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Preface

Computational biology is an interdisciplinary research that applies approaches and
methodologies of information sciences and engineering to address complex prob-
lems in biology. With rapid developments in the omics and computer technologies
over the past decade, computational biology has been evolving to cover a much
wider research domain and applications in order to adequately address challenging
problems in systems biology and medicine. This edited book focuses on recent is-
sues and applications of computational biology in oncology. This book contains 11
chapters that cover diverse advanced computational methods applied to oncology in
an attempt to find more effective ways for the diagnosis and cure of cancer.

Chapter 1 by Chen and Nguyen addresses an analysis of cancer genomics data
using partial least squares weights for identifying relevant genes, which are useful
for follow-up validations. In Chap. 2, Zhao and Yan report an interesting bicluster-
ing method for microarray data analysis, which can handle the case when only a
subset of genes coregulates under a subset of conditions and appears to be a novel
technique for classifying cancer tissues. As another computational method for mi-
croarray data analysis, the work by Lê Cao and McLachlan in Chap. 3 discusses
the difficulties encountered when dealing with microarray data subjected to selec-
tion bias, multiclass, and unbalanced problems, which can be overcome by careful
selection of gene expression profiles. Novel methods presented in these chapters
can be applied for developing diagnostic tests and therapeutic treatments for cancer
patients.

Ductal carcinoma in situ (DCIS) is known as the earliest possible clinical diagno-
sis of breast cancer and performed with screening mammography that has detected
small areas of calcification in the breast. Chapter 4 by Macklin et al. presents a
biophysics- and agent-based cellular model of DCIS, which is modular in nature
and can be extended to incorporate more advanced biological hypotheses. Chapter 5
by Verma gives an overview of a state of the art for the classification of suspicious
areas in digital mammograms and presents a multicluster class-based approach for
classifying such areas in benign and malignant cases.

The work in Chap. 6 by To and Pham presents several methods using evolu-
tionary computation algorithms for classification of oncology data. Evolutionary
computation is effective in this study because it can offer efficiency in searching in
high-dimension space, particularly in nonlinear optimization and hard optimization
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vi Preface

problems. In Chap. 7, Solé et al. provide a thorough review of genetic association
studies on SNP-array analysis techniques as well as many existing bioinformatics
tools for carrying out such analyses.

Image analysis of cancer cells and tumors is an important research area in com-
putational biology and bioinformatics. Image-based study enables an efficient way
for gaining better understanding of the angiogenesis and genetic basis of cancer.
Vallotton and Soon report in Chap. 8 several image analysis tools and techniques
for the automatic identification of objects in image sequences and quantification of
their dynamic behaviors. Chapter 9 by Tran and Pham reports several recent de-
velopments in cell classification for high-content screening, which can be useful
computerized tools for automated analysis of large image data and for aiding the
process of drug discovery.

Chapter 10 by Daskalaki et al. reviews important cellular processes for cancer
onset, progression, and response to anticancer drugs and provides a summary of
existing databases and tools for computational models in oncology. This chapter
also presents several frameworks for modeling cancer-related signaling pathways.
Finally, Le et al. discuss in Chap. 11 laser speckle imaging for real-time monitoring
of blood flows and vascular perfusion; with proper experimental setups and quanti-
tative analyses, this technology can offer its potential applications for research and
development in diagnostic radiology and oncology.

Besides the availability of genomic data, life-science researchers study pro-
teomics to gain insight into the functions of cells by learning how proteins are
expressed, processed, recycled, and their localization in cells. Functional proteomics
involves the use of mass spectrometry data to study the regulation, timing, and loca-
tion of protein expression. Interaction studies seek to understand how proteins pair
between themselves and other cellular components interact to constitute more com-
plex models of the molecular machines. Chapter 12 by Jin et al. gives an overview of
bioinformatics algorithms for biomarker discovery, validation, clinical application
of proteomic biomarkers, and related biological backgrounds.

Many thanks to all the authors for their timely effort in contributing chapters to
this edited book. Gratitude is expressed to Rachel R. Warren, the Editor of Cancer
Research, Springer Science, along with Jeanne Kowalski at Sidney Kimmel
Cancer Center at Johns Hopkins and Steven Piantadosi at the Cedars-Sinai Medi-
cal Center, in acknowledgment of their invitation, encouragement, and support in
making this work a valuable contribution to the endeavor of exploring advanced
mathematics, statistics, computer science, information technology, and engineering
computation for solving challenging problems in oncology.

Canberra, Australia Tuan Pham
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Chapter 1
Identification of Relevant Genes
from Microarray Experiments based
on Partial Least Squares Weights:
Application to Cancer Genomics

Ying Chen and Danh V. Nguyen

Abstract In microarray genomics expression data obtained from hybridization of
different cancer tissue samples or samples from cancer and normal cellular con-
ditions, it is of interest to identify differentially expressed genes for follow-up
validation studies. One approach to the analysis of genomics expression data is
to first reduce the dimensionality using partial least squares (PLS), which has
been useful in various cancer microarray data applications (Nguyen and Rocke,
Bioinformatics 18:39–50, 2002a). PLS involves reducing the dimensionality of the
gene expression data matrix by taking linear combinations of the genes/predictors
(referred to as PLS components). However, the weights assigned to each gene and
at each dimension are nonlinear functions of both the genes and outcome/response
variable, making analytical studies difficult. In this paper, we propose a new mea-
sure for identifying relevant genes based on PLS weights called random augmented
variance influence on projection (RA-VIP). We compare the relative performance
of RA-VIP in terms of its sensitivity and specificity for identifying truly informa-
tive (differentially expressed) genes to two previously suggested heuristic measures,
both based on PLS weights, namely the variable influence on the projection (VIP)
and the PLS regression B-coefficient (denoted B-PLS). The methods are compared
using simulation studies. We further illustrate the proposed RA-VIP measure on two
microarray cancer genomics data sets involving acute leukemia samples and colon
cancer and normal tissues.

1.1 Introduction

Partial least squares (PLS), introduced as a latent variable modeling technique in
econometrics by Wold (1966), has been found to be a versatile technique in numer-
ous application areas, particularly with high-dimensional genomics expression data

D.V. Nguyen (�)
Division of Biostatistics, University of California School of Medicine, Davis, CA, USA
e-mail: ucdnguyen@ucdavis.edu

T. Pham (ed.), Computational Biology: Issues and Applications in Oncology,
Applied Bioinformatics and Biostatistics in Cancer Research,
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2 Y. Chen and D.V. Nguyen

(Boulesteix 2004; Nguyen and Rocke 2002a). PLS applications typically involve
reducing the dimensionality of the predictor data matrix by taking linear combina-
tions of the predictor variables/genes. (The linear combinations are referred to as
PLS components.) However, unlike linear dimension reduction, such as principal
components analysis, the weights or coefficients in the PLS components involve
nonlinear functions of the response variable(s). (See Nguyen and Rocke (2002a,b,
2004) for applications in cancer classification based on gene expression profiles
and characterizations of the nonlinear structure of PLS weights.) This makes ana-
lytical characterization intractable. Numerical studies may shed light on the utility
of PLS weights in the dimension reduction process for specific applications. Moti-
vated by applications in microarray gene expression data, one of our primary aims
in this work is to systematically examine the utility of the PLS weights for identifi-
cation/selection of relevant genes in PLS dimension reduction.

Two measures indicating the relative contribution of each variable to the PLS
dimension reduction, both based on PLS weights, are (1) the variable influence on
the projection (VIP) and (2) the PLS (regression) B-coefficient (denoted B-PLS);
see Wold et al. (1993) and also SAS PROC PLS (SAS Institute, Inc., Cary, NC). We
study the ability of selection rules based on VIP and B-partial least squares (B-PLS)
values assigned to each gene as a basis for selecting relevant genes in microarray
data. Additionally, we propose and study an alternative measure called random aug-
mentation VIP (RA-VIP). The RA-VIP measure is based on estimating the “null
distribution” of VIP values and assigning a p value to each gene for selection. In
the current work, we focus on the binary classification data or two-group com-
parison case, where the outcome is a vector of indicators for two groups, namely
y D .y1; : : : ; yn/

0 with yi D 0 or 1, and X is an n�p gene expression matrix for p
genes with n � p.

In applications heuristic rules are suggested for ranking each variable based on
VIP and B-PLS coefficients and variable selection are based on the resultant rank-
ing. For example, Wold et al. (1993) suggest that a VIP value greater than 1 is
an indication of a relevant or important variable, while a VIP value less than 0.8
is an indication of an irrelevant or unimportant variable. With respect to B-PLS
coefficients, variables with small absolute B-PLS coefficients are considered unin-
formative and variables with coefficients larger than about half the maximum of
the B-PLS values are considered to be of interest. Although these heuristic rules
are based on experience with high-dimensional data mostly in chemometrics, drug
discovery, and spectrometric calibration applications, the suggested VIP and B-PLS
thresholds are somewhat arbitrary and their usefulness specifically to genomics data
requires evaluation. Our proposed selection of variables based on RA-VIP measure
provides a more formal selection of relevant genes/variables based on p values rel-
ative to the null distribution. Furthermore, in this work we evaluate the performance
of the proposed RA-VIP measure and compare its performance relative to the above
informal rules based on VIP and B-PLS coefficients using simulation studies.

Our work here is organized as follow. In Sect. 1.2, we describe the measures
VIP and B-PLS and provide details on the variable selection rules based on them.
The proposed method RA-VIP is also presented there. In Sect. 1.3 we describe
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two simulation models to evaluate the relative performance of the three measures,
namely VIP, B-PLS, and RA-VIP, to select truly informative genes. The first set of
simulation studies is based on a normal model for gene expression data with cluster-
specific correlation. The second set of simulation studies is based on resampling a
colon cancer and normal tissue microarray data, using the observed (realistic) corre-
lation structure of the data. The simulation results, summarizing the sensitivity and
specificity of the three variable selection measures, are given in Sect. 1.4. Applica-
tions of the proposed RA-VIP measure to an acute leukemia data and a colon tissue
microarray data are summarized in Sect. 1.5. We conclude with a brief discussion in
Sect. 1.6.

1.2 Methods

1.2.1 Partial Least Squares Dimension Reduction

Let y D .y1; : : : ; yn/
0 be the vector of binary response variable representing classes

of biological samples or clinical outcomes, X D Œx1; x2; : : : ; xp� be a n�p matrix of
gene expression values, and xj D .x1j ; : : : ; xnj /

0 is the vector of expression values
for gene j across the n samples. PLS achieves dimension reduction by constructing
orthogonal linear combination of the original variables (X1; : : : ; Xp) that maximize
the covariance between the response variable (y) and linear combinations of the
predictor variables (X). More precisely, denote the kth PLS component as the linear
combination tk D Xwk , where wk D .w1k ; : : : ;wpk/

0 is the kth PLS weight vector.
The vector wk contains individual weights assigned to each gene j , 1 � j � p,
at the kth dimension. More precisely, the vector of PLS weights for dimension k is
obtained as

wk D arg max
w

Cov2.y;Xw/ D arg max
w

w0X0yy0Xw;

where wk
0wk D 1 and tk

0tj D 0, for j < k, k D 1; : : : ; A and A < rank.X/.
Typically the number of dimensions retained,A, is small (e.g., 1–5) in practice with
gene expression data. The matrix of PLS components can be more succinctly ex-
pressed as T D Œt1; t2; : : : ; tA� D XW, where W D Œw1;w2; : : : ;wA�. See Nguyen
and Rocke (2002a) for details and also references therein. Also, see Boulesteix and
Strimmer (2006) for a review of PLS applications in genomics and bioinformatics.

1.2.2 Variable Selection Measures as Functions of PLS Weights

The kth PLS component tk , k D 1; : : : ; A, is a linear combination of X: tk D
Xwk D w1kx1 C w2kx2 C � � � C wpkxp. Thus, the coefficients fwjkgp

j D1 can be
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interpreted as the relative contribution of each gene/variable in dimension k (i.e.,
to PLS component k). One sensible measure of the overall contribution of gene
j to the PLS dimension reduction is to combine the weights for gene j across the
A-retained PLS dimensions. We briefly describe two previously proposed measures,
called VIP and B-PLS, in Sects. 1.2.3 and 1.2.4, respectively. We then propose a
new alternative measure, based on VIP, called random augmented VIP (RA-VIP) in
Sect. 1.2.5. These variable selection measures are all functions of the PLS weights
across the A PLS dimensions.

1.2.3 Variable Influence Projection in Partial Least Squares

The VIP measure (Wold et al. 1993) is a weighted sum of the normalized PLS
weights across the A PLS dimensions. More precisely, the VIP for gene j is

VIPj D
(
p

AX
kD1

v�
k.wjk=kwkk/2

) 1=2

; j D 1; : : : ; p; (1.1)

where v�
k

D SSYk=
PA

kD1 SSYk , SSYk is the amount of variance of Y explained
by the PLS component tk . The denominator in v�

k
is the total response variation

explained by all A PLS components. Note that p�1
Pp

iD1 VIPj
2 D 1, so that the

sum of squared VIP values for all genes sum to p. We note that in the VIPj measure,
the contribution of the gene from dimension k is weighted by the relative amount of
response variation explained by PLS component tk , namely v�

k
. A heuristic rule was

suggested by Wold et al. (1993) that a VIP value greater than 1 is an indication of
a relevant or important variable, while a VIP value less than 0.8 is an indication of
an irrelevant or unimportant variable. We evaluate the relative performance of this
selection rule in the context of high-dimensional microarray data in the simulation
studies of Sect. 1.3.

1.2.4 B-Partial Least Squares (B-PLS) Regression Coefficient

Another relative measure based on PLS weights, denoted as B-PLS, was also pro-
posed in Wold et al. (1993) to assess the relevance of the predictor variables. B-PLS
is simply the PLS regression coefficient given by

B D W.P0W/�1.T0T/�1T0y; (1.2)

where P is the loading matrix (in the decomposition X D TP0 C E with E denoting
the X-residual matrix; see e.g., Helland (1988)). If the number of PLS components
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are chosen to be p, which is the same as the dimension of original X matrix, the
coefficient B D .B1; : : : ; Bp/

0 is just the vector of coefficients from the ordinary
least squares regression of Y on fXj gp

j D1. Predictor variables with small absolute
B-PLS coefficients (e.g., jBj j < 0:5max1�j �pfjBj jg) are considered uninformative
and coefficients larger than about half the maximum of theBj values are considered
to be relevant variables (Wold et al. 1993).

1.2.5 Random Augmentation VIP

The heuristic rules for identifying relevant variables in PLS dimension reduction,
based on B-PLS regression coefficients and VIP summarized above are easy to
compute as they are simply based on quantities that are direct by-products of the
PLS algorithm. Although based on empirical observations in practice, the heuris-
tic rules for variable selection based on B-PLS and VIP may still appear somewhat
arbitrary. We propose an alternative approach to identify relevant genes by more
formally comparing the observed average VIP for each gene to the null distribution
of VIP when the expression data matrix (X) is uncorrelated with the outcome (y).
To estimate the null VIP distribution, the predictor matrix X is augmented with a
set of random “noise” variables. The set of random noise variables are created by
randomly permuting the values in each gene variable, respectively. Thus the new
augmented gene expression matrix (predictor matrix) consists of original gene vari-
ables along with their randomly permuted versions. PLS dimension reduction is
then applied to the augmented predictor matrix defined as Z D ŒX;X��, where X� is
the randomly permuted (noise) version of X. The null VIP distribution is then used
to obtain a p value for each gene which can then be used for identifying potential
relevant genes. The proposed procedure, which we refer to as random augmentation
VIP (RA-VIP), is given in more details below:

1. Randomly permute each variable in X to get corresponding random noise pre-
dictor matrix X�.

2. Create augmented predictor data matrix Z D ŒX;X�� of size n � 2p.
3. Apply PLS dimension reduction using Z and response vector y and compute
.VIP1; : : : ;VIPp/ and .VIP�

1; : : : ;VIP�
p/ corresponding to genes (X1; : : : ; Xp)

and noise genes .X�
1 ; : : : ; X

�
p/, respectively.

4. Repeat steps 1–3 L times producing fVIPjl ; j D 1; : : : ; pgL
lD1

and fVIP�
jl ; j D

1; : : : ; pgL
lD1

.
5. Define the observed (average) VIP value for gene j by VIPj;Obs D L�1PL

lD1 VIPjl , for j D 1; : : : ; p.
6. Compute the p value for gene j as:
pj D PL

lD1 #f� W VIP�
� > VIPj;Obs; � D 1; : : : ; pg=.pL/, for j D 1; : : : ; p.
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1.3 Design of Simulation Studies

We consider a simulation design to assess the performance of the proposed random
augmentation PLS for variable selection and compare to the methods described in
Sect. 1.2. We focus here on a binary outcome. Define the vector of binary outcome
y D .0; : : : ; 0; 1; : : : ; 1/0 and the matrix of gene expression data X D .X1jX2/n�p ,
where n is the number of samples, p is the number of genes, X1 is the n�d expres-
sion matrix corresponding to d truly informative genes (i.e., genes differentially
expressed between the two outcome classes/groups), and X2 is the expression ma-
trix for the remainingp�d uninformative genes. Because naturally there are groups
of up- and down-regulated genes when monitoring gene expression globally, we fur-
ther divide the d informative genes into two gene clusters. Genes in the first cluster
are up-regulated in samples for group Y D 0 while the genes in the second
cluster are up-regulated in samples for group Y D 1. The remaining uninforma-
tive genes do not differ across groups on average, although data with substantial
noise variability can render identification of the d informative genes difficult.

We considered several design parameters in the simulation studies, including (a)
the proportion of informative genes, (b) the level of difficulty in identification task
[signal-to-noise ratio (SNR)], and (c) the overall strength of the correlation among
genes. The number of truly informative (relevant) genes were set to 10, 50, 100,
and 150 corresponding to 1%, 5%, 10%, and 15% of a total of p D 1;000 genes,
respectively. Variability in performance of the methods are examined with respect
to these main factors.

A challenge with designing a simulation model generally is the incorporation of
a sensible correlation structure among genes. A simple correlation structure within
a specific probability model will allow for more precise assessment of the effects
of specific factors, such as the proportion of truly informative genes or the overall
strength of the correlation. However, these advantages in assessment and control
of experimental factors on the performance of the methods must be balanced with
a correlation structure/model that reflects the observed/empirical correlation struc-
tures with real data. Therefore, we considered two simulation models. In the first
model and associated set of simulations, we designed a simple correlation struc-
ture in a multivariate normal probability model where informative genes have the
same correlation within cluster and uninformative genes are uncorrelated. A second
set of simulations, based on resampling the real data, preserves the observed, more
complex, correlation structure. Details specific to these two simulation models are
further described in Sects. 1.3.1 and 1.3.2.

To evaluate the performance of various methods we used both sensitivity (Sen)
and specificity (Spec). Sensitivity is the proportion of true informative genes cor-
rectly identified and 1 � Spec is the proportion of uninformative genes incorrectly
identified as informative. Methods with larger Sen and smaller 1 � Spec are con-
sidered to have better overall performance. See Table 1.1 for a summary of these
measures.
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Table 1.1 Sensitivity is Sen D a=.a C c/, specificity is Spec D d=.b C d/, and
1� Spec D b=.b C d/.

Informative genes Uninformative genes

Genes identified as informative a b

Genes identified as uninformative c d

1.3.1 Simulation Based on Normal Model with Cluster-Specific
Correlation

We assume a normal model for suitably transformed (and normalized) gene ex-
pression data. Denote the true group-specific mean expression levels and standard
deviations for gene j by �j1 D E.Xj jY D 0/, �j 2 D E.Xj jY D 1/,
�j1 D fVar.Xj1jY D 0/g1=2, and �j 2 D fVar.Xj 2jY D 1/g1=2. The SNR of
gene j is defined as:

SNRj D �j1 � �j 2

�j1 C �j 2

; j D 1; 2; : : : ; p: (1.3)

We used a real colon tissue microarray data set, described in more details in
Sect. 1.3.2, to set the model parameters �jk and �jk (for k D 1; 2, j D 1; : : : ; p).
More precisely, the mean for gene j in group 1, �j1, is assigned the correspond-
ing sample mean and similarly for the standard deviation parameters. Given a SNR
value in (1.3), the true mean parameter �j 2 is then computed from (1.3). To study
dependence of the methods on the SNR, we considered three distributions for SNR
corresponding to low, moderate and high mean SNR levels. The SNR levels are ob-
tained from a normal distribution with parameters .�SNR; �SNR/ D .0:5; 0:5=4/,
.1:0; 1:0=4/, or .1:5; 1:5=4/ corresponding to low, moderate, and high average levels
of SNR, respectively. Here �SNR and �SNR denote the mean and standard deviation
parameters of normal distribution from which SNRj were generated. (These param-
eters were chosen after a careful study of the distributions of the observed/estimated
signal to noise ratio corresponding to the leukemia and colon data sets described
later in Sect. 1.5.)

Next, the sets of informative genes, consisting of both up- and down-regulated
genes, are selected (randomly once). Denote the sets of informative up- and down-
regulated genes by G1 and G2, respectively. For a simple model, we take the mean
absolute SNR of down-regulated genes to be the same as up-regulated genes. Fur-
thermore, we assume that genes in different clusters are uncorrelated and genes in
the same cluster have the same correlation. More specifically, the cluster-specific
correlation structure (within gene cluster Gk) is
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Rk D

2
6664
1 �k � � � �k

�k 1 � � � �k

:::
:::
: : :

:::

�k �k � � � 1

3
7775

dk�dk

; k D 1; 2

where �k is the common correlation coefficient in cluster Gk , dk D jGk j with
d D d1 C d2. The remaining uninformative genes are assumed to be uncorrelated.
Thus, the correlation structure of all p genes is

R D
2
4R1 0 0

0 R2 0
0 0 Ip�d

3
5 ;

where Ia denotes the identity matrix of size a. The data is generated from a mul-
tivariate normal model with mean f�jkg and with correlation matrix R. To reflect
the small sample size, relative to the number of genes, in microarray data, the sim-
ulated data sets are obtained with size n D 60 and p D 1;000. For each simulation
configuration (proportion of truly informative genes, SNR, and correlation level),
N D 300 Monte Carlo data sets were generated.

1.3.2 Resampling-Based Simulation from Real Data

Our second simulation model is based on resampling the original (real) gene ex-
pression matrix and preserves the observed correlation matrix among the p genes.
As an example, we use a colon tissue microarray data set from Alon et al. (1999).
This data set contains the expressions of p D 2;000 genes on 62 tissues samples
hybridized to Affymetrix Hum6000 array. Among the n D 62 samples, n1 D 40 are
from colon cancer and n2 D 22 are from normal tissues. The GLog Average (GLA)
expression index based on the generalized logarithm of the perfect match probes
(Zhou and Rocke 2005) was used.

This resampling procedure involves three main steps (1) removing the potential
observed differences between groups in the original data, (2) resampling from the
data after the first step, and (3) randomly selecting informative genes by adding a
mean difference between the two groups that is proportional to the observed stan-
dard deviation for that specific gene j , ıb�j . Note that although mean differences
between the two groups are removed, the correlation structure is preserved due to
invariance to linear transformation. These steps, in more details, are:

� Remove systematic differences between groups for each gene j D 1; : : : ; p. This
is obtained by subtracting the group-specific mean for each gene:

xC
ijk D xijk �b�jk Cb�j ; k D 1; 2;
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where xijk is the original expression value for gene j from sample i in group
k, b�jk is the sample mean of gene j in group k, and b�j is the sample mean for
gene j over the combined groups. Thus, there is no difference in mean expression
between groups for all genes and the original (observed) correlation structure is
preserved based on data matrix XC (with .i; j /th entry given by xC

ijk
).

� Observations in XC are resampled with replacement N times, resulting in N
resampled/simulated gene expression data matrices X.1/; : : : ;X.N /, each of size
n � p.

� A fixed number d of informative genes (selected randomly once) are chosen
by subtracting ı.b�j1 C b�j 2/ from informative gene j D 1; : : : ; d in group 2
(corresponding to Y D 1). Thus, the standardized effect size for informative
gene j is ı, which ranges from 0.5 to 1.5 as for the SNR described above for the
normal distribution model. As before, the proportion of informative genes ranges
from 1 to 15%.

1.4 Simulation Results

1.4.1 Result Based on Normal Model with Cluster-Specific
Correlation

Based on the normal model described in Sect. 1.3.1, 300 simulated data sets were
generated. From preliminary simulation studies (not shown) the effect of the overall
correlation strength among genes may be a factor of interest, although the results are
more dominated by two other factors (1) the proportion of true informative genes
and (2) the signal-to-noise ratio (SNR) of relevant genes in the normal data model.
Thus, we focus here on the results for studies that fixed the maximum correlation
among relevant genes (which was set to be a maximum of 0.8).

Figure 1.1 displays the relative performance based on VIP, B-PLS, and the pro-
posed RA-VIP in terms of sensitivity and specificity. Note that high sensitivity and
low 1-specificity is desirable. For the popular measure VIP, as the proportion of
truly informative genes increases (from 1 to 15%), the specificity improves (i.e.,
1-specificity decreases). This is apparent across all levels of SNR, although more so
in the weak SNR case. However, sensitivity appears uniformly high for gene identi-
fication based on VIP. Thus, overall, this suggests that VIP has better performance
when there are more truly informative genes in the data set relative to the total p
genes. One such example in practice is the case where cancer tissues are compared
to normal tissues (or radiation treatment) in microarray studies, where one would
expect more broader/global changes in the global expression of the repertoire of
genes. In addition, when the SNR becomes weaker, i.e., the gene identification task
becomes more difficult, the specificity of VIP is poor, as expected.

Interestingly, selection based on B-PLS coefficients has high specificity in all
three cases of weak, moderate, and strong SNR. However, the sensitivity of B-PLS
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Fig. 1.1 The sensitivity and 1-specificity of VIP, B-PLS, and RA-PLS gene selection methods
based on a normal data model with cluster-specific correlation. Plotted values are averaged over
300 Monte Carlo data sets of size 60 � 1;000 and for each proportion of truly informative genes
between 1 and 15%

deteriorates noticeably relative to VIP (and RA-VIP) when the SNR becomes weak.
See the first column of Fig. 1.1. Thus, these results suggest that B-PLS coefficients
perform favorably with respect to specificity while VIP performs favorably in terms
of sensitivity.

From Fig. 1.1, it can be seen that the proposed method, based on RA-VIP, per-
forms well overall with respect to both sensitivity and specificity. Thus, RA-VIP
appears to be able to balance both criterions, which are important in gene selec-
tion/identification. RA-VIP has relatively high specificity that is competitive with
B-PLS and high sensitivity that is competitive with VIP. This observed overall supe-
rior performance of RA-VIP appears to hold across all levels of SNR (from weak to
strong) and the proportion of truly informative genes. This later point has important
implications in practice, because one does not know a priori how many genes are
truly informative and the strength/level of gene expression relative to background
noise.
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1.4.2 Resampling-Based Simulation Result

Although the above simulation study, utilizing a normal model with cluster-specific
correlation, provided some insights on the performance of the three approaches to
selection of informative genes based on PLS weights (namely VIP, B-PLS, and
RA-VIP), the correlation structure among the genes is not fully modeled. Postulat-
ing a sensible correlation structure among the thousands of genes is a difficult task.
Thus, we consider an alternative resampling-based simulation approach to study
the relative performance of the three measures that preserves the observed corre-
lation structure. This approach allows for a more realistic model of the correlation
structure. For illustration, we use the observed correlation structure of the colon
(cancer/normal) tissue data set as a model (see Sect. 1.3.2). The parameter settings
of this resampling-based simulation are similar to the normal model and we also
used 300 resampled data sets. The relative performances of the methods in terms of
sensitivity and specificity are summarized in Fig. 1.2. The results suggest that un-
der a real correlation structure among genes, the above conclusions regarding the
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Fig. 1.2 The sensitivity and 1-specificity of VIP, B-PLS, and RA-PLS gene selection methods
based on real correlation structure among genes in the colon/normal tissues data set. Plotted values
are averaged over 300 resampling data sets preserving the original observed correlation matrix
among genes in the colon/normal data set (of size 62� 2;000. See also Fig. 1.1 caption for details
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relative performances of VIP-PLS, B-PLS, and RA-VIP (for the more simplified
correlation structure in a normal model) also hold. These results, taken together
with the simulation results above in Sect. 1.4.1, indicate that RA-VIP is a reliable
measure to identify relevant genes. In Sect. 1.5, we apply the RA-VIP measure to
select relevant genes in two cancer microarray gene expression data sets.

1.5 Applications to Microarray Gene Expression Data

We apply the proposed RA-VIP measure to identify relevant genes in two publicly
available microarray gene expression data sets. The first data set is the well-known
acute leukemia data set (Golub et al. 1999) using Affymetrix high density oligonu-
cleotide array Hu6800 (HuGeneFL). The original data set contains the expressions
of 7,129 genes on 72 cases, consisting of 25 acute myeloid leukemia (AML) and 47
acute lymphoblastic leukemia (ALL) cases. For the second illustrative example, we
also apply the proposed measure based on PLS weights to a colon data set (Alon
et al., 1999) consisting of expression profiles on 2,000 genes from 40 colon cancers
and 22 normal tissue samples. The experiment used Affymetrix Hum6000 array.

Although there are numerous proposed indices of gene expression for Affymetrix
data, it is not the focus of the current study (see, e.g., Li and Wong 2001; Irizarry
et al. 2003). In the current work, we choose the GLog Average (Zhou and Rocke
2005) algorithm to preprocess the raw intensity data to get an expression in-
dex for each gene, although alternative expression indices can be used. Table 1.2
summarizes the number of genes selected based on the RA-VIP measure for p
value thresholds ranging from p D 0:001 to p D 0:05. We present the results
for the number of PLS components ranging from 1 to 4 components and note

Table 1.2 Gene selection based on RA-VIP for the leukemia and
colon microarray data sets for various p value threshold ranging from
0.001 to 0.05

No. of PLS
components (A)

p Value threshold

Data set (n1; n2) 0.001 0.005 0.01 0.05

Leukemia 1 427 667 812 1,362
(25 AML,
47 ALL) 2 418 663 796 1,443

3 439 644 804 1,434
4 412 665 821 1,441

Colon 1 72 125 169 346
(22 cancer,
40 normal) 2 29 57 100 277

3 26 57 101 277
4 31 62 107 283

Given are the number of genes selected by RA-VIP measure for each
p value threshold and PLS dimension
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Fig. 1.3 Proportion of predictor and response variation explained for the leukemia (solid line) and
colon (dashed line) data sets

that the set of genes identified/selected depends on the number of PLS dimen-
sions/components (A). Cross validation can used to choose the number of PLS
components, A, although the use of cross validation in this context will require
further evaluation. Descriptively, one can also choose A based on the proportion
of predictor and response variation explained. For example, Fig. 1.3 provides the
proportion of variation explained for A D 1; 2; 3; 4 for both the leukemia and
colon data sets. At A D 3 the response variation explained is high (0.81/0.98 for
colon/leukemia data). The predictor variation explained is relatively low for both
data sets, although the trend in the proportion of predictor variation explained ap-
pears to be flattening out. For illustration we provide the top 40 genes selected based
on RA-VIP p values for A D 3 in Tables 1.3 and 1.4 for the leukemia and colon
data sets, respectively.

1.6 Discussion

Partial least square, introduced by Herman Wold in 1966 as a latent variable
modeling approach, has been useful as a regression modeling technique in chemo-
metrics over the last several decades. Nguyen and Rocke (2002a) viewed PLS as a
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Table 1.3 Top 40 genes selected based on RA-VIP for the acute leukemia (AML/ALL) microar-
ray data set ranked by p value

Probe/gene Name/description

AB002559 at STXBP2 Syntaxin binding protein 2
AF009426 at C18orf1 Chromosome 18 open reading frame 1
D10495 at PRKCD Protein kinase C, delta
D14658 at SPCS2 Signal peptidase complex subunit 2 homolog (S. cerevisiae)
D14664 at CD302 CD302 molecule
D21262 at NOLC1 Nucleolar and coiled-body phosphoprotein 1
D26579 at ADAM8 ADAM metallopeptidase domain 8
D29963 at CD151 CD151 molecule (Raph blood group)
D42043 at RFTN1 Raftlin, lipid raft linker 1
D49950 at IL18 Interleukin 18 (interferon-gamma-inducing factor)
D50918 at 39697 Septin 6
D63874 at HMGB1 High-mobility group box 1
D86479 at AEBP1 AE binding protein 1
D86967 at EDEM1 ER degradation enhancer, mannosidase alpha-like 1
D86970 at TIAF1/ TGFB1-induced anti-apoptotic factor 1 / myosin XVIIIA

MYO18A
D87076 at PHF15 PHD finger protein 15
D88270 at VPREB1 Pre-B lymphocyte gene 1
D88422 at CSTA Cystatin A (stefin A)
D89667 at PFDN5 Prefoldin subunit 5
HG1612-HT1612 at –
HG2788-HT2896 at –
HG2855-HT2995 at –
HG3254-HT3431 at –
HG3494-HT3688 at –
J03473 at PARP1 Poly (ADP-ribose) polymerase family, member 1
J03589 at UBL4A Ubiquitin-like 4A
J03798 at SNRPD1 Small nuclear ribonucleoprotein D1 polypeptide 16 kDa
J04615 at SNRPN/ Small nuclear ribonucleoprotein polypeptide N / SNRPN upstream

SNURF reading frame
J04990 at CTSG Cathepsin G
J05243 at SPTAN1 Spectrin, alpha, nonerythrocytic 1 (alpha-fodrin)
K01396 at SERPINA1 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,

antitrypsin), member 1
K01911 at NPY Neuropeptide Y
L05148 at ZAP70 Zeta-chain (TCR) associated protein kinase 70 kDa
L07633 at PSME1 Proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)
L08246 at MCL1 Myeloid cell leukemia sequence 1 (BCL2-related)
L09717 at LAMP2 Lysosomal-associated membrane protein 2
L13278 at CRYZ Crystallin, zeta (quinone reductase)
L19437 at TALDO1 Transaldolase 1
L20010 at HCFC1 Host cell factor C1 (VP16-accessory protein)
L21954 at TSPO Translocator protein (18 kDa)

All p values<0:00005
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Table 1.4 Top 40 genes selected based on RA-VIP for colon cancer/normal tissue microarray
data set ranked by p value

Probe/gene name/description p Value

H20709 30 UTR 1 173155 MYOSIN LIGHT CHAIN ALKALI,
SMOOTH-MUSCLE ISOFORM

0.000588235

J03544 gene 1 Human brain glycogen phosphorylase mRNA, complete cds 0.000588235
M76378 gene 1 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.000588235
M63391 gene 1 Human desmin gene, complete cds 0.000588235
Z50753 gene 1 Homo sapiens mRNA for GCAP-II/uroguanylin precursor 0.000588235
R87126 30 UTR 2a 197371 MYOSIN HEAVY CHAIN, NONMUSCLE

(Gallus gallus)
0.000588235

X12671 gene 1 Human gene for heterogeneous nuclear ribonucleoprotein
(hnRNP) core protein A1.

0.000588235

H43887 30 UTR 2a 183264 COMPLEMENT FACTOR D PRECURSOR
(H. sapiens)

0.000588235

T86473 30 UTR 1 114645 NUCLEOSIDE DIPHOSPHATE KINASE A
(HUMAN)

0.000588235

R44887 30 UTR 2a 33869 NEDD5 PROTEIN (Mus musculus) 0.000588235
X86693 gene 1 H. sapiens mRNA for hevin-like protein 0.000588235
M36634 gene 1 Human vasoactive intestinal peptide (VIP) mRNA, complete

cds
0.000588235

J05032 gene 1 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA,
complete cds

0.000588235

H08393 30 UTR 2a 45395 COLLAGEN ALPHA 2(XI) CHAIN (H. sapiens) 0.000588235
H06524 30 UTR 1 44386 GELSOLIN PRECURSOR, PLASMA (HUMAN) 0.000588235
T95018 30 UTR 2a 120032 40S RIBOSOMAL PROTEIN S18 (H. sapiens) 0.000714286
D25217 gene 1 Human mRNA (KIAA0027) for ORF, partial cds 0.000714286
M26697 gene 1 Human nucleolar protein (B23) mRNA, complete cds 0.000714286
M22382 gene 1 MITOCHONDRIAL MATRIX PROTEIN P1 PRECURSOR

(HUMAN)
0.000714286

Z49269 gene 1 H. sapiens gene for chemokine HCC- 0.000714286
T92451 30 UTR 1 118219 TROPOMYOSIN, FIBROBLAST AND

EPITHELIAL MUSCLE-TYPE
0.000714286

H49870 30 UTR 2a 178915 MAD PROTEIN (H. sapiens) 0.000714286
U26312 gene 1 Human heterochromatin protein HP1Hs-gamma mRNA,

partial cds
0.000714286

X04106 gene 1 Human mRNA for calcium-dependent protease
(small subunit)

0.000714286

X54942 gene 1 H. sapiens ckshs2 mRNA for Cks1 protein homolog 0.000714286
R44301 30 UTR 2a 34262 MINERALOCORTICOID RECEPTOR

(H. sapiens)
0.000714286

T51534 30 UTR 1 72396 CYSTATIN C PRECURSOR (HUMAN) 0.001290323
R36977 30 UTR 1 26045 P03001 TRANSCRIPTION FACTOR IIIA 0.001290323
X12369 gene 1 TROPOMYOSIN ALPHA CHAIN, SMOOTH MUSCLE

(HUMAN)
0.001714286

X70326 gene 1 H. sapiens MacMarcks mRNA 0.001714286
U09564 gene 1 Human serine kinase mRNA, complete cds 0.001714286
X17651 gene 1 Human Myf-4 mRNA for myogenic determination factor 0.001714286

(continued)
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Table 1.4 (continued)

Probe/gene name/description p Value

X87159 gene 1 H. sapiens mRNA for beta subunit of epithelial
amiloride-sensitive sodium channel

0.001794872

H40095 30 UTR 1 175181 MACROPHAGE MIGRATION INHIBITORY
FACTOR (HUMAN)

0.001794872

U22055 gene 1 Human 100-kDa coactivator mRNA, complete cds 0.001794872
X56597 gene 1 Human humFib mRNA for fibrillarin 0.001794872
X14958 gene 1 Human hmgI mRNA for high mobility group protein Y 0.001904762
X12466 gene 1 Human mRNA for snRNP E protein 0.001904762
U32519 gene 1 Human GAP SH3 binding protein mRNA, complete cds 0.001904762
D31885 gene 1 Human mRNA (KIAA0069) for ORF (novel protein),

partial cds
0.003333333

dimension reduction method and proposed the use of PLS components in molec-
ular cancer classification based on microarray gene expression profiles. Because
of the complexity and nonlinear structure of the PLS weights, works in selecting/
identifying the variables that contribute to the PLS dimension reduction above
background noise level have been limited. In this work, we evaluated the relative
usefulness of two heuristic rules for determining important variables (genes) based
on VIP and B-PLS coefficient measures, both functions of the PLS weights. We
also proposed an additional measure called RA-VIP and assigned a p value to each
gene, determined from the null distribution where there is no association between
gene expression and the binary outcome variable. We assessed the sensitivity and
specificity of these approaches using simulation studies where the set of truly in-
formative genes are known by design. Based on the simulation studies, selection of
genes based on RA-VIP have overall advantages relative to gene selection based on
the heuristic rules using VIP and B-PLS coefficients. A subset of genes can be iden-
tified based on RA-VIP p values, allowing for follow-up expression analysis such
as RT-PCR.

Although we have focused the current work on the case of binary out-
come/response, such as experiments comparing two cancer types or subtypes or
between cancer and normal cellular states, the case of three or more groups (or
continuous) outcome can be accommodated directly. This is feasible since PLS can
handle multiple outcome variables (as well as continuous outcomes). For multiple
categories with more than two groups, multiple indicators variables can be created
for each group (e.g., for each cancer type) and PLS can be applied to the response
matrix of response indicators.
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Chapter 2
Geometric Biclustering and Its Applications
to Cancer Tissue Classification Based on DNA
Microarray Gene Expression Data

Hongya Zhao and Hong Yan

Abstract Biclustering is an important tool in microarray data analysis when only a
subset of genes coregulates under a subset of conditions. It is a useful technique for
cancer tissue classification based on gene expression data. Unlike standard cluster-
ing analysis, biclustering methodology can perform simultaneous classification on
the two dimensions of genes and conditions in a data matrix. However, the bicluster-
ing problem is inherently intractable and computationally complex. In this chapter,
we present a novel geometric perspective of a biclustering problem and the related
geometric algorithms. In the view of geometrical interpretation, different types of
biclusters can be mapped to the linear geometric structures, such as points, lines,
or hyperplanes in a high-dimensional data space. Such a perspective makes it pos-
sible to unify the formulation of biclusters and thus the biclustering process can be
interpreted as a search for linear geometries in spatial space. Based on the linear
geometry formulation, we develop Hough transform-based biclustering algorithms.
Considering the computational complexity in searching the existence of noise in mi-
croarray data, and the biological meanings of biclusters, we propose several methods
to improve the geometric biclustering algorithms. Simulation studies show that the
algorithms can discover significant biclusters despite the increased noise level and
regulatory complexity. Furthermore, the algorithms are also effective in extracting
biologically meaningful biclusters from real microarray gene expression data.

2.1 Introduction

DNA microarray technology is a high-throughput and parallel platform that can pro-
vide expression profiling of thousands of genes in different biological conditions,
thereby enabling rapid and quantitative analysis of gene expression patterns on a
global scale. It aids the examination of gene functions at the cellular level, revealing
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how multiple gene products work together to produce physical and chemical re-
sponses to both static and changing cellular needs. This mode of analysis has been
widely used to observe gene expression variation in oncology (Alizadeh et al. 2000;
Ochs and Godwin 2003; Stoughton 2005; Cowell and Hawthorn 2007).

As an increasing number of large-scale microarray experiments are carried out,
analysis of the expression data produced by these experiments remains a major chal-
lenge. A key step of the analysis is the identification of groups of genes that exhibit
similar expression patterns. Therefore clustering analysis has emerged as one of the
most valuable tools to elicit complex structures and gather information about how
genes work in combination with microarray data. A number of clustering methods
have been proposed for the analysis of gene functions (Golub et al. 1999; Dudoit
et al. 2002; Desper et al. 2004; Wu et al. 2004; Wang et al. 2008).

Gene expression data are usually arranged in a matrix, where each gene cor-
responds to a row and a condition to one column. Each element of the matrix
represents the expression level of a gene under an experimental condition. The
values of each element are usually the logarithms of the relative abundance of
the mRNA measured in microarray experiments. Thus, clustering methods can be
applied to group genes by comparing rows or conditions by comparing columns.
However, conventional clustering methods have their limitations: they require that
the related genes (conditions) behave similarly across all measured conditions
(genes) in one cluster. In fact, an interesting cellular process may be involved in
a subset of genes coregulated or coexpressed only under a subset of conditions, but
to behave almost independently under other conditions. As such, some genes may
participate in more than one function, resulting in one regulation pattern in one con-
text and a different pattern in another. Discovering such local expression patterns
may be the key to uncovering many genetic pathways that are not apparent other-
wise. Thus, it is highly desirable to move beyond the clustering paradigm and to
develop approaches capable of discovering local patterns in microarray data (Cheng
and Church 2000; Madeira and Oliveira 2004; Prelic et al. 2006).

Beyond the traditional clustering methods, biclustering can identify a subset of
genes that are coregulated across a subset of conditions in microarray analysis. Bi-
clustering was first investigated by Hartigan (1972). It was first applied to expression
matrices for simultaneous clustering of both genes and conditions by Cheng and
Church (2000). Since then, the research literature on biclusters has been booming.
Comprehensive surveys about the biclustering algorithms are published by Madeira
and Oliveira (2004) and Tanay et al. (2006). Cheng and Church (2000) define
the concept of •-biclusters and a greedy algorithm for finding •-biclusters. Yang
et al. (2002) improved their method by allowing missing gene expression values in
gene expression matrices. The algorithms proposed by Tanay et al. (2002) and Prelic
et al. (2006) focused on the biclustering types of coherent evolution. In their method,
the original expression matrices are discretized and the algorithms are applied to bi-
nary matrices. The order-preserving sub-matrix (OPSM) was proposed by Ben-Dor
et al. (2002), in which all genes contain the same linear ordering and employ a
heuristic algorithm for the OPSM problem. Ihmels et al. (2002) used gene signa-
ture and condition signature to find biclusters with both up- and down-regulated
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expression values. When no a priori information of the matrix is available, they pro-
posed a random iterative signature algorithm (ISA) (Ihmels et al. 2002; 2004). A
random algorithm, xMOTIF, is presented by Murli and Kasif (2003). A systematic
comparison of the different biclustering methods was made by Prelic et al. (2006).

In general, existing algorithms perform biclustering by adding or deleting rows
and/or columns in the data matrix in optimal ways such that a merit function is
improved by the action. A different viewpoint of biclustering can be formulated in
terms of the spatial geometrical distribution of points in data space. The bicluster-
ing problem is tackled as the identification and division of coherent submatrices
of data matrices into geometric structures (lines or planes) in a multidimensional
data space (Gan et al. 2008). Such perspective makes it possible to unify the for-
mulations of different types of biclusters and extract them using an algorithm for
detecting geometric patterns, such as lines and planes. And it also opens a door
to biclustering based on the detecting geometric pattern method, such as of lines,
planes, and shapes.

Therefore, pattern recognition-based methods have been developed for data bi-
clustering (Liew et al. 2005; Zhao and Yan 2007; Gan et al. 2008; Zhao et al. 2008).
In these algorithms, the well-known Hough transform (HT) is employed to detect the
geometric patterns. Statistical properties of the HT, such as robustness, consistency,
and convergence, make it more suitable for biclustering analysis of microarray data
than the traditional methods (Goldenshluger and Zeevi 2004). Especially it is noted
for its ability to identify geometric patterns in noisy data because noise is one of the
major issues in microarray data analysis.

However, the direct HT-based biclustering algorithm becomes ineffective in
terms of both computing time and storage space. To overcome these difficulties,
a subdimension-based method has been introduced into the biclustering algorithm.
For example, the geometrical biclustering (GBC) algorithm only performs the HT
in 2D column-pair spaces (Zhao et al. 2008).

After obtaining sub-biclusters with HT, we need to merge the small sub-biclusters
into the larger ones. Different criteria are considered for the different geometric
biclustering algorithms (GBCs). In GBC, the common genes and conditions of
sub-biclusters are used based on the properties of a system of equations repre-
senting genes and conditions (Zhao et al. 2008). That is, two sub-biclusters are
combined if they satisfy the numerical similarity measure. The algorithm is pre-
sented in Sect. 2.3.2. Obviously, the combination of common genes and conditions
can be too strict to form meaningful biclusters of larger sizes. Because of noise in
microarray data, many genes are filtered out after the merging step. It is found in the
application that the number of genes in the identified biclusters is often small and
the outcome is sensitive to noise. As such, the geometric properties of biclusters are
ignored in the combination steps.

To overcome the shortcomings of GBC, an improved biclustering algorithm
(RGBC) is proposed within the framework of probabilistic relaxation labeling in
Sect. 2.3.3. Relaxation labeling processes are widely used in many different domains
including image processing, pattern recognition, and article intelligence (Rosenfeld
et al. 1976; Kittler and Illingworh 1985; Kittler 2000). They are iterative procedures
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that aim to reduce the ambiguity and noise effect to select the best labels for all ob-
jects. In the relaxation-based geometric biclustering (RGBC) algorithm, the genes
are labeled during the merging step based on the distance of the data points to
the identified hyperplanes. According to this criterion, outlier genes with larger dis-
tance are deleted from the new sub-biclusters and genes whose expressions are close
to the hyperplanes are merged. Thus, consistent large-size biclusters can be discov-
ered.

In addition to the computational focus, it should be emphasized that the genes
in one bicluster are involved in a similar biological function, process, or location.
As well, accepted standards of function categories, gene ontology (GO), are em-
ployed to supervise the combining procedures in the GBC, named as GBFM in
Sect 2.3.4. In most of the biclustering algorithms, GO is only used to infer the
biological relevance of the obtained biclusters if the enrichment of the function
categories within the biclusters is statistically significant (Prelic et al. 2006). The
GBFM algorithm makes the forming of significant biclusters consistent with the
gene function categories in GO. That is, the sub-biclusters are automatically merged
into large biclusters if they are in the similar function categories in the framework
of GO. The procedures directly incorporate the information of gene function mod-
ules into the biclustering process. Thus not only are the numerical characteristics
in biclustering patterns identified, but the biological functions of biclusters are also
considered in GBFM.

Unlike most biclustering algorithms, the novel geometric perspective of biclus-
ters inspires the search of structures of known geometries in spatial space. So a series
of GBCs are proposed based on the hyperplane detection methodology. The exper-
iment results on both synthetic and real-gene expression datasets demonstrate that
the algorithms are powerful, flexible, and effective. It is believed that such a novel
approach to the problem of biclustering should be valuable to the scientific commu-
nities that frequently deal with detecting interesting patterns hidden in vast amounts
of seemingly random experimental data (Gan et al. 2008; Zhao et al. 2008). In this
chapter, we show that the biclustering methods are effective for cancer data analysis.

2.2 Geometric Biclustering Patterns

2.2.1 Bicluster Types

Gene expression data are usually arranged in a data matrix DN �n with N genes
and n experimental conditions. Element dij ofDN �n represents the expression level
of the i th gene under the j th experimental condition. The value of dij is usu-
ally the logarithm of the relative abundance of the mRNA measured in microarray
experiments.

Traditional clustering attempts to group all objects (genes or conditions) into
different categories to uncover any hidden patterns. However, if we try to cluster
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Fig. 2.1 Visualization of geometric patterns of biclustering: (a) The intensity representation of a
microarray data matrix. (b) A hidden bicluster pattern embedded in the matrix by permuting the
rows and columns appropriately. From a geometric point of view, different types of biclusters
are considered as the points, lines, and hyperplanes in high-dimensional space. (c) One iden-
tified plane passing by the points in one additive bicluster in the three-dimensional space for
demonstration

DN �n as demonstrated in Fig. 2.1a using all measurements, we would not uncover
any useful patterns although they actually exist inDN �n. By relaxing the clustering
constraint that related objects must behave similarly across all measurements, some
“localized” patterns can be uncovered readily as demonstrated in Fig. 2.1b.
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Table 2.1 Illustration of a gene expression data matrix and five types of biclusters: (a) the left
matrix is a simplified gene expression data one and (b) the right matrix includes the expression sets
of five types of biclusters and the linear mathematical expression

c1 c2 c3 c4 c5 c6

g1 10 10 10 14 7 10
g2 10 14 10 24 35 10
g3 15 15 15 12 20 35
g4 20 20 20 17 25 40
g5 25 25 25 22 30 45
g6 10 14 30 27 35 50

Type of biclusters Bicluster set Linear geometric expression of bicluster

Constant (fg1, g2g, fc1, c3, c6g) x1 D x2 D Œ10 10 10�

y1 D y3 D y6 D Œ10 10�
T

Constant row (fg1, g3, g4, g5g, fc1, c2, c3g) x1 D x3 � 5 D x4 � 10 D x5 � 15

y1 D y2 D y3 D Œ10 15 20 25�
T

Constant column (fg2, g6g, fc1, c2, c5g) x2 D x6 D Œ10 14 35�
T

y1 D y2 � 4 D y5 � 15

Additive (fg3, g4, g5, g6g, fc3, c4, c5, c6g) x3 D x4 � 5 D x5 � 10 D x6 � 15

y3 D y4 C 3 D y5 � 5 D y6 � 20

Multiplicative (fg1, g6g, fc5, c6g) x1 D 0:2� x6
y5 D 0:7 � y6

Biclustering algorithms perform clustering in the gene and condition dimensions
simultaneously. In the case of a genome, a bicluster is regarded as being a set of
genes that exhibit similar biological functions under a subset of experiment condi-
tions (Barkow et al. 2006). Denoting the index of DN �n as G D fg1; : : :; gN g and
C D fc1;: : :; cng, we haveDD .G;C / 2 <jGj�jC j . Thus, during data analysis a bi-
cluster B D .X; Y / appears as a submatrix ofD with some specific patterns, where
X D fN1; : : :; Nxg � G and Y D fn1; : : :; nyg � C are a separate subset of G
and C .

In biclustering literature, several types of coherent patterns are defined as
able to capture important biological phenomena. Table 2.1a is a simplified ex-
ample of a gene expression matrix including five types of biclusters. As listed
in the second column of Table 2.1b, these biclusters are (a) a constant bicluster:
e.g., .fg1; g2g; fc1; c3; c6g/, (b) constant rows .fg1; g3; g4; g5g; fc1; c2; c3g/,
(c) constant columns, .fg2; g6g; fc1; c2; c5g/, (d) additive coherent values, where
each row or column can be obtained by adding the constant to another row or
column, e.g., .fg3; g4; g5; g6g; fc3; c4; c5; c6g/, and (e) multiplicative coherent
values, where each row or column can be obtained by multiplying another row or
column by a constant value, e.g., .fg1; g6g; fc5; c6g/.

The biological meanings of these biclusters can be inferred from the relations
between their genes and conditions. For example, in a constant bicluster, a subset
of genes always displays the same expression level under a subset of conditions. In
an additive bicluster, expression levels of a subset of genes under one condition are
always higher (or lower) by a constant than under another condition. The study of



2 Geometric Biclustering and Its Applications to Cancer Tissue Classification 25

common fluctuations of the expression levels in these biclusters is useful in practical
applications, such as cancer tissue classification (Alizadeh et al. 2000).

2.2.2 Geometric Expressions of Biclusters

In this section, the corresponding relations between the biclusters and geometric
structures are demonstrated. Some properties of the linear expressions are also dis-
cussed in the complete and subdimensional data spaces and extended to the GBCs.

In recent years, various algorithms have been proposed to detect the different
types of biclusters. Most of these algorithms employ data mining techniques to
search for the best possible submatrices. The general strategy in these algorithms
can be described as permuting rows and/or columns of the data matrix in a number
of ways such that an appropriate merit function is improved by the action. Obvi-
ously, the form of the merit function depends greatly on the types of biclustering
patterns to be uncovered (Madeira and Oliveira 2004).

In contrast to the existing permutation-based approach, a novel geometric per-
spective for the biclustering problem is inspired by Gan et al. (2008). According
to their viewpoint, submatrices are mapped to be the points, lines, or planes with
some special patterns in the high-dimensional data space. Thus instead of search-
ing for coherent Bs in D by the permutation processes, the biclustering problem is
transformed into the detection of specific geometric structures formed by the spatial
arrangement of these data points. This perspective first provides a unified formu-
lation for extracting different types of biclusters simultaneously. Furthermore, the
geometric view makes it possible to perform biclustering with the generic line- or
plane-finding algorithms.

For example, the condition set Y inB D .X; Y / spans a jjY jj-dimensional space,
and the expression of every gene in X corresponds to a point in the spatial space.
The five different types of biclusters can be uniquely mapped to the linear geometric
structures with the equation

P
i aixi D 0 in the space. Figure 2.1c demonstrates the

formed plane of one additive bicluster in a 3D data space.
In general, when one bicluster is embedded in a larger data matrix, the points or

lines defined by the bicluster sweep out of a hyperplane in the spatial space. It is
theoretically feasible to apply any plane-finding algorithm, such as the well-known
HT, widely used in image analysis, to identify the biclusters in a microarray data
matrix.

However, computational complexity makes the direct application difficult with
a large number of genes and conditions. Thus the GBC algorithms are improved
step by step. The following splitting technique plays an important role in coping
with the NP-hard problem in biclustering (Zhao et al. 2008). Considering the lin-
ear relations within one bicluster, it is unnecessary to express its coherent pattern
with all variables (conditions) in one equation. Based on the theoretical property
of equivalent expression, one system of equations with two or three variables can
be used to describe the biclustering pattern instead of one multivariable linear



26 H. Zhao and H. Yan

Table 2.2 The linear expressions of the five biclustering types and the geometrical structures in
the 2D data space, a1–a2 and �–� Hough space, respectively

Pattern in
Pattern in parameter Pattern in polar

Type Equation data space space [a1; a2] space [� , �]

Constant (C) xi D xj D a A point on
diagonal line

A line passing
[1,0]

A sinusoidal
curve passing
Œ��=4; 0�

Constant rows (R) xi D xj Points on
diagonal line

Lines passing [1,0] Sinusoidal curves
passing
Œ��=4; 0�

Constant
columns (O)

xi D ai ,
xj D aj
(ai ¤ aj )

A point off
diagonal line

A line passing
Œa1; 0� (k ¤ 1)

A sinusoidal
curve passing
[� , 0]
(� ¤ ��=4)

Additive (A) xj D xi Cbij
(bij ¤ 0)

Points off
diagonal line

Lines passing
[1,a2] (b ¤ 0)

A sinusoidal
curve passing
[��=4, �]
(� ¤ 0)

Multiplicative (M) xj D aij xi
(aij ¤ 1)

Points on the
straight line
passing
origin

Lines passing
[a1,0] (k ¤ 1)

Sinusoidal curves
passing [� , 0]
(� ¤ ��=4)

equation. For example, instead of finding a constant row pattern in Table 2.1 sat-
isfying x1 D x3 � 5 D x4 � 10 D x5 � 15 in a 4D space, we can detect the same
pattern with x1 D x3 � 5, x3 D x4 � 5, and x5 D x3 � 10 in three 2D spaces.

As listed in Table 2.2, all five types of biclusters in Table 2.1 can be generalized
into the linear relation of xj D aij xj C bij in 2D space although they appear to
be substantially different to each other. Considering the clear biological relevance
in biclustering, the additive and multiplicative patterns are emphasized, which can
be described by xj D ˙xi C bij and xj D aij xi , respectively. Obviously, the
first three types of biclusters are special cases of the two models when bij D 0 or
aij D 1 in 2D space.

2.3 Geometric Biclustering Algorithms

Based on the geometric interpretation of biclusters discussed above, a series of
GBCs are proposed to search for linear patterns. Considering the computational
complexity of searching and the biological functions of biclusters, these algorithms
commonly employ the HT-based technology to detect the genes of interest with lin-
ear structures in the subspaces. Then based on the resulting sub-biclusters, different
strategies are considered to combine the small ones into the large biclusters.

For example, the common genes and conditions of sub-biclusters are considered
in GBC based on the properties of a system of linear equations (Zhao et al. 2008).
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That is, two sub-biclusters are combined if they satisfy the numerical similarity
measure. The algorithm is presented in Sect 2.3.2. However, the criterion is too strict
to discover large-size biclusters in many cases. Because of noise in microarray data,
many genes are filtered out after the merging step. As such, the geometric property
of biclusters is also ignored during the combination. Thus in Sect 2.3.3, the RGBC
algorithm is proposed within the relaxation labeling framework for the combination
of sub-biclusters based on their geometric properties. Considering the biological
functions of biclusters in microarray experiments, the information of gene ontology
(GO) annotations are incorporated into the merging step in GBFM (as discussed in
Sect 2.3.4). That is, the sub-biclusters are automatically merged into large biclusters
if they are in the same function categories. The algorithm balances the numerical
characteristics in a gene expression matrix and the gene functions in the biological
activities.

2.3.1 Hough Transformation for Line Detection

In the framework of GBCs, line detection plays an important role. The well-known
HT is employed to detect the hyperplanes in subdimensional data spaces. The HT
is a widely used classical method for extracting lines and curves in images through
a voting process in the parameter space (Ballard and Brown 1982; Illingworth and
Kittler 1988). Its statistical properties, such as robustness, consistency, and con-
vergence, make it more suitable for microarray data analysis than some traditional
regression methods (Goldenshluger and Zeevi 2004). Especially it is noted for its
ability to identify geometric patterns in noisy data because noise is one of the major
issues in microarray data. In this subsection, the HT is briefly reviewed first and its
extension is then described.

2.3.1.1 The Classical Hough Transformation

Given a set of points fxi D .x1i ; x2i / 2 R2 W i D 1; : : : ; ng, the objective is to
infer the parameters .a1; a2/ of the line x2i D a1x1i C a2 which fit the data fxi g
optimally. The key to the HT is to view each point as generating a line comprising all
pairs (a1 and a2) that are consistent with this point. For example, for the i th point,
this line is given byLi D f .a1; a2/ W a2 D a1x1i Cx2i g in the Hough domain. The
collinearity in the original set of points will manifest itself in a common intersection
of lines in the Hough domain.

The HT algorithm is implemented by identifying the cells with the desired quan-
tization in the Hough domain that receive the largest number of counts. We denote
the cell centered at 	 D .a1; a2/ as D.	/. The HT algorithm looks for a point
O	 D . Oa1; Oa2/ in the Hough domain such that the maximal number of lines Li cross

over the cellD
� O	
�

. The HT estimators O	 maximize the object function with respect

to 	 D .a1; a2/
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M.	/ WD 1

n

nX
iD1

1 fD.	/ \Li ¤ Øg;

where 1 fD.	/ \ Li ¤ Øg is the number of lines that satisfy the given nonempty
condition.

In practice, polar coordinates are used to describe the line in Hessian normal form
instead of the direct parameter space. This allows for the detection of vertical lines
.� D �=2/ in the data set, and moreover guarantees an isotropic error in contrast to
the parameterization. This leads the following parameter form of a line:

� D x1 cos � C x2 sin �;

where � is the distance of a line to the original point and � is the angle of the nor-

mal to the line with the horizontal axis. Since � is limited from � �x2
1 C x2

2

�1=2
to�

x2
1 C x2

2

�1=2
and � is limited from ��=2 to �=2, the original dynamic ranges of

the parameters in the Hough domain are compressed and a small accumulator ar-
ray is sufficient to find all lines (Ballard and Brown 1982). Note that if the polar
equation of a line is used, the points in data space are mapped to sinusoidal curves
as demonstrated in Fig. 2.2. The last three columns of Table 2.2 also list the corre-
sponding geometric patterns of biclusters in 2D data space, a1–a2 and �–� Hough
space, respectively.

2.3.1.2 Generalization of the Hough Transformation

The classical HT only detects lines in a given 2D space as discussed. The HT can be
generally developed to n-dimension space. The point x 2 Rm lying on such a hy-
perplaneH can be described by the linear equation nTx D 0 where nT is a nonzero
vector orthogonal to H . After normalization, jjnjj D 1 and the normal vector n is
uniquely determined by H if we additionally require n to lie on one hemisphere of
the unit sphere. In terms of spherical coordinates, n can be rewritten as

n D

2
666664

cos' sin �1 sin �2 � � � sin �m�2

sin ' sin�1 sin �2 � � � sin �m�2

cos�1 sin�2 � � � sin�m�2

: : :
:::

cos �1 cos �2 � � � cos �m�2

3
777775 (2.1)

with .'; �1; : : :; �m�2/ 2 Œ0; �/m�1. By substituting n in (2.1) into the original linear
equation, the generalized HT of x 2 Rm is

x ! ˚
.'; �1; : : : ; �m�2/ 2 Œ0; �/m�1 j�m�2

D arctan

 
m�1X
iD1

�i

xi

xm

!
C �

2

)
for xm ¤ 0;
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Fig. 2.2 Illustration of the
Hough transform: (a) Points
in the data space. According
to the Hough transform, a
point (or line) in data space is
mapped to a line (or point) in
the parameter space. (b) The
corresponding lines in the
linear parameter space. (c)
The corresponding sinusoids
in the polar parameter space.
The collinearity in the
original set of data points
manifests itself in a common
intersection of lines in the
Hough space
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where

�i WD

8̂̂
<
ˆ̂:

cos'
Qm�3

j D1 sin �j ; i D 1;

sin'
Qm�3

j D1 sin �j ; i D 2;Qi�2
j D1 cos �j

Qm�3
j Di�1 sin �j ; i > 2

and we set �m�2 D 0 for xm D 0 for continuity (Ballard 1981; Theis et al. 2007).
Theoretically, it is feasible to directly employ HT in the complete data space to

detect the geometric structures of biclusters (Gan et al. 2008). However, the original
HT-based algorithm becomes ineffective, in terms of both computing time and stor-
age space, as the number of conditions increases. Thus the HT is only used in some
subspaces of microarray data to improve the efficiency in the following biclustering
algorithms.

2.3.2 Geometric Biclustering Algorithm

In the proposed GBC (Zhao et al. 2008), the HT is first used to detect the lines
in all 2D subspaces, named the column-pair space, and the sub-biclusters are then
recorded. Considering the close relationships between the biological meanings and
types of biclusters, we need to classify them in the next step. As discussed in 2.2.2,
it is enough to consider the additive (A) and multiplicative (M) models. In the GBC
algorithm, a visualization tool, additive and multiplicative pattern plot (AMPP) is
developed for this task.

2.3.2.1 Additive and Multiplicative Pattern Plot

The AMPP is implemented as follows. Given f .x1i ; x2i / W i D 1; : : : ; kg, it is
assumed that there are k points on a line detected using the HT in a column-pair
space. Now we try to separate the k points into two types of biclusters. The differ-
ence of di D x1i � x2i and ri D arctan .x1i=x2i / are employed in AMPP to show
the difference between the additive and multiplicative patterns as demonstrated in
Fig 2.3. The horizontal axis of AMPP represents the change of additive patterns di

and the vertical axis the multiplicative patterns ri . In AMPP, ri D arctan .x1i=x2i /

is used instead of the direct ratio x1i=x2i to reduce the dynamics range of the ratio.
Based on AMPP, the boxplot is used to classify the points into different patterns.

The boxplot was first proposed by J. Tukey, as simple graphical summaries of the
distribution of variables (Celveland 1993). In a boxplot, the middle line represents
the median and the lower and upper sides of the rectangle show the medians of the
lower and upper halves of the data. Along the horizontal boxplot, the points in the
box are considered to be shifted with their median in an A pattern and the points in
the box of the vertical boxplot are considered to be multiplied by their median in
an M pattern. The points in their intersection set are considered as the overlapped
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Fig. 2.3 Additive and multiplicative pattern plot (AMPP) of microarray data. di D xi � yi and
ri D arctan .xi=yi / are scaled as horizontal and vertical axes. The corresponding points in the
boxes of boxplots are separately divided into two models

points in the two patterns, that is, a constant pattern. The horizontal and vertical
boxplots are also shown in Fig. 2.3. The visualization plot can classify the points
detected using the HT in a column-pair space.

2.3.2.2 GBC Algorithm

Based on the HT and AMPP, the GBC algorithm can identify a set of maximal bi-
clusters, where a sub-bicluster B D .X; Y / is defined as a maximal one if and
only if no T 0 exists such that T � T 0 (that is I � I 0 and J � J 0) (Madeira
and Oliveira 2004). A simplified flowchart of the GBC is shown in Fig. 2.4. In
the GBC, the HT is used to detect the lines in all column-pair spaces and record
the sub-biclusters as Bij D �

Gij ; fi; j g�. Obviously, these sub-biclusters are the
maximal ones in their column-pair space related to two conditions. As presented in
Sect. 2.3.2.1, AMPP is used to classify Bij s into different types.

The following problem illustrates how to combine the smaller sub-biclusters into
the maximal ones. The following property of sub-biclusters provides one solution
to the merging step: Let Bmax D .Gmax; Cmax/ be one maximal bicluster and fTi D
.Ii ; Ji /g be a set of maximal sub-biclusters in column-pair space. If Ji � Cmax,
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Fig. 2.4 The overall flow of GBC algorithm

then Gmax � Ii (Yoon et al. 2005). So, the given two sub-biclusters Bs D .Is ; Js/

and Bt D .It ; Jt / are combined to form a larger one using the operation

Br D Bs ˚ Bt D .Is [ It ; Js \ Js/ : (2.2)

Thus the number of genes in the merged biclusters becomes smaller and smaller with
the combination. The combination is stopped if the number of genes in the merged
biclusters is fewer than the given parameter ı. The biclusters are also filtered out if
the elements overlap by more than 25% or the number of conditions is fewer than
the given parameter 
. The overall GBC algorithm is summarized as follows.

Geometric Biclustering Algorithm (GBC)

Input: Microarray data matrix D .G;C /; quantization step size in the HT
parameter space q; minimum number of genes and condition to form
a bicluster ı and 
.

Output: a series of biclusters
HT ALG: perform Hough transformation in a column-pair space
AMPP ALG: classify the collinear points

(1) Perform HT in all column-pair spaces

[Gij , Cij ] D HT�ALG(D.G; i/, D.G; j /, q) 8 i , j 2 C ;

(2) AMPP to classify the collinear points

[Bij Cons, Bij �Add, Bij �Mul] D AMPP�ALG(Gij , Cij );

(3) Combine sub-biclusters

for 8 B i �Cons D (Gi �Cons, C i �Cons), Bj �Cons
D (Gj �Cons, C j �Cons) 2 fBij �Consg

if C i �Cons \ C j �Cons ¤ Ø
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then C ij �Cons D C i Cons [ C j �Cons

Gij �Cons D Gi �Cons \ Gj �Cons;

(4) Filter biclusters

if jjGij �Consjj > ı and jjC ij �Cons jj > 


then B ij �Cons D (Gi �Cons, C i �Cons);

if B ij �Cons is overlapped by any element in any bicluster recorded

then repeat (3);

else

repeat (3) with output B ij �Cons as one merged bilcluster;

2.3.2.3 Applications

The data from the synthetic model enable us to evaluate the performance of GBC to
identify the known grouping. Zhao et al. (2008) investigate two important questions
in a simulation study: whether the algorithm is robust against noise and whether it
has the ability to identify multiple overlapping biclusters. In order to compare the
performance of different biclustering methods, the following gene matching score,
similar to the one used in Prelic et al. (2006) and Liu and Wang (2007). Let B1 D
.G1; C1/ and B2 D .G2; C2/ be two sets of biclusters. The following score was
first proposed to evaluate the recovery and representation of true biclusters in Zhao
et al. (2008),

S .B1; B2/ D max
B1

max
B2

jG1 \G2j C jC1 \ C2j
jG1 [G2j C jC1 [ C2j ; (2.3)

which is symmetric about B1 and B2. Compared with the original score, this score
is more consistent with the cases in the experimental data analysis because the
real underlying patterns of gene expression are completely unknown in microar-
ray experiments. Therefore, it is enough in real data analysis to select some best
and meaningful biclusters from the large number of detected ones as candidates for
further biological verification. In the following section, we denote Bopt as the set of
implanted biclusters and B as the set of resulting biclusters produced by a biclus-
tering method. S

�
Bopt; B

�
represents the best results of biclusters identified by the

algorithm. The larger the scores are, the better the identified patterns are.
The performance of the GBC algorithm is investigated with noisy and overlap-

ping biclusters in microarray data in comparison with other biclustering algorithms.
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Fig. 2.5 Results of the simulation study for overlapping additive biclusters with different overlap
degrees (left) and nonoverlapping additive ones with different noise levels (right)

In Zhao et al. (2008), the following algorithms are performed, such as CC (Cheng
and Church 2000), OPSM (Ben-Dor et al. 2002), and Bimax (Prelic et al. 2006),
which can be downloaded from the software toolbox BicAT (Barkow et al. 2006).
Considering the M pattern can be mapped to A pattern by taking a log transfor-
mation, the synthetic expression data are generated with the approach described in
Prelic et al. (2006).

Figure 2.5 summarizes the performance of different biclustering methods. In the
case of the overlapped biclusters of different degrees, GBC is hardly affected by the
overlap degree of the implanted biclusters. In the combination steps, all specific sub-
matrices satisfying the conditions are identified so that the details of sub-biclusters
can be tracked and used to detect all overlapping biclusters. In CC, however, the
random values are used to replace the discovered biclusters in a given matrix to
find more biclusters. The gene matching scores of the CC algorithm are higher than
those of the other two existing methods, but are still lower than the ones from the
GBC algorithm. The Bimax algorithm appears to be little sensitive to the increased
overlap degrees. The first normalization step in Bimax may cause this problem. Be-
cause the range of expression values after normalization becomes narrower with
increased overlap, the differences between normal and significant expression values
blur and are more difficult to separate. As to CC and OPSM, the performance is not
significantly affected by the overlap degree.

With the increasing of noise levels, GBC algorithm also shows better perfor-
mance than the other algorithms. The HT is well-known to be robust against noise
and this is why GBC, which is developed based on the HT, has a superior perfor-
mance. In contrast, the significant decrease of the performance may be caused by
the greedy algorithm in OPSM: only a single bicluster is considered for the linear
ordering number of every column. And the CC algorithm computes the similarity
of the selected gene expression data only and can easily be trapped at local opti-
mal points. To implement Bimax, the synthetic data should be discretized to binary
values with a threshold. Since noise blurs the difference between background and
biclusters, the binarization process can degrade the biclustering performance.
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Besides the computational performance of biclustering algorithms, the resear-
chers are more interested in the biological relevance of the detected biclusters. So
the GBC is applied to the real microarray data of multiple human organs (Son
et al. 2005). The dataset captured 18,927 unique genes for 19 different organs from
158 normal human tissues of 30 donors. The data can be downloaded at the Web site
http://home.ccr.cancer.gov/ontology/oncogenomics/.Two procedures are performed
to explore the expression patterns of the human organ in Zhao et al. (2008).

In the first case, the gene expressions of the different organs are calculated for
the analysis with the mean values and one 5; 298 � 19 mean expression matrix is
obtained after filtering. In the framework of GBC, 19 � 18=2 D 171 sub-biclusters
are first obtained in column-pair spaces. In all these sub-biclusters, the number of
columns is always two and that of rows is the peak count of accumulator arrays
after the HT in the corresponding parameter space. We show the heat map of all
sub-biclusters in Fig. 2.6. The indices of the row and column in Fig. 2.6 refer to 19
different organs, and the values of the cross points are the number of genes in the
corresponding sub-bicluster in their column-pair space. The diagonal values are set
to zero. Obviously, the square matrix is symmetric. We use different gray scales
to represent different count values. The darker the intensity is, the larger the value
is. For example, the largest value of the square matrix is 468 in the sub-bicluster
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Fig. 2.6 Heat map of the symmetric square matrix of highest count in the column-pair space.
The rows and columns represent 19 organs. The cross values are the highest count number of the
accumulator array after the HT. The diagonal values are set to zero
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composed of colon and ileum, that is, their gene expression patterns are very simi-
lar, which is in logical agreement with the known functions of the organs. In the
following steps, the sub-biclusters are merged into the maximal biclusters. It is
also discovered that the procedures of combination nearly coincide with their cor-
responding organ functions. For example, the similar organs such as colon, ileum,
bladder, and stomach are merged into one significant block with the largest number
of common genes after the first iteration of the algorithm.

Besides the computation with the mean expression matrix, the biclustering
algorithm can be directly performed with the whole expression matrix. In Son
et al. (2005), t testing of the mean expression matrix is the main analysis tool.
Obviously, the information among the samples of the same organ is ignored. The
GBC is applied to the whole 5;298 � 158 expression matrix. The best biclusters
with the significant functions of every organ are listed in Table 2.3 and compared to
the results of Son et al. (2005). In Table 2.3, the third column is the number of genes
given in Son et al. (2005) with respect to the organ-specific GO, and the second and
fourth column show the number of columns and rows in our biclusters, respectively.
The most significant GO term and corresponding p values are provided in the fifth
and sixth column, respectively. Although all samples of every organ are considered
instead of the mean values, the number of genes in each bicluster is more than that
in Son et al. (2005) except for the bladder. In addition, the significant biclusters in
the colon, ileum, ovary, stomach, and uterus are detected with GBC, which were not
detected in Son et al. (2005).

Table 2.3 The significant gene ontology of the 19 organs

Organ # Samples
# Genes in Wang
et al. (2008)

# Genes
in GBC GO term p Values

Adrenal 9 2 6 GO: 0015247 4:7� 10�7

Bladder 9 104 62 GO: 0005604 3:2� 10�6

Cerebellum 6 4 17 GO: 0007420 5:4� 10�5

Cerebrum 7 5 24 GO: 0030594 7:1� 10�9

Colon 8 � 11 GO: 0045078 2:6� 10�7

Heart 7 5 35 GO: 0008016 2:9� 10�6

Ileum 10 � 8 GO: 0006629 8:3� 10�7

Kidney 10 11 23 GO: 0006811 7:9� 10�8

Liver 10 54 76 GO: 0016491 3:4� 10�6

Lung 9 17 21 GO: 0006955 1:2� 10�5

Ovary 5 � 25 GO: 0007338 5:7� 10�7

Pancreas 6 6 13 GO: 0007586 3:2� 10�6

Prostate 8 3 22 GO: 0006334 3:2� 10�6

S. muscle 9 10 38 GO: 0008307 2:4� 10�9

Spleen 10 7 16 GO: 0001584 5:6� 10�6

Stomach 10 � 9 GO: 0042894 5:3� 10�7

Testicle 7 25 27 GO: 0019953 7:1� 10�10

Ureter 8 4 18 GO: 0006366 6:8� 10�6

Uterus 10 � 7 GO: 0007275 9:4� 10�7
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2.3.3 Relaxation-Based Geometric Biclustering Algorithm

Based on the sub-biclusters detected by HT in column-pair spaces, GBC makes
use of the combining criterion that any two sub-biclusters with at least one com-
mon condition can be combined into a new one where the common genes are kept.
Obviously, the criterion is too strict to discover large biclusters in microarray data
because of noise. As such, the geometric property of biclusters is ignored during the
combination.

Considering the recognition of geometric structures in noise data, an improved
algorithm RGBC is proposed within the framework of probabilistic relaxation la-
beling. Relaxation labeling processes are widely used in many different domains
including image processing, pattern recognition, and article intelligence. They are
iterative procedures that aim to reduce the ambiguity and noise effect to select the
best labels for all objects.

In the merging step of RGBC, the genes are labeled based on the distance of data
points to the identified hyperplanes. Thus the outlier genes with large distance are
deleted from the new sub-biclusters and others close to the hyperplanes are merged.
In the following sections, a brief introduction to the relaxation labeling scheme, the
RGBC algorithm and its applications are presented, respectively.

2.3.3.1 Nonlinear Probabilistic Relaxation Labeling

The relaxation labeling technique was first proposed by Rosenfeld et al. (1976). In
a relaxation procedure, the contextual information is employed to classify a set of
interdependent objects by allowing interactions among the possible classifications
of related objects. Probabilistic relaxation has been successfully applied to many
image processing tasks, such as scene labeling, pixel labeling, shape matching, line
and curve enhancement, handwriting character recognition, and breaking substitut-
ing ciphers (Kittler and Illingworh 1985; Fu and Yan 1997).

A nonlinear probabilistic relaxation model can be described as follows. In gen-
eral, there are five parts in a labeling problem:

1. A set of n objects: A D fa1; : : : ; ang to be labeled.
2. A set of m labels: � D f�1; : : : ; �mg for each object.
3. The weight of the influence on one object from others. We use dij to denote the

influence coefficients of ai from aj , which satisfy
Pn

j D1 dij D 1.
4. For each pair of objects ai and aj , a compatibility coefficient matrix Rij with

size m�m is defined. The element rij .�; �0/ .�; �0 2 �/ ofRij represents the
compatibility of labeling � on object ai with �0 on object aj , which satisfies the
condition (

0 < rij .�; �
0/ � 1; � and �0 compatibleI

rij .�; �
0/ D 0; � and �0 independentI

�1 � rij .�; �
0/ < 0; � and �0 incompatible:
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5. For each object ai , there is a set of initial probability p.0/
i .�/ .� 2 �/ satisfyingP

�2� p
.0/
i .�/ D 1 where 0 � p

.0/
i .�/ � 1.

A relaxation scheme actually corresponds to a recurrent dynamic system which de-
pends on the updating rule of the system (Fu and Yan 1997). In general, the updated
probability for � of ai at the .k C 1/th iteration is

p
.kC1/
i .�/ D

p
.k/
i .�/

h
1C q

.k/
i .�/

i
P

�2� p
.k/
i .�/

h
1C q

.k/
i .�/

i ; (2.4)

where the updating correction is

q
.k/
i .�/ D

nX
j D1

dij

 X
�02�

rij
�
�; �0�p.k/

j

�
�0�!: (2.5)

The key factors in the relaxation scheme are the initial probability estimate p.0/
i .�/

for label assignment and the calculation of the compatibility coefficients rij .�; �0/.
However, there are no general methods for initial probability assignment. In RGBC,
the procedure of merging sub-biclusters is mapped into a relaxation framework that
can deal with outliers and high noise effectively by using robust initial probability
estimation and compatibility-coefficient assignment techniques as discussed below.

Given a series of sub-biclusters detected by HT in subspaces, for example, two
of them are denoted as B1 D .G1; C1/ and B2 D .G2; C2/ and their hyperplanes
as l1 and l2, respectively. To determine whether the two sub-biclusters can be com-
bined, the expression value bij in B0

12 D .G12; C12/ D .G1 \G2; C1 \ C2/ is
considered as an object. Thus one of the two labels �0 and �1 is assigned to each
object and the objects labeled �0 are kept in the combined sub-bicluster and those
labeled �1 are deleted. In geometric biclustering, the points belonging to one biclus-
ter should be on, or close to, the detected hyperplane. Therefore, it is reasonable to
employ the distances of points to the hyperplanes in the labeling algorithm. To test
the significance of bij on the distance, we delete the i th row and j th column from
B12 to calculate the sum of the distances sdij to the merged hyperplanes. Then, it
can be concluded that the object bij is more significant than the other objects in
terms of its contribution to the distance measured when sdij is smaller, that is, bij

may be an outlier; and vice versa.
In the relaxation scheme, the initial probabilities of every object should be es-

timated first. However, there is no general method to calculate the probabilities.
Inspired by the geometric view of biclusters, the empirical estimation of the dis-
tances sdij is employed as initial probabilities of the object bij in RGBC

8̂<
:̂
p

.0/
ij .�0/ D 1

T

TP
tD1

H
�
sdgh; sdij

�
p

.0/
ij .�1/ D 1 � p.0/

ij .�0/

; (2.6)
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where

H
�
sdgh; sdij

� D
(
1 sdgh 	 sdij

0 sdgh < sdij

and T is the number of the objects in B0
12. Obviously according to (2.6), the smaller

the distance to the hyperplane, the higher the initial probability of the gene being
labeled �0 will be.

When the initial probabilities of each object are determined, the following com-
patibility coefficients based on statistical correlation are calculated

rij;gh

�
�; �0� D

P
ij;gh

�
pij .�/ � Npij .�/

� �
pgh .�

0/� Npgh .�
0/
�

� .�/ � .�0/
; (2.7)

where pij .�/ is the initial probability of the object on the i th row and j th column
with label �; Npij .�/ is the mean of pij .�/ for all objects along the i th row and j th
column, and � .�/ is the standard deviation of pij .�/ (Rosenfeld et al. 1976).

2.3.3.2 Algorithms

The RGBC algorithm is based on the detection of hyperplanes in data subspaces
with the HT and the combination of sub-biclusters with the relaxation labeling
method, which is illustrated in Fig 2.7.
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Fig. 2.7 The overall flow diagram of the RGBC algorithm



40 H. Zhao and H. Yan

As described in Sect 2.3.1, the generalized HT is used to identify geometric pat-
terns in some but not all subdimensional spaces. The strategy of data space partition
has been employed in subspace clustering methods (Lam and Yan 2006). Instead of
2D pair-column space, 3D subspace is employed to reduce the computation com-
plexity. The detected sub-biclusters contain the maximal number of genes in their
3D subspaces related to three conditions.

The next step is to combine the sub-biclusters into larger ones. The problem is
transformed into the labeling procedure to delete outlier genes. With the analysis of
geometric distances in biclusters, the probabilistic relaxation labeling framework is
applied to the merging step in the algorithm. Considering the number of genes is
much larger than that of conditions in microarray data, only the rows of the outliers
are deleted and the columns are retained in RGBC

The combination is stopped after all sub-biclusters are considered, or if the num-
ber of genes in the merged biclusters is fewer than the given parameter ı. The
biclusters are filtered if the number of conditions is fewer than a given parameter

. The overall RGBC algorithm is summarized as follows.

Relaxation-Label Geometric Biclustering (RGBC) Algorithm

Input: A microarray data matrix D .G;C /.
Output: A set of geometric biclusters.
GHT: The generalized HT and the outputs are the identified sub-biclusters and

the linear equation of their geometric patterns.
PRL: The probabilistic relaxation labeling algorithm and the outputs are the

uniform sub-biclusters combined.

(1) Perform the GHT in 3D sub-spaces to form the geometric sub-biclusters.

For i D 1WjjC jj
do Ci D Œi i C 1i C 2�

ŒsBi ; li � D GHT .D.G;Ci /; q) where sBi D .sBi �G; sBi �C/;

(2) Perform PRL to combine the sub-biclusters into uniform large-sized ones.

For 8 i, j 2 sBs

do ŒsBij �G; sBij �C � D PRL (sBi ; sBj );

(3) Filter sub-biclusters until no sub-biclusters can be combined.

If jjsBij �Gjj > ı
If jjsBij �C jj > 


If jjsBij jj \ jjsBst jj < ˇjjsBij jj where 8 sBst 2fsBij g
then output Bij D sBij
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2.3.3.3 Applications

Similar to the simulation study in GBC, the synthetic model in Prelic et al. (2006) is
employed to investigate the capability of the method to identify the known grouping
with noise and outliers. The proposed method is compared with several biclustering
algorithms in our simulation study, such as GBC (Zhao et al. 2008), CC (Cheng and
Church 2000), OPSM (Ben-Dor et al. 2002), ISA (Ihmels et al. 2002; 2004), xMotif
(Murli and Kasif 2003), and Bimax (Prelic et al. 2006) algorithms, some of which
can be downloaded from the software BicAT http://www.tik.ee.ethz.ch/sop/bimax
(Barkow et al. 2006).

In the first scenario, a numerical comparison is made between the number of
outliers and the algorithms’ performance without noise as shown in Fig. 2.8a. The
x-axis shows the different percentages of outlier genes in the expression matrices
and y-axis shows the matching scores calculated by (2.3).

Obviously, the patterns in Fig. 2.8a demonstrate significant difference among the
scores of different biclustering algorithms. In comparison to the higher scores of
GBC, OPSM, Bimax, and RGBC, the scores of CC, ISA, xMotif are very low in all
synthetic cases and unsuitable for synthetic data. The scores of CC are almost equal
to 0.31 since the discovered biclusters by CC have to be marked with random values
and thus the expression values of outlier genes are degraded. The xMotif method is
mainly designed to find biclusters with coherent row values, and thus the types of
underlying biclusters in our simulation are not well suited for this algorithm. There
is not even any output in the synthetic data with noise. A similar argument can also
be applied to the case of ISA. Indeed, only up- and downregulated expressions are
used in ISA so that the outliers are emphasized and some rows and columns in real
biclusters containing elements of normal expression levels are missed, especially in
additive patterns.
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Fig. 2.8 Results of the simulation study for the RGBC algorithm. (a) The comparison of the
number of outliers vs. the algorithms’ performance without noise. The x-axis shows the different
percentages of outlier genes in the expression matrices and y-axis shows the matching scores.
(b) The effect of noise on the biclustering algorithms. The x-axis shows the different levels of
noise and y-axis the matching scores



42 H. Zhao and H. Yan

Comparatively, GBC shows the best performance and the score is equal to the
one without outliers. With the increasing percentage of outliers, however, the scores
rapidly decrease especially near the percentage range of 50–60. In GBC, the strict
criterion of combination makes the size of biclusters small. OPSM is also sensitive
to the number of outlier genes. In the absence of outlier genes, the better biclus-
ters can also be detected with OPSM. OPSM is also suitable to identify the additive
biclusters because the changes along the condition dimension represent optimal or-
der preserving submatrices. On the other hand, the decrease in performance may
be caused by the greedy algorithm in OPSM: only a single bicluster is considered
for the linear ordering number of every column. Bimax shows the better and stable
performance. The proposed RGBC algorithm performs well and is not significantly
affected by outlier genes. The results imply that the criterion of geometrical distance
within the relaxation label framework is effective for the outliers in microarray data.
If an outlier is in one of the sub-biclusters in the combination step, its distance to
the combined hyperplanes will be larger than those of other genes. Thus, the outliers
can be easily identified and deleted from the new combined sub-biclusters.

The second artificial scenario, where the data are uniformly distributed without
outlier genes, serves as a basis to assess the sensitivity of the methods to noise in the
data (Fig. 2.8b). Similar to Fig. 2.8a, the lower scores are recorded in CC and ISA.
For varying noise levels, the influence of noise becomes significant and the scores of
all biclustering algorithms are decreased. Overall, GBC, OPSM, Bimax, and RGBC
show better performance in this case.

In the absence of noise, GBC and OPSM show the best performance and the
scores are equal to one. With the increase in noise, however, the scores rapidly
decrease. Comparatively, the performance of Bimax is stable to the noise. To im-
plement Bimax, the synthetic data should be discretized to binary values with the
predefined threshold or percentage. In this experiment, we set the top 10% altered
genes to one and the rest to zero in the simulation study. Since noise blurs the differ-
ence between background and biclusters, the binarization process may degrade the
performance of Bimax especially at high level noise.

Comparatively, the trends of scores in GBC and RGBC are very close. Some
scores of GBC are a little higher than those of RGBC in the case of low noise levels.
One potential reason of the phenomenon is the way the HT work: both of them
begin with the resulting sub-biclusters of the HT in subdimensional spaces. Indeed,
the HT used in the algorithms plays an important role in the robustness to noise.
Overall, the performance of GBC is better at detecting the geometrical biclusters
in the ideal situation without noise and outliers and the improved RGBC is more
effective in real microarray data analysis.

Furthermore, the RGBC algorithm is applied to two microarray datasets obtained
for the yeast cell cycle (Cho et al. 1998) and colon cancer (Alon et al. 1999).

Yeast cell cycle data. The yeast cell data show the fluctuation of expression
levels of 6,220 genes at 17 time points. According to the five-phase criterion, a
subset of 384 genes is adopted whose expression levels peak at different time points
corresponding to the five phases of cell cycles (Cho et al. 1998). The labeled set
is analyzed by many clustering and classification algorithms in microarray data
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Table 2.4 The matching scores of different biclustering algorithms in
the labeled yeast cell cycle microarray data

Bicluster

Algorithm CC OPSM Bimax GBC RGBC

Early G1 0.26 0.17 0.23 0.29 0.38
Late G1 0.60 0.54 0.35 0.54 0.41
S phase 0.19 0.46 0.57 0.32 0.43
G2 0.24 0.25 0.21 0.37 0.36
M phase 0.44 0.42 0.37 0.31 0.65
Mean 0.35 0.37 0.38 0.37 0.45
Std 0.11 0.09 0.06 0.10 0.05

analysis (Lam and Yan 2006). The 17 time points are divided into five cycle phases:
early G1 phase, late G1 phase, S phase, G2 phase, and M phase. Every gene in
the set is also labeled with one of the phases according to their biological func-
tions. Thus, given the labeled functional subset, we can calculate the match scores
to compare the performance of different biclustering algorithms. The data set can
be downloaded from http://faculty.washington.edu/kayee/model/.

CC, OPSM, Bimax, GBC, and RGBC are applied to the data set and the results
are shown in Table 2.4. The match scores of biclusters are calculated for the subset
of five phases and the mean and standard deviation of every algorithm are also listed
at the bottom of Table 2.4. For example, the mean of match scores in CC is nearly
0.35 with std 0.12. The high means imply that the resulting biclusters are consistent
with the labeled functional subsets. If the std is high, however, the performance of
the algorithm significantly fluctuates among the different phases. Obviously, there
is little difference among the performance of CC, OPSM, Bimax, and GBC. The
proposed RGBC shows the better results with the higher mean of 0.45 and lower std
of 0.05.

Colon cancer dataset. Unlike for the labeled data set in the first case, we select
the unlabeled microarray data in this section. In most microarray research, the bi-
ological function of spotted genes on microarrays is unknown and the experiments
are designed to explore the functionally characterized genes under some conditions.
Therefore, the genes in one bicluster are considered to be regulated in a synchro-
nized fashion under the conditions. The microarray experiment of colon cancer
originated in Alon et al. (1999), where it is of interest to separate the coregulated
families of genes in cancerous from noncancerous tissues. The matrix contains 40
tumor and 22 normal colon tissues over 2,000 genes which are chosen with the high-
est minimal intensity across all the samples (Alon et al. 1999). The dataset can be
downloaded from http://microarray.princeton.edu/oncology/.

Biclustering algorithms such as CC, OPSM, Bimax, GBC, and RGBC are ap-
plied to the colon cancer data set. To demonstrate the capability of detecting large
biclusters, a bicluster obtained from a method should include many genes of either
cancerous or noncancerous tissues only. The best biclusters, using different meth-
ods, are listed in Table 2.5. For every algorithm, there are two rows: one for tumor
samples and the other for normal ones. In CC, for example, one best bicluster for
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Table 2.5 The results of the biclusters detected in the non-labeled colon
cancer dataset

Bicluster

Algorithm # Genes # Samples # Tumor # Normal

CC 50 19 26 7
33 23 14 9

OPSM 31 13 8 5
85 9 3 6

xMotif 14 23 18 5
16 8 1 7

ISA 37 3 3 0
24 3 0 3

GBC 11 15 12 3
6 15 1 4

RGBC 25 18 16 2
17 13 0 13

a tumor contains 50 genes and 33 tissues of which 26 are tumor samples and 7 are
normal, and the best normal sample contains 19 genes and 23 tissues of which 9
are normal and 14 are tumorous. In Table 2.2, we discover that the number of sam-
ples in the biclusters of ISA is small, although the complete separation is identified.
Similarly, the number of genes is large in the biclusters of OPSM. In the merging
step of GBC, the number of genes is decreased and that of samples is increased step
by step to find the common genes and samples. Comparatively, the results show that
the RGBC method can find high-quality biclusters.

2.3.4 Geometric Biclustering Using Functional Modules (GBFM)

Based on the sub-biclusters detected by HT in subspaces, different strategies can be
employed for the combination. In genome research, these genes in new combined
biclusters are involved in a similar function, process, or location. However, the pre-
vious algorithms only focus on the computational solutions, such as the numerical
similarity measure or noise in the data. And the biological relevance of the obtained
biclusters are tested in the last step with the gene ontology (GO). In geometric bi-
clustering using functional modules (GBFM), however, we directly incorporate the
biological information into the merging process based on gene ontology (GO) an-
notations. The algorithm balances the numerical characteristics in a gene expression
matrix and the gene functions in the biological activities.

2.3.4.1 Gene Annotation and Functional Modules

The soundness of clustering in the analysis of gene expression profiles and gene
function prediction is based on the hypothesis that genes with similar expression



2 Geometric Biclustering and Its Applications to Cancer Tissue Classification 45

profiles may imply strong correlations with their functions in the biological
activities. On the one hand we can therefore discover the coexpressed genes in
column-pair space by HT. On the other hand, the challenge faced in our biclustering
is how to combine the underlying biological phenomena into the identification of bi-
clustering. Currently, GO provides us with a systematic tool to mine the functional
and biological significance of genes and gene products in the resulting clusters.
We analyze the correlation between the expression similarity of genes and their
corresponding functional similarity according to GO, and then propose a novel al-
gorithm to identify the functional biclusters. In this section, we present the statistical
methodology of annotating clusters with GO.

The GO project provides a controlled vocabulary for various genomic databases
of diverse species in such a way that it can show the essential features shared by
all the organisms (The Gene Ontology Consortium 2000). Figure 2.9 shows the top
levels of the gene ontology.

At the first level, known genes are classified into three categories, i.e., Molecular
Function (MF), Cellular Component (CC), and Biological Process (BP). Different

Fig. 2.9 A screen shot of a tree view of GO terms
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gene function categories in GO have very sophisticated relationships, such as
“part of” or “is”. They can be structured as directed acyclic graphs (DAGs) that
represent a network in which each term may be a child of one or more parents. GO
has become a well-accepted standard in organizing gene function categories. Fur-
thermore, many studies are implicitly based on the assumption that gene products
that are biologically and functionally related maintain this similarity both in their
expression profiles as well as in their GO annotation.

In a typical microarray experiment, the express matrix is a long list of genes
with corresponding expression measurements under different conditions. This list
is only the starting point for a meaningful biological explanation. Their relevant
biological processes or functions can be identified from gene expression data by
scoring the statistical significance of predefined functional gene groups, e.g., based
on Gene Ontology (GO). In our algorithm, we will use the p value to assess the
significance of a particular function group of genes within a cluster.

Given a set of genes and one of the three ontology terms, we first find the set
of all unique GO terms within the ontology that are associated with one or more
genes of interest. Next, for each term we determine how many of these genes are
annotated at the node. We can ask if there are more genes of interest at the node than
one might expect by chance. If that is true, then that term can be thought of as being
overrepresented in the data. We calculate the p value to assess the significance of a
particular function group within a cluster. The hypergeometric distribution is used
to model the probability of observing at least k genes from a cluster of n genes by
chance in a category containing f genes from a total genome size of g genes. The
p value is given by

P.i 	 k/ D
fX

iDk

�
f

i

��
g � f
n� i

�
�
g

n

� ; (2.8)

which is the probability of observing something as extreme or more extreme than
was observed. Thus, the test measures whether a cluster is enriched with genes from
a particular category to a greater extent than would be expected by chance (Berrize
et al. 2003).

For example, if the majority of genes in a cluster have the same biological func-
tion, then it is unlikely that this happens by chance and the category’sp value would
be close to 0. In our biclustering algorithm, the p value of each category present in
the sub-bicluster is first calculated. Given a cutoff threshold �p , the categories whose
p value is larger than �p are eliminated without further consideration. The result is
a set of significant GO function categories. In essence, the procedure is involved in
multiple hypothesis testing. We use the methodology of controlling FDR instead of
the Bonferroni correction for multiple hypotheses testing.

There are two direct ways to annotate the biclusters with the set of significant
function categories. One method is to keep all significant function categories as an-
notation candidates. However, the annotation might become ambiguous if genes in
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one cluster are assigned with too many function categories. The other way is to an-
notate a cluster with the category that has the smallest p value. Choosing the most
significant category to represent the cluster is reasonable. However, we note the fact
that few genes annotated at the categories will typically have the smaller p values,
and often they are not very interesting. We choose typical GO terms with a reason-
able number of genes and small p values in our biclustering algorithm.

2.3.4.2 Algorithms

Based on the detection of sub-biclusters with the HT in column-pair spaces and
the incorporation of GO function categories, the algorithm GBFM is introduced to
identify the gene functional biclusters.

In the proposed algorithm, we take the GO into account when we merge the sub-
biclusters. The GO terms of each sub-bicluster are first determined with the corre-
sponding p values. Then they are combined if their GO terms are similar. We stop
the combination if the sub-biclusters are not annotated by GO or the number of
genes in the merged biclusters is fewer than the given parameter ı. We also filter
out biclusters whose number of conditions is fewer than a given parameter 
. The
GBFM is summarized into several major steps as shown below.

Geometric Biclustering using Functional Modules (GBFM) Algorithm

Input: Microarray data matrix D.G;C /; the quantization step size in ¡-™
space q; the minimum number of genes in one bicluster •; the mini-
mum number of conditions in one bicluster 
; the significant level in
the hypothesis testing of GO annotation ’; the percent of element in
one set “.

Output: The maximal biclusters significantly annotated by GO.
HT: Perform the HT in a column-pair space and the outputs are the cor-

responding indexes of genes and conditions in the identified sub-
biclusters.

MHT GO: Perform the hypothesis testing of sub-biclusters related to GO and the
outputs are the corresponding GO term (sT–GO) and the significant
level (sS–GO).

Step 1: Perform the HT to detect the specific lines in all column-pair spaces to form
the sub-biclusters.

for 8 i , j 2 C , then [sBij �Add, sBij �Mul] D HT (D.G; i/, D.G; j /, q)
where

sBij �Add D [sGij �Add, sCij �Add] and sBij �Mul
D [sGij �Mul, sCij �Mul]

Step 2: Multiple hypothesis testing of sub-biclusters with ’

[sTij �GO, sSij �GO] D MHT GO(sBij , ˛)
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Step 3: Filter sub- biclusters until no sub-biclusters can be combined

If sSij �GO < ˛

If jjsGij jj > ı

If jjsCij jj > 


If jjsBij jj \ jjsBst jj < ˇjjsBij jj where 8 sBst 2fsBij g

Then output Bij D sBij

Step 4: Combine the sub-biclusters with the same functional modules and common
conditions

8 sBi D ŒsGi ; sCi �, sBj D ŒsGj ; sCj � 2fsBij � Addg (or fsBij �Mulg)

If sTi �GO \ sTj �GO ¤ Ø

If sCi \ sCj ¤ Ø

then sBij D ŒsGij ; sCij � where sGij D sGi \ sGj and sCij D sCi [ sCj

2.3.4.3 Applications

The technology of cDNA microarrays is used to explore the variation in the ex-
pression of approximately 8,000 unique genes in 60 cell lines used in the National
Cancer Institute’s screen for anticancer drugs. Such cell lines differ from both nor-
mal and cancerous tissue, the inaccessibility of human tumors and normal tissue
makes it likely that such cell lines will continue to be used as experimental models
for the foreseeable future. In fact, the classification of the cell lines based solely on
the observed patterns of gene expression can reveal a correspondence to the osten-
sible origins of the tumors from which the cell lines are derived. The assessment
of gene expression patterns in a multitude of cell and tissue types should also lead
to increasingly detailed maps of the human gene expression program and provide
clues as to the physiological roles of uncharacterized genes (Ross et al. 2000).

The original database of the cDNA microarray experiment is available at http://
genome-www.stanford.edu/nci60 and http://discover.nci.nih.gov. We use the proce-
ssed 1;328�60 expression data matrix and perform the GBFM biclustering analysis
and discover relationships between phenotypic properties of the 60 cell lines and
1,328 significant genes.

In the first step, we perform the HT in column-pair space to detect the different
types of sub-biclusters. Figure 2.10 demonstrates three cases of sub-biclusters in
�–� parameter spaces. The gene expression data in the sub-biclusters are mapped to
the sinusoidal curves. As demonstrated in Fig. 2.10a, the corresponding expressions
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Fig. 2.10 (a) Curve intersecting points in the �–� space corresponding to detected lines in column-
pair space using the HT. The intersecting points of interest are on � D ˙�=4 or � D 0 in the �–�
space. The curve intersection regions are zoomed in and shown in (b)

Fig. 2.11 Some biclustering
results of the GBFM for the
human cancer cell lines. The
row contains 164 selected
genes, the column contains 59
cell lines, and the
corresponding expression
values are demonstrated with
one color map

10 20 30 40 50
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are classified into the different types according to the intersecting positions, such as
the multiplicative type if the blue curves intersect on the horizontal axis. And the
relations can be clearly demonstrated with the zoom-in plot in Fig. 2.10b.

The sub-biclusters are then merged step by step into the maximal biclusters de-
pending on the gene functional categories. According to the experimental design,
the 60 cell lines are derived from 10 tumor tissues including colon (7), central ner-
vous system (6), leukaemia (6), melanoma (8), renal (8), ovarian (6), lung (9), breast
(7), prostate (2), and unknown tissues (1), where the numbers in the brackets are the
number of samples from the same tissue. We present the nine corresponding biclus-
ters of the first tissues in Figs. 2.11 and 2.12 and the corresponding GO terms with
p values are listed in Table 2.6.
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Fig. 2.12 Gene expression date of all biclusters in Fig. 2.8 except those for prostate. The x-axis
shows the index of the cell lines from the tissues and the y-axis shows the expression values. (a)
Colon, (b) central nervous system, (c) leukaemia, (d) melanoma, (e) renal, (f) ovarian, (g) lung,
(h) breast cancer cell lines

Table 2.6 Significant gene ontology terms for nine human cancer cell lines

Cell line Bicluster size GO term p Value

Colon cancer 19� 7 GO: 0045078: positive regulation of
interferon-gamma biosynthetic
process

4:6� 10�6

CNS 30� 6 GO:0003013: circulatory system process 7:3� 10�5

Leukaemia 31� 6 GO: 0006352: transcription initiation 8:1� 10�6

Melanoma 20� 8 GO:0016020: membrane 2:9� 10�5

Renal cancer 18� 8 GO:0031012:extracellular matrix 3:4� 10�6

Ovarian cancer 11� 6 GO:0007155: cell adhesion 1:2� 10�5

Lung cancer 11� 9 GO:0051726:regulation of cell cycle 5:7� 10�7

Breast cancer 9� 7 GO:0007010: cytoskeleton organization
and biogenesis

4:7� 10�6

Prostate cancer 15� 2 GO: 0006334nucleosome assembly 3:2� 10�5
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In Fig. 2.8, the row contains 164 selected genes and the column contains the
59 conditions, and the corresponding expression values are demonstrated with one
color map. Obviously the patterns of nine tissues are significantly different. The
detailed fluctuations of every bicluster except prostate are plotted in Fig. 2.12,
where the x-axis shows the index of condition and the y-axis shows the expression
values.

Our analysis also produces results similar to those in Ross et al. (2000). We
discover that 20 genes are highly expressed in the melanoma-derived lines. This set
is enriched for genes with known roles in melanocyte membrane such as TYR, DCT,
MLANA, and SPON1. However, the flat fluctuations of the gene expressions in
Fig. 2.12 shows that there is less difference in gene expression in melanoma-derived
cell lines than the others. It is also discovered in our studies that the genes in the
bicluster of rental-derived cells are characterized by their synthesis or modification
of an extracellular matrix (THBS1, CATSL1, CATSA). More biological meanings
of the biclusters are summarized in Table 2.6.

2.4 Conclusions

In this chapter, a novel interpretation of the biclustering problem is presented in
terms of geometric distributions of data points in a high-dimensional data space.
From this perspective, the biclustering problem becomes that of detecting struc-
tures of known linear geometries in the high-dimensional data space. Thus, the
typical types of biclusters are just different spatial arrangements of the hyperplanes
in the high-dimensional data space. This novel perspective allows us to perform
biclustering geometrically using a hyperplane detection algorithm, such as the HT.
In comparison with the original search in complete space, the HT can be employed
in subspaces to deduce the computational complexity. With the sub-biclusters, dif-
ferent strategies are used for the following combination step to form large biclusters,
such as the common variable in GBC, relaxation labeling in RGBC, and GO anno-
tation in GFBC. The experiment results on both synthetic and real gene expression
datasets have demonstrated that the geometric algorithm is very effective for DNA
microarray data analysis and cancer tissue classification. Since biclustering can par-
tition the input data in both row and column directions simultaneously and can
produce overlapping biclusters, we expect that the technique will find more and
more applications in many problems of computational ontology, in which there is a
need to detect coherent patterns in the data.
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Chapter 3
Statistical Analysis on Microarray Data:
Selection of Gene Prognosis Signatures

Kim-Anh Lê Cao and Geoffrey J. McLachlan

Abstract Microarrays are being increasingly used in cancer research for a better
understanding of the molecular variations among tumours or other biological condi-
tions. They allow for the measurement of tens of thousands of transcripts simultane-
ously in one single experiment. The problem of analysing these data sets becomes
non-standard and represents a challenge for both statisticians and biologists, as the
dimension of the feature space (the number of genes or transcripts) is much greater
than the number of tissues. Therefore, the selection of marker genes among thou-
sands to diagnose a cancer type is of crucial importance and can help clinicians to
develop gene-expression-based diagnostic tests to guide therapy in cancer patients.
In this chapter, we focus on the classification and the prediction of a sample given
some carefully chosen gene expression profiles. We review some state-of-the-art
machine learning approaches to perform gene selection: recursive feature elimi-
nation, nearest-shrunken centroids and random forests. We discuss the difficulties
that can be encountered when dealing with microarray data, such as selection bias,
multiclass and unbalanced problems. The three approaches are then applied and
compared on a typical cancer gene expression study.

3.1 Introduction

Microarray data allow the measurement of expression levels of tens of thousands of
genes simultaneously on a single experiment. The biological aim of these experi-
ments is to better understand interactions and regulations between genes, which are
spotted on the array in some given conditions. For example, in the context of cancer
data, there are several types of statistical problems that can be considered:

– To identify new tumour classes using gene expression signatures (e.g. cluster
analysis, unsupervised learning)
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– To classify samples into known cancer classes (e.g. discriminant analysis, super-
vised learning)

– To identify marker genes that characterize one or several cancer types (i.e. feature
selection)

Considering this last point, feature selection or gene selection may allow for the
development of diagnostic tests to detect diseases and, in the particular case of can-
cer data, the selected genes can give more insight into the tumours characteristics.
These genes are called prognosis signatures or gene signatures.

From a statistical point of view, the number of genes is usually often greater
than the number of arrays, which renders the problem non-standard to solve. The
selection of a relevant subset of genes enables one to improve the prediction perfor-
mance of classification methods and to circumvent the curse of dimensionality. It
also enables one to reduce computation time and allows for an understanding of the
underlying biological process that generated these data.

Statistical analysis of microarray data involves several important steps, such as
normalization and pre-processing; see McLachlan et al. (2004), Chap. 2 and Li
et al. (2003). In this chapter, the focus is solely on the analysis of microarray data
and the selection of genes using classification methods.

3.1.1 Notation

In this chapter, we will adopt the following notation. A microarray data set consists
of the quantitative measurements ofp genes (called predictor variables) on n tissues
(called samples). These data are summarized in a p�n matrix X D xij , where xij is
the expression of gene i in the j th microarray (i D 1; : : : ; p; j D 1; : : : ; n)

In the context of classification, we can represent the a p�n matrix X of gene
expressions as

X D .x1; : : : ;xn/ ;

where the feature vector xj (the expression signature) contains the expression levels
of the p genes in the j th tissue sample (j D 1; : : : ; n).

3.2 Supervised Classification

In the context of supervised classification, each tissue belongs to a known biological
class k, k D 1; : : : ; g. In the following, we let x1; : : : ;xn denote the feature vectors
and z1; : : : ; zn the corresponding vectors of zero-one indicator variables defining the
known class of each sample. The collection of the data

t D �
xT

1;x
T
1; : : :x

T
n ;x

T
n

�T

will be referred to as the training data.
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In supervised classification, the aim is to construct a rule r(x;t) based on the
training data t with feature vectors for which the true class is known. On the basis
of this rule, the final aim of supervised classification approaches is to predict the
class label of a new tissue sample.

Such problems are ubiquitous and, as a consequence, have been tackled in several
different research areas. As a result, a tremendous variety of algorithms and mod-
els have been developed for the construction of such rules. In the sequel, we will
describe some classification methods, such as Support Vector Machines (SVMs),
Shrunken centroids and classification trees. We will show that these classifiers can
be included in some machine learning approaches to perform variable selection.

3.2.1 Linear Classifier

As an introduction to prediction rules, we first consider the basic linear function in
the case where g D 2 (binary problem). For any feature vector, here denoted x, its
label is assigned to class 1 or class 2 if

r .xI t/ D 1; if c .xI t/ > 0;

D 2; if c .xI t/ < 0;

where c .xI t/ D ˇ0 C ˇTx D ˇ0 C ˇ1 .x/1 C � � � C ˇi .x/C � � � C ˇp .x/p , and
.x/i denotes the i th element of the feature vector x(i D 1; : : : ; p).

The function c .xI t/ is a linear combination of the features (or genes) with differ-
ent weights ˇi .i D 1; : : : ; p/. Once the rule r .xI t/ is constructed on the training
data t, we can use it to predict the class label of a new feature vector.

3.2.2 Support Vector Machines

The SVM is a powerful machine learning tool that has often been applied to mi-
croarray data (Vapnik 2000). We briefly describe the formulation of a soft margin
SVM, that is, when classes are linearly non-separable. In this section, we assign a
label yj 2 f1; : : : ; gg for j D 1; : : : ; n to each tissue sample to indicate the known
class of each sample.

In the case where g D 2, the SVM learning algorithm with a linear kernel aims
to find the separating hyperplane

ˇTx C ˇ0 D 0;

that is maximally equidistant from the training data of the two classes. In this case of
g D 2, it is convenient if we let the class label yj be 1 or �1 to denote membership
of class 1 or class 2. When the classes are linearly separable, the hyperplane is
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located so that there is maximal distance between the hyperplane and the nearest
point in any of the classes. This distance is called the margin and is equal to 2=ˇTˇ.
The aim is to maximize this margin, that is, to minimize ˇTˇ.

When the data are not separable, the margin is maximized so that some classi-
fication errors are allowed. In that case, the so-called slack variables Ÿj are used
(j D 1; : : : ; n).

The quadratic optimization problem to solve is:

minˇ;ˇ0�2RpC1CnˇTˇ; (3.1)

subject to
yj

�
ˇTxj C ˇ0

� � 1 � 	j ; (3.2)

where 	 D .	1; :::; 	n/
T is the vector of so-called slack variables.

The cases ˇTx C ˇ0 D ˙ �
1 � 	j

�
are the support vectors which define the

solution. The Lagrangian dual formulation is finally

min
1

2

Pn
j;k ˛j˛kyjykxj � xk �Pn

j ˛j ;

subject to 0 � ˛j � C and
P

j ˛jyj D 0;

(3.3)

where C corresponds to a penalty for misclassified cases and the ˛j .j D 1; : : : ; n/

are the Lagrange multipliers corresponding to the constraints (3.2). We call the sup-
port vectors the cases where ˛j ¤ 0. The use of this ‘soft’ margin enables the
misclassification of outliers during training and avoids overfitting.

Let S be the set of indices of the Support Vectors and xs any Support Vector
case, then given the solution to the problem (3.1), the corresponding discriminant
rule is

r .xI t/ D sign

�
ys

X
j 2s

˛mymxm � xs C ˇ0

�
:

By using the ‘kernel trick’ and the scalar product in the Lagrangian formulation
(3.3), this standard SVM can be extended to nonlinear decision functions to map the
data into a higher, possibly infinite, dimensional space. The user will then need to
specify the kernel function to use. More details about the SVM methodology can be
found in the tutorial of Burges (1998) and Cristianini and Shawe-Taylor (1999).

3.2.3 Nearest Centroid

The nearest centroid rule assigns the feature vector x to the class whose mean cen-
troid is closest in Euclidian distance. For the classes k D 1; : : : ; g, let Ck be the
indices of the nk samples in class k. The ith component of the centroid for class k is
Xik D Pn

j 2ck
Xij =nk , which is the mean expression value in class k for the gene

i . The ith component of the overall centroid is Xi D Pn
iD1 Xij =n.



3 Statistical Analysis on Microarray Data: Selection of Gene Prognosis Signatures 59

Nearest centroid classification takes the gene expression profile of a new sample,
and compares it to each of these class centroids. The class whose centroid that it is
closest to, in squared distance, is the predicted class for that new sample.

Note that in contrary to SVM, nearest centroid classifiers can be naturally gener-
alized to multiclass problems .g > 2/.

In the case of high dimensional microarray data, Tibshirani et al. (2002) pro-
posed the ‘nearest-shrunken centroid’ rule that ‘shrinks’ each of the class centroids
towards the overall centroid for all classes by moving the centroid towards zero by a
threshold. It also takes into account the different gene variances. This approach has
two advantages: (1) it can make the classifier more accurate by reducing the effect
of noisy genes; and (2) it performs automatic gene selection (see Sect. 3.3).

3.2.4 Classification and Regression Trees

Tree-based methods such as Classification and Regression trees (CART, Breiman
et al. 1984) are conceptually simple and easy to interpret. In our case, we will focus
on binary classification trees only, that is, when a binary split is performed at each
node of the tree.

The construction of CART requires one to choose:

1. The best split for each node, i.e. the best predictor (gene) to split the node and
the best threshold among this predictor

2. A rule to declare a node ‘terminal’, i.e. when to stop splitting
3. A rule to affect a class to each terminal node

The best split criterion (1) relies on a heterogeneity function, so that the cases or
samples that belong to the same class land in the same node. Gini index or entropy
index is an example of such heterogeneity functions; see Breiman et al. (1984).

When applying classification trees to noisy data like microarray data, a major
issue concerns the decision when to stop splitting (2). For example, if nine splits are
performed (i.e. with AND/OR rules for each split) with only 10 observations, then it
is easy to perfectly predict every single case. However, if new cases run this tree, it
is highly likely that these cases will land in a terminal node with a wrong predicted
class. This issue is called ‘overfitting’, that is, the model applied on the data does
not generalize well to new data because of random noise or variation. The way to
address this issue with CART is to stop generating new split nodes when subsequent
splits only result in very little overall improvement of the prediction. This is called
‘pruning’. The tree is first fully grown and the bottom nodes are then recombined or
pruned upward to give the final tree, where the degree of pruning is determined by
cross-validation (see Sect. 3.2.5.2) using a cost complexity function.

The class of the terminal node (3) is determined as the majority class of the cases
that land in the same terminal node. Details of the CART methodology can be found
in Breiman et al. (1984).
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Trees are different from other previously considered classification methods as
they are learning and selecting features simultaneously (embedded approach, see
Sect. 3.1). However, one of the major problems with trees is their high variance.
Indeed, a small change in the data can result in a very different series of splits and
hence a different prediction for each terminal node. A solution to reduce the variance
is to consider bagging (Breiman 1996) as was done in Random Forests, see Sect. 3.4.

3.2.5 Error Rate Estimation

Given a discriminant rule r .xI t/ constructed on some training data t, we now de-
scribe some techniques to estimate the error rates associated with this rule.

3.2.5.1 Apparent Error Rate

The apparent error rate, also called resubstitution error rate, is simply the proportion
of the samples in t that are misallocated by the rule r .xI t/. Therefore, this rate is
obtained by applying the rule to the same data from which it has been learnt. As
mentioned by several authors (McLachlan 1992, Chap. 10), it provides an overly
optimistic assessment of the true error rate and would need some bias correction.
To avoid this bias, the rule should be tested on an independent test set or a hold out
test set from which the rule has not been formed. We next present some estimation
methods to avoid this bias.

3.2.5.2 Cross-Validation

To almost eliminate the bias in the apparent error rate, one solution is to perform
leave-one-out cross-validation (LOO-CV) or V -fold cross-validation (CV). Cross-
validation consists in partitioning the data set into V subsets of roughly the same
size, such that the learning of the rule r .xI t/ is performed on the whole subsets
minus the vth subset, and tested on the vth subset, v D 1; : : : ; V . This is performed
V times, such that each sample is tested once and the V subsequent error rates are
then averaged.

In the case of LOO-CV, V D n and therefore, the rule is tested on only one
sample point for each fold. LOO-CV may seem to require considerable amount of
computing, as the rule has to be formed n times to estimate the error rate. Further-
more, this estimate may yield a too high a variance. A bootstrap approach was then
proposed in an attempt to avoid these limitations.

3.2.5.3 Bootstrap Approach

Efron (1979, 1983) showed that suitably defined bootstrap procedures can reduce
the variability of the leave-one-out error in addition to providing a direct assessment
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of variability for estimated parameters in the discriminant rule. Furthermore, if the
number of bootstrap replications is less than n, it will result in some saving in com-
putation time relative to LOO-CV computation.

LetE denote the error computed on the cases that were not drawn in the bootstrap
sample, Efron (1983) proposed the B632 estimator to correct some upward bias in
the error E with the downwardly biased apparent error A:

B632 D 0:368AC 0:632E:

Previously, McLachlan (1977) had derived an estimator similar to B632 in the spe-
cial case of two classes with normal homocedastic distributions.

When the number of variables is much larger than the number of samples,
the prediction rule r .xI t/ usually overfits, that is, A often equals 0. Efron and
Tibshirani (1997) then proposed the B632C estimate,

B632C D .1 � w/AC wE;

where

w D 0:632

1 � 0:368r
; r D E �A

min .E; /�A and  D
Xg

kD1
pk .1 � qk/

r is an overfitting rate and  is the no-information error rate, pk is the proportion
of samples from class Ck , qk is the proportion of samples assigned to class Ck with
the prediction rule r .xI t/ (k D 1; : : : ; g).

3.3 Variable Selection

The so-called “large p small n problem” poses analytic and computational chal-
lenges. It motivates the use of variable selection approaches, not only to infer
reliable statistical results and to avoid the curse of dimensionality, but also to se-
lect relevant and potential gene signature related to the tissue characteristics.

In the machine learning literature, there exists three types of classification and
feature selection methods (Kohavi and John 1997; Guyon and Elisseeff 2003):
the filter methods, the wrapper methods and the embedded methods. We first de-
scribe the particularities of these approaches, before detailing some useful wrapper
and embedded methods to perform gene selection: Recursive Feature Elimination
(RFE) (Guyon et al. 2002), Nearest Shrunken Centroids (Tibshirani et al. 2002) and
Random Forests (Breiman 2001), that will be applied on one well-known microar-
ray data set from Golub et al. (1999).
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3.3.1 Filter, Wrapper and Embedded Approaches

The filter methods are often considered as a pre-processing step to select differ-
entially expressed genes. The principle of this method is to independently test
each gene and to order the genes according to a criterion, for example a p-value.
The t- and F -tests are often used for microarray data. In one of the first compar-
ative studies of classification methods in the context of microarray data, Dudoit
and Fridlyand (2002) proposed to pre-process the genes based on the ratio of their
between-groups to within-groups sum of squares:

BBS.i/

WSS .i/
D

P
j;k Iyj Dk . Nxik � Nxi /

2P
j;k Iyj Dk

�
xij � Nxik

�2 ;
where Nxi is the average expression level of gene i across all samples and Nxik is the
average expression level of the gene i across the samples that belong to class k.

They compared the performance of some classification methods, such as the k
nearest neighbours (k-NN), CART and Linear Discriminant Analysis on a selection
of 30–50 genes.

The main advantages of the filter methods are their computational efficiency and
their robustness against overfitting. However, these methods do not take into account
the interactions between genes, and they tend to select variables with redundant
rather than complementary information (Guyon and Elisseeff 2003). Furthermore,
the gene selection that is performed in the first step of the analysis does not take into
account the performance of the classification methods that are applied in the second
step of the analysis (Kohavi and John 1997).

The wrapper terminology was introduced by John et al. (1994). These methods
involve successive evaluation of the performance of a gene subset and therefore, take
the interactions between variables into account. The selection algorithm wraps the
classification method, also named classifier, which evaluates the performance.
The search for the optimal gene subset requires one to define (1) how to search
the space of all possible variable subsets, (2) how to assess the prediction perfor-
mance of a learning machine to guide the search and (3) how to halt it. Of course,
an exhaustive search is an NP-hard problem and when p is large, the problem is
intractable and requires stochastic approximations. Furthermore, there is a risk of
overfitting if the number of cases n is small. The number of variables to select must
be fixed by the user, or chosen according to a criterion, such as the classification
error rate. One of the main disadvantages of these methods is their computational
cost that increases with p. Nonetheless, the wrapper strategy might be superior to
the filter strategy in terms of classification performance, as was first shown by Aha
and Bankert (1995) and John et al. (1994) in an empirical manner.

The embedded methods include variable selection during the learning process,
without the validation step, to maximize the goodness-of-fit and minimize the num-
ber of variables that are used in the model. A well-known example is CART, where
the selected variables split each node of the tree. Other approaches include greedy



3 Statistical Analysis on Microarray Data: Selection of Gene Prognosis Signatures 63

types of strategies, such as forward selection or backward elimination, that result in
nested variable subsets. In a forward selection, variables are progressively included
in larger and larger variable subsets, whereas the backward elimination strategy be-
gins with all original variables and progressively discards the less relevant variables.
According to the review of Guyon and Elisseeff (2003), these approaches are more
advantageous in terms of computation time than wrapper methods, and should be
robust against overfitting. The forward selection seems computationally more effi-
cient than the backward elimination to generate nested variable subsets. However,
the forward selection may select variable subsets that are not relevant, as the vari-
able importance is not assessed with respect to the other variables, which are not
included yet in the model. As opposed to wrapper methods, the embedded methods
define the size of the variable selection, which is often very small.

3.3.2 Recursive Feature Elimination

RFE (Guyon et al. 2002) is an embedded method, which is based on a backward
elimination and applies SVM to select an optimal non-redundant gene subset. The
method relies on the fact that variables can be ranked on the basis of the magnitude
of the coefficient ˇi of each variable i when using a linear kernel SVM. In fact,
each element ˇi of the weight vector ˇ is a linear combination of the cases, and
most ˛j are null, except for the support cases in the optimization problem (3.3).
Consequently, the values in ˇ can be directly interpreted as an importance measure
of the variables in the SVM model. The variables i with the smallest weights jˇi j
will then be progressively discarded (recursive elimination) in the RFE procedure.

To speed up the computations, Guyon et al. (2002) proposed to discard several
variables at a time in the algorithm, in spite of the fact that the classification per-
formance may be altered. In this case, we obtain a ranking criterion on the variable
subsets that are nested in each other, rather than a rank criterion on each variable. It
is advised to discard variable subsets of various sizes, for example half of the vari-
ables in remaining set, to obtain sufficient density of information for the genes
eliminated last. These latter will be ranked as first in the selection. Note that in
any case, the user can actually choose the number of variables to select if desired.

RFE was first applied to microarray data (Ramaswamy et al. 2001) and was fol-
lowed by numerous variants. SVM-RFE-annealing from Ding and Wilkins (2006)
is based on a simulated annealing method and discards a large number of variables
during the first iterations, and then reduces the number of discarded variables. This
enables a significant reduction in computation time. This method, which is very sim-
ilar to RFE, requires a choice of the number of variables to select. Another example
is SVM-RCE for Recursive Cluster Elimination (Yousef et al. 2007), to select cor-
related gene subsets and avoid missing important genes with small weights as they
were correlated with some dominant genes. This stresses the issue of correlated
genes that bring redundant information. Should they all be in the selection even if
genes with complementary information may get a lower rank? Or should the selec-
tion be larger?
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Other variants were also proposed and the reader can refer to Tang et al. (2007),
Mundra and Rajapakse (2007) or Zhou and Tuck (2007) for the MSVM-RFE for
multi-class case. The abundant literature on this method shows the popularity of
RFE for analysing microarray data.

3.3.3 Nearest Shrunken Centroids

Tibshirani et al. (2002) proposed a ‘de-noised’ version of the nearest-centroid rule
defined in Sect. 3.2.3. The idea is to shrink the class centroids towards the overall
centroids after standardizing by the within-class standard deviation for each gene.
This gives higher weight to genes whose expression is stable within samples of the
same class.

In the definition of the nearest centroid rule, the sample mean of the i th gene in
class k Nxik is replaced by the shrunken estimate Nx�

ik
D Nxik Cmk.si C s0/d

�
ik

With the following notations:

d�
ik D sign .dik/ .jdikj ��/C ; (3.4)

where the C means positive part and zero otherwise, and dik D Nxik�Nxi

mk.si Cs0/
; si is the

pooled within-class standard deviation for gene i and s0 is the median value of the
si over the set of genes;.mk D p

1=nk � 1=n.
This shrinkage when computing d�

ik
is called soft thresholding, as the absolute

value of dik is reduced by an amount of � and is set to zero if the result of (3.4) is
less than zero. This allows variable selection and when� increases, many genes are
eliminated from the class prediction and do not contribute to the nearest centroid
computation. The shrinkage parameter� can be chosen by cross-validation.

Guo et al. (2007) then generalized the idea of Nearest Shrunken Centroids (NSC)
with Shrunken Centroids Regularized Discriminant Analysis (SCRDA). Other vari-
ants of the NSC have been proposed in the literature for microarray data; see for
example Dabney and Storey (2005) or Wang and Zhu (2007).

NSC are implemented in the pamr R package.

3.3.4 Random Forests

Some classification methods are sensitive to small perturbations in the initial data
set. For example, the construction of CART can dramatically vary if some val-
ues are modified in the data set. If a model does not generalize well, i.e. if its
variance is large, a solution proposed by Breiman (1996) is to aggregate classi-
fiers. The variance is consequently reduced, but the classifier interpretation becomes
more difficult. This is why these techniques are sometimes called ‘black box’.
Breiman (1996) proposed to aggregate CART to reduce their variance by estimating



3 Statistical Analysis on Microarray Data: Selection of Gene Prognosis Signatures 65

each tree on a bootstrap sample. He introduced the bagging methodology for ‘boot-
strap aggregating’, by creating perturbed learning sets of the same size as the
original sample. We describe a variant called random forests (Breiman 2001) where
an additional perturbation is introduced when splitting the nodes of each tree to
introduce more ‘independence’ between each tree.

Random forests is a wrapper method that became very popular for classifica-
tion and feature selection in several contexts: Izmirlian (2004), Bureau et al. (2005),
Diaz-Uriarte (2007) applied it with biological data; Svetnik et al. (2003) with QSAR
data; Prasad et al. (2006) with ecological data, etc. This approach, which at first
seemed empirical, is now theoretically studied, for example Biau et al. (2008) es-
tablished some results regarding the consistency of aggregated trees.

The surprising paradox of random forests is that it benefits from the great insta-
bility of the classifiers CART by aggregating them. This approach combines two
sources of randomness that largely improve the prediction accuracy: the bagging
and the random feature selection to split each node of the tree. This results in low
bias and low variance in the model.

Each tree (classification or regression) is constructed as follows:

1. B bootstrap samples fB1; : : : ; BBg are drawn from the original data.
2. Each sampleBb .b D 1; : : : ; B/ is used as a training set to construct an unpruned

tree Tb . Let p be the number of input variables of the tree, for each node of Tb,m
variables are randomly selected .m << p/ to determine the decision at the node,
where m is constant during the forest growing. Then, the best split among these
m predictors is chosen to split the node.

The predictions of the B trees are then aggregated to predict new data either by
majority vote for classification or by average for regression.

Random forests also generate an internal estimation of the generalisation error by
computing the out-of-bag error rate for each bootstrap sample. However, this error
rate, which seems accurate and unbiased, cannot be used to evaluate the performance
of the variable selection. Indeed, Svetnik et al. (2003) showed that the OOB error
estimate tends to overfit since the evaluation is not performed on an external test
set. Instead, the variable selection should be evaluated on a test set sample. We will
come back to the bias on the variable selection evaluation in Sect. 3.6.

The choice of the m randomly selected variables to split each node can be fixed
by default to

p
p (Liaw and Wiener 2003). However, the number of trees B must be

chosen by the user. To obtain stable results, in particular when the number of cases
is small, we strongly advise to set a large number of trees to be large, i.e. 	5,000.

Two internal measures of variable importance are proposed in random forests,
which allow for feature selection. These are called Mean Decrease Accuracy and
Mean Decrease Gini. Both importance measures are described in Liaw and Wiener
(2003) and in the RandomForests R package. Note that these measures can lead to
different results if the data set contains a very small number of cases, or if some of
the classes share similar (biological) characteristics.
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3.3.5 Extension to Multiclass

3.3.5.1 Division into Binary Problems

Multiclass problems could make feature selection easier than binary problems, as
the more classes, the better the gene subset for a perfect classification task (Guyon
and Elisseeff 2003). But in practice, the multiclass case is difficult to deal with.
Indeed, in the context of high dimensionality, the number of cases per class is usu-
ally smaller than in the binary problem due to experimental costs. This degrades the
prediction accuracy when there are numerous classes. Furthermore, some authors
noticed that most of the classification errors were due to cases belonging to very
similar classes, rather than being outliers (Yeang et al. 2001).

Some binary classification methods are naturally adapted to multiclass problems.
This is the case for example for Linear Discriminant Analysis, CART or Near-
est Centroid. Other methods require the decomposition of the multiclass problem
into several binary problems, such as one class against the other (1 vs. 1) or one
class against the rest (1 vs. rest). Another solution is to define multiclass objective
functions. This solution was often addressed with SVMs. For example, Weston and
Watkins (1999) and Lee and Lee (2003) proposed to solve the multiclass optimiza-
tion quadratic problem directly into the SVM, rather than aggregating binary SVMs.
The authors concluded that there were a smaller number of support vectors by di-
rectly solving the multiclass case than by aggregating binary SVMs. However, it is
still less costly to solve several small binary problems rather than a big complex
multiclass problem.

Dividing a multiclass problem into several binary problems requires one
to choose the appropriate aggregation method. For example with SVM, one could
choose majority vote, least square estimation based on weighting that involves
weighting each SVM, or double layer hierarchical combining that aggregates
SVMs outputs into another SVM (Kim et al. 2003). The type of binary classifier
must also been chosen. Lee and Lee (2003) showed that the 1 vs. rest SVM can give
bad results if several classes are similar, and that the 1 vs. 1 SVM may contain a
high variance, as each binary classifier is computed on a very small subset of cases
with only one misclassifying cost for all classes. This latter problem is partly due to
unbalanced classes.

A comparative study of several multiclass SVM approaches such as the Weston
and Watkins (1999) or Lee and Lee (2003) approaches, 1 vs. rest, and 1 vs. 1 was
presented in Statnikov et al. (2005) for microarray data, with first an initial pre-
processing step with a filter method.

3.3.5.2 Unbalanced Multiclass Problems

In addition to numerous classes in microarray data, one often faces unbalanced
classes. The main reason is that the class of interest is the rare one where data are
difficult to obtain. There has been little attention given to the problem of unbalanced
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multiclasses in the context of microarray data, although Eitrich and Lang (2006) and
Qiao and Liu (2008) recently address this issue for general classification purposes.

The main concern when performing feature selection in a classification context
is that a classifier aims at minimizing the overall classification error rate. It thus
minimizes the classification error rate of the majority classes, to the detriment of the
minority classes. This type of approach has a serious drawback when performing
feature selection, as the selected genes will mainly discriminate against the majority
classes which are not necessarily the most biologically relevant.

In the case of random forests, Chen et al. (2004) proposed two approaches to
balance the classes and to introduce a higher penalty when a minority class is mis-
classified. The first approach, called Balanced Random Forests (BRF), is based on a
re-sampling technique. Each tree is constructed on the same number of cases in the
majority and minority classes (sampling with replacement). The second approach,
called Weighted Random Forests (WRF, currently implemented in the Random-
Forests R package), is based on cost sensitive learning. Weights are introduced in the
RF algorithm, first during the tree construction, where class weights are used when
splitting the nodes with the Gini criterion, and second when assigning the class of
the terminal node.

However, BRF risks overfitting the data if the number of cases in the minoritary
class is very low, as this down sampling approach does not use many cases in the
majoritary classes. The inclusion of weights into the feature selection algorithm
seems a better approach and was proposed in Lê Cao et al. (2009) in a stochastic
wrapper algorithm.

For the SVM case, Qiao and Liu (2008) recently proposed an adaptive weighted
learning procedure in the multiclass quadratic formulation of Lee and Lee (2003) to
optimally weight each class.

3.3.6 Selection Bias and Performance Assessment

In the classification context, the performance assessment of a variable selection re-
mains difficult due to the small number of samples. As Dudoit and Fridlyand (2002)
underlined, more cases would be needed to compute an accurate classification error
rate. It is often unfeasible to obtain an external test set and the performance evalua-
tion must often be computed on the learning set. Furthermore, several authors warn
of the selection bias problem (Ambroise and McLachlan 2002; Reunanen 2003). In-
deed, some articles presented extremely optimistic results as the classification error
rate estimation and the variable selection were both performed on the learning set.
Therefore, to correct for this selection bias, it is essential that cross-validation or the
bootstrap be used external to the gene selection process.

In the present context where feature selection is used in training the prediction
rule r .xI t/ from the full training set, the same feature selection method must be
implemented in training the rule on the V � 1 subsets combined at each stage of
an cross-validation of r .xI t/ for the selected subset of genes. Of course, there is
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no guarantee that the same subset of genes will be obtained as during the original
training of the rule (on all the training observations). Indeed, with the huge number
of genes available, it generally will yield a subset of genes that has at most only a few
genes in common with the subset selected during the original training of the rule.

In the case where the final version of the discriminant rule is based on a small
subset selected in some optimal way from a much larger set of variables (genes),
it is important that cross-validation is undertaken as described earlier, as otherwise
a large selection bias can result; see Ambroise and McLachlan (2002), McLachlan
et al. (2008), Wood et al. (2007), Zhu et al. (2008).

3.3.7 Optimal Size of the Selection

Choosing the optimal size of the selection is a difficult question as the small number
of samples does not allow for an accurate estimate of the classification error. A naı̈ve
choice would be to select a number of genes that gives the lowest error rate.
However, McLachlan et al. (2004, Chap. 7) showed on the van‘t Veer et al. (2002)
study that the estimated error rate needed to be corrected for bias. The authors
showed that the minimum error rate was attained for approximately 256 genes when
evaluating the gene selection with bias correction on the whole data set, instead of
only 70 genes as originally proposed in this study.

A solution to choose the optimal set of genes would be to select the genes which
give a stabilized error rate and, therefore, consistent predictive results.

3.4 Illustrative Example with the Golub Data Set

3.4.1 Performance of the Three Feature Selection Methods

As an illustrative example, we considered the well known leukaemia data set (Golub
et al. 1999), where Affymetrix oligonucleotide arrays were used to measure gene ex-
pressions in two types of acute leukaemias: acute lymphoblastic leukaemia (ALL)
and acute myeloid leukaemia (AML). The entire data set consists in 72 tissue sam-
ples, among which 47 are ALL cases and 25 are AML, and the measurement of
7,129 genes. The data set was pre-processed as in Dudoit and Fridlyand (2002) by
filtering and log transforming the data. The final data set comprises 3,731 genes.

We performed external tenfold cross validation A.CV10E/ as used by Ambroise
and McLachlan (2002) for different sizes of selected subsets of genes to evaluate
the performance of RFE, Nearest Shrunken Centroids (NCS) and Random Forests
(RF). For the tenfolds, we divided the 72 tissues into balanced training and test
sets such that approximately 42 ALL and 22 AML were used for training, 5 ALL,
and 3 AML were used for testing in the binary problem. We calculated the 10-CV
estimated error rates over 50 random splits.
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Fig. 3.1 Estimation of the classification error rate for each method with external tenfold cross-
validation (repeated 50 times) with respect to the number of genes selected, for the binary problem

The averaged values of these estimates are plotted in Fig. 3.1. It can be seen from
this figure that all three wrapper methods perform similarly, except for NCS that
requires a larger selection of genes to be competitive with the other approaches.
A.CV10E/ was found to have little bias when estimating the error rate (Ambroise and
McLachlan 2002). However, the conclusion about this graph should be taken with
caution, as the error rate should be corrected for bias.

As an illustrative example, this data set is of interest as the ALL cases can be
divided into two subclasses, called ALL-B cells (38 samples) and ALL-T cells (9
samples). We are here in the typical case of unbalanced multiclass data set, where
the ALL-T class is the minority class. Therefore, when performing external balanced
tenfold cross-validation, 34 ALL-B, 8 ALL-T and 22 AML were used for training
and approximately 4 ALL-B, 1 ALL-T and 3 AML were used for testing. The fact
that there is only one ALL-T sample in the test set may severely affect the estimation
of a too optimistic error rate. Indeed, as mentioned in Sect. 3.3, when computing
A.CV10E/, we tend to neglect misclassified cases from of the minority class.

The averaged values of the A.CV10E/ estimates are plotted in Fig. 3.2 over 50 ran-
dom splits. In this multiclass problem, the estimated error rate is higher than in the
binary case presented above where the gene selection is small. Therefore, a larger
selection of genes might be advisable for further biological validation. Interestingly,
the stabilized error rate seems to be similar to the one obtained in the binary case
(around 5%). This may be due to the fact that there is only one ALL-T sample in
the test set that can be misclassified. This may result in a too optimistic estima-
tion of the error rate. Indeed (not shown), the error rate for RFE was between 0.1
and 0.2 for the ALL-T minority class, and between 0.01 and 0.02 for the two other
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Fig. 3.2 Estimation of the classification error rate for each method with external tenfold cross-
validation (repeated 50 times) with respect to the number of genes selected, for the unbalanced
multiclass problem

classes. Since in this last example the classes are strongly unbalanced, a better way
to take into account the minority class would be to weight the error rate estimation
according to the proportion of samples in each class, as was proposed in Lê Cao
et al. (2009).

3.4.2 Comparison of the Gene Selections

We arbitrarily chose a selection size of 50 genes and compared the overlap be-
tween the selected genes resulting with each approach, for the binary and the 3-class
cases (Fig. 3.3). Note that the same trend was observed when the selection size was
increased.

It is interesting to see that although each approach uses a different classifier, a
fair amount of genes are commonly selected by the three methods (20 and 15 genes
for the binary and the multiclass problems). Therefore, these approaches have the
ability to select (the same) discriminative genes and these discriminative genes may
be of potential relevance for the biological experiment.

Half of the genes selected with RFE differed from those selected with RF
and NSC. This difference might be due to the fact that as a backward technique,
RFE tends to select non-redundant and non-correlated genes (Yousef et al. 2007),
whereas NSC and RF can highlight correlated genes in their selections.

As expected, when the number of classes increased from g D 2 to g D 3, the
overlap between all three methods became smaller. This can be explained by the
increasing complexity of the data set, where numerous subsets can lead to a good
classification of the samples.
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Fig. 3.3 Venn diagrams. Overlap between the gene lists selected with Random Forests, Recursive
Feature Elimination, and Nearest Shrunken Centroids (selection of 50 genes for each method)

−2 0 2 4
Value

Color Key

Fig. 3.4 Heat map for the 50 genes selected with Nearest Shrunken Centroids for the unbalanced
multiclass problem. Rows (genes) and columns (tissues) are arranged according to a hierarchical
clustering method. Tissue classes are indicated by color bars on the upper dendogram (black: ALL-
T, grey: AML, and light grey: ALL-B)

As an illustrative example, Figure 3.4 displays the heat map of the 50 genes
selected with NSC for the multiclass case, with Euclidian distance and Ward ag-
gregation method. This type of unsupervised clustering enables a global overview
of the genes that were selected with respect to each tissue sample.
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For the binary problem (not shown), it was surprising to see that although RFE
selected genes with a poor contrast (mostly under-expressed genes), it allowed for a
perfect classification of the tissue samples, whereas RF and NSC seemed to select
interesting and contrasted gene clusters, but with one misclassified sample.

The same trend could be observed for the 3-class case, where contrasted gene
clusters were obtained with RF and NSC (Fig. 3.4). One would expect the ALL-T
and ALL-B to share the same dendogram as they are a subclass of ALL. In fact it
is the AML samples that seem to share similarities with ALL-B with these gene
selections.

3.4.3 Choice of Method

The large difference between the three feature selection methods, and therefore the
three gene selections did not really appear when estimating the classification error
rate (Figs. 3.1 and 3.2). It is highly probable that different gene subsets can lead to
the same classification performance of a given classifier. Nevertheless, some genes
were commonly selected by all three approaches, despite the fact that these statisti-
cal approaches differ in their construction and the classifiers they use. It is therefore
difficult to choose the appropriate statistical method to perform variable selection
and we cannot have a definitive answer for this question. Microarray data are very
complex and the statistical outcome highly depends on the biological experiment,
design and the quality of the data. Furthermore, some statistical approaches might be
appropriate in one study, but not in another. Therefore, one has to take into account
different criteria as proposed in this illustrative section, compare several statistical
approaches, as well as to investigate the biological relevance of the selected genes
related to the biological experiment.

3.5 Validation

Validation of the results has been often discussed in the literature. Once the gene
signatures have been selected, their clinical utility must be established. For example,
they must prove to reliably identify patients with poor or good prognosis. The first
step consists in validating the microarray experiment, while the second part consists
in an independent validation using these gene signatures.

3.5.1 Biological Interpretation

Once the gene signatures have been selected using a statistical approach, it is of tra-
dition to validate the results and look for false positive by using the same samples,
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but on different mRNA measurement procedure, such as reverse-transcriptase PCR.
This may highlight erroneous inferences due to poor measurement quality. How-
ever, repeating measurement on the same biological samples but with a different
measurement technique is a highly debatable practice to validate the microarray
experiment.

Post hoc analysis is then required to assess the biological relevance of the
gene list. For example, pathway analysis, using softwares such as DAVID
(Dennis et al. 2003), Panther (Mi et al. 2005), FatiGO (Al-Shahrour et al. 2004)-to
cite a few, can be performed on the gene selection to identify biological functions
and networks; see also Lê Cao et al. (2007) for an example of such analysis. This
type of analysis also enables one to highlight other genes that are strongly correlated
to the selected genes and interact with these genes in biological pathways, but might
not be spotted on the microarray, or were discarded during the pre-processing step
because of poor quality spots.

3.5.2 Independent Test Set

The gene signatures then need to be proven that they provide additional information
to the clinicopathologic risk criteria that are currently used in the clinic. The vali-
dation must hence be performed completely independently, not only on a new batch
of patients, but also by external institutions to the study. In addition, it should also
be applied to a prospective study, rather than using retrospective data of patient that
may not be representative of the nowadays breast cancer population.

Buyse et al. (2006) performed this type of analysis, using independent statis-
ticians and multinational collaborations to assess the usefulness of the 70-gene
signature in breast cancer on a retrospective study. They showed that this set of
gene had reproducible prognostic value across different patient populations, labo-
ratories and biostatistical facilities. However, many questions remain, such as the
lack of gene overlap among different studies (Michiels et al. 2005). Some authors
argue that these different gene selection that predict the same outcome might be the
result of differences among microarray platforms, but also the differences among
the genes spotted on the array or the different experimental conditions. Others state
that the resulting lists of genes are highly unstable as it depends on the patients
on the training set.

3.6 Conclusion

Microarray technology is a promising and a powerful high-throughput tool for
researchers in many fields of biology and medicine. Microarray analysis has the
potential to refine cancer prognosis, well beyond the currently used clinical param-
eters to predict disease outcome. Diagnostic assays developed on gene expression
profiling studies will therefore benefit to oncology and other areas of medicine.
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Many studies showed that supervised classification methods appear to be one of
the best approaches to identify prognostic and predictive profiles (Golub et al. 1999;
van‘t Veer et al. 2002; Nuyten and van de Vijver 2008). Further studies are required
to check the consistency of the results obtained with these sophisticated statistical
approaches before they can replace the current clinical and pathological indicators
and be made available to patients.

It would be interesting to further investigate the integration of clinical data and
microarray data to improve the prediction performance of the classification methods.
Gevaert et al. (2006) and McLachlan and Ng (2008) have shown that a significant
improvement could be achieved by using Bayesian networks or expert networks
to integrate both discrete and continuous data on the van’t Veer breast data set.
Clinical variables are often under-used when analysing microarray data. Combined
with often noisy gene expresion data, they would allow for a better cancer prognosis
as they have a very low noise level (Gevaert et al. 2006).
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Lê Cao K-A, Goncalves O, Besse P, Gadat S (2007) Selection of biologically relevant genes with

a wrapper stochastic algorithm. Stat Appl Genetics Mol Biol 6:Article 29
Lee Y, Lee C (2003) Classification of multiple cancer types by multicategory support vector ma-

chines using gene expression data. Bioinformatics 19:1132–1139
Li C, Tseng G, Wong W (2003) Model-based analysis of oligonucleotide arrays and issues in

cDNA microarray analysis. In: Speed T (ed) Statistical analysis of gene expression microarray
data. Chapman & Hall, New York, pp 1–34

Liaw A, Wiener M (2003) Classification and regression by randomForest. R News 2/3:18–22
McLachlan G (1977) A note on the choice of a weighting function to give an efficient method for

estimating the probability of misclassification. Pattern Recogn 9:147–149
McLachlan G (1992) Discriminant analysis and statistical pattern recognition. Wiley, New York
McLachlan G, Chevelu J, Zhu J (2008) Correcting for selection bias via cross-validation in the

classification of microarray data. In: Balakrishnan N, Pena E, Silvapulle MJ (eds) Beyond
parametrics in Interdisciplinary research: Festschrift in Honor of Professor Paranab K. Sen.
Hayward, Vol 1. IMS Collections, California, pp 364–376

McLachlan G, Do K, Ambroise C (2004) Analyzing microarray gene expression data. Wiley-
Interscience, New York

McLachlan G, Ng S-K (2008) Expert networks with mixed continuous and categorical feature
variables: a location modeling approach. In: Peters H, Vogel M (eds) Machine learning research
progress. Hauppauge, New York, pp 1–14
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Chapter 4
Agent-Based Modeling of Ductal Carcinoma
In Situ: Application to Patient-Specific Breast
Cancer Modeling

Paul Macklin, Jahun Kim, Giovanna Tomaiuolo, Mary E. Edgerton,
and Vittorio Cristini

Abstract Ductal carcinoma in situ (DCIS) of the breast is the most common
precursor to invasive carcinoma (IC), the second-leading cause of death in women
in USA. There has been great progress in modeling DCIS at both the cellular scale
(e.g., using cellular automata and agent-based models) and the population scale
(e.g., using partial differential equations or systems of ordinary differential equa-
tions), but these past efforts have been difficult to calibrate with patient-specific
molecular and cellular measurements. We develop a biophysically justified, agent-
based cellular model of DCIS that is well-suited to patient-specific calibration. The
model is modular in nature and can thus be readily extended to incorporate more
advanced biology. We give an example of recently developed, patient-specific cali-
bration of the model and conduct parameter studies that generate testable biological
hypotheses.

4.1 Introduction

Ductal carcinoma in situ (DCIS) is the most prevalent precursor to invasive breast
cancer (IC), the second-leading cause of death in women in USA. The American
Cancer Society predicted that 50,000 new cases of DCIS alone (excluding lobular
carcinoma in situ) and 180,000 new cases of IC would be diagnosed in 2007 (Jemal
et al. 2007; American Cancer Society 2007). Coexisting DCIS is expected in 80%
of IC, or 144,000 cases (Lampejo et al. 1994). Because DCIS is a known precur-
sor to IC, this leads us to hypothesize that up to 75% of DCIS cases progress to
invasion prior to detection by screening mammography. While DCIS itself is not
a life-threatening disease, it is a very important precursor to invasive breast cancer
because (1) it can be treated and (2) if left untreated, it is likely to progress to IC,
which is a deadly disease (Page et al. 1982; Kerlikowske et al. 2003; Sanders et al.
2005; Collins et al. 2005).
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Women prefer breast conserving surgery (BCS), also known as lumpectomy,
vs. complete mastectomy to treat DCIS (Silverstein 1997b); in USA today, ap-
proximately two-thirds of women diagnosed with DCIS will opt for BCS over
mastectomy. Women who undergo BCS face two problems. First, an estimated
38–72% of women seeking BCS will not have their entire tumor removed in one
surgery and may require up to three surgeries (called re-excisions) for complete re-
moval of the DCIS (Cheng et al. 1997; Cabioglu et al. 2007; Dillon et al. 2007).
Second, DCIS recurs at the same location greater than 20% of the time in patients
who undergo BCS alone (Patani et al. 2008). To combat this recurrence, women are
advised to undergo radiation therapy to the breast, which induces residual cells of
DCIS to apoptose. Even in women who have been treated with surgery and radia-
tion, DCIS recurs approximately 10% of the time (Patani et al. 2008). Half of these
recurrences already show progression to invasive cancer (IC). The single most im-
portant underlying problem that contributes to both re-excisions and recurrences is
DCIS that is left inside the breast (Silverstein 1997a).

Hence, predicting the size and shape of DCIS is critical to successfully eradicat-
ing the disease in patients and preventing recurrences that often progress to deadlier
invasive carcinoma. In addition, understanding the progression from DCIS to IC is
key to developing future treatments to improve patient survival. Mathematical mod-
eling can play a role in both these tasks. In this chapter, we introduce an agent-based
model of DCIS that is well-suited to patient-specific calibration, can be modularly
extended to focus attention on specific aspects of biological interest, and can be used
for generating testable scientific hypotheses. In ongoing and future work, we shall
incorporate the model developed here into a broader, multiscale framework capable
of making patient-specific, clinical predictions of DCIS outcome (Edgerton et al.
2008, in preparation-a; Chuang et al. in preparation; Macklin et al. in preparation;
Cristini and Lowengrub in preparation).

4.1.1 Biology of Breast Duct Epithelium

As an organ, the breast is organized as a system of 12–15 independent, largely par-
allel duct systems: clusters of milk-producing lobules that feed into a branched duct
system that terminates at the nipple (Wellings et al. 1975; Moffat and Going 1996;
Ohtake et al. 2001; Going and Mohun 2006). The duct systems are separated by sup-
porting ligaments and fatty tissue and drained by the lymphatic system (Tannis et al.
2001). The ducts have a well-characterized microarchitecture: each duct is a tubular
arrangement of epithelial cells, surrounded by myoepithelial cells (epithelial cells
with muscle-like properties, such as contracting the duct to transport milk) and a
basement membrane (hereafter BM). The center of the duct, known as the lumen, is
filled with either milk (during lactation) or fluid (see Fig. 4.1, top left). Surrounding
and supporting the duct is the stroma: a scaffolding of collagen and other fibers (col-
lectively called the extracellular matrix, or ECM) that is secreted and maintained by
fibroblast cells. The stroma also contains blood vessels that supply oxygen, glucose,
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a b c d

Fig. 4.1 Top left: Typical breast duct microarchitecture. Top right: Breast duct epithelial cell po-
larization. Bottom: Major DCIS types and IDC. Reprinted with permission from Macklin et al. (in
preparation)

and growth factors to the tissue. A key aspect of this architecture is the cells in
the breast duct have no direct access to nutrients; instead, these must diffuse into the
duct through the BM.

The arrangement of the epithelial cells in the duct depends upon the polar-
ization of the cells and the anisotropic distribution of different surface adhesion
molecules. Integrins line the cell base and adhere to several ligands (generally
laminin and fibronectin) on the basement membrane; E-cadherin molecules cover
the cell surface between the base and apex and adhere to E-cadherin molecules on
neighboring cells (Butler et al. 2008) (see Fig. 4.1, top right). The careful orches-
tration of integrin-mediated cell–BM adhesion and E-cadherin-mediated cell–cell
adhesion helps determine the geometry of the duct (Hansen and Bissell 2000; Wei
et al. 2007). While the epithelial cell population oscillates with the menstrual cycle
(Khan et al. 1998, 1999), on average the duct tissue is maintained in homeostasis by
carefully controlling the balance of cell proliferation and apoptosis (programmed
cell death). In particular, microenvironmental changes can trigger internal signal-
ing responses in the epithelial cells that lead to either proliferation or apoptosis as
warranted by the proper maintenance of the tissue architecture. After apoptotic cells
disintegrate into apoptotic bodies, they are either absorbed by surrounding epithelial
cells or digested by macrophages that can travel through and along the BM (Kerr
et al. 1994; Krysko et al. 2008).
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The integrin signaling pathway provides a method for cells to detect detachment
from the basement membrane: when integrins are actively adhered to their ligands
on the BM, they send signals within the cell that eventually trigger the produc-
tion of survival proteins (e.g., FAK) that inhibit p53-mediated apoptosis (Ilic et al.
1998; Wang et al. 2005). Loss of attachment to the BM therefore allows apoptosis
to occur (referred to as anoikis in this context), thus preventing overgrowth of cells
into the lumen (Danes et al. 2008). E-cadherin signaling helps the cells to detect the
presence or absence of neighbors: the attachment of E-cadherin molecules to like
E-cadherins on neighboring cells results in the formation of E-cadherin / “-catenin
complexes, thus preventing “-catenin from triggering the transcription of Cyclin
D1, c-myc, and Axin2; as a result, cell cycling is inhibited (Bienz and Clevers 2000;
Seidensticker and Behrens 2000; Lustig et al. 2002; Hino et al. 2005). When a neigh-
boring cell dies, this E-cadherin signaling is reduced, thereby allowing the cell cycle
to progress. This results in the production of a new daughter cell to fill in the gap
in the duct epithelium. The epithelial cells also respond to hormones (intercellular
signaling molecules) when they bind to surface receptors. In particular, estrogen,
progesterone, androgen, prolactin, and epidermal growth factor all affect epithelial
cell proliferation and apoptosis decisions, such as increased proliferation prior to la-
cation (to enlarge the breast duct system and prepare the lobules (Anderson 2004))
and increased apoptosis during breast involution (the “shutdown” process after lac-
tation (Baxter et al. 2007)).

4.1.2 Pathobiology of DCIS

The overexpression of oncogenes (growth-promoting genes) and underexpression
of tumor suppressor genes (growth-inhibiting and DNA repair genes) can disrupt
the balance of epithelial cell proliferation and apoptosis, leading to cell overpro-
liferation. This can occur either by the accumulation of DNA mutations (genetic
damage) (Simpson et al. 2005) or epigenetic anomalies (e.g., alterations in heritable
CH3 methyl groups that suppress key oncogenes (Ai et al. 2006)). The transforma-
tion from regular breast epithelium to carcinoma is thought to occur in stages. For
simplicity, we neglect the benign, precursor transformations (e.g., atypical ductal
hyperplasia or ADH (Simpson et al. 2005)) and focus on DCIS.

In the most well-differentiated classes of DCIS, the epithelial cells maintain their
basic polarity and anisotropic distribution of surface adhesion receptors, resulting in
partial recapitulation of the nonpathological duct structure within the lumen. These
demonstrate either finger-like growths into the lumen (micropapillary, as in Fig. 4.1a
(bottom)) or arrangements of duct-like structures within the duct (cribriform, as in
Fig. 4.1b (bottom)) (Silverstein 2000). In solid-type DCIS, the cells lack polarity
and the microstructures just described disappear. Instead, the cells proliferate until
they fill the entire lumen (solid type, as in Fig. 4.1c (bottom)) (Danes et al. 2008).
The proliferating cells uptake nutrients as it diffuses into the duct through the base-
ment membrane, leading to the development of oxygen, glucose, and growth factor
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gradients (decreasing nutrient concentrations with distance from the BM). If the
central oxygen level is sufficiently depleted, the interior tumor cells die (necrose),
leading to the formation of a necrotic core of cellular debris (comedo-type solid
DCIS, as in Fig. 4.1c (bottom)) (Silverstein 2000). (Note that while we regard
comedo-type DCIS as “solid with a necrotic core,” some pathological classifica-
tions regard comedo as separate from solid. In such classifications, solid-type is
rare compared to comedo-type (Jha et al. 2001), demonstrating the high probabil-
ity of hypoxia and necrosis in nonpapillary, non-cribriform DCIS.) Because these
dead cells are neither in close proximity to non-apoptotic epithelial cells nor reach-
able by macrophages, they are not removed from the lumen. Instead, they swell and
eventually burst (Barros et al. 2001), and their solid (i.e., non-water) components
are gradually calcified (Stomper and Margolin 1994; Cotran et al. 1994). It is these
calcifications that are generally detected by mammograms (Ciatto et al. 1994).

DCIS is a premalignant cancer because it is contained within the duct system
by the basement membrane, preventing metastasis. However, it is regarded as an
important precursor stage of invasive ductal carcinoma (IDC), where further muta-
tions or changes in gene expression lead to tumor cell motility along the basement
membrane, secretion of matrix-degrading enzymes (matrix metalloproteinases, or
MMPs) that degrade the BM, and subsequent invasion into the surrounding stroma
(Fig. 4.1d, bottom) (Silver and Tavassoli 1998; Adamovich and Simmons 2003). Be-
cause DCIS can progress from an undetectable state to filling an entire duct system
in a matter of months (Edgerton et al. 2008), there is substantial risk of progressing
from an undetected precursor of DCIS (e.g., ADH) to IDC between annual mam-
mograms. Indeed, it is estimated that over three-fourths of all the detected cases of
DCIS are invasive (Lampejo et al. 1994; Jemal et al. 2007; American Cancer So-
ciety 2007). Hence, predicting the behavior of DCIS is important to understanding
and hopefully preventing the progression to IDC.

4.1.3 A Mini-Review of DCIS Modeling

There has been little work to date in combining and applying the great success
in modeling the many individual aspects of cancer (e.g., growth and stability
as in the classic work by Greenspan (1976), cancer cell population dynam-
ics as in Shuryak et al. (2006), tumor morphology as in Frieboes et al. (2007),
tumor–microenvironment interactions as in Anderson et al. (2006) and Macklin and
Lowengrub (2007), and tumor response to chemotherapy in Frieboes et al. (2009))
to DCIS (Byrne et al. 2006). Kopans et al. (2003) recently attempted to explain the
clinical distribution of tumor sizes by exploring the impact of slow, intermediate,
and fast growth rates in a linear growth model. More recently, Sontag and Axelrod
(2005) used a compartmental model (a “population dynamics” model based upon
a system of ordinary differential equations governing transitions between subpop-
ulations) of DCIS to analyze the mutation pathways that transform normal breast
epithelial cells (BECs) to DCIS and later to IDC, and applied machine learning
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techniques to fit the model’s predicted distribution of cancer types to clinically
observed frequencies of DCIS and IDC grades. The work was not able to fully
match the clinically observed distribution without hypothesizing an as-yet unob-
served common progenitor to DCIS and IDC. Both these works were early, notable
attempts to use mathematical modeling to explain clinical observations. However,
because they lacked biologically grounded, mechanistic models of the fundamental
biophysical processes (the spatiotemporal interaction of proliferation, apoptosis,
adhesion, motility, and microenvironment), they cannot provide patient-specific
predictions, nor can they readily incorporate the growing body of molecular cancer
biology data to provide new, testable hypotheses on DCIS and the progression
to IDC.

Other recent models have applied physical conservation laws (mass, momen-
tum, and energy) to DCIS, resulting in continuum models of the spatiotemporal
dynamics of tumor cell density, nutrient distribution, and other key microenviron-
mental quantities at the tissue scale. In some of the most rigorous modeling to
date, Franks et al. (2003a) applied a continuum model to tumor propagation in
a single duct. One of their predictions was that strong cell–cell and cell–BM ad-
hesive forces, in combination with the difference in viscosity between the tumor
and the surrounding fluid in the duct lumen, would lead to an increasingly convex
shape of the leading edge of the tumor front. They did not include a model of mi-
gration of tumor cells at the surface of the BM. Subsequent work (Franks et al.
2003b, 2005) extended the model to include expansion of the duct due to outward
pressure exerted by the DCIS with the objective of predicting evolution to IC, as
well as central comedo-type necrosis. While continuum models bring the power
of high-performance scientific computing to biology (such as done recently by
Frieboes et al. (2007), Macklin and Lowengrub (2008), and Macklin et al. (2009)
in applying tissue-scale continuum models to brain and other cancers), they share
a common weakness: the key physical effects are lumped together in nonphysical
parameters that are not well suited to calibration by molecular and cellular data.

Others have focused on modeling individual cells and how their interactions lead
to the emergent properties of DCIS. Edgerton, Mannes, and others used a cellular
automata (grid-aligned) model of tumor proliferation and motility to recapitulate
the phenomenon known as “pagetoid spread,” which describes the migration of tu-
mor cells along the BM away from the “leading edge” or “tumor front” of the bulk
DCIS tumor (Mannes et al. 2002; Edgerton et al. in preparation-b). Bankhead et al.
(2007) used a cellular automata model to examine the 3-D population dynamics of
myoepithelial and breast epithelial cells and their associated progenitor cells, each
endowed with a virtual pseudogenome consisting of four lumped “genes,” whose
mutations led to virtual DCIS. However, the model used ad hoc, nonmechanistic
rules to govern the cells. Also, the grid-constrained cell arrangement precluded a
realistic treatment cell–cell and cell–BM adhesion, stress, and their impact on cell
arrangement. Rejniak, Hillen, and others used continuum fluid mechanics methods
to model the shape of individual cell membranes interacting under cell–cell and
cell–BM adhesion, and proliferation, without restricting cell positions to a lattice
(Rejniak and Dillon 2007; Dillon et al. 2008). Their detailed models were able to
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partially recapitulate the microstructure of DCIS, particularly due to the polarized
arrangement of cell adhesion molecules for well-differentiated epithelial cells. How-
ever, both these cell-based approaches neglected motility and were not rigorously
calibrated to molecular and cellular data.

4.1.4 Why Agent-Based Modeling?

While the aforementioned modeling attempts have provided a wealth of insight on
the mechanisms of DCIS, they have shortcomings as well. Continuum modeling
is too coarse-scaled, particularly because it cannot capture the spatial intricacy of
DCIS cell patterning (particularly in micropapillary and cribriform types) or cell
motility of a single layer of cells along the BM. Furthermore, continuum mod-
els tend to lump multiple physical properties into a few parameters. For example,
models such as Macklin and Lowengrub (2007) and Frieboes et al. (2007) lump
cell–cell, cell–BM, and cell–ECM adhesion, motility, and properties of the ECM
into a single “mobility” parameter. This is advantageous for studying the mathe-
matical properties of the physical systems, but makes it difficult to directly match
the model parameters to physical measurements. Indeed, many of the key patient-
specific measurements occur at the molecular (immunohistochemistry or IHC) and
cellular (cell patterning) scales, i.e., at a finer scale than continuum models.

In cellular automata (CA) models, cells occupy a rectangular grid of finite-sized
locations (e.g., 10�m2) and change state and/or location (by moving along four
or eight allowed, grid-aligned directions) based upon a set of biological rules. This
modeling technique has several key advantages, chiefly that they are simple to pro-
gram and hence accessible to many biologists and mathematicians without formal
programming experience, they are simple to modify with new biological rules, and
they are discrete and cell-based, and thus well-suited to modeling stochastic cell
behavior.

However, CA methods have several scientific drawbacks, particularly when ap-
plied to DCIS. Because they are grid aligned, they cannot capture the nonlattice cell
patternings of cribriform and papillary DCIS, and their rectangular cell arrange-
ments are generally insufficient to describe the often nonlattice cell arrangement
(e.g., hexagonal) found in solid DCIS as well. Indeed, lattice-based methods im-
pose constraints on cell locations and motion that can introduce artificial biases
and artifacts into the cell arrangements. Because the cells only have four possible
orientations, CA models can only crudely treat cell polarization. The artificial lattice
cell arrangement makes it at best difficult to treat mechanical stresses; this limits
the ability of CA models to rigorously explore the balance of cell–cell adhesion,
cell–BM adhesion, and cellular mechanical properties (incompressibility, deforma-
bility, etc.).

Agent-based models (also referred to as individual-based models) are a natu-
ral extension of CA methods. Each cell is an object or agent, endowed with as
much or as little detail as is necessary to the scientific problem. One can choose
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the complexity of the cell’s morphology, ranging from treating the cells as points in
space, spherical, or even of variable morphology as in recent work by Rejniak and
Dillon (2007) and Dillon et al. (2008). Their locations are not necessarily lattice-
constrained. They are well-suited to multiscale modeling of cells: each cell agent
can be given a subcellular scale, such as a protein signaling model. Zhang et al.
(2007) have been very successful in tying intracellular, protein-gene signaling mod-
els to individual cell phenotype and motility, and they have used it to simulate small
numbers of interacting cells in brain cancer. Their work also made key advances
in using molecular (e.g., microarray, Western blot) and cellular (e.g., chemotaxis
assay) data to inform and calibrate the cell-scale model. Several groups (Zaman
et al. 2005) have also made considerable advances at linking molecular- and cell-
scale models, often with calibration to data at the appropriate scales. Indeed, the
direct relationship between molecular- and cell-scale experimental measurements
and the corresponding components in well-formulated agent-based models makes
them ideal for integrative biology:

1. Experimental biology drives the formulation of hypotheses that are encapsulated
in the mathematical model equations.

2. Numerical and mathematical analyses of the (calibrated) mathematical model
help elucidate the dynamics of the system and suggest new, testable hypotheses
to explain the observed biological behavior.

3. New experiments are conducted to test the hypotheses, validate the model, and
suggest new model refinements. Return to 1.

For example, see the work by Frieboes et al. (2006) and Thorne et al. (2007), which
include an excellent descriptions of integrative modeling.

In our approach, we leverage these strengths to design a biophysically justified
model of DCIS that is built upon the balance of the basic forces acting on each cell,
can be calibrated to molecular and cellular measurements from patient biopsies, and
is modular in (software/modeling) architecture, allowing for the inclusion of more
advanced biology as necessary.

4.2 Agent-Based Model of DCIS

We now develop an integrative, agent-based model that is designed with the eventual
goal of patient-specific calibration with formalin-fixed, paraffin-embedded (FFPE)
patient tissue. The general philosophy of the model is to treat each cell as a phys-
ical object subject to classical conservations laws, particularly conservation of
momentum by Newton’s second law. We then incorporate biology as time- and
space-dependent coefficient functions, through the identification of the forces act-
ing on the cells, and via constituent relations. Below is a summary of the continuing
agent-based DCIS modeling by a team at the University of Texas Health Science
Center in Houston and the neighboring M. D. Anderson Cancer Center; full de-
tails are published in Macklin et al. (in preparation). In this chapter, we focus on
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modeling solid-type DCIS with and without central (comedo) necrosis, which to-
gether constitute the majority of all cases (Jha et al. 2001). Cells are not polarized,
and in particular, we assume an isotropic distribution of cell surface receptors. We
currently neglect the myoepithelial cells and treat epithelial cells as directly adhered
to the BM. Also, because our immunohistochemistry measurements cannot differ-
entiate stem cells, we do not include stem cell and progenitor cell dynamics in our
model. We treat the cells as mostly rigid spheres, and we model motion in (currently
2-D) ducts near a terminal lobule, which is approximated as a semicircular “endcap”
to the duct. The work can readily be extended to 3-D.

Each cell i is an agent endowed with physical quantities (mass mi , radius ri ,
volume Vi , solid volume VS;i , position xi , and velocity vi ) and phenotypic prop-
erties (cell state Si , internal protein signaling state, surface receptor distribution,
calcification, and parameters governing the “genetics” of the cell) (see Fig. 4.2). We
model the transitions between cell states as stochastic processes (with parameters

Fig. 4.2 Basic schematic of the model. Key forces acting on cell 5 are labeled. Reprinted with
permission from Macklin et al. (in preparation)



86 P. Macklin et al.

that depend upon the microenvironment and cell properties) and determine the cell
velocity based upon the balance of the physical forces acting upon it. Lastly, we
note that we use the same model for both cancerous and noncancerous duct ep-
ithelial cells; instead, the cells differ primarily in the values of their proliferation,
apoptosis, and motility coefficients, which is analogous to modeling alterations in
the cancerous cells’ oncogenes and tumor suppressor genes (Hanahan and Weinberg
2000).

4.2.1 A Brief Review of Exponential Random Variables
and Poisson Processes

Because we model transitions between cell states as stochastic processes, we begin
with a brief review of the necessary preliminaries. We note that this discussion is
necessarily sparse, introducing only the key concepts and not the full richness of
measure theory-based probability and stochastic processes. The interested reader
can find more information in widespread references, such as Shiryaev (1995) and
Øksendal (2007).

A random variable T is exponentially distributed with parameter ˛ if for any
t > 0, the probability Pr .T < t/ is given by

Pr .T < t/ D 1 � e�˛t : (4.1)

Also, T has expected value Ex ŒT � D 1
˛

(i.e., the mean hT i is 1=˛) and variance
Var ŒT � D 1

˛2 . The simple relationship between the mean hT i and the parameter
˛ makes it particularly useful for calibration by limited data. Exponential random
variables have the important property of being memoryless. For any 0 � t; �t , the
probability that T > t C�t given that T > t is

Pr .T > t C�t jT > t/ D Pr .T > �t/ ; (4.2)

i.e., if the event T has not occurred by time t , then the probability of that event oc-
curring by an additional �t units of time is unaffected by the earlier times, and so
we can “reset the clock” at time t . This property is useful for modeling cell decision
processes that are assumed to depend upon the current subcellular and microenvi-
ronmental state, and not on previous times. Even if the current cell decisions do
depend upon past times, that information can be built into the time evolution of the
internal cell state.

A stochastic process Nt is a series of random variables indexed by the “time” t .
In particular,Nt is a counting process if:

1. N0 	 0. (The initial number of eventsN0 is at least zero).
2. Nt 2 Z for all t 	 0. (The current number of events Nt is an integer).
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3. If s < t , then Nt � Ns 	 0. (We count the cumulative number of events, and
Nt �Ns gives the number of events occurring in the time interval .s; t �).

A Poisson process Pt is a particular type of counting process (with parameter ˛)
satisfying:

1. P0 D 0. (The initial count is 0).
2. If Œs; s C�s� and Œt; t C�t� are nonoverlapping intervals, then PsC�s �Ps and
PtC�t � Pt are independent random variables. (What happens in the interval
.t; t C�t/ is independent of what happened in .s; s C�s/).

3. For any 0 � s < t , the distribution ofPt �Ps only depends upon the length of the
interval .s; t/ (stationary increments), and in particular, if n 2 N D Z \ Œ0;1/,

Pr .Pt � Ps D n/ D e�˛.t�s/˛.t � s/

nŠ
: (4.3)

Poisson processes have a useful property that we shall rely upon in the model. If
TnC1 is the interarrival time between the events inf ft W Pt D ng (the first time at
which Pt D n) and inf ft W Pt D nC 1g for n 2 N, then Tn is an exponentially
distributed random variable with parameter ˛, and in particular,

Pr .PtC� t / � Pt 	 1 D Pr .Tn < � t/ D 1 � e�˛� t : (4.4)

Lastly, we note that if ˛ D ˛.t/ varies in time, then Pt is a non-homogeneous
Poisson process with interarrival times given by

Pr .PtC�t � Pt D n/ D
e� R tC�t

t ˛.s/ds
�R tC�t

t
˛.s/ds

�n

nŠ

Pr .PtC� t � Pt�1/ D Pr .Tn < � t/

D 1 � e� R tC�t
0 ˛.s/ds


 1 � e�˛.t/�t ; �t # 0:

In our work, the Poisson processes are nonhomogeneous due to their dependencies
upon microenvironmental and intracellular variables that vary in time. However,
these can be approximated by homogeneous processes on small time intervals Œt; tC
�t� as above (Macklin et al. in preparation).

4.2.2 A Family of Potential Functions

We introduce a family of interaction potential functions '.xIR; n/, parameterized
by R and n, satisfying
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'.xIR; n/ D
8<
:� R

nC2

�
1 � jxj

R

�nC2

if jxj < R
0 else;

(4.5)

' 0.xIR; n/ D
8<
:
�
1 � x

R

�nC1
if x < R

0 else;
(4.6)

r'.xIR; n/ D
8<
:
�
1 � jxj

R

�nC1
x

jxj if jxj < R
0 else;

(4.7)

where R is the maximum interaction distance of ', and n is the power of the inter-
action potential. We use this particular form of potential function because it satisfies
the following:

1. The potential (and its derivatives) has compact support: it is zero outside a closed
bounded set (in this case, the closed ball B.0; R/). This is a more realistic depic-
tion of cell–cell and cell–BM interactions than exponential decay, for example,
which nonphysically gives interaction over infinite distances.

2. For any R and n, and for any 0 < jxj < R, we have

0 D ' 0.RIR; n/ < ' 0.jxj IR; n/ < ' 0.0IR; n/ D 1: (4.8)

The baseline case n D 0 is a linear ramping, and for higher n, the function tapers
off to zero gradient smoothly.

A good example and discussion of the use of potential functions to mediate cell–
cell adhesion and interaction for individual-based models can be found in Byrne and
Drasdo (2009).

4.2.3 Cell States

To emulate the biological function of cells, we endow each cell agent with a state
S.t/ 2 fQ;P ;A;N ; Cg.

4.2.3.1 Quiescent Cells (Q)

Quiescent cells are not actively cycling but are instead in a “resting state” (G0, in
terms of the cell cycle); this is the “default” cell state in the agent framework. We
model the transitions between cell states as stochastic events governed by expo-
nentially distributed random variables. (That is, the transition events are interarrival
times modeling the elapsed time between proliferation and apoptosis events. A fuller
discussion of the mathematical theory of this modeling construct can be found in
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Macklin et al. (in preparation).) The subcellular scale is built into this framework by
making the mean of these random exponential variables depend upon the microen-
vironment and the cell’s internal properties.

4.2.3.2 Proliferation (P)

Cells transition from the quiescent state Q to the proliferative state P with a prob-
ability that depends upon the microenvironment. For a cell in the quiescent state at
time t , the probability that the cell enters the proliferative state during the interval
.t; tC�t� is modeled as an exponential interarrival time with parameter ˛P.S; ı; �/,
where ı represents the microenvironment and � is the cell’s internal state. Hence,

Pr .S.t C�t/ D P jS.t/ D Q/ D 1 � e�˛P�t 
 ˛P�t:
1 (4.9)

By our preliminary IHC results, there is a correlation between the microenviron-
mental oxygen level � (nondimensionalized by �1, the far-field oxygen level in
nondiseased, normoxic breast tissue, i.e., “well-oxygenated” tissue) and the prolif-
erative index PI (see Fig. 4.3, bottom left). Thus, we expect ˛P to be an increasing
function of � , which we model by

˛P D ˛P.S.t/; �; �/ D
(
˛P.�/���ŒH�

1��H
if S.t/ D Q

0 else;
(4.10)

where �H is a threshold oxygen value at which cells become hypoxic, and ˛P.�/ is
the cell’s Q ! P transition rate when � D 1 (i.e., in “well-oxygenated” tissue),
which depends upon the cell’s genetic profile �. For now, we shall model ˛P as
constant for and specific to each cell type (tumor cells or noncancerous epithelial
cells).

Once a cell has entered the proliferative state P , it remains in that state for time
ˇ�1

P , which may generally depend upon the microenvironment and the cell’s inter-
nal state, but which we currently model as fixed for both tumor and epithelial cells
(with the same value). This models our assumption that both tumor cells and (non-
cancerous) epithelial cells use the same basic cellular machinery to proliferate, but
with differing frequency due to differing expressions of oncogenes (Hanahan and
Weinberg 2000). Once the cell exits the proliferative state, we replace it with two
identical daughter cells, both with phenotypic properties inherited from the parent
cell, and initially placed in the “default” quiescent state. We position the daughter
cells adjacent to one another with center of mass equal to the position of the par-
ent cell.

1 While using the interarrival time ordinarily gives probability of having at least one proliferation
event (rather than precisely one) in the interval .t; t C�t�, our form of ˛P in (4.10) precludes this,
because ˛P decreases to zero until completing proliferation.
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Fig. 4.3 Verification of the morphological features of the calibrated simulation. Top: Simulation
at time 30 days. White cells are quiescent, striped cells that are proliferating (virtual Ki-67), black
cells are apoptotic (virtual cleaved Caspase-3), medium gray cells are necrotic, and central dark
gray cells are calcified debris. Small cells along the BM are noncancerous epithelium. Bottom left:
Ki-67 immunohistochemistry of a duct cross section. White arrows show Ki-67 positive nuclei. The
gray arrow shows necrotic debris. Bottom right: H&E staining showing calcifications (black arrow)
and the gap between the viable rim and necrotic core (white arrow). Reprinted with permission
from Macklin et al. (in preparation)

4.2.3.3 Apoptosis (A)

Apoptotic cells are undergoing “programmed” cell death in response to internal
protein signaling. As with proliferation, we model the transition as an exponential
interarrival time with parameter ˛A.S; ı; �/. In our preliminary IHC, apoptotic cells
are sporadic within the tissue, with no apparent correlation with oxygen (Edgerton
et al. in preparation-a). We thus model ˛A.S; �/ as fixed for each cell population.
Hence,

Pr .S.t C�t/ D AjS.t/ D Q/ D 1 � e�˛A�t ; (4.11)
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where

˛A D ˛A.S.t/; �/ D
�
˛A.�/ if S.t/ D Q
0 else:

(4.12)

Cells remain in the apoptotic state for a fixed amount of time ˇ�1
A , similarly to pro-

liferation. Upon leaving the apoptotic state, cells are deleted from the simulation to
model the removal of their solid content (encapsulated as apoptotic bodies) by sur-
rounding epithelial cells, while their previously occupied volume is made available
to the surrounding cells to model the release of the cells’ water content after lysis.

4.2.3.4 Necrosis (N )

Necrosis can be described as unplanned cell death, either due to injury or due to se-
vere nutrient deprivation, leading to internal energy (ATP) depletion (Scarlett et al.
2000; Krysko et al. 2008). In this model in particular, cells become necrotic when
the oxygen level � dips below a threshold value �N where the cell can no longer
sustain metabolism and hence depletes its ATP. For simplicity, we set �N D �H.
Any state in fQ;A;Pg irreversibly and deterministically transitions to the necrotic
state N when � � �N. We note that cells should be able to survive for a short time
span in a hypoxic state before irreversibly transitioning to the necrotic state. How-
ever, in our testing of this model, we have found that introducing such a “hypoxic
distress” state does not have any significant impact on the model dynamics (Macklin
et al. in preparation).

We assume that cells remain in the necrotic state for a fixed time ˇ�1
N , during

which time they gradually degrade and calcify. In particular, we assume that the
surface receptors degrade, the cell loses its water content (a simplification of cell
swelling and subsequent bursting early in necrosis), and the solid content is gradu-
ally calcified. In this early model of the necrosis state, we approximate all three of
these processes as occurring simultaneously at the same rate ˇN. We discuss the im-
plications of this assumption in Sect. 4.5.4.1, with future improvements in Sect. 4.6.

We model the degradation of the surface receptors S (where S can be the nondi-
mensionalized E-cadherin or integrin expression (between 0 and 1), and � is time
since entering the necrotic state) by

dS

d�
D � .ˇN log 100/ S; (4.13)

S.0/ D 1; (4.14)

where the coefficient of the ODE was chosen such that S.ˇ�1
N / D 0:01 S.0/. This

models the assumption that virtually all of the surface receptor S is degraded by the
end of necrosis at time � D ˇ�1

N .
We assume that water loss is proportional to surface area of the necrotic cells, as

well as the remaining water fraction (.V � VS/=V , where VS is the solid volume of
the cell). Hence, we model
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dV

d�
D �.2ˇN log 100/.4�r2.�//

V � VS

V
; (4.15)

where the coefficient was chosen to make this nonlinear ODE satisfy V.ˇ�1
N / 
 VS

(Macklin et al. in preparation), i.e., water loss is mostly complete by the end of
necrosis.

Lastly, we assume a constant rate of cell calcification, with the necrotic cell 100%
calcified by time ˇ�1

N . If C is the nondimensional degree of calcification, then

C.t/ D ˇN�: (4.16)

4.2.3.5 Calcified Debris (C)

Once cells leave the necrotic state N , they irreversibly enter the calcified debris state
C. These cells are assumed to have zero surface integrin and E-cadherin adhesion
receptors, and hence they can only adhere to other debris particles; this is a sim-
plified model of the (crystalline) chemical bond between calcium phosphate and/or
calcium oxalate molecules that comprise the microcalcification.

4.2.4 Cell Motion Based upon the Balance of Forces

Each epithelial cell is subject to competing forces that determine its motion within
the duct. Cells adhere to other cells (Fcca) and the basement membrane (Fcba), cal-
cified debris particles adhere to other calcified debris particles (Fdda), cells and
calcified debris particles resist compression by other cells and debris particles (Fccr),
and the basement membrane resists its penetration and deformation by cells and de-
bris particles (Fcbr). See Fig. 4.2, where we show the forces acting on cell 5. In
addition, moving cells and debris particles experience a drag force by the luminal
and interstitial fluids (Fdrag). We express this balance by Newton’s second law, act-
ing on cell i :

mi Pvi D
X

F D
X

j

Fij
cca C Fi

cba C
X

j

Fij
dda C

X
j

Fij
ccr C Fi

cbr C Fi
drag: (4.17)

We model the drag force by Fi
drag D ��vi , and we make the “inertialess” assump-

tion that the forces equilibrate quickly, and so jmi Pvi j 
 0. Hence, we approximateP
F D 0 and solve for the cell velocity:

vi D 1

�

0
@X

j

Fij
cca C Fi

cba C
X

j

Fij
dda C

X
j

Fij
ccr C Fi

cbr

1
A : (4.18)
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This formulation has a convenient interpretation: each term 1
�

F� is the “terminal”
(equilibrium) velocity of the cell when fluid drag and F� are the only forces acting
on the cell. This will be particularly useful when calibrating cell motility in future
work, as motility is generally measured as a cell velocity (Harms et al. 2005). We
now detail the biological assumptions of the remaining forces.

4.2.4.1 Cell–Cell Adhesion (Fcca)

E-cadherin molecules on the cell surface form homophilic bonds with E-cadherin
molecules on neighboring cells (Panorchan et al. 2006). Hence, the strength of the
cell–cell adhesive force between neighboring cells is proportional to the product of
their respective e-cadherin surface receptor expressions. Furthermore, the strength
of the adhesion increases as the cells are drawn more closely together, bringing
more surface area and hence more surface receptors into direct contact. We model
the adhesive force on cell i resulting from adhesion between cells i and j by

1

�
Fij

cca D ˛ccaEiEj r' �xj � xi I Ri
cca CRj

cca; ncca
�
; (4.19)

where Ei and Ri
cca are cell i ’s (nondimensionalized) surface e-cadherin receptor

expression and maximum cell–cell adhesion interaction distance, respectively, and
ncca is the cell–cell adhesion power introduced with our potential function family
in Sect. 4.2.2. We typically set Ri

cca > ri , to approximate the ability of cells to
deform before breaking all adhesive bonds, with the strength of force decreasing as
the separation between the cells increases. The ˛cca can be interpreted as the force
per (nondimensionalized) e-cadherin bond.

4.2.4.2 Cell–BM Adhesion (Fcba)

Integrin molecules on the cell surface form heterophilic bonds with specific ligands
(generally laminin and fibronectin (Butler et al. 2008)) on the basement membrane,
here assumed to be constant. Hence, the strength of the cell–BM adhesive force is
proportional to its integrin surface receptor expression. Furthermore, the strength of
the adhesion increases as the cells approaches the BM, bringing more cell surface
adhesion receptors in contact with their respective ligands on the BM. We model the
adhesive force on cell i resulting from adhesion to the BM by

1

�
Fi

cba D ˛cbaIi r'
�
d.xi /I Ri

cba; ncba
�
; (4.20)

where d is the distance to the basement membrane, Ii and Ri
cba are cell i ’s

(nondimensionalized) surface integrin receptor expression and maximum cell–BM
adhesion interaction distance, respectively, and ncba is the cell–BM adhesion power
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introduced with our potential function family in Sect. 4.2.2. As with cell–cell adhe-
sion, we typically set Ri

cba > ri to approximate the cell’s limited capacity to deform
before breaking all its adhesive bonds. The ˛cba can be interpreted as the force per
(nondimensionalized) integrin bond.

4.2.4.3 (Calcified) Debris–(Calcified) Debris Adhesion (Fdda)

We model adhesion between calcified debris particles similarly to e-cadherin-
mediated cell–cell adhesion. We assume that calcium phosphate and/or calcium
oxalate crystals in the interacting calcified debris particles remain strongly bonded
as part of an overall crystalized structure – the microcalcification. We model the ad-
hesive force on calcified debris particle i resulting from adhesion between calcified
debris particles i and j by

1

�
Fij

dda D ˛ddaCiCj r'
�

xj � xi I Ri
dda CR

j
dda; ndda

�
; (4.21)

where Ci and Ri
dda are cell i ’s (nondimensionalized) degree of calcification and

maximum debris–debris adhesion interaction distance, respectively, and ndda is
the cell–cell adhesion power introduced with our potential function family in
Sect. 4.2.2. The ˛dda can be interpreted as the adhesive force between two fully
calcified debris particles.

4.2.4.4 Cell–Cell Repulsion (Including Calcified Debris) (Fccr)

Cells resist compression by other cells due to the internal structure of their cy-
toskeletons, the incompressibility of their internal cytoplasm (fluid), and the surface
tension of their membranes. We thus introduce a cell–cell repulsive force that is
zero when cells are just touching, and then increases rapidly as the cells are pressed
together. However, cells do have a capacity deform in response to pressure; we ap-
proximate this by allowing some overlap between cells. We model the force by

Fij
ccr D �˛ccrr'

�
xj � xi I ri C rj ; nccr

�
; (4.22)

where nccr is the cell–cell repulsion power (Sect. 4.2.2) and ˛ccr is the maximum
repulsive force when the cells are completely overlapping.

4.2.4.5 Cell–BM Repulsion (Including Debris) (Fcbr)

We model the basement membrane as rigid and nondeformable due to its relative
stiffness and strength. Hence, it resists deformation and penetration by the cells and
debris particles. We model the force by
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Fi
cbr D �˛cbrr'.d.xi /I ri ; ncbr/; (4.23)

where ncbr is the cell–BM repulsion power (Sect. 4.2.2) and ˛cbr is the maximum
repulsive force when the cell’s center is embedded in the basement membrane.

4.2.5 Duct Geometry

We denote the duct lumen by˝ and the duct boundary (BM) by @˝ . In this chapter,
we treat the duct as a rectangular region (a longitudinal cross section of a cylinder) of
radius rduct and length `duct. We terminate the left side of the duct with a semicircle,
as an initial approximation to a lobule. (See Fig. 4.3 for a typical simulation view.)

While the ducts we simulate in this chapter are relatively simple, we introduce
a framework that allows us to simulate DCIS growth in arbitrary duct geometries,
such as near a branch in the duct tree. We represent the duct wall implicitly by
introducing an auxiliary signed distance function d (a level set function) satisfying

8̂̂
ˆ̂<
ˆ̂̂̂:

d.x/ > 0 x 2 ˝
d.x/ D 0 x 2 @˝
d.x/ < 0 x … ˝ D ˝ [ @˝

jrd.x/j � 1:

(4.24)

The gradient of the distance function rd yields the normal vector n (oriented from
the BM into the lumen) to the interior duct surface. We have adapted this technique
to represent the morphology of moving tumor boundaries, and it is well suited to the
eventual description of duct expansion (Macklin and Lowengrub 2005, 2006, 2007,
2008; Frieboes et al. 2007; Macklin et al. 2009).

Level set methods were first developed by Osher and Sethian (1988) and have
been used to study the evolution of moving surfaces that exhibit frequent topology
changes (e.g., merger of regions and fragmentation), particularly in the contexts
of fluid mechanics and computer graphics. (See the books by Sethian (1999) and
Osher and Fedkiw (2002) and the references by Osher and Sethian (1988), Osher
and Fedkiw (2001), and Sethian and Smereka (2003).) For more information on the
level set method and applications, please see Osher and Sethian (1988), Sussman
et al. (1994), Malladi et al. (1995, 1996), Adalsteinsson and Sethian (1999), Sethian
(1999), Osher and Fedkiw (2001, 2002), and Sethian and Smereka (2003).

4.2.6 Intraductal Oxygen Diffusion

We model the release of oxygen by blood vessels outside the duct, its diffusion
through the duct wall @˝ and throughout the duct lumen ˝ , and its uptake by
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epithelial cells and its decay (e.g., by reacting with molecules in the interstitial and
luminal fluid) by

8<
:
@�

@t
D Dr2� � �� if x 2 ˝

� D �B if x 2 @˝;
(4.25)

where � is the nondimensional oxygen level (scaled by the oxygen concentration in
well-oxygenated tissue near the blood vessels in the stroma),D is the oxygen diffu-
sion coefficient, � is the cellular oxygen uptake rate (generally 0:1 min�1, currently
assumed equal for all cell types for simplicity), and �B is the (nondimensional) oxy-
gen level on the basement membrane.

The oxygen diffusion equation admits an intrinsic diffusion length scale L that
we use to nondimensionalize space in (4.25):

L D
r
D

�
: (4.26)

By the literature, we have L 
 100�m (Owen et al. 2004).

4.3 Numerical Technique

While the cells’ positions are not lattice constrained, we introduce several indepen-
dent computational meshes for the field variables. In particular, we introduce an
oxygen mesh that discretizes the duct lumen with spacing �x D �y D 0:1 (ap-
proximately 10-�m spacing in dimensional space) to resolve oxygen gradients. We
also introduce a cell interaction mesh (see Sect. 4.3.1) with 1-�m spacing; this con-
struct allows us to avoid directly testing each cell for interaction with every other
cell, hence avoiding O �# cells2

�
computational cost.

The cells are implemented in an object-oriented C++ framework, where each cell
is an instance of a Cell class and endowed with instances of Cell properties
(proliferation and apoptosis parameters, initial radius and volume, etc.) and
Cell state (cell state, position, velocity) classes. We use a doubly linked list
structure to conveniently order the cells, which allows us to easily delete apoptosed
cells and insert new daughter cells.

To update our agent-based model at time t to the next simulation time t C�t , we:

1. Update the oxygen solution on the oxygen mesh. This is achieved using standard
explicit forward Euler methods. In particular, the oxygen �.xi ; yj ; t C �t/ is
given by
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�.xi ; yj ; t C�t/

D �.xi ; yj ; t/C�t
�
�.xi ��x; yj ; t/� 2�.xi ; yj ; t/C �.xi C�x; yj ; t/

�x2

C�.xi ; yj ��y; t/� 2�.xi ; yj ; t/C �.xi ; yj C�y; t/

�y2
� �.xi ; yj ; t/

�
:

(4.27)

We note that in practice, we may need to iterate a few times with a smaller ��
chosen to satisfy a CFL stability condition. Fuller details can be found in Macklin
et al. (in preparation).

2. Iterate through all the cells to update the interaction mesh (see Sect. 4.3.1).
3. Iterate through all the cells to update their states according to the transition mod-

els in Sect. 4.2.3. Update the necrosing cells’ radii, volumes, and calcification as
described.

4. Iterate through all the cells to update their velocities as described above.
5. Iterate through all the cells to determine max jvi j. Use this to determine the new
�t using the stability criterion�t < 1=max jvi j.

6. Iterate through all the cells to update their positions according to their new veloc-
ities. We use forward Euler stepping (xi .t C�t/ D xi .t/ C�tvi .t/), although
improvements to higher-order Runge–Kutta methods are straightforward.

Notice that all of these steps require at most cycling through all the cells. So long
as interaction testing also involves at most cycling through all the cells, the overall
simulation requires computational effort that is linear in the number of cells. This
is an improvement over most discrete models, where cellular interactions require
quadratic effort in the number of cells.

4.3.1 Efficient Interaction Testing

With spatial resolution given by the interaction mesh (1-�m micron spacing), we
create an array of linked lists of interactions as follows:

1. Let R D 2maxi

˚
r i

cca

	
2. Initialize the array such that each pointer is NULL.
3. For each cell i , append its memory address to the list for each mesh point within

a distance R of its center xi .

Once complete, at any mesh point .i; j /, we have a linked list of cells which are
allowed to interact with a cell centered at or near .xi ; yj /.

We use this list whenever we compute a quantity of the form

X
j

f
�
celli ; cellj

�
.xk ; y`/ (4.28)
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by contracting the sum to the members of the linked list at .xk; y`/. Because the
number of points written to the array is fixed for each cell, this reduces the com-
putational cost of cell–cell interaction testing to O .# cells/, rather than the more
typical O �# cells2

�
. Furthermore, writing this interaction data structure still allows

us to use arbitrary cell–cell interactions. Notice that this computational gain relies
upon the fact that cells can only interact over finite distances.

4.4 Estimating Key Parameters

To make the model predictive we must constrain the nonpatient-specific parameters
as much as possible. We now summarize key parameter estimates made in Macklin
et al. (in preparation).

4.4.1 Cell Cycle and Apoptosis Time

We estimate that the cell cycle time, ˇ�1
P , is 18 h by the modeling literature (e.g.,

see Owen et al. (2004)). The time to complete apoptosis, ˇ�1
A , is generally difficult

to determine. Experimental and theoretical estimates, however, are on the order of
hours (e.g., see Kerr et al. (1994), Hu et al. (1997), and Scarlett et al. (2000)). We
estimated ˇA for BECs by:

1. Assuming that cancerous and noncancerous BECs use the same subcellular ma-
chinery to complete apoptosis, and hence ˇ�1

A can be estimated using noncancer-
ous cells (Hanahan and Weinberg 2000)

2. Assuming similarly that ˇ�1
P D 18 h for both cancerous and noncancerous cells

3. Assuming that on average, the noncancerous BEC population is maintained in
homeostasis in nonlactating, noninvoluting women (Anderson 2004).

Putting these assumptions together, we find that a homeostatic epithelial breast cell
population satisfies

ˇAAI D 1

18 h
PI; (4.29)

where AI is the apoptotic index (the percentage of cells in the apoptotic state A)
and PI is the proliferative index (the percentage of cells in the proliferative state P).
Using published statistics for AI and PI in noncancerous breast duct epithelium
for a large group of pre- and postmenopausal women (Lee et al. 2006b) with the
above, applied separately to the pre- and postmenopausal women, we estimated
(after accounting for the fraction of apoptotic cells not imaged due to limitations
of TUNEL assays (Scarlett et al. 2000; Macklin et al. in preparation)) that ˇ�1

A D
8:6 h for both groups, consistent with the order-of-magnitude estimate above. See
Macklin et al. (in preparation) for a more detailed derivation of this estimate. We
point out that the good agreement in the premenopausal and postmenopausal ˇA
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estimates, in spite of very different hormonal conditions, gives further credibility to
our assumption that cell apoptosis uses the same machinery with differing frequency
in cancerous breast epithelium.

4.4.2 Oxygen Parameters

By the literature, the cellular oxygen uptake rate is � D 0:1 min�1, the diffusion
length scale is L D 100�m, and the hypoxic oxygen threshold is �H D 0:2 (Ward
and King 1997; Franks et al. 2003a).

4.4.3 Cell Mechanics

We estimate the solid volume fraction of cells .VS=V / at approximately 10%, based
upon the published data of Macknight et al. (1971), combined with the assumption
that the solid cell component is 1–10 times denser than water (Macklin et al. in
preparation).

We estimate the maximum cell–cell and cell–BM interaction distances Rcca and
Rcba by using published measurements of breast cancer cell deformations. Byers
et al. (1995) measured the deformation of MCF-7 (an adhesive, fairly nonaggres-
sive breast cancer cell line) and MCF-10A (a benign cell line) BECs in shear flow
conditions, and found the deformations to be bounded around 50–70% of the cell
radius; this is an upper bound on Rcca and Rcba. Guck et al. (2005) measured BEC
deformability (defined as additional stretched length over relaxed length) after 60 s
of stress using an optical technique. The deformability was found to increase with
malignant transformation: MCF10 measured 10.5% deformation, MCF7 measured
21.4%, MCF7 modified with a weaker cytoskeleton measured 30.4%, and MDA-
MB-231 (an aggressive cancer cell line) measured 33.7% deformability. Because
DCIS is moderately aggressive, we use the MCF7 estimate of 21.4% deformability,
and thus set Ri

cca D Ri
cba D 1:214ri . It is likely that the cell–cell and cell–BM ad-

hesive forces decrease rapidly with distance, and so we used the lowest (simplest)
adhesion powers to capture a smooth decrease at the maximum interaction distances,
setting ncca D ncba D 1. For simplicity, we set the repulsion powers to 1 as well.

4.5 Application to Patient-Specific Modeling

We now demonstrate calibration of the model to patient-specific data. After verify-
ing that we have successfully calibrated the model, we give examples of its use for
investigating open scientific and clinical questions, as well as its ability to generate
hypotheses for future investigation.
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4.5.1 Data Sources and Processing

Under the leadership of Mary Edgerton, we created a series of 13 index cases of
DCIS from past M. D. Anderson Cancer Center patients who had undergone full
mastectomies, rather than breast-conserving surgery. In the work below, we focus
on calibrating the model to one of these 13 index cases. We now present a brief
overview of the (deidentified) data we use for calibration. Full details are available in
Edgerton et al. (2008, in preparation-a) and Chuang et al. (in preparation), including
an in-depth analysis of the predictivity of a patient-calibrated, multiscale model of
DCIS, of which this agent-based model is a component.

We selected a minimum of two and maximum of three formalin-fixed paraf-
fin embedded (FFPE) blocks of tumor tissue. We selected blocks that contained
the highest density of DCIS. Each block had a minimum of 1-cm2 surface area of
breast tissue for examination. Six�m-thick sections were cut for staining either with
Hematoxylin and Eosin (H&E) to visualize the tumor, or with IHC for a specific an-
tibody to identify and quantify a particular antigen and its subcellular location at a
minimum resolution of 2�m (the spatial resolution equivalent to the cells’ nuclear
half-width). To measure the proliferative index PI, we stained for Ki-67, the current
“gold standard” proliferation marker that is present throughout the cell cycle, except
portions of G1 (Gerdes et al. 1984). To measure the apoptotic index AI, we stained
for cleaved Caspase-3, a key enzyme used throughout the apoptosis cycle to degrade
subcellular structures (Duan et al. 2003).

To quantify the AI and PI on IHC-stained sections, we imaged multiple areas
on the sections at 100� and 200� and analyzed these images using a custom-built
Visual Basic plug-in for Image Pro Plus 4.5 to count the total number of Ki-67 and
cleaved Caspase-3 positive nuclei (numerators for the PI and AI, respectively) and
the total number of tumor cell nuclei (denominator for the PI and AI) within the
tumor viable rims (see the solid-type DCIS in Fig. 4.1, bottom row). Due to the low
number of apoptotic cells and low staining intensity, we counted the AI manually.
We measured the duct radius and intraductal viable rim size using a calibrated scale
embedded in the images. We calculated the cell density in the viable rim by divid-
ing the total number of tumor cells by the area (in �m2) of the viable rim. The
measurement errors were estimated by recording the sample distributions (means
and standard deviations).

A summary of the most important measurements for a (deidentified) case is given
in Table 4.1.

4.5.2 Patient-Specific Calibration

Using this information and the protocols detailed in Macklin et al. (in prepa-
ration), we now calibrate the model to a specific case. Because the cells are
essentially confluent in the viable rim, we estimate the tumor cell radius by rcell Dp
1=.��/ 
 9:749�m. Thus, by the earlier estimates of cell deformability, we set

rcca D rcba D 12�m.
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Table 4.1 Key data for a deidentified patient. Reprinted with permis-
sion from Macklin et al. (in preparation)

Quantity Measured mean Units

Duct radius rduct 158.737 �m
Viable rim thickness T 78.873 �m
PI 17.429 %
Raw AI 0.638 %
Corrected AI 0.831 %
Cell density � 0.003217 cells per �m2

We estimate the oxygen boundary condition �B by analytically solving the oxy-
gen model to steady state in a rectangular domain, assuming the solution only varies
with distance r from the duct center, that � D �H D 0:2 at the interior boundary
of the viable rim (rduct � T ), and � 0.0/ D 0 (Macklin et al. in preparation). By this
method, we estimate �B 
 0:3813.

We use our measurements of AI and PI, along with our estimates of ˇA and
ˇP, to uniquely determine h˛Ai D ˛A and h˛Pi D ˛P.h�i � �H/=.1 � �H/. (We
estimate h�i by integrating the analytical solution.) By the analysis in Macklin et al.
(in preparation),

0 D h˛Pi.1 � AI � PI/ � ˇP.PI C PI2/C ˇAAI � PI; (4.30)

0 D ˛A.1 � AI � PI/� ˇA.AI � AI2/� ˇPAI � PI: (4.31)

Solving this and calculating ˛P, we get ˛�1
A D 40051:785min and ˛�1

P D
418:903min.

To calibrate the mechanical parameters, we balance the forces of cell–cell adhe-
sion and cell–cell repulsion to enforce the measured cell density. If we approximate
the cell arrangement as two-dimensional hexagonal circle packing (the optimal
arrangement of circles in two dimensions), then the density � D 0:003217 cells

per �m2 is equivalent to a spacing of s D
q
2=.

p
3�/ 
 18:946�m between the

cell centers. We set the adhesive and repulsive forces equal at this distance and solve
for the ratio of the forces’ parameters, yielding:

˛cca

˛ccr
D 0:01810: (4.32)

Notice that this does not fully constrain the magnitude of the forces; we are free
to vary the magnitude of both forces so long as this ratio is maintained. This is
equivalent to varying how strongly we enforce the mean density, and in the future
we will constrain this number by attempting to match the standard deviation of the
density as well. In our preliminary testing, we have found that setting ˛cca D 0:1448

and ˛ccr D 8, with ˛cba D 0:1448 and ˛cbr D 5 sufficiently enforces the density
(Macklin et al. in preparation).
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Table 4.2 Verification of the patient-specific calibration. Note that there is no
standard deviation for the simulated cell density because it was calculated over the
entire viable rim. Reprinted with permission from Macklin et al. (in preparation)

All figures given as mean ˙ standard deviation

Quantity Patient data Simulated

PI (%) 17.429 ˙ 9.996 17.193 ˙ 7.216
AI (%) 0.8813 ˙ 0.5798 1.447 ˙ 3.680
Viable rim thickness (�m) 78.873 ˙ 13.538 80.615 ˙ 4.454
Cell density (cells/�m2) 0.003217 ˙ 6.440e-4 0.003336

4.5.3 Verification of Calibration

We verified the calibration by checking the model’s predictions of AI, PI, viable rim
thickness, and density in the viable rim. We did this by slicing the computational
domain at time t D 30 days into 6-�m-thick slices and performing virtual immuno-
histochemistry on those slices. We also calculated the viable rim thickness in each
slice and the average cell density over the entire viable tumor region. The results can
be found in Table 4.2. As we can see, the proliferative index (PI) matches extremely
well. The apoptotic index (AI) is within error tolerances, and because apoptosis is
a rare stochastic event (<1%) in a region containing fewer than 500 cells, consider-
able noise is anticipated, as can indeed be seen in the patient AI data as well. The
viable rim thickness matches within the error bounds, and the cell density is in ex-
cellent agreement. Because we have attained all the numerical targets outlined in
Sect. 4.5.2, the calibration is considered a success.

We also compared the general tumor morphology to H&E stains (bottom right
in Fig. 4.3) and the spatial distribution of proliferating cells to Ki-67 immunostains
(bottom left in Fig. 4.3, Ki-67 positive nuclei indicated with white arrows) from
the patient. The virtual DCIS reproduced the expected tumor microarchitecture: a
viable rim closest to the duct wall, an interior necrotic core, and sporadic interior
microcalcifications. (There will be more on the matching of the calcified core in
Sect. 4.5.4.) The simulation also recapitulated the general distribution of proliferat-
ing cells across the viable rim: in both the simulation and the Ki-67 imaging, cycling
tumor cells were observed most frequently along the duct wall where oxygen is most
plentiful, and almost never at the peri-necrotic boundary where substrate levels are
lowest. This gives evidence to support our model of ˛P depending upon � .

4.5.4 Sample Applications of the Calibrated Model

4.5.4.1 Parameter Study: Necrosis and Calcification Time

There are little-to-no literature data available on the time to complete necrosis and
calcify the breast tumor cells. The best available experimental data are generally
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Table 4.3 Parameter study on the necrosis/calcification time. Reprinted with permission from
Macklin et al. (in preparation)

ˇ�1
N 12 h 1 day 5 days 15 days 30 days

Percentage of core calcified 94.0% 83.7% 51.1% 6.9% 0%

animal and ex vivo time course studies of arterial calcification; we use these to esti-
mate the order of magnitude of ˇ�1

N . Time course studies on ex vivo cardiac valves
by Jian et al. (2003) observed significant tissue calcification between 7 days (10%
increase in Ca incorporation) and 14 days (40% increase) after injection by TGF-
“1. Lee et al. (2006a) examined a related process (elastin calcification) using a rat
subdermal model, demonstrating calcification to occur gradually over the course of
2–3 weeks.

Gadeau et al. (2001) measured calcium accumulation in rabbit aortas following
oversized balloon angioplasty injury. Calcified deposits appeared as soon as 2–4
days after the injury, increased over the course of 8 days, and approached a steady
state between 8 and 30 days. The authors hypothesized based upon their work that
necrotic cells nucleated the calcium crystals. Hence, we estimate ˇ�1

N on the order
of days to weeks. To sharpen our estimate, we conducted a parameter study on
the necrosis/calcification time parameter ˇ�1

N . We varied ˇ�1
N from 12 h to 30 days

and simulated our calibrated DCIS model time to 30 days; the results are given in
Table 4.3. We found that calcification times under 15 days lead to necrotic cores that
were nearly entirely calcified; this is not observed in H&E image data (see Fig. 4.3,
bottom right, black arrow). On the other hand, the 30-day calcification time lead
(as expected) to a complete absence of microcalcifications in the core at time 30
days. Because DCIS tumors are hypothesized to grow to steady state in as little as
2–3 months (Edgerton et al. 2008, in preparation-a; Chuang et al. in preparation),
we expect the presence of microcalcifications by this time. Hence, our sharpened
estimate of ˇ�1

N is 15 days, consistent with the literature. Parameter studies such as
these are significant, because they allow us to estimate physical quantities that are
difficult or impossible to determine experimentally.

Using Model Shortcomings to Better Understand DCIS Necrosis and Calcification

This work also points out the importance of extracting as much information from the
H&E and immunohistochemical stains as possible, both to further constrain the
model and to suggest scientific hypotheses and model refinements. Notice that
the simulated tumor morphology (Fig. 4.3, top) does not recapitulate the observed
“gap” between the viable rim and the necrotic core observed in both the H&E stain
(Fig. 4.3, bottom right, white arrow) and immunohistochemistry (Fig. 4.3, bottom
left). We hypothesize that the discrepancy is caused by the combination of two
effects:

1. Separation of time scales. In our necrosis model, cell water loss, degradation of
surface (adhesion) receptors, and cell calcification occur at the same, slow rate.
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However, necrotic cells are known to swell (due to failure of ion pumps, the
accumulation of sodium ions, and subsequent osmosis) and burst relatively early
in the necrosis process. Thus, we expect volume loss to occur more rapidly than
receptor degradation and calcification.

2. Differential adhesion. In our model, the necrotic cells initially have the same
E-cadherin level, which then decays over the time course of necrosis. However,
due to the relatively rapid cell rupture, the cells should initially concentrate the
same number of E-cadherin molecules over a smaller surface area, creating a rel-
atively high-adhesion species (necrotic cells) relative to the viable tumor cells.
Due to the differential adhesive forces, we anticipate cell sorting behavior and,
in particular, compaction of the necrotic cells. Indeed, similar cell sorting be-
havior was observed in the classic experiment by Armstrong (1971), where two
cell populations (low adhesive strength and high adhesive strength) were mixed
in chicken embryos; cell sorting was observed, where the high-adhesion cells
aggregated as a spheroid surrounded by the low-adhesion cells.

Indeed, a closer examination of our data supports these ideas:

1. The prominence and relatively high density of the cell nuclei in the necrotic
debris (Fig. 4.3, bottom left, gray arrow) collectively indicate that the cells burst
more quickly than they degrade and calcify.

2. Preliminary E-cadherin immunostaining demonstrates relatively high concentra-
tions of E-cadherin on lysed necrotic debris. This lends support to the high-
adhesion species idea, as well as the separation of timescales between the
degradation of surface receptors (slow timescale) and cell lysis (fast timescale).

These hypotheses can be tested by modifying the necrosis model and comparing
the results. Recapitulating the “gap” between the viable rim and necrotic core would
be evidence in support of the hypotheses.

Predictions of Tumor Growth vs. Oxygen Availability

If we volume-average the model behavior throughout the viable rim as in Macklin
et al. (in preparation), we obtain a system of nonlinear ODEs governing the AI
and PI:

PPI D h˛Pi.1 � AI � PI/� ˇP
�
PI C PI2

�C ˇAAI � PI (4.33)

PAI D ˛A.1 � AI � PI/ � ˇA
�
AI � AI2

� � ˇPAI � PI: (4.34)

If, instead, we replace h˛Pi with ˛P.S; �; �/, we get the local evolution of AI and
PI as a function of oxygen. Assuming that a local equilibrium emerges in the popu-
lation dynamics (i.e., PAI 
 0 and PPI 
 0, even if PP and PA are nonzero (Macklin and
Lowengrub 2007)), we can investigate the model-predicted relationship between PI
and oxygen by solving the ODE system to steady state with our calibrated ˛P and ˛A.
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Fig. 4.4 Model-predicted relationship between PI and oxygen.

The model predicts a Michaelis–Menton-type curve, where oxygen ceases to be the
primary growth-limiting factor for sufficient tissue oxygenation (Fig. 4.4). Because
the rate of tumor growth is proportional to PI (Chuang et al. in preparation; Edgerton
et al. in preparation-a), the model predicts a Michaelis–Menton tumor proliferation
growth term of the form �.�m=.c C �m//.

This is significant for several reasons. First, there is some variety in tumor growth
models, with some choosing Michaelis–Menton-type growth terms (Ward and King
1997, 1999; Xu and Gilbert 2009) and others using linear growth terms of the form
�� (Cristini et al. 2003). Examining Fig. 4.4, we see that the linear model is accu-
rate for moderate oxygen conditions, whereas the Michaelis–Menton-type model is
likely more accurate overall. Choosing a linear model subject to the constraint that
proliferation is zero when � D 0 can likely be improved with a careful least-squares
fit to the model-predicted growth curve.

The predicted growth curve also has interesting biological and clinical implica-
tions. The saturation of the curve is evidence that for this particular patient, tumor
growth is limited primarily by factors other than oxygen availability, such as gene
expression, receptor levels, or overcrowding. Had the growth curve been linear, then
we would have instead concluded that oxygen was the principal growth-limiting fac-
tor, rather than genetic profile.
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Perhaps more importantly, because the model is built upon only simple, mech-
anistic assumptions and no particular growth curve is expected a priori, it is
encouraging to see such properties demonstrated as emergent behavior of the model.
Indeed, this demonstrates the power of using simple, mechanistic models of tumor
growth as tools to generate testable scientific hypotheses. In this instance, we plan
to return to the IHC data and attempt to correlate the PI measurements with the esti-
mated oxygen profiles, to see if it, too, can predict a Michaelis–Menton-type curve.
The hypothesis could also be tested with appropriate in vitro experiments.

4.6 Ongoing and Future Work

The model and applications we presented in this chapter represent a “snapshot” of
the ongoing work by our group. The modular nature of agent-based models will
enable some exciting future extensions, including (1) an improved necrosis model
that includes cell swelling and bursting early in the process, increased cell receptor
expression per surface area, and gradual degradation and calcification of the re-
maining solid component; (2) models of polarized cell adhesion, by modifying the
potential functions and adding the balance of torque; (3) an intracellular protein sig-
naling network component, the state of which alters the ˛P and ˛A parameters; (4)
improved calibration of the model by incorporating additional biomarkers to better
constrain the model, particularly when joined with the protein signaling model; (5)
a “motile” state, with a corresponding ˛M depending upon proximity to the base-
ment membrane and the internal protein signaling network, with rate and direction
of travel dependent upon sampling of the microenvironment (e.g., hormone gradi-
ents and BM structure); (6) secretion of matrix metalloproteinases by motile cells
that degrade the basement membrane, alongside expansion of the duct caused by
proliferating cells; and (7) microinvasion of tumor cells through the degraded BM,
as a first model of progression to invasive carcinoma.

In recent work, we have integrated this agent-based cell model into a broader,
multiscale model of DCIS being developed by our group. Once calibrated, the mul-
tiscale model is capable of making patient-specific predictions at the tissue scale of
the required excision volume to remove DCIS surgically (Edgerton et al. 2008, in
preparation-a; Chuang et al. in preparation). Further information on the multiscale
model and its potential clinical applications can be found in Cristini and Lowengrub
(in preparation).
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Chapter 5
Multicluster Class-Based Classification
for the Diagnosis of Suspicious Areas
in Digital Mammograms

Brijesh Verma

Abstract This chapter presents a multicluster class-based classification approach
for the classification of suspicious areas extracted from digital mammograms into
benign and malignant classes. The approach creates multiple clusters and selects
strong clusters for each class. The created strong clusters are used to form sub-
classes within benign and malignant classes and training of a classifier. The creation
of strong multiple clusters during the classification process can improve the accu-
racy of the classification system. The experiments using multicluster class-based
approach and a standard classifier with a single cluster per class have been con-
ducted on a benchmark database of digital mammograms. The results have shown
that the multicluster class-based approach makes a significant impact on improving
the classification accuracy.

5.1 Introduction

5.1.1 Background

Breast cancer kills more women in Australia than any other cancer (National Breast
Cancer Foundation 2008). Each year more than 11,700 new cases of breast can-
cer and 2,600 deaths occur in Australia. In the USA, an estimated 1,437,180 new
cases of breast cancer occur together with an estimated mortality of 565,550 during
2008 (American Cancer Society 2008; Breast cancer facts and figures 2007–2008).
Survival from breast cancer is dependent on the stage at which it is detected and
the implementation of appropriate treatment. Early stage detection and treatment
results in a 98% survival rate; however, this plummets to 28% if metastases have
spread to distant organs (American Cancer Society 2008; Global cancer facts and
figures 2007).
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Mammography is one of the best methods for early detection of breast cancer. It
reduces the mortality rate by as much as 41% (Roder et al. 2008). However, various
studies have demonstrated that an estimated 11–25% of breast cancers are missed
(Goergen et al. 1997) during screening mammography. In the screening process,
radiologists carefully search each mammogram for any visual sign of abnormality.
However, in the earliest stage, the visual clues are subtle and varied in appearance,
making detection/diagnosis difficult; challenging even for specialists. The abnor-
malities are often embedded in and camouflaged by various breast tissue structures.

An abnormal growth of tissues in the breast creates lumps or tumors in the breast.
Tumors perform no useful body function and grow at the expense of healthy tissues.
Mammography is capable of detecting such features that may indicate a poten-
tial clinical problem, which include asymmetries between the breasts, architectural
distortion, confluent densities associated with benign fibroses, calcifications, and
masses. Mammographic abnormalities in breast cancer can be characterized into
two major classes; calcifications and masses as shown in Fig. 5.1.

Calcifications are small mineral (calcium) deposits within breast tissues and ap-
pear as localized high-intensity regions (bright spots) on mammograms. They can
be produced from cell secretion or necrotic cellular debris. There are two types of
calcifications: microcalcifications and macrocalcifications. Macrocalcifications are
coarse (large) calcium deposits that are often associated with benign (noncancerous)
conditions and do not usually require a biopsy. Microcalcifications are tiny calcium
specks and may be isolated, appear in cluster, or found embedded in a mass. In gen-
eral, individual microcalcifications are found in size range of 0.1–1.0 mm with an
average diameter of about 0.5 mm. A cluster is typically defined by the presence
of at least three microcalcifications within a 1 cm2 region. Microcalcifications are
one of the mammographic hallmarks of early breast cancer. About 25% of all breast

Spiculated lesionMicrocalcifications Circum scribed lesion

(a) Calcification (b) Mass

Fig. 5.1 Breast Abnormalities. (a) Calcification and (b) mass. Source: The mammography image
analysis society (MIAS 2006) database
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cancer is detected by the presence of microcalcification clusters. The majority of
ductal carcinoma in situ cancers are associated with microcalcifications.

A breast mass is a localized sign of breast cancer and defined as a space-
occupying lesion seen in at least two different projections. A mass may occur with
or without associated calcifications. Figure 5.1b shows circumscribed and spiculated
masses. The common circumscribed mass is fibroadenoma and is usually found
in younger age women. Spiculated lesions having stellate appearance on mammo-
grams are high-probability suspicious indicators of breast cancer. Generally, it has
a central tumor mass with spicules extending into surrounding tissues. The subtlety
and camouflaged nature of masses make their detection far more challenging than
calcifications in mammograms.

Masses are described by their location, size, shape, and margin characteristics.
These morphological features are the key factors to be considered by the radiolo-
gist when judging the likelihood of cancer being present. A wide range of shapes,
sizes, and contrast is found in masses. Generally, benign masses are well circum-
scribed, compact, and roughly circular or elliptical. Masses having irregular shapes
and spiculated or indistinct margins suggest a higher possibility of malignancy.

5.1.2 Review of Existing Techniques

In last few decades, a significant amount of research on detection and classification
of suspicious areas has been conducted and many techniques have been developed.
It has been shown that Computer-Aided Diagnosis (CAD) systems for breast can-
cer can improve the detection rate from 4.7% to 19.5% compared to radiologists
(Brem 2007; Freer and Ulissey 2001; Dean and Ilvento 2006; Birdwell et al. 2005;
Morton et al. 2006). To solve the problems with the diagnosis of breast cancer,
various intelligent and statistical techniques have been proposed. A comprehensive
review of existing techniques for the detection and classification of masses and mi-
crocalcifications in digital mammograms has been recently conducted and presented
in Cheng et al. (2006), Verma and Panchal (2006), and Cheng et al. (2003).

Ramirez et al. (2007) used seven Bayesian network classifiers for the diagnosis
of breast cancer on two real-world databases. They used the breast lesion cases
collected by a single and multiple observers and obtained an accuracy of 93.04%
and 83.31%, respectively.

Tourassi et al. (2007) evaluated image similarity measures for detection of
masses in mammograms. They used database of 1,820 mammographic regions of
interest and compared 8 entropy-based similarity measures. They concluded that
a substantial reduction in false positive while maintaining high detection rate for
malignant masses was achieved.

Manrique et al. (2006) utilized a genetic algorithm-based radial basis function
neural network for classification of masses from a Madrid hospital dataset. They
obtained 83% classification accuracy (with 83% specificity and 81% sensitivity).
Although their accuracy was not high, their network converged quickly.
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Halkiotis et al. (2007) used a multilayered perceptron (MLP)-type neural network
on the MIAS (Mammography Image Analysis Society) database. They obtained a
good classification rate of 94.7% with an average of 0.27 false positives per image
for microcalcifications.

Georgiou et al. (2007) evaluated a mass shape feature with a wide range of lin-
ear and nonlinear classifiers, including linear discriminant analysis, least-squares
minimum distance, k-nearest neighbor, radial basis function (RBF), MLP neural
networks, and support vector machines (SVM). They found that support vector ma-
chine produced highest accuracy. They obtained 91.54% classification accuracy on
masses.

Brem used the second look CAD system to determine the performance of CAD
systems on different-sized lesions (Brem et al. 2004). He achieved an overall sen-
sitivity of 89%. His investigation was to try and determine if lesion size would
adversely affect the performance of a CAD system.

Abdalla et al. (2007) used textual features with a support vector machine classi-
fier and they achieved a classification accuracy of 82.5% on mammograms from the
Digital Database of Screening Mammography (DDSM) (Heath et al. (2001).

Panchal and Verma (2006) proposed an autoassociator network for feature ex-
traction and combined it with an MLP-based classifier. The network was trained
using a back propagation algorithm. They achieved 91% classification accuracy on
DDSM.

Massotti (2006) used a support vector machine to classify suspicious areas or re-
gions of interest found on mammograms into cancer and normal tissue. He obtained
90% classification accuracy on DDSM.

Acharya et al. (2008) obtained a sensitivity of 91.67% using an artificial neu-
ral network and 95% using a Gausian Mixture Model with 93.33% sensitivity and
96.67% specificity, respectively, on DDSM.

Verma and Zakos (2001) used backpropagation (BP)-type neural network and in-
vestigated the significance of microcalcification features by combining them. They
presented a number of modified features and reported that the combination of modi-
fied features such as entropy, standard deviation, and number of pixels produced the
best results. They obtained 88.9% classification accuracy on DDSM.

Verma (2008) proposed a modified MLP-type architecture by adding additional
neurons and a new learning algorithm. The additional neurons for benign and ma-
lignant classes were used to improve memorization ability without destroying the
generalization ability of the network. He used DDSM and obtained classification
accuracies of 100% on training set and 94% on test set.

Kumar et al. (2006) applied decision trees for classification of masses in digital
mammograms. In their research, they used CART and See5 software packages for
conducting experiments with decision trees on DDSM. They obtained classification
accuracies of 95% on training set and 91% on test set using CART and classification
accuracies of 95% on training set and 89% on test set using See 5.

Mazurowski et al. (2008) investigated BP and Particle Swarm Optimization
(PSO) techniques for finding the effect of class imbalance in training data when
developing neural network classifiers for breast cancer diagnosis. They showed that
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classifier performance deteriorates with even modest class imbalance in the training
data. They concluded that BP is generally preferable over PSO for imbalanced train-
ing data especially with small data sample and large number of features.

Rangayyan et al. (2007) noted that several CAD techniques have achieved over
85% sensitivity for the identification of masses but also have a high false positive
rate. In general, mass identification is a more difficult task than microcalcifications
because masses are variable in size, shape and density can exhibit poor image con-
trast, and can be strongly intertwined with surrounding tissues making detection and
classification difficult (Delogu et al. 2007).

As can be seen from the above review that there has been a vast amount of
research in particular development of intelligent techniques for the classification
of masses in digital mammograms; however, successful commercial systems are
not available. The main problem in developing an acceptable CAD system is in-
consistent and low classification accuracy. In order to improve the classification
accuracy, this chapter presents a novel methodology that uses clustering to create
multiple clusters within existing classes (benign and malignant) and incorporates
multicluster-based new classes within the training process.

This chapter consists of four sections. Following introduction and literature
review, a research methodology is described in Sect. 2. Section 3 presents the ex-
perimental results and a comparative analysis of the results with other existing
techniques. Section 4 concludes the chapter.

5.2 Research Methodology

The research methodology consists of three major steps: (1) acquiring and process-
ing of digital mammograms, (2) creation of multicluster classes with strong clusters,
and (3) classification. The digital mammograms are processed, suspicious areas and
features are extracted. A clustering algorithm is used to cluster the feature data
into a number of clusters for both benign and malignant classes. Strong clusters
are selected and a classifier with input features and strong clusters is used for final
classification. The details of research methodology are described below.

5.2.1 Acquiring and Processing of Digital Mammograms

Digital mammograms were acquired from DDSM (Heath et al. 2001). It contains
approximately 2,600 high-quality images together with case-related information.
The research in this chapter used 200 mammograms comprising an equal number of
masses with 100 mammograms being selected for training and 100 for testing. The
suspicious areas were extracted using a chain code. The chain code is provided with
DDSM for each suspicious area. Six features have been extracted from suspicious
areas and they represent four BI-RADS descriptor features together with patient age
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and a subtlety value (Heath et al. 2001). All six features are density, mass shape,
mass margin, abnormality assessment rank, patient age, and subtlety value. Readers
are referred to Verma (2008) for details on features and feature extraction process.

5.2.2 Creation of Multicluster Classes with Strong Clusters

The creation of multicluster classes with strong clusters can be done in two different
ways. First approach is to cluster whole data into n clusters and then selectm strong
clusters as shown in Fig. 5.2. The second approach is to first divide the whole data
into two classes (benign and malignant) and then cluster data into n clusters for
each class. Finally,m strong clusters are selected for each class. The whole process
for second approach is shown in Fig. 5.3. K-means clustering algorithm is used for
clustering that is based on evaluating the distance between a point and the cluster
centroid. Strong clusters are selected based on threshold that needs to be investigated
as there is no magic way of finding the threshold.

Fig. 5.2 Creation of multiple strong clusters from combined data
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5.2.3 Classification

The process that takes features as input and outputs the class (benign/malignant)
is called a classification process. There are different types of classifiers based on
intelligent and statistical techniques. Some classifiers in particular neural network-
based classifiers used in this research need to be trained before they are ready to
classify. The well-trained classifiers can have good generalization abilities. The gen-
eralization means that the classifiers are able to classify correctly the input features
which they have never seen before. The neural network-based classifier using mul-
tiple strong clusters (Fig. 5.3) used in this research is shown in Fig. 5.4. There are
number of ways the inputs, and outputs can be used to train a classifier after the
clustering of data (multiple clusters per class as shown in Fig. 5.3).

5.2.3.1 Original Inputs with Multiple Classes

In this process, the original input features for benign and malignant classes are di-
vided into 2m (wherem is a number of strong clusters) classes using strong clusters

Fig. 5.3 Creation of multiple strong clusters from data for each class
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Fig. 5.4 Classification using multicluster classes with strong clusters

as shown in Fig. 5.3. Assume that we have six inputs and three strong clusters
for each class. The inputs and outputs for classification process can be written as
follows.

Original Input: x1, x2, x3, x4, x5, x6 New Target: y1, y2, y3, y4, y5, y6

0.45 0.8 0.4 0.22 0.9 0.8 0.9 0.1 0.1 0.1 0.1 0.1 (Benign)

0.84 0.6 0.34 0.55 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.9 (Malignant)

The neural network classifier as shown in Fig. 5.4 is used for classification. The
neural network classifier that has been employed in the research presented in this
chapter is a MPL. It utilizes six input nodes to represent each input feature. The
number of hidden neurons is being determined experimentally to ascertain the op-
timal configuration. In the proposed approach, the neural network has a variable
number of output neurons to represent the number of strong clusters.

5.2.3.2 Cluster Values with Multiple Classes

In this process, the values of strong clusters after feeding the original input features
to clustering algorithm are used instead of original input features. In this case, orig-
inal features are transformed into a new feature space. The new target outputs are
created same way as in Sect. 2.3.1.

5.3 Experimental Results and Comparative Analysis

The multicluster-based classification approach described in Sect. 5.2 has been eval-
uated on a benchmark database. Digital mammograms from the DDSM benchmark
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Table 5.1 Classification results

Classification accuracy (%)

Technique Clusters Hidden units

Training set size:
100 (50 benign and
50 malignant)

Test set size: 100
(50 benign and 50
malignant)

Standard 10 86 94
multilayer No clustering 16 92 93
perceptron used 27 96 93
(random-MGS 30 96 93
training
algorithm)

Multicluster-based
classification
approach
(random-MGS
training algorithm)

Three clusters for
benign and
three clusters
for malignant

10
16
24
25
27
30

82
88
94
94
93
95

94
95
96
96
96
96

Table 5.2 Comparison of classification accuracy

Best accuracy
Technique Database on test data (%) Reference

Multicluster class DDSM 96 Chapter
Genetic algorithm-based

radial basis function
Local hospital

database
83 Manrique et al. 2006

Multilayer perceptron MIAS 94.70 Halkiotis et al. 2007
Support vector machine Local data 91.54 Georgiou et al. 2007
Auto-associator MLP DDSM 90.90 Panchal and Verma 2006
Support vector machine DDSM 90 Massotti 2006
Neural network DDSM 88.9 Verma and Zakos 2001
Neural network DDSM 94 Verma 2008
Decision trees (CART) DDSM 91 Kumar et al. 2006
Decision trees (See 5) DDSM 89 Kumar et al. 2006

described in Sect. 2.1 were used for evaluation. The experiments by varying the
number of hidden units have been conducted and the results are presented in
Table 5.1.

The proposed multicluster class-based approach has been compared with stan-
dard MLP-based classification and other recently published techniques. A compar-
ison between the proposed and published techniques is not an easy task as many
factors can affect the classification accuracy of the system.

The classification accuracies obtained using the proposed multicluster-based ap-
proach and existing techniques for the diagnosis of breast cancer are presented in
Table 5.2. As shown in Table 5.2, the results obtained by using multiple strong clus-
ters are better than the single cluster-/single class-based approach and other recently
published techniques.
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5.4 Conclusions

This chapter has reviewed and presented a state of the art for the classification of
suspicious areas in digital mammograms. It has presented a novel multicluster class-
based classification approach. It has shown how multiple clusters can be formed
and strong clusters can be incorporated during the training of a classifier. The pro-
posed approach has achieved 96% classification accuracy on test data which is much
higher than the standard classifier with a single cluster per class for benign and
malignant. The research presented in this chapter shows that the multicluster class
approach has a significant impact on improving overall classification accuracy. The
results presented in this chapter were obtained with one and three clusters per class
only. In our future research, we would like to investigate the cluster size and im-
proved mechanism for selecting strong clusters.
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Chapter 6
Analysis of Cancer Data Using Evolutionary
Computation

Cuong C. To and Tuan Pham

Abstract We present several methods based on evolutionary computation for clas-
sification of oncology data. The results in comparisons with other existing tech-
niques show that our evolutionary computation-based methods are superior in most
cases. Evolutionary computation is effective in this study because it can offer effi-
ciency in searching in high-dimension space, particularly in nonlinear optimization
and hard optimization problems. The first part of this chapter is the review of some
previous work on cancer classification. The second part is an overview of evo-
lutionary computation. The third part focuses on methods based on evolutionary
computation and their applications on oncology data. Finally, this chapter concludes
with some remarks and suggestions for further investigation.

6.1 Introduction

Cancer is a class of diseases in which a group of cells display uncontrolled growth,
invasion, and sometimes metastasis. These three malignant properties of cancers
differentiate them from benign tumors, which are self-limited, do not invade or
metastasize. Modern cancer data are derived from many different sources such
as microarray, mass spectrometry, and digital imaging. In this chapter, we focus
on mass spectrometry data [ovarian cancer, Petricoin et al. (2002)] and image
data [Wisconsin diagnostic breast cancer, Street et al. (1993)]. Revolutionary pro-
teomic technology, which has recently been developed, uses the pattern of proteins
observed within a clinical sample as a diagnostic fingerprint to create mass spec-
trometry cancer data. These so-called proteomic patterns are of time-series data.
In its current state, surface-enhanced laser desorption/ionization time-of-flight mass
spectrometry (SELDI-TOF MS) is the technology used to acquire the proteomic
patterns to be used in the diagnostic setting. The principle of SELDI-TOF is very
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simple; proteins of interest are captured, by adsorption, partition, electrostatic in-
teraction, or affinity chromatography on a stationary-phase and immobilized in an
array format on a chip surface. One of the benefits of this process is that raw
biofluids, such as urine, serum, and plasma, can be directly applied to the array
surface. After a series of binding and washing steps, a matrix is applied to the ar-
ray surfaces. The species bound to these surfaces can be ionized by matrix-assisted
laser desorption/ionization (MALDI) and their mass-to-charge (m=z/ ratios mea-
sured by TOF-MS. The result is simply a mass spectrum of the species that bound
to and subsequently desorbed from the array surface. While the inherent simplicity
of the technology has contributed to the enthusiasm generated for this approach,
applications of sophisticated bioinformatics methodology have enabled the use of
SELDI-TOF MS as a potentially revolutionary diagnostic tool. In Wisconsin diag-
nostic breast cancer, a small region of each breast Fine Needle Aspirates (FNAs)
was digitized, resulting in a 640 � 400, 8 bits per pixel gray scale image. The im-
age analysis program used a curve fitting program to determine the boundaries of
nuclei from initial dots placed near these boundaries by a mouse. Ten features were
computed for each nucleus: area, radius, perimeter, symmetry, number and size of
concavities, fractal dimension (of the boundary), compactness, smoothness (local
variation of radial segments), and texture (variance of gray levels inside the bound-
ary). The mean value, extreme value, and standard error of each of these cellular
features are computed, resulting in a total of 30 real valued features for each im-
age. A set of 569 images was processed in the manner described above, yielding a
database of 569 thirty-dimensional points.

Proteomics is considered as a mass-screening approach to molecular biology,
which aims to document the overall distribution of proteins in cells, identify and
characterize individual proteins of interest, and ultimately elucidate their relation-
ships and functional roles. Such direct, protein-level analysis has become necessary
because the study of genes, by genomics, cannot adequately predict the structure or
dynamics of protein synthesis, since it is at that protein level where most regulatory
processes take place, where disease processes primarily occur, and where most drug
targets are to be found. Rapidly emerging field of proteomics has now established it-
self as a credible approach for furthering our understanding of the biology of whole
organisms – from simple unicellular organisms to those as complex as human. The
readily available experimental tools for measurement of protein expression by two-
dimensional gel electrophoresis, and for protein identification and characterization
by mass spectrometry-based methods, have already made a significant impact on
proteomics.

Functional genomics studies functionality of specific genes, their relations to
diseases, their associated proteins, and their participation in biological processes.
Genes are fundamental to the life; for each gene, the expression level is different,
performing different function. So monitoring genes’ expression levels is very impor-
tant. However, traditional methods in molecular biology generally work on a “one
gene in one experiment” basis, which means that the throughput is very limited and
the “whole picture” of gene function is hard to obtain. DNA microarray is a novel
technology that allows for monitoring of gene expression for thousands of genes in
a single experiment and is already producing huge amounts of valuable data.



6 Analysis of Cancer Data Using Evolutionary Computation 127

The principle of both methods is to measure amount of proteins (genes) in cell
at definite time point when sample is experimented. If samples are experimented at
different time points during a particular process, then we have time series vectors
for all detectable proteins (genes) in cell. In other words, each pattern (protein or
gene) of proteomics or transcriptomics database is presented as an n-dimensional
vector.

The advances of proteomics can be used to diagnose diseases such as cancer.
Proteomic pattern analysis that can analyze hundreds of clinical samples a day has
the potential being a novel, highly sensitive diagnostic tool for early detection of
cancer. The ability to classify patterns generated from healthy persons and those pa-
tients affected with cancer is usually accomplished through applications of machine
learning and pattern recognition methods.

Street et al. (1993) extracted ten different features from the snake-generated
cell nuclei boundaries. All of the features are numerically modeled such that
larger values will typically indicate a higher likelihood of malignancy. Mangasarian
et al. (1995) used linear programming to discriminate benign from malignant breast
lumps. Both methods were applied to breast tumor. Petricoin et al. (2002) developed
an analytical tool that combines genetic algorithms and cluster analysis methods.
The input data for analysis are proteomic spectra and the output is the best fit sub-
set of amplitudes at defined m=z values that best segregates the preliminary data.
Pham (2008) used a combination of linear predictive coding and vector quantization
to predict the class of an unknown mass spectrometry data. The proposed method
was applied to ovarian cancer dataset.

Cluster analysis is an unsupervised approach. In order to use these methods, we
must define a way to measure the similarity between patterns we are comparing
(Euclidean distance, correlation coefficient, Manhattan distance, etc.). Patterns are
then grouped by using a clustering algorithm such as hierarchical, k-means, self-
organization, and hierarchical clustering with partial least squares (LSs). Tumor
classification using clustering methods have reported by Golub et al. (1999), Alon
et al. (1999), Perou et al. (1999), Nguyen and Rocke (2002), and Bittner et al.
(2000).

Linear discrimination analysis is based on linear combinations of the pattern
with large ratios of between-group to within-group sums of squares. The k nearest-
neighbor is based on a distance function for pairs of patterns, such as the Euclidean
distance. For each pattern of test set, k closest patterns of learning set are found,
and the class is predicted by the majority vote; that is, a class that is most com-
mon among those k neighbors is chosen. Binary tree classifiers are constructed
by repeated splits of the subsets of the space of patterns X into two descendant
subsets, starting with X itself. Each terminal subset is assigned a class label, and
the resulting partition of X corresponds to the structure of the classification tree.
Dudoit et al. (2002) presented a comparison of above-mentioned three methods
for the classification of tumors using gene expression data. Zhang et al. (2001)
introduced a method based on classification trees for tumor classification with gene
expression data.

Boosting is one of the most powerful learning ideas introduced in last decade.
The motivation for boosting was a procedure that combines the output of many
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“weak” classifiers to produce a powerful “committee.” In classifying tumor samples
with gene expression data, the feature selection was done first using nonparametric
scoring method, and then the LogitBoost (LB) was used to classify the samples
(Dettling and Buhlmann 2003).

Artificial neural networks (ANN) are machine-learning methods that imitate bio-
logical neural networks for learning multiple examples. In order to solve a problem
using ANN, we need to determine first the topology of ANN including the number
of input neurons, number of output neurons, number of hidden layers, the trans-
fer function for each hidden layer, and the transfer function for output neurons.
ANN is then trained to learn features of the training data. Toure and Basu (2001)
used backpropagation network to solve binary classification problems. A combina-
tion of principal component analysis (PCA) and neural networks was introduced to
solve pattern classification problem (Khan et al. 2001). PCA was used to reduce
the dimensions of the patterns, and ten dominant PCA components were used for
subsequent analysis. Each linear ANN model was then calibrated using 10 PCA
components as input variables and four cancer categories as output. ANNs were
trained and tested using the small, round blue-cell tumors. In another work by
Su et al. (2002), a modular-gating network had three individual expert networks
which were trained separately by using original and frequency domain data. Each
expert network consisted of three layers. Ten neurons were used in both input and
hidden layers. The output layer had only one neuron. The gating network used a
majority voting scheme to generate the final output.

Kernel-based methods such as support vector machines (SVM) find a mapping
to project objects onto a new space (feature space) so that the problem can be solved
more effectively. The most important thing when using kernel-based methods is the
determination of a kernel. The kernel is a way of representing data. The kernel is
a real-valued “comparison function”; the data set is represented by square matrix
of pair wise comparisons. SVM has been widely used in computational biology, in-
cluding pattern classification using cancer data. Binary SVM with a linear kernel
was applied to ovarian and colon tumor data (Furey et al. 2000). Before applying
SVMs, feature selection was used. SVMs based on recursive feature elimination
were applied to cancer classification using Leukemia data (Guyon et al. 2002).
A general multicategory SVM method was introduced and applied to Leukemia
data for solving a three-class problem (Lee and Lee 2003).

The following work presented the applications of evolutionary algorithms to
oncology data. Genetic programming was used to classify tumours based on
H Nuclear Magnetic Resonance spectra of human brain tumour biopsies (Gray
et al. 1996). For pattern recognition analysis, spectra were digitised at intervals of
0.010 ppm over the range 4.5 to 0.5 ppm giving 400 variables. Principal component
(PC) analysis showed that the first 20 PC’s accounted for 99% of the variance.
The PC vectors were simplified by Varimax rotation. The GA/SVM algorithm
(Liu et al. 2005) consists of three main components: a GA-based gene selector,
SVM-based binary classifiers distinguishing between tumor samples and multiclass
categorization by an AP/SVM voting strategy.

Having pointed out that and most modern cancer data are complex and high-
dimensional, application of evolutionary computation for cancer classification
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appears to be appropriate but has been rarely explored. We attempt to introduce
evolutionary computation algorithms for studying cancer classification. We selected
ovarian cancer and breast cancer data for our study because the ovarian cancer data
were generated from a novel proteomic technique in biotechnology, whereas the
breast cancer data have been widely investigated and can be considered as good
benchmark data.

6.2 Overview of Evolutionary Computation

The basic idea of evolutionary computation is based on the theory of evolution.
In other words, evolutionary computation is a computation system that mimics the
adaptation and evolution of each individual in its environment. By doing this, it is
expected that the next generation of individuals is always better than the previous
one. There are different techniques of evolutionary computation: genetic algorithms,
genetic programming, evolutionary programming, and evolutionary strategy. In this
chapter, only genetic algorithms and genetic programming are discussed.

6.2.1 Genetic Programming

Genetic programming (Koza 1992) handles a population that contains many objects
of which one will become the solution of the problem and called a tree or a program.
A tree can return no value or more values depending on what we want it to repre-
sent. The domain of values returned by the tree is divers; it can be, for instance, a
numerical value, a Boolean value, or a symbolic function, etc.

There are two types of nodes in a tree. One is called internal node (or function
node) and the others are called leaf nodes (or terminal nodes). Figure 6.1 is an
example of tree.

The terminal node has no child node (radiate line), and it usually represents con-
stant value or a variable of the problem. Function node has children nodes (radiate
lines), and the number of children nodes of a function node depends on the num-
ber of arguments of function that it represents. Any function can be represented by

Fig. 6.1 In this tree, function
nodes are fC;�;�; =g and
terminal nodes are
fX; Y;Z; 0:68; 1:5g. This tree
is equivalent to the function
f .X; Y;Z/ D
Œ0:68� .X=Y /� � .Z C 1:5/
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the function node, such as arithmetic operations, mathematical functions, and con-
ditional operation. In order to know how well each tree in the population solves
the problem, each tree is measured. This measurement is called a fitness function.
There are no common fitness functions for all problems and the fitness function is
a crucial condition for getting a good solution. Normally, a fitness function is given
in the following equation:

Fitness D
NX

iD1

.fi � vi /
2 (6.1)

whereN is the number of fitness cases, vi is the target value of one fitness case, and
fi is the value returned by a tree.

The scheme of genetic programming (GP) is given by the following steps:

Step 1: A population is randomly created.
Step 2: Compute fitness value of each tree in the population.
Step 3: On the basis of fitness values, generating a new generation using reproduc-

tion and crossover operator.
Step 4: Steps 2 and 3 are repeated until specified criteria are satisfied. The criteria

can be the maximum number of generations, designated conditions, etc.
Step 5: The solution of problem is the best-so-far tree (the best tree appears in any

generation).

6.2.1.1 Operations for Modifying the Tree

Reproduction

The reproduction operation is performed by copying good trees from the current
generation to the next generation. There are several different selection methods
based on fitness such as roulette-wheel, tournament selection, and greedy overse-
lection to choose good trees for the next generation. In roulette-wheel mechanism,
each tree is assigned a roulette-wheel slot whose size is proportional to the ratio of
the fitness of this tree divided by the sum of fitness of all trees in population. In
tournament selection, k trees are randomly selected from population and then the
selected result tree is the one with the highest fitness among k selected trees. In
greedy overselection, some best trees are selected.

Crossover

The crossover operates on two parental trees and produces two offspring trees. This
operation is done as follows:

� Select two parental trees based on their fitness.
� Randomly select two nodes on two selected parental trees.
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� The first offspring is created by copying the first parental tree but eliminating
the subtree below the selected node of first parental tree, and then inserting the
subtree below the selected node of second parental tree. The second offspring is
created in the same way.

6.2.1.2 Control Parameters

In order to use genetic programming for solving a problem, we need to determine
the following parameters:

� Population size: number of trees in a population.
� Maximum number of generation: number of population created during evolution

process.
� Probability of crossover: number of trees in population taking part in crossover

operation.
� Probability of reproduction: number of trees in population taking part in repro-

duction operation.

6.2.2 Genetic Algorithms

The difference between genetic algorithms and genetic programming is the way
they represent candidate solution. While genetic programming uses trees; strings
(also known as chromosomes) are used by genetic algorithms. Each chromosome of
the population is a candidate solution to the problem. So a chromosome should in
some way containing information about the solution that it represents. Encoding of
chromosome depends on the problem heavily. There are various types of encoding:
binary encoding where each chromosome is a string of bits 0 and 1 (Fig. 6.2), value
encoding where each chromosome is a sequence of some values being anything
connected to the problem, such as numbers, chars, or objects (Fig. 6.3).

Fig. 6.2 Two chromosomes are encoded as binary strings

Fig. 6.3 Three chromosomes are encoded as value strings
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6.2.3 Parallel Evolutionary Computation

One of the disadvantages of evolutionary computation methods is that it takes a large
amount of computing time. Majority of computing time is used for evaluating fitness
function. Conversely, genetic operators are not time consuming. So if we wish to
increase computational speed, parallel computing is necessary. This procedure is
feasible because multicore processors have become more or more popular and built
in most computers. There are two basic approaches to parallelization as follows.

6.2.3.1 Parallelism at Fitness Level

The aim of these models is to increase the performances. In these models, there is
only one population in each run. There are three levels at which parallelism of fitness
evaluation is possible. In parallelism at the fitness-case level, a set of all fitness cases
of the problem is partitioned into subsets of fitness cases, and each subset is assigned
to one central processing processor (CPU) (Fig. 6.4). In parallelism at the individual
level, when computing the fitness value of individuals, a population is divided into
subpopulations and each subpopulation is set to one processor (CPU). The scheme
is shown in Fig. 6.5. In parallelism at the independent-runs level, each processor
is assigned one or more full runs for the maximum number of generations to be
run. The final result is the best of all the runs from all processors. Figure 6.6 is a
flowchart of this model.

Fig. 6.4 Parallel computing
at fitness cases level

Fig. 6.5 Parallel computing
at individuals level (M is
number of individuals)
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Fig. 6.6 Parallel computing
at independent runs level

6.2.3.2 Parallelism at Population Level (Island Model or Cellular Model)

Island model is rather complicated and is the most popular type (Erick 2001). In this
model, population is partitioned into subpopulations. Each subpopulation called is-
land is assigned to one processor and runs independently. After a predefined number
of generations, islands exchange individuals with each other called migration. This
model has been applied to many problems (Alba et al. 2005; Calegari et al. 1997;
Fernandez de Vega 2005) and shown that it not only increases the performance of
algorithm but also gives better results than the sequential algorithm. This chapter
introduces how to use the island model for improving the results.

6.2.3.3 Parameters of Island Model

Topology

Andre and Koza (1996) introduced grid topology which connected each subpopu-
lation with four neighbors in the North, East, West, and South directions (Fig. 6.8).
Punch (1998) used a typical island model with a ring topology (Fig. 6.7). Fernandez
de Vega (2005) introduced a random topology (Fig. 6.9) and compared it with the
grid and ring topology; then the author concluded that if all other parameters are
fixed then there are no significant differences when changing the topology.

Migration Rate

Migration rate is defined as how many individuals should migrate at each migration
step. The following are results of some previous work:

� Juille and Pollack (1995): One migrating tree per subpopulation.
� Andre and Koza (1996): 08% migrating trees per subpopulation.
� Punch (1998): Two migrating trees per subpopulation.
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Fig. 6.7 Island model � D subpopulations; � D individual; ! D migration

Fig. 6.8 Grid topology

Fig. 6.9 Random topology
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� Fernandez de Vega (2005): Best migration rate is between 5% and 10% in four
test problems (two classic and two real-life problems: even parity 5, ant problem,
routing and placing circuits on FPGAs, and medical diagnosing).

Migration Frequency

After a fixed number of generations, mf, islands exchange their individuals. Number
of generations, mf, is called migration frequency. According to Juille and Pollack
(1995) and Andre and Koza (1996), islands exchange individuals at every gen-
eration. Migration is executed after ten generations in results of Punch (1998).
Fernandez de Vega (2005) had a wider study on comparing different frequencies,
and gave conclusion that the best convergence results appear when about 10% of
individuals from each subpopulation are sent every five to ten generations.

Subpopulation Size

This size concerns with suitable numbers of subpopulations and individuals per
subpopulation. Andre and Koza (1996) used 64 islands each which had 500 individ-
uals. Punch (1998) used 5 subpopulations and 200 individuals per subpopulation;
and also 7 subpopulations, 700 individuals for each subpopulation. Fernandez de
Vega (2005) had a set of trials and concluded that there are a number of trees with
which the best results are obtained (regardless of the number of subpopulations).
According to Calegari et al. (1997), the solutions which obtained with 4 islands
of 40 individuals, each was better than that found with a single population of 160
individuals. The solution obtained with 40 islands of 4 individuals each was even
better.

6.2.3.4 Application Program Interface Tools

We know that each island runs on one processor and after a fixed number of gen-
erations, islands exchange individuals. In other words, island model is a parallel
computing model. Therefore, we need an application program interface (API) tool
which can distribute islands on available processors and communicate between
them. The following API tools are popular for parallel computing:

� Parallel virtual machine (PVM) is a portable message-passing programming sys-
tem, designed to link separate host machines to form a “virtual machine” which
is a single, manageable computing resource. PVM supports C, C++, and Fortran
languages and runs on Unix platform.

� Message-Passing Interface (MPI) is a library of functions and macros that can be
used in C, C++, and FORTRAN programs. MPI is intended for use in programs
that exploit the existence of multiple processors by message passing. MPI sup-
ports Windows and Linux.
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� OpenMP may be used to explicitly direct multithreaded, shared memory paral-
lel programming in C/C++ and Fortran on all architectures, including Unix and
Windows NT platforms.

� The p4 system is a library of macros and subroutines developed at Argonne
National Laboratory for programming a variety of parallel machines. The p4
system supports both the shared-memory model (based on monitors) and the
distributed-memory model (using message-passing). For the shared-memory
model of parallel computation, p4 provides a set of useful monitors as well as
a set of primitives, from which monitors can be constructed. For the distributed-
memory model, p4 provides typed send and receive operations and creation of
processes according to a text file describing group and process structure.

� Linda is a concurrent programming model that has evolved from a Yale
University research project. The primary concept in Linda is that of a “tuple-
space,” an abstraction via which cooperating processes communicate. This
central theme of Linda has been proposed as an alternative paradigm to the two
traditional methods of parallel processing: that based on shared memory and that
based on message passing. The tuple-space concept is essentially an abstraction
of distributed shared memory, with one important difference (tuple-spaces are
associative), and several minor distinctions (destructive and nondestructive reads
and different coherency semantics are possible).

� There are some languages for parallel programming such as Orca, Ada, Cilk,
NESL, and mpC.

� The very low level of parallel programming is that we use socket programming.
We need to build up everything if we select this alternative.

6.3 Analysis of Cancer Data

6.3.1 Genetic Programming for Binary Classification

In supervised pattern classification, algorithms use training data that contain labeled
(preclassified) patterns to train a classifier. The classifier is then used to predict the
class of unknown patterns. It is important to notice that pattern classification is an ill-
defined, nondeterministic task, in the sense that, using only training data, one cannot
be sure that a discovered classification rule will have a high predictive accuracy on
test set (database), which contains patterns unseen during training (Freitas 2002).
There are normally three types of classification: single-class classification, binary
classification, and multiclass classification. Multiclass classification is usually con-
verted into multiple binary classifications. Single-class classification is a novel trend
of pattern classification.

In binary classification, algorithms are given a training set. The training set
consists of two subsets, namely positive (C1) and negative (�1). The positive
set contains similar patterns that algorithms will search in a database. The negative
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set contains any other patterns of the rest of the database (not similar to patterns of
positive set). Each pattern in the training set is an n dimension vector.

Let a training set be a set of pairs: TS D f.xi ; yi / � Rn � f�1;C1g; i D 1::mg,
where yi is label (class) of a pattern (point), xi ; i D 1; : : :; m are the number of
patterns in a training set. Algorithms find classifiers are given as

f W Rn ! R

f .x/ 7! f�1;C1g (6.2)

which are supposed to discover relationships among patterns of the training set.
It is probable that there are many kinds of relationship such as decision trees,
mathematical functions, etc. In this part, we present an algorithm that uses genetic
programming to create a decision tree for binary classification.

6.3.1.1 Method

Let x D Œx1; x2; : : :; xn�
T be a pattern in the training set. The aim of this algorithm is

to create a decision tree that consists of terminal nodes and internal nodes. Terminal
nodes are class labels (�1 or C1). Internal nodes are either xk 	 vk or xk � vk with
1� k � n; where xk is one of variables of pattern x, vk is a random number within
the range of xk of pattern x in the training set. The fitness function is given as

Fitness D number of correct classified

number of patterns in the training set
(6.3)

The control parameters of the genetic programming are listed in Table 6.1.
The performance of the algorithm can be evaluated using two indicators, namely

sensitivity (Se) and specificity (Sp) given by the following equations:

Se D TP

jCj (6.4)

Sp D jRj � FP

jRj (6.5)

where TP is true positive, FP is false positive, jCj is the total number of patterns in
C, and jRj is the total number of other patterns in R. Sensitivity (Se) indicates the
number of patterns being correctly classified, where the value 1 means all similar

Table 6.1 Control
parameters of genetic
programming

Number of generations 500
Population size 1000
Probability of crossover 0.9
Probability of reproduction 0.1
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patterns are found. Specificity (Sp) is number of misclassified patterns, where the
value 1 means no misclassified patterns found. The values of both Se and Sp should
approach 1 for high performance.

6.3.1.2 Experiments

Ovarian Cancer Data

Ovarian cancer data were produced using the WCX2 protein chip (Petricoin
et al. 2002). The authors employed an upgraded PBSII SELDI-TOF mass spec-
trometer to generate the spectra. Different sets of ovarian serum samples were used
compared to previous studies. The sample set included 91 controls and 162 ovarian
cancers, which were not randomized so that the authors could evaluate the effect
of robotic automation on the spectral variance within each phenotypic group. This
database has 253 patterns each of which belongs to ovarian cancer class or control
class. Each pattern is a time series whose length is 15,154. The rate of the training
set and test set is 50–50%. The results obtained from GP and SVM are listed in
Table 6.2, which shows the better performance of the GP. Se and Sp values are
obtained using Eqs. (6.4) and (6.5).

Wisconsin Diagnostic Breast Cancer

This database was first used by Street et al. (1993). There are 569 instances each of
which belongs to benign class or malignant class (357 benign, 212 malignant). Each
instance is described by 30 real-valued attributes. Attributes are computed from a
digitized image of a FNA of a breast mass. They describe characteristics of the
cell nuclei present in the image. The diagnosis of breast tumors has traditionally
been performed by a full biopsy, an invasive surgical procedure. FNAs provide a
way to examine a small amount of tissue from the tumor; however, diagnosis with
this procedure has met with mixed success. By carefully examining both the char-
acteristics of individual cells and important contextual features such as the size of
cell clumps, physicians at some specialized institution have been able to diagnose
successfully using FNAs. However, many different features are though to be cor-
related with malignancy, and the process remains highly subjective, depending on
the skill and experience of the physician. In order to increase the speed, correct-
ness, and objective of the diagnosis process, we have used data mining methods.
The rate of training set and test set is 50–50%. To compare with other methods, we
used some well-known classifiers such as SVM, LB, logistic regression (LR), linear

Table 6.2 Ovarian cancer
results

Methods Se Sp

SVM 0.870 0.848
GP 0.935 0.978
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Table 6.3 Wisconsin
diagnostic breast cancer
results

Methods Se Sp

SVM 0.918 0.811
LS 0.959 0.893
LDA 0.959 0.893
LR 0.936 0.926
LB 0.940 0.910
GP 0.966 0.975

discriminant analysis (LDA), linear regression, and LS. The results obtained from
various classification methods are given in Table 6.3.

6.3.2 Genetic Algorithms for Binary Classification

6.3.2.1 Concepts from Geometry

Hyperplane

Let u1, u2, . . . , un, v 2 R, where at least one of the ui is nonzero. The set of all
points x D .x1; x2; : : :; xn/

T that satisfy the linear equation

nX
iD1

uixi D v (6.6)

is called a hyperplane of the space Rn, which is defined by

fx 2 Rn W uTx D vg (6.7)

The hyperplane H D fx 2 Rn W uTx D vg divides Rn into two half-spaces. One

of these half-spaces consists of the points satisfying the inequality
nP

iD1

uixi 	 v,

denoted as
HC D fx 2 Rn W uTx 	 vg (6.8)

The other half-space consists of the points satisfying the inequality
nP

iD1

uixi � v,

denoted
H� D fx 2 Rn W uTx � vg (6.9)

The half-spaceHC is called the positive half-space, and the half-space H� is called
the negative half-space.
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Distance from Point to Hyperplane

Given a point a D .a1; a2; : : :; an/
T and a hyperplane H D fx 2 Rn W uTx D vg,

distance from point to hyperplane in geometry is defined as

d.a;H/ D juTa � vjqPn
iD1 u2

i

(6.10)

6.3.2.2 Nonlinear Programming Problem

Let a training set be a set of pairs, denoted TS D f.xi ; yi / � Rn � f�1;C1g;
i D 1::mg. The main idea of binary genetic algorithm is to find a hyperplane H
that maximizes total distance from all points in training set to hyperplane H . That
means we have a nonlinear programming problem as:

Find z D .u1; u2; : : : ; un; v/T which maximizes

f .z/ D
mX

kD1

d.xk;H/ D
mX

kD1

juTxk � vjqPn
iD1 u2

i

(6.11)

Subject to: 8<
:

�1 � ui � 1; i D 1::n; and 9ui ¤ 0

�1 � v � 1

.uTxk � v/yk 	 0; k D 1::m

(6.12)

6.3.2.3 Prediction

After we have the resultant hyperplaneH , if tested point a satisfying the inequality
uT a � v 	 0, then tested point a belongs to positive set; otherwise tested point a
belongs to negative set.

6.3.2.4 Solving Nonlinear Programming Problem by Genetic Algorithms

Genetic algorithm approach is one of the evolutionary computation methods and has
been used in a wide variety of optimization tasks, including numerical optimiza-
tion and such combinatorial optimization problems as circuit layout and job-shop
scheduling (Mitchell 2001; Chong and Zak 2001). And many previous researches
show that GA is a powerful method for optimization problems. Therefore, we used
genetic algorithm to solve Eq. (6.11).
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Chromosome

Each chromosome represents a hyperplane. So each chromosome is encoded as a
fixed-length string of (nC 1) real numbers (value encoding). The first n real values
represent ui .i D 1::n/; the last real value represents v.

Fitness Function

Because each chromosome of initial population is randomly created as a set of
(nC 1) real number within the range [�1, 1], and mutation operation is not used, so
the first and second inequalities of (6.12) are satisfied during search process.

The third inequality of Eq. (6.12) and Eq. (6.11) are used to calculated fitness
value of each chromosome. First, each chromosome must satisfy the third inequality
of Eq. (6.12). Second, the total distance from all points in training set to hyperplane
(chromosome) is computed.

The best chromosome (hyperplane) is the one that satisfies the third inequality of
Eq. (6.12) and has the maximum total distance.

6.3.2.5 Experiments

We applied genetic algorithms for binary classification using the Wisconsin diag-
nostic breast cancer data. All control parameters of genetic algorithm are listed in
Table 6.1. The Se and Sp values are obtained using Eqs. (6.4) and (6.5). Likewise,
we used the SVM, LB, LR, LDA, linear regression, and LS for comparison the re-
sults with the GA approach. All results are listed in Table 6.4, which again show the
best performance of the GA.

Proteomic Database

Although this dataset is not cancer data but we present the analysis here to further
illustrate the robust performance of the evolutionary computation approach and the
efficiency of its parallel computation. The database has 145 patterns whose dimen-
sion size was 5 (Grunenfelder et al. 2001; Vohradsky et al. 2003). The database is

Table 6.4 Wisconsin
diagnostic breast cancer
results

Methods Se Sp

SVM 0.918 0.811
LS 0.959 0.893
LDA 0.959 0.893
LR 0.936 0.926
LB 0.940 0.910
GA 0.983 0.830
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Table 6.5 Sp and Se of proteomic database of six algorithms

GA SVM LB LR LDA LS

Cluster Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

1–3 1 0.7438 1 0.7190 1 0.7438 1 0.7025 1 0.6529 1 0.6364
4–7 1 0.8783 1 0.8609 1 0.9304 1 0.8870 1 0.8783 1 0.8435
10–14 1 0.7870 0.9730 0.9167 1 0.7407 1 0.75 1 0.7130 1 0.7130
17–19 1 0.8296 1 0.6370 1 0.7481 1 0.7481 0.9 0.7407 0.7 0.7556
20–23 1 0.9478 1 0.9478 1 0.6348 1 0.6348 1 0.6261 1 0.6261
1–7 1 0.9780 0.9630 1 1 1 1 1 1 0.9670 1 0.9670
17–23 1 0.9524 0.9750 0.9238 0.975 0.8476 0.975 0.8381 1 0.9238 1 0.9238

Table 6.6 Sp and Se using sequential and parallel computing

Sequent GA Parallel GA (two islands) Parallel GA (four islands)

Cluster Se Sp Se Sp Se Sp

1–3 1 0.7438 1 0.7521 - -
4–7 1 0.8783 1 0.9565 - -
10–14 1 0.7870 1 0.8333 1 0.8889
20–23 1 0.9478 1 0.9739 - -
1–7 1 0.9780 1 1 - -

Null value means parallel computing does not give better result

available at http://proteom.biomed.cas.cz. The data were first analyzed using a clus-
tering method. The average pattern of each cluster was then calculated and used in
the initial training set for the algorithm to find other patterns of clusters. For exam-
ple, the initial training set of cluster 1–7 problem contained average patterns from 1
to 7. The algorithm was tested with seven clusters and the results are summarized in
Table 6.5.

On the basis of the previous researches of parallel evolutionary computing, we
applied the island model to this algorithm with the following parameters: the topol-
ogy was ring, migration rate was from 5% to 10%, migration was executed after
ten generations, and subpopulation sizes were 500 and 260 for two and four islands,
respectively. The results are listed in Table 6.6.

6.3.3 Genetic Algorithm for Single-Class Classification

In binary classification, we use the training set that consists of two subsets, namely
positive set and negative set. The positive set contains similar patterns which we
want to search in a database. The negative set contains some arbitrary patterns which
are not similar to the patterns of the positive set. In fact, when users use the program
to search for a pattern they only know the pattern that they want to search in a
database. So the selection of the negative set makes it difficulties to the users. In
order to tackle some disadvantages of binary classification algorithm, we present
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an algorithm that uses only one set in the training process. This set contains only
similar patterns that the user wants to search in a database. This problem is called
the single-class classification (Scholkopf and Smola 2002).

6.3.3.1 Nonlinear Programming Problem

Let the training set be a set of patterns, TS D fxi 2 Rn; i D 1: : :mg, with m is
number of patterns in the training set. The main idea of the algorithm is to find a
hyperplane H that can contains all points of the training set. In other words, a hy-
perplaneH that minimizes the total distance from all points of the training set to the
hyperplane H is found. Therefore, we have the following nonlinear programming
problem:

Find z D Œu1; u2; : : :; un; v�T which minimizes

f .z/ D
mX

kD1

d.xk;H/ D
mX

kD1

juTxk � vjqPn
iD1 u2

i

(6.13)

Subject to: � �1 � ui � 1; i D 1::n; and 9ui ¤ 0

�1 � v � 1
(6.14)

In order to solve the above nonlinear programming problem, we use genetic
algorithms.

6.3.3.2 Prediction

Let H be the best hyperplane; Min Dis D min fd.xi ;H/;8xi 2 training setg;
Max Dis D max fd.xi ;H/;8xi 2 training setg. If the distance d.a;H/ from tested
point a to hyperplane H is within the range [Min Dis, Max Dis], then tested point
a is similar to training set TS.

6.3.3.3 Using GA to Solve Nonlinear Programming Problem

Chromosome

Each chromosome represents a hyperplane. So each chromosome is encoded as a
fixed-length string of (nC 1) real numbers (value encoding). The first n real values
represent ui (i D 1: : :n); the last real value represents v.

Fitness Function

Because each chromosome of initial population is randomly created as a set of
(nC 1) real numbers within the range [�1, 1], and mutation operation is not used,
so inequalities in Eq. (6.14) are satisfied during the search process.
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Equation (6.13) is used to calculated fitness value of each chromosome. In other
word, the total distance from all points in training set to hyperplane (chromosome)
is computed. The best chromosome (hyperplane) is the one that has the minimum
total distance.

6.3.3.4 Experiments

Wisconsin Diagnostic Breast Cancer

All the control parameters of the genetic algorithm approach are listed in Table 6.1.
Se and Sp values were obtained using Eqs. (6.4) and (6.5). Results obtained from the
GA are listed in Table 6.7. It can be seen that the GA for single-class classification
performs better than the GA for binary classification being shown in Table 6.4.

Proteomic Database

On the basis of the results in Table 6.8, it can be seen that the GA-based method is
superior to the other classifiers.

Table 6.7 Wisconsin
diagnostic breast cancer
results

Methods Se Sp

SVM 0.918 0.811
LS 0.959 0.893
LDA 0.959 0.893
LR 0.936 0.926
LB 0.940 0.910
GA 1.0 0.830

Table 6.8 Se and Sp results obtained from various algorithms where single SVM stand for single
class using SVM

GA Binary SVM Single SVM LB LR LDA LS

Cluster Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

1–3 1 0.992 1 0.719 0.542 0.959 1 0.744 1 0.702 1 0.653 1 0.636
4–7 1 1 1 0.861 0.80 0.809 1 0.930 1 0.887 1 0.878 1 0.843
10–14 1 0.972 0.9730 0.917 0.946 0.870 1 0.741 1 0.75 1 0.713 1 0.713
17–19 1 0.918 1 0.637 0.80 0.889 1 0.748 1 0.748 0.9 0.741 0.7 0.756
20–23 1 0.991 1 0.948 0.767 0.844 1 0.635 1 0.635 1 0.626 1 0.626
1–7 1 1 0.9630 1 0.889 0.989 1 1 1 1 1 0.967 1 0.967
17–23 1 0.971 0.9750 0.924 0.80 0.857 0.975 0.848 0.975 0.838 1 0.924 1 0.924
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6.4 Conclusion

On the basis of several experimental results previously presented, we can see that
both SVM and GP gave high performance. Other traditional methods such as LB,
LR, LDA, and LS do not achieve superior performance because of the high di-
mensions of the data. This is the reason why feature selection methods are used
to reduce dimension when these methods are applied to high dimension patterns.
SVM depends on kernel; for example, (1) Gaussian kernel tends to give good results
whereas linear kernel gives poor results with some training, (2) different selections
of the parameters of kernel may yield different results, and (3) parameter � 2 (0, 1]
can affect the classification. Although SVM gives a fixed result on fixed parameters,
there are many parameters, resulting in expensive computation.

Binary classification has been known as the most popular method in supervised
learning. In this chapter, we proposed two methods for binary classification: the first
method is based on genetic programming to search decision trees; in the second
method, genetic algorithms were used to search hyperplanes that are the solutions
of the nonlinear programming.

Although binary classification is a very popular, it has several disadvantages. We
know that the negative set is very important because it helps classifier to recognize
patterns which differ from the positive set. But there are some features of the nega-
tive set that can affect the searching for the right pattern. If the number of patterns
in the negative set is high, then number of misclassified patterns is usually low and
the number of true patterns is low as well. On the contrary, if the number of patterns
in the negative set is low, then number of misclassified patterns is usually high as
well as the number of true patterns. There may be no general rule to determine how
many patterns in the negative set is the best for every database; and it is still a trial
and error task.

Method that does not use the negative set in the training set can remove disadvan-
tages of the negative set. This method is called single-class classification. According
to our best knowledge, only one single-class classification method and single-class
SVMs have been reported in literature. This chapter proposes a GA-based method
for single-class classification, where genetic algorithms were used to solve nonlin-
ear programming. Results of this work are able to illustrate that genetic algorithms
and genetic programming are powerful methods for optimization and regression, re-
spectively. The biggest disadvantage of evolutionary computation is that they require
considerable time for computing, but this problem can be overcome by parallel com-
puting which computing has become a feasible task for large computations. There
are several parallel models for evolutionary computing. In this work, we used the
island model because it not only gives high performance but also improves the over-
all results. In binary classification, we usually find a classifier that maps patterns
into f � 1;C1g set. In our opinion, it is not natural; therefore, we will investigate to
develop an algorithm that uses only one-class information [do not map pattern into
f � 1;C1g set] to train the classifier: if being successful, there is no need to convert
multiclass classification into multiple-binary classifications.
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Chapter 7
Analysis of Population-Based Genetic
Association Studies Applied to Cancer
Susceptibility and Prognosis

Xavier Solé, Juan Ramón González, and Vı́ctor Moreno

Abstract Along hundreds of thousands of years, genetic variation has been the
keystone for human evolution and adaptation to the surrounding environment. Al-
though this fact has supposed a great progress for the species, mutations in our
DNA sequence may also lead to an increased risk of developing some diseases with
an underlying genetic basis, such as cancer. Among different genetic epidemiology
branches, population-based association studies are one of the tools that can help us
decipher which of these mutations are involved in the appearance or progression
of the disease. This chapter aims to be a didactic but thorough review for those
who are interested in genetic association studies and its analytical methodology. It
will mainly focus on SNP-array analysis techniques, covering issues such as quality
control, assessment of association with disease, gene–gene and gene–environment
interactions, haplotype analysis, and genome-wide association studies. In the last
part, some of the existing bioinformatics tools that perform the exposed analyses
will be reviewed.

7.1 Genetic Variation and Its Implication in Cancer

The implication of genes in cancer has long been suspected because this disease
shows familial aggregation, in some instances remarkably. The study of cancer
cells shows extensive genomic alterations, ranging from mutations in target genes –
known as oncogenes and tumor suppressor genes – to large chromosomal aberra-
tions. These alterations are supposed to be triggered by initial events that accumulate
and confer the cancer cells proliferation advantage and escape to control of DNA
damage. Alterations are acquired during the carcinogenesis process and are called
somatic alterations. However, individuals that carry alterations in germ line are
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known to have susceptibility to develop cancer. Mutations in a few genes have al-
ready been identified as responsible for cancer syndromes like Li–Fraumeni (p53),
familial breast cancer (BRCA1, BRCA2), adenomatous polyposis coli (APC), and
Lynch syndrome (MLH1, MSH2, MSH6, PMS2) (Foulkes 2008). These mutations
show high penetrance, but are rare and do not explain more than 5% of all cancers,
while other 15–25% are thought to have a relevant genetic contribution.

Though families share genes and environment, and part of the familial aggre-
gation could be related to shared lifestyles, diet, and other exposures, twin studies
allow estimation of the relative contribution of genes and environment. An impor-
tant fraction of most frequent cancers is related to genetic factors: 42% of prostate,
35% of colorectal, and 27% of breast, and similar estimates were observed for other
less frequent tumors (Lichtenstein et al. 2000).

The discrepancy between heritability estimates and the proportion of cases as-
sociated to known genes raised the hypothesis that other genes should be involved
in cancer etiology, though with lower penetrance and probably high frequency. An
intensive search for these susceptibility genes has been triggered when genotyping
technologies have emerged that allow easy simultaneous analysis of thousands to
millions of genetic markers. Also, the knowledge that recombination is not occur-
ring at random throughout the chromosomes, but in specific regions that delimit
blocks of nucleotides that are transmitted together (Hap 2003) (see Sect. 7.8.3.2),
has helped designing strategies to extensively explore the genetic variation at a
genome-wide scale in order to identify cancer susceptibility loci.

Heritable genomic variations are called polymorphisms, which occur by muta-
tion of DNA in germinal cells and are transmitted to descendants. Most of these
polymorphisms have no functional impact, either because they occur in noncoding
regions or do not modify the protein product qualitatively or quantitatively. Some
of these polymorphisms do have a functional impact and are the base of evolution.
Usually when the effect provides an advantage to the individual the polymorphism
increases in frequency in the population. Conversely, deleterious mutations tend to
disappear, though they can reach relatively high frequency in the population if the
heterozygous status provides some advantage like sickle cell anemia carriers, which
are more resistant to malaria.

There are three types of polymorphisms at the genetic level: single nucleotide
polymorphisms (SNP), variable number tandem repeats (VNTR) and copy number
variations (CNV).

SNPs, the most frequent polymorphisms, are changes in one nucleotide at a given
genomic position. Usually one nucleotide is substituted by other, but sometimes
one or a few nucleotides are deleted or inserted (Ins/Del). The results of these mi-
nor changes are diverse. If the SNP is in an exon, it may confer a change in the
aminoacid chain of the resulting protein, or a truncated protein if the SNP results
in an stop codon. SNPs in introns and noncoding regions may also be functional by
altering splicing sites or the binding of transcription factors. The ENCODE project
(Birney et al. 2007) is revealing that DNA expression is frequent in noncoding re-
gions. SNPs in resulting RNAs might also have relevant functions.
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Nonfunctional SNPs are scattered throughout the genome with one average dis-
tance of one SNP every 1,000 bp. The average haplotype block has a size of 20,000
bp in non-African populations and 10,000 bp in African populations. Thus, there
are about 20 SNPs per haplotype block on average, but only 5–6 different haplo-
types per block, as there is high redundancy. Only few SNPs per haplotype block
are needed to ascertain most of the variation and identify which haplotype is carry-
ing a causal polymorphism, if it exists. These minimum number of selected SNPs
are called haplotype-tagging SNPs (htSNPs).

VNTRs appear with less frequency and consist in serial repetitions of a short
series of nucleotides with length variability among individuals. For example,
ATATAT D .AT /3, ATATATATAT D .AT /5. The repeats may be mononucleotide
(AAAA), dinucleotide (AT), or even larger repeats. These polymorphisms are also
called microsatellites and most often are multiallelic, since the number or repeats
may vary greatly. This condition increases the likelihood of heterozygosity and
makes VNTRs very informative for some genetic analyses, particularly linkage.
VNTRs may also have a functional effect if present in relation to coding regions. As
a typical example, type 1 diabetes has been associated to a VNTR in the insulin gene.
Subjects with a short number of repeats (less than 50) have double risk than subjects
with more than 200 repeats (Bennett et al. 1995). More recent findings link VNTRs
and predisposition to early-onset colorectal cancer (Yeh et al. 2009). Though
VNTR are very informative, their genotyping usually requires more elaborated
and expensive methods than SNPs (usually sequencing) and for this reason these
polymorphisms are less often used for linkage and association studies nowadays.

CNVs have been identified more recently as an additional source of genomic
variation. These are relatively large regions spanning kilobases, sometimes covering
multiple genes, that appear in multiple copies with a variable number of repetitions,
in the range of 0 (deletion) to tens (Redon et al. 2006). CNVs are a typical genomic
somatic alteration in most cancers. Germ line CNVs are also being studied as a
potential cancer susceptibility source (Shlien et al. 2008).

7.2 Evolution of Genetic Epidemiology: From Family-Based
to Population-Based Association Studies

Finding cancer genes is a long task that needs to answer a series of questions (see
Table 7.1). Each question usually requires a specific study design and measures
genetic information with different levels of precision. Though the methods in this
chapter will focus on association, it is important to know where this design is in
relation to other alternatives.

The first and most important question is: Are genes involved in cancer? Case–
control studies showing familial aggregation of cancer provide indirect information
about the potential implication of genetic factors. Having a first degree relative with
cancer is a risk factor for most frequent cancers. However, this is a very crude
measure that might be confounded by shared environmental exposures. Studies in
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Table 7.1 Relevant questions and study designs in genetic epidemiology

Question Study design

Are genes involved in cancer? Familial aggregation, twin studies
What is the inheritance model? Segregation
Where are the genes? Linkage
Which are the genes? Association
What is the causal variant? Fine-mapping
Which is the mechanism? Functional studies
Interactions G�G and G�E association

migrants may also be informative. Cancer rates in second generations of migrants
that are more similar to their origin than the country of residence are indicative
of a genetic component. Twin studies are the most powerful to estimate heritabil-
ity (i.e., the proportion of cases attributable to genetic factors). The comparison
of concordance rates between monozygotic and dizygotic twins, when combined
with information about shared environment, provides most valuable information
(Lichtenstein et al. 2000).

The occurrence of specific cancers sometimes is a recurrent event in some
families. In such situations, when a major gene is suspected to be responsible for
the disease, segregation analysis of the pedigrees can provide information about the
inheritance model and estimates of penetrance (Bailey-Wilson et al. 1995). These
studies use only phenotype information and family structure and do not require DNA
markers.

When enough information is accumulated about genetic factors as a cause of
a specific cancer, the next question is: which are the genes? When genotyping of
genetic markers became feasible, before the genome was completely sequenced, it
was easier to identify regions of the genome associated to cancer and, in a second
step, try to identify which gene in that region was responsible. Linkage studies ex-
plore a series of polymorphic markers carefully selected across the genome in large
pedigrees of affected families. When at least three generations are genotyped, poly-
morphic markers can identify which alleles cosegregate with the disease and identify
the regions most likely to carry the causal genes. Linkage analysis can combine the
information of multiple families and is very powerful to detect signal when the pen-
etrance is high, but since only about 400 markers are used to cover the genome, the
level of resolution is in the range of megabases. After a consistent linkage signal
has been detected, sometimes hundreds of genes may be in the region and this tech-
nique is not always able to improve the resolution even when increasing the number
of markers because the number of subjects from the affected families is relatively
small.

In order to identify the specific genes related to cancer, association studies with
unrelated individuals using SNPs as genetic markers are the most powerful ap-
proach. Unrelated individuals increase the likelihood of recombination events and
increase the resolution of the signal. Careful selection of SNPs, nowadays using
information about haplotype blocks, can identify which genes are involved in the
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disease. Association studies compare the genotype frequencies of a series of SNPs
between a sample of unrelated cases and a sample of controls from the same pop-
ulation. The possibility to include unrelated cases and controls allows the usage of
large sample sizes to increase detection power. Association studies are usually fo-
cused on selected candidate genes belonging to regions that have shown linkage or
because their known mechanism of action makes the gene possibly related to can-
cer. For example, typical genes studied in cancer are involved in cell cycle control,
inflammation, metabolism, or DNA repair (Landi et al. 2005; Moreno et al. 2006).

Since current large-scale genotyping technology allows to simultaneously geno-
type millions of SNPs, currently Genome-Wide Association Studies (GWAS) are
being conducted to identify susceptibility loci not necessarily related to coding re-
gions. In fact, the first finding of these studies in prostate cancer has identified
a region in 8q24 where no genes can be clearly imputed as responsible (Haiman
et al. 2007b). POU5F1 is the nearest expressed region, but corresponds to a pseudo-
gene. MYC, a known oncogene that lies downstream the region, is also suspect of
being involved, but the evidence is indirect (Sole et al. 2008).

Even when a gene has been clearly associated to a disease, finding the causal
variant usually requires resequencing and intensive genotyping to fine-map the re-
gion. Identifying the causal variant will also need functional studies to document
the mechanism of action that determines the risk.

For some genes, the genetic variation is probably not sufficient to cause cancer
unless an environmental exposure is acting simultaneously. For example, polymor-
phisms in NAT2 have been associated to an increased risk of bladder cancer among
smokers; for nonsmokers the risk is not increased (Garcia-Closas et al. 2005). This
is an example of gene–environment interaction that is probably relevant in many
genetic determinants. Ignoring the environmental effect leads to an attenuated risk
(average of smokers and nonsmokers) that is difficult to detect unless the study has
a large sample size. Similar to gene–environment interactions, it is likely that gene–
gene interactions may exist and only carriers of multiple variants are at increased
risk of developing cancer. The difficulty in detecting such interactions is that, with-
out prior hypothesis, the search domain is huge and very large sample sizes are
needed.

7.3 Technical Issues and Data Quality Control for SNP-Array
Association Studies

All biological experiments are subject to different sources of variability. Particu-
larly, large-scale techniques, such as DNA microarrays, may be specially sensitive
to specific experimental conditions that are not easy to keep under control (Spruill
et al. 2002). Although there are some methods which try to minimize this variabil-
ity, such as data normalization or experiment replication, it is not possible to remove
it completely. Thus, besides being extremely careful about how all the experiments
are performed and the data normalized, before going on with our analysis we will
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also need to check the quality of the obtained data to increase the reliability of the
study results. As we previously stated, this chapter will mainly focus on SNP-array
analysis techniques. First, we will briefly review some of the different genotyping
algorithms that have been used to infer the calls from raw data. Once the genotypes
are obtained, SNP-array quality control can be performed at different levels: SNP
and sample (array). In the following sections, we are going to briefly review some
of the different calling algorithms, as well as explaining in detail this quality-control
procedure and all the steps it comprises.

7.3.1 Introduction to Genotype Calling Algorithms

The call of a specific SNP for a single sample is essentially its genotype, that is,
the combination of its two corresponding alleles. Since most usually we will be
working with two-allele SNPs (also called biallelic), for a given SNP with alleles
A and B there will be three possible calls: two homozygous (AA and BB) and
one heterozygous (AB or equivalently BA). These calls are automatically obtained
using algorithms that process raw intensities coming from the scanned image of the
microarray. Usually, for a given SNP and sample we will have two intensity values,
each one corresponding to one of the two alleles. Some array platforms, however,
have also probes which are strand specific (sense and antisense), finally leading to
four intensity values.

Over the last few years, genotyping algorithms have evolved in accordance
with the size of the available arrays. The embryo technology of the SNP arrays,
Affymetrix Variation Detection Arrays (VDAs), contained about 1,500 SNPs. An
algorithm called Adaptive Background Genotype Calling Scheme (ABACUS) was
then designed to extract the calls (Cutler et al. 2001). As well as showing a certain
trend to drop heterozygous calls, this method was clearly unsuitable when the first
SNP arrays appeared (e.g., Affymetrix 10K). Thus, ABACUS was soon replaced
by newer algorithms such as Modified Partitioning Around Medoids (MPAM) (Liu
et al. 2003). This algorithm was based on the robust classification method called
Partitioning Around Medoids (PAM), but it was modified to penalize small between-
group distances, since PAM tends to split large clusters into two different groups to
minimize the total sum of distances of all the observations to their corresponding
nearest medoid. MPAM worked well for SNPs that had enough data in each of the
three genotypes, but not for SNPs with one missing or very small genotype or when
the number of arrays to be analyzed was small.

With the advent of 100K arrays, a lot of SNPs with low minor allele frequency
(see Sect. 7.3.2.3) were included in the new platform, making the performance of
MPAM decrease remarkably. Thus, it was replaced by the newer DM (Dynamic
Model) algorithm (Di et al. 2005), in which four Gaussian models were fitted for the
probe intensities of each SNP (one for each genotype and one for the null values),
and then a genotype call was assigned to each sample depending on its likelihood.
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The DM algorithm had a main limitation: it was a single-array algorithm, that is, it
could not take profit of aggregating data sets to better assess how each SNP behaved.
Furthermore, it seemed to poorly classify heterozygous samples when compared to
MPAM.

Arguing that neither MPAM nor the DM algorithm were using currently avail-
able genotypic information, and only about a year after the publication of the DM
method, Rabbee and Speed (2006) proposed a new algorithm, called Robust Linear
Model based on Mahalanobis distance classification (RLMM). This method had two
main advantages over the formerly designed DM algorithm: first, it was a multichip
algorithm, thus allowed to assess both probe effects and allele signals for each SNP.
Second, genotypes were estimated by means of a multiple-sample classification, that
is, using information of other SNPs to better define the properties of the three groups
corresponding to the three possible genotypes. To combine intensities across probes
and arrays and produce allele-based summaries it used the robust multichip average
method (Irizarry et al. 2003). This method took advantage of the large amount of
publicly available information on genotype calls (i.e., HapMap) to define regions for
each genotype group, thus improving the accuracy of the classification. Neverthe-
less, although this remarkable increase in accuracy, RLMM still had some problems
in dealing with the interstudy or interlaboratory variability, which may be caused by
slight variations in the sample preparation procedure, among other reasons.

Affymetrix soon adopted RLMM as the standard methodology to analyze 100K
and 500K SNP arrays. The method was slightly modified with the addition of a
Bayesian approach which yielded differences in the clustering space transformation
and in the estimation of both cluster centers and variances. Although it was its main
aim, the resulting algorithm, known as BRLMM (Bayesian RLMM) (BRL 2006),
still did not seem to handle accurately the interstudy variability.

To solve this issue, Carvalho et al. (2007) proposed another modified version of
the RLMM, known as Corrected Robust Linear Model with Maximum Likelihood
Classification (CRLMM). Essentially, it uses an adapted version of RMA prepro-
cessing method for SNPs (called SNP-RMA), which is designed to remove most of
the study/laboratory effect. In much the same way as BRLMM does, it also uses
Bayesian approach to inform lowly populated clusters. Recently, CRLMM design-
ers have added a new recalibration step to the algorithm which further increases its
accuracy level (Lin et al. 2008). The new version also incorporates a new quality
metric to assess call confidences at the SNP level, which may be very useful to filter
out poor-quality SNPs. This method seems to perform better than all the previous
algorithms explained, and even better than Birdseed (Korn et al. 2008), which is
the recently designed algorithm by Affymetrix and the Broad Institute for the 6.0
generation of SNP arrays, so it may be a good choice if we need to decide which
calling method we are going to use.

Finally, we must point out that although all the calling algorithms we have men-
tioned in this section have been basically designed to be applied to Affymetrix SNP
arrays, the underlying basis of the analysis can also be suitable for arrays made by
other manufacturers, such as Illumina’s BeadChip technology.
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7.3.2 SNP-Level Quality Control

This is the first level of quality control. Once we have the SNP calls, it is important
to check their quality one-by-one in order to detect uninformative or poor-quality
SNPs, so that they can be permanently removed from all the samples contained in
our dataset.

SNP-level quality control can be divided into different parts, each one of them
checking different quality issues. SNPs that meet all the requirements are the ones
that will be kept for further analysis.

7.3.2.1 Percentage of Present Calls

As we stated in Sect. 7.3, defective hybridizations or incorrect analytical processes
may result in poor-quality data and could hamper obtaining reliable genotype calls.
In the case of SNP-level percentage of present calls, difficulties may arise mainly
from improper functioning of genotype calling algorithms. Some of them, such as
BRLMM, may introduce some systematic bias in the missing values they report
(Hong et al. 2008). As a consequence, this bias may not randomly affect all the
three different genotypes of a SNP, but only some of them. Having the calls for all
SNPs and samples, we can then assess the missing rate for each SNP across all the
hybridizations. Since missing call values will potentially be related to low levels of
genotyping quality, we should discard from our study those SNPs with a poor call
rate. Although rather subjective, an 80% of present calls is usually considered as
the minimum threshold applied to filter out potential low-quality or highly biased
SNPs.

7.3.2.2 Hardy–Weinberg Equilibrium

Given a SNP and its allele frequencies for a specific population, the Hardy–
Weinberg principle determines what the expected genotype frequencies should
be, assuming that the different alleles are transmitted independently from one gen-
eration to another and with no selective pressure over them. Therefore, if we have a
SNP with two alleles, A and B, with population frequencies p and q (or equivalently
1 � p) respectively, the expected genotype probabilities are:

fAA D p2

fAB D 2 � p � q
fBB D q2

To assess if one SNP follows the Hardy–Weinberg law we can use the Pearson’s
goodness-of-fit Chi-square test statistic, �2, with 1 degree of freedom (in case we
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have a biallelic polymorphism). The null hypothesis is that the SNP is indeed under
HWE, so we will reject SNPs with p values smaller than a specific significance
level. The Chi-square statistic, however, may have a poor performance when we
have small genotype counts, so in that case it will be better to use a Fisher’s Exact
test instead (Guo and Thompson 1992; Wigginton et al. 2005).

The fact that a SNP does not follow the Hardy–Weinberg law may be due to
different reasons:

� Small population size.
� The allele-calling algorithm is underperforming for one of the genotypes (i.e., it

fails to correctly call heterozygotes).
� The SNP is mapping to multiple genomic locations.
� The genotyped individuals are not independent (i.e., because of inbreeding).
� There has been a positive selection of a certain allele (i.e., an allele associated to

longevity).
� If we use a significance level of a 5%, we may find by chance different observed

frequencies from the ones we expect. This would happen for a 5% of the SNPs for
which we are evaluating HWE. Theoretically, we would need to perform p value
adjustment (see Sect. 7.6.4) to solve this issue. Nevertheless, what is usually done
in this context is to set a more restrictive threshold for significance for HWE tests,
but not as restrictive as it would be using standard p value correction methods.
Researchers have widely accepted 0.001 as a suitable boundary, being 0.0001
in the case of GWAS, where more tests are performed. Even if after setting this
more astringent threshold we still find SNPs with genotype frequencies under no
HWE then one of the other issues on this list may be the reason, so we will need
to evaluate our data in detail to find what is causing this genotypic imbalance.

In the typical case–control study, HWE may be only evaluated in control popula-
tions, which is where it should hold true. If we do not identify clearly the reason
of the disequilibrium, it may be necessary to remove the affected SNPs. In case we
want to keep them, association results for those SNPs need to be checked carefully,
as there may be some influence from one of the items mentioned above. As a guid-
ance, we can also look at HWE among the cases, since a SNP with no equilibrium
might be potentially related with the disease.

7.3.2.3 Minor Allele Frequency

The minor allele frequency, or MAF, of a SNP is its lowest allele frequency. There
is a huge variation in the MAF among different SNPs, from a very low percentage
(e.g., less than 1%) to almost a 50%, meaning that in fact there is no minor allele.
Although the MAF is not a quality measure by itself, it might be useful to filter
SNPs according to it for subsequent analysis. It must be taken into account that, if a
certain SNP has a very low MAF, we will have very little statistical power to detect
its potential association with the disease (see Sect. 7.6.3). Furthermore, these SNPs
are more difficult to genotype reliably. Therefore, removing those SNPs, from which
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a priori it will be hard to get any useful information, might increase the quality of
our data and will slightly reduce the number of hypothesis tested, so we will be a bit
less restrictive in the step of p value correction for multiple hypothesis testing.

7.3.2.4 Genotype Calling and Exploration of Signal Intensity Plots

As we have seen in Sect. 7.3.1, SNP allele intensities are the data we use to infer
the genotypes. Since all preprocessing and calling procedures are mostly automatic,
we do not usually work with these intensities directly. Nonetheless, we can still use
them if we are specially interested in checking a few specific SNPs. To do so, signal
intensity plots are mainly used. For a given SNP, these plots are useful to visually in-
spect the intensity values for both alleles across all samples. Under an ideal situation
we will observe three clouds, one for each genotype (Fig. 7.1, left panel). However,
some issues may influence this intensity values, thus distorting the plot and making
it more difficult to visually define the three clusters (Fig. 7.1, right panel). This will
happen mainly for bad-quality SNPs, SNPs with poor intensities, SNPs with ho-
mologous sequences in different parts of the genome, or SNPs involved in a Copy
Number Variant (CNV), among other reasons.

Since checking this plots is mainly a visual inspection that needs to be done SNP-
by-SNP, it will be virtually infeasible to have a look at the hundreds of thousands
of SNPs contained in an array. Thus, more than a preanalysis quality-control step,
this should be considered a postanalysis quality-control procedure. That is, when
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Fig. 7.1 Intensity plots of allele A vs. allele B for two SNPs. In the left panel we see a good-
quality SNP, where the boundaries between the three genotype regions (dashed lines) can be clearly
defined. The right panel belongs to a defective SNP, where no clear boundaries between genotypes
regions can be defined, yielding to potentially incorrect calling results
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we have a few candidate SNPs and we want to ensure the reliability of the obtained
results, we can plot their intensities and see how the calling algorithm has created
the different groups. Furthermore, if we find a strange negative result (i.e., lack of
association with the disease when we already expected it) we can do the same to
check if it has been caused by any of the technical reasons stated above.

7.3.3 Sample-Level Quality Control

As well as performing SNP-level quality control, it is important to check whether
there are any poor-quality samples in our dataset or not. This fact could happen
not only because of bad quality of the biological material to be hybridized (e.g.,
DNA), but also because there may be some problem with the hybridization. That is,
since samples and arrays are confounded, sometimes it will be hard to tell where
the problem comes from unless we perform replicates of our experiments, which is
rather expensive. Independently of the underlying reasons though, all samples with
a poor-quality level should be removed from our dataset for further analysis, as they
could be a potential source of error in our study. In the following sections we will
review which parameters can be used to detect these defective hybridizations.

7.3.3.1 Percentage of Present Calls

Much in the same way as we explained in Sect. 7.3.2.1, percentage of present calls
in a sample can be a helpful quality index. In the case of sample percentage of
present calls, this fact could be mainly related to the quality of the hybridized DNA
(i.e., it may be degraded or the amount of DNA hybridized may be too small), as
well as with some technical problem with the hybridization or with the microarray
itself. Usually, those samples with less than 95 or 97% of present SNPs should
be discarded, since missing genotypes tend to be nonrandomly distributed. This
threshold may be increased or decreased depending on how strict we want to be
with our data. If for any reason we decide to lower it significantly (e.g., less than
90%), we must always bear in mind that our final results may be influenced by this
potential artifact.

7.3.3.2 Sample Heterozygosity

Total heterozygosity, understood as the number (or proportion) of heterozygous
SNPs in one sample, can be a good-quality indicator at the sample level. As an
example, individuals having a large proportion of heterozygous SNPs may be more
likely to have their DNA contaminated. On the contrary, a too low level of het-
erozygosity could indicate that there may be some problem with the hybridization
or even a sign of inbreeding for that individual. A rather simple but typically used
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methodology to filter out those samples with an odd level of heterozygosity is to
compute the mean and the standard deviation of this index across all samples and
then filter out those individuals falling outside the mean ˙ 3SD.

Regarding heterozygosity analysis, it is interesting to remark that we should pay
special attention to SNPs located in the X chromosome, since presence or absence
of heterozygous SNPs in a specific sample will help us decipher the gender of that
individual (i.e., only females can have heterozygous SNPs in the X chromosome).
This will enable us to check for possible mistakes during the process of sample
annotation.

7.3.3.3 Using Principal Components Analysis as a Method to Detect
Outliers or Related Samples

Even after removing those defective SNPs and samples by methods such as the ones
described in previous sections, to reach the maximum level of quality in our data we
must still ensure that none of our individuals displays an irregular genotype pattern.
As an example, this could happen if, by mistake, a Chinese or African individual
falls into a study of Caucasians. By applying all the filters mentioned above we
may not detect this fact, so we need to use techniques capable of discovering this
kind of outliers. Additionally, another issue we must take into account is to search
for any underlying relationships between individuals in our cohort. That is, if we
have samples with a higher level of concordance between their genotypes than we
would expect by chance. This relationship could be due to technical (e.g., date of
hybridization, batch effect, etc.) or biological reasons (e.g., inbreeding).

A useful technique to perform all these quality controls is Principal Components
Analysis (PCA). Basically, it is a dimensionality reduction technique which trans-
forms an undefined number of correlated variables (which in this case would be the
samples) into a smaller number of uncorrelated and ordered variables, called prin-
cipal components. The order of the principal components is arranged according to
the amount of variability explained by each one of them, being the first principal
component the one that accounts for most of the variability.

Before doing the analysis, we will need to perform a simple transformation of
the genotype matrix into a numerical one. That is, we will recode genotypes, such
as AA–AB–BB, into numbers (e.g., 0–1–2). Although this may be enough to detect
outliers in our dataset, a transformation of the matrix as the one suggested by Price
et al. (2006), which takes into account the differences in the MAF of all the SNPs,
may be appropriate. Performing a PCA is a rather straightforward task. Nonetheless,
it may be memory consuming for very large datasets, so in this case we may need a
computer with a fairly big amount of RAM memory for this purpose.

Once the analysis is done, a rather simple but useful way to check for outliers
or unlikely relationships among samples is to plot the values of the first principal
components for all the samples contained in our dataset. As an example, in Fig. 7.2
we can see a plot of the two first principal components for a dataset containing 94
HapMap samples and 6359 SNPs located in the genomic region 8q24. Two of the
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Fig. 7.2 Principal components analysis plot of 94 HapMap samples using 6359 SNPs located in
the 8q24 region. We can clearly see how the two African and the two Asian individuals separate
from the rest

samples have Asian origin (Japanese in Tokyo, Japan), and two more come from
Africa (Yoruba in Ibadan, Nigeria), being the remaining 90 CEPH (Utah residents
with ancestry from northern and western Europe). In the plot we can clearly see
how JPT and YRI individuals can be clearly distinguished from CEU, which form a
relatively homogeneous group. Therefore, this procedure has enabled us to uncover
those samples that may be defective or have a different origin than we could have
expected. Although the example is shown to reveal different ethnic origins, it can be
also useful to detect technical biases or batch effects in our dataset. A more extensive
application of PCA to genome-wide association studies is reviewed in Sect. 7.6.1.

7.4 Single-SNP Analysis: Association Between SNPs and a Trait

Single-SNP analysis is usually the first step of the analytical process after perform-
ing quality control in our dataset. Essentially, it consists on assessing the association
between the different genotypes of a SNP and a response variable. This has usually
been the most straightforward and computationally feasible type of analysis in asso-
ciation studies. Nonetheless, with the recent advent of more dense platforms such as
Affymetrix’s SNP array 6.0 or Illumina’s Human1M–Duo BeadChip, single-SNP
association analysis has also become a challenge both for statisticians and bio-
informaticians, specially for those association studies with a large sample size. The
vast amount of data generated by these arrays demands good computational and
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statistical skills, as well as a computing infrastructure powerful enough to handle it
properly. In the following sections, we are going to review which are the different
available tests to evaluate association between a SNP and a specific trait. We will di-
vide the different types of analysis in terms of the type of outcome we have: binary,
quantitative, or prognosis.

7.4.1 Binary Outcome

Having a categorical outcome is one of the most, or maybe the most, usually found
situations in population association studies. More specifically, what we typically
have is a binary case–control phenotype, with unrelated affected and unaffected
samples. Cases and controls are usually matched by third variables such as gender
or age. In this case, the most straightforward manner to test the SNP-outcome asso-
ciation can be done based on the 3 � 2 contingency table (Table 7.2). To test the
null hypothesis of no association between genotypes and the response variable we
can perform a 2df �2 test. Nonetheless, when there are low genotype frequencies in
one or more cells, a Fisher’s exact test would be desirable.

The model which takes into account the full table with the three genotypes is usu-
ally called codominant. Basically, it assumes a phenotypic intermediate effect (but
not necessarily half-way) for the heterozygotes compared with the two homozy-
gotes. However, sometimes we will expect our SNPs to follow other inheritance
patterns, such as dominant or recessive. To do so, we will rearrange the full contin-
gency table as shown in Tables 7.3 and 7.4.

Analysis of Tables 7.3 and 7.4 can also be done both with a �2 test (with 1 df) or
a Fisher’s exact test, depending on the number of counts found in each cell.

One important fact to take into account is that, when dealing with complex traits,
genetic effects of single SNPs will likely be additive instead of dominant, recessive,

Table 7.2 Contingency table
with genotype counts for
cases and controls

Genotype Controls Cases

AA nAAco nAAca

AB nABco nABca

BB nBBco nBBca

Table 7.3 Contingency table
for the dominant model, with
allele B being the risk allele

Genotype Controls Cases

AA nAAco nAAca

ABCBB nABco C nBBco nABca C nBBca

In this case heterozygous individuals are expected to
have the same phenotype as BB homozygotes, so both
categories are collapsed into a single one
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Table 7.4 Contingency table
for the recessive model, with
allele B being the risk allele

Genotype Controls Cases

AACAB nAAco C nABco nAAca C nABca

BB nBBco nBBca

Heterozygous individuals are only carriers of the dis-
ease, but they display a nondisease phenotype. Thus,
they are merged with the AA subjects, which have a
wild-type genotype

or codominant. Additive models assume that heterozygotes risk will be half-way
between the two homozygote risks. Since the statistical tests explained above (2df
�2 and Fisher’s exact test) have a reduced power to detect this kind of effects, we
need to address this issue and find other ways to detect this additive association.
The Cochran–Armitage test (Armitage 1955) is a good model to detect this trend
in the proportion of cases for each one of the genotypes. It tests against the null
hypothesis of a zero slope for the line that fits the three genotype risks best. Actually,
this test corresponds to the multiplicative model for effects of alleles on odds scale.
An important characteristic of this model is that it does not rely on the assumption
of Hardy–Weinberg equilibrium (HWE), so it may be useful in case HWE does not
hold for our complete population of individuals (cases and controls altogether).

Compared to the contingency table approach, logistic regression offers a more
flexible environment to assess the association between a SNP and a binary outcome.
For large sample sizes, the likelihood ratio test of the logistic model against the null
hypothesis ˇAA D ˇAB D ˇBB is equivalent to the 2df �2 test. However, logistic
regression can be extended to further SNPs (epistasis), environmental, or clinical
variables, which usually need to be taken into account.

To specify inheritance models in a logistic regression, we just need to restrict
the values of the ˇ coefficients. Thus, forcing that ˇAB D ˇBB or ˇAA D ˇAB

would test for a dominant and recessive effects, respectively. If we restrict ˇAB to
be half-way between ˇAA and ˇBB , then the logistic model will be equivalent to the
Cochran–Armitage trend test.

7.4.2 Quantitative Outcome

A typical example of association study with a quantitative outcome is the one where
we want to test if the expression value of a gene is affected by the genotype of a
specific SNP (which may or may not be located in the same gene). This kind of
association may be relevant for diseases with an important genetic basis, such as
cancer.

A first and simple approach to assess the degree of association between a SNP
and a trait would be to categorize the quantitative response into two classes (e.g.,
“low value” and “high value”), and then apply one of the approaches described in
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Sect. 7.4.1. Nevertheless, this approach is suboptimal, since it would carry a loss of
statistical power to detect significant changes between groups. Therefore, instead of
that approach, a more natural and optimal model to test association with a quantita-
tive response is to use statistical tests such as ANOVA and linear regression.

While ANOVA model is equivalent to the 2df �2 test, linear regression assumes
linearity between genotypes and the response means, so the degrees of freedom are
reduced to one. Furthermore, both tests require the trait to be normally distributed
and with equal variance across all genotypes.

In a similar manner as what is explained in Sect. 7.4.1, inheritance models can
also be specified in this case by merging the proper genotypes to generate a domi-
nant, recessive, or additive genetic pattern.

7.4.3 Prognosis Outcome

In the last few years, a vast number of studies have investigated the association be-
tween polymorphisms and cancer survival. Some of the more recent findings include
studies for breast cancer (Cox et al. 2007; Hunter et al. 2007; McKay et al. 2008;
Wang et al. 2008), colorectal (Broderick et al. 2007; Haiman et al. 2007b; Jaeger
et al. 2008; Tenesa et al. 2008) or prostate (Haiman et al. 2007a,b; Sun et al. 2008;
Witte 2007; Yeager et al. 2007). From a statistical point of view, the Kaplan–Meier
estimator is most widely used to estimate the survival function. As an example, we
could model the time to develop metastasis after the resection of a primary tumor in
terms of the genotype of a specific SNP. To assess the significance of survival dif-
ferences in different groups, a log-rank test can be used. However, Cox proportional
hazards model will allow us to quantify the increase or decrease of risk for each one
of the genotypes. Analogously to what is explained in Sects. 7.4.1 and 7.4.2, in this
case we can also force our SNPs to follow a specific inheritance pattern.

7.5 Multiple-SNP Analysis

Association studies may not restrict only to single genetic markers, specially when
most recent large-scale techniques have broaden the experiments up to more than
a million SNPs. Although useful as a first approach to detect potential association
with a trait, single-SNP analyses have shown to be somehow inefficient, because
they do not integrate information of nearby markers. Since it may be rather unlikely
that we have the real causative marker genotyped, multiple-SNP associations can
provide a great advantage over pointwise estimations.

There are two main approaches to assess multiple marker association: regression
and haplotype-based methods. Regression methods are mainly based on logistic or
linear models (depending on the type of response we have). Nonetheless, as geno-
typing densities have dramatically increased over the last few years, correlations
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among neighboring SNPs can cause model instability. Backward or forward
stepwise procedures may overcome this limitation, but they tend to overfit the
observed genotype and phenotype data, making permutation testing procedures
necessary to control the type I error rate. Another feasible approach is to select only
tag-SNPs (i.e., loci that can serve as proxies for many other SNPs, see Sect. 7.5.2),
but at the expense of losing potentially valuable information. This motivates us to
focus on haplotype-based approaches, which constitute an attractive alternative. In
the following sections, we are going to introduce the basic concepts of haplotype
theory, and then we will review haplotype-based association methods.

7.5.1 Introduction to Haplotypes

Haplotypes are combinations of alleles at multiple polymorphic loci along a chro-
mosome. Although an entire chromosome could be seen as a haplotype, usually only
regions no longer than 100 kbp with highly linked polymorphisms are considered.
Thus, for a given set of markers, each person has two haplotypes, each one inher-
ited from one of the progenitors. As one can easily calculate, a set of n biallelic
SNPs generate 2n potential haplotypes in the population. However, recombination
rates commonly make the actual occurring number of haplotypes to be much smaller
than this theoretical upper bound.

The usefulness of haplotypes in association studies is justified by several rea-
sons. First, since they are combinations of multiple SNPs, haplotypes have been
demonstrated to be more informative than individual markers. Furthermore, haplo-
type association studies show greater statistical power than single-SNP association
analyses (Akey et al. 2001). From a biological perspective, there are evidences that
a set of pointwise cis-mutations (i.e., located in the same copy of the chromosome)
within the same gene can interact to have a greater effect on a subject’s phenotype.
Despite this, the association of a haplotype with a phenotype does not necessarily
mean that the haplotype itself is biologically related to the trait, since it may be
possible that an unexplored locus located in the haplotype region was the marker
biologically functionally related with the phenotype.

One serious drawback of any analysis involving haplotypic information is that
genotyping studies usually generate unphased data. That is, for a given subject we
do not really know which alleles come from each one of the progenitors. Laboratory
techniques which allow to obtain phase information, such as allele-specific PCR or
cloning, are rather expensive and time consuming. Thus, to overcome this lack of
information we need a statistical approach that enables us to infer haplotypes for a
given set of unrelated samples and genotypic markers.

7.5.2 Linkage Disequilibrium, Linkage Blocks, and Tag-SNPs

Linkage disequilibrium (LD) statistics describe the deviation of observed haplotype
frequencies from what is expected. Let A and B be two SNPs with alleles A1, A2,



166 X. Solé et al.

B1, and B2. Thus, the combination of these SNPs can generate four possible hap-
lotypes: A1B1, A1B2, A2B1, and A2B2, with relative frequencies fA1B1

, fA1B2
,

fA2B1
, and fA2B2

, respectively. The basic statistic to assess the LD between both
markers, named D, is defined as follows:

D D fA1B1
� fA1

� fB1
(7.1)

D equals to 0 in the case of complete equilibrium. Positive D values indicate that
A1 and B1 tend to appear together more than expected by chance, while negative
values would indicate the opposite. A major inconvenient with the D statistic is that
its range depends on the MAF of the two SNPs, making it desirable to find a measure
with a standardized range. Thus, a normalized version of D, called D0, is defined as:

D0 D D

Dmax
(7.2)

where

Dmax D
8<
:

D
min.fA1

fB1
;fA2

fB2
/

if D > 0

D
min.fA1

fB2
;fA2

fB1
/

if D < 0;
(7.3)

D0 ranges from �1 to 1, and usually takes extreme values when allele frequencies
are small. If D0 D 1 or D0 D �1, it means there is no evidence for recombination
between the two markers. Moreover, if allele frequencies are similar, highD means
the SNPs are good surrogates for each other. Nonetheless, this statistic has an im-
portant drawback, which is that it is inflated for small sample sizes or when one
allele is rare. Therefore, another measure based on the correlation between alleles,
called r2, can be defined as follows:

r2 D D2

fA1
� fA2

� fB1
� fB2

; (7.4)

r2 ranges from 0 (i.e., perfect equilibrium) to 1 (i.e., both markers provide identical
information), and its expected value is 1=2n. It has become one of the most used
statistics to assess LD between pairs of markers.

Comparison of haplotypes and the scope of LD across individuals allows us to
identify segments or haplotype blocks that correspond to minimal units of recombi-
nation. Usually, one or few alleles within these haplotype blocks will be predictive
of the other alleles. This predictive SNPs are called tag-SNPs. Therefore, GWAS can
be accomplished by genotyping a collection of tag-SNPs which define the haplotype
blocks along the complete genome. As an example, this is the approach followed by
Illumina’s BeadChip technology.
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7.5.3 Haplotype Inference

In the last two decades, several methods of haplotypic reconstruction have been de-
veloped in order to solve the problem of haplotype inference. Since Clark, in 1990,
developed a parsimony algorithm to estimate haplotype frequencies from a sample
of genotypes, quite a large number of methods have been developed (Clark 1990).
Most of them rely on the use of different techniques to calculate the Maximum
Likelihood Estimator (MLE).

In 1995, Excoffier and Slatkin (1995) adapted the Expectation-Maximization al-
gorithm, an iterative algorithm of maximization developed by Dempster in 1977 to
maximize the likelihood function of the haplotypes given the genotypes at specific
loci (Dempster et al. 1977). This method has some limitations and convergence to a
local maximum may occur in some situations (Celeux and Diebolt 1985).

Some authors have attempted to minimize these limitations in their works, like
Qin et al. (2002) using Divide and conquer strategies, or David Clayton, imple-
menting an EM-algorithm which adds SNPs one by one and estimates haplotype
frequencies, discarding haplotypes with low frequency as it progresses. In the con-
text of Bayesian statistics, Stephens et al. in 2001 proposed an algorithm based
on coalescent theory with a especial prior based on the general mutational model
(Stephens et al. 2001). Niu et al. (2002) implemented another Bayesian approach
using a Markov Chain Monte Carlo method. In general, algorithms dealing with
Bayesian models are suitable to infer haplotypes from genotypes having a large
number of polymorphisms. More recent methods work with clusters of haplotypes
in order to avoid the major limitations of many current haplotype-based approaches
(Waldron et al. 2006).

Once the frequencies have been estimated by any of the methods mentioned
above, the next goal is to test the association between haplotypes and the disease.
The most accurate strategy in order to take into account the uncertainty of the sam-
ple is to estimate simultaneously haplotype frequencies and haplotype effects. Some
works are focusing on this approach (Iniesta and Moreno 2008; Tanck et al. 2003;
Tregouet et al. 2004).

7.5.4 Haplotype Association with Disease

Since haplotypes capture variation in small genomic regions, the analysis of associ-
ation between haplotypes and disease is a potentially more powerful way to identify
cancer genes when the causal variant is unknown (Akey et al. 2001). Haplotypes
inferred from a series of SNPs should also capture variation in VNTR and CNVs.

From an analytical point of view, the possible haplotypes at a given region
conform a categorical variable that can be analyzed in regression models when ap-
propriately coded with indicator variables. There are a few technical difficulties with
this analysis. First, haplotypes are inferred from genotypes, as we have seen previ-
ously, and for subjects heterozygous at more than two SNPs there is uncertainty
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about the pair of haplotypes. A similar problem arises when one or more geno-
types are missing. For these cases, the inference algorithm used provides a posterior
probability for each compatible combination. These probabilities can be used as
weights in a regression model to transfer the uncertainty in the haplotype estima-
tion to the estimates of association. This is the method used in haplo.stats software
(see Sect. 7.8.2.3). The second problem is the inheritance model. Since each sub-
ject carries two haplotypes (though in the dataset is further expanded to account for
uncertainty), the most frequent inheritance model used is the log-additive, where
the risk for each haplotype is compared to the one selected as reference in logistic
regression. Usually the most frequent haplotype is this reference. The odds ratio es-
timates obtained should be interpreted as per-haplotype relative risks, similar to the
per-allele relative risk in a log-additive model for genotypes. There is a possibility to
encode the haplotypes to model dominant or recessive effects (Iniesta and Moreno
2008), but the interpretation is not as simple and for the recessive effects the power
is generally very limited. A final consideration in these analyses is the treatment of
rare haplotypes (i.e., those with an observed frequency lower than a previously de-
fined threshold – usually 0.01%). The inference process usually results in a series of
haplotypes with very low inferred frequency in the studied population. If these rare
haplotypes are considered in the logistic regression, the model becomes unstable be-
cause most probably these haplotypes have only been observed or inferred for cases
or for controls, and the standard errors of the regression coefficients become very
large. The typical solution is to pool these rare haplotypes into a common group that
is not interpreted. If the cumulative frequency of these rare haplotypes is not high
and the reference category is large enough, a better option might be to pool them
into the reference category. With this method, 1 degree of freedom is gained for the
test of global association between the haplotypes and the disease.

The analysis of haplotypes can also be useful to identify genes associated to prog-
nosis of cancer. For this analysis, if a Cox proportional hazards model is desired, the
combined estimation of haplotypes and regression parameters is more difficult com-
putationally due to the semiparametric nature of the Cox model. This analysis, could
be approached within a Bayesian framework.

7.6 Genome-Wide Association Studies

As already mentioned in Sect. 7.2, candidate gene association studies are designed
to assess association between a moderate number of SNPs and disease. These kind
of studies can be viewed as hypothesis-based studies in which the a priori knowledge
of the disease plays an important role. Another reason for adopting candidate gene
approach is the low costs of genotyping since only a moderate number of markers
have to be genotyped. The price we have to pay, however, is that only those genes
with known functional impact are included in the analysis. The continuous improve-
ments in genotyping technologies and, above all, their decreasing cost has made it
possible to perform GWAS where the entire human genome is interrogated. GWAS
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use large-scale genotyping technologies to assay hundreds of thousands of SNPs
and relate them to clinical conditions or measurable traits. One of the main strength
of a GWAS is that they are unconstrained by prior hypotheses with regard to genetic
associations with disease (Hirschhorn and Daly 2005). Recently, there has been a
vast number of GWAS to determine new susceptibility locus contributing to com-
plex diseases such as Alzheimer (Beecham et al. 2009), cancer (Easton and Eeles
2008), Schizophrenia (O’Donovan et al. 2009), or Parkinson (Pankratz et al. 2009)
as well as quantitative traits such as metabolic traits (Sabatti et al. 2009) or serum
IgE (Weidinger et al. 2008), among others. A remaining obstacle of GWAS is that a
massive number of statistical tests is performed. This may lead to a huge number of
false-positive results making necessary to adopt further statistical corrections in the
assessment of association or replication.

In this section, we will give an overview about GWAS, including study designs
and statistical tests. We will also illustrate how to determine the statistical power and
suitable sample size of our study, as well as addressing the multiple comparisons
problem.

7.6.1 Study Designs

GWAS can be defined as the study of common genetic variations across the entire
human genome. They are designed to identify associations with observable or quan-
titative traits (such as blood pressure or weight), or the presence or absence of a
disease or condition (i.e., discrete traits). Depending on the nature of the trait (e.g.,
quantitative or discrete) the study design may differ.

The mostly used design for GWAS has been, so far, the case–control design,
which has been frequently used in traditional epidemiological studies. They are less
expensive to conduct than cohort studies, and genetic studies can be easily incorpo-
rated. This is possible because many epidemiological studies collect blood samples
at the beginning of the study that afterward can be used to perform genetic tests. The
aim of genetic case–control studies is to compare allele (or genotype) frequencies
in diseased individuals with frequencies in healthy controls. The only difference be-
tween GWAS and other genetic association studies is simply the number of SNPs
analyzed. Their characteristic limitations are those of case–control studies such as
recall, selection, and confounding bias. Recall bias arises when cases report their
exposure history in a different manner than controls. This is not a problem when
assessing genotype–phenotype associations, because genotypes (i.e., exposure) are
measured from DNA samples. Nonetheless, this may be relevant when studying
gene–environment (G�E) interactions. Furthermore, in some occasions DNA col-
lections may differ with regard to storage, technicians, or genotyping methods that
could induce to some systematic bias (Clayton et al. 2005). On the other hand, se-
lection bias occurs when controls do not come from the same population as cases.
In this case, genetic or environmental background may differ as a result of the study
design and not due to genetic differences. This can be a concern in studies that use
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controls who were selected and genotyped for a previous study (Consortium 2007).
Finally, confounding bias occurs when a risk factor for disease is also associated
with the marker. Some authors stated that genetic association studies are protected
against this bias since genotypes at a given locus are independent of most environ-
mental factors (Clayton and McKeigue 2001). In genetic association studies, there
is a special case of confounding bias known as population stratification. This situa-
tion appears when both disease and allele frequencies are correlated across ethnicity.
This difficulty may be overcome either in the study design or in the analysis process.
When designing the study, one may select controls matched by ethnicity with cases
or select controls from the same family as cases (paired design). However, if this
matching cannot be performed, population stratification needs to be addressed at
the analytical stage. There are several procedures for addressing population stratifi-
cation from a statistical point of view. Some of them are based on correcting the test
statistics used to assess association by computing an inflation parameter, while oth-
ers try to find the underlying structure of the data and its variability and incorporate
it into the analysis.

Population stratification inflates chi-square values when assessing association
among markers and disease. After estimating the inflation parameter, �, one can
correct the chi-square test of association dividing it by �. Different methods exist to
estimate �. One of them, known as genomic control (Devlin and Roeder 1999), uses
the variance inflation factor to correct for the variance distortion estimates. In this
case, the inflation parameter can be estimated as:
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Another approach, known as delta centralization (Gorroochurn et al. 2006), cen-
tralizes the noncentral chi-square distribution of the test statistic. In the presence of
population stratification, the test statistic used for assessing association follows a
noncentral chi-square distribution with noncentrality parameter ı2. In this case, ı2

is used to correct the test statistics as � (Gorroochurn et al. 2006). Finally, Clayton
et al. (2005) uses the relationship between observed and expected test statistics for
disease association. The tests are ranked from smallest to largest and plotted against
their expected order statistics under the global hypothesis of no association. Under
no population stratification the points should be in the diagonal line. The authors
estimate �, by calculating the ratio between the mean across the smallest 90% of
observed test statistics and the mean of the corresponding expected values. Ninety
percent of tests are considered because it is expected to have a little proportion of
SNPs that are truly associated with the disease (i.e., they do not hold null hypoth-
esis) for which the observed test statistic should be inflated. Nevertheless, methods
based on adjusting association statistics at each marker by uniform overall inflation
factor may be insufficient for markers having unusually strong differentiation across
different populations, leading to a loss in power (Price et al. 2006).
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Another approach is based on finding structured associations with the program
STRUCTURE (Pritchard et al. 2000). This method assigns individuals to discrete
subpopulation clusters and then aggregates evidence of association within each
cluster. It produces highly accurate assignments using few loci. One limitation of
STRUCTURE, though, is that it is computationally intensive and cannot be applied
to the whole set of SNPs comprised in a GWAS. However, this method has been
demonstrated to work reasonably well only with a subset of the SNPs. Furthermore,
the assignment of individuals to clusters is very sensitive to the number of clusters,
which is not well defined (Price et al. 2006). A better alternative is proposed in
Price et al. (2006). The authors proposed a method called EIGENSTRAT consisting
of three steps. First, PCA of genotype data is applied to infer continuous axes of
genetic variation. They show that the top two axes of variation describe most of the
observed variability and can be used to correct for population stratification. Second,
they adjust genotypes and phenotypes by amounts attributable to unobserved popu-
lation (e.g., ancestry) along each axis. Finally, in the third step, association statistic
is computed using population-adjusted genotypes and phenotypes. This last step can
be performed by fitting a logistic regression model adjusted by the first (generally
the two first) principal components. One of the main advantages of using continu-
ous measurements for adjusting population stratification is that it provides a better
description of genetic variation among individuals. Another important point is that
EIGENSTRAT is computationally tractable on a genome-wide scale.

To illustrate how EIGENSTRAT works, we use HapMap samples (see
Sect. 7.8.3.2 for more details). We randomly selected a set of 9,307 SNPs from
the entire genome for 270 individuals from different CEPH (Utah residents with
ancestry from northern and western Europe – abbreviated as CEU), subjects with
African origin (Yoruba in Ibadan – YRI) and Asian individuals with Japanese (JPT)
or Chinese (CHB) origin. Figure 7.3 shows the two first components (axes) of
variation and the position for each individual. We observe that the first component
reflects genetic variation between YRI and CEU plus CHPCJPT populations, while
the second component separates CEU and CHBCJPT populations. This example
illustrates how well EIGENSTRAT is able to capture the genetic difference among
individuals of different populations. If we are then interested in assessing associa-
tion between two groups of individuals we will use a logistic regression model (see
Sect. 7.4.1) adjusted by subject score components (loading values). This incorpo-
rates genetic differences among individuals due to ancestry correcting population
stratification.

The often abbreviated description of participants and lack of comparison of key
characteristics can make evaluation of potential biases and replication of findings
quite difficult, as described in Chanock et al. (2007). To overcome the difficulties
typical of case–control studies, other different designs based on trios or in cohort
studies can be adopted. The trio design includes affected case individuals and both
parents (Spielman et al. 1993). Classification of affected status is given only in the
offspring and only affected offspring are included, but genotyping is performed in
all three trio members. The frequency with which an allele is transmitted to an af-
fected offspring from heterozygous parents is then estimated (Spielman et al. 1993).
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Fig. 7.3 The top two components (axes) of variation of HapMap samples obtained by using
EIGENSTRAT approach. Data corresponds to 270 individuals from European (CEU), Yoruba
(YRI), and Chinese plus Japanese (CHBCJPT) populations. This example analyze 9,307 randomly
selected SNPs from the entire genome

Under the null hypothesis of no association with disease, the transmission will be
50%. Therefore alleles associated with the disease will be transmitted in excess
to the affected case individuals. Cohort studies collect baseline information in a
large number of individuals, who are then assessed for the appearance of the dis-
ease over time depending on different genetic variants. These studies are normally
more expensive, but the results are often more representative than case–control stud-
ies. Consequently, GWAS have been recently performed using cohort studies such
as the European Prospective Investigation on Cancer (EPIC) (McKay et al. 2008),
Study French Prostate Cancer Study (CeRePP) and MultiEthnic Cohort Study, and
Physicians’ Health Study (Yeager et al. 2007). One of the main disadvantages of co-
hort studies is the large investment required both in time and money. A large cohort
needs decades of follow-up time to achieve the number of cases required to detect
moderate genetic effects. However, if the cohort is established, genetic association
studies can be performed using a nested case–control strategy, where observed cases
and a subset of appropriately matched controls are genotyped, rather than the entire
cohort (Langholz et al. 1999).

Most of GWAS studies also adopt a multistage design, mainly aimed to reduce
the number of false-positive results while minimizing the number of genotyped in-
dividuals and keeping statistical power (Hirschhorn and Daly 2005). In practice,
analysis of GWAS is often performed in two (or sometimes even more) stages. First,
at step 1, the full marker set is genotyped for an initial group having a moderate
number of cases and controls. Then, at stage 2, only the most promising markers
(e.g., SNPs that have been statistically significant associated with the trait in the
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first step) are regenotyped for another group using smaller SNP arrays. The number
of SNPs and individuals included in these consecutive steps may vary depending
on budget. The question of what significance threshold is appropriate for GWAS
studies is somewhat unresolved. In Sect. 7.6.4, we outline some approaches that are
currently adopted.

Pahl et al. (2009) pointed out that two-stage designs can be seen as a special case
of general group sequential designs used in clinical trials, consisting of a single in-
terim analysis (stage 1) and a final analysis (stage 2). They extend the special case of
two-stage designs to the general framework of multistage designs, deriving optimal
multistage designs with respect to both minimal overall study costs and maximal
study power. The authors concluded that economical benefits can be obtained by
using more than two stages. In particular, they found that using no more than four
stages is sufficient for practical purposes (Pahl et al. 2009).

7.6.2 Assessing Association in GWAS

After designing the study and obtaining genotype information, we have to assess
association between the variants and the disease. The significance of association
between a marker and disease is done by analyzing each SNP at time, determined
by calculating any of the test statistics described in Sect. 7.4. For autosomal SNPs,
the test statistic can be based on assuming dominant, recessive, and additive mod-
els. This means that we have to perform three times the number of SNPs tests.
Considering that currently Affymetrix or Illumina platforms are able to genotype 1
million SNPs, 3 million of tests are needed to be computed. One may be tempted
to avoid performing such a high number of tests by calculating the most powerful
test (additive model) or Armitage’s trend test (Freidlin et al. 2002; Slager and Schaid
2001). However, assuming a model different from the real one leads to loss of power
(Freidlin et al. 2002; Schaid et al. 2005; Slager and Schaid 2001). Therefore, when
the underlying genetic model is unknown, association may be assessed using the
max-statistic, which selects the largest test statistic from the dominant, recessive,
and additive models (Gonzalez et al. 2008). This statistic is written as:

�2
MAX D maxf�2

DOM; �
2
REC; �

2
ADDg: (7.5)

A naive approach to determine whether a given marker is associated with the
disease using max-statistic is to consider the smallest p value between dominant,
recessive, and additive tests (Gonzalez et al. 2008). This approach does not main-
tain the overall type I error rate since it does not account for either multiple testing
or correlation among the three tests as showed by several authors (Freidlin et al.
2002; Gonzalez et al. 2008; Schaid et al. 2005; Slager and Schaid 2001). Hence, the
statistical significance of association using max-statistics has to be addressed with
other methods. Sladek et al. (2007) consider �2

MAX test to identify novel risk vari-
ants for type 2 diabetes. The authors stated that as the distribution of max-statistic



174 X. Solé et al.

is unknown, a permutation approach can be used to estimate statistical significance.
This procedure is extremely expensive computationally for GWAS. For instance,
Sladek et al. (2007) needed to calculate around 11,800 million tests (only in the first
stage) for 392,935 markers and three inheritance models performing 10,000 permu-
tations to compute p values for the max-statistic. Gonzalez et al. (2008) derived the
asymptotic form for max-statistic that can be used to compute the correct p value
when it is used. The authors also found through simulations studies that the effective
number of tests when dominant, recessive, and additive models are fitted is 2.2. This
number can be used to correct the significance level or p values as a rule of thumb.
Since this value is based on simulations, large sample sizes might be required.

7.6.3 Statistical Power Calculations

As in many other situations, when a GWAS is performed, one can be interested in
estimating the probability that the statistical test used to assess association yields
significant results when the null hypothesis is false (e.g., power). In other words,
we would like to know the chance that the study will be successful in detecting a
true effect. Power calculations are normally performed during the planning stages
of a study. However, in some occasions, they can also be used to interpret negative
results. Herein, we are describing the fundamentals of statistical power for genetic
case–control studies. We will also illustrate how to perform power calculations in
the context of GWAS, where other issues such as multiple testing, coverage, and
staged designs need to be considered.

Power in association studies depends on a number of factors, such as the total
number of available samples, the size of the genetic effect, its mode of inheritance,
the prevalence of the disease, the ratio of case to control individuals, allelic frequen-
cies, and the extent of linkage disequilibrium between marker and trait loci (Cai
and Zeng 2004; Purcell et al. 2003). It is possible to obtain closed-form expres-
sions to compute statistical power for genetic associations (Schork 2002). These
formulas can be used to calculate expected power under a range of scenarios. For in-
stance, Table 7.5 displays the effect of varying sample size, linkage disequilibrium,
or disease allele frequency on the power to detect association under a case–control
setting. Power of case–control studies changes as a function of linkage disequilib-
rium (Sect. 7.5.2), as can be seen in Table 7.5. Values ofD0 D 1 indicate an absence
of ancestral recombination between marker and disease loci and thus complete dis-
equilibrium. In contrast,D0 D 0:8 indicates independence between marker and trait
loci. In this case, we can observe that power to detect association is greater when
linkage disequilibrium is high, as well as when trait and marker loci have similar
allele frequency. As a final conclusion of these examples, we can also observe how
power to detect association is strongly related to allele frequency.

Power of two-stage GWAS depends on the same factors as case–control studies.
Additionally, these studies also depend on how markers are selected for being ana-
lyzed in the second stage, how samples are divided between stages 1 and 2, and the
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Table 7.5 Power calculation for a case–control study varying sample
size, linkage disequilibrium (D0), and allele frequency

Sample size

100 200 500 1,000 1,500 2,000

D0 D 1

0.1 0:24 0:42 0:79 0:98 1:00 1:00

0.2 0:19 0:33 0:67 0:92 0:99 1:00

0.3 0:15 0:25 0:53 0:82 0:94 0:98

0.4 0:12 0:19 0:40 0:67 0:84 0:92

0.5 0:09 0:14 0:28 0:49 0:66 0:79

D0 D 0:9

0.1 0:20 0:36 0:71 0:94 0:99 1:00

0.2 0:16 0:28 0:58 0:86 0:96 0:99

0.3 0:13 0:21 0:45 0:74 0:89 0:96

0.4 0:11 0:16 0:33 0:58 0:76 0:87

0.5 0:09 0:12 0:24 0:42 0:58 0:70

D0 D 0:8

0.1 0:17 0:30 0:61 0:89 0:97 0:99

0.2 0:14 0:23 0:49 0:78 0:92 0:97

0.3 0:11 0:18 0:38 0:64 0:81 0:91

0.4 0:09 0:14 0:28 0:49 0:66 0:78

0.5 0:08 0:11 0:20 0:35 0:48 0:60

proportion of markers tested in stage 2. Power also depends on the significance level
we consider for the entire genome ˛genome. Table 7.6 shows the obtained power for a
hypothetical two-stage GWAS where a case–control study was used including 1,000
cases and 1,000 with a prevalence of the disease equal to 0.1, the allele frequency
equal to 0.4, ˛genome D 0:05, and 300,000 markers (M ). The table presents different
scenarios by varying the proportion of individuals genotyped at first step, and the
proportion of markers tested in second stage. Following the recommendations given
by Skol et al. (2006), we also present the power for the joint analysis (e.g., joint
analysis of data from both stages) that is expected to be more efficient. We observe
that the power for two-stage design increases as the number of individuals geno-
typed in the first stage decreases. For example, two-stage design has 31% power to
detect association in the case of analyzing 50% of cases in the first step and geno-
type 10% of SNPs in the second phase (30,000 markers), while the power is 61%
when 20% of cases are analyzed in the first step. We also notice that joint analysis
can achieve nearly the same power as the one-stage design in which all samples are
genotyped on all markers.

7.6.4 Statistical Level Correction for Multiple Testing

It is well known that multiple testing problem arises when many hypotheses are
tested simultaneously using the same data because some test statistics can be
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Table 7.6 Power calculation for a two-stage GWAS
varying the percentage of individuals (%n) to be geno-
typed at stage 1, the percentage of markers (%M ) to be
re-genotyped in the second stage

Power

%n %M OR Step 1 Step 2 Joint

1.00 1.00 1.40 1.00 0.00 0.74
0.50 0.10 1.40 0.99 0.31 0.74
0.50 0.05 1.40 0.99 0.36 0.74
0.50 0.01 1.40 0.94 0.48 0.74

0.40 0.10 1.40 0.98 0.46 0.74
0.40 0.05 1.40 0.96 0.50 0.74
0.40 0.01 1.40 0.87 0.58 0.71

0.30 0.10 1.40 0.94 0.57 0.73
0.30 0.05 1.40 0.90 0.60 0.71
0.30 0.01 1.40 0.74 0.58 0.63

0.20 0.10 1.40 0.84 0.61 0.67
0.20 0.05 1.40 0.75 0.58 0.62
0.20 0.01 1.40 0.52 0.45 0.47

The results are computed assuming a case–control design
with 1,000 cases and 1,000 controls, where the prevalence
of the disease is 0.1, the allele frequency is equal to 0.4,
the ˛genome is 0.05, and 300,000 markers (M ) are ana-
lyzed. Table also shows the power of a joint analysis test

extreme even if no association exists. Multiple correction procedures are designed
to control the set of hypotheses and to prevent false-positive conclusions that could
be attributed to chance. Correcting for multiple comparisons requires determining
a threshold for which p values are considered as statistically significant. There are
several approaches to establish such threshold.

The simplest one is based on controlling the family-wise error rate (FWER),
defined as the probability of committing at least one type-I error. FWER can be
controlled in a weak sense by using procedures such as Bonferroni or Sidak correc-
tions or in a strong sense by considering that any subset of hypothesis is true (Hoh
and Ott 2003). On one hand, Bonferroni correction for multiple testing simply re-
quires a p value of ˛=M , ˛ denoting the desired nominal level which normally is set
equal to 0.05 and M is the number of genotyped SNPs. On the other hand, Sidak’s
correction needs a p value of 1 � .1 � ˛/.1=M/, which is similar to Bonferroni’s.

By using these corrections, a GWAS including 1,000,000 SNPs will lead to a
Bonferroni significance threshold of 5:0 � 10�8 and 5:12 � 10�8 using Sidak’s
formula. These assumptions are too conservative, which may lead to a high false-
negative rate (Dudbridge and Gustano 2008). The main problem of using a FWER
correction in GWAS is that, by applying it, we are assuming that all markers are
independent. This hypothesis makes sense in the context of targeted studies, where
SNPs are selected to cover a given region. However, genome-wide scans includes
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SNPs that are in a strong LD, making the independent assumption too restrictive.
In these situations, permutation test can be used to estimate the “effective number
of tests” (Churchill and Doerge 1994). FWER can then be applied to correct for
multiple comparisons using the effective number of tests.

Due to linkage disequilibrium between SNPs, FWER control may be too conser-
vative for GWAS, where the goal is to screen the genome for a further study of very
few promising candidates (e.g., replication, fine mapping, functional studies, . . . ).
As a consequence, several authors proposed other methods for false-positive rate
control, such as false discovery rate (FDR) (Benjamini and Hochberg 1995), poste-
rior error rates (Manly et al. 2004; Wacholder et al. 2004), or permutation testing.
Dudbridge et al. (2006) pointed out that FDR is not appropriate for association stud-
ies and that other methods such as permutation approach based on minimum p value
should be employed.

Permutation tests are based on computing significance levels by estimating the
underlying null distribution when theoretical results do not hold. The unknown null
distribution is estimated by simulating data in a given manner. Before addressing
the problem of how to compute the corrected p value in a GWAS using permutation
procedure, let us start by illustrating how to use it in a single analysis where asso-
ciation between trait and a given SNP is assessed. For the benefit of simplicity, let
us assume that our trait is dichotomous (case–control), and that we are interested in
comparing the proportion of carriers of a rare allele (e.g., assume a dominant model)
between the two groups of individuals. As mentioned in Sect. 7.4.1, the null hypoth-
esis of no association can be addressed by using the �2 test. In general, the test is
based on comparing the proportion of cases who carry the susceptibility allele with
the proportion of controls who do not. In the case of having association, we will ob-
serve a large value for �2 statistic. That is, far away from the null hypothesis of no
association where �2 is equal to 0. Following theoretical results, the significance of
this observed statistic is computed by using a �2 distribution with 1 degree of free-
dom. If this distribution cannot be assumed by any reason, the significance has to be
computed by estimating the distribution of the test statistic under the null hypothe-
sis. Under these circumstances, permutation can be used as following. Case–control
labels are exchanged among individuals by keeping genotypes fixed and test statis-
tic is then computed. It is expected that after random assignment of case and control
status the test statistic would be close to the null hypothesis (e.g., near 0). This pro-
cedure is repeated B times and the significance level is the proportion of replicate
statistics exceeding the observed statistic (Welch 1990). If there is no association,
we expect to have the �2 value as one of those obtained by permutating data and a
large p value, meaning that the null hypothesis of no association cannot be rejected.
On the other hand, if the variant is related to the disease, the number of �2 values
larger than that obtained by analyzing the observed data will be low. In this case the
permuted p value will be lower that the nominal level, rejecting the null hypothesis
and concluding that there is association between the marker and the disease.

This permutation procedure can be extended in GWAS to compute a corrected
p value. By permuting data, we are able to capture the correlation among mark-
ers. Table 7.7 shows the main steps we have to perform for obtaining the corrected
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Table 7.7 Steps to correct nominal level by using permutation approach in GWAS

Repeat B times:
1. Randomly assign traits among samples, while keeping the genotype fixed
2. Compute the p value for each SNP by using any selected test (e.g., log-additive,
max-statistic, : : :)
3. Keep the minimum p value
The corrected significance level is estimated by selecting the 5% quantile of the replicate
minimum p values
or
Estimate Beta.1; nE/ by using the replicated minimum p values and computing its 5% quantile

level of significance by permutation testing. As in the single case, we first randomly
assign case and control labels to individuals by keeping genotypes fixed. Then we
compute p values of association for each SNP using a statistical test (i.e., dominant,
log-additive, max-statistic, : : :). For each permutation, we retain the minimum p

value obtained among all SNPs analyzed. The corrected significance level is com-
puted as the 5% quantile point of the empirical distribution for the minimum p

values. Alternatively, one can assume that the minimum p value follows a Beta dis-
tribution with parameters .1; nE/, nE being the number of effective tests (Dudbridge
and Koeleman 2004). One can fit the Beta distribution to the minimump value of the
permutation replicates and then estimate the 5% quantile point from this theoretical
distribution. Using the approximation to a Beta distribution, a moderate number of
permutations (e.g., 10,000) can be enough to correct estimate the corrected nominal
level. This approach has also another important advantage. Let us assume that we
are in the context of performing a GWAS, where several diseases are analyzed by us-
ing a shared group of controls like in the Wellcome Trust Case Control Consortium
study (Consortium 2007). In this case, for each analysis, we should have to perform
a permutation analysis for each disease. However, Dudbridge and Koeleman (2004)
pointed out that this approach needs to be done once only because the distribution of
p values under the null hypothesis is the same in all studies. Using Beta approxima-
tion, we can also test whether the minimum p value is consistent with an effective
number of independent tests, by testing whether the first parameter is 1(Dudbridge
and Koeleman 2004).

To illustrate how the permutation approach works, we used 9,307 SNPs from
the HapMap (Hap 2003) project randomly selected from the entire genome. We
compared genotype frequencies between European (CEU) and Yoruba (YRI) pop-
ulations. The corrected nominal level by using Bonferroni correction is equal to
5:37 � 10�6. However using the distribution of the minimum p value we obtained
a corrected p value of 2:32 � 10�5 (Fig. 7.4). The p value from the empirical dis-
tribution is 2:22 � 10�5. This shows an excellent agreement between the empirical
and theoretical distributions of minimum p values, as expected. Notice that, using
this permutation approach, we obtained a not so stringent significance level leading
to an increase in power. This procedure is implemented in SNPassoc software (see
Sect. 7.8.1.2).
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Fig. 7.4 Empirical (histogram) and beta distributions (straight line) of minimum p values ob-
tained from the permutation procedure applied to 9,307 randomly selected SNPs from HapMap
project. The p values are obtained by assessing differences between CEU and YRI populations
assuming an additive model. The results are based on 10,000 permutations

7.7 Gene–Gene and Gene–Environment Interactions

The analysis of interactions involves the assessment of an effect modification: the
risk associated with a genotype varies according to a third variable, which can be an
environmental exposure or other genetic factors. The assessment is a comparison of
the effects among subgroups of the data. Usually regression models are used to test
for interactions. In these models, next to main effects (gene and environment), an
additional term corresponding to the product of the main effects is added.

The coefficient for this product term, if zero, is interpreted as no interaction: gene
and environment are independent and act additively in the model scale. If the coef-
ficient is different from zero, it is interpreted as a difference in the effect for the
combination of gene and environment with respect to the expected under indepen-
dence. A positive coefficient means synergism: the combined effect is larger than
expected. A negative coefficient means antagonism or that the combined effect is
not larger than the sum of the main effects. Usually, when this analysis is performed
for a case–control study, logistic regression is used and the interactions must be
interpreted in a multiplicative scale. A negative interaction coefficient may mean
that the combined effect is additive and not multiplicative, as the logistic regression
imposes.

Power to detect interactions is smaller than power to detect main effects because
it is effectively a comparison between two (or more) risk estimates. Power also
depends on the degrees of freedom used to test the interaction. For this reason, it is
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usually desirable to define a binary environmental factor and collapse the genotypes
into an inheritance model with only 1 degree of freedom (dominant, recessive, or
log-additive).

One strategy to increase the power to detect gene–environment or gene–gene
interactions is to use a case-only analysis (Piegorsch et al. 1994). The association
between gene and environment when the sample is restricted to cases only estimates
the interaction under the condition that there is no association between the gene and
the environment in controls and it is important to recognize this requirement (Albert
et al. 2001). Recent developments in this methodology allow using the advantages
of the case-only design when the independence assumption is met and use the com-
plete dataset otherwise in a weighted empirical-Bayes approach (Mukherjee and
Chatterjee 2008).

7.8 Bioinformatics Tools and Databases for Genetic
Association Studies

In previous sections, we have described the whole process of a population-based
genetic association analysis, from initial quality control to correction for multiple
testing in GWAS. As it can be easily seen, the illustrated statistical analysis is com-
plex and composed of many different parts. Thus, it is difficult and time consuming
to perform a complete association analysis using only general-purpose statistical
suites (e.g., R, SAS). Fortunately, there are plenty of bioinformatics tools that will
allow researchers to successfully complete the whole analysis without the need of a
deep knowledge of computing or bioinformatics. Before using these tools, however,
we need to be careful about choosing the right type of analysis for our data, so that
we avoid any potential errors and take the most advantage of our data.

In the next sections, we will briefly list some of the most used software tools. For
a better clarity, they have been classified according to their main functionalities.

7.8.1 Genetic Association Suites

These pieces of software deal with most of the analytical steps explained. They are
suitable tools for quality control, single-SNP association, or haplotype analysis, and
in the case of PLINK it can handle GWAS datasets.

7.8.1.1 SNPStats

SNPStats (Sole et al. 2006) is an easy and ready-to-use Web tool for association
analysis, specially designed for small to mid-size studies (i.e., up to a thousand
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of SNPs approximately). It can perform quality-control procedures (genotyping
rate, HWE, allele and genotype frequencies), can perform analysis of association
with a response variable based on linear or logistic regression, accepts multi-
ple inheritance models (e.g., codominant, dominant, recessive, overdominant and
log-additive), and can perform analysis of gene–gene or gene–environment inter-
actions. If multiple SNPs are selected, SNPStats offers the possibility to com-
pute LD statistics between SNPs, haplotype frequency estimation, and association
with the response and analysis of haplotype–environment interactions. Web site:
http://bioinfo.iconcologia.net/snpstats

7.8.1.2 SNPassoc

The R package SNPassoc (Gonzalez et al. 2007) is useful to carry out most common
parts of a GWAS analysis in an efficient manner. These analyses include descriptive
statistics and exploratory analysis of missing values, calculation of Hardy–Weinberg
equilibrium, analysis of association based on generalized linear models (either for
quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis
analysis, p value correction for multiple testing). Permutation tests and other related
tests (sum statistic and truncated product) are also implemented. Compared to other
R packages with similar purposes, SNPassoc offers a greater usability. Web site:
http://www.creal.cat/jrgonzalez/software.htm

7.8.1.3 PLINK

PLINK (Purcell et al. 2007) is a free, open-source GWAS toolset, designed to per-
form a complete range of basic, large-scale analyses in a computationally efficient
manner. The focus of PLINK is purely on analysis of genotype/phenotype data, so
there is no support for steps prior to this (e.g., study design and planning, generating
genotype or CNV calls from raw data). PLINK is designed as a command-line tool,
but through its recent integration with a JAVA graphical interface (called gPLINK)
and Haploview, there is some support for the subsequent visualization, annotation,
and storage of results. Web site: http://pngu.mgh.harvard.edu/purcell/plink/

7.8.1.4 GAP

Genetic Analysis Package (GAP) (Zhao 2007) is implemented as a package for R.
It has functions for Hardy–Weinberg equilibrium tests, measures of linkage dise-
quilibrium between SNPs or multiallelic markers and haplotype analysis. It is also
useful for two-stage case–control power calculations. Web site: http://www.mrc-
epid.cam.ac.uk/Personal/jinghua.zhao/r-progs.htm
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7.8.2 Haplotype-Only Software

Haplotype-related analysis is an important part of association studies. Thus, there
are some tools focused specifically on this area. Regarding their functionality, these
tools can be mainly divided into those which only infer haplotype frequencies and
those which perform both the inference and the association with a trait.

7.8.2.1 Haploview

Haploview (Barrett et al. 2005) is a graphical tool nicely designed to simplify and
expedite the process of haplotype analysis by providing a common interface to sev-
eral tasks relating to such analyses. Haploview currently supports a wide range
of haplotype functionalities such as: LD and haplotype block analysis, haplotype
population frequency estimation, single SNP and haplotype association tests, per-
mutation testing for association significance, implementation of Paul de Bakker’s
Tagger tag SNP selection algorithm, automatic download of phased genotype data
from HapMap, and visualization and plotting of PLINK genome-wide association
results including advanced filtering options. Haploview is fully compatible with data
dumps from the HapMap project and the Perlegen Genotype Browser. It can ana-
lyze thousands of SNPs (tens of thousands in command line mode) in thousands of
individuals. Web site: http://www.broad.mit.edu/mpg/haploview/

7.8.2.2 PHASE/fastPHASE

PHASE (Stephens et al. 2001; Stephens and Donnelly 2003; Stephens and Scheet
2005) and fastPHASE (Scheet and Stephens 2006) are command-line pieces of soft-
ware used for haplotype reconstruction, as well as estimation of missing genotypes
from population data. They do not compute association with a phenotype. Although
fastPHASE can handle larger datasets than its previous version PHASE (e.g., hun-
dreds of thousands of markers in thousands of individuals), it does not provide
estimates of recombination rates (while PHASE does). Experiments suggest that
fastPHASE haplotype estimates are slightly less accurate than from PHASE, but
missing genotype estimates appear to be similar or even slightly better than PHASE.
Web site: http://stephenslab.uchicago.edu/software.html

7.8.2.3 Haplo.stats

Haplo.stats (Schaid 2004; Schaid et al. 2002, 2005) is a suite of R routines for the
analysis of indirectly measured haplotypes. The statistical methods implemented
assume that all subjects are unrelated and that haplotypes are ambiguous (due to un-
known linkage phase of the genetic markers). The genetic markers are assumed
to be codominant (i.e., one-to-one correspondence between their genotypes and
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their phenotypes). Some tools, such as SNPStats (see Sect. 7.8.1.1) and SNPas-
soc (see Sect. 7.8.1.2), use Haplo.stats as the underlying software to compute
all haplotype related computations. Web site: http://mayoresearch.mayo.edu/mayo/
research/schaid lab/software.cfm

7.8.2.4 THESIAS

The aim of THESIAS (Tregouet et al. 2004; Tregouet and Tiret 2004; Tregouet
and Garelle 2007) is to perform haplotype-based association analysis in un-
related individuals. The program is based on the maximum likelihood model
and is linked to the Stochastic EM algorithm. THESIAS allows the simultane-
ous estimation of haplotype frequencies and of their associated effects on the
phenotype of interest. Quantitative, qualitative, categorical, and, more interest-
ingly, survival outcomes can be studied. Covariate-adjusted haplotype effects as
well as haplotype–environment interactions can be investigated. THESIAS be-
gan as a command-line tool which was not too user friendly, but in the latest
version its creators have added a JAVA interface which has improved the us-
ability of the program, although it is still a bit rigid at some points. Web site:
http://ecgene.net/genecanvas/uploads/THESIAS3.1/Documentation3.1.htm

7.8.3 Web Databases

The dramatically increasing amount of genomic information generated in the last
few years has made essential the development of information systems which provide
easy procedures of storage and retrieval of data. Therefore, public repositories of
genetic data have been created and are maintained on a daily basis due to the effort
of large consortiums.

7.8.3.1 dbSNP

In collaboration with the National Human Genome Research Institute, The National
Center for Biotechnology Information has established the dbSNP (Sherry et al.
2001) database to serve as a central repository for both single-base nucleotide sub-
stitutions and short deletion and insertion polymorphisms. Once discovered, these
polymorphisms can be used by additional laboratories, using the sequence informa-
tion around the polymorphism and the specific experimental conditions. Note that
dbSNP takes the looser “variation” definition for SNPs, so there is no requirement
or assumption about minimum allele frequency. Data in dbSNP can be integrated
with other NCBI genomic data. As with all NCBI projects, data in dbSNP is freely
available to the scientific community and made available in a variety of forms. Web
site: http://www.ncbi.nlm.nih.gov/projects/SNP/
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7.8.3.2 Hapmap

The International HapMap Project (Hap 2003; Thorisson et al. 2005) is a multi-
country effort to identify and catalog genetic similarities and differences in human
beings. It describes what these variants are, where they occur in our DNA, and how
they are distributed among people within populations and among populations in dif-
ferent parts of the world. Using the information in the HapMap, researchers will be
able to find genes that affect health, disease, and individual responses to medica-
tions and environmental factors. In the initial phase of the project, genetic data are
being gathered from four populations with African, Asian, and European ancestry.
Ongoing interactions with members of these populations are addressing potential
ethical issues and providing valuable experience in conducting research with iden-
tified populations. Web site: http://www.hapmap.org/

7.8.3.3 Genome Variation Server

The Genome Variation Server (GVS) is a local database hosted by the SeattleSNPs
Program for Genomic Applications. The objective of this database is to provide a
simple tool for rapid access to human genotype data found in dbSNP. The database
includes a suite of analysis tools such as linkage disequilibrium plots, tag SNPs,
and more. In addition you can upload our own data and use the GVS analysis and
visualization tools. Web site: http://gvs.gs.washington.edu/GVS/

7.8.4 Statistical Power Calculation

Statistical power calculation is an important issue in association studies, specially
for GWAS. Before we proceed with the experiments, we need to ensure that with
our sample size we will be able to detect changes of a specific size in terms of the
minimum allele frequency we expect to have in our SNPs of interest. Ignoring this
information may cause our failure in detecting existing genetic associations due to
the inadequate sample size of our study.

7.8.4.1 QUANTO

QUANTO computes sample size or power for association studies of genes, gene–
environment interaction, or gene–gene interaction. Available study designs include
the matched case–control, case–sibling, case–parent, and case-only designs. It is a
stand-alone 32-bit Windows application. Its graphical user interface allows the user
to easily change the model and view the results without having to edit an input file
and rerun the program for every model. Web site: http://hydra.usc.edu/gxe/
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7.8.4.2 Genetic Power Calculator

Designed by the same authors of PLINK, GPC is a Web site tool that performs power
calculations for the design of linkage and association genetic mapping studies of
complex traits (Purcell et al. 2003). Web site: http://pngu.mgh.harvard.edu/purcell/
gpc/

7.8.4.3 CaTS

CaTS (Skol et al. 2006) is a simple and useful multiplatform interface for carrying
out power calculations for large genetic association studies, including two-stage
genome-wide association studies. Web site: http://www.sph.umich.edu/csg/abecasis/
cats/index.html
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Chapter 8
Selected Applications of Graph-Based Tracking
Methods for Cancer Research

Pascal Vallotton and Lilian Soon

Abstract Cell appearance is highly variable, particularly for cancer cells.
Consequently, massive amounts of image data need to be screened rapidly and
reproducibly to ascertain phenotypic information of interest. This demands a high
level of automation and chosen image analysis techniques.

A very relevant phenotype for cancer is motile behaviour as it is a fundamental
ingredient of its development. We aim to measure normal and abnormal motile
processes, identify small molecules and genotypes that modulate these processes,
and develop mathematical models of the disease towards identifying specific targets
or target sets. Here, we describe the use and principles underlying representative
software tools to read motile phenotypes from time-lapse data, with emphasis on
improved graph-based tracking methods.

8.1 Introduction

Cancer is a disease of cell behaviour whereby a few cells evade the regulatory mech-
anisms obeyed by all others, multiplying without control and forming a tumour
(Alberts 2002). Cancers have a capacity to metastasize, that is to initiate new tu-
mours distinct from the initial lesion. This capacity depends on motile properties of
cancer cells to penetrate the bloodstream and leave it later to initiate new tumours.
When tumours metastasize, the disease is usually lethal. Therefore, considerable ef-
forts have been devoted to understand the mechanisms underlying cell motility, both
intra- and extra-cellular, and in both normal and abnormal cells.

The role of imaging in cancer research is central not only for motility studies
but also for understanding angiogenesis and the genetic basis of the disease, for
example, in the context of karyotyping, gel-based, or bead-based methods. Our
scope in this chapter is to introduce a set of image analysis tools and techniques
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that permit to identify objects automatically in image sequences and characterize
their dynamics quantitatively. The importance of such a quantitative approach for
biology and cell motility in particular is well appreciated; it represents the only
viable route to meaningfully compare subtle differences observed across multiple
biological experiments. Typically, these experiments aim to understand the role of
particular proteins in various cellular processes, for example, by observing the con-
sequences of a loss or inactivation of that protein (Petri Seiler et al. 2008).

The techniques that we will describe have been applied primarily to advance
our understanding of the lamellipodium – the organelle of cell motility, and of the
mitotic spindle – the organelle of cell division. Both the lamellipodium and the mi-
totic spindle are foci of considerable attention in their own right: small molecules
that interfere with mitosis and motility are sought actively to inhibit cancer progres-
sion (Petri Seiler et al. 2008; Duffy et al. 2008). Many other areas have benefited
from such tools including cell tracking (see Sect. 8.9), organelle tracking, virology,
and super-resolution tracking of single molecules (Grunwald 2008). More exotic
applications include the description of granular flow, MRI cardiac imaging, flow
measurements in channels, or sport biomechanics (Kaitna 2007). This chapter de-
scribes the mathematical underpinnings of our methods – particularly, graph theory,
and we present three applications illustrating their value for cancer research.

8.2 Object Detection

The brain has a natural tendency to divide the image field into discrete objects that
evolve with some degree of independence over time and display finite lifetimes. This
strategy provides a symbolic representation that enables prediction of the future and
understanding of the present. Given the obvious success of the approach, one en-
deavours in computer vision to mimic it; an activity termed object segmentation or
object detection (without worrying here about whether one knows a priori that an
object is present or not). The simplest methodology relies on local intensity max-
imum detection and image filtering as described in more detail below. Depending
on the application, more complex tools are required. For example, if objects extend
spatially over relatively large area and feature sharp boundaries, it is best to perform
edge detection first. Typically, the centre of mass of the regions identified in this
manner is then taken to represent the objects.

In the situation, where objects of interest are circularly symmetric but do not
present a clear local intensity maximum or minimum, it is sometimes useful to
define a small window around one representative object and use this template to
identify all other objects by correlation. For example, this technique is useful to
identify virus particles in electron microscopy images (Sintorn et al. 2004).

One may choose to perform object detection operations either on the original
images or on the pre-processed images. For example, Hadjidemetriou et al. de-
scribe how they applied the Hough transform to process phase contrast images of
dividing cells appearing as bright rings to obtain well-defined intensity maxima at
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the cell centre. This considerably simplified the cell tracking process in this case
(Hadjidemetriou et al. 2008). More elementary pre-processing operations may in-
clude background subtraction to remove coarse scale illumination inhomogeneities.
Many methodologies have been reported in that context including the use of mor-
phological top hats, or the subtraction of a massively smoothed image from the
original image (Soille 2004).

8.3 Local Maximum and Blurring

An elementary but robust strategy to identify objects, particularly if they stretch
only over a few pixels on the image sensor, is to identify all local intensity maxima
in the image. Each such maximum then “represents” the object – with ideally one
maximum for each object. The reason why this situation often occurs in biological
imaging is that the image of a diffraction limited point source (i.e., an object smaller
than 0:3 �m, such as a single molecule, a small vesicle, or a small organelle)
is a Gaussian spot in good approximation (Siebrasse et al. 2007). Larger objects
often owe their visibility to some dye that diffuses, or is distributed homogeneously
within them. This tends to give rise to the same ideal situation of a single intensity
maximum per object.

If several local intensity maxima occur within objects, it is often possible to re-
move “secondary” maxima by blurring the image using Gaussian filtering. However,
if genuine objects lie in proximity, excessive filtering should be avoided because this
leads to merging objects that one wishes to treat independently. Many attempts have
been reported in the literature to automate the filtering using ideas from scale space
theory, for example (Lindeberg 1994). We find that optimal filtering is as much a
matter of expert domain knowledge as a property of the image itself. Thus, we pre-
fer to leave it to users to make the informed decision of the extent of image filtering
optimal in each particular situation. Tuning such image analysis steps is very fast
provided the image analysis functionalities are organized in an accessible manner.

8.4 Object Segmentation

In many cases, it is desired not only to represent objects by placing a marker in their
centre but also to determine the boundaries of these objects. The watershed trans-
form has proven a very robust and generic method to achieve this goal (Soille 2004).
Briefly, as the name suggests, the watershed transform can be simulated by filling
of the image, viewed as a surface in 3D, starting from seed positions placed in
an independent manner (e.g., using local intensity maxima detection). This process
creates watershed regions that grow concurrently as the algorithm progresses un-
til they meet a neighbouring region; a constructive process that defines boundaries
between the watersheds. A major difficulty in watershed segmentation is to position
the seeds – both foreground seeds (those that will give rise to objects of interest) and
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background seeds (those that will give rise to the image background). Another diffi-
culty is over-segmentation, typically occurring when several seeds are placed within
a single object. We avoid over-segmentation by linking every foreground seed with
its nearest neighbours and testing whether the intensity along the corresponding
segment presents a drop less than 10%, compared with the interpolated values along
the segment. If it does, we instate the whole line as a foreground seed for the wa-
tershed transform, ensuring that a single object only be created. This method is also
effective for 3D segmentation.

8.5 Object Tracking

Time-lapse image sequences contain considerable information on dynamic biologi-
cal processes such as cell migration, intracellular polymer flow, protrusive activity,
protein trafficking, or cell division. In order to analyse this data, it is desirable to
identify discrete objects in every frame of the sequence and attempt to establish a
correspondence between them in different frames that posits their physical identity.
This process when performed across all frames of the sequence delivers a set of tra-
jectories, one for each physical object. Object tracking is not an absolute necessity.
For example, kymograph analysis has been in use long before object tracking and
is still widespread nowadays. To conduct a kymograph analysis, the user defines a
line segment in the first frame of a sequence. This line is then cut out digitally from
each image and mounted side by side to form a montage. Oblique streaks indicate
the presence of features moving along the axis, with a slope that reveals the ve-
locity of these features. When feasible, object tracking provides considerably more
information and does not depend on the arbitrary choice of an axis.

In algorithmic terms, object tracking may pose significant difficulties. Objects
may appear or disappear either genuinely, by division, fusion, diffusion, or because
of out of focus motion. Object dynamics may be very different for different objects
or may be changing over time; finally, the identification of the objects themselves
may be problematic, either because of low signal-to-noise ratio in the images or
because of the imprecise nature of the object boundaries. Our contributions have
mostly focused on establishing optimal correspondences (matches) between object
from different frames. We find that mathematical graphs are the natural structures to
deal with such problems (Vallotton et al. 2003). These methods have considerably
evolved since their inception.

8.6 Algorithms on Graphs

Graphs are mathematical objects composed of edges linking nodes (Fig. 8.1). Edges
can be endowed with integer descriptors such as the maximum flow that they can
sustain – the analogy with pipes through which water can flow is useful, although
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Fig. 8.1 A maximum amount of flow circulates from the source s to the sink t in this directed
graph. The notation 1=4 for the edge linking node q to node r means that a flow of one unit tra-
verses the edge of maximum capacity equal to four units. In this example, the solution is unique.
Reversing the direction of edge o-p creates a graph where there are two solutions to the Max-Flow
problem. Reproduced from Nils Grimsmo

not compelling, because the flow in a real pipe is not limited to integer values
(Sedgewick 2002).

A central algorithm in graph theory is the Max-flow algorithm that determines
the maximum amount of flow that can possibly go through the graph from one node
designated as the source to another node designated as the sink. The solution of the
algorithm is a set of integer flow values, one for each edge, such that the capacity
of each edge is not exceeded, and such that no other assignment of flow values to
edges results in a greater flow. Clearly, there may be several solutions to the Max-
flow problem delivering the same total flow (see Fig. 8.1). It can be shown that the
Max-flow problem is equivalent to the Min-cut problem; a formulation useful for
the segmentation of digital images (Li et al. 2006).

The Max-flow algorithm can be used to solve bipartite matching problems
where one aims to form as many couples as possible, respecting strictly the
preferences of both males and females as represented by edges of capacity
equal to one. Bipartite matching in this original form is not ideally suited for
object tracking as we explain below. This led us to consider the Max-flow Min-
cost graph algorithm, where edges are additionally endowed with a cost to
pay per unit of flow traversing them. The Max-flow Min-cost solution selects
the particular Max-flow solution for which the total cost is minimal. A Max-
flow Min-cost solution is a Max-flow solution but the converse is not nece-
ssarily true.

In an object tracking context, the Max-flow Min-cost algorithm is particularly
appealing because it is expected that small object displacements are more likely
than larger ones under usual dynamical conditions. The edge cost in the tracking
graph can be set in relation to the amplitude of the object displacement to reflect this
preference. The strength of the Max-flow Min-cost algorithm is then that it is able to
retrieve an optimal solution considering all possible displacements simultaneously.
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This should be contrasted with a sequential approach, where matches are assigned in
a particular order. In this type of so-called “greedy” approaches, tracking mistakes
typically propagate to trigger other tracking mistakes later during the assignment
process (Vallotton et al. 2003).

When applicable, the knowledge that one is tracking a constant number of ob-
jects is very powerful. It conveniently translates into a maximum matching (flow)
requirement in the tracking graph. There is little doubt that as human beings, we
take this cue into account when attempting to resolve dynamics in cluttered scenes.

However, if objects genuinely appear or disappear, strictly imposing maximum
matching tends to create matching mistakes. Therefore, the constraint has to be
relaxed while maintaining a global view on solving the matching problem. It is
possible to achieve this by modifying the graph structure itself, allowing for some
flow to leak out from the solution. In this form, the algorithm has proved extremely
versatile, and performs remarkably in both 2D and 3D. Variations of this algorithm
for particular applications such as coherent or anti-parallel flows have also been
implemented as described in the application sections below.

8.7 Application to Lamellipodium Dynamics

In cells migrating over flat substrates, the lamellipodium is a thin sheet of cytoskele-
ton, consisting mostly of F-actin (filamentous actin) protruding at the cell front.
The lamellipodium exerts tractile forces on the substrate, driving the cell forward
(see Fig. 8.2). A major research endeavour is to understand the detailed mecha-
nisms underlying this process, as described in more detail, for example by Small
and Resch (2005).

Fig. 8.2 (a) Motile cell imaged under FSM. Lamellipodium (Lp) and lamella (La) are outlined
with closed contours. (b) Fluorescent speckles, tracked using improved graph-based methods. Re-
sults are compatible with manual tracking of the same data (not shown). (c) Distribution of speed
along trajectories for tracks having their origin within the lamellipodium (resp. lamella) shown in
white (resp. red). The two distributions show very limited overlap, reflecting the functional and
structural difference between these two organelles
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By introducing extremely low concentrations of fluorescently tagged actin
monomers in live cells, it is possible via endogenous polymerization to gener-
ate single molecule fluorescent markers in the actin cytoskeleton and track them
(Watanabe and Mitchison 2002). Even at slightly higher concentrations, the sta-
tistical variations in the local density of the polymerized fluorescent F-actin can
give rise to distinct features, termed speckles, which can in principle be tracked
(see Fig. 8.2). This very time-consuming task can easily be mastered by a human
operator. Understandably, there is considerable interest in automating this process.
Yet, it is important to remember that automated tracking aims at mimicking the
results of manual tracking; not the opposite! Manual tracking and experiments on
simulated data should systematically be performed to ascertain that the automated
tracking results are sound.

A striking features of cytoskeleton motion as revealed by fluorescence speckle
microscopy (FSM, cf previous paragraph) is retrograde motion, directed from the
cell front towards the cell nucleus. Retrograde flow is powered by actin polymer-
ization at the leading edge. It is fast in the lamellipodium and slower in the lamella,
with a well-defined interface between these two regions where, by virtue of conser-
vation of matter, considerable depolymerization takes place (Vallotton et al. 2004).
By viewing movies of retrograde flow carefully, it becomes apparent that speckle
motion occurs along straight paths directed perpendicular to the cell leading edge.
Yet, early tracking results showed considerable jaggedness in the speckle trajec-
tories. Also, early flow map results tended to considerably underestimate the flow
velocity in the lamellipodium. The reason is that under usual imaging conditions,
speckles move so fast in the lamellipodium that it is difficult to track them. This
difficulty is compounded by the fact that considerable speckle appearance activity
occurs at the cell front and this confused most trackers.

By introducing a preference for coherent motion among neighbouring speckles
directly in our graph algorithm, it is possible to overcome these difficulties and
obtain correct trajectories (i.e., trajectories that would have been obtained by manual
tracking). We show results for speckles trajectories at the cell front in Fig. 8.2. These
results correspond to the expectations of a naive observer: Tracks are mostly linear
uniform, they are perpendicular to the leading edge, and jumps of up to 10 pixels
can be observed. Incidentally, the average distance between speckles is also of this
order, which characterizes difficult tracking problems.

Early on, we threw the concept of “secondary speckle” to describe the idea of
a speckle that, it was felt, would trigger a local intensity maximum if the opti-
cal resolution was better. It was speculated that tracking results could potentially
be improved by taking these secondary speckles into account. However, increasing
the density of speckles in the lamellipodium in this manner makes matters actually
worse for the reason mentioned earlier. If at all, secondary speckles should be taken
into account only after a good matching has been achieved for “primary” speckles.

Speckle behaviour in the lamella and the lamellipodium are markedly different.
For example, one can measure the average speed along tracks that have their origin
in the lamellipodium and in the lamella, respectively (Fig. 8.2). The lack of overlap
between these two distributions stresses the structural and functional differences
between the two cell compartments.
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8.8 Application to Mitotic Dynamics

The motion of Alexa-tubulin speckles in reconstituted mitotic spindles at metaphase
was described (Vallotton et al. 2003). G-rhodamine-tubulin polymerizes into the
microtubule system of the spindle and gives rise to discrete fiduciary markers: the
speckles. At metaphase, microtubules undergo treadmilling, with the speckles con-
verging to their associated spindle pole along the tracks defined by the microtubules.
Using a so-called “three frame tracker,” we were able to recover the anti-parallel
nature of the speckle motion. However, careful review of the results (Fig. 8.6 in
Vallotton et al. 2003) reveal that a significant number of tracks are interrupted or
jitter more than would be expected for motion along a microtubule. Since then,
our algorithms have improved by encoding within the graph structure the dual, anti-
parallel nature of the motion in the spindle. In this manner, the algorithm specifically
targets locally anti-parallel jumps, rather than a collection of triplets of points that
are approximately aligned. As can be seen in Fig. 8.3, this leads to very significant
improvements in the solution. Using this method, there is no constraint that would
force speckles to move systematically in one direction or the other, as one can expect
based on physical grounds. Therefore, the relatively low number of direction rever-
sals in our results is encouraging (Fig. 8.3).

Fig. 8.3 (a) Reconstituted mitotic spindle seen under FSM. Individual speckles move towards
either spindle pole at the top and bottom part of the figure, creating an anti-parallel motion field. (b)
Zoom on the region shown in (a) showing anti-parallel tracks predominantly moving towards the
upper and lower spindle poles. Tracks are mostly linear, as expected for motion along microtubules
and only few direction reversals can be seen
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The conclusions that can be drawn from these new results vary little from the
conclusions that were drawn using our earlier three frame tracker. These conclu-
sions were based on a large number of displacement vectors; the great majority of
which had been correctly tracked. Generally, it is important not to attempt to draw
conclusions requiring tools of a greater sophistication than those available. For ex-
ample, because our three frame tracker delivered only partially formed tracks, it
would have been unreasonable to use it to conduct an analysis of speckle lifetime.
This analysis would still be unreasonable today because significant overlap between
speckles moving in opposite directions prevents such an analysis.

8.9 Application to Cell Tracking

In the simplest embodiment of an assay to investigate migration, live cells are left
for a specified amount of time over a substrate, from which they displace fluorescent
beads. This creates traces whose length or area can be calculated easily on an end-
point image. This type of measurements conveniently summarizes the overall motile
behaviour of a cell population. However, it omits interesting concepts such as veloc-
ity, acceleration, or trajectory entropy. Additionally, there is no handle for assessing
the evolution of quantities of interest over time. By using the methodology described
in this chapter, it is possible to segment every cell in every frame of a time-lapse se-
quence, track them, and investigate their dynamics systematically. We illustrate this
point on cells that migrate in a chemo-attractant gradient created and maintained
using a method developed by one of the authors (Fok 2008; Soon et al. 2005) and
described elsewhere (Li Jeon 2002). A representative frame of the segmented cells is
shown in Fig. 8.4a. The centre of mass of the fluorescently labelled cells is indicated
by a red dot and the cell boundaries as determined by the watershed transform are
shown as black contours. The trajectories of the cells as they unfold over 50 frames
are shown in Fig. 8.4c, with time represented as the third dimension. Figure 8.4b is
a plot of the evolution of the image intensity measured along the trajectories. Many
other plots showing the evolution of quantities such as the area, the perimeter, and
the eccentricity can be produced in a similar manner. The results can easily be ag-
gregated to produce, for example, distributions of average velocities along tracks, or
lifetime distributions, particularly useful to investigate cell division.

Tumour cells are known to be heterogeneous in nature, both within the lesion and
following isolation as cell lines. This is reflected by the different types of movement
that cancer cells exhibit in the absence of gradient. For example, amoeboid-like can-
cer cells tend to have low internal polarity, have a rounded appearance, and change
directions frequently. Mesenchymal-like cells, on the other hand, are more polar-
ized with distinctive front and tail regions. These cells tend to have high motion
persistence when stimulated globally (Tchou-Wong 2006).

When the migratory behaviour of breast cancer cells under gradient conditions
is analysed by cell tracking and analysis, two types of chemotactic behaviours are
seen; linear and oscillatory. The former involves high directionality where cells tend
to face the gradient throughout the chemotaxis run. The latter display a 10-min cycle
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Fig. 8.4 Tracking cancer cells. (a) Segmentation of the cells. Local intensity maxima detection
was used to seed automatically the watershed transform on the gradient image. The centre of grav-
ity of cells is shown with red dots. (b) Evolution of the image intensity measured along trajectories.
(c) Trajectories represented in three dimensions, with the z axis as the time. A drift towards a
chemotaxis gradient is clearly apparent

when the cells wavered or loose directionality before recovering (Fok 2008). The
linear movement resembles mesenchymal motility, whereas the oscillatory move-
ment is similar to amoeboid cells motion, in this case under gradient conditions.
The utility of quantitative tools is evident in the demonstration of variability in mi-
gration styles of cancer cells (Fok 2008; Soon 2007).

8.10 Conclusions and Perspectives

Object tracking methods are becoming increasingly useful in quantitative biology,
particularly in cancer research where they contribute to our ability to understand
the dynamics of cell populations as well as the root causes of their invasiveness.
It is important for the development of the field that automated methods become as
reliable as the manual methods that they are progressively replacing. In this chap-
ter, we have argued for and demonstrated the value of graph-based algorithms for
object tracking, with particular emphasis on challenging examples from fluorescent
speckle microscopy and cell migration.
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Chapter 9
Recent Advances in Cell Classification
for Cancer Research and Drug Discovery

Dat T. Tran and Tuan Pham

Abstract Drug effects on cancer cells are investigated through measuring cell cycle
progression in individual cells as a function of time. This investigation requires
the processing and analysis of huge amounts of image data obtained in time-lapse
microscopy. Manual image analysis is very time consuming thus costly, poten-
tially inaccurate, and poorly reproducible. Stages of an automated cellular imaging
analysis consist of segmentation, feature extraction, classification, and tracking of
individual cells in a dynamic cellular population. The feature extraction and classi-
fication of cell phases are considered the most difficult tasks of such analysis. We
review several techniques for feature extraction and classification. We then present
our work on an automated feature weighting technique for feature selection and
combine this technique with cellular phase modeling techniques for classification.
These combined techniques perform the two most difficult tasks at the same time
and enhance the classification performance. Experimental results have shown that
the combined techniques are effective and have potential for higher performance.

9.1 Introduction

High-content screening is an integrated solution that uses images of living cells as
the basic unit to produce information on drug responses for accelerated molecule
drug discovery (Giuliano et al. 2003) such as functions of genes, proteins, and other
molecules in normal and abnormal cellular functions (Abraham et al. 2004). Fluo-
rescence microscopy for cell biological studies in small-scale cell biology is used in
research imaging-microscopy systems to collect image data from a small number of
experimental samples (Abraham et al. 2004).

High-content screening by automated fluorescence microscopy is becoming one
of the most widely used research tools to assist scientists in understanding the
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complex process of cell division or mitosis (Dunkle 2002; Fox 2003). Its power
comes from the sensitivity and resolution of automated light microscopy with mul-
tiwell plates, combined with the availability of fluorescent probes that are attached
to specific subcellular components, such as chromosomes and microtubules, for vi-
sualization of cell division or mitosis using standard epifluorescence microscopy
techniques (Yarrow 2003).

By employing a carefully selected reporter probes and filters, fluorescence mi-
croscopy allows specific imaging of phenotypes of essentially any cell component
(Murphy 2001). With these probes, we can determine both the amount of a cell
component and, most critically, its distribution within the cell relative to other com-
ponents. Typically, three to four different components are localized in the same
cell using probes that excite at different wavelengths. Any change in cell physi-
ology would cause a redistribution of one or more cellular components, and this
redistribution provides a certain cytological marker that allows for scoring of the
physiological change.

An essential task for high content screening is to measure cell cycle progression
(interphase, prophase, metaphase, and telophase) in individual cells as a function
of time. Cell cycle progress can be identified by measuring nuclear changes. Auto-
mated time-lapse fluorescence microscopy imaging provides an important method
for the observation and study of cellular nuclei in a dynamic fashion (Hiraoka
and Haraguchi 1996; Kanda et al. 1998). Stages of an automated cellular imag-
ing analysis consist of segmentation, feature extraction, classification, and tracking
of individual cells in a dynamic cellular population (Chen et al. 2006). Automatic
classification of cell nuclei into interphase, prophase, metaphase, or anaphase is still
a challenge in cell biology studies using fluorescence microscopy.

In time-lapse microcopy, images are usually captured in a time interval of more
than 10 min. During this period, dividing nuclei may move far away from each other
and daughter cell nuclei may not overlap with their parents. Given the advanced flu-
orescent imaging technology, there still remain technical challenges in processing
and analyzing large volumes of images generated by time-lapse microscopy. The
increasing quantity and complexity of image data from dynamic microscopy ren-
ders manual analysis unreasonably time consuming (Wang et al. 2007). Therefore,
automatic techniques for analyzing cell-cycle progress are of considerable interest
in the drug discovery process.

Being motivated by the desire to study drug effects on HeLa cells, an ovarian
cancer cell line, we applied several computational techniques for identifying indi-
vidual cell phase changes during a period of time. To extract useful features for the
cell-phase identification task, the image segmentation of large image sequences ac-
quired by time-lapse microscopy is necessary. The extracted data can then be used
to analyze cell phase changes under drug influence. Segmenting nuclei in time-
lapse microscope can be performed by various methods such as thresholding, region
growing, or edge detection (MacAulay and Palcic 1988). Most of these algorithms
take into account either the morphological information or the intensity information
of the image. Problems may arise when trying to segment touching nuclei because
it is very difficult to define the boundary of each individual nuclear. Watershed
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techniques can be used to segment touching objects (Bleau and Leon 2000). To
deal with the oversegmentation problem, a post process is needed to merge the frag-
ments. A connectivity-based merging method is used to merge a tiny cell fragment
with a nearby cell if it shares the maximum boundary with that cell (Umesh and
Chaudhuri 2001). These authors applied their method on a set of 327 cells and a
98% correct segmentation result was reported. This method can only merge small
fragments and fails if the size of cell fragments is above a preset value. The bigger
fragments are considered as cells by this method. Bleau and Leon (2000) used an
iterative trial and test approach to merge small regions with their nearby larger re-
gions based on a set of volume, depth, and surface criteria. These authors applied
their method to segment the vesicles in live cells; however, no experimental results
were reported.

To automate the process of identifying cellular phases using time-lapse fluores-
cence microscopic image sequences, we first apply a shape- and size-based method
which merges the oversegmented nuclear fragments. Second, we extract useful fea-
tures to discriminate the shapes and intensities of different image cell phases. We
then use these image features to build cell phase models using several computational
algorithms. To classify an unknown cell, we extract its features, then compare those
with the phase models. Figure 9.1 presents a block diagram of a typical cell phase
classification system.

This chapter presents a variety of modeling techniques for cell phase classifi-
cation including vector quantization (VQ), Gaussian mixture model (GMM), and
hidden Markov model (HMM). In these techniques, the extracted cell features are
treated equally, but they may not have the same importance as the data distribution
for each feature may be different. To overcome this, we present a new approach to
feature selection using an automated feature weighting technique. This technique
is combined with those modeling techniques to provide an efficient way for mod-
eling and to reduce cell phase classification error rates. We also present further
investigation on fuzzy fusion. Fuzzy fusion is a formal framework that provides
computational tools for the integration of data originating from different sources
of information, so that the information or result of quality being better than that
obtained from any single source can be obtained.

Feature Extraction

Cell Phase Modelling Feature ExtractionCell Phase 
Models

Nuclear 
Segmentation

Time-lapse fluorescence
microscopic image sequences Cells

Training Cells

Classification 
Cells

ClassificationClassified Cells

Fig. 9.1 Block diagram of a typical cell phase classification system
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The chapter is organized as follows. Section 1 introduces cell classification for
cancer research and drug discovery. Section 2 reviews nuclear segmentation tech-
niques. Section 3 presents techniques for feature selection. Cell phase modeling
techniques are presented in Section 4. Algorithms for modeling and classifying
cell phases are presented in Section 5. Section 6 introduces fuzzy fusion. Section 7
presents experimental results. Finally, the chapter is concluded in Section 8.

9.2 Nuclear Segmentation

Nuclear segmentation is the first part of the cell phase classification system. This is a
critical part since the segmentation results directly affect the classification accuracy.
Manual segmentation is very time consuming and the results may not be repro-
ducible (Ma et al. 2008). Automated segmentation techniques have been proposed
to overcome this problem. The most popular techniques are based on thresholds in
images and are presented here.

9.2.1 Threshold-Based Segmentation

In the threshold-based segmentation techniques, thresholds are selected manually
according to a priori knowledge or automatically through image information. Some
rules are then defined and segmentation is a procedure of searching for pixels that
satisfy these rules. Edge-based algorithms use the edge information and find edge
pixels while eliminating the noise influence (Canny 1986). Since these algorithms
are based on pixels, the detected edges can contain discrete pixels, and therefore
may be incomplete or discontinuous. It is necessary to apply a post-processing
method such as morphological operation to make them continuous. Region-based al-
gorithms assume that pixels inside a structure would have similar intensities (Adams
and Bischof 1994). Initial seeds are first selected, then the thresholds are used to de-
fine intervals. These algorithms search for the neighbored pixels whose intensities
are inside the intervals, and then merge them to expand the regions. Statistical in-
formation and a priori knowledge can be incorporated to the algorithms to eliminate
the dependence on initial seeds and make the algorithm automatically (Pohle and
Toennies 2001). As these algorithms mainly rely on the image intensity informa-
tion, they are hard to handle the partial volume effects and control the leakage. A
new two-step approach has been proposed to achieve the nuclear segmentation (Bell
et al. 2008). First, a mean shift segmentation which is an over segmentation of the
image is applied. These segments are then grouped together into the desired nu-
clear segmentation in the second step. This is achieved by a model-guided region
grouping.
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9.2.2 Image Thresholding

Time-lapse fluorescent microscopy images of nuclei are bright objects protrud-
ing out from a relatively uniform dark background. Thus, they can be segmented
by histogram thresholding. Nuclear images are first segmented and then extracted
from their background by applying a global threshold technique. The iterative self-
organizing data analysis technique algorithm (ISODATA) was used to perform
image thresholding (Norberto et al. 1997; Otsu 1978). By applying the ISODATA
technique, an image is initially segmented into two parts using an initial threshold
value. The sample mean of the gray values associated with the nuclear pixels and
the sample mean of the gray values associated with the background pixels are com-
puted. A new threshold value is then computed as the average of the two sample
means. The process is repeated until the change of threshold values reaches conver-
gence. This algorithm correctly segments most isolated nuclei, but it is unable to
segment touching nuclei. The algorithm fails because it assigns the pixels to only
two different groups (nuclear and background). If two nuclei are so close and there
are no background pixels between them, the algorithm will not be able to sepa-
rate them.

To overcome this problem, a watershed algorithm was used (Norberto et al. 1997;
Otsu 1978; Bleau and Leon 2000). The watershed algorithm first calculates the
Euclidean distance map (EDM) of the binary image obtained from the ISODATA
algorithm. It then finds the ultimate eroded points (UEP), which are the local max-
ima of the EDM. The watershed algorithm then dilates each of the UEP as far as
possible – either until the edge of the nuclear or the edge of the region of another
UEP is reached. However, the watershed algorithm fails when there is more than
one ultimate eroded point within the same nucleus. In such cases, the nuclear will
be incorrectly divided into several fragments. A fragment merging algorithm below
is therefore needed to correct such segmentation errors.

9.2.3 Fragment Merging Algorithm

Nuclei are usually elliptic objects with various shape parameters. In such cases, the
compactness can be used to describe the shape of the nuclei. Compactness is defined
as the ratio of the square of the perimeter of the nuclear to the area of the nuclear.
The value of 1 indicates a circular nuclear. Compactness increases as the contour
of the nuclear deviates from the circular shape. If a round nuclear is divided into
several fragments, the compactness of each fragment will be larger than the com-
pactness of the entire nuclear. On the basis of the observation of nuclear shapes and
sizes, we have developed a fragment merging technique. This technique can identify
oversegmented nuclear fragments and then merges them into single nuclear units.

The procedure can be described as follows. Let N be the total number of seg-
mented objects found by the watershed segmentation algorithm. Let T be the
minimum size of a nuclear in the image. In this work, a threshold value of 100
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pixels is chosen as no single nuclear size is smaller than 100, and larger threshold
value will cause small nuclei be identified as fragments and merged with nearby
touching nuclei.

All touching objects (nuclei) are evaluated and checked. Two objects are con-
sidered touching if they belong to the same object in the binary image before the
watershed algorithm is applied. This iterative merging process finds the smallest
touching objects in each iteration and then uses the checking process to update the
segmentation until no more touching objects can be merged. The checking process
can be described as follows:

� If the size of a touching object is less than T , it is merged with its smallest
touching neighbor.

� If the size of a touching object is greater than T , three compactness values are
calculated: the object, touching neighbor of the object, and the two objects as
a whole. If the calculated compactness decreases after this merging, these two
objects are merged.

9.3 Feature Extraction

After the nuclear segmentation has been performed, it is necessary to perform a
morphological closing process on the resulting binary images to smooth the nuclear
boundaries and fill holes insides the nuclei. These binary images are then used as
a mask to define relevant features in the original image. From this resulting image,
features can be extracted.

The ultimate goal for feature selection is to assign correct phase to cells via the
training of some identification technique. A large set of cell-nuclear features are
extracted based on the experience of biologists. An optimal feature subset is then
determined to minimize the classification error rate. It is impossible to use an ex-
haustive search to determine the subset due to the large amount testing that would
be involved. Sequential forward selection and automated feature weighting methods
are used for this purpose.

9.3.1 Sequential Forward Selection

Sequential forward selection is a bottom-up search method where features are aded
to the optimal feature subset one by one. Initially the subset is empty. In each stage,
only one feature is selected from the feature set to add to the subset. If the subset
does not yield a lower classification error rate, then the added feature will be re-
placed by a new feature selected from the feature set. The procedure is terminated
when no feature that can reduce the classification error rate is found.

This method was applied to the data set provided by the Department of Cell
Biology at the Harvard Medical School. The feature set based on the experience of
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biologists contained 13 features including maximum intensity, mean, standard de-
viation, major axis, minor axis, perimeter, compactness, minimum intensity, sum,
area, CP, roughness, and ratio. After applying the sequential forward selection
method, the optimal subset of seven features was selected. These features include
maximum intensity, mean, stand deviation, major axis, minor axis, perimeter, and
compactness (Chen et al. 2006).

9.3.2 Automated Feature Weighting

Each feature in the feature set based on the experience of biologists is associated by
a weight whose value represents the degree of selection. The values of these weights
are determined when the cell phase models are built. Modeling algorithms need to
be extended accordingly to integrate the feature weighting algorithm. When the cell
phase models are built, the weight values are also determined and the features whose
weight values are smaller than a preset threshold will be discarded.

The advantage of this method is that it is faster than the sequential forward se-
lection method and that it can be integrated to most of current modeling techniques
such as Markov modeling, GMM, and VQ.

9.3.3 Feature Scaling

Because the feature values have different ranges, the scaling of features is therefore
calculated as follows

x0
tm D xtm � �m

�m

; �m D 1

T

TX
tD1

jxtm � �mj (9.1)

where xtm is the mth feature of the t th nucleus, �m the mean value of all T cells,
and �m the mean absolute deviation.

9.4 Cell Phase Modeling

Several statistical techniques have been applied to cell phase modeling. HMM is the
most important technique since it employs temporal information in cell phase se-
quences. The underlying assumption of the HMM is that the considering cell phases
can be well characterized as a parametric random process, and that the parameters
of the stochastic process can be estimated in a precise, well-defined manner. The
HMM technique also provides a reliable way of recognizing speech for a wide range
of applications (Furui 1997; Juang 1998; Kulkarni 1995; Rabiner and Juang 1993).
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There are two assumptions in the first-order HMM. The first one is the Markov
assumption, that is a new state is entered at each time t based on the transition
probability, which only depends on the previous state. It is used to characterize
the sequence of the time frames of a pattern. The second is the output-independence
assumption, that is the output probability depends only on the state at that time rega-
rdless of when and how the state is entered. A process satisfying the Markov
assumption is called a Markov model. An observable Markov model (OMM) is
a process where the output is a set of states at each instant of time and each state
corresponds to an observable event. The HMM is a doubly stochastic process with
an underlying Markov process that is not directly observable (hidden) but can be
observed through another set of stochastic processes that produce observable events
in each of the states.

If the temporal information is not taken into account, GMM is used. The GMM
technique uses a mixture of Gaussian densities to model the distribution of cell fea-
ture vectors extracted from the training data. The GMM technique is also regarded
as the one-state continuous HMM technique. When little training data are avail-
able, VQ technique is also effective. VQ modeling partition the cell feature space to
convert the cell feature set into a small set of distinct feature vectors using a cluster-
ing technique. Advantages of this reduction are reduced storage and computation.
The distinct vectors are called code vectors and the set of code vectors that best
represents the training set is called the codebook regarded as a cell phase model.
Currently, k-means clustering is used in VQ modeling.

Fuzzy techniques have also been applied to cell phase modeling. Fuzzy cluster-
ing techniques such as fuzzy c-means and fuzzy entropy have been used to design
reestimation algorithms for fuzzy HMM, fuzzy GMM, and fuzzy VQ (Tran and
Wagner 2002; Tran and Pham 2007; Tran et al. 2008).

A recent technique that can integrate to both statistical modeling and fuzzy
modeling is automated feature weighting, which has been mentioned in Sect. 9.3.
The current modeling techniques cannot select features automatically and they also
treat all features equally. The combined techniques between the automated feature
weighting and the current modeling techniques provide an efficient way to select
appropriate features for cell phase models when they are being built to reduce the
cell phase classification error rate. There have been some algorithms that were pro-
posed to calculate weights for VQ and applied to cell phase modeling (Tran and
Pham 2007; Tran et al. 2008). However, a generic framework that can apply to
HMM, GMM, and VQ modeling does not exist.

This chapter proposes a novel combined feature weighting-modeling frame-
work for HMM using maximum likelihood (ML) estimation. A generic objective
function is proposed and maximizing this function will result in an algorithm for
calculating weights as well as HMM parameters. Algorithms for the combined fea-
ture weighting-GMM and feature weighting-VQ techniques will also be determined
from the algorithm for the combined feature weighting-HMM.
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9.4.1 Feature Weighting-HMM

Let S D fs1; s2; : : : ; sT g and X D fx1; x2; : : : ; xT g be a sequence of states and
a sequence of continuous cell feature vectors, respectively. The compact notation
ƒ D f�;A;Bg indicates the complete parameter set of the HMM where

� � D f�i g ; �i D P.s1 D i jƒ/: the initial state distribution
� A D ˚

aij

	
; aij D P.st D j jst�1 D i; ƒ/: the state transition probability

distribution, and
� B D ˚

bj .xt /
	
; bj .xt / D P.xt jst D j;ƒ/: the output probability distribution

of feature vector xt in state j .

The following constraints are applied:

NX
iD1

�i D 1;

NX
j D1

aij D 1; and
Z
b.xt /dxt D 1 (9.2)

The HMM parameters are estimated such that in some sense they best match the
distribution of the feature vectors in x. The most widely used training method is the
ML estimation. For a sequence of feature vectors x, the likelihood of the HMM is

P.Xjƒ/ D
TY

tD1

P.xt jƒ/ (9.3)

The aim of ML estimation is to find a new parameter model Nƒ so that P.Xj Nƒ/ 	
P.Xjƒ/. Since the expression in (9.3) is a nonlinear function of parameters in ƒ
its direct maximization is not possible. However, parameters can be obtained itera-
tively using the expectation-maximization (EM) algorithm (Dempster et al. 1997).
An auxiliary functionQ is used

Q.ƒ; Nƒ/ D
T �1X
tD1

NX
iD1

NX
j D1

P .st D i; stC1 D j jX; ƒ/ log

 Naij

Nbij .xtC1/
�

(9.4)

where N�s1Dj is denoted by Nas0Di s1Dj for simplicity. The most general representa-
tion of the output probability distribution is a mixture of Gaussians

bj .xt / D P.xt jst D j;ƒ/ D
KX

kD1

P.kjst D j;ƒ/P.xt jk; st D j;ƒ/ (9.5)

This can be re-written as

bj .xt / D
KX

kD1

cjkN
�
xt ;�jk; †jk

�
(9.6)
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where cjk D P .kjst D j;ƒ/ ; j D 1; : : :; N; k D 1; : : :; K are mixture coef-
ficients, and N

�
xt ;�jk; †jk

�
is a Gaussian with mean vector �jk and covariance

matrix †jk for the kth mixture component in state j . The mixture coefficients sat-
isfy the following conditions for all j D 1; : : : ; N

cjk > 0 and
KX

kD1

cjk D 1 (9.7)

In order to combine with the automated feature weighting technique, a weight w˛
jkm

is associated with the mth feature as follows

logN
�
xt ; N�jk; N†jk

� D
MX

mD1

w˛
jkm logP

�
xtmjk; st D j; Nƒ� (9.8)

where

P .xtmjk; st D j;ƒ/ D 1q
2��2

jkm

e�.xtm��jkm/
2

=2�2
jkm (9.9)

�jkm is the mth variance component in Gaussian k and state j , w˛
jkm, m D

1; 2; : : :; M are components of an M -dimensional weight vector w˛
jm, and ˛ is

a fuzzy parameter weight for w˛
jkm. The weight values satisfy the following condi-

tions:

0 � wjkm � 1 8m;
MX

mD1

wjkm D 1 (9.10)

It can be seen that if all of the weight values are equal, the proposed expression
of Gaussian distribution N

�
xt ; N�jk; N†jk

�
in Eq. (9.8) becomes the normal expres-

sion for Gaussian distribution as seen in statistics and probability theory (Tran and
Wagner 1998).

Maximizing the likelihood function in (9.2) can be obtained by maximizing the
objective function in (9.3) over Nƒ and the weight vector w˛

jm. The basic idea of this

combined technique is that the function Qj .ƒ; Nƒ/ is maximized over the variable
wjkm on the assumption that the weight vector wjm identifies a good contribution
of the features. Using the well-known Lagrange multiplier method, maximizing the
functionQj

�
ƒ; Nƒ� in (9.4) using (9.7) and (9.10) gives

wjkm D 1PM
nD1

�
Djkm=Djkn

�1=.˛�1/
(9.11)

where ˛ ¤ 1 and

Djkm D �
TX

tD1

P.kjxt ; st D j;ƒ/ logP.xtmjk; st D j; Nƒ/ (9.12)
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The mixture coefficients, mean vectors, and covariance matrices are calculated by
maximizing the function in (9.4) over Nƒ using (9.2) and (9.7). We obtain

Ncjk D 1

T

TX
tD1

P.kjxt ; st D j;ƒ/ (9.13)

N�jk D
PT

tD1 P.kjxt ; st D j;ƒ/xtPT
tD1 P .kjxt ; st D j;ƒ/

(9.14)

N†jk D
PT

tD1 P.kjxt ; st D j;ƒ/
�
xt � �jk

� �
xt � �jk

�0PT
tD1 P.kjxt ; st D j;ƒ/

(9.15)

where the prime denotes vector transposition, and

P .kjxt ; st D j;ƒ/ D cjkN
�
xt ; �jk; †jk

�
PK

nD1 cjnN
�
xt ; �jn; †jn

� (9.16)

The initial state distribution and state transition distribution are also determined:

N�i D 1.i/ Naij D
PT �1

tD1 	t .i; j /PT �1
tD1 t .i/

(9.17)

where

t .i/ D
NX

j D1

	t .i; j /; 	t .i; j / D P .st D i; stC1 D j jX; ƒ/ (9.18)

The advantage of this approach is that when the weighting values w˛
jkm have the

same value, the combined feature weighting-HMM becomes the standard HMM in
the ML estimation. Therefore, the proposed approach can be considered as a generic
framework and can extend to other models that relate to the HMM such as GMM
and VQ and other estimation methods such as minimum classification error and
maximum a posteriori.

9.4.2 Feature Weighting-OMM

If the sequence of continuous cell feature vectors X D fx1; x2; : : : ; xT g is replaced
by the sequence of cell phases and is also used as the sequence of states, the feature
weighting-HMM becomes the feature weighting-OMM. The sequence of cell phases
is observable and hence the sequence of states is not hidden.
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The initial state distribution and state transition distribution in (9.17) and (9.18)
are recalculated as follows:

N�i D niPM
sD1 ns

; Naij D nijPM
sD1 nis

(9.19)

where ni and nij are the number of occurrences of �i and aij , respectively, in the
sequence of cell phases. Other equations remain unchanged.

9.4.3 Feature Weighting-GMM

The feature weighting-GMM can be obtained by setting the number of states in
feature weighting-HMM to one. The feature weighting-GMM parameters consist of
the mixture weight cjk, mean vector �jk, covariance matrix †jk, and feature weight
wjm. The estimation equations in (9.11), (9.13), (9.14), (9.15), and (9.16) are used
to calculate the GMM parameters.

9.4.4 Feature Weighting-Fuzzy GMM

The feature weighting-fuzzy GMM is a fuzzy version of the feature weighting-
GMM. Parameters in (9.13), (9.14), (9.15), and (9.16) are recalculated as follows

Ncjk D
PT

tD1 u˛
jktPK

kD1

PT
tD1 u˛

jkt

(9.20)

N�jk D
PT

tD1 u˛
jktxtPT

tD1 u˛
jkt

(9.21)

N†jk D
PT

tD1 u˛
jkt

�
xt � �jk

� �
xt � �jk

�0
PT

tD1 u˛
jkt

(9.22)

where

ujkt D
"

KX
mD1

�
djkt

djmt

�2=.m�1/
#�1

(9.23)

d 2
jkt D � logP

�
xt jk; st D j; Nƒ� (9.24)
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9.4.5 Feature Weighting-VQ

In feature weighting-VQ modeling (Tran and Pham 2008), the model ƒ is a set of
cluster centers ƒ D f�1;�2; : : : ;�Kg where �k D .�k1; �k2; : : : ; �kM / ; k D
1; 2; : : :; K are code vectors (also mean vectors). Each code vector �k is assigned
to an encoding region Rk in the partition � D fR1; R2; : : : ; RKg. Then the source
vector xt can be represented by the encoding region Rk , and is expressed by

V .xt / D �k if xt 2 Rk (9.25)

Let U D Œukt � be a matrix whose elements are memberships of xt in the nth cluster,
k D 1; 2; : : :; K , t D 1; 2; : : :; T . A K-partition space for X is the set of matrices
U such that

ukt 2 f0; 1g 8 k; t;
KX

kD1

ukt D 18 t; 0 <

TX
tD1

ukt < T 8k (9.26)

where ukt D uk.xt / is 1 or 0, according to whether xt is or not in the kth clus-
ter,

PK
kD1 ukt D 18 t means each xt is in exactly one of the K clusters, and

0<
PT

tD1 ukt <T 8 k means that no cluster is empty and no cluster is all of X
because of 1 < K < T .

The feature weighting-VQ technique is based on minimization of the J .U;W;ƒ/
function obtained from the Q

�
ƒ; Nƒ� function in (9.2) by removing the expressions

that contains state parameters in the HMM and Gaussian parameters in the GMM.
The J .U;W;ƒ/ function is also considered as the sum-of-squared-errors function
(the index j for state is omitted) as follows

J .U;W;ƒ/ D
KX

kD1

TX
tD1

ukt

MX
mD1

w˛
kmdktm (9.27)

where Nƒ is included in dktm, which is the Euclidean norm of .xt � �k/. Similarly,
the well-known Lagrange multiplier method is used to obtain the following equa-
tions for feature weighting-VQ

�k D
PT

tD1 ukt xtPT
tD1 ukt

; 1 � k � K (9.28)

ukt D
�
1 W dkt < djt ; j D 1; :::; K; j ¤ k

0 W otherwise
(9.29)

wkm D 1PM
nD1 .Dkm=Dkn/1=.˛�1/

; Dkm D
TX

tD1

uktdktm (9.30)
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where

dktm D .ckm � xtm/
2 ; dkt D

MX
mD1

w˛
kmdktm (9.31)

9.4.6 Feature Weighting-Fuzzy VQ

In feature weighting-fuzzy VQ modeling, the matrix U D Œukt � is redefined as
follows (Tran and Pham 2008)

ukt 2 Œ0; 1� 8 k; t;
KX

kD1

ukt D 18 t; 0 <

TX
tD1

ukt < T 8 k (9.32)

where 0 � ukt � 1 denoting the degree of fuzziness.
The feature weighting-fuzzy VQ technique is based on minimization of the fol-

lowing function

J .U;W;ƒ/ D
KX

kD1

TX
tD1

uˇ

kt

MX
mD1

w˛
kmdktm (9.33)

where ˇ > 1 and others are the same as those in feature weighting-VQ. The Eqs.
(9.28), (9.29), and (9.30) are replaced by (9.34), (9.35), and (9.36), respectively, as
follows

�k D
PT

tD1 uˇ

kt
xtPT

tD1 uˇ

kt

; 1 � k � K (9.34)

ukt D
2
4 KX

j D1

�
dkt=djt

�2=m�1

3
5

�1

(9.35)

wkm D 1PM
nD1 .Dkm=Dkn/

1=.˛�1/
; Dkm D

TX
tD1

uˇ

kt
dktm (9.36)

9.5 Algorithms for Modeling and Classifying Cell Phases

The modeling and classifying algorithms for the combined techniques are summa-
rized in following sections.
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9.5.1 Modeling Algorithm

1. Give a training data set X D fx1; x2; : : : ; xT g, where xt D .xt1; xt2; : : : ; xtM / ;

t D 1; 2; : : :; T .
2. Initialize parameters at random satisfying (9.2), (9.7), and (9.10).
3. Give ˛ ¤ 1 and " > 0 (small real number).
4. Set i D 0 and Q.i/

�
ƒ; Nƒ� in (9.4) or J .i/ .U;W;ƒ/ in (9.27) and (9.33) to a

small real number. Iteration:

a. Compute weight values:

� For HMM, OMM, and GMM: using (9.11) and (9.12)
� For VQ: using (9.30)
� For fuzzy VQ: using (9.36)

b. Compute initial state and state transition parameters:

� For HMM: using (9.17) and (9.18)
� For OMM: using (9.19)

c. Compute model parameters:

� For GMM: using (9.13)–(9.16)
� For VQ: using (9.28) and (9.29)
� For fuzzy VQ: using (9.34) and (9.35)

d. Compute Q.iC1/
�
ƒ; Nƒ� using (9.4) or J .iC1/ .U;W;ƒ/ using (9.27) and

(9.33). If the difference between Q.iC1/
�
ƒ; Nƒ� and Q.i/

�
ƒ; Nƒ� or the dif-

ference between J .iC1/ .U;W;ƒ/ and J .i/ .U;W;ƒ/ is less than e, then set
Q.i/

�
ƒ; Nƒ� D Q.iC1/

�
ƒ; Nƒ� or J .i/ .U;W;ƒ/ D J .iC1/ .U;W;ƒ/, and

i D i C 1 and go to step (a).

9.5.2 Classification Algorithm

Assuming
˚
ƒ.1/; ƒ.2/; : : : ; ƒ.p/

	
are p cell phase models that are built using the

modeling algorithm. Given an unknown cell feature vector x, the task is to classify
x into one of the p cell phase models. The following algorithm is proposed:

1. Given an unknown feature vector x and the set of models
˚
ƒ.1/; ƒ.2/; : : : ; ƒ.p/

	
2. Calculate the distance d .i/ DPK

kD1

PM
mD1 w˛

kmd
.i/
km , where d .i/

km D
�
c

.i/
km � xm

�2

;

i D 1; : : : ; p, or the probabilities P
�
xjƒ.i/

�
; i D 1; : : :; p as follows

P
�
xjƒ.i/

�
D

KX
kD1

ckN
�
x; �

.i/

k
; †

.i/

k

�
(9.37)
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3. The recognized model i� is determined by one of the following rules:

i� D arg min
i2f1;2;:::;pg

d .i/ (9.38)

or
i� D arg max

i2f1;2;:::;pg
P
�

xjƒ.i/
�

(9.39)

9.6 Fuzzy Fusion of Classifiers

We have presented in the previous sections the modeling methods including HMM,
GMM, VQ, and their combinations with the automated feature weighting technique
as well as their fuzzy versions. With a number of classifiers obtained from those
modeling techniques, we describe a novel way to combine their classification results
using fuzzy fusion based on the mathematical concepts of fuzzy measures and fuzzy
integrals (Pham et al. 2007). The concept of information fusion has become an active
area of systems research and has many applications in pattern recognition, image
analysis, robotics, and management science.

In general, information fusion is a formal framework that provides computational
tools for the integration of data originating from different sources of information so
that the information or result of quality being better than that obtained from any sin-
gle source can be obtained. The motivation is based on the fact that it is theoretically
difficult to design a single classifier that can detect well all the features with a similar
level of accuracy. This difficulty is due to the complexity of implementing several
learning algorithms in a single classifier because each independent algorithm may
work better with some features than the other algorithms and vice versa.

In this study, we were motivated to use fuzzy integrals as the operators for in-
formation fusion because fuzzy integrals constitute a generalization of aggregation
operators including many widely used operators such as minimum, maximum, order
statistic, weighted sum, and ordered weighted sum. We describe the properties of a
fuzzy measure and the operations of the fuzzy integrals on the subsets of the fuzzy
measure as follows.

Let Y D fg1; : : : ; gng be a set of the degrees of importance of n classifiers. These
elements can be considered as the classification rates of classifiers for the same cell
phase. In this study, we model the fuzzy densities of a classifier on an adaptive way
such that it is variable depending on its overall classification rate for a particular cell
phase. In other words, the fuzzy density gi for each cell phase of each classifier can
be obtained as the percentage of the correct classification for the corresponding cell
phase using the training data.

A fuzzy measure g over a finite set Y has the following properties (Sugeno 1977):

1. g.¿/ D 0; and g.Y / D 1

2. If A � B then g.A/ � g.B/
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The Sugeno measure or the g� fuzzy measure satisfies the following additional con-
dition for some � > �1:

g� .A[ B/ D g�.A/C g�.B/C �g�.A/g�.B/ (9.40)

The value of � can be calculated regarding to the condition g.Y / D 1:

�C 1 D
nY

iD1

�
1C �gi

�
(9.41)

Given the values of the g� fuzzy measure, which can be determined by using (9.40),
a fuzzy integral, which is an aggregation operator, can be computed. The relation-
ship is that fuzzy integrals are integrals of a real function with respect to a fuzzy
measure. There are several definitions of fuzzy integrals but the most popular two
are the Sugeno (1977) and the Choquet (1953) integrals. These two fuzzy integrals
are defined as follows.

Let C be a set of classifiers, h W C ! [0 (Giuliano et al. 2003), and let h.ci /

denote the classification score of classifier ci . The Sugeno integral of h overA � C

with respect to the fuzzy measure g can be calculated as follows:

Z
A

h.ci / ı g D sup
˛2Œ0;1	

Œ˛ ^ g .A \H˛/� (9.42)

whereH˛ D fci jh.ci / 	 ˛g.
For a finite set of elements C D fc1; : : :; cng where the elements are sorted

so that h .ci / is a descending function, that is h.c1/ 	 h.c2/ 	 : : : 	 h.cn/, the
discrete Sugeno integral, which represents the fused result, can be calculated as
follows:

Sg.h/ D _n
iD1 Œh.ci / ^ g .Hi /� (9.43)

whereHi D fc1; : : :; ci g.
The discrete Choquet integral is defined as

Cg.h/ D †
n
iD1 Œh.ci /� h .ci�1/� g .Ai /� (9.44)

where h.c1/ � h.c2/ � : : : � h.cn/; h.c0/ D 0 and Ai D fc1; : : :; cng.
Let f .C; p/ be the output of either the Sugeno or the Choquet integral as

the score for a particular cell phase p from the fusion of a set of classifiers C .
On the basis of the fusion rule, the phase p� is selected as the corrected phase if it
has the maximum integrated score:

p� D arg max
p

f .C jp/ (9.45)
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9.7 Experimental Results

9.7.1 Data Set

The data set described by Pham et al. (2006, 2007) contains 375,841 cells in 892
nuclear sequences. The average number of cells per sequence is 421. Imaging was
performed by time-lapse fluorescence microscopy with a time interval of 15 min.
Two types of sequences were used denoting drug treated and untreated. Cell cycle
progress was affected by drug and some or all of the cells in the treated sequences
were arrested in metaphase. Cell cycle progress in the untreated sequences was not
affected. Cells without drug treatment will usually undergo one division during this
period.

9.7.2 Feature Extraction

Extracting cell features has been presented in Sect. 9.3. The subset of seven features
were used in the HMM, GMM, and VQ modeling techniques. The complete set of
13 cell features were used in the combined techniques including FW-HMM, FW-
GMM, and FW-VQ, where FW stands for feature weighting. Because the feature
values have different ranges, the scaling of features presented in Sect. 9.3.3 was
applied.

9.7.3 Initialization and Constraints on Parameters During
Training

It was shown in the literature that no significant difference in pattern recognition was
found by using different initialization methods (Rabiner and Juang 1993). There-
fore, modeling techniques based on GMM and VQ were initialized as follows:

� Feature Weighting (FW): The parameter ˛ was set to 5.0 (Tran and Pham 2008).
� VQ: Fuzzy membership functions in fuzzy VQ models were randomly initial-

ized. The degree of fuzziness ˇ was set to 1.1. Choosing the appropriate values
was based on our previous work for speech and speaker recognition (Tran and
Wagner 1998).

� GMM: Mixture weights, mean vectors, covariance matrices, and fuzzy mem-
bership functions were initialized with essentially random choices. Covariance
matrices are diagonal, that is Œ†k�i i D �2

k
and Œ†k�ij D 0 if i ¤ j , where

�2
k

, 1 � k � K are variances. A variance limiting constraint was applied to
all GMMs using diagonal covariance matrices. This constraint places a mini-
mum variance value �2

k
on elements of all variance vectors in the GMM, that is,

�2
k

D �2
min if �2

k
� �2

min. In our experiments, �2
min D 0:01.
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9.7.4 Experimental Results

There are five phases to be identified: interphase, prophase, metaphase, anaphase,
and arrested metaphase. We divide the data set into five subsets for training five
cell phase models and a subset for classification. Each of the 5 training subsets
for 5 phases contains 5,000 cell feature vectors, which are extracted from the cell
sequences labeled from 590 to 892. The classification subset contains sequences
labeled from 1 to 589. There are 249,547 cell feature vectors in this classification
subset.

The modeling methods HMM, GMM, and VQ used 7 features and the combined
modeling methods FW-HMM, FW-GMM, and FW-VQ used 12 features to train cell
phase models.

The cell phase classification results are presented in Fig. 9.2 for seven model
sizes 2, 4, 8, 16, 32, 64, and 128. The VQ and FW-VQ model parameters are cluster
centers only. The GMM and FW-GMM model parameters include mixture weights,
mean vectors, and covariance matrices. The OMM and FW-OMM model parameters
include the GMM parameters and Markov state parameters. It can be seen that the
more model parameters were considered, the better cell phase classification rate is.

The results also show that the combined techniques always improve the cell phase
classification rates. The feature weighting technique associates a weight to each
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Fig. 9.2 Cell phase classification rates (in %) for modeling methods where FW, OMM, GMM, and
VQ stand for feature weighting, observable Markov model, Gaussian mixture model, and vector
quantization, respectively. Model sizes 2, 4, 8, 16, 32, 64, and 128 were considered
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feature and these weight values were adjusted properly when the cell phase models
are being trained; therefore, we obtained the optimal cell phase models when the
combined techniques were used.

9.8 Conclusion

We have applied several pattern recognition methods for the classification of cell
phases using time-lapse fluorescence microscopic image sequences. The selection
of useful features is a very important task for any classifier. In this chapter, we have
applied the automated feature weighting technique to select features when training
cell phase models. The combined feature weighting and modeling techniques could
certainly enhance the performance of these classifiers, particularly the combined
feature weighting and OMM technique has achieved the highest classification rate.

Molecular imaging is an exciting area of research in life sciences by providing an
outstanding tool for the study of diseases at the molecular or cellular levels. Some
molecular imaging techniques have been implemented for clinical applications. To
contribute to this emerging imaging technology, we have presented and discussed
several computational models for the classification of cellular phases based on flu-
orescent imaging data. This task is an important component for any computerized
imaging system that automates the screening of high-content, high-throughput flu-
orescent images of mitotic cells to aid biomedical or biological researchers to study
the mitotic data at dynamic ranges for various applications including the study of
the complexity of cell processes, and the screening of novel anti-mitotic drugs as
potential cancer therapeutic agents.
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Chapter 10
Computational Tools and Resources for Systems
Biology Approaches in Cancer

Andriani Daskalaki, Christoph Wierling, and Ralf Herwig

Abstract Systems biology focuses on the study of interacting components of
biological systems rather than on the analysis of single genes or proteins and offers
a new approach to understand complex disease mechanisms by the use of com-
putational models. The analysis of such models has become crucial to understand
biological processes and their dysfunctions with respect to human diseases. A sys-
tems biology approach would be a key step in improving diagnosis and therapy of
complex diseases such as cancer. It offers new perspectives for drug development,
for example, in detecting drug side effects and alternative response mechanisms
through the analysis of large cellular networks in silico.

In this chapter we review important cellular processes for cancer onset, progres-
sion, and response to anticancer drugs, provide a summary of existing pathway
databases and tools for the construction and analysis of computational models, and
discuss existing kinetic models for cancer-related signaling pathways.

10.1 Introduction

Dysfunctions in the molecular interaction network of the cell can cause severe
diseases such as cancer. Computational methods and tools help significantly to
understand the effects of such dysfunctions on the network. This requires the im-
plementation and analysis of in silico models of the investigated biological systems.
In this chapter we give a brief review of cancer-related signaling networks and de-
scribe databases and computational tools for their annotation and analysis.
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10.2 Molecular Networks Involved in Cancer

10.2.1 Pathways Affected by Cancer Onset and Progression

Cancer is a complex disease involving multiple genes and pathways and is consid-
ered to be a manifestation of severe functional changes (Schubbert et al. 2007) in cell
physiology related to apoptosis and cell proliferation (Hanahan and Weinberg 2000;
Bild et al. 2006; Weinberg 2007). These changes in biological pathways are due to
mutations of oncogenes and tumor suppressor genes eventually causing cancer initi-
ation and progression (Kinzler and Vogelstein 1996). Mutations in more than 1% of
the human genes are known to contribute to the onset of cancer (Futreal et al. 2004).
For instance, loss in the activity of the phosphatase and tensin homolog (PTEN) or
hyperactivity of phosphatidylinositol-3-kinase (PI3K) due to a mutation have been
found to cause increasing phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels that
subsequently initiate activation of the kinase AKT1, which is involved in cellular
survival pathways, by inhibiting apoptotic processes and enhancing cell survival
and proliferation (Vivanco and Sawyers 2002). Gene amplification or mutations of
PIK3CA (the catalytic subunit of PI3K) have been reported in >40% of patients
with specific types of cancer (Levine et al. 2005).

Crucial for the regulation of cell proliferation and apoptosis (Cummings
et al. 2005) are the recognition and integration of growth and death signals by
the cellular signal transduction network, a complex network exhibiting extensive
crosstalk. Positive feedback loops between pathways can induce transitions from
inactive to permanently activated states leading to continuous cell proliferation and,
hence, contribute to the pathogenesis of cancer (Kim et al. 2007).

Although it is well known that these pathways have extensive crosstalk with
other pathways involved in tumor progression, computational modeling of cancer
processes has been focused so far mainly on individual pathways such as the MAP
kinase pathway (Kim et al. 2007), the AKT pathway (Araujo et al. 2007), or WNT
signaling (Kim et al. 2007) and apoptosis (Legewie et al. 2006).

10.2.2 Target Pathways of Cancer Treatment

Tumorigenesis in humans is a multistep process and reflects genetic alterations
that drive the progressive transformation of normal human cells into highly malig-
nant derivatives. Furthermore, mutations in certain oncogenes and tumor suppressor
genes can occur early in some tumor progression pathways and late in others. As a
consequence, resistance to apoptosis, sustained angiogenesis, and unlimited replica-
tion potential can appear at different times during tumor progression (Hanahan and
Weinberg 2000).

Important signaling pathways (Fig. 10.3) crucial for cell growth and survival
are frequently activated in human cancer due to genomic aberrations including
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Fig. 10.1 Specific inhibition experiments targeting AKT and MAPK signaling: A schema present-
ing the concept related to the inhibition of a network regulated by AKT and MAPK with different
drugs (Perifosine, Sorafenib Rapamycin). Changes in the state of AKT and MAPK influence pro-
liferation, growth, and apoptosis. Inhibition is indicated by a blunted line. AKT protein kinase
B, PI3K phosphatidylinositol 3-kinase, mTOR mammalian target of rapamycin, MAPK mitogen-
activated protein kinase, ERK extracellular-signal-regulated kinase

mutations, amplifications, and rearrangements. An increasing number of rationally
designed small molecule inhibitors directed against growth and survival pathways
such as the mitogen-activated protein (MAP) kinase pathway, the PI3K-AKT-mTOR
pathway, or the JAK-STAT signaling pathways are entering clinical testing for the
treatment of cancer (Van Ummersen et al. 2004; Hennessy et al. 2005; McCubrey
et al. 2008).

The PI3K/AKT signaling pathway (Fig. 10.1) has become a primary target for
cancer treatment (Vivanco and Sawyers 2002). For instance, the AKT inhibitor
perifosine (Fig. 10.1) was used in preclinical and clinical trials for several cancer
entities, for example, prostate cancer (Van Ummersen et al. 2004). This drug in-
terrupts the interaction between PIP3 and the pleckstrin homology (PH) domain of
AKT and thus prevents membrane localization of AKT that is essential for its activa-
tion. Further drugs that present antitumor activity are Wortmannin (Rahn et al. 1994)
and LY294002 (Hennessy et al. 2005). Another drug that targets the mammalian
target of rapamycin (mTOR) pathway is rapamycin (Rapamune, Wyeth Ayerst).
Rapamycin is a specific inhibitor of mTOR and functions downstream of AKT
(Hay and Sonenberg 2004). mTOR inhibitors are being tested in clinical trials for
patients with breast cancer and other solid tumors (Chan et al. 2005; Hidalgo and
Rowinsky 2000; Nagata et al. 2004). Besides these inhibitors, many more drugs
(Cho et al. 2006) are described in the literature that target components of the major
cancer-related cellular pathways. Table 10.1 gives an overview of these 81.
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Table 10.1 List of well-
known cancer-related
pathways

Pathways

EGF signaling
Cytokin signaling
E-cadherin signaling
FAS signaling
G-protein signaling
Hedgehog
IGF-1 signaling
Intrinsic apoptosis
Nerve growth factor
Notch signaling
Phospholipase C signaling
RB signaling in response to DNA damage
Toll-like receptor 3
Toll-like receptor 10
TGF beta signaling
BMP signaling
TNFR signaling
TRAIL signaling
WNT signaling

Literature review identifies at least 19 different molecular pathways that might
be targeted by cancer therapies and are involved in tumor progression (Table 10.1).
Components of these pathways and their molecular interactions are the basis of com-
putational modeling. A cancer-related model should consider the extensive pathway
crosstalk in cancer by the integration of different cellular pathways and processes
that constitute signal transduction cascades activated by stimuli such as growth fac-
tors (EGF, NGF, IGF-1, TGF-beta), cell proliferation (Wnt, Rb, Notch, Hedgehog),
cytokines (Interleukin 2, STAT-JAK), inflammation (Toll-like receptors), apoptosis
(TNF-alpha, FAS, TRAIL), and metabolic regulation (G-protein-coupled receptors).

Based on this complex molecular background, modeling approaches can be used
to address and analyze clinical problems regarding different response mechanisms
in patients, which could be due to mutations of oncogenes or tumor suppressor genes
leading to gain or loss of function of the related proteins.

10.3 Molecular Interaction Databases

The development of a computational model involves multiple steps. Figure 10.2
illustrates the general modeling workflow.

The first step in this workflow includes the annotation of cellular processes and
pathways by the use of appropriate annotation tools in order to build the relevant
computational network. Much of the existing knowledge on cancer-relevant reaction
networks is agglomerated in pathway databases. These databases typically describe
the signaling flow in the normal state and can be used as a first approximation for
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Fig. 10.2 Annotation workflow: The annotation workflow includes the following steps: (a) Based
on pathway databases search for interaction between proteins involved in biological pathways re-
lated to cell proliferation and apoptosis. (b) Annotation step: The construction of the molecular
network is based on information from the Pathway Databases Reactome and ConsensusPathDB.
The Reactome Curator Tool is used for this annotation. (c) As a final step, the model topology can
be further adapted and analyzed with a modeling tool such as PyBioS

cancer-related signaling networks. In this section pathway databases, annotation and
simulation tools will be discussed that support the scientist in the development of
those molecular models and their analysis.

10.3.1 BioCyc

The BioCyc databases (Karp et al. 2005) have been assembling a unique collec-
tion of chemical data for compounds involved in metabolic pathways (Darzentas
et al. 2005; http:// biocyc.org). The BioCyc Open Chemical Database (BOCD) is a
collection of chemical compound data from the BioCyc databases. The compounds
act as substrates in enzyme-catalyzed metabolic reactions or serve as enzyme acti-
vators, inhibitors, and cofactors. Chemical structures are provided for the majority
of compounds.

10.3.2 KEGG

KEGG (http://www.genome.jp/kegg/) is a database of biological systems that
integrates genomic, chemical, and systemic functional information (Kanehisa
et al. 2006). KEGG PATHWAY contains 26 maps for human diseases (Araki
and Hirakawa 2006). The disease pathway maps are classed in four subcategories:
6 as neurodegenerative disorders, 3 as each of infectious diseases and metabolic
disorders, and 14 as cancers.

10.3.3 Reactome

The Reactome project developed a curated resource of core pathways and reactions
in human biology (Vastrik et al. 2007; http://reactome.org). The information in
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this database is cross-referenced with multiple other databases, such as sequence
databases at NCBI, Ensembl, UniProt, the UCSC Genome Browser, HapMap
(http://www.hapmap.org), KEGG, ChEBI, PubMed, and GO. In addition to cu-
rated human events, inferred orthologous events in 22 nonhuman species including
mouse, rat, chicken, puffer fish, worm, fly, yeast, two plants, and Escherichia coli
are also available. Reactome is a free online resource, and Reactome software is
open-source. The Reactome database already covers multiple cellular pathways,
(Joshi-Tope et al. 2005) including different signal transduction pathways that are
also related to cancer (de Bernard 2008).

10.3.4 ConsensusPathDB

To achieve a more comprehensive integration of interaction data, Kamburov
et al. (2009) have developed ConsensusPathDB, a database integrating human
molecular interaction networks of several public pathway resources (http://cpdb.
molgen.mpg.de). The integrated content comprises different types of functional
interactions that interconnect diverse types of cellular entities. To gain an imme-
diate critical number of interactions, the authors have focused primarily on the
integration of existing database resources. Currently, the database contains hu-
man functional interactions, including gene regulations, physical (protein–protein
and protein-compound) interactions, and biochemical (signaling and metabolic)
reactions, obtained by integrating such data from 12 publicly accessible databases.

10.3.5 TRANSPATH R�

TRANSPATH is a database on regulatory network information, mostly in human,
mouse, and rat cells. This database originally focuses on signal transduction path-
ways that aim at gene regulatory molecules (transcription factors), but also on
metabolic enzymes and structural proteins as targets (Krull et al. 2006). Data about
intracellular regulatory processes are collected, annotated, and stored at different
levels of abstraction making use of both a molecular and a reaction hierarchy
(Wingender et al. 2007).

10.3.6 Annotation Tools

A pathway model provides a starting point for searching the complex molecular
background of cancer. The ability to incorporate experimental data in a curated
model could be considered as a key step to gain insights through the correlation
of data with network information (de Bono 2008).
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Fig. 10.3 Cancer model relevant pathways: Signaling pathways that comprise the minimal model
of cancer-related signaling pathways

Annotation of pathways typically involves the translation of the human-readable
maps (Bouwmeester et al. 2004) (Fig. 10.3) to computer-readable reaction systems
(Kerrien et al. 2007). Several tools are available that offer this service. The Re-
actome Curator tool is a software application implemented in Java. It is designed
for the annotation of data related to biological pathways. This tool enables the re-
searcher to annotate pathways based on the existing data of the Reactome database
but also to enter new data from other public resources. A set of reactions can be
grouped to form a pathway (de Bono 2008). GO terms from “Molecular Function”
are linked directly to the action of catalysts.

10.3.7 Modeling Tools

Modeling and simulation techniques are valuable tools for the understanding of
complex biological systems involved in tumor formation and progression. Compu-
tational modeling requires the translation of the pathway schemas (Fig. 10.2) into
computer models that can carry information on the concentrations of the model
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components and on the kinetics of the reactions these components are involved in.
This process contains the design of suitable computer objects, the implementation
of the reactions, the assignment of kinetic laws to these reactions, and the model
analysis (Klipp et al. 2005).

A modeling tool enables the study of the kinetic behavior of the system under
analysis, for example, changes of the model components in time upon perturbations
(e.g., due to mutations or drug effects) or external stimuli (e.g., growth factors).
Once established, such a computational model can be used to accomplish specific in
silico case studies. Perturbations can be integrated in strategic points of the model by
modifying the parameters of the model. A minimal value rate constant of a reaction
leading to the activation or deactivation of a model component by its phosphoryla-
tion can present significant changes. Furthermore, a higher value for the degradation
rate constant could lead to a sustained signal. Therefore, the structure of the model
should be based on different parameter values. The effect of these changes should
be considered and validated with experimental results.

Computational tools that support model population, simulation, and analysis
build the basis of systems biology (Wierling et al. 2007). Modeling tools that have
been applied for analyzing molecular networks, are, for instance, CellDesigner
(Funahashi et al. 2003), E-Cell (Tomita et al. 1999), Gepasi (Mendes 1993, 1997)
and its successor Copasi (Hoops et al. 2006), ProMoT/Diva (Ginkel et al. 2003),
JDesigner (Novikov and Barillot 2008), Virtual Cell (Loew and Schaff 2001;
Slepchenko et al. 2003), and tools integrated in the Systems Biology Workbench
(Hucka et al. 2002). These tools can be used for the development and analysis of
small models. However, a model related to cancer should include a high number of
components, reactions, and kinetic parameters. Thus, the analysis of such a model
requires automation of the annotation of the reaction network, its generation, nu-
merical integration of differential equations, simulation of the model, and further
the visualization of the simulation results (Klamt et al. 2006).

10.3.8 Systems Biology Workbench

The Systems Biology Workbench (SBW) is a software framework that allows het-
erogeneous application components, which are written in diverse programming
languages and running on different platforms, to communicate with each other.
SBW enables modeling, analysis, visualization, and general data manipulation to
communicate via a simple network protocol.

10.3.9 JDesigner

JDesigner is both a network design tool and simulator applied to draw a biochem-
ical network and export it in SBML format (Novikov and Barillot 2008). The
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software automatically derives the differential equations and solves them to generate
a solution. JDesigner was developed at the Keck Graduate Institute, California, in
collaboration with the California Institute of Technology.

10.3.10 CellDesigner

CellDesigner is a structured diagram editor for drawing gene-regulatory and bio-
chemical networks. Networks are drawn based on the process diagram, with a
graphical notation system proposed by Kitano et al. (2005). The network models are
stored using the Systems Biology Markup Language (SBML), a standard for rep-
resenting models of biochemical and gene-regulatory networks. Networks are able
to link with simulation and other analysis packages through the Systems Biology
Workbench (SBW).

10.3.11 PyBioS

PyBioS is an object-oriented tool for modeling and simulation of cellular processes.
This tool has been established for the modeling of biological processes using bio-
chemical pathways from databases like KEGG and Reactome. PyBioS (Wierling
et al. 2007, http://pybios.molgen.mpg.de) acts as a model repository and supports
the automatic generation of large models through interfaces to publicly available
pathway databases, such as Reactome and KEGG. This allows a rapid and auto-
mated access to reaction systems. An ODE system of a model may be generated
automatically based on pre- or user-defined kinetic laws and used for subsequent
simulation of time course series and further analyses of the dynamic behavior of the
system.

10.4 Computational Models for Cancer-Related Processes

10.4.1 BioModels Database

The BioModels Database (Le Novère et al. 2006) allows researchers to exchange
and share their computational models. This database provides a free, centralized,
publicly-accessible repository of annotated, computational models in SBML and
other structured formats, which are linked to relevant data resources, publications,
as well as databases of compounds and pathways.
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10.4.2 Specific Kinetic Models Relevant for Cancer

Protein circuits in living human cells are characterized by variability in their
behavior, both from cell to cell and in the same cell over time. To describe such vari-
ability, one can use kinetic models. Kinetic models of biochemical systems are often
described with a set of first-order nonlinear ordinary differential equations. These
systems have large numbers of unknown parameters, simplified dynamics, and un-
certain connectivity. These key features are shared with many high-dimensional
multiparameter nonlinear models. To investigate the dynamical characteristics of
those models, a set of different parameter values should be tested. Brown and
Sethna (2003) use a statistical method to study the behavior of these models to
extract as much useful predictive information as possible from a model, given the
available data used to constrain it. The authors present a unified methodology for
the construction, evaluation, and use of models with many unknown parameters.

Experimental measurements in living cells as well as theoretical models en-
able to understand the dynamics and variability of protein circuitry. For instance,
Geva-Zatorsky et al. (2006) measured the dynamics of fluorescently tagged p53 and
MDM2 in living cells and worked out a corresponding model that takes into account
the negative feedback loop between the tumor suppressor p53 and the oncogene
MDM2. The model is characterized by variability: low-frequency noise in protein
production rates, rather than noise in parameters regarding degradation rates.

Another pathway that is known to play a key role in the progression of multi-
ple human cancers is EGF signaling Jones et al. (2006). The model of Birtwistle
et al. (2007) provides a quantitative description of the activation of critical down-
stream proteins in the EGF pathway, the extracellular-signal-regulated kinase (ERK)
and AKT after stimulation of the EGF pathway by binding of the EGF receptor with
the different ligands [epidermal growth factor (EGF) or heregulin (HRG)]. Based
on model analysis and experimental validation, activation of the EGF pathway with
different ligands leads to a different signaling behavior. Thus, after the application
of an ERK cascade inhibitor U0126, HRG-induced ERK activity will be less influ-
enced in comparison to the EGF-induced ERK activity. Variation of EGF-induced
ERK activity was due to the regulation by PI3K

Schoeberl et al. (2002) present a computational model, based on components of
epidermal growth factor (EGF) receptor signal pathways. The model provides in-
sights into signal-response relationships between the binding of EGF to its receptor
at the cell surface and the activation of downstream proteins in the signaling cas-
cade. Based on this model, the initial velocity parameter of the receptor activation
was critical for the signal. The predictions of the model agree well with experimen-
tal analysis. Sasagawa et al. (2005) developed a model of ERK signaling networks
by constraining in silico dynamics based on in vivo dynamics in PC12 cells. The
authors predicted and validated that transient ERK activation depends on rapid in-
creases of epidermal growth factor and nerve growth factor (NGF) but not on their
final concentrations, whereas sustained ERK activation depends on the final con-
centration of NGF but not on the temporal rate of increase.
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The Wnt and the ERK pathways are both involved in the pathogenesis of various
kinds of cancers. Kim et al. (2007) showed that because of a positive feedback loop
embedded in a crosstalk between the Wnt and the ERK pathways, changes in pro-
teins based on gene mutations result in changes in pathways beyond the pathway
in which they directly act. Thus, crosstalk between signaling pathways can affect
properties of the system at a larger scale. Based on experimental reports and es-
tablished basic mathematical models of each pathway, the authors studied the role
of this hidden positive feedback loop between the Wnt and the ERK pathways and
showed that the positive feedback loop can generate bistability in both the Wnt
and the ERK signaling pathways. In particular, enhanced production of beta-catenin
and reduction of the velocity of MAP kinase phosphatase(s) followed by muta-
tions could evoke an irreversible response leading to a sustained activation of both
pathways. This enables that high activities of the Wnt and the ERK pathways are
maintained even without a persistent extracellular signal.

Investigation of dynamics and regulation of the TGF-beta signaling pathway are
central to the understanding of complex cellular processes such as growth, apopto-
sis, and differentiation. Zi and Klipp (2007) proposed a constraint-based modeling
method to construct a mathematical model for the SMAD-dependent TGF-beta
signaling pathway by fitting the experimental data and incorporating qualitative con-
straints from experimental analysis. This constraint-based modeling method can be
applied to quantitative modeling of other signaling pathways. The model agrees well
with the experimental analysis of the TGF-beta pathway, such as the time course of
nuclear phosphorylated SMAD, the subcellular location of SMAD, and the signal
response of SMAD phosphorylation to different doses of TGF-beta.

Yamada et al. (2003) have developed a computational model related to the
JAK/STAT signaling network. The authors investigated the role of the suppressor
of cytokine signaling-1 (SOCS1), which is considered as the negative regulator of
the Janus kinase (JAK) and signal transducer and activator of transcription (STAT)
signal transduction pathway. The model was simulated based on various values of
its parameters. Furthermore, the authors compared various initial concentrations and
parameter values and investigated the peak and steady state concentration of acti-
vated transcription factors (STAT1).

Another pathway that is assumed to be dysregulated in cancer is the programmed
cell death by apoptosis. Crucial for apoptosis is the activation of caspases. Caspases
(cysteine-aspartic acid proteases) are a family of cysteine proteases, which play es-
sential roles in apoptosis. The inhibitors of apoptosis (IAP) are a family of proteins,
which can inhibit caspases. Based on the model of Legewie et al. (2006), inhibition
of caspase-3 (Casp3) and caspase-9 (Casp9) by inhibitors of apoptosis (IAPs) results
in an implicit positive feedback that leads to bistability, as well as irreversibility in
caspase activation through Casp3-mediated feedback cleavage of Casp9. The feed-
back mechanism described by Legewie et al. provides insights on how cells achieve
ultrasensitivity, bistability, and irreversibility.
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10.5 Discussion

In this chapter we reviewed data resources and computational tools essential for
the modeling of cancer pathways, such as currently available pathway databases
and annotation and modeling tools. Furthermore, some existing kinetic models for
important pathways involved in tumor formation and progression have been high-
lighted. These pathways are often targeted by currently available cancer treatments
so that analysis of the dynamic features of these signaling pathways is crucial for
understanding the response to treatment-induced network perturbations. However,
these models are not able to explain these response mechanisms in a sufficient way.
The focus of a model study related to cancer development should be to investigate
the role of any factors and any parameters in the system by the simulation with var-
ious values. The modeling approach is important to focus on predicting differences
in the model, for example, due to inhibition or activation of key components in the
model. The study of gene regulation will have to be taken into account. In particular,
network models should be adapted to specific tumor types and states. An enormous
effect on the use of predictive modeling for cancer patients based on their molec-
ular signatures can be expected due to the rapid development of next-generation
sequencing techniques that parallelize the sequencing process and produce millions
of sequences at once. The modified model parameters, which represent the behavior
of mutated pathway components, should be compared with the control model and
their results can be verified in the lab.

Furthermore, fitting of several experimental datasets simultaneously is a power-
ful approach to estimate parameter values (Cho et al. 2003), to check the validity of
a given model, and to discriminate competing model hypotheses. It requires high-
performance integration of ordinary differential equations and robust optimization.

The integration of several isolated pathways into a larger framework, which also
captures crosstalk between pathways, might however be crucial for the prediction of
drug action. Having agglomerated information about drugs, their molecular targets
or set of targets, and the cellular interaction network (Schulze et al. 2005) they
function in, the next step is to translate the effects of the drug in the computer (Cho
et al. 2006; Jones et al. 2006).

Current anticancer drugs are designed to target specific pathway components
(Cummings et al. 2005; Holcomb et al. 2008). Nevertheless, side effects occur,
because of the drug effects in other pathways. In clinical testing, many inhibitors
fail due to unexpected toxicities caused by previously unknown targets, or because
the drug target itself is involved in multiple functional interactions that can be sen-
sitive to deregulation. In addition, clinical failure of targeted drugs is also caused
by the existence of unexpected feedback loops, compensatory upregulation of al-
ternative signaling pathways, or drug resistance mutations, all of which avoid the
effects of target inhibition and allow tumor cell survival and proliferation (Burchert
et al. 2005).

In particular, mutations in signaling proteins can contribute to cancerogenesis,
because of a sustained activation of pathways. Therefore, predictive models should
include relevant protein interactions in order to cope with the complexity of multiple
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targets and crosstalk between pathways. Such models could provide significant sup-
port for the development of novel targeted drugs (Strumberg 2005).

To identify models according to existing biological knowledge and experimental
measurements (Luo et al. 2005), the dynamic properties of the model have to be
investigated (Maraziotis et al. 2007). To generate new hypotheses about the reac-
tion networks or to postulate new system variables, it is important to analyze the
model, in close relation to the laboratory data (Jones et al. 2006). The necessary
functionalities range from real-time changing of parameter values and characteris-
tics of driving input functions to efficient refinement of the model structure itself.
Powerful fitting procedures are required to calibrate model parameters in the context
of several experimental datasets, under different experimental settings and with dif-
ferent sets of measured species. Model-data-compliance and model discrimination
should be quantified by statistical tests (Maiwald and Timmer 2008).

The robustness of sensitivity analysis to parameter perturbation at different lig-
and doses should also be taken into account. A modeling approach can lead to a
novel approach of personalized medicine by generating detailed predictions for the
therapy of complex diseases like cancer and could be integrated in routine diagnos-
tics in oncology.
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Chapter 11
Laser Speckle Imaging for Blood Flow Analysis

Thinh M. Le, J.S. Paul, and S.H. Ong

Abstract Laser speckle imaging (LSI) has increasingly become a viable tech-
nique for real-time medical imaging. However, the computational intricacies and the
viewing experience involved limit its usefulness for real-time monitors such as those
intended for neurosurgical applications. In this paper, we report a proposed tech-
nique, tLASCA, which processes statistics primarily in the temporal direction using
the laser speckle contrast analysis (LASCA) equation, proposed by Briers and Web-
ster. This technique is thoroughly compared with the existing techniques for signal
processing of laser speckle images, including the spatial-based sLASCA and the
temporal-based mLSI techniques. sLASCA is an improvement of the basic LASCA
technique in which the derived contrasts are further averaged over a predetermined
number of raw speckle images. mLSI, on the other hand, is the modified laser
speckle imaging (mLSI) technique in which temporal statistics are processed using
the technique developed by Ohtsubo and Asakura. tLASCA preserves the original
image resolution similar to mLSI. tLASCA performs better than sLASCA (window
size M D 5) with faster convergence of K values (5.32 vs. 20.56 s), shorter per-
frame processing time (0.34 vs. 2.51 s), and better subjective and objective quality
evaluations of contrast images. tLASCA also performs better than mLSI with faster
convergence ofK values (5.32 s) thanN values (10.44 s), shorter per-frame process-
ing time (0.34 vs. 0.91 s), smaller intensity fluctuations among frames (8–10% vs
15–35%), and better subjective and objective quality evaluations of contrast im-
ages. The computation of speckle contrast and flow rate has been updated with both
Lorentzian and Gaussian models. Using tLASCA, the minimally invasive and opti-
cally derived flow rates (370–490�L=min using Lorentzian and 464–614�L=min
using Gaussian model) are found to be in good agreement with the invasively mea-
sured flow rate (218–770�L=min) at similar-sized arteriole (270�m in diameter).
The LSI technique for real-time monitoring of blood flows and vascular perfusion,
with proper experimental setups and quantitative analyses, may lay new bricks for
research in diagnostic radiology and oncology.
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11.1 Introduction

Laser speckle imaging has increasingly become a viable technique for real-time
medical imaging (Briers 2001). Laser speckle is formed when laser light shines on
an object, and the speckle contrast values are estimated from the time-varying statis-
tics. By using speckle statistics, blood flow and perfusion can be reliably estimated
by processing only windows of pixels from successive raw speckle images (Briers
and Webster 1996).

Current conventional methods include laser-Doppler flowmetry (LDF), which
provides information about cerebral blood flow (CBF) but is limited by the num-
ber of isolated points in the brain (approximately 1mm3) (Dirnagl et al. 1989) and
does not show spatial evolution of CBF changes. Other methods, based on mag-
netic resonance imaging (MRI) (Calamante et al. 1999) and emission tomography
(ET) (Heiss et al. 1994), provide spatial maps of CBF, but once again are limited in
their spatiotemporal resolution. The drawback of the aforementioned methods is the
need to mechanically scan the probe or beam over the test area. A simple method
that is able to provide real-time spatially resolved CBF images would thus aid in the
experimental studies of functional cerebral activation and cerebral pathology.

Single-exposure speckle photography was first mentioned in Fercher and
Briers (1981) where the laser-illuminated area in study was photographed, and
the exposure time was set long enough to allow the faster fluctuating speckles
(generated by moving particles) to be averaged out. The technique was then pro-
posed for retinal blood flow in Briers and Fercher (1982). The technique was based
on a two-stage process where film had to be developed and the image analyzed
subsequently. Fully digital techniques were reported in Webster and Briers (1994),
Webster (1995), and Briers and Webster (1995). A change in technique to reflect
the nonanalog nature was called laser speckle contrast analysis (LASCA). LASCA
is a means of providing full-field and real-time measurement of blood flow us-
ing first-order statistics of the time-integrated speckle as suggested by Briers and
Webster (1996). A 2-D array CCD camera with focusing optics was used to detect
the speckle pattern formed by light reflected from tissue illuminated by a divergent
laser beam. Analyses of the speckle pattern contrast may provide information about
the average velocity of red blood cells. The speckle imaging technique has been
used as a minimally invasive method of imaging transport in biological tissues such
as the retina (Aizu et al. 1992), skin (Ruth 1994), capillary blood flow in a human
hand (Briers and Webster 1995, 1996), as well as CBF in rats (Dunn et al. 2001).

In LASCA (Briers and Webster 1996), an MxM pixel window is used. The
smaller the value ofM , the lower the statistical validity, while a larger the valueM
lowers the resulting effective (or perceived) resolutions. The main disadvantage of
LASCA is the loss of effective resolution caused by the downsampling of a window
of pixels to obtain the spatial statistics required in the analysis. For applications in
which analysis of smaller areas such as blood vessels is required, spatial resolution
should not be compromised.

In this chapter, we report a new technique, tLASCA that processes statistics pri-
marily in the temporal direction using the LASCA equation, proposed by Briers
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and Webster (1996). This technique is thoroughly compared with existing tech-
niques for signal processing of laser speckle images, including the spatial-based
sLASCA and the temporal-based mLSI techniques. sLASCA (Dunn et al. 2001) is
an improvement of the basic LASCA technique. In sLASCA, the derived contrasts
are further averaged over a predetermined number of raw speckle images. mLSI
(Cheng et al. 2003), on the other hand, is the modified laser speckle imaging (mLSI)
technique in which temporal statistics are processed using technique developed by
Ohtsubo and Asakura (1976).

The rest of this chapter is organized as follows. The experimental techniques and
setup are discussed in Sect. 11.2. In Sect. 11.3, the results are presented, followed
by a discussion of the results obtained. The chapter ends with conclusions and ob-
servations in Sect. 11.4.

11.2 Experimental Techniques and Setup

11.2.1 Experimental Setup

Male Sprague–Dawley rats (250–300 g) were used for the imaging. Animal care and
experimental procedures were carried out in accordance with University guidelines
laid out adhering to the Basic Principles of the International Guiding Principles
for Biomedical Research Involving Animals (1985). The animals were anaesthetized
with urethane (1.25 mg/kg) and mounted onto a stereotaxic frame (Stoelting). A burr
hole of diameter 6 mm was drilled into the skull and thinned to the dura mater.
The site of the imaging hole was made 2 mm anterior to Bregma and 3 mm lateral
to the midline. Saline was used to lower the temperature during surgery and to keep
the exposed surfaces moist until imaging was commenced.

Figure 11.1 shows the experimental setup of the speckle imaging components.
A laser diode (Sanyo, 782.6 nm) was used to irradiate the imaging site. The laser op-
eration was controlled with a shutter (UniBlitz) of frequency 10 Hz. A monochrome
12-bit charge-coupled device (CCD) Coolsnap camera (Roper Scientific), with
1,040 lines by 1,392 columns corresponding to 1;040 � 1;392 pixels resolution,
was positioned over the imaging site.

Each pixel is of size 4:65 �m � 4:65 �m. 2� 2 hardware binning was performed
by the camera, and a frame of 520 � 696 CCD readouts was output to the PC for
software processing. Therefore, the true image is of size 4:8mm � 6:5mm. We note
here that the values commonly used for laser speckle statistical analysis are in fact
the CCD readouts, but most literature refer to them as pixels, possibly under the
assumption that the camera binning factor is set at 1 � 1. The distinction between
pixels and readouts only matters when the real size of the vessel is to be consid-
ered. We use the term pixels in all our formulae to be consistent with the literature,
and use readouts when calculating the real size of the vessels. Speckle image pro-
cessing was then performed on an Intel 1.7-GHz processor with 1-GB RAM using
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Fig. 11.1 Experimental setup of speckle imaging of cerebral blood flow under no external
stimulation

MATLAB software. The exposure time of the CCD was adjusted to be 10 ms, and
the images were acquired over a period of 6 s under baseline conditions (with no
external stimulation). A total of 60 images were acquired in the process.

11.2.2 Laser Speckle Imaging

Laser speckle is a random interference pattern produced by the coherent addition of
scattered laser light with slightly different path lengths. This random interference
pattern can be captured on camera when an area is illuminated by a laser beam. The
resultant image of 520� 696CCD readouts is a grainy speckle pattern. No apparent
useful information can be obtained, and hence statistical image processing must be
performed to obtain the speckle contrast.

When an object moves, the speckle pattern it produces changes. For short
movements of a solid object, the speckles move with the object and they remain
correlated. For longer movements, they decorrelate and the speckle pattern changes
completely (Briers and Webster 1996). Decorrelation also occurs when the light is
scattered from a large number of individual moving scatterers, such as particles in
a fluid.

If the light scattering particles are in motion, a time-varying laser speckle is pro-
duced at each pixel on the captured image. Assuming ideal conditions for producing
the speckle pattern – a single-frequency laser and a perfectly diffusing surface with a
Gaussian distribution of surface height – it can be shown that the standard deviation
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of the intensity variations is equal to the mean intensity (Briers and Webster 1996).
Hence quantitative blood flow information can be obtained by the spatial intensity
variations of the speckle contrast varying from 0 to 1. A speckle contrast of 1 indi-
cates no blurring and thus no motion, whereas a speckle contrast of 0 means that the
light scattering particles are moving fast enough to average out all the speckles.

In the following sections, background mathematical derivations are reviewed for
completeness, and the applications of them in various image processing techniques
are discussed in Sects. 11.2.3–11.2.6.

11.2.2.1 Effect of 2 � 2 or n � n Hardware Binning on the Camera

As suggested by Dunn et al. (2001), the speckle size should be set equal to the pixel
size. If the resolution of the camera is 1,040 lines by 1,392 columns and there is no
binning (binning D 1), the capture image may experience aliasing. To avoid, while
not being able to eliminate completely, aliasing, 2� 2 (or higher) hardware binning
can be applied, so that each CCD readout is a spatial average of the values of its
constituting pixel sensors, as indicated in here (Jain 1989):

v .m; n/ D 1

NW

X
k2W

X
l2W

y .m � k; n � l/ ; (11.1)

where v.m; n/ and y.m; n/ are pixels of the output and input images, respectively,
a .k; l/ is 1=NW, and NW is the number of pixels in the window W.

11.2.2.2 Speckle Contrast, K

The speckle contrast for a center pixel is computed using the speckle intensity
distribution obtained from an M x M window of surrounding pixels (Briers and
Webster 1996):

K D ıs= hI i ; (11.2)

whereK , ıs, and hI i, are the speckle contrast, the spatial standard deviation, and the
spatial mean intensity of a window of pixels, respectively. As a result, the effective
resolution of the contrast image will be reduced by a factor ofM in each dimension
of the original image. It has been reported that a 5� 5 or 7� 7 pixel window is used
to generate the spatial statistics. In this chapter, we examine the use of 3 � 3, 5 � 5,
7 � 7, and 9 � 9 pixels window to see how valid their statistics are, and how well
their resulting speckle contrast is viewed.

11.2.2.3 Decorrelation Time, �c

Assuming that the scattering particles (in this case red blood cells) are of uniform
size and have Newtonian flow, the speckle contrast K of a time-integrated speckle
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over the CCD exposure time T is examined using the model reported by Fercher
and Briers (1981):

K D f.�c=2T / Œ1 � exp .�2T=�c/�g1=2 (11.3a)

The homogeneous Lorentzian (Weisstein 2008) profile is given by:

K D
n �c

2T

h
2 � �c

T

�
1 � e�2T =
c

�io1=2

(11.3b)

and the inhomogeneous Gaussian (Jakeman and Ridley 2006) profile by:
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; (11.3c)

where �c is the decorrelation time of the intensity fluctuations. Although pointed
out in Duncan and Kirkpatrick (2008) that (11.3a) is an incorrect formula for K ,
we keep it so that quantitative comparison with other models, especially when used
with in vivo data, can be made. The exposure time T is an important factor in image
capturing because if it is set too long, the speckles would average out, yielding a
low contrast image. Conversely, if the exposure time is set to be sufficiently short, a
high contrast image can be produced. In this experiment, the CCD exposure time T
was set to 10 ms.

11.2.2.4 Mean Flow Velocity, �c

The relationship between �c and mean flow velocity, �c given by Briers and
Webster (1996) is as follows:

�c D �=2��c; (11.4)

where � is the wavelength of the laser light used. We note that this relationship is
seen as speculative and gives no first principles argument as to its veracity (Duncan
and Kirkpatrick 2008). However, like many other researchers (Dunn et al. 2001), we
use it to gauge the possible velocity range measured using laser speckle imaging,
and compare it against the values invasively measured using the technique reported
in Mesenteric Arterial Branches Measurement in the R (http://www.transonic.com).

As the �=2� term is constant, the mean velocity is directly proportional to
1=�c. Since the wavelength used is 782.6 nm and � is known, we now have
�c D 0:12=�c �m=s. A more complicated approximation given by Bonner and
Nossal (1981) that takes particle size into consideration calculates velocity as
�c D 3:5=�c �m=s. From the statistically obtained value K in (11.2) and the re-
lationship in (11.3a–11.3c), 1=�c can be derived and used to estimate the scatterers’
velocity �c in the applications of LASCA.
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We note that, K is proportional to log .�c=T /, while velocity �c is proportional
to 1=�c. Therefore, K , via �c, possesses a “log-inverse” relationship to scatterers’
velocity �c.

11.2.2.5 Parameter, N

Cheng et al. (2003) proposed a technique in which the first-order temporal statistics
of a time-integrated speckle pattern can be used to obtain velocity information as
a 2-D derivation from the technique developed by Ohtsubo and Asakura (1976).
The mathematical equation for obtaining parameter N uses the mean intensity and
mean-square intensity of a group of pixels over n temporal frames. In particular,
each pixel .i; j/ of a particular frame can be computed by:

NmLSI.i;j / D
hD
I 2

i;j;t

E
n

� ˝
Ii;j;t

˛2
n

i
˝
Ii;j;t

˛2
n

; (11.5)

where Ii;j;t and I 2
i;j;t are the instantaneous intensity and instantaneous square inten-

sity of the (i th, j th) pixel at the t th frame of the raw speckle image, respectively.˝
Ii;j;t

˛
n

and
D
I 2

i;j;t

E
n

are the mean intensity and mean-square intensity of the (i th,

j th) pixel over n consecutive frames, respectively.NmLSI.i;j / is said to be inversely
proportional to the velocity of the scattering particles. A porcelain plane connected
to a stepper motor moving at a controlled speed of 0.018–2.3 mm/s was used to
model the moving particles and used as a reference for velocity derivation based on
the 1=NmLSI value.

In the following paragraphs, two reported K-value speckle image processing
techniques are described in Sects. 11.2.3 and 11.2.4. A temporal-based K-value
technique is reported in Sect. 11.2.5. The N -value image processing technique is
discussed in Sect. 11.2.6. The performances and processing times associated with
the techniques are studied and analyzed in Sect. 11.3.

11.2.3 Laser Speckle Contrast Analysis

In the LASCA technique (Briers and Webster 1996), the speckle contrast K for a
center pixel is computed using the intensity distribution obtained from an M �M
window of surrounding pixel values using (11.1). The speckle image of size 520
rows by 696 columns is used to generate the contrast image of size .520/� .696/.

The algorithm works as follows. Each pixel in the contrast image is obtained by
replacing the center pixel in the surroundingM �M window of the speckle image
with itsKLASCA contrast value computed by (11.2). The block is then moved by one
pixel and the process is repeated. The resulting contrast image has values ranging
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from 0.0 to 1.0. It is then contrast-stretched and converted to a color-mapped image
for display. Note here that the computedK values are used for statistical and velocity
analyses, whereas the contrast-stretched and color-mapped values are for viewing.
Even though the display resolution of the contrast image maintains at 520�696, the
effective (or perceived) resolution has been reduced to .520=M/� .696=M/.

11.2.4 Spatially Derived Contrast Using Temporal Frame
Averaging

Spatially derived contrast using temporal frame averaging (sLASCA) (Dunn
et al. 2001) is an improvement of the basic LASCA technique in which the derived
contrasts are further averaged over a predetermined number of raw speckle images.
Using sLASCA, the display resolution remains at 520 � 696, while the effective
resolution is .520=M/ � .696=M/. The averaging operation should make viewing
the resulting image more pleasant.

The algorithm works as follows. For each frame, a sliding M � M window is
used to compute and generate a temporary frame of contrast values using (11.1).
After the K values of all the frames are computed, they are averaged according to
a preset number of frames n. If Ki;j;1, Ki;j;2; : : :, and Ki;j;n denote the respective
consecutive contrast values at pixel (i; j) in frames 1, 2, : : :, n, the contrastKsLASCA

is given by:

KsLASCA .i; j / D Ki;j;1 CKi;j;2 C :::CKi;j;n

n
: (11.6)

After the computation of KsLASCA values, the resulting image is contrast-stretched
and converted to a color-mapped image for display. It is noted that the number of
pixels involved using an M �M sliding window and averaging over n frames is
(M )(M )(n/2), where n is the number of temporal frames.

11.2.5 Temporally Derived Contrast

In this section, we discuss the first-order temporal statistics of time-integrated
speckle pattern called temporally derived contrast (tLASCA). tLASCA works on
the statistics along n frames in the temporal dimension. Therefore, it is able to main-
tain both display and effective resolutions of an image. Also, as long as the number
of temporal statistics is adequate, the spatial window size M does not affect the
validity of the contrast values.

The algorithm works as follows. For each frame, the contrast value KsLASCA of
pixel (i; j) of a particular frame is computed by:

KtLASCA.i;j / D 1

9

rDiC1X
rDi�1

cDj C1X
cDj �1

ıi;j;t˝
Ii;j;t

˛ ; (11.7)
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where ıi;j;t is the standard deviation of all pixels at (i; j) in n frames along the
temporal dimension, and

˝
Ii;j;t

˛
is the mean intensity of all pixels at (i; j) in n frames

along the temporal dimension, andKsLASCA is calculated as an average over a 3� 3
spatial observation window. It is noted that the number of pixels involved in a 3� 3
pixel observation window using tLASCA is (3)(3)(n/2), where n is the number of
temporal frames. This small window of observation ensures good statistics while not
including statistics of slower moving or nonmoving particles. After the computation
of KsLASCA values, the resulting image is contrast-stretched and converted to color-
mapped image for display.

11.2.6 Modified Laser Speckle Imaging

Cheng et al. (2003) proposed a technique in which N values are calculated by
sampling one point in each frame and collecting the points along the temporal di-
mension. Recall from Sect. 11.2.2.4 that NmLSI.i;j / is inversely proportional to the
velocity of the scattering particles.

The algorithm works as follows. For each frame, the contrast value of each pixel
NmLSI.i;j / of a particular frame is computed by (11.5). It is not mentioned in Cheng
et al. (2003) whether an observation window was used to collect the value NmLSI.
However, for completeness, an observation window of 3 � 3 pixels is assumed in
this chapter. After the computation of NmLSI values, the resulting image is contrast-
stretched and converted to color-mapped image for display. Again, theNmLSI values
are used for statistical and velocity analyses, whereas the contrast-stretched and
color-mapped values are for viewing.

11.3 Results and Discussion

In this section, we examine the performances of four image processing techniques –
LASCA, sLASCA, tLASCA, and mLSI – in terms of K or N , subjective and ob-
jective visual qualities, and processing times. The flow rate at specific sites are also
estimated according to the Lorentzian and Gaussian models. The images were ac-
quired under baseline conditions with no external stimulations applied to the test
animal. Under such conditions, we to observe a normal velocity of blood flow re-
sulting in reasonably fluctuating values of K or N . Blood flow and pressure are
unsteady. The cyclic nature of the heart pump creates pulsatile conditions in all ar-
teries. The heart ejects and fills with blood in alternating cycles called systole and
diastole. Blood is pumped out of the heart during systole. The heart rests during
diastole, and no blood is ejected. In this case, our intention was not to estimate the
instantaneous flow, but the average flow rate over a group of frames. The rat cortex
image taken under white light illumination is shown in Fig. 11.2. Two windows of
observation, L and S, were selected.
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Fig. 11.2 Image of rat cortex illuminated with white light. Two regions of interest overlying a
large arteriole (L) and a smaller arteriole (S) are selected for computing speckle contrasts and
blood flow rates if possible. A point of reference (R) is also shown

A small window L was placed at the center of the large arteriole. L was selected
directly below reference R (center of Y-shaped vessel over the largest vessel). Point
R was selected so that a common reference can be identified among many white
light and speckle images. A small window S was placed at the center of the smaller
arteriole, to the right of L. Under white light illumination, although it was possi-
ble to view the blood vessels clearly, no quantitative data regarding flows could
be obtained. The diameters of the cross sections of the large and small arterioles
were approximately 279�m (30 CCD readouts � 2 � 4:65) and 186�m (20 CCD
readouts � 2� 4:65), respectively. The factor 2 comes from the fact that 2� 2 hard-
ware binning was performed at the CCD image sensor.

Since the sizes of the large and small blood vessels are different, data collection
windows L and S should be of variable sizes to ensure correct statistics for the
derivations of K or N values. Note that there are two different window concepts
used in this paper. An averaging window ofM �M pixels is used for downsampling
image using LASCA and sLASCA techniques. On the other hand, an observation
window ofO�O is used for statistics collection at L and S using tLASCA and mLSI
techniques. In the following sections, the effects of window size M on KLASCA and
the number of frames n on KsLASCA, KtLASCA, and NmLSI are studied.

11.3.1 Effects of Window Size M on KLASCA

We first studied the effect of window sizeM on the contrast valueK using LASCA,
denoted as KLASCA. To obtain the contrast image using LASCA, a window of size
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Fig. 11.3 Contrast values .K/ at L and S calculated using LASCA with windows M D 3, 5, 7,
and 9. The KLASCA(L,S) at M D 3 exceed the 1 standard deviation (SD) error range as shown by
the lower-half error bars. The KLASCA(L,S) at M D 5, 7, and 9 lie within the 1-SD error range

M was used to generate KLASCA. The correspondingKLASCA values were obtained
at both L and S. Figure 11.3 plots theKLASCA values at L and S using window sizes
M D 3, 5, 7, and 9.

In Fig. 11.3, the solid line connecting the squares represents KLASCA obtained
at L, denoted by KLASCA(L), while the dotted line connecting the triangles repre-
sent KLASCA obtained at S, denoted by KLASCA(S). KLASCA(L or S) is the average
KLASCA value carefully obtained by placing over the center of the vessel in the study
an observation window whose size depends on the size of this vessel. For small ves-
sels careful selection of observation window size must be observed.

As window size M increases, it is likely that more pixel values corresponding
to the slower or non-moving scatterers are included in the computation of KLASCA.
Therefore, KLASCA tends to increase as M increases. KLASCA(L) is within 25% of
each other, whileKLASCA(S) is within 65% of each other (bars not shown). As selec-
tion or rejection criterion, we use one standard deviation error (SD) as the threshold
to select the K values. When a K value exceeds 1-SD, we reject this value.

From Fig. 11.3, KLASCA(L,S) at M D 3 exceeds one SD error range as shown
by the lower error bars. KLASCA(L,S) at M D 5, 7, and 9 lie within one SD error
range (not shown), and therefore are selected. Also, KLASCA(L) values at M D 5,
7, and 9 are closer together and compare to those at KLASCA(S). Note, however, that
when M D 9, there is greater loss of effective resolution than at M D 3, 5, and 7.
As a result, the smaller vessels disappear from the image. We will demonstrate this
in Sect. D.1.M D 9 will not be discussed further. In the next section, we investigate
the effects of n, the number of frames for temporal averaging, on KsLASCA.
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11.3.2 Effects of n on KsLASCA

From Sect. 11.3.1, we reject the window size M D 3 due to its larger error in K
value. We also reject window size M D 9 due to the loss in effective resolution.
In the sLASCA technique, due to the nature of temporal frame averaging, more
temporal statistics are involved in the computation of KsLASCA; we keep M D 3,
and use its contrast values to compare with other techniques.

Fig. 11.4a, b shows the plots of contrast value K at L and S computed using
sLASCA technique, denoted by KsLASCA, with window size M D 3, 5, and 7, and
averaged over n D 2–30 frames. The valueK(LM) represents theKsLASCA(L) using
window size M , while K(SM) representsKsLASCA(S) using window size M .

In Fig. 11.4a, the values of K(L) using M D 3, 5, and 7 are within 8% of their
respective values after n D 4, and their average values areKsLASCA .L3/ D 0:0434,
KsLASCA .L5/ D 0:0530, andKsLASCA .L7/ D 0:0579. If 1-SD error bars are placed
along the three averageK values (plot not shown), the value atM D 3 slightly falls
out of range, while those atM D 5, 7 are within. The correlation of [K(L3),K(L5)]
is 0.99, of [K(L5),K(L7)] is 0.95, and of [K(L3),K(L7)] is 0.89.

In Fig. 11.4b, the values of K(S) using M D 3, 5, and 7 are within 8% of their
respective values after n D 10, and their average values areKsLASCA .L3/ D 0:0590,
KsLASCA .L5/ D 0:0734, andKsLASCA .L7/ D 0:0808. If 1-SD error bars are placed
along the three averageK values (plot not shown), the value atM D 3 slightly falls
out of range, while those atM D 5, 7 are within. The correlation of [K(S3),K(S5)]
and [K(S5),K(S7)] is 0.99, while the correlation of [K(S3),K(S7)] is 0.96.

By using the 1-SD error range, it can be shown that M D 3 could be used for
sLASCA, but its validity is not guaranteed. On the other hand, the correlation values
show that window sizeM D 5 is the best selection for computingK at both L and S.

11.3.3 Effects of n on KtLASCA and NmLSI

Figure 11.5 shows plots ofKtLASCA andNmLSI with the number of frames n D 2–30.
KtLASCA at L, denoted by KtLASCA(L), is within 10% of each other after n D 10,

while KtLASCA at S, denoted byKsLASCA(S), is within 8% after n D 16.KtLASCA(L)
is averaged (from frames 10–30) at 0.0564, while KtLASCA(S) is averaged (from
frames 16–30) at 0.0766.

Also in Fig. 11.5, NmLSI at L, denoted by NmLSI(L), is within 25% of each other
after n D 10, while NmLSI at S, denoted by NmLSI(S), is within 15% after n D 16.
NmLSI(L) is averaged (from frames 10–30) at 0.00307, while NmLSI(S) is averaged
(from frames 16–30) at 0.00573. We note that the range of NmLSI values is from
3:0 � 10�3 to 6:0 � 10�3, which is reasonable and in agreement with the numbers
reported by Cheng et al. (2003).

The correlation of KtLASCA(L) and NmLSI(L) is very high at 0.96, while the cor-
relation of KtLASCA(S) and NmLSI(S) is moderately high at 0.89. The range of N
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Fig. 11.4 (a) Contrast values .K/ at L calculated using sliding windows and temporal frame av-
eraging (sLASCA) over n frames. Window size .M/ D 3, 5, and 7. KsLASCA .L3/ 	 0:0434,
KsLASCA .L5/ 	 0:0530, and KsLASCA .L7/ 	 0:0579. KsLASCA values are within 8% after n D 4.
Correlation [KsLASCA .L3/, KsLASCA .L5/]D 0:99; correlation [KsLASCA .L5/, KsLASCA .L7/]D
0:95; correlation [KsLASCA .L3/,KsLASCA .L7/]D 0:89. (b) Contrast values (K) at S calculated us-
ing sliding windows and temporal frame averaging (sLASCA) over n frames. Window size .M/ D
3, 5, and 7. KsLASCA .S3/ 	 0:0590, KsLASCA .S5/ 	 0:0734, and KsLASCA .S7/ 	 0:0808.
KsLASCA values are within 8% after n D 10. Correlation [KsLASCA .S3/,KsLASCA .S5/]D 0:99; cor-
relation [KsLASCA .S5/, KsLASCA .S7/]D 0:99; correlation [KsLASCA .S3/, KsLASCA .S7/]D 0:96

values is small, and therefore the N values are subject to larger differences (25%).
On the other hand, the range of K values is large, and therefore the K values are
subject to smaller differences (10%).

Based on the knowledge that (a) 1=NmLSI is proportional to the velocity of blood
cells (Ohtsubo and Asakura 1976), (b) KtLASCA possesses a “log-inverse” relation-
ship to the estimated velocity of blood cells (11.2)–(11.4), and (c) the correlations
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Fig. 11.5 Contrast values .K/ – plotted on the left axis – calculated using temporally derived
contrast (tLASCA) over n frames. KtLASCA .L/ 	 0:0564 (within 10% of each other after n D 10),
KtLASCA .S/ 	 0:0766 (within 8% of each other after n D 16). Values .N / – plotted on the right
axis – calculated using mLSI over n frames. NmLSI .L/ 	 0:00307 (within 25% of each other after
n D 10),NmLSI .S/ 	 0:00573 (within 15% of each other after n D 16). Correlation [KtLASCA .L/,
NmLSI .L/]D 0:96, Correlation [KtLASCA .S/, NmLSI .S/]D 0:89

ofKtLASCA andNmLSI are reasonably high at L and S, we conclude that the tLASCA
technique can be used to derive contrast values and velocity of blood cells.

We have used LASCA, sLASCA, tLASCA, and mLSI techniques to derive K
and N values, which can further be used to estimate velocity in the blood vessel.
The K.L) values range from 0.0432 to 0.0579 for M D 3, 5, and 7, while K(S)
values from 0.0590 to 0.0808 also for M D 3, 5, and 7. The N (L) values are av-
eraged at 0.00307, while N (S) values are averaged at 0.00573. LASCA reduces
effective resolution and achieves stable statistics when M D 5 or 7. sLASCA im-
proves effective resolution by frame averaging and achieves stable statistics when
M D 5 or 7.

11.3.4 Comparisons of KLASCA, KsLASCA, and KtLASCA

In Fig. 11.6a, we plot all the contrast values K corresponding to LASCA using
M D 3, 5, and 7 (set of points 1–2–3); sLASCA usingM D 3, 5, and 7 (set of points
4–5–6); and tLASCA (set of points 7).

When using 1-SD as selection criterion, it is found that the K values are most
probable when calculated using LASCA (M D 5, 7), sLASCA (M D 5, 7), and
tLASCA. Therefore, the following conclusions can be made. When using LASCA,
the window size M D 5 or at most 7 can be used, and this confirms the conclusion
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Fig. 11.6 (a) Contrast values .K/ calculated using three techniques: LASCA (set of points 1–2–3),
sLASCA (set of points 4–5–6), and tLASCA (set of points 7). When using 1-SD as selection cri-
terion, it is found that the K values are most probable when computed using LASCA (M D 5, 7),
sLASCA (M D 5, 7), and tLASCA. (b) The respective flow rates using Fercher and Briers’,
Lorentzian, and Gaussian models. Because of unstable data acquisition, the first two values are
excluded in the computation of flow rates

made in Briers and Webster (1996). However, the results using M D 5 are more
probable than M D 7. When using sLASCA, the window size M D 5 or 7 can
be used, and this confirms the conclusion made in Dunn et al.( 2001). Under both
LASCA and sLASCA, K is not sufficiently probable when M D 3. It takes fewer
frames (n D 4) to obtain stable statistics for large vessels than for smaller vessels
(n D 10).

When using tLASCA, the values always fall within 1-SD, and thus tLASCA
guarantees the valueK regardless of the size of the averaging windowM as long as
more than 10 and 16 frames are used for computations at L and S, respectively. It is
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noted that the number of pixels involved in aO�O pixel observation window using
tLASCA is .O/� .O/� .n=2/ where n is the number of temporal frames involved.
This small window of observation ensures good statistics while not including statis-
tics of slower moving or non-moving scatterers.

Using the 1-SD error as the selection criterion, we have reduced the range of
K(L) values to 0.0521–0.0600 and K(S) values from 0.0738 to 0.0835. Recall that
the diameters of the cross sections of the large and small arterioles are approximately
279 and 186�m, respectively. The respective flow rates at point L using Fercher and
Briers’, Lorentzian, and Gaussian models are shown in Fig. 11.6b:

� The flow rates at L are 185–245�L=min, with a median of 215�L=min using
Fercher and Briers’ derivation; 370–490�L=min, with a median of 430�L=min
using Lorentzian model; and 464–614�L=min, with a median of 539�L=min
using Gaussian model.

� The flow rates at S are 43–54�L=min, with a median of 48�L=min using
Fercher and Briers’ derivation; 85–109�L=min, with a median of 96�L=min
using Lorentzian model; and 106–136�L=min, with a median of 120�L=min
using Gaussian model.

The flow rate at L, using both Lorentzian and Gaussian models, is in good agreement
with the flow rate of 218–770�L=min invasively measured at a 270-�m-diameter
mesenteric arterial branch (Mesenteric Arterial Branches Measurement in the Rat).
Using tLASCA accurate flow rates can also be obtained with a minimally invasive
technique.

Until this point, the statistically derived contrast value K has been kept un-
changed so that the velocities of blood cells can be derived. For better viewing,
the image needs to be contrast-stretched and possibly color-mapped.

11.3.5 Evaluations on Visual Qualities

11.3.5.1 Subjective Quality

In this section, the contrast images obtained using the techniques LASCA, sLASCA,
mLSI, and tLASCA will be viewed and compared. The purpose is to subjectively
evaluate the quality of the resulting contrast images. In Fig. 11.7a–d gray images
are contrast-stretched to [0, 1] to enhance viewing. The gray and color bars in
Fig. 11.7a–h are scaled from 0.0 to 1.0 in increments of 0.1.

In Fig. 11.7, the contrast images resulting from LASCA are small and very
grainy. The blood vessels are not connected as lines, but rather as sprays of dots.
Among the images, it can be seen that the blood vessels are more visible using
LASCA with window sizes M D 3 or 5. The vessels in the gray images 11.7a, b
could be better perceived by the eyes than their color-mapped counterparts 11.7e, f.
However, the color-mapped images 11.7e, f provide more information about the re-
gions of relatively faster or slower moving or nonmoving blood cells. It is noted,
however, that the point of reference R, L, and S cannot be clearly recognized.
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Fig. 11.7 (a–d) Gray-scale LASCA images using window sizesM D 3, 5, 7, and 9; (e–h) the cor-
responding color-mapped LASCA images. The larger the window size, the blockier the resulting
contrast image. Using LASCA, the whole perfusion area (upper left corner) and the larger vessels
are seen, but small vessels, especially at S, are too blurred and disconnected to be seen properly
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Table 11.1 Subjective quality evaluations of Fig. 7a–h obtained using LASCA by 30 volunteers

Subjective
quality

a (bw,
M D 3)

b (bw,
M D 5)

c (bw,
M D 7)

d (bw,
M D 9)

e (cl,
M D 3)

f (cl,
M D 5)

g (cl,
M D 7)

h (cl,
M D 9)

5 6.67% 3.33% 0.00% 0.00% 3.33% 3.33% 6.67% 3.33%
4 36.67% 16.67% 3.33% 3.33% 33.33% 30.00% 16.67% 16.67%
3 46.67% 36.67% 16.67% 3.33% 36.67% 36.67% 23.33% 13.33%
2 6.67% 43.33% 53.33% 6.67% 16.67% 20.00% 40.00% 26.67%
1 3.33% 0.00% 26.67% 86.67% 10.00% 10.00% 13.33% 40.00%
Weighted 3.37 2.80 1.97 1.23 3.03 2.97 2.63 2.17

Thirty volunteers were asked to subjectively evaluate the qualities of Fig. 11.7a–h
and the results are listed in Table 11.1. All numbers are converted into percentages.
The black and white figure is denoted by “bw,” while color is denoted by “cl.” The
quality level-5 corresponds to the sharpest and most informative image, while qual-
ity level-1 the dullest and least informative one. The numbers in the bottom row are
the weighted averages of the subjective qualities of the respective images.

The data in Table 11.1 show that color images are generally perceived as sharper
and more informative. Specifically, Fig. 11.7a, b, e–f were graded above 2.8. The
reason is that averaging window size M D 3 or 5 retains more information and
provides better effective resolution compared to M D 7 or 9. Figure 11.7c, d were
graded at level 1, while Fig. 11.7g, h were graded between levels 2 and 1. Using
LASCA with window M D 7 or 9, the effective resolution of images and the asso-
ciated traces of the vessels have been reduced or lost as expected.

In Fig. 11.8, all gray images are contrast-stretched by [0, 1]. The contrast im-
ages are obtained using sLASCA with M D 3, 5, and 7, and mLSI and tLASCA.
The images shown are obtained by averaging over 4 or 10 frames (left column),
and 10 or 16 frames (right column). In general, using fewer frames .n/ results in
more focused overall images, while using more frames results in more blurred and
connected vessels.

Thirty volunteers were asked to evaluate the subjective qualities of Fig. 11.8a–
j and the results are listed in Table 11.2. All numbers are converted to percentages.
The sizes of the windows and the number of frames averaged are also listed. Quality
level 5 corresponds to the sharpest image, and quality level 1 to the dullest one. The
numbers in the bottom row are the weighted averages of the subjective qualities of
the respective images.

In Table 11.2, Fig. 11.8a, b, i, j was graded above level 3, while Fig. 11.8c, d, g,
h was graded above level 2. Figure 11.8e, f was graded below level 2, which is the
least sharp. It can be concluded that, for gray-scale images, sLASCA .M D 3/ and
tLASCA (n D 10 or 16), followed by mLSI (n D 10, or 16) and sLASCA .M D 5/

techniques, produce the best viewing experiences.
In Fig. 11.9, all color-mapped images are contrast-stretched by [0, 1] prior to

color mapping. The color maps of the contrast images provide more details about
the relative velocities of different regions. sLASCA (M D 3, n D 4 or 10), mLSI
(n D 10 or 16), and tLASCA (n D 10 or 16) provide clearer definitions of the
blood flows.
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Fig. 11.8 (a, b) sLASCA (M D 3, n D 4, 10); (c, d) sLASCA (M D 5, n D 4, 10); (e, f)
sLASCA (M D 7, n D 4, 10); (g, h) mLSI (n D 10, 16); (i, j) tLASCA (n D 10, 16). All gray-
scale images have been contrast-stretched by [0, 1]. In general, using smaller number of frames
results in more focused overall images, and using larger number of frames results in more blurred
and connected vessels
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Fig. 11.9 (a, b) sLASCA (M D 3, n D 4, 10); (c, d) sLASCA (M D 5, n D 4, 10); (e, f)
sLASCA (M D 7, n D 4, 10); (g, h) mLSI (n D 10, 16); (i, j) tLASCA (n D 10, 16). All
color-mapped images had been contrast-stretched by [0, 1] prior to color mapping. Color-mapped
images provide relative velocity of blood flows: dark blue representing fast movement of blood
cells, whereas dark yellow or red no movement
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Thirty volunteers were asked to evaluate the subjective qualities of Fig. 11.9a–j
and the results are listed in Table 11.3. The sizes of the windows and the number of
frames averaged are also listed. Quality level 5 corresponds to the sharpest image.
The numbers in the bottom row are the weighted averages of the subjective qualities
of the respective images.

Data from Table 11.3 show that color-mapped images are generally perceived as
sharper and more informative. Fig. 11.9a, b, i, j was mostly graded at above level 3,
while Fig. 11.9c, d, g, h was mostly graded above 2.5. Figure 11.9e, f was graded
around 2.5. It can be concluded that, for color-mapped images, tLASCA (n D 10

or 16) and sLASCA .M D 3/, followed by mLSI (n D 10 or 16) produce the best
viewing experiences.

tLASCA and sLASCA have resulted in images that are visually superior to those
produced by LASCA both in effective resolutions and clarity. The evaluations of
image quality have been based on viewers’ preferences. In the following section,
objective quality will be analyzed and performances of sLASCA and tLASCA will
be studied.

11.3.5.2 Objective Quality

We developed an objective evaluation technique for sharpness determination. An
image is sharp if it has many well-contrasted lines. In other words, thin and con-
nected lines should be visible to the eyes, and intensity changes drastically from
one side of a line to the other. Each image (I) has undergone a blurring (Ib) and
a separate sharpening (Is) operation. The image Ib or Is is further discrete-cosine
transformed (DCT), and high-frequency coefficients are removed before reconstruc-
tion is made. The PSNRs of the respective images are calculated before and after
DCT. The % change in PSNR between the blurred and sharpened versions of the
same image indicates the level of sharpness of that image. This parameter can be
used as the objective measure of speckle images.

For two images I1 and I2, if %� PSNR .I1/ is greater than %� PSNR .I2/, then
I1 is sharper than I2. This behavior is interpreted as follows. If an image I1 is
very sharp, its sharpened version, I1s, will not be any sharper, while its blurred
version, I1b, can be very blurred and significantly different from the original im-
age I1. Therefore, the difference between PSNR .I1s/ and PSNR .I1b/, denoted by
%� PSNR .I1/, will be large. On the other hand, if an image I2 is less sharp, its
sharpened version, I2s, is slightly sharper, while its blurred version, I2b, can be
slightly blurred. Therefore, the difference between PSNR .I2s/ and PSNR .I2b/,
denoted by %�PSNR .I2/ will be small.

This technique is applied to the contrast gray images generated using sLASCA,
mLSI, and tLASCA (after they are contrast-stretched for better viewing), and the
results are tabulated in Table 11.4.

According to Table 11.4, the contrast images using tLASCA, (n D 10 or 16)
produced the largest differences in %� PSNR or highest objective measure as a
result of having lost many sharpness features. sLASCA .M D 3/ and mLSI come
next in sharpness level.
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Table 11.4 Objective and subjective quality evaluations of the discussed tech-
niques using the proposed measure and their correlations

Techniques Obj Subj (BW) Subj (CL)

sLASCA, M D 3, n D 4 39.22 3.57 3.57
sLASCA, M D 3, n D 10 37.49 3.57 3.57
sLASCA, M D 5, n D 4 30.35 2.30 2.97
sLASCA, M D 5, n D 10 30.01 2.20 2.87
sLASCA, M D 7, n D 4 25.59 1.83 2.47
sLASCA, M D 7, n D 10 25.28 1.67 2.53
mLSI, n D 10 36.97 2.67 2.80
mLSI, n D 16 36.12 2.87 2.93
tLASCA, n D 10 40.58 3.43 3.53
tLASCA, n D 16 39.30 3.57 3.67
Correlation with obj. evaluation 0.95 0.86

The correlation between the objective evaluation and the subjective evaluation
of gray-scale speckle images is very high at 0.95. The correlation between the ob-
jective evaluation and the subjective evaluation of color-mapped speckle images is
moderate at 0.86. One possible reason is that the objective evaluation technique is
developed based on the gray-scale images, and therefore, its correlation with the
subjective evaluation of gray-scale images is better.

tLASCA has been proven to provide more consistent contrast valueK (after n D
10 or 16, ˙8% error) and to yield superior viewing experience in both subjective and
objective evaluations. Now that a framework on requirements of visual monitoring
contrast images has been established, we will investigate their processing times in
the next section.

11.3.6 Processing Time

11.3.6.1 LASCA

The frame processing times of LASCA using M D 3, 5, 7, and 9 are 0.4, 1.2, 2.2,
and 3.7 s, respectively. Note that it takes from 0.4 to 1.2 s to obtain a viewable image
using LASCA withM D 3 or 5. LASCA usingM D 7 or 9 cannot be used because
the small vessels cannot be seen (Fig. 11.7c, d, g, h). Compared to the processing
times reported by Briers (2001), both groups Briers et al. at Kingston University and
Boas et al. at Harvard University can (capture and) process a 640� 480 pixel frame
using a 5 � 5 window in 1 s. Had the same software and machine been used in the
simulations, the processing times for LASCA would have been comparable (of the
order of 1 s).

11.3.6.2 sLASCA, tLASCA, and mLSI with Varying M and n

Figure 11.10 shows the processing times in seconds of sLASCA using M D 3, 5,
and 7, mLSI, and tLASCA with the number of frames from n D 2 to n D 30.
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Fig. 11.10 Processing times of mLSI and tLASCA are plotted on a linear scale on the left, whereas
sLASCA (M D 3, 5, 7) is plotted on a logarithmic scale on the right. tLASCA converges (n D
10, t D 3:31 s) faster than mLSI (n D 10, t D 3:70 s) and sLASCA (M D 5, n D 4, t D
10:40 s). Average frame processing time of tLASCA .t D 0:34 s/ is also faster than that of mLSI
.t D 0:91 s/ and sLASCA (M D 5, t D 2:51 s)

sLASCA using M D 3, 5, and 7 are plotted on a logarithmic scale (on the right),
while mLSI and tLASCA are plotted on a linear scale (on the left).

In Fig. 11.10, the processing times of sLASCA using M D 3, 5, and 7 in-
crease relatively linearly with the number of frames required for averaging. To
implement sLASCA using optimized Matlab colfilt operations, the average frame
processing times are 1.1, 2.5, and 5.0 s for M D 3, 5, and 7, respectively. For
sLASCA to achieve stable statistics, eight frames are generally required, which cor-
respond to 8.4, 20.6, and 41.7 s using M D 3, 5, and 7, respectively. As discussed
in Sects. 11.3.3 and 11.3.5.1, it is best to use sLASCA with M D 5. In particular,
for M D 5, it takes 20.6 s to get the first statically stabled contrast values for the
first frame and 2.5 s for subsequent frames.

The average processing times for mLSI and tLASCA are 0.9 and 0.3 s, respec-
tively. For mLSI to achieve stable statistics, up to 16 frames or 10.4 s are required to
generate NmLSI. On the other hand, for tLASCA to achieve stable K values, up to
16 frames are also required to compute KtLASCA, but the processing time is 5.3 s.
In particular, if tLASCA technique is used, it takes 5.3 s to get the first statically
stabled contrast values for the first frame and 0.3 s for subsequent frames. Once sta-
bility is achieved, tLASCA is 3.7–16.7 times faster than sLASCA and 3 times faster
than mLSI.
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11.4 Conclusions

We have reported a temporal-based technique, tLASCA, which processes statistics
primarily in the temporal direction using the LASCA equation, proposed by Briers
and Webster. We also thoroughly compared the proposed technique with the existing
ones including the spatial-based sLASCA and the temporal-based mLSI techniques.
Rat cortex has been used under baseline conditions and illuminated using white
light. A window over a large arteriole at (L) and a smaller arteriole at (S) with
respect to a reference point (R) is used to monitor K or N values and the derived
velocities as a result. The contrast values KLASCA are consistent when M D 5 or
7. KsLASCA at L and S are within 8% difference when n D 4 and 10, respectively.
Under both LASCA and sLASCA, K is not sufficiently probable when M D 3. On
the other hand,KtLASCA at L and S are within reasonable range compared with their
KLASCA andKsLASCA when M D 5 or 7.

When the observation window size O D 3, KtLASCA and NmLSI also correlate
to each other very well frame-by-frame even though they are computed differently
using temporal statistics.KtLASCA has been proven to provide similar flow rate, using
both Lorentzian and Gaussian models, at the same size arteriole as that obtained
by an invasive surgically method (Mesenteric Arterial Branches Measurement in
the Rat).

From the subjective and objective image evaluation viewpoints, tLASCA also
performs better than sLASCA and mLSI. In fact, for gray-scale and color-mapped
images, tLASCA (n D 10 or 16), followed by mLSI (n D 10 or 16) and sLASCA
.M D 5/ techniques produce the best viewing experiences. tLASCA has proven to
provide better views in both grayscale and color-mapped contrast images.

In terms of processing times, it took from 0.4 to 1.2 s to obtain a viewable image
using LASCA. It took about 8.4, 20.6, and 41.7 s to generate stable contrast images
using sLASCA with M D 3, 5, and 7, respectively. For mLSI, it took 10.4 s to
obtain stable statistics for the first image and 0.9 s for subsequent images. On the
other hand, using tLASCA, contrast images can be generated after 5.3 s for the first
image and 0.3 s for subsequent images.

The computation of speckle contrast and flow rate has also been updated
with both Lorentzian and Gaussian models. Using tLASCA, the minimally in-
vasive and optically derived flow rates (370–490�L=min using Lorentzian and
464–614�L=min using Gaussian model) are found to be in good agreement with
the invasively measured flow rate .218–770�L=min/ at similar-sized arteriole
(270�m in diameter).

In summary, the tLASCA technique provides more consistent contrast values,
more accurate flow rates, better contrast images in both subjective and objective
senses, and is the fastest technique in its class. LSI technique for real-time moni-
toring of blood flows and vascular perfusion, with proper experimental setups and
quantitative analyses, may lay new bricks for research in diagnostic radiology and
oncology.
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Chapter 12
The Challenges in Blood Proteomic
Biomarker Discovery

Guangxu Jin, Xiaobo Zhou, Honghui Wang, and Stephen T.C. Wong

Abstract Although discovering proteomic biomarker by using mass spectrometry
technique is promising, its rate of introducing proteomic biomarker approved by the
US Food and Drug Administration is falling every year and nearly 1 per year on an
average since 1998. Apparently, there is a big gap between biomarker discovery and
biomarker validation. Here, we reviewed the challenges appearing in the three key
stages for the pipeline of proteomic biomarker, that is, blood sample preparation,
bioinformatics algorithms for biomarker candidate discovery, and validation and
clinical application of proteomic biomarkers. To analyze and explain the reasons for
the gap between biomarker discovery and validation, we covered areas ranging from
the techniques/methods used in biomarker discovery and their related biological
backgrounds to the existing problems in these techniques/methods.

12.1 Introduction

With proteomic technologies, it is possible these days to realize a systematic inter-
rogation of complex proteomics and the identification of differentially expressed
proteins (proteomics biomarkers) in blood. The components in blood provide the
indication of disease status, including various cellular elements such as tumor
cells, cell-free DNA and RNA, proteins, peptides, and metabolites. Mass spec-
trometry was first used as a tool to identify and characterize isolated proteins and
to profile the mass of components in clinical samples, such as surface enhanced
laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS)
and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) (Anderson and Anderson 2002; Anderson et al. 2004).

A biomarker is a measurable indicator of a specific biological state, particu-
larly of the one relevant to the risk of contraction, presence or the stage of disease

X. Zhou (�)
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Fig. 12.1 The PepLine for proteomics biomarker discovery from blood

(Powell 2003; Joos and Bachmann 2005; Rifai et al. 2006; Hanash et al. 2008;
Sawyers 2008). Proteomic biomarker field aims at developing simple noninvasive
tests that indicate disease risk, allows early detection, regression, and recurrence, to
monitor disease progression and to classify patients so that they can receive the most
appropriate therapy (Rifai et al. 2006; Cox and Mann 2007; McGuire et al. 2008;
Simpson et al. 2008). Discovering proteomics biomarkers from blood samples can
be roughly divided into three stages: sample preparations for mass spectrometry,
bioinformatics algorithms for biomarker discovery, and validation and clinical ap-
plications (Fig. 12.1). Despite a large interest and investment in this area, only a few
new proteomics biomarkers are successfully used in clinical application. Accord-
ing to the report of the US Food and Drug Administration (FDA),the proteomics
biomarker rate of introduction is falling every year and the rate of introduction of
new protein analytes approved by FDA has fallen to 1 per year on an average since
1998 (Rifai et al. 2006). The reasons for this disjunction are due, in part, to the lack
of a coherent pipeline connecting biomarker discovery process with well-established
methods for clinical validation (Anderson and Anderson 2002; Rifai et al. 2006).

We review here some of the challenges that occur in the key stages in biomarker
discovery from proteomics:

� Blood sample preparation
� Bioinformatics algorithms for biomarker candidate discovery
� Validation and clinical application
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We will cover areas ranging from the techniques/methods used in biomarker dis-
covery to the existing problems in these techniques/methods and aim to analyze and
explain the reasons for the gap between biomarker discovery and validation.

12.2 Blood Samples Preparation for Biomarker Discovery

Discovering proteomics biomarker from blood samples by using SELDI-TOF-MS
or MALDI-TOF-MS technologies starts with sample preparation. Proteomic studies
to find new biomarker protein candidates that may be useful for further studies, for
the development of diagnostic tests or even therapeutic targets, have to be planned
very critically from the beginning to get accurate results [10]. The strategies used for
blood samples preparation usually include deletion of high-abundance proteins from
samples and fractionation of plasma proteins, digestion of protein into peptides, and
overcoming other biological factors.

12.2.1 Dynamical Range of Proteins

The dynamic range of proteins in blood sample limits our capacity to directly
interrogate the blood proteome for the purpose of biomarker discovery. In a typ-
ical blood sample, the protein abundance ranges from 40 mg/mL (albumin) to
5 pg/mL (cytokines), and the proteins, such as albumin, haptoglobin, IgA, IgM,
˛-1-antitrypsin, fibrinogen, ˛-2-macroglobulin, C3 Complement, transferrin, and
IgG, account for about 90% of blood protein content [1, 10]. Thus, methods used
for depletion of high-abundance proteins and fractionation of proteins from plasma
have been proposed (Hoffmann et al. 2001; Miklos and Maleszka 2001; Thomas
et al. 2002; Ahmed et al. 2003; Tam et al. 2004; Whelan et al. 2004; Cho et al. 2005;
Tang et al. 2005; Wang et al. 2005; Lee et al. 2006; Shin et al. 2006). Two such meth-
ods: resin-based and antibody-based depletion, that is, multiple affinity removal
system (MARS) [12, 13], and IgY-microbeads Kit [14] are mainly used these days.
MARS provides high binding efficiency and specific, reproducible removal of the
six most abundant plasma proteins (albumin, transferrin, IgG, IgA, haptoglobin, and
antitrypsin) and their subtypes. IgY microbeads contain IgY antibodies against 12
most abundant plasma proteins [albumin, IgG, transferrin, a1antitrypsin, IgA, IgM,
a2-macroglobulin, haptoglobin, HDL components (ApoAI and AII), a1-acid glyco-
protein, and fibrinogen]. Four major types of fractionation methods have also been
proposed for separate diverse abundant proteins from plasma. One such method,
Gradiflow, is a type of 2D liquid enrichment system that uses membrane-based
electrophoresis to fractionate protein samples through an uncharged membrane [15,
16]. The proteins are separated into 4–5 fractions based on pI .<5:25 vs:>5:25/ and
molecular size (e.g., >125 kDa, albumin-enriched region, >45 kDa and < 45 kDa).
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Other methods for protein fractionation, such as ProteomeLab[TM] PF2D [17],
multichannel electrolyte (MCE) [18], microscale solution IEF (ZOOM) [19], and
free flow electrophoresis (FFE) [20], are also in use.

While some methods can delete the high abundant proteins from plasma or sep-
arate diverse abundant proteins from each other, there are still challenges involved
in the discovery of biomarkers from such samples derived by these methods. Al-
though some depletion methods can reduce high abundant proteins ranging from
96% to 99%, the presence of albumin can still be 50�g=mL, about 104-fold higher
than blood CEA levels .5 ng=mL/ and 5 � 106-fold higher than blood IL-6 levels
.10 pg=mL/ [10]. Another problem in depletion of high abundant proteins is that it
is risky, as these proteins may be the carriers for low-abundance molecules. If highly
abundant proteins interact with low-abundance proteins, such a depletion method is
not efficient in detection of low-abundance proteins from plasma [10]. For exam-
ple, albumin removal has been suggested to lead to the decrease of physiologically
important proteins such as cytokines (Geho et al. 2006).

12.2.2 The Blood “Peptidome”

Unlike oligonucleotides in message RNAs, proteins cannot be amplified and there-
fore sensitivity is a major concern. To make proteins suitable to MS analysis, they
first need to be converted into peptides. MALDI-TOF-MS and SELDI-TOF-MS
can provide the surface upon which ionization can take place to provide a degree of
fractionation due to variable absorbance of peptides. Such techniques are now being
widely applied to analyze the peptides and proteins in relatively complex samples
(Diamandis 2003; Yewdell 2003; Diamandis 2004; Geho et al. 2006; Hortin 2006;
Petricoin et al. 2006; Davis and Patterson 2007). Based on the peptidome in plasma,
it is now recognized that this region of the proteome can be expected to contain
shed proteins and protein fragments emanating from physiologic and pathologic
events taking place in all perfused tissues. Large proteins, unable to enter the circu-
lation passively, on account of their size, could be represented as fragments in the
low molecular weight region (LMW) of the blood proteome. For this reason, recent
works have used mass spectrometry to interrogate this LMW region for disease-
related information [22]. This method was first applied to serum from patients
with ovarian cancer (Petricoin et al. 2002b) and then later to other cancers (Adam
et al. 2002; Li et al. 2002; Petricoin et al. 2002b; Qu et al. 2002; Rosty et al. 2002;
Hingorani et al. 2003; Poon et al. 2003; Vlahou et al. 2003; Won et al. 2003; Zhukov
et al. 2003; Ebert et al. 2004; Villanueva et al. 2004; Brouwers et al. 2005).

But opposite opinions were also proposed. The SELDI-TOF technology that is
currently used for serum analysis is not capable of detecting any serum component
at concentrations of less than�g=mL. This range of concentrations is approximately
1,000-fold higher than the concentrations of known tumor markers in the circulation
[23, 24]. The serum discriminatory peaks identified by mass spectrometry very
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likely represent high-abundance molecules that were unlikely to have been released
into the circulation by very small tumors or their microenvironments. Biomarker
discovery studies of this nature have drawn cautionary notes owing to the problems
in experimental design and data analysis or biases related to blood collection, pro-
cessing, and/or storage protocols (Diamandis 2004; Ransohoff 2005).

12.2.3 Other Biological Factors

The quality and accuracy of discovery of biomarker candidates from blood sample
is not only determined by technical variance but also affected by biological vari-
ances [10], such as [3] lack of standardized sample collection and storage, variably
affecting comparison groups, differences between cases and controls in terms of
sex, age, and physiological states (e.g., fasting, weight gain or loss, and hormonal
status), differences in genetic make-up, changes in inflammation and acute-phase
reactants, changes in metabolic states, other nonspecific changes, for example, cell
death and tissue necrosis, and changes reflecting underlying chronic disease, for
example, those caused by smoking and chronic lung disease, in contrast to lung
cancer-specific changes.

12.3 Bioinformatics Algorithms in Biomarker Discovery

Unsuccessful application of proteomics biomarkers in clinical diagnosis indicates
something amiss in the pipeline of biomarker discovery. Although sample prepa-
ration and diagnosis validation should be somehow responsible for the problem,
bioinformatics algorithms used in the data preprocessing and biomarker discovery
cannot be overruled due to their lack of consistency and reproduction.

Generally, the middle stage of the pipeline of biomarker discovery is composed
of bioinformatics algorithms including baseline removal, normalization, denois-
ing/smoothing, peak detection, peak alignment, feature selection, classification for
biomarker candidates, and protein/peptide identification (Fig. 12.2 and Table 12.1).
Because of the many different ways available to perform each step in the process
of biomarker discovery, it often results in diverse outcomes from the use of dif-
ferent combinations of the algorithms. It is therefore natural to get less consistent
and reproducible biomarker candidates [23]. Undoubtedly, the biomarker candidate
identification in the middle stage of the pipeline needs a more robust strategy to re-
sult in a more standard biomarker discovery from proteomics data. We reviewed the
main bioinformatics algorithms/methods used for data preprocessing and biomarker
discovery. For every step in this stage, mathematical methods have been proposed
and experimental backgrounds and the major challenges involved have been dis-
cussed (Table 12.1).
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Fig. 12.2 The flowchart for proteomics biomarker discovery

12.3.1 Baseline Removal

Experimentally, the baseline in SELDI or MALDI is caused by a cloud of matrix
molecules hitting the detector shortly after ionization (Malyarenko et al. 2005). As
the first preprocessing step of SELDI or MALDI data, this critically influences
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Table 12.1 The bioinformatics methods used in candidate proteomics biomarker discovery

The key steps Experimental Algorithms
in preprocessing backgrounds in bioinformatics Challenges

Baseline
removal

Caused by the
matrix
molecules
hitting the
detector

Static or moving
window sampling
[45]

Whether the estimated
signal is closer enough
to true signal

Wavelet [48] Whether estimated baseline
is closer enough to true
baseline

Manual method [49]
Denoising/

smoothing
Chemical and

random
noises

Discrete wavelet
transform (DWT)
[51]

Choosing different wavelets
Loss of peaks
Complexity and

time-consuming
Matched filtration [53]

Savitzky–Golay
Missing of low-abundant

components of the sample
Leave data noises in

denoised signals
Average moving [57] Leave data noises in

denoised signals
Peak overlapping

Normalization Identify and
remove
sources of
systematic
variation
between
spectrums

Dividing by a constant
AUC [61] or unit
length [64]

Structure noise

Regression [65, 66] Seldom taking systematic bias into
normalization processQuantile [64]

Peak detection/
identification

Discerning true
signals from
noises

Window or binning
methods [47, 77, 78]

Lack of interpretability
Multiple charge states

Thresholds for the
signal/noise ratio
[47, 72, 74, 79]

Mass-dependent sensitivity
Chemical adducts and

fragmentation

Gaussian shape for
LC-MS [80, 81]

Reproducibility of mass
spectrums

Decomposing overlap
peaks [51, 78,
81–84]

Ion suppression effects
Calibration

Peak alignment The variation of
correspond-
ing peaks
among the
mass
spectrums

Optimized warping
[85–87]

Slight variation for the exact m=z
and retention time of a peak

Vectorized peaks [88]
(Semi)supervised

alignment using
nonlinear regression
methods [89]

The drifts for all detected
peaks may be equal

One peptide may correspond to
several peaks

Hidden Markov
models [90]

The peptides with similarm=z
ratio may hard to be discerned
from each other

Statistical alignment
[91]

Clustering [92–94]

Peaks only be found in few
mass spectrum

(continued)
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Table 12.1 (continued)
The key steps Experimental Algorithms
in preprocessing backgrouds in bioinformatics Challenges

Biomarker
candidates
identifica-
tion/feature
selection

Biomarker
candidate
identification

Filter methods: t test
[95, 96], F test [97],
peak probability
Contrast [98],
Kolmogorov–
Smirnov test [99],
Correlation-based
feature selection
(CFS) [100]

Ignoring the
feature
dependence

Ignoring the
interaction with
the classifier,
i.e., the search
in the feature
subset space is
separated from
the search in
the hypothesis
space

It is a hard
problem due to
examining all
possible
models would
require
evaluating
2p � 1 models,
where p is the
number of
variables
included in the
study

Wrapper methods:
genetic algorithms
[101, 102], and
nature inspired [61,
103]

Higher risk of
overfitting than
filter
techniques and
very computa-
tionally
intensive

Embedded methods:
random forest/
decision trees [96,
104], the weight
vector of SVM [74,
105], and neural
network [106]

Classifier
dependence

Clinical
diagnosis/
classification

Biomarker
discovery is
aimed at
finding a set
of discrimina-
tory proteins
to diagnose
different
states with
respect to a
given disease

Generative approaches:
LDA [107], QDA
[107], Kernel
density estimation
[108], and K-nearest
neighbor [96]

Discriminative
approaches: Logistic
regression (LR)
[109], neural
network (NN) [110],
support vector
machine (SVM)
[107], decision tree
(DT) [109]

Hard to choose the learning
approach for a given
classification problem

Different classification
algorithms have their
specific biases, but it is
hard to identify the
problem structure a
priori

Protein/peptide
identification

Identify their cor-
responding
protein from
the character-
istics of
peptides
digested
enzymically
from a
protein

Database searching
[111–114]

Limited PTM

Some methods used in some
softwares are not published

Contamination of the sample,
imperfect fragmentation,
simultaneous fragmentation of
two different peptides, and low
signal-to-noise ratio

De novo sequencing
[115–122]

Sequence tagging
[123–125]

Consensus of multiple
engines [126]
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subsequent analysis steps. Current baseline removal algorithms of SELDI or
MALDI data, which are based on mathematical morphology, result in biased
signal estimates. Because of the parameterization of current algorithms for baseline
removal, noise and spectral signal distributions bias the removal results, which may
lead to seemingly interesting but ultimately irreproducible results in downstream
analysis.

The process of baseline removal deals with the identification of the baseline and
its removal from the mass spectrum. The baseline can be seen in the spectrum of
a blank (zero protein) sample as a smooth and downward drifting curve moving
from low m=z to high m=z. The baseline has the following three characteristics
(Baggerly et al. 2003; Wang et al. 2003; Hilario et al. 2006): First, the amplitude of
the baseline may be much larger than the signal so that the fold change estimate will
be downward biased if we ignore the baseline. Second, the baseline is not flat in a
spectrum, and therefore the bias will be heterogeneous across the spectrum. Third,
the baseline varies from spectrum to spectrum, even between replicate sample runs,
hence creating an unwanted source of variation.

Some algorithms used in baseline removal are based on mathematical morphol-
ogy implementations and are also used in denoising/smoothing. First, either a static
or a moving window sampling of the data is introduced. An assumption for effec-
tively applying mathematical morphology is that most of the data points in a window
(also called a structuring element) of the spectrum are nonpeaks. In this manner, the
baselines are chosen as the intensities of the spectrum in low percentiles within this
window (Baggerly et al. 2003). Next, in the algorithms for denoising/smoothing,
such as moving average (MA), Savitzky–Golay (S-G) smoothing, Fourier filter-
ing, and Wavelets, the Wavelets are used to baseline removal. The details about
the Wavelets will be discussed in the next section. This method can reduce the data
noises and remove the baseline of the data simultaneously (Perrin et al. 2001).

One challenge that occurs in baseline removal is automation of the algorithm, as
the peak width of desired signal varies both within and across spectra. Jirasek et al.
argued that the manual method guided by visual inspection should be still useful
and important for baseline removal (Jirasek et al. 2004). Another problem for base-
line removal is to determine the cutoff of the baseline. If the cutoff is too small,
it underestimates the true baseline and leaks part of the noise into the signal esti-
mation. Therefore, we focus on the following problems (Coombes 2005; Coombes
et al. 2005; Tan et al. 2006) in the process of baseline removal. First, after base-
line removal, the estimated signal should be closer to the true signal. Second, in
the simulated data, estimated baseline should be closer to the true baseline. Third,
after baseline removal, the estimated fold change should be closer to the true fold
change. Last, the consistency of technical replicates should be improved after base-
line removal.
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12.3.2 Denoising/Smoothing

There are two types of noise in derived mass spectrums, that is, chemical and ran-
dom. A mass spectrum is not only composed of peaks corresponding to the sample
components, but also consists of noise from limited ion statistics, instabilities of ion
source, thermal noise, and spikes (Andreev et al. 2003). Especially, the chemical
noise comes from the MALDI matrix or mobile phase (ESI-MS). The data noises
have a great effect on the accuracy of m=z values in the peak list in two ways. The
first is MS peaks, representing components of solvent (ESI) or matrix (MALDI)
or their contaminants, or some intense spikes, which could be mistaken for sample
ions. The second is when the ratio of signal and noise of the sample peak is low, the
centroid of the peak can be shifted, resulting in an inaccurate m=z value.

To detect the peaks in mass spectrum accurately, we must try to discern data
noise from useful signals and remove it from the mass spectrum (Perrin et al. 2001;
Gobom et al. 2002; Andreev et al. 2003; Baggerly et al. 2003; Wang et al. 2003;
Jirasek et al. 2004; Rejtar et al. 2004; Bensmail et al. 2005; Coombes 2005;
Coombes et al. 2005; Malyarenko et al. 2005; Hilario et al. 2006; Stolt et al. 2006;
Tan et al. 2006). There are four main methods available to achieve this goal: discrete
wavelet transform (DWT), matched Filtration using Fourier transform, Savitzky–
Golay, and average moving.

12.3.2.1 Discrete Wavelet Transform

In the process of DWT (Coombes et al. 2005), an original signal f .t/ is decom-
posed into a set of basis functions called wavelets  . The vector of original signal
f .t/ can be decomposed into an orthogonal matrix of wavelet functionsW ; thus, a
vector of DWT coefficients w is achieved. By introducing the thresholds for DWT,
the data noises can be removed. Soft threshold and hard threshold are two main
approaches for the thresholding process. The soft threshold refines the coefficients
that are less than threshold, and are set to zero, otherwise reduced by threshold to
sign .wij /.jwij j� threshold/. The hard threshold refines the coefficients that are less
than threshold are set to zero, and are otherwise reduced by wij .

There are three problems in the DWT. The first is how to choose different
wavelets to meet different requirements from various signal conditions. The sec-
ond is the denoising efficiency that can be evaluated in statistics by computing the
root mean square error (RMSE) between the denoised signal and the ideal one. The
issue is that the derived wavelets by this optimized method may be more suitable
for reducing the baseline, but it does not preserve the peaks in the mass spectrums.
The last drawback is that it is complex and time-consuming.

12.3.2.2 Matched Filtration

The shape of the signal and the characteristics of the noise are two important factors
for data denoising. If the inputX.t/ can be represented as a sum of the signal of the
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known shape, described by a functionS.t/ and a random functionN.t/ representing
noise, then the maximum S=N can be derived when the input data are processed by
a matched filter having the transfer functionH.f /

H.f / D S�.f / =PNN .f / ; (12.1)

where

S�.f / D
1Z

�1
S .t/ exp .j 2�f t/ dt

is the complex conjugate of the Fourier transform of the signal S .t/,

PNN .f / D
1Z

�1
RNN .t/ exp .�j2�f t/ dt

is the power density spectrum of noise, RNN is the autocorrelation function of the
noise, t is time, and f is the frequency (Andreev et al. 2003).

In the matched filtration, the Gaussian function was assumed to characterize the
peak shape. Thus, Gaussian function and second derivative of the Gaussian can be
applied in this method. But the cross-correlation with the later can produce nega-
tive artifact peaks on both sides of the real MS peaks, which results in peak shape
distortion and decreased mass accuracy (Andreev et al. 2003).

This method tries to find those peaks with high S=N ratio value and can im-
prove the false positives, but it can increase the likelihood of false negatives, that is,
missing of low abundant components of the sample.

12.3.2.3 Savitzky–Golay and Average Moving

The Savitzly–Golay smoothing filter and average moving are used simultaneously.
The Savitzky–Golay method essentially performs a local polynomial regression (of
degree k) on a distribution (of at least kC 1 equally spaced points) to determine the
smoothed value for each point. The main advantage of this approach is that it tends
to preserve features of the distribution such as relative maxima, minima, and width,
which are usually “flattened” by other adjacent averaging techniques (like moving
averages, for example) (Gobom et al. 2002).

Savitzky–Golay and average moving, and matched filtration, comparing with
DWT, still leave some data noises in the denoised signals. Band broadening also
occurs, in which the second peak and the third peak were overlapped more seriously.

12.3.3 Normalization

The purpose of interspectrum normalization is to identify and remove sources
of systematic variation between spectrum due to varying amounts of protein or
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degradation over time in the sample or even variation in the instrument detector
sensitivity (Marcuson et al. 1982; Rietjens et al. 1995; Steeves et al. 2000; Bolstad
et al. 2003; Park et al. 2003; Alfassi 2004; Ressom et al. 2005; Callister et al. 2006;
Wang et al. 2006; Arneberg et al. 2007). The general normalization methods to con-
sider are the global normalization techniques. Such methods assume that the sample
intensities are all related by a constant factor. A common choice for this rescaling
coefficient is the spectrum median or the mean. The assumption behind the global
normalization is that on an average, the number of proteins that are overexpressed
is approximately equal to the number of proteins that are underexpressed, and the
number of proteins whose expression level changes is few, relative to the total num-
ber of proteins (Fung and Enderwick 2002).

The mass spectrum data can be normalized by several ways, such as dividing a
constant value, regression, and quantile (a nonparametric approach).

12.3.3.1 Dividing by a Constant Value

The constant value can be constant sum, unit length, or average AUC (area under
the curve or total ion current) (Ressom et al. 2005), for example,

zT
i D xi

MP
j D1

xij

i D 1; 2; : : : ; N (12.2)

and
zT

i D xi

jjxi jj i D 1; 2; : : : ; N; (12.3)

where xi and zi represent the profile for sample i before and after normalization,
respectively,M is the number of points describing the profile, and N is the number
of instrumental profiles acquired.

Equations (12.2) and (12.3) are normalized for constant sum and unit length,
respectively (Arneberg et al. 2007).

12.3.3.2 Regression

The normalization technique assumes that systematic bias is linearly or nonlin-
early dependent on the magnitude of peptide abundances (Bolstad et al. 2003; Park
et al. 2003). In the former situation, linear regression was performed by applying
least squares regression to the scatter plots. The resulting first-order regression equa-
tion is used to calculate each normalized peptide ratio:

m0
i D mi �m�

i ; (12.4)
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where m�
i is the predicted peptide ratio calculated from the regression equation.

The derived value of a predicted peptide ratio represents the deviation from the
abscissa of the regression line. Another way is to apply local regression and derive
a nonlinear regression. It can be done by the LOWESS algorithm packaged to find
the predicted value for each peptide ratio (Arneberg et al. 2007).

12.3.3.3 Quantile

This approach is based on the assumption that the distribution of peptide abundance
in different samples is expected to be similar and can be accounted for by adjusting
these distributions (Arneberg et al. 2007).

There are some challenges in applying these methods in normalization process.
First, the structure noise, that is, noise increasing with signal size (heteroscedastic-
ity), represents a major problem in the comparison of mass spectral profiles. The log
transform or nth root transform is needed here to reduce the structure noise before
normalization (Rietjens et al. 1995; Bolstad et al. 2003). Next, ideally, the most ap-
propriate normalization technique is chosen after the causes of systematic bias are
identified and characterized according to observed trends across the dynamic range
of detection. However, this principle is seldom used due to the challenge in identify-
ing and defining the wide range of possible contributions in both sample processing
and analysis of the overall bias.

12.3.4 Peak Detection/Identification

Detecting peaks, that is, the signals from ionized proteins or peptides, from the mass
spectrometry data, is in fact not an easy task. This is due to the multiple experimen-
tal factors, besides the chemical noises, which affect the signals (Gras et al. 1999;
Prados et al. 2004; Listgarten and Emili 2005; Hilario et al. 2006; Shimizu
et al. 2006; Albrethsen 2007; Fenselau 2007; America and Cordewener 2008;
Ressom et al. 2008). The first experimental factor is the multiple charge states of an
ionized protein or peptide, which means that the large peptide ions produced by ESI
or MALDI often have different number of elemental charges and especially a broad
distribution of charge states for large denaturized protein ions. After computing
the mass/charge of the protein, its time points may not be unique. This can result
in the difficulty in determining which time point corresponds to the protein and
therefore affecting the detection of the peaks for the ionized protein. The second
experimental factor is mass-dependent sensitivity of mass spectrum. Because of the
fact that all ions of the same charge have the same kinetic energy after acceleration,
the ions with heavier mass are slower and produce weaker signals. If reducing some
data noise by cutoffs, the signals produced by these proteins might be accidentally
removed. The third factor is the chemical adducts and fragmentation. The larger
protein contaminated by some chemical adduct ions can produce a much broader
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m=z value distribution than the expected pure protein. This results in the difficulty
in identifying the centroid of corresponding peak of the protein. Another factor
is the reproducibility of mass spectrums. In MALDI, the laser attacks the matrix
compound including samples and thereby the signal intensity is affected by the
laser power, the amount of sample, and the quality of the crystals. This leads to
the diverse absolute intensities of repeated measurements. The fifth factor is the
ion suppression effects. The signal intensity of a protein/peptide depends strongly
on its chemical composition. Especially if the analyte concentration is beyond a
certain threshold, analytes producing intense signals can suppress the signals of
other analytes, which are less suitable for ionization. Thus, the signal intensity of
certain analytes does not depend linearly on the initial concentration, but is influ-
enced in a complex manner by the concentration of other analytes. This causes
more complications in the discovery of biomarkers from multiple mass spectrums.
The final hurdle is calibration, in which some of the parameters entering the process
of transferring flying time to m=z value are only approximately known and lead to
the slight shifts in the calculated masses. The experimental factors may be vital to
peak identification from mass spectrum, and therefore these may result in wrongly
identified biomarkers (identified by them=z ratio).

Although the peak detection is an intermediate step in preprocessing the mass
spectrum, it is an essential one for peptide identification and biomarker discovery.
In fact, the peaks of a protein’s peptides are first identified from mass spectrum
and then the corresponding m=s ratios and intensities (retention time) were found
for peak identification. The identified peptides are the fingerprints of the discov-
ered protein, that is, biomarkers. Therefore, in the process of peak detection, the
extent of overcoming the data noise for an algorithm determines the accuracy of the
discovered biomarkers.

Most algorithms for peak detection considered the effects of the experimental
factors on the mass spectrums and the signals of peaks.

� First, a window or binning in mass/charge axis is adopted in some algorithms
(Yasui et al. 2003; Fushiki et al. 2006; Hilario et al. 2006). Because of the data
denoising and smoothing of the signals, it is a continuous line whose horizontal
line is m=z value and the vertical line is the intensity of the corresponding ion.
Thus, detecting a peak is nothing but choosing a part of the signals instead of
a single intensity point. Jarman et al. used a statistical test to check if the his-
togram within a sliding window represents a uniform distribution or has a peak.
Another method similar to the window is the binning used to detect peaks, in
which binning adds a fixed number of adjacent data points into one combined
variable (Arneberg et al. 2007).

� Second, thresholds for signal to noise ratios exclude random peaks (Gras
et al. 1999; Prados et al. 2004; Hilario et al. 2006; Karpievitch et al. 2007).
Most of the peak detection methods adopt the threshold for signal to noise ra-
tios excluding random peaks. The threshold for the signal to noise ratio can be
obtained from statistical analysis of the noise. The distribution of the noisy peak
intensities can be estimated for a certain mass window, and all intensities that
have a low P -value with respect to this distribution can be considered as real
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peaks. Another approach is to link the peak detection threshold directly to the
identification or classification process. An alternative way to find the peaks and
valleys is by starting with a straight line that connects the first and last point
in the spectrum. The algorithm then finds the point in the raw spectrum that is
farthest from the line.

� Third, Gaussian shape is approximately used for the peak shape in LC-MS (Li
et al. 1997; Dijkstra et al. 2007). A real LC-MS signal consists of a sum of iso-
lated signals plus noise and baseline where the noise has a different elution profile
than peptides, which makes it possible to distinguish it from signals. Although
the elution profile of a peptide is less well defined and less reproducible than its
m=z signal, a Gaussian shape is usually a rather good approximation, but more
flexible refinements were proposed.

� Finally, we deal with the overlap peaks (Li et al. 1997; Coombes et al. 2003,
2005; Yasui et al. 2003; Shackman et al. 2004; Zhang et al. 2008).

For different resolution of MALDI instruments, such as LC and FT-ICR, single
isotopic peaks are either distinguishable or they melt into broader peaks containing
several isotopes. On the other hand, for the high masses or low-resolution mass
spectra the isotopic peaks may not be visible and collapse into a single broad peak,
the shape of which may be distorted by fragmentation and chemical adducts.

Although the algorithms for peak detection are trying to overcome these hur-
dles from the experiments of mass spectrometry, they still encounter challenges in
biomarker discovery. The first is that the complexity of peak detection caused by the
experimental factors is hard to solve using any proposed algorithm so far. The next
is lack of interpretability for the discovered biomarkers based on the selected peaks.
It is not sure if the peaks really represent the real signal intensities and if the results
are caused by the designs of these algorithms or the mistakes in mass spectrums.

12.3.5 Peak Alignment

Although the m=z measurements can be accurately obtained from properly cali-
brated instruments, the variation of corresponding peaks among the mass spectrums
can still be found (Listgarten and Emili 2005). Elution patterns can become distorted
(locally compressed and/or expanded in complex, nonlinear ways) by differences in
chromatography performance due to changes in ambient pressure and temperature.
Even under ideal conditions, MS duty cycles are finite and sampling is not necessar-
ily constant, resulting in spectral capture at different time points across an eluting
peak even between repeat analyses. In certain cases, drift may occur along the m=z
axis as well, although this is far less of a problem than variations in time.

Some algorithms, such as correlation optimized warping (Bylund et al. 2002;
Jaitly et al. 2006; Prince and Marcotte 2006), vectorized peaks (Hastings
et al. 2002), (semi-) supervised alignment using nonlinear regression methods
(Fischer et al. 2006) and Hidden Markov Models (Listgarten et al. 2007), and
statistical alignment (Wang et al. 2007) or clustering (Silva et al. 2005; Lange
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et al. 2007; Mueller et al. 2007), strongly benefit from high mass accuracy and sta-
ble retention times. Many of recent alignment algorithms (PLGS, SIEVE, VIPER,
Pepper, MsInspect, Msight) depend on high-resolution m=z data. Other algorithms
(MetAlign, CPM, Crawdad, MsMetrix) used data binning. And there are still
other softwares, such as mzmine, metAlign, BinBase, xcms, MarkerLynx, Blu-
Fuse, SpecAligh, msInspect, Progenesis PG600, caMassClass, Xalign, msalign
from Matlab, RTAlign, MS Align, LCMSWARP, CHromAlign, PETAl, Maek-
erView, MathDAMP, NameLess, CPM, meta-b, Chenomx Profiler, MS-Xelerator,
OBI-Warp, Census, which can be used for peak alignment.

In peak alignment, we may meet with the following problems (America and
Cordewener 2008): The exact m=z and retention time of a peak may vary slightly
due to technical drift in MS and LC instruments (discussed in peak detection). The
drifts for all detected peaks may not equal (caused by the experimental factors dis-
cussed in peak detection). Considering that one peptide may correspond to several
peaks due to the experimental factors discussed in peak detection, a single peak in
some mass spectrum may be detected as multiple peaks in the other mass spectrums.
The peptides with similar m=z ratio values may be hard to be discerned from each
other. Some peaks may only occur in very few mass spectra due to absence of that
particular peptide in the other samples or may not be detected in low intensity. Thus,
a perfect detailed alignment of all features seems to be a nonrealistic goal.

12.3.6 Biomarker Candidate Identification

Feature selection technique is usually used to identify biomarker candidates from
the found peaks. In essence, feature selection needs to find the optimal model pa-
rameters for the feature subsets instead of just optimizing the parameters of the full
feature subset. However, the feature selection introduces an additional layer of com-
plexity in the modeling task. Thus, it is not difficult to see that feature selection is a
hard problem. This is because examining all possible models would require evalu-
ating 2p � 1 models, where p is the number of variables included in the study.

Feature selection is usually combined with classification problem in biomarker
discovery. From the classification performance of the chosen subset of relevant
features, we can determine whether the features in this subset should be chosen op-
timally. In the context of classification, feature selection techniques can be divided
into three categories depending on the combination of the feature selection search
with the construction of the classification model: filter methods, wrapper methods,
and embedded methods. Filter methods include univariate filter, such as t test (Liu
et al. 2002; Wu et al. 2003), F test (Bhanot et al. 2006), peak probability contrast
(Tibshirani et al. 2004), Kolmogorov–Smirnov test (Yu et al. 2005), and multivari-
ate filter, such as correlation-based feature selection (CFS) (Hauskrecht et al. 2005).
Filter techniques access the relevance of features by looking only at the intrinsic
properties of the data. A common disadvantage of filter methods is that they ignore
the interaction with the classifier, that is, the search in the feature subset space is
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separated from the search in the hypothesis space. Wrapper methods embed the
model hypothesis search within the feature subset search, which includes determin-
istic methods, such as genetic algorithms (Petricoin and Liotta 2003; Li et al. 2004),
and nature inspired methods (Ressom et al. 2005; Ressom et al. 2007). A com-
mon drawback of these techniques is that they have a higher risk of overfitting than
filter techniques and are very computationally intensive, especially if building the
classifier has high computational cost. In embedded methods, the search for an opti-
mal subset of features is built into the classifier construction and can be considered
as a search in the combined space of feature subsets and hypotheses. The embed-
ded methods include random forest/decision trees (DTs) (Wu et al. 2003; Geurts
et al. 2005), the weight vector of SVM (Prados et al. 2004; Zhang et al. 2006), and
neural network (NN) (Ball et al. 2002).

12.3.7 Clinical Diagnosis

Biomarker discovery is aimed at finding a set of discriminatory proteins to diagnose
different states with respect to a given disease. In this process, the classification
methods have the potential to identify the performance in assigning a biological
sample to one of several predefined classes or disease states, for example, in the
simplest case, diseased vs. control. The biomarker candidates are those best fea-
tures with high accuracies in classification process. Undoubtedly, the classification
methods play a key role in identification of biomarker candidates. Diverse classifi-
cation methods with different models and different parameters may result in distinct
results in spite of same samples.

The classification algorithms can be divided into two classes, that is, generative
approaches and discriminative approaches. Generative models are called so because
they express a hypothesis about how the data were generated, such as linear discrim-
inant analysis (LDA) (Wagner et al. 2003), quadratic discriminant analysis (QDA)
(Wagner et al. 2003), Kernel density estimation (Lee et al. 2005), and K-nearest
neighbor (Wu et al. 2003), in which LDA and QDA assume that the class densities
are Gaussian with a set of parameters, and Kernel density estimation and K-nearest
neighbor make no prior assumptions and estimate densities in a purely data-driven
manner. Discriminative approaches build a direct mapping from inputs to class la-
bels or model posterior class probabilities without modeling the underlying joint
probability density, such as logistic regression (LR) (Rai et al. 2002), NN (Rogers
et al. 2003), support vector machine (SVM) (Wagner et al. 2003), and DT (Rai
et al. 2002), in which LR fails to deal with the data that are not linearly separa-
ble, and SVM and NN can classify the data and can be applied to the data that are
nonlinearly separable.

There is an overwhelming number of classification algorithms, which can be
combined in an exponential number of ways (Hilario et al. 2006). Which learning
approach works well for a given classification problem is still an open question and
will probably remain so for sometime. Different classification algorithms have their
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specific biases, which should match the problem structure, that is, the concept that
governs class assignment. Unfortunately the problem structure is not known a priori;
in fact, it is precisely what should be discovered. Even in a circumscribed domain
such as mass spectrometry, different learning algorithms could be appropriate for
seemingly related problems, depending on the concept that underlies the data and
how the features interact together to determine the class.

12.3.8 Protein/Peptide Identification

Protein identification is an indispensable task for applying the found candidate
biomarkers (multiply charged ions) in drug discovery and clinical application.
Eletrospray ionization (ESI) and tandem mass spectrometry (MS-MS) nowadays
regularly perform protein/peptide identification. The multiply charged ions provided
by ESI must be accounted for in the results, and the peptides enzymically digested
from a protein in the MS-MS spectrums are also needed to be recovered. Compu-
tational methods are then proposed to identify the multiply charged ions through
combination of these peptides. The most recognized peptide identification soft-
ware packages can be classified into four categories: database searching (Perkins
et al. 1999; Ma et al. 2003; Higdon et al. 2004; Itoh and Okamoto 2007), de novo se-
quencing (Fernandez-de-Cossio et al. 1995; Taylor and Johnson 1997, 2001; Dancik
et al. 1999; Chen et al. 2001; Fischer et al. 2005; Frank and Pevzner 2005; Pitzer
et al. 2007), sequence tagging (Huang et al. 2001; Shevchenko et al. 2001; Mackey
et al. 2002), and consensus of multiple engines (Resing et al. 2004) (Fig. 12.3).

Fig. 12.3 The computational methods for protein/peptide identification
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Database searching is the most important tool to identify protein. The peptide
mass fingerprint (PMF), that is, the most abundant peaks in the spectrum, has
the ability to uniquely define a protein. By searching a centralized database of
sequenced protein, the homologous PMF of the predicted proteins derived from
simulated transcription of sequenced genomes can be found. This method, how-
ever, does not have the ability to identify the proteins whose genomes are not yet
sequenced and whose PTMs are not annotated. Robust identification depends on
the complexity of the proteome searched and the presence of chemical noise and
contaminants in the mass spectrum. In large proteomes, sensitivity can be greatly
diminished.

When an appropriate database is not available, de novo sequencing is the only
way to identify the peptide. With high-quality spectra, there is often enough infor-
mation present to decode the sequences of unknown peptides directly, called as “de
novo” sequencing. After the protein is digested by a small number of different en-
zymes and the de novo sequence of each different peptide set is found, the whole
protein sequence can be recombined from the overlap.

Sequence-tagging approaches are to find the sequence of a peptide by searching
a database with partial sequence information inferred from the MS-MS spectrum.
Certainly, none of the peptide-sequencing programs is perfect. Researchers have
started to use multiple programs to run the same dataset. The results of multiple
engines are then combined to get fewer false positives, better coverage, and higher
confidence.

The challenges in peptide identification are contamination of the sample, im-
perfect fragmentation, simultaneous fragmentation of two different peptides, post-
translational modification (PTM), and low signal-to-noise ratio. Consequently, in
practice, many y-ion and b-ion peaks might be absent from, and many other types
of peaks might unexpectedly appear in, the spectrum. These can make MS–MS pep-
tide identification significantly harder than it would appear to be.

12.4 Validation and Clinical Application

There is a big gap between biomarker discovery and biomarker validation (Rifai
et al. 2006). Because of the challenges in blood proteomics and the algorithms in
biomarker discovery, it is hard to find a consensus for the best biomarker discovery
platform. Now, for the bioinformatics algorithms in biomarker discovery, the dis-
tinct combinations of them in different steps of biomarker discovery may result in
different biomarker candidates although using the same sample. Such inconsistent
and less reproducible biomarkers also inhibit the validation of them between labs
and biomarker discovery platforms.

The gap between discovery and validation of proteomic biomarkers results in
unusable diagnosis application of proteomic biomarkers. FDA, in recent years, only
approves nearly one drug target discovered from proteomics per year (Fig. 12.4)
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Fig. 12.4 The gap between the numbers of biomarker publications and FDA-approved biomarkers

(Ludwig and Weinstein 2005). Until now, none of proteomics biomarkers has been
successfully applied in clinical application (Anderson and Anderson 2002).

The techniques required in the validation and clinical application of protein
are immunoprecipitation (IP) (Su 2003), protein array (Stoll et al. 2002; Diamond
et al. 2003; Bodovitz and Joos 2004), antibody array (Ng et al. 2007), tissue array
(Shen et al. 2003; Radhakrishnan et al. 2008), nanoparticles (Kim et al. 2008), etc.

IP is a method that uses the antigen–antibody reaction principle to identify a
protein that reacts specifically with an antibody from mixture of proteins so that
its quantity or physical characteristics can be examined (Su 2003). An antibody
(monoclonal or polyclonal) against a specific target antigen is allowed to form an
immune complex with that target in a sample, such as a cell lysate. The immune
complex is then captured on a solid support to which either Protein A or Protein G
has been immobilized (Protein A or G binds to the antibody, which is bound to its
antigen). The process of capturing this complex from the solution is referred to as
precipitation. Any proteins not “precipitated” by the immobilized Protein A or G
support are washed away. Finally, components of the bound immune complex (both
antigen and antibody) are eluted from the support and analyzed by SDS-PAGE (gel
electrophoresis), often followed by Western blot detection to verify the identity of
the antigen. Immunoassays are expensive and slow to make, difficult to multiplex,
and thus problematic for the new candidate biomarkers.

Protein arrays or antibody arrays are rapidly becoming established as a powerful
means to detect proteins, monitor their expression levels, and investigate protein in-
teractions and functions [131–134]. A mixture (e.g. of two tissue extracts) is applied
to the array and the analytes of interest are captured by the specific ligand binders,
followed by detection of binding. Similar to the comparison of samples from normal
and diseased tissues on DNA arrays or on 2D gels, reference and test samples can
be labeled with Cy3 and Cy5 fluors, mixed, gel filtered to remove unbound dyes,
and then incubated on a chip of arrayed antibodies. Increased or decreased protein
expression is assessed using a scanner, and up- or down-regulated proteins can be
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identified from the ratios of the two dyes similar to the “traffic light” (red, yellow,
green) system. There are a number of important technical challenges and bottle-
necks in protein array technologies, some of which are unique to proteins while
others are common to high-throughput methods in general, which need to be solved
in order to achieve the maximum capability. They include the problems of obtaining
global, functional protein expression for array construction and selection of ligand
binders, aspects of protein coupling to surfaces, the sensitivity and dynamic range
of detection systems, and standardization and data storage.

Tissue microarray (TMA) translates the convenience of DNA microarrays to tis-
sues and evaluates the molecular targets in parallel [135, 136]. This approach allows
simultaneous screening of large collectives of tumor specimens for any molecular
alteration by relocating tissues from conventional histologic paraffin blocks, such
that tissues from multiple patients or blocks could be seen on the same slide. The
technology of TMA involves harvesting small disks of tissue from individual donor
paraffin-embedded tissue blocks and placing them in a recipient block with de-
fined array coordinates. These miniaturized collections of tissue spots result in a
dramatic increase in throughput for in situ examination of gene status and gene ex-
pression from archival specimens. A single TMA block may yield information on
the molecular characterization of up to 1,000 samples at a time. Although TMA
looks promising, the major limitation of this technique is the tissue volume. The
punches of 0.6-mm diameter from tumor are perceived as too small and potentially
not representative of the entire area. This may be especially true of tumors that may
be highly heterogeneous.

Nanoparticles are also used for protein detection [137]. A sensor array containing
six noncovalent gold nanoparticle–fluorescent polymer conjugates has been created
to detect, identify, and quantify protein targets. These gold particles serve as both se-
lective recognition elements as well as quenchers for the polymer. The nanoparticle
end groups carry additional hydrophobic, aromatic, or hydrogen-bonding func-
tionality engineered to tune nanoparticle–polymer and nanoparticle–protein inter-
actions. The challenge in this technique is the design of the polymers for gold
nanoparticles. Since diverse polymers have different properties, such as monolayer
and multilayer designs (for surface functionality and water solubility), detecting
specific proteins needs specific polymers on the nanoparticles.

For the validation and clinical application of proteomic biomarkers, one prob-
lem is that proteomics discovery platforms are inefficient for the large sample sets
required in verification or validation. Properly structured sets of 1;500 samples
required in biomarker validation are unavailable from public sources and are ex-
pensive to develop (the “Zolg barrier”) (Anderson and Anderson 2002). Next, most
proteomic biomarker candidates are discovered from blood samples instead of tis-
sue samples (Rifai et al. 2006). Just as what we discussed about the disadvantages
of blood samples, such as the complexity and dynamic range of plasma, and the
anticipated low relative abundance of many disease-specific biomarkers, the blood
samples may not be suitable for biomarker discovery. In addition, most of proteomic
biomarkers are validated in vitro instead of in vivo. From a biological point of view,
the validation in vivo for the proteomics biomarkers discovered from tissues may be
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more powerful for diagnosis application. Recently, the molecular imaging method
has been proposed for biomarker validation in vivo (Pantaleo et al. 2008; Weissleder
and Pittet 2008). To improve the accuracy of biomarker discovery, we should also
find a new way in biomarker validation and clinical application.
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