou

X oy
The problem now is to find (:l_‘tl without actually substituting the values of x and y

in f(x,y), we can obtain the requisite formula as follows :
Letd (t+ 1)=x+h y(t+1)=y+k

Then by definition
du . f(x+h,y+k)-f(x,y)
dt im0 T
) f(x+h,y+k)-f(x,y+k) h f(x,y+k)-f(x,y) k
=lim —+ —
0 h T k T

h dx k
lim —=—and lim —=—
Now ‘clTO T dt an tE)nO Tt dt

Also, if k did not depend on h
f(x+h,y +k)-f(x,y +k)

llmh—-)O h
would have been equal to
of(x,y +k)

ox
by definition

Moreover, supposing that 6f(x,y)/ 0x is a continuous function of y
. of(x,y +k) _of(x,y)

hmk_>0 ox T ox

we shall assume, therefore that

5 f(x+h,y +k) - f(x,y +k) _ of(x,y)
M50 h T 9x
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Hence

du_df dx Of dy

dt ox dt dy dt

., du Jdu dx Ju dy

ie. —=— —+—.—
dt ox dt dy dt

Similarly, if u = f(x1, x2......... Xn) and X1, X2....cceueeninens , Xn are all functions of t, we
can prove that
du_ du dx,  ou dx, ou dx,

&t ox, dt @ ox, dt ox. dt
An important case : By supposing t to be the same, as x in the formula for two
variables, we get the following proposition :
When f(x,y) is a function of x and y, and y is a function of x, the total (i.e., the
ordinary) differential coefficient of f with respect to x is given by
ar _of o dy
dx ox dy dx
Now, if we have an implicit relation between x and y of the form f(x,y) = C
where C is a constant and y is a function of x, the above formula becomes
of of dy
O0=—+—.—
ox dy dx
Which gives the important formula
dy of  of
dx  ox' dy
Again, if f is a function of n variables x1, X2, X3,.......... Xn, and X2, X3......... xn are all
functions of x;, the total (i.e. the ordinary) differential coefficient of f with respect
to x1 is given by
df of of dx, of dx, of dx,
——=—— b = — +—.
dx, dx, ox, dx, ox, dx, ox, dx,

Example 14 : If u = x log xy, where x3+y3+3xy = 1, find 3—u .
X

(U.P.T.U. 2002, 05)

Solution : Givenu = xlog xy................. (1)
d
we know % = g—: + g—;-a% ................... (i)

Now from (i) 3—:= x.;l-—y +log xy
y

=1+logxy
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dy xy |y
Again, we are given x3+y3+3xy =1, whence differentiating, we get

3x2 +3y2 dy + 3( jy + y.l) =

or I _ (>< +y)
dx  (y*+x)
Substituting these values in (ii) we get

2
X (X +y)
=(1+logxy)+—| -
( ) y{ (yz + X)
Example 15 : If f(x, y) =0, ¢(y, z) =0 show that
of dodz _ of d¢
ay dzdx ox dy

} Answer.

Solution : If f(x, y) =0 then Zi (gf ) /[gf-J ............. )
x )"\ dy

: _ dz _ (d¢ ( 92) ..

if ¢(y, z) =0, then dy [ 3y ] / ag | (ii)

Multiplying (i) and (ii), we have

et 1k

d¢ \dz [ of L)
or (ay)(az)dx [ax)/[a ] Hence Proved

Example 16 : If the curves f(x,y) =0 and ¢(x, y) =0 touch, show that at the point of
of 8¢ of 99 _

Solution : For the curve f(x, y) =0, we have
dy of \ [ of dy (aq,) d¢
—— == — d for th ,y)=0, =—=-|—|/| —
Ix ( ™ ) / (ay ) and for the curve ¢(x, y) ix ™ / 3y

Also if two curves touch each other at a point then at that point the values of
(dy/dx) for the two curves must be the same,
Hence at the point of contact

BB
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of \ [ 9o 6(1)) of
21 E 2= =0,
r (ax) (ayj (ax [ ayJ Hence Proved

Example 17 : If §(x,y,z) =0 show that
(ﬂ) (Q_Z_) x| _ 4
0z ), \dx J \ 9y ),
(U.P.T.U. 2004)

Solution : The given relation defines y as a function of x and z. treating x as
constant

32 ) = 30730
The given relation defines z as a function of x and y. Treating y as constant

(az) =_a¢/ax

ax d¢ / oz

. ox) _ 0¢/dy
Similarly, ( % )z =30 ok (iii)
Multiplying (i), (ii) and (iii) we get

ay) ( 0z ) ox

= — =1 .
( 3z ) \ax ), \ 3y ), Hence Proved

Change of Variables : If u is a function of x, y and x, y are functions of t and r,
then u is called a composite function of t and r.

Let u =f(x, y) and x = g(t, r), y = h(t, r) then the continuous first order partial
derivatives are

du du J0x du dy

ot ox ot dy ot
du _du dx odu dy

dor O0x or 5;-51'-

Example18:Ifu=u y-—x’z—x show that xza_u+y2a_u+zza_u=0
Xy = Xz ox dy oz
(U.P.T.U 2005)
Solution : Here given u = u(y— X 2o x]
Xy = Xz
=u(r,s)
where r=Y"Zand s=2=%
Xy zX
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=>r=l—land s=—1——l ................ ()
X y X z
we know that
du_dudr duds
dx Or dx 0ds ox
=§£(_l)+22(__1_) S
or\ x*) os\ x* ox y
Lo 1
ox X
1du 10du 211
T X X2 os *TXz
L8 _ 1
ox X
,0u du Jdu
or x F Vvt W (if)
Similarly — du _63 ﬁ+au s
dy Or dy OJs ay
%;—yi %;—.O from (i)
or yz%;_?)_: .................... (iii)
2 _du 3 du 3
3z or az ds 0z
=Bu +au 1
or  0s z’
,0u_du
=27 5‘;=-5'S- ....................... (lV)
Adding (i) (ii) and (iii) we get
xz_a_u+y2_a_u+ 2% 9 Hence Proved.

ox dy 0z
Example 19: If u = u (y - z, z - x, x - y) Prove that

—+—+—=0

ox dy oz

Solution : Here givenu=u(y -z,z-x,x-y)
LetX=y-z Y=z-xandZ=x-y................ (@)

Then u = u (X,Y,Z), where X, Y, Z are function of x,y and z.
Then
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au au 0X oudY JdudZ

ax X ox oY ox  9Zox
du_dudX dudY dudz
dy 0Xdy dYJdy 0JZdy
d21-1—=a—uax+auay+auaz ............ (iv)
dz 0Xdz dY oz 0Z oz
with the help of (i), equahons (ii), (iii) and (iv) gives.

du_ Ju_ du du 8u
— =0+ —=(-1)+ =M=t =
x ax oyl D () oz )
du _ au au 8 du Jdu
—O0+—=(-D == —=—= e i
ay X Tay az( )=9x "oz (v
du _du du au
d 3 3 “-D+—N)+=— T ii
and 2= 28 1)+ 231y 4 2 (0) =~ 22+ 22 (vii)
Adding (v), (vi) and (vii) we geta—u ou + du_ 0. Hence Proved.
ox dy o0z

Example 20: If zis a functionof xand yand x =et + eV, y = et - ev

dz dz _ dz 0z
Prove that 22 - 22 =
Ve S Ty ax Yoy

(AV.UP 2005)
Solution : Here z is a function of x and y, where x and y are functions of u and v.
.0z 0oz ax dz dy

L A i)

“9u xou ay du

and 02.029x, 029y (i)

dv dx ov dy dv

Also given that
x =et+evandy = e\ -ev

. _a_x_ eU _a_x_ -V ay -u ay v

"o ov - lou v ©
‘ From (i) we get

gi ax( )+ ( €Y e, (i)
and from (ii) we get

0z 0z, _,\ 0z, _, )

F ax( e )+g(-—e ) ............. (iv)

Subtracting (iv) from (iii) we get
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dz 0z (e”+e )az (e_u_ev)az

Ju Jv ox 5}7
= xa—Z -y 9—2— Hence Proved.
ox ° oy

Example 21 : If V = f(2x -3y, 3y -4z, 4z -2x), compute the value of
6V +4Vy +3V,.

(U.P.T.U. 2009)
Solution : Here given V = f(2x -3y, 3y -4z, 4z -2x)
Let X = 2x-3y, Y =3y-4z and Z = 4z-2x............. (D
Then u = f(X, Y, Z), where X, Y, Z are function of x, y and z.

Then V, = v _ VX —+ oV oY —t— NIZ o (if)
ox 0X ox Y ox 0Z ox
_9V _dvdX E)V aY oV dZ
- ay T X ay BY ay 62 ay
and V, = Vv _ IV X —_— oV 9Y —+— NVIZ (iv)
* 9z 0Xdz 0Ydz 9JZdz

with the help of (i), equations (ii), (iii) and (iv) gives
oV ov aVv
V,=—2)+—(0)+—(-2
= D+ O (D)

or V, —2(%—%\—21—)

=6V, _12(3—\;—3—;) .................. (v)
Now V, =—(—3) ~——(3)+g—\zl(0)

oV, =35+ 5%

=4V, —12(—%;1 %—;i) .................. (vi)
and V, =g—;/( )+—( 4)+8—V(4)

or v, =4[~ 4 ?Z’.)

=3V, —12(—2—\; g_\z/) ................. (vii)

Adding (v), (vi) and (vii) we get
6Vy+4Vy +3V,. =0 Answer.
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Example 22 : If x +y = 2e° cosp and x -y = 2 ie® sin¢, Prove that
FV IV o’V
Ev Yl =4xy
06 acp oxay

(U.P.T.U. 2001; U.P.P.CS. 1997)
Solution : we have x+y = 2e° cost, x-y =2¢° i sin
= x = e’ (cos¢ + sing) = €°. ei®
orx=gdtit
and y = e(cos¢ - i sing) =e®. e -1
ory =g’
since we know
oV _ 9V ox A oV dy

06 Jx d8 Jdy 098
__al eem +?_Y_ ee-m

T ox oy
LYY
ox ay
)

= —=x—+
d0 ox

oV av ox LAY oV ay

a¢ ax d dy 9o

SV sy ——(—1).ie°"°
dy

=1X&°—ly$
= —ix—?——l 9 (if)
aq)-— ax yay ................
oain OV, EV (3 9V oV
e T T ATy )
Sy 9 O[OV, OV, OV oV
RV TRy U Ty T R Yoy
using (i) and (ii)
d(. v
-2yay(2X&)
Fv v
EPLASNAY)
4y["ayax+ax ]
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2
= 4xy IV . Hence Proved.
oxdy
azu 2
Example 23 : Transform the equation W + Ewia 0 into polar Co-ordinates
X oy

(A.U.U.P. 2003, Delhi college of Engg. 2004, G.G.S.I.P.U. 2004)
Solution : The relation Connecting Cartesian Co-ordinates (x, y) with polar Co-
ordinates (r, 8) are
X =r cos0, y = r sinf
Squaring and adding r2 = x2 +y?2

Dividing tan =<
X

sr=xt+y?, O=tan” (X)
X

or X rcos® or y rsinf
—= = =cosB,—= = =sin0
ax \/xz +y2 r ay sz +y2 r
»_ 1 ( y J_ y _ sin®
- '3 R 2 A B R

ox 1+y2 X X +y r

a0 1 1 X cos0
a“da_= TRyt

y 1+_}’_2 y

X

Here u is a composite function of x and y
du_dudr dudd_ odu_sinddu
dx drdx 06 0dx’ or r d8
= —=cos0 0 _sinbo (1)

ax-o?)? r 00

Also —=— —+—.—
5 dy or ay+39 ay

du cosOdu

= i G_ £y
sin e + r 08
:%Esine_é)a_r+co:65% ................. (li)

Now we shall make use of the equivalence of Cartesian & polar operators as
given by (i) and (ii)

az_uzﬁ_(a_u)

ox2 ox\ox

—[cos _@__sine_g_)(cosea_u_sine_a}i)
- dr r 99 or r 00
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0 du sinBou) sinf d du sinBdu
=c0565— cosf— - —— ———(cose—— —

r ar r 00 r 90 or r a0
azu sinfou{ 1 sin® 82u sinB| .  du azu cosBodu sinB azu
=cosB| cos@—z— —l -5 |- - ——| —=sinB-—+ cos 6 - —- —
ar2 r d0 r2 r orodb r or 000r r 00 r 392

2 9%u  2cosBsinBdu  sin20du 2cosBsind d%u  sin26d2u
=cos“ 00—z + —-

—+ e reiereeeer e
or2 2 99 r or r 0ree 2 52 (i)

2
And 9°u_ 9 (aqu(sme 0 +cosei)(sine§g+coseau)

ay2 - @ g or r 90 or r 08
= sinei(sin GéE + cos9 ili) + cos® j—(sin Ga—u + cos6 93)
or or r d0 r 29 or r 96
. ) 62u cos®ou cos6 82u cos9 Ju a%u sin@du  cosb 9%u
=sin 6| sin6 ) —+ + cosO-—+sinB - —+
or 2 98 r 0rd8 r or 00dr r 06 r 592
.2 9%u 2cosBsinBdu  cos>Bdu 2cosBsind d2u  cos B 3%u .
=sin”f6—-~ —+ —+ + R (iv)
or 2 09 r or T draf 1 S
Adding (iii) and (iv)

Fu Fu_Fu 10u 10
x* dy* or' ror r’ 0@

‘ °u  d’u .. d'u 1ou 1%
Therefore Fwel + W = () transforms into b_r—z_ + ;-a—r— + }7%2— =0
Exercise :

1. If u = tan! , show that

Xy
J1+x* +y?
u 1
axdy (1+x*+y7)
2. If u(x+y) = x2+ y?, prove that

2
du_tu) _,f_%u_du
ox dy ox dy

3/2

Pu -y’

dyox x> +y’
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Partial Differentiation

(U.P.T.U. Special Exam 2001)
4. If z = f(x+ay) +0(x -ay), prove that
o’z ,0%z
W x>

— 2 2 > 2 9 - . azu azu
5.If u = 2(ax+by)? - (x*+y?) and a2 +b? =1, find the value of —+ ?

Ans=0
6. If V =(x2+y2+22)1/2, Show that
d’v 9’V 2’V
—t—s+=——5=0
ox> dy° 0z
7. 1f u = (x2+y2 +22)1/2, then prove that
x> dy*> 0z° wu
d’u ’u
8.If u =x", show that =
TR SRoW A Xty T axdyox
(P.T.U. 1999)
- 13(,9) 3
9.1f 0=t e 4t , find the value of n which will make — (rz —) -9
r’or\_ dr) ot
3
Ans. n=-—
2
10. If x = r cos6, y = r sinf, prove that
or o0x 1 0x 86 ... 0°0 0%
—== ii) ——=r— —+—=0
O Wise™ "o () 5% * 3y2
dz 0z
11. If z = eax*by f(ax - by), Show that b— +a— = 2abz
ox dy

12. If V = {(r) and r2 = x2+y2 +2z2, Prove that Vxx+Vyy +Vz; = f'(r) + 2 f'(r)
r
13. Find p and g, if x=+a (sin u + cos v), y =+a (cos u - sin v), z =1+sin(u - v)

where p and q means 9z and —av— respectively.
ox dy

2 2

[ Hint. x2+y2=2az nz=X2Y

]

2a

X
Ans. p——; q=

SIS
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14. If u =(1-2xy +y?)'/2, Prove that Xa_u._ yQE = y u’
ox dy
(M.D.U. 2001)

15. Verify Euler's theorem for the function z = sin! — +tan! Y
y X
(Delhi college of Engg., March 2004)

2 2
16. If u =sin1 <Y , show that xa—u+ y——=tanu
X+y ox °dy
(B.P.S.C.1997; U.P.P.CS.1990; J.N.T.U. 1999, G.G.S.I.P.U. 2007, M.D.U. 2002, 03
V.T.U. 2003)

3 3
17. If z =tan-! xX*y , Prove that xa—Z + y—-E =sin2z
X-y ox °dy
(U.P.T.U. 2001, M.D.U. 2002, G.G.S.1.P.U. 2006)

4 4
18. If u = log (X Ty ],showthat xg—+yg—g—3
X+y X y

(U.P.T.U. 2001)

du ili+%cotu=0

19. If u = cos-t \/;ii]/; , show that x5;+ y 5
(G.GS.IP.U. 2006, V.T.U. 2004)

3 3
s & J,showthatx —g-—+2xyaag1 2gz-—2c0s3usmu
(U.P.P.C.S.1993)

20. If u = tan'! (
X=y
(A.U.U.P. 2005, P.T.U. 2002, Delhi college of Engg 2004.)

Prove that

i1 Xty
21. If u = sin-! \/;_‘_\/}7,
(i) x—+ya—+ltanu
dy
» @’u _sinu cos2u

(i) x* O +2x u
FRC Ixdy y oy’ 4cos’u
(A.U.U.P. 2005, M.D.U. 2000, 2004, Delhi college of Engg. 2005)

2

/3 +y1/3 172
22. If u = sin‘! Ty , then show that
ty

d*u d*u d’u _tanu
P 42Xy ———+ ¥ 13+t
X ox? texy oxay y ay2 ( an” u)
(Delhi college of Engg. 2004, M.D.U. 2001, 2003)
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23. If f(x,y)= .X_+;y- 1‘-’-5;’2%‘12&1 howthatxg—f+yg—}f]+2f(x y)=0

(PTU 2004)
24.1f z = x* y2 sin1 (—;—] + log x - log y show that ng + y-g—; =6x"y?sin™ (—;]

(U.P.T.U. 2003)
3 3 3
25. Show thatxa—+ y§E+ z—QP— =2tanu whereu = sin? >~ 2
ox “9dy oz ax+by +cz

(U.P.T.U. 2003)

2 2 /2
n(2x +y+ xz)
)]/3 Prove that when x =0, y =1, z =2

26.1f V = loge sin
2(x* +xy +2yz+2°

N
ox yay 0z 12

(U.P.P.CS.1991)

27. Ifu=x2-y2+ sin yz where y = exand z = log x; find 3—“
X

Ans. 2(x - e2)+ex cos (ex log x) (log x + 1 )-
X

28.1f u = {(r, s) and r = x+y, s = x-y; show that %% %3 = 23_1:
29. If x = er cosO, v = e sin®, show that — i u. u_ (0% du_ du o*u
4 o oy o \or o

30. If z is a function of x and y and u and v be two other variables such that
azz o’z d’z 9z
u =Ix + my, v =ly - mx, show that — 3 By —= (12 )(5;—24 5-‘;-2-}

2
31.If z=f(x, y), wherex=uvand y = E,thenshowthat a—Z-=X %—L —Q—Z—
v

dy 2 du 2u dv
(A.U.U.P. 2005)
32.1fz= /x> +y* and x3 +y3 +3axy = 5a?, find the value of gﬁ when x =y =a.
X
du du

=0
x oy

33. If u = f(y/x) show that x 5
Y

(U.P.P.CS. 1997)
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, 0z 9%z

34. Prove that if z = ¢ (y + ax) +y(y - ax) then a’ Fa vy =0 for any twice
y
differentiable ¢ and v, a is a constant.
(LA.S. 2007)
35. 16 u=f] X, |Prove that x2% +y 2% 4 ;9% _g (L.AS. 1996
y z'x ax Y ay ay oz o )
Tick the Correct answer from the choices given below
1. If u = f(y/x), then
du du du Jdu
du 0 PN N B
(1)x ™ yay (“)Xax“"yay
Ju du du
—_— + i —— —_—= 1
(iii) x ™ yay (iv) x = Yoy
Ans. (ii)
(ILAS. 1999)
2.If z = f(x+ay) + ¢(x -ay) then
L\ 0’z ,0%z 2z 102
® P dy? i) dy  alox
. 0°Z o’z .\ 0z 0’z
(lll) —y—z = a2 7 (IV) 5;(-5- =2a’ a—yz—
Ans. (iii)
(.LA.5.1999)
3
3.If u = evz, then Gx3y9n is equal to
(i) (x2+y2+z2+3xyz)exyz (if) (1+x2y2z2+3xyz)exyz
(iif) (1+x2+y2+z2)exyz (iv) 3x+3y+3z+x2y2z2)exyz
Ans. (ii)
4. If u = loge (x3+y3+23 -3xyz), then 9u + 9 + u is equal to
ox dy 0z
L1 1
(1) (x+y+z) (i) 7 (x*ty+z)
2 3
(1) X+y+z ) X+y+z
Ans. (iv)

5.1f z = xy f(y/x), then xgs+yg—;is equal to

(i) z (ii) 2z
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(iii) xz (iv)yz
Ans. (ii)
(U.P.P.CS. 1994)

6. Sin! (-Z) is a homogeneoiis function of x, y of degree

X
M1 (if) 2
(iii) 3 (iv) 0
Ans. (iv)
(U.P.P.CS. 1994, 1995)
7.1fz=uv

u?+ v2-x-y =0
u?-v2+3x+y=0

Then g—)z(is equal to

. . 2ut = V2
+
(Hu+v (if) S
. 3ut Ve . ut-3v?
(1) 2uv (i) 2uv
Ans. (ii)
(I.AS. 1994)
2 2
8. If u = sin’! (x Ty ],then x§£+y§£is
X+y ox oy
@) f (ii) 2f
(iii) tan f (iv) sin f
Ans, (iii)

(.LAS. 1994, UP.P.CS. 1994)

9.If u = x4 y?, where x = t2and y = t3, then %—1:— is

(i) 22413 (if) 14 2
(iif) %t” (iv) 14813
Ans. (iv)
(R.A.S1993)
3 3
10. If u = tan’! (X Ty )the value of x-a—u+ ygE is
X-y ox ~ dy
(i) tan 2u (ii) cos 2u
(iii) sin 2u (iv) sec? 2u
Ans. (iii)
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(R.A.S.1994)
2
11. If x* yy 22 = c, then aaaz = - (x log ex)-» when (x = y = z) if n is equal to
X0y
L1 o 1
oK (i)
(iii) 1 (iv) 2

Ans. (iii)
(U.P.P.C.S.1994)

12. If u = x log xy, where x3 +y3 +3xy =1, then%l— is equal to
X

(i) (1 + log xy) __;_(Xzz +y] (i) (1 + log xy) _X(Zz_if_]

v +x x| x*+y
x[x*+y . y(y®+x
(iii) (1 - log xy) —;[yz | () (A-logxy) - 1y
Ans. (i)
X +y° du du
13. If u =log " Then X= + Y3y is equal to
X+y X y
(o (i) 1
(iii) u (iv) eu
Ans. (ii)
. xMr—y'? ,0%u u  ,0%u
14.Ifu= sm‘lm—ﬁz—, then x 5;2—+2xyaxay +y 5;;
is equal to
u
50 o u
0 (i) -
(iii) % (iv) %“
Ans. (i)
2 2 2 du du du ,
15. Ifu= x“+y” +z°, then x5—+ya—+za—1s equal to
X y z
@) 0 (i) u
TR .\ u
(iii) > (iv) 5
Ans. (ii)
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XXy Z*
16.Ifu=|x y z|, then ux +uy + u; is equal to
11

1
@0 (ii) 1
(fiiyx+y+z (iv)2(x+y+z)
Ans. (i)
17.If u = {(y-z, z-x, x-y) then g—: + %;l + %lzl is equal to
({)x+y+z (i)1+x+y+z
(i) 1 (iv) 0
Ans. (iv)
(U.P.P.CS.1994)
2 2
18.1f z = f(r) and r2 = x2 +y?, then g - a—zis equal to
y
@) f'(r) + r f'(r) (ii) fi(r) + r f'(r)
(iii) f'(r) + 1 f'(r) @iv) f'(r) + 1f'(r)
r r
Ans. (iv)
X y? z’ (au)z ou Y (Bu)z.
19.If + =1, then e — 1t
Ziu bDiu Cru Y dy o) Bedute
(i) x§E+ au au (1) 1 x§—li+ il—1—+za—u
ax oy ay “oz 2 Mox Y dy 0z
(iii) Z(Xg—x +y g; (;u) (iv) None of these
Ans. (iii)
2 2
20 If u = rm where r2 = x2 +y2 +z2, then g 121 gyz g l: is equal to
(i) rm2 (if) m (m - 1)rm2
(iif) m (m+1)rm-2 (iv) (m2 -1)rm-2
Ans. (iii)

21. If u is a homogeneous function of degree n in x, y, z and if u = f(x, y, z) where

X, y, z are the first derivatives of u with respect to x, y, z respectively then
of of of.

x—+y———+25— is equal to

ox °dy
(i) nu (il) n(n -1)u
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(iii) 3 u (iv)

22. The total differential dz of z which is a function of x and y is equal to
(iydz=dx +dy (ii) dz—j—xdx+:—;dy

(iii) dz—-(z——der—g—;—dy (iv )%fizg_i —g—;—

23.1f f(x, y) =0, ¢(y, z) =0, then
o o 20 _ 0600 do

dy 0z Jxdy dx

of d¢ dz _of d¢

dy "9z dx ax@

of d¢ dz _of d¢

G dy 0z dx T 9x ax

(iif) —~

(iv) None of these

24. Ifu=y>, then%li is equal to
X

Oy (G+logy)  (xy
(iii) yx log y (iv) y*log x

25. A function f(x, y) is said to be homogenous of degree nin x, y if
(i) f(tx, ty) =t f(x, y)

(ii) f(tx, ty) = t~1 f(x, y)

(iii) t is of the form xn f(x/y)

(iv) tis of the form x» f(y/x)

26. Consider the Assertion (A) and Reason (R) given below :
Assertion (A) - If u = xy f(y/x), then x?a— +y gu =2u
y

Reason (R) - Given function u is homogenous of degree 2 in x and y.
of these statements -

(i) Both A and R are true and R is the correct explanation of A.

(ii) Both A and R are true and R is not the correct explanation of A.
(iii) A is true but R is false.

(iv) A is false but R is true.

27. Consider the following statements :
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Partial Differentintion

1

Assertion (A) - for x = r cosB, y = r sinf x = an

or Jr/ox
1
dx /dy
of these statement -

Reason (R) g—y— =
X

ox 1

20 90/ ox

(i) Both A and R are true and R is the correct explanation of A.
(ii) Both A and R are true and R is not the correct explanation of A.

(iii) A is true but R is false.
(iv) A is false but R is true.

b 3y
28.1f x = r cosB, y = r sin6, then or Or is
o oy
d6 00
. o 1
(i)r (if) —
r
(iii) 2r (iv) 1
2r
29. Match the list I with II
List I
X'y u  u
Ifu= , th —
@1t u X+y enxax2+yaxay
x'/?—y'/? o*u 0*u 0*u
(B If u =;1—/4:’§74_’ then xz—a—;2—+2xy 53y +y? 37
d*u ’u 0*u
(c) If u = xV/2 + y1/2 then x* —éx—2+ 2xym+ y’ —y—z—
(d)Ifu=f(y/x) thenx§B+ ou
yix ax Y dy
ListII
3
(p) ~cu
du
=
(@) 25~
(r)0
(s)-u/4
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correct match is

({)
(i)
(i)
(iv)

a

P
q
q
P

»n o~ =N
- W R o®n o,

L 3T o o

29.If u = 3x2%yz + 2yz3 + 6 x4, thenxg—u+ y?— + zg—u equal to
z

X

(i) 6x2 yz + 4xy3 +12 x4
(ii) 3x2yz + 2yz3 + 6x4
(iii) 12 x2yz + 6yz3 + 12 x4
(iv) 12 x2yz + 8yz3 + 24 x4

o°f
30. If f(x, y) = x4+x2y2+vy4, th
(%, y) = x4+x2y2+y enaxa

(i) 4xy
(iii) 2x2 + 12 y?

2

is equal to

(if) 12 x2+2y2
(iv) 4x3 +2xy?
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Ans. (ii)

(U.P.P.C.S. 1995)

Ans. (iv)

(U.P.P.C.S1994)

Ans. (i)



Chapter 3

Curve Tracing

Rules for tracing Cartesian Curves :-

I. Symmetry - The most important point while tracing the curves is to judge its
symmetry which we do as following:

(a) If the equation of the curve involves even and only even powers of x, then
there is symmetry about y axis. The reason is that if we obtain a certain value of y
by putting x =a in the equation then the same value of y will be obtained by
putting x = -a in the equation because it contains even and only even powers in x
e.g. the parabola x2 = 4ay and the circle x2+y? =a2 are both symmetrical about y
axis.

Note. The stress on the words 'even and only even' should be observed. x2 +y2 =
ax is not symmetrical about y axis as it involves odd powers of x as well.

(b) Similarly, if the equation of the curve involves even and only even powers of
2 2

y then the curve is symmetrical about x axis, e.g. ellipsex—z- + % =1and parabola
a

y?= 4ax are symmetrical about x axis.

(c) If the equation of the curve involves even and only even powers of x as well as

of y, then the curve is symmetrical about both the axes i.e. the circle x2 +y2 = aZ or
2 2

ellipse %a% + {7 =1 are both symmetrical about the axes.

(d) If x be changed into -x and y be changed into -y, and the equation of the
carve remains unchanged, then the there is symmetry in opposite quadrants e.g.
xy =a? is the equation of the hyperbola referred to asympototes as axes which is
symmetrical in 1st and 3rd quadrants.

(e) If x be changed into y and y into x and the equation of the curve remains
unchanged, then curve is symmetrical about the line y = x i.e. a line passing
through origin and making an angle 45° with positive direction of x-axis.

Note. In this case solve the equation of the curve with the line y =x and find the
point of intersection e.g. x* +y3 = 3axy is symmetrical about y =x and cuts it in

3a 3a
ints (0, 0) and | —, — |.
points (0, 0) an. (2 2)
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II Points
We should find points where the curve cuts the axes which are obtained as
follows;

Put y = 0 in the equation of the curve and solve for x and thus you will find the
2 2

points where the curve cuts the x axis e.g. — + % =1putting y =0 we get x2 =a2.
a
~.x =a and -a, and hence ellipse cuts the x axis in points (a, 0) and (-a, 0)

Similarly, put x =0 in the equation of the curve and solve for y and thus you will
2 2

find the points where the curve cuts the y axis e.g. a—2+§ =1putting x =0, we
gety =b and -b and hence the ellipse cuts the y axis in points (0, b) and (0, -b).
Again y2 = 4ax putting x =0, we get y =0 and it we put y =0 we get x =0 and hence
the point (0, 0) i.e. origin lies on the curve. The best way for detecting whether the
origin lies on the curve is to see that the equation does not contain any constant
term just as y2 = 4ax contains no constant term and hence it passes through the
origin. The circle x2 +y? =a2 contains the constant term a2 and hence it does not
pass through the origin.

III. Tangents : After we have found the points which lies on the curve we shall
try to find tangents at those points.

(@) Tangents at origin : In case we find that origin is a point on the curve, then
the tangents at the origin are obtained by equating to zero the lowest degree
terms occurring in the equation of the curve e.g. y? = 4ax passes through origin
and the lowest degree terms occurring in it is 4 ax which when equated to zero
gives x =0 i.e. y axis which is tangent to the parabola at the origin.

Again the equation a2y? = a2 x2 - x4 contains no constant term and as such passes
through the origin and the total lowest degree terms brought on one side are a2y?2
-a2x2 which when equated to zero y2 -x2 =0 or y = + x which will be tangents at
the origin to the curve i.e. the curve shall be touching both these two lines at the
origin,
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YI

Again x3 +y3 = 3axy passes through the origin and the lowest degree term is 3axy,

which when equated to zero gives x =0, y =0 as the tangents at the origin i.e.

curve will touch the axes at the origin.

Again y%(a+x) = x*(3a-x) clearly passes through the origin and the total lowest

degree terms brought on one side are ay? -3ax? which when equated to zero gives

y2-3x2 =0 or y =%+/3 x which will be tangents at the origin to the curve.

Note. We shall write tangents at the origin as Ty, o.

(b) Tangents at any other points which is not origin : Suppose there lines a point

(h, k) on the curve, then in order to find the tangent at (h, k) we find the value of

3_}’ from the equation of the curve and substitute in it (h, k) which gives us the
X

slope of the tangent at (h, k) and the equation of the tangent will be a line passing

through (h, k) and with the above slope. If the slope comes out to be zero then the

tangent will be parallel to x axis, e.g. we have seen before that x* +y3 = 3axy

d
passes through(g)zﬁ,%). Let us findd—y by differentiating the equation of the

X
curves w.r.t.x
dy

dy
3x2+3y2 —L =3a(y +x —=
X3y a(y de)
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N
22
135°
X o) X
Yl
2
d_y = a}; *_and its value by substituting the point(ﬁ,ﬁ) is equal to -1 and
dx y°-ax 22

hence the slope of the tangent at(z)zi,%e) is -1 i.e., it will make an angle of 135,

IV. Asymptotes which are parallel to the axes

The asymptotes parallel to the x axis may be obtained by equating to zero the
coefficient of highest degree terms in x, provided it is not a constant.

Similarly, the asymptotes parallel to the axis of y may be obtained by equating to
zero the coefficient of highest degree terms in y, provided it is not constant.

V. Region

If for some value of x greater than some quantity say a the corresponding values
of y come out to be imaginary, then no part of the curve will lie beyond x =a.
Similarly if for some value of y greater than some quantity b say the
corresponding values of x come out to be imaginary, then no part of the curve
shall lie beyond y =b. e.g. y%(2a -x) =x3

If x is greater than 2a, then 2a -x will be negative and hence y? will be negative.
Therefore y will be imaginary for values of x greater than 2a and as such no part
of this curve will lie beyond x =2a. Again if x is negative then 2a-x is positive but
x3 becomes negative and therefore y2 will be negative and as such y imaginary.
Hence no part of the curve shall exist in the negative side of x axis.

In case the equation of the curve can be arranged as a quadratic in y or x, then it
is convenient to find the values of one variable in terms of the other and discuss
the reality of the roots.

Note. The existence of loops is generally found by this.
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Example 1 : Trace the curve y2(a -x) =x3 cissoid.

(U.P.T.U. 2005)
Solution : (i) Since there are even and only even powers of y, symmetry is about
x-axis.
(ii) Putting x =0 we get y =0 and putting y =0, we get x =0 and hence (0, 0) is the
only point on the curve.
(iii) Tangents at origin are given by the lowest degree terms equated to zero i.e.
ay2=0 ..y =0 i.e. x-axis is tangent.
(iv) The equation is of 3rd degree and x3 is present but is missing and hence
equate to zero the coefficient of y? which is a-x. Therefore x =a is an asymptote
parallel to y axis.
(v) If either x is negative or greater than a, then corresponding values of y are
imaginary. Therefore the curve is within the lines x =0 and x =a with the above
five points the shape of the curve is as shown in the figure given below.

Y
X=a
A Asy
©.0) A
X' @) (a, 0) X
T (0,0)
Yl

Example 2 : Trace the curve y2(a+x) = x¥(a-x) (Strophoid)
or
(x2+y?) x - a(x2-y?) =0

(Uttarakhand TU 2006, U.P.P.C.S. 1996, B.P.S.C 2007)
Solution : (i) Symmetry about x -axis
(ii) Points y =0 then x =0 and a, ..(0, 0) and (a, 0) and when x =0 then y =0 ... (0,0)
Hence (0, 0) and (a, 0) are the only two points.
(iii) T(0, 0y are a(x? - y?) =0 i.e. y = £x
(iv) The asymptotes is x + a =0 i.e. x = -a, on equating to zero the coefficient of y?
as y3 is missing.
(v) Again if x is greater than a then the value of y? is negative and hence y
imaginary. Therefore the curve does not go beyond x =a, similarly it does not go
beyond x = -a.
With the above five points the shape of the curve is as shown in the figure given
below.
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Example 3: Trace the curve a2y? = x2(a2-x?)

ora?y?=aZ x2- x4

Solution : (i) Symmetry about both axes.

(ii) Points (0, 0), (a, 0), (-a, 0)

(iif) To,0 are y = £x and T(a, ) is y axis and T. 5,0y is y axis .

(iv) No asymptotes

(v) x cannot be greater than a in magnitude on either side of x axis with the above
data the shape of the curve is as shown in figure.

Y
y=xXx
Al a a Al
(=20) @0)
YT
Y

Example 4 : Trace the curve
x3 +y3 =3axy (Folium of Descartes)

(U.P.T.U. 2003)
Solution : (i) If x be changed into y and y into x, the equation of the curve is
unaltered and hence the symmetry is about the line y =x.
(if) (0, 0) is one point and the other point is obtained by solving the equation with

... (3a 3a

y =x which is ( > )

32?-,—323) is -1, which shows that

tangent at that point makes an angle of 1350 with x axis.

(iii) Too are x =0, y =0 and the value of %)ti at (
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(iv) There is no asymptote which is parallel to either axis but there is an oblique
asymptote x + y +a =0.

(v) x and y both cannot be negative, because that will make L.H.S of the curve
negative and R.H.S positive. This implies no portion of the curve lies in the third
quadrant.

Shape of the curve given below.

Y -
Y= X6re =450

A
\\ B\_135°

X' O X

\ ASY

y' x+tyta=0

Example 5 : Trace the curve

a2t = y3 (2a-y)

Solution : (i) symmetry about y-axis as the power of x are even.

(ii) x =0 we get y =0 and 2a, ..(0, 0) and (0, 2a) are the points; when y =0 we get

x =0, .. (0, 0)

(iii) T(0, 0) are given by a? x2 =0 i.e. x=0 i.e. y-axis.

(iv) No asymptotes.

(v) when y is either greater than 2a or negative, then x2 is negative and hence x
will be imaginary. Hence no part of curve lies below y =0 i.e. x-axis and beyond y
=2a with the above data the shape of the curve is as shown in figure given below.

Y
(0, 2a) |B

X' O X

Yl
Polar Co-ordinates : If we have any horizontal line OX called the initial line and
another line called the revolving line makes an angle 8 with the initial line then
the polar co-ordinates of a point P on it where OP =r are (r, 6).
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P(r, 0)
OP=r

Pole

X
O Initial Line

The point O is called the pole and the angle 6 is called the vectorial angle of the
point P and the length r is called the radius vector.

Rules for tracing Polar Curves -

I. Symmetry

If in the given equation 8 be changed into -6 and the equation of the curve
remains unchanged, then there is symmetry about the initial line.

If the equation of the curve remains unchanged when r is changed into -r, then
there is symmetry about the pole.

IL. Plotting the points Give to 0 certain value and find the corresponding values
of r and then plot points. Sometimes it is inconvenient to find the corresponding
values of r for certain values of 8 and even if we find they involve radical, then in
such cases we should consider a particular region for 6 and as certain whether r
increases or decreases in that region.

For this we must remember the following :

At8=0 T T 3n 2%

2 2
sinf= Min Max Min Max (in Magnitude) | Min
cos® = Max Min Max (in Magnitude) | Min Max
e.g.r=a(1+ cosb)
0=0 600 900 1200 1800
r=2a 3a a a 0

2 2

III. Region No part of the curve shall exist for these values of 8 which make
corresponding values of r imaginary.

e.g. 1?2 =a? cos?0
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As 8 increases from 450 to 1359, then 26 increases from 90° to 270° and this interval
cos20 will always be -negative and consequently r? will also be negative, which
shall give imaginary values of r. Hence no part of the curve shall exist between 6
=450 and 6 = 1350,

We also find the limits to the values of r.

i.e.r =asin20

Now whatever 6 may be sin26 can never be greater than unity and hence a sin26
or shall never be greater then a i.e. the curve shall entirely lie within the circle r
=a.

Example 6 : Trace the curve

r = a (1+cos6) (Cardiod)

Solution : If we change 6 into -6, the equation of the curve remains unchanged
and hence there is symmetry about the initial line.

0 =0 600 900 1200 1800
r=2a gg a a 0
2 2
(@,90°)| C___ (3a/2,60°)
(a/2,120°) D
X (0, 180°) (2a, 0)
O A

We observe that r continually goes on decreasing as 8 increases from 00 to 1809.
The above points trace the curve above the initial line and the other portion is
drawn by symmetry. With the above data the shape of the curve is as in the
figure above.

Example 7 : Trace

r = a (1- cos0) (Cardiod)

Solution : Trace as above
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(§,120°)
2 C B|(a, %0°)

o (22,1809 (0,0)
D O

Example 8 : Trace the curve r2 = a2 cos 26
(Lemniscate of Bernoulli)
(U.P.T.U. 2008-09. 2001)

Solution : Symmetry about the initial line putting r = 0, cos 26 =0 or 26 = izzt- or

0= i% . Hence the straight lines 8 = i% are the tangents to the curve at the pole.

As 0 varies from 0 to T, r varies as given below : -

0 =00 300 450 900 1350 1500 1800

r2 =a2 a’ 0 -a2 0 a’ a2
2 2

r=ta .2 0 imaginary | 0 +a ta
2 2

The above data shows that curve does not exist for values of 6 lying between 45°
and 1350. With the above data the shape of the curve is shown as given below.

19

N le= o
e = _3_Tt \\\ : 2 // 6 - E‘
4 o L 4

N ) s A’
3 TH 2 (@ 0)

Ly A N
Ne : S 4

Example 9 : Trace the curve
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r=acos20
(U.P.T.U. 2003)

Solution : Symmetry about the initial line putting r =0, cos26=0 or 26= ig or

0= ig . 1.e. the straight lines6 = ig- are the tangents to the curve at the pole.

Corresponding values of 6 and r are given below.

0=00 {300 450 600 900 1200 1350 1500 1800

r=a 0 a -a a 0 a a

2 2 2

N

Plot these points and due to symmetry about initial line the other portion can be
traced.

e=§
3n
9= 2-
\4 e:..TE
AN /’ 4
B=n 0=0
9:2 é=7_n
4 4

Note : The curve is of the form of r = a cos n6 (or r = a sin nB) and in such case
there will be n or 2n equal loops according as n is odd or even.
Example 10 : Trace the curve

r =acos30 (U.P.P.CS. 2004)
Symmetry about the initial line. Putting r =0, we get cos36 =0

Which give the tangents at the pole

_(1r_ =-asin30
do
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.. equating gé— to zero we get sin 36 =0

or 30 =0, T, 2m, 3m, 4n

or0=0, z , 2n , T dn
3 3 3
Which give the maximum values of 8 and are given below : -
6=0  [= n r 2n 5n n
6 3 2 3 6
r=a 0 -a 0 a 0 -a

plot the above points and with the above data the shape of the curve is a shown
in figure given below :

Example 11 : Trace the curve r = a sin 20 (U.P.T.U. 2001)
Solution : Symmetry about the line 6 = g putting r =0, sin26 =0
or 20=0, T, 2m, 3n
or 6=0, T , T, sn
2
Which are the tangent at the pole.

% =2acos20, Equating % to zero, we get cos20 =0
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e=§
3n
6=— T
\4 e:._
4
0=n 6=0
51 §= 1
6=— 4
4 a3
2
or29=zt-, 3—“, 5—“, E-
2 2 2 2
3n bn 7n
ore:_l — T T
4 4 4

Which gives the value of r and which is equal to a sin (2-}) = asing =a.

The corresponding values of 8 and r are given below.

=0 [n |x [t [m |5 [3m [7n |2
4 2 4 4 2 4
r=0 a 0 a 0 a 0 a 0

Plot the above points and with above data the shape of the curve is shown as
above.
Parametric Curves

Example 9 : Trace the curve
x =a (t + sin t), y = a(1- cos t) Cycloid
Solution : The given curves are x = a(t + sin t), y= a (1 - cos t)

dy

dx
so — = a(l+ cost)and —==asint
dt ( ) dt

.dy  asint
"_&t—_a(1+cost)
_2sint/2cost/2
~ 2cos’t/2
=tant/2
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t=0 i n -n/2 -
2
x =0 v amn yis -amn
al —+1 -al —+1
2 2
y =0 a 2a a 2a
d_y= 0 1 0 -1 N —
dx

we observe that there is a point (0, 0) on the curve and slope of the tangent there

is 0 i.e. tangent will be x axis. Again we find that there is a point[a(g + 1),a] and

slope being equal to 1 showing that tangent at that point will make an angle of
45° with positive direction of x axis. Further there is a point (am, 2a) and slope
being « indicates that tangent makes an angle of 90° with x axis. Similarly other
points are observed. If we go on giving to t values greater than n or less than -7,
we shall have the same type of branches.

o fmmmmmm e m S
P

The point O is called vertex and X'OX ie. LM is tangent at the vertex, CAB is
called the base.

Example 10 : Trace the curve

x=a(t-sint),y=a(l-cost)

Solution :

dx

— =a(1-cost), d—y =asint
dt dt




Curve Tracing

.dy  asint _ 2sint/2cost/2
“dx a(l-cost) 2sin’t/2

=cott/2
t=0 /2 T 3n 2n
2

=0
X a(z—l) amn a(3—ﬂ+1) 2an
y =0 a 2a a 0
_(DI__ 1 0 -1 )
dx

Here we have taken t from 0 to 21 and we get one complete cycloid. If we give
negative values we shall get the corresponding cycloid on the other side of y axis

and so on.

DA

an
O|t=0 A C t=2n

Xl

Example 11 : Trace the curve

x=acost+ glog tanzé ,y =asint (Tractrix)
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Solution :
dy

— = —asint+32.
dt 2

tan —
. a
=-asint+

t
2sin—cos—
2 2
a
=——(1-sin’t
sint( )
cos’t

sint

dx
d —= t
an ” acos

., dy _dy/dt
“dx  dx/dt
sint
=acost. 3
acos“t

=tant

t=0

x
i
8
8 I ON|§
8
o

When t =0 the corresponding point is (- «, 0) i.e. a point at infinity on the
negative side of x axis and slope there, being 0 indicates x axis will be tangent at
that point which is situated at « hence x axis is an asymptotes. Similarly plot
other points.
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B (0, a)
2a
—>t=n
B'V(0, -a)
EXERCISE
1. Trace the curve y?2 (2a -x) =x3 (Cissoid)
Ans.

Yl

__--___-_______A________--___-__-
¥
e

2. Trace the curve xy? = a%(a - x)
Ans.
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Y
A X=a
X A@D ,x
)
v
YI
3. Trace the curve y2(a - x) = x%(a + x) (Strophoid)
(U.P.P.CS.1994)
Ans.
Y
A
x+a=0 X=a
y =X
a0
'< @9 >X
(-a,0) 0 y =-x
Yl

4. Trace the curve x2y2? = aX(y? - x?)
Ans.
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i i
; Y !
! A !
1 |
1 |
: :
L . !
Xx=-a] y=-X""-i0) ey =x Ix=a
] ‘\N\ ’—” 1
X'« ! € + >X
! - ~ao 1
I~ FEX :
| - = 1
1 !
| |
1 |
1 |
| |
i Y' :
i l
5. Trace the curve x2/3+y?/3 = a2/3 (Astroid)
Ans.
Y
A
t=1 0
> AB(Oa)
o t=7 =0 . X
(-a,0) AT A(a 0)
(0, -a)
Yl
6. Trace the curve r = a sin26
(U.P.T.U. 2002)

Ans.
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Remark : In the curve r = a sin n® or r = a cos n@, 3 n loops if n is odd and 2n if n
is even.
7. Trace the curve 3ay?2 =x(x - a)?

Ans.
Y
O /\/ > X
(a 0)
YY

8. Trace the curve r = a sin 30
(U.P.T.U. 2001)
Ans.
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9. Trace the curve r = a+b cos6, a>b
(Pascal's Limacon)
Ans.
a-b a+b 6=0
——————— > X
O0=mn @)

10. Trace the curve reciprocal spiral rf =a
Ans.
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v

YI
11. Trace the equiangular spiral r = a e*°'®
Ans.

O
(@ 0)

12. Trace the curve r = 2 a cosb (circle)
Ans.
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2a A -
I
f
|
|
I
13. Trace the curve — =1+ cos 6 (Parabola)
Ans.
Y
5]
INRNCE
C (4a L
X > X
O A (a, 0)
YI
Objective problems

Four alternative answers are given for each question, only one of them is correct.
Tick mark the correct answer -
1. Which of the following lines is a line of symmetry of the curve x3 + y3 = 3(xy?
+yx?)?

(LAS. 1993)
(i) x =0 (if)y =0
(iii) y =x (iv)y = —x

Ans. (iii)
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2. For the curve y2 (2a - x) = x3, which of the following is false ?
(i) The curve is symmetrical about x axis.
(ii) The origin is a cusp.
(iii) x = 2a is a asymptote.
(iv) Asx —3a,y—> «.
Ans. (iv)
3. The curve x%(x2 + y2) =a2 (x2 - y?)
(1) Symmetrical about x =0, y =0
(2) y = £x are tangents at origin
(3) x = ta are the asymptotes.
(4) has no point of inflexion of these statements -
(i) Only 1 and 2 are correct.
(ii) 1, 2 and 4 are correct.
(iii) 2, 3 and 4 are correct.
(iv) All are correct.
Ans. (if)
4. The equations of the inverted cycloid is -
(U.P.P.CS. 1994)
(i) x = a( - cosB)
y = a(1l - cos0)
(ii) x = a( + sinB)
y = a(l - cosb)
(iif) x = a(0- sinB)
y = a(1 - cosB)
(iv) x = a(0 - sinB)
y = a(1 + cosb)
Ans. (iii)
5. The curve given by the equations x = a cos®0, y = a sin30 is symmetric about -
(U.P.P.CS.1995)
(i) Both the axes.
(if) x - axis only.
(iii) y - axis only.

(iv) None of the two axes.
Ans. (i)
6. The curve x3 +y3 -3axy = 0 has at origin -
(i) Node (ii) Cusp of first species
(iii) Cusp of second species  (iv) Conjugate point
Ans. (i)
(R.AS. 1994)

7. The curve y = 3x5 - 30x4 + 3x - 20 has how many points of inflexion?
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(i) None
(iii) Two

8. The graph of the function f(x) = !

X

(i)

(i)

(ii) One
(iv) Four

Curve Tracing

is

Ans. (ii)

(M.P.P.C:S. 1995)

>X (i) X<

Y
ﬂ\
X' €
¢
YI
Y
N
X' €
v
YI

>X  (iv) X<

Y
1\
> X
v
YI
Y
A
> X
v
Yl
Ans. (ii)
(R.AS. 1995)

9. Consider the following statements with regard to the curve x¢ + y® = a2x2y2

Assertion (A) - Curve is symmetrical about both the axes.

Reason (R) - By putting -x and -~y in place of x and y respectively, the equation of

the curve remains unaltered.

of these statements -

(i) Both A and R are true and R is a correct explanation of A.

(if) Both A and R are true and R is not a correct explanation of A.
(iii) A is true but R is false.

(iv) A is false but R is true.
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Ans. (ii)
10. The graph of the curve x= a(cost+%log tan’ %), y = a sin t is symmetrical
about the line.

(H)x=0 (ii) y =0
(iif) y = x (iv) None of these.

Ans. (ii)
1-t 2t .
11. The graph of x = el y=1,¢ sa
(i) Circle (ii) Ellipse
(iii) Cycloid (iv) None of these.
Anms. (i)
12. If x and y both are the odd functions of t then the curve is symmetrical -
(i) About x axis (if) About y axis
(iii) About y = x (iv) In opposite quadrant
Ans. (iv)
13. The curve x = acos¢, y = a sind is
(i) Circle (ii) Ellipse
(iii) Parabola (iv) None of these
Ans. (i)

14. The curve traced by the equation y2(a + x) = x2(a -x) is
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Curve Tracing

—~
=3
S
v

Y
7

(a,0)

Yl
(iv) None of these.

15. The curve traced below is represented by -

Y
A
(0, 2a)
/N
X €« —> X
O
Yl
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(1) x(y? + 4a?) = 8a3 (ii) xy? = 4a?(2a -x)
(iii) y(x2 + 4a2) = 8a3 (iv) None of these

Ans. (iii)
16. The curve traced by r = a(1+ cos8) is

O @ C ©0) RO U (22,0

(i) f=n

(iv) None of these.
Ans. (ii)
3at 3at’
17. Th traced by x = , V= is
e curve traced by x 120 y 1+t21
Y
X , :
ix=a
. g (-a, 0) i
X < > X i) Xe— L
o /|0 @ 6 H(a, 0) X
s M ;
YI
Y
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18. The curve traced by x = a(t +sint) and y = a(1 + cos t) is -

Y

(0, 2a)

|
1
'
]
)
t
]
i
¥
1
|
1
i
'
'

® X (-am, 0) (am, 0) X

(~am, 2a) (am, 2a)

»

(id) X S X
Yl
Y
A
(Ola)\
(iv) X' > X

(iv) None of these
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. Ans. (i)
19. The Folium of Descartes is given by the equation
(i) (2 +y2)2 = 2202 - y?)
(iiy x3 +y3=ad
(iii) x3 +y3 = 3axy
(iv) None of these
Ans. (iii)
20. The Lemniscate of Bernoulli is represented by the equation
(i) x6 +y6 = 3x2y?2
(i) (2 +y?)? = 2%(x2 - y?)
(iii) x> + y5 = 5a?x?y?
(iv) None of these
Ans. (ii)
21. The number of leaves in the curve r = a sin 50 are
(i) Two (ii) Five
(iii) Ten (iv) None of these.
Ans. (ii)
22. Match the list I with list II -
List]
curves
(a) x2y?2 = x2 - a?
(b) y(x2 + 4a?) = 8a3
(0) y2x = a%(x - a)
(d) X2y = 202 + y?)
ListII
Portion of the curve
(1) Lies betweeny =0 and y = 2a.
(2) Lies outside the lines x = ta and inside the lies y = 1.
(3) Does not lie between the lines x = +a, y = ta.
(4) Does not lie between the lines x = 0 and x =a.
Correct match is -

a
(i)
(i)
(iii)
(iv)

23. Match the list I with list I1.
List1

curves

(a) y2(a2 + x2) = x(a2 - x?)

N SN
N = s g
W A
Wb W Wwo,

Ans. (i)
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(b) a%y2 = a2 x4 - x6

(©)x2y2=(a+y) (@-y?)

(d) x3 - ay2=0

(e) x3 + y3 - 3axy =0

List I1.

Symmetry about

My =x

(2) x=0

(3)x =0,y =0

4y =0

Then correct match is
a b

)

(i)

(i)

(iv)

24. Match the list I with list II.
List L.
(@) r=a(l + cosH)
(b) r = a(1 + sind)
(c)r2=a2cos 26
(d) r=acos26
List I
Symmetrical about
(1)6=0and 6=mn/2
(2)6=0
7
(3) 0=+
The correct match is
a

W W W W
N W W R

WNNNN
Y -
N S )

®)

(ii)
(i)
(iv)

WNNN

N W= o
_ W W =N
N == e

81
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Chapter 4

Expansion of Function of One

Variable

Taylor's Theorem : If f(x +h) is a function of h which can be expanded in
ascending powers of h and is differentiable term by term any number of times

w.r.t.h then
f(x+h) = f(x) +hf'(x) + h—2 f'(x)+ —}i i
12 13

Proof : Let f(x+h) = Ag + Ajth+ Aoh2+ Ash3 + Agsht+ ...

Differentiating it successively w.r.t.h, we get

fi(x+th) = A; + 2Azh + 3Ash2 + 4Adh3+......... ... (ii)
f'(x+h) =2A2 + 3.2Ash + 43Ash2+ ...l (iid)
f'"(x+h) =32 A3+432Ah+ ... (iv)
Putting h =0 in (i), (i), (iii), (iv), ............ etc. we get
Ao =f(x), A1 = é f'(x), Az = éf"(x). As =é— f"(x) etc.
Substituting these values of Ao, A1, Az, .......... etc. in (i) we get
2 3
f(x+h) = f(x) + hf'(x) + El?j ' (x)+ %— U X)F v)
Corollary 1. Substituting x =a in (v), we get
2 3
f(a +h) =f(a) + hf'(a) + —}é— f'(a) + hE '@+ (vi)
Corollary 2. Substituting a =0 and h= x in (vi), we get
X2 x3
= f(0) + xf'(0) + — £'(0) + —f"'(0) +.........
f(x) = £(0) + xf(0) B ©) 3 (©)

Which is Maclaurin's theorem,
Corollary 3. Substituting h = x -a in (vi), we get

£ = f(a) + (x-2) £@) + E2L paye B2 gy

12 3
This is the expansion of f(x) in powers of (x - a).
x XX
1:Show that 1 th)=logh+ ————+—-.......
Example 1 : Show that log (x +h) = log T + e
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Solution : Here we are to expand in powers of x. Thus we have to use the form

f(x+h) = f(h) + xf'(h) + X_IZZPI(h) + —g—f"‘(h) oo (i)
Here f(x+h) = log (x +h)
~f(h)=logh; f'(h) = —11;; f'(h) = hz ;f'(h) == etc

.. Substituting these values in (i) we get

log (x+h) =log h + x (%) + Xé(—-}%—) + %(%) F o

x? x3

h 2R’ 3h3
Hence Proved

Example 2: Express the polynomial 2x3 - 7x2+ x-1 in powers of (x-2)

(B.P.S.C. 2007)

=logh +

Solution :

Here f(x) = 2x3 + 7x2 + x-1

s f(x) = 6x2+14x +1; f'(x) = 12 x +14 f"'(x) = 12; fv (x) =0
Here we are to use the following Taylor's theorem

f(x) = f(a) + (x-a)f'(a) + ———— (x- 2 ) f'(a) + ———— (x- B 2) '@+ (i)
Here a = 2, as we are to expand in powers of x-2
. putting x =2 in f(x), f'(x), ............ etc, we get
f(2) =2(2)3 +7(2)2 +2-1=45

f(2)=6(2)2 +14(2) +1 =53

f'(2)=(12) (2) +14 =38

f"(2) = 12, fiv(2) =0 etc.

. From (i) substituting a =2 and these values, we get

“2)' 1)

—2V
253 + 7x2 + x-1 = 45 +(x -2) 53+ 82 5. (X 5

12
=45 + 53 (x-2) + 19(x-2)2 + 2(x-2)3 Answer.
Example 3: Expand sin x in powers of (x - g) .
Solution: Here f(x) = sin x

ol

Here we should use the following form of Taylor's theorem.
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Expansion of Function of One Variable

L) £ (a) + x I_)3 @) + oo (i)

Now we have f(x) = sin x and a = g , as we are to expand in powers of(x - —;E)

f(x) = f(a) + (x-a) f£(a) + b

f'(x) = cos x, f'(x) = - sin x, {"'(x) = - cos x fiv (x)= sin x etc.

putting x =%, we get f[g)=sing =1

f! It_ =Cos£=0;f" Zt— =—sin—1-t-=-l
2 2 2 2
f"(—’i)= —cosZ= 0;f" (E) = sin— =1etc.
2 2 2 2

From (i), puttinga = g and substituting these values, we get

sinx=1+(x—£)(0)+(x‘g) (—1)+(X—g) (0)+(x——g) (1)

2 12 3 |4
=1—é(x—g)2 +—é—(x—g)4 ..................... Answer.

EXPANSION OF FUNCTION OF SEVERAL VARIABLES:

TAYLOR'S SERIES OF TWO VARIABLES:

If f(x,y) and all its partial derivatives upto the nth order are finite and continuous
for all point (x,y) where .
a<x<ath, bsys< btk

2 3
Then f(a+h, b+k) = f(a,b)+(h—a—+k~a— f+~(hi+ki) f+l(hi+k-a— (S
dx oy 20 ox ay 3\ ox 9y

Proof: Suppose that f(x + h, y + k) is a function of one variable only, say x where
y is assumed as constant. Expanding by Taylor's theorem for one variable, we
have

fo+ B,y +By) = fy +89) + 5 oy + o)+ OL 2 gy oy +
7 ’ ax ’ [_2_ ax2 Y TOV) Toiiiiiinnnnne

Now expanding fory, we get

f(x + Ox, y +0y) = [f(x,y) + 8y— f(x,y) + (Sé) —;yz—z F ) ]
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9 dx)" o
+8x.§;[f(x,y)+6y—yf(x,y)+ ........... }+( x) %{f(x,y)+8y——(x,y)+ .......... :|+..

[f(x y)+5ya f(x,y)+ (Ii) 3y 2f(x y)+ ............ i]+

) 0’ )
SX[S;f(x,y)+8y—é;(a—yf(x,)’):| (é) {axz £(%,y)+eorrreeenne ]+ ..........

)
= f(x,y)+{8xaif(x,y)+8y5—f(x,y)} L[(S x)?

25x 8y 2;(’5 ) 4 sy - f(y" Y)] .........

2f 2
=f(a+h,b+k)=fab)+ [hﬁ kaf} i[hza_ vk 2E af]+

ox  0x ox’ axay dy’
2
d d 1/, 0 d
f(a+h b+k)=flab)+|h—+k—|f+=h—+k—| f+..........
=>f(a ) = f(a,b) { ax+ ay} +|_2_[ ax+ ay]
on putting a =0, b =0, h=x, k =y, we get f(x,y) =

of of ) 1[ ,0f Py L
f(0,0) +| x—+y=— [+ =| X’ =5+ 2xy =+ Y 5 [*eerrerrnnn,
©.0) (xax+yay)+|2[x Y oxay *YoE ay’

Example 1: Expand ex sin y in powers of x and y as for terms of the third degree,
Solution: Here f(x,y) = exsiny = £(0,0) =0

fu(x,y) = exsiny = £4(0,0) =0

fy(x,y) =excosy = fy(0,0)=1

fux(x,y) = exsiny = £,x(0,0) = 0

fxy(x,y) = excos y = fxy(0,0) =1

fyy(x,y) = - exsiny = fy4(0,0) =0

fuox(X,y) = exsiny = fxxx(0,0) =0

frxy(X,y) = €X cos y = fxxy(0,0) = 1

fuyy(x,y) = - exsiny = fiyy(0,0) = 0

fyyy(x,y) = - excos y = f5y5(0,0) = -1

Then by Taylor's theorem, we have f(x,y)= f(0,0) +

( aax+yai,}f(0 0)+|i( ;xJ'yai:) £(0,0)+ L@(Xa%”’yaw £(0,0) +...oe.
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2

l_

3x? Y 3
0,0)+— 0,0
|§ xxv( ) E Xy xyv( )+ L yvv

Secsiny =0+ x(0) +y(1) + 30 +xy )+ L ©)

= £(0,0) + x£,(0,0) + y£,(0,0) + = £, (0,0) + =2 £, (0, 0)+—f (0,0)+—

L vy XXX (0 0)

L
(0,0)+ e

l_

3

x 3x%y 3xy? y?
— —=(D+——O)+=—(-1) + ..ceeree.....
+6(0)+6()+ 6()+6( )

3
=exsiny =y + xy +—§}—I—% Fon Answer

Example 2: Expand ex cos y near the pomt( ) by Taylor's theorem.

(U.P.T.U 2007)
Solution: We have

2 3
f(x + b, y +k) = f(x,y)* (h§+kai)f+l[hi’_+kij f+l(hi+kﬁ) 4o,
x 3y

28 ox oy 3
; n T
Againexcosy = f(x,y) = f[l +(x —1)'Z+(y - ZH
where h=x-1and k=y -%

excosy = f(1+h, -Z +k)

T
KX f y) = ex = 11__ =
(X Y) exCcosy ( ) \/5

af(l,ﬁ)
) 4

e
—a—x'- =e cosy = I -—75‘

af(l,Fj
4

F . e
— =-e"siny = =——
3y YT oy 2
2¢[1, T
. =,L4) e
i y F¥e 2
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aZf(lﬁ)

2 ’

_@_ﬁ =—e"cosy=>—-——§i—=——e—

dy dy 2
2¢[1

ey,

= - = =
oxdy e smy oxdy J2
Substituting these values in Taylor's Theorem, we obtain

i 2 E RO ]
+é—|:(x—1)2%+2(x—1)(y~g)(——j—§—)+(y—g) (_%J} ..........

Example 3: Expand tan'1§ in the neighbourhood of (1,1) by Taylor's theorem.

Answer.

Hence compute f(1.1, 0.9).
(U.P.T.U. 2002, 2005)

Solution: Here f(x,y) = tan-l‘z(i .................. (1)
a=1,b=1

1 T . .
~ f(1,1) = tan? (-1-) = tan-! 1 putting x =y =1 in (i)

By Taylor's theorem , we have

£ (x,y)= f(ab)+[x a_§i+(y b)g}f/

Here a=1, b =1 so we have
f(x,y) = f(1,1)+ [ x—1 -§£+(y 1)56:7}1{()( 1)2—gz—+2(x 1)(y-1) LA +{y-1) a—zf]+....(ii)

Now from (i) we have

2 0°f 0% L
i! llg[(x—a) pve +2(x~a)(Y—b)axay+(y_b) é;ﬁ]* ______

T A _T
f(x,y) = tan! < = f(1,1)= 1

Jof 1 (__}LJz_—_y_ (af) _1
"X 1+(y)2' X)) X4yt Oy, 2

X
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Expansion of Function of One Variable

0? y? —x ( o*f )
= > = =0
axdy (y‘+x2) oxdy wn

of _ X [afj 1

i =5
ay X +y dy ) 2
*f -2xy o*f 1
—_— = — e
dy* (x*+y*) dy’ 2

2
Substituting the values of f(1,1) ( af) [af ] ( Jf ) etc in (ii) we have
(1,1 ,

ox dy oxdy )
tan-l‘x}','= Z-—%(x—1)+%(y—l)+é—l:(x—l)2.5+2(x—l)(y——l),0+(y—l)2(—%)j|+ .........
=>tan—l—z—=%—(xz1)+(y21)+é|:(xml) ;(y—l) }+ .............. (iii)

putting (x-1)=1.1-1=0.1,(y-1)=0.9-1=-0.1, we get
n 1 1 1 1

f(1.1,09) =—~= (0.1)- = (-0.1)+= (0.1)2=-— (-0.1)2

(11,09) =7 -2 01) 5 (01)+ 2 (01)2=-7 (01)

=0.8862-0.1
= (.7862 Answer.
Example 4: Expand xy in powers of (x-1) and (y-1) upto the third degree terms.
(U.P.T.U 2003)
Solution: We have f(x,y) = xv
Here taking a =1 and b =1 we have Taylor's expansion as
of of | 1 2 O°f 0*f 2 9°f

f(x,y)=1f(a,b - -b —(x— +2 b b
(x.y)=f(a )+[(x a)=—+(y )ay}'tg[(x a) =7 +2(x-a)(y- )axay (y-b) W ]

1 3 2 ? ? 3 Of

=l (x—-a) —5+3(x~ - 3 -b) — 1
o) Zhwateal (v -0 2 vateally-af T2+ (- 2E| @)

Now f (x,y) = xy =£(1,1) =1

£ (x,y) = yxr1 =£(1,1) =1

fy (x,y) = xvlog x =, (1,1) =0

fux (0Y) = y(y-1)xr2 =£ (1,1) = 0

fiy (x,y) = xv1 + yxy-llog x =fxy (0,0) =1

fyy (x,y) = xv(log x)2 =fyy (1,1) = 0

b (x,y) = y(y-1)(y-2)% 3 = (11) =

faxy (X,y) = (y-1)xv2 +y(y-1) x y2 log x+yxy 2 =fuy (1,1) = 1
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fayy (x,y) = yxv -1 (log x)2 + xy 2logx _ yxrl(log x)2+2xy -1 log x =fxyy (1,1) = 0
X

fyyy (x;y) = (log x)* =fyyy (0,0) = 0
Substituting these values in the Taylor's expansion, we get

xy = 1+(x-1) +0 + —EZ—[O+2(X-1) (y-1)+0] + é [0+ 3(x -1)2 (y -1) + 0+0]

=xy =1+ (x-1) + (x -1) (y -1)+ % (x-1)? (y-1) Answer.

Example 5: Find the first six terms of the expansion of the function ex log (1+y) in
a Taylor's series in the neighourhood of the point (0,0)

Solution: Here f(x,y) = ex log (1+y) = £(0,0) =0

fx(x,y) = exlog (1+y) = £(0,0) =0

X

fy(xy) = 5= 6001
fux(x,y) = exlog (1+y) = £« (0,0) =0

X

e
fxy(xy) = Try = fxy (0,0) =1

X

e

fyy(xy) === £y (0,0) = -1
1+ y)

fxxx(x,y) =eX log (1+y) = fxxx (0,0) =0

X

fay(x,y) = —— = foay (0,0) = 1

1+y
eX
byy(xy) =~ ——5 = gy (0,0) = -1

(l + y)2

X

2e
fyyy(x,y) = "‘"_( oo = fyyy (0,0) =2

+y)

we know that

£ (xy) = £0.0)* x  (0,0) + y fy Q01+ 5 b Fux 00+ 2xy iy (0L0)* ¥2 5, 00)] +
—é [33 fx (0,0) + 3x2 ¥ fy (0,0) + 3xy2 fxyy (0,0) + y3 fyyy (Q,0)] +..oveee..

o exlog (1+y) = 0 +[x.0 + y.1] +% [x2. 0 +2xy.1 + y2 (-1)] + % [x3. 0 + 3x?y.1 + 3xy?
(D +y32+
exlog (1+y)=y +xy - ly2+ lx2y—lxy2+ 1 Vo Answer.

2 2 2 3
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Expansion of Function of One Variable

EXERCISE
1. Apply Taylor's theorem to find the expansion of log sin(x + h).

) ) h2 h3
Ans. log sin (x + h) = log sin x + h cot x - 5 cosecZ x + 5 cosec? cot x +

2. Expand 2x3 + 7x2 + x -1 in powers of (x -2).
(B.P.S.C. 2007)
Ans. 45 + 53(x-2) + 19(x-2)2 + 2(x-3)?
3. Expand x2y + 3y -2 in powers of (x-1) and (y + 2) using Taylor's theorem.
(U.P.P.C.S.1992; P.T.U. 2006)
Ans. -10 - 4(x-1) + 4(y +2) -2(x -1)2+ 2(x-1) + (y + 2) + (x - 1)2 (y + 2)

(x+h)(y +k)
(x+h)+(y +k)
degree terms.

2 2 h2 2 2.2
Ans. Y +hy +k>2<_ y3+2hkx513_ kx3
Xty (x+y)  (x+y) (x+y) (x+y)
5.1f f(x,y) = tan’! (xy), compute an approximate value of {(0.9, -1.2)
Ans. - 0.823

6. Find the expansion for cos x cos y in powers of x, y up to fourth order terms.
2 2 4 2,2 4

Ans.cosx cosy = 1——5-—-},5-+)2<—4+%Y_+%’Z

4. Expand in powers of h and k upto and inclusive of the 2nd

7. Expand sin (xy) about the point(l,g) upto and including second degree terms

using Taylor's series.

Ans.l—%(x—l)z—g(x“l)( ‘E)_l( _EY

2) 2 2
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Chapter 5
Jacobians

JACOBIANS
Jacobians : If u and v are functions of the two independent variables x and v,

then the determinant.
(U.P.P.C.S. 1990)

du du

ax 3y

ov ov

ax dy
is called the Jacobian of u, v with respect to x,y and is written as
gg::;)) or J(wv)or] (2:;}
Similarly if u, v and w be the functions of three independent variables x,y and z,

then

ou Ju du
> 3 %
a(u,v,w)_av ov ov
a(x,y,z) “lox 5; oz
ow Jw ow
™ 3y

it is written J(u,v,w) or ](u, v.w ]
XY,z

Properties of Jacobians

(1) First Property:

If u and v are functions of x and y, then

d (11, V) J (X’ Y)

a(x,y)'a(u,v) =1 orJj =1
(U.P.T.U. 2005)
_a(u’v) [ a(x,y)
Where | = a(x,y) and J'= 3, v)
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Proof: Let u= u(x,y) and v = v(x,y), so that u and v are functionus of x and y
du du |Igx dy
o(u,v) 9(x,y) _ ox 9y [lgu ov

N Sley) Aluy) fv av |lay ay
ox dy du ov
on interchanging the rows and column of second determinant
du du |lgx dy
_|9x 9y Ju ou
av ov ||ox dy
ox oy flav av

dudx dudy dudx, dudy
dx du dy Jdu  9Jx dv Oy ov )
v vy wa ey
ox du dy du  0dx dv dy ov
Now differentiating u = u(x,y) and v =v(x,y) partially with respect to u and v, we
get

u_, o ix oudy
du ox du dy du
..(?E__—_O_-:a_u'?i.FiE_gX
ov dox dv dy dv 3
dv_y_ovox vy “
av ox av  dy av
dv_g_dvox vy
du ox du dy du

on making substitutions from (ii) in (i) we get
d(u,v) d(x,y) |1 O
3(x,y) o(u,v) '0 1
or]J]' =1 Proved.

(2) Second Property
If u, v are the functions of r,s where r,s are functions of x,y then
d(u,v) 9(u,v) 9(r,s)

(xy)  3es) Axy)
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dr
x
s
9x

Jacobians

on interchanging the columns and rows in second determinant

ou Jdu
Proof: a(u,v). ors) _lor s
a(r,s) d(x,y) |ov ov
or O0s
du du _a_f_ ds
_-(’; s |lox  ox
“lov ov Jr _QE
dr os |9y oy
o uds ud
or ox s ox  or oy ds
v vas ovor ov
or Ox 0s Ox  Or 0y Os
ou ou
x oy
Tlov v
ox oy
= 9(u,v) Proved
3(x,y)

03]

2P 2|

S

Note - Similarly we can prove that

d(u,v,w) d(u,v,w) 9(r,s,t)

d(x,y,z)  0(rst) 9(xy,z)
(3) Third Property
If functions u,v,w of three independent variables x,y,z are not independent, then
o(u,v,w)
——=0

9(x,y,z)
Proof: As u, v, w are independent, then f (u, v, w) =0
Differentiating (i) w.r.t x,y, z we get

()

o du O ov Of dw -
du dx dy dx oOw ox
o u Hw, KWy (i)
du dy Ov dy ow dy
N KN, AWy (iv)
du 0z Ov dz OJw 0z
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— from (ii), (iii) and (iv), we have

XX,

, Show that the Jacobian of yi, y2,

%=

X3

(U.P.P.C.S. 1991, U.P.T.U. 2002, 2004)

of of of
Eliminating —,—,
iminating ——, ==, =
du v Iw
dx oJx Ox
u v dwl
dy dy dy
du v ow
dz dz 0z
on interchanging rows and columns, we get
du du 2
ox dy Oz
L |
ox dy oz
dw ow  Iw
dx dy 0dz
= ______.a(u’ v,w) =0 Proved
a(x,y,z)
Example 1: If y, = X% y, = iy y
x1 X2
y3 with respect to x1, x2, x3 is 4.
Solution: Here given
_XXs _ X% = XX
Y x, Y2 x Tk,
¥ M W
ox, Ox, 0X,
oy1,y2rys) |8y, 3y, 9y,
O(x,,X,,%;) |0%, 09X, Ox,
s % %
ox, 0x, O0X,
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XoX3 Xy X3
X X X
X3 X3X; X
Xy "22 Xy
X X X%
X3 X, X3
1 XXz X3X; XXy
=g XaXs T XXy XX,
X, 2%, X,
T XaXg XgXy T XX,
s 2 2 -1 1 1
X, 2%,7 X,
==z 1 -1 1
XXX, X,

111 -1
=-1(1-1) -1(-1-1) + 1(1+1)
=0+2+2
=4 Proved

Example 2: If x = r sin6 cos, y = r sind sin¢, z = r cosO, show that
(U.P.T.U. 2001)

M = r2 5inB and find M
a(r,0,0) o(x,y,z)
(U.P.T.U. 2001)
Solution:;
ox ox ox

ar 3 3
d(xy.z) |oy dy dy

d(r,0,0) |or 06 9¢
0z 0z iz_
dr 99 d¢
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sin@cos¢ rcosBcosd ~rsinBsingd

=IlsinfOsin¢  rcosBsin¢ rsin6cos ¢
cosf —rsinf 0

sinBcos¢® cosBcos¢ —sind

=r’sinB|sinBsind  cosBsind  cosd
cos0 —-sin@ 0

cosOcos¢p -sing sinBcos¢ —sind

=r’ sine{cose }
= r2 5in [cosB (cosO cos?p + cosh sinZp)+ sind (sind cos2d + sinb sin?d)]
=12 5inB (cos20 + sin20)

cosBsin¢ cosd sinBsin¢ cos ¢

=r2sinB
g((:((:',(z)) S sline (using first property) Answer.
: 9(x,y,z)
Example 3:Ifu=xyz v=x2+y2+ 2z, w=x+y+gzfind = ——=.
d (u, v, w)
(U.P.T.U. 2002, 03)
Solution: Since u, v, w are explicitly given, so first we evaluate J'= M
3(x,y,z)
du du u
dox dy 0z
dv odv ov yz zxxy
N ': —— —_— —_— | = 2 2 2
ow] ox dy oz 1X 1}’ 1Z
ow Iw dw
ox ay oz

=yz (2y - 2z) - zx (2x - 2z) + xy (2x - 2y)
=2[yz(y - 2) - zx (x - 2) + xy (x - y)]
=2(x%y - x2z - xy? + xz? + y2z - yz?)
=2[x2(y - z) x (y2- 22) + yz (y - 2)]
=2(y-2z)[x-x(y +2) +yz]
=2y - 2) [y(z-x) - x (z-x)]
=2(y-2)(z-x) (y - %)
=-2(x-y)(y-2) (z-x)
Hence by JJ' = 1, we have

_d(xyz) 1

= a(u'v'w)——Z(X—Y)(Y—Z)(Z-—-x) Answer.
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ax,y,z)
(u,v,w)
(I.AS. 2005, U.P.P.C.S. 1990, U.P.T.U. 2003)

Example 4:Ifu=x+y+z uv=y+z uvw=z Evaluate

Solution:
x=u-uv=u(l-v)
y=uv-uvw = uv (1-w)
Z=uvw

ox dx Ix
du dv ow
Cd(xy,z) |9y dy oy
”a(u,v,w)—au ov ow

0z Jz 0Oz
du v aw
1-v -u 0
=v(l-w) u(l-w) -uv
vw uw uv
1 0 0
=iv(l-w) u(l-w) -uw
vw uw uv

Applying Ri R + (R2 + R3)
=uzv (1-w)+u2vw
=u?v  Answer.
Example 5: If u, v, w are the roots of the equation (A - x)? + (A - y)?+ (A - z)? =0, in
o(u,u,w)
o(x,y,z)
(LA.S. 2002, 2004; U.P.P.C.S. 1999; B.P.S.C. 2007; U.P.T.U. 2002)

A, find

Solution: Given

A-xpP+ A-ypP+(h-2p=0

=S3A3-3(x+y+ z)A2+3(x2+y2 + 22 - (x3 + y3 + 23) =0
sum of theroots =u+v+w=x+y+z (i)
product of the roots =uv+ vw + wu =x2+y2+ 22 (i)

uvw = %(x?’ £ y3+ 29) (i)

Equation (i), (ii) and (iii) can be written as
fi=utv+o-x-y-z
f=uv+vw+wu-x2-y2-z2
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f3 = uvw -% (x3+y3+ x3)

o o o
ox dy oz
ae.b.5)_[ag 3 o

a(x,y,z) x dy o0z

ox dy oz
-1 -1 -1
=|-2x -2y -2z
—x2 _yz — 72
1 1 1
=(1)(2))x Y oz
X2 y2 ZZ
0 0 1| Applying
=-2|x~-y y-z z|¢—oC-C
oy y oz 7 G—C,—C,
0 0 1
=-2(x-y)ly-z) 1 1 z
x+y y+z z°

—2(-y) (D) (7 + 2 -x-y)
=-2(x-y)(y-2)(z-%)

o of of
du dv ow
o(6.5,5) |og af, of,
d(u,v,w) [du v Jw
o of o,
du dv JIw
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1 1 1
=lV+Ww u+w u+v
VW wu uv
0 0 1
=lv-u w-u  u+v
w(v-u) u(w-v) uv
0 0 1

=(v-u)w-v)|1 1 u+v
w u uv
~(v - u) (W~ v) (u- W)
=-(u-v)(v-w)(w-u)
a(f,,5.5)
a(u,v,w) -d(x,y,z

)
)
f)
)

Therefore 3(%y,2) (fwfr
( v, W
__2(x-y)y-2)(z-
—(u-v)(v-w)(w- u)
2(x-y)y-z)(z=x) ,
T wiww)
EXERCISE

. a{x,y
1.If x = r cos, y = r sinb, evaluate Y and

2. Ifx=uv, y=—-" find
u-—-v

a , 2 _ X2
3w+ vi=x+y, uz+v2=x3+y3 prove that (u V)=l (y )
o(x,y) 2uv(u-v)
4. Ifu=xy+yz+zx,v=x2+y2+z2and w = x + y + z, determine whether there
is a functional relationship between u,v,w and if so, find it
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o(u,v,w)

Ans. w2-v-2u=0, —— =0
ns. w2-v-2u 3(xy,2)
5. If u,v,w are the roots of the equation in A and
a(x,y,z
Then find -—(——)-’——)
d(u,v,w)

6. If u,v,w are the roots of the equation

(x-a)p + (x - b)® + (x - ¢)* =0 then find 9u,v, w)

104
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d(a,b,c)

+ + =
at+A b+A c+A

(I.A.S. 2005)
(u-v)(v-w)(w-u)

A ) b= c)(c-a)
(U.P.T.U. 2002)
Ans. 2(a-b)(b-c)(c-a)

(= v)(v-w)(w—u)



Chapter 6
Approximation of Errors

Let z = f(x,y) (i)

If 8x, 8y are small increments in x and y respectively and 8z, the corresponding
increment in z, then

z+ 0z =f(x + 8x, y + dy) (ii)

Subtracting (i) from (ii), we get

dz = f(x + 8x, y + dy) - f(x,y)

of of
= 0x—+ 0y —
xax+ yay

As neglecting higher powers of 3x, 8y

~0z= —g{ﬁx + %Sy (approximately)

= If 3x and Jy are small changes (or errors) in x and y respectively, then an
approximate change (or error) in z is dz.

(approximately)

Replacing 6x, 3y, 8z by dx, dy, dz respectively, we have dz = ;)_f dx + of dy
X

dy

Note 1. If 8x is the error in x, then relative error = —61
X

percentage error = & x100
X

Note 2. f'(x) dx is called the differential of f(x)
Example 1 The time T of a complete oscillation of a simple pendulum of length L

is governed by the equation T = 27 \/E ,
g

Find the maximum error in T due to possible errors upto 1% in L. and 2% in g.
(U.P.T.U. 2004, 2009)

Solution : We have T =21 \/_E

&
1 1
log T=log 2n + 5 log.L. "y log. g
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Differentiating

T 2L 2¢g

=>(ir£J><100=1 (ﬁ)wa— 51& x 100
T 2(\ L g

But£x100=1,9§x100=2
L g

)

d—Tx100=-1—[1¢2]=3

T 2 2

Maximum errorinT=15%  Answer.
2

Example 2: The power dissipated in a resistor is given by P = 1—;— . Find by using

calculus the approximate percentage change in P when E is increased by 3% and
R is decreased by 2%.

2
Solution: Here given P = 'l

Taking logarithm we have
logP=2logE -log R
on differentiating, we get

8P _ 2. SR

P E R

or 10058 _ 5 1003E _ 1008R
P E R

or 100%3 =2(3) - (-2)

=8

Percentage change in P = 8% Answer.
Example 3: In estimating the number of bricks in a pile which is measured to be
(5m x 10m x 5m), count of bricks is taken as 100 bricks per m3. Find the error in
the cost when the tape is stretched 2% beyond its standard length. The cost of
bricks is Rs. 2,000 per thousand bricks.

(U.P.T.U. 2000, 2004)
Solution: We have volume V = xyz
Taking log of both sides, we have
log V=1log x +log y + log z
Differentiating, we get
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8V ox dy 8z
—_—— e e

V x vy z
1008—V= 1008—X+ 1008_y+100_8£

\% X y z
=2+2+2(As given)
=6

5x10x5
5V = 6t = 6 5X10x5)
100 100

=15 cubic metre
Number of bricks in §V = 15x100
= 1500
1500 x 2000
1000

Error in cost

= 3000

This error in cost, a loss to the seller of bricks = Rs. 3000. Answer.

Example 4: What error in the common logarithm of a number will be produced
by an error of 1% in the number.

Solution: Consider x as any number and, let

y =log,x
Then dy = —1—logme dx
X

O5x
=—log,e
X

dx 1
= (—x- X 100)(—1—661033 ,oe)

1 Ox -
= —logie ..as given —x100=1
100 8 BVen <

0.43429

100

= 0.0043429

which is the required error. Answer

Example 5: A balloon is in the form of right circular cylinder of radius 1.5m and

length 4m and is surmounted by hemispherical ends. If the radius is increased by

0.01 m and length by 0.05m, find the percentage change in the volume of balloon.
(U.P.T.U. 2002, 2005)

Solution: Here given,

radius of the cylinder (r) = 1.5m
length of the cylinder (h) = 4m
or = 0.01m, dh = 0.05m
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Let V be the volume of the balloon then.
V= volume of the circular cylinder + 2 (volume of the hemisphere)

=qrzh + 2(%1&3)

=mrzh + 4 nr3
3

Now 8V = n2rérh, h + mr2 8h + % 7.312 8r

= nir[2hdr + rSh + 4rdr]
SV nr[Z(h +2r)dr + rﬁh]
= ————=
v nr’h + —;%nr3
_2(h+2r)dr+rdh
rh + 4 r’
3

_ 2(4+3)(0.01) +(1.5)(0.05)
(1.5x4)+ 3(1.5)2

01440075 0.215

6+3 9

57" %100 = -0'29—15 %100 = % ~2389% Answer.

Example 6: If the base radius and height of a cone are measured as 4 and 8 inches
with a possible error of 0.04 and 0.08 inches respectively, calculate the percentage
(%) error in calculating volume of the cone.

[U.P.T.U.(C.O.) 2003]

Solution:
Volume V= % nrzh

Taking log,
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logV=log%+10gn+210gr+logh

Differentiating, we get
3V __dor oh

——D

\' r h

Y% ( 0.04) (0.08)
= —=2] — |+| —
\' 4 8
=0.03
- Percentage (%) error in volume
=0.03 x 100
=3% Answer.
Example 7: Find the percentage error in the area of an ellipse when an error of +1
percent is made in measuring the major and minor axes.
Solution: If x and y are semi-major and semi-minor axes of ellipse. Then its area
A is given by

A = nxy
Taking log,
log A=logn+logx+logy
Differentiating, we get
8_A =0+ §_).(_ + _8._}1
A X 'y
or 25—A—xlOO = 5—xx100+§}i.x 100
A X y
=1+1
=2
- Error in the area = 2% Answer.

Example 8: Find the possible percentage error in computing the parallel
resistance r of three resistance ri, ry, r3 from the formula.
1 1 1 1
rr, o1
If 11, r, 13 are each in error by + 1.2%
(U.P.T.U.1999)
Solution: we have
1 1 1 1 )
—=—t—t— (i)
r L or on
Differentiating, we get
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1 1 1 1

—-r—25r = —FSr] —r—25r2 ""281'3
1 2 3
==>1(§£x100)=-1—(ix100J+l(8ix100J+l[8ix100)
r\r 1 L\ L L
a2+ laa+laz)
1 2 L
=1.2(—l-+—1—+l)
r, 1, I,
1 .
= 1.2(-—) from (i)
r
= 5—rxlOO =1.2
r
Hence % errorinr=1.2 Answer.

Example 9: The angles of a triangle are calculated from the sides a,b,c. If small
changes 8a, b and 8¢ area made in the sides, find 8A, 6B and 8C approximately,
where A is the area of the triangle and A, B, C are angles opposite to sides a, b, ¢
respectively. Also show that A + 6B + 8C =0

(U.P.T.U. 2002)
Solution: We know that
a?=Db2+ c2-2abc cos A (1)
Differentiating eqn (i), we get
2ada = 2bdb + 2c8c - 2bdc cos A - 2 cdb cosA + 2bcsin AS A
or bc sin A 3A = ada- (b- ccos A)db - (c- b cos A) &¢
or 2A8A =ada-(acosC+ccosA-ccosA)db-(acos B+ bcosA-bcosA)dec

or 0A= EaZ (da - 8b cos C - &¢ cos B) (i1)
similarly, also by symmetry, we have

OB = % (8b - dc cos A - ba cos C) (iii)
and 8C = i (8¢ - 8a cos B - b cos A) (iv)

Adding equations (ii), (iii) and (iv) we get
6A+6B+6C=i[(a-bcos€-ccos8)8a+ (b-ccos A-acosC)db+ (c-acos
B - b cos A)dc]

=i[(a-a)8a+ (b-b)8b + (c - ¢) &]
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1
= — (0+0+0
o7 ( )

=0

Thus, 8A + 8B + 8C =0 Hence Proved.

Example 10: Two sides a, b of a triangle and included angle C are measured,
show that the error 8¢ in the computed length of third side ¢ due to a small error
in the angle C is given by

dC (asinB) =dc

Solution: we know that

2 2 2

cosC = 3———+-2bT+C—- , where a, b are fixed while c and C vary
a
~sinC8C = —2cbe
2ab
=>8c=-a£sinC8C ()
c
Again by sine formula, we have
b ¢
sinB sinC
. bsinC

= sinB = -
=3 =asinBdC Proved.

Example 11: If A be the area of a triangle, prove that the error in A resulting from

a small error in c is given by

5A = 5[1 PN N ]Sc (U.P.T.U. C.O. 2006-07)
4{s s-a s-b s-c

Solution: we know that

A= sls-a)(s-b)(s-c)

= log A =%_— [log s + log (s - a) + log (s - b) +log (s - ¢)]
Differentiating w.r.t.c, we get

184 1{18s 1 38(s-a) 1 8(s-b) 1 &(s—c)
——=—| - + +

Ad 2|sdc (s-a) 8 (s-b) & (s-c) &

Now s = %(a+b+c)
os 1

..S"C‘ 2
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Alsos-c=%(a+b-c)

8(s-¢) 1
T8 2
. 1 8(s-a) 1

, 8- = _. b+ - —
similarly, s - a 5 (b+c-a) = 5 >
ands-b=l(a.+b=c)=>6(s—a)=l

2 dc 2

From (i)
16A 1 1(1) 1 (1) 1 [1) 1 ( 1)
—— === |+ -+ — |+ -=
Adc 2|s\2) s-a\2) s-bl2) (s-c)\ 2
=>5A=-A- l+ ! + t 1 dc Proved.

4|s s—-a s-b s-c

Example 12: If the kinetic energy T is given by T = %mv2 find approximate the

change in T as the mass m change from 49 to 49.5 and the velocity v changes from
1600 to 1590.
Solution: Here given

T=Lmy?
2
- 8T = %{(Sm) v2+ m (2vdv))
or 8T = %v2 dm + mv dv ()
It is given that m changes from 49 to 49.5
. dm=05 (i)
Also, v changes from 1600 to 1590
o 8v=-10 (i)

Hence, from (i)

8T =-1?: (1600)2 (0.5) + 49(1600) (-10)

= - 144000

Thus, T decreases by 144000 units. Answer.

Example 13: Find approximate value of [(0.98)2+ (2.01)2 + (1.94)2]1/2
Solution: Let f(x, y, z) = (x2 + y2 + z2)1/2 (i)

Taking x =1, y =2 and z = 2 so that dx = - 0.02, dy = 0.01 and dx = - 0.06 from (i)

gf_zx(xz-f-yz-]- zz) -1/2’ i:y(x2+y2+ ZZ)-1/2I .§_f= Z(x2+y2+ Z2) -1/2
X z
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Now df = g—)f:dx + %dy + %dz (by total differentiation)

= (x2 + y2 + 22)1/2 (xdx + ydy + zdz)
- %(-0.02 +0.02-0.12)

=.0.04

- [(0.98)2 + (2.01)2 + (1.94)2]V/2 = £ (1,2,2) + df
=3+ (-0.04)

=296 Answer.

Example 14: In determining the specific gravity by the formula$ = —;é— where
-W

A is the weight in air, w is the weight in water, A can be read within 0.01 gm and
w within 0.02 gm. Find approximately the maximum error in S if the readings are
A =1.1gm, w=0.6 gm. Find also the maximum relative error.

Solution : Given
52
A-w
Differentiating above, we have

(A-w)BA - A(SA -dw)

8S = T (¥
Maximum error in S can be obtained if we take 8A = - 0.01 and dw= 0.02
. From (i)
85 = (1.1-0.6)(-0.01) - (1.1)(-0.01 - 0.02)
(1.1-0.6)
=0.112

Maximum relative error in
(8S)max _ 0.112

S 11
1.1-0.6

= (,05091 Answer.

S=

EXERCISE

1. The deflection at the centre of a rod, of length | and diameter d supported at its
ends and loaded at the centre with a weight w varies as wi? d4. What is the
percentage increase in the deflection corresponding to the percentage increases in
w,land d of 3%, 2% and 1% respectively.
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Ans. 5%

2. The work that must be done to propel a ship of displacement D for a distance S
2142/3

in time t is proportional to et Find approximately the increase of work

necessary when the displacement is increased by 1%, the time diminished by 1%
and the distance diminished by 2%.

Ans. —é%
3

3. The indicated horse power of an engine is calculated from the formula

PLAN ’
= ———-——312’&0 , where A= % Assuming that errors of r percent may have been

made in measuring P, L, N and d, find the greatest possible error in 1%.
Ans. 5r%.
4. In estimating the cost of a pile of bricks measured as 6m x 50m x 4m, the tape
is stretched 1% beyond the standard length. If the count is 12 bricks in 1m3 and
bricks cost Rs. 100 per 1,000 find the approximate error in the cost.
(U.P.T.U. 2005)
Ans. Rs 43.20
5. If the sides and angles of a triangle ABC vary in such a way that its circum
da db dc
+ + =0
cosA cosB cosC
6. Compute an approximate value of (1.04)301

radius remains constant, Prove that

Ans.1.12
7. Evaluate [(4.85)2 + 2(2.5)3]/5

Ans. 2.15289

8. The focal length of a mirror is given by the formula 1.1 % . If equal errors &
vV u

are made in the determination of u and v, show that the relative error§f£ in the

focal length is given by 8(1 + l) :

ua v
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Chapter 7

Extrema of Functions of Several
Variables

Introduction : There are many practical situations in which it is necessary or
useful to know the largest and smallest values of a function of two variables. For
example, if we consider the plot of a function f(x, y) of two variables to look like a
mountain range, then the mountain tops, or the high points in their immediate
vicinity, are called local maxima of f(x, y) and the valley bottom, or the low points
in their immediate vicinity, are called local minima of f(x, y). The highest
mountain and deepest valley in the entire mountain range are known as the
absolute maxima and the absolute minimum respectively.

Absolute maximum

Local maximum

Local minimum

Absolute minimum

Definitions
Definition (i): A function f of two variables has a local maximum at (a, b) if f(x, y)

< f(a, b) when (x, y) is in neighbourhood of (a, b). The number f(a, b) is called
local maximum value of f.
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If f(x, y) <f(a, b) for all points (x, y) in the domain of the function f, then the
function has its absolute maximum at (a, b) and f(a, b) is the absolute maximum
value of f.

Definition (ii)

If f(x, y) 2 f(a, b) when (x, y) is near (a, b) then f(a, b) is the local minimum value
of f. If f(x, y) 2 f(a, b) for all points (x, y) in the domain of f then f has its absolute
minimum value at (a, b).

Theorem: If f has a local maximum or minimum at (a, b) and the first order
partial derivatives of f exist at a, b, then fx(a, b) =0 and fy (a, b) =0

Definition (iii): A point (a, b) in the domain of a function f(x, y) is called a Crltlcal
point (or stationary point) of f(x, y) if fx (a, b) =0 and fy (a, b) =0 or if one or both
partial derivatives do not exist at (a, b).

Definition (iv): A point (a, b) where f(x, y) has neither a maximum nor a
minimum is called a saddle point to f(x, y).

Necessary Condition for Extremum Values of functions of two Variables:

Let the sign of f(a + h, b + k) - f (a, b) remain of the same for all values (positive or
negative) of h, k. Then we have

(i) Forf(a+h, b +k)-f(a, b) <0, f (a, b) is maximum

(ii) For f (a + h, b + k) - f (a, b) >0, f (a, b) is minimum

By Taylor's theorem for two variables, we have

fa+h,b+k)="f(a,b) +

2 2
(hE kﬁ] (hza—~ +2hk of kzafj +onen
(a.b) 12

ox dy ), ox? oxady dy?
of of
or f(a+h, b+k) - f(a, b) = | h— + k— o terms of second and
~ 0% J{u,p) Y Juun
higher orders in h and k (1)

By taking h and k to be sufficiently small, we can neglect the second and higher
order terms. Thus, the first degree terms in h and k can be made to govern the
sign of the left hand side of equation (1). Therefore the sign of [f (a+h, b+k) - f(a,

b)] = the sign of (af) +k(£] 2
d (a.b) ay {a,b)
Taking k =0, we find that if (—ai) # 0 the right hand side of equation (2)
X {a.b)

changes sign whenever h change sign. Therefore, f(x, y) cannot have a maximum

or minimum at x =a, y = blf(af) #0
(a.b)
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similarly, taking h =0, we can find that f(x, y) cannot have a maximum or a

minimum at x =a, y = b if (-Qi) #0
(.0}

dy
Thus, the necessary condition for f(x, y) to have a maximum or a minimum at x =
a,y=bis

(éi) =0and (-@i) =0
ox (a,b) ay {a.b)

This condition is necessary but not sufficient for existence of maxima or minima.
Now, from equation (1)

1 o°f 9*f 9°f
+h, b+k) - f(a, b) = —| h* — + 2hk k*—
f(at+h, b+k) - f(a, b) Q[ axz+ aXay+ ay2]
f(a+h, b+k) -f(a, b) = -é [h2r + 2hks + k2t] 3
2 2 2
where r=5a)—(—£-, s= aiafy and t=éa—y—§at (a, b)

since, we assumed that the sign of the LHS of equation (3) is the sign of the RHS
of the equation (3) i.e.
sign of LHS of equation (3) = sign of [rh2 + 2hks + k2t]

= sign of 1 [r2h2 + 2hkrs + k2rt]
r

= sign of L [(r2h2 + 2hkrs + k2s?) + (- K282 + Kart)]
r

= sign of l[(hr +ks) +k*(rt - s? )}
r

= sign of 1 k2 (rt - s?)]
r

" (hr + ks)? is always positive

=sing of r if rt - s2 >0

Hence, if rt - s2 >0, then f(x, y) has a maximum or a minimum at (a, b) according
tor <0orr >0 respectively.

Working rule to find Extremum Values:

The above proposition gives us the following rule for determining the maxima
and minima of functions of two variables.
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Find —aiandE ie. p and q equate then to zero. Solve these simultaneous

X

equations for x and y Letai, by; a2, by ... be the pairs of roots.

Find ﬁ ﬂ ﬂ (i.e. r, t and s respectively) and substitute in them by
ax? " axdy ~ dy*’ '

turns a;, by; az, boj......... for x, y. Calculate the value of rt - s2 for each pair of

roots.

If rt - 12> 0 and r is negative for a pair of roots, f(x,y) is a maximum for this pair.
If rt - 12> 0 and r is positive, f(x, y) is a minimum. If rt - s2 < 0, the function has a
saddle point there.

If rt - s2 =0, the case is undecided, and further investigation is necessary to decide
it.

Example 1: Find the local maxima or local minima of the function f(x, y) = x2 + y2
-2x-6y +14

Solution: We have

f(x,y)=x2+y2-2x-6y + 14

Therefore

fu(x, y) = 2x -2 and fy(x, y) = 2y - 6

If we put fi(x, y) = 0 we have

2x-2=0

=>x =1

If we put fy(x,y) =0, we have

2y-6=0

=>y=3

we get x =1 and y = 3 as critical points of function f(x, y). Now, we can write

f(x, y) as

fix, y) =4+ (x-1+ (y - 3)?

since (x -1)22> 0 and (y - 3)2 2 0, we have f(x, y) > 4 for all values of x and,
therefore, f(1, 3) =4 is a local minimum. It is also the absolute minimum of f.
Example 2: Find the extreme value of f(x,y) = y2 - x2

Solution: we have

f(x, y) = y2- 2

Differentiating partially with respect to x and y, we get

fx=-2x, fy=2y

which follows fx(0,0) =0 and fy (0,0)=0

Therefore, (0,0) is the only critical point.

However the function f has neither local maximum nor a local minima at (0,0).
Thus (0,0) is called saddle point of f.

Example 3: Find the maximum and minimum of the function f(x,y) = x3 + y3-
3axy
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(U.P.T.U. 2004, 2006; U.P.P.C.S. 1992; B.P.S.C. 1997)
Solution: Given that
f(x,y) =x3+y3-3axy (1)
Therefore

of of
=—=3x2-3 ,q=—= 3y2 .3
P EW X ay, q ay 4 ax
o’ f o*f o’ f
=—— = , 8= = -—3 , t=—— =
a2 O oxdy 2 dy? oy

for maxima and minima, we have

r

gﬁ =0=>3x2-3ay =0 = x2 = ay (ii)
X
—=0=3y2-3ax =0 = y2 = ax (iii)

putting the value of y in equation (iii), we get

x4 =adx

=x (x3-a3) =0

=x (x -a) (x2+ ax + a?) =0

=»>x=0,x=a

Putting x =0 in (ii}, we get y =0, and putting x =a in (ii) we get y =a. Therefore
(0,0) and (a, a) are the stationary points (i.e. critical points) testing at (0, 0).
r=0,t=0,s=-3a = rt-s2 = Negative

Hence there is no extemum value at (0,0).

Testing at (a, a)

r=6a,t=6a s=-3a

= rt-s2=6a x 6a - (-3a)?

= 36a2 - 9a?

=27a2>(0and alsor =6a>0

Therefore (a, a) is a minimum point.

The minimum value of f(a, a) = a3 + a3 - 3a3

=-a> Answer.

Example 4: Test the function f(x, y) = x3 y2 (6 - x - y) for maxima and minima for
points not at the origin.

Solution:
Here f(x,y) = x3y2(6 - x - y)

. p =% = 18x2 y2 - 4 x3y2 - 3x2y3
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of
=-—=12x3y - 2x%y - 3x3y2
dy

2

r= -g—{- =36 xy? -12 x2y? - 6xy3
X
= 6xy2 (6 - 2x -y)

2

f 36 x2y - 8x3y - 9x2y?

oxdy
= x2y(36 - 8x - 9y)
d*f
t=a——2-= 12 %3 - 2x4 - 6x3y
= x3 (12 -2x - 6y)
Now, for maxima or minima, we have

£=0:>x2y2(18-4x-3y) =0 (@)

ox
of
and —=0
dy

= x%y(12 - 2x - 3y) =0 (if)
From (i) & (ii)
4x+3y=18
2x + 3y =12 and x =0 =y
solving, we get x = 3, y =2 and x =0 = y. Leaving x =0=y, we get x =3, y =2. Hence
(3, 2) is the only stationary point under consideration.
Now,
rt-s2=6x4y4 (6 - 2x -y) (12 - 2x - 6y) - x* y2 (36 - 8x - 9y)?
At(3,2)
rt-s2=+ive (> 0)
Also, r=6(3) (4) (6-6-4)=-ive (<0)
~f(x,y) has a maximum value at (3, 2).
Example 5: Examine for minimum and maximum values. sin x + sin y + sin (x +
y)
(U.P.P.CS. 1991)
Solution: Here, f(x,y) = sin x + siny + sin ( x +y)

.'.p=g—i=cosx+cos(x+y)

q——q-f—=cosy+cos(x+y)
dy

2

r=—-=-8in x - sin(x +
axz ( Y)
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2

0x0

2
t=-— =-siny -sin (x +y)
oy

5= = -sin (x +y)

2

Now £=Oand £=0

ox dy
=>cosx+tcos(x+y)=0........ (i)and cosy +cos (x +y)=0........ (ii)
subtracting (ii) from (i) we have
cos x - cos y =0 or cos x =cosy
=>x=y
From (i), cos x + cos 2x =0
Or COS 2X = - COS X = CO0S (7 - X)
or2x=m-x ;. x="
3

T, . .
SXEY = 3 1s a stationary point

Aslor<o0

- f(x, y) has a maximum value at (g,—g)

nmn

Maximum value = f| —,—
53]

. T . T A
=sin— + sin— + sin —
3 3 3

_¥3 3 B 33
2 2 2 2  Answer.

Example 6: Test the function f(x,y) = (x2 + y2)e™"*") for maxima or minima for
point not on the circle x2 + y2 =1

Solution:
Here f(X, y) = (x2 + y2) e_(xuyz)
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R _aai = (x2 + y2) e"(xz**yz) (_2x) + 2x e'(xz*.v2)
X
=2x (1- x2 - y?) e}

A ey e (2y)+ 2y )

=2y (1-x2 - y?) e
Now for maxima and minima, we have

of of
L -pand Z =
™ 0 an
= 2x (l_ X2 - y2) e'(xz &yz) = 0 and 2y (1-X2 _ y2) e-(x: +v2) =0

= x=0,y=0and x2 +y2=1
Leaving x2 + y2 =1 as given, take x =0, y =0
Hence (0,0) is the only stationary point
fo=(2x - 2x3 - 2xy?) e *' ")
If _ “0d+y?) (3% 4y%)
r= 3 (2-6x2-2y2) ™™ + (2x - 2x3 -2xy?) e Y (-2x)
= e ') (4x4 - 10 x2 + 4x2y2 - 292 +2)

= fy= (- dxy) € + (2x - 2x3 - 2xy?) &™) (-2y)

s

= (- 8xy + 4 x3y + 4xy3) e 0% rh)
2

t= éa—g = e 0D (2-2x2-6y2) + @) (2y - 2yx? - 2y3) (-2y)
y

= e 'Y (2- 2x2 - 10y2 - dx2y2 + 4y)

At (0,0), r =0,s =0, t =2

rt-s2=4>0

Alsor=2(>0)

- f(x, y) has a minimum value at (0,0)

~. Minimum value = (0+0) e -0 =0 Answer. _

Example 7: A rectangular box, open at the top, is to have a given capacity. Find
the dimensions of the box requiring least material for its construction.
Solution: Let x, y and z be the length, breadth and height respectively, let V be
the given capacity and S, the surface

V is given = V is constant

V=xyz
or Z= v (1)
xy

S=xy+ 2xz + 2yz
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=xy+g—\-]-+—2;\£= f(x,y) using (i)

v e v
-ax_y x2’q 2

dy y
o’f 4V o’f

=, §= =1
e xS Ixdy

¥
o'y
Now ﬁ=0 and £=0
ox dy
=>y—¥=0 .......... (iiyand x——=0.......... (ii1)
X
From (i) y=—2—¥—
X
v X
~F ii), x -2V —==0
rom (ii), x v
3
or x| 1-—— |=0
2V
or x = (2V)1/3 (Asx =0)
2V 2V 1/3
dy=—=——>>=(2V
and y & (zv)s/z (2V)

-~ x =y = (2V)1/3 is a stationary point. At this point,r = % =2>0,5=1,

=3V _,
2V
Sothatrt-s2=4-1=3>0andr>0
=5 is minimum when x =y = (2V)1/3
Also z= A = LG
xy (2V)
v (2v)”

T T

Hence S is minimum when x =y = 2z = (2V)1/3 Answer.
Example 8: Find the semi-vertical angle of the cone of maximum volume and of a
given slant height.
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(U.P.T.U. 2005)
Solution: Let [ be the slant height and 8 be the semi - vertical angle of the cone.
Then, radius of the base, r = OC = [ sin6 and height of the cone, h = OA =1 cosf.

Let V be the volume of the cone then V =% nirzh
A

0

lcos©

P oTeme ©

-13- n(l sinB)2 (1 cosO)

= %n 135in?0 cosO

; av_ }gn 12{sin20 (- sinB) + cos0. 2 sinb cosO}

" de
= %n 13 sin® (2cos20 - sin?0)
d’v
de?

= %n I3 [- 6 sin?0 cosB + cosB (2 cos?8 - sin26)]

=—:l; 7 13 [sind (- 4 cosO sind - 2 sind cosh) + (2 cos2B - sin20) cosh]

For max and min. v 0
de
Which gives either sin® =0 or tan26 =2
so that® = 0 or 6 = xtan- 2
when 8 = 0, volume of cone becomes zero and the cone becomes a straight line

which is not the case, when 6 = tan'! V2 , we have
v Lop {—6.3.——1—— + 0]
de* 3 33
=-ive
Hence the volume of cone is maximum when 0 = tan'! V2 .
When 6 = —tan'y/2, volume of cone becomes negative which is meaningless,
hence is not the case. Answer.
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Example 9: Find the volume of largest parallelopiped that can be inscribed in the
ellipsoid
2y oz
a—2 + -63— + c—2 =1

(U.P.T.U. 2001)
Solution: Let (x,y,z) denote the co-ordinates of one vertices of the parallelopied
which lies in the positive octant and V denote its volume so that
V =8xyz As 2x, 2y and 2z be the length, breadth and height respectively
o V2= 64x2y2 22

XZ 2
=64 Xzyzcz(l—a—z—{—z)

x4 2 x2 4
= 64¢’ [xzy2 - —a};—— - —B};—] = f(x,y) say
f x’y?  2xy'
=== 64c’ (2xy2 o
2x'y  4x%y’
and — =64¢’ (ZXZ R

=5 Ixy~ — — = T =0
2y
=1-2-%=0 (i)
4 2..3
and 2x2y—a(3z—é—>;2i—0
x 2y .
=1- pra —g—;—-— =0 (ii)
Now multiply (i) by 2, we have
2 2
2- i";’;— - %— =0 (i)
subtracting (iii) from (ii) we have
2
—1+3L2=()==>3x2 =a’
a
a b

ax=—=and y=—
X \/gan y \/_3.
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2 2.2 4
Now r=a—£=64czl:2y2—}2x—y_2_y_}

ox a’ b?
T R
t=5a-;i—64c [ZXZ ——2:74-—1—222—)/2—}
and rt - s2 = (64 c?) (Zy2 - zbi; - 12::)’2 ](64c2)[2x2 _ 2:X21 _ lg_;z_i]

_[(648)(4xy By 8;2' H

a b
At|—=,—= | rt-s?>0andr <0
[ﬁ \/§j
Hence f(x,y) is max at(i L)
7, J_

2p2 1 a*bp 1 a® b
V2 o—eact| 222 2 2 2
4 max [3 3 a2 9 3 b2 3 9
_ 64a’b’c’
27
=2V .= %% Answer.

126



Chapter 8

Lagrange's Method of Undetermined
Multipliers

In many problems, a function of two or more variables is to be optimized,
subjected to a restriction or constraint on the variables, here we will consider a
function of three variables to study Lagrange's method of undetermined

multipliers.
Let
u=£(x,y,z) (i)
be a function of three variables connected by the relation
¢ (x,y,2)=0 (i)
The necessary conditions for u to have stationary values are
du_ du_du
=0,—=0,—=0
x "dy 0z

Differentiating equation (i), we get du =0 i.e.
du du du

du=5—dx+—5}-’—dy+é——dz 0 (lll)
Differentiating equation (ii) we get d¢ =0 i.e.
d¢=g%dx+—g%dy+%zb-dz=0 (iv)

Multiplying equation (iv) by A and adding to equation (iii) we get
(a“ xa"’)d +(a“ +Aa¢)d +(a“ +xa¢)dz 0

ox  ox dy dy Jdz  9dz
This equation will be satisfied if
%‘f )»g% 0 (v)
g—;— ?}% =0 (vi)
%—3— + %‘g = (vii)
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where A is the Lagrange multiplier. On solving equations (ii), (v) (vi) and (vii), we
get the values of x, y, z and A which determine the stationary points and hence
the stationary values of f(x, y, z).

Note: (i) Lagrange's method gives only the stationary values of f(x, y, z). The
nature of stationary points cannot be determined by this method.

(i) If there are two constraints ¢1(x, y, z) =0 & 92 (x, y, z) =0, then the auxiliary
function is F(x, y, z) = f(x, y, z) +A,, ¢, (x, ¥, z) + A2 &2 (x, ¥, z) here A; and A are the
two Lagrange multipliers. The stationary values are obtained by solving the five
equations Fx=0,Fy=0,F,=0, F, =0andE_ =0

Example 10: Find the volume of largest parallelopiped that can be inscribed in
2 2 2 >

the elllpsmd L A z_ =1 using Lagrange's method of Multipliers.
c

a? b’
(ILAS. 2007; U.P.T.U. 2001, 2003)

x* y* Z
Solution: Let— ++5+—=1
olution: Le T a
¢(x Z)__X_ Zz__,.iz__l_() (i)
s a? b &

Let 2x, 2y, and 2z be the length, breadth and height, respectively of the
rectangular parallelopiped inscribed in the ellipsoid. Then

V = (2x) (2y) (2z) = 8xyz

Therefore, we have

g—Z+}\af—O=>8yz+k—§—2)£=0 (i)

a_v+ka¢ 0:>8xz+7»2—)2<-=0 (iii)

dy dy b

BV —qc—b-~0=>8xy+7»——0 (iv)

9z "oz

Multiplying (ii), (iii) and (iv) be x, y and z respectively, and adding, we get
2 2 Z2

24 xyz +2x[;—+ zz +;2-]= 0

24 xyz +2A (1) =0

=>A=-12xyz

putting the value of A in (ii) we have

8yz + (-12 xyz) 2—;( =0
a
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2

=1-X _¢
a
==
3

Similarly, on putting A = - 12 xyz in equation (iii) and (iv) we get

Y=B* 5

Hence, the volume of the largest parallelopiped = 8xyz

(%))
8abc
= m Answer.

Example 11: Find the extreme value of x2 + y2 + z2, subjected to the condition xy +
yz + zx = p.

(U.P.T.U. 2008)
Solution: Let f = x2 + y2+ z2and ¢ = xy + yx + zx -p.
Then for maximum or minimum, we have

%+Xg—i=0=2x+}»(y+z)=0 (i)
g}fj+kg%=0=>2y+}»(x+z)=0 (ii)
of .00 _
az+k£—0=>22+)»(x+y)—0 (iii)

Multiplying equation (i) by x, equation (ii) by y and equation (iii) by z and
adding we get.

2(x2+ y2+ 22) + 2\ (xy + yz + zx) =0

= 2f+ 2Ap =0

or A=—-f—

p
on putting this value of A in (i) (ii) and (iii), we get
f
2x- —(y+2)=0
P
2y - L (x+2z)=0
P

f
22- —(x+y)=0
%
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or 2x - 2y + i(x—y)=0
p

(£+2)(x—y)=0

L ~2and x=y

P

Similarly, we gety = z, therefore, f = 3x2
But

Xy +yz+zx=p
=3x2=p=>x2=p/3
Therefore, extrema occur if
x2+y2+2z2=p Answer.
Example 12: Show that the rectangular solid of maximum volume that can be
inscribed in a given sphere is a cube.
(U.P.T.U. 2004)
Solution: Let 2x, 2y, 2z be the length, breadth and height of the rectangular solid
and r be the radius of the sphere
Then x2 + y2+ z2 = R? (i)
Volume V= 8xyz (ii)
Consider Lagrange's function
F(x,y,z) =8xyz + A (x2 + y2+ 22 - R?)
For stationary values,

dF =0

= {8yz + A (2x)} dx + {8xz + A (2y)} dy + {8xy + A (2z)} dz =0
= 8yz + 2Ax =0 (iii)

8zx + 2Ay =0 (iv)

8xy + 2Az =0 (v)

From (iii) 2A x2 = - 8xyz

From (iv) 2Ay2 = - 8xyz

From (v) 2Az2 = - 8xyz

5 2h x2 = 2Ay2 = 2Az2

orx2=y2=2z20rx=y =z

Hence rectangular solid is a cube. Hence Proved.

EXERCISE

1. Find all relative extrema and saddle points of the function.
f(x,y) =2x2 + 2xy + y2-2x -2y + 5
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2. A rectangular box, open at the top, is to have a volume of 32 cc. Find the
dimensions of the box requiring the least material for its construction.
(U.P.T.U. 2005)
Ans.[=4,b=4and h=2 units
3. Divide 24 into three parts such that the continued product of the first part, the
square of the second part, and the cube of the third part is maximum.
Ans.x=12,y=8,z=4
4. Show that the rectangular solid of maximum volume that can be inscribed in a
given sphere is a cube.
(U.P.T.U. 2003)
5. The sum of three positive number is constant. Prove that their product is
maximum when they are equal.
6. Find the maximum and minimum distances of the point (3, 4, 12) from the
sphere.
Ans. Minimum distance = 12
Maximum distance = 14
7. The temperature T at any point (x, y, z) in space is T = 400 xyz2. Find the
highest temperature at the surface of a unit sphere x2 + y2 + z2 =1
Ans. 50
8. A tent of given volume has a square base of side 2a and has its four sides of
height b vertical and is surmounted by a pyramid of height h. Find the values of a
and b in terms of h so that the canvas required for its construction be minimum.

2 2 2
. X
9. Prove that the stationary values of u=—+ z

+3

o]

2
(2]

2 2 2

y

b
where Ix + my + nz =0 and—2+?+-z7=1are the roots of the equation.
a c
I’a* m’* n’*
7.t 3 7= =0
1-au 1-bu 1-c‘u

(B.P.S.C. 2007)
10. Use Lagrange's method of undetermined multipliers to find the minimum
value of x2 + y2 + z2 subjected to the conditions.
xty+z=1, xyz+1=0
Ans. 3
11. Find the minimum value of x2 + y2 + z2, given that ax + by + cz =p
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2

P
Ans. a’+b*+c’
12. Find the maximum and minimum distances from the origin to the curve.
x2 + 4xy + 6y? = 140
[U.P.T.U. (CO) 2003]
Ans. Maximum distance = 21.6589
Minimum distance = 4.5706
13. If u = ax2 + by? + c¢z2 and x2 + y2 + 22 =1 and Ix + my + nz =0 are the
constraints, Prove

2 m? n’

+ + =0
a-u b-u c-u
OBJECTIVE PROBLEMS

Four alternative answers are given for each question, only one of them is correct,
tick mark the correct.

1. Maxima and minima occur -

(i) Simultaneously (ii) Once

(iii) Alternately (iv) rarely

Ans. (iii)
2. The minimum value of |x2-5x + 2]is
(M.P.P.C.S.1991)
(i) -5 (ii) 0
(iii) -1 (iv) -2
Ans. (ii)

1
3. The maximum value of — (sin x - cos x) is
NA ( )

(M.P.P.C.S. 1991)

()1 (i) V2
o 1 .
(iii) 7 (iv) 3
Ans. (i)
4. The triangle of maximum area inscribed in a circle of radius r is
(I.A.S. 1993)
(i) A right angled triangle with hypotenuse measuring 2r
(ii) An equilarteral triangle
(iii) An isosceles triangle of height r
(iv) Does not exist
Ans. (ii)
5. Let f(x) =| x|, then
(I.LA.S.1993)
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(i) £(0) =0

(if) f(x) is maximum at x =0
(iif) f(x) is minimum at x =0
(iv) None of the above.

Ans. (iv)
(I.A.S. 1990)
6. If y = alog x + bx2 + x has its extremum value at x = -1 and x = 2 then
(i)a=2,b=-1 (ii)a=2,b=-%
(iifya=-2,b= % (iv) None of these
Ans. (iii)
7. The function f(x) = x3 - 6x2 + 24x + 4 has
(I.LA.S. 1990)
(i) A maximum value of x =2
(if) A minimum value of x =2
(iiif) A maximum value at x =4 and minimum value at x =6
(iv) Neither maximum nor minimum at any point
Ans. (iv)

8. The function sin x (1 + cos x) is maximum in the interval (0,n), when -
(U.P.P.CS. 1994, M.P.P.C.S. 1995)

({)x=mn/4 (iiyx=m/2
n . 2n
(iii) x = 3 (iv)x = 3
Ans. (iii)
9. A necessary condition for f(a) to be an extreme value of f(x) is that
(R.AS. 1995)
(i) f(a) =0 (i) f(0) =0
(iii) f'(a) =0 (iv) f"(a) =0
Ans. (ii)

10. The value of function
f(x)=x+ 1
X

at the points of minimum and maximum one respectively
(M.P.P.C.S. 1995)
(i)-2and 2 (ii) 2and -2
(iii)-1and 1 (iv)1and -1
Ans. (iv)
11. The profit function is
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P(x) = - % X2 + 32x - 480

then the profit is maximum if the number of item (x) produced and sold is
(U.P.P.CS. 1991)

(i) 18 (ii) 17
(iii) 24 (iv) 32
Ans. (iv)
12. The value of x for which the function f(x) = x 1/x has a maximum is given by
(R.AS. 1993)
oo o1
(i) x =e (ii) x = -
. 1
(iii) x = -e (iv) x=—-=
e
Ans. (i)

13. The maximum value of lx is
X

(M.P.P.C.S. 1994)
e (ii)e-e
(iif) e -1/e (iv) el/e
Ans. (iv)
14.If x + y =k, x >0, y >0, then xy is the maximum when
(M.P.P.C.S. 1991)
(i) x = ky (fiykx=y
(iiifyx =y (iv) None of these
Ans. (iv)
15. Maximum value of a sind + b cos0 is

(i) Va® + b? (ii) Va+b
(iii)va-b (iv) 2va’+b* +a+b

16. Maximum value of sin x + cos x is

(M.P.P.C.S. 1992)

Ans. (i)

(M.P.P.CS.1992)

(i) 2 (i) V2
(iii) 1 (iv) 1++2

Ans. (ii)
17. If the functions u, v, w of three independent variables x, y, z are not

independent, then the Jacobian of u, v, w with respect to x, y, z is always equal to
(LA.S. 1995)
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(i1 (i) 0
(iii) The Jalonbian of x, y, zw.r.tu, v, w
(iv) infinity

Ans. (ii)

18. The maximum rectangle, inscribed in a circle of radius 1, is of area
(U.P.P.CS. 1995)

(i1 (ii) 2
(iii) 4 (iv) 8

Ans. (if)
19. The derivative f'(x) of a function f(x) is positive or zero in (a, b) without
always being zero. Then, which of the following is true in (a, b)

(i) f(b) < f(a) (ii) f(a) < f(b)
(iii) f(b) -f(a) = f'(c) (iv) f(b) = f(a)
Ans. (ii)
20. The conditions for f(x, y) to be maximum are
()rt-s2>0,r>0 (iiyrt-s2>0,r<0
(iii) rt-s2<0,r>0 (iv)rt-s2<0,r<0
Ans. (ii)
21. The conditions for f(x, y) to be minimum are
({)rt-s2>0,r<0 (iiyrt-s2>0,r>0
(iii) rt-s2<0,r>0 (iv)rt-s2<0,r<0
Ans. (ii)
22. The stationary points of f(x, y) given by -
(i) £x =0, fy =0 (ii) fx= 0, fy =0
(iii) fy # 0, fy =0 (iv) None of these
Ans. (i)
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Chapter 9
Matrices

INTRODUCTION : Today, the subject of matrices is one of the most important
and powerful tool in mathematics which has found application to a large number
of disciplines such as Engineering, Economics, Statistics, Atomic Physics,
Chemistry, Biology, Sociology etc. Matrices are a powerful tool in modern
mathematics. Matrices also play an important role in computer storage devices.
The algebra and caluclus of matrices forms the basis for methods of solving
systems of linear algebraic equations, for solving systems of linear differential
equations and for analysis solutions of systems of nonlinear differential
equations,

Determinant of a matrix : - Every square matrix A with numbers as elements has
associated with it a single unique number called the determinant of A, which is
written det A. if A is n x n, the determinant of A is indicated by displaying the
elements a; of A between vertical bars

a, Ay e a,
Ay Ay e a,

det A =|. "
A, Ay e a,,

The number n is called the order of determinant A.
Non Singular and singular Matrices :

A square matrix A = [aj)] is said to be non singular according as |A| #0or |A| =
0
Adjoint of a matrix : Let A =[ajj] be a square matrix. Then the adjoint of A,

denoted by adj (A), is the matrix given by adj (A) = [A.; ]Txn, where A, is the

cofactor of aj; in A, i.e. if

a; Ay e a,,
Ao Ay Ay e a,,
-V B a
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AL AL, A,

) A, Ay, A,

Then adj(A) = :
AL A, AL

Inverse of a matrix : Let A be square matrix of order n. Then the matrix B of

order n if it exists, such that

AB=BA =1,

is called the inverse of A and denoted by A-! we have

A(adjA) = |A]I

(adja)

A

_adjA
A

Theorem : The inverse of a matrix is unique.

Proof : Let us consider that B and C are two inverse matrices of a given matrix,

or A

=, Provided |A{#0

or A ,if [A]£0

say A

Then AB=BA =1 -. Bisinverse of A
and AC=CA=1 . Cis inverse of A
C(AB)=(CA)B by associative law

or CI=1IB

or C=B

Thus, the inverse of matrix is unique.
Existence of the Inverse : Theorem: A necessary and sufficient condition for a
square matrix A to possess the inverse is that | A |# 0.

(I.LAS. 1973)
Proof : The condition is necessary
Let A be an n x n matrix and let B be the inverse of A.

Then AB =1,
s JAB|= |In| =1
s |Al[B]|=1 ~|ABl=|A]||B]|

. | A|must be different from 0.
Conversely, the condition is also sufficient.
If [A]#0, then let us define a matrix B by the relation

1, .
B= IA—1(ad].A)
1

Then AB=A adj.A]
LAI
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1

1
=—(adjA)=—]All, =1,
AT
Similarly BA = (—l— adj AJA = —1—(adj A)A
[A] A
1
— |A|T, =1,
A

Thus AB=BA =1,
Hence, the matrix A is invertible and B is the inverse of A.
Reversal law for the inverse of a Product, Theorem : If A, B be two n rowed non-
singular matrices, then AB is also non - singular and
(AB)1=B1 A1
i.e. the inverse of a product is the product of the inverse taken in the reverse
order.
(I.AS. 1969, U.P.P.C.S. 1995)
Proof : Let A and B be two n rowed non singular matrices,
We have |AB| = |A}|B|
Since |[A|=0and |B|#0
therefore | AB | 0. Hence the matrix AB is invertible
Let us define a matrix C by the relation C = B-1A1
Then C (AB) = (B! A1) (AB) =B (A1A)B

=B11,B

=B1B=1I,

Also (AB) C = (AB) (B A1) = A (BB) Al
= Al Al = AA-

= In
Thus C (AB)=(AB)C =1,
Hence C = B! Al is the inverse of AB.

Elementary Row Operations and Elementary Matrices

When we solve a system of linear algebric equations by elimination of unknown,
we routinely perform three kinds of operations: Interchange of equations,
multiplication of an equation by a nonzero constant and addition of a constant
multiple of one equation to another equation.

When we write a homogeneous system in matrix form AX = 0, row k of A lists
the coefficients in equation K of the system. The three operations on equations
correspond respectively, to the interchange of two rows of A, multiplication of a
row A by a constant and addition of a scalar multiple of one row of A to another
row of A. We will focus on these row operations in anticipation of using them to
solve the system.
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DEFINITION: Let A be an nxn matrix. The three elementary row operations that
can be performed on A are

1. Type I operation : interchanging two rows of A.

2. Type II operation : multiply a row of A by a non zero constant.

3. Type Il operation : Add a scalar multiple of one row to another row.

The rows of A are m - vectors. In a type II operation, multiply a row by a non
zero constant by multiplying this row vector by the number. That is, multiply
each element of the row by that number. Similarly in a type III operation, we add
a scalar multiple of one row vector to another row vector.

Inverse of Non - Singular Matrices Using Elementary Transformations :

If A is non singular matrix of order n and is reduced to the unit matrix I, by a
sequence of E - row transformations only, then the same sequence of E - row
transformations applied to the unit matrix I, gives the inverse of A (i.e.A-1).

Let A be a non singular matrix of order n. It is reduced to unit matrix I, by a finite
number of E- row transformations only. Here, each E - row transformation of the
matrix A is equivalent to pre - multiplications by the corresponding E - matrix.

Therefore, there exist elementary matrices say, Ei, Ez,................ E: such that
[Ee, Bedy voveeeenninens By, Bl A=I,

Post-multiplying both sides by A1, we obtain

[Er, Erty oo Ex, Ei] A Al=], Al

SELEety o Eo, Ei} In = A1

S AAL =1,

I Al= A1

or A1=[E, Ery, oo, Ep, E1] In

Working rule to find the inverse of a non - singular matrix :
Suppose A is a non singular matrix of order n, then first we write
A=A
Next, we apply E row transformations to a matrix A and InA till matrix A is
reduced to I». Then B is equal to A, i.e.
B=A"
Example 1: Find by elementary row transformation the inverse of the matrix
01 2
123
31 1

(U.P.T.U. 2000, 2003)
Solution : The given matrix is

01 2
A=(1 2 3
31 1
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we can write the given matrix as
A=1A
Applying elementary transformations, we have
01 2] 10 0]
A

12 3{=j01 0

31 1] |00 1]
1 2 3 0
=01 2i=(1 0 O}AR ©R,
31 1] {0 0 1
1 2 0 1 0
=0 1 2|=[1 0 0|AR,—>R,-3R,
|0 -5 —J 0 -3 1
(1 2 3] [o
=|0 1 2|=|{1 0 OA,R3—>R3+5R2
0 0 2] |5 -3 1
12 310 1 0
=10 1 2/|=|1 0 0 |1A,R,/2
0 0 1] {5/2 -3/2 1/2
1 2 o] [-15/2 11/2 -3/2]
=0 1 0|= -4 3 -1 |AR, »R,-3R,R, 5R,-3R,
0 0 1) (5/2 -3/2 1/2
(1 0 0] [1/2 -1/2 1/2]
=0 1 0|=| -4 3 -1 |AR, >R, -2R,
0 0 1] [5/2 =-3/2 1/2]

i.e.1=BA where B = A"
1/2 -1/2 1/2
or AT =|-4 3 -1 |{Answer
5/2 -3/2 1/2
Example 2 : Find by elementary row transformations the inverse of the matrix
3 -3 4
2 -3 4
0 -1 1
(U.P.T.U. 2002)
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Solution : The given matrix is

3 -3 4
A=l2 -3 4

0 -1 1
we can write the given matrix as
A=1A

3 -3 4] [100
ie |2 -3 4(=/01 0|A
0 -1 1 00 1
Applying elementary transformations, we get

1 0 0] 1 -10

=|2 -3 4|=|0 1 0|A R,-»R,-R,
0 -1 1/ (0 0 1
(1 0o o] [1-10

=0 -3 4|={-2 3 0]A,R,—R,-2R,
0 -1 1] [0 01
1 0 o1 [1 -10

= -1 -4/3|=|2/3-1 0|A,R,/-3

-1 1 0 01

0

O - L
1 0 0 1 -1 0

0 -1 -4/3|={2/3 -1 0 |A,R, >R, +R,
0 0 -1/3] |2/3 -1 1
1

0

0

0 0 1 -1 0
=0 1 -4/3{={2/3 -1 0|A,R, >R, x(-3)
o1 1 | |2 3 -3
1 0 0] [1 -1 o0
=0 1 0|=|-2 3 -4 A,R2—>R2+§R3
0 0 1) |2 3 -3
I=BA
Where B = Al
1 -1 0
A'=] 2 3 -4 Ans.
-2 3 -3
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Normal Form :

Every non - zero matrix of order m x n with rank r can be reduced by a sequence
of elementary transformations to any of the following forms
1. Ir

2. (1, 0]

b
5

The above forms are called normal form of A. r so obtained is a number called the
rank of matrix A.

Equivalence of matrix :

Suppose matrix B of order mxn is obtained from matrix A (of the same order as
B) by finite number of elementary transformations on A; then A is called
equivalent to B i.e A~ B. Matrices A and B have same rank and can be expressed
as B = PAQ, where P and Q are non singular matrices. If A is of order mxn, then
P has order mxm and has nxn such that

B =PAQ

Working rule : Let A be a matrix of order mxn

1. we write A=In Al

2. Next, we transform matrix A to normal form using elementary
transformations.

3. Elementary row transformation is applied simultaneously to A and Ini.e.
the prefactor matrix.

4. Elementary column operation applied to A is also applied to I, i.e. the post
factor matrix.

5. Finally, we find B= PAQ, where B is the normal form of A.
Example 3 : Reduce matrix A to its normal form, where
1 2 -1 4
2 4 3 4
A=\l 2 3 4
-1 -2 6 -7

Hence, find the rank.
(I.A.52006; U.P.T.U. 2001, 2004)
Solution : The given matrix is
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1 2 -1 4
2 4 3 4
A1 2 3 4
-1 -2 6 -7
Applying elementary row transformation, we have
3 3 ‘51 _: Ro - Ro- 2Ry
A= , R:s > R3-R
0 0 4 0 Rs —»Re+ Ry
0 0 5 -3

Now, applying elementary column transformation we have

Lo 0 0 gog-2
a0 0 5 -4 CGoG+G
0 0 4 0| Ci->GC-4G
0 0 5 -3]
Interchanging C; and C;, we have
1 0 0 0]
A 05 0 —al
— , >
0 4 0 0 T
0 5 0 -3
1 0 0 0 .
A [0 5 0 -4 Ri—> Ry -—R;
0 0 0 16/5!" R,— R{-Ro
0 0 0 1
1 0 0 0]
A |05 -4 0 o
— , >
0 0 16/5 0 P
0o 0o 1 0]
1 0 ]
A 0 5 0 R2 — Ry + 4Ry
0 016/5 0| R, >Ri-> R
0 0 0 0] 16
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1
R2 ——)gR2

S = O
S R O O
o o o O

R3 -)ER3
16

A130
0 O

which is the required normal form.
Here, we have three non zero rows. Thus the rank of matrix A is 3. Ans.
Example 4 : Find non - singular matrices P,Q so that PAQ is a normal form,
where
2 1 -3 -6
A=|3 -3 1 2
1 1 1 2

(U.P.T.U. 2002)
Solution : The order of Ais 3 x 4
Total number of rows in A = 3, therefore consider unit matrix Is.
Total number of columns in A = 4, hence, consider unit matrix 14
A3x4= I3AI4

(2 1 -3 6“'100‘1000_

2 -3 1 2—010A0100

1 1 1 2_0 1 0010

- -t 210001

_ - 1 0 0 0]

1 21 o ]

I O R L S M,

2 1 6-1 0 00107

L 4L 410 0 0 1]

i} 1000

1 1 1 2 00 170100 R Roe 3R

0 -6 -2 -4l={01 -3]A 27> B2- 9™
0010 R3; - R3 - 2R,

0 -1 -5 -10| |1 0 -2

L 410001
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1 0 0 0
0 -6 -2 -4
0 -1 -5 -10
[1 0 0 o0

0 1 5 10|=
0 6 2 4

1 0 0 0]
0 1 5 10|=
0 0 -28 -56
(1 0 o 0]
0 1 0 0 |=
0 0 -28 -56

Asby C3 —» C3-5C;
& Cy— Cy-10C2

1
0
0

0
1

0

1-1 -1 -2
00 1 01 0 0 CooC-Cy
=101 -3]A _
00 1 0| ©S76-G
10 -2 Cs— C4 - 2C;
0 0 0 1
R R
0 1 o0 o R—-R
0 2A0 0 1 0 Rz — -Rs
0 -1 3 R: o Rs
00 0 1
_ 1 -1 -1 =2
0 0 1]
1 0 2040 P 00 byRs— R3-6R
0 0 1 0| YRTTeT0R
6 -1 -9
L S o 0o o0 1
o o 17 1 -1 4 8
0 1 -5-10
-1 0 2|A
0 0 1 0
6 -1 -9
- o 0o 0o 1
o o 1| [t-1 ¢ 8
10 204 13100 LY
e 1 5|00 1 0 3T Tog e
—Eﬁ 58— 0 0 O 1
A L
10 22 T Y ashyciocs-ac
'6 Lol Jo0 12 S Py = Ra- s
“2—85—8— % 0O 0 0 1
1-1 4 0
[0 1-5 0f,
Q—O 0 1 -2 nswer
00 0 1

Example 5 : Find the rank of the matrix
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'
[SS NS

(o)}

|

—

16 4 12 15

Solution : Sometimes to determine the rank of a matrix we need not reduce it to
its normal form. Certain rows or columns can easily be seen to be linearly
dependent on some of the others and hence they can be reduceds zeros by E -
row or column transformations. Then we try to find some non-vanishing
determinant of the highest order in the matrix, the order of which determines the
rank.

We have the matrix

6 1 3 8-|

A~ 426 R3=>Ri-Ro-Ry
0 0 0 0)R, ,R-Rs-Rs
0 0 O 0
) 6 1
Since 4 0 80
Therefore rank (A) = 2 Answer
Alter
The determinant of order 4 formed by this matrix
(6 1 3 8
4 2 6 -1
110 3 9 7
6 4 12 15
6 1 3 R Re-R
4 2 6 -1 3R m R
= 6 1 3 &Ri > Ry-Rs
6 1 3 8
=0 . Rz and Ry are identical.
A minor of order 3
6 1 3 6 1 3
=4 2 6|={4 2 6 |byRs->R3-Ro
10 3 9 6 1 3
=0

In similar way we can prove that all the minors of order 3 are zero.
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A minor of order 2
6 1 =8#0
4 2|

Hence rank of the matrix = 2 Answer.
Example 6 : Prove that the points (x1, y1), (x2, y2), (xa, y3) are collinear if and only

X, ¥i 1
if the rank of the matrix [x, 'y,  1]islessthan3.
X3 ys 1

(U.P.PCS. 1997)
Solution : Suppose the points (x1, y1), (X2, y2), (x3, y3) are collinear and they lie on
the line whose equation is
ax+by+c=0
Then
ax;+by;1+c=0 (i)
ax2+bya+c=0 (if)
axz+bys+c=0 (iii)
Eliminating a, b and ¢ between (i), (ii) and (iii) we get
oy, 1
X, Y, 1|=0
X3 y; 1
Thus the rank of matrix
oy 1
A=ix, 'y, 1
X3 ys 1

is less than 3.
Conversely, if the rank of the matrix A is less than 3, then

X4 v, 1
X, Y, 1|=0
X3 ys 1

Therefore the area of the triangle whose vertices are (x1, y1), (X2, y2), (x3, y3) is
equal to zero. Hence three points are collinear.

Consistent system of Equations:

A non -homogeneous system AX = B is said to be consistent if there exists a
solution. If there is no solution the system is inconsistent.

For a system of non - homogeneous linear equations AX = B (where A is the
coefficient matrix) and C = [A B] is an augmented matrix :

1. If r (A) = r (C), the system is inconsistent
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2. If r (A) = r (C) = n (number of unknowns) the system has a unique
solution.
3. If r (A) = r (C)< n, the system has an infinite number of solutions.

The above conclusions are depicted in figure as given below

A system of non homogeneous lineur equations

AX=B

Find r(A) and r(C)

r(A)=r(C)

r(A)=r Q)

Solution exists system No, solution exist system
is consistent

is inconsistent

r(A)=r(C)=n

Unique solution

r(A)=r(C) <n

Infinite number of
solutions

Example 7 : Using the matrix method, show that the equations 3x + 3y + 2z=1;
x+2y=4 10y + 3z = -2 2x - 3y - z = 5 are consistent and hence obtain the

solution for x, y and z

(U.P.T.U. 2000)

Solution : The given system of linear equations can be written as

AX=Bi.e.

3 3 2 1
X

1 2 0 B 4

o 10 3|Y|7|-=2

2 -3 -1[-% |5

The augmented matrix is
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3 3 2 1
1 2 0 4
C=IABI=1y 15 3 _»
2 -3 -1 5

Applying elementary row transformations to C, we have

1 2 0 4
c |3 3 21 Ry R,
0o 10 3 -2f
2 -3 -1 5
1 2 0 4
_ 0 -3 2 -11 R2— R2-3R;
0 10 3 -2/ Ri— Rs-2R;
0 -7 -1 -3
1 2 0 4 10
0 -3 2 -11 Rs—>Ra+ =Ry
“lo 0 29/3 -116/3] 7
0 0-17/3 68/3 Ri—>Ri- 2Re
1 2 0 4
R3— —3—R3
0 0 1 -4 3
0 0 1 -4 Rio-- R
1 2 0 4
0 -3 2 -11
- , Ri» Re-Rs
0 0 1 -4
0 0 0 0

Thus r(C) = r (A) = 3 hence the given system is consistant and has a unique
solution

1 2 0 4
0 -3 2| |1
o o 17| |-4
o o ol* | o

orz=-4,-3y+2z=-11,x+2y =4
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orz=-4,y= %(2z+11)=1,x=4-2y=2

Thus, the solution is
x=2,y=1,z=-4 Answer.
Example 8 : Examine the consistency of the following system of equations and
solve them if they are consistent x; + 2x2 - x3=3;3x1 - x2+ 2x3=1; 2x1 - 2x2 + 3x3
=2;x1-x+x3=-1

(U.P.T.U. 2002)
Solution : The given system of linear equatins can be written in matrix form as A
X=DBie.

1 2 -1 3
X

3 -1 2| 1
X, | =

2 -2 3 2
X3

1 -1 147 |1

The augmented matrix is
C=[A:B]
1 2 -1 3
) 3 -1 2 1
ie C= n 2 3 9
1 -1 1 -1

Applying elementary row transformations to the augmented matrix, we obtain

1 2 -1 3
0 -6 5 -4 Ry - Ru- Ry
0 -3 2 -4
1 2 -1 3

~ 0o -7 5 -8 R3—>R3——§—R2
0 0 5/7 20/7 3
_0 0 _1/7 _4/7 R4-—-)R4--7—R2
1 2 -1 3 ;

|0 -7 5 -8 R3 - gRs
0 0 1 4 1
0o 0 0 o0 Ri> Rt = Rs

ie.r(C)=3=r(A)
Hence, the system is consistent and has a unique solution, thus
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1 2 -1 3
X

0 -7 5| '] |-8
X, |=

0 0 1 4
X3

0 0 O 0

=>x1+2%2-x3=3,-7x2+5x3=-8and x3= 4
=7x=5x3+8

:>X2:;(5X4+8)=4

and x1=3-2x2+x3=3-8+4=-1
Thus, the solution is x; = -1 x2 = 4, x3 = 4 Answer
Example 9 : Examine the consistency of the following system of linear equations
and hence, find the solution4 x1 -x2=12; - x1 +5x2-2x3=0; -2 x2 +dx3 = -8
(U.P.T.U. 2005)

Solution : The given equations can be written in matrix form as

4 -1 0| x 12

-1 5 -2 x,|=|0

0 -2 4| x -8
i.e. AX =B where

4 -1 0 X 12
A=|-1 5 -2, X=|x,|B=[ 0

0 -2 4 X -8
Now the augmented matrix C is
C=[A:B]

4 -1 0 12
ie.C=-1 5 -2 0
0 -2 4 -8
Applying elementary row transfomations to matrix C to reduce it to upper
triangular form we get
1 14 -6 12

B~|-1 5 -2 0|, Ri->Ri1+3R;
0 -2 4 -8
1 14 -6 12

~1 0 19 -8 12|, R R+ Ry
0 -2 4 -8
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1 14 -6 12 5
~1 0 19 -8 12 , Ri—>Rs+ ERQ
0 0 60/19 -128/19

Hence, we see that ranks of A and C are 3i.e.r (A) =3 = r (C). The the system of
linear equations is consistent and has a unique solution. Thus, the given system
of linear equations is

1 14 -6 X, 12

0 19 -2 X, |= 12

0 0 60/19] x, -128 /19
leexi+tldxo~-6x3=12

19 x2 - 8x3 =12
60 -128 -128
and —X, = ——— =2 X; = ——
19 19 60
. 32
ie x;=~—
15

on putting the value of x3 in 19x2 - 8 x3 = 12
X, =i(12+8x%)=i 12+8(;32)
19 19 15

=X, = “ig
Lastly, putting x2, x3 in x1 + 14 x2 - 6 x3 = 12 we have

X, +14x[:é]—6[£j=12

15 15
44
=X, =—
15
Therefore, the solution is
44 -4 -32

X, ==, Xy ===, X,

15 15 15
Example 10 : For what values of A and p, the equations x +y+z=6;x + 2y + 3 z
= 10; x + 2y + Az = U have (i) no solution (ii) unique solution and (iii) infinite
solutions. (LA.S 2006, U.P.T.U. 2002)
Solution : The given system of linear equations can be written as

1 1 1 |x| |6

1 2 3lyl=|10
1 2 Allz U
ie. AX=B
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1 1 1 6
C=[A]=|1 2 3 10
1 2 A u

Applying elementary row transformations to C, we get

1 1 1 6 Ry o> Ry - Ry
B~j0 1 2 4 Ry - Rs— R,
0 1 A-1 u-6
1 1 1 6

~10 1 2 4 , Rs-»>R3-Rg
0 0 A-3 u-10

(i) For no solution, we must have

r(A)=r(C)

ieA-3=0orA=3andu-100=>pu=10

(ii) for unique solution, we must have

r(A)=r(C)=3

ieA-3x0=>A#3

andu-1020=u=10

(iii) for infinite solutions, we must have

r(A)=r(C)<3

ieA-3=0=>A=3

andpu-10=0=pn=10 Answer.

Solution of Homogeneous system of Linear - Equations :

A system of linear equations of the form AX = 0 is said to be homogeneous where
A denotes the coefficient matrix and O denotes the null vector i.e.

anp Xy tarxXet oo + ain Xp =0
an Xyt tamXot oo +amxn=0
g Xq 8, Xy F e, +a,.X, =
ie. AX=0

- PR T a,. |l x 0

Ay Agpeeeeeenns ay || X, 0
or =

A,y Bppeeeen a.. I X, 0

The above system has m equations and n unknowns. We will apply the matrix
method to find the solution of the above system of linear equations. For the
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system AX = O, we see that X = O is always a solution. This solution is called
null solution or trivial solution. Thus a homogeneous system is always consistent.
We will apply the techniques, already developed for non homogenous systems of
linear equations to homogeneous linear equations.

(i) If r (A) = n (number of unknown) the system has only trivial solution.

(ii) If r (A) <n, the system has infinite number of solutions.

The figure as given below shows a flow chart which depicts the procedure for the
solution of a homogenous system of linear equations.

A system of homogeneous linear equations
AX=0

Always has a solution

Find r (A)
r(A)=n r(A) <n
Unique solution or Infinite no. of nontrivial
trivial solution solution

Example 11 : Find the solution of the following homogeneous system of linear
equations
x1+x2+2x3+3x4=0; 3x1+4xy+ 7x3+ 10x4 =0
5x1+ 7x2+ 11x3 + 17x4 =0; 6 x1 + 8x2 + 13x3 + 16x4 =0
Solution : The given system of linear equations can be written in matrix form as
1 1 2 3 {x 0
3 4 7 10| x| {0
5 7 11 17| x, 0
6 8 13 16| x, 0

Applying elementary row transformations, we get
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11 2 3] [0] R g _aR
0 1T 1 1ix| |0/ R R _5R
0 2 1 2 X3 0 Ry > Ry - 6R;y
0 2 1 =2]x, ]| |0]

1 1 2 37 x, ] [0]

0 1 1 0}x,| |0 Ri>Rs-2Ry
1o 0 -1 0llx,| (0] Re>Ra-Rs
0 0 0 -4jx,4 |0}

i.e. r(A) = 4 = number of variables

Hence the given system of homogeneous linear equations has trivial solution i.e.
x1=0=x2=x3=x4 Answer.

Linear Combination of vectors :

Let X1, X2 cevvvvnvnnnnnnn. xx be a set of k vectors in Rn, Then the linear combination of
these k vectors is sum of the form oux; + 02 X2 + oeovivivvivninninn.n. + Ok Xk, in which
oy is a real number.

Linear Dependence and Independence Vectors :

Let x1, X2 covevvvennii. xx be a set of k vectors in Rn. Then the set is said to be
linearly dependent if and only if one of the k vectors can be expressed as a linear
combination of the remaining k vectors.

If the given set of vectors is not linearly dependent, it is said to be set of liearly
independent vectors.

Example 12 : Examine for linear dependence (1, 0, 3, 1), (0, 1, -6, -1) and (0, 2, 1, 0)
in R4,

Solution : Consider the matrix equation aix1 + 02 x2 + 3 x3 = 0
ieou(1,0,3,1)+02(0,1,-6,-1) + 03 (0,2,1,0) =0

= (a1 +002+0as3 0ar+az2t2a33a1-601-60a2+03 01 - a2+ 0os)=0

= a1 =0

oz + 203 =0

301 - 600+ 03 =0

and ¢ - o2 =0

1 0 0 0
o1 2% o
1.e 3 _6 1 (12 = 0

1 -1 o|%d o
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[1 0 0 0 s R 3R
o 3> R3 -3k
0 1 204 0
—~ a‘2 = R4—)R4—R]
0 -6 1 0
Lo -1 ot o
1 0 0 0
0 1 5 o, 0 Rz = R3+ 6R»
Lo o 1)@ NMTRTR
o o 2/t o

ie. o1 =0, 02+ 202 =0 = 02 =0
13 03=0= 03 =0
iea=0=02=03
Thus, the given vectors are linearly independent. Answer.
Example 13 : Examine the following vectors for linear dependence and find the
relation if it exists.
X1=(1,2,4),X2=(2,-1,3),X3=(0,1,2) and X4 = (-3, 7, 2)

(U.P.T.U. 2002)
Solution : The linear combination of the given vectors can be written in matrix
equations as
A X1+oaa Xo+ oz Xs+ o0y Xg=0
2>01(1,24)+02(2,-1,3)+a3(0,1,2)+a4(-3,7,2)=0
= (OL1+20(.2+0063—30L4,20(1—0L2 +(X3+70(4,40(1"'30(2'*‘20(3'*‘20(4):0
=>ou+202+003-30s=0
2o1-02+t03+t704=0
do1+302+203 +2004=0
This is a homogenous system i.e.

(x'l

1 2 0 -3 0
oy

2 -1 1 7 =0
(x'%

4 3 2 2 ) 0
o,

Applying elementary row transformations we have

1 2 0 -3 o 0 Ry > Ry - 2R,
-~ 0 "‘5 1 13 a = 0 R3'—)R3—4R1
0 -5 2 14*? 0
(X4
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a‘l
1 2 0 -3 0
o -5 1 13 % <0, Ri> R -R,
o 0o 1 1) |o
a4
Hence the given vectors are linearly independent
iear1+202-304=0
-Saz2+ta3+1304=0
O3+ 04 =0 .
puttingas =kin oz + as =0 we getaz = -k
-502-k+13k=0

ie.ay= %kandoc1+2xléz—k—3k=0

= o, =—§k

Hence the given vectors are linearly dependent substituting the values of a in
op X1+ o2 Xo+ 00aXo + o0y X4 =0 we get
_—91—<-X, +—12—k><2—kX3 +kX, =0

5 5

or 9X; - 12 X5 + 5X3 - 5X4 =0

Characteristic Equation and Roots of a Matrix :

Let A = [aj] be an n X n matrix,

(i) Characteristic matrix of A : - The matrix A - Al is called the characteristic
matrix of A, where I is the identity matrix.

(ii) Characteristic polynomial of A : The determinant |A - Al| is called the
Characteristic polynormial of A.

(iii) Characteristic equation of A : The equation |A - AI| =0 is known as the
characteristic equation of A and its roots are called the characteristic roots or
latent roots or eigenvalues or characteristic values or latent values or poper
values of A.

The Cayley - Hamilton Theorem : Every square matrix satisfies its characteristic
equation i.e if for a square matrix A of order n,

[A-AL] =TI [An+arAnl +apAn2+ + an)
Then the matrix equation

Xn+ap Xnl+ay Xn2+a3 Xn3 4+, anl=0

is satisfied by X = A

e Ar+ai Anl+ay A2+ . +a;1=0

(U.P.P.C.S. 2002; B.P.Sc 1997)
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Proof : Since the element of A -Al are at most of the first degree in 2, the elements
of Adj (A - Al) are ordinary polynomials in A of degree n -1 or less.

Therefore Adj (A -Al) can be written as a matrix polynomial in A, given by

Adj (A -Al) =BoAr1 + BiAn2+ . +Bn2A + Bn1 where Bo, By .............. Bn1
are matrices of the type n x n whose elements are functions of ay, s

Now (A - aAl) adj. (A -Al) = |A-Al}]

~AadjA=[All
S(A-AD) (BoAnt+ BiAn2+ . +Bn2A + Bn)
=D A+ adnl+ +an] I

Comparing coefficients of like powers of A on both sides, we get
-IBo=(-1) 1

ABo-IB1=(-1)r a1 1

ABi-1B2=(-I)nar I

Premultiplying these successively by Ar, An1 ... I and adding we get
0=(-1r[Ar+ag Arl+ap An2+ +anl ]
Thus,
Art+ar Arl+ay A2+ +an1 A+apnl=0 Proved.
Example 14 : Find the characteristic equation of the matrix
2 -1 1
A=1-1 2 -1
1 -1 2

and verfy that it is satisfied by A and hence obtain A-1.
(U.P.P.C.51997; U.P.T.U. 2005)
Solution : We have

2-2 -1 1

JA-A|=| -1 2-A -1
1 -1 2-A

= 2-2){2- 21+ 1{-12- 1) +1} + {1- 2- W)
=2-M@B-4r+ A+ (A-1)+(A-1)
=- A3+ 6A2-9A+4
we are now to verify that
A3-6A2+9A -41=0 (i)
we have
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0 0 2 -1 1
I=[0 1 0], A=|-1 2 -1
0 1 1 -1 2
6 -5 5
A*=AxA|-5 6 -5
5 -5 6
2 -21 21
A*=A*xA|-21 22 -21
21 -21 22
Now we can verify that A3 - 6A2 + 9A - 41
(2 -21 21 6 -5 5 2 -1 1 1 0 0
=|-21 2 -21|-6/-5 6 -5{+9|-1 2 -1(-4/0 1 0
21 -21 22 5 -5 6 1 -1 2 0 0 1
0 0 0
=0 0 0
0 0 0

Mtllﬁplying (i) by A-1, we get
A2-6A +91-4A1=0

. A =% (A2 - 6A +9I)
Now A2-6A + 91

6 -5 5 -12 6 -6 9 0 0
={-5 6 -5 |[+] 6 —12 6 [(+{0 9 O
5 -5 6] |6 6 -12 ][0 0 9
(3 1 -1
=i 1 3 1
-1 1 3
3 01 -1

AT = 1 1 3 1 Answer.

4—-1 1 3

Example 15 : Use Cayley - Hamilton theroem to find the inverse of the following
matrix
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4 3 1
A=y2 1 -2
1 2 1

and hence deduce the value A5 - 6A+ + 6A3- 11A2+2A + 3

(U.P.T.U. 2002)
Solution : The characteristic equation of the given matrix is
|A-AI|=0

4-A 3 1

2 1-x -2 =0

1 2 1-A
ie (4-A)[(1-A)2+4]-3[2(1-2)+2]+1[4-(1-A)]=0
or A - 6A2+6A - 11 =0
By Cayley - Hamilton theorem we have
A3-6A2+6A-111=0
Multiplying by A-1, we have
A-1TA3-6AT A2+ 6ATA-11A11=0
or A2- 6A + 61 - 11A1 =0
11 A1 = A2-6A + 6l

T4 3 1 4 3 1 4 3 1 1 0 0
=2 1 =21{/ 2 1 =21-6/2 1 -2i+6/0 1 0
1 2 1 1 2 1 1 2 1 0 0 1
(23 17 -1 24 18 6 6 0 0
=8 3 -21-[12 6 -12|+{0 6 O©
9 7 =2 6 12 6 0 0 6
[5 -1 -7
=4 3 10
| 3 -5 -2
Therefore

5 -1 =7
a1
Al=—| - 3 10

11

3 -5 =2

Now

A5-6A% +6A%-11A2 + 2A + 3 = A2 (A3- 6A2 + 6A - 11I) + 2A + 3]
= A2(0) + 2A + 3]
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4 3 1 1 0 0
=2/ 2 1 -2 |+3/0 1 0
1 2 1 0 0 1
[8 6 2 3 00
=l 4 2 -4|+|0 3 0
|2 4 2]|0 0 3
11 6 2
= 4 5 -4 Answer.
2 4 5

Eigen vectors of a Matrix :

Let A be an n x n square matrix, A be the scalar called eigen values of A and X be
the non zero vectors, then they satisfy the equation

AX=AX

or [A-IA] X=0

For known values of A, one can calculate the eigen vectors.

Eigenvectors of matrices have following properties.

1. The eigen vector X of a matrix A is not unique.

2. If M, Ao An be distinct eigen values of n x n matrix then the
corresponding eigen vectors X1, X2 ...........uuni Xn form a linearly independent
set.

3. For two or more eigenvalues, it may or may not be possible to get linearly
independent eigenvectors corresponding to the equal roots.

4. Two eigenvectors X; and X; are orthogonal if X1 X2 =0

5. Eigenvetors of a symmetric matrix corresponding to different eigenvalues

are orthogonal.
In this section we will discuss four cases for finding eigenvectors, namely.

1. Eigen vectors of non-symmetric matrices with non - repeated eigenvalues.
2. Eigenvectors of non-symmetric matrix with repeated eigenvalues.
3. Eigenvectors of symmetric matrices with non - repeated eigenvalues.
4. Eigenvectors of symmetric matrices with repeated eigenvalues.
Example 16 : Find the eigenvalues and eigenvectors of the matrix
3 1 4
A={0 2 6
0 0 5

(IAS 1994; U.P.P.C.52005; U.P.T.U. (C.O.) 2002)

Solution : The characteristic equation of the given matrix is

164



Matrices

|A-All=0
3-2 1 4
0 2-A 6 |=0
0 0 5-A
or(3-1)(2-2)(5-A)=0
SWA=3,2,5
Thus the eigenvalues of the given matrix are
)»1=2,7»2=3,)\.3=5
The eigenvectors of the matrix A corresponding to A =2 is
[A-MI]X=0
3-2 1 4 |Ix, 0
iee| 0 2-2 6 |x,|=]0
0 0 5-2|x,4 |0

1 1 4]x 0
0 0 6|x,(=|0
0 0 3] x, 0

ie x1+ x2+ 4x3 =0

6X3 =0 = X3 =0

x1 + x2 =0

=>x1=-x2=ki (say), ki #0
Thus, the corresponding vector is

X, k, 1
X, =%, |=|-k, |=k,[-1

X, 0 0
The eigenvector corresponding to eigenvalue A2 = 3
[A-AI]X=0

[3-3 1 4 Ix, ] [o
0 2-3 6 |lx,|=]0

0 0 5-3|x,] |0

0 1 4]x] [0

0 -1 6|x,|=0
0 0 2|x 0

ie.xa+4dx3=0
X2+ 6x3=0
and 2x3 = 0 = x3 =0
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ie. x2=0 (- x3=0)

Now let x; = k2, we get the corresponding eigenvector as
X, k, 1

X,=|x,{=| 0 |=k,|0
X3 0 0

Again when A = 5, the eigenvector is given by
[A-21] X=0
3-5 1 4 | x 0
6

0 0 0fx]| |0

i1e -2x3+x2+4x3=0

- 3x2 + 6x3 =0
or x2 = 2x3 = k3 (say), ka# 0
Then
2x1=x2 + 4x3 = ks + 2ks
= 3k3
X; = ;—k3
Thus, the corresponding vector is
3
X, Ek3 3
X;=x, |=| k4 =—;—k3 2
X3 lk3 1
2
Example 17 : Find the characteristic equation of the matrix
1 2 2
0 2 1
-1 2 1

(U.P.P.C.S 2000; U.P.T.U. 2007)
Also find eigenvalues and eigenvectors of this matrix.

Solution :
The characteristic equation of the matrix is
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[A-ALIX=0

1-A 2 2

0 2-A 1 =0
-1 2 2-A
=AM -5A2+81-4=0
=>A-1)(A2-4r+4)=0
or A=1,22
The eigenvectors corresponding to A1 = 1 is
[A-11} X =0
[1-1 2 2 x,| [0
0 2-1 1 X, |=]0
-1 2 2-1 | x, 0

2x2 + 2x3 =0

x2+x3=0=x2=-x3=ki (say), K1 #0
- X1+ 2x2 + x3=0

x1=2x2+ x3=2ki-ki =k;

Hence, the required eigenvector is

X, k, 1
X, =% {=| k, |=k,| 1
X, -k, -1
Now, for the eigenvector corresponding to A, = 2
[A-2]] X=0
1-2 2 2 x, | [0
0 2-2 1 X, |=|0
-1 2 2-2 x| |0

-1 2 2 |x 0
0 0 1 i[x,|=|0

-1 2 0 i x, 0]

ie.-x1+2x2 + 2x3 =0

x3 =0

-x1+ 2x, =0

x1=2x2 = ka (say), ka# 0
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X1=k2,X2= %kZIX3=O

Hence, the corresponding vector is
k2

X, 1 1 2
X2 =X, |= Ekz = Ekz 1
X3 0

Diagonalization of Matrices :

We have referred to the elements ay of a square matrix as its main diagonal
elements. All other elements are called off- diagonal elements.

Diagonal Matrix : - Definition
A square matrix having all off - diagonal elements equal to zero is called a

diagonal matrix.
We often write a diagonal matrix having main diagonal elements d,

O d
with O in the upper right and lower left corners to indicate that all off - diagonal
elements are zero.

Diagonalizable Matrix : An n X n matrix A is diagonalizable if there exists an
n x n matrix P such that P-1 AP is a diagonal matrix.

When such P exists, we say that P is diagonalizes A.

Example 8 : Diagonalize the following matrix

A -1 4
Lo 3
Solution : The eigenvalues of the given matrix are -1 and 3, and corresponding

1 1
eigenvectors 0} and L:l respectively

From

N

Because the eigenvectors are linearly independent, this matrix is non singular
(as | P|#0), we find that

I)_]_1 -1
1o 1
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Now compute

. 1 -1(-1 41 1
PTAP =

0 10 0 3j0 1

-1 0
Lo 3
which has the eigenvalues down the main diagonal, corresponding to the order

in which the eigentvectors were written as column of P.
If we use the other order in writing the eigenvectors as columns and define

ol

then we get
Q“AQ=[3 0}
0 -1
Example 19 : Diagonalize the matrix
1 6 1
1 2 0
0 0 3

(U.P.T.U. 2006)
Solution : The characteristic equation of the given matrixis |A-Al|=0i.e.

1-A 6 1
1 2-2 0 =0

0 0 3-A
A=3,4,-1
Now, eigenvectors corresponding to
=A=-lis
[A - M} X1 =0

1+1 6 1 x| [0
ie.| 1 2+1 0 |x,|=|0
0 0 3+1fx,| |0
2 6 1|x
=1 3 0]x,=|0
0 0 4fx] |0

i.e. 2x3 + 6x2 + x3=0
x1+3x2=0
4x3 =0 => x3 =0
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X1 = - 3X2
suppose x2 =k, then x; =-3k, k=0
The eigenvector is

X, -3k -3
Xi=[x, |=| k|=k|1

X5 0 0
Eigenvector corresponding to A2 = 3 is
[A - 20]X2=0

1-3 6 1 x,7 [o
ie.| 1 2-3 0 |x|=|0
0 0 3-3|x] |0

-2 6 1|x 0
=1 -1 0}|x,|=|0
0 0 O0jx,| 0

ie -2 x; +6x2+ x3=0

x1-X2=0 x1=x2 =k (say), k=0
X3=2X1 —6X2=2k—6k=-4k
The eigenvector is

X, k 1
X,={x,|=] k |=k| 1
X, —4k -4
Eigenvector corresponding to A3 =4 is
[A -2l X3 =0
1-4 6 1 X, 0
1 2-4 0 |x,i=|0
0 0 3-4x| |0
3 6 1]x,] [0
=>[ 1 -2 0fx,|{=|0
0 0 -1]x,] [O

So=3x1 + 6x2 + x3=0

X1-2x2=0=>x1 = 2x2

-x3=0=x3 =0

Let x2 = k then x; = 2k, Thus, the eigenvector is
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X, 2k 2
X, =%, |=| k |=k| 1
Xy k 0
Thus, modal matrix P is
-3 1 2
P={1 1 1
0-4 0
(4 -8 -
Now P = >0 0 0 5
-4 -12 -4
For diagonalization
D =P1AP

(4 -8 -1][1 6 1]-3 1 2

=——{ 0 0 51 2 of1 1 1

|4 -12 -4][0 0 3]0 -4 0
[4-8+0 24-16+0  4+0-3 312
=——| 04040 0+0+0 0+0+15 1 11
—4-12+0 -24-24+0 —4+0—1J 0-40
-4 8 1312

=——1— 0 0 15 1 11
20_—16 -48 -16|| 0-4 0
12+8+0 -4+8-4 ~-8+8+0
=—% 0+0+0 0+0-60 0+0+ O

4848 -16-48+64 -32-48+0
20 0 0Ofj-1 0 O

L 0 -60 0} 0 3 0

20 0 0 -8} 0 0 4
D=dia (-1, 3, 4) Answer.
Complex Matrices :

A matrix is said to be complex if its elements are complex number. For example

Ao 2 +3i 4i
T2 —i

is a complex matrix.
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Unitary Matrix :

A square matrix A is said to be unitary if

A’A =1

Where A® = (K) i.e transpose of the complex conjugate matrix.
Example 20 : Show that the matrix

1 1 1+1] ., ¢
—_ . is unitary
3l1-i -1
(U.P.T.U. 2002)
Solution :

1 1+i 1 1+i
AeA:L}}L—l -1 }X%[l—l -1 }
1| L1+(1+1).(1-1) 1(1+i)+(1+1).1
"—3{(1—1).“(—1)(1—1) (1—i)(1+i)+(—1)(—1)}
1 (1+1~1i? 0
=ﬁ{ 0 1—1%1}
113 0
=ﬁ{o 3]

= A is unitary matrix. Proved

Hermitian matrix :

A square matrix A is said to be a Hermitian matrix if the transpose of the
conjugate matrix is equal to the matrix itself i.e

A’= A= aj=aj
where A =[ajj]nxn; aj €C
For example
. 1 2-3i 3+4i
a  bHello s o 4-5i
b-ic d [ i i
3-4i 4 +5i 2
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are Hermitian matrices.
if A is a Hermitian matrix, then
5;-,=aﬁ:>a-iB=oc+iB
= 2if =0
=pB=0
sai=a+i(0)
;i = o
= which is purely real
Thus every diagonal element of Hermitian Matrix must be real.
(U.P.P.C.52005)

Skew - Hermitian Matrix :

A square matrix A is said to be skew - Hermitian if A° = - A = a; = -aj;

For principal diagonal

j=1i

= 5" = -

= 5.. + a;i =0

= realpart of a;; =0

= diagonal elements are parely imaginary

Thus the diagonal elements of a skew - Hermitian matrix must be pure imaginary
numbers or zero.

For example

0 -2-i|[ ~i 3 +4i
2-i 0 |'1-3+4i O

are Skew - Hermitian matrices.

Problem set

Exercise
1. Using elementary transformations find the inverse of matrix A where
1 2 3
A=|2
3 5 6
[U.P.T.U. (C.O.) 2007]
-1/4 3/4 0
Ans. A7 =| 3/4 -1/4 0
“1/4 -1/4 1
2. Using elementary transformations, find the inverse of the matrix A where
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1 3
A=l1 4 3
1 3 4
7 -3 -3
Ans. A™ =| -1 1 0
-1 0 1
3. Using elementary transformations, find the inverse of the matrix A where
i -1 2i
A=| 2 0 2
-1 0 1

0 1/4 -i/2
Ans. [-1  (3/4)i i/2
0 1/4 1/2

4. Using elementary transformations, find the inverse of matrix A where
2 5 3 3
2 3 3 4

A3 6 3 2
4 12 0 8

-144 36 60 21
1| 48 -20 -12 -5 .

~1
Ans AT=ggl 18 -4 -12 -1
0 12 -12 3
5. Find the rank of the following matrix by reducing it to normal form.
1 2 -1 3
_ 4 1 2 1
O Ay 11 2
1 2 0 1

(U.P.T.U. (C.0) 2002)

0 1 2 -2
) A=|4 0 2
2 1 3

(U.P.T.U. (C.O.) 2007)
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2 -1 -1
1 -1 -2 -4
(iii) 1 3 _y

(U.P.T.U. 2006)

1 2 3
(iv)  Find the rank of the matrix, A={2 3 5 1
1 3 4
(U.P.T.U. 2000, 2003)
Ans. (i) 3 (ii) 2 (iii) 3 (iv) 2
3 -3 4
6. IfA={2 -3 4 | find
0 -1 1
two non - singular matrices P and Q
such that PAQ =1 Hence find A-1.
(U.P.T.U. 2002)
1 -1 0 1 0 0
Ans. P=| 0 0 1 land Q] 0 -1 1
-2 3 -3 0 0 1
1 -1 0
and A" =QP =|-2 3 -4
-2 3 -3
7. Find the non singular matrices P and Q such that PAQ in the normal form

for the matrices below.

1 2 3 -2
(i) 2 -2 1 3
3 0 4 1]
1 -3 1 2]
(i) 0 1 2 3
3 1 -2

175



A Textbook of Engineering Mathematics Volume - 1

1 0 1 1/3 4/3 -1/3
i 0 -1/6 -5/6 7/6
Ans. (i) P=-2 1 0], Q= 0 0 1 {)
-1 -1 1
0 0 0 1
0
(i) 0
L/ZS 13/28 ~-1/28
1 3 -7 21/28
0 1 -2 10/28
=l 0 1 —47/28
0 0 0 1
8. Use elementary transformation to reduce the following matrix A to upper

triangular form and hence find the rank A where
2 3 -1 -1
1 -1 -2 -4

A= 3 1 3 -2 (U.P.T.U. 2005)
6 3 0 -7

Ans. 3
9. Check the consistency of the following system of linear non-homogenous
equations and find the solution, if it exists.
7x1+ 2x2 + 3x3 = 16; 2x1 + 11 x2 + 5x3 = 25, x1 + 3x2 + dx3 = 13
(U.P.T.U. 2008)

95 100 197
Ans. x,=—, X, =, X; = ——
91 91 91
10. For what values of A and u, the following system of equations

2x+ 3y +52=9,7x + 3y -2z =8, 2x + 3y + Az =pu
will have (i) unique solution and (ii) no solution
Ans. (1))A #5 (ii)u #9,A=5

11. Determine the values of A and p for which the following system of
equgtions

3x-2y+z=p,5x-8y+9z2=3,2x+y+Az=-1has

(i) Unique solution (ii) No solution and

(iii)  Infinite solutions.

Ans. @)Az-3  (i)A=-3, p+ % (i) A=-3,p=1/3
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12. Verify the Cayley - Hamilton theorem for the following matrices and also
find its inverse using this theorem

1 2 3
(i) A=/2 4 5
3 5 6
(U.P.T.U. 2007)
22 1
(ii) A=l0 1 -1
3 -1 1
(U.P.T.U. (CO) 2007)
1 -3 2 0 3 3
Ans. (i) A"=|-3 3 -1 (ii) A= 1 3 1 -2
2 -1 0 ? 3 -8 -2
13. Find the characteristic equation of the symmetric matrix
2 -1 1
-1 2 -1
1 -2 2

and hence also find A-! by Cayley - Hamilton theorem. Find the value of AS -
6A5 + 9A% - 2A% - 12A2- 23A - 91
(U.P.T.U. 2003, 2004)

2 0 -1
A"1=?13—O 3 1
0o 3 3

84 -~-102 80
and Value = | -80 106 -80
102 -138 106

14. Find the characteristic equation of the matrix

2 1 1
A=|0 1 0
11 2

verify Cayley~-Hamilton theorem and hence evaluate the matrix equation
A8 -5A7+7A6-3A5+ At -5A3+ 8A2-2A +]

(U.P.T.U. 2002)
Ans. A3-5R2+70-3=0
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8 5 5
and |0 3 O
5 5 8
15. Find the eigenvalues and corresponding eigen vectors of the following
2 1 1
() 2 3 2
3 3 4
2 2 -
(ii) 2 1 - }
-1 -2 0
[3 10 5
(iii) -2 -3 -
| 3 5 7
o] [ 1][1]
Ans. (i)1,1,7;| 1},| 0[]|2
-1 —1] 3
1][0][3]
(ii) 5-3,-3;| 2/,3]0
-1]{2][1]
-1{-5
(i) 2,2,3,]-1}|,|-2 Dependent eigenvectors.
2] 5
16. Diagonalize the given matrix
. 0 -1
O
.. 5 3
(ii) 1 3}
5 0 0
(iii) 1 0 3
o 0 -2
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1 0 0 0
, 0 4 1 0
™ 1o o -3 1
0 0 1 -2
3+\/7i 0
. _p-l _ 2
Ans. (i) D=P"AP = S
2
(ii) P“AP=|:2 O}
0 6
0 0 0
(iii) P"AP=(0 5 0
0 0 -
10 0 0
0 4 0 0
) PTAP=|o o0 _5’;‘/5 0
0 0 0 m
L 2

10
17. Prove that {_4 1 } is not diagonalizable.

OBJECTIVE PROBLEMS

Each of the following questions has four alternative answers, one of them is
correct. Tick mark the correct answer.

1 -3 2
1. The rank of the matrix A= 3 -9 6| is
-2 6 -4

(U.P.P.C.S. 1990)
Ay 0 (B) 1
<© 2 by 3

Ans. (B)

2. The equations
x-y+2z=4
x+y+d4z=6
x+y+z=1have
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(A)  Unique solution (B) Infinite solution
© No solution (D) None of these
Ans. (B)
5 0 2
3. If A=) 0 1 0 j}and I be 3x3 unit matrix. If M =1 - A, then rank of
-4 0 -1
[-Ais
(LA.S.1994)
(A) 0 B 1
(©) 2 (D) 3
Ans. (B)
4. If p(A) denotes rank of a matrix A, then p(AB) is
(I.LAS. 1994)
(A)  p(a) (B)  p(B)
© Is less than or equal to min [p(A), p(B)]
(D) >min|[p (A), p(B)]
Ans. (C)
5. If3x + 2y +z=0
x+4y+z=0
2x+y+4z=0
be a system of equations then
(LA.S. 1994)

(A)  Itis inconsistent
(B) It has only the trival solutionx =0,y =0,z=0
(C) ' Itcan be reduced to a single equation and so a solution does not exist.
(D)  The determinant of the matrix of coefficient is zero.
Ans. (B)

6. Consider the Assertion (A) Reason (R) given below :
Assertion (A) the system of linear equations
x-4y + 5z =8
3x+7y-z=3
x + 15y - 11z = -14 is inconsistent.
Reason (R) Rank p(A) of the coefficient matrix of the system is equal to 2, which is
less than the number of variables of the system.

(LA.S.1993)
The correct answer is -
(A)  Both A and R are true and R is the correct explanation of A.
(B) Both A and R are true but R is not a correct explanation of A.
(C)  Aistrue but Ris false.
(D)  Aisfalse but Ris true.
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Ans. (B)
7. Consider Assertion (A) and Reason (R) given below :
Assertion (A) : The inverse of l;ll :} dose not exist
Reason (R) : The matrix is non sigular.
(LA.S. 1993)
The correct answer is
(A) Both A and R are true and R is the correct explanation of A.
(B) Both A and R are true but R is not a correct explanation of A.
<© A is true but R is false.
(D)  Ais false but Ris true.
Ans. (D)
8. If A =Diag (A1, Az..eeonnn. An), then the roots of the equation det (A - xI) =0
are___
(ILAS. 1993)
(A) Allequaltol
(B) All equal to zero
© A,1<i<n
(D) -Ai,1<i<n
Ans. (C)
1 1 1
9. The matrix |2 5 7 |then inverse matrix is given by
2 1 -1
(3 1/2 1/2
(A) 4 3/4 -5/4
2 1/4 -3/4
3 -1/2 -1/2
(B) 4 3/4 5/4
2 -1/4 -3/4
3 1/2  1/2
© 4 3/4 5/4
12 -1/4 -3/4
3 1/2 1/2
(D) 4 3/4 5/4
2 1/4 3/4
Ans. (B)
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3 1 2
10. The rank of the matrix A = [6 2 4| givenby
[3 1 2
(A) 0 (B 1
<) 1 (D) 3

Ans. (B)
11. The value of A for which the system of equation x + 2y + 3z = Ax, 3x +y +
2z = Ly, 2x + 3y + z = Ax, have non - trival solution is given by
Ay 1 (B) 2
©) 4 (D) None of these

Ans. (D)

1 1 -1 1
12. Let the matrix be A=[3 3}md B=[1 J, which one of the

following is true.
(A) A exists (B) B~ exist

(@) AB=BA (D) None of these
Ans. (D)
13. The equations
x+y+z=3
x+2y+3z=4
2x+3y+4z=7
have the solution -
(A) x=2,y=1,z=1
(B) x=l,y=2z=1
©) x=3,y=12=1
D) x=1,y=0,z=3
Ans. (C)
14. If A and B are square matrices of same order, then which one of the
following is true.
(A) (AB)=A'B' (B) (AB)'=A"B"
(© (AYY=@)" (D) BAB=BAB
Ans. (C)
1 0 0
15. The inverse of the matrix [0 2 0 |is
00 3
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- - - .
100 100
1 1
A 0 - 0 B 0 - 0
) > (®) :
00 1 00 1
L 3] L 2
1 0 0
2
© 01 0 (D) None of these
00 =
L 3
Ans. (A)
1 -2
16. The rank of the matrix | -2 4 |is
-1 2
Ay 0 B 1
(@) 2 (D) 3
Ans. (B)

17. Let A be an n x n matrix from the set of real numbers and A2 - 3A2 + 4A -
6] =0
where [ is n x n is unit matrix if A1 exists, then

(LA.S. 1994)
(A) A'=A-I
(B) A'=A+6l
(C) A'=3A-61
(D) A'= % (A2-3A +4])
Ans. (D)

18. Consider the following statements. Assertion (A) : If a 2 x 2 matrix,
commutes with every 2x2 matrix, than it is a scalar matrix.
Reason (R) : A 2 x 2 scalar matrix commutes with every 2 x 2 matrix
of these statements -

(L.A.S. 1995, 2007)
(A)  Both A and R are true and R is the correct explanation of A:
(B) Both A and R are true but R is not a correct explanation of A.
(C)  Aistrue butRis false.
(D)  Aisfalse but Ris true.
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Ans. (B)
-05 0 O
19. The inverse of thematrix | 0 4 O0|is
0 01
05 0 0 (05 0 0
(A) 0 -4 0 (B) 0 -4 0
L0 0 -1 0 01
2 0 0 2 0 o0
© 0 025 0 (D) 0 -025 0
| 0 0 1 0 0 -1
Ans. (D)
20. The system of equation
x+2y+z=9
2x+y+3z=7

can be expressed as
A 1 2 1] [9
AP i b

. 12 191 |*
®) 21 37|77

(LA.S. 1995, 2004)

o 12 1|
© |21 3|V 7l7
L i i
(D) None of these
Ans. (D)
21. The points (x1, y1), (X2, y2), (X3, ya) are collinear if the rank of the matrix.
; y; 1
A=|x, y, 1jis
X; Yy, 1
(A) lor2 (B) 20r3
(@)} lor3 (D) 2
Ans. (A)
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22. To convert the Hermitian matrix into. Skew Hermitian one, the Hermitian
matrix, must be multiplied by

(A) -1 (B) i

(@] -1 (D) None of these

Ans. (B)
1 i+1 3
23. -2 1 5+i|is a3 x 3 matrix over the set of
2 3-i 0
(A) Natural numbers (B) Integers
(@} Real numbers (D)  Complex numbers
Ans. (D)
24. The system of equations
x+2y+3z=4
2x+3y +8z2=7
x-y+9z=1have
(A) Unique solution (B) No solution
<) Infinite solution (D) None of these
Ans. (C)
25. A system of equation is said to be consistent if there
exist............... solutions for the system -
(A) No (B) One
(@) Atleastone (D) Infinite
Ans. (C)
26. If the determinant of coefficient of the system of homogeneous linear
equation is zero, then the system have -
(A) Trivial solution
(B) Non - trivial solution
© Infinite solution
(D) None of these
Ans. (B)
27. Who among the following is associated with a technique of solving a
system of linear squations ?
(A)  Sarrus (B) Cayley
(@) Cramer (D) Hermite
Ans. (C)
3 20
28. Matrix A=(2 0 i |is
0 -i 0
(A Unitary (B) Hermitian
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29.

30.

(A)
(©)

31

(A)
©

32.

A=

(A)
©)

33.

A=

(A)
©)

A Texthook of Engineering Mathematics Volume - [

Skew-Hermitian (D) None of these
-1 0 3-i
Givenmatrix [ 0 1 0 |is
3+i 0 O
Hermitian (B) Non - Hermitian
Unitary (D)  None of these
i 1 0
Matrix | ~1 0 2ilis
0 2i 0
Hermitian (B) Skew-Hermitian
Unitary (D) None of these

Characteristic roots of the matrix

cos —-sin® |
is
—sin6 —cos0

ti (B) t1
2 (D) None of these

The eigen values of the matrix

-2 2 -3
2 1 -6lis
-1 -2 0
5,-3,-3 (B) -5,3,3
-5,3, -3 (D) None of these
The matrix A is defined by

0 0

2 -3 0 |the eigenvalues of A?is

4 2

-1,-9, -4 (B) 1,94
-1,-3,2 (D) 1,3,-2

186

Ans. (B)

Ans. (A)

Ans. (B)

Ans. (B)

Ans. (A)

Ans. (B)



34.

(A)
©)

35.
are
(A)
©)

36.

(A)
©

Matrices

-1 2 3
If the matrixisA=| 0 3 5 |then the eigenvalues of A3 + 5A + 8] are
0 0-2
-1,27,-8 (B) -1,3,-2
2,50,-10 (D) 2,50, 10
Ans. (C)
The eigenvalue of a matrix A are 1, -2, 3 the eigenvalues of 3] - 2A + A2
2,11,6 (B) 3,11,18
2,3,6 (D) 6,311
Ans. (A)
3i 0 0
The matrix | -1 0 i|is
0 -i O
Unitary (B) Hermitian
Skew - Hermitian (D)  None of these
Ans. (D)
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Chapter 10
Multiple Integrals

Introduction: The process of integration can be extended to functions of more
than one variable. This leads us to two generalizations of the definite integral,
namely multiple integrals and repeated integrals. Multiple integrals are definite
integrals of functions of several variables. Double and triple integrals arise while
evaluating quantities such as area, volume, mass, moments, centroids and
moment of inertia find many applications in science and engineering problems.

b
Double Integrals: The definite integral _[f(x)dx is defined as the limits of the

sum f(x1) Ox1+ f(x2) dx2 + f(x3) Ox3 + ............ + f(xn) Oxn when n - o« and each of
the length Oxi, Ox2, Ox3............... 8xn tends to zero. Here &xi, xp,
OX3uuviiiniiiniins dxn are n sub intervals into which the range b - a has been divided
and X1, X2............ xn are values of x lying respectively in the first, second,
third,............ nth sub-interval.

a X X, x, b

< §x,—>< x,~> < &x —>

A double integral is its counterpart of two dimensions. Let a single valued and
bounded function f(x, y) of two independent variables x, y are defined in a closed
region R of the xy - plane.

Divide the region R into subregions by drawing lines parallel to Co-ordinate axes.
Number of rectangles which lie entirely inside the region R, from 1 to n. Let (x,
yr) be any point inside the rth rectangle whose area is dA:.

Y
A
rT TS
\\
/|
}
N
N J
\\___//
O > X
Consider the sum
f(X1, YI) SA + f(Xz, Y2) SAL+ ........... +f(xn, yn) SA,
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=gf(xr'Yr)6Ar (1)

Let the number of these sub-regions increase indefinitely, such that the largest
linear dimension (i.e. diagonal) of A approaches zero. The limit of the sum (i), if
it exists, irrespective of the mode of subdivision is called the double integral of
f(x, y) over the region R and is denoted by

Hf(x,y)dA
R
In other words

hme X,, ¥, A, ﬂfxy

SArs0 r=1
which is also expressed as

Hf(x,y)dxdy or Hf(x,y)dydx

Sind - dydx

Example 1: Evaluate I J. m

(P.T.U. 2006)
Solution: Since the limits of y are functions of x, the integration will first be
performed w.r.ty (treating x as a constant). Thus

1 piex? dydx 142
L Rl e

=J‘l{ ! tan"( y ):l\/_:x_dx
ol V1+x J1+x2 /],
_f { 1+x tan™ (1)}dx

_f \/1____tan tan dx

e
=—Z—[log{x+ (1+x2)H1 =%log(1 +\/§) Answer

0

Example 2: Evaluate J: on e dydx

Solution: J‘OI J‘O'Vz e*dydx = JOI dyj'ovz e'Vdx
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Answer.

Example 3: Evaluate J: J.O“(a_—y )Jaz -x* —y*dydx

Solution: Let the given integral be denoted by I

~l= '[: Iom‘/(az -x* —y?)dydx
SN g

r o
Jo§ {(62—y2)~x2}+%(az'yz)sm_] Zx ’ } v
]

= L oA ) ] e -y oy

N
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i
2
N | =
—

foh]

N

i

<

N
p—

|3

a.

<

1l

= BN

=— Answer.

Example 4: Evaluate U (x* +y*)dxdy over the region in the positive quadrant for

whichx +y <1

OR

Evaluate ”(xz +y?)dxdy , where A is the region bounded by x =0, y =0, x + y =1.
A

Solution: The region of integration is the triangle OAB, for this region x varies
from 0 to A i.e. from x =0 to x =1 and for any intermediary value of x at N. say y,
varies from the x axis to P on the line AB given by x + y =1 i.e. y varies from y =0
toy =1 -x

4
Bh (0. 1)

Hence the given integral

_” x +y?)dxdy

3\
I N
*IO(XY+3) dx

0
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)+=(1 —X)B}dx

X

2

1-x){x2 +-§(l-x)2}dx

1} 1}
< —_ (=] —_
—_
X
nN
Pammn
—

=j‘l(1-3x+6x2 - 4x*)dx
°3
1

=l|:x—éx2 +2x° —x"}

2 0
=1[1—3+2—1]

3
=-1— Answer.

6

Multiple Integrals

; Xy - .
Example 5: Evaluate Ij—-——;—dx dy over the positive quadrant of the circle x2 +
J1-y?)

Solution: The region of integration here is the quadrant OABO of the circle as

shown in figure.

Here, the Co-ordinates of A and B are (1, 0) and (0, 1) respectively as the radius of

the given circle is 1.

Y

A

B y= 1 x2

O =0 > » X

Here the given integral
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Answer.

Example 6: Evaluate 'U. xy (x +y)dxdy over the area betweeny = x2 and y = x

(B.P.S.C. 2005)
Solution: Here x2 =y represents a parabola whose vertex is the origin and axis is
the axis of y. The equation y =x is a line through origin making an angle of 450
with x axis solving y = x2and y = x, we find that the parabola y = x2 and the line y
=x intersect in the point (0, 0) and (1, 1)

O R

Required value = J.LO _[:X xy (x +y)dxdy
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= J‘]:oj::x (xzy +xy? )dx dy

L B SR ;
"L:o[—z_x y +—§xy 1( dx

=.f1 (}—x"+lx7)—[lx4+lx") dx
01\2 3 2 3

=Jl(-l-x° +-1—x7 —gx“)dx
0\ 2 3 6

1.1 1
14 24 6
= 536- Numerically Answer.

Example 7: Evaluate “ x’y? dxdy over the region x2 + y2< 1

Solution:

I[= J'_: dxj_f; x2y2 dy

, -]
L)

(]

% el (=) - )ﬂdx

= %_‘:‘I x* (1 - x? )3/2 dx

4 e 3/2
=§J.0x2(1—x2) dx
= éJ.msin2 Ocos’ 6d6

3Jo

putting x = sinf
42, 4

=—_[ sin”“ O cos”’ 6dO
3Jo

2

_4
3
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b4
=—  Answer.

24
Example 8: Evaluate J.f(x +y)’ dxdyover the area bounded by the ellipse
2
S Y
a- b
(U.P.T.U. 2004)
2 2
Solution: For the ellipse iz— + %—2— =1, we have
a
b
= i— 2 _ 2
y=1t- (a® -x*)

. Region of integration is for x from -a to + a and for y from b (a?-x*) to
a

b
+= (a®-x?)
. the glvenlntegral'f J-‘la -] )(x+y)2dxdy
=-a y—-—- —X
YA

[

\=___

x +y +2xy)dxdy

= 4L=0J.ya=0 (x2 + yz) dx dy
(The third integral vanishing as 2xy is an odd function of y)
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= %J.:, /(a2 - x2)|:3a2x2 +b%a? - bzxz:ldx

= _&f"/zacoae[f&a“ sin? 6 + b%a? ~ b%a’ sin? OJa cos06do
3a® Je=0
putting x = a sinf

= éba'|.n/2[:3a2 sin® 8+ b? -~ b?sin? 6] cos?8do
3 Jo

- %ba i(3a2 ~b2)["sin?6 cos? 06 + b? " cos? ede]
R

~4ab (B -b? 212 2 1 7

=ab (3a b)2[@+b.2.2
L

-
1\/_1\[—
4 5 7'5.—2“ TC bzn
—Zab|(3a?-p?)2 2 40T

3ab| (3" -b7) S 4

_7ab 1 a0 —b2)+b2}
3 L4

be

= lnab (a2 + bz) Answer.
4

Example 9: Find the area lying between the parabola y = 4x - x2 and the line y =
X.

Solution: The two curves intersect at points whose abscissa are given by

4x - x2=x

ie.x=0or3
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Y 4

y=4x-—x2

A\

o) X

The area can be considered as lying between the curve y =x, y = 4x -x2, x =0 and x
=3. So, integrating along a vertical strip first, we see that the required area

4x-x2
= f;f:x_x dxdy =j.[y] dx
0 X
= J.03(4x -x? - x)dx
= f:(Sx - xz)dx

3
=[§X2 _lxs}
2 3 &
9
=—-9== Answer.
2 2

Change to Polar Co-ordinates:
We have x = r cos6, y = r sinf

Therefore
ox dx
L ®
dy dy
or 90

cos® —rsin®

sin® rcos©

=r

= Uf[x,y]dxdy = J.J.f[rcose,rsine]]dedr
R R'

= ”f[rcosa,rsine]rdedr
&

Note: In polar dx dy is to be replaced by r do dr.

200



Multiple Integrals

2ax x?

Example 10: Evaluate'[ J. x + yz)dy dx by changing to polar Co-ordinates.

Solution: LetI = JQ_“J. e x ty )dy dx, upper limit of y is

x2 +y2 - 2ax =0
(x-a)+y2= a2 @

2 2 —
r=2acos@ X Ty -2ax=0

O

This equation represent a circle whose centre is (a, 0) and radius a. Region of
integration is upper half circle. Let us convert the equation into polar Co-
ordinates by putting

x =rcosband y = r sin

= r2-2arcosd =0

=>r=2a coseﬁ (i)
s = J.zaj.ﬂzjx_xz) (x* + y*)dydx

n/2'[2acoser2 (r drde)

r=0

= 4a“j /Zcos“ 8do

= Answer.

Example 11: Transform the mtegralf _‘.“ 0 ./(xz +y*)dx dy by changing to

polar Co-ordinates and hence evaluate it.
Solution: The given limits of integration show that the region of integration lies

between the curves

y=0,y= (az—xz),x=0,x=a
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Thus the region of integration is the part of the circle x2 + y2 =a? in the first
quadrant. In polar Co-ordinates, the equation of the circle is
r2 cos?0 + r2 sin?0 = a2

ier=a.
Y Y
y=v@? x?)
r=a
0 y=0 X Ofr=0 0=0 %

Hence in polar Co-ordinates, the region of integration is bounded by the curves
r=0,r=a,0=0,0=mn/2
Therefore,

.[; J.o\/(—a_;) y? \/(_X_z:y—z)dx dy = J.On/zf(: r’sin’B.rrdodr
= [sin? e[ﬁi}d 0
0 5

0

5 r
) " sin20do

5 0

N

_a\2)\2)

5 22

5

——1-\/;\/; = l7ta5 Answer

2 21 20

5
Example 12: Evaluate J.OI fx‘/(ZTx“} (x* +y*)dxdy by changing to polars.

Solution: The region of integration is given by y = x,y =, [(2x - xz) ,x=0,x =1

Thus, the region of integration lies between line y = x, a part of circle (x -1)2 + y?2
=1, x=0and x =1.
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Y x=1 /.’_
3
x=0
[
O (1,0) X

The diameter of the circle is 2 with its end at (0, 0) and (0, 2). Its equation is r = 2
cos® and 6 varies from n/4 to g (y =x to x =0)

Now the given integral in polar Co-ordinates takes form
2 edo ar =2 [ T a0
- —f"“z‘* cos* 6.d0
4J cos* 6d6
j (1+cos26)’ de

I 1 +2c0s26+ cos 26)d

= 1+2c0326+;(1+cos46):| de

|

= [ +2cos26+;cos49i]de

/2
[ O0+sin20+ ~ cos49}

n/4

3fn = 1
== ———1{+(0-1)+—-(0-0
2(3-2)+0-9+30-0)
=§-7—t— Answer.
8
- xdy dx

Example 13: Evaluatej f —===— by changing to polar Co-ordinates.
X +y?
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Solution: In the given integral, y varies from 0 to (2x - xz) and x varies from 0

to 2.

y =+2x-x

= y2=2x-x?

= x2+y2=2x

In polar Co-ordinates, we have
r2 = 2r cos9

= r = 2c0s6

.. For the region of integration r varies from 0 to 2 cos8 and 6 varies from 0 to g .

In the given integral replacing x by r cos6, y by r sinf, dy dx by r dr d6, we have
= [ rcos6.r drdf
= J‘ [T

r

= fon/z J.Ozcose rcos0drdo

22 5 72cosB
= J Cos 6[ ] de
2

0
= ("*2cos’ 0d0 = 2.—2— _4 Answer
0 3 3

Example 14: Evaluate J.O” J‘:e_(xu{z)dxdy by changing to polar Co-ordinates.

n

Hence show that J. Tedx =
0 2

(U.P.T.U. 2002)
Solution: Given that

1= ” ) dxdy

Here we see that the integration is along a vertical strip extending fromy =0 to y
= o0 and this strip slides from x =0 to x = «
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Hence, the region of integration is in the first quadrant, as shown in figure (i)

Fig. (i)

The region is covered by the radius strip from r =0 to r =w and it starts from 6 =0

to 6 = /2 as shown in figure (ii). Thus

w poe _(x24y? nf2 pe 2
e =
J'O J.O ( )dxdy Jo IO e " rdedr
- _% [/ (~2rfedrde

= —%—Lﬂﬂ [:e"'2 ]:de

1 pn/2
= _E'[O (0-1)de

= 1‘[”2 1d6 = bl Answer
270 4

Now, let

1= f:e-*’dx (1)

AlsoI=["e"dy  (2)
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(by property of definite integrals)
Multiplying (1) and (2) we get

2 [T oY) _r
I —J'o'[oe dxdy—4
== (g) as obtained above

== Proved.
2

CHANGE OF ORDER OF INTEGRATION
b pd dpeb
Introduction: We have seen that f f f(x,y) dxdy = J' L f(x,y) dy dx, provided

a, b, ¢, d are constants.

Here we see that the limit of x and y remain the same whatever order of
integrations are performed. In case, the limits are not constant the limits of x and
y in both the repeated integrals will not be the same.

J-:J.cdf(x,y)dxdy

Means integrate f(x,y) first w.r.t y from y = c to y = d treating x as constant and
then integrate the result obtained w.r.t x from x =a to x =b.

Sometime, the evaluation of an integrated integral can be simplified by reversing
the order of integration. In such cases, the limits of integration are changed if they
are variable. A rough sketch of the region of integration helps in fixing the new
limits of integration.

Note: In some books particularly American f::ffz f(x,y)dydx is written instead

of J'Xz J.yz f(x,y) dx dy where the first integration performed w.r.t y and then after

w.r.t.x,

However in this book we shall generally use the notation given in the beginning
of the introduction.

Example 15: Change the order of integration in the integral

[ IJﬁ

tana

(x,y)dxdy
Solution: The given integral rwmf'tan; x,y)dxdy

Here the limits are given by x =0, x = a coso; y = x tana, y= (az—xz),

y=/(a® —x*) gives x2 + y2 = a2i.e. circle with centre at origin.

To find intersection point of
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X2+ y2= a2 (i)
and
y =xtana (ix)

Now from (i) and (ii) = x2 + x2 tan2 a = a2
=X = a cos O
put thisin (i), y=a cosa tan o
=asino
-~ (asin a, a cos ay) is the intersection point A of (i) and (ii)

Y4 x=acosa y=xtana

M

N A (acos o, a sin o)
X2+ y2= a2

o) C %

Through A draw a line AN parallel to x-axis. Evidently the region of integration
is OAMO.

In order to change the order of integration let us take elementary strips parallel to
x-axis. Such type of strips change their character at the point A. Hence the region
of integration is divided into two parts ONAO, NAMN.

In the region ONAO, the strip has its extermities on the lines x =0 and y = x tan .
y
n

- limits of x in term of y are from x =0 to

(or y cot o) limits of y are form 0

toasina.
In the region NAMN, the strip has its extremities on the line x = 0 and the circle

- limits of x in term of y are from 0 to (a2 - xz) and limits of y are from a sin o

to a.
rmm.‘.:{f x y dxdy f“mu_"ywm x y dydx+_Lst‘/7 x y dydx
Answer.

Example 16: Change the order of integration in the following integrals.
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(i) jzj o(x,y)dxdy
) [ ﬂﬁ

Solution: (i) We denote the given integral by I. Here the limits are given by
x =0, x =2a; y = 3a -x
X, Y 1y X s
or 3a+3a 1, y—4:a or x2 = 4ay
For intersection point of
y =3a -x and x2 = 4ay we have x2 = 4a (3a -x)
or (x + 6a) (x -2a) =0
or x = 2a, - 6ba
Putiny =3a-x we gety = a, 9a
. (-6a, 9a) (2a, a)

x )y dxdy

Y a x=2a
B0 3a)
x=0 x? = day
C A (2a ,a)
» X
@) (3a, 0)
Ja-x=y

Range of integration is OABO. In order to change the order of integration, we
take elementary strip parallel to x axis, such type of strips change their character
at A. Hence we draw line CA parallel to x axis. Thus the range is divided into two

parts OACO and CABC.

In the region OACO, any strip parallel to x axis has its extremities on x =0 and x2
= 4ay. .. For such strips, limits of x in term of y are from 0 to ,/(4ay) and limits of

y are from o to a.

In region CABC, any strip parallel to x axis has its extermities on x =0 and

x =3a-y and y varies from y =a to y = 3a.

I= J‘: LW o(x,y)dydx+ J‘;a_l‘:a—y o(x,y)dydx Answer.
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(ii) Limits x =0, x =a; y =0, y = (a2 - xz) or x2 + y2 =a2

Y4P
(O’Ba),%: a2 X = a
x=0
o) v=0 A I

Range is OABO.
. on changing the order of integration, we get

t\ V
= [
Example 17: Change the order of integration of

2a
[ty
Solution: Limits of integration are x =0, x =2a, y = (Zax - xz) /¥ = (2ax)

y =2ax = y? = 2ax, parabola

y=\/2ax—x2 =>x2+ y2 - 2ax =0

= (x - a)2 + (y - 0)2 = a2 is circle with centre at (a, 0) and the radius a

x )y dy dx Answer.

=x=tat f(a’-y?)

intersection of x = 2a and y? = 2ax is C (2a, 2a).

Range of integration is OABCO. Through A draw a line ED parallel to x axis.
Thus the range is divided in three parts namely.

(1) OAEO

(2) ABDA

(3) EDCE

209



A Textbook of Engineering Mathematics Volume - 1

Y
' y*= 2ax C (2a, 2a)
x =2a
0 ©)
X =
E /4 ~ 5 D ea )
Circle
s » X
o (a, 0) B (2a, 0)

Range No (1) for the region OAEO strip parallel to x axis lies its one end on x =
y?/2a and the otherend on x=a- (a2 - yz) . For this strip y varies from y =0 to

y =a.

Range No (2) for the region ABDA, the limits for x are froma+,/(a> —y?) to 2a
and that for y are from y =0 to y =a.

Range No (3), for the region EDCE, the limits for x are from y2/2a (from

parabola) to 2a and that for y are fromy =a toy = 2a.
Hence the transformed integral is given by

jz‘j ) _f(xy)dxdy = j“j“z/t—”fdydx [ Ffdyd”f“j fdydx

2ax-x?

Answer.
Example 18: Change the order of integration in

Ji [l y)dxdy

Solution: We denote the given integral by I. Limits of integration are x =0, x =a;

y=y(@*-x*), y =x + 2a, y=j(a
expressible as

X .y _
(-2a) *2a

2 —xz) gives x2 +y2 = a2 circle. y = x + 2a is
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Y
4.
x=0 5
3,) X=a
C M (a, 2a)
D N

y=x+2a \% (2 2)
\\\i////A®m;X

The range is ABCDA. Any strip parallel to x-axis change its character at D and C
both. Hence we draw two parallel lines DN and CM. The range is divided in
three parts namely (1) DAND (2) DNMCD, (3) CMBC

Range (1) one end of the strip lies onx = (a2 ~y?) and the other end on x = a. For

this strip y varies from y =0 to y =a. Similar calculations are done for range (2)
and (3)

= f: .[j(:i\-z) ¢dydx+ J.:a J. : ¢dydx + J‘: J.:_Zd ¢dydx Answer.

o poo@ Y
Example 19: Change the order of integration in J-O 'f £ dx dy and hence find its
Yy

value.
(I.A.S. 2006)

Solution: Let I= [~ [~ *—dxdy
Ty

Here the limits are

Y —x

A X=°Oy

B A(oo,oo)>y=°o
x=0

0 C > X
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The range of integration is OABO. In order to change the order of integration, let
us take an elementary strip parallel to x axis. One end of this strip is on x =0 and
the other on x =y. For this strip y varies fromy=0toy =

=r=e”’ =rye’”
".[o .I.x _y_dXdy =.|.0 J'o _};~dydx

~1-0=1 Answer.
Example 20: Change the order of integration in J.;/ZJ.:/T/“ f(x,y)dxdy
Solution: The limits of integration are given by the parabolas i.e. x2/a = y; i.e. x2
=ay; x-x2/a =y i.e. ax - X2 = ay and the lines x =0; x= %.
Also the equation of parabola ax -x2 = ay may be written as

2
(x—%) = —a(y —-%) i.e. this parabola has the vertex as the point (g—,%) and its

concavity is downwards.
The points of intersection of two parabolas are given as follows ax - x2 = x2 or x=

0, g—andhencefrom x2 = ay, we gety=0atx=0andy=-2— at x=%.

Hence the points of intersection of the two parabolas are (0,0) (%,-Z) .

Draw the two parabolas x? = ay and ax = x2 - ay intersecting at the point O (0,0)
and P(i,i) .
2°4

Now draw the lines x =0 andx=%. Clearly the integral extends to the area

ONPLO.
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Now take strips of the type NL parallel to the x axis.
Solving ay = ax - x2i.e x2 - ax + xy =0 for x, we get

=%[ai (a2—~4ay)J
=}2—|:a—— (a2—4ay)] (1)

I~ e . . a
rejecting the positive sign before square root, Since x is not greater than—z— for the

region of integration.

)
24

v
X

\

Q
Again the region ONPLO, the elementary strip NL has the extermities N and L

on ax - x = ay and x2 = ay. Thus the limits of x are from —;—[a— (a2 —4ay)j| to

(ay) . For limits of y, at 0,y =0 and at P, y = 3. Hence changing the order of

xx/1

ajf2
integration, we have _[ _[

f(x,y)dxdy = JMMJ‘ i f(x,y)dydx Answer.
d 4a\):|
Example 21: By changing the order of integration, e‘valuate

N ——-—f——
¥y /a ax y
(LA.S. 2003, U.P.T.U. 2002)

Solution: The given limits show that the area of integration lies between x = y2/a,
x =y, y =0, y =a since x = y2/a, y? = ax (a parabola)

dxdy
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and y = x is a straight line, these two intersect each other in the point 0 (0, 0) and
A (a, a). The area of integration is the shaded portion in the figure.

Y A(a a

(0,0)

@)
v
pad

¥
Yl

We can consider it as lying betweeny = x, y = \/; ; x =0, x =a.

Therefore by changing the order of integration we have

ydydx

¥ /a——j/"“‘“ﬂ—;—d"dy N [P
=f _(ax"yz)mrdx

0 a—x

1/2
_pla=x)”

0 a—x

[ X v
_'[O(a—xj dx

put x =a sin?0
.. dx = 2a sinb cosO d6
1!/2( asin’0

0

X

1/2
] . 2a sinB cosb d6
acos’

_J' 2asin? 0d0 =2a.~ .~
22

- Answer.

2
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Example 22: Changing the order of integration of J: f :e“y sinnxdxdy show that

«sin nx T
I dx=—
I 2

(U.P.T.U 2003, 2009)
Solution: The region of integration is bounded by x =0, x = w0,y =0, y = .
i.e., the first quadrant, as shown in figure.

Y
A y = oo
¢| — T —
O EE T L xe
y=0 >

Jm_[:e"‘y sinnxdxdy = f:dyJ‘:e‘x-" sinnxdx

oo

=J':!: f-xy 5 {—ysinnx—ncosnx}i| dy

0

bl n
=J.0 0+n2 +y2}dy

= i
: (0
on changing the order of integration, we get

J:J: e ™ sinnxdxdy = J: sin nxdxf: e dy
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- e "
=J‘ sinnxdx
0 —~X A

=J-msinnxdx _ 11 -
0 X ex) b

J-w sin nx

dx[-0+1]

0 x
_J-wsinnx
- 0

dx (if)
X
Hence from equations (i) and (ii) we have

J--» sinnx T

LI ¢ 2
Example 23: Find the area enclosed between the parabola y = 4x - x2 and the line

y =X

(U.P.T.U. 2008)
Solution: The given curves intersect at the points whose abscissas are given by y
=4x - x2and y = x, Therefore

x =4x - x2
or3x-x2=0
=>x(3-x)=0
=x=0,3
Y
A
=4x - x?
P y
y=x
Q
5 > X

The area under consideration lies between the curves y = x, y = 4x - x2, x = 0 and x
=3,
Hence, integrating along the vertical strip PQ first, we get the required area as

Area = f: J.::X—XZ dydx
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=e——=-0= 2 Answer.
2

Example 24: By double integration, find the whole area of the curve
2 x2=y3(2a-y)

(U.P.T.U. 2001)
Solution: The region of integration is shown in figure. Here, we have
Area = 2 x area of the region OAB

y=0
32 [(2a -
where f(y)= 7 y)
a
Y
A
A (0, 2a)
Sy
> X
O
Consider the horizontal strip PQ with a small area, we get
a 32 \/K‘_Y
Area = = 2J‘02 foy @ dxdy
v1/2 \/(2“—)')

2a b a
=2 "[x] dy

2 r2a
2y
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putting y = 2a sin?0
i.e. dy = 4a sinf cos@ dO we get

Area = gJ‘m(2asin2 6)3/2 \ /(2a - 2asin’ 6) 4a sin® cosO do
ado

=32a* Ion/z sin* Ocos’ 6dO

g
= 32421212
204

EINE N =V =
=162 2 2 2
6
= Ta2 Answer.
EXERCISE

1. Evaluate the integral by changing the order of integration
J:J: xe™ /*dy dx

(U.P.T.U. 2006)
Ans. 1
2
2. Evaluate
1 X v/x
Loxferay
1
Ans. — (e-1).
ns. o (e-1)
3. Evaluate H xy dxdy where R is the quadrant of the circle x2 + y2 = a2 where x 2
R

Oandy 20
4
Ans. &
8

4. Evaluate the following integral by changing the order of integration

1 e dydx
e

Ans. e’
5. Evaluate by changing the order of integration

J: J.;y eX dx dy

e' -1

Ans.
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e plogy pe”
6. Evaluate L L L log zdz dx dy
1
Ans. 1 (e2-8e +13)

7. Change the order of integration in

_[:J':z/x(x +y)dxdy

and find its value.

Ans. I:I:Z/X(X + y)dxdy = J-:J-(;(X + y)dydx +J.:J‘;2/V (x + y)dydx and its value is
o0

8. Change the order of integration of the integral

J: f:“bﬂ) f(x,y)dxdy

b/a+b pa 1 b(1-y)/
Ans. Io J-o f(x,y)dydx+."bmhj‘o y yf(x,y)dydx

9. Transform Lm I:/z, fzmg d¢dé by the substitution x = sind cos, y = sin¢ sin6
n

and show that its value is 7.

. (U.P.T.U. 2001)
10. Let D be the region in the first quadrant bounded by x =0,y =0 and x + y =1,
change the variables x, y to u,v where x + y = u, y = uv and evaluate

”xy(l -X- y)]/2 dxdy

D

(U.P.T.U. 2002)
16

" 045
11. Determine the area of the region bounded by the curves xy = 2,4y = x2,y = 4.

Ans. %8- -4log 2
12. Find the volume of the cylindrical column standing on the area common to

the parabolas x = y2, y = x2 as base and cut off by the surfacez=12 +y - x2
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(U.P.T.U 2001)
569

Ans. —
140

OBJECTIVE PROBLEMS

Four alternative answers are given for each question, only one of them is correct.
Tick mark the correct answer.

1. J.:Lb(xy +e* )dy dxis equal to

(i) 5+ e2 (ii) 209 + €?)
(iii) 2(7 + e?) (iv) None of these
Ans. (ii)
2. fol If (x* +y*)dy dxis equal to
w 7 . 44
@) - ) 255
.., 64 .
(iif) — (iv) None of these
105
Ans. (ii)
3. If R s the region bounded by x =0, y =0, x + y =1, then H(xz +y?)dxdy is equal
R
to
0) 3 (i) 3
ooy 1 .y 1
(iii) 3 (iv) .

Ans, (iii)
4. The area bounded by the parabola y2 = 4 ax, x-axis and the ordinates x =1, x =2
is given by

|2
@) g\/E(«/E—1)
4

(ll) '5\/5(2\/5—1)
(idi) %a(Z\/E +1) |

(iv) None of these

Anes. (ii)
5. The area above the x - axis bounded by the curves x? + y2 = 2ax and y? = ax is
given by
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Ans. (iii)
6. The area bounded by the curev xy = 4, y axis and the lines y =1 to y =4 is given
by
(i) 2log 2 (ii) 4 log 2
(iii) 8 log 2 (iv) None of these

Ans. (iii)
7. The volume of the area intercepted between the plane x + y + z =1 and the Co-
ordinate planes is

o ) 3
(iii) % (iv) None of these
Ans. (iii)
1 px? pxty
8. .[o L J.Zy xdzdydx is equal to
o 1 oy 1
@ (i) 75
(iii) 516 (iv) 11—5
Ans. (iii)

9. The volume of the tetrahedron bounded by the Co-ordinate planes and the
plane x +y + z =4 is equal to

02 @2 a@i W=
Ans. (i)
10. The volume of
x2 y2 2 )
;5‘ + 't? + 'C"z- =1is
Q) gn abc (i) %n abe
(iii) %n abc (iv) %n abc
Ans. (ii)

11. J: .[(: J: e dxdydzis equal to
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i -1y i) 5 (e 1)
kiii) (e-2)2 (iv) None of these
Ans. (i)

12. The volume of the tetrahedron bounded by the plane §+ % +-C71 =1,a,b,c>0
and the Co-ordinate planes is equal to
(i) %— 7 abc (i) %n abc
(iii) % 7 abc (iv) None of these

Ans. (iii)

13. The value of

.[(:J.\] I;_dededy is

(UPP.CS. 1994)
O3 @y G @
Ans. (i)

14. The value of 'f:f:e_(x v )dxdy

(U.P.P.CS. 1995)
)

(i) % (iv) None of these

N

(i) &

Ans. (ii)
15. The value of the integral .‘-(: J'OI (x* +y?)dxdy is
(U.P.P.C.S.1995)

@)1 (ii) 0
o 1 .\ 2
(iii) 3 (iv) 3
Ans. (iv)
16. The surface area of a sphere of radius r is
(R.A.51995)
(i) 4nr (ii) 4mr2
(iii) 6mr (iv) 8nr2
Ans. (ii)
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Chapter 11
Beta and Gamma Functions

Introduction: Beta and Gamma function are improper integrals which are
commonly encountered in many science and engineering applications. These
function are used in evaluating definite integrals. In this chapter we will study
the beta and gamma function and apply them to some common problems.
Definition: The first and second Eulerian integrals which are also called Beta
and Gamma functions respectively are defined as follows

B(m, n) =[x (1-x)"" dx

and |—(n—)=_[:e"‘x““‘dx

B(m, n) is read as Beta m, n and In is read as Gamma n.

Properties of Beta and Gamma Functions:

Property I: B(m, n) = B (n, m) i.e. Beta functions is symmetrical with respect to m
andn.,

Proof: We know B(m, n)

_ [ m- AL
= fo x" ' (1-x)"" dx
1 = n-
=Io(1—x)"‘ T1-(1-x%) "dx
by the property L: f(x)dx = _[:f(a - x)dx
— L _ m-1
= Io x"(1-x)"" dx
= B(n, m) Hence Proved

Property II: In = (n-1)|{(n-1), for all values of n. (U.P.P.CSS. 1992)
Proof: We know that

n =J‘:e"‘x""dx

= [x"" (—e™ )]: - J‘:(n ~1)x"? (—e™)dx
integrating by part taking xn! as first function
=0+(n- l)J.o“x“'ze"‘dx

=(n-1)|(n-1) Hence Proved
Replacing n by (n + 1), we get |(n +1)=nln
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Transformations of Gamma functions:

n-1
. 1 1
() I-(n_) = fo (log -};] dy
Proof: We have

m = f:e"x"”dx

write ex =y Then -ex dx = dy
=-xloge=logy

-x=logy
Now the equation (i) reduced to

[(n) =" (~logy)™ (~dy)
n-1
l(—n) = J‘(: (log ;] dy Hence Proved

(ii) Prove that

[n= k“.f: e Vy"'dy

Proof: Since we know that by definition of Gamma function
=J.:e"‘x""dx (i)

Suppose x =ky then dx = k dy

Now the equation (i) takes the form

@)= [e™ (ky)" kely

= k"‘[:e"‘yy"‘ldy

or ITn_) = k"J.:e'k”y""dy Hence Proved.
Transformation of Beta functions:
(i) Prove that
J‘“’ ym—1
B(m,n)=| ———dy
°(1+y)

(I.AS. 1998, B.P.S.C. 2007, .A.S. 2005)
Proof: Since we know that

B(m,n) =J: x™ 1 (1-x)"" dx (i)

write x = then dx =~ 1 dy

+y (1+y)

with these values (i) becomes
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B(m,n) =ﬁ(1 : y]m—] (1 . yj [(1_*?5)2}

n-1

-y .
or B(m,n)=| ———d ii)
(m,n) =], TR (
Interchanging m and n, observing that B (m, n) = B (n, m) we have
m-1
B(m,n)= Jm—j—;:;dy (iii)
" (1+y)

Adding (ii) and (iii) we get
w _m-1 + n-1
2B(m,n)=[T—2a
o (1+y)
m-1 n-1
or 2B(m,n) =J. x__+_:‘_+:_
* (1+x)
Relation between Beta and Gamma Functions:
To Prove that
B ) - [
(m+n)
(I.LAS. 1990, .LAS. 1991, B.P.S.C. 1993,97, 2005, U.P.T.U. 2001)
Proof: We know that

[(n)= [ e>x"dx (i)

put x =ay then dx = ady
l(?) = J':e"‘y (ay)"" ady
l(—rﬁ — = —ay .n-1
=, ey dy

y

(.A.S. 2005, U.P.T.U. 2001)

or

or @=re““x“”dx (ii)
a 0

or l-(;—) =a" 'f:e'“"x""dx

Putting a =y, we get

m - yn I:e-)'xxn—1dx

Multiplying both sides by ey y™! dy and integrating,
R;;)J'o e—vym—ldy - J‘:e-vym—lyndy"'o e—_\'xxn-ldx
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or EFE:[ (I (e‘Y(“") min- 'dy) "'dx

orln [m= f { +:+ } "'dx using (ii)
1+x)
lm+n J“’ yr
—-B(m, n)

n
Hence Proved.

Thus B(m,n)=
m+n

Some Important Deductions

(i) To prove that l_ 1-n)

sm nn

Proof: We know that

J(m)ln

Rm +n)

Putting m+n =1 or m = 1- n, we get

rﬁl(l -n) .

—+——"=B(n,1-n) (i)
@)

we have B(m,n)= J‘:(—l—gy)—m;;dy

n-1
~B(n,1-n)=[X—dy=—"—,n<1
°1+y sinnn

B(m,n)=

". From (i) we have

r_l 1-n) " sinnn
(i) To prove that |( I 1+n | 1-n)

Proof: Since we know

’_— 1- n smnn

Multiplying both S1des by n, we get

oA =

sm nn

sinnn

226
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nn

1 1-n)= H P d
or [(1+n)|(1-n) prs—- ence Prove
(iii) To prove that

(m+1) (n+1)
J.:/z sin™ Ocos" 6dO = 2 2

(m +n+ 2)
2

Proof: we know that

B(p.q)= IOI X" (1-x)"" dx

_e)l@

(p+q)
putting x = sin20 = dx = 2 sin6 cos6 d6, we get

J'(: X (1-x)"dx = J.:/Z(sin2 G)M (1-sin? G)qq 2sinBcos6do

N

= ZJ':/Z sin**'0cos®' 6d0

J.:/z sin’?"' Bcos’? 6d0 = %B (p.q)

or .[o"/z sin**~' §cos¥"' 6d6 = —E—E
2l(p+a)
putting2p-1=mand2q-1=n
+1 n+1

or p=2—2—— and q=———2—

we get

05
I . sin™ 6¢cos" 6d6 = 2 2

m+n+2
2 e —
l( 2

Hence Proved.

Legendre's Duplication Formula
To prove that

e 3)- e

(I.A.S.1993,1997, U.P.PC.S. 1996, U.P.T.U. 2000)
Proof: Since we know that
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J."/Zsinz“"l 0cos®" ' 0do = —————'-(;)’m (i)

0 2|(m +n)

putting 2n-1=0or n= %, we get

zB

jo"’ ?$in?™ 0de = ———R2/

ZI—(; + %)
_ ) (i)

putting n =m in (i), we get

2
J'm sin®™ ' @cos’™ ' 0d0 = { (m)}

; 9(2m)

- et A}
(sin20) 2dB=

2|(2m)
putting 26 = ¢ and 2d6 = d¢, we get

{0}

—l—f"sinz'“'l 0do ==

2im o 2[(2m)
2 J‘msinz""‘q)d(p: {W}

Tk 9(2m)

or [sin® pdo = 2—2R~{2—(—__:;& (i)

Le. 52? 0

Equating two values of f:/z sin®™"' 6d6
from (ii) and (iii) we get

2 r—
2! { (m)} (m)vn

ZKZm) 2 (m + 1)
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1)_ Vn
Hence [(m) (m + E) = E—ml(Zm)
Example 1: Prove that

J.o“e"‘zdx=~—\/§—-1l

Solution: Since we know that

[(_n)= J':e“t"“dt

putting t = x2 in Gamma function, we get
’@= 2.|mx2""e”‘2 dx
0

Putting n = %we have

,@:2.[:e‘*2dx

or \/E = ZI:e'xzdx
Jn

or I:e“zdx = -

Example 2: To prove that @ =n

Proof;: We know that

T
mh-n= -
sinnm

Putting n= %, we get

G) (1 _%) ) sir:(tg)

)} -»
or,@=m

Example 3: Show that

Hence Proved.

B(m, n) = B(m+1, n) + B(m, n+1)
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Solution: R.H.S. = B(m+1, n) + B(m, n+1)
(m+1)n  |(m)(n+1)
(m+1+n)+(m+n+l)

e R )
(m+n)[(m+n) (m+n)(m+n)
_ [m/n [ m  _n :l

I(m'”‘) m+n m+n

R
(m+n)

= B(m, n)
=L H.S. Hence Proved
Example 4: Show that
o X¢ +1
L ()]

o c* (logc)
Solution:

L~~~

c+1

Let I= j —dx

putc"—et
=xlogc=t

$0, I=r t “_1_ dt
’ o{logc ) e'logc

(logc c+1f ettedt

-t c+1-1d
(logc)c+1-[°e t t

_ e+1
(log C)c+1

Example 5:

Prove that

~—

Hence Proved.
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)

Solution: L.H.S. ‘(g—— x).

s

~|(n+1)=nln

(1 o)™
4 sin(l—x)n

2

n
1-n)=
KT)( n) sinnn
)
sin(zc——nx)

2

= (% -x? )nsec (mx) Hence Proved

=R.HS.
Example 6: Show that

"2 tan 0d0 = “sec| %
_[o tan ede—zsec(z)

Solution: We have

r/2 n/2 -n
[tan"ede=[ " sin" B(cos6) " do
0 0
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- 21
‘Inj(1-n)= .1t
sinnn

1«

2sin—;—(n+1)7t
=-;—tcosce{—;—(n+l)n}

7t T nm
=—cosce| —+—

2 (2 2 )
=I sec(n_n) Hence Proved.

2 2

Example 7: Show that

B(n,n)=—ﬁ—(rr—l——)—i—
2% (n + E)

Proof: We know that

_ 1 m-1 _ n-1
B(m,n)= fo x"H(1-x)" dx
put x = sin20 = dx = 2 sin6 cosO dO

-~ B(m,n)= J.:/z (sinB)""* (cosB)*"™* 2sin cosHdO

=2 sin®™" Bcos™™' 6d0 )

[(m) [(n)

)
(m +n)

.

Hence B(m, n) =

From (i) we have

232

(U.P.P.CS. 1990)



Beta and Gamma functions Functions

2j"’ n?" 9cos?™' 0.d0

2n-1
22%1_[ (2sinBcosB) do

2
=°2TZT

22“1 2.( 51 2n- 1¢d¢

[ "2 sin?™" 20d0

2 1 vz,
=?;:r.'£.2jo Sln2 |¢d¢

o M)

Hence Proved.

Example 8: Find the value of E

Solution: we know that

’E:f_l_ﬂil
J."/ZSinp 0cos?0dO = 2 2
0 +2

2_

N
o
+

putting p = q =0 we have

-1
1
-] -

=

N
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= E = \/E Answer.

Example 9: To show that
(i) .f: e *x"" cosbxdx = (—FM
(a® +b*)2

(U.P.T.U. C.C.O. 2004)
(ii) r e ¥sinbxdx = R;)sin nd
0

(a2 +b? )5
(U.P.T.U. 2003)
Solution: we know that

Jme“‘xx""dx = @
0 a"

where a, n are positive put ax =z so that dx = E

a
z)' " dz
J. e—axxn—1dx =J. e—z (_] el
0 0 a a

-1 Jme‘zz"“'dz= (n)
0

an an
Replacing a by a + ib, we have

J'”e-(mb)x Xn—!dx = R_n_)
0 (a+ib)"
Now e -(a+ib)x = g-ax_e-ibx
= e -2x (cos bx - i sin bx)
Putting a =r cos6 and b = r sin6 so that

b
r2=a2+b2and 0 = tan'l —
a

(a +ib)" = (r cos@ + ir sinf)"
=1 (cosO + i sinB)"
=1 (cos nO + i sin nB)

(De Moivre's theorem)

- From (i) we get

Jme"‘" (cosbx —isinbx)x""'dx = (n) ,
0 r" (cosnB +isinnd)
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n

-

n

~—
S

—(cosnB —isinnb)

r

Now equating real and imaginary parts on the two sides, we get

[\

and _[0 e x" ' sinbxdx =

where r2 = a2 + b2 and 0 = tan?! P—

Example 10: Prove that

(cosn@ +isinnB)”

Beta and Gamma functions Functions

Jm’e""‘x“'1 cosbxdx = @

rn

[1Tm

JIrrymandy ==

where D is the domainx >0,y >0and x+y<h

Solution: Putting x = Xh and y = Yh, we get

dx dy = h2dX dY
Therefore,

[[x"ty™tdx dy=[[(Xh)™ (YR)"" h?dX dY
D b’

where D' is the domain X>0,Y >0, X+Y<1

[(n)

=—=sinnd
r

+m

cosno

a

_U x'y"'dxdy = h"*" J: J.OH XEy™'dXdy
D

1-x

= h|+mJ‘lX|—1 Y_ dX
0 m

0

SR e o xm ax

=— [ X7 (1-X)
hl+m

= B{lm+1
—B(lm +1)

=£1_'*_"‘_(_l)(m+l)
m (l+m+1

_ h'*m |(_l) mim

m|(l+m+1)

—
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_ h'*m[(_l—)mlr_n_
B (I+m+1)

Hence Proved.

n/2

Example 11: Prove that J.

Solution:

~2  dO ®2, 12 g
= sin© cos 0de
J-" Jsinf ".0 ( )

_ {%(—%+1)} {%(0+1)}
I
48
3)
and [ [(sin6) de= ["sin'2 6cos’ 00

az et )

HEETE B

- From (i) and (ii) we have

)l
sne doe = 4
3
4

J-n/2\/m J'

=7 -7 Hence Proved.
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Dirichlet's Theorem for Three Variables:
If I, m, n are all positive, then the triple integral

J‘” xy™"'z" ' dxdy dz= [fnln
v

(I+m+n+1)
where V is the region x>0,y20z>20andx+y+z<1
(U.P.T.U. 2005)
Poof: Puttingy +z<1-x=h.Thenz<h-y

m X'y 'z"'dxdydz = J: x"‘dxj.(:—x y™ dyj'(:-x—y z"'dz
v

=jo1x"‘dx '[ J'h Y ym-1 n"dydz]
(putx=h)

= lx"‘dx—————-—‘l-;;E h™"
[ ) }

(m+n+1

m+n

dx

T
T,

“Trart
mh MmeasD)

=l(m+n+l)](l+m+n+1)

L,m+n+1)

= J‘fj x'y™'z" 'dxdy dz= __Mmln__ Hence Proved.
v (l+m+n+1)

ﬁmm hl+m+n
[((+m+n+1)

Where V is the domain, x 20,y 20z20andx+y+z<h
Note 2: Dirichlet's theorem for n variable, the theorem states that

J:U .......... fx1""x2”" X '“"dxldxz ,,,,,,,,,,,,, dx, = I-l_'-mﬁ; """" |—l: R+t
(141, +1, +.+1,)
Example: State the Dirichlet's theorem for three variables. Hence evaluate the

integral x''y™ 'z 'dxdydzwhere x, y, z are all positive with conditions
gr y y y %

DRCROR

Note 1: m x'y" 2" dxdy dz=
v

(U.P.T.U. 2005)
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Solution: The required integral J_Ux'"]y"‘"’z“"dxdydzwhere the integral is

extended to all positive values of the variables x, y and z subject to the condition

3 q r
(i) +(—X) +(-Z—) <1 Letus put
a b C
—+1

x \ i a
Z | =uie x=aul/psothat dx=| — ju? du
a p

1

yY _ . ) b)
m =v1.e.y=bv/qsothatdy=EV dv

r 1
. c) -1
and (—Z-J =wi.e. z=cwl/Tso that dx = (—)w' dw
c r

Required integral

,
81 (e

whereu+v+w <1
_a’b"‘c"

par

i@ﬁ
_ab"c plqlr

pqr (l m n
—+—+—+1
p q9 r

_|‘_Uué-1u%—1 w%_ldu dvdw

by Dirichlet's integral

Answer.
2 2 2

Example : Find the mass of an octant of the ellipsoid :—2 + Z—z + —i—; =1, the density

at any point being p = kxyz
(U.P.T.U. 2002, 2006)
Solution: We know that

Mass = ﬁ f pdv
= fﬂ (kxyz)dxdydz
= k[f[ (xdx)(ydy)(zdz) (i)
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2 2 2

Putting x—2=u,%=v,zz—=wandu+v+w=1
c

2xdx_ du 2};(21y_ dv, 2zdz

s )

_ ka2b2c2

so that =dw

” dudvdw whereu+v+wgxl1

kazbz §

[[Ju'v""'w'dudvdw
ka2b2 2 [111 _ ka?b?c?
8 |(3+1) 8x6
_ ka’b*c?
48

Answer.

%+E =1meets the axes in A, B and C. Apply Dirichlet's
c

integral to find the volume of the tetrahedran OABC. Also find its mass if the
density at any point is kxyz.

Example: The plane X4
a

(U.P.T.U. 2004)
Solution: The volume of the tetrahedron OABC is given by V = ”f dxdydz for all
D

is positive values of x, y and z subjected to the condition XedsZan

a c
putting X = u=dx = ady, %=v:> dy = bdv and Z = w=dz=cdw, we get
a c
A% =J‘Habcdudvdw
ES

whereu >0, v 20, w 20 subjected to the conditionu +v+w<1
V= abcmu‘ v lw dudvdw

Applymg Dirichlet's integral, we get

V=abc——r:£|:—-a—bc

(1+1+1+1) [4
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Now mass = ij xyzdxdydz
D
= k”fau bvcw (abc)dudvdw
S
=ka’b’c? ” uvwdudvdw
o

_ ka®b’c¢?[222  ka’bic?
2242+ 7
_ka’b’c?
720
Example: Evaluate I= HIX“ 'yP 'z ' dxdydz

Answer.

where V is the region in the first octant bounded by sphere x2 + y2 + z2 =1 and the
Co-ordinate planes.

[U.P.T.U. (C.0.) 2003]

Solution:

Let X2 = u = x=+u therefore dx=—2—\17_—du,y2=v=>y=\/;, therefore
u

—dv, 2 =w=2z= Jw thereforedz = dw

d 1 1
Y=ol 20w
Thenu+v+w=1Also,u20,v20,w20

= [ () ()

= g.m. uT1 VE_ wi_ dudvdw

EIEIE

¢,.B +Y+1)
2 2 2

Answer.

I}
00| =

LIOUVILLE'S EXTENSION OF DIRICHLET THEOREM:
If the variables x, y, z are all positive such the hi< (x + y + z) < h then

1t ot [Im [n
'['Uf(x-i-y+z)x y' 'z dXdydz_m‘[“l

Proof: Let I = ”f x"'y™'z"'dxdy dz under the condition x + y + z < u then

l+m+n—1du
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I(l(’z) (m)+{(rT>Ju,m 0
[((+m+n+1)

(by Dirichlet's theorem)
ifx+y+z<u+du,then

)I+m+n ﬁ E [;

(I+m+n+1)
Now if u< x +y + z < (u + du) then

ymet e [1/m In oo Lemen
J.'”'Xl 1y ]Z ‘dXdde=—a+—ns'n;\%I)'[(u+8u)l ._ul ]

_ Mmin 1+(§2)’"“*" 1
[([+m+n+1) u
[1m [n

=————-—u'“"”“|:l +(l+m+n)—8—u—+ ......... —1]
(I+m+n+1) u

ﬁ E rﬁ I+m+n du
u™mn(

l+m+n)—

l(l+m+n+1) u
[1lm[n

= ul+m¢n5u
(I+m+n+1)

I=(u+38u

(i)

Now consider ”.[ f(x+y+z)x"'y"'z""dxdydz. Under the conditionh; < (x +y +

z) <ha. When x + y + z lies between u and u + du, the value of f(x + y + z) can
only differ from f(u) by a small quantity of the same order as u. Hence

i fm In |
[((+m+n+1)

Where x + y + z lies between u and u + du

Therefore
ﬁ E E h f(u)ul«mwn-ldu

|(l+m+n+1) m
Example: Evaluate

m log(x +y +z)dxdydz, the integral extending over all positive and zero values

ij(x +y+ z) x:—1ym-1zn-1dx dydz = £(u) almneigy

J'”f(x +y+z)x'y" 2" 'dxdydz =

of x,y,zsubjectedtox+y+z<1
Solution: 0<x+y+z<1

ﬂjlog (x+y+z)dxdydz = m x''y"'z" log (x +y + z)dxdydz
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- I—(l_) IE_I-ZI_; Rl—)f:tumq log tdt

by Liouvill's extension of Dirichlet's theorem

—.1 12
._-2-J'0t log tdt
[/ .3 1 3
=1 L ogt —j]t—.ldt
211 3 , 02t
- N
=.1_ _l v =_i Answer.
2L 33, 18

dx; dX, coveeres dx,
e e

integral being extended to all positive values of the variables for which the
expression is real.

(U.P.T.U. 2001)
Solution: The expression will be real, if
T-x2-x2- .o -xn?2>0
orx12+x22+ ... +xn2<1
Hence the given integral is extended for all positive value of the variables x;,
X2everrrrnnns xn such that

0<x12+x22+ oiiiviiiniinne xn2 <1
. 1
Let us put x12 = u i.e. x, =,/u, so that, dx, = —=du, etc
2Ju,
Then the condition becomes, 0 <u; +uz + ............ +up<1
1 uVu u;/?
.. required integral =—|]{......... Lt du.,du,....... du
d 8 Z"J.'” '[\ﬁ—u T u, | "
1401, 1,
1 u’ uz2 .......... u?
=—1|.n. du,du,....... du,
2"”'[ ;’: 1-u, - Uy, -u, e

By Liouville's Extension
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=L
2“

=l“(\/g) f"/z ! (sinze)%-1 2sin@cosdo
2"{(n/2)"° VJ1-sin’0
putting u = sin%Q
= 1_ (\/7_‘) J'n/zsin“'16d6
2 [(n/2)""
86
1 (@) \2)\2

=2“”Kn/2iz(3%1)

n+1)

EXERCISE

- L
2"

+IE

1. Evaluate (i)

[ ol

2. J'o1 x*(1- x)4 dx

Ans. (i) -2Vn (i) 3\/35

Ans. L
280
< -a n-l| - (n)
3. Prove that fo ey dy= o
n/2 8
4. Show that f sin® xcos*? xdx = —
0 77

2
5. Evaluate J‘1 X dx

0 [1_x3
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Ans. -2-
3

6. Express I: x™ (1-x" )P dxin terms of the beta function, and hence evaluate
1 5 3 10
fo X (l—x ) dx

1 fm+1 1
Ans. (i) — ,p+1|(1) —

ns. (i) nB( " p )(u) 396

X 14X
7. Evaluate J'O (T(——)—E)dx
+ X

1
ns. —

5005

8. Prove that (n + l] = ﬁ_@

2)" 2[(n+1)
9. Evaluate J:: log [xdx

Ans, —;—log 2n

- 6
10. Evaluate f:xs (1 X ) dx

(1+ x)24
Ans. 0
X’ (1 + x“)
11. Evaluate I ———-dx
0 (1+x)
12. Evaluate _[ : cos g x2dx
Ans. 1

13. Evaluate
(@) [ x" e dx

(ii) I; x%e " dx

Ans.

»lél
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n-1
14. Evaluate J: x™! (log l) dx,m>0,n>0
x

Ans. rr—‘n
m
15. Find the volume of the solid surrounded by the surface
X 2/3 2/3 7 2/3
DREORCIE
a b c
(U.P.T.U. 2008)
Ans. 4nabc/35
2
16. Evaluate [[[dxdydz where = +-yb7 +% <1
Ans. Tiabe
6
dxdydz 1 5
17. show that ||| ————————— = —log 2 - — the integral being taken thought the
m(x+y+z+1)3 28716 8 8 8

volume bounded by the planes x =0,y =0,z=0,x+y +z +1
OBJECTIVE PROBLEMS

Four alternative answers are given for each question, only one of them is correct.
Tick mark the correct answer.

1. J‘O"e"‘x3 is equal to
()2 (ii) 4

(ii) 6 (iv) None of these
Ans. (iii)
2. When n is a positive integer then J'o] (log -}(—)M dx is equal to
(i) In-1 (i) n
(i) [(n+1) (v) 50 +1)
Ans. (ii)

)

(i) (:11— -n? ) T sec N7 (i) (— -n ) T cosec N

3.When -—% <n< %, then the value of

(ii) (-}I -n? ) 7 sin nn (iv) None of these
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Ans. (i)
4. The value of l—(_l—)l(_Z‘)R?i—) ........ !-(_9_) is
om)'Y/?
o= @'
.. (2n)"? .
(ii) Jio (iv) None of these
Ans. (i)
5. J.O] \/f_Lx is equal to
. .. 11
(i)B(1,1) (i) B(E,EJ
(i) B(O, %) (iv) B(i%)
Ans. (iv)
6. B(2, 3) is equal to
0% g
(ii) —2-1:1- (iv) None of these
Ans. (ii)
7. f:/z sin’ xdx is equal to
0% @5
.., 64 ., 128
(ii) 35 (iv) 315
Ans. (iv)
8. f:sin3 x (1- cos x)2 dx is equal to
3 i) 5
(i) 5 ) ¢
Ans. (iv)

9. The value of

J':‘fa;xdxis B
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Beta and Gamma functions Functions

(M.P.P.CS. 1995)

Ans. (iii)
(M.P.PC.S. 1995)

10. J.:/zcoss sin’ 6d0 is equal to

o1 o T
® 35 ) >
M ) o
Ans. (iv)
11. J‘:e“‘zxz dxis equal to
@) Vr (if) —2@
i -3 () 5
Ans. (ii)

(U.P.P.CS.1994)
12. Match the list I with list II

List I List II

(@) [e"x*dx 1) -1-25

(b) Jon/z sin® xcos’ xdx (2) 24

© [ x*V1-x2dx (3) 51/ 256
@[Lp (@) 2n

The correct match is
a b c d
(@) »m» @ 6 @
i (1) ©) 4) ©)
@) (2 @ 3) (4)
vy @ @ (CY R )]
Ans. (iii)
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13. Consider the Assertion (A) and Reason given below.
Assertion (A)
fotsinxdx =1 - cost

Reason (R) sin x is continuous in any closed interval [0, 1].

(i) Both A and R are true and R is the correct explanatation of A.
(ii) Both A and R are true but R is not a correct explanation of A.

(iii) A is true but R is false.
(iv) A is false but R is true.

248
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Ans. (i)
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Chapter 12
Vector Differential Calculus

Introduction:- Let the vector r be a function of a scalar variable t, then

r=£(t)

If only one value of r corresponds to each value of t, then r is defined as a single
valued function of the scalar variable t. If t varies continuously, so does r.Asa

result, the end point; describes a continuous curve.
The following illustration make the point clear :

r=acosti +asint i (Circle)
r=acosti +bsin t] (Ellipse)
r=at?i+2at j (Parabola)
r=asecti +btant j (Hyperbola)

All these are the vector equations of the curves. For different values of t, the end
point of the vector describes the curve as mentioned above.

The vector analysis consists of two parts (i) vector Algebra & (ii) Vector
Calculus. Students have already studied vector algebra, so at present one shall
study only the vector calculus which is very useful while solving problems of
mechanics, fluid mechanics and other branches of Engineering and Technology.
Differentiation of Vector :-

Let the vector r be a continuous and single valued function of scalar variable t
(i-e. length of the vector can be determined as soon as a value of t is given) with

O as origin, let the vector r be represented by OA for a certain value of t and let
r+8r be represented by OB corresponding to the value t + 8t where 3t is a
small increment in t. Then 6t produces an increment (r + 3 r - r )ie. Srinr.
- L or
The increment 8 r is equal to AB. There also the quotient P is a vector if 3t— 0
t

then 8r— 0 and the point B moves towards A to coincide with it and then
chord AB coincides with the tangent at P to the curve.
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If the limiting value of the quotient 6_1 as 0t— 0 exists, then this value is defined
as the differential coefficient of r with respect to t and the vector r is to be

d
differentiable and is denoted by d_: This process is known as differentiation

and the differential coefficient is known as the derivative or the derivative
function.

— —

(;+ 5;)- r
8t

Thus 3 = ~ i
us — =limg,_,, — =lim
dt 5t—0 St 5t—0
_dr, . . S d’r
Since i itself a vector function of t, its derivative is denoted by —- and is
t

called the second derivative of r with respect to t. Similarly, we can define

higher order derivatives of r.

ILLUSTRATIVE EXAMPLES
- .+~ _dr d
Examplel :If r=acosti +asint j+tk Find —,

dt~ de? ‘[ae?

-
d rl

Solution : we have
dr d . d . od .
—=— {(acost)i+— (asint) J+—(t) k
dt dt( ) dt( )] df()

=-asinti+acost j+k
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d? r d d
— = asint) i+—(acost) j+— k
e ( ) T ( ) j o (k)

=-acosti-asint j

Hence -a cost):2 +(-asin t)2 =

dA = - dB = - d - = = - =
Example 2: Ifd—=C><Aand — =CxB, Prove that E(AXB)=CX(A><B)
t

dt
(UPTU 2001)
—~ - — dB dA -
Solution: —(AxB)=Ax—+—xB
t dt dt
=Ax(CxB)+(CxA)xB
=(A.B)C—(A.C)B+(BC)A - (BA)C
"aX(ch) = (a c)b—(a.b)c
= (B C)A (A C)B
sab=ba
= (C.B)K ~(C.A)B
= Cx(BxA) hence proved.
Example 3 : If r= (acost) i + (asint) _]:+ (at tanar) k then evaluate
dr _d’r dr d’r d’r
w32 e T
dt dt® dt’dt* " dt
Solution : Given 1 = (acost) i +(asint) j+ (at tanc) k
_g_r_ = (-asin t)i +(acos ) + (a tanot)k (i)
t
d’r e ,
:i—z— = (-a cos t)i +(-a sin t)j + (O)k (ii)
t
3; X A
-d—; = (asin t)i + (-a cos t)j (iii)
e

253



A Textbook of Engineering Mathematics Volume - |

a ~ -

- . i j k
s—X——= l.asint acost atana

-acost -asint O

= a?sin t tano i -a? cos t tanaj + a2k

dr d°r

<12 = \/(az sinttanoc)2 + (-él2 cos t tana )2 + (a2 )2

4 . 2 2 4 2 2
\/a sin” ttan“o+a” cos” ttan oz+a4

a’ \/tanzoc+ 1

=aZsecq

a; a2, a
Also we know I:é, b, E:| =ib;, b, b,
G & G

where a =a1i +azj + ask

dr &’ &°r

'-{a??de

-asint acost atana
]= -acost -asint 0

asint -acost 0

from (i) (ii) and (iii)

= a tan a (a2 cos? t + a2 sin? t) expanding the determinant
= al tan a.

Example 4 : If T is a unit vector show that

. df| idr

rx—
dt| |dt

(.A.S 1971)

~

dr .
Solution : We know = is a vector perpendicular to r
t

dr

x4 If| tsin90°.ﬁ

LEx—=

dt

. . . dr . dr .
Whereniis a unit vector perpendicular to r as well as d—and r o and n form
t t

a right handed triad of vectors
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. df _(dr|, . A .
or rx—=|—n- |rl =1, 1 being unit vector
dt |dt
. di|_|di
or [rx—|= |n| =1, nbeing unit vector
dt| |dt

Hence proved.

Example 5 :- A particle moves along the curve x = 4 cost, y = sin t, z= 6t Find the
velocity and acceleration at time t=0and t=m/2

Solution :- The position vector of the particle at any time t is given by

r-—x1+y) +zk

~ie, t=(4cost) i+ (4sint) }+6tf<

- di . - .
~velocity v= d—z =(-4sint) i+(4cost) j+6k (i)
and acceleration
-~ d%r
a=-at—-—-(4cost)1 (4smt)] (ii)

From (i) and (u) we have

att=0, v= 4)+6k and a=-4i

att=m/2. v=-4i +6k anda=-4_]:

Example 6 : A particle moves along the carve

x=t8+1,y=8,z=2t+5

Where t is the time. Find the components of its velocity and acceleration at time t
=1 in the direction i+ j +3k.

Solution : Unit vector in the direction of i+ }+3 k is

1+]+3k 1+]+3k ()
i
S Jirareer Vi
dr d
Now velocity — = — (xi + +zk
ty o dt( yi )

d 3 H 2% {
= —{(t"+1)i+tj+(2t+5)k
{1l € @ee sk

=361+ 2tj+ 2k
= 3i+2j+2katt=1 (i)

Hence the component of velocity at t =1 in the direction of the vector i +j+ 3kis
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=(3§+2}+212).(Unit vector in the direction of i+ j+3k)
RO (S 3
=(31+2j+2k).—Fp=>
(3i+2)+2k) et

34246 _
= =11
J11

Again, acceleration
-
_d'r

Cae

_dfdr
dt! dt

=%(3tzi + 2ti+ 212)

=6ti +2]

=6i+2j att=1

Hence, the component of acceleration at t = 1 in the direction of the
vector1+j+3k is

= (61 +2] ). (Unit vector along i +j + 3k)

(sie5) L322

JH
= §—+—2— = Answer.
Ty

Lo g._ IXdF
Example 7 : Show that r x dr = Lrer

2
r

-t>
Il

T

where

Solution : Since r =

- | -t
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Therefore,

Hence proved.
Example 8 : A particle P is moving on a circle of radius r with constant angular

de -
velocity o = 3 Show that the acceleration is -w?2r .
t

Solution:- Let fand} be the unit vectors along two perpendicular radii of the
circle.

If P be any point on the circle such that OP makes an angle © with i then the
position vector of P is give by

r=0P = OM+MP

= (r cos@)i + (r sine)}

Where r is the radius of circle and hence constant.

dr . de. de -
—=-rsin@ — i+rcos® — j
dt dt dt
=(-rsin9f+rcos9j)(x)

de
As —=0

dt
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2—.
- d s de -
Hence a=—§r—= (-rcosb—i-rsinf— j)o
dt dt dt
=-(rcosdi+r sine_]:) 0?2
=-w2r
TICK THE CORRECT ANSWER FROM THE CHOICES GIVEN BELOW
(1) The necessary and sufficient condition for the vector function a(t) to be
. da

constant is ~—

dt
@i 0 (i) a
(iii) 2a (iv) 2a
Ans: (i)

—

- = = - d
(2)If r=a cos wt +b sin wt, then the value of rx;r- is
t

() w2r (ii) -w2r
(i) waxb (ivywbxa
Ans : (iii)

—

-~ - - 42
(3) If r=a cos wt +b sin wt, then the value of -d—zl is
t

() w2r (ii) -w2 r
(i) waxb (iv)wbxa

Ans : (ii)

(CYRY ais a vector function of some scalar t such that a has constant magnitude,

- da
then a.——al is
dt

@) 0 (ii) a
(iii) 2a (iv) 2a
Ans : (i)

- - da
(5) If the direction of a vector function a(t) is constant, then a xd—tis

G 0 (ii) a
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(iii) 2a (iv) 2a
Ans : (i)
L. . 27
(6) If r=aent+ be™t, where a,bare constant vectors then el is
t

@) n2r (ii) -n2r
(iii) 0 @(iv)nr
Ans : (i)

(7)Ifr—s1nt1+cost ]+tkthen i is

@ 0 (i) 1
(iif) 2 (iv) 3
Ans : (i)

(8) A particle moves along the curve x=e+, y = 2 cos 3t, z = 2 sin 3t, where t is the
time. The magnitudes of the velocity and acceleration at t = 0 is

) V=37 Ial
@y I

(111)‘ l \/; \/;
) [ o - s

Ans: (i)

- : = dr
9)If r=(acost) i+ (asint)j +tk then i is
@ o (ii) a
(iii) 2a (iv) 3a
Ans : (ii)

(10) If U= t2i-tj+(2t+1) kand V= (2t-3) i+ j - tk then -c-;'-l-(ﬁ.V)whentﬂ is
t

@ 0 (ii) 2

(i) -4 (iv) -6
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Ans: (iv)

- - -~ - _ 2%
(11) A=tm a+tnb, When a,b are constant vectors, show that, if A and

are
dt?

parallel vectors then m + nis
(0 1 (ii) -1

(iii) 2 (iv)0

Ans : (i)

The differential Operator Del (V)
The operator V is defined as

Vis also known as nabla. It behave as a vector.

SCALAR AND VECTOR POINT FUNCTIONS (UPTU 2001)

A variable quantity whose value at any point in a region of space depends upon
the position of the point, is called a point function. There are two types of point
functions.

(i) Scalar point function: Let R be a region of space at each point of which a
scalar ¢ = ¢ (x,y,z) is given, then ¢ is called a scalar function and R is called a
scalar field.

The temperature distribution in a medium, the distribution of atmospheric
pressure in space are examples of scalar point functions.

(if) Vector point function : Let R be a region of space at each point of which a

vector V=V (x, y, z) is given them V is called a vector point function and R is

called a vector field. Each vector V of the field is regarded as a localized vector
attached to the corresponding point (x, y, z).

The velocity of a moving fluid at any instant, the gravitational force are examples
of vector point function.

GRADIENT OF A SCALAR POINT FUNCTION :

If ¢ (x, y, ) is a scalar point function and continuously differentiable then the
gradient of ¢ is defined as grad ¢ = V¢ = iid-’-+ 392 +k gg
ox ‘dy 0z

= Z j—
ox
Thus V¢ is a vector whose rectangular components are
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YT

ox dy oz

Geometrical Interpretation of Gradient :

If a surface ¢ (x, y, z) = ¢ is drawn through any point P such that at each point on
the surface, the function has the same value as at P, then such a surface is called a
level surface through P, for example, if ¢ (x, y, z) represents potential at the point
(%, y, z), the equipotential surface ¢ (x, y, z) = c is a level surface.

Q ¢+8p=c

¢ =
Through any point passes one and only one level surface. Moreover, no two level
surfaces can intersect.

Consider the level surface through P at which the function has value ¢ and
another level surface through a neighbouring point Q where the value is ¢ + 3¢.

Let rand r+ 81 be the position vectors of P and Q respectively, then 1?(5 = &r

Now V¢.5r = i@ﬂ?&ﬁ?ﬁ .(¢6x+38y+f<82)
ox dy oz
= 298 +§26y+—282
ox dy z
=8¢ (1)

If Q lies on the same level surface as P, then 8¢ = 0

~.(i) reduces toV.51 =0

ThusV¢ is perpendicular to every & r lying in the surface.

HenceV¢ is normal to the surface ¢ (x,y, z) =C

LetVe = |V¢|N, Where N is a unit vector normal to the surface. Let PA=8n be

the perpendicular distance between the two level surfaces through P and Q.
Then the rate of change of ¢ in the direction of normal to the surface through P is

2 _ S ) V.1 .
'é':P\' = hmBn—»O gj% = hm&n—»o —‘g)n_r by (l)
|vo|N.5%|
= lim ——!=|vy|
dn—0 an

261



A Textbook of Engineering Mathematics Volume - 1

-+ N-8f = lN“Si“ cos6
= [8f[cose
=68n

K3 lV(')l =—

Hence the gradient of a scalar field ¢ is a vector normal to the surface ¢ = c and
has a magnitude equal to the rate of change of ¢ along this normal.

Directional Derivative :

Let ¢ (x, y, z) be a scalar point function and s represent a distance from any point

. d
P(x, y, z) in the direction of a unit vector a, then a—q)- is called the directional
s

derivative of ¢ in the direction of a.

The directional derivative of a scalar point function is a scalar and of a vector
point function is a vector.

Theorem :- The directional derivative of a scalar field ¢ at a point P(x, y, z) in the
direction of a unit vector a is given by

do .
— = a.grad
ds grac ¢

=a.Vp
Proof :- Since ais a unit vector at the point P(x, y, z), therefore
L _rdx 4 El_y_ + 1’; _d_Z
' ds )ds ds
Where s represents a distance from P in the direction of a.
Now a.grad ¢ = a.Vo
dx :dy -~dz)(:9¢ :9¢ ;00
—_— +k +k—
(‘ds“d ds)[ ax oy e
_dx d¢ dy 8¢ dz d¢
~dsox ' ds ay ds 9z

= . Hence Proved.
ds
Example 1: If 1 =xi +yj +zk show that

~

@) Vr=1 (i) v-=-;r;
(iii) V1o = neo2 1
(UPTU 2007)
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Solution : - Since = xi +y ] +2k

H x+y+z

=T =,/x +y +27°

= r2 = 2+ yZ +z2

A r2 = x2+ y2 +z2

(1)Vr=(1§—+]%+kaaz)

=>2ra——2x
LOr .or ,or Ix
=i—tj—tk—— o x
dx "dy 0z =
X AV .2 X r
R . o _y
r 'r r similarly — ==
S Sy dy r
xi+yj+zk
= Jor z
r and —=—
-~ Jz r
I
r
=1

=_il_r_j_1__a__klir_
rfox ‘r’dy r’oz
=__12_(§.’S+j}’.+f<5)
r r r r
_xf+yj+zlA<
r3
i
r3
__
o
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>
]
|-t

(iii) vr" = 1—a—+)i+k 9 "
ox "“dy oz

~ a a -
=inr™* ox, jnr"? X ke or
ox dy dz

X s - z

-1 -1 -1

=in™ =+ jnr™ L+ ke =
r

r r
=inr"?x+jnr"?y + knr" %z
=nr"? (xi+ yj+ zk)

—_

n-2
=nr r

Example 2:- If ¢ (x, y, z) = 3x?y - y322, find V¢ at the point (1, -2, -1)

Solution:- V —+j—+k 3x%y-
olution:- V¢ = (lax lay az)( Xy-y'z )

= —a?;(?)x y- yz )+j%(3x2y-y3z ) kaa (3XY YZ )

= i(6xy)+j(3x* - 3y%2?) +k(-2y°2)
~At(1,-2,-1) we have
Vo= [6(1) (D] +] BOR-3(22 (17 +K [-2(-2)* (1]
=.12i-9j-16k Answer
Example 3 :- Show that V(;.;) = a where ais a constant vector.
Proof : Let a = ai i +az +ask
Then ar = (a1i +a:j +ask).(xi +yj + zk)
= aix tazy+ asz

: - 28 ~0 0
Therefore V(a.r) = (16— + j-gy~+ kgz-J (a,x +a,y+ a,z)

X
=ia;+jazt+kas
= a, hence proved.

Example 4 : If .aand b be constant vectors, then show that grad [; a B]=5 xb
Solution :- Let r = xi+y]j +zk, a= ali+azj +ask
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and B=b1i+bzi+b3f<
X y z

Then ¢ = [rab]= a, a, a,

b, b, b,
= x(azbs - asbz) + y(asb1 - a1bs) + z(a1bz - azb1)
It -~ ad) ) a¢ ~ a¢
Therefore grad ¢ = grad [ rab|=i—+j—+k —
' grade=g [ ] ox dy oz
= i(azbs- asbz) + j(ashs - a1bs) + k (aibz - azby)
0
-—2 = a2b3 - a3b2
dx
?i = asb1 - a1bs
dy
0
and % _ aibz - azby
0z

= ax b Hence proved

Example 5 : If ¢ (x, y) = log /x* +y* show that

r-(kan)k

grad ¢ = m——=——F—==—=

{r-Gen)k}fr- ok}
Solution : - we have r =xi +y ; +zK (i)
Therefore 1.k =z (if)

1
Now ¢ = —2-log (x2+y?)

00 1 X
N T T R XT3
ox  2(x"+y°) x“+y
d d
similarly —9=—;y—2,—£=0
y x“+y° oz
-9¢ <0 -0
Thus grad ¢=i——ql+j—g+k£
ox ‘dy o0z
== i+ 2X 2}+0f<

2, .2
X ty X" +y
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_ x_i‘+ y}
2

- 2
X" +y

r-zk
(x;+ y}).(x;+ y})

r-zk ,
S oy by (1)

(r-ak).(r-7)
Now by replacing z by r.k we get
- (7)

rad ¢ =
B TR ()R
Hence proved.
Example 6 : Find the directional derivative of ¢ = xy + yz +zx in the direction of
vector i+2 j +2k at (1,20
Solution :- Since we know
directional derivative = a. grad ¢

s s » 0
Now grad q)=i@+j§—‘1>-+k—9
ox ‘dy 0z

=(y+2)i+(@+x) ]+(x+y)k
=2i+j+3k at(1,2,0)

. i+2j+2k
Also a=—"—

..directional derivative =% (i+2j+ 2k).2i+ j+3 k)

(2+2+6)

= CH P

=— Answer.
3

Example 7: Find the directional derivative of the function ¢ = x2- y2 + 222 at the
point P (1, 2, 3) in the direction of the line PQ, where Q is the point (5, 0, 4).

(UPTU 2000).
Solution :- The position vectors of the points P and Q are respectively

i+2j+3kand5i+4k
PQ=(5i+4k)-(i+2j+3k)
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=4i-2j+k
The unit vector a along PQ is given by
4i-2j+k  4i-2j+k
Jor+ P+ o
09 -0¢ -0

No do=i—+j—+k—
W grad ¢ ox ]ay 0z

a=

=2xi-2yj+4zk
directional derivative =a . grad ¢
41 2]

V21
_8x+4y+4z

V21
_81+42+43

V21

7
= 4\/: Answer.
3

Example 8:- Find the directional derivative of ¢ =x2- 2y2 +4z2at (1,1, -1) in the
direction 21 +j -k . In what direction is the directional derivative from the point

(2x1 2y]+4zk)

at(1,2,3)

(1,1, -1) is maximum and what is its value?
Solution :- We have, directional derivative in the direction of & is a. grad ¢

~ 0
Hence grad ¢-1—¢+ -i’+k—2
ox ay oz
=2xi-4y}+8212
=2{-4j-8kat(1,1,-1)

2+j-k

and a =

EY

Therefore, directional derivative

={2i 3%’1“‘}(2{-4}-812)

4-4+8

8
Je e
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Again, directional derivative is maximum along the normal i.e. along grad ¢ i.e.
2i-4j- 8k and hence the maximum value of directional derivative is

lgrad(bl = /4 +16 +64 = 221 Answer,

Example 9 :- Find the values of the constants a, b, ¢ so that the directional
derivative of ¢ = axy? + byz + cz2x3 at (1, 2, -1) has a maximum magnitude 64 in a
direction parallel to z-axis.
(IAS 2002, 2006)

Solution :- We know that the directional derivative is maximum along the
normal i.e. along grad ¢
here, we have
grad ¢ = (ay2 + 3cz2x2) i+(2 axy + bz) j + (by + 2c2x3) k
= (4a +3c) i+(4a-b) j+(2b-2c) k at(1,2,-1)
But directional derivative is maximum along z-axis. Hence the coefficients of
iand j should be zero.
. 4a+3c=0and4a-b=0
~.grad ¢ = (2b-2c) k
Also maximum value of directional derivative = I grad(bl
- 64=2(b-¢)
=>b-c=32
Solving these three equations, we get
a=6,b =24, c = -8 Answer.
Problem 10 :- Find the angle between the normals to the surfaces
x2+y2+ z2=9 and z = x2+ y2- 3 at the point (2, -1, 2)

(U.P.T.U 2002, I.A.S 1973)
Solution :- Let the given surfaces represented by
0, =x2+y2-z-3 and ¢z = x?+ y2+ 229

- 30 200 -0
SN = Vq)l =i-&+j_¢l+ kﬂ_
ox "dy oz

=2xj +2y ; -k
=4i -2-]: -kat the point (2, -1, 2) similarly, we have
n2= V¢, =41-2 j +4k at the point (2, -1, 2)

If n1 and n2 be the normals to the surfaces ¢1 and ¢z, then ni= Vé1 and na= Vé2
Let 0 be the angle between the normals to the surface at the given point then

ni.n2 = ‘;111 l;lzlcos 0
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_ (4i-2j-K) (4i-2j+4k)
CJ16+4+1 J16+4+16
16+4-4

N
8

3v21
8
0 = cos! (———) Answer.

3421

Problem 11 :- Find the directional derivative of a function ¢ = x2 y3 z4 at the
point (2, 3, -1) in the direction making equal angles with the positive x,y, & z
axis.
Solution :- Given ¢ = x2y3z4
Now grad ¢ = ;a—¢+i@+ﬁa—¢
dx "dy oz
= 2xy3z4 i +3x2y2z4 | +4x2y3z3 k
If a be the unit vector in the required direction and o be the angle which a
makes with the axes, then
&= (cos 0)i+ (cos a)j+(cos o) k
where cos20. + cos20. + cos?o, = 1

1
which gives cos a =£

N
..a—Tg(x+]+k)
-.directional derivative = a. grad ¢
1
3

= ..1_ (2xy3z4+3x2y2z4+4x2y3z3)

V3
- 71_5 (108 +108 — 432) at the point (2, 3, -1)

(i+ i +k )-(2xy2z4 i +3x2y2z4 j +4x2y373 k )

=— 29 Answer
J§ .
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Example 12 :- Find a unit vector which is perpendicular to the surface of the
paraboloid of revolution.
z = x2+y2 at the point (1, 2, 5)

(B.P.S.C1997)

Solution :- ¢ = x2+y2-z
sgrad ¢ = 1£+A§$ 122—2
= i.2x+j.2y- k.1
=21 +4j-k at point (1,2, 5)
Hence unit normal = l_gg%l
_2i+4)-k
Ja+16+1
_2i+4)-k
V21

Problem 13 : What is the greatest rate of increase of ¢ = xyz2 at the point (1, 0, 3).

Solution : grad ¢ =i— gi ]gi + kg—g

Answer.

= fyz2 +sz2 +122xyz

i0+79+Kk0 at(1,0,3)

=9]j

Since we know the greatest rate of increase of ¢ = |V¢|
=y

=9 Answer.
Divergence of a vector :-

If V (x,y, z) is any continuously differentiable vector point function, then the
divergence of V , written as div V or V. V is defined by

R G _[:0 d d
div V=V V—(lax+]ay+kazjv
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V.V is a scalar product of the operator Vwith the vector V.
Physical Interpretation of Divergence

Consider a fluid having density p = p (x, y, z, t) and velocityf/ =y (x,y,z t)ata
point (x,y,z) at time t. Let V=pv, thenV is a vector having the same direction
asv and magnitude p|l7| . It is known as flux. Its direction gives the direction of

the fluid flow, and its magnitude gives the mass of the fluid crossing per unit
time a unit area placed perpendicular to the direction of flow.

ZA
C ) A
6x Y
B P
Vy “PHF A 0z Fz Vy,,&
P (x,y,z) B
A C
O >Y

X
Consider the motion of the fluid having velocity V = Vel + Vyj+ V.k at point

P(x, y, z). Consider a small parallelopiped with edges 8x, 8y, 8z parallel to the
axes with one of its corners at P. The mass of the fluid entering through the face
Fi per unit time is Vy 8x 8z and that flowing out through the opposite face F; is

AY
Vy+5yOx 0z = [Vv + a—y8y) dx 8z by using Taylor's Theorem.
B 4
~.The net decrease in the mass of fluid flowing across these two faces

aV,
=(Vv + -a—'8y) Ox 8z - Vy dx 8z
-0y
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av,
=— Ox Oydz
dy

similarly, considering the other two pairs of faces, we get the total decrease in the
dVx :0Vy »0Vz

+ + ) .
Foa) 3y k 5 J xdydz
Dividing this by the volume 8x 8y 8z of the parallelopiped, we have the rate of

oV
loss of fluid per unit time = B_Vx_ +_ Y4 v,

x dy oz

mass of fluid inside the parallelopiped per unit time(

=divV
Hence div V gives the rate of outflow per unit volume at a point of the fluid.
If the fluid is incompressible, there can be no gain or loss in the volume element.

Hence divV =0 and V is called a solenoidal vector function. Which in known in
Hydrodynamics as the equation of continuity for incompressible fluids.
Note : Vectors having zero divergence are called solenoidal and are useful in
various branches of physics and Engineering.

(U.P.T.U 2002, 2003, 2006).
CURL OF VECTOR POINT FUNCTION
The curl (or rotation) of a differentiable vector point functionV is denoted by
curl V and is defined as

curl V=VxV=(i§;+}%+ﬁ§—zij

The curl of a vector point function is a vector quantity if V=Vii+ Vaj+ Vsk
Then

d 20 ,+0 2 xrh .
+]—+ké—z—)><(V]1+V2]+V3k)

v: —’= :——
curl VxV [lax ay
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i j k
0 d
Tl e
Vi Va Vs
=i(av3 _8V2J+i(aVl _av3)+]{a&_g\_/l_j
dy Oz dz  dx ox 9y

PHYSICAL INTERPRETATION OF CURL :- Consider a rigid body rotating
about a given axis through O with uniform angular velocity w.

w v
T ‘“M—"““’\‘Q}\Iﬁ .y, 2)
( )
N ~

Let 0 =11+ m2] +wak

The linear velocity V of any point P(x, y, z) on the rigid body is given by
V=oxr

Where r= 1x+ i y+ K zis the position vector of P

~V=oxr
i i k
= |0 O, 0,
X y z

= i(‘Dzz -wyy)+ i((n3x -0,z)+ lz(mly - ®,X)
+ curl V =curl ((T)X?)=Vx((_ﬁx;)
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i ; i

9 d d
e 3y 3z

0,2 - 03y 04X - 0, Z ®,y - 0,X

(0, +m1)i+((°2 +(1)2)3+(u)3 +w3)f<

= 2(m,f+mzj+w3f<)

s, 2, (03 are constants

=2
- 1 _
L= —curlV
2

Thus the angular velocity at any points is equal to half the curl of linear velocity
at that point of the body.
(U.P.T.U 2001).

Note : If curl V= 0, then{;is said to be an irrotational vector, otherwise
rotational. Also curl of a vector signifies rotation.
VECTOR IDENTITIES

(1) grad (5.5)= (5.V)B+ (B.V)S +a xcurl b+ b x curla

where a and b are the differentiable vector functions

(LAS 2004, U.P.P.C.S 2004)
Proof :
sy 2@y 2@ ey s D
grad (a.b) =1 a(a.b) + Jg(a.b) +k -é;(a.b)
(da - - b
=Y —x b+a-a—x]
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.-.z(a.gg];=ax[z;xg_i]+z(;.;%j5

= axcurl B+(5.V) b (ii)
similarly
) o o
Z[b-s—]ﬁ bxcurl a+(b.V)a............ (iii)
X

Hence from (i) , (ii) & (iii) we get

grad (5.5) = (Q.V)B + (B.V)ﬁ +a xcurl b+ b x curla
Hence proved.

@ If a is a vector function and u is a scalar function then

div (ua)=udiva+ (grad u).a
(U.P.T.U 2004, B.P.S.C 1995)
Proof :-

Let; =ali +a2i +a312
V.(u5)=V. (uaii +uax] +uask)

:0 -0 -»d : : >
=[1a—x+)5;+ké—;)-(ua11+ua2]+ua3k)

- 5 (1) 5 (um)+ - (ua)
_Ou, 0 Ou 0, du 9%

x ' ox dy ° dy, 0z ° 9z
_(aua Lo +aua)+ (931_ da, 8a3)

ox ' dy * oz ° dx ody o0z
=[Z—Z§+%;-i+%ﬁ)-(a1§+a2}+a3f<)+u(§§;+}%ﬁﬁ%}(ali+a2§+a312)
=Vu-a+uV.a
=uV.a+Vu-a

Thus div (u;) =udiv a + (grad u)- a
Hence proved.
(3) Prove that div (;xf)) =b.curl a-a.curl b
[U.P.T.U 2003, B.P.S.C 1993).
Proof :- div (axb) =V (axb)
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=)_‘,i.—a-(5><5)
~ _ 3b
afgen

—Zl —><b+2 ax%}%

=Y¥i x%bzx—b-a

- = - . -

‘sa.bx c=-axc.b

Coa)- (_. oa -
—(21 » ).b [Zl o ).a

=curla.b -curl b.a

Thus div (5 X B) =b.curla-acurlb

Hence proved.

4) 1t a is a vector function and u is a scalar function then

Curl (u;) =u curl ;+(grad u)x a
[U.P.T.U. (C.O) 2003]

Proof - Let a = a1 +az] +ask

V.(u;)=V.(ua1§ +uazj +uask)

R ] . . .
1—(?——+]——+k 9 x(ua1i+ua2j+ua3k)
dy 0z

ax
i j k
I R 9
0 dy oz
ua, ua, ua,
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.| 0 0
= Zl{g(uaS)—g(uaz)}

s o
=i u—i?i+a—ua3—ua—a-2——glla2
dy dy dz 0dz

i j k i j k
ad 0 du Ju du
=u|— — —|+ |— — —
ox dy dz| |ox dy 0z
a, a, a, a, a, a,

=u(Vxa)+(Vu) xa

Thus curl (u ;)= u curl ;+(grad u)x a
Hence proved.

(5) Prove that Curl (5 X B) = (B.V)5 - (Q.V)B +a div b-bdiva
(TA.5 2000, U.P.P.C.51996)

Proof :- Curl (5x5)=§X%(5xﬁ)+EX%(EXE)+I;X-€?—Z(EXB)

=2fx[%a—x5+5x—akjl

X ox

'.'Sx(5x5)= (5.6)5-(5.5)5
=(zs.;%)a_Bzi.g_i+azi.gg_(z;.i.a@;)s
= (b.V)a-bdiva+adivb-(a.V)b
=(b.V)a-(a.V)b+adivb-bdiva

Thus curl (axb)=(b.V)a-(a.V)b+adivb-bdiva
Hence proved.
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SECOND ORDER DIFFERENTIAL OPERATORS, LAPLACE'S OPERATOR
V2:-
2 3 2
The operator v? = _—+—5+—is called the Laplace's operator and the
ox”~ oy
equation V20= 0 is called the Laplace's equation. Now we shall prove some
results of second order differential operators.
(1) div grad ¢ =V.V ¢ = V2§
Proof :- We have

2 2
= i) + I¢ + o0
ax? dy* 0z
= V20
Thus div grad ¢ =V2¢, hence proved.
(2) Curl grad ¢ = Vx(V¢) = 0
Proof :- Curl grad ¢ = Vx(V¢)

=V x (a¢ ] ¢+k.a;¢J

ox ‘dy o0z
i ] k
AR
ox dy 0z
9% do 99
x ay 0z
(0% 90 |, o T e o[
8yaz dzdy I 3z0x ~ axoz oxdy dyox
=0

Thus curl grad o= 0. Hence proved
(3) div (curl V) 0
Proof :- Let V=Vi4 +Vaj+ V3k , we have
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j
Curl V=
alav (BV aV) 1QBV oV,
dy 0z ]az ox dx ay
~.div (Curl V)=V.(VxV)
1_?_+]i+k 9 aV aV ](ai_é.\_/?_)-f-f( _a_YA_gYL
ox ‘dy 0z) ay 9z Jdz  dx ox dy
AN AN
“ox\dy o0z ) oyloz ox) oz\ ox dy
oV, 9%V, 62V, _ oV, . v, &V,
axay axaz dydz dyodx ) \0dzdx 0dzdy
=0

Thus div (curl V) =0
Hence proved.

(4) Prove that grad div V = Curl Curl V+V?*V

k
d
oz
A

< Rl =
S

OR

Curl (Curl v ) = grad (div V) -2V
(L.A.52002, U.P.P.CS. 2003, U.P.T.U. Special Exam 2001, U.P.T.U 2003)

Proof - Let V=V i +Vaj+ Vsk

Then
i j k
Curl V = —Q— i -a—
ox dy o0z
Vi Vv, v

[0V, oV, +:(avl_av) oV
oy oz ) oz ox ax  dy

~.Curl Curl V=V x (Vx V)
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i j k
N 9 9
ox ay 0z

da, _da, (Qi__ai) da, Ja,
dy 0z )\ dz Ox ox dy
>

INEICAEAR (av av)
%oyl ax 9y ) 9zloz ox
(EAANEA N AN N A
| dyox dy® 9z° 0zdx X’ 8x2
Jov, @V, PV, &V, &V, &V,
+ + - - -
dydx 9dzox dx* dy* 9z’

r d(dV, dV, dV, d &
¥ “(a—xfay‘*aj‘(*****)“}

It
l‘:’

ax(
- i[éa;(divV)—vzv1 ]+j[%(divV)—VZVZJHQ[%(diVV)—VZ\G}

._.{i%(divvp;%(dwvwzaa_z(divvﬂ_vzv]i_vzvzj_vzvsxz

d1vV) vy, }

( 9 +’ay aJ(olwv) v (V,i+ V,j+ Vik)

= grad divV -v2V

or grad (div \7’) = Curl Curl V +V2V
Hence proved.

ILLUSTRATIVE EXAMPLES

Example 1:- If r=xi+ yj+ zk , Prove that
(i) div r—31e,V r=3

(ii) Curl r=0 1e,er—6

Solution :- (i) divr=V.r
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=[g%4353+g§§)@a+ﬁ+zg)

=%+%+% o1i=1,1]=0ete
=1+1+1
=3

(i) Curl 1=V xr

0 d d 2 oa s
_[18_x+]_®+kaz] (x1+y]+zk)

j k

i

]
|ox

X

2 ay (2222
ay oz az dx ox oy

Example 2:- Prove that, for a constant vectora
(i) Curl (r xa)=-2aie, Vx(rxa)=-2a
(i) div (axr)=0

Proof Let us suppose that
r=xi+ yj+z k

and a=a11+az]+ ask

i j ok
srxa=|x y z

a4, a, a,

= 1 (asy-a2z) - j (asx-a1z) + k (azx-any)
Therefore, we have

A

=

i j
9 9 9
ox dy 0z

a,y-a,Z a;Z-a;Xx  a,X-a,y

(i)Vx(Exé):
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i (-ar1-a1) -j (aztaz)+ k (-az-a3)

2a11-2a; i 2a3k

-2(a1f+a2§ +a3f<)

=2a
Also we have

-~ (.9 . . . . .
(ii) A.(aXr)= (i$+j%+ k«;izj {1 (asy-a22z) - j(asx-a1z) +k (axx-ary)}

= ™ (asy-azz) - % (asx-a1z) + :% (azx-ary)

=0

Alternative Method :-

Since we know div (axb) = b.Curla-a . Curlb
~div(axr)=r.Curla-a.Curlr But curla=0, curlr =0
Hence div (5 x;) =0

Example 3:- Ifr=xi+yj+zk andr= !fl show that

div grad rm = m (m+1) rm-2
(U.P.P.C.5199%, U.P.T.U. 2002, 03, 04, 05)

Solution :-
. 0 d ~d
gradrm= | i—+j—+k— |rm
dx 'dy 0z
. or or or
=1 m-1— 4 § m-1 m-1 ——
tmrmi 9 +j mr ay+l< mrmt =
mi|20r L0r A0r
=mr 1—-+]-—-+k
dx dy 0z

w12 1i(£)oi(2)

ST=X 1+y]+zk

=>r—-H \/x ty +z2

= re=x2+ y2+ 72

= 2r£=2x
0x
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or X
= — = —etc.
oxX r
= mrm2 (x i +y}+zf<)

- div grad rm = V., [mrm2 (xi+y j +z k)]
= 1i+}—a—+f<i .[mrm'z(xi+yj+zf<)]
ox dy 0z

a a 2 d m-2
=m {g(xrm'z)ﬂ‘gy'(yrm’ )+5;(Zr )}

or or or

= m [{rm2+(m-2) xem? 5 2 +(m-2) yrm3 5}: }1+{ rm-2+(m-2)zrm'3‘a‘; 1

or dr or
=3mrm2+m (m-2)rm3 | x—+y—+z—
ox " dy oz

=3mrm2+m (m_?_)rm-al: (?ri) ¥ y(%) ¥ Z(fﬂ

=3m ™2 + m (m-2)rm4 (x2+y2+2z2)
=3m r™2 + m (m-2)rm™4 (r2)
x2+y2+z2 = r2
= [3m + m (m-2)] rm2
=m (m +1) rm2
Hence proved.
Example 4 : If rand r have their usual meanings, show that
(i) div rr = (n+3)rn
(if) Curl 1t =0
Solution :- Sincer = (xi+yj+z k ) so; we have

mr=rxi+ryj+rmzk

— ~ a -~ a ~ a ~ A ~
@ . .divrrr={i—+j—+k— |(rmxi+myj+mzk)
dx "dy 0z

d d
-2 (mx)+ () + (12
Z

ox dy
1 . ar 1 ) ar 1 . ar
=rn 1+ nrvl — x+ 1 + ! T y+ o, n-l o ——
r nr ax X+ r nr ay y r +nro-l z aZ
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or dr oOr
=3+l x—+y—+z—

ox " dy 0z
=3rn+nr"'1(xi+y—}i+z-z—)
r 'r r
2, .2 2
e+ g (X_ty___z__J
r
= 3rn+nrn
= (n+3)rn
(i) Curl (rn 1) = Vx[(m x) I+ (rmy) j+ (m 2) k ]
Pk
NERE R
ox dy 0z
"x r'y r'z

dy
=3i {znrn—I g—;— - ynrn'_l g—;}
lEhf)
r r
g}rj = )r] etc.

= nrn2f(zy-yz) i +(xz-2x) j + (xy-yx) k]
=nrm2[0i +0j + 0k ]
=nrm2[0]

= 0 Hence Proved

Example 5:- Prove that div = 2 wherer and r have their usual
r

meanings.

Solution :- we have 1 =

[ T e I
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_xi+yj+zk

r
X1 2 Zp
=—1+~y—]+—k
r r r

- div ;=({%+5%+g§;),(§;+;3+§g)

)l al)
=—|=l+—|= |+ =]~
ox\r/) ody\r) odz\r

Hence proved.
Example 6: If a is a constant vector and r is the position vector, show that
axr a 3/
Curl | — |=—-=—-=lar)r
( r j N (ax)

(IA.S. 2001)

Solution :- Curl (ar’j d ) = Curl {ﬁ (ax E)}

=r3curl (axr)+grad rd x(axr).......... (i)

Since curl (ua)=ucurla + gradu xa
Also curl (5 X ;) =28 e, (if)
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using example 2(i)
and grad r3 = - 15; ......... (iii)
r

From (i), (ii) and (iii) we obtain

Curl [a_>:_r]= %é—%{;x(ax;)}

Hence proved.

Example 7 : If Uand Vare irrotational vectors, then show thatUxV is a
solenoidal vector.

(I. A. S. 2004)

Solution :- If Uand V are irrotational vectors, then by definition
vxU=0and VxV=0 (i)
Now div(UxV) = v.(Ux V)
=V.(vxU)-U.(vxV)
= V.0~ U.0 from (i)
or div(UxV)=0
Hence by definition U x V is a solenoidal vector.
Hence proved.
Problem 8:- Prove that ror is an irrotational vector for any value of n, but is
solenoidal only if n+3 = 0, where r is the position vector of a point.

(I.A.S. 2006, 2007)
Solution :- Curl (r°r ) = 0
See example 4 (ii)
it shows that rr is an irrotational for any value of n.
Again div r°r = (n+3)rn
See example 4 (i)
we get
div rr = (n + 3) r, which is zero if n+3=0 i.e. n=-3
Hence proved.
Example 9 :- If vector F = 3x1 +(x+y) j -az k is solenoidal. Find a.

Solution :- A vector F is said to be solenoidal, if div F=0
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~div F= 56;(3x) + a—ax(x +y)+ é%(—az)

=3+1-a=0

.. a= 4 Answer.

Example 10 :- Find the constants a, b, ¢ so that F= (x+2y+az)i +(bx-3y-
z) ] +(dx+cy+2z) k is irrotational.

Solution :- A vector F is said to be irrotational if curl F =0

i j k

- d
Now, Curl F = —_— i —a—
ox dy dz

x+2y+4z  bx-3y-z 4x+cy+2z
orCurl F = (c+1) i +(a-4) j +(b-2) k
Now Curl F=0if c+1=0,a-4=0& b-2=0

sa=4,b=2,c=-1 Answer.
Example 11:- Prove that

div {-f-(—rlr} = l,i {r2f (r)}
r r- dr
where r=ri +yj+zk

(U.P.P.CSS.1991)

Solution :- div {@f} 50 iy g grad o)
r r r
wdivua=udiva+a.gradu
_ 3f(x) Lt grad f(r) —2 f(r)gradr ()
r r
wdivr =3
Now we have

grad f(r) = Ef'(r);f;’-:Z . }f'(r)g—; +kf '(r)g—;-

s0r sdr »0r
=f'(r)|i—+j—+k—
(r)[l 8x+]ay * az]

=f'(r)[ii+}y+12£jl
r r

T
L@
Tr

(i)
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and grad r = 1%+]%+f<§£

—i—+]X+k—

r r

- | =

(i)
using (ii) and (iii), (i) gives

div {ﬁ’l;}=§f@+ﬂr)_@

r r r r
2f(r) ,
2O+ £
- LS )

Hence proved.

Example  12:-  Show  that the  vector field  defined by
F= 2xyz3i + x2z3} + 3x2yz2lA< is irrotational. Find also the scalar ¢ such that F =

grad ¢
(I.A.S 2001, U.P.P.C.S. 2002)

Solution :-

i j k
- 0 0 0
Curl F = —  — —
ox dy 0z
2xyz® x’z' 3x*yz?
= ;( x2z2-3x22?) + ] (6xyz2-6xyz?) + k(2xz3 2xz3)
=0

Hence F is irrotational.
Now F=V¢ given

orFii +Fj + Fak = 190, j_a.qua_q’
dy 0z

L0 d0 o
ox ay * 3z

Alsod¢ = q)d + gidy+ a¢
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= 2xyz3dx + x2z3dy + 3x?yz2dz
= d (x2yz?)
Integrating, we get
¢ = x?yz? + constant
Answer.
Example 13 :- A fluid motion is given by V = (y+2z) i +(z+x) ] +(x+y) k , show that
the motion is irrotational and hence find velocity potential.
(U.P.T.U. 2003, Uttarakhand T.U. 2006).

Solution - We have V = (y+2)1 +(z+x) ] +(x+y) k

i j k

o . d ]
CurlV=| — "— —
ox dy 0z

ytz z+x X +y
=(@1-1) i +(1-1) j +(1-1) k
=0
Hence V is irrotational
Now, if ¢ is a scalar potential then, we have

V =Vo

S(y+2) L4z § + ery) k=00 rk )
Equating the coefficients of i,7, k we get

L) 0 9

S =y+z, —=z+tx &—=x+

x ) Py T Y

_ 99 99 90

Also do ™ dx + 3y dy + 5 dz
= (y+z)dx + (z+x)dy + (x+y)dz
= ydx + zdx + zdy +xdy + xdz + ydz
= ydx + xdy + zdy + ydz + xdz + zdx
= d(xy) + d(yz) + d(xz)
Interating term by term we get
¢ =xy +yz + xz + constant Answer
Note :- For an incompressible fluid
div V=0

.»~_[¢a - 9 Aa] - . -
Nowdiv V= |i—+j—+k—|. {(y+t2)i +(z+x)] + (x+y)k}
ox dy 0z

289



A Textbook of Engineering Mathematics Volume - [

S S o @ o )

= 0+0+0

=0

Hence motion is possible for an incompressible fluid.
Example 14 :- For what values of b and ¢ will

F = (y2+2czx) 1 +y(bx+cz) ] + (y2+cx?) k be a gradient field?
(U.P.T.U 2006)
Solution :- Fwill be a gradient field if F is conservative vector field i.e. Fis
irrotational vector function. In that case curl F =0 and consequently
F = grad ¢ (" curl grad ¢ = 0 where ¢ is scalar potential)
i j k
Now Curl F = 2 9 9
ax ay 0z
y? +2czx ybx+ycz y*+ox?
= (2y-yc) i -(2cx-2cx)} +(by-2y)lA<
~(2y-yc) i +(by-2y) k=0
which gives 2y -yc=0orc=2& by -2y =0orb=2 (" y #0)
Hence b = ¢ = 2 Answer.

is irrotational as well as

'1.__,!"11

Problem 15:- Show that the vector field F=

solenoidal. Find the scalar potential.
(U.P.T.U. 2002, 05)
Solution :- For the vector field F to be irrotational, curl F=0
we know that curl (ua)=ucurl a + (grad u) x a
Therefore,
Curl (%?) = -%Curl r + (grad ;];)X?

r

f'Jxr

b2

Curl r=0
3
=0-—(rxr
= (rxr)
= =0-0 PxT=0
=0
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Hence vector field F is irrotational.
Again, for the vector field F to be solenoidal, div F = 0
we know that div (ua) =udiva+a.grad u

(Y 1, - - 1
~.div [—r—;)=r—3dlv r+r.grad (r—‘)

3 3+ﬂ( 3?]
TEFTHTY
wdivr =3
&r.r=r2

3 3,
=5 5T

r r
_3.3

r3 rl
=0

Hence vector field F is solenoidal.
Now, let F = V¢ where ¢ is scalar potential
2 4 » -0 -00 -~0d¢
Fii +F2jtFk=|i—+j—+k—
TR )T (lax+]ay+ azj
L9 _p 00 _
T ay 0z

Alsod<b=-gB dx + g—idyﬂ- ?gdz
X

dy
X y z
= dx + dy + d
(xz +y2+22)3/2 X (x2+y2 +Zz)1/2 y (x2 +y2 +z2)“/2 z

_xdx +ydy +zdz

- (Xz N yz +Zz)x/2

= d{_ (X2+y2+zz)-l/2}

Integrating, we get
1

0= -———

1
or ¢ = ——+ Constant Answer.
r

+ Constant

Example 16 :- Prove that a vector field F = (x%y2+x)i- (2xy+y)j is both

solenoidal and irrotational
(U.P.T.U 2009)
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Solution :- A vector F is said to be solenoidal if div E=0
Here div F=V.F

.9 ~ 9 . R
=] ] — —_— k_.. . 2_y2+ 1 - 2 + 3
(’ax+’ax+ ax] {(x2-y2*x)i-(2xy + y) j }
=2 panyren) - L (2xy +y)
0x
=(2x+1)-(2x+1)
=
=div F=0 (i)
A vector F is said to be irrotational if Curl F =0
- 0 0 d
Now curl F = — — —
ox dy 0z
xz-y2+x -(2xy+y) 0

=1(0-0)+] (0-0)+k (-2y+2y)

Thus from (i) & (ii) the given vector is solenoidal as well as irrotational.
Hence proved.
EXERCISE
1. Show that V—l; =-3r5r where
-

r= 'f|=‘xf+yj+zf<l
2. Show that V(a.;) =a where a is a constant vector.
3. Find a unit vector normal to the surface xy®z2 =4 at the point (-1, -1, 2).
-i- 3} +k

N

N 1. T = St T
4. Find the directional derivative of - in the direction r where r =xi +yj +zk
r

Ans.

(U.P.T.U. 2002, 03)

|
Ans. ——
i

5. Find the directional derivative of ¢ = (x2+y2+z2)1/2 at the point P(3, 1, 2) in the

direction of the vector yz i +zx j +xy k
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(U.P.T.U. SE 2002)
9

4914
6. If u= x+y+z, v= x2+y2+z2, @ = xy+yz+zx, Show that grad u, grad v, grad o are
coplanar.

Ans. -

(U.P.T.U. 2002)
7. If 8 is the acute angle between the surfaces xy?z = 3x +z? and 3x2-y2+2z =1 at
the point (1, -2, 1), Show that
3

Cos6 = —

746
Hint. 6 be the acute angle such that6 + ¢ ==
8. Show that a.v(lj S

r r
9. Evaluate V. [(5 X f)r" } where ais a constant vector.

Answer. 0

10. Evaluate V.(r3r)
Answer. 613

11.If @ is a constant vector and V = 0w xr , prove that div V= 0.

12.1f A=", find grad div A .
r
Answer. - —%;
r

13. Prove that V.L} =0
r

14. Prove that div [(f X 5) X B] =-2b.a, where aand b are constant vectors.

15. Show that the vector V = (x+3y)i +(y—3z)} +(x-2z)12 is solenoidal.

16.1f F= X +yj+zk ,showtha\’c.V.I:“=—2—w andVxF=0

Yyt 4z Xy 42

17. Find Curl V where V = exy> (; +i+ 12)

(U.P.T.U. 2001)

Ans. {x(z-y)i +y (x-z) +z(y—x)12}exyz

18. Evaluate A, 1,y so that the vector Vis given by V=(2x+3y+Az) i+(ux
+2y+3z) ] +(2x+yy+3z) k is irrotational.

Ans.A=2,u=3y=3
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19. Show that Curl [; x(ax ;)] =3r xa, a being a constant vector.
20. Prove that Curl [(; X 5) X 5] =Dbxa, where a and b are constant vectors.

21. Evaluate curl grad rm, where r = H = |x§ +yj+ zk
Ans. 0

22. Find div F and Curl F where F = grad (x3+y3+23 - 3xyz)

Ans. div F = 6(x+y+2)

Curl F=0

23. A vector field is given by F = (y sin z - sin x)i + (xsinz+ 2yz)i +(xy cos z +

y?) k . Prove that it is irrotational and hence find its scalar potential.
Ans. ¢ =xysinz+cosx+y2z+c

24. Show that V* (%) = 0 where r is magnitude of position vector r = x i +yj +zk
r

(U.P.T.U. SE 2001)
25. A vector field is given by F= (x2+xy?)i +(y2+x2y) j show that the field is

irrotational and find the scalar potential.
3 3 2.,2
Ans. ¢ = LI AN A
3 3 2

26. (i) Show that Curl (lA< xgrad l) + grad (12 . grad l) =0 where r is the distance
r r

+C

of a point (x, y, z) from the origin and k is a unit vector in the direction of OZ.
(U.P.T.U. 2001)
@ If f and g are two scalar point functions prove that
div (f V g)=f V> g + Vf. Vg
(U.P.T.U. (SE) 2001)
27. Prove that div (grad 1) = V2(r7)= n(n+1) r2 where 1 = xi +y} +zk .
1

Hence show that V? (
r

)= 0. Hence or otherwise evaluate V x (iz)
r

(U.P.T.U. 2003, 05)
Ans. 0
28. (i) Prove that vector f(r) r is irrotatinal.

(ii) Prove that V2f(r) = f" (r) + % f'(r)

30. Prove that b.V (E.V%) = E_(-a_.r;)_(_b._r) - ar_'?
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31. Prove that 5.[V (ﬁ.i) -Vx (ﬁ X 5)] =V.u, wherea is a constant unit vector.
TICK THE CORRECT ANSWER OF THE CHOICES GIVEN BELOW:-

1. When ¢ (x, y, z) = X2y + y2x +22, then grad ¢ at the point (1, 1, 1) is given by
()31+2)+2k (i) 3i+3j+2k

(iii) 21 +2] +3k (v) i+j+3k

Ans. (ii)

2. If T=xi+y]j +zk then the value of V(é.;) is given by (whereais a constant
vector).

(i)0 (i) 2a

(iii) -2a (iv) a

Ans. (iv)

3. Greatest rate of increase of u = x2 +yz?2 at the point (1, -1, 3) is given by

(1 (ii) 9

(iii) -9 (iv) Vi1

Ans. (i)

4. If the directional derivative of ¢ = axy + byz + czx at (1,1,1) has maximum
magnitude 4 in a direction parallel to x axis, For

(iya=2,b=-2,c=2 (iija=-2,b=-2,c=2
(ii)a=2,b=2,c=2 (ivia=-2,b=2,c=-2

Ans. (i)

5. Unit normal to the surface x3+y3 + 3xyz = 3 at the point (1, 2, -1) is
(i)31+9]+6k (ii)3i-9j-6k

(iii) - 31 +9] +6 k (iv)-31+9j-6k

Ans. (iii)

6. Directional derivative of the function ¢ = 2xy +z2 at the point (1, -1, 3) in the
direction of the vector i + j +2k is

.\ 14 oy 9
0 5 (i) 5
(iii) % (iv) 3
Ans. (i)

7. Angle between the normals to the surface xy = z2 at the point (4, 1, 2) and (3, 3,
-3)is

(i) 90 (ii) cos (63_2)
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(iii) cos! \/g (iv) 450

Ans. (if)
8.If r =xi+y]j +zk then div T is
io (i) 1
(iii) 2 (iv) 3
Ans. (iv)
9.1If T =xi +y j +zk then Curlr is
(i) 0 (ii) 1
(iit) 2 (iv) 3
Ans. (i)
10. divr is given by
0 - (@) =
r r

o | . 2
(iii) — (iv) =
Ans. (ii)
11. rr is an irrotational vector for n is equal to
i)o (i) 3
(iii) -3 (iv) any value of n
Ans. (iv)
12. " r is solenoidal only if
({n=0 (i)n=3
@{i)n=-3 (iv) any value of n
Ans. (iii)
13. For a solenoidal vector F the value of Curl Curl Curl Curl F is
(i) AF (ii) V2F
(iit) V3 F (iv) V4F
Ans. (iv)
14.If F = (x+y+1)i +]- (x+y) k Then the value of F. curl Fis
LY (ii) 1
(iii) 2 (iv) -3
Ans. (i)
15. If A=x2+y2+z2and B=xi+y] +zk then div (A B) is equal to
(i) 2A (if) 3A
(iii) - 3A (iv) 5A
Ans. (iv)
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16. The value of Vlfr

(@r (ii) r2
(iii) 2r (iv) 2r
Ans. (iv)
17. If a and b are constant vectors then V (;55)
(i)a.b (i) axb
(iii) bxa (iv) 0
Ans. (ii)
18. The value of f(r) x r is
(i) 0 (i) r
(iii) r (iv) r2
Ans. (i)
19.1f ¢ = log ‘;l then V¢ is

o o T
() = (i)~

o T T
(iif) = (iv) =

(U.P.T.U. 2009)

Ans. (iii)
20. The value of V log 1" is

. N .y NN
(1) — (i) =

r r

... Or ., nr
) )5
Ans. (iii)
21.1f V= (xz-yz)i + 2xy} + (y2-xy)lA< then div V is
(1) x (ii) 2x
(iif) 3x (iv) 4x
Ans. (iv)
22.1f r =xi +y j +zk then the value of V2 (1) is

r

@0 (i) 3
(iii) 2r (iv) 2r
Ans. (i)

23 If r =x 1 +yj+z k is position vector, then value of V(log r) is
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o I o T
() < i) =
(iii) ri’ (iv) None of the above

(U.P.T.U. 1999)

Ans. (ii)
24. If ¢ = x3 + y3 + 23 -3xyz, then the value of div grad ¢ is
(i) x+y+z (ii) 6(x+y+z)
(i) (x+y+z) (iv) 0
Ans. (ii)
25.If ¢ = x3 + y3 + z3 -3xyz, then Curl grad ¢ is
(i) x+y+z (ii) 6(x+y+z)
(iii) Y(x+y+z) (iv) 0
Ans. (iv)

26. The value of div (grad ! ) is
r

o () -

Tr r
(iii) ri (iv) 0
Ans. (iv)

27. The magnitude of the vector drawn in a direction perpendicular to the
surface x2+2y2+z2 = 7 at the point (1, -1, 2) is

03 (@) 5

(iii) 3 (iv)6

Ans. (iv)

28. A unit normal to the surface z = 2xy at the point (2, 1, 4) is
()21 +4]-k (i) 21 +4] +k

(iii) —\/—;_—1(2%4}-12) (iv) —\/IE—T @i+2j+k)

Ans. (iii)

29. If a being a constant vector then the value of Curl [; X (5 X ;):' is
(i)3rxa (ii) -3rxa

(i) rxa (iv)axr

Ans. (i)
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30. The value of p for which the vector field F=(2x+y)i + (3x-22)] + (x+pz) kis
solenoidal is

i) 0 (i) 2

(iif) -2 (iv) 1

31.If r =xi +y j +zk then V.(EJ is equal to
r

@o (ii) 3r
(iii) r2 (iv) -i—
Ans. (iv)

32. If f(x,y,z)= c represent the equation of the surface. The unit normal to this
surface is

() %i—l (ii) Vf

(iii) div grad f (iv)Curl grad f

Ans. (i)

33. The vector defined by V = exsinyi +excosy jis
(i) rotational (if) irrotational

(iii) Solenoidal (iv) Both solenoidal and irrotatinal
Ans. (iv)

34. Let E=x2i + Xy exj +sin zk then V.(Vx E } equals
(i) x+cos z @o

(iii) ex (iv)ez+cosz

Ans. (ii)

INDICATE TRUE OR FALSE FOR THE FOLLOWING STATEMENTS :-
1. Vector having zero divergence is called solenoidal.

True/False

Ans. True

2. Vector having zero divergence is called irrotational.

True/False

Ans. False

3. The motion of the fluid having velocity V at a point P, then div V gives the rate
at which fluid is originating at a point per unit volume.

True/False

Ans. True

4. A fluid motion is given by V= (y+z)i + (z+x) ] + (x+y)12. Is this motion
irrotational?
True/False
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Ans. True

5. A fluid motion is given by V = (y+z)i +(z+x)} +(x+y) k, the velocity potential
is equal to xy+yz+zx.

True/False

Ans. True

6. The fluid motion is given by V = (y+2z)i + (z+x)j + (x+y)12 the motion possible
for an incompressible fluid.

True/False

Ans. True

8. Vectors having zero divergence are called solenoidal.

True/False

Ans. True

9. Vectors having zero divergence are called irrotational.

True/False

Ans, False

10. The motion of the fluid having velocity Vat a point P(x, y, z). Then
div V gives the rate at which fluid is originating at a point per unit volume.
True/False

Ans. True

11. If the fluid is incompressible, there can be no gain or loss in the volume
element. Hence div V =0. This is known in hydrodynamics as the equation of
continuity for incompressible fluids.

True/False

Ans. True

12. Divergence of a constant vectora is zero.

True/False

Ans, True

13. If a rigid body is in motion, the Curl of its linear velocity at any point equal
half its angular velocity.

True/False

Ans. False

14. If a rigid body is in motion, the curl of its linear velocity at any point equal
twice its angular velocity.

True/False

Ans. True

15. 1 r is an irrotational for any value of n.

True/False

Ans. True

16. 1" 1 is solenoidal only if n = -3
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True/False
Ans. True

17.1fn = -1, then V2 (l
)y

)is zZero

True/False
Ans. True

18. The vector field F = —;— is irrotational as well as solenoidal.
r

True/False

Ans. True

19. For a constant vector a, Curl a= 0

True/False

Ans. True

20. The veloc1tyVof any point P(x, y, z) on the body is given by V=wxr

where T =xi +y j +zk is the position vector of P. If Curl V =0 then V is said to be

an irrotational vector.

True/False

Ans. True

21. The directional derivative of a scalar field ¢ at a point P(x, y, z) in the

direction of unit vector ais given by a grad ¢

True/False

Ans. True

22. The temperature distribution in a medium is the example of vector point

function.

True/False

Ans. False

23. The temperature distribution in a medium is the example of scalar point

function.

True/False

Ans. True

24. The velocity of a moving fluid at any instant is the example of vector point

function.

True/False

Ans. True

MATCH THE ITEMS ON THE RIGHT HAND SIDE WITH THOSE ON LEFT

HAND SIDE :-

1.
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(i) Directional derivative (p) z—%

(ii) Unit normal (q)a.grad ¢
(iii) Greatest rate of increase (r) grad ¢
(iv) Directional derivative is (s) |Vo|

maximum along
Ans. (i, q), (ii, p), (iii, s), (iv, r)

2.

HV.V=0 (p) Solenoidal and irrotational
(ii) Vx V=0 (@3

(iii) V = ;ﬂ- (r) Solenoidal

(iv) V.r (s) Irrotational

Ans. (i, 1), (ii, s), (iii, p), (iv, q)

3.

(i) Curlr (p) 2a

(ii) divir (q) 2a

(iii) Curl (a x 1) (r) 0

(iv) Curl (r xa) (s)3

Ans. (i, 1), (ii, s), (iii, q), (iv, p)

4.

(i) rr is an irrotational for (p)n=-1
(ii) ro 1 is solenoidal for (Q)n=4

(iii) 3x1 +(x+y) j -nzk is
solenoidal for ()n=-3

(iv) V* (l) =0 for (s) Any value of n
r

Ans. (i, s), (ii, r), (iii, q), (iv, p)
5.If r =xi +yj +zk

) 3r

i) Vr ® -3

(ii) v e
l" T
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(iii) Vrl3 ()0

(iv) div % (s) t

WvE -4
r r

Ans. (i, s), (ii, t), (iii, p), (iv, q), (v, 1)
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Chapter 13
Vector Integral Calculus

INTEGRATION OF VECTOR FUNCTIONS :-

LINE, SURFACE AND VOLUME INTEGRALS: LINE INTEGRALS :- Let r = f(t)
represents, a continuously differentiable curve denoted by C and f(r) be a

: . dr. . .
continuous vector point function. Then L unit vector function along the
s

tangent at and point P on the curve. The component of the vector

function F along this tangent is F.g—r- which is a function of s for points on the
s

curve. Then I F.%Eds =I F.dr is called the line integral or tangent line integral of
c S [N

F (r) along C.

Let F= iF1+jF2+kF;

and T=ix+jy+kz

~dr=1dx+]jdy+kdz

3
B 4
dr
P
C
) A
o [Fdr = [(Ei+E,j+Ek)(dxi +dyj+ dzk)
= [(Fdx +E,dy + Edz)
([p X, g Y gz
_j(F, St tE dt)dt
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dx dy . dz
Fdr= F, +F —
[ EdF j(,dt+ L ,d)dt

where t; and t, are the values of the parameter t for extermities A and B of the arc
of the curve C.

Again, if f=xi+y3+zf<
N _dxp dys, dzg
ds ds ds’ ds

JRdi= [ R g

dx dy dy )
= +F ds
-[ ( s E ds 'ds
where s; and s; are the values of s for the extermities of A and B of the arc C.
Ilustrative Examples

Example :- If F = 3xy i - yzj evaluate ch‘d;’ where C is the curve in the xy plane

y= 2x2 from (0, 0) to (1, 2).
(B.P.S.C 2002).
Solution :- In the xy plane z =0, hence d r = dxi +dy]

JICIE.d; = _L (3xyf - yzf). (dxf + dyj)

= Jl3xy dx - J'c y*d
puty =2x2? .dy = 4x dx and x varies from 0 to 1.
«.f Fdr = [ 3x(2x)dx - [ (2x°)" xdx

=_|‘|6x3 dx-J-oll6x5 dx

[6 16 6]'
==X
4 6

=- —7- Answer.
6

Example 2:- Evaluate LF.df , whereF= xyi+yzj+zxkand where C is

r=it+je+ k3t varying from -1 to +1.

Solution:- The equation of the curve in parametric form is
x=t,y=t2,z=t3

~F=xyi+yzj+zxk

=F=]+t5]+t0k
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d; dX': dy': dZ*
Also S -9X;, &ys, dzp
S T T T

= 1 +2t]+32k
F.gﬁ = B3+2t6+3t6
dt
= {+5t6
- . r=dr
o FEdr=| F.—dt
J.c d J.c dt

=[ (£ +5t%)at

£ st
=| —t —
[4 7 ]-l

=¥ Answer.

Example 3:- Evaluate J;F.d;, where F =(x2+y2)i -2xy jand the curve C is the

rectangle in the xy plane bounded by y =0,x=4a,y=b,x=0
(U.P.T.U. 2002, U.P.P.C.51997)
Solution:- In the xy plane, z=0

Lr=xi +y}
=dr=dxi+dy]j
y=b (2, b)
0b) C B
X=a

x=0

0,0) 10 y=0 A (a0
LF.dP = L{(xz +y?)dx - 2xy dy} (i)
Now [Fdr=[ FBdr+[ Fdr+[ Fdr+[ Bdr (i)

Along OA,y =0
~.dy =0 and x varies from 0 to a
Along AB,x=a
s.dx=0and y varies from O tob
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Along BC,y =b

~.dy =0 and x varies from a to 0
Along CO, x=0

~.dx=0and y varies from b to 0
Hence from (i) and (ii) we get

J‘cf’.d; = J.: x* dx —Lb 2aydy+J:(x2 +b2)dx+f:ody

3 2 3 °
=a——2aP—+(%+b2xJ +0

3 72 )
3 3
=2 _a*-2 _pa
3 3
= . 2ab2 Answer

Example 4:- Compute the work done by the force F= (2y+3)i+xyj+(yz-

x) k when it moves a particle from the point (0, 0, 0) to the point (2, 1, 3) along the
curvex =22, y=t, z=+1

Solution:-

x=202y=tz=8

sdx =4 tdt dy = dt, dz = 3t2dt

At point (0, 0, 0),

x=0,t=0,y=0,t=0,z=0,t=0

Atpoint (2,1,1)

x=2,t=1,y=1,t=1,z=1,t=1

dr=dxi+dy]+dzk

= 4t dti +dt] +32dtk

F=(t+3) i +2t5] + (19-282) k

F.dr=[(2t+3) i +265] +(t4-22) k. [4t dti +dt]+3€2 dtk]
= (8t2+12t) dt + 2t dt + (3t6-6t4) dt

work done = ch.dF

_ [ras2 Voyys inagb _ gyt
=[ (8t +12)dt+ [ 26 dt+ [ (3t° - 6t*)dt
{8t" 12t2]| [2#’]‘ {3# 6t5}|
= —+ | =
32 6 L7 5
SR
3 307 5

= 8i Answer.
35
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Example 5:- Evaluate the line integral L(yz dx —x*dy)about the triangle whose
vertices are (1, 0), (0,1) and (-1, 0).
(P.T.U1999)

Solution:- Let A (1, 0), B(0, 1) and C (-1, 0) be the points of curves as shown in
figure.

y
A

0 1]|B

C A
(-1,0) 0 (1,0)

Line integral along AB :
Equation of AB is ?+ —}]’— =1

orxty =1
= dx +dy =0

Consider '[AB(yz dx - x*dy) = f,\n {(l -x)* dx - xz(—dx)}
= J.AB(] +x° = 2x+x")dx
= I (1+2x* = 2x)dx

AB

= (1+2x° - 2x)dx

Example 6:- Evaluate ”F.ﬁ ds, where F= yzi+zxj+yxk and S is that of the
S

surface of the sphere x2+y2+2z2= a2 which lies in the first octant.
(U.P.T.U. 2005, MDU 2002)
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Solution:- The given equation of the sphere is ¢ = x2+y2+z2-a2=(
grad ¢ = A0 = 2xi +2y ] +2zk
fi = Unit normal in the direction of grad ¢
or fi=xi+y]j +zk
Also dS=.dS
Let F=yzi+2x] +xyk
~hk=z
and F.n=(yzi +zx] +xy1A< ). (x1+y] +zk)
=3xyz
Y

O i
X dxdy y = O (a, O)

Now J.(yzf +2xj + xyk).dS = J'J' F.f Tj“}(y , Where R is the projection of the surface
S R n.

2,2 4\ 4
=z(a—¥———x—-] =§—Z——Answer
0
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Green's Theorem in Cartesian form :-

If C be a regular closed curve in the xy plane and S be the region bounded by C
then

'[(de +Qdy) = ”(—a—g—a—y-de dy where P and Q are Continuously differential

funchons inside and on C.
Example 1:- Evaluate J(e“ sinydx+e ™ cosydy) by Green's theorem where C is
C

the rectangle whose vertices are (0, 0), (n, 0), (n,g ), and (b, n/2).

(LA.S1999, U.P.T.U. SC 2006 - 07 )
Solution :- Comparing the given line integral with the integral on the left of

I(de+Qdy) ”(—— - a—P]dx dy we have P = exsiny, Q=e*cosy
dy
-51;— =excosy & %—(3 = -@X(Cosy
y
D (0, m/2) B (n, n/2)
o dxdy
(0/ 0) A (TC, 0) X

V4
Hence by Green's theorem (Cartesian form) we have the given integral

= I(—e"" cosy —e " cosy)dxdy
S
n n/2

=—2J .[ e cosydxdy

x=0y=0
=-2[-e” ]Z (siny);’?

=2(e™-1) (1)
=2(e™-1) Answer
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Example 2:- Apply Green's theorem to evaluate I(sz -y?)dx +(x* + y*) dy where
C

C is the boundary of the area enclosed by the x axis and the upper half of circle
x2+y? = a2,

(U.P.T.U. 2005)
Solution :- Comparing the given integral with the integral on the left of

I(de+Qdy) H(-———— a—l;)dx dy we have

P 2x2-y2, Q = x2 +y?
aP sy 0Q _

—
N,

\ﬂ
Hence by Green's theorem, we have the given integral

= jj (2x +2y)dxdy

=2 J. f (x+y)dxdy

X==a

a 2 m
=2I(xy+y—J dx

0
a

_ 2
-2f[xVa -x* + 2x )dx
=2jxda2—x2dx+f(a2-x2)dx
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=0+2_[(a2 - xz)dx

3 a
=2 azx——z(——)
3 0

=2|a’ 2
3
3
Example 3:- Using Green's theorem, evaluate_|‘(x2ydx+x2 dy) where C is the
C

J= %a’ Answer

boundary described counter clockwise of the triangle with vertices (0, 0), (1, 0),
(1,1).
(U.P.T.U. 2004)
Solution :- Comparing the given integral with the integral on the left of
0Q P
l(de»ery) = js [ (s;—g]dxdy
Hence P = x2y, Q = x2
9P, 30

X, —==2x

”ay " ox

B(1,1)
y=x

oo Y70 AW X

Hence by Green's theorem, we have the given integral
= ”(2x -x*)dxdy
S

[ (2x - x*)dxdy
x=04v=0

= [ @x-x?) (y)sdx
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= Ll (2x* —x’)dx

4 1
3 4 )
=E—l=—5—Answer.
3 4 12

Example 4:- Verify Green's theorem in the plane for I(xy +y*)dx + x*dy where C
C

is the closed curve of the region bounded by y = x and y = x2
(P.T.U. 2000, 05, V.T.U. 2004)

Solution :- Here P = xy+y?, Q = x2

—P=x+2y, 8_Q=2X

N dy 0x
y
A
yTX
A400)
G
G
2% >X
q (0.0)

Let R be the region bounded by C,
Along Gy, y = x?
~.dy = 2xdx and the limit of x are 0 to 1.

-.Line integral along C; = I (Pdx +Qdy)
G

= J'Ol (xy +y?)dx+x* dy

= fol |:{x.x2 +(x* )z}dx +x%.2x dx]

= J‘OI {(x1 +x*)dx +2x° dx}

= J.(: (3x* +x*)dx

[3,0,2] (302

147 5], \as5) 20

Along Cy, y=x from point A to O, dy = dx, and the limits of y are 1 to 0.
Line integral along
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C; = [ (Pdx+Qdy)

C,
= J-]O {(xy +y?)dx + xzdy}
= ["{(y* +y*)dy +y* dy)
= [ 2y* +y*)dy

0 0
= [ 3y'dy=[y’] =-1
Therefore, line integral along C

LA
200 20
1
ie. |(Pdx+Qdy)=-— i
] M=% @
Now
9Q P ) 4xdy = [[[2x-
-L(ax ay)dxdy-LJ.[Zx (x+2y)]dxdy

Oty — Oy = O G = O S
e

(x - 2y)dydx

2

x

(xy - yz):zdx

(* =x* =x’ +x*)dx

(x* =x’)dx

* x7 (11 1 .
[?‘7]0 (33 % (1)
From (i) & (ii) -

3Q 0P
'C[(de +Qdy) = jsj [& - W)dx dy

Hence Green's theorem is verified.

Example 5:- Evaluate _{(y - sinx)dx+cosxdy, where C is the triangle formed by
C

y=0,x= g— )Y = E x, by using Green's theorem.
i
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Solution:- The vertices of the triangle OED are (0, 0), (1;— ,0)and ( lzt- ,g )

Now by Green's theorem, we have

(Pdx+Qdy) = [[| £= - L= |dxd
] y H(aQ al;] y

HereP y-sin x , Q = cos x

. oP P
ay l, g(-= —sinx
Ya i
o33
2 2°2
y=—x
T
X=—=
2
dxdy
o) = X
oo Y0 g (E,o)
2
x
/2 n
~RHS= [ [ (~sinx-1)dxdy
¢ y=0
n/2 . x/n
=—J'0 (1+smx)[y]z
2 tn/2 .
=__7EJ.° (x+ xsinx)dx
2 /2
=—E[X—+x(—cosx)—l(—sinx)]
| 2 o
_.2in
n[2 4
=—[—- —2-} Answer
T
Example 6:- Verify Green's theorem in the

plane(_ﬁ(fix2 -8y?)dx +(4y —6xy)dy where C is the boundary of the region
C

defined by y =Vx , y = x2.

Solution:- y =+/x i.e y2= x and y = x2 are two parabolas which intersect at (0, 0)
and (1, 1)

we have
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[(Pdx+Qdy)= [(Pdx+Qdy)+ [ (Pdx+Qdy)

C G &
Y
7 X2 =y
22y
G (1.1) Y
G
0,00 \ >X

Along Cy; x2=y; ..dy = 2xdx and limits of x are from 0 to 1.

|
-. Line integral along C; becomes f{(sz -8x*)dx +(4x* - 6x’)2x dx}
0

= ‘i‘(.’axz +8x° - 20x‘)dx
V)

=1+2-4=-1
Along C, y2=x, .".2ydy = dx and limits of y are from 1 to 0.
- Line integral along C; becomes

(3y* -8y?)2ydy + (4y - 6y* - y)dy

— o

(6y5 -22y* + 4y)dy

=-[6.l-zz.l+4.l =2
6 4 2] 2

————

- Line integral along C = -1 + % = —;— (i)

Again [(Pdx+Qdy)=[f (%% - %de dy
C S
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]

jj{ (4y - 6xy) - ;;( —8y2)]dxdy

S

I
—

—6y + 16y dx dy

S

Ll=o.'.y=x2 10y dx dy
= [ [sy*]- dx
-] x-xJax=s( 1-1)

= (i)
Hence from (i) and (ii) the Green's theorem is verified.
Example 7:- Apply Green's theorem to prove that the area enclosed by a plane

curve is %J.xdy - ydx. Hence find the area of an ellipse whose semi- major and
C

minor axes are of lengths a and b.
(V.T.U. 2000).

Solution:- By Green's theorem @(de+Qdy) H(aQ gPde dy
y

oy y —_
I tlj...__ d = —

e 1 B e ) B

J(; +—2—)dxdy

dxdy

Il Il
(ng___'_O e 0

= Area of a closed curve
.. Area of a closed curve

1
=5<}3(Xdy— y dx)
C

Let the equation of ellipse be
2 2

.)_(_._ + X._ =1

a’> b’
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Area of ellipse = %(ﬁ(x dy - ydx)
C

where C is ellipse
2 2

X y 1

—tiy=

a® b
i.e. x=acost, y=Dbsintand t varies from 0 to 27.
. Required area of ellipse

= -;-J.:"ab (cos2 t + sin’ t)dt

ab . o

= '2—[t]c2;

'.'(—j-)f=-a sin t, 9—1 =bcost
dt dt

=T ab

Gauss Divergence Theorem :

Statement :- If V is the volume bounded by a closed surface S and F is a vector
point function with continuous derivatives, then

j Efds= j divEdV
S v

where n is unit outward drawn normal vector to the surface S.
Example 1: If V is the volume enclosed by a closed surface S and F=
xi+2yj+3zk show thath.ﬁds =6V

S

Solution :- Given F=xi +2yj+3zk

s div E=VF
=(§-Z;)—x+j%+ﬁ—%).(xf+2yi+3zﬁ)

0 0 0
—&(x)+5;,—(2y)+5;(3z)
=14243=6

.. By Gauss theorem we have
jF.ﬁ ds = Idivf’ dv
S v

=j6dv
A"

= 6V Hence proved.
Example 2:- Using Gauss divergence theorem, Prove that
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(@) [rAds=3V (i) [Vr'.ds=6V
S

where S is any closed surface enclosing a volume V and r2= x2+y2+z2

(U.P.T.U. 2003)
Solution :- (i) By Gauss divergence theorem, we have

[[rds =jj divrdV
S v
where V is the volume enclosed by the surface S.

= _|.U3dv ~we know div r =3

=3V Answer
(ii) By divergence theorem

'[Vrz ds= fV.(Vrz )ydv
S \%

= J.Vzr2 dv
" V.V=V
= J'2(2 +1)r*?dv
A%
"+ Vr2=n(n+1) r2
= 6f dv
=6V Answer
Example 3:- Show that f (axi + byj + czk )nds = %n (atb+c)
S

where S is the surface of the sphere x2+y2+22 =1
Solution :- We have by Gauss's divergence theorem.

IF.ﬁds = fdidev
S \Y

Now
div E=VF

=[i—a%+j%+ﬁa—ij.(axf +byj +czl§)

= %(ax) + %(by) + %(CZ)

=a+b+c
«.[EAds=[(@a+b+c)dV
S v

= (atb+c)V
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Now V= volume of sphere of unit radius

=i1t.13

W

=—7
3

J.(axi + by} + Czﬁ).ds

w

= (at+b+c). %n

= % (a+b+c) m. Henceproved.
Example 4:- find HF.ﬁ ds where F=(2x+3z)i-(xz+y)]+(y>+2z) kand S is the
S

surface of the sphere having centre at (3, -1, 2) and radius 3.

(U.P.T.U 2001, 2005).
Solution:- We have by Gauss divergence theorem

IF.ﬁds=jdideV
5 v
Now div F=V.E

9 -0 ~0 2 2 -
=[1é;+)5§+k5;].{(2x+3z)1—(xz+y)]+(y2+22)k}

=2-142

=3

f EAds = j j j divEdv
S

= j‘{j 3dv
= 3I‘\U dv

=3V
But V is the volume of a sphere of radius 3

"V f;-n (3) = 36n

Hence
j EAds=3x36n
S

=108 t Answer
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Example 5:- The vector field F=x2i +z] +yz12 is defined over the volume of the
cuboid given by 0 < x <a, 0 <y <b, 0 <z <, enclosing the surface S. Evaluate the
surface integral ” F.ds

(U.P.T.U. 2002)
Solution :- By Gauss divergence theorem

jF fids= jddev

- mvpdv

where V is the volume of the cuboid enclosing the surface S

N [EREN A R
= f”[‘é';(xz) + g(z) + ;—Z(yz)}dxdydz

= j j: j;(2x+y)dxdydz

x=0y=02z=0

xJ‘dyj.(2x+ y)dz

it

A
I x.[[2xz + yz]; dy
|

xf (2xc + yc)dy

322



Vector Integral Calculus

= abc(a + g) Answer

Example 6:- Use Gauss divergence theorem to evaluate the surface
integral “(xdydz + ydzdx + zdxdy) where S is the portion of the plane x+2y+3z =
S

6 which lies in the first octant.

(U.P.T.U 2004)
Solution :- By Gauss's divergence theorem '[F.ﬁ ds= Idiv?dv
S v
or ” Fids= H divFdv (i)
$ v
Here F =xi+y]j +zk, i =dydzi +dzdx ] +dxdylz
Now divF = (1éa—+ ]-(,;)—y+12—éa—z-].(x§+ yi+zf<)
=1+1+1
=3

From (i) we have

H (xdydz + ydzdx + zdxdy) = H_[ 3dv
\%

6-x 6-x-2y

-[x 0.[ =0 J‘=0 dZdydx
6—x_

=3[ 2 @5 ay s
=3[ _0(6 2 Jay ax

-0 {6-x)y-y}7 ax

-I {6 x)? (6—4x)2}dx

- 1—12- (216) = 18 Answer
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Example 7:- Use divergence theorem to evaluate HF.ﬁds,
S

where F =x31 +y3] +z3k and S is the surface of the sphere x2+y2+z2 = a2

(P.T.U. 2004)
Solution:- Let V be the volume bounded by the surface S
By Gauss divergence theorem, we have

«. [EAds = [[[divFdv ()

Now div F=V.F
=(§%+}%+ﬂ:—zJ.(x’i+ y’}+z’f<)
= 3(xt+y?+2?) (i)
Hf*’.ﬁds = 3J‘J'J.(x2 +y? +2%)dv
S A%

Changing to spherical polar Co-ordinates by putting x= r sin@ cos ¢,
y=rsin0sin¢, z=cos 0

dv =r25sin6 dr d6 d¢

The limits of integration will be 0 to a, 0 to t and 0 to 2n

3'|'J‘J‘(x2 +y’+2°)dv= ﬁ.rz.rz sin8drdod¢
00

= -l—s—na5 Answer

Example 8:- Verify Divergence theorem forF = (xz-yz)i +(ysz)i +(zlxy)12,

taken over the rectangular parallelopiped 0<x<a,0<sy<b,0<z<c,
(U.P.T.U. 2002, V.T.U. 200 M.D.U. 2006, P.T.U. 2003)

Solution :
Asdiv E=VEF

0 d/ , d
= g(xz ~yz)+ 5;(y —zx)+ -a—z(z2 - xy)
=2(x+y+z)
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Therefore, volume integral

=jdidev = 2m(x+y+2)dv

-]

x=0 y=Oz=0

—
‘—‘n

(x+y+z)dxdydz
= 2defdy“.(x +y+z)dz

0 0 ]

a b Z2 C
= 2{dx_[dy(xz+yz+——)
X b 2 ’

J.( cx+cy +——-)

0
b
x[cxy+——+ )

0
2 2
x[bcx+b——+kc—)

fo
e
I

bex?  blex  bcx ||
=2 + +
2 2 2 |
= (a?bc+abZc+abc?)
= abc (atb+c) (@)
42
C Al
B' Ly
Il\( N A
o1 .
1 7 B Y
A C

X
To evaluate the surface integral, divided the closed surface S of the rectangular
parallelopiped into six parts i.e.
Si : The face OAC'B
S, : The face CB'PA'
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Sa : The face OBA'C
S4: The face AC'PB'
S5 : The face OCB'A
S¢ : The face BA'PC'

Also [[EAds = [[FAds+[[F.Ads+[[FAds+[[FAds+[[F.Ads +[[F.Ads
S S, S, S, S, Ss Se

onS: (z = 0), we have i = -k , F = x2{ +y2]- xyk so that
Fa= (xzf +y'j- xylz).(—lz)
= xy

ba
f F.ids =J‘_[xydxdy

21,2

ot
on Sz (z =c), we have fi= k
F = (xt-cy)1 +(y2cx) ] +(c=xy) k
so that F.ads = l:(x2 ~cy)i+(y? —ex)j+(c* - xy)l;]lz

= cZ-xy

J. F.ﬁds=fj[ c - Xy dxdy f[c a——i}-,-)dy
S, 00

.'.HiﬁdS{ﬁ a -yz dydz J‘( 2b-——bz—)dz
S, 00 0

a2b2

=abc?~

on S; (x =0) we have fi=-i, F=-yzi +y2]+zzk
so that F.A = (——yzn+yj+zk)(—)—yz

b2 2
”F nds = “‘yzdydz _"—xdz e
on s (x=a), we have fi=1i, F= (a%yz)i +(y*az) } +(22 -ay) k,
so that F.A = [(a2 ~yz)i+(y’ - az)j+(z* - ay)lz].f

”Fnds “(a -yz)dydz= (Zb———}j
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2.2
ca2be- 2

4
on Ss (y=0) we have fi=-j, F=x2i - zx | +22k,
so that = Fﬁ =(Xzi-ZX}+Zzﬁ)(-j)= zZX

a22

= A ac < 2
Q‘F.nds = '!.‘[zxdzdx= {%—xdx = —4C—

on Se (y =b), we have fi =], F = (x%-bz)1 +(b2-zx) ] +(22-bx)k,

so that F.A = I:(x2 —~bz)i+(b” - 2x)j+(2* - bx)lz].j

=b2- zx

=abic-2°S
R 232 292 2.2 2.2 2.2 2.2
.'.J'J'F,ﬁds=§_b_.+abcz —ﬂ—+b = +a2bc—-t->—s—-+a ¢ rabc-2S
: 4 4 4 4 4
= abc (at+b+c) (i)

The equality of (i) and verifies divergence theorem.

Example 9:- Verify divergence theorem for F = 4xi - 2y2j +22k take over the
region bounded by the cylinder x2+y2=4, z =0, z =3

Solution:- Since div F = V.F

=[ii+}i+f<i}(4xf—2y2} +zzlA<)

ox oy 0z
_9 0, o2y, 0 2
_ax(4x)+ay( 2y )+az(z )
=4-4y +2z

Therefore
“.JdiVF.dv = ”f(4 -4y +2z)dxdydz
v v
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= .L-_zf \/TT-[ (4-4y +2z)dx dydz

"J'-zj m[4z 4yz +2° ] dxdy

_f_zj ﬁ__ (12-12y +9)dxdy

= J-x=-z.“y__\/—‘(21 ~12y)dxdy

=21f__2jy=_ e dxdy-12[" _J__mydxdy

—21x4jj' " dxdy -12[0]

Since y is an odd function in the second integral

2 Wl
= 84J.x=0(y) ! dx

V]
= 84.[:,[(22 - xz) dx
1., . xT
=84[i12(- (22—x2)+§.22sm '%}0

= 84 [2 sin11]
=84 [2 (n/2)] =84n

Z
A

QRRD

»
X

To evaluate the surface integral, divide the closed surface S of the cylinder into
three parts, .
S1: The circular base in the plane z =0
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Sz : The circular top in the plane z =3
S : The curved surface of the cylinder given by the equation x2+y2 =4

Also [[EAds=[[Eads+[[Eads+[[Eads
S S, S, S,

on S; (z=0). we have n = —-IA< F=4xi- 2y2§
so that F.n = (4xf - 2yzj).(—f<) =0
”?.ﬁ ds=0

s,

onS; (z=3), we havefi =k, F = 4xi - 2y2j +9k
so that F.n= (4xi -2y%j+ 912)12

=9 x area of surface S;

=9(n.22)=36m

Where S; is the area of circle of radius 2
onS;, x2+y2=4

A vector normal to the surface S; is given by V (x2+y2) = 2x1i +2yj
~. 11 = a unit vector normal to surface $;
2xi +2yj = = 2xi +2yj c.unit normal = E
V(2 +(2y) ey’ ve
_ 2xi+2yj
4(x2 + yz)
2xi + 2yi
Vaxd
_xi+yj
2
R x2+y2 = 4

B = (- 2y7] +z’f<).(§—1;—le

=72x2- y2
Also, on S3, ie. x2+y2=4,x=2cos 0,y =2sin6and ds=2 d6 dz
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M 246

As surface area of element P(width 26 and height dz) is 2d6 dz.
To cover the whole area Ss, z varies from 0 to 3 and 8 varies from 0 to 2n

ijnds [ [[2(2cos6)" - (25in6)’ |2dodz

= fo 16 cos 0 -sin® G)Bde
= 48_[? (cos2 0-sin® G)de

=487
j FAds=0+36n+48n

= 841t (if)
Therefore from (i) and (ii) Thus H FAds = f” divFdv Thus divergence theorem
S \%

is verified.

Example 10 : Verify Gauss divergence theorem for the surface F = 4xz1i -

yzi +yz12 taken over the cube bounded by the planes x =0, x =1, y =0y=1,z=0,
z=1.

Solution : GivenF = 4xz1 - y?]j +yzﬁ (i)

4= (s0 20 ~0 T -
~div F=(1$+]5;+k5;).(4x21—y ]+yzk)

_9 9y
=GRSy S2)
=4z -2y +y

=4z-y
By Gauss theorem, we have

'[F.nds = IdiVFdV
S \Y%

330



Vector Integral Calculus

: 1) 3. « 3
=||2-=|dx==[x], == (ii)
{( 2 2702
Z4
©,0,1) D
F E
N
ol . (0,1,0)
- C Y
A(1,0,00 B
X

To evaluate H FAd
S

Here S is the surface of the cube bounded by the six plane surfaces
Over the face OABC

z=0,dz =0, fi = -k , ds = dxdy
1

J.J‘I:".ﬁds = ”-(—yzj).(—k)dx dy=0 (i)
00

Over the face BCDE,
y=1,dy=0, i=j,ds=dxdz

HF j[ (4xzi -j+ zk)] dxdz
0

!
-]

jdxdz
0
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== (x)y (2), =1 (iv)
Over the face DEFG,
z=1,dz=0, A=k, ds=dxdy

H F.hds

1
R S s Tl D

(4x§ -y%j+ yﬁ)ﬂ dxdy

© by S ey

ydxdy

i
= dxfydy

0

2 I
1
(x) (%]0 =3 )

Over the face AOGE,

y=0,dy=0, ﬁ=—j ds =dx dz

Ifﬁﬁ I(4xz1) ( j)dxdz
=0 0 (vi)
Over the face OCDG,

x =0, dx =0, i=-i,ds=dydz
L1

J._[F.ﬁ ds= J.'[(—yzi + yzlz).(—f)dydz
00

=0 (vii)
Over the face ABEF
x =1, dx =0,

j[4zdy dz
0

ct_.‘.i

,ds =dy dz

h-—._- :>

(4zi -y3+ yzk).i dydz

1
0

<

O oy c-__._

d '|-4zdz

(y), (2z ), =2 (viii)
Adding equations (iii), (iv), (v), (vi), (vii) & (viii) we get
Over the whole surface S,
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= -1+ +0+0+2

wn .____:

(ix)

le

From equations (ii) and (ix) we have
[[EAds=[[[divEdv
S Vv
Hence the divergence theorem is verified.
Example 11: By transforming to a triple integral, evaluate

I= J'J' (x* dydz +x’y dzdx + x’zdxdy), where S is the closed surface bounded by
S

the planes z = 0, z = b and the cylinder x2+y?2 = a2

(U.P.T.U. 2006)
Solution:- By Gauss divergence theorem, the required surface integral I is equal
to the volume integral

fif [%(x’wi(xzyw%(xzz)}dv

- L--JJJ_(T)

=4x5fz_ foj ) dzdy dx
5 ]m

3x” +x* +x*)dzdy dx

J-z=0J‘ =0 dZdy

J. -OJ.Z-O dZdy

- %Q y=0 [(az -y )3/2 z]:=o dy
20

3/2
iy _ob(az—yz) dy
Puttingy—asintdy-acostdt

. I=—bj a’ cos® t(acost)dt

= —a‘bj ? cos* tdt

=Ea bi T 51ta"b Answer
3 42 2 4

333



A Textbook of Engineering Mathematics Volume - I

Stoke's Theorem : If F is any continuously differentiable vector point function
and S is a surface bounded by a curve C, then

J’I—:.d; = ‘[Curl Ends
C S

Where fi is unit outward drawn normal vector at any point of the surface S.

Example 1: Verify stoke's theorem for F = (2x-y)i - yz2j ~y2z k where S is the
upper half surface of the sphere x2+y2+z2=1 and C is its boundary.

(U.P.T.U. 2001, .A.S 2004, B.P.S5.C 2001)

Solution : The boundary C of S is a circle in the xy plane of radius unity and
centre at the origin. The parametric equations of C will be x=cos t, y = sin t, 2= 0,

0 < t < 27 consequently, the position vector of any point on the circle isr = xi + yi .

Hence.

Iﬁ.d; = I{(Zx —y)i-yz*j- yzzlz}.(idx + }dy)

<

= I(zx -y)dx —fyzz dy
= Iozu(Z cost~sint)(-sint)dt
= J':"—(Zcost -sint)sintdt

2 2n
==J' "sin? tdt—f sin2tdt
0 0

2n
=4[ sin’ tdt + (COS Zt)
0 0
o
=Lt 4—(1-1
oF 5(1-1)
4.z
=2
2
=7
Also
i j k
= |0 d ad
Curl F=|Z 2 =
o ox dy oz

2x-y ~yz* -y’z
= i(2yz+2yz)+ j(O)+k(1)
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=k
Then Icurlf’ ds Iﬁ.ﬁds
S

= L ds

ds= 24
nk
= [[dxdy
R
where R is the projection of S on the xy plane.
Therefore

”dxdy 'f__] e er.dxdy

= 4Io J.o] g dxdy

=4.[: V1-x2dx
'H(az —xz)dx=§,/(a2 -x?) +122-sin‘1 "

=7 (if)
From (i) and (ii) we get
Icurl Fads= IF.df
Hence stoke's theorem is verified.

Example 2 : Verify stoke's theorem whenF=yi + z]j +xk and surface S is the

part of the sphere x2+y2+z2=1 above the xy plane.
(U.P.P.CS. 2003)
Solution : Stoke's theorem is

I Fdr= Icurl FAds

C S

where C is the unit circle x2+y2 =1, z=0and r =xi+y j +zk
=>dr=dxi+dy] +dzk

~Edr= (yi +2j+ xlz).(dxf +dyj + dzlz)

=ydx + zdy + xdz

So

IF.d? =fydx+fzdy+_|'xdz

The parametric equations of the circle is
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x=cost, y=sint, 0<t<2nz=0,dz=0
Therefore

J‘F.d; = J.ydx
= f:n sint(-sint)dt

w Xx=cost,y=sint
= dx =-sin tdt

= —~‘|.:"sin2 tdt

2
=—4f "sin? tdt
0

)

2(2)

2
= 0
Again
i j k
.13 2 @
Curlf=|2 2 2
TEEIX By oz
y z X
_iojk

Let nn be the outward unit normal to the surface x2+y2+22 =1 at point (x,y,z), then
¢=x2+y2+zz_1

a0 e [0] o0

Doy, 2 =2y, —=2

x dy Y 52 "

CAe grad¢ 2x§+2y}+22f<

U grade] J2x) +(2y) +(22)

=xi +y3' +zk

oo x2+y2tz2 =1

.. CurlFA =- (x+y+z)
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Using spherical polar coordinates

X = r sinf cos¢ = sinb cosd wr=1

y = r sinf sin¢ = sin6 sin¢

z =r cosf = cosB

and ds = sin6 d6 d¢
Infirstoctant0=0ton/2,¢=0to 2n
curl FA = - (sinB cos¢ + sind sin + cos6)

fcurlf*’.ﬁds =~ .[ :02 L:o (sinBcos ¢ + sinBsin ¢ + cosO)sin6dOdo
S

= ‘J‘:/Z[Sin 0 sin¢ — sinBcos ¢ + cos G]Z" sin0® do

=-2njo"’ ? c0s0sin0do

[ c:os26]"/2
=-T —
2 g

=-n (ii)
From (i) & (ii) we get
Icurl FAds= J' F.dr

Hence stoke's theorem is verified.
Example 3: Verify stoke's theorem for the function F = zi + xj +y12 where C is

the unit circle in xy- plane bounding the hemisphere Z= ,[(1-x* - y?)
(I.AS. 1993, U.P.P.CS. 1999, U.P.T.U.(C.O) 2003)
Solution : Stoke's theorem is ff’.d; = J'Curl F.iids where C is the unit circle
C s

x2+y2=1,z=0and ;=x§+y}+z12

:>d;=dxi+dyj+dzf<
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Fdr= (zi +xj+ yﬁ).(dxf +dyj+ dzlz)
= zdx+xdy+ydz
S0 fF.d§ =Izdx+_[xdy+fydz

The parametric equations of the curveis x=cost,y =sint,0<t<2n,z=0,dz=0
Therefore,

fF.d; = fxdy
2n

= fcos tcostdt
V]

 x=cost
y =sint

= dy = cos t dt
2n

= J'cosz tdt
0

n/2

=4 f cos’ tdt
0

2B
=

Co22
s

=4.2.2 >
2

=Vnn

=7
ie. [Edr=n ()
i j k
Again curl F= ai- a—E;— ai
zZ Xy

=i+j+k

Let i be the outward unit normal to the surface x2+y2+z2 = 1 at point (x,y, z),
Then

¢ = x2+y2+z2-1
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. grad¢
A=
|grad¢|
2xi + 2yj + 27k
V@) +(2y) +(22)°
=xi+y]j +zk woxIy2+z2 =]

Therefore, curl EA= (i +j+ f().(xi +yj+ zlz)

=xty+tz
using spherical polar coordinates
X = r sinB cos¢ = sin6 cosd cr=1

y = r sinB sin¢ = sin6 sin¢
z =r cosB = cosO
and ds = sin6 d6 d¢
In first octant © =0 to /2 and ¢ =0 to 2n
curl F.fi= sind cosd + sind sind + cosd
7/2 2n
Icurlf*’.ﬁds = I J. (sinBcos ¢ +sinOsin ¢+ cos6)sin8dOdo
S 0=0¢0=0
n/2
= I [sinBsin¢ - sinBcos ¢ + ¢ cos 6]3" sin6do
0

n/2

= 2nj cos0sin0d0
0

n/2

=7 j sin 26d0
0

[ cosZO]”/2
=T —
2

=-Zfcosm- cos0]

=-311-1]

=—2(2)

=7
From (i) and (ii) we get
Icurl F.fds = IF.d?

Which verifies Stoke's theorem
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Example 4: Verify stoke's theorem for F = (x2+y2)i -2xy j taken round the
rectangle bounded by the lines x=+*a,y =0,y =b
(U.P.T.U. 2003, U.P.P.C.S. 1997)

Solution :
H

E (-a, b) y=b B(b)
/,
/ //

x=-aV P x=a

T,

D (-a, 0) y=0 A(a0)

Let C denote the boundary of the rectangle ABED, then
éf’.d?: <ﬁ[(x2 +y?)i- 2xyi].(fdx + idy)
= ﬂ:(xz +y?)dx - 2xydy:|

The curve C consists of four lines AB, BE, ED and DA.
Along AB, x=a, dx = 0 and y varies from 0 to b

f l:(x2 +y?)dx - 2xy dy] = f: -2aydy

AB

=-a[y*] = -ab? (i)
Along BE, y=b, dy = 0 and x varies from a to -a

—-a

I.!;:l:(xz +y?)dx —2xydy] = J.(xz +b?)dx

3 —a&
= I:—’i- + bzx]
3 a

2
=-:°'§—- 2 ab? (i)

Along ED, x=-a, dx = 0 and y varies from b to 0
0
f l:(x2 +y?)dx - 2xy dy] = IZay dy
ED b

= a[yz]z = -ab? (iid)
Along DA,y = 0. dy =0 and x varies from -a to a.
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I [(x2 +y?)dx - 2xydy] = j)' x? dx
DA ~-a

_
3
Adding (i) (ii) (iii) and (iv), we get

3 3
@Fd?:-abz-32--2ab2—ab2+33-

(iv)

=-4ab? )
Now,

Flo =

j
9
dy

xX+y?-2xy 0
=(2y-2y) k
=-4yk
For the surface S, A=k
Curl FA=-4yk .k

:
- ]

Curl F=| —
ur 9x

= - 4ab? (vi)
The equality of (v) and (vi) verifies Stoke's theorem.
Example 5 ;: Verify Stoke's theorem for the function F = x21 +xy j integrated

round the square whose sides are x =0,y =0, x = a, y = a in the plane z =0.
' (I.A.S. 2006)

Solution : Given F = x2{ +xy ]
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i j k
- {9 d 9
S Curl F={— — —
R Oy oz
x* xy 0
=yf(
A _
y=a B
x=0 A x=a
o) y20 A X

Here 1=k (fis perpendicular to xy plane)
_U CurlFfds= ” yk.kdxdy

= j'dxjydy
] 0
RGNS .
= a( 5 )0 ) (i)
Now fﬁdf = J-(xzf + xy}).(dxi + dyj)
= [(x* dx +xy dy) (i)
W;1ere C is the path OABCO as shown above.
[ Edr=[Fdr+[FEdr+[Fdr+ [ Fdr (i)
OABCO 0A AB BC co
Along OA,y =0,dy =0
[ Edi=]xd (Xs)“ 2 (i
di = |x*dx=|—| =— iv
OA 0 3 0 3 )

Along AB, x=0,dx =0
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oo a y2 )“ a, , ad
Fdr=jaydy=a|—| =—(a")=— v)
Jraicfovor=a{ 5] -50)-5
Along BC, y =a, dy =0
V] 3
[Bdr= [xtdx=[xtdx=-2 (vi)
BC BC a 3
Along CO, x =0, dx =0
I Fdr= J. (x?dx +xydy)=0 (viii)
co co
3 3 3

= - a  a a
F iii), |Fdr=—+—-—4+0
rom (iii) I[ r 3t 53
Using (iv) (v) (vi) & (vii)
a3 see
= i
> (viii)
From Equations (i) and (viii), we have

j Fdr= j f CurlEAds

Hence Stoke's theorem is verified.

Example 6 : Evaluate @F.d? by Stoke's theorem, where F = y21 +x23 - (x+z)lA< and

C is the boundary of the triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0)
(U.P.T.U. 2001)

Solution : Since Z- coordinates of each vertex of the triangle is zero, therefore,

the triangle lies in the xy plane and f = k

i j Kk
= (o 9 0
CurlF—& 5; %>

y' X} —(x+2)
= j+2(x-y) k

B(1,1)

yon

v
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. Curl Ffi= D +2(x - y)lz:IlA(

= 2(x-y)

The equation of line OB is y = x By stoke's theorem,
$Edr = [[CurlF.Ads

= j }2(x—y)dxdy

Example 7 : Apply Stoke's theorem evaluate I[(x +y)dx +(2x ~ z)dy +(y +2)dz]

where C is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0,
6).
Solution : Hence F = (x+y)i +(2x-z)] + (y+z)12

~ ~

i j k
- d d d
SnCurl F=| — — —
o ox dy o0z
X+y 2x—2 y+z

=2i+k
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Z

A (2,0,0)
X

Also equation of the plane through A, B, Ciis
—+=+—-=1

or3x+2y+z=6
Let ¢ =3x + 2y + 2-6 =0

Normal to the plane ABC is
20 10  ~0

Vo= i—+j—+k— |(Bx+2y+z-6

¢ (lax+]8x axJ( x*2y+z-6)
=31 +2j+k
Unit normal vector f = dit2j+k

JEY @7 + )
_ 3f+23+f<
J14

. f[Curl F.A ds = [[(2i + k). (31 + 2§+ K)ds

; ; V14
where S is the triangle ABC

1
=—==(6+1)]||ds

75 )g
=-—\/.%(Area of A ABC)

It is difficult to find area of A ABC, so we change ds to

area of A OAB
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___7_'“- dxdy
“J1al 1714

=7[[ dxdy
R
=7 (Area of A OAB)
1
=7 (—x2x3
(5 7233)

=21 ()
Since we know Stoke's theorem is given by
@F.d; = H CurlF.nds (ii)

Therefore, from (i) and (ii) we have
@[(x +y)dx+(2x—z)dy +(y + z)dz] =21

Example 8 : If F = (x-z) i +(x3+yz) j - 3xy212 and S is the surface of the curve

4
z=a—x* +y* above the xy-plane, show that f f CurlF.ds= Sma
Solution : Here F = (x-z)1 +(x3+yz) ] - 3xy2k (i)
By Stoke's theorem, we have
[[CurlF.ds = $F.dr (ii)

s <

where S is the surface x2+y? = a2, z=0 above the xy-plane.

Edr = [(x-2)i +(x3+yz) | - 3xy2k ].(dx1 +dy ] +dz k)

= (x-z)dx + (x*+yz)dy-3xy? dz (iii)

Let x = a cos0 so that dx = -a sinf dO and y = a sinf so that dy = a cos0 d6

2n

¢F.df = J. {(acos8)(-asin0d6)+a" cos" 6. acos6d6}
[y 0

vz=0.dz=0
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2n

= az'fsme cosHdo +a* _[cos ode
0

2n
=a' I cos* 6do
0

n/2

=4a* f cos’ 6d0
0

11

_4a4_5 5
2[3

”iélf
_434-222 2

4

ES

1]
2
w1 w

n

na‘ (iv)

I
I

= 3
CurlF.ds ==na*
= [[cuntds-3na
Using (ii) & (iv)

EXERCISE
1. Suppose F = x31 +y ] +zk is the force field. Find the work done by F along the
line from the (1, 2, 3) to (3, 5, 7).

(U.P.T.U. 2005)
Answer. 50.5 units
2. Evaluate J.F.dF where F=xyi +(x2+y?) j and C is the arc of the curve y =x2-4

from (2, 0) to (4,12) in the xy-plane.
Ans. 732
3. Evaluate JF.d? for F = 3x21 +(2xz-y) j +zk along the path of the carve x2= 4y, 3x3

=8zfromx=0tox=2
Ans. 16

Y
J 5 and C is the circle x2+y2=1 traversed

4. Compute J.F.d; , whereF = l}; Ty
‘ X

counter clockwise.
Ans. -27
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5. Find the circulation of F round the curve C, where F =yi +z]j +xk and C is the
circlex2+y2=1,z=0

Ans. -n

Hint Circulation = qSF.df

6. Find the work done in moving a particle once around a circle C in the xy-
plane, if the circle has centre at the origin and radius 2 and if the force field is

givenby F= (2x-y+2z)§ +Hx+y-22) j +(3x-2y-52)f<
Ans. 8n
7. Evaluate ”(yzi +2xj + xylA<).ds where S is the surface of the sphere x2+y2+z2 =a2

in the first octant.
4
Ans. 32
8
8.IfF = (x2y?)i +2xy jand r = xi +y j find the value of IF -df around the

rectangle boundary x=0,y=0x=a,y=b
(U.P.T.U 2002)
Ans. 2ab?

9. Evaluate ”:(cos xsiny - xy)dx +sinxcos ydy] by Green's theorem where C is

the circle x2+y2 =1
Ans. 0

10. Evaluate ff: -AdswhereF =4xy1i + yzj - xzk where and S is the surface of the
S

cube bounded by the planes x =0,x=2,y=0,y=2,z=0,z=2
Ans. 32

11. Prove that H'[Curlf*‘dv = Hﬁ xFds

12. Prove ﬂiatfﬁ X (5 X f)ds =2aV, where V is the volume enclosed by the surface

Sand ais a constant vector.

13. Verify Gauss's divergence theorem for F = y1 +xj +2z2k and S is the surface of
the cylinder bounded by x+y2=a% z=0;z=h

14. Verify divergence theorem for F = 4xzi-y?j + yz k and S the surface of the
cube bounded by the planes x=0,x=2,y=0,y=2,2=0,z=2
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15. Verify Gauss's theorem and show that

R 5
J‘[(X3 - yz)i - 2xyj + 2k:|.f1 ds= %—where S denotes the surface of the cube

bounded by the planesx=0,x=a,y=0,y=a,z=0,z=a.
16. Evaluate H(yzlT +2xj + xyl;)ds where S is the surface of the sphere x2+y2+z2=

a2 in the first octant.

(U.P.T.U 2004)
Ans. 0

17. Verify the divergence theorem for the function F = 2x?y i - y2j + 4xz2k taken
over the region in the first octant bounded by y?+z2 =9 and x = 2.
18. Evaluate by stoke's theorem @(ex dx+2ydy - dz) where C is the carve
x+y2=4,z=2
Ans. 0
19. Apply stoke's theorem to find the value of '[ (y dx +zdy + xdz) where C is the
curve of intersection x2+y2+z2 = a2and x+z=a
(JNTU 1999)
-na’

J2

20 Evaluate ¢ 2y’*dx + x’dy + zdz where C is the trace of the cone intersected by

Ans.

the plane z = 4 and S is the surface of the conez = \[x* +y* below z = 4
(PTU 2006)
Ans. 192n

21. Use Stoke's theorem to evaluate fCurlF.ﬁ ds over the open hemispherical

surface x2+y2+z2 =a2, z > 0 where F=yi+2xj+yk

Hint : The boundary of hemispherical surface is circle of radius a in the plane z =
0. The parametric equations of the circle are x = a cos6, y = bsing,z=0
Herer=xi+yj+ zk,d7=dxi+ dyi + dzlz,x2+y2= a2, z=0

using stoke's theorem

J‘F.d; = I(yi + zx} + ylz).(dxi + dy} + dzl;)

we get

= J.Curlli.f\ds = _[ydx

<
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2n
asin(-asin8)d6

2 sin®0d6

= -ma2 Answer
Tick the Correct Answer of the Choices Given Below :-

1. The value of jF.d? for F = 3x21 + (2xz-y) ] + zk along the path of the curve x2=

4y,3x3=8zfromx=0tox=2is

(i) 8 (ii) 16
(iii) 4 (iv) 10
Ans. (11)
2. IfF= y " x evaluatefF dr where C is the circle x2+y2 =1 transversed counter
X +y? ¢
clockwise
(= (ii) —n
(iii) 27 (iv)-2n
Ans. (iv)
3. The value of fF.df' for F=x2i +xy jand C is the curve y2 = x joining (0, 0) to
(1,1)is
o 7 oy 3
® (i) -
(iif) 132 (iv) 1
Ans. (i)

4.1f F = (3x2+6y) 1 - 14yz | + 20xz2k , Then the value of line integral f F.dr form (0,

0,0)to(1,1,1) along the pathx=t, y=t2, z=tis

(i) 2 (ii) 5
(iif) 7 (iv) %
Ans. (ii)
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5. The value of the line integral I[(xz +xy )dx +(x* + yz)dy] ,where C is the

square formed by the lines y = +1 and x = +1 is

@0 (ii) 1
(iif) -1 (iv) %
Ans. (i)

6. The circulation of F round the curve C, where F = yi + zj + xk and C is the
circle x2+y2=1,z=0

@)= (ii) -m
(iid) 12‘- (iv) —g
Ans. (ii)

7.1(F = 2y1i- 2]+ xk then the value of J.def along the curve x=cos t, y = sin t,

z=2costfromt=0t=n/2is

(@) 1+] (i) -]
(i) (2-—%)i+(n—%)} (iv) (2-%:-)5-[7”%)3
Ans. (iii)

8. The value of J.F.dff where F = xy i +(x2+y?2) j and C is the x axis is from x = 2 to x

=4 and the line x =4 from y =0 toy =12 is

(i) 768 (ii) 785
(iii) 763 (iv) 764
Ans. (i)

9. The circulation of F around C, where F = exsinyi+excosyj and Cis the

rectangle whose vertices are (0,0), (1, 0), (1, g ). (0, % )is

@0 (i) 1
(iif) -1 (iv) —%
Ans. (i)

10. The vector function A defined by A =(sin y+z cos x) i +(x cos y+sinz) j + (y
€os z+sin x) k is irrotatinal. Then function ¢ is given by (Given A =V¢)
({yxsiny-ysinz-zsinx+c

([fyxsiny+ysinz+zsinx+c

(iif)xcosy+ycosz+zsinx+c¢
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(iv)xcosy+ycosz-zsinx+c
Ans. (ii)
11. Consider a vector field F = (x2 - y2+ x) i -(2xy+y) ] Then the field is
(i) Solenoidal
(ii) irrotational
(iii) Solenoidal and irrotational
(iv) None of the above
(U.P.T.U. 2009)
Ans. (iii)
12. Consider a vector field F = (x2-y2+ x)1 -(2xy+y) j.Then ¢ is given by:
(GivenF=V9) '

3 2 2 3 2 2

(i)x?—xy2+x3-——y2— (ii)%+xy2-7—y?

3 2 2 3 2 2

(iii) ?—xyz—%—yz— (iv) x——xyz——i——-yz—
Ans. (i)

13. The value of ” FAds,whereF = 221 +xy j - y2k and S is the surface bounded

by the region x2+y2=42z=0,z=31is

(i) -26 (ii) 26
(iif) 13 (iv) -13
Ans. (i)

14. IfF = 4xzi - y2i + yzﬁ and S is the surface of the cube bounded by the planes
x=0,x=1,y =0,y =1, 2=0, z=1 Then the value of_UF.ﬁds is

Ans. (ii)
15. If V is the volume enclosed by a closed surface S and F = xi +2y j +3zk . Then
J.F.ﬁ ds is

(sl) 3V (ii) 6V
(iif) 9V (iv) 12V
Ans. (ii)
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16. The value of I r.ids ,where S is a closed surface is

(i) 3v (i) 6V

(iif) 9V (iv) 0

Ans. (i)

17. The value of 'fﬁds ,where S is a closed surface is
(i) 3v (ii) 6V

(iif) 9V (iv) 0

Ans. (iv)

18. The value of Iﬁ -(V X f") , where F is a vector point function and S is a closed
surface is

(@) 3v (ii) 6V

(iii) 9V (iv) 0

Ans. (iv)

~

19. The value of IF.ﬁ ds , for F = 4xi - 2y?] +2z2k taken over the region S bounded

by x2+y2=4,z=0and z=3 is

(i) 38n (if) 84m

(iif) 837 (iv) 48

Ans. (ii)

20. The value of J'; xnds, for any closed surface S is
(1 (ii) -1

(iii) 3 (iv) 0

Ans. (iv)

21. The value of J' nx Vods for a closed surface S is

(i) 2a (ii) -2a
(iii) 3a (iv) 0
Ans. (iv)

22. The value of fﬁ x (axr)ds where V is the volume enclosed by the surface S

s

and a is a constant vector is

(i) 2a (i) 2aV
(iii) -2 (iv) 0
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Ans. (ii)
23. The value ofJ‘(e"‘ sinydx +e™ cos ydy) where C is the rectangle with vertices

T T, .
©0) (n, 0. (n, ), 0, 7)is

@21 (i) 2 (e*-1)

(i) 2 +1)  (iv) 2(e™ +1)

Ans. (ii)

24. The value of f(xzy dx +x’dy), where C is the boundary described counter

clockwise of the triangle with vertices (0, 0), (1, 0), (1, 1) is

(i)0 (i) 5
oy D . 1
(iid) o (iv) -3
Ans. (iii)

25. The value of _[(xz +xy)dx +(x* + y*)dy where C is the square formed by the

linesy =#1,x=411is

. .y 1
()0 (i) 5
) . 1
(iii) o (iv) >
Ans. (i)
26. The value of I(e" dx +2ydy - dz) , where C is the curve x2+y2=4,z=0is
1
0 1
0 (i) 5
(i) = (iv) -5
Ans. (i)
27. The value of the J.(xydx + xyzdy) where C is the square in the xy-plane with
C
vertices (1,1) (-1, 1),'(-1,-1), (1, -1) is
03 i 3
(i) £ (v) 5
Ans. (iv)
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28. The value offf?.df where F = y2i + x2] - (x+z) k and C is the boundary of the

triangle with vertices at (0, 0, 0), (1, 0, 0), (1,1, 0) is

03 @) 3
(iif) % (iv) -‘;i
Ans. (i)

29. The value of I(yz dx + xzdy + xydz), where C is the curve x2+ y2 =1, z = y2

(i) 0 (ii) 1

(iif) 2 (iv) -2
Ans. (i)

30. The value ofgﬁidE is
(i) 0 (ici) 1

(iii) 2 (iv) 3
Ans. (i)

31. A necessary and sufficient condition that line integral IK.dE =0 for every

closed curve C is that

(i)div A=0 (ii) curl A =0
(iii) div A #0 (iv)curl A=0
Ans. (ii)

32. The value of surface integral H(yz dydz + zxdzdx + xydxdy), where S is the

surface of the sphere x2+y2+z2=1 is

0F @0
(iif) 4 (iv) 127
Ans. (ii)

33.If F = axi+byj +czk a, b, c are constants, then I j F.ds where S is the surface of

a unit sphere, is

@0 (ii) 4?" (a+b+c)
(iif) %n (a+b+c)? (iv) none of these
Ans. (ii)
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Indicate True or False for the following Statements:-

1. In case f is single valued, and integral is take round a closed curve, the
terminal points A and B coincide, and fg = fa

(True/False)

Ans. True

2. Green's theorem is a special case of Stoke's theorem

(True/False)

Ans. True

3. The Gauss divergence theorem is applicable for a region V if it is bounded by
two closed surfaces S; and S; one which lies within the other.
(True/False)

Ans. True

4. The value of I fix (ax)ds is equal to zero wherea is a constant vector.

(True/False)
Ans. False

5. For a closed surface S, the integral fﬁ X V¢ ds vanishes identically

(True/False)
Ans. True

6. If S be any closed surface, then fCurl Fdr=0

(True/False)
Ans. True

7. If V represents the velocity of a fluid particle and C is a closed curve, then the
integral ¢ V.dris called the circulation of V round the curve C.

(True/False)

Ans. True

8. If the circulation of V round every closed curve in a region D Vanishes, then
V is said to be irrotational in D.

(True/False)

Ans. True

9. Any integral which is to be evaluated over a surface is called a surface integral.
(True/False)

Ans. True

10. Gauss divergence theorem is the relation between surface integral and line
integral.

(True/False)

Ans. False
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11. Gauss divergence theorem gives the relation between surface and volume
integrals.

(True/False)

Ans. True

12. Stokes theorem gives the relation between surface and volume integral.
(True/False)

Ans. False

13. Stoke's theorem gives the relation between line and surface integrals.
(True/False)

Ans. True
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