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Preface

This book gives the material for an introductory course on Soil Dynamics, as given
for about 10 years at the Delft University of Technology for students of civil engi-
neering, and updated continuously since 1994.

The book presents the basic principles of elastodynamics and the major solutions
of problems of interest for geotechnical engineering. For most problems the full an-
alytical derivation of the solution is given, mainly using integral transform methods.
These methods are presented briefly in Appendix A. The elastostatic solutions of
many problems are also given, as an introduction to the elastodynamic solutions,
and as possible limiting states of the corresponding dynamic problems. For a num-
ber of problems of elastodynamics of a half space exact solutions are given, in closed
form, using methods developed by Pekeris and De Hoop. Some of these basic so-
lutions are derived in full detail, to assist in understanding the beautiful techniques
used in deriving them. For many problems the main functions for a computer pro-
gram to produce numerical data and graphs are given, in C. Some approximations
in which the horizontal displacements are disregarded, an approximation suggested
by Westergaard and Barends, are also given, because they are much easier to derive,
may give a first insight in the response of a foundation, and may be a stepping stone
to solving the more difficult complete elastodynamic problems.

The book is directed towards students of engineering, and may be giving more
details of the derivations of the solutions than strictly necessary, or than most other
books on elastodynamics give, but this may be excused by my own difficulties in
studying the subject, and by helping students with similar difficulties.

The book starts with a chapter on the behaviour of the simplest elementary sys-
tem, a system consisting of a mass, supported by a linear spring and a linear damper.
The main purpose of this chapter is to define the basic properties of dynamical sys-
tems, for future reference. In this chapter the major forms of damping of importance
for soil dynamics problems, viscous damping and hysteretic damping, are defined
and their properties are investigated.

Chapters 2 and 3 are devoted to one dimensional problems: wave propagation in
piles, and wave propagation in layers due to earthquakes in the underlying layers, as
first developed in the 1970s at the University of California, Berkeley. In these chap-
ters the mathematical methods of Laplace and Fourier transforms, characteristics,
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and separation of variables, are used and compared. Some simple numerical models
are also presented.

The next two chapters (Chaps. 4 and 5) deal with the important effect that soils
are usually composed of two constituents: solid particles and a fluid, usually water,
but perhaps oil, or a mixture of a liquid and gas. Chapter 4 presents the classical the-
ory, due to Terzaghi, of semi-static consolidation, and some elementary solutions. In
Chap. 5 the extension to the dynamical case is presented, mainly for the one dimen-
sional case, as first presented by De Josselin de Jong and Biot, in 1956. The solution
for the propagation of waves in a one dimensional column is presented, leading to
the important conclusion that for most problems a practically saturated soil can be
considered as a medium in which the solid particles and the fluid move and deform
together, which in soil mechanics is usually denoted as a state of undrained defor-
mations. For an elastic solid skeleton this means that the soil behaves as an elastic
material with Poisson’s ratio close to 0.5.

Chapters 6 and 7 deal with the solution of problems of cylindrical and spherical
symmetry. In the chapter on cylindrically symmetric problems the propagation of
waves in an infinite medium introduces Rayleigh’s important principle of the radia-
tion condition, which expresses that in an infinite medium no waves can be expected
to travel from infinity towards the interior of the body.

Chapters 8 and 9 give the basic theory of the theory of elasticity for static and
dynamic problems. Chapter 8 also gives the solution for some of the more difficult
problems, involving mixed boundary value conditions. The corresponding dynamic
problems still await solution, at least in analytic form. Chapter 9 presents the basics
of dynamic problems in elastic continua, including the general properties of the
most important types of waves: compression waves, shear waves, Rayleigh waves
and Love waves, which appear in other chapters.

Chapter 10, on confined elastodynamics, presents an approximate theory of elas-
todynamics, in which the horizontal deformations are artificially assumed to van-
ish, an approximation due to Westergaard and generalized by Barends. This makes
it possible to solve a variety of problems by simple means, and resulting in rela-
tively simple solutions. It should be remembered that these are approximate solu-
tions only, and that important features of the complete solutions, such as the gen-
eration of Rayleigh waves, are excluded. These approximate solutions are included
in the present book because they are so much simpler to derive and to analyze than
the full elastodynamic solutions. The full elastodynamic solutions of the problems
considered in this chapter are given in Chaps. 11–13.

In soil mechanics the elastostatic solutions for a line load or a distributed load
on a half plane are of great importance because they provide basic solutions for
the stress distribution in soils due to loads on the surface. In Chaps. 11 and 12 the
solution for two corresponding elastodynamic problems, a line load on a half plane
and a strip load on a half plane, are derived. These chapters rely heavily on the
theory developed by Cagniard and De Hoop. The solutions for impulse loads, which
can be found in many publications, are first given, and then these are used as the
basics for the solutions for the stresses in case of a line load constant in time. These
solutions should tend towards the well known elastostatic limits, as they indeed do.
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An important aspect of these solutions is that for large values of time the Rayleigh
wave is clearly observed, in agreement with the general wave theory for a half plane.
Approximate solutions valid for large values of time, including the Rayleigh waves,
are derived for the line load and the strip load. These approximate solutions may be
useful as the basis for the analysis of problems with a more general type of loading.

Chapter 13 presents the solution for a point load on an elastic half space, a prob-
lem first solved analytically by Pekeris. The solution is derived using integral trans-
forms and an elegant transformation theorem due to Bateman and Pekeris. In this
chapter numerical values are obtained using numerical integration of the final inte-
grals.

In Chap. 14 some problems of moving loads are considered. Closed form solu-
tions appear to be possible for a moving wave load, and for a moving strip load,
assuming that the material possesses some hysteretic damping.

Chapter 15, finally, presents some practical considerations on foundation vibra-
tions. On the basis of solutions derived in earlier chapters approximate solutions are
expressed in the form of equivalent springs and dampings.

The text has been prepared using the LATEX version (Lamport, 1994) of the pro-
gram TEX (Knuth, 1986). The PICTEX macros (Wichura, 1987) have been used to
prepare the figures. Modern software provides a major impetus to the production of
books and papers in facilitating the illustration of complex solutions by numerical
and graphical examples. In this book many solutions are accompanied by parts of
computer programs that have been used to produce the figures, so that readers can
compose their own programs. It is all the more appropriate to acknowledge the effort
that must have been made by earlier authors and their associates in producing their
publications. A case in point is the paper by Lamb, more than a century ago, with
many illustrative figures, for which the computations were made by Mr. Woodall.

The programs used to produce many of the illustrations in the book can be down-
loaded from the website http://geo.verruijt.net. Updates of these programs will be
published on this website. Early versions of the book have been published on this
website, leading to helpful comments by readers from all over the world.

Many thanks are due to Professor A.T. de Hoop for his many helpful and con-
structive ideas and comments, and to Dr. C. Cornejo Córdova for several years of
joint research. Further comments will be greatly appreciated.

Delft Arnold Verruijt
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Chapter 1
Vibrating Systems

In this chapter a classical basic problem of dynamics will be considered, for the
purpose of introducing various concepts and properties. The system to be considered
is a single mass, supported by a linear spring and a viscous damper. The response
of this simple system will be investigated, for various types of loading, such as a
periodic load and a step load. In order to demonstrate some of the mathematical
techniques the problems are solved by various methods, such as harmonic analysis
using complex response functions, and the Laplace transform method.

1.1 Single Mass System

Consider the system of a single mass, supported by a spring and a dashpot, in which
the damping is of a viscous character, see Fig. 1.1. The spring and the damper form
a connection between the mass and an immovable base (for instance the earth).

According to Newton’s second law the equation of motion of the mass is

m
d2u

dt2
= P(t), (1.1)

where P(t) is the total force acting upon the mass m, and u is the displacement of
the mass.

Fig. 1.1 Mass supported by
spring and damper

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
© Springer Science+Business Media B.V. 2010
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2 1 Vibrating Systems

It is now assumed that the total force P consists of an external force F(t), and
the reaction of a spring and a damper. In its simplest form a spring leads to a force
linearly proportional to the displacement u, and a damper leads to a response linearly
proportional to the velocity du/dt . If the spring constant is k and the viscosity of
the damper is c, the total force acting upon the mass is

P(t) = F(t) − ku − c
du

dt
. (1.2)

Thus the equation of motion for the system is

m
d2u

dt2 + c
du

dt
+ ku = F(t). (1.3)

The response of this simple system will be analyzed by various methods, in order to
be able to compare the solutions with various problems from soil dynamics. In many
cases a problem from soil dynamics can be reduced to an equivalent single mass
system, with an equivalent mass, an equivalent spring constant, and an equivalent
viscosity (or damping). The main purpose of many studies is to derive expressions
for these quantities. Therefore it is essential that the response of a single mass sys-
tem under various types of loading is fully understood. For this purpose both free
vibrations and forced vibrations of the system will be considered in some detail.

1.2 Characterization of Viscosity

The damper has been characterized in the previous section by its viscosity c. Alter-
natively this element can be characterized by a response time of the spring-damper
combination. The response of a system of a parallel spring and damper to a unit step
load of magnitude F0 is

u = F0

k
[1 − exp(−t/tr )], (1.4)

where tr is the response time of the system, defined by

tr = c/k. (1.5)

This quantity expresses the time scale of the response of the system. After a time
of say t ≈ 4tr the system has reached its final equilibrium state, in which the spring
dominates the response. If t < tr the system is very stiff, with the damper dominat-
ing its behaviour.
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1.3 Free Vibrations

When the system is unloaded, i.e. F(t) = 0, the possible vibrations of the system
are called free vibrations. They are described by the homogeneous equation

m
d2u

dt2 + c
du

dt
+ ku = 0. (1.6)

An obvious solution of this equation is u = 0, which means that the system is at
rest. If it is at rest initially, say at time t = 0, then it remains at rest. It is interesting
to investigate, however, the response of the system when it has been brought out of
equilibrium by some external influence. For convenience of the future discussions
we write

ω0 = √
k/m, (1.7)

and

2ζ = ω0tr = c

mω0
= cω0

k
= c√

km
. (1.8)

The quantity ω0 will turn out to be the resonance frequency of the undamped system,
and ζ will be found to be a measure for the damping in the system.

With (1.7) and (1.8) the differential equation can be written as

d2u

dt2
+ 2ζω0

du

dt
+ ω2

0u = 0. (1.9)

This is an ordinary linear differential equation, with constant coefficients. According
to the standard approach in the theory of linear differential equations the solution of
the differential equation is sought in the form

u = A exp(αt), (1.10)

where A is a constant, probably related to the initial value of the displacement u,
and α is as yet unknown. Substitution into (1.9) gives

α2 + 2ζω0α + ω2
0 = 0. (1.11)

This is called the characteristic equation of the problem. The assumption that the
solution is an exponential function, see (1.10), appears to be justified, if (1.11) can
be solved for the unknown parameter α. The possible values of α are determined by
the roots of the quadratic equation (1.11). These roots are, in general,

α1,2 = −ζω0 ± ω0

√
ζ 2 − 1. (1.12)

These solutions may be real, or they may be complex, depending upon the sign of
the quantity ζ 2 − 1. Thus, the character of the response of the system depends upon
the value of the damping ratio ζ , because this determines whether the roots are real
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or complex. The various possibilities will be considered separately below. Because
many systems are only slightly damped, it is most convenient to first consider the
case of small values of the damping ratio ζ .

Small Damping

When the damping ratio is smaller than 1, ζ < 1, the roots of the characteristic
equation (1.11) are both complex,

α1,2 = −ζω0 ± iω0

√
1 − ζ 2, (1.13)

where i is the imaginary unit, i = √−1. In this case the solution can be written as

u = A1 exp(iω1t) exp(−ζω0t) + A2 exp(−iω1t) exp(−ζω0t), (1.14)

where

ω1 = ω0

√
1 − ζ 2. (1.15)

The complex exponential function exp(iω1t) may be expressed as

exp(iω1t) = cos(ω1t) + i sin(ω1t). (1.16)

Therefore the solution (1.14) may also be written in terms of trigonometric func-
tions, which is often more convenient,

u = C1 cos(ω1t) exp(−ζω0t) + C2 sin(ω1t) exp(−ζω0t). (1.17)

The constants C1 and C2 depend upon the initial conditions. When these initial
conditions are that at time t = 0 the displacement is given to be u0 and the velocity
is zero, it follows that the final solution is

u

u0
= cos(ω1t − ψ)

cos(ψ)
exp(−ζω0t), (1.18)

where ψ is a phase angle, defined by

tan(ψ) = ω0ζ

ω1
= ζ

√
1 − ζ 2

. (1.19)

The solution (1.18) is a damped sinusoidal vibration. It is a fluctuating function, with
its zeroes determined by the zeroes of the function cos(ω1t − ψ), and its amplitude
gradually diminishing, according to the exponential function exp(−ζω0t).

The solution is shown graphically in Fig. 1.2 for various values of the damp-
ing ratio ζ . If the damping is small, the frequency of the vibrations is practically
equal to that of the undamped system, ω0, see also (1.15). For larger values of the
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Fig. 1.2 Free vibrations of a weakly damped system

damping ratio the frequency is slightly smaller. The influence of the frequency on
the amplitude of the response then appears to be very large. For large frequencies
the amplitude becomes very small. If the frequency is so large that the damping
ratio ζ approaches 1 the character of the solution may even change from that of a
damped fluctuation to the non-fluctuating response of a strongly damped system.
These conditions are investigated below.

Critical Damping

When the damping ratio is equal to 1, ζ = 1, the characteristic equation (1.11) has
two equal roots,

α1,2 = −ω0. (1.20)

In this case the damping is said to be critical. The solution of the problem in this
case is, taking into account that there is a double root,

u = (A + Bt) exp(−ω0t), (1.21)

where the constants A and B must be determined from the initial conditions. When
these are again that at time t = 0 the displacement is u0 and the velocity is zero, it
follows that the final solution is

u = u0(1 + ω0t) exp(−ω0t). (1.22)

This solution is shown in Fig. 1.3, together with some results for large damping
ratios.
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Fig. 1.3 Free vibrations of a strongly damped system

Large Damping

When the damping ratio is greater than 1 (ζ > 1) the characteristic equation (1.11)
has two real roots,

α1,2 = −ζω0 ± ω0

√
ζ 2 − 1. (1.23)

The solution for the case of a mass point with an initial displacement u0 and an
initial velocity zero now is

u

u0
= ω2

ω2 − ω1
exp(−ω1t) − ω1

ω2 − ω1
exp(−ω2t), (1.24)

where

ω1 = ω0(ζ −
√

ζ 2 − 1), (1.25)

and

ω2 = ω0(ζ +
√

ζ 2 − 1). (1.26)

This solution is also shown graphically in Fig. 1.3, for ζ = 2 and ζ = 5. It ap-
pears that in these cases, with large damping, the system will not oscillate, but will
monotonously tend towards the equilibrium state u = 0.

1.4 Forced Vibrations

In the previous section the possible free vibrations of the system have been investi-
gated, assuming that there was no load on the system. When there is a certain load,
periodic or not, the response of the system also depends upon the characteristics of
this load. This case of forced vibrations is studied in this section and the next. In the
present section the load is assumed to be periodic.
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For a periodic load the force F(t) can be written, in its simplest form, as

F = F0 cos(ωt), (1.27)

where ω is the given circular frequency of the load. In engineering practice the
frequency is sometimes expressed by the frequency of oscillation f , defined as the
number of cycles per unit time (cps, cycles per second),

f = ω/2π. (1.28)

In order to study the response of the system to such a periodic load it is most con-
venient to write the force as

F = �{F0 exp(iωt)}, (1.29)

where the symbol � indicates the real value of the term between brackets. If it is
assumed that F0 is real the two expressions (1.27) and (1.29) are equivalent.

The solution for the displacement u is now also written in terms of a complex
variable,

u = �{U exp(iωt)}, (1.30)

where U in general will appear to be complex. Substitution of (1.30) and (1.29) into
the differential equation (1.3) gives

(k + icω − mω2)U = F0. (1.31)

Actually, only the real part of this equation is obtained, but it is convenient to add
the (irrelevant) imaginary part of the equation, so that a fully complex equation
is obtained. After all the calculations have been completed the real part should be
considered only, in accordance with (1.30).

The solution of the problem defined by (1.31) is

U = F0/k

1 + 2iζω/ω0 − ω2/ω2
0

, (1.32)

where, as before,

ω0 = √
k/m, 2ζ = c

mω0
= cω0

k
= c√

km
. (1.33)

The quantity ω0 is the resonance frequency of the undamped system, and ζ is a
measure for the damping in the system.

With (1.30) and (1.32) the displacement is now found to be

u = u0 cos(ωt − ψ), (1.34)

where the amplitude u0 is given by

u0 = F0/k
√

(1 − ω2/ω2
0)

2 + (2 ζ ω/ω0)2
, (1.35)
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and the phase angle ψ is given by

tanψ = 2 ζ ω/ω0

1 − ω2/ω2
0

. (1.36)

In terms of the original parameters the amplitude can be written as

u0 = F0/k
√

(1 − mω2/k)2 + (cω/k)2
, (1.37)

and in terms of these parameters the phase angle ψ is given by

tanψ = cω/k

1 − mω2/k
. (1.38)

It is interesting to note that for the case of a system of zero mass these expressions
tend towards simple limits,

m = 0 : u0 = F0/k
√

1 + (cω/k)2
, (1.39)

and

m = 0 : tanψ = cω

k
. (1.40)

The amplitude of the system, as described by (1.35), is shown graphically in Fig. 1.4,
as a function of the frequency, and for various values of the damping ratio ζ . It
appears that for small values of the damping ratio there is a definite maximum of
the response curve, which even becomes infinitely large if ζ → 0. This is called
resonance of the system. If the system is undamped resonance occurs if ω = ω0 =√

k/m. This is sometimes called the eigen frequency of the free vibrating system.
One of the most interesting aspects of the solution is the behaviour near res-

onance. Actually the maximum response occurs when the slope of the curve in

Fig. 1.4 Amplitude of forced vibration
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Fig. 1.5 Phase angle of forced vibration

Fig. 1.4 is horizontal. This is the case when du0/dω = 0, or, with (1.35),

du0

dω
= 0 : ω

ω0
=

√
1 − 2ζ 2. (1.41)

For small values of the damping ratio ζ this means that the maximum amplitude
occurs if the frequency ω is very close to ω0, the resonance frequency of the un-
damped system. For large values of the damping ratio the resonance frequency may
be somewhat smaller, even approaching 0 when 2ζ 2 approaches 1. When the damp-
ing ratio is very large, the system will never show any sign of resonance. Of course
the price to be paid for this very stable behaviour is the installation of a damping
element with a very high viscosity.

The phase angle ψ is shown in a similar way in Fig. 1.5. For small frequencies,
that is for quasi-static loading, the amplitude of the system approaches the static
response F0/k, and the phase angle is practically 0. In the neighbourhood of the
resonance frequency of the undamped system (i.e. if ω/ω0 ≈ 1) the phase angle
is about π/2, which means that the amplitude is maximal when the force is zero,
and vice versa. For very rapid fluctuations the inertia of the system may prevent
practically all vibrations (as indicated by the very small amplitude, see Fig. 1.4), but
the system moves out of phase, as indicated by the phase angle approaching π , see
Fig. 1.5.

Dissipation of Work

An interesting quantity is the dissipation of work during a full cycle. This can be
derived by calculating the work done by the force during a full cycle,

W =
∫ 2π

ωt=0
F

du

dt
dt. (1.42)
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With (1.27) and (1.34) one obtains

W = πF0u0 sinψ. (1.43)

Because the duration of a full cycle is 2π/ω the rate of dissipation of energy (the
dissipation per second) is

D = Ẇ = 1

2
F0u0ω sinψ. (1.44)

This formula expresses that the dissipation rate is proportional to the amplitudes of
the force and the displacement, and also to the frequency. This is because there are
more cycles per second in which energy may be dissipated if the frequency is higher.
The proportionality factor sinψ , which depends upon the phase angle ψ , and thus
upon the viscosity c, see (1.8), finally expresses the relative part of the energy that
is dissipated. The maximum of this factor is 1, if the displacement and the force are
out of phase. Its minimum is 0, when the viscosity of the damper is zero.

Using the expressions for tanψ and F0/u0 given in (1.35) and (1.36) the formula
for the energy dissipation per cycle can also be written in various other forms. One
of the simplest expressions appears to be

W = πcωu2
0. (1.45)

This shows that the energy dissipation is zero for static loading (when the frequency
is zero), or when the viscosity vanishes. It may be noted that the formula suggests
that the energy dissipation may increase indefinitely when the frequency is very
large, but this is not true. For very high frequencies the displacement u0 becomes
very small. In this respect the original formula, (1.43), is a more useful general
expression.

1.5 Equivalent Spring and Damping

The analysis of the response of a system to a periodic load, characterized by a time
function exp(iωt), often leads to a relation of the form

F = (K + iCω)U, (1.46)

where U is the amplitude of a characteristic displacement, F is the amplitude of the
force, and K and C may be complicated functions of the parameters representing
the properties of the system, and perhaps also of the frequency ω. Comparison of
this relation with (1.31) shows that this response function is of the same character
as that of a combination of a spring and a damper. This means that the system
can be considered as equivalent with such a spring-damper system, with equivalent
stiffness K and equivalent damping C. The response of the system can then be
analyzed using the properties of a spring-damper system. This type of equivalence
will be used in Chap. 15 to study the response of a vibrating mass on an elastic half
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plane. The method can also be used to study the response of a foundation pile in an
elastic layer. Actually, it is often very convenient and useful to try to represent the
response of a complicated system to a harmonic load in the form of an equivalent
spring stiffness K and an equivalent damping C.

In the special case of a sinusoidal displacement one may write

u = �{U exp(iωt)} = U sin(ωt), (1.47)

if U is real. The corresponding force now is, with (1.46),

F = �{(K + iCω)U exp(iωt)}, (1.48)

or,

F = {K sin(ωt) + Cω cos(ωt)}U. (1.49)

This is another useful form of the general relation between force and displacement
in case of a spring K and damping C.

1.6 Solution by Laplace Transform Method

It may be interesting to present also the method of solution of the original differen-
tial equation (1.3),

m
d2u

dt2 + c
du

dt
+ ku = F(t), (1.50)

by the Laplace transform method. This is a general technique, that enables to solve
the problem for any given load F(t) (Churchill, 1972). As an example the problem
will be solved for a step load, applied at time t = 0,

F(t) =
{

0, if t < 0,

F0, if t > 0.
(1.51)

It is assumed that at time t = 0 the system is at rest, so that both the displacement u

and the velocity du/dt are zero at time t = 0.
The Laplace transform of the displacement u is defined as

u =
∫ ∞

0
u exp(−st) dt, (1.52)

where s is the Laplace transform variable. The most characteristic property of the
Laplace transform is that differentiation with respect to time t is transformed into
multiplication by the transform parameter s. Thus the differential equation (1.50)
becomes

(ms2 + cs + k)u =
∫ ∞

0
F(t) exp(−st) dt = F0

s
. (1.53)
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Again it is convenient to introduce the characteristic frequency ω0 and the damping
ratio ζ , see (1.7) and (1.8), such that

k = ω2
0m, (1.54)

and

c = 2ζmω0. (1.55)

The solution of the algebraic equation (1.53) is

u = F0/m

s (s + ω1)(s + ω2)
, (1.56)

where

ω1 = ω0

(
ζ − i

√
1 − ζ 2

)
, (1.57)

and

ω2 = ω0

(
ζ + i

√
1 − ζ 2

)
. (1.58)

These definitions are in agreement with (1.25) and (1.26) given above.
The solution (1.56) can also be written as

u = F0

m

{
1

ω1ω2s
− 1

ω1(ω2 − ω1)(s + ω1)
+ 1

ω2(ω2 − ω1)(s + ω2)

}
. (1.59)

In this form the solution is suitable for inverse Laplace transformation. The result is

u = F0

m

{
1

ω1ω2
− exp(−ω1t)

ω1(ω2 − ω1)
+ exp(−ω2t)

ω2(ω2 − ω1)

}
. (1.60)

Using the definitions (1.57) and (1.58) and some elementary mathematical opera-
tions this expression can also be written as

u = F0

k

{
1 −

[
cos

(
ω0t

√
1 − ζ 2

)
+ ζ

√
1 − ζ 2

sin
(
ω0t

√
1 − ζ 2

)]
exp(−ζω0t)

}
.

(1.61)
This formula applies for all values of the damping ratio ζ . For values larger than 1,
however, the formula is inconvenient because then the factor

√
1 − ζ 2 is imaginary.

For such cases the formula can better be written in the equivalent form

u = F0

k

{
1 −

[
cosh

(
ω0t

√
ζ 2 − 1

)
+ ζ

√
ζ 2 − 1

sinh
(
ω0t

√
ζ 2 − 1

)]
exp(−ζω0t)

}
.

(1.62)
For the case of critical damping, ζ = 1, both formulas contain a factor 0/0, and the
solution seems to degenerate. For that case a simple expansion of the functions near
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Fig. 1.6 Response to step load

ζ = 1 gives, however,

ζ = 1 : u = F0

k

{
1 − (1 + ω0t) exp(−ω0t)

}
. (1.63)

Figure 1.6 shows the response of the system as a function of time, for various
values of the damping ratio. It appears that an oscillating response occurs if the
damping is smaller than critical. When there is absolutely no damping these os-
cillations will continue forever, but damping results in the oscillations gradually
vanishing. The system will ultimately approach its new equilibrium state, with a
displacement F0/k. When the damping is sufficiently large, such that ζ > 1, the
oscillations are suppressed, and the system will approach its equilibrium state by a
monotonously increasing function.
It has been shown in this section that the Laplace transform method can be used to
solve the dynamic problem in a straightforward way. For a step load this solution
method leads to a relatively simple closed form solution, which can be obtained by
elementary means. For other types of loading the analysis may be more complicated,
however, depending upon the characteristics of the load function.

1.7 Hysteretic Damping

In this section an alternative form of damping is introduced, hysteretic damping,
which may be better suited to describe the damping in soils.
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It is first recalled that the basic equation of a single mass system is, see (1.3),

m
d2u

dt2
+ c

du

dt
+ ku = F(t), (1.64)

where c is the viscous damping.
In the case of forced vibrations the load is

F(t) = F0 cos(ωt), (1.65)

where F0 is a given amplitude, and ω is a given frequency. As seen in Sect. 1.4 the
response of the system can be obtained by writing

u = �{U exp(iωt)}, (1.66)

where U may be complex. Substitution of (1.66) and (1.65) into the differential
equation (1.64) leads to the equation

(k + icω − mω2)U = F0. (1.67)

In Sect. 1.4 it was assumed that the viscosity c is a constant. In that case the damping
ratio ζ was defined as

2ζ = c

mω0
= cω0

k
= c√

km
, (1.68)

where

ω0 = √
k/m, (1.69)

the resonance frequency (or eigen frequency) of the undamped system. All this
means that the influence of the damping depends upon the frequency, see for in-
stance Fig. 1.4, which shows that the amplitude of the vibrations tends towards zero
when ω/ω0 → ∞.

A different type of damping is hysteretic damping, which may be used to rep-
resent the damping caused in a vibrating system by dry friction. In this case it is
assumed that the factor cω/k is constant. The damping ratio ζh is now defined as

2ζh = ωtr = cω

k
. (1.70)

It is often considered that hysteretic damping is a more realistic representation of
the behaviour of soils than viscous damping. The main reason is that the irreversible
(plastic) deformations that occur in soils under cyclic loading are independent of the
frequency of the loading. This can be expressed by a constant damping ratio ζh as
defined here.

Equation (1.67) now can be written as

k(1 + 2iζh − ω2/ω2
0)U = F0, (1.71)
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with the solution

U = F0/k

1 + 2iζh − ω2/ω2
0

. (1.72)

The displacement u now is

u = u0 cos(ωt − ψh), (1.73)

where the amplitude u0 is given by

u0 = F0/k
√

(1 − ω2/ω2
0)

2 + 4 ζ 2
h

, (1.74)

and the phase angle ψh is given by

tanψ = 2 ζh

1 − ω2/ω2
0

. (1.75)

For a system of zero mass these expressions tend towards simple limits,

m = 0 : u0 = F0/k
√

1 + 4ζ 2
h

, (1.76)

and

m = 0 : tanψh = 2ζh. (1.77)

These formulas express that in this case both the amplitude and the phase shift
are constant, independent of the frequency ω. This means that the response of the
system is independent of the speed of loading and unloading. This is a familiar
characteristic of materials such as soft soils (especially granular materials) under
cyclic loading. For this reason hysteretic damping seems to be a more realistic form
of damping in soils than viscous damping (Hardin, 1965; Verruijt, 1999).

The amplitude of the system, as described by (1.74), is shown graphically in
Fig. 1.7, as a function of the frequency, and for various values of the hysteretic
damping ratio ζh. The behaviour is very similar to that of a system with viscous
damping, see Fig. 1.4, except for small values of the frequency. However, in this
system the influence of the mass dominates the response, especially for high fre-
quencies.

The phase angle is shown in Fig. 1.8. Again it appears that the main difference
with the system having viscous damping occurs for small values of the frequency.
For large values of the frequency the influence of the mass appears to dominate the
response of the system.

It should be noted that in the absence of mass the response of a system with
hysteretic damping is quite different from that of a system with viscous damping, as
demonstrated by the difference between (1.39) and (1.76). In a system with viscous
damping the amplitude tends towards zero for high frequencies, see (1.39), whereas
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Fig. 1.7 Amplitude of forced vibration, hysteretic damping

Fig. 1.8 Phase angle of forced vibration, hysteretic damping

in a system with hysteretic damping (and zero mass) the amplitude is independent
of the frequency, see (1.76).



Chapter 2
Waves in Piles

In this chapter the problem of the propagation of compression waves in piles is
studied. This problem is of importance when considering the behaviour of a foun-
dation pile and the soil during pile driving, and under dynamic loading, such as
the behaviour of a pile in the foundation of a railway bridge. Because of the one-
dimensional character of the problem, and the simple shape of the pile, usually hav-
ing a constant cross section and a long length, this is one of the simplest problems
of wave propagation in a mathematical sense, and therefore it may be used to il-
lustrate some of the main characteristics of engineering dynamics. Several methods
of analysis will be used: the Laplace transform method, separation of variables, the
method of characteristics, and numerical solution methods.

2.1 One-Dimensional Wave Equation

First, the case of a free standing pile will be considered, ignoring the interaction
with the soil. In later sections the friction interaction with the surrounding soil, and
the interaction with the soil at the base will be considered.

Consider a pile of constant cross sectional area A, consisting of a linear elastic
material, with modulus of elasticity E. If there is no friction along the shaft of the
pile the equation of motion of an element is

∂N

∂z
= ρA

∂2w

∂t2 , (2.1)

where ρ is the mass density of the material, and w is the displacement in axial
direction. The normal force N is related to the stress by

N = σA,

and the stress is related to the strain by Hooke’s law for the pile material

σ = Eε.

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
© Springer Science+Business Media B.V. 2010
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Fig. 2.1 Element of pile

Finally, the strain is related to the vertical displacement w by the relation

ε = ∂w/∂z.

Thus the normal force N is related to the vertical displacement w by the relation

N = EA
∂w

∂z
. (2.2)

Substitution of (2.2) into (2.1) gives

E
∂2w

∂z2 = ρ
∂2w

∂t2 . (2.3)

This is the wave equation. It can be solved analytically, for instance by the Laplace
transform method, separation of variables, or by the method of characteristics, or it
can be solved numerically. All these techniques are presented in this chapter. The
analytical solution will give insight into the behaviour of the solution. A numerical
model is particularly useful for more complicated problems, involving friction along
the shaft of the pile, and non-uniform properties of the pile and the soil.

2.2 Solution by Laplace Transform Method

Many problems of one-dimensional wave propagation can be solved conveniently
by the Laplace transform method (Churchill, 1972), see also Appendix A. Some
examples of this technique are given in this section.

2.2.1 Pile of Infinite Length

The Laplace transform of the displacement w is defined by

w(z, s) =
∫ ∞

0
w(z, t) exp(−st) dt, (2.4)

where s is the Laplace transform parameter, which can be assumed to have a positive
real part. Now consider the problem of a pile of infinite length, which is initially at
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rest, and on the top of which a constant pressure is applied, starting at time t = 0.
The Laplace transform of the differential equation (2.3) now is

d2w

dz2
= s2

c2
w, (2.5)

where c is the wave velocity,

c = √
E/ρ. (2.6)

The solution of the ordinary differential equation (2.5) that vanishes at infinity is

w = A exp(−sz/c). (2.7)

The integration constant A, which may depend upon the transformation parameter
s, can be obtained from the boundary condition. For a constant pressure p0 applied
at the top of the pile this boundary condition is

z = 0, t > 0 : E
∂w

∂z
= −p0. (2.8)

The Laplace transform of this boundary condition is

z = 0 : E
dw

dz
= −p0

s
. (2.9)

With (2.7) the value of the constant A can now be determined. The result is

A = pc

Es2 , (2.10)

so that the final solution of the transformed problem is

w = pc

Es2 exp(−sz/c). (2.11)

The inverse transform of this function can be found in elementary tables of Laplace
transforms, see for instance Abramowitz and Stegun (1964) or Churchill (1972).
The final solution now is

w = pc(t − z/c)

E
H(t − z/c), (2.12)

where H(t − t0) is Heaviside’s unit step function, defined as

H(t − t0) =
{

0, if t < t0,

1, if t > t0.
(2.13)

The solution (2.12) indicates that a point in the pile remains at rest as long as t < z/c.
From that moment on (this is the moment of arrival of the wave) the point starts to
move, with a linearly increasing displacement, which represents a constant velocity.
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It may seem that this solution is in disagreement with Newton’s second law,
which states that the velocity of a mass point will linearly increase in time when a
constant force is applied. In the present case the velocity is constant. The moving
mass gradually increases, however, so that the results are really in agreement with
Newton’s second law: the momentum (mass times velocity) linearly increases with
time. Actually, Newton’s second law is the basic principle involved in deriving the
basic differential equation (2.3), so that no disagreement is possible, of course.

2.2.2 Pile of Finite Length

The Laplace transform method can also be used for the analysis of waves in piles of
finite length. Many solutions can be found in the literature (Churchill, 1972; Carslaw
and Jaeger, 1948). An example will be given below.

Consider the case of a pile of finite length, say h, see Fig. 2.2. The boundary
z = 0 is free of stress, and the boundary z = h undergoes a sudden displacement, at
time t = 0. Thus the boundary conditions are

z = 0, t > 0 : ∂w

∂z
= 0, (2.14)

and

z = h, t > 0 : w = w0. (2.15)

The general solution of the transformed differential equation

d2w

dz2
= s2

c2
w, (2.16)

is

w = A exp(sz/c) + B exp(−sz/c). (2.17)

The constants A and B (which may depend upon the Laplace transform parameter s)
can be determined from the transforms of the boundary conditions (2.14) and (2.15).
The result is

w = w0

s

cosh(sz/c)

cosh(sh/c)
. (2.18)

The mathematical problem now remaining is to find the inverse transform of this
expression. This can be accomplished by using the complex inversion integral

Fig. 2.2 Pile of finite length



2.3 Separation of Variables 21

Fig. 2.3 Displacement of
free end

(Churchill, 1972), or its simplified form, the Heaviside expansion theorem, see Ap-
pendix A. This gives, after some elementary mathematical analysis,

w

w0
= 1 − 4

π

∞∑

k=0

(−1)k

(2k + 1)
cos

[
(2k + 1)

πz

2h

]
cos

[
(2k + 1)

πct

2h

]
. (2.19)

As a special case one may consider the displacement of the free end z = 0. This is
found to be

w

w0
= 1 − 4

π

∞∑

k=0

(−1)k

(2k + 1)
cos

[
(2k + 1)

πct

2h

]
. (2.20)

This expression is of the form of a Fourier series. Actually, it is the same series as
the one given in the example in Appendix A, except for a constant factor and some
changes in notation. The summation of the series is shown in Fig. 2.3.

It appears that the free end remains at rest for a time h/c, then suddenly shows
a displacement 2w0 for a time span 2h/c, and then switches continuously between
zero displacement and 2w0. The physical interpretation, which may become more
clear after considering the solution of the problem by the method of characteristics
in a later section, is that a compression wave starts to travel at time t = 0 towards
the free end, and then is reflected as a tension wave in order that the end remains
free. The time h/c is the time needed for a wave to travel through the entire length
of the pile.

2.3 Separation of Variables

For certain problems, especially problems of continuous vibrations, the differen-
tial equation (2.3) can be solved conveniently by a method known as separation of
variables. Two examples will be considered in this section.
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2.3.1 Shock Wave in Finite Pile

As an example of the general technique used in the method of separation of variables
the problem of a pile of finite length loaded at time t = 0 by a constant displacement
at one of its ends will be considered once more. The differential equation is

∂2w

∂t2
= c2 ∂2w

∂z2
, (2.21)

with the boundary conditions

z = 0, t > 0 : ∂w

∂z
= 0, (2.22)

and

z = h, t > 0 : w = w0. (2.23)

The first condition expresses that the boundary z = 0 is a free end, and the second
condition expresses that the boundary z = h is displaced by an amount w0 at time
t = 0. The initial conditions are supposed to be that the pile is at rest at t = 0.

The solution of the problem is now sought in the form

w = w0 + Z(z)T (t). (2.24)

The basic assumption here is that solutions can be written as a product of two func-
tions, a function Z(z), which depends upon z only, and another function T (t), which
depends only on t . Substitution of (2.24) into the differential equation (2.21) gives

1

c2

1

T

d2T

dt2
= 1

Z

d2Z

dz2
. (2.25)

The left hand side of this equation depends upon t only, the right hand side depends
upon z only. Therefore the equation can be satisfied only if both sides are equal to
a certain constant. This constant may be assumed to be negative or positive. If it is
assumed that this constant is negative one may write

1

Z

d2Z

dz2 = −λ2, (2.26)

where λ is an unknown constant. The general solution of (2.26) is

Z = C1 cos(λz) + C2 sin(λz), (2.27)

where C1 and C2 are constants. They can be determined from the boundary con-
ditions. Because dZ/dz must be 0 for z = 0 it follows that C2 = 0. If now it is
required that Z = 0 for z = h, in order to satisfy the boundary condition (2.23), it
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follows that a non-zero solution can be obtained only if cos(λh) = 0, which can be
satisfied if

λ = λk = (2k + 1)
π

2h
, k = 0,1,2, . . . . (2.28)

On the other hand, one obtains for the function T

1

T

d2T

dt2
= −c2λ2, (2.29)

with the general solution

T = A cos(λct) + B sin(λct). (2.30)

The solution for the displacement w can now be written as

w = w0 +
∞∑

k=0

[
Ak cos(λkct) + Bk sin(λkct)

]
cos(λkz). (2.31)

The velocity now is

∂w

∂t
=

∞∑

k=0

[−Akλkc sin(λkct) + Bkλkc cos(λkct)
]

cos(λkz). (2.32)

Because this must be zero for t = 0 and all values of z, to satisfy the initial condition
of rest, it follows that Bk = 0. Furthermore, the initial condition that the displace-
ment must also be zero for t = 0, now leads to the equation

∞∑

k=0

Ak cos(λkz) = −w0, (2.33)

which must be satisfied for all values of z in the range 0 < z < h. This is the standard
problem from Fourier series analysis, see Appendix A. It can be solved by multipli-
cation of both sides by cos(λj z), and then integrating both sides over z from z = 0
to z = h. The result is

Ak = 4

π

w0

(2k + 1)
(−1)k. (2.34)

Substitution of this result into the solution (2.31) now gives finally, with Bk = 0,

w

w0
= 1 + 4

π

∞∑

k=0

(−1)k

(2k + 1)
cos

[
(2k + 1)

πz

2h

]
cos

[
(2k + 1)

πct

2h

]
. (2.35)

This is exactly the same result as found earlier by using the Laplace transform
method, see (2.19). It may give some confidence that both methods lead to the same
result.
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The solution (2.35) can be seen as a summation of periodic solutions, each com-
bined with a particular shape function. Usually a periodic function is written as
cos(ωt). In this case it appears that the possible frequencies are

ω = ωk = (2k + 1)
πc

2h
, k = 0,1,2, . . . . (2.36)

These are usually called the characteristic frequencies, or eigen frequencies of the
system. The corresponding shape functions

ψk(z) = cos

[
(2k + 1)

πz

2h

]
, k = 0,1,2, . . . , (2.37)

are the eigen functions of the system.

2.3.2 Periodic Load

The solution is much simpler if the load is periodic, because then it can be assumed
that all displacements are periodic. As an example the problem of a pile of finite
length, loaded by a periodic load at one end, and rigidly supported at its other end,
will be considered, see Fig. 2.4. In this case the boundary conditions at the left side
boundary, where the pile is supported by a rigid wall or foundation, is

z = 0 : w = 0. (2.38)

The boundary condition at the other end is

z = h : σ = E
∂w

∂z
= −p0 sin(ωt), (2.39)

where h is the length of the pile, and ω is the frequency of the periodic load.
It is again assumed that the solution of the partial differential equation (2.3) can

be written as the product of a function of z and a function of t . In particular, because
the load is periodic, it is now assumed that

w = W(z) sin(ωt). (2.40)

Substitution into the differential equation (2.3) shows that this equation can indeed
be satisfied, provided that the function W(z) satisfies the ordinary differential equa-
tion

d2W

dz2
= −ω2

c2
W, (2.41)

where c = √
E/ρ, the wave velocity.

Fig. 2.4 Pile loaded by
periodic pressure
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The solution of the differential equation (2.41) that also satisfies the two bound-
ary conditions (2.38) and (2.39) is

W(z) = −p0c

Eω

sin(ωz/c)

cos(ωh/c)
. (2.42)

This means that the final solution of the problem is, with (2.42) and (2.40),

w(z, t) = −p0c

Eω

sin(ωz/c)

cos(ωh/c)
sin(ωt). (2.43)

It can easily be verified that this solution satisfies all requirements, because it satis-
fies the differential equation, and both boundary conditions. Thus a complete solu-
tion has been obtained by elementary procedures. Of special interest is the motion
of the free end of the pile. This is found to be

w(h, t) = w0 sin(ωt), (2.44)

where

w0 = −p0c

Eω
tan(ωh/c). (2.45)

The amplitude of the total force, F0 = −p0A, can be written as

F0 = EA

c

ω

tan(ωh/c)
w0. (2.46)

Resonance

It may be interesting to consider the case that the frequency ω is equal to one of the
eigen frequencies of the system,

ω = ωk = (2k + 1)
πc

2h
, k = 0,1,2, . . . . (2.47)

In that case cos(ωh/c) = 0, and the amplitude of the displacement, as given
by (2.45), becomes infinitely large. This phenomenon is called resonance of the
system. If the frequency of the load equals one of the eigen frequencies of the sys-
tem, this may lead to very large displacements, indicating resonance.

In engineering practice the pile may be a concrete foundation pile, for which
the order of magnitude of the wave velocity c is about 3000 m/s, and for which a
normal length h is 20 m. In civil engineering practice the frequency ω is usually
not very large, at least during normal loading. A relatively high frequency is say
ω = 20 s−1. In that case the value of the parameter ωh/c is about 0.13, which is
rather small, much smaller than all eigen frequencies (the smallest of which occurs
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for ωh/c = π/2). The function tan(ωh/c) in (2.46) may now be approximated by
its argument, so that this expression reduces to

ωh/c � 1 : F0 ≈ EA

h
w0. (2.48)

This means that the pile can be considered to behave, as a first approximation, as a
spring, without mass, and without damping. In many situations in civil engineering
practice the loading is so slow, and the elements are so stiff (especially when they
consist of concrete or steel), that the dynamic analysis can be restricted to the motion
of a single spring.

It must be noted that the approximation presented above is not always justified.
When the material is soft (e.g. soil) the velocity of wave propagation may not be that
high. And loading conditions with very high frequencies may also be of importance,
for instance during installation (pile driving). In general one may say that in order
for dynamic effects to be negligible, the loading must be so slow that the frequency
is considerably smaller than the smallest eigen frequency.

2.4 Solution by Characteristics

A powerful method of solution for problems of wave propagation in one dimension
is provided by the method of characteristics. This method is presented in this section.

The wave equation (2.3) has solutions of the form

w = f1(z − ct) + f2(z + ct), (2.49)

where f1 and f2 are arbitrary functions, and c is the velocity of propagation of
waves,

c = √
E/ρ. (2.50)

In mathematics the directions z = ct and z = −ct are called the characteristics. The
solution of a particular problem can be obtained from the general solution (2.49) by
using the initial conditions and the boundary conditions.

A convenient way of constructing solutions is by writing the basic equations in
the following form

∂σ

∂z
= ρ

∂v

∂t
, (2.51)

∂σ

∂t
= E

∂v

∂z
, (2.52)

where v is the velocity, v = ∂w/∂t , and σ is the stress in the pile.
In order to simplify the basic equations two new variables ξ and η are introduced,

defined by

ξ = z − ct, η = z + ct. (2.53)
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Equations (2.51) and (2.52) can now be transformed into

∂σ

∂ξ
+ ∂σ

∂η
= ρc

(
−∂v

∂ξ
+ ∂v

∂η

)
, (2.54)

∂σ

∂ξ
− ∂σ

∂η
= ρc

(
∂v

∂ξ
+ ∂v

∂η

)
, (2.55)

from which it follows, by addition or subtraction of the two equations, that

∂(σ − Jv)

∂η
= 0, (2.56)

∂(σ + Jv)

∂ξ
= 0, (2.57)

where J is the impedance,

J = ρc = √
Eρ. (2.58)

In terms of the original variables z and t the equations are

∂(σ − Jv)

∂(z + ct)
= 0, (2.59)

∂(σ + Jv)

∂(z − ct)
= 0. (2.60)

These equations mean that the quantity σ −Jv is independent of z+ ct , and σ +Jv

is independent of z − ct . This means that

σ − Jv = f1(z − ct), (2.61)

σ + Jv = f2(z + ct). (2.62)

These equations express that the quantity σ −Jv is a function of z−ct only, and that
σ + Jv is a function of z + ct only. This means that σ − Jv is constant when z − ct

is constant, and that σ + Jv is constant when z + ct is constant. These properties
enable to construct solutions, either in a formal analytical way, or graphically, by
mapping the solution, as represented by the variables σ and Jv, onto the plane of
the independent variables z and ct .

As an example let there be considered the case of a free pile, which is hit at
its upper end z = 0 at time t = 0 such that the stress at that end is −p. The other
end, z = h, is free, so that the stress is zero there. The initial state is such that all
velocities are zero. The solution is illustrated in Fig. 2.5. In the upper figure, the
diagram of z and ct has been drawn, with lines of constant z − ct and lines of
constant z+ ct . Because initially the velocity v and the stress σ are zero throughout
the pile, the condition in each point of the pile is represented by the point 1 in the
lower figure, the diagram of σ and Jv. The points in the lower left corner of the
upper diagram (this region is marked 1) can all be reached from points on the axis
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Fig. 2.5 The method of characteristics

ct = 0 (for which σ = 0 and Jv = 0) by a downward going characteristic, i.e. lines
z − ct = constant. Thus in all these points σ − Jv = 0. At the bottom of the pile
the stress is always zero, σ = 0. Thus in the points in region 1 for which z = 0
the velocity is also zero, Jv = 0. Actually, in the entire region 1 : σ = Jv = 0,
because all these points can be reached by an upward going characteristic and a
downward going characteristic from points where σ = Jv = 0. The point 1 in the
lower diagram thus is representative for all points in region 1 in the upper diagram.

For t > 0 the value of the stress σ at the upper boundary z = 0 is −p, for all
values of t . The velocity is unknown, however. The axis z = 0 in the upper diagram
can be reached from points in the region 1 along lines for which z + ct = constant.
Therefore the corresponding point in the diagram of σ and Jv must be located on
the line for which σ + Jv = constant, starting from point 1. Because the stress σ

at the top of the pile must be −p the point in the lower diagram must be point 2.
This means that the velocity is Jv = p, or v = p/J . This is the velocity of the
top of the pile for a certain time, at least for ct = 2h, if h is the length of the pile,
because all points for which z = 0 and ct < 2h can be reached from region 1 along
characteristics z + ct = constant.

At the lower end of the pile the stress σ must always be zero, because the pile
was assumed to be not supported. Points in the upper diagram on the line z = h can
be reached from region 2 along lines of constant x − ct . Therefore they must be
located on a line of constant N − Jv in the lower diagram, starting from point 2.
This gives point 3, which means that the velocity at the lower end of the pile is now
v = 2p/J . This velocity applies to all points in the region 3 in the upper diagram.
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Fig. 2.6 Velocity of the
bottom of the pile

In this way the velocity and the stress in the pile can be analyzed in successive
steps. The thick lines in the upper diagram are the boundaries of the various regions.
If the force at the top continues to be applied, as is assumed in Fig. 2.5, the velocity
of the pile increases continuously. Figure 2.6 shows the velocity of the bottom of the
pile as a function of time. The velocity gradually increases with time, because the
pressure p at the top of the pile continues to act. This is in agreement with Newton’s
second law, which states that the velocity will increase linearly under the influence
of a constant force.

2.5 Reflection and Transmission of Waves

An interesting aspect of wave propagation in continuous media is the behaviour
of waves at surfaces of discontinuity of the material properties. In order to study
this phenomenon let us consider the propagation of a short shock wave in a pile
consisting of two materials, see Fig. 2.7. A compression wave is generated in the
pile by a pressure of short duration at the left end of the pile. The pile consists of
two materials: first a stiff section, and then a very long section of smaller stiffness.

The solution of the basic equations in the first section can be written as

v = v1 = f1(z − c1t) + f2(z + c1t), (2.63)

σ = σ1 = −ρ1c1f1(z − c1t) + ρ1c1f2(z + c1t), (2.64)

where ρ1 is the density of the material in that section, and c1 is the wave veloc-
ity, c1 = √

E1/ρ1. It can easily be verified that this solution satisfies the two basic
differential equations (2.51) and (2.52).

In the second part of the pile the solution is

v = v2 = g1(z − c2t) + g2(z + c2t), (2.65)

σ = σ2 = −ρ2c2g1(z − c2t) + ρ2c2g2(z + c2t), (2.66)

where ρ2 and c2 are the density and the wave velocity in that part of the pile.
At the interface of the two materials the value of z is the same in both solutions,

say z = h, and the condition is that both the velocity v and the normal stress σ must

Fig. 2.7 Non-homogeneous
pile
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be continuous at that point, at all values of time. Thus one obtains

f1(h − c1t) + f2(h + c1t) = g1(h − c2t) + g2(h + c2t), (2.67)

−ρ1c1f1(h − c1t) + ρ1c1f2(h + c1t)

= −ρ2c2g1(h − c2t) + ρ2c2g2(h + c2t). (2.68)

If we write

f1(h − c1t) = F1(t), (2.69)

f2(h + c1t) = F2(t), (2.70)

g1(h − c2t) = G1(t), (2.71)

g2(h + c2t) = G2(t), (2.72)

then the continuity conditions are

F1(t) + F2(t) = G1(t) + G2(t), (2.73)

−ρ1c1F1(t) + ρ1c1F2(t) = −ρ2c2G1(t) + ρ2c2G2(t). (2.74)

In general these equations are, of course, insufficient to solve for the four functions.
However, if it is assumed that the pile is very long (or, more generally speaking,
when the value of time is so short that the wave reflected from the end of the pile has
not yet arrived), it may be assumed that the solution representing the wave coming
from the end of the pile is zero, G2(t) = 0. In that case the solutions F2 and G1 can
be expressed in the first wave, F1, which is the wave coming from the top of the
pile. The result is

F2(t) = ρ1c1 − ρ2c2

ρ1c1 + ρ2c2
F1(t), (2.75)

G1(t) = 2ρ1c1

ρ1c1 + ρ2c2
F1(t), (2.76)

This means, for instance, that whenever the first wave F1(t) = 0 at the interface,
then there is no reflected wave, F2(t) = 0, and there is no transmitted wave either,
G1(t) = 0. On the other hand, when the first wave has a certain value at the interface,
then the values of the reflected wave and the transmitted wave at that point may be
calculated from the relations (2.75) and (2.76). If the values are known the values at
later times may be calculated using the relations (2.69)–(2.72).

The procedure may be illustrated by an example. Therefore let it be assumed that
the two parts of the pile have the same density, ρ1 = ρ2, but the stiffness in the first
section is 9 times the stiffness in the rest of the pile, E1 = 9E2. This means that
the wave velocities differ by a factor 3, c1 = 3c2. The reflection coefficient and the
transmission coefficient now are, with (2.75) and (2.76),

Rv = ρ1c1 − ρ2c2

ρ1c1 + ρ2c2
= 0.5, (2.77)
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Fig. 2.8 Reflection and
transmission (velocity)

Tv = 2ρ1c1

ρ1c1 + ρ2c2
= 1.5. (2.78)

The behaviour of the solution is illustrated graphically in Fig. 2.8, which shows
the velocity profile at various times. In the first four diagrams the incident wave
travels toward the interface. During this period there is no reflected wave, and no
transmitted wave in the second part of the pile. As soon as the incident wave hits
the interface a reflected wave is generated, and a wave is transmitted into the second
part of the pile. The magnitude of the velocities in this transmitted wave is 1.5 times
the original wave, and it travels a factor 3 slower. The magnitude of the velocities in
the reflected wave is 0.5 times those in the original wave.

The stresses in the two parts of the pile are shown in graphical form in Fig. 2.9.
The reflection coefficient and the transmission coefficient for the stresses can be
obtained using (2.64) and (2.66). The result is

Rσ = −ρ1c1 − ρ2c2

ρ1c1 + ρ2c2
= −0.5, (2.79)
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Fig. 2.9 Reflection and transmission (stress)

Tσ = 2ρ2c2

ρ1c1 + ρ2c2
= 0.5, (2.80)

where it has been taken into account that the form of the solution for the stresses,
see (2.64) and (2.66), involves factors ρc, and signs of the terms different from those
in the expressions for the velocity. In the case considered here, where the first part
of the pile is 9 times stiffer than the rest of the pile, it appears that the reflected wave
leads to stresses of the opposite sign in the first part. Thus a compression wave in
the pile is reflected in the first part by tension.

It may be interesting to note the two extreme cases of reflection. When the second
part of the pile is so soft that it can be entirely disregarded (or, when the pile consists
only of the first part, which is free to move at its end), the reflection coefficient for
the velocity is Rv = 1, and for the stress it is Rσ = −1. This means that in this case
a compression wave is reflected as a tension wave of equal magnitude. The velocity
in the reflected wave is in the same direction as in the incident wave.
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Fig. 2.10 Graphical solution
using characteristics

If the second part of the pile is infinitely stiff (or, if the pile meets a rigid foun-
dation after the first part) the reflection coefficient for the velocity is Rv = −1, and
for the stresses it is Rσ = 1. Thus, in this case a compression wave is reflected as a
compressive wave of equal magnitude. These results are of great importance in pile
driving. When a pile hits a very soft layer, a tension wave may be reflected from
the end of the pile, and a concrete pile may not be able to withstand these tensile
stresses. Thus, the energy supplied to the pile must be reduced in this case, for in-
stance by reducing the height of fall of the hammer. When the pile hits a very stiff
layer the energy of the driving equipment may be increased without the risk of gen-
erating tensile stresses in the pile, and this may help to drive the pile through this
stiff layer. Of course, great care must be taken when the pile tip suddenly passes
from the very stiff layer into a soft layer. Experienced pile driving operators use
these basic principles intuitively.

It may be noted that tensile stresses may also be generated in a pile when an
upward traveling (reflected) wave reaches the top of the pile, which by that time may
be free of stress. This phenomenon has caused severe damage to concrete piles, in
which cracks developed near the top of the pile, because concrete cannot withstand
large tensile stresses. In order to prevent this problem, driving equipment has been
developed that continues to apply a compressive force at the top of the pile for a
relatively long time. Also, the use of prestressed concrete results in a considerable
tensile strength of the material.

The problem considered in this section can also be analyzed graphically, by
using the method of characteristics, see Fig. 2.10. The data given above imply
that the wave velocity in the second part of the pile is 3 times smaller than in
the first part, and that the impedance in the second part is also 3 times smaller
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than in the first part. This means that in the lower part of the pile the slope
of the characteristics is 3 times smaller than the slope in the upper part. In the
figure these slopes have been taken as 1:3 and 1:1, respectively. Starting from
the knowledge that the pile is initially at rest (1), and that at the top of the
pile a compression wave of short duration is generated (2), the points in the
v,σ -diagram, and the regions in the z, t-diagram can be constructed, taking into
account that at the interface both v and σ must be continuous.

2.6 The Influence of Friction

In soil mechanics piles in the ground usually experience friction along the pile shaft,
and it may be illuminating to investigate the effect of this friction on the mechanical
behaviour of the pile. For this purpose consider a pile of constant cross sectional
area A and modulus of elasticity E, standing on a rigid base, and supported along
its shaft by shear stresses that are generated by an eventual movement of the pile,
see Fig. 2.11.

The basic differential equation is

EA
∂2w

∂z2 − Cτ = ρA
∂2w

∂t2 , (2.81)

Fig. 2.11 Pile in soil, with
friction
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where C is the circumference of the pile shaft, and τ is the shear stress. It is assumed,
as a first approximation, that the shear stress is linearly proportional to the vertical
displacement of the pile,

τ = kw, (2.82)

where the constant k has the character of a subgrade modulus. The differential equa-
tion (2.81) can now be written as

∂2w

∂z2 − w

H 2 = 1

c2

∂2w

∂t2 , (2.83)

where H is a length parameter characterizing the ratio of the axial pile stiffness to
the friction constant,

H 2 = EA

kC
, (2.84)

and c is the usual wave velocity, defined by

c2 = E/ρ. (2.85)

The boundary conditions are supposed to be

z = 0 : N = EA
∂w

∂z
= −P sin(ωt), (2.86)

z = L : w = 0. (2.87)

The first boundary condition expresses that at the top of the pile it is loaded by a
periodic force, of amplitude P and circular frequency ω. The second boundary con-
dition expresses that at the bottom of the pile no displacement is possible, indicating
that the pile is resting upon solid rock.

The problem defined by the differential equation (2.83) and the boundary con-
ditions (2.86) and (2.87) can easily be solved by the method of separation of vari-
ables. In this method it is assumed that the solution can be written as the product of
a function of z and a factor sin(ωt). It turns out that all the conditions are met by
the solution

w = PH

EAα

sinh[α(L − z)/H ]
cosh(αL/H)

sin(ωt), (2.88)

where α is given by

α =
√

1 − ω2H 2/c2. (2.89)

The displacement at the top of the pile, wt , is of particular interest. If this is written
as

wt = P

K
sin(ωt), (2.90)
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the spring constant K appears to be

K = EA

L

αL/H

tanh(αL/H)
. (2.91)

The first term in the right hand side is the spring constant in the absence of friction,
when the elasticity is derived from the deformation of the pile only.

The behaviour of the second term in (2.91) depends upon the frequency ω

through the value of the parameter α, see (2.89). It should be noted that for val-
ues of ωH/c > 1 the parameter α becomes imaginary, say α = iβ , where now

β =
√

ω2H 2/c2 − 1. (2.92)

The spring constant can then be written more conveniently as

ωH/c > 1 : K = EA

L

βL/H

tan(βL/H)
. (2.93)

This formula implies that for certain values of ωH/c the spring constant will be
zero, indicating resonance. These values correspond to the eigen values of the sys-
tem. For certain other values the spring constant is infinitely large. For these values
of the frequency the system appears to be very stiff. In such a case part of the pile is
in compression and another part is in tension, such that the total strains from bottom
to top just cancel.

The value of the spring constant is shown, as a function of the frequency, in
Fig. 2.12, for H/L = 1. This figure contains data for both ranges of the parameters.

It is interesting to consider the probable order of magnitude of the parameters
in engineering practice. For this purpose the value of the subgrade modulus k must
first be evaluated. This parameter can be estimated to be related to the soil stiffness
by a formula of the type k = Es/D, where Es is the modulus of elasticity of the soil
(assuming that the deformations are small enough to justify the definition of such a
quantity), and D is the width of the pile. For a circular concrete pile of diameter D

the value of the characteristic length H now is, with (2.84),

H 2 = EA

kC
= EcD

2

2Es

. (2.94)

Under normal conditions, with a pile being used in soft soil, the ratio of the elastic
moduli of concrete and soil is about 1000, and most piles have diameters of about
0.40 m. This means that H ≈ 10 m. Furthermore the order of magnitude of the
wave propagation velocity c in concrete is about 3000 m/s. This means that the
parameter ωH/c will usually be small compared to 1, except for phenomena of very
high frequency, such as may occur during pile driving. In many civil engineering
problems, where the fluctuations originate from wind or wave loading, the frequency
is usually about 1 s−1 or smaller, so that the order of magnitude of the parameter
ωH/c is about 0.01. In such cases the value of α will be very close to 1, see (2.89).
This indicates that the response of the pile is practically static.
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Fig. 2.12 Spring constant (H/L = 1)

If the loading is due to the passage of a heavy train, at a velocity of 100 km/h,
and with a distance of the wheels of 5 m, the period of the loading is about 1/6 s,
and thus the frequency is about 30 s−1. In such cases the parameter ωH/c may not
be so small, indicating that dynamic effects may indeed be relevant.

Infinitely Long Pile

A case of theoretical interest is that of an infinitely long pile, L → ∞. If the fre-
quency is low this limiting case can immediately be obtained from the general so-
lution (2.91), because then the function tanh(αL/H) can be approximated by its
asymptotic value 1. The result is

L → ∞, ωH/c < 1 : K = EAα

H
. (2.95)

This solution degenerates when the dimensionless frequency ωH/c = 1, because
then α = 0, see (2.89). Such a zero spring constant indicates resonance of the sys-
tem.

For frequencies larger than this resonance frequency the solution (2.93) can not
be used, because the function tan(βL/H) continues to fluctuate when its argument
tends towards infinity. Therefore the problem must be studied again from the be-
ginning, but now for an infinitely long pile. The general solution of the differential
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equation now appears to be

w = [C1 sin(βz/H) + C2 cos(βz/H)] sin(ωt)

+ [C3 sin(βz/H) + C4 cos(βz/H)] cos(ωt), (2.96)

and there is no combination of the constants C1, C2, C3 and C4 for which this
solution tends towards zero as z → ∞. This dilemma can be solved by using the
radiation condition (Sommerfeld, 1949), which states that it is not to be expected
that waves travel from infinity towards the top of the pile. Therefore the solution
(2.96) is first rewritten as

w = D1 sin(ωt − βz/H) + D2 cos(ωt − βz/H)

+ D3 sin(ωt + βz/H) + D4 cos(ωt + βz/H). (2.97)

Written in this form it can be seen that the first two solutions represent waves trav-
eling from the top of the pile towards infinity, whereas the second two solutions
represent waves traveling from infinity up to the top of the pile. If the last two are
excluded, by assuming that there is no agent at infinity which generates such in-
coming waves, it follows that C3 = C4 = 0. The remaining two conditions can be
determined from the boundary condition at the top of the pile, (2.86). The final result
is

L → ∞, ωH/c > 1 : w = PH

EAβ
sin(ωt − βz/H). (2.98)

This solution applies only if the frequency is larger than the eigen frequency of the
system, which is defined by ωH/c = 1. It may be noted that the solution (2.98) also
degenerates for ωH/c = 1 because then β = 0, see (2.92).

2.7 Numerical Solution

In order to construct a numerical model for the solution of wave propagation prob-
lems the basic equations are written in a numerical form. For this purpose the pile is
subdivided into n elements, all of the same length �z. The displacement wi and the
velocity vi of an element are defined in the centroid of element i, and the normal
forces Ni are defined at the boundary between elements i and i + 1, see Fig. 2.13.
The friction force acting on element i is denoted by Fi . This particular choice for

Fig. 2.13 Element of pile
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the definition of the various quantities either at the centroid of the elements or at
their boundaries, has a physical background. The velocity derives its meaning from
a certain mass, whereas the normal force is an interaction between the material on
both sides of a section. It is interesting to note, however, that this way of modeling,
sometimes denoted as leap frog modeling, also has distinct mathematical advan-
tages, with respect to accuracy and stability.
The equation of motion of an element is

Ni − Ni−1 + Fi = ρA�z
vi(t + �t) − vi(t)

�t
(i = 1, . . . , n). (2.99)

It should be noted that there are n + 1 normal forces, from N0 to Nn. The force N0
can be considered to be the force at the top of the pile, and Nn is the force at the
bottom end of the pile.
The displacement wi is related to the velocity vi by the equation

vi = wi(t + �t) − wi(t)

�t
(i = 1, . . . , n). (2.100)

The deformation is related to the normal force by Hooke’s law, which can be for-
mulated as

Ni = EA
wi+1 − wi

�z
(i = 1, . . . , n − 1). (2.101)

Here EA is the product of the modulus of elasticity E and the area A of the cross
section.

The values of the normal force at the top and at the bottom of the pile, N0 and
Nn are supposed to be given by the boundary conditions.

Example

A simple example may serve to illustrate the numerical algorithm. Suppose that the
pile is initially at rest, and let a constant force P be applied at the top of the pile,
with the bottom end being free. In this case the boundary conditions are

N0 = −P, (2.102)

and

Nn = 0. (2.103)

The friction forces are supposed to be zero.
At time t = 0 all quantities are zero, except N0. A new set of velocities can

now be calculated from (2.99). Actually, this will make only one velocity non-zero,
namely v1, which will then be

v1 = P�t

ρA�z
. (2.104)
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Next, a new set of values for the displacements can be calculated from (2.100).
Again, in the first time step, only one value will be non-zero, namely

w1 = v1�t = P(�t)2

ρA�z
. (2.105)

Finally, a new set of values for the normal force can be calculated from (2.101). This
will result in N1 getting a value, namely

N1 = −EA
w1

�z
= −P

c2(�t)2

(�z)2 . (2.106)

This process can now be repeated, using the equations in the same order.
An important part of the numerical process is the value of the time step used. The

description of the process given above indicates that in each time step the non-zero
values of the displacements, velocities and normal forces increase by 1 in downward
direction. This suggests that in each time step a wave travels into the pile over a
distance �z. In the previous section, when considering the analytical solution of a
similar problem (actually, the same problem), it was found that waves travel in the
pile at a velocity

c = √
E/ρ. (2.107)

Combining these findings suggests that the ratio of spatial step and time step should
be

�z = c�t. (2.108)

It may be noted that this means that (2.104) reduces to

v1 = P

ρAc
. (2.109)

The expression in the denominator is precisely what was defined as the impedance
in the previous section, see (2.58), and the value P/J corresponds exactly to what
was found in the analytical solution. Equation (2.105) now gives

w1 = P�t

ρAc
, (2.110)

and the value of N1 after one time step is found to be, from (2.106),

N1 = −P. (2.111)

Again this corresponds exactly with the analytical solution. If the time step is chosen
different from the critical time step the numerical solution will show considerable
deviations from the correct analytical solution. This is usually denoted as numerical
diffusion.

All this confirms the propriety of the choice (2.108) for the relation between time
step and spatial step. In a particular problem the spatial step is usually chosen first,
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by subdividing the pile length into a certain number of elements. Then the time step
may be determined from (2.108).

It should be noted that the choice of the time step is related to the algorithm
proposed here. When using a different algorithm it may be more appropriate to use
a different (usually smaller) time step than the critical time step used here (Bowles,
1974).

The calculations described above can be performed by the program IMPACT, for
the case of a pile loaded at its top by a constant force, for a short time. The main
function in this program is given below, with the quantities S, V and W denoting
the stress, the velocity and the displacement.
void Calculate(void)
{
int j;
if (T>TT) S[0]=0;else S[0]=1;
for (j=1;j<=N;j++) V[j]+=(S[j]-S[j-1])/(RHO*C);
for (j=1;j<=N;j++) W[j]+=V[j]*DT;
for (j=1;j<N;j++) S[j]=E*(W[j+1]-W[j])/DX;

}

The main function of the program IMPACT.

The program uses interactive input, in which the user may edit the input data
before the calculations are started. The program will show the stresses in the pile
on the screen, in graphical form. An example is shown in Fig. 2.14. In this case the
pile has been subdivided into 500 elements, and the figure shows the stresses in the
pile after 200, 400, 600, 800 and 1000 time steps. It appears that the block wave
is traveling through the pile without any deformation, and it is reflected at the free
bottom as a tensile wave of the same magnitude. All this is in agreement with the
general theory presented in earlier sections of this chapter.

Fig. 2.14 Block wave in pile
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2.8 A Simple Model for a Pile with Friction

When there is friction along the shaft of the pile, this can be introduced through the
variables Fi , see (2.99). It should then be known how the friction force depends upon
variables such as the local displacement and the local velocity. A simple model is to
assume that the friction is proportional to the velocity, always acting in the direction
opposite to the velocity. The program FRICTION can perform these calculations.
The main function of this program is reproduced below, for the case of a single
sinusoidal wave applied at the top of the pile.

void Calculate(void)
{
int j;
if (T>TT) S[0]=0;else S[0]=(F/AREA)*sin(PI*T/TT);
for (j=1;j<=N;j++) V[j]+=(S[j]-S[j-1]-FR*DX*CIRC*V[j])/(RHO*AREA*C);
for (j=1;j<=N;j++) W[j]+=V[j]*DT;
for (j=1;j<N;j++) S[j]=E*AREA*(W[j+1]-W[j])/DX;

}

The main function of the program FRICTION.

The variable FR in this program is the shear stress generated along the shaft of
the pile in case of a unit velocity (1 m/s). In professional programs a more sophis-
ticated formula for the friction may be used, in which the friction not only depends
upon the velocity but also on the displacement, in a non-linear way. Also a model
for the resistance at the point of the pile may be introduced, and the possibility of a
layered soil, see for instance Bowles (1974).

Output of the program is shown in Fig. 2.15. The pile has been divided into 200
elements, its length is 20 m, and its cross section is a square of 0.40 m × 0.40 m.
The maximum applied force is 100 kN, and the shear stress by friction is 1 kN/m2

if the local velocity is 1 m/s.
Results for the stresses in the pile are shown after 100, 20100 and 40100 time

steps. This means that between the successive plots in the figure the wave has trav-
eled 100 times through the pile, up and down. It appears from the results that after a

Fig. 2.15 Block wave in pile,
with friction
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large number of time steps the magnitude of the stresses is indeed decreased by the
effect of the friction.

It may be mentioned that the program becomes unstable if the friction constant is
taken too large, or if the initial wave is discontinuous, as in the case of a block wave.
These unwanted effects can be eliminated by using a more sophisticated numerical
method, such as the finite element method, see for instance Brinkgreve and Vermeer
(2002).

Problems

2.1 A free pile is hit by a normal force of short duration. Analyze the motion of
the pile by the method of characteristics, using a diagram as in Fig. 2.5.

2.2 Extend the diagram shown in Fig. 2.10 towards the right, so that the reflected
wave hits the top of the pile, and is again reflected there.

2.3 As a first order approximation of (2.46) the response of a pile may be consid-
ered to be equivalent to a spring, see (2.48). Show, by using an approximation of the
function tan(ωh/c) by its first two terms, that a second order approximation is by a
spring and a mass. Show, by comparison with (1.37), that the equivalent mass is 2

3
of the total mass of the pile.

2.4 Verify some of the characteristic data shown in Fig. 2.12. For instance, check
the values for ωL/c = 0 and ωL/c = 1, and check the zeroes of the spring constant.





Chapter 3
Earthquakes in Soft Layers

In this chapter the response of a soft soil layer to an earthquake in the base rock
underlying the soft soil layer is considered, see Fig. 3.1. An earthquake generates
various waves in the rock, resulting in waves of vertical displacements and horizon-
tal displacements along the rock surface. These will generate compression waves
and shear waves in the overlying soil. It is generally assumed that the most impor-
tant component is the wave of horizontal displacements at the rock surface, which
generates shear waves in the soil. Waves of vertical displacements at the rock sur-
face will generate compression waves in the soil, and these may lead to vertical
displacements of considerable magnitude, and damage of the structure on top of the
soil, but usually structural damage due to such vertical compression waves remains
limited. It is usually considered assumed that most structural damage is caused by
shear waves in the soil, for instance collapse of the columns in the structure. For this
reason the considerations in this chapter will be restricted to shear waves in the soil.
Some solutions of this ground response problem will be presented, mainly for a ho-
mogeneous linear elastic layer, carrying a certain mass, representing the structure.
The effect of hysteretic damping in the soft soil will also be considered.

The type of model considered in this chapter is a typical example of an engineer-
ing approximation, using certain assumptions (a thin layer of soft elastic soil on a

Fig. 3.1 Soft soil on hard
base rock
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hard base rock of large depth, and a periodic wave in the rock, of relatively large
wave length) that are supposed to be applicable in a large class of field situations.
The model has been developed at the University of California by Idriss and Seed
(1968), and has later been generalized to a soil consisting of several layers with
non-linear properties, see for instance Kramer (1996). The model can be considered
as a simplified case of a Love wave, see Chap. 9.

It should be noted that it is assumed that the soil is strong and stiff enough to
accommodate the shear stresses produced by the shaking of the base rock without
failure of the soil. In particular, the possibility of liquefaction of a loose sandy soil
is not considered. In areas where earthquakes may be expected great care should
be taken to avoid the risk of soil liquefaction, preferably by not building on loose
soils, or compacting such soils before any structure is built upon it. For a practical
approach to the analysis of the liquefaction risk during earthquakes see Seed and
Idriss (1982).

3.1 Earthquake Parameters

It is assumed that the earthquake generates traveling waves in the base rock, which
can be described by the following equation for the horizontal displacements at the
upper surface of the rock,

u = u0 sin[ω(t − x/c2)] = u0 sin(ωt − λ2x) = u0 sin

(
2πt

T
− 2πx

L2

)
, (3.1)

where u is the lateral displacement at the surface of the rock, u0 its amplitude, ω is
the dominant frequency of the wave, and c2 is its propagation velocity in the rock.
The parameter λ2 is the wave number. The wave period T and the wave length L2

of the wave are related to the frequency ω and the wave number λ2 by the relations

ω = 2π

T
, λ2 = 2π

L2
. (3.2)

The propagation velocity can be related to the shear modulus μ and the mass density
ρ of the rock by the equation

c2 = √
μ2/ρ2. (3.3)

Normal values of the shear modulus of rock are of the order of magnitude of μ2 ≈
10 GPa = 1010 kg/ms2, and normal values of the density of the rock are of the order
of magnitude of ρ2 ≈ 2500 kg/m3. This means that normal values of the velocity of
propagation are of the order of magnitude of c2 ≈ 2000 m/s. These values are also
representative of concrete, which can be considered as an artificial rock.

It should be noted that the stiffness of rock in engineering practice may well be
somewhat smaller than the value given above, so that the velocity of propagation
may be smaller as well, say c2 = 1500 m/s.
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Fig. 3.2 Wave length compared to thickness of layer, L2/h = 10

The dominant period of the waves generated by an earthquake usually is in the
range

T = 0.1 s–0.5 s. (3.4)

In this chapter an average value of T = 0.2 s will normally be used. In that case the
dominant frequency is, with (3.2),

ω ≈ 30 s−1. (3.5)

Because λ = ω/c it now follows that

λ2 ≈ 0.0150 m−1, (3.6)

so that the wave length is, with (3.2),

L2 ≈ 400 m. (3.7)

The thickness of the layers of soft soil above the base rock often is in the range
of h = 10 m–40 m. This means that the wave length L2 is an order of magnitude
larger than the thickness h, see for instance Fig. 3.2, in which the wave length is
10 times the thickness of the layer. This means that over a reasonably large hori-
zontal distance the displacement at the bottom of the soil is the same. This justifies
the assumption that in the soil the wave is one-dimensional, in vertical direction.
Or, to be more precise, it can be assumed that throughout the soil the horizontal
displacements will be of the form

u = f (z) sin[ω(t − x/c2)], (3.8)

where f (z) is a function of z only. The factor x/c2 in (3.8) indicates that the hori-
zontal coordinate x results in a phase shift of magnitude x/c2, which is constant if
x is constant.

3.2 Horizontal Vibrations

In this section the propagation of horizontal vibrations in a column of elastic soil,
generated by the horizontal motion of the base rock, is considered. As mentioned
above, it is assumed that in each column the problem is one-dimensional, with the
displacement being a function of the vertical coordinate z and time only.
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Fig. 3.3 Element of column

The basic differential equation is the one-dimensional wave equation, which can
be derived as follows. The first basic equation is the equation of motion of an ele-
ment of the column, see Fig. 3.3,

∂τ

∂z
= ρ

∂2u

∂t2
, (3.9)

where ρ is the density of the soil. The second equation is the equation of elasticity,

τ = μγ = μ
(∂u

∂z
+ ∂w

∂x

)
, (3.10)

where μ is the shear modulus of the soil, and γ is the shear deformation. It is now
assumed, on the basis of the observation from the previous section that the wave
length L2 of the waves in x-direction is very large compared to the layer thickness h,
that the derivative ∂w/∂x is small compared to ∂u/∂z. Thus (3.11) reduces to

τ = μγ = μ
∂u

∂z
. (3.11)

It now follows from (3.9) and (3.11) that

∂2u

∂t2 = c2 ∂2u

∂z2 , (3.12)

where c is the propagation velocity of shear waves in the soil,

c = √
μ/ρ. (3.13)

Equation (3.12) is the wave equation.
It may be noted that usually the soil is a two phase medium, consisting of particles

and water, but for shear deformations this has no effect.

3.2.1 Unloaded Soil Layer

For the simplest case, namely that of a homogeneous layer with no surface load, the
boundary conditions may be supposed to be

z = h : u = u0 sin[ω(t − x/c2)], (3.14)
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and

z = 0 : ∂u

∂z
= 0. (3.15)

The first boundary condition expresses that at the lower boundary of the soil layer
a sinusoidal wave is acting, and the second boundary condition expresses that the
top of the soil layer (the soil surface) is free of stress. The vertical displacement w

has been disregarded, or, to be more precise, it has been assumed that the derivative
∂w/∂x is small, compared to ∂u/∂z.

The solution of the problem defined by (3.12), (3.14) and (3.15) is

u = u0
cos(ωz/c)

cos(ωh/c)
sin[ω(t − x/c2)]. (3.16)

It can easily be verified that this solution satisfies all necessary conditions. The
displacements are all in phase with the vibration of the base rock. This is caused
by the simplicity of the problem considered, without damping, for instance. If the
amplitude of the displacements at the top of the layer is denoted by ut , it follows
that

ut = u0
1

cos(ωh/c)
. (3.17)

This is always larger than the value at the base, because the function cos(ωh/c)

is always smaller than 1. For certain values of the frequency the amplitude at the
surface of the layer may become infinitely large, indicating resonance. The smallest
frequency for which this occurs is when ωh/c = π/2, or

ω = ω1 = πc

2h
= 1.571

c

h
. (3.18)

When the frequency ω is expressed as 2π/T , where T is the period of the vibration,
then the first occurrence of resonance is for a period

T = T1 = 4h

c
. (3.19)

Because h/c is the travel time of a single wave through the layer, upward or down-
ward, this means that resonance occurs if the period of the vibration is such that a
wave travels 4 times through the layer. This can be understood by noting the effect
of a quarter wave during which a periodic shear stress is acting at the base of the
layer. A shear wave will travel through the column, and will be reflected at the free
top as a shear wave of opposite sign. When this shear wave reaches the bottom of the
column again, after having travelled over a length h, it will be reflected at the rigid
bottom as another shear wave of opposite sign. This in its turn will be reflected at
the top of the column as a shear wave of the original sign, and this wave has to travel
over another column length h to arrive at the bottom of the column. Interference may
take place if the wave has travelled over a distance of 4h, and meets another wave
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of the same sign. This will be the case if the period of the wave T = 4h/c. In this
case an ever stronger wave will be generated in the soil layer, indicating resonance.

In dry soils the elastic modulus may be approximated by the expression

μ ≈ 1
2 Cσv, (3.20)

where, for dynamic loading, C is the compression coefficient of the soil (which is
about 250–2500 for sand, and 100–1000 for clay), and σv is the vertical (effective)
stress. The average stress in the layer is

σv ≈ 1
2 ρgh, (3.21)

where g is the gravity constant (g ≈ 10 m/s2). It now follows that the wave velocity
c can be approximated by

c ≈ 1
2

√
Cgh. (3.22)

For a layer of sand of 10 m thickness, assuming C = 1000, the value of this wave
velocity will be about 150 m/s, which is an order of magnitude smaller than the
wave velocity in rock-like materials. The value of the first eigen frequency now is,
with (3.18), ω1 ≈ 25 s−1. As this may be very close to the dominant frequency of
earthquake motion, which was given as approximately 30 s−1, see (3.5), it follows
that an earthquake may lead to large displacements at the soil surface, if the condi-
tions are unfavorable.

It should be noted that in this section damping, which is an essential property of
soft soils, has not been taken into account. Damping will be considered in a later
section, and will be found to have a moderating effect, but first the case of a shear
wave in a layer with a certain surface load will be considered.

3.2.2 Soil Layer with Surface Load

As a second example consider the case of a soil layer loaded by a mass at its surface,
see Fig. 3.4. In this case the boundary conditions are

z = h : u = u0 sin[ω(t − x/c2)], (3.23)

and

z = 0 : ρd
∂2u

∂t2
= τ = μ

∂u

∂z
, (3.24)

where d is a measure for the surface load, with the mass of the surface load ex-
pressed as the thickness of an equivalent soil layer, and τ is the shear stress trans-
mitted between the surface load and the foundation soil. Equation (3.24) can also be
written as

z = 0 : d
∂2u

∂t2
= c2 ∂u

∂z
. (3.25)
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Fig. 3.4 Soil layer with
surface load

The solution of the problem defined by (3.12), (3.23) and (3.25) is

u

u0
= cos(ωz/c) − (ωd/c) sin(ωz/c)

cos(ωh/c) − (ωd/c) sin(ωh/c)
sin[ω(t − x/c2)]. (3.26)

It can easily be verified that this solution satisfies all necessary conditions, and that
it reduces to the solution of the previous case if the mass of the surface load tends
towards zero (d → 0). As in the previous example the displacements are all in phase
with the vibration of the base rock, as a result of the simplicity of the problem
considered, with damping being disregarded, for instance.

The amplitude of the vertical displacement at the top of the layer is

ut

u0
= 1

cos(ωh/c) − (ωd/c) sin(ωh/c)
. (3.27)

As an example one may consider the case of a sandy soil, with c = 300 m/s and
a wave of frequency ω = 30 s−1. If the thickness of the soil layer is 20 m, and the
equivalent thickness of the surface load is 2 m (indicating a small house), the value
of the parameters ωh/c and ωd/c is 2, respectively 0.2. In that case the amplitude
at the top of the soil layer (and of the surface load) is found to be 1.67 times the am-
plitude at the base, indicating a certain amplification of the effect of the earthquake.
The amplification depends very much on the values of the various parameters of the
soil and the earthquake, and may be considerably larger than the value obtained in
this example.

Actually, even resonance may occur, as indicated by an infinitely large ampli-
tude, if the denominator of the fraction in (3.27) vanishes. If the smallest resonance
frequency is again denoted by ω1, its value can be determined from the condi-
tion

(
ω1d

c

)
= cot

(
ω1h

c

)
. (3.28)

This will be considered in some more detail later, in Sect. 5.4.3, with damping also
taken into account.
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From a point of view of theoretical verification it is interesting to consider in par-
ticular the case of rather slow vibrations, when the parameter ωh/c is small com-
pared to 1. In that case the resonance frequency ω1, as defined by (3.28), can be
obtained from the relation

ω2
1 = c2

hd
= μ

ρhd
= μA/h

ρAd
, (3.29)

where A is the area of the column considered. The quantity μA/h can be considered
as the spring stiffness k of the column, and ρAd is the total mass m of the surface
load. Thus the resonance frequency can also be written as

ω2
1 = k

m
. (3.30)

This result is in perfect agreement with the result obtained in Chap. 1 for the reso-
nance frequency of a system of a discrete spring and mass. It appears that the result
obtained in this section is in agreement with the result for a discrete spring and mass
if the dimensionless frequency parameter is small enough (ωh/c � 1). This is the
case, for instance, if the soil is sufficiently stiff, or if the frequency is very small, or
if the soil layer is very thin.

3.3 Shear Waves in a Gibson Material

The stiffness of a soil usually increases with the effective stress, and thus with depth.
A simple relation is obtained if it is assumed that the shear modulus increases lin-
early with depth,

μ = μ0z/h. (3.31)

Stresses and deformations of materials of this type have been investigated exten-
sively by Gibson (1967). For this reason the material is often denoted as a Gibson
material.

The basic differential equation is, for a non-homogeneous material,

ρ
∂2u

∂t2 = ∂τ

∂z
= ∂

∂z

(
μ

∂u

∂z

)
, (3.32)

where τ is the shear stress. With (3.31) the differential equation now is found to be

1

c2

∂2u

∂t2 = z

h

∂2u

∂z2 + 1

h

∂u

∂z
, (3.33)

where now

c = √
μ0/ρ. (3.34)
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Again restriction is made to sinusoidal fluctuations,

u(z, t) = f (z) sin[ω(t − x/c2)]. (3.35)

Substitution of this expression into (3.33) leads to the following ordinary differential
equation for the function f ,

d2f

dz2 + 1

z

df

dz
+ ω2h

c2z
f = 0. (3.36)

The general solution of this equation is

f = AJ0(2ω
√

zh/c) + BY0(2ω
√

zh/c), (3.37)

where J0(x) and Y0(x) are Bessel functions of order zero, and of the first and second
kind, respectively (Abramowitz and Stegun, 1964).

Let the boundary condition at the surface be that the shear stress is zero,

z = 0 : τ = 0. (3.38)

It then follows that the coefficient B must be zero. If the other boundary condition
is that at a depth h the amplitude of the displacements is u0,

z = h : u = u0 sin[ω(t − x/c2)], (3.39)

then the coefficient A is found to be

A = u0

J0(2ωh/c)
. (3.40)

The final solution now is

u = u0
J0(2ω

√
zh/c)

J0(2ωh/c)
sin[ω(t − x/c2)]. (3.41)

The amplitude at the surface is

ut = u0

J0(2ωh/c)
. (3.42)

This is always larger than the amplitude at the base. For certain values of the fre-
quency the amplitude even becomes infinitely large, again indicating resonance. The
smallest value of the frequency for which this occurs (to be denoted by ω1) is de-
termined by the first zero of the Bessel function J0(x), which occurs for x = 2.405
(Abramowitz and Stegun, 1964; p. 409). Hence

ω1 = 1.202
c

h
. (3.43)

This is about 23% smaller than in the case of a homogeneous layer with its constant
shear modulus equal to the value obtained here at a depth z = h, see (3.18).
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3.4 Hysteretic Damping

In this section the influence of damping is investigated, for a homogenous linear
elastic layer. This will appear to have a considerable effect, reducing the displace-
ments at the surface if the damping coefficient is large enough. The effect of damp-
ing on the surface vibrations of soft soil layers produced by an earthquake in the
underlying rock has been investigated by Idriss and Seed (1968), for a class of non-
homogeneous layers, with a shear modulus increasing with depth. The damping was
introduced in that model by a friction force on each element proportional to its ve-
locity, simulating the resistance due to some viscous resistance, see also Das (1993)
and Kramer (1996). In this chapter damping will be introduced by a hysteretic effect
in the stress-strain relation of the soil, simulating irreversible (plastic) deformations
in each complete cycle.

3.4.1 Basic Equations

The basic partial differential equation can be established by considering the equation
of motion and the constitutive relation of the material. The equation of motion is, as
before, see (3.9),

∂τ

∂z
= ρ

∂2u

∂t2 . (3.44)

The constitutive relation is assumed to be

τ = μγ + μtr
∂γ

∂t
= μ

∂u

∂z
+ μtr

∂2u

∂t∂z
, (3.45)

where tr is the response time of the material, see Chap. 1, which may be used to
characterize the damping of the material. For a viscous material this can be consid-
ered to be a given constant. In such cases the effect of damping depends upon the
frequency of the loading, with the material becoming very stiff for very high fre-
quencies. For soils this is not realistic, as the damping is considered to be produced
by irreversible plastic deformations of the material. In order to describe hysteretic
damping it is assumed that the product ωtr is constant. This can be taken into ac-
count by introducing a dimensionless damping parameter ζ such that

2ζ = ωtr . (3.46)

The constitutive relation (3.45) can now be written as

τ = μ
∂u

∂z
+ 2μ(ζ/ω)

∂2u

∂t∂z
. (3.47)

It follows from (3.44) and (3.47) that

1

c2

∂2u

∂t2
= ∂2u

∂z2
+ 2ζ

ω

∂3u

∂t∂z2
, (3.48)

which is the basic differential equation to be considered.



3.4 Hysteretic Damping 55

For a harmonic vibration, with frequency ω, the solution can be assumed to be
of the form

u = f (z) sin[ω(t − x/c2)] + g(z) cos[ω(t − x/c2)]. (3.49)

Substitution into the differential equation shows that the functions f (z) and g(z)

must satisfy the differential equations

d2f

dz2
+ ω2

c2
f − 2ζ

d2g

dz2
= 0, (3.50)

and

d2g

dz2
+ ω2

c2
g + 2ζ

d2f

dz2
= 0. (3.51)

The general solution of the system of (3.50) and (3.51) is

f = A1 exp[(p + iq)z] + A2 exp[(p − iq)z]
+ A3 exp[−(p + iq)z] + A4 exp[−(p − iq)z], (3.52)

g = −iA1 exp[(p + iq)z] + iA2 exp[(p − iq)z]
− iA3 exp[−(p + iq)z] + iA4 exp[−(p − iq)z], (3.53)

where p and q must be determined from the equations

p2 − q2 = − ω2/c2

1 + 4ζ 2 , (3.54)

2pq = 2ζ
ω2/c2

1 + 4ζ 2 . (3.55)

The values of the parameters p and q can most easily be determined by introducing
the complex variable

p + iq = r sin(φ) + ir cos(φ), (3.56)

so that

p = r sin(φ), q = r cos(φ). (3.57)

The angle φ can then be determined from the condition

2φ = arctan(2ζ ), (3.58)

and the radius r can be determined from the condition

r4 = ω4/c4

1 + 4ζ 2
. (3.59)
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These parameters have been chosen such that they reduce to a simple form in the
absence of damping. Actually, when ζ = 0 the parameters are p = 0 and q = ω/c.

The integration constants A1, A2, A3 and A4 in the general solution given
in (3.52) and (3.53) must be determined from the boundary conditions at the top
and the bottom of the layer. Two cases will be considered: an unloaded soil layer
and a layer with a given surface load.

3.4.2 Unloaded Soil Layer

For an unloaded soil layer the boundary conditions are

z = 0 : τ = 0. (3.60)

z = h : u = u0 sin[ω(t − x/c2)]. (3.61)

The four integration constants can easily be determined from these conditions. The
final solution then is

Au/u0 = cosh(ph) cos(qh) cosh(pz) cos(qz) sin[ω(t − x/c2)]
+ sinh(ph) sin(qh) sinh(pz) sin(qz) sin[ω(t − x/c2)]
+ cosh(ph) cos(qh) sinh(pz) sin(qz) cos[ω(t − x/c2)]
− sinh(ph) sin(qh) cosh(pz) cos(qz) cos[ω(t − x/c2)], (3.62)

where

A = cosh2(ph) − sin2(qh). (3.63)

If the amplitude of the vibration at the top is denoted by ut its value is found to be

ut

u0
= 1√

A
. (3.64)

When there is no damping this solution reduces to the result obtained before,
in (3.17). Actually, for ζ = 0 the quantity

√
A reduces to cos(ωh/c), so that then

the ratio of the two amplitudes becomes 1/ cos(ωh/c), which is in agreement
with (3.17).

The amplitude of the displacements at the top of the layer is shown, as a function
of the dimensionless frequency ωh/c, and for three values of the damping ratio ζ , in
Fig. 3.5. For very small frequencies (ωh/c → 0), i.e. for the static case, the displace-
ment at the top is equal to the displacement at the bottom, ut/u0 = 1. Furthermore,
it appears that for very small values of the damping ratio very large values of the
displacements may be obtained for certain frequencies, near ωh/c = π/2,3π/2, . . .

etc. This is the resonance effect observed before, in Sect. 3.2.1. Finally, it follows
from Fig. 3.5 that the amplification of the displacements is considerably reduced if
the damping ratio ζ increases.
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Fig. 3.5 Amplitude of wave
at the top of the layer

Fig. 3.6 Displacements as a function of depth, ωh/c = 5, ζ = 0.01 and ζ = 0.2

The displacements are shown as a function of the vertical coordinate z in Fig. 3.6,
for ωh/c = 5, ζ = 0.01 and ζ = 0.2, and for four values of time, namely ωt = 0,
π/2, π , 3π/2. For the case of small damping (ζ = 0.01) the amplification fac-
tor for the amplitude of the displacements at the top of the layer should be about
1/ cos(ωh/c) = 3.525, see (3.17). The results shown in the left part of Fig. 3.6 ap-
pear to confirm this value. The right part of the figure shows the influence of damp-
ing on the displacements. If the damping ratio is taken as ζ = 0.2 the amplitude of
the displacements at the top is considerably smaller, as expected.

If the damping ratio is small, ζ � 1, the amplitude of the wave at the top can be
shown to be

ζ � 1 : ut

u0
≈ 1

√
W 2ζ 2 + cos2(W)

, (3.65)
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where W is the dimensionless frequency,

W = ωh/c. (3.66)

The largest value of the amplitude ratio occurs if W = π/2,

ζ � 1 :
( ut

u0

)

max
≈ 2

πζ
. (3.67)

For ζ = 0 this is infinitely large, as before indicating resonance. If ζ = 0.1 the
maximum amplitude ratio should be approximately 6.366, using (3.67). This value
is confirmed by the data shown in Fig. 3.5.

3.4.3 Soil Layer with Surface Load

A more general case than the previous one is the propagation of waves in a homo-
geneous linear elastic layer, with hysteretic damping, carrying a surface load, see
Fig. 3.4. In this case the boundary conditions at the bottom of the layer is, as before,

z = h : u = u0 sin[ω(t − x/c2)], (3.68)

and the boundary condition at the top is

z = 0 : ρd
∂2u

∂t2 = τ, (3.69)

where d represents the surface load, expressed as an equivalent layer of soil, and
where now the shear stress τ is related to the horizontal displacement u by (3.47),

τ = μ
∂u

∂z
+ 2μ(ζ/ω)

∂2u

∂t∂z
. (3.70)

It now follows from (3.69) and (3.70) that the boundary condition at the top can be
written as

z = 0 : d

c2

∂2u

∂t2 = ∂u

∂z
+ 2ζ

ω

∂2u

∂t∂z
. (3.71)

The general solution of the problem for a material with hysteretic damping can been
written in the form of (3.49),

u = f (z) sin[ω(t − x/c2)] + g(z) cos[ω(t − x/c2)], (3.72)

where the functions f (z) and g(z) are given by (3.52) and (3.53). This solution can
also be written as

u = C1 exp(pz) cos[ω(t − x/c2 + qz)] + C2 exp(pz) sin[ω(t − x/c2 + qz)]
+ C3 exp(−pz) cos[ω(t − x/c2 − qz)]
+ C4 exp(−pz) sin[ω(t − x/c2 − qz)]. (3.73)

This form is more convenient for the formulation of the boundary conditions.
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Substitution of the general solution (3.73) into the two boundary conditions leads,
after some elementary algebra, to the following four equations

(
ph − 2ζqh + d

h

ω2h2

c2

)
C1 + (qh + 2ζph)C2

−
(

ph − 2ζqh − d

h

ω2h2

c2

)
C3 − (qh + 2ζph)C4 = 0, (3.74)

−(qh + 2ζph)C1 +
(

ph − 2ζqh + d

h

ω2h2

c2

)
C2

+ (qh + 2ζph)C3 −
(

ph − 2ζqh − d

h

ω2h2

c2

)
C4 = 0, (3.75)

exp(ph) cos(qh)C1 + exp(ph) sin(qh)C2

+ exp(−ph) cos(qh)C3 − exp(−ph) sin(qh)C4 = 0, (3.76)

− exp(ph) sin(qh)C1 + exp(ph) cos(qh)C2

+ exp(−ph) sin(qh)C3 + exp(−ph) cos(qh)C4 = u0. (3.77)

The constants C1, C2, C3 and C4 can be determined from these equations. A numer-
ical solution of the system of four linear equations is probably most convenient, es-
pecially because the data will be calculated by a simple computer program anyway.
The parameters of the problem are the dimensionless frequency ωh/c, the damping
ratio ζ , and the dimensionless mass of the load, expressed as the ratio d/h.

The amplitude of the vibrations at the top of the soil layer are shown in Fig. 3.7,
for ζ = 0.1 and ζ = 0.5, and for three values of the load, d/h = 0, 1, 10. The
results for d/h = 0 are in agreement with those shown in Fig. 3.5 for ζ = 0.1. The
right part of the figure shows the influence of damping on the displacements. If the

Fig. 3.7 Amplitude of wave at the top of the layer, ζ = 0.1 and ζ = 0.5
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damping ratio is taken as ζ = 0.5 the amplitude of the displacements at the top is
considerably smaller, as can be expected.

3.5 Numerical Solution

All the analytical solutions presented above suffer from the defect that the stress-
strain-relationship must be of rather simple form (linear elastic, with perhaps linear
hysteretic damping), and that the soil properties must be homogeneous. Real soils
are often composed of several layers of variable properties, and often they exhibit
non-linear properties. Therefore a numerical solution may be considered, because
this can more easily be generalized to non-linear and non-homogeneous properties.
In this section a simple numerical solution method is presented, again with hys-
teretic damping.

The considerations will be restricted to one-dimensional problems, such as wave
propagation in a soft layer, from a stiff deep layer to the surface. For this rela-
tively simple class of problems there is little difference between the various existing
numerical techniques, such as finite elements and finite differences. Therefore the
simplest of these methods, an explicit finite difference method, will be used.

Basic Equations

It is most convenient to base the numerical model upon a description of the basic
equations in terms of the lateral displacement u, the lateral velocity v, and the shear
stress s. Let the soil layer be subdivided into a certain number (n) of elements, and
let the velocity of a typical element be denoted by vi , see Fig. 3.8. The shear stress
on the lower surface is denoted by τi , and the shear stress at the upper surface is
denoted by τi−1. The equation of motion of the element now is,

ρ
∂vi

∂t
= τi − τi−1

�z
, (3.78)

where �z is the thickness of the element. If the variable τi is now expressed as
τi = μsi this equation can also be written as

∂vi

∂t
= c2 si − si−1

�z
, (3.79)

Fig. 3.8 Shear wave
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where, as usual, c is the shear wave velocity, c = √
μ/ρ. The finite difference form

of (3.79) is

v′
i = vi + c2 �t

�z
(si − si−1), (3.80)

where v′
i represents the velocity after a time interval �t . The velocity is the time

derivative of the displacement,

vi = ∂ui

∂t
, (3.81)

or, in finite difference form,

u′
i = ui + vi�t. (3.82)

The shear stress can be related to the shear strain by the equation

τi = μ
∂u

∂z
+ μtr

∂v

∂z
, (3.83)

where tr is the characteristic time of the damping effect. As before we write

2ζ = ωtr , (3.84)

where ζ is the dimensionless damping ratio, and where ω is the frequency of the
load, assuming that the load is periodic. This means that (3.83) can also be written
as

si = ∂u

∂z
+ 2ζ

ω

∂v

∂z
. (3.85)

The finite difference form of this equation is

si = (ui+1 − ui)/�z + (2ζ/ω)(vi+1 − vi)/�z. (3.86)

A numerical model can now be developed as follows. If the problem is again that of
the propagation of a shear wave from a certain depth to the surface of the soil, the
boundary condition at the lower boundary of the layer can be considered to be

un = d sin(ωt), vn = dω sin(ωt), (3.87)

where d is the amplitude of the sinusoidal fluctuation, with frequency ω. Us-
ing (3.86) the shear stresses at every level (from i = 1 to i = n − 1) can now be
calculated, assuming that the displacements in the layer itself are initially zero.
Using (3.80) the velocities at the end of the time interval can then be calculated,
and finally the displacements at the end of the time interval can be calculated us-
ing (3.82), from i = 1 to i = n − 1. This process can then be repeated for as many
steps as desired.

The calculations can be executed by a computer program, with the main compu-
tation algorithm being reproduced below.
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for (i=n-1;i>0;i--)
{
s[i]=(u[i+1]-u[i])/dz+(2*zeta/omega)*(v[i+1]-v[i])/dz;
v[i]=v[i]+c*c*dt*(s[i]-s[i-1])/dz;
u[i]=u[i]+v[i]*dt;
}

In a computer program the time step should be so small that instabilities are avoided.
The magnitude of these time steps can most simply be investigated by considering
the basic equation (3.48),

1

c2

∂2u

∂t2
= ∂2u

∂z2
+ 2ζ

ω

∂3u

∂t∂z2
. (3.88)

For ζ = 0 this equation reduces to the standard wave equation

1

c2

∂2u

∂t2
= ∂2u

∂z2
. (3.89)

Numerical approximations of this equation, using the simplest finite difference ap-
proximations, usually are stable if in each time step the wave travels not more than
a single spatial step. This leads to the following condition for the time step,

�t ≤ �z/c. (3.90)

This is the Courant condition, see Press et al. (1988).
For large values of the damping ratio ζ the basic equation (3.88) reduces to a

diffusion equation for the velocity,

1

c2

∂v

∂t
= 2ζ

ω

∂2v

∂z2
. (3.91)

This can be solved numerically by a stable process if the following stability criterion
is satisfied, see e.g. Press et al. (1988),

�t ≤ ω�z2

4ζc2
. (3.92)

It is suggested that in a computer program the time steps are taken small enough for
both criteria to be satisfied.

A computer program using the method described here, QUAKE, may be used
as an alternative to the analytical solutions presented in this chapter, and may be
used as a basis for more general problems, of non-homogeneous layers, and per-
haps involving non-linear soil properties. When comparing the results of a simple
computer program with the analytical results it will be observed that there may be
considerable deviations, especially for small values of time. This is a result of the
initial condition in the numerical solution. It may take many cycles of vibrations
before the numerical solution has reached the steady state that has been assumed in
the analytical solutions. Actually, during a real earthquake the soil may not reach
the steady state, and the results of a non-steady computation may be more realistic.
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Problems

3.1 Investigate the influence of the frequency ω and the damping ratio ζ on the
ratio of the displacements at the top and the bottom of a soft soil layer.

3.2 Using the computer program QUAKE, verify that the results of the program
are in agreement with the analytical results given earlier, at least after many cycles
of vibration.





Chapter 4
Theory of Consolidation

4.1 Consolidation

Soft soils such as sand and clay consist of small particles, and often the pore space
between the particles is filled with water. In soil mechanics this is denoted as a satu-
rated or a partially saturated porous medium. The deformation of such porous media
depends upon the stiffness of the porous material, but also upon the behaviour of the
fluid in the pores. If the permeability of the material is small, the deformations may
be considerably hindered, or at least retarded, by the pore fluid. The simultaneous
deformation of the porous material and flow of pore fluid is the subject of the theory
of consolidation, often denoted as poroelasticity.

The theory was developed originally by Terzaghi (1925) for the one-dimensional
case, and extended to three dimensions by Biot (1941), and it has been studied
extensively since. In Terzaghi’s original theory the pore fluid and the solid particles
were assumed to be completely incompressible. This means that deformations of
the porous medium are possible only by a rearrangement of the particles, and that
volume changes must be accompanied by the expulsion of pore water. This is a
good approximation of the real behaviour of soft soils, especially clay, and also soft
sands. Such soils are highly compressible (deformations may be as large as several
percents), whereas the constituents, particles and fluid are very stiff.

In later presentations of the theory, starting with those of Biot, compression of
the pore fluid and compression of the particles has been taken into account. This
generalization made it possible to also consider the deformations of materials such
as sandstone and other porous rocks, which are very important in the engineering
of deep reservoirs of oil or gas. The linear theory of poroelasticity (or consolida-
tion) has now reached a stage where there is practically general consensus on the
basic equations, see e.g. De Boer (2000), Wang (2000), Coussy (2004), Verruijt
(2008b).

In this chapter the basic equations of the general theory of linear consolidation
are derived, for the case of a linear material, and for pseudo-static deformations
(in which inertial forces are disregarded). A simplified version of the theory, in
which the soil deformation is assumed to be strictly vertical, is also presented in

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
© Springer Science+Business Media B.V. 2010
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this chapter. The analytical solutions for two simple examples are given. In the next
chapter the generalization to dynamics is presented.

Before deriving the basic equations of consolidation it is convenient to consider
some of the basic principles underlying the theory, especially the influence of the
compressibilities of the two constituents (solid particles and pore fluid) on the be-
haviour of a porous medium in the absence of drainage.

4.1.1 Undrained Compression of a Porous Medium

Consider an element of porous soil or rock, of porosity n, saturated with a fluid.
The element is loaded, in undrained condition, by an isotropic total stress �σ . The
resulting pore pressure is denoted by �p. In order to determine the relation between
�p and �σ the load is considered to be applied in two stages: an increment of
pressure both in the fluid and in the soil particles of magnitude �p, and a load on
the soil, without any pore pressures, of magnitude �σ . Compatibility of the two
stages, requiring that the total volume change is the sum of the volume changes of
the fluid and the solid particles, will be required only for the combination of the two
stages.

In the first stage, in which the stress in both fluid and particles is increased by
�p, the volume change of the pore fluid is

�Vf = −nCf �pV, (4.1)

where Cf is the compressibility of the pore fluid (which may include the compres-
sion of small amounts of isolated gas bubbles), and V is the total volume of the
element considered. The volume change of the particles is

�Vs = −(1 − n)Cs�pV, (4.2)

where Cs is the compressibility of the solid material. Assuming that the solid par-
ticles all have the same compressibility, it follows that their uniform compression
leads to a volume change of the pore space as well (at this stage compatibility of
the deformations of fluid and particles is ignored) of the same magnitude. Thus the
total volume change of the porous medium is

�V = −nCsV . (4.3)

In the second stage the pressure in the fluid remains unchanged, so that there is
no volume change of the fluid,

�Vf = 0, (4.4)

The stress increment �σ − �p on the soil, at constant pore pressure, leads to an
average stress increment in the solid particles of magnitude (�σ − �p)/(1 − n).
The resulting volume change of the particles is

�Vs = −Cs(�σ − �p)V. (4.5)
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The volume change of the porous medium as a whole in this stage also involves the
deformations due to sliding and rolling at the contacts of the particles. Assuming
that this is also a linear process, in a first approximation, it follows that in this stage
of loading

�V = −Cm(�σ − �p)V, (4.6)

where Cm is the compressibility of the porous medium. It is to be expected that
this is considerably larger than the compressibilities of the two constituents: fluid
and solid particles, because the main mechanism of soil deformation is not so much
the compression of the fluid or the particles, but rather the deformation due to a
rearrangement of the particles, including sliding and rolling.

Due to both these two loadings the volume changes are

�Vf = −nCf �pV, (4.7)

�Vs = −(1 − n)Cs�pV − Cs(�σ − �p)V, (4.8)

�V = −Cs�pV − Cm(�σ − �p)V. (4.9)

Because there is no drainage in the combined loading situation, by assumption, the
total volume change must be equal to the sum of the volume changes of the fluid
and the particles, �V = �Vf + �Vs . This gives, with (4.7)–(4.8),

�p

�σ
= B = 1

1 + n(Cf − Cs)/(Cm − Cs)
. (4.10)

The derivation leading to this equation is due to Bishop (1973), but similar equations
were given earlier by Gassmann (1951) and Geertsma (1957). The ratio �p/�σ

under isotropic loading is often denoted by B in soil mechanics (Skempton, 1954).
In early developments, such as in Terzaghi’s publications, the compressibilities of
the fluid and of the solid particles were disregarded, Cf = Cs = 0. In that case
B = 1, which is often used as a first approximation.

4.1.2 The Principle of Effective Stress

The effective stress, introduced by Terzaghi (1925), is defined as that part of the
total stresses that governs the deformation of the soil or rock. It is assumed that the
total stresses can be decomposed into the sum of the effective stresses and the pore
pressure by writing

σij = σ ′
ij + αpδij , (4.11)

where σij are the components of total stress, σ ′
ij are the components of effective

stress, p is the pore pressure (the pressure in the fluid in the pores), δij are the
Kronecker delta symbols (δij = 1 if i = j and δij = 0 otherwise), and α is Biot’s
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coefficient, which is unknown at this stage. For the isotropic parts of the stresses it
follows from (4.11) that

σ = σ ′ + αp. (4.12)

In the case of an isotropic linear elastic porous material the relation between the
volumetric strain ε and the isotropic effective stress is of the form

ε = �V

V
= −Cm�σ ′ = −Cm�σ − Cmαp, (4.13)

where, as before, Cm denotes the compressibility of the porous material, the inverse
of its compression modulus, Cm = 1/K . Equation (4.13) should be in agreement
with (4.9), which is the case only if

α = 1 − Cs/Cm. (4.14)

This expression for Biot’s coefficient is generally accepted in rock mechanics (Biot
and Willis, 1957) and in the mechanics of other porous materials, such as bone or
skin (Coussy, 2004). For soft soils the value of α is close to 1.

If the coefficient α is taken as 1, the effective stress principle reduces to

σij = σ ′
ij + pδij . (4.15)

This is the form in which the effective stress principle is often expressed in soil
mechanics, on the basis of Terzaghi’s original work (1925, 1943). This is often jus-
tified because soil mechanics practice usually deals with highly compressible clays
or sands, in which the compressibility of the solid particles is very small compared
to the compressibility of the porous material as a whole. In this case the effective
stress is also the average of the forces transmitted in the isolated contact points be-
tween the particles. This is sometimes denoted as the intergranular stress.

4.2 Conservation of Mass

One of the major principles in the theory of consolidation is that the mass of the two
components, water and solid particles, must be conserved. This will be formulated
in this section.

Consider a porous material, consisting of a solid matrix or an assembly of par-
ticles, with a continuous pore space. The pore space is filled with a fluid, usually
water, but possibly some other fluid, or a mixture of fluids. The average velocity of
the fluid is denoted by v and the average velocity of the solids is denoted by w. The
densities are denoted by ρf and ρs , respectively, and the porosity by n.

The equations of conservation of mass of the solids and the fluid can be estab-
lished by considering the flow into and out of an elementary volume, fixed in space,
see Fig. 4.1. The mass of fluid in an elementary volume V is nρf V . The increment
of this mass per unit time is determined by the net inward flux across the surfaces
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Fig. 4.1 Conservation of
mass of the fluid

of the element. In y-direction the flow through the left and the right faces of the
element shown in Fig. 4.1 (both having an area �x�z), leads to a net outward flux
of magnitude

�(nρf vy)�x�z = �(nρf vy)

�y
V,

where V denotes the volume �x�y�z. This leads to the following mass balance
equation

∂(nρf )

∂t
+ ∂(nρf vx)

∂x
+ ∂(nρf vy)

∂y
+ ∂(nρf vz)

∂z
= 0. (4.16)

Using vector notation this can also be written as

∂(nρf )

∂t
+ ∇·(nρf v) = 0. (4.17)

The compressibility of the fluid can be expressed by assuming that the constitutive
equation of the fluid is

dρf

dp
= ρf Cf , (4.18)

which is in agreement with the definition of the fluid compressibility Cf in (4.7). For
pure water the compressibility is Cf ≈ 0.5 × 10−9 m2/kN. For a fluid containing
small amounts of a gas the compressibility may be considerably larger, however. It
now follows from (4.17) that

∂n

∂t
+ nCf

∂p

∂t
+ ∇· (nv) = 0, (4.19)

where a term expressing the product of the fluid velocity and the pressure gradient
has been disregarded, assuming that both are small quantities, so that the product is
of second order.
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The balance equation for the solid material is

∂[(1 − n)ρs]
∂t

+ ∇· [(1 − n)ρsw] = 0. (4.20)

It is now assumed that the density of the solid particles is a function of the isotropic
total stress σ and the fluid pressure p, so that

∂ρs

∂t
= ρsCs

1 − n

(
∂σ

∂t
− n

∂p

∂t

)
, (4.21)

which is in agreement with (4.8). Equation (4.20) now reduces to

−∂n

∂t
+ Cs

(
∂σ

∂t
− n

∂p

∂t

)
+ ∇· [(1 − n)w] = 0, (4.22)

where again a term expressing the product of a velocity and a gradient of stress or
pressure has been disregarded.

The time derivative of the porosity n can easily be eliminated from (4.22) and
(4.19) by adding these two equations. This gives

∇ · w + ∇·[n(v − w)] + n(Cf − Cs)
∂p

∂t
+ Cs

∂σ

∂t
= 0. (4.23)

The quantity n(v − w) is the porosity multiplied by the relative velocity of the fluid
with respect to the solids. This is precisely what is intended by the specific dis-
charge, which is the quantity that appears in Darcy’s law for the flow of a fluid
through a porous medium. It will be denoted by q,

q = n(v − w). (4.24)

If the displacement vector of the solids is denoted by u, the term ∇ · w can also be
written as ∂ε/∂t , where ε is the volume strain,

ε = ∇ · u. (4.25)

Equation (4.23) can now be written as

∂ε

∂t
+ n(Cf − Cs)

∂p

∂t
+ Cs

∂σ

∂t
= −∇ · q. (4.26)

Because the isotropic total stress can be expressed as σ = σ ′ + αp, see (4.12), and
the isotropic effective stress can be related to the volume strain by σ ′ = −ε/Cm,
where Cm is the compressibility of the porous medium, see (4.13), it follows that
(4.26) can also be written as

α
∂ε

∂t
+ Sp

∂p

∂t
= −∇ · q, (4.27)
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where Sp is the storativity, of the pore space,

Sp = nCf + (α − n)Cs. (4.28)

Equation (4.27) will be denoted here as the fluid conservation equation. It has been
denoted as the storage equation in earlier literature. It is an important basic equa-
tion of the theory of consolidation. In its form (4.26) it admits a simple heuristic
interpretation: the compression of the soil consists of the compression of the pore
fluid and the particles plus the amount of fluid expelled from an element by flow.
The equation actually expresses conservation of mass of fluids and solids, together
with some notions about the compressibilities.

It may be noted that in deriving (4.27) a number of assumptions have been made,
but these are all relatively realistic. Thus, it has been assumed that the solid particles
and the fluid are linearly compressible, and some second order terms, consisting
of the products of small quantities, have been disregarded. The fluid conservation
equation (4.27) can be considered as a reasonably accurate description of physical
reality.

4.3 Darcy’s Law

In 1857 Darcy found, from experiments, that the specific discharge of a fluid in a
porous material is proportional to the head loss. In terms of the quantities used in
this chapter Darcy’s law can be written as

q = − κ

μ
(∇p − ρf g), (4.29)

where κ is the (intrinsic) permeability of the porous material, μ is the viscosity
of the fluid, and g is the gravity vector. The permeability depends upon the size
of the pores. As a first approximation one may consider that the permeability κ is
proportional to the square of the particle size.

If the coordinate system is such that the z-axis is pointing in upward vertical
direction the components of the gravity vector are gx = 0, gy = 0, gz = −g, and
then Darcy’s law may also be written as

qx = − κ

μ

∂p

∂x
,

qy = − κ

μ

∂p

∂y
, (4.30)

qz = − κ

μ

(
∂p

∂z
+ ρf g

)
.

The product ρf g may also be written as γw , the volumetric weight of the fluid.
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In soil mechanics practice the coefficient in Darcy’s law is often expressed in
terms of the hydraulic conductivity k rather than the permeability κ . This hydraulic
conductivity is defined as

k = κρf g

μ
. (4.31)

This means that Darcy’s law can also be written as

qx = − k

γw

∂p

∂x
,

qy = − k

γw

∂p

∂y
, (4.32)

qz = − k

γw

(
∂p

∂z
+ γw

)
.

From these equations it follows that

∇ · q = ∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z
= −∇·

(
k

γw

∇p

)
, (4.33)

if again a small second order term (involving the spatial derivative of the hydraulic
conductivity) is disregarded.

Substitution of (4.33) into (4.27) gives

α
∂ε

∂t
+ Sp

∂p

∂t
= ∇·

(
k

γw

∇p

)
. (4.34)

Compared to (4.27) the only additional assumption is the validity of Darcy’s law.
As Darcy’s law usually gives a good description of flow in a porous medium, (4.34)
can be considered as reasonably accurate.

4.4 Equilibrium Equations

The complete formulation of a fully three-dimensional problem requires a consider-
ation of the principles of solid mechanics, including equilibrium, compatibility and
the stress-strain-relations. In addition to these equations the initial conditions and
the boundary conditions must be formulated. These equations are presented here,
for a linear elastic material.

The equations of equilibrium can be established by considering the stresses act-
ing upon the six faces of an elementary volume, see Fig. 4.2. In this figure only the
six stress components in the y-direction are shown. The equilibrium equations in
the three coordinate directions are
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Fig. 4.2 Equilibrium of
element

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
− fx = 0,

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
− fy = 0, (4.35)

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
− fz = 0,

where fx , fy and fz denote the components of a possible body force. In addition to
these equilibrium conditions there are three equations of equilibrium of moments.
These can be taken into account most conveniently by noting that they result in the
symmetry of the stress tensor,

σxy = σyx,

σyz = σzy, (4.36)

σzx = σxz.

The stresses in these equations are total stresses. They are considered positive for
compression, in agreement with common soil mechanics practice, but in contrast
with the usual sign convention in solid mechanics.

The total stresses are related to the effective stresses by the generalized Terzaghi
principle, see (4.11),

σxx = σ ′
xx + αp, σxy = σ ′

xy, σxz = σ ′
xz,

σyy = σ ′
yy + αp, σyz = σ ′

yz, σyx = σ ′
yx, (4.37)

σzz = σ ′
zz + αp, σzx = σ ′

zx, σzy = σ ′
zy,

where α is Biot’s coefficient, α = 1 − Cs/Cm.
The effective stresses determine the deformations of the soil. The shear stresses

can of course only be transmitted by the soil skeleton. As a first approximation the
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effective stresses are now supposed to be related to the strains by the generalized
form of Hooke’s law. For an isotropic material these relations are

σ ′
xx = −

(
K − 2

3
G

)
ε − 2Gεxx, σ ′

xy = −2Gεxy, σ ′
xz = −2Gεxz,

σ ′
yy = −

(
K − 2

3
G

)
ε − 2Gεyy, σ ′

yz = −2Gεyz, σ ′
yx = −2Gεyx, (4.38)

σ ′
zz = −(K − 2

3
G)ε − 2Gεzz, σ ′

zx = −2Gεzx, σ ′
zy = −2Gεzy,

where K and G are the elastic coefficients of the material, the compression modulus
and the shear modulus, respectively. They are related to the Lamé constants λ and
μ by the relations

λ = K − 2

3
G, G = μ. (4.39)

The compression modulus (or bulk modulus) K is the inverse of the compressibility
Cm of the porous medium K = 1/Cm. In soil mechanics the compression modulus
K and shear modulus G are often used as the two basic elastic coefficients because
they so well describe the two different modes of deformation: compression and
shear.

The volume strain ε in (4.38) is the sum of the three linear strains,

ε = εxx + εyy + εzz. (4.40)

The strain components are related to the displacement components by the compati-
bility equations

εxx = ∂ux

∂x
, εxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
, εxz = 1

2

(
∂ux

∂z
+ ∂uz

∂x

)
,

εyy = ∂uy

∂y
, εyz = 1

2

(
∂uy

∂z
+ ∂uz

∂y

)
, εyx = 1

2

(
∂uy

∂x
+ ∂ux

∂y

)
, (4.41)

εzz = ∂uz

∂z
, εzx = 1

2

(
∂uz

∂x
+ ∂ux

∂z

)
, εzy = 1

2

(
∂uz

∂y
+ ∂uy

∂z

)
.

This completes the system of basic field equations. The total number of unknowns
is 22 (9 stresses, 9 strains, 3 displacements and the pore pressure), and the total
number of equations is also 22 (6 equilibrium equations, 9 compatibility equations,
6 independent stress-strain-relations, and the storage equation).

The system of equations can be simplified considerably by eliminating the
stresses and the strains, finally expressing the equilibrium equations in the displace-
ments. For a homogeneous material (when K and G are constant) these equations
are
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(
K + 1

3
G

)
∂ε

∂x
+ G∇2ux − α

∂p

∂x
+ fx = 0,

(
K + 1

3
G

)
∂ε

∂y
+ G∇2uy − α

∂p

∂y
+ fy = 0, (4.42)

(
K + 1

3
G

)
∂ε

∂z
+ G∇2uz − α

∂p

∂z
+ fz = 0,

where the volume strain ε should now be expressed as

ε = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
, (4.43)

and the operator ∇2 is defined as

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (4.44)

The system of differential equations now consists of the storage equation (4.34)
and the equilibrium equations (4.42). These are 4 equations with 4 variables: p, ux ,
uy and uz. The volume strain ε is not an independent variable, see (4.43).

The initial conditions are that the pore pressure p and the three displacement
components are given at a certain time (say t = 0). The boundary conditions must
be that along the boundary 4 conditions are given. One condition applies to the pore
fluid: either the pore pressure or the flow rate normal to the boundary must be spec-
ified. The other three conditions refer to the solid material: either the 3 surface trac-
tions or the 3 displacement components must be prescribed (or some combination).
Many solutions of the consolidation equations have been published, mainly for bod-
ies of relatively simple geometry (half-spaces, half-planes, cylinders, spheres, etc.)
(for references see Schiffman, 1984; Wang, 2000).

4.5 Drained Deformations

In some cases the analysis of consolidation is not really necessary because the dura-
tion of the consolidation process is short compared to the time scale of the problem
considered. This can be investigated by evaluating the expression cvt/h2, where h

is the average drainage length, and t is a characteristic time. When the value of this
parameter is large compared to 1, the consolidation process will be finished after
a time t , and consolidation may be disregarded. In such cases the behaviour of the
soil is said to be fully drained. No excess pore pressures need to be considered for
the analysis of the behaviour of the soil. Problems for which consolidation is so fast
that it can be neglected are for instance the building of an embankment or a founda-
tion on a sandy subsoil, provided that the smallest dimension of the structure, which
determines the drainage length, is not more than say a few meters.
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4.6 Undrained Deformations

Quite another class of problems is concerned with the rapid loading of a soil of low
permeability (a clay layer). Then it may be that there is hardly any movement of
the fluid, and the consolidation process can be simplified in the following way. The
basic equation involving the time scale is the storage equation (4.27),

α
∂ε

∂t
+ Sp

∂p

∂t
= −∇ · q. (4.45)

If this equation is integrated over a short time interval �t one obtains

αε0 + Spp0 = −
∫ �t

0
∇ · qdt, (4.46)

where ε0 and p0 denote the volume strain and the pore pressure immediately after
application of the load. The term in the right hand side represents the net outward
flow, over a time interval �t . When the permeability is very small, and the time step
�t is also very small, this term will be very small, and may be neglected. It follows
that

p0 = −αε

Sp

= − αε

nCf + (α − n)Cs

. (4.47)

This expression enables to eliminate the pore pressure from the other equations,
such as the equations of equilibrium (4.42). This gives

(
Ku + 1

3
G

)
∂ε

∂x
+ G∇2ux + fx = 0,

(
Ku + 1

3
G

)
∂ε

∂y
+ G∇2uy + fy = 0, (4.48)

(
Ku + 1

3
G

)
∂ε

∂z
+ G∇2uz + fz = 0,

where

Ku = K + α2

Sp

= K + α2

nCf + (α − n)Cs

, (4.49)

the undrained compression modulus.
It should be noted that these equations are completely equivalent to the equations

of equilibrium for an elastic material, the only difference being that the compression
modulus K has been replaced by Ku.

Combination of (4.37) and (4.38) with (4.47) leads to the following relations
between the total stresses and the displacements
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σxx = −
(

Ku − 2

3
G

)
ε − 2Gεxx, σxy = −2Gεxy, σxz = −2Gεxz,

σyy = −
(

Ku − 2

3
G

)
ε − 2Gεyy, σyz = −2Gεyz, σyx = −2Gεyx, (4.50)

σzz = −
(

Ku − 2

3
G

)
ε − 2Gεzz, σzx = −2Gεzx, σzy = −2Gεzy.

These equations also correspond precisely to the standard relations between stresses
and displacements from the classical theory of elasticity, again with the exception
that K must be replaced by Ku. It may be concluded that the total stresses and the
displacements are determined by the equations of the theory of elasticity, except that
the compression modulus K must be replaced by Ku. The shear modulus G remains
unaffected. This type of approach is called an undrained analysis.

If the fluid and the particles are incompressible the storativity of the pore space
Sp is zero, see (4.28). In that case the undrained compression modulus is infinitely
large, which is in agreement with the physical basis of the original consolidation
theory. If the particles and the fluid are incompressible, and the loading process is
very fast, no drainage can occur. In that case the soil must indeed be incompressible.
In an undrained analysis the material behaves with a shear modulus equal to the
drained shear modulus, but with a compression modulus that is practically infinite.
In terms of shear modulus and Poisson’s ratio, one may say that Poisson’s ratio ν is
(almost) equal to 0.5 when the soil is undrained.

As an example one may consider the case of a rigid circular foundation plate on
a semi-infinite elastic porous material, loaded by a total load P . According to the
theory of elasticity (Timoshenko and Goodier, 1970) the settlement of the plate is

w∞ = P(1 − ν2)

ED
, (4.51)

where D is the diameter of the plate. This is the settlement if there were no pore
pressures, or when all the pore pressures have been dissipated. In terms of the shear
modulus G and Poisson’s ratio ν this formula may be written as

w∞ = P(1 − ν)

2GD
. (4.52)

This is the settlement after the consolidation process has been completed. At the
moment of loading the material reacts as if ν = 1

2 , so that the immediate settlement
is

w0 = P

4GD
. (4.53)

This shows that the ratio of the immediate settlement to the final settlement is

w0

w∞
= 1

2(1 − ν)
. (4.54)
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Thus the immediate settlement is about 50% of the final settlement, or more, de-
pending upon the value of Poisson’s ratio in drained conditions. The consolidation
process will account for the remaining part of the settlement, which will be less
than 50%.

4.7 Cryer’s Problem

A good, and still relatively simple, example of a three-dimensional problem of con-
solidation is the case of a massive sphere, subjected to an all round pressure at its
outer boundary, with drainage to a layer of filter material around the sphere, see
Fig. 4.3. The solution of this problem has been given by Cryer (1963) for the case
of an incompressible fluid and incompressible solid particles. Here the general case
will be considered, which is only slightly more complicated.

Basic Equations

Using a spherical coordinate R, which is appropriate for this problem with spherical
symmetry, the storage equation (4.27) can be written as

α
∂ε

∂t
+ Sp

∂p

∂t
= k

γw

(
∂2p

∂R2
+ 2

R

∂p

∂R

)
, (4.55)

where it has been assumed that the permeability is constant.
The volume strain ε is related to the radial displacement u by

ε = ∂u

∂R
+ 2u

R
. (4.56)

The second basic equation is the equation of radial equilibrium, which can be
expressed as

∂σRR

∂R
+ 2

σRR − σT T

R
= 0, (4.57)

Fig. 4.3 Spherical sample
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where σRR and σT T are the total stresses in radial and tangential direction. The total
stresses can be separated into the effective stresses and the pore pressure by the
equations

σRR = σ ′
RR + αp, (4.58)

σT T = σ ′
T T + αp. (4.59)

Using these relations the equation of equilibrium can be written as

∂σ ′
RR

∂R
+ 2

σ ′
RR − σ ′

T T

R
+ α

∂p

∂R
= 0. (4.60)

Using (4.56) and the stress-strain-relations

σ ′
RR = −

(
K − 2

3
G

)
ε − 2G

∂u

∂R
, (4.61)

σ ′
T T = −

(
K − 2

3
G

)
ε − 2G

u

R
, (4.62)

the equation of equilibrium can be expressed in terms of the volume strain as
(

K + 4

3
G

)
∂ε

∂R
= α

∂p

∂R
. (4.63)

In these equations K is the compression modulus of the porous medium in fully
drained conditions, and G is its shear modulus.

Boundary Conditions

The problem is further defined by the boundary conditions

R = 0 : ∂p

∂R
= 0, (4.64)

R = 0 : u = 0, (4.65)

R = a : p = 0, (4.66)

R = a : σRR =
{

0, if t < 0,

q, if t > 0.
(4.67)

The first boundary condition expresses that there is no flow in the center of the
sphere, and the second boundary condition expresses that there can be no radial
displacement at the center. The third boundary condition states that the excess pore
pressure at the outer boundary of the sphere is zero, assuming perfect drainage.
The fourth boundary describes the radial loading at the sphere’s circumference. The
radius of the sphere is denoted by a.
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Initial Response

At the instant of loading there will be a response of the sample, which can be deter-
mined by considering the sample to be elastic, with a modified compression modu-
lus Ku, see (4.49),

Ku = K + α2

Sp

. (4.68)

This leads to a solution in which the state of stress is homogenous, with all normal
stresses being equal to the load q . The initial pore pressure then is

t = 0 : p = p0 = αq

α2 + KSp

. (4.69)

The initial volume change is

t = 0 : ε = ε0 = q

Ku

= qSp

α2 + KSp

. (4.70)

It may be noted that in the case of an incompressible fluid and incompressible parti-
cles Cf = Cs = 0, and α = 1. In that case p0 = q and ε0 = 0, indicating that in this
case there is no initial volume change, and the initial pore pressure is equal to the
radial load.

Solution of the Problem

The problem is solved using the Laplace transform. For the pore pressure this is
defined as

p =
∫ ∞

0
p exp(−st) dt, (4.71)

where s is the Laplace transform parameter.
The transformed basic equations can easily be solved, involving four integration

constants, which can be determined using the boundary conditions (4.64)–(4.67).
The final expression for the Laplace transform of the pore pressure is found to be

p = qmβa2

αc(1 + KSp/α2)

sinh(λa) − (a/R) sinh(λR)

[1 + m(λa)2] sinh(λa) − (λa) cosh(λa)
, (4.72)

where

λ2 = βs/c, (4.73)

and the following additional parameters have been used

c = k(K + 4
3G)

γw

, β = α2 +
(

K+ 4

3
G

)
Sp, m = (K + 4

3G)(1 + KSp/α2

4G
.

(4.74)
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The coefficient c is the usual coefficient of consolidation. In the case of an incom-
pressible fluid and an incompressible solid particles (the case considered by Cryer,
1963) the Biot coefficient α = 1, and the pore space storativity Sp = 0. It then fol-
lows that β = 1 and m = (K + 4

3G)/4G.
Of particular interest is the pore pressure in the center of the sphere, at R = 0. If

this is denoted by pc, its Laplace transform is

pc = qmβa2

αc(1 + KSp/α2)

sinh(λa) − λa

[1 + m(λa)2] sinh(λa) − (λa) cosh(λa)
. (4.75)

It may be appropriate at this stage to verify the initial condition (4.69), using the
fundamental property of the Laplace transform

lim
t→0

p = lim
s→∞ sp. (4.76)

With (4.72) this gives

p0 = q

α(1 + KSp/α2)
. (4.77)

This is in agreement with (4.69), thus confirming the derivations.

Inverse Laplace Transformation

Inverse Laplace transformation of (4.75) gives, using Heaviside’s inversion theorem,

pc

p0
= 2m

∞∑

j=1

sin ξj − ξj

mξj cos ξj + (2m − 1) sin ξj

exp(−ξ2
j ct/βa2), (4.78)

where the coefficients ξj are the positive roots of the equation

(1 − mξ2
j ) sin ξj − ξj cos ξj = 0. (4.79)

This solution agrees with the solution obtained by Cryer (1963) for the case of an
incompressible fluid and incompressible particles.

Results

Figure 4.4 shows the results for three values of Poisson’s ratio, assuming that the
pore fluid and the particles are incompressible. It is interesting to note that for all
values of ν < 1

2 the pore pressure in the center of the sphere initially increases be-
fore it is ultimately reduced to zero. This is caused by the drainage, which starts at
the outer shell of the sphere, and which produces a tendency for shrinkage of that
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Fig. 4.4 Pore pressure in the center

outer shell. This leads to an additional compressive stress on the practically incom-
pressible core of the sphere, so that an additional pore pressure is generated. The
effect can be considered as a consequence of the practically immediate transmission
of static stresses, and the gradual progress of the diffusive process of groundwater
flow. A similar effect was obtained by Mandel (1953) for the problem of a clay sam-
ple compressed between two rigid plates, with lateral drainage. The effect is usually
called the Mandel-Cryer effect. It has been confirmed experimentally by Gibson et
al. (1963) and Verruijt (1965).

4.8 Uncoupled Consolidation

In general the system of equations of three-dimensional consolidation involves solv-
ing the storage equation together with the three equations of equilibrium, simulta-
neously, because these equations are coupled. This may be a formidable task, and it
seems worthwhile to try to simplify this procedure. It would be very convenient, for
instance, if it could be shown that in the storage equation

α
∂ε

∂t
+ Sp

∂p

∂t
= ∇·

(
k

γw

∇p

)
(4.80)

the first term can be expressed as

∂ε

∂t
= C

∂p

∂t
, (4.81)
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where C is some constant, because then the equation reduces to the form

(αC + Sp)
∂p

∂t
= ∇·

(
k

γw

∇p

)
, (4.82)

which is the classical diffusion equation, for which many analytical solutions are
available. The system of equations is then uncoupled, in the sense that first the pore
pressure can be determined from (4.82), and then later the deformation problem can
be solved using the equations of equilibrium, in which then the gradient of the pore
pressure acts as a known body force.

Constant Isotropic Total Stress

There are two possibilities for uncoupling to be realized. The first possibility is
obtained by first noting that for an isotropic material the volume strain ε is a function
of the isotropic effective stress σ ′,

σ ′ = σ ′
xx + σ ′

yy + σ ′
zz

3
. (4.83)

For a linear material the relation may be written as

ε = −Cmσ ′, (4.84)

where Cm is the compressibility of the porous material, the inverse of its compres-
sion modulus, Cm = 1/K , and the minus sign is needed because of the different
sign conventions used for stresses and strains. The effective stress is the difference
between total stress and pore pressure (taking into account Biot’s coefficient), and
thus one may write

ε = −Cm(σ − αp). (4.85)

Differentiating this with respect to time gives

∂ε

∂t
= −Cm

∂σ

∂t
+ αCm

∂p

∂t
. (4.86)

If it is now assumed, as a first approximation, that isotropic total stress is constant
in time, then there indeed appears to be a relation of the type (4.81), with

C = αCm. (4.87)

The differential equation now is, with (4.82)

(α2Cm + Sp)
∂p

∂t
= ∇·

(
k

γw

∇p

)
, (4.88)
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which is indeed a diffusion equation. This simplifying assumption was first sug-
gested by Rendulic (1936). That the isotropic total stress may be constant in certain
cases is not unrealistic. In many cases consolidation takes place while the loading
of the soil remains constant, and although there may be a certain redistribution of
stress, it may well be assumed that the changes in total stress will be small. A proof is
impossible to give, however, and it is also difficult to say under what conditions the
approximation is acceptable. Various solutions of coupled three-dimensional prob-
lems have been obtained, and in many cases a certain difference with the uncoupled
solution has been found. Sometimes there is even a very pronounced difference in
behaviour for small values of the time, in the sense that sometimes the pore pressures
initially show a certain increase, before they dissipate. This is the Mandel-Cryer ef-
fect, see the previous section, which is a typical consequence of the coupling effect.
When the pore pressures at the boundary start to dissipate the local deformation
may lead to an immediate effect in other parts of the soil body, and this may lead
to an additional pore pressure. In the long run the pore pressures always dissipate,
however, and the difference with the uncoupled solution then is often not important.
Therefore an uncoupled analysis may be a good first approximation, if it is realized
that local errors may occur, especially for short values of time.

Horizontally Confined Deformations

Another important class of problems in which an uncoupled analysis is justified is
the case where it can be assumed that the horizontal deformations will be negligible,
and the vertical total stress remains constant. In the case of a soil layer of large
horizontal extent, loaded by a constant surface load, this may be an acceptable set
of assumptions. If the horizontal deformations are set equal to zero, it follows that
the volume strain is equal to the vertical strain,

ε = εzz. (4.89)

For a linear elastic material the vertical strain can be related to the vertical effective
stress by the formula

εzz = −mvσ
′
zz, (4.90)

where mv is the vertical compressibility of a laterally confined soil sample. Using
the effective stress principle this now gives

εzz = −mv(σzz − αp), (4.91)

and therefore

∂ε

∂t
= −mv

∂σzz

∂t
+ αmv

∂p

∂t
. (4.92)



4.9 Terzaghi’s Problem 85

Substitution into the storage equation (4.80) gives

(α2mv + Sp)
∂p

∂t
= αmv

∂σzz

∂t
+ ∇·

(
k

γw

∇p

)
. (4.93)

This equation is indeed of the form of a diffusion coefficient if the vertical total
stress is constant. It may be concluded that in the case of zero lateral deformation
and constant vertical total stress the consolidation equations are uncoupled. If the
medium is homogeneous, the coefficient k/γw is constant in space, and then the
differential equation reduces to the form

∂p

∂t
= cv∇2p, (4.94)

where ∇2 is Laplace’s operator,

∇2 = ∂

∂x2
+ ∂

∂y2
+ ∂

∂z2
, (4.95)

and cv is the consolidation coefficient,

cv = k

(α2mv + Sp)γw

. (4.96)

An equation of the form (4.94) was first derived by Terzaghi (1925), for the one-
dimensional case of flow and deformation in the vertical direction only, as occurs in
a confined compression test in the laboratory, or in the consolidation of an extensive
clay layer in the field, loaded by a uniform surcharge. It was also derived by Jacob
(1940), using somewhat different notations, for the case of a compressible aquifer
of thickness H , transmissivity T , and storativity S. The consolidation coefficient
then can be written as cv = T/S.

In the next section a solution of the differential equation will be presented, for
Terzaghi’s problem.

4.9 Terzaghi’s Problem

The problem first solved by Terzaghi (1925) is that of a layer of thickness 2h, which
is loaded at time t = 0 by a load of constant magnitude q . The upper and lower
boundaries of the soil layer are fully drained, so that along these boundaries the
pore pressure p remains zero.

The differential equation for this case is the fully one-dimensional form of (4.94),

∂p

∂t
= cv

∂2p

∂z2
. (4.97)
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Fig. 4.5 Terzaghi’s problem

Because at the moment of loading there can not yet have been any fluid loss from
the soil, it follows from (4.93) that the initial pore pressure is

t = 0 : p = p0 = αmv

α2mv + Sp

q. (4.98)

If the fluid and the solid particles are incompressible α = 1 and Sp = 0, so that then
p0 = q , as Terzaghi considered.

The boundary conditions are

z = 0 : p = 0, (4.99)

z = 2h : p = 0. (4.100)

Solution

The solution of the problem can be obtained by using the mathematical tools sup-
plied by the theory of partial differential equations, for instance the method of sepa-
ration of variables (see e.g. Wylie, 1960), or, even more conveniently, by the Laplace
transform method (see e.g. Churchill, 1972, or Appendix A). The Laplace transform
of the pore pressure is defined as

p =
∫ ∞

0
p exp(−st) dt, (4.101)

where s is a positive parameter. The transformed differential equation is, using the
initial condition (4.98)

sp − p0 = cv

d2p

dz2
. (4.102)

The partial differential equation has now been reduced to an ordinary differential
equation. The solution satisfying the boundary conditions is

p

p0
= 1

s
− cosh[(h − z)

√
s/cv]

s cosh[h√
s/cv] . (4.103)
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The inverse transform of this expression can be obtained by the complex inversion
integral (Churchill, 1972), or in a more simple, although less rigorous way, by ap-
plication of Heaviside’s expansion theorem (Appendix A). This gives, after some
elementary mathematical operations,

p

p0
= 4

π

∞∑

j=1

{
(−1)j−1

2j − 1
cos

[
(2j − 1)

π

2

(
h − z

h

)]
exp

[
−(2j − 1)2 π2

4

cvt

h2

]}
.

(4.104)
This is the analytical solution of the problem. It can be found in many textbooks
on theoretical soil mechanics, and also in many textbooks on the theory of heat
conduction, as that is governed by the same equations. In the early soil mechanics
literature the solution was restricted to the case of incompressible fluid and solids.
The only difference with the present solution, in which both the fluid and the solids
may be compressible, is in the value of the consolidation coefficient, and in the value
of the initial pore pressure p0.

Because the solution has been derived here by a method that is mathematically
perhaps not completely rigorous (Heaviside’s expansion theorem, strictly speaking,
applies only to a function consisting of the quotient of two polynomials), it is advis-
able to check whether the solution indeed satisfies all requirements. That it indeed
satisfies the differential equation (4.97) can be demonstrated rather easily, because
each term satisfies this equation. It can also directly be seen that it satisfies the
boundary conditions (4.99) and (4.100) because for z = 0 and for z = 2h the func-
tion cos(. . .) is zero. It is not so easy to verify that the initial condition (4.98) is also
satisfied. The simplest method to verify this is to write a computer program that
calculates values of the infinite series, and then to show that for any value of z and
for very small values of t the value is indeed 1. It will be observed that this requires
a very large number of terms. If t is exactly zero, it will even been found that the
series does not converge.

The solution (4.104) is shown graphically in Fig. 4.6, for increasing values of
cvt/h2. The number of terms was chosen such that the argument of the exponential
function was less than −20. This means that all terms containing a factor exp(−20),
or smaller, are disregarded. The figure also shows that the solution satisfies the
boundary conditions, and the initial condition. It does not show, of course, that it
is the correct solution. That can only been shown by analytical means, as presented
above.

Settlement

The progress of the settlement in time can be obtained from the solution (4.104) by
noting that the strain is determined by the effective stress,

ε = −mvσ
′
zz = −mv(σzz − αp). (4.105)
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Fig. 4.6 Analytical solution
of Terzaghi’s problem

The settlement is the integral of this strain over the height of the sample,

w = −
∫ 2h

0
ε dz = 2mvhq − αmv

∫ 2h

0
p dz. (4.106)

The first term in the right hand side is the final settlement, which will be reached
when the pore pressures have been completely dissipated. This value will be denoted
by w∞,

w∞ = 2mvhq. (4.107)

Immediately after the application of the load q the pore pressure is equal to p0,
see (4.98). This means that the immediate settlement, at the moment of loading, is

w0 = 2mvh(q − αp0). (4.108)

In order to describe the settlement as a function of time it is most convenient to
introduce the degree of consolidation U , defined as

U = w − w0

w∞ − w0
. (4.109)

This quantity will always vary between 0 (at the moment of loading) and 1 (after
consolidation has finished). In this case, using the expressions given above, it is
found to be related to the pore pressures by

U = 1

2h

∫ 2h

0

p0 − p

p0
dz. (4.110)
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Fig. 4.7 Degree of consolidation

Using the solution (4.104) for the pore pressure distribution the final expression for
the degree of consolidation as a function of time is

U = 1 − 8

π2

∞∑

j=1

1

(2j − 1)2
exp

[
−(2j − 1)2 π2

4

cvt

h2

]
. (4.111)

For t → ∞ this is indeed 1. For t = 0 it is 0, because then the terms in the infinite
series add up to π2/8. A graphical representation of the degree of consolidation as
a function of time is shown in Fig. 4.7.

Theoretically speaking the consolidation phenomenon is finished if t → ∞. For
all practical purposes it can be considered as finished when the argument of the
exponential function in the first term of the series is about 4 or 5. This will be the
case when

cvt

h2 ≈ 2. (4.112)

This is a very useful formula, because it enables to estimate the duration of the con-
solidation process. It also enables to evaluate the influence of the various parameters
on the consolidation process. If the permeability is twice as large, consolidation will
take half as long. If the drainage length is reduced by a factor 2, the duration of
the consolidation process is reduced by a factor 4. This explains the usefulness of
improving the drainage in order to accelerate consolidation. In engineering practice
the consolidation process is sometimes accelerated by installing vertical drains. In a
thick clay deposit this may be very effective, because it reduces the drainage length
from the thickness of the layer to the distance of the drains. As the consolidation
is proportional to the square of the drainage length, this may be extremely effective
in reducing the consolidation time, and thus accelerating the subsidence due to the
construction of an embankment.
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Problems

4.1 It is known from Laplace transform theory that an approximation for small val-
ues of the time t can often be obtained by taking the transformation parameter s very
large. Apply this theorem to the solution of the one-dimensional problem, (4.103),
by assuming that s is very large, and then determining the inverse transform from a
table of Laplace transforms.

4.2 Apply the same theorem to the solution of the problem of radial consolidation of
a massive sphere, by taking s very large in the solution (4.72), and then determining
the inverse transform.



Chapter 5
Dynamics of Porous Media

In this chapter the basic equations for the dynamics of a porous medium are pre-
sented. They were first derived by De Josselin de Jong (1956) and Biot (1956).
These equations can be considered to be the extension of the classical theory of
consolidation or poroelasticity to the dynamic case. This chapter will be restricted
to the linearized equations, and the applications will be mainly restricted to the
one-dimensional case of propagation of plane waves. The basic equations will be
derived, and analytical and numerical solutions will be presented.

5.1 Basic Differential Equations

In this first section the basic differential equations of the dynamics of a porous
medium will be presented. A porous medium is supposed to be a medium con-
sisting of a solid material with a continuous system of small, interconnected, pores,
which are filled with a fluid, for instance water or oil. The fluid may contain some
gas bubbles, causing it to be much more compressible than a homogenous liquid.
The basic principles are conservation of mass and conservation of momentum.

5.1.1 Conservation of Mass

The first basic equation is the equation of conservation of mass of the pore fluid,

∂(nρf )

∂t
+ ∂(nρf v)

∂x
= 0, (5.1)

where n is the porosity, ρf is the density of the pore fluid, and v is the velocity of
the pore fluid, defined as the average velocity of the fluid particles. The density is
supposed to be a function of the fluid pressure, see (4.18),

dρf

dp
= ρf Cf , (5.2)

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
© Springer Science+Business Media B.V. 2010

91



92 5 Dynamics of Porous Media

where Cf is the compressibility of the fluid (perhaps including the compression of
gas bubbles in it). With (5.2), (5.1) becomes

∂n

∂t
+ nCf

∂p

∂t
+ ∂(nv)

∂x
= 0, (5.3)

where a term expressing the product of the fluid velocity and the pressure gradient
has been disregarded, assuming that both are small quantities, so that the product is
of second order.

The equation of conservation of mass of the solid particles is

∂[(1 − n)ρs]
∂t

+ ∂[(1 − n)ρsw]
∂x

= 0, (5.4)

where ρs is the density of the particle material. The density of the particles is sup-
posed to be governed by the isotropic total stress σ and the pore pressure p, as
expressed by (4.21),

∂ρs

∂t
= ρsCs

1 − n

(
∂σ

∂t
− n

∂p

∂t

)
, (5.5)

where Cs is the compressibility of the particle material. With (5.5), (5.4) becomes

−∂n

∂t
+ Cs

(
∂σ

∂t
− n

∂p

∂t

)
+ ∂w

∂x
− ∂(nw)

∂x
= 0, (5.6)

where again a term expressing the product of a velocity and a gradient of stress or
pressure has been disregarded.

Elimination of the terms ∂n/∂t from (5.3) and (5.6) gives

n(Cf − Cs)
∂p

∂t
+ Cs

∂σ

∂t
+ ∂w

∂x
+ ∂[n(v − w)]

∂x
= 0. (5.7)

It may be noted that the term ∂w/∂x can also be written as ∂ε/∂t , noting that in this
one-dimensional case the volume strain equals the strain in x-direction, ε = εxx .

Furthermore, the isotropic total stress can be decomposed into the isotropic ef-
fective stress and the pore pressure, σ = σ ′ + αp, where α is Biot’s coefficient,
and the isotropic effective stress can be related to the volume strain according to
∂ε/∂t = −Cm∂σ ′/∂t , where Cm is the compressibility of the porous medium. It
follows that (5.7) can also be written as

α
∂w

∂x
+ Sp

∂p

∂t
= α

∂ε

∂t
+ Sp

∂p

∂t
= −∂[n(v − w)]

∂x
, (5.8)

where, as before, α = 1 − Cs/Cm, and Sp is the storativity of the pore space,

Sp = nCf + (α − n)Cs. (5.9)

Equation (5.8) was also given in the previous chapter, and denoted as the storage
equation, see (4.27).
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5.1.2 Conservation of Momentum

A second set of basic equations is provided by the equations of conservation of mo-
mentum, or the equations of motion. This must be formulated both for the fluid and
the particles. The simplest form is to first consider conservation of momentum of the
material as a whole, fluid plus particles. The equations are, in the three coordinate
directions,

−∂σxx

∂x
− ∂σyx

∂y
− ∂σzx

∂z
= nρf

∂vx

∂t
+ (1 − n)ρs

∂wx

∂t
,

−∂σxy

∂x
− ∂σyy

∂y
− ∂σzy

∂z
= nρf

∂vy

∂t
+ (1 − n)ρs

∂wy

∂t
, (5.10)

−∂σxz

∂x
− ∂σyz

∂y
− ∂σzz

∂z
= nρf

∂vz

∂t
+ (1 − n)ρs

∂wz

∂t
,

where the minus signs in the left hand side are a consequence of the convention that
compressive stresses are considered as positive.

Because the total stresses can be decomposed as σij = σ ′
ij + αpδij , these equa-

tions can also be written as

−∂σ ′
xx

∂x
− ∂σ ′

yx

∂y
− ∂σ ′

zx

∂z
− α

∂p

∂x
= nρf

∂vx

∂t
+ (1 − n)ρs

∂wx

∂t
,

−∂σ ′
xy

∂x
− ∂σ ′

yy

∂y
− ∂σ ′

zy

∂z
− α

∂p

∂y
= nρf

∂vy

∂t
+ (1 − n)ρs

∂wy

∂t
, (5.11)

−∂σ ′
xz

∂x
− ∂σ ′

yz

∂y
− ∂σ ′

zz

∂z
− α

∂p

∂z
= nρf

∂vz

∂t
+ (1 − n)ρs

∂wz

∂t
.

In the equations of conservation of momentum of the components (fluid or solids)
the interaction between the two components due to friction must be taken into ac-
count. The equations for conservation of momentum of the fluid are assumed to
be

−n
∂p

∂x
− n2μ

κ
(vx − wx) = nρf

∂vx

∂t
+ τnρf

∂(vx − wx)

∂t
,

−n
∂p

∂y
− n2μ

κ
(vy − wy) = nρf

∂vy

∂t
+ τnρf

∂(vy − wy)

∂t
, (5.12)

−n
∂p

∂z
− n2μ

κ
(vz − wz) = nρf

∂vz

∂t
+ τnρf

∂(vz − wz)

∂t
,

where τ is a tortuosity factor, describing the added mass due to the tortuosity of
the flow path, μ is the viscosity of the pore fluid, and κ is the permeability of the
porous medium. The tortuosity terms have been included to account for a possible
additional force to move the fluid through the tortuous path between the particles.
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It may be noted that care has been taken that the equations contain Darcy’s law as
a special case, when the accelerations are negligible. Actually, in the absence of
acceleration terms, (5.12) reduce to the quasi-static case

q = − κ

μ
∇p, (5.13)

where q is the specific discharge, defined as

q = n(v − w). (5.14)

Equation (5.13) is Darcy’s law, in the absence of body forces, such as gravity.
It should also be noted that in (5.12) all interaction terms are expressed in terms

of the velocity of the fluid with respect to the solids. When the fluid and the solid
have equal velocities these terms vanish.

The equations of conservation of momentum of the solids can be obtained by
subtracting (5.12) from (5.11). This gives

−∂σ ′
xx

∂x
− ∂σ ′

yx

∂y
− ∂σ ′

zx

∂z
− (α − n)

∂p

∂x
+ n2μ

κ
(vx − wx)

= (1 − n)ρs

∂wx

∂t
− τnρf

∂(vx − wx)

∂t
,

−∂σ ′
xy

∂x
− ∂σ ′

yy

∂y
− ∂σ ′

zy

∂z
− (α − n)

∂p

∂y
+ n2μ

κ
(vy − wy)

(5.15)

= (1 − n)ρs

∂wy

∂t
− τnρf

∂(vy − wy)

∂t
,

−∂σ ′
xz

∂x
− ∂σ ′

yz

∂y
− ∂σ ′

zz

∂z
− (α − n)

∂p

∂z
+ n2μ

κ
(vz − wz)

= (1 − n)ρs
∂wz

∂t
− τnρf

∂(vz − wz)

∂t
.

It can easily be verified that addition of (5.12) and (5.15) yields the equations of
total conservation of the mixture (5.11).

5.1.3 Constitutive Equations

The effective stresses determine the deformations of the soil. As a first approxi-
mation the effective stresses are now supposed to be related to the strains by the
generalized form of Hooke’s law. For an isotropic material these relations are, see
also (4.38),
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σ ′
xx = −

(
K − 2

3
G

)
ε − 2Gεxx, σ ′

xy = −2Gεxy, σ ′
xz = −2Gεxz,

σ ′
yy = −

(
K − 2

3
G

)
ε − 2Gεyy, σ ′

yz = −2Gεyz, σ ′
yx = −2Gεyx, (5.16)

σ ′
zz = −

(
K − 2

3
G

)
ε − 2Gεzz, σ ′

zx = −2Gεzx, σ ′
zy = −2Gεzy,

where K and G are the elastic coefficients of the material, the compression modulus
and the shear modulus, respectively.

Even though this assumption must be considered as a poor representation of the
mechanical behaviour of soils, it is essential to note that the governing stress param-
eter is the effective stress. More complicated stress-strain-relations can be formu-
lated, involving time (to represent creep) and stress history (to represent irreversible
plastic deformations). These should all be expressed in terms of the effective stress,
however, and should not involve the fluid pressure p, even though the pressure in
the fluid will generate an equal stress in the solid particles, which are completely
surrounded by the pore fluid.

Equations (5.12), (5.15), (5.16) and (5.8) together form a system of partial differ-
ential equations, from which the basic variables, the displacements, the stresses, and
the pore pressure must be determined. One of the two sets of equations of balance
of momentum can of course be replaced by the total balance equations (5.11).

It is often considered convenient to consider the relative velocity v−w as a basic
variable, rather than the fluid velocity v, because the relative velocity governs the
interaction between the fluid and the solids. In soil mechanics, and in hydrology, it
is common practice to express the equations in terms of the particle velocity w and
the specific discharge, defined as q = n(v − w).

5.2 Propagation of Plane Waves

Because of the complexity of the general system of equations established in the
previous section, the much more simple one-dimensional case will be considered in
this section. This will enable to study the propagation of plane waves, in a single
direction, the x-direction.

From the general system of equations the following equations can be obtained
for the one-dimensional case.

α
∂w

∂x
+ Sp

∂p

∂t
= −∂[n(v − w)]

∂x
, (5.17)

mv

∂σ ′

∂t
= −∂w

∂x
, (5.18)

nρf

∂v

∂t
+ (1 − n)ρs

∂w

∂t
= −∂σ ′

∂x
− α

∂p

∂x
, (5.19)
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nρf

∂v

∂t
+ τnρf

∂(v − w)

∂t
= −n

∂p

∂x
− n2μ

κ
(v − w). (5.20)

In these equations mv is the one-dimensional compressibility of the porous medium,

mv = 1

K + 4
3G

. (5.21)

These are the basic equations for the propagation of plane waves in a porous
medium, if this is composed of a soft soil, saturated with a compressible fluid. It
is useful to realize that (5.17) expresses mass conservation of the fluid and the soil
particles, i.e. total mass conservation, (5.18) is the stress-strain relation of the soil
skeleton, (5.19) expresses conservation of total momentum, and (5.20) expresses
conservation of momentum of the pore fluid, the generalization of Darcy’s law to
the dynamic case.

5.3 Special Cases

The general equations (5.17)–(5.20) include some interesting special cases, which
will be discussed in this section. It will appear later that these special cases are also
characteristic for the waves possible in porous media.

5.3.1 Undrained Waves

A special case that can be imagined is when the fluid and the solids move together,
w = v. This case can be considered to occur when the permeability is very small,
see (5.20). The last term in that equation will then dominate, indicating that v ≈ w.
From (5.17) and (5.18) one then obtains, using the relation σ = σ ′ + αp,

p = αmv

α2mv + Sp

σ (5.22)

σ ′ = Sp

α2mv + Sp

σ. (5.23)

For a soft saturated soil, when Cf and Cs are small compared to mv , so that Sp �
mv and α ≈ 1, these equations express that the total stress is carried mainly by the
fluid, and that the solid particles carry very little of the total load.

The two remaining equations now are
(

Ku + 4

3
G

)
∂w

∂x
= −∂σ

∂t
, (5.24)

ρ
∂w

∂t
= −∂σ

∂x
, (5.25)
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where Ku is the undrained compression modulus,

Ku = K + α2

Sp

= K + α2

nCf + (α − n)Cs

, (5.26)

and ρ is the mass density of the soil as a whole,

ρ = nρf + (1 − n)ρs. (5.27)

In (5.26) K is the compression modulus of the dry soil. This equation is in agreement
with (4.49), derived for undrained deformations in the static case.

Equations (5.24) and (5.25) are the familiar standard equations for wave propa-
gation. They admit solutions of the form

σ − Ku + 4
3G

c
w = f1(x + ct), (5.28)

σ + Ku + 4
3G

c
w = f2(x − ct), (5.29)

where the wave velocity c in this case is

c =
√

Ku + 4
3G

ρ
=

√
1

ρmv

+ α2

ρ[nCf + (α − n)Cs] . (5.30)

This shows that the wave velocity in the undrained case is determined by the clas-
sical formula (5.30), with the elastic modulus usually being very large, determined
by the undrained condition, and with the density being the total density of the soil.

It should be noted that this simplified solution applies only if the boundary con-
ditions do not violate the assumed relationships. Thus, for instance, a boundary
where the fluid and the soil are moving at the same rate satisfies the assumption
v = w, and at a free boundary, where p = σ ′ = 0, the relations (5.22) and (5.23) can
be satisfied. When there are other types of boundary conditions the approximation
considered here may not be produced.

For a completely saturated soft soil the value of the undrained modulus is ap-
proximately Ku + 4

3G ≈ 1/nCf , see (5.26), because the pore fluid is the stiffest
component in this case. The value of Cf is about Cf = 0.5 × 10−9 m2/N. With
n = 0.40 and ρ = 2000 kg/m3 one then obtains c ≈ 1600 m/s. Such wave velocities
are indeed often observed in saturated soft soils. In stiffer soils, or saturated rock,
the propagation velocity may be considerably larger, up to 2000 m/s or higher.

5.3.2 Rigid Solid Matrix

Another special case that can be imagined is when the solid matrix is very stiff, as
in the case of a very stiff porous rock. As a first approximation, the velocity of the
solids w can now be assumed to vanish, w = 0.
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In this case it seems most appropriate to disregard the stress-strain relation (5.18)
and the total momentum balance equation (5.19), as this involves the momentum
balance of the solid matrix, which are irrelevant when the solid matrix is assumed
to be rigid. Thus the two remaining equations are

n
∂v

∂x
= −Sp

∂p

∂t
, (5.31)

(1 + τ)ρf

∂v

∂t
= −∂p

∂x
− nμ

κ
v. (5.32)

These are two equations in the basic variables for this special case, the pore pressure
p and the fluid velocity v.

The behaviour of the material can be investigated by considering the propagation
of harmonic waves

v = ṽ exp[i(λx − ωt)] = ṽ exp[iλ(x − ct)], (5.33)

p = p̃ exp[i(λx − ωt)] = p̃ exp[iλ(x − ct)], (5.34)

where λ is the wave number, ω is the frequency of the wave, and c is the wave
propagation velocity, c = ω/λ. The frequency ω is real, the wave number λ may be
complex.

Substitution of (5.33) and (5.34) into (5.31) and (5.32) gives, after combination
of the two equations,

(1 + τ)ρf Sp

n

[
1 + i

nμ

(1 + τ)ρf ωκ

]
c2 = 1. (5.35)

The behaviour of the solution is determined by the value of the factor

B = nμ

(1 + τ)ρf ωκ
= ng

(1 + τ)ωk
, (5.36)

where g is the gravity constant (g ≈ 10 m/s2), and k is the hydraulic conductivity.
For normal soil or rock the permeability is about 10−4 m/s, or less, and thus the
value of the parameter B is very large, except for extremely rapid fluctuations, say
ω > 105 s−1. In normal civil engineering practice this may be excluded. Then the
(imaginary) second term in the left hand side of (5.36) dominates, and the value of
c is determined by

c2 = −i
ωκ

Spμ
. (5.37)

Because c = ω/λ it now follows that

λ2 = i
Spωμ

κ
, (5.38)

or

λ = −(1 + i)

√
Spωμ

2κ
= −(1 + i)

√
Spωρf g

2k
. (5.39)
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This means that the wave is strongly damped. As an example consider a wave with
frequency ω = 1 s−1, in a soil with porosity n = 0.40, permeability k = 10−4 m/s,
completely saturated with water, so that Sp = nCf = 0.2 × 10−9 m2/N. In this
case one obtains: �(λ) = 1 m−1. This means that the wave will be attenuated very
rapidly, in a few meters. If the frequency is higher the attenuation is even stronger.
Also, if the permeability is smaller than the (relatively high) value considered here,
the wave will be damped in the immediate vicinity of the source. Propagation of this
wave over a considerable distance will occur only if the frequency is very low, or
the permeability is very high.

In the case of extremely high frequencies the influence of the permeability can be
disregarded, and the second term in the left hand side of (5.35) can be disregarded.
The wave velocity then is

c =
√

n/[(1 + τ)ρf Sp] =
√

1/[(1 + τ)ρf Cf ]. (5.40)

Apart from the factor (1 + τ) this is simply the propagation velocity of a compres-
sion wave in the fluid. As mentioned above, waves of this type will be strongly
damped by the friction with the solids.

For a completely saturated soil the value of Sp is the product of the porosity and
the compressibility of pure water, which is about Sp = nCf = 0.2 × 10−9 m2/N.
With ρf = 1000 kg/m3 one then obtains c ≈ 1400 m/s, which is somewhat slower
than the undrained wave considered before.

5.4 Analytical Solution

Solutions of the basic differential equations can be obtained using Fourier Analysis.
Probably the most simple approach is to start by considering the effect of a general
periodic pore pressure at the free end of a very long horizontal column, see Fig. 5.1.

5.4.1 Periodic Solution

In order to derive a basic periodic solution it is assumed that

p = P exp[i(λx + ωt)], (5.41)

σ ′ = S exp[i(λx + ωt)], (5.42)

Fig. 5.1 Column with periodic pressure at its end
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v = V exp[i(λx + ωt)], (5.43)

w = W exp[i(λx + ωt)], (5.44)

where ω is a given frequency, and λ is an unknown, possibly complex number,
characterizing the wave length corresponding to the frequency ω.

Substitution of these expressions into the basic equations (5.17)–(5.20) gives

nλV + (α − n)λW = −SpωP, (5.45)

mvωS = −λW, (5.46)

nρf ωV + (1 − n)ρsωW = −λS − αλP, (5.47)

(1 + τ)nρf ωV − τnρf ωW = −nλP + in2μ

κ
V − in2μ

κ
W. (5.48)

These are four equations with four unknowns. It is mathematically more convenient,
however, to reduce them to two equations with two unknowns.

Elimination of S and V from (5.45), (5.46) and (5.47) gives

(Spρf ω2 − αλ2)mvωP − [(ρ − αρf )mvω
2 − λ2]λW = 0, (5.49)

where ρ is the total density,

ρ = nρf + (1 − n)ρs. (5.50)

Elimination of V from (5.45) and (5.48) gives
[
(1 + τ)Spρf ω2 − iSpω

nμ

κ
− nλ2

]
P +

[
(α − n + ατ)ρf ω − i

αnμ

κ

]
λW = 0.

(5.51)
Dimensionless parameters df , ds, a, b, γ are introduced such that

df = ρf /ρ, (5.52)

ds = ρs/ρ, (5.53)

a = nμ

κρf ω
= ng

kω
, (5.54)

b = Sp/mv, (5.55)

λ2 = ρmvω
2γ 2. (5.56)

The propagation speed c of plane waves in a medium with compressibility mv and
density ρ is defined by

c2 = 1

ρmv

, (5.57)

so that

λ = ωγ/c. (5.58)
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It should be noted that the definition of the parameter a includes not only the hy-
draulic conductivity k, but also the frequency ω. This has been done to simplify the
further analysis. It may also be noted that the definitions of df , ds and ρ imply that
ndf + (1 − n)ds = 1.

Using the dimensionless parameters introduced above, (5.49) and (5.51) can be
written as

(df b − αγ 2)cmvP − (1 − αdf − γ 2)γW = 0, (5.59)

[(1 + τ)df b − iadf b − nγ 2]cmvP + [(α − n + ατ)df − iαadf ]γW = 0. (5.60)

The homogeneous system of (5.59) and (5.60) has a non-zero solution only if the
determinant of the system of equations is zero. This leads to an equation of the form

Aγ 4 + Bγ 2 + C = 0, (5.61)

with

A = n, (5.62)

B = −n(1 − n)ds − [(α − n)2 + α2τ ]df − (1 + τ)df b + iadf (α2 + b), (5.63)

C = [(1 − n)ds + τ ]df b − iadf b. (5.64)

The quadratic equation (5.61) has two complex roots, which means that there are
four possible values of γ , which are written as

γ1 = ±(q1 + ir1), γ2 = ±(q2 + ir2), r1 > 0, r2 > 0, (5.65)

where it has been assumed that r1 > 0 and r2 > 0, for definiteness.
Because λ = ωγ/c it follows that the four possible values of λ are

λ1 = ±(q1 + ir1)ω/c, λ2 = ±(q2 + ir2)ω/c, r1 > 0, r2 > 0. (5.66)

Restriction will be made to the semi-infinite medium x > 0. Then only the roots with
a positive imaginary part apply, because only these lead to a finite limit at infinity.
This means that the general solutions for the pore pressure and the velocity of the
solids can be written as

p = Ap exp[−(ω/c)(r1 − iq1)x] exp(iωt)

+ Bp exp[−(ω/c)(r2 − iq2)x] exp(iωt), (5.67)

w = Aw exp[−(ω/c)(r1 + iq1)x] exp(iωt)

+ Bw exp[−(ω/c)(r2 − iq2)x] exp(iωt), (5.68)

where, in order to satisfy (5.59),

Aw

Ap

= (df b − αγ 2
1 )cmv

(1 − αdf − γ 2
1 )γ1

, (5.69)
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Bw

Bp

= (df b − αγ 2
2 )cmv

(1 − αdf − γ 2
2 )γ2

. (5.70)

The general solutions for the effective stress σ ′ and the velocity of the fluid can be
written as

σ ′ = As exp[−(ω/c)(r1 − iq1)x] exp(iωt)

+ Bs exp[−(ω/c)(r2 − iq2)x] exp(iωt), (5.71)

v = Av exp[−(ω/c)(r1 − iq1)x] exp(iωt)

+ Bv exp[−(ω/c)(r2 − iq2)x] exp(iωt). (5.72)

In order to satisfy (5.46) and (5.45) the coefficients of these equations must be

As

Aw

= − γ1

cmv

, (5.73)

Bs

Bw

= − γ2

cmv

, (5.74)

Av

Aw

= −α − n

n
− (1 − αdf − γ 2

1 )b

n(df b − αγ 2
1 )

, (5.75)

Bv

Bw

= −α − n

n
− (1 − αdf − γ 2

2 )b

n(df b − αγ 2
2 )

. (5.76)

Equations (5.75) and (5.76) give the ratio of the amplitudes of the displacements of
the fluid and the solids, in the two waves.

The boundary conditions for a plane wave applied at the end x = 0 of a semi-
infinite column of soil, with the wave being applied both to the soil and the fluid, as
in the experiments of Van der Grinten (1987) and Smeulders (1992), are, because
σ = σ ′ + αp,

x = 0 : σ ′ = (1 − α)p0 exp(iωt), (5.77)

x = 0 : p = p0 exp(iωt). (5.78)

From these conditions it follows, with (5.71) and (5.67), that

As + Bs = (1 − α)p0, (5.79)

Ap + Bp = p0. (5.80)

With (5.73) and (5.74), (5.79) gives

γ1Aw + γ2Bw = −(1 − α)cmvp0. (5.81)
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Using (5.69) and (5.70) this can be transformed into a relation between Ap and Bp ,

df b − αγ 2
1

1 − αdf − γ 2
1

Ap + df b − αγ 2
2

1 − αdf − γ 2
2

Bp = −(1 − α)p0. (5.82)

The two (complex) constants Ap and Bp may now be solved from (5.80) and (5.82).
The result is

Ap

p0
= [df b − γ 2

2 + (1 − α)(1 − αdf )](1 − αdf − γ 2
1 )

(γ 2
1 − γ 2

2 )(α − α2df − bdf )
, (5.83)

Bp

p0
= −[df b − γ 2

1 + (1 − α)(a − αdf )](1 − αdf − γ 2
2 )

(γ 2
1 − γ 2

2 )(α − α2df − bdf )
. (5.84)

Substitution of these expressions for Ap and Bp into (5.67) finalizes the solution for
the pore pressure.

5.4.2 Response to a Sinusoidal Load

The solution for a sinusoidal load can be constructed from the general periodic
solution considered in the previous section by formulating the boundary condition
as

x = 0 : p = p0 sin(ωt) = p0�[exp(iωt)]. (5.85)

The solution for this case can immediately be obtained from the solution in the
previous section, by taking the imaginary part. Thus, with (5.67),

p = �{Ap exp[−(ω/c)(r1 − iq1)x] exp(iωt)

+ Bp exp[−(ω/c)(r2 − iq2)x] exp(iωt)}, (5.86)

or

p = �{Ap} exp(−ωr1x/c) sin[ω(q1x/c + t)]
+ �{Ap} exp(−ωr1x/c) cos[ω(q1x/c + t)]
+ �{Bp} exp(−ωr2x/c) sin[ω(q2x/c + t)]
+ �{Bp} exp(−ωr2x/c) cos[ω(q2x/c + t)]. (5.87)

It can be observed from this expression that for x → ∞ the pore pressure tends to-
wards zero, because r1 > 0 and r2 > 0. The expected wave character of the solution
requires that q1 < 0 and q2 < 0, but this will automatically be satisfied if r1 > 0 and
r2 > 0. This property of the solution has been verified by numerical computations
of the coefficients for various combinations of the basic parameters.
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It can easily be verified numerically that the boundary condition at x = 0
is always satisfied, because it appears that �{Ap} + �{Bp} = p0 and �{Ap} +
�{Bp} = 0.

In a similar way the response to a load in the form of a cosine function, cos(ωt),
can be derived, by formulating the boundary condition as

x = 0 : p = p0 cos(ωt) = p0�[exp(iωt)]. (5.88)

In this case the solution is

p = �{Ap exp[−(ω/c)(r1 − iq1)x] exp(iωt)

+ Bp exp[−(ω/c)(r2 − iq2)x] exp(iωt)}, (5.89)

or

p = �{Ap} exp(−ωr1x/c) cos[ω(q1x/c + t)]
− �{Ap} exp(−ωr1x/c) sin[ω(q1x/c + t)]
+ �{Bp} exp(−ωr2x/c) cos[ω(q2x/c + t)]
− �{Bp} exp(−ωr2x/c) sin[ω(q2x/c + t)]. (5.90)

This completes the solution for the pore pressures produced by a sinusoidal load.
In the limit ω → 0 the solution for the steady state problem with the boundary

conditions

x = 0 : σ ′ = (1 − α)p0, x = 0 : p = p0, (5.91)

is obtained as

σ ′ = (1 − α)p0, p = p0. (5.92)

The velocities of the constituents are zero in this case

v = w = 0. (5.93)

It can easily be verified that this is indeed a solution of the basic equations (5.17)–
(5.20), and that it satisfies the boundary conditions (5.91). It should be noted that
the vanishing of the velocities does not mean that the deformations and the displace-
ments also vanish. Actually, the effective stress (5.92) implies a uniform deforma-
tion.

5.4.3 Approximation of the Solution

For real soils it can be expected that the product of hydraulic conductivity and fre-
quency, kω, will be rather small, and often very small. This means that the parameter
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a, defined in (5.54) as a = ng/kω, will be very large. In that case the coefficients
A, B and C, see (5.62)–(5.64), may be approximated by

A = n, (5.94)

B = iadf (α2 + b), (5.95)

C = −iadf b. (5.96)

The general solution of (5.61),

Aγ 4 + Bγ 2 + C = 0, (5.97)

is

γ 2 = − B

2A

{
1 ±

√
1 − 4AC/B2

}
, (5.98)

or, because 4AC/B2 � 1,

γ 2 = − B

2A

{
1 ± [1 − 2AC/B2]}. (5.99)

The two possible solutions for γ 2 now are

γ 2
1 = −C

B
= b

α2 + b
. (5.100)

γ 2
2 = −B

A
= −i

adf (α2 + b)

n
= −i

ρf g(α2mv + Sp)

kρmvω
. (5.101)

This last expression may also be written as

γ 2
2 = −i

c2

cvω
, (5.102)

where c is the wave speed in a medium with compressibility mv and density ρ,
see (5.57), and cv is the one-dimensional consolidation coefficient of the porous
medium, defined as

cv = k

ρf g(α2mv + Sp)
, (5.103)

see (4.96).
It now follows that the possible solutions for γ are, taking the roots with a nega-

tive real part, as only these apply in a semi-infinite beam x > 0,

γ1 = −
√

b

α2 + b
. (5.104)

γ2 = −(1 − i)

√
c2

2cvω
. (5.105)
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The propagation speed c of waves in a porous medium is usually of the order of
magnitude of 1000 m/s, and the consolidation coefficient cv is usually of the order
of magnitude of 1 m2/s, or much less, indicating that the parameter c2/cvω usually
is very large. This may also be concluded from the original form of the parame-
ter, which is g/kω (and some relative quantities). Because g = 10 m/s2 and the
permeability can be assumed to be not larger than k = 10−3 m/s, for very coarse
sand, it follows that the parameter g/kω will be large, except for extremely high
frequencies.

It may also be noted that the solution (5.67) contains a factor exp(−ωrx/c),
where r is the imaginary part of the dimensionless root γ . Now that it has been
found that this can be written as r = √

c2/2cvω it follows that the second wave
contains a factor exp(−x

√
ω/2cv). This means that this wave is noticeable only for

a distance of about

L ≈ 4
√

2cv/ω. (5.106)

For most soils, in which cv is small compared to 1 m2/s, this will be a small dis-
tance, indicating that the second wave usually will influence only the immediate
vicinity of the disturbance. The exception is the case of a very stiff material, of high
permeability, for which the consolidation coefficient may be large.

It is also interesting to substitute the results (5.104) or (5.105) into (5.75)
and (5.76), which define the relationship between the two velocities. Using the as-
sumption, characterizing the approximation considered here that a = ng

kω
� 1, it

then follows that

γ = γ1 : v

w
≈ 1, (5.107)

γ = γ2 : v

w
≈ −

[α − n

n
+ Sp

αnmv

]
. (5.108)

This means that in the first wave the fluid and the solids move together, and that
in the second wave the fluid moves out of phase with the solids. This explains why
the second wave is so strongly damped. The existence of these two waves, and their
characteristic properties, were first noted by De Josselin de Jong (1956) and Biot
(1956).

The first wave, in which the soil particles and the pore fluid move at the same ve-
locity, was already considered in Sect. 5.3.1. The order of magnitude of the velocity
of this wave was found to be about 1600 m/s for soft soil, and somewhat larger for
stiff soils or rock, up to 2000 m/s.

The second wave, characterized by the ratio (5.108) for the two velocities, can
be further analyzed by considering the behaviour of the basic differential equations
for this ratio. Actually, (5.17) and (5.20) now reduce to

[1 − α + Sp/mv]∂w

∂x
= Sp

∂p

∂t
, (5.109)

[α − n + τ + (1 + τ)Sp/mv]∂w

∂t
= n

ρf

∂p

∂x
. (5.110)
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From these two equations the velocity of this wave can be obtained as

c2 =
[

1 − α + Sp/mv

α − n + τ + (1 + τ)Sp/mv

]
n

Spρf

. (5.111)

If α = 1 and τ = 0 the storativity is Sp = nCf , where Cf is the compressibility of
the fluid. Equation (5.111) then reduces to

c2 =
[

nCf /mv

1 − n + nCf /mv

]
1

Cf ρf

. (5.112)

The second factor is the velocity of a wave in the pure fluid. The first factor is
smaller than 1, so that the velocity of the second wave is somewhat smaller than the
velocity of a wave in the fluid.

It may be noted that the solution for a material with incompressible constituents
(incompressible particles and incompressible fluid) has been considered by De Boer
(2000). In this case the velocity of the first wave is infinitely large, and only the
second wave remains.

5.4.4 Numerical Verification

In order to verify the results of the preceding section, the exact results have been
obtained by numerically calculating the values of Av/Aw and Bv/Bw , using (5.75)
and (5.76), for a material having the properties listed in Table 5.1.

In this case (1 − n)/n = 1.5, b = Sp/mv = 1. The values of the two roots γ1 and
γ2 are found to be

γ1 = −0.707106781 + 0.000000004i : Av/Aw = 0.999999981 − 0.000012500i,

γ2 = −22.439191923 + 22.394414404i : Bv/Bw = −4.000000019

− 0.000012500i.

Table 5.1 Example
properties Symbol Property Value

ρs Density of solids (kg/m3) 2650

ρf Density of fluid (kg/m3) 1000

k Permeability (m/s) 0.001

n Porosity (–) 0.400

τ Tortuosity (–) 0.000

α Biot coefficient (–) 1.000

mv Compressibility of soil (m2/MN) 0.0002

Cf Compressibility of fluid (m2/MN) 0.0005

Cs Compressibility of solids (m2/MN) 0.0000

ω Frequency (1/s) 10
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These values compare very well with the approximate results

γ1 = −0.7071068 : Av/Aw = 1,

γ2 =: −22.416793 + 22.416793i : Bv/Bw = −4.

The exact results confirm the accuracy of the approximate values. In particu-
lar, they confirm that the first wave, in which the solids and the fluid move at
practically the same velocity, is only very slightly damped, and that the second
wave, in which the solids and the fluid move in opposite directions, is strongly
damped.

5.4.5 Response to a Block Wave

On the basis of the response to a single wave of the form sin(ωt) or cos(ωt), the
response to a periodic wave of arbitrary shape can be generated, using Fourier series
expansion.

A block wave, of period T , see Fig. 5.2, can be represented by the Fourier series

q = 1

2
+ 2

π

∞∑

k=1,3,5,

sin(2πkt/T )

k
. (5.113)

The response of a column of a porous material, with properties as given in Table 5.1,
to a block wave of period T can be generated from the elementary solution given
in (5.87), using the Fourier series (5.113), provided that the period of the block wave
is large enough for the pore pressures to approach the static value p/p0 after one
half of the period.

The results can be produced by the program SHOCKWAVE. For a point at a
distance of 0.2 m from the boundary the pore pressures are shown in Fig. 5.3, taking
T = 0.1 s. Two waves can be seen to have developed. It can be verified that the first
wave, arriving at a distance of 0.2 m after about 0.00009 s, is the undrained wave,
in which the velocities of particles and fluid are equal. The propagation velocity
of this wave is given by (5.30). It now follows, using the data from Table 5.1, that
c = 2240 m/s. This value is in good agreement with the value observed in Fig. 5.3 of
about 2200 m/s. The second wave observed in this figure is the wave with opposite

Fig. 5.2 Block wave
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Fig. 5.3 Shock wave in a
porous medium—analytical
solution

velocities, for which the propagation velocity is found to be, with (5.112) and the
data from Table 5.1, c2 = 1120 m/s, which is a factor 2 slower than the first wave.
This is in good agreement with the results shown in Fig. 5.3.

It can be verified that in the special (and unrealistic) case of an incompressible
fluid only one wave, the wave in which the velocities of the fluid and the solids
move in opposite directions, can be observed. This is a highly damped wave. This
case can be investigated by taking a very small value for the compressibility Cf of
the fluid, for instance a factor 1000 smaller than the value given in Table 5.1.

5.5 Numerical Solution

For a numerical solution by finite differences it is convenient to rewrite (5.17)–(5.20)
in the following form,

[
1 + τ

{
1 + nρf

(1 − n)ρs

}]
∂v

∂t

= − 1

ρf

∂p

∂x
− nμ

κρf

(v − w) − τ

(1 − n)ρs

{
∂σ ′

∂x
+ α

∂p

∂x

}
, (5.114)

∂w

∂t
= − nρf

(1 − n)ρs

∂v

∂t
− 1

(1 − n)ρs

{
∂σ ′

∂x
+ α

∂p

∂x

}
, (5.115)

∂p

∂t
= − n

Sp

∂v

∂x
− α − n

Sp

∂w

∂x
, (5.116)

∂σ ′

∂t
= − 1

mv

∂w

∂x
. (5.117)
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When written in this form a numerical solution by finite differences can easily be
developed, because new values for the variables v, w, p and σ ′ can be calculated
successively from the four equations.

As an example the problem of propagation of an under water shock wave will be
considered. At time t = 0 all variables are assumed to be zero, and at that time a
shock wave hits the end x = 0, so that the boundary conditions are

x = 0 : p = q, (5.118)

x = 0 : σ ′ = (1 − α)q. (5.119)

The shock wave is supposed to act both in the total stress and in the pore water pres-
sure. This means that the effective stress at the surface remains zero. This situation
can be considered to apply to a wave reaching the soil through a layer of water to
the left of the boundary x = 0.

The numerical procedure now can be that new values for v are first calculated
from (5.114), then new values for w are calculated from (5.115), next new val-
ues for p are calculated from (5.116), and finally new values for σ ′ are calculated
from (5.117). This completes the calculations in a time step. The same calculations
can then be repeated for a new time step, and so the process can be solved in suc-
cessive time steps.

The main part of the program SHOCKWAVENUM (in C) that may be used to
perform the calculations, is reproduced below.
NN=2000;N=4000;RS=2650.0;RF=1000.0;PORO=0.4;PERM=0.001;GRAVITY=10.0;
SP=0.5*0.001*0.001*0.001*PORO;MV=0.2*0.001*0.001*0.001;TAU=0;ALPHA=1;
XX=1.0;DX=XX/NN;XP=0.2;RR=PORO*RF+(1.0-PORO)*RS;EE=1.0/(MV+ALPHA*ALPHA*SP);
CC=sqrt(EE/RR);C2=sqrt((1-ALPHA+SP/MV)*EF/(RF*(ALPHA-PORO+TAU+(1+TAU)*SP/MV)));
if (C2>CC) CC=C2;TC=DX/CC;DT=0.4*TC;IP=XP/DX;
for (i=0;i<=N;i++) {V[i]=0.0;W[i]=0.0;P[i]=0.0;S[i]=0.0;F[i]=0.0;}
a1=1.0+TAU*(1.0+PORO*RF/((1.0-PORO)*RS));a2=1.0/(RF*DX);
a3=PORO*GRAVITY/PERM;a4=TAU/((1.0-PORO)*RS*DX);
b1=PORO*RF/((1.0-PORO)*RS);b2=1.0/((1.0-PORO)*RS*DX);
c1=PORO/(SP*DX);c2=(ALPHA-PORO)/(SP*DX);d1=1.0/(MV*DX);
for (j=1;j<=N;j++)
{
if (j<20) P[0]=j*0.05;else P[0]=1.0;
for (i=1;i<=j;i++)
{
aa=-(a2*(P[i]-P[i-1])+a3*(V[i]-W[i])+a4*(S[i]-S[i-1]+ALPHA*P[i]-ALPHA*P[i-1]))/a1;
V[i]=V[i]+aa*DT;W[i]=W[i]-(b1*aa+b2*(S[i]-S[i-1]+ALPHA*P[i]-ALPHA*P[i-1]))*DT;
}
for (i=1;i<j;i++)
{
P[i]=P[i]-(c1*(V[i+1]-V[i])+c2*(W[i+1]-W[i]))*DT;
S[i]=S[i]-d1*(W[i+1]-W[i])*DT;
}
F[j]=P[IP];
}

The program applies to a soil column of 1000 mm length. The column is subdivided
into 2000 elements of 0.5 mm length. The data describing the problem are defined
in the first 6 lines. They are in agreement with the data given in Table 5.1. The
time step is determined such that the two waves will not lead to instabilities. The
arrays P[i], S[i], V[i], W[i], F[i] must be defined so that they can store
values from i=0 to i=4000. The values of the array F[j] denote the relative pore
pressure at a depth XP.



5.6 Conclusion 111

Fig. 5.4 Shock wave in a
porous medium–numerical
solution

The results of the computations of the pore pressure as a function of time are
shown in Fig. 5.4.

The results of the numerical calculation agree very well with the analytical re-
sults shown in Fig. 5.3. As in the analytical solution, it appears that two waves are
generated in the column. The arrival time of the first wave corresponds with that of
the undrained wave, in which the soil particles move with the pore fluid. The second
wave is typical of porous media in which the compressibility of the fluid and of the
solids have the same order of magnitude (Van der Grinten, 1987). In this wave the
fluid particles move with respect to the soil particles. This wave is strongly damped,
because of the friction between the fluid and the solid particles. The effect of this
wave can only be observed near the surface (in the example this is at a depth of 200
mm). At large depths it has been dissipated.

It may be noted that the high frequency oscillations observed in Fig. 5.4 are a
result of the numerical process. In the analytical solution they do not appear. Actu-
ally, these fluctuations have been largely suppressed by approximating the step load
at the boundary by a load that gradually increases in steps of 5% of the total load,
in 20 very short time steps. If the load is applied in a single step the fluctuations are
much larger.

5.6 Conclusion

It has been seen in this chapter that in a saturated porous medium two compressive
waves can be generated, one in which the particles and the fluid move together, and
one in which they move in opposite directions. As could be expected, this second
wave is strongly damped, because of the friction between the soil particles and the
fluid in the small pores. Actually, it is not so easy to choose the data such that
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this second wave is indeed observed. In a series of experiments at the University of
Eindhoven this was accomplished by Van der Grinten (1987) and Smeulders (1992).
The soil in these experiments was a cemented porous medium. In normal soils the
compressibility of the soil is usually much greater than the compressibility of the
fluid, and then the effect can hardly be observed, see also (5.106) and its derivation.
Even in these experiments the effect could only be observed in the vicinity of the
application point of the load.

It has been seen earlier that the second wave is strongly damped, because the
movement of the water with respect to the soil particles generates such large fric-
tional forces. Because the factor kω/g is small for all normal saturated soils it can
be concluded that in plane deformations, or in compression, these soils under dy-
namic loading will behave in undrained condition, which means that its Poisson’s
ratio will be close to 0.5.

The situation is quite different for shear waves. Because pure shear does not
involve any volumetric deformation, it follows that the fluid in the pores does not
affect the propagation of shear waves. The conclusion must be that for dynamic
effects a saturated porous medium usually can be considered as a soil in undrained
conditions, with its compression modulus given by (4.49),

Ku = K + α2

Sp

, (5.120)

where K is the compression modulus, and Sp is the storativity, see (4.28). Because
for a saturated soft soil the fluid compressibility and the compressibility of the soil
particles are very small, this means that the soil is almost incompressible.



Chapter 6
Cylindrical Waves

In this chapter a number of cylindrically symmetric problems from the theory of
elasticity are considered, both for the static case and the dynamic case. These prob-
lems can be considered as first approximations for the analysis of the influence of
a local disturbance in a very large homogeneous elastic plate, or for the case of de-
formation of bodies bounded by very long cylindrical surfaces. Certain problems of
this kind are known as the expansion of cylindrical cavities.

6.1 Static Problems

6.1.1 Basic Equations

Figure 6.1 shows an element of material in a cylindrical coordinate system. If the
radial coordinate is denoted by r , and the tangential coordinate by θ , then the area
of the element is r dr dθ . If it is assumed that the displacement field is cylindrically
symmetrical it may be assumed that there are no shear stresses acting upon the
element, and that the normal stresses σrr and σtt are independent of the tangential
coordinate θ . The stresses acting upon the element are indicated in the figure.

The only non-trivial equation of equilibrium now is the one in radial direction,

dσrr

dr
+ σrr − σtt

r
= 0. (6.1)

The deformations are related to the stresses by Hooke’s law. If the body considered
is a thick plate, it may be assumed that the plate deforms in a state of plane strain.
In that case Hooke’s law states, in its inverse form,

σrr = λe + 2μεrr , (6.2)

σtt = λe + 2μεtt , (6.3)

where e is the volume strain,

e = εrr + εtt , (6.4)

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
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Fig. 6.1 Element in circular
coordinates

and λ and μ are the elastic coefficients (Lamé constants),

λ = νE

(1 + ν)(1 − 2ν)
. (6.5)

μ = E

2(1 + ν)
. (6.6)

The strains εrr and εtt can be related to the radial displacement u by the relations

εrr = du

dr
, (6.7)

εtt = u

r
. (6.8)

Substitution of (6.2)–(6.8) into (6.1) gives

(λ + 2μ)

{
d2u

dr2 + 1

r

du

dr
− u

r2

}
= 0, (6.9)

or

d2u

dr2 + 1

r

du

dr
− u

r2 = 0. (6.10)

This is the basic differential equation for radially symmetric elastic deformations.
It is remarkable that all terms appear to have a coefficient (λ + 2μ), which means
that the equation is independent of the elastic properties of the material. Hence, if
the boundary conditions can all be expressed in terms of the displacement u, then
the solution will be independent of the elastic properties.

The stresses can be expressed into the radial displacement by substitution of (6.7)
and (6.8) into (6.2) and (6.3). This gives

σrr = (λ + 2μ)
du

dr
+ λ

u

r
, (6.11)
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σtt = (λ + 2μ)
u

r
+ λ

du

dr
. (6.12)

6.1.2 General Solution

The general solution of the differential equation (6.10) is

u = Ar + B

r
, (6.13)

where A and B are integration constants, to be determined from the boundary con-
ditions.

The general expression for the volume strain, corresponding to the solution (6.13)
is

e = 2A. (6.14)

It appears that the deformation field corresponding to the basic solution B/r is iso-
choric, i.e. of constant volume.

The stresses σrr and σtt can be expressed as

σrr = 2(λ + μ)A − 2μ
B

r2 , (6.15)

σtt = 2(λ + μ)A + 2μ
B

r2
. (6.16)

Some examples will be given in the next section.

6.1.3 Examples

Example 1: Cylinder Under External Pressure

Of the two basic solutions the solution with the coefficient B is singular in the
origin. Thus for a massive cylinder, which includes the axis r = 0, this solution
must vanish, to prevent the stresses and displacements from becoming singular. If
the boundary condition at the outer boundary of the cylinder is

r = a : σrr = −p, (6.17)

see Fig. 6.2, then the two constants are

A = − p

2(λ + μ)
, (6.18)

B = 0. (6.19)
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Fig. 6.2 Cylinder under
external pressure

Fig. 6.3 Hollow cylinder
under external pressure

The stresses now are, in the entire cylinder,

σrr = σtt = −p. (6.20)

The displacement field is

u = − pr

2(λ + μ)
. (6.21)

Thus the stresses (and the strains) in the cylinder are homogeneous, and the displace-
ment field is such that the radial displacement increases linearly with the distance
from the origin.

Example 2: Hollow Cylinder Under External Pressure

For a hollow cylinder under external pressure, see Fig. 6.3, the boundary conditions
are

r = a : σrr = 0, (6.22)

r = b : σrr = −p, (6.23)

where it has been assumed that a < b.
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In this case the constants A and B are found to be

A = − pb2

2(λ + μ)(b2 − a2)
, (6.24)

B = − pa2b2

2μ(b2 − a2)
. (6.25)

The stresses now are

σrr = −p
1 − a2/r2

1 − a2/b2
, (6.26)

σtt = −p
1 + a2/r2

1 − a2/b2 . (6.27)

It can easily be seen that the expression (6.26) satisfies the boundary condi-
tions (6.22) and (6.23).

A special case occurs when the outer boundary is located at infinity. This is the
case of a very large plate with a small circular hole. In this case b → ∞. At infinity
(r → ∞) all stresses then approach the limiting value −p. At the boundary of the
hole the radial stresses σrr are zero, but the tangential stress σtt at the boundary
of the hole then is −2p. The multiplication factor 2 is called a stress concentra-
tion factor. This solution also applies to a plate under tension, of course. The only
difference then is that p is negative. The stresses along the hole then are twice as
large as the stresses at infinity. If the material has a limited range in which it can
withstand stresses, as most materials do, the material will start to crack or yield at
the boundary of the hole. More refined studies for other cases, such as a plate with
an elliptical hole, have shown that the stress concentration factor can be much larger
than 2, for instance near the corner points of a square hole.

Example 3: Cylinder with Rigid Inclusion

For a cylinder under external pressure, with a rigid circular inclusion, see Fig. 6.4,
the boundary conditions are

r = a : ur = 0, (6.28)

r = b : σrr = −p. (6.29)

In this case the constants A and B are found to be

A = − p

2(λ + μ) + 2μa2/b2 , (6.30)

B = + pa2

2(λ + μ) + 2μa2/b2
. (6.31)
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Fig. 6.4 Cylinder with rigid
inclusion

The stresses now are

σrr = −p
2(λ + μ) + 2μa2/r2

2(λ + μ) + 2μa2/b2 , (6.32)

σtt = −p
2(λ + μ) − 2μa2/r2

2(λ + μ) + 2μa2/b2
. (6.33)

Again the case of an infinite plate is of some special interest. In this case the radial
stress is not zero at the boundary of the inclusion, of course. Actually, the stresses
at the boundary of the inclusion are

a → ∞, r = a : σrr = −p
λ + 2μ

λ + μ
, (6.34)

a → ∞, r = a : σtt = −p
λ

λ + μ
. (6.35)

One might suppose that the solutions for an infinite plate with a circular hole and
for an infinite plate with a rigid circular inclusion would become identical when the
radius of the hole and the inclusion tends to zero. This is not the case, however.
Apparently the special behaviour near the boundary of the hole or the boundary of
the inclusion can still be felt, even when the radius is infinitely small. Especially for
the case of a rigid inclusion this seems strange, because one would expect that the
solution for this case approaches the solution for a homogeneous plate if the radius
of the inclusion tends towards zero. The explanation for this paradox is that the
limiting cases should be approached more carefully. Actually, the limiting case for
a → 0 should be considered first for the integration constants A and B , see (6.30)
and (6.31). These then correctly reduce to the values given in (6.18) and (6.19). The
procedure of first setting r = a and then taking a = 0 in (6.32) and (6.33) leads to
a result differing from the one obtained by first setting a = 0 and then letting r → 0.
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Fig. 6.5 Cavity expansion

Example 4: Cavity Expansion

A case of special interest is the expansion of a cylindrical cavity in an infinite body,
see Fig. 6.5. In this case the boundary conditions are

r → ∞ : σrr = 0, (6.36)

r = a : σrr = −p. (6.37)

The constants A and B are found to be

A = 0, (6.38)

B = pa2

2μ
. (6.39)

The stresses now are

σrr = −p
a2

r2 , (6.40)

σtt = p
a2

r2
. (6.41)

The displacement field is

u = pa2

2μr
. (6.42)

The displacement at the boundary of the cavity is of particular interest,

ua = pa

2μ
. (6.43)

If this displacement can be measured, the value of the shear modulus μ can be
obtained. This is the basis of the pressuremeter test, developed by Ménard.
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6.2 Dynamic Problems

In the dynamic case the basic equilibrium equation (6.1) must be extended with an
inertia term,

∂σrr

∂r
+ σrr − σtt

r
= ρ

∂2u

∂t2 , (6.44)

where ρ is the mass density of the material. Substitution of (6.2)–(6.8) into this
equation gives

∂2u

∂r2 + 1

r

∂u

∂r
− u

r2 = 1

c2

∂2u

∂t2 , (6.45)

where c is the propagation velocity of compression waves,

c = √
(λ + 2μ)/ρ. (6.46)

Equation (6.45) is the basic differential equation for cylindrically symmetric dy-
namic elastic deformations. For certain cases solutions of this differential equation
may be obtained by separation of variables or by the Laplace transform method.

6.2.1 Sinusoidal Vibrations at the Cavity Boundary

As a first example the case of a sinusoidal variation of the displacements at the
boundary of a cylindrical cavity in an infinite medium will be considered. The
boundary condition is supposed to be

r = a : u = u0 sin(ωt), (6.47)

where ω is the frequency of the vibration.
The solution may be obtained by separation of variables. In this method it is

assumed that the solution of the differential equation (6.45) can be written as

u = Re{F(r) exp(iωt)}. (6.48)

Substitution into (6.45) shows that this is the case if the function F(r) satisfies the
equation

d2F

dr2
+ 1

r

dF

dr
+

(
ω2

c2
− 1

r2

)
F = 0. (6.49)

The solution of this differential equation can be expressed in terms of Bessel func-
tions (Abramowitz and Stegun, 1964). The general solution is

F = AJ1(ωr/c) + BY1(ωr/c), (6.50)

where J1(x) and Y1(x) are the Bessel functions of the first and second kind, of order
one, see Abramowitz and Stegun (1964).
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In many problems of mathematical physics in an infinite region one of the two
fundamental solutions can be excluded because of its behaviour near infinity. In
the radial case this is not so, because both fundamental solutions J1(x) and Y1(x)

behave in about the same way as x → ∞. Therefore the condition at infinity has
to be formulated in a more refined way, namely by specifying that at infinity the
behaviour of the solution must be such that it corresponds to an outgoing wave.
This is known as the radiation condition, as formulated by Sommerfeld (1949), and
used implicitly by Lord Rayleigh (1894) and Lamb (1904).

At very large distances the Bessel functions J1(x) and Y1(x) may be approxi-
mated by the asymptotic expansions

x → ∞ : J1(x) ≈ −√
2/πx cos

(
x + 1

4
π

)
, (6.51)

x → ∞ : Y1(x) ≈ −√
2/πx sin

(
x + 1

4
π

)
. (6.52)

This means that for very large values of r the radial displacement will be

r → ∞ : u ≈ Re

[√
c/2πωr

{
(A − iB) exp

[
iω(t + r/c) + 1

4
πi

]

+ (A + iB) exp

[
iω(t − r/c) − 1

4
πi

]}]
. (6.53)

The first term in the right hand side represents a wave traveling from infinity towards
the origin, whereas the second term represents an outgoing wave, traveling towards
infinity. This is the only acceptable term, and thus the radiation condition in this
case requires that

A = iB. (6.54)

The solution for the function F(r) now is

F = iBJ1(ωr/c) + BY1(ωr/c). (6.55)

The coefficient B must be determined from the condition at the inner boundary
r = a, see (6.47). The result is

B = −u0
J1(ωa/c) + iY1(ωa/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
. (6.56)

Using this expression for the coefficient B the final solution for the radial displace-
ment is

u

u0
= J1(ωa/c)J1(ωr/c) + Y1(ωa/c)Y1(ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
sin(ωt)

− J1(ωa/c)Y1(ωr/c) − Y1(ωa/c)J1(ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
cos(ωt). (6.57)
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It can easily be verified that this solution satisfies the differential equation (6.44),
because it consists of products of Bessel functions and circular functions, and that
it satisfies the boundary condition (6.47), because for r = a only the first term re-
mains, and its coefficient reduces to 1. For large values of the radial coordinate r the
solution can be approximated by

r → ∞ : u

u0
≈ − J1(ωa/c)

√
2c/πωr

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
sin

[
ω(t − r/c) − 1

4
π

]

− Y1(ωa/c)
√

2c/πωr

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
cos

[
ω(t − r/c) − 1

4
π

]
. (6.58)

Because the time t appears in this expression only in the form of the factor (t − r/c)

it can be seen that the solution indeed satisfies the radiation condition that at infinity
only an outgoing wave remains.

One of the most important aspects of the solution (6.57) and its approxima-
tion (6.58) is that the amplitude of the vibrations tends towards zero for r → ∞
as the factor

√
1/r . This is in contrast with the static case, in which the solution

tends towards zero at infinity as 1/r , which is much faster. This means that dynamic
effects are attenuated in space much slower than static effects.

The amplitude of the solution is shown graphically in Fig. 6.6, as a function of the
distance r . The value of the parameter ωa/c has been taken as 0.2. The figure indeed
shows that the amplitudes at great distances from the inner boundary approach zero
rather slowly. Even at a distance of 50 times the radius of the cavity the amplitude
of the wave is still about 10% of the amplitude at the cavity boundary. In the static
case this would only be about 2%.

The displacements in the wave, as a function of the radial coordinate r , are shown
in Fig. 6.7, for a value of time such that sin(ωt) = 1, for instance ωt = π/2. Again it
can be observed that the damping of the maximum displacements in space is rather
slow.

From the solution (6.57) the radial stress σrr and the tangential stress σtt can be
determined, using (6.11) and (6.12). This gives

Fig. 6.6 Amplitude of wave,
ωa/c = 0.2
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Fig. 6.7 Radial
displacement, ωa/c = 0.2,
ωt/π = 0.5

σrra

2μu0
= a

r

J1(ωa/c)J r
1 (ωr/c) + Y1(ωa/c)Y r

1 (ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
sin(ωt)

− a

r

J1(ωa/c)Y r
1 (ωr/c) − Y1(ωa/c)J r

1 (ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
cos(ωt), (6.59)

σtta

2μu0
= a

r

J1(ωa/c)J t
1(ωr/c) + Y1(ωa/c)Y t

1(ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
sin(ωt)

− a

r

J1(ωa/c)Y t
1(ωr/c) − Y1(ωa/c)J t

1(ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
cos(ωt), (6.60)

where

J r
1 (x) = J1(x) + λ + 2μ

2μ
xJ0(x), (6.61)

Y r
1 (x) = Y1(x) + λ + 2μ

2μ
xY0(x), (6.62)

J t
1(x) = J1(x) + λ

2μ
xJ0(x), (6.63)

Y t
1(x) = Y1(x) + λ

2μ
xY0(x). (6.64)

Here J0(x) and Y0(x) are the Bessel functions of the first and second kind, of order
zero, see Abramowitz and Stegun (1964).

The radial stress σrr is shown as a function of (r − a)/a in Fig. 6.8, at a moment
in time for which ωt = π/2, and assuming that ωa/c = 0.2 and ν = 0.25. It appears
that the stresses tend to zero much faster than the displacements, as a result of the
factor a/r in the expression (6.59). In the elastostatic case the convergence is even
faster, of order a2/r2, see (6.40).

Of particular interest is the radial stress at the inner boundary. If this is denoted
by −p,

r = a : σrr = −p, (6.65)
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Fig. 6.8 Radial stress,
ωa/c = 0.2, ωt/π = 0.5,
ν = 0.25

the relation of this boundary pressure with the displacement u0 is found to be

p = 2μu0

a
[F1(ωa/c) sin(ωt) + F2(ωa/c) cos(ωt)], (6.66)

where

F1(x) = 1 − x
λ + 2μ

2μ

J1(x)J0(x) + Y1(x)Y0(x)

J 2
1 (x) + Y 2

1 (x)
, (6.67)

F2(x) = x
λ + 2μ

2μ

J1(x)Y0(x) − Y1(x)J0(x)

J 2
1 (x) + Y 2

1 (x)
. (6.68)

The expression for F2(x) can be simplified using the relation for the Wronskian
determinant (Abramowitz and Stegun, 1964, formula 9.1.16)

J1(x)Y0(x) − Y1(x)J0(x) = 2

πx
. (6.69)

This gives

F2(x) = λ + 2μ

πμ

1

J 2
1 (x) + Y 2

1 (x)
. (6.70)

If the frequency ω is very small, the static solution is recovered,

ω → 0 : p = 2μu0

a
. (6.71)

This is in agreement with the results obtained for cavity expansion in the static case,
see (6.43).

The absolute value of the expression between square brackets in (6.66) gives the
multiplication factor for the amplitude of the radial pressure in case of a dynamic
load of given displacement. Its inverse represents the multiplication factor for the
dynamic displacements for a given pressure at the inner boundary,

∣∣∣∣
ud

us

∣∣∣∣ = 1
√

F 2
1 (ωa/c) + F 2

2 (ωa/c)

. (6.72)
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Fig. 6.9 Dynamic
amplification factor

This dynamic amplification factor is shown in graphical form in Fig. 6.9, for various
values of the Poisson ratio ν. It appears from the figure that for large frequencies
the dynamic amplitude is very small, especially for values of Poisson’s ratio ap-
proaching the incompressible limit ν = 0.5. This means that then the response is
very stiff. This phenomenon is often observed in dynamics. The reason for it is that
it is very difficult to move the mass of the material in a very short time interval
(this is called inertia of the material). In this case of cylindrically symmetric de-
formations the static response is governed by the shear modulus μ only, see (6.43).
In the dynamic case, however, the other elastic parameter, Poisson’s ratio ν or the
compression modulus K , also influences the response, which indicates that in the
dynamic case the wave not only involves shear, but also compression. The solution
of the problem also indicates that at large distances from the inner boundary, where
the disturbance is generated, the compression wave dominates, because the wave
velocity at infinity is that of a compression wave.

6.2.2 Equivalent Spring and Damping

It is convenient to write the relation (6.66) between the pressure p at the cavity
boundary r = a and the displacement u0 of that boundary in the form

2πaLp = {K sin(ωt) + ωC cos(ωt)}u0, (6.73)

where L is the thickness of the plate, K is an equivalent spring stiffness and C is
an equivalent damping, see also Sect. 1.5. The expressions for these quantities are,
with (6.66), (6.67) and (6.70),

K

4πμL
= F1(ωa/c), (6.74)
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Fig. 6.10 Equivalent spring

and

Cc

2π(λ + 2μ)La
= 2

π

c/ωa

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
. (6.75)

The equivalent dynamic stiffness is shown, as a function of the dimensionless fre-
quency (ωa/c), in Fig. 6.10. For small frequencies the spring constant is practically
equal to the static value, but for large frequencies the spring is much more flexible.
Actually, for very large frequencies the function F1(x) may be approximated by the
following relation, which may be derived by using asymptotic expansions for the
Bessel functions (Abramowitz and Stegun, 1964). The result is

ωa

c
� 1 : K

4πμL
≈ 2π(λ + 2μ)La

c
. (6.76)

If ν > 1
3 this is negative, indicating that the force and the displacement are out of

phase. This is confirmed by the curve for ν = 0.4 in Fig. 6.10.
The value of the equivalent damping C is shown in Fig. 6.11. For large values of

the dimensionless frequency ωa/c the damping is practically constant,

ωa

c
� 1 : C ≈ 2π(λ + 2μ)La

c
. (6.77)

This approximation can be derived by using the asymptotic expansions of the Bessel
functions appearing in (6.75).
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Fig. 6.11 Equivalent damping

6.3 Propagation of a Shock Wave

6.3.1 Solution by Laplace Transform

Another interesting problem concerns a shock wave propagating from a cavity in
an infinite medium. In this case the Laplace transform method (Churchill, 1972)
seems well suited to solve the problem. The Laplace transform of the displacement
is defined by

u =
∫ ∞

0
u exp(−st) dt, (6.78)

where s is the Laplace transform parameter, which is supposed to be sufficiently
large so that all transforms exist.

Application of the Laplace transform to the differential equation (6.45) gives

d2u

dr2
+ 1

r

du

dr
−

(
s2

c2
+ 1

r2

)
u = 0, (6.79)

where it has been assumed that the initial values of the displacement and the velocity
are zero. The solution of the differential equation (6.79), vanishing at infinity, is

u = AK1(sr/c), (6.80)

where K1(x) is the modified Bessel function of the second kind, and of order one.
The boundary condition is supposed to be that from time t = 0 on a compressive
stress p is acting inside the cavity,

r = a, t > 0 : σrr = −p. (6.81)

The condition for the transformed problem is

r = a : σ rr = −p

s
. (6.82)
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Using the boundary condition (6.79) and the expression for the radial stress in terms
of the displacement,

σrr = (λ + 2μ)
∂u

∂r
+ λ

u

r
, (6.83)

the integration constant A can be determined. The final solution of the transformed
problem then is found to be

u = pa

2μs

K1(sr/c)

K1(sa/c) + [(λ + 2μ)/2μ](sa/c)K0(sa/c)
. (6.84)

The mathematical problem now remaining is to determine the inverse transform of
this expression. This can be accomplished by using the complex inversion integral
(Churchill, 1972), but will not be elaborated further here, because of the mathemat-
ical complexities, see Miklowitz (1978).

An approximate solution valid for small values of the time may be obtained by
using the theorem (Churchill, 1972) that by assuming that the Laplace transform
parameter s is very large, the Laplace transform

u(s) =
∫ ∞

0
u(t) exp(−st) dt, (6.85)

practically contains contributions of u(t) only for very small values of t . If in (6.84)
the parameter s is assumed to be very large, the Bessel functions may be approxi-
mated by their asymptotic expansions,

sa

c
� 1 : K0

(
sa

c

)
≈

√
πc

2sa
exp

(
− sa

c

)
, (6.86)

sa

c
� 1 : K1

(
sa

c

)
≈

√
πc

2sa
exp

(
− sa

c

)
. (6.87)

The expression (6.84) then reduces to

u = pc

(λ + 2μ)s2

√
a

r
exp[−s(r − a)/c]. (6.88)

The inverse Laplace transformation now is simple, with the result

u = pc[t − (r − a)/c]
λ + 2μ

√
a

r
H [t − (r − a)/c], (6.89)

where H(t − t0) is Heaviside’s unit step function,

H(t − t0) =
{

0, if t < t0,

1, if t > t0.
(6.90)

The approximate solution (6.89) indicates that for small values of time, i.e. shortly
after the application of the shock, the response of the system is comparable to that
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of a one dimensional system (a pile) in which a compression wave is generated. The
factor

√
a/r indicates that the displacements are decreasing in radial direction, as

could be expected. The approximate solution also has the convenient, and expected,
property that the displacements are zero if t < (r − a)/c, i.e. when the wave has not
yet arrived.

Another approximation can be obtained by using the property of the Laplace
transform that

lim
t→∞u(t) = lim

s→0
su(s), (6.91)

see e.g. Churchill (1972). Application of this theorem to (6.84) now gives

lim
t→∞u(t) = p a2

2μr
. (6.92)

This is the static solution, see (6.42). It appears that the dynamic solution indeed
approaches the static solution for very large values of time.

6.3.2 Solution by Fourier Series

The problem of the propagation of a shock wave from a cylindrical cavity can also
be solved, and perhaps in a simpler way, by determining the response to a block
wave of sufficiently long duration, considered as the summation of many sinusoidal
variations.

A block wave, of period T , see Fig. 6.12, can be represented by the Fourier series

p

p0
= 1

2
+ 2

π

∞∑

k=1,3,5,

sin(2πkt/T )

k
. (6.93)

The basic element of the solution by Fourier analysis is the response of the medium
to a sinusoidal variation of the radial stress at the cavity boundary,

r = a : σrr = −p0 sin(ωt). (6.94)

The displacement of the boundary due to this load can be written as

r = a : u = p0a

2μ
[G1(ωa/c) sin(ωt) + G2(ωa/c) cos(ωt)], (6.95)

Fig. 6.12 Block wave
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where the functions G1(x) and G2(x) are the inverse forms of the functions F1(x)

and F2(x), defined in (6.67) and (6.70),

G1(x) = F1(x)

F 2
1 (x) + F 2

2 (x)
, (6.96)

G2(x) = − F2(x)

F 2
1 (x) + F 2

2 (x)
. (6.97)

The expression for the radial displacement as a function of r and t is, generalizing
equation (6.57), and replacing the reference parameter u0 by p0a/2μ,

2μu

p0a
= J1(ωa/c)J1(ωr/c) + Y1(ωa/c)Y1(ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
A(ωt)

− J1(ωa/c)Y1(ωr/c) − Y1(ωa/c)J1(ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
B(ωt), (6.98)

where

A(ωt) = G1(ωa/c) sin(ωt) + G2(ωa/c) cos(ωt), (6.99)

B(ωt) = G1(ωa/c) cos(ωt) − G2(ωa/c) sin(ωt). (6.100)

The expression (6.93) consists of a constant load p0/2, the average pressure, and
a number of sinusoidal loads, with amplitude 2p0/kπ . The first term gives rise
to a solution of the form u = p0a

2/(4μr), in agreement with the solution (6.42)
for elastostatic cavity expansion. The other terms lead to partial solutions of the
form (6.98), with ωt = 2πkt/T , or ω = 2πk/T . The results of a Fourier series
solution, taking 500 terms, are shown in Fig. 6.13. The value of T has been chosen
very large, so that cT /a = 100, to ensure that in half a period of the block wave
the steady state solution will be reached. The other parameters in the solution are
Poisson’s ratio, and the distance from the cavity for which the radial displacement
is plotted. The figure also shows, by dots, the solution for small values of time, as
given by (6.89), and the steady state solution. The Fourier series solution appears
to agree very well with these approximations for small and large values of time.

Fig. 6.13 Radial
displacement, cT /a = 100,
ν = 0, r/a = 2
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Fig. 6.14 Radial stress,
cT /a = 100, ν = 0.25,
r/a = 2

The shape of the curve is also in agreement with a solution by Miklowitz (1978),
obtained using the Laplace transform and numerical integration.

The expression for the radial stress σrr as a function of r and t caused by a single
component of the Fourier series is, generalizing equation (6.59), and replacing the
reference parameter u0 by p0a/2μ,

σrr

p0
= a

r

J1(ωa/c)J r
1 (ωr/c) + Y1(ωa/c)Y r

1 (ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
A(ωt)

− a

r

J1(ωa/c)Y r
1 (ωr/c) − Y1(ωa/c)J r

1 (ωr/c)

J 2
1 (ωa/c) + Y 2

1 (ωa/c)
B(ωt), (6.101)

where A(ωt) and B(ωt) are defined by (6.99) and (6.100).
In this case the constant load term p0/2 in the Fourier series (6.93) gives rise

to a solution of the form σrr = −p0a
2/(2r2), as given by the solution (6.40) for

elastostatic cavity expansion. The other terms lead to solutions of the form (6.101),
taking into account the amplitude 2p0/kπ , and writing ωt = 2πkt/T . The results
of a Fourier series solution for the radial stress, taking 500 terms, are shown in
Fig. 6.14. The dots in the figure indicate the elastostatic solution, that should be
obtained for t/T → ∞.

6.4 Radial Propagation of Shear Waves

For the analysis of the transmission of vertical forces from a foundation pile to the
surrounding soil, it may be interesting to consider the propagation of shear waves
through the soil, in radial direction. If it is assumed that there are no vertical defor-
mations in the layer, and that its only mode of displacement is a vertical displace-
ment w, which is a function of the radial distance r and the time t only, the basic
differential equation is

∂2w

∂r2
+ 1

r

∂w

∂r
= 1

c2

∂2w

∂t2
, (6.102)
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Fig. 6.15 Shear stresses
acting upon a ring

where now c is the velocity of shear waves,

c = √
μ/ρ. (6.103)

Equation (6.102) can be derived from the equation of conservation of momentum,
in vertical direction, of a ring of radius r , see Fig. 6.15, which requires that

∂(2πrτ)

∂r
= 2πrρ

∂2w

∂t2 . (6.104)

Using an appropriate form of Hooke’s law for this schematization,

τ = μ
∂w

∂r
, (6.105)

to relate the shear stress τ to the vertical displacement w, (6.102) is obtained. It
should be noted that these equations are valid only if the vibrating soil layer is not
supported at its base. The only means of stress transfer is in radial direction, through
shear stresses.

6.4.1 Sinusoidal Vibrations at the Cavity Boundary

As an example the case of a sinusoidal variation of the displacements at the bound-
ary of a cylindrical cavity in an infinite medium may be considered. The boundary
condition is supposed to be

r = a : w = w0 sin(ωt), (6.106)

where ω is the frequency of the vibration.
As in the case of radial compression waves, considered in the previous section,

the solution may be obtained by separation of variables. The solution proceeds in
very much the same way, except that the Bessel functions now are of order zero. The
determination of the integration constants again requires the radiation condition at
infinity in order to eliminate the incoming wave. The final solution is

w

w0
= J0(ωa/c)J0(ωr/c) + Y0(ωa/c)Y0(ωr/c)

J 2
0 (ωa/c) + Y 2

0 (ωa/c)
sin(ωt)

− J0(ωa/c)Y0(ωr/c) − Y0(ωa/c)J0(ωr/c)

J 2
0 (ωa/c) + Y 2

0 (ωa/c)
cos(ωt). (6.107)
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For large values of the radial coordinate r the solution can be approximated by

r → ∞ : w

w0
≈ − J0(ωa/c)

√
2c/πωr

J 2
0 (ωa/c) + Y 2

0 (ωa/c)
sin

[
ω(t − r/c) + 1

4
π

]

− Y0(ωa/c)
√

2c/πωr

J 2
0 (ωa/c) + Y 2

0 (ωa/c)
cos

[
ω(t − r/c) + 1

4
π

]
. (6.108)

Because the time t appears in this expression only in the form of the factor (t −
r/c) it can be seen that the solution indeed satisfies the radiation condition that it
represents an outgoing wave at infinity.

The shear stress τ can be found from the relation (6.105). For the total force T ,
acting on a pile of length L, this gives

T = {K sin(ωt) + ωC cos(ωt)}w0, (6.109)

where

K = 2πμL

(
ωa

c

)
J0(ωa/c)J1(ωa/c) + Y0(ωa/c)Y1(ωa/c)

J 2
0 (ωa/c) + Y 2

0 (ωa/c)
, (6.110)

and

C =
(

4μL

ω

)
1

J 2
0 (ωa/c) + Y 2

0 (ωa/c)
. (6.111)

These quantities can be considered as the equivalent dynamic spring and damping
of the soil system, as acting upon the mass of the pile. They are shown in graphical
form, as a function of the frequency ω, in Figs. 6.16 and 6.17. It appears from
Fig. 6.16 that for high frequencies the equivalent stiffness is

ωa

c
� 1 : K ≈ πμL. (6.112)

Fig. 6.16 Equivalent spring
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Fig. 6.17 Equivalent damping

This relation can also be obtained by an asymptotic expansion of the general for-
mula (6.110) for large values of the parameter ωa/c. For small frequencies, which
correspond to the static case, the equivalent spring stiffness is zero. This is due to
the circumstance that the circular plate is not supported.

The equivalent damping can be approximated for large values of the frequency
by

ωa

c
� 1 : C ≈ 2πμLa/c, (6.113)

which is a constant. It appears from Fig. 6.17 that this approximation can be used
for practically all values of the frequency with reasonable accuracy. Only for very
small frequencies the damping is larger.

It may be noted that the approximations obtained above indicate that in the anal-
ysis of the behaviour of foundation piles the effect of the generation of shear waves
due to the transmission of friction to the ground can be approximated, at least for
high frequencies, by a spring and a damper, with constant properties, as indicated
by (6.112) and (6.113). It should also be noted that these approximations cannot be
used for low frequencies.

Problems

6.1 Consider a thin-walled cylinder, of radius a and wall thickness d , with d � a.
In the interior of the cylinder a pressure p is acting, the outer boundary is free of
stress. Determine the constants A and B , see (6.13), for this case. Show that the
tangential stress in the cylinder is −pa/d , which is the well known formula for the
stress in the wall of a boiler.

6.2 Consider a thin circular plate, of thickness d and radius a. On the surface of
the plate a uniform shear stress τ is acting, in outward direction. Modify the basic
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equation (6.9) to take this shear stress into account, and solve the modified differen-
tial equation. Calculate the stress in the center of the plate.

6.3 Figure 6.6 was prepared using the value 0.2 for the parameter ωa/c. Construct
a similar figure using a different value for this parameter, for instance ωa/c = 0.1,
or ωa/c = 1.





Chapter 7
Spherical Waves

In this chapter a number of spherically symmetric problems from the theory of elas-
ticity are considered, especially the problem of the expansion of a spherical cavity.
This can be considered as a first approximation for the analysis of the influence of a
local disturbance in an infinite homogeneous elastic body. Both static and dynamic
loading will be considered.

7.1 Static Problems

7.1.1 Basic Equations

Figure 7.1 shows an element of material in a spherical coordinate system. If the
radial coordinate is denoted by r , the angle in the x, y-plane by θ , and the angle
with the vertical axis by ψ , then the volume of the element is r2 dr dθ dψ cos(ψ).
It is assumed that the displacement field is spherically symmetrical, so that there are
no shear stresses acting upon the element, and the tangential stress σtt is independent
of the orientation of the plane. The stresses acting upon the element are indicated
in the figure. The only non-trivial equation of equilibrium now is the one in radial
direction,

∂σrr

∂r
+ 2(σrr − σtt )

r
= 0. (7.1)

The stresses can be related to the strains by Hooke’s law,

σrr = λe + 2μεrr , (7.2)

σtt = λe + 2μεtt , (7.3)

where e is the volume strain,

e = εrr + 2εtt , (7.4)

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
© Springer Science+Business Media B.V. 2010
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Fig. 7.1 Element in spherical
coordinates

and λ and μ are the elastic coefficients (Lamé constants),

λ = νE

(1 + ν)(1 − 2ν)
, (7.5)

μ = E

2(1 + ν)
. (7.6)

The strains εrr and εtt can be related to the radial displacement ur by the relations

εrr = ∂ur

∂r
, (7.7)

εtt = ur

r
. (7.8)

The volume strain can now also be written as

e = ∂ur

∂r
+ 2ur

r
. (7.9)

Substitution of (7.2)–(7.9) into (7.1) gives

∂2u

∂r2 + 2

r

∂u

∂r
− 2u

r2 = 0. (7.10)

This is the basic differential equation for spherically symmetric elastic deforma-
tions. As in the case of cylindrical deformations the elastic properties of the material
do not appear in this equation. This means that if the boundary conditions can all
be expressed in terms of the displacement, the solution will be independent of the
elastic properties.
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7.1.2 General Solution

The general solution of the differential equation (7.10) is

u = Ar + B

r2 , (7.11)

where A and B are integration constants, to be determined from the boundary con-
ditions.

The general expression for the volume strain, corresponding to the solution (7.11)
is

e = 3A. (7.12)

Because the volume strain appears to be independent of the constant B it can be
concluded that the deformation field corresponding to the basic solution B/r2 is
isochoric, i.e. of constant volume. The deformation field corresponding to the other
basic solution Ar appears to lead to a homogeneous volume strain, independent of
the radial coordinate r . Thus the volume change is always homogeneous throughout
the spherical body.

The stresses σrr and σtt can be expressed as

σrr = (3λ + 2μ)A − 4μ
B

r3 , (7.13)

σtt = (3λ + 2μ)A + 2μ
B

r3 , (7.14)

Some examples will be given in the next section.

7.1.3 Examples

Example 1: Sphere Under External Pressure

Of the two basic solutions the solution with the coefficient B is singular in the
origin. Thus for a massive sphere, which includes the origin r = 0, this solution
must vanish, to prevent the stresses and displacements from becoming singular. If
the boundary condition at the outer boundary of the sphere is

r = a : σrr = −p, (7.15)

see Fig. 7.2, then the two constants are

A = − p

(3λ + 2μ)
, (7.16)

B = 0. (7.17)
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Fig. 7.2 Sphere under
external pressure

The stresses now are, in the entire sphere,

σrr = σtt = −p. (7.18)

The displacement field is

u = − p r

(3λ + 2μ)
. (7.19)

Thus the stresses (and the strains) in the sphere are homogeneous, and the displace-
ment field is such that the radial displacement increases linearly with the distance
from the origin.

Example 2: Hollow Sphere Under External Pressure

For a hollow sphere under external pressure, the boundary conditions are

r = a : σrr = 0, (7.20)

r = b : σrr = −p, (7.21)

where it has been assumed that a < b.
In this case the constants A and B are found to be

A = − pb3

(3λ + 2μ)(b3 − a3)
, (7.22)

B = − p a3b3

4μ(b3 − a3)
. (7.23)

The stresses now are

σrr = −p
1 − a3/r3

1 − a3/b3 , (7.24)

σtt = −p
1 + a3/(2r3)

1 − a3/b3
. (7.25)
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Fig. 7.3 Hollow sphere
under external pressure

Fig. 7.4 Sphere with rigid
inclusion

It can easily be seen that the expression (7.24) satisfies the boundary conditions
(7.20) and (7.21).

A special case occurs when the outer boundary is located at infinity. This is the
case of a very large body with a small spherical hole. In this case b → ∞. At infinity
(r → ∞) all stresses then approach the limiting value −p. At the boundary of the
hole the radial stresses σrr are zero, but the tangential stress σtt at the boundary of
the hole then is −1.5p. Thus the stress concentration factor in this case is 1.5.

Example 3: Sphere with Rigid Inclusion

For a sphere under external pressure, with a rigid spherical inclusion, see Fig. 7.4,
the boundary conditions are

r = a : ur = 0, (7.26)

r = b : σrr = −p. (7.27)

In this case the constants A and B are found to be

A = − p

(3λ + 2μ) + 4μa3/b3
, (7.28)
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B = + pa3

(3λ + 2μ) + 4μa3/b3 . (7.29)

The stresses now are

σrr = −p
(3λ + 2μ) + 4μa3/r3

(3λ + 2μ) + 4μa3/b3 , (7.30)

σtt = −p
(3λ + 2μ) − 2μa3/r3

(3λ + 2μ) + 4μa3/b3
. (7.31)

Again the case of an infinite body is of some special interest. In this case the radial
stress is not zero at the boundary of the inclusion, of course. Actually, the stresses
at the boundary of the inclusion are

a → ∞, r = a : σrr = −p
3λ + 6μ

3λ + 2μ
, (7.32)

a → ∞, r = a : σtt = −p
3λ

3λ + 2μ
. (7.33)

Again, as in the case of a cylindrical inclusion, the solution does not tend to the
homogeneous stress state when the radius of the inclusion becomes infinitely small.

Example 4: Cavity Expansion

An interesting problem is the case of expansion of a spherical cavity in an infinite
body, see Fig. 7.5. In this case the boundary conditions are

r → ∞ : σrr = 0, (7.34)

r = a : σrr = −p. (7.35)

The constants A and B are now found to be

A = 0, (7.36)

B = p a3

4μ
. (7.37)

Fig. 7.5 Cavity expansion
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The stresses now are

σrr = −p
a3

r3
, (7.38)

σtt = p
a3

2r3 . (7.39)

The displacement field is

u = p a3

4μr2
. (7.40)

Of special interest is the displacement at the boundary of the cavity,

ua = p a

4μ
. (7.41)

If this displacement can be measured, the value of the shear modulus μ can be
obtained.

It may be noted that in this case the volume change is zero, because the con-
stant A is zero, see (7.12). For soil mechanics practice this implies that in a water-
saturated linear elastic medium no pore water pressures will be generated.

An interesting aspect of the solution for this problem of cavity expansion is that
for r → ∞ the displacements tend to zero as 1/r2, and the stresses tend to zero as
1/r3. This means that the displacements, and especially the stresses, decrease very
fast with the radial distance. At a distance of 4 times the radius of the cavity, for
instance, the stresses are a factor 64 times smaller than the stress at the boundary
of the cavity, or, in other words, the stresses have been reduced to a level of about
1.5%. It will appear later that in the dynamic case this is quite different.

7.2 Dynamic Problems

In the dynamic case the basic equilibrium equation (7.1) must be extended with an
inertia term,

∂σrr

∂r
+ 2(σrr − σtt )

r
= ρ

∂2u

∂t2
. (7.42)

Substitution of (7.2)–(7.8) into this equation gives

∂2u

∂r2
+ 2

r

∂u

∂r
− 2u

r2
= 1

c2
p

∂2u

∂t2
, (7.43)

where

c2
p = λ + 2μ

ρ
. (7.44)
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Equation (7.43) is the basic differential equation for spherically symmetric dynamic
elastic deformations. The differential equation can be solved by various methods,
such as separation of variables or the Laplace transform method. In this way general
types of boundary value problems can be solved. It should be noted that the quantity
cp , as defined by (7.44), is the propagation velocity of compression waves in an
elastic medium. It should not come as a surprise that for spherically symmetric
waves the characteristic velocity is the velocity of compression waves.

7.2.1 Propagation of Waves

A simple method of solution for wave propagation problems has been given by
Hopkins (1960). This solution can be obtained by observing that the displacement
field is irrotational, so that one may introduce a displacement potential φ such that

u = ∂φ

∂r
. (7.45)

Substitution of (7.45) into (7.43) shows that φ must satisfy the equation

∂3φ

∂r3
+ 2

r

∂2φ

∂r2
− 2

r2

∂φ

∂r
= 1

c2
p

∂3φ

∂r∂t2
. (7.46)

This equation can be integrated once with respect to r , which gives

∂2φ

∂r2 + 2

r

∂φ

∂r
= 1

c2
p

∂2φ

∂t2 . (7.47)

Equation (7.47) can also be written as

∂2(rφ)

∂r2 = 1

c2
p

∂2(rφ)

∂t2 . (7.48)

This is the standard form of the one-dimensional wave equation. The solution can
immediately be written down as

rφ = f (r − cpt) + g(r + cpt), (7.49)

where f and g are arbitrary functions, to be determined from the boundary condi-
tions. The solution (7.49) represents two waves, a diverging and a converging one.
Of special interest is the solution that travels in outward direction from a certain
local disturbance,

rφ = f (r − cpt). (7.50)

The corresponding displacement field is

u = 1

r

df

dr
− f

r2
. (7.51)
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Some examples of solutions of particular problems using this general form of the
solution, will be presented below.

7.2.2 Sinusoidal Vibrations at the Cavity Boundary

As an example the case of sinusoidal variations of the displacements at the bound-
ary of a spherical cavity will be elaborated. Therefore the boundary condition is
assumed to be

r = a : u = u0 sin(ωt), (7.52)

where ω is the frequency of the variation. The other boundary is supposed to be at
infinity.

The solution of the problem can be described by a single function f , as in (7.50).
It can be expected that this function can be written as

f = A sin(ωt − kr) + B cos(ωt − kr), (7.53)

where A and B are constants, and k = ω/cp . The factor kr can also be written as
2πr/λ, where now λ is the wave length. It appears that

k = 2π/λ. (7.54)

The radial displacement corresponding to the solution (7.53) is, with (7.51),

u = − 1

r2

{
(A − Bkr) sin(ωt − kr) + (B + Akr) cos(ωt − kr)

}
. (7.55)

The constants A and B can now be determined from the boundary condition (7.52).
The result is

A = −u0a
2 cos(ka) + (ka) sin(ka)

1 + (ka)2 , (7.56)

B = −u0a
2 sin(ka) − (ka) cos(ka)

1 + (ka)2
. (7.57)

Substitution of these values into (7.55) gives, after some elementary mathematical
operations,

u

u0
= a2

r2[1 + (ka)2]
{[1 + (ka)(kr)] sin[ωt − k(r − a)]

+ k(r − a) cos[ωt − k(r − a)]}. (7.58)

This solution can also be written in the standard form

u

u0
= f

(
r

a

)
sin(ωt − ψ), (7.59)
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where f (r/a) is a dimensionless damping factor and ψ is a phase angle. It can be
shown that

f

(
r

a

)
=

(
a

r

)2
√

1 + (ka)2(r/a)2

1 + (ka)2 , (7.60)

and

ψ = ka

(
r − a

a

)
− arctan

[
ka(r − a)/a

1 + (ka)2(r/a)

]
. (7.61)

The volume strain e can be obtained from the relation (7.9),

e = u0(ka)2

r[1 + (ka)2]
{
sin[ωt − k(r − a)] − (ka) cos[ωt − k(r − a)]}. (7.62)

The radial stress σrr can be obtained from (7.2),

σrr = (λ + 2μ)u0(ka)2

r[1 + (ka)2]
{
sin[ωt − k(r − a)] − (ka) cos[ωt − k(r − a)]}

− 4μu0a
2

r3[1 + (ka)2]
{[1 + (ka)(kr)] sin[ωt − k(r − a)]

+ k(r − a) cos[ωt − k(r − a)]}. (7.63)

One of the most striking features of this solution is that at large distances from the
cavity (i.e. for large values of r/a) the displacements and the stresses are much
larger than in the static case. Both the radial displacement and the radial stress are
of the order O(1/r). This is in sharp contrast with the static case, in which the
displacement and the stress tend to zero much faster, with a factor 1/r3.

The static solution can be obtained from the dynamic solution by assuming that
the frequency ω is so small that ka and kr tend to zero. The solutions then reduce
to

ω → 0 : u

u0
= a2

r2 sin(ωt), (7.64)

ω → 0 : σrr = −4μu0a
2

r3 sin(ωt). (7.65)

This is in agreement with the static solution, as expressed by (7.38) and (7.40).
The relation between the pressure at the cavity boundary (p = −σrr ) and the

displacement of that boundary is, in the static case,

p = 4μu0

a
. (7.66)
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In engineering practice it is often convenient to describe the response of a linear
elastic system by a spring constant, writing

u = p

ce

, (7.67)

where ce is the spring constant. It appears that in this case the equivalent spring
constant is

ce = 4μ

a
. (7.68)

Thus the equivalent spring constant is proportional to the shear modulus of the ma-
terial, and inversely proportional to the radius of the cavity. The larger the cavity,
the smaller the spring constant. A uniform pressure inside a large cavity results in a
large displacement.

It is also interesting to investigate the behaviour of the pressure at the cavity
boundary, in relation to the amplitude of the displacement u0 for the general dy-
namic case. If the pressure inside the cavity is again denoted by p, which is the oppo-
site of the stress σrr at the cavity boundary (i.e. for r = a), one obtains, from (7.63),

p = 4μu0

a

{[
1 −

(
λ + 2μ

4μ

)(
(ka)2

1 + (ka)2

)]
sin(ωt)

+
(

λ + 2μ

4μ

)(
(ka)3

1 + (ka)2

)
cos(ωt)

}
. (7.69)

The coefficients of the trigonometric functions in (7.69) are now written as a1 and
a2, respectively,

a1 = 1 −
(

λ + 2μ

4μ

)(
(ka)2

1 + (ka)2

)
, (7.70)

a2 =
(

λ + 2μ

4μ

)(
(ka)3

1 + (ka)2

)
. (7.71)

The expression (7.69) can then also be written in the standard form

p = 4μu0

a

{
a1 sin(ωt) + a2 cos(ωt)

} = u0

cd

sin(ωt + ψ), (7.72)

where now cd is the dynamic spring stiffness,

cd = 4μ

a

√
a2

1 + a2
2, (7.73)

and ψ is the phase angle, defined by

tanψ = a2

a1
. (7.74)
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Fig. 7.6 Dynamic response,
amplitude

The dynamic spring constant cd and the phase angle ψ depend upon the frequency
ω through the parameter ka, which can also be written as

ka = ωa/cp = ω/ω0, (7.75)

where now

ω0 = cp

a
=

√
λ + 2μ

ρa2
. (7.76)

This is a characteristic frequency of the system, depending upon the ratio of the
elastic stiffness and the mass density, and upon the radius of the cavity. It has the
form of the square root of the ratio of an elastic stiffness and a mass. A characteristic
frequency of this type often exists in dynamic systems.

The dynamic spring constant cd is shown, in the form of the ratio ce/cd , in
Fig. 7.6, as a function of the dimensionless frequency ω/ω0, or ka. This can also
be interpreted as the amplitude of the dynamic response of the displacement of the
cavity boundary to a periodic pressure of constant amplitude. The response curves
have been plotted for various values of the Poisson ratio ν, which determines the
ratio (λ + 2μ)/4μ. It appears that the response tends to zero when the frequency is
very high, but for a certain low frequency there is a form of resonance, especially if
Poisson’s ratio is large. The order of magnitude of this resonance frequency is ω0.

The phase angle ψ is shown graphically in Fig. 7.7, as a function of the fre-
quency, and for various values of the Poisson ratio ν. It follows from the figure,
but also from the formula (7.74), that for large values of the frequency (that is for
very rapid vibrations), the phase angle tends towards π/2, indicating a very large
amount of damping. In this case the damping cannot be the result of viscous or hys-
teretic damping of the material, as these effects have not been included. The cause
of the damping must be the spreading of the energy over ever larger areas when the
waves travel from the cavity. This form of damping is called radiation damping. In
engineering practice this is often one of the most important causes of damping.
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Fig. 7.7 Dynamic response,
phase angle

7.2.3 Propagation of a Shock Wave

Another approach to problems of elastodynamics is by using the Laplace transform
method. This seems especially suited for the analysis of the propagation of a shock
wave. This method will be used in this section to solve the problem of a shock wave
propagated from a spherical cavity.

The problem is described by the equation of motion (7.43),

∂2u

∂r2 + 2

r

∂u

∂r
− 2u

r2 = 1

c2
p

∂2u

∂t2 , (7.77)

where, as before, cp is the propagation velocity of compression waves,

c2
p = λ + 2μ

ρ
. (7.78)

The stresses can be related to the radial displacement by the equations

σrr = λe + 2μ
∂ur

∂r
, (7.79)

σtt = λe + 2μ
ur

r
, (7.80)

where e is the volume strain,

e = ∂ur

∂r
+ 2ur

r
. (7.81)

The boundary conditions now are supposed to be:

r = a, t > 0 : σrr = −p, (7.82)

r → ∞, t > 0 : σrr = 0. (7.83)
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These boundary conditions express that at time t = 0 a pressure p is suddenly ap-
plied at the boundary of the cavity.

The Laplace transform (Churchill, 1972) of the displacement is defined by

u =
∫ ∞

0
u exp(−st) dt, (7.84)

where s is the Laplace transform parameter, supposed to be positive. For all quanti-
ties the Laplace transform will be indicated by an overbar.

Applying the Laplace transform to the differential equation (7.77) gives

d2u

dr2 + 2

r

du

dr
− 2u

r2 = k2u, (7.85)

where

k = s/cp. (7.86)

The general solution of this differential equation is

u = A
1 + kr

(kr)2 exp(−kr) + B
1 − kr

(kr)2 exp(+kr). (7.87)

Because of the boundary condition at infinity the coefficient B can be assumed to
be zero, so that the solution reduces to

u = A
1 + kr

(kr)2
exp(−kr). (7.88)

The volume strain corresponding to this solution is

e = − A

r
exp(−kr). (7.89)

And the stress components are found to be

σ rr = −4μkA
1 + (kr) + m(kr)2

(kr)3 exp(−kr), (7.90)

σ tt = 2μkA
1 + (kr) − (2d − 1)(kr)2

(kr)3 exp(−kr), (7.91)

where d is an additional elastic coefficient defined by

d = λ + 2μ

4μ
= 1 − ν

2(1 − 2ν)
. (7.92)

The coefficient A must be determined from the boundary condition (7.82). The
transformed boundary condition is

r = a : σ rr = −p

s
. (7.93)
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With (7.90) the value of A is found to be

A = p

4μks

(ka)3

1 + (ka) + d(ka)2
exp(ka). (7.94)

The Laplace transform of the radial displacement now is, with (7.88) and (7.94),

u = pa3

4μsr2

1 + sr/cp

1 + sa/cp + d(sa/cp)2 exp[−s(r − a)/cp], (7.95)

or

u = pa3

4μsr2

1 + xs

1 + bs + db2s2 exp[−s(x − b)], (7.96)

where b = a/cp and x = r/cp .
Using the value (7.94) for the constant A the expressions for the transformed

stresses are

σ rr = −pa3

sr3

1 + xs + dx2s2

1 + bs + db2s2 exp[−s(x − b)], (7.97)

σ tt = pa3

2sr3

1 + xs − (2d − 1)x2s2

1 + bs + db2s2
exp[−s(x − b)]. (7.98)

The mathematical problem now remaining is to find the inverse transform of the
expressions (7.96), (7.97) and (7.98). The displacement will first be elaborated.

Displacement

In order to perform the inverse Laplace transformation of the expression (7.96) it
is first required to decompose the denominator into the form of a product of single
factors, by writing

1 + bs + db2s2 = db2(s + s1)(s + s2), (7.99)

where

s1 = (1 + iα)/2db, (7.100)

s2 = (1 − iα/2db, (7.101)

with

α = √
4d − 1 = 1/

√
1 − 2ν. (7.102)

Using this decomposition equation (7.96) can be written as

u = − pa3

4μdb2r2

{
C1

s
+ C2

s + s1
+ C3

s + s2

}
exp[−s(x − b)], (7.103)
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where

C1 = 1

s1s2
= db2, (7.104)

C2 = 1 − xs1

s1(s1 − s2)
, (7.105)

C3 = 1 − xs2

s2(s2 − s1)
. (7.106)

Inverse Laplace transformation is now a relatively simple operation, because the
expression (7.103) consists of a summation of elementary fractions. The process
is somewhat laborious, however, because the coefficients C2 and C3 are complex.
After separation into real and imaginary parts the final result is

u = pa3

4μr2

{
1 −

[
cos

(
αcpτ

2da

)
− 2r − a

αa
sin

(
αcpτ

2da

)]
exp

(
− cpτ

2da

)}
H(τ),

(7.107)
where

τ = t − (r − a)/cp. (7.108)

The appearance of the Heaviside step function H(τ) in the solution (7.107) indicates
that, as expected, a shock wave travels through the medium, with a velocity cp , the
velocity of compression waves.

The displacement u0 of the inner boundary of the medium, at the radius of the
circular cavity (r = a), is of particular interest. This is found to be

u0 = pa

4μ

{
1 −

[
cos

(
αcpτ

2da

)
− 1

α
sin

(
αcpτ

2da

)]
exp

(
− cpτ

2da

)}
H(t). (7.109)

This function is shown, for three values of Poisson’s ratio, in Fig. 7.8.

Fig. 7.8 Displacement of
boundary
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It may be interesting to further investigate the behaviour of the solution (7.107).
It can be seen, for instance, that for large values of time the solution approaches the
static solution u = pa3/4μr2. It also appears from the solution that at the arrival of
the shock wave the displacement is continuous, but shortly after this arrival there is
a relatively large effect, as indicated by the factor r/a in the term between brackets.
This shows that during the passage of the shock wave the displacements are consid-
erably larger than in the static case. It is left to the reader to plot the behaviour of
the solution (7.107) for various values of the distance from the cavity.

Stresses

Using the decomposition (7.99), (7.97) and (7.98) can be written as

σ rr = − pa3

db2r3

{
D1

s
+ D2

s + s1
+ D3

s + s2

}
exp[−s(x − b)], (7.110)

σ tt = pa3

2db2r3

{
E1

s
+ E2

s + s1
+ E3

s + s2

}
exp[−s(x − b)], (7.111)

where

D1 = 1

s1s2
= db2, (7.112)

D2 = 1 − xs1 + dx2s2
1

s1(s1 − s2)
, (7.113)

D3 = 1 − xs2 + dx2s2
2

s2(s2 − s1)
, (7.114)

E1 = 1

s1s2
= db2, (7.115)

E2 = 1 − xs1 − (2d − 1)x2s2
1

s1(s1 − s2)
, (7.116)

E3 = 1 − xs2 + (2d − 1)x2s2
2

s2(s2 − s1)
. (7.117)

The inverse transformation of the expressions (7.110) and (7.111) is now relatively
simple. After some mathematical manipulations the final results are

σrr = −pa3

r3

{
1 +

[(
r2 − a2

a2

)
cos

(
αcpτ

2da

)

−
(

r − a

a

)2 1

α
sin

(
αcpτ

2da

)]
exp

(
− cpτ

2da

)}
H(τ), (7.118)
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σtt = pa3

2r3

{
1 +

[{(
r2 − a2

a2

)
−

(
3d − 1

d

)(
r2

a2

)}
cos

(
αcpτ

2da

)

−
{(

r − a

a

)2

−
(

3d − 1

d

)(
r2

a2

)}
1

α
sin

(
αcpτ

2da

)]
exp

(
− cpτ

2da

)}
H(τ),

(7.119)

where, as before,

α = √
4d − 1 = 1/

√
1 − 2ν. (7.120)

τ = t − (r − a)/cp. (7.121)

The solutions indicate again that a shock wave is propagated through the medium at
velocity cp . Before the arrival of the shock wave the stresses are zero. The values of
the stresses at the front of the wave can be obtained by letting τ ↓ 0. This gives

τ ↓ 0 : σrr = −pa

r
, (7.122)

τ ↓ 0 : σtt = − (2d − 1)pa

dr
. (7.123)

Again, as in the case of a sinusoidal vibration, it is found that the dynamic stresses
tend to zero as 1/r when r → ∞.

After a very long time the influence of the shock wave has been attenuated. The
stresses then are

τ → ∞ : σrr = −pa3

r3
, (7.124)

τ → ∞ : σtt = pa3

2r3
. (7.125)

These expressions are in agreement with the static solution. The static stresses tend
to zero as 1/r3 at infinity. Again it may be noted that the dynamic stresses far from
the cavity are much larger than the static stresses.

Problems

7.1 Consider a thin-walled sphere, of radius a and wall thickness d , with d � a.
In the interior of the sphere a pressure p is acting, the outer boundary is free of
stress. Determine the constants A and B , see (7.11), for this case, and determine
the tangential stress in the wall of the sphere. Note that this is the problem of a
pressurized balloon.

7.2 From (7.74) derive an asymptotic expression valid for large values of the fre-
quency ω. Express the material constant in this expression into the Poisson ratio ν.
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7.3 In Fig. 7.8 the displacement of the cavity boundary is plotted as a function of
time, using the dimensionless parameter cpt/a. Replot this figure, now using a time
scale based on Young’s modulus E, i.e. using a dimensionless parameter c1t/a,
where c1 is defined by c1 = √

E/ρ. It may appear that the waves in the plots now
have approximately equal periods.

7.4 The solution (7.118) contains a damping factor exp(−cpτ/2ma). Normal
values for the propagation speed of compression waves in soils are of the order
1000 m/s. Now estimate the duration of the shock generated from a cavity of radius
1 m.

7.5 In the solution (7.118) assume that r � a. Sketch the stress at a certain point
as a function of time.

7.6 Redraw Fig. 7.6, using the parameter ω/ωs as the independent variable, with
ωs = √

μ/ρa2. If the resonance frequency now appears to be independent of μ it
has been found that resonance is determined by the velocity of shear waves.





Chapter 8
Elastostatics of a Half Space

In soil mechanics it is often required to determine the stresses and deformations
of a soil deposit under the influence of loads applied on the upper surface. As a
first approximation it may be useful to consider an elastic half space, or, in the case
of plane strain deformations, an elastic half plane, loaded on its upper surface, see
Fig. 8.1. In this chapter some solutions are derived, for vertical loads. For the sake of
completeness the basic equations of the theory of linear elasticity are included. The
examples to be presented are the classical solutions for a point load and a line load
on a half space (the problems of Boussinesq and Flamant), the solution for a uniform
load on a circular area, and some mixed boundary value problems. The problems
can be solved effectively by using Fourier transforms or Hankel transforms. These
methods will be described briefly.

It can be expected that for the class of problems considered here, an elastic half
space loaded by vertical loads on its surface, the vertical displacements are more im-
portant than the horizontal displacements. On the basis of this expectation, which is
also confirmed by the analytical solutions that can be obtained for certain problems,
an approximate method of solution can be developed by neglecting all horizontal
displacements. This approximate method, which was first proposed by Westergaard
(1938), is also presented in this chapter, and its results are compared with the com-
plete analytical solution.

It should be noted that throughout this chapter the material is supposed to be
homogeneous and isotropic, and linear elastic, so that its mechanical properties can

Fig. 8.1 Half space
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be fully characterized by an elastic modulus E and Poisson’s ratio ν, or some other
combination. The strains are assumed to be small compared to 1.

8.1 Basic Equations of Elastostatics

The basic equations of the theory of elasticity are the conditions on the stresses, the
strains, and the displacements in a linear elastic continuum. These are the conditions
of equilibrium, the constitutive relations, and the compatibility conditions.

Let the stresses and displacements be described in a Cartesian coordinate system
x, y, z. The components of the displacement vector in the three coordinate directions
are denoted by ux , uy and uz. If it is assumed that the displacement gradients are
small compared to 1, then the expressions for the strains are

εxx = ∂ux

∂x
, εxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
,

εyy = ∂uy

∂y
, εyz = 1

2

(
∂uy

∂z
+ ∂uz

∂y

)
, (8.1)

εzz = ∂uz

∂z
, εzx = 1

2

(
∂uz

∂x
+ ∂ux

∂z

)
.

The three normal strains εxx , εyy and εzz express the relative elongation of line
elements in the three coordinate directions (�l/l), and the three shear strains εxy ,
εyz and εzx express the deformation of right angles. The volume strain e = �V/V

is the sum of the normal strains in the three coordinate directions,

e = εxx + εyy + εzz. (8.2)

The stresses can be expressed into the strains by the generalized form of Hooke’s
law. For an isotropic material this is

σxx = λe + 2μεxx, σxy = 2μεxy,

σyy = λe + 2μεyy, σyz = 2μεyz, (8.3)

σzz = λe + 2μεzz, σzx = 2μεzx.

Here λ and μ are the Lamé constants. These constants are related to the modulus of
elasticity E (Young’s modulus) and Poisson’s ratio ν by

λ = νE

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (8.4)

For the stresses in (8.3) the sign convention is that a stress component is positive
when acting in positive coordinate direction on a plane with an outward normal in
positive direction. This is the usual sign convention in continuum mechanics, which
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Fig. 8.2 Equilibrium of element

implies that tensile stresses are positive. It may be noted that in soil mechanics the
sign convention is often just opposite, with compressive stresses being considered
positive.

The stresses must satisfy the equations of equilibrium. In the absence of body
forces these are

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
= 0, σxy = σyx,

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
= 0, σyz = σzy, (8.5)

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
= 0, σzx = σxz.

The second of these equations is illustrated in Fig. 8.2.
The stresses, strains, and displacements in an isotropic linear elastic body must

satisfy all the equations given above, and in addition must satisfy the conditions on
the boundary, which may specify the surface stress or the surface displacement, or
a combination. For general methods of analysis the reader is referred to textbooks
on the theory of elasticity, e.g. by Timoshenko and Goodier (1970), or Sokolnikoff
(1956). In the next sections some special solutions will be presented.

For the purpose of future reference it is convenient to express the equations of
equilibrium in terms of the displacements. If it is assumed that the parameters λ

and μ are constants (which means that the material is homogeneous), one obtains
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from (8.1), (8.3) and (8.5),

(λ + μ)
∂e

∂x
+ μ∇2ux = 0,

(λ + μ)
∂e

∂y
+ μ∇2uy = 0, (8.6)

(λ + μ)
∂e

∂z
+ μ∇2uz = 0.

These are usually called the Navier equations. They are three equations with three
variables, the three displacement components. Their solution usually also involves
the stresses, however, because the boundary conditions may be expressed in terms
of the stresses.

8.2 Boussinesq Problems

An important class of problems is formed by the problems for a half space (z >

0), bounded by the plane z = 0, loaded by vertical normal stresses on the surface
only, see Fig. 8.3. This is called the class of Boussinesq problems, after the French
scientist who published several solutions of such problems in 1885.

This type of problem can be solved conveniently by introducing a specially cho-
sen displacement function φ (Green and Zerna, 1954), from which the displace-
ments can be derived by the formulas

ux = (1 − 2ν)
∂φ

∂x
+ z

∂2φ

∂x∂z
, (8.7)

uy = (1 − 2ν)
∂φ

∂y
+ z

∂2φ

∂y∂z
, (8.8)

uz = −2(1 − ν)
∂φ

∂z
+ z

∂2φ

∂z2 . (8.9)

Fig. 8.3 Boussinesq problem
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Substitution of these expressions into (8.6) shows that all three equations of equi-
librium are identically satisfied, provided that the function φ satisfies the Laplace
equation

∇2φ = 0. (8.10)

The advantage of the introduction of the function φ is that there now is only a sin-
gle unknown function, which must satisfy a relatively simple differential equation,
(8.10), for which many particular solutions and several general solution methods are
available. That the solutions are useful appears when the stresses are expressed in
the function φ. With (8.1), (8.3) and (8.10) one obtains for the normal stresses

σxx

2μ
= (1 − 2ν)

∂2φ

∂x2 + z
∂3φ

∂x2∂z
− 2ν

∂2φ

∂z2 , (8.11)

σyy

2μ
= (1 − 2ν)

∂2φ

∂y2
+ z

∂3φ

∂y2∂z
− 2ν

∂2φ

∂z2
, (8.12)

σzz

2μ
= −∂2φ

∂z2 + z
∂3φ

∂z3 . (8.13)

For the shear stresses the following expressions are obtained

σxy

2μ
= (1 − 2ν)

∂2φ

∂x∂y
+ z

∂3φ

∂x∂y∂z
, (8.14)

σyz

2μ
= z

∂3φ

∂y∂z2 , (8.15)

σzx

2μ
= z

∂3φ

∂x∂z2
. (8.16)

From the last two equations it can be seen that on the surface z = 0 the shear stresses
are always zero,

z = 0 : σzx = σzy = 0. (8.17)

This means that the function φ can only be used for problems for which the plane
z = 0 is free from shear stresses. This is an essential restriction. On the other hand,
this restriction appears to lead to a relatively simple mathematical problem, namely
the solution of the Laplace equation (8.10). On the boundary z = 0 the stress σzz

may be prescribed, or the displacement uz. On the surface z = 0 the expression for
the vertical displacement reduces to

z = 0 : uz = −2(1 − ν)
∂φ

∂z
, (8.18)

and the expression for the vertical normal stress reduces to

z = 0 : σzz = −2μ
∂2φ

∂z2
. (8.19)
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Thus, if the displacement or the stress on the surface is given, this means that either
the first or the second derivative of the displacement function φ is known. In the
next sections a number of solutions will be presented.

8.2.1 Concentrated Force

A classical problem, the solution of which was first given by Boussinesq, is the
problem of a concentrated point force on the half space z > 0, see Fig. 8.4.
The solution is assumed to be given by the function

φ = − P

4πμ
ln(z + R), (8.20)

where

R =
√

x2 + y2 + z2. (8.21)

It can easily be verified that this function indeed satisfies the differential equation
(8.10). That it satisfies the correct boundary conditions is not immediately obvious,
but may be verified by considering the stress field.

Differentiation of φ with respect to z gives

∂φ

∂z
= − P

4πμ

1

R
, (8.22)

∂2φ

∂z2 = P

4πμ

z

R3 , (8.23)

∂3φ

∂z3
= P

4πμ

(
1

R3
− 3

z2

R5

)
. (8.24)

The vertical normal stress σzz is now found to be, with (8.13),

σzz = −3P

2π

z3

R5
. (8.25)

Fig. 8.4 Concentrated force
on half space
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On the surface z = 0 this stress is zero everywhere, except in the origin, where the
stress is infinitely large. That the solution is indeed the correct one can be verified
by integration of the stress over the surface are. This gives

∫ ∞

−∞

∫ ∞

−∞
σzz dx dy = −P. (8.26)

Every horizontal plane transfers a vertical force P , as required.
The vertical displacement is, with (8.8),

uz = P

4πμR

[
2(1 − ν) + z2

R2

]
. (8.27)

On the surface z = 0 the displacement is, expressed in terms of E and ν,

z = 0 : uz = P(1 − ν)

2πμr
= P(1 − ν2)

πEr
, (8.28)

where r = √
x2 + y2. In the origin the displacement is singular, as might be ex-

pected in this case of a concentrated force.
All the other stresses and displacements can of course also be derived from the

solution (8.20). This is left as an exercise.

8.2.2 Uniform Load on a Circular Area

Starting from the elementary solution (8.20) many other interesting solutions can
be obtained, see the literature (Timoshenko and Goodier, 1970; Sokolnikoff, 1956).
As an example the displacement of the center of a circular area carrying a uniform
load will be derived, see Fig. 8.5. The starting point of the considerations is the
observation that a load of magnitude p dA at a distance r from the origin results in
a vertical displacement at the origin of

pdA(1 − ν2)

πEr
,

as follows immediately from the formula (8.28).

Fig. 8.5 Uniform load on
circular area



164 8 Elastostatics of a Half Space

The displacement due to a uniform load over a circular area with radius a can
be obtained by integration over that area. Because dA = r dr dθ one obtains, after
integration over θ from θ = 0 to θ = 2π , and integration over r from r = 0 to r = a,

r = 0, z = 0 : uz = 2pa(1 − ν2)

E
. (8.29)

This is a well known and useful formula. If the formula is expressed in the total
load P = πa2p it reads

r = 0, z = 0 : uz = 2P(1 − ν2)

πEa
. (8.30)

This shows that the displacement of a foundation plate can be reduced by making
it larger, as one would expect intuitively. The relationship appears to be that the
displacement is inversely proportional to the radius a of the plate, and not to the
area of the plate, as one might perhaps have expected.

Actually, this result can also be obtained by considering the physical dimensions
of the parameters of the problem. It can be expected that the displacement will be
proportional to the load P , because the theory is linear, and it can also be expected
that the displacement then will be inversely proportional to the modulus of elasticity.
The only possibility to obtain a quantity having the dimension of a length then is
that the displacement is proportional to P/Ea.

8.3 Fourier Transforms

A class of solutions can be found by the use of Fourier transforms (Sneddon,
1951). This method will be presented here, for the case of plane strain deformations
(uy = 0).

The solution is sought in the form

φ =
∫ ∞

0
{f (α) cos(αx) + g(α) sin(αx)} exp(−αz)dα, (8.31)

where f (α) and g(α) are as yet unknown functions of the variable α.
That (8.31) is indeed a solution follows immediately by substitution of the el-

ementary solutions cos(αx) exp(−αz) and sin(αx) exp(−αz) into the differential
equation (8.10). For z → ∞ the solution will always approach zero, which suggests
that this solution can perhaps be used for cases in which the stresses can be expected
to vanish for z → ∞.

With (8.13) one now obtains

z = 0 : σzz

2μ
= −

∫ ∞

0
α2{f (α) cos(αx) + g(α) sin(αx)}dα. (8.32)
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Suppose that the boundary condition is

z = 0, −∞ < x < ∞ : σzz = q(x), (8.33)

in which q(x) is a given function. Then the condition is that
∫ ∞

0
{A(α) cos(αx) + B(α) sin(αx)}dα = q(x), (8.34)

where

A(α) = −2μα2f (α), (8.35)

B(α) = −2μα2 g(α). (8.36)

The problem of determining the functions A(α) en B(α) from (8.34) is exactly the
standard problem from the theory of Fourier transforms. The solution is given by
the inversion theorem, which will not be derived here, see the literature on Fourier
analysis (e.g. Sneddon, 1951). The final result is

A(α) = 1

π

∫ ∞

−∞
q(t) cos(αt) dt, (8.37)

B(α) = 1

π

∫ ∞

−∞
q(t) sin(αt) dt. (8.38)

The problem has now been solved, at least in principle, for an arbitrary surface load
q(x). In a specific case, with a given surface load q(x) the integrals (8.37) and (8.38)
must be evaluated, and then the results must be substituted into the general solu-
tion (8.31). Depending on the load function this may be a difficult mathematical
problem. In the next section a simple example is given, in which all integrals can be
evaluated analytically.

8.3.1 Line Load

As a first example the case of a line load on a half space will be considered (Fla-
mant’s problem), see Fig. 8.6. In this case the load function is

q(x) =
{

−F/(2ε), |x| < ε,

0, |x| > ε,
(8.39)

where it will later be assumed that ε → 0. From (8.37) and (8.38) it follows that

A(α) = − F

πε

sin(αε)

α
,

B(α) = 0.
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Fig. 8.6 Line load on half
space

If ε → 0 this reduces to

A(α) = −F/π, (8.40)

B(α) = 0. (8.41)

With (8.35) and (8.36) one obtains

f (α) = F

2πμα2
, (8.42)

g(α) = 0. (8.43)

The solution of the problem therefore is

φ = F

2πμ

∫ ∞

0

cos(αx) exp(−αz)

α2 dα. (8.44)

Although this integral does not converge, due to the behavior of the factor α2 in
the denominator near α → 0, the result may well be useful, because the relevant
quantities are derived expressions, such as the stresses, which require differentiation.
It is found, for instance, that

∂2φ

∂x2 = − F

2πμ

∫ ∞

0
cos(αx) exp(−αz)dα,

and this integral converges. The result is

∂2φ

∂x2
= − F

2πμ

z

x2 + z2
. (8.45)

In a similar way one obtains

∂2φ

∂z2
= F

2πμ

z

x2 + z2
. (8.46)
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After another differentiation one obtains

∂3φ

∂z3 = F

2πμ

x2 − z2

(x2 + z2)2 (8.47)

and

∂3φ

∂x2∂z
= − F

2πμ

x2 − z2

(x2 + z2)2
. (8.48)

The expressions for the stresses are finally, using (8.11), (8.13) and (8.16),

σxx = −2F

π

x2z

(x2 + z2)2
, (8.49)

σzz = −2F

π

z3

(x2 + z2)2 , (8.50)

σxz = −2F

π

xz2

(x2 + z2)2 . (8.51)

These are usually called the Flamant formulas. Their form is somewhat simpler
when using polar coordinates x = r cos θ and z = r sin θ ,

σxx = −2F

πr
sin θ cos2 θ, (8.52)

σzz = −2F

πr
sin3 θ, (8.53)

σxz = −2F

πr
sin2 θ cos θ. (8.54)

When the stress components are also transformed into polar coordinates the formu-
las are even simpler,

σrr = −2F

πr
sin θ = −2Fz

πr2 , (8.55)

σθθ = 0, (8.56)

σrθ = 0. (8.57)

It appears that the only non-vanishing stress is the radial stress, and that it decreases
inversely proportional to the distance from the origin, and with the sine of the angle
with the horizontal axis.
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8.3.2 Strip Load

Another classical example is the case of a strip load on a half space, see Fig. 8.7.
The solution of this problem can be found in many textbooks on theoretical soil
mechanics. Here the solution will be determined using the Fourier cosine transform.
In this case the boundary condition is

q(x) =
{

−p, |x| < a,

0, |x| > a.
(8.58)

The displacement function φ now is found to be

φ = p

πμ

∫ ∞

0

sin(αa) cos(αx) exp(−αz)

α3 dα, (8.59)

or

φ = p

πμ

∫ ∞

0

{sin[α(x + a)] − sin[α(x − a)]} exp(−αz)

α3 dα. (8.60)

Again, this integral does not converge, but its second and third derivatives, which
are needed to determine the stresses, do converge. Expressions for the stresses can
be obtained using (8.11), (8.13) and (8.16), and a table of integral transforms. The
result is

σxx = −p

π

{
arctan

(
x + a

z

)
− arctan

(
x − a

z

)
− (x + a)z

(x + a)2 + z2

+ (x − a)z

(x − a)2 + z2

}
, (8.61)

σzz = −p

π

{
arctan

(
x + a

z

)
− arctan

(
x − a

z

)
+ (x + a)z

(x + a)2 + z2

− (x − a)z

(x − a)2 + z2

}
, (8.62)

Fig. 8.7 Strip load on half
space



8.4 Axially Symmetric Problems 169

σxz = p

π

{
z2

(x + a)2 + z2 − z2

(x − a)2 + z2

}
. (8.63)

These are well known formulas, see for instance Sneddon (1951). They can also be
written in the form

σxx = −p

π
{θ1 − θ2 − sin θ1 cos θ1 + sin θ2 cos θ2}, (8.64)

σzz = −p

π
{θ1 − θ2 + sin θ1 cos θ1 − sin θ2 cos θ2}, (8.65)

σxz = p

π
{cos2 θ1 − cos2 θ2}, (8.66)

where the angles θ1 and θ2 are indicated in Fig. 8.7.

8.4 Axially Symmetric Problems

Problems for an elastic half space loaded by a radially symmetric normal stress on
the surface z = 0 can conveniently be solved by the Hankel transform method (Sned-
don, 1951). The problem can be formulated in terms of the displacement function φ

introduced in (8.8). This function must satisfy the Laplace equation (8.10). In axially
symmetric coordinates this equation is

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ ∂2φ

∂z2
= 0. (8.67)

The Hankel transform of the function φ is defined as

(ξ, z) =
∫ ∞

0
r φ(r, z) J0(rξ) dr, (8.68)

where J0(x) is the Bessel function of the first kind and order zero. The inverse
transformation is (Sneddon, 1951)

φ(r, z) =
∫ ∞

0
ξ (ξ, z) J0(ξr) dξ. (8.69)

The advantage of the Hankel transformation is that the operator

∂2

∂r2 + 1

r

∂

∂r

is transformed into multiplication by −ξ2. This means that the differential equation
(8.67) becomes, after application of the Hankel transform,

d2

dz2
− ξ 2 = 0, (8.70)
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which is an ordinary differential equation. The general solution of this equation is

 = A exp(ξz) + B exp(−ξz), (8.71)

where the integration constants A and B may depend upon the transformation pa-
rameter ξ . In the half space z > 0 the constant A can be assumed to vanish.

If the boundary condition is

z = 0 : σzz = q(r), (8.72)

then we obtain, with (8.19) and (8.71),

−2μBξ 2 =
∫ ∞

0
rq(r)J0(ξr) dr, (8.73)

from which the value of B can be determined. In the next two sections some exam-
ples will be given.

8.4.1 Uniform Load on a Circular Area

A well known classical problem is the problem of a uniform load over a circular
area. This problem was already considered above, where the displacement of the
origin was derived from a particular solution, see (8.29). Here the complete solution
will be derived by a straightforward analysis.

In this case the load function q(r) is

q(r) =
{

−p, r < a,

0, r > a.
(8.74)

Substitution of this function into the general expression (8.73) gives

B = p

2μξ2

∫ a

0
rJ0(ξr) dr. (8.75)

This is a well known integral (Abramowitz and Stegun, 1964, 11.3.20). The result
is

B = pa

2μξ3 J1(ξa), (8.76)

where J1(x) is the Bessel function of the first kind and order one.
The displacement function φ now is

φ = pa

2μ

∫ ∞

0

J1(ξa) exp(−ξz)J0(ξr)

ξ2 dξ. (8.77)

Although this integral itself cannot be evaluated, because of the logarithmic singu-
larity in the origin, certain useful results can still be derived from it, because the
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physical quantities such as the displacements and the stresses must be derived from
it by differentiation, and after differentiation the integrals may well converge, as
indeed they do.

The vertical displacement of the surface can be obtained from the formula (8.18).
With (8.77) this gives

z = 0 : uz = pa(1 − ν)

μ

∫ ∞

0

J1(ξa)J0(ξr)

ξ
dξ. (8.78)

This integral is given in Appendix A, see (A.69). The result is

z = 0 : uz = 2pa(1 − ν)

πμ

{
E(r2/a2), r < a,

F (r2/a2), r > a,
(8.79)

where

F(x) = √
x[E(1/x) − (1 − 1/x)K(1/x)], (8.80)

and where K(x) and E(x) are complete elliptic integrals of the first and second kind,
respectively. A short list of values, adapted from Abramowitz and Stegun (1964), is
given in Table A.2, in Appendix A. For x = 0 both K(x) and E(x) are equal to π/2.
The result (8.79) is also given by Timoshenko and Goodier (1970).

Figure 8.8 shows the displacements of the surface in this case in graphical form.
The displacement of the origin is of special interest. This is found to be

r = 0, z = 0 : uz = u0 = pa(1 − ν)

μ
, (8.81)

which agrees with the expression (8.29) found before.
It should be noted that in this section the symbol E is used for the complete

elliptic integral, whereas it has also been used earlier for Young’s modulus of elas-
ticity. The reader should carefully distinguish between the symbol E for Young’s
modulus, and the function E(x), which denotes the complete elliptic integral of the
second kind.

Fig. 8.8 Displacements of
the surface
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Fig. 8.9 Vertical stress σzz

for r = 0

The vertical normal stress σzz is, with (8.13) and (8.77),

σzz

p
= −

∫ ∞

0
a(1 + ξz)J1(ξa) exp(−ξz)J0(ξr) dξ. (8.82)

Along the vertical axis, for r = 0, this integral reduces to

r = 0 : σzz

p
= −

∫ ∞

0
a(1 + ξz)J1(ξa) exp(−ξz) dξ, (8.83)

which can be evaluated using a table of Laplace transforms (Churchill, 1972). The
result is

r = 0 : σzz

p
= −1 + z3

(a2 + z2)3
. (8.84)

This is a well known formula, see e.g. Timoshenko and Goodier (1970). Just under
the load the vertical stress is −p, and this stress tends to zero when z → ∞, see
Fig. 8.9.

8.5 Mixed Boundary Value Problems

In the previous sections the boundary value problems considered were such that on
the entire boundary the surface stresses were prescribed. More complicated prob-
lems occur in the case that on a part of the boundary the surface stresses are given,
and the displacements are prescribed on the remaining part of the boundary. These
problems are said to be of the mixed boundary value type. In this section a method
of solution to these problems is illustrated by considering some examples.
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8.5.1 Rigid Circular Plate

In the first example a vertical load P is applied to a half space by a rigid circular
plate of radius a, see Fig. 8.10. In this case the boundary conditions on the upper
surface are that the shear stress σzx = 0 along the entire surface, and that

z = 0 : uz = w0, 0 ≤ r < a, (8.85)

z = 0 : σzz = 0, r > a, (8.86)

where w0 is the given vertical displacement of the plate.
If the elasticity equations are formulated using a potential function φ, as in the previ-
ous sections, the general solution for the half plane z > 0 is, with (8.69) and (8.71),

φ(r, z) =
∫ ∞

0
ξB(ξ) exp(−ξz)J0(ξr) dξ, (8.87)

where B(ξ) is an unknown function, that should be determined from the boundary
conditions. Using (8.18) and (8.19), the boundary conditions (8.85) and (8.86) can
be expressed as

z = 0 : uz = −2(1 − ν)
∂φ

∂z
= w0, 0 ≤ r < a, (8.88)

z = 0 : σzz = −2μ
∂2φ

∂z2
= 0, r > a. (8.89)

With (8.87) these conditions can also be written as
∫ ∞

0
ξ 2B(ξ)J0(ξr) dξ = f (r) = w0

2(1 − ν)
, 0 ≤ r < a, (8.90)

∫ ∞

0
ξ 3B(ξ)J0(ξr) dξ = 0, r > a. (8.91)

A system of this form is denoted as a pair of dual integral equations. For the solution
a method described by Sneddon (1966) will be used here, see also Selvadurai (1979).

Fig. 8.10 Rigid circular plate
on half space
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In the example the function f (r) is a constant, but the method applies equally well
to the more general case that f (r) is an arbitrary function. Some general aspects of
the solution of dual integral equations are given in Appendix B.

The solution method consists of two steps, each addressing one of the dual inte-
gral equations. The first step is that it is assumed that the function ξ2B(ξ) can be
represented by the finite Fourier transform

ξ2B(ξ) =
∫ a

0
W(t) cos(ξ t) dt, (8.92)

where W(t) is a new unknown function, defined in the interval 0 < t < a. Substitu-
tion of (8.92) into the integral appearing in (8.91) gives

∫ ∞

0
ξ3B(ξ)J0(ξr) dξ =

∫ ∞

0
ξ

{∫ a

0
W(t) cos(ξ t) dt

}
J0(ξr) dξ, (8.93)

or, using partial integration,
∫ ∞

0
ξ 3B(ξ)J0(ξr) dξ = W(a)

∫ ∞

0
sin(ξa)J0(ξr) dξ

−
∫ a

0
W ′(t)

{∫ ∞

0
sin(ξ t)J0(ξr) dξ

}
dt. (8.94)

A well known integral of the Hankel type is, see (A.76),
∫ ∞

0
sin(ξ t)J0(ξr) dξ =

{
0, r > t,

(t2 − r2)−1/2, 0 ≤ r < t.
(8.95)

Because in the last integral in (8.94) the value of t is restricted to the interval 0 < t <

a, it follows that both integrals in the right hand side are zero if r > a, so that it can
be concluded that the second boundary condition (8.91) is automatically satisfied,
whatever the function W(t) is.

The second step in the solution method is to determine the function W(t) from
the first boundary condition, (8.90). Substitution of (8.92) into the integral in this
condition gives, again assuming that the order of integration may be interchanged,

∫ ∞

0
ξ2B(ξ)J0(ξr) dξ =

∫ a

0
W(t)

{∫ ∞

0
cos(ξ t)J0(ξr) dξ

}
dt. (8.96)

Another well known integral of the Hankel type is, see (A.77),
∫ ∞

0
cos(ξ t)J0(ξr) dξ =

{
0, 0 ≤ r < t,

(r2 − t2)−1/2, r > t.
(8.97)

This means that in the interval 0 < t < a the integrand of (8.96) is zero if r < t < a.
It follows that the boundary condition (8.90) can be written as

∫ r

0

W(t)

(r2 − t2)1/2
dt = f (r), 0 ≤ r < a. (8.98)
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This is an Abel integral equation. Its solution is (Sneddon, 1966, p. 42)

W(t) = 2

π

d

dt

∫ t

0

rf (r)

(t2 − r2)1/2
dr, 0 < t < a. (8.99)

In the example of a uniform displacement of a rigid plate the function f (r) is,
see (8.90),

f (r) = w0

2(1 − ν)
0 ≤ r < a. (8.100)

In this case the function W(t) is found to be the constant

W(t) = w0

(1 − ν)π
. (8.101)

The function ξ2B(ξ) now is, with (8.92),

ξ2B(ξ) = w0

(1 − ν)π

sin(ξa)

ξ
. (8.102)

The solution for the potential function φ is, with (8.87)

φ = w0

(1 − ν)π

∫ ∞

0

sin(ξa)

ξ 2 exp(−ξz)J0(ξr) dξ. (8.103)

Of particular interest is the vertical normal stress at the surface. With (8.19) this is
found to be

z = 0 : σzz = −2μ
∂2φ

∂z2
= Ew0

π(1 − ν2)

∫ ∞

0
sin(ξa)J0(ξr) dξ. (8.104)

Using the integral (8.95) the boundary stress is

z = 0 : σzz =
{

0, r > a,

P

2πa(a2−r2)1/2 , 0 ≤ r < a,
(8.105)

where

P = 2Eaw0

1 − ν2 , (8.106)

the total force on the plate. The first part of (8.105) confirms the second boundary
condition (8.86). The second part is a well known result of the theory of elasticity,
see e.g. Timoshenko and Goodier (1970).

Another quantity of special interest is the vertical displacement of the surface.
With (8.18) and (8.103) this is

z = 0 : uz = 2w0

π

∫ ∞

0

sin(ξa)

ξ
exp(−ξz)J0(ξr) dξ. (8.107)
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Fig. 8.11 Surface
displacements, rigid circular
plate

Using the integral (A.78) the displacement of the boundary is found to be

z = 0 : uz =
{

w0, r < a,

2
π
w0 arcsin(a/r), r > a.

(8.108)

The first part of (8.108) confirms the first boundary condition (8.85). The second
part is a well known result of the theory of elasticity, see e.g. Sneddon (1951). The
surface displacements are shown, as a function of r/a, in Fig. 8.11.

Alternative Derivation

An alternative for the second step of the derivation, avoiding the Abel integral inte-
gration, is as follows.

The first boundary condition is, see (8.90),
∫ ∞

0
ξ2B(ξ)J0(ξr) dξ = f (r) = w0

2(1 − ν)
, 0 ≤ r < a. (8.109)

The Bessel function J0(ξr) can now be eliminated form this equation by using the
integral

∫ s

0

r

(s2 − r2)1/2
J0(ξr) dr = sin(ξs)

ξ
, (8.110)

which can be considered to be the inverse form of the integral (8.95) when this is
considered as the Hankel transform of the function sin(ξ t)/ξ .

It follows that (8.109) can also be written as
∫ ∞

0
ξB(ξ) sin(ξ t) dξ =

∫ t

0

rf (r) dr

(t2 − r2)1/2 , 0 < t < a, (8.111)

or, using the representation (8.92), and interchanging the order of integration,
∫ a

0
W(s)

{∫ ∞

0

sin(ξ t) cos(ξs)

ξ
dξ

}
ds =

∫ t

0

rf (r) dr

(t2 − r2)1/2
, 0 < t < a. (8.112)
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The integral between brackets is a well known Fourier integral,

∫ ∞

0

sin(ξ t) cos(ξs)

ξ
dξ =

{
π
2 , s < t,

0, s > t.
(8.113)

This means that (8.112) reduces to

∫ t

0
W(s)ds = 2

π

∫ t

0

rf (r) dr

(t2 − r2)1/2 , 0 < t < a. (8.114)

Differentiation with respect to t gives

W(t) = 2

π

d

dt

∫ t

0

rf (r) dr

(t2 − r2)1/2
, 0 < t < a, (8.115)

which is the same as the solution (8.99) derived above.

8.5.2 Penny Shaped Crack

Another class of problems involving mixed boundary conditions is concerned with
the stress distribution in an elastic medium with a circular (penny shaped) crack,
see e.g. Kassir and Sih (1975). For the problem of a crack in an infinite elastic
plate, loaded by a uniform internal pressure p in the crack, the problem can be
schematized as a problem for a half plane (see Fig. 8.12), with the boundary condi-
tions

z = 0 : uz = −2(1 − ν)
∂φ

∂z
= 0, r > a, (8.116)

z = 0 : σzz = −2μ
∂2φ

∂z2
= −p, 0 ≤ r < a. (8.117)

Fig. 8.12 Penny shaped
crack
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If the elasticity equations are again formulated using a potential function φ, the
general solution for the half plane z > 0 is, with (8.69) and (8.71),

φ(r, z) =
∫ ∞

0
ξB(ξ) exp(−ξz)J0(ξr) dξ, (8.118)

where B(ξ) is an unknown function, that should be determined from the boundary
conditions. With (8.118) these conditions can also be written as

∫ ∞

0
ξ2B(ξ)J0(ξr) dξ = 0, r > a, (8.119)

∫ ∞

0
ξ3B(ξ)J0(ξr) dξ = g(r), 0 ≤ r < a, (8.120)

where in the example considered g(r) = p/2μ.
In order to solve the system of dual integral equations (see also Appendix B),

in two steps, it is first assumed that the function ξ2B(ξ) can be represented by the
finite Fourier transform

ξ 2B(ξ) =
∫ a

0
V (t) sin(ξ t) dt, (8.121)

where V (t) is a new unknown function, defined in the interval 0 < t < a. Substitu-
tion of (8.121) into the integral appearing in (8.119) gives, if the order if integration
is interchanged,

∫ ∞

0
ξ2B(ξ)J0(ξr) dξ =

∫ a

0
V (t)

{∫ ∞

0
sin(ξ t)J0(ξr) dξ

}
dt. (8.122)

In the integral the variable t is always smaller than a, so that for r > a it is certain
that r > t , and then the integral is zero, see (A.76). This means that the boundary
condition (8.119) is automatically satisfied by the representation (8.121).

In the second step of the solution the unknown function V (t) is determined from
the remaining boundary condition (8.120). For this purpose the definition (8.121) is
first rewritten, by using integration by parts, as

ξ2B(ξ) = V (a)
cos(ξa)

ξ
− V (0) +

∫ a

0
V ′(t)cos(ξ t)

ξ
dt. (8.123)

It can be assumed, without loss of generality, that V (0) = 0, so that

ξ3B(ξ) = V (a) cos(ξa) +
∫ a

0
V ′(t) cos(ξ t) dt. (8.124)

Substitution into (8.120) now gives
∫ a

0
V ′(t)

{∫ ∞

0
J0(ξr) cos(ξ t) dξ

}
dt − V (a)

∫ ∞

0
J0(ξr) cos(ξa) dξ = p

2μ
,

(8.125)
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where it should be noted that r < a. The integrals are of the form of (A.76), hence

∫ ∞

0
cos(ξ t)J0(ξr) dξ =

{
0, t > r,

(r2 − t2)−1/2, 0 < t < r.
(8.126)

This means that (8.125) reduces to
∫ r

0

V ′(t)
(r2 − t2)1/2 dt = g(r). (8.127)

This is again an Abel integral equation. Its solution is, as before, see (8.99),

V ′(t) = 2

π

d

dt

∫ t

0

rg(r)

(t2 − r2)1/2 dr, 0 < t < a. (8.128)

Integrating this equation gives, taking into account that it has already been assumed
that V (0) = 0,

V (t) = 2

π

∫ t

0

rg(r)

(t2 − r2)1/2 dt, 0 < t < a. (8.129)

In the example considered here g(r) = p/2μ. In that case the result is

V (t) = pt

πμ
, 0 < t < a. (8.130)

In this case the function B(ξ) is, with (8.121),

ξ2B(ξ) = pa

πμξ

{
sin(ξa)

ξa
− cos(ξa)

}
. (8.131)

The potential function φ now is, with (8.118),

φ = pa

πμ

∫ ∞

0

exp(−ξz)J0(ξr)

ξ2

{
sin(ξa)

ξa
− cos(ξa)

}
dξ. (8.132)

One of the most interesting quantities is the normal stress at the surface. This is
found to be

z = 0 : σzz = −2μ
∂2φ

∂z2
= −2pa

π

∫ ∞

0
J0(ξr)

{
sin(ξa)

ξa
− cos(ξa)

}
dξ. (8.133)

Using the Hankel transforms (A.77) and (A.78) this gives

z = 0, r < a : σzz = −p, (8.134)

z = 0, r > a : σzz = −2p

π

[
arcsin(a/r) − a

(r2 − a2)1/2

]
. (8.135)

Equation (8.134) confirms the boundary condition (8.117), and (8.135) is a well
known result (Sneddon, 1951, p. 495).
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Alternative Solution

An alternative for the second step of the derivation is as follows. In this alterna-
tive method the Bessel function J0(ξr) is eliminated from the boundary condition
(8.120) by using the integral (8.110),

∫ s

0

r

(s2 − r2)1/2
J0(ξr) dr = sin(ξs)

ξ
. (8.136)

This boundary condition (8.120) then is transformed into the form
∫ ∞

0
ξ2B(ξ) sin(ξs) dξ =

∫ s

0

rg(r)

(s2 − r2)1/2
dr, 0 ≤ s < a. (8.137)

The function B(ξ) can be written in the form of (8.124), which was obtained by
partial integration from the actual definition (8.121), and assuming that V (0) = 0,

ξ3B(ξ) = V (a) cos(ξa) +
∫ a

0
V ′(t) cos(ξ t) dt. (8.138)

Substitution into (8.137) gives

V (a)

∫ ∞

0

sin(ξs) cos(ξa)

ξ
dξ +

∫ a

0
V ′(t)

{∫ ∞

0

sin(ξs) cos(ξ t)

ξ
dξ

}
dt

=
∫ s

0

rg(r)

(s2 − r2)1/2
dr, 0 ≤ s < a, (8.139)

where it should be noted that in the second integral 0 < t < a. The integrals are of
the form of (8.113),

∫ ∞

0

sin(ξ t) cos(ξs)

ξ
dξ =

{
π
2 , s < t,

0, s > t.
(8.140)

This means that the first integral of (8.139) is zero, and that in the second integral
the integration can be restricted to the interval 0 < t < s. The result is

∫ s

0
V ′(t) dt = V (s) = 2

π

∫ s

0

rg(r)

(s2 − r2)1/2 dr, 0 ≤ s < a. (8.141)

This is the same solution as obtained before, see (8.129). The present derivation
seems to be simpler, as it avoids the Abel integral equation.

8.6 Confined Elastostatics

Although several elastic problems have been successfully solved analytically in the
preceding sections, and many more solutions can be found in the literature, the so-
lution methods are relatively complex, and it seems attractive to attempt to develop
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a simplified approximate method of solution. This may be especially useful as a
preparation for the more difficult problems of elastodynamics, which will be con-
sidered in the next chapter.

For problems of an elastic half space in which the load consists of vertical nor-
mal stresses on the surface only, it can be expected that the vertical displacements
are considerably larger than the lateral displacements. This suggests to develop an
approximate method of solution by assuming that the horizontal displacements are
zero, so that the only remaining displacement is the vertical displacement. Problems
solved under these assumptions will be referred to as confined elastic problems here.
The approximation was introduced by Westergaard (1938), by considering the van-
ishing of the horizontal deformations as a consequence of a reinforcement of the
material by inextensible horizontal sheets.

The basic assumptions are

ux = 0, (8.142)

uy = 0, (8.143)

uz = w(x,y, z). (8.144)

The vertical displacement will be denoted by w, for simplicity.
Using these assumptions the only relevant basic equation is the equation of ver-

tical equilibrium, which now requires that

μ
∂2w

∂x2 + μ
∂2w

∂y2 + (λ + 2μ)
∂2w

∂z2 = 0. (8.145)

The remaining relevant stress components are the stresses on horizontal planes.
They are related to the vertical displacements by the equations

σzz = (λ + 2μ)
∂w

∂z
, (8.146)

σzx = μ
∂w

∂x
, (8.147)

σzy = μ
∂w

∂y
. (8.148)

8.6.1 An Axially Symmetric Problem

In case of an axially symmetric surface load the differential equation (8.145) can be
formulated, using polar coordinates, as

η2
{

∂2w

∂r2
+ 1

r

∂w

∂r

}
+ ∂2w

∂z2
= 0, (8.149)



182 8 Elastostatics of a Half Space

where

η2 = μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
. (8.150)

If the load is a uniform load on a circular area, the boundary condition is,
with (8.146),

z = 0 : (λ + 2μ)
∂w

∂z
=

{
−p, r < a,

0, r > a.
(8.151)

For the solution of this problem the Hankel transform method seems particularly
suited, as in other axially symmetric cases. The Hankel transform of the vertical
displacement w is defined by

W(ξ, z) =
∫ ∞

0
rw(r, z)J0(rξ) dr, (8.152)

where J0(x) is the Bessel function of the first kind and order zero. The inverse
transformation is (Sneddon, 1951)

w(r, z) =
∫ ∞

0
ξW(ξ, z)J0(ξr) dξ. (8.153)

The differential equation (8.149) becomes, after application of the Hankel trans-
form,

d2W

dz2 − ξ2η2W = 0, (8.154)

which is an ordinary differential equation. The general solution of this equation is

W = A exp(ξηz) + B exp(−ξηz), (8.155)

where the integration constants A and B may depend upon the transformation pa-
rameter ξ . In the half space z > 0 the constant A can be assumed to vanish, because
of the boundary condition at infinity. With the boundary condition (8.151) the value
of the constant B is found to be

B = p

η(λ + 2μ)ξ

∫ a

0
rJ0(ξr) dr. (8.156)

This is a well known integral (Abramowitz and Stegun, 1964, 11.3.20). The result
is

B = pa

η(λ + 2μ)ξ2
J1(ξa), (8.157)

where J1(x) is the Bessel function of the first kind and order one.
The vertical displacement w now is

w = pa

η(λ + 2μ)

∫ ∞

0

J1(ξa) exp(−ξηz)J0(ξr)

ξ
dξ. (8.158)
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The standard tables of integral transforms do not give closed form expressions of
this integral. However, for the displacements of the surface one obtains, with z = 0,
and using (8.150) in order to express the coefficient in terms of the shear modulus μ,

z = 0 : w = paη

μ

∫ ∞

0

J1(ξa)J0(ξr)

ξ
dξ. (8.159)

This happens to be the same integral as in the exact solution, (8.78). Hence the result
is

z = 0 : w = 2paη

πμ

{
E(r2/a2), r < a,

F (r2/a2), r > a,
(8.160)

where

F(x) = √
x[E(1/x) − (1 − 1/x)K(1/x)], (8.161)

and where K(x) and E(x) are complete elliptic integrals of the first and second
kind, respectively.
It is perhaps remarkable that the approximate solution and the exact solution are
of precisely the same form, even though the coefficient is slightly different, in its
dependence upon Poisson’s ratio ν. Only in the completely incompressible case, ν =
0.5, the approximate solution degenerates. This could have been expected, because
the only possible deformation is a vertical displacement, which is suppressed in
an impermeable material if there are no horizontal displacements. The agreement
between the exact elastic solution and the approximate solution for a confined elastic
medium may provide support for a similar approach to problems of elastodynamics.

The only difference between the exact solution, as given by (8.79), and the ap-
proximate solution (8.160) derived here, is in the coefficient of the solution. In the
exact case this coefficient is 1 − ν, and here it is found to be η, where η is de-
fined by (8.150). These two coefficients are compared in Table 8.1. The exact solu-
tion appears to give somewhat larger displacements than the approximate solution.
This is a general property of approximate solutions obtained by a constraint on the
displacement field. The material appears to be somewhat stiffer because of the con-
straint that there can be no horizontal displacements. Or, as Westergaard stated in his
original publication (Westergaard, 1938), because the material has been reinforced

Table 8.1 Comparison of
coefficients ν 1 − ν η

0.0 1.000 0.707

0.1 0.900 0.667

0.2 0.800 0.612

0.3 0.700 0.534

0.4 0.600 0.408

0.5 0.500 0.000
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Fig. 8.13 σzz for r = 0
(ν = 0)

by horizontal inextensible sheets. The vertical normal stress σzz is, with (8.146)
and (8.158),

σzz

p
= −

∫ ∞

0
aJ1(ξa) exp(−ξηz)J0(ξr) dξ. (8.162)

For r = 0, that is along the vertical axis, this reduces to

r = 0 : σzz

p
= −

∫ ∞

0
aJ1(ξa) exp(−ξηz) dξ. (8.163)

This integral can be found in a table of Laplace transforms (Churchill, 1972). The
result is

r = 0 : σzz

p
= −1 + ηz

√
a2 + η2z2

. (8.164)

This function, illustrated in Fig. 8.13, has the same properties as the exact solution
given in (8.84), see also Fig. 8.9. It is not the same, however. One of the major differ-
ences is that the present solution depends upon Poisson’s ratio. Another difference
is that in this approximate solution the stresses tend to zero much faster than in the
complete elastic solution.

8.6.2 A Plane Strain Problem

For a case of plane strain deformation in the x, z-plane the basic differential equation
is

η2 ∂2w

∂x2
+ ∂2w

∂z2
= 0, (8.165)

where η is a parameter depending upon Poisson’s ration, see (8.150).
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If the load is a uniform load on a strip of width 2a, the boundary condition is,
with (8.146),

z = 0 : (λ + 2μ)
∂w

∂z
=

{
−p, |x| < a,

0, |x| > a.
(8.166)

Because of the symmetry of the load, the Fourier cosine transform seems to be
appropriate in this case,

W(α, z) =
∫ ∞

0
w(x, z) cos(αx)dx. (8.167)

The differential equation (8.165) now can be transformed into

d2W

dz2
− α2η2W = 0. (8.168)

The solution vanishing at infinity is

W = A exp(−αηz). (8.169)

The constant A can be determined using the boundary condition (8.166). The final
result is

W = p

ηλ + 2μ

sin(αa)

α2
exp(−αηz). (8.170)

Inverse transformation gives

w = 2p

πη(λ + 2μ)

∫ ∞

0

sin(αa) cos(αx)

α2
exp(−αηz)dα. (8.171)

The vertical normal stress σzz is of particular importance. This is found to be

σzz = −2p

π

∫ ∞

0

sin(αa) cos(αx) exp(−αηz)

α
dα, (8.172)

or

σzz = −p

π

∫ ∞

0

sin[α(x + a)] − sin(α(x − a)]
α

exp(−αηz)dα. (8.173)

The integrals have the form of Laplace transforms, with t replaced by α. They can
be evaluated using a table of standard Laplace transforms. This gives

σzz = −p

π

{
arctan

(
x + a

ηz

)
− arctan

(
x − a

ηz

)}
. (8.174)

Comparison of this result with the solution of the complete elastic problem,
see (8.62), shows that there is a certain similarity of the solutions. Again, the ap-
proximate solution using Westergaard’s approximation appears to depend upon the



186 8 Elastostatics of a Half Space

value of Poisson’s ratio, whereas the solution of the complete elastic problem is
independent of Poisson’s ratio, at least as far as the stresses are concerned. The
boundary condition (8.166) is exactly satisfied, of course.

The case of a line load can be obtained by taking the width of the load a → 0,
with F = 2pa. The simplest way to derive the vertical stress σzz for this case is by
starting from (8.172), which then becomes

σzz = −F

π

∫ ∞

0
cos(αx) exp(−αηz)dα. (8.175)

This is an elementary Laplace transform, see Table A.1 in Appendix A. It follows
that

σzz = − Fηz

π(x2 + η2z2)
. (8.176)

This can be compared with the exact result given in (8.50).



Chapter 9
Elastodynamics of a Half Space

An important and useful basic problem for the analysis of the propagation of waves
in soils is the problem of an elastic half space loaded at its surface by a time-
dependent load, see Fig. 9.1. The load may be fluctuating sinusoidally with time,
or it may be applied in a very short time, and then remain constant. For the case
of a concentrated pulse load the solution has first been given by Lamb (1904), and
later by others, such as Pekeris (1955) and De Hoop (1960). All these solutions are
mathematically rather complex, however. Therefore in the next chapter a simplified
approach will be followed, in which the elastic problem is approximated by disre-
garding the horizontal displacements, and thus considering vertical displacements
only. This approximation was first suggested by Westergaard (1938), and is denoted
as confined elasticity in this book. It has been shown in the previous chapter that
this approximate method gives very good results for the elastostatic problems of
the same type. The extension to problems of elastodynamics was first suggested by
Barends (1980). It will appear in the next chapter that in the case of elastodynamics
the most important aspects of the solutions, such as the magnitude of the vertical
displacements, and the effect of damping, can be approximated reasonably well.
The solution of these problems will be used as basic elements for the analysis of
foundation vibrations in Chap. 15.

In later chapters the complete solution of some problems of elastodynamics of a
half space (or a half plane) will be presented, using methods developed by Pekeris

Fig. 9.1 Half space
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(1955) and De Hoop (1960). These include the solutions for a line load and a point
load on the surface of an elastic half space.

As an introduction to the chapters in which the solutions of particular prob-
lems are presented, this chapter presents some general aspects of the propagation
of waves in homogeneous elastic media. A brief introduction is given of compres-
sion waves and shear waves, which are important waves that appear in the solution
of many problems. Also a general description is given of Rayleigh waves, which ap-
pear in problems for a half space, and which are mainly responsible for the damage
caused by earthquakes.

9.1 Basic Equations of Elastodynamics

The basic equations of elastodynamics are the Navier equations, extended with an
inertia term. These equations are

(λ + μ)
∂e

∂x
+ μ∇2ux = ρ

∂2ux

∂t2
, (9.1)

(λ + μ)
∂e

∂y
+ μ∇2uy = ρ

∂2uy

∂t2
, (9.2)

(λ + μ)
∂e

∂z
+ μ∇2uz = ρ

∂2uz

∂t2 , (9.3)

where ρ is the density of the material, and t is the time. The static versions of these
equations have been derived in Chap. 8.

The stresses can be expressed into the displacement components by the general-
ized form of Hooke’s law. For an isotropic material the expressions for the normal
stresses are

σxx = λe + 2μ
∂ux

∂x
, (9.4)

σyy = λe + 2μ
∂uy

∂y
, (9.5)

σzz = λe + 2μ
∂uz

∂z
, (9.6)

and the expressions for the shear stresses are

σxy = μ

(
∂ux

∂y
+ ∂uy

∂x

)
, (9.7)

σyz = μ

(
∂uy

∂z
+ ∂uz

∂y

)
, (9.8)

σzx = μ

(
∂uz

∂x
+ ∂ux

∂z

)
. (9.9)
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Here λ and μ are the Lamé constants, and e is the volume strain,

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
. (9.10)

9.2 Compression Waves

A special solution of the basic equations of elastodynamics can be obtained by dif-
ferentiating the first equation of motion, (9.1) with respect to x, the second one with
respect to y, the third one with respect to z, and then adding the result. This gives

(λ + 2μ)∇2e = ρ
∂2e

∂t2
. (9.11)

This is the classical form of the wave equation. It has solutions of the form

e = f1(r − cpt) + f2(r + cpt), (9.12)

where r is the direction of the wave, and cp is the velocity of the wave,

cp = √
(λ + 2μ)/ρ. (9.13)

These waves are called compression waves, or simply P-waves.

9.3 Shear Waves

Another special solution of the basic equations of elastodynamics can be obtained
by differentiating the first equation of motion, (9.1) with respect to y, the second
one with respect to x, and then subtracting the result. This gives

μ∇2ωxy = ρ
∂2ωxy

∂t2
, (9.14)

where ωxy is the rotation about the z-axis,

ωxy =
(

∂ux

∂y
− ∂uy

∂x

)
. (9.15)

Similar equations can be obtained from other combinations, namely

μ∇2ωyz = ρ
∂2ωyz

∂t2 , (9.16)

μ∇2ωzx = ρ
∂2ωzx

∂t2
. (9.17)
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Again equations of the form of the wave equation are obtained. For these rotational
waves, or shear waves, or simply S-waves, the propagation velocity is

cs = √
μ/ρ. (9.18)

Comparison with (9.13) shows that the velocity of the shear waves in general will be
smaller than the velocity of the compression waves. The P-waves and S-waves play
an important part in seismology. From the arrival time of these waves the dynamic
properties of the material may be derived.

9.4 Rayleigh Waves

The possibility of elastodynamic waves propagating along the surface of an elas-
tic half space was first considered by Lord Rayleigh (1885). This is a wave that
propagates near the free surface of an elastic half space, and is strongly decreases
exponentially with depth. Derivations of the Rayleigh wave solution can be found
in many textbooks on soil dynamics and earthquake engineering (e.g. Kolsky, 1963;
Richart et al., 1970; Das, 1993; Kramer, 1996). In this chapter the derivation mainly
follows the method used by Achenbach (1975).

It is assumed that a solution of the basic equations of elastodynamics can be
represented by the following expressions for the displacements of a wave in the
x, z-plane (see Fig. 9.1),

ux = A exp(−bz) sin[k(x − cr t)], (9.19)

uz = B exp(−bz) cos[k(x − cr t)], (9.20)

where k is a given constant, and b and cr are as yet unknown parameters. It is
assumed that b > 0, so that the displacements tend towards zero for z → ∞. The
constants A and B are also unknown at this stage. The displacements in the direction
perpendicular to the x, z-plane are assumed to vanish, and the other two components
are assumed to be independent of y. It should be noted that in this solution, if it is
found to exist, the amplitudes of the displacement components are independent of
the lateral distance x.

Substitution of (9.19) and (9.20) into the basic equations in x- and z-direction,
see (9.1) and (9.3), gives

[
c2
s b

2 − (c2
p − c2

r )k
2]A + (c2

p − c2
s )kbB = 0, (9.21)

−(c2
p − c2

s )kbA + [
c2
pb2 − (c2

s − c2
r )k

2]B = 0, (9.22)

where cp and cs are the velocities of compression waves and shear waves, respec-
tively, as defined by (9.13) and (9.18). A solution of this system of equations is
possible only if the determinant of the system is zero. This leads to the condition

[(
b

k

)2

−
(

c2
p − c2

r

c2
p

)][(
b

k

)2

−
(

c2
s − c2

r

c2
s

)]
= 0. (9.23)
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If it is assumed that cr < cs < cp there are two real and positive solutions,

b1/k =
√

1 − c2
r /c

2
p, (9.24)

b2/k =
√

1 − c2
r /c

2
s . (9.25)

It now follows from (9.21) and (9.22) that for these two solutions

B1/A1 = b1/k, (9.26)

A2/B2 = b2/k. (9.27)

These relations can most conveniently be satisfied by writing A1 = kC1, B1 = b1C1,
A2 = b2C2 and B2 = kC2, where C1 and C2 now are the unknown constants of the
two solutions. The total solution can then be written as

ux = [
kC1 exp(−b1z) + b2C2 exp(−b2z)

]
sin[k(x − cr t)], (9.28)

uz = [
b1C1 exp(−b1z) + kC2 exp(−b2z)

]
cos[k(x − cr t)]. (9.29)

The solution is supposed to be applicable to the region near the free surface of a half
space. Thus, the boundary conditions are

z = 0 : σzz = 0, (9.30)

z = 0 : σzx = 0. (9.31)

Using the relations (9.6) and (9.9) these boundary conditions lead to the equations

(2 − c2
r /c

2
s )C1 + 2

√
1 − c2

r /c
2
sC2 = 0, (9.32)

2
√

1 − c2
r /c

2
p C1 + (2 − c2

r /c
2
s )C2 = 0. (9.33)

This system of equations will have a non-zero solution only if the determinant of
the system is zero. This gives

(2 − c2
r /c

2
s )

2 − 4
√

1 − η2 c2
r /c

2
s

√
1 − c2

r /c
2
s = 0, (9.34)

where

η2 = c2
s /c

2
p = (1 − 2ν)/[2(1 − ν)]. (9.35)

The Rayleigh wave velocity cr can be determined from the condition (9.34).
A simple way to determine this value is to write p = c2

s /c
2
r . It then follows from

(9.34) that

(2p − 1)4 = 16p2(p − η2)(p − 1), (9.36)
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or

16(1 − η2)p3 − 8(3 − 2η2)p2 + 8p − 1 = 0. (9.37)

This is a cubic equation, for which an analytical method of solution is available (see
e.g. Abramowitz and Stegun, 1964, p. 17). This will show that there is only one real
solution. This solution can also be derived in an approximate way by noting that it
can be expected (and follows from the analytical solution) that p = 1 + a, where
a � 1. Equation (9.37) then gives

a(a + 1)[2(1 − η2)a + (1 − 2η2)] = 1/8, (9.38)

or, using the definition (9.35) of the parameter η2,

a = 1 − ν

8(1 + a)(ν + a)
. (9.39)

If ν is sufficiently large, the value of a can be determined iteratively, from this
equation, starting from an initial small value, say a = 0.01. For small values of ν,
say ν < 0.1, it may be more effective to write ν + a = a(1 + ν/a), so that

a2 = 1 − ν

8(1 + a)(1 + ν/a)
, (9.40)

which can be used to determine the value of a iteratively, starting from the same
initial estimate, a = 0.01.

Once that the value of a has been determined, it follows that p = 1 + a, and thus

cr

cs

= 1√
1 + a

. (9.41)

A function (in C) to calculate the value of cr/cs as a function of Poisson’s ratio is
shown below.

double crcs(double nu)
{
double a,b,e,f;
e=0.000001;e*=e;f=1;b=0.01;
if (nu>0.1) {while (f>e) {a=b;b=(1-nu)/(8*(1+a)*(nu+a));f=fabs(b-a);}}
else {while (f>e) {a=b;b=sqrt((1-nu)/(8*(1+a)*(1+nu/a)));f=fabs(b-a);}}
return(1/sqrt(1+a));
}

Some numerical values are shown in Table 9.1. The table also gives the values of
cp/cs , the ratio of the velocities of compression waves and shear waves.

A graphical representation of the ratio of the velocities of Rayleigh waves and
shear waves is shown in Fig. 9.2. It appears that the Rayleigh wave is always some-
what slower than the shear wave.

The relation between the two coefficients C1 and C2 in the solution can be ob-
tained from either of (9.32) and (9.33). The two components of the displacements
in a Rayleigh wave can then be determined from (9.28) and (9.29). This results in
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Table 9.1 Velocity of
Rayleigh waves ν cr/cs cp/cs

0.00 0.874032 1.414214

0.05 0.883695 1.452966

0.10 0.893106 1.500000

0.15 0.902220 1.558387

0.20 0.910996 1.632993

0.25 0.919402 1.732051

0.30 0.927413 1.870829

0.35 0.935013 2.081667

0.40 0.942195 2.449490

0.45 0.948960 3.316625

0.50 0.955313 ∞

Fig. 9.2 Velocity of
Rayleigh waves

the following expressions for the two displacement components

ux = kC1

[
exp(−β1kz) − 1

2
(1 + β2

2 ) exp(−β2kz)

]
sin[k(x − cr t)], (9.42)

uz = kC2

[
exp(−β2kz) − 1

2
(1 + β2

2 ) exp(−β1kz)

]
cos[k(x − cr t)], (9.43)

where

β1 = b1/k =
√

1 − c2
r /c

2
p, (9.44)
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Table 9.2 Table of Rayleigh wave velocities and some parameters

ν cr/cs cp/cs β1 β2 C2/C1

0.00 0.874032 1.414214 0.786151 0.485868 −1.272020

0.05 0.883695 1.452966 0.793783 0.468064 −1.302263

0.10 0.893106 1.500000 0.803426 0.449846 −1.336414

0.15 0.902220 1.558387 0.815367 0.431277 −1.374987

0.20 0.910996 1.632993 0.829929 0.412415 −1.418577

0.25 0.919402 1.732051 0.847487 0.393320 −1.467890

0.30 0.927413 1.870829 0.868481 0.374040 −1.523776

0.35 0.935013 2.081666 0.893448 0.354613 −1.587294

0.40 0.942195 2.449490 0.923063 0.335064 −1.659785

0.45 0.948960 3.316625 0.958193 0.315397 −1.743000

0.50 0.955313 ∞ 1.000000 0.295598 −1.839287

β2 = b2/k =
√

1 − c2
r /c

2
s , (9.45)

and where the constants C1 and C2 are related by the condition

C2/C1 = −(1 + β2
2 )/2β2. (9.46)

The values of the parameters β1, β2 and C2/C1 are shown in Table 9.2, as a function
of Poisson’s ratio ν.

The amplitudes at the surface z = 0 are

z = 0 : |ux | = k|C1|
[

1 − 1

2
(1 + β2

2 )

]
, (9.47)

z = 0 : |uz| = k|C2|
[

1 − 1

2
(1 + β2

2 )

]
, (9.48)

which shows that the amplitude of the vertical displacement at the surface is larger
than the amplitude of the horizontal displacement, because |C2| > |C1|.

For three values of Poisson’s ratio ν the amplitudes of the displacements are
shown, as a function of z/L, where L is the wave length, L = 2π/k. The vertical
displacement at the surface, indicated by u0, is used as a scaling factor.

9.5 Love Waves

In a non-homogenous elastic material, such as a material consisting of various hori-
zontal layers (a common occurrence in nature), compression waves and shear waves
may be reflected and partly transmitted on the interfaces, as was illustrated for the
one-dimensional case in Chap. 3. Successive reflections on the two sides of a thin
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Fig. 9.3 Displacements for
Rayleigh wave

Fig. 9.4 Soft layer on a stiff
half space

soft layer on top of a stiffer subsoil may lead to a special type of wave, the Love
wave. At the interface of two solids with certain properties a Stoneley wave may
be generated. This resembles a Rayleigh wave in the sense that it is confined to the
vicinity of the interface. For soil mechanics practice the Love wave is especially rel-
evant. Therefore this wave will be considered in some detail here. For the Stonely
wave see e.g. Ewing et al. (1957), Cagniard et al. (1962), Achenbach (1975).

The simplest case of a Love wave occurs in a thin soft layer on a relatively stiff
half space, see Fig. 9.4. It is assumed that the only non-vanishing displacement is a
displacement v = v(x, z, t) in the y-direction, that is the direction perpendicular to
the plane in which the wave propagates.

The basic equations are

0 < z < h : ∂2v

∂t2 = μ1

ρ1

(
∂2v

∂x2 + ∂2v

∂z2

)
, (9.49)

z > h : ∂2v

∂t2
= μ2

ρ2

(
∂2v

∂x2
+ ∂2v

∂z2

)
, (9.50)



196 9 Elastodynamics of a Half Space

where μ1 and μ2 are the shear moduli of the layer and the base rock, respectively,
and ρ1 and ρ2 are their densities.

It is assumed that the solutions can be written in the form

0 < z < h : v = [A exp(λ1z) + B exp(−λ1z)] sin[ω(t − x/c)], (9.51)

z > h : v = [C exp(λ2z) + D exp(−λ2z)] sin[ω(t − x/c)], (9.52)

where the frequency ω is supposed to be given, but where the propagation velocity
c and the parameters λ1 and λ2 are unknown.

Substitution into the basic equations shows that a solution may be obtained if
c1 < c < c2 and

λ2
1 = −

(
ω2

c2
1

− ω2

c2

)
, (9.53)

λ2
2 =

(
ω2

c2 − ω2

c2
2

)
, (9.54)

where the terms between brackets are positive.
The boundary condition at the free surface is that the shear stress is zero, so that

z = 0 : ∂v

∂z
= 0, (9.55)

and the condition at infinity is that the solution tends towards zero,

z → ∞ : v → 0. (9.56)

Using these conditions it follows that the solution reduces to

0 < z < h : v = A cos
(
ωz

√
1/c2

1 − 1/c2
)

sin[ω(t − x/c)], (9.57)

z > h : v = D exp
(
−ωz

√
1/c2 − 1/c2

2

)
sin[ω(t − x/c)]. (9.58)

The conditions at the interface z = h are that the displacement and the shear stress
are continuous. The first condition leads to the equation

A cos
(
ωh

√
1/c2

1 − 1/c2
)

= D exp
(
−ωh

√
1/c2 − 1/c2

2

)
. (9.59)

The second condition leads to the equation

−μ1A

√
1/c2

1 − 1/c2 sin
(
ωh

√
1/c2

1 − 1/c2
)

= −μ2D

√
1/c2 − 1/c2

2 exp
(
−ωh

√
1/c2 − 1/c2

2

)
. (9.60)
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Fig. 9.5 Determination of
the velocity of a Love wave,
c2/c1 = 5, ωh/c1 = 1

This system of equations has a non-zero solution only if the determinant of the
system of equations is zero. This gives

tan

(
ωh

c1

√
1 − c2

1/c
2

)
= ρ2c2

ρ1c1

√
c2

2/c
2
1 − c2/c2

1

c2/c2
1 − 1

. (9.61)

This equation contains two given parameters: c2/c1 and ωh/c1. The unknown value
of c/c1 can be determined by determining the intersection point of the two func-
tions in the left and right hand side, respectively. The procedure is illustrated in
Fig. 9.5, for the case c2/c1 = 5 and ωh/c1 = 1. It has been assumed that the densi-
ties of the two layers are equal. The location of the intersection point of the two
curves indicates that the value of the Love wave velocity c in this case is very
close to c2, the shear wave velocity in the deep layer. This will be found for all
values of ωh/c1 < 1. It means that for slow vibrations the velocity of the shear
waves in the deep layer dominates the velocity of the Love wave in the upper
layer.

For high frequencies, say ωh/c1 > 4, the first zero is close to c = c1, but there
may be several possible solutions in the range c1 < c < c2. In the case ωh/c1 =
8, shown in Fig. 9.6, there appear to be three solutions. For larger values of the
frequency the number of zeroes further increases.

The velocity of the (first) Love wave is shown as a function of the frequency ω in
Fig. 9.7, for three values of the parameter c2/c1. For high frequencies the value of c

approaches c1, and for small frequencies it approaches c2, as mentioned before.
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Fig. 9.6 Determination of
the velocity of a Love wave,
c2/c1 = 5, ωh/c1 = 8

Fig. 9.7 Velocity of Love
wave

9.5.1 A Practical Implication

For geotechnical engineering an interesting situation is a soft layer of limited thick-
ness on top of a hard rock of great thickness, in which an earthquake wave is gener-
ated. A normal value for the density of the rock is ρ2 = 2500 kg/m3 and a normal
value for the density of the soft soil is ρ1 = 2000 kg/m3. The shear modulus of
the rock may be as large as μ2 = 10 MPa = 10 × 109 kg/ms2. This means that the
velocity of shear waves in the rock is about c2 = 2000 m/s. The shear modulus of
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the soft soil is of the order of magnitude μ1 = 20 kPa = 20 × 106 kg/ms2, so that
the velocity of shear waves in the top layer is about c1 = 100 m/s. Thus the ratio of
the shear waves is about c2/c1 = 20.

The frequency of earthquake vibrations is of the order of magnitude ω = 30 s−1,
indicating a period of about T = 2π/ω ≈ 0.2 s. For a layer of 20 m thickness the
parameter ωh/c1 now is about 6, which is large enough to conclude that several
modes of Love waves will be possible, one with c ≈ c1 and one approaching c2.
Considering a Love wave for which c ≈ c2, the solution for the displacements in the
top layer is, with (9.57),

0 < z < h : v = A cos
(
ωz

√
1/c2

1 − 1/c2
2

)
sin[ω(t − x/c2)], (9.62)

or, because c2 � c1,

0 < z < h : v = A cos(ωz/c1) sin[ω(t − x/c2)]. (9.63)

This is precisely the expression (3.16) used in Chap. 3. It appears that the approxi-
mate solutions considered in that chapter can be considered as approximations of a
Love wave.





Chapter 10
Confined Elastodynamics

For a particular problem of elastodynamics, characterized by its boundary condi-
tions, the basic equations are often very difficult to solve, both analytically or nu-
merically. Some insight can be obtained by studying special solutions, such as those
describing compression waves and shear waves. Another way of gaining some in-
sight into the dynamic behaviour of an elastic continuum is to simplify the problem
by an appropriate restriction on the displacement field. For this purpose it will be as-
sumed here that the two horizontal displacements are so small compared to the verti-
cal displacement that they may be neglected. This assumption was first proposed by
Westergaard (1938) for problems of elastostatics, and has been used in Chap. 8. The
generalization to problems of elastodynamics was first made by Barends (1980).
Problems solved under these assumptions will be referred to as confined elastody-
namic problems in this chapter.

The basic assumptions are

ux = 0, (10.1)

uy = 0, (10.2)

uz = w(x,y, x). (10.3)

The vertical displacement will be denoted by w, for simplicity.
Using these assumptions the only remaining basic equation is the equation of

vertical equilibrium, which now requires that

μ
∂2w

∂x2
+ μ

∂2w

∂y2
+ (λ + 2μ)

∂2w

∂z2
= ρ

∂2w

∂t2
. (10.4)

The remaining relevant stress components are the stresses on horizontal planes.
They are related to the vertical displacements by the equations

σzz = (λ + 2μ)
∂w

∂z
, (10.5)

σzx = μ
∂w

∂x
, (10.6)
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σzy = μ
∂w

∂y
. (10.7)

10.1 Line Load on Half Space

As a first example consider the problem of a line load as a step in time. The load is
applied in a very short time, at time t = 0, and then remains constant, see Fig. 10.1.
In this case of a line load, with the line following the y-axis, the vertical displace-
ment w can be assumed to be independent of y, so that the basic equation (10.4)
reduces to

μ
∂2w

∂x2 + (λ + 2μ)
∂2w

∂z2 = ρ
∂2w

∂t2 . (10.8)

The boundary condition is

z = 0 : (λ + 2μ)
∂w

∂z
=

{
0, if t < 0,

−P δ(x), if t > 0,
(10.9)

where δ(x) is a function that is everywhere zero, except in the origin, where it is
infinitely large, such that the integral over x is 1, whenever the origin is included,
i.e. for all positive values of a,

∫ +a

−a

δ(x) dx = 1. (10.10)

The dimension of P is [F]/[L], i.e. kN/m in SI-units.
The initial condition is supposed to be that before t = 0 the displacement w and

its derivative (the velocity) are zero,

t = 0 : w = 0, (10.11)

t = 0 : ∂w

∂t
= 0. (10.12)

The problem can be solved by using the Laplace transform method (see e.g.
Churchill, 1972). The Laplace transform of the displacement w is defined by

w =
∫ ∞

0
w exp(−st) dt, (10.13)

Fig. 10.1 Step load



10.1 Line Load on Half Space 203

where now w is a function of the Laplace transform parameter s as well as the
spatial variables x and z.

Applying the Laplace transformation to the differential equation (10.8) gives

μ
∂2w

∂x2 + (λ + 2μ)
∂2w

∂z2 = ρs2w, (10.14)

and the transformed boundary condition is

z = 0 : (λ + 2μ)
∂w

∂z
= −P

s
δ(x). (10.15)

The partial differential equation (10.14) can be solved by the Fourier transform
method (see e.g. Sneddon, 1951). The Fourier transform is defined by

W =
∫ +∞

−∞
w exp(iαx)dx, (10.16)

and the general inversion formula is given by the fundamental theorem of the theory
of Fourier transforms (Sneddon, 1951),

w = 1

2π

∫ −∞

−∞
W exp(−iαx) dα. (10.17)

Applying the Fourier transform to the differential equation (10.14) gives

−μα2W + (λ + 2μ)
d2W

dz2 = ρs2W, (10.18)

which is an ordinary differential equation. After some rearranging it can also be
written as

d2W

dz2
= η2γ 2W, (10.19)

where

γ 2 = α2 + s2/c2
s , (10.20)

and

η2 = μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
. (10.21)

The parameter cs is the velocity of shear waves in the medium,

c2
s = μ

ρ
. (10.22)

The solution of (10.19) vanishing at infinity is

W = A exp(−γ ηz). (10.23)
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The Fourier transform of the boundary condition (10.15) is

z = 0 : (λ + 2μ)
dW

dz
= − P

2 εs

∫ +ε

−ε

exp(iαx)dx = −P

s
. (10.24)

From this condition the constant A can be determined,

A = P

η(λ + 2μ)sγ
, (10.25)

so that the final solution of the transformed problem is

W = P

η(λ + 2μ)sγ
exp(−γ ηz). (10.26)

In principle the problem is solved now. What remains is to evaluate the inverse
Fourier and Laplace transforms, which in general may be a formidable mathematical
problem.

In this case the Fourier inverse of the expression (10.26) can formally be written
as

w = P

2πη(λ + 2μ)s

∫ +∞

−∞
exp[−ηz

√
α2 + s2/c2

s ]√
α2 + s2/c2

s

exp(−iαx)dα, (10.27)

or, because the integrand is even,

w = P

πη(λ + 2μ)s

∫ ∞

0

exp[−ηz
√

α2 + s2/c2
s ]√

α2 + s2/c2
s

cos(αx)dα. (10.28)

It remains to evaluate this integral, and then to perform the inverse Laplace trans-
formation.

The integral (10.28) happens to be a well known Fourier transform (Erdélyi et
al., 1954, 1.4.27). The result is

w = P

πη(λ + 2μ)s
K0

(
s

cs

√
x2 + η2z2

)
, (10.29)

where K0(x) is the modified Bessel function of the second kind and order zero.
The inverse Laplace transform of the function (10.29) is also well known (Erdélyi

et al., 1954, 5.15.9). Thus the final expression for the vertical displacement is

w = P

πη(λ + 2μ)
arccosh(t/t0)H(t − t0), (10.30)

where t0 is the arrival time of the wave, taking into account the apparent scale trans-
formation of the vertical coordinate,

t0 =
√

x2 + η2z2

cs

, (10.31)
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and H(t − t0) is Heaviside’s unit step function,

H(t − t0) =
{

0, if t < t0,

1, if t > t0.
(10.32)

In view of the complexity of the original function (10.28) the simplicity of the final
result (10.30) is perhaps surprising.

If the Laplace transform of the vertical normal stress σzz is defined as

σzz =
∫ ∞

0
σzz exp(−st) dt, (10.33)

then the solution for σzz is, because σzz = (λ + 2μ)dw/dz,

σzz = − P

πs

∫ ∞

0
exp[−ηz

√
α2 + s2/c2

s ] cos(αx)dα. (10.34)

Again this integral is a well known Fourier transform (Erdélyi et al., 1954, 1.4.26).
The result is

σzz = − P

πcs

ηz
√

x2 + η2z2
K1

(
s

cs

√
x2 + η2z2

)
, (10.35)

where K1(x) is the modified Bessel function of the second kind and order one.
The inverse Laplace transform of the expression (10.35) is, with (5.15.10) from

Erdélyi et al. (1954),

σzz = −P

π

ηz

x2 + η2z2

t
√

t2 − t2
0

H(t − t0). (10.36)

This is the final expression for the normal stresses in the half space. Of course,
this formula can also be obtained from (10.30) by direct differentiation, using the
simplified form of Hooke’s law, (10.5). The value of t0, the arrival time of the wave,
is defined by (10.31).

A quantity of great practical interest is the vertical velocity, ∂w/∂t . This is found
to be, after differentiation of (10.30),

∂w

∂t
= P

πη(λ + 2μ)

1
√

t2 − t2
0

H(t − t0). (10.37)

At the moment of arrival of the wave this is infinitely large, indicating the passage
of a shock. A certain time after this passage, say at t = t0 + t , the velocity is,
approximately, assuming that t � t0,

t = t0 + t : ∂w

∂t
≈ P

πη(λ + 2μ)

1√
2t0t

. (10.38)
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As the travel time t0 is a linear function of the distance from the source of the
disturbance, see (10.31), this means that the velocities after the passage of the shock
are smaller at greater distance from the source, inversely proportional to the square
root of the distance.

It should be noted that, although certain characteristics of the complete elastody-
namic solution are obtained, the solution of the present problem is rather different
from the true solution of the elastodynamic problem for the line load on a half space.
In this complete solution (which is presented in Chap. 11), three waves can be dis-
tinguished: a compression wave arriving first, then a shear wave, and slightly later
the Rayleigh wave. This is the most important wave, because in two dimensions its
magnitude remains constant, without any attenuation. After an earthquake the main
damage away from the source of the disturbance is caused by the Rayleigh wave.

10.2 Line Pulse on Half Space

The solution for the case of a line pulse, that is a line load of very short duration,
see Fig. 10.2, can be derived from the solution for the previous case by replacing
the boundary condition (10.9) by the condition

z = 0 : (λ + 2μ)
∂w

∂z
= −Qδ(t)δ(x) (10.39)

which may be considered as the time derivative of the boundary condition in the pre-
vious problem. In order for the formulas to be dimensionally correct, the dimension
of Q should be [F][T]/[L], i.e. kNs/m in SI-units.

Because differentiation with respect to time corresponds to multiplication of the
Laplace transform space by s, the solution of the present problem in Laplace trans-
form space can be obtained from the previous solution by multiplication by the
parameter s.

In particular, the solution for the Laplace transform of the vertical displacement
now will be, multiplying the solution (10.29) by s,

w = Q

πη(λ + 2μ)
K0

(
s

cs

√
x2 + η2z2

)
, (10.40)

Fig. 10.2 Line pulse
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It now remains to perform the inverse Laplace transformation. Using the formula
(5.15.8) from Erdélyi et al. (1954) one obtains

w = Q

πη(λ + 2μ)

1
√

t2 − t2
0

H(t − t0), (10.41)

where t0 is the arrival time of the wave, as given by (10.31). This solution can also be
obtained from the solution of the previous problem, (10.30), by differentiation with
respect to t . The solution (10.41) was first given by Barends (1980). The derivation
of expressions for the stresses and the velocity is left as an exercise for the reader.

10.3 Strip Load on Half Space

10.3.1 Strip Pulse

The next problem to be considered in this chapter is the case of a strip load on an
elastic half plane, i.e. a constant load over a strip on the surface of the half plane.
As a function of time the load may be a pulse of short duration, or a load constant
in time. The pulse load will be considered first.

The elastodynamic solution to be derived in this chapter should reduce to the
solution for a line load obtained in the previous section, if the width of the loaded
strip (2a) becomes very small.

In this case the boundary condition for the vertical normal stress is

z = 0 : σzz = (λ + 2μ)
∂w

∂z
=

{
−q δ(t), if |x| < a,

0, if |x| > a.
(10.42)

The Laplace transform of this condition is

z = 0 : (λ + 2μ)
∂w

∂z
=

{
−q, if |x| < a,

0, if |x| > a.
(10.43)

Fig. 10.3 Half plane with
strip load
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The Fourier transform of this condition is

z = 0 : (λ + 2μ)
dW

dz
= −q

∫ a

−a

exp(iαx)dx = −2q

α
sin(αa). (10.44)

It is recalled from (10.23) that the general solution of the problem for the half plane
z > 0 is

W = A exp(−ηz

√
α2 + s2/c2

s ), (10.45)

where

η2 = μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
. (10.46)

It follows from (10.44) and (10.45) that

A = 2q sin(αa)

(λ + 2μ)ηα
√

α2 + s2/c2
s

. (10.47)

The Fourier transform of the solution can be obtained by substituting (10.47)
into (10.45). This gives

W = 2q

(λ + 2μ)

sin(αa) exp(−ηz
√

α2 + s2/c2
s )

ηα
√

α2 + s2/c2
s

. (10.48)

Inverse Fourier transformation, using (10.17), gives

w = q

π(λ + 2μ)

∫ +∞

−∞
sin(αa) exp(−ηz

√
α2 + s2/c2

s )

ηα
√

α2 + s2/c2
s

exp(−iαx) dα. (10.49)

The vertical normal stress is of particular importance, and probably easier to deter-
mine. Its Laplace transform is, because σzz = (λ + 2μ)∂w/∂z,

σzz = − q

π

∫ +∞

−∞
sin(αa) exp(−ηz

√
α2 + s2/c2

s )

α
exp(−iαx) dα. (10.50)

The final mathematical problem now is to determine this integral, and then find the
inverse Laplace transform. This can be accomplished by a transformation of the
integral, using De Hoop’s method (De Hoop, 1960).

10.3.2 Inversion by De Hoop’s Method

The first step is to replace the Fourier parameter α by sα, so that (10.50) can be
written as

σ zz = − q

π

∫ +∞

−∞
sin(αas)

α
exp[−s(iαx + kηz)]dα, (10.51)
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where k is defined by

k =
√

1/c2
s + α2. (10.52)

Following a suggestion by Stam (1990), the function sin(αas) can be brought into
the exponential function by using the relation

sin(αas) = exp(iαas) − exp(−iαas)

2i
. (10.53)

This gives

σzz

q
= g(x + a, z, s) − g(x − a, z, s), (10.54)

where

g(x, z, s) = 1

2πi

∫ +∞

−∞
exp[−s(iαx + kηz)]

α
dα. (10.55)

This integral will be evaluated, for positive or negative values of x.
It may be noted that the Laplace transform parameter s occurs only once

in (10.55), as a factor in an exponential function. It will be attempted to transform
the integrand so that the factor (iαx + kηz) is replaced by t , which then indicates a
Laplace transform.

The integration parameter α is now replaced by p, such that p = iα. Equa-
tion (10.55) is then transformed into

g(x, z, s) = 1

2πi

∫ +i∞

−i∞
exp[−s(px + kηz)]

p
dp, (10.56)

where now

k =
√

1/c2
s − p2. (10.57)

The next step is to transform the integration path in the complex p-plane, see
Fig. 10.4. Two branch cuts are needed, to avoid multiple values for the parame-
ter k. The branch points are located at the points p ± 1/cs . It is most convenient to
let the branch cuts follow the real axis, as indicated in the figure. The case x > 0 is
considered first.

It is assumed that along the transformed integration path a real positive parameter
t (time) can be defined such that

t = px + kηz. (10.58)

It follows from (10.57) and (10.58) that

k2 = 1/c2
s − p2 = (t2 − 2tpx + p2x2)/η2z2, (10.59)

or

r2p2 − 2txp − η2z2/c2
s , (10.60)
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Fig. 10.4 Transformed
integration paths, for x < 0
and x > 0

where

r2 = x2 + η2z2. (10.61)

Equation (10.60) is a quadratic equation in p, with the two solutions

p1 = tx

r2
+ iηz

r2

√
t2 − r2/c2

s , p2 = tx

r2
− iηz

r2

√
t2 − r2/c2

s . (10.62)

If it is assumed that along the two parts of the transformed integration path r/cs <

t < ∞, it follows that on the curve p1, the upper half of the integration path, the
value of p varies from the real value p = x/rcs , if t = r/cs , to a complex value
p = (x + iηz)t/r2, if t → ∞. The point p = x/rcs is always located between the
origin and the branch point p = 1/cs , if x > 0, which is assumed here.

The transformation of the integration path from the original path along the imag-
inary axis to the path consisting of the curves p2 and p1 in Fig. 10.4 is permissible
if the contributions of the parts along a closing contour at infinity vanish. This will
indeed be the case if x > 0, because in the factor exp(−spx) in (10.56) the parame-
ters s, �(p) and x are all positive and p → ∞ at infinity. The transformation of the
integration path also requires that there are no singularities between the two paths.
This means that it must be assumed that the pole at p = 0 in the integrand of (10.56)
is located just to the left of the original integration path.

It follows from (10.62) that along the paths p1 and p2

dp1

dt
= x

r2 + iηz

r2

t
√

t2 − r2/c2
s

,
dp2

dt
= x

r2 − iηz

r2

t
√

t2 − r2/c2
s

, (10.63)

so that, after some elementary operations,

dp1/dt

p1
= t

√
t2 − r2/c2

s + iηxz/c2
s

(t2 − η2z2/c2
s )

√
t2 − r2/c2

s

,

(10.64)
dp2/dt

p2
= t

√
t2 − r2/c2

s − iηxz/c2
s

(t2 − η2z2/c2
s )

√
t2 − r2/c2

s

,

which are complex conjugates.
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Substitution into the integral (10.56) now gives, taking into account that the trans-
formed integration path consists of the two branches p1 and p2, with the integration
path on p1 from t = r/cs to t = ∞, and on p2 from t = ∞ to t = r/cs ,

x > 0 : g(x, z, s) = 1

π

∫ ∞

r/cs

ηxz/c2
s

(t2 − η2z2/c2
s )

√
t2 − r2/c2

s

exp(−st) dt, (10.65)

or

x > 0 : g(x, z, s) = 1

π

∫ ∞

0

ηxz/c2
s

(t2 − η2z2/c2
s )

√
t2 − r2/c2

s

H(t − r/cs) exp(−st) dt,

(10.66)
where H(t − r/cs) is Heaviside’s unit step function.

The integral (10.66) has the form of a Laplace transform, which was the pur-
pose of the transformation of the original Fourier integral (10.55). Inverse Laplace
transformation now leads to

x > 0 : g(x, z, t) = 1

π

ηxz/c2
s

(t2 − η2z2/c2
s )

√
t2 − r2/c2

s

H(t − r/cs). (10.67)

If x < 0 the integration path must be transformed by moving the integration path
to the left, see Fig. 10.4, in order that the contributions by the arcs at infinity vanish.
This means that the pole at p = 0 will be passed, resulting in a contribution to the
integral. In the figure the transformed integration path is indicated by the curves p3
and p4, with a loop around the pole. It can be shown that the result of the integration
along p3 and p4 will be the same as before, see (10.67). However, to this expression
the contribution by integrating around the pole must be added. Along this path the
integration variable p is

p = ε exp(iθ), (10.68)

where ε → 0, and the angle θ runs from θ = −π to θ = +π along the small circle
around the pole. This contribution can be determined by considering the limiting
value of the Laplace transform g(x, z, s), as defined in (10.56), for p → 0. This
leads to an additional contribution

g(x, z, s) = exp(−sηz/cs){1 − H(x)}, (10.69)

where the factor 1 − H(x) has been added to indicate that this contribution applies
only if x < 0. Inverse Laplace transformation of (10.69) gives

g(x, z, t) = δ(t − ηz/cs){1 − H(x)}. (10.70)

The results for ξ > 0 and ξ < 0 can be combined in the single formula

g(x, z, t) = 1

π

ηxz/c2
s

(t2 − η2z2/c2
s )

√
t2 − r2/c2

s

H(t − r/cs) + δ(t − ηz/cs){1 − H(x)}.
(10.71)
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For the calculation of numerical values it is convenient to introduce the dimension-
less parameters

ξ = x/a, ζ = z/a, τ = cst/a, ρ =
√

ξ2 + ζ 2. (10.72)

Using these parameters, (10.71) can be written as

g(x, z, t) = h(ξ, ζ, τ )/ta + h(ξ, ζ, τ )/ta, (10.73)

with

h(ξ, ζ, τ ) = 1

π

ηξζ

(τ 2 − η2ζ 2)
√

τ 2 − ρ2
H(τ − ρ), (10.74)

h(ξ, ζ, τ ) = δ(τ − ηζ ){1 − H(ξ)}. (10.75)

In (10.73) ta is a reference time, defined as

ta = a/cs. (10.76)

It has been assumed that δ(t − ηz/cs) = (1/ta)δ(τ − ηζ ), because both delta func-
tions should have an area equal to 1,

∫ +∞

−∞
δ(t − ηz/cs) dt = ta

∫ +∞

−∞
δ(t − ηz/cs) dτ =

∫ +∞

−∞
δ(τ − ηζ )dτ = 1.

(10.77)
Using (10.73) the expression for the vertical normal stress, (10.54) becomes, after
inverse Laplace transformation,

σzz

σa

= h(ξ +1, ζ, τ )+h(ξ +1, ζ, τ )−h(ξ −1, ζ, τ )−h(ξ −1, ζ, τ ), (10.78)

where σa is a reference stress, defined as

σa = q/ta = qcs/a. (10.79)

It may be noted that the physical dimension of q is a stress multiplied by time,
because the physical dimension of the delta function δ(t) in the boundary condition
(10.42) is the inverse of time, to ensure that its integral over time is 1. Thus, the
physical dimension of σa is indeed a stress, and σzz/σa is dimensionless.

10.3.3 Constant Strip Load

The second problem to be considered in this section is the case of a strip load on
an elastic half plane, i.e. a load that is applied at time t = 0, and then remains
constant in time, see Fig. 10.5. The solution will be obtained by an integration of
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Fig. 10.5 Half plane with
strip load

the solution of the problem of a strip pulse, considered above, with respect to the
time parameter t .

The elastostatic equivalent of this problem is a classical problem of applied me-
chanics (Timoshenko and Goodier, 1970; Sneddon, 1951). This means that the con-
fined elastodynamic solutions to be derived in this section should reduce to the
confined elastostatic limit if t → ∞. Also, the solution should reduce to the one
obtained for a line load in an earlier section, if the width of the loaded strip (2a)
becomes very small.

In this case the boundary condition is

z = 0 : σzz = (λ + 2μ)
∂w

∂z
=

{
−q H(t), if |x| < a,

0, if |x| > a.
(10.80)

The Laplace transform of this condition is

z = 0 : (λ + 2μ)
∂w

∂z
=

{
−q/s, if |x| < a,

0, if |x| > a.
(10.81)

Compared to the boundary condition in case of a strip pulse, see (10.43), the dif-
ference is a division by s. In the time domain this corresponds to integration with
respect to time t . The stresses will be evaluated for this case, taking the solution for
the strip impulse as the starting point.

The vertical normal stress is, on the basis of a time integration of (10.78),

σzz

q
= f (ξ +1, ζ, τ )+f (ξ +1, ζ, τ )−f (ξ −1, ζ, τ )−f (ξ −1, ζ, τ ), (10.82)

where

f (ξ, ζ, τ ) =
∫ τ

ρ

h(ξ, ζ, κ) dκ, (10.83)
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f (ξ, ζ, τ ) =
∫ τ

0
h(ξ, ζ, κ) dκ. (10.84)

The factor cs/a in the reference value of the stress has been omitted, because dt =
(cs/a)dκ . In the first integral the lower limit of integration has been set equal to ρ,
because for κ < ρ the actual function contains a factor zero.

It can be verified by differentiation of the right hand side with respect to τ that

∫ τ

ρ

dκ

(κ2 − η2ζ 2)
√

κ2 − ρ2
= 1

ηζ
√

ρ2 − η2ζ 2
arctan

(
ηζ

√
τ 2 − ρ2

τ
√

ρ2 − η2ζ 2

)
, (10.85)

where ηζ < ρ. With (10.74) this gives

f (ξ, ζ, τ ) = 1

π
arctan

(
ηζ

√
τ 2 − ρ2

τξ

)
, (10.86)

where it has been used that ρ2 = ξ2 + η2ζ 2.
Furthermore, with (10.75) and (10.84) it follows that

f (ξ, ζ, τ ) = H(τ − ηζ ){1 − H(ξ)}. (10.87)

All elements of the expression (10.82) now have been evaluated. This can now be
written as

σzz

q
= 1

π
arctan

{ηζ

√
τ 2 − τ 2

1

τ(ξ + 1)

}
H(τ − τ1) − 1

π
arctan

{ηζ

√
τ 2 − τ 2

2

τ(ξ − 1)

}
H(τ − τ2)

+ H(τ − ηζ ){H(ξ − 1) − H(ξ + 1)}, (10.88)

where

τ 2
1 = (ξ + 1)2 + η2ζ 2, τ 2

2 = (ξ − 1)2 + η2ζ 2. (10.89)

The last term in (10.88) represents a block wave just below the load, travelling with
the compression wave velocity in vertical direction.

To avoid passages through infinity at ξ ±1 it is convenient to transform this equa-
tion, using the property that arctan(x) = π/2 − arctan(1/x) for all positive values
of x, and the property that arctan(−x) = − arctan(x) for all values of x. This finally
gives

σzz

q
= − 1

π
arctan

{
τ(ξ + 1)/ηζ
√

τ 2 − τ 2
1

}
H(τ − τ1) + 1

π
arctan

{
τ(ξ − 1)/ηζ
√

τ 2 − τ 2
2

}
H(τ − τ2)

+ {H(ξ − 1) − H(ξ + 1)}H(τ − ηζ ) +
{
H(ξ + 1) − 1

2

}
H(τ − τ1)

−
{
H(ξ − 1) − 1

2

}
H(τ − τ2). (10.90)
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In terms of the original variables this solution can be written as

σzz

q
= − 1

π
arctan

{
t (x + a)/ηz
√

t2 − t2
1

}
H(t − t1) + 1

π
arctan

{
t (x − a)/ηz
√

t2 − t2
2

}
H(t − t2)

+ {H(x − a) − H(x + a)}H(t − ηz) +
{
H(x + a) − 1

2

}
H(t − t1)

−
{
H(x − a) − 1

2

}
H(t − t2), (10.91)

where

t2
1 = {(x + a)2 + η2z2}/c2

s , t2
2 = {(x − a)2 + η2z2}/c2

s . (10.92)

For very large values of time t → ∞ and the solution reduces to

τ → ∞ : σzz

q
= − 1

π
arctan

{
x + a

ηz

}
+ 1

π
arctan

{
x − a

ηz

}
. (10.93)

This is indeed the solution of the elastostatic (and confined) problem, see (8.174).
A function to calculate the value of σzz/q for given values of ξ , ζ , τ and Pois-

son’s ratio ν, is given below, in C. In this program the variables ξ , ζ , τ and ν are
denoted by x, z, t and nu.

double stress(double x,double z,double t,double nu)
{
double s,eta,eta2,t1,t2;
eta2=(1-2*nu)/(2*(1-nu));eta=sqrt(eta2);s=0;
t1=sqrt((x+1)*(x+1)+eta2*z*z);t2=sqrt((x-1)*(x-1)+eta2*z*z);
if (t>t1) {s-=0.5+atan((x+1)/((eta*z)*sqrt(1-t1*t1/(t*t))))/PI;if
(x+1>0) s+=1;}
if (t>t2) {s+=0.5+atan((x-1)/((eta*z)*sqrt(1-t2*t2/(t*t))))/PI;if
(x-1>0) s-=1;}
if (t>=eta*z) {if (x-1>0) s+=1;if (x+1>0) s-=1;}
return(s);
}

Some results have been calculated by a computer program using this function. The
stresses below the strip load, as calculated using the present confined solution are
shown in the left half of Fig. 10.6, for a region of depth 10a. It has been assumed that
the value of time is such that the compression wave has just reached that depth. The
value of Poisson’s ratio has been assumed to be ν = 0. At a small depth (z = a) the
stresses are practically equal to the static values. The right half of the figure shows
the solution for the full elastodynamic problem, which is considered in Chap. 12 of
this book.

For a different value of Poisson’s ratio, ν = 0.499, the stresses for the confined
solution are shown in the left half of Fig. 10.7. In this practically incompressible
case the compression wave travels down very fast, and it will take (relatively) longer
for the stresses to approach the static values. It may be noted that the material is
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Fig. 10.6 Stresses below a strip load, ν = 0, cpt/a = 10

Fig. 10.7 Stresses below a strip load, ν = 0.499, cpt/a = 10

practically undeformable for ν → 0.5. Because it has been assumed that there are
no horizontal deformations, the assumption of incompressibility means that there
can be no vertical deformations either. The solution clearly degenerates for ν → 0.5.
The exact solution of the full elastic problem is shown in the right half of the figure.
The differences with the confined solution appear to be very large.

In the case ν = 0 the differences between the two solutions are not so very large,
although the confined solution does not show the effect of the Rayleigh wave, which
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is present in the full solution. In the case ν = 0.499 the differences are so large that
the conclusion must be that these confined solutions are perhaps interesting from an
educational viewpoint, but can not be considered as a serious alternative for the full
elastodynamic solution.

10.4 Point Load on Half Space

Another important case is that of the sudden application of a point load, see
Fig. 10.8.

In this case the use of polar coordinates is suggested by the axial symmetry of
the problem. Thus the differential equation is

μ

(
∂2w

∂r2 + 1

r

∂w

∂r

)
+ (λ + 2μ)

∂2w

∂z2 = ρ
∂2w

∂t2 . (10.94)

The boundary condition is supposed to be

z = 0 : (λ + 2μ)
∂w

∂z
=

{
0, if t < 0 or r > a,

−F/πa2, if t > 0 and r < a.
(10.95)

where a is the radius of the loaded area, which is assumed to be very small.
The initial conditions are that before t = 0 the displacement w and its derivative

(the velocity) are zero,

t = 0 : w = 0, (10.96)

t = 0 : ∂w

∂t
= 0. (10.97)

The Laplace transform of the displacement w is defined by

w =
∫ ∞

0
w exp(−st) dt. (10.98)

Applying the Laplace transformation to the differential equation (10.94) gives

μ

(
∂2w

∂r2 + 1

r

∂w

∂r

)
+ (λ + 2μ)

∂2w

∂z2 = ρs2w. (10.99)

Fig. 10.8 Point load on half space
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For radially symmetric problems the Hankel transform is a useful method
(Sneddon, 1951). This is defined as

W =
∫ ∞

0
w r J0(ξr) dr, (10.100)

where J0(x) is the Bessel function of the first kind and order zero. The inverse
transform is

w =
∫ ∞

0
W ξ J0(rξ) dξ. (10.101)

The Hankel transform has the property that the operator

∂2

∂r2 + 1

r

∂

∂r

is transformed into multiplication by −ξ2. Thus the differential equation (10.99)
becomes, after application of the Hankel transformation,

−μξ2 W + (λ + 2μ)
d2W

dz2
= ρs2W, (10.102)

which is an ordinary differential equation.
The transformed boundary condition is, applying first the Laplace transform and

then the Hankel transform to (10.95),

z = 0 : (λ + 2μ)
dW

dz
= − F

πa2s

∫ a

0
r J0(ξr) dr. (10.103)

When a is very small the Bessel function may be approximated by its first term in a
series expansion, which is 1, so that one obtains

z = 0 : (λ + 2μ)
dW

dz
= − F

2πs
. (10.104)

The general solution of (10.102) vanishing for z → ∞ is

W = A exp(−γ ηz), (10.105)

with

γ = ξ 2 + s2/c2
s , (10.106)

and where η and cs have the same meaning as before, see (10.21) and (10.22).
The integration constant A can be determined from the boundary condi-

tion (10.104), which gives

A = F

2πη(λ + 2μ)γ s
. (10.107)
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The final solution for the transformed displacement is

W = F

2πη(λ + 2μ)s

exp[−ηz
√

ξ 2 + s2/c2
s ]√

ξ2 + s2/c2
s

. (10.108)

Although this may appear to be a rather complex formula, it happens that its inverse
Hankel transform can be found in the literature (Erdélyi et al., 1954, 8.2.24). The
result is

w = F

2πη(λ + 2μ)s

1
√

r2 + η2z2
exp

(
− s

cs

√
r2 + η2z2

)
. (10.109)

The inverse Laplace transform is very simple (Churchill, 1972),

w = F

2πη(λ + 2μ)

1
√

r2 + η2z2
H(t − t0), (10.110)

where

t0 =
√

r2 + η2z2

cs

. (10.111)

Equation (10.110) is the solution of the problem. Again it may be surprising that
such a simple solution has been obtained. In this case there is a downward displace-
ment which occurs at the arrival of the wave. The magnitude of the displacement de-
creases inversely proportional with the distance from the source of the disturbance.
It may be noted that the steady state displacement, for t → ∞, agrees in form with
the fully elastic solution given in Chap. 8, see (8.28). The displacement is inversely
proportional to the distance from the source in both formulas, and inversely propor-
tional to the modulus of elasticity E (although that is not very surprising in a linear
model). The two formulas differ only in their respective dependence upon Poisson’s
ratio ν.

It deserves to be mentioned that the approximate solution derived here, for
the case of horizontally confined displacements, markedly differs from the com-
plete elastic solution (Pekeris, 1955). When considering this complete solution, see
Chap. 13, it will appear that shortly after the arrival of the shear wave considered
here very large displacements occur, due to the generation of Rayleigh waves.

10.5 Periodic Load on a Half Space

In the previous sections some solutions of problems of wave propagation in a con-
fined elastic half space have been considered, especially for loads that were applied
stepwise. Another important class of problems is that of a half space with a peri-
odic load on its surface. A problem of this class will be considered in this section,
namely the problem of a uniform periodic load over a circular area, on a confined
elastic half space.
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Fig. 10.9 Circular load on
half space

As in the previous sections the problem is simplified by assuming that the only
non-vanishing displacement is the vertical displacement w, for which the differen-
tial equation then is, in the case of radial symmetry,

μ

(
∂2w

∂r2 + 1

r

∂w

∂r

)
+ (λ + 2μ)

∂2w

∂z2 = ρ
∂2w

∂t2 . (10.112)

In the problem to be considered the load is a periodically varying load on a circular
area at the surface, see Fig. 10.9.

The boundary condition is

z = 0 : (λ + 2μ)
∂w

∂z
=

{
0, if t < 0 or r > a,

−p sin(ωt), if t > 0 and r < a,
(10.113)

where a is the radius of the loaded area, and ω is the circular frequency of the
periodic load.

The Laplace transform of the vertical displacement w is defined as

w =
∫ ∞

0
w exp(−st) dt. (10.114)

Assuming that the initial values of the displacement and velocity are zero, the dif-
ferential equation (10.112) now becomes

μ

(
∂2w

∂r2 + 1

r

∂w

∂r

)
+ (λ + 2μ)

∂2w

∂z2 = ρs2w, (10.115)

and the boundary condition (10.113) is transformed into

z = 0 : (λ + 2μ)
∂w

∂z
=

{
0, if r > a,

−p ω/(s2 + ω2), if r < a.
(10.116)

The radial symmetry of the problem suggests the use of the Hankel transform

W =
∫ ∞

0
w rJ0(rξ) dr. (10.117)
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The differential equation (10.115) then is transformed into the ordinary differential
equation

(λ + 2μ)
d2W

dz2
= (ρs2 + μξ2)W, (10.118)

or

d2W

dz2 = η2(s2/c2
s + ξ2)W, (10.119)

where cs is the velocity of shear waves,

c2
s = μ

ρ
, (10.120)

and η is an elastic coefficient, defined by

η2 = μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
. (10.121)

If a parameter γ is introduced by the definition

γ 2 = s2/c2
s + ξ2, (10.122)

the solution of the differential equation (10.119) vanishing at infinity can be written
as

W = A exp(−γ ηz). (10.123)

The integration constant A must be determined from the Hankel transform of the
boundary condition (10.116). Using the well known integral (Erdélyi et al., 1954,
8.3.18)

∫ a

0
r J0(rξ) dr = a

ξ
J1(aξ), (10.124)

this gives

A = pωa

γ η(λ + 2μ)(s2 + ω2)ξ
J1(aξ), (10.125)

so that the solution of the transformed problem is

W = pωa

γ η(λ + 2μ)(s2 + ω2)ξ
J1(aξ) exp(−γ z/m). (10.126)

The inverse Hankel transformation of this result is

w = pωa

η(λ + 2μ)(s2 + ω2)

∫ ∞

0

J1(aξ) J0(rξ) exp(−γ z/m)

γ
dξ. (10.127)

It will not be attempted to evaluate this integral. Restriction will be made to two
special results: the displacement of the center of the loaded area, r = 0, z = 0, and
the displacements for a vibrating point load.
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Displacement of the Origin

The displacement of the point r = 0, z = 0 is, with (10.127),

w0 = pωa

η(λ + 2μ)(s2 + ω2)

∫ ∞

0

J1(aξ)

γ
dξ, (10.128)

or, in terms of the original parameters,

w0 = pωa

η(λ + 2μ)(s2 + ω2)

∫ ∞

0

J1(aξ)
√

ξ 2 + s2/c2
s

dξ. (10.129)

This is a well known integral (Erdélyi et al., 1954, 8.4.3). The result is

w0 = pωc

η(λ + 2μ) s (s2 + ω2)
[1 − exp(−as/cs)]. (10.130)

This is the Laplace transform of the displacement of the center of the loaded area.
Inverse Laplace transformation gives

w0 = pcs

η(λ + 2μ)ω
{H(t) − H(t − 2tc) − cos(ωt) + cos[ω(t − 2tc)]}, (10.131)

where tc is a characteristic time,

tc = a/2cs, (10.132)

and H(t) is Heaviside’s unit step function,

H(t) =
{

0, if t < 0,

1, if t > 0.
(10.133)

For large values of time the two step functions cancel and the solution reduces to

w0 = − pc

η(λ + 2μ)ω

{
cos(ωt) − cos[ω(t − 2tc)]

}
. (10.134)

After some elaboration this can also be written as

w0 = pa sin(ωtc)

η(λ + 2μ)(ωtc)
sin[ω(t − tc)]. (10.135)

The phase angle turns out to be ωtc. As in the previous cases the simplicity of the
final solution may be noted.

For very small frequencies, ω → 0, the solution approaches the static result

ω → 0 : w0 = ws = pa

η(λ + 2μ)
. (10.136)
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This means that the dynamic amplification factor can be written as

|w0|
|ws | = | sin(ωtc)|

ωtc
. (10.137)

This is shown in Fig. 10.10 as a function of a dimensionless frequency ω/ωc, where
ωc is defined by

ωc = 1

tc
= 2cs

a
=

√
4μ

ρa2 . (10.138)

The characteristic frequency ωc has the character of the square root of the ratio of a
spring stiffness and a mass, as usual in dynamic problems. In engineering practice
the shear wave velocity cs usually is of the order of magnitude of 100 m/s, and the
physical dimension of the foundation size a is of the order of 1 m, or perhaps as big
as 10 m. This means that the characteristic frequency is of the order of magnitude
of 20 s−1 or 200 s−1. This is a rather large value, and it means that in many cases
the value of ω/ω0 will be rather small. Only in case of very rapid fluctuations the
dimensionless frequency may be larger than one. An example of such a phenomenon
is pile driving, by hammering or by high frequency vibrating.

Because it can be expected that in engineering practice the value of ω/ωc will
usually be of the order of magnitude of 1, or smaller, the most common values in
Fig. 10.10 will be located at the left part of the figure. It may be noted that for cer-
tain large values of ω/ωc the dynamic amplitude may be zero. This can also be seen
from (10.137), from which it follows that w0 = 0 for all values of the frequency for
which ω/ωc = kπ , where k is any integer. For these frequencies the dynamic am-
plitude is zero, indicating extremely stiff behaviour. Such a very stiff behaviour will
not really be observed in practice, because the assumptions underlying the present
theory are only weak reflections of the complex behaviour of real soils. Also, the
displacement at the center of the circle may be zero, but this does not mean that the
displacements are zero over the entire loaded area.

The phase angle ψ has been found to be ωtc. Thus there may be a considerable
damping, except when the frequency ω is extremely small. This phenomenon is
sometimes called radiation damping. It is produced by the spreading of the energy
over an ever larger area.

Fig. 10.10 Dynamic
amplification
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Vibrating Point Load

If the radius of the loaded area a is very small the Bessel function J1(aξ) in the
solution (10.127) can be approximated by the first term in its series expansion,
J1(aξ) ≈ 1

2aξ . This solution then reduces to

w = pωa2

2η(λ + 2μ)(s2 + ω2)

∫ ∞

0

ξ J0(rξ) exp(−γ ηz)

γ
dξ (10.139)

or, writing F = pπa2 for the total load,

w = Fω

2πη(λ + 2μ)(s2 + ω2)

∫ ∞

0

ξ J0(rξ) exp[−(ηz)
√

ξ 2 + s2/c2
s ]√

ξ2 + s2/c2
s

dξ. (10.140)

This is a well known inverse Hankel transform (Erdélyi et al., 1954, 8.2.24). The
result is

w = Fω

2πη(λ + 2μ)(s2 + ω2)

exp[−(s/cs)
√

r2 + η2z2]
√

r2 + η2z2
. (10.141)

Inverse Laplace transformation now is simple, using the standard formula for the
Laplace transform of the function sin(ωt) and the translation theorem,

w = F

2πη(λ + 2μ)

sin[ω(t − t0)]√
r2 + η2z2

H(t − t0), (10.142)

where, as before,

t0 =
√

r2 + η2z2

cs

. (10.143)

Again a simple result is obtained.

Problems

10.1 Derive expressions for the vertical normal stress σzz and for the velocity
∂w/∂t , for the case of a line pulse, see Fig. 10.2.

10.2 Verify that the solution for a strip load, (10.91) reduces to the solution for
a line load, (10.36) if the width of the strip 2a tends towards zero, with P = 2qa.
Note that the variable x is also contained in t1 and t2.

10.3 Derive expressions for the vertical normal stress σzz and for the velocity
∂w/∂t , for the case of the sudden application of a point load, see Fig. 10.8.



Chapter 11
Line Load on Elastic Half Space

In this chapter some basic problems of an elastic half space are considered, in partic-
ular problems for a line pulse or a line load on the surface of the half space. A prob-
lem of this type is often denoted as a Lamb problem, because the first solutions for
such problems were obtained by Lamb (1904). Lamb’s solution, which started from
the solution of the problem for a periodic load, can be found, using more modern
formulations and techniques, in many textbooks, see e.g. Fung (1965), Achenbach
(1975), Graff (1975) and Miklowitz (1978). In the present book the solutions will
be obtained by De Hoop’s version of the Cagniard method, which uses a combi-
nation of Laplace and Fourier transform methods (De Hoop, 1960, 1970; Cagniard
et al., 1962), see also Appendix A. An alternative technique has been presented by
Eringen and Suhubi (1975), using a self-similar solution method, in which the num-
ber of independent variables is reduced by one, which is applicable in the case of a
concentrated load.

The problems to be considered in this chapter are the displacements due to a line
pulse on the surface, and the stresses due to a constant line load on the surface. The
solution of the first problem will be given in great detail. For the second problem
the solutions are given with only an outline of the derivation, as the solution meth-
ods are quite similar. It will be shown that, in the limit for large values of time, the
solution of the elastodynamic problem reduces to the known solution of the elasto-
static solution. The solutions also appear to be in agreement with general results of
theoretical elastodynamics, such as the appearance and the behaviour of Rayleigh
waves.

The solutions will be given in the form of analytic expressions, with elementary
algorithms to calculate numerical data. A computer program for a constant line load
is available as the program LINELOAD.

11.1 Line Pulse

11.1.1 Description of the Problem

The first problem to be considered is the case of a line pulse on an elastic half plane,
see Fig. 11.1. This is an important problem in seismology, where the load is caused
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Theory and Applications of Transport in Porous Media 24,
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Fig. 11.1 Half plane with
impulse load

by an explosion of very short duration, and the displacements of the surface are
measured, at various distances from the load, as a function of time.

The basic equations are the equations of motion in two dimensions,

∂σxx

∂x
+ ∂σzx

∂z
= ρ

∂2u

∂t2 , (11.1)

∂σxz

∂x
+ ∂σzz

∂z
= ρ

∂2w

∂t2 , (11.2)

where u and w are the displacement components in x-direction and z-direction,
respectively, and where ρ is the density of the material.

The material is supposed to be linear elastic, so that the stresses and the strains
are related by the generalized form of Hooke’s law,

σxx = λ

(
∂u

∂x
+ ∂w

∂z

)
+ 2μ

∂u

∂x
, (11.3)

σzz = λ

(
∂u

∂x
+ ∂w

∂z

)
+ 2μ

∂w

∂z
, (11.4)

σzx = μ

(
∂u

∂z
+ ∂w

∂x

)
, (11.5)

where λ and μ are the Lamé constants of the material.
Substitution of (11.3)–(11.5) into (11.1) and (11.2) leads to the basic differential

equations

(λ + μ)
∂

∂x

(
∂u

∂x
+ ∂w

∂z

)
+ μ

(
∂2u

∂x2 + ∂2u

∂z2

)
= ρ

∂2u

∂t2 , (11.6)

(λ + μ)
∂

∂z

(
∂u

∂x
+ ∂w

∂z

)
+ μ

(
∂2w

∂x2
+ ∂2w

∂z2

)
= ρ

∂2w

∂t2
. (11.7)
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These equations can also be written as

(λ + 2μ)
∂2u

∂x2
+ (λ + μ)

∂2w

∂z∂x
+ μ

∂2u

∂z2
= ρ

∂2u

∂t2
, (11.8)

(λ + 2μ)
∂2w

∂z2 + (λ + μ)
∂2u

∂z∂x
+ μ

∂2w

∂x2 = ρ
∂2w

∂t2 . (11.9)

The boundary conditions for a line pulse on the surface z = 0 are

z = 0 : σzx = 0, (11.10)

z = 0 : σzz = −Qδ(t)δ(x), (11.11)

where Q is the strength of the line pulse, and δ(x) and δ(t) are Dirac delta functions
(Churchill, 1972), for instance

δ(t) =
{

0, if |t | > ε,

1/2ε, if |t | < ε,
(11.12)

with ε → 0. The total area below the function is 1,
∫ ∞
−∞ δ(t) dt = 1.

11.1.2 Solution by Integral Transform Method

The solution of the problem is sought by using Laplace and Fourier transforms. The
Laplace transforms of the displacements are defined as

u =
∫ ∞

0
u exp(−st) dt, (11.13)

w =
∫ ∞

0
w exp(−st) dt. (11.14)

If it is assumed that the displacements and the velocities are zero at the time of
loading t = 0, the transformed basic equations are

(λ + 2μ)
∂2u

∂x2 + (λ + μ)
∂2w

∂z∂x
+ μ

∂2u

∂z2 = ρs2u, (11.15)

(λ + 2μ)
∂2w

∂z2
+ (λ + μ)

∂2u

∂z∂x
+ μ

∂2w

∂x2
= ρs2w. (11.16)

Fourier transforms are defined as

U =
∫ ∞

−∞
u exp(isαx)dx, (11.17)

W =
∫ ∞

−∞
w exp(isαx)dx, (11.18)
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with the inverse transforms

u = s

2π

∫ ∞

−∞
U exp(−isαx)dα, (11.19)

w = s

2π

∫ ∞

−∞
W exp(−isαx)dα. (11.20)

It may be noted that the usual Fourier transform variable α has been replaced by sα,
for future convenience.

If it is assumed that the displacements and their first derivative with respect to x

vanish at infinity, it can be shown, using partial integration, that

∫ ∞
−∞

∂u

∂x
exp(isαx)dx = −iαsU, (11.21)

∫ ∞
−∞

∂2u

∂x2
exp(isαx)dx = −α2s2U. (11.22)

Similar results apply to the Fourier transform of the vertical displacement.
The transformed form of the basic equations (11.15) and (11.16) is

c2
s

d2U

dz2
− isα(c2

p − c2
s )

dW

dz
= s2(1 + c2

pα2)U, (11.23)

c2
p

d2W

dz2
− isα(c2

p − c2
s )

dU

dz
= s2(1 + c2

s α
2)W, (11.24)

where cp and cs are the velocities of compression waves and shear waves, respec-
tively,

c2
p = (λ + 2μ)/ρ, (11.25)

c2
s = μ/ρ. (11.26)

It is assumed that the solution of the two equations (11.23) and (11.24) can be ex-
pressed as

U = iA exp(−γ sz), (11.27)

W = B exp(−γ sz), (11.28)

where γ is an unknown parameter at this stage, and A and B are unknown integra-
tion constants.

Substitution of (11.27) and (11.28) into (11.23) and (11.24) gives

(1 + c2
pα2 − c2

s γ
2)A − (c2

p − c2
s )αγB = 0, (11.29)

(c2
p − c2

s )αγA + (1 + c2
s α

2 − c2
pγ 2)B = 0. (11.30)
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This homogeneous system of linear equations has solutions only for the two values
of γ 2 for which the determinant of the system is zero. These values can be written
as γ = ±γp and γ = ±γs , where

γp =
√

α2 + 1/c2
p, (11.31)

γs =
√

α2 + 1/c2
s . (11.32)

It is understood that in these equations the positive root is taken. The solutions with
the negative sign should be omitted to ensure that the solutions remain bounded for
z → ∞.

The solution of the transformed problem now is found to be

U = iαCp exp(−γpsz) + iγsCs exp(−γssz), (11.33)

W = γpCp exp(−γpsz) + αCs exp(−γssz). (11.34)

Inverse Fourier transformation of these expressions gives

u = is

2π

∫ ∞

−∞
{αCp exp(−sγpz) + γsCs exp(−sγsz)} exp(−isαx)dα, (11.35)

w = s

2π

∫ ∞

−∞
{γpCp exp(−sγpz) + αCs exp(−sγsz)} exp(−isαx)dα. (11.36)

The notations Cp and Cs are used to indicate the strength of the compression wave
and the shear wave, respectively, as suggested by the parameters γp and γs in the
two parts of the solution.

In order to determine the coefficients Cp and Cs the boundary conditions must
be used. As these are expressed in terms of the stresses it is convenient at this stage
to obtain expressions for the Laplace transforms of the stresses, using the defini-
tions (11.3), (11.4) and (11.5). This gives

σxx = s2

2π

∫ ∞

−∞
{(2μα2 − λ/c2

p)Cp exp(−γpsz) + 2μαγsCs exp(−γssz)}

× exp(−isαx)dα, (11.37)

σ zz = − s2μ

2π

∫ ∞

−∞
{(2α2 + 1/c2

s )Cp exp(−γpsz) + 2αγsCs exp(−γssz)}

× exp(−isαx)dα, (11.38)

σ zx = − iμs2

2π

∫ ∞

−∞
{2αγpCp exp(−γpsz) + (2α2 + 1/c2

s )Cs exp(−γssz)}

× exp(−isαx)dα. (11.39)
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For future reference the isotropic stress σ is given as well. This quantity is defined
as

σ = 1

2
(σxx + σzz). (11.40)

It follows from (11.37) and (11.38) that its Laplace transform is

σ = − (λ + μ)s2

2πc2
p

∫ ∞

−∞
Cp exp(−γpsz − isαx)dα. (11.41)

The boundary conditions (11.10) and (11.11) can be expressed as Laplace trans-
forms as

z = 0 : σzx = 0, (11.42)

z = 0 : σzz = −Qs

2π

∫ ∞

−∞
exp(−isαx)dα. (11.43)

Using these boundary conditions the coefficients Cp and Cs can be determined. The
result is

Cp = Q

μs

2α2 + 1/c2
s

(2α2 + 1/c2
s )

2 − 4α2γpγs

, (11.44)

Cs = − Q

μs

2αγp

(2α2 + 1/c2
s )

2 − 4α2γpγs

. (11.45)

11.1.3 The Vertical Displacement

The vertical displacement is of particular interest. It is found from (11.36) that its
Laplace transform is

w = w1 + w2 + w3, (11.46)

where

w1 = Q

2πμ

∫ ∞

−∞
γp(2α2 + 1/c2

s )

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα, (11.47)

w2 + w2 = − Q

2πμ

∫ ∞

−∞
2α2γp

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα.

(11.48)

The two integrals (11.47) and (11.48) will be evaluated separately, using De Hoop’s
method (see Appendix A). The second integral will be separated into two parts, w2

and w3. For this first problem of the chapter, the analysis will be given in full detail.
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The First Integral

Using the substitution p = iα, the first integral, (11.47), can be written as

w1 = Q

2πiμ

∫ i∞

−i∞
γp(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

exp[−s(γpz + px)]dp, (11.49)

where now

γp =
√

1/c2
p − p2, (11.50)

γs =
√

1/c2
s − p2. (11.51)

The appearance of the factor γp in the exponential function in (11.49) suggests that
it represents the contribution of the compression waves.

In the method of De Hoop (1960) it is attempted to transform the integration path
in the complex p-plane in such a way that the integral obtains the form of a Laplace
transform integral. For this purpose a parameter t is introduced (later to be identified
with the time), defined as

t = γpz + px, (11.52)

with t being real and positive, by assumption. The shape of the transformed integra-
tion path remains undetermined in this stage.

The integrand of the integral in (11.49) has singularities in the form of branch
points in the points p = ±1/cp and p = ±1/cs and simple poles in the points p =
±1/cr , where cr is the Rayleigh wave velocity, which is slightly smaller than the
shear wave velocity. It may be noted that cp > cs > cr , so that 1/cp < 1/cs < 1/cr .
The integration path from p = −i∞ to p = ∞ is now transformed to the two paths
p1 and p2 shown in Fig. 11.2, with the parameter t varying along these two curves
from some initial value to infinity.

It may also be noted that the branch cut is necessary because the factors γp and
γs are multiple valued. In the denominator of (11.49) the product γpγs could be
made single valued by a branch cut between p = 1/cp and p = 1/cs only, but the
appearance of a factor γp in the numerator requires that the branch cut should extend
towards infinity.

It follows from (11.50) and (11.52) that

r2p2 − 2tpx + t2 − z2/c2
p = 0, (11.53)

where

r2 = x2 + z2. (11.54)

Equation (11.53) is a quadratic expression in p, with the two solutions

p1 = tx

r2
+ iz

r2

√
t2 − t2

p, (11.55)
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Fig. 11.2 Original and
transformed integration path
for the first integral

p2 = tx

r2
− iz

r2

√
t2 − t2

p, (11.56)

where

tp = r/cp. (11.57)

If it is assumed that the parameter t varies in the interval tp < t < ∞, it follows that
the two paths in the complex p-plane are continuous, intersecting at the real axis in
the point p = tpx/r2 = (x/r)(1/cp) (which is to the left of the first branch point
because x ≤ r), and approaching infinity at the positive and negative sides of the
real axis, respectively. The precise shape of the curves p1 and p2 depends upon the
values of x and z, i.e. the location of the point considered in the physical plane.

Actually, the two branches, p1 and p2, of the transformed integration path are
hyperbolas, with the slope of the asymptote of p1 at infinity being z/x.

The Upper Part of the Integration Path

It follows from (11.55) that on the part p1 of the integration path

p = p1 : dp

dt
= x

r2
+ iz

r2

t
√

t2 − t2
p

. (11.58)

Furthermore, it follows from (11.52) that

p = p1 : γp = tz

r2
− ix

r2

√
t2 − t2

p = −i

√
t2 − t2

p

{
x

r2
+ iz

r2

t
√

t2 − t2
p

}
. (11.59)
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It may be noted that on this part of the transformed integration path and for
x > 0 (which will later appear to be the main branch considered), �(γp) > 0 and
�(γp) < 0, so that arg(γp) < 0. This is in agreement with the definition in (11.50)
and its analytic continuation into the upper right quarter of the complex p-plane.

It follows from (11.58) and (11.59) that

p = p1 : dp

dt
= iγp√

t2 − t2
p

. (11.60)

Because �(γp) > 0 and �(γp) < 0 it follows that �(dp/dt) > 0 and �(dp/dt) > 0,
which is in agreement with the shape of the part p1 of the transformed integration
path in Fig. 11.2.

The upper part of the integral (11.49) can now be written as

w11 = Q

2πμ

∫ ∞

tp

γ 2
p(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st)
√

t2 − t2
p

dt, p = p1. (11.61)

The Lower Part of the Integration Path

It follows from (11.56) that on the part p2 of the integration path

p = p2 : dp

dt
= x

r2
− iz

r2

t
√

t2 − t2
p

. (11.62)

Furthermore, it follows from (11.52) that

p = p2 : γp = tz

r2
+ ix

r2

√
t2 − t2

p = i

√
t2 − t2

p

{
x

r2
− iz

r2

t
√

t2 − t2
p

}
. (11.63)

It now follows from (11.62) and (11.63) that

p = p2 : dp

dt
= − iγp√

t2 − t2
p

. (11.64)

The lower part of the integral (11.49) can now be written as

w12 = Q

2πμ

∫ ∞

tp

γ 2
p(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st)
√

t2 − t2
p

dt, p = p2, (11.65)

where a minus sign has been omitted because the integration path has been reversed.
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The Total Integration Path

On the two parts p1 and p2 of the integration path the values of p, γp and γs are
complex conjugates. This means that one may write

w1 = Q

πμ
�

∫ ∞

0

γ 2
p(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

H(t − tp)
√

t2 − t2
p

exp(−st) dt, p = p1,

(11.66)
where H(t − tp) is the Heaviside unit step function, defined as

H(t − tp) =
{

0, if t < tp,

1, if t > tp.
(11.67)

The unit step function H(t − tp) has been introduced to ensure that the integration
is actually from t = tp to t = ∞.

The integral (11.66) happens to be in the form of a Laplace transform, which
was precisely the aim of the transformation of the integration path. It may be noted
that the first term in the integral may be a (complex) function of the parameter t ,
but the Laplace transform parameter s occurs only in the factor exp(−st). It can be
concluded that the inverse Laplace transform is

w1 = Q

πμ
�

{
γ 2
p(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

, p = p1. (11.68)

The Second Integral

Using the substitution p = iα, the second integral, (11.48), can be written as

w2 + w3 = Q

2πiμ

∫ i∞

−i∞
2p2γp

(1/c2
s − 2p2)2 + 4p2γpγs

exp[−s(γsz + px)]dp,

(11.69)
where, as before,

γp =
√

1/c2
p − p2, (11.70)

γs =
√

1/c2
s − p2. (11.71)

The appearance of the factor γs in the exponential function in (11.69) indicates that
this represents the contribution of the shear waves.

Again it will be attempted to transform the integration path in the complex p-
plane in such a way that the integral obtains the form of a Laplace transform integral.
In this case a parameter t is introduced (later to be identified with time), defined as

t = γsz + px, (11.72)

with t being real and positive, by assumption.
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It follows from (11.71) and (11.72) that

r2p2 − 2tpx + t2 − z2/c2
s = 0, (11.73)

where, as before,

r2 = x2 + z2. (11.74)

Equation (11.73) is a quadratic expression in p, with the two solutions

p3 = tx

r2 + iz

r2

√
t2 − t2

s , (11.75)

p4 = tx

r2
− iz

r2

√
t2 − t2

s , (11.76)

where

ts = r/cs. (11.77)

If it is assumed that the parameter t varies in the interval ts < t < ∞, it follows that
the two paths in the complex p-plane are continuous, intersecting at the real axis
in the point p = tsx/r2 = (x/r)(1/cs) (which is to the left of the second branch
point because x ≤ r), and approaching infinity at the positive and negative sides of
the real axis, respectively. The precise shape of the curves p3 and p4 depends upon
the values of x and z, i.e. the location of the point considered in the physical plane.
Because ts > tp the two integration paths may approach the real axis at opposite
points of the branch cut between 1/cp and 1/cs . The integration path must then be
extended with a loop around the first branch point, see Fig. 11.3.

The integral is separated into four parts : along the branches p3, p4, p5 and p6,
where the last two are the two possible branches of the loop around the branch point
1/cp . The contributions of p3 and p4 together form the part w2 of the integral, and
the contributions of p5 and p6 together form the part w3.

The Upper Part of the Integration Path

It follows from (11.75) that on the part p3 of the integration path

p = p3 : dp

dt
= x

r2 + iz

r2

t
√

t2 − t2
s

. (11.78)

Furthermore, it follows from (11.72) that

p = p3 : γs = tz

r2 − ix

r2

√
t2 − t2

s = −i

√
t2 − t2

s

{
x

r2 + iz

r2

t
√

t2 − t2
s

}
. (11.79)

It may be noted that on this part of the transformed integration path and for
x > 0 (which will later appear to be the main branch considered), �(γs) > 0 and
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Fig. 11.3 Original and transformed integration path for the second integral

�(γs) < 0, so that arg(γs) < 0. This is in agreement with the definition in (11.51)
and its analytic continuation into the upper right quarter of the complex p-plane.

It follows from (11.78) and (11.79) that

p = p3 : dp

dt
= iγs√

t2 − t2
s

. (11.80)

The upper part of the integral (11.69) can now be written as

w21 = Q

2πμ

∫ ∞

ts

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st)
√

t2 − t2
s

dt, p = p3. (11.81)

The Lower Part of the Integration Path

It follows from (11.76) that on the part p4 of the integration path

p = p4 : dp

dt
= x

r2
− iz

r2

t
√

t2 − t2
s

. (11.82)

Furthermore, it follows from (11.72) that

p = p4 : γs = tz

r2
+ ix

r2

√
t2 − t2

s = i

√
t2 − t2

s

{
x

r2
− iz

r2

t
√

t2 − t2
s

}
. (11.83)
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It now follows from (11.82) and (11.83) that

p = p4 : dp

dt
= − iγs√

t2 − t2
s

. (11.84)

The lower part of the integral (11.69) can now be written as

w22 = Q

2πμ

∫ ∞

ts

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st)
√

t2 − t2
s

dt, p = p4, (11.85)

where a minus sign has been omitted because the integration path has been reversed.

The Sum of the Upper and Lower Paths

On the two parts p3 and p4 the values of p, γp and γs are complex conjugates. This
means that one may write for the sum of the integrals along these two parts of the
integration path

w2 = Q

πμ
�

∫ ∞

0

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

H(t − ts)√
t2 − t2

s

exp(−st) dt, p = p3.

(11.86)
Again, the integral happens to be in the form of a Laplace transform, and it can be
concluded that the inverse Laplace transform is

w2 = Q

πμ
�

{
2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − ts)√

t2 − t2
s

, p = p3. (11.87)

The Contribution of the Loop

The intersection of the branches p3 and p4 with the real axis �(p) = 0 can be found
by determining the value of p3 or p4 for t = ts . With (11.75) or (11.76) this gives

t = ts : p = ps = tsx

r2 = x

r

1

cs

. (11.88)

This point is always located to the left of the branch point 1/cs , whatever the values
of x and z are. The point ps may be located to the left or right of the branch point
1/cp , however. It is located to the left of that branch point if

x

r

1

cs

<
1

cp

, (11.89)

or
x

r
= x√

x2 + z2
< η, (11.90)
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where

η = cs

cp

=
√

μ

λ + 2μ
=

√
1 − 2ν

2(1 − ν)
. (11.91)

If the depth z is sufficiently large for the condition (11.90) to be satisfied, the loop
around the branch point 1/cp is not needed, and there is no further contribution to
the integral w2.

On the other hand, if
x

r
= x√

x2 + z2
> η, (11.92)

the loop around the branch point 1/cp is necessary to ensure the applicability of the
transformation of the integration path without passing any singularities, and there
are two more contributions to the integral w2. The additional contribution will be
denoted by w3.

The Upper Branch of the Loop

Along the upper branch of the loop t < ts and p < 1/cs . This means that γs , as
defined by (11.51),

γs =
√

1/c2
s − p2, (11.93)

now is real. Because t = px + γsz, see (11.72), it now follows that γs can also be
expressed as

γs = t

z
− px

z
. (11.94)

It follows from (11.93) and (11.94) that the value of p can be determined from

r2p2 − 2tpx + t2 − z2/c2
s = 0, (11.95)

which now gives

p5 = xt

r2
− z

r2

√
t2
s − t2, (11.96)

where the minus-sign has been taken to ensure that p < ps . Actually, it follows
from (11.96) that

p = p5 : dp

dt
= x

r2 + z

r2

t
√

t2
s − t2

, (11.97)

which shows that dp/dt > 0 if 0 < t < ts .
The smallest value of t along the upper part of the loop occurs in the point

p = 1/cp . If this value is denoted by tq , it follows from (11.96) that

1

cp

= tqx

r2
− z

r2

√
t2
s − t2

q , (11.98)
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or, with tp = r/cp ,

tp = (x/r) tq − (z/r)

√
t2
s − t2

q . (11.99)

It follows from this equation that

tq = (x/r) tp + (z/r)

√
t2
s − t2

p, (11.100)

where the plus-sign has been chosen to ensure that tq ≥ tp . Equation (11.100) can
also be written as

tq/ts = (xη + z

√
1 − η2)/r, tq/ts < 1. (11.101)

It can be shown that this is always smaller than 1, in the region where the condi-
tion (11.92) is satisfied.

It follows from (11.93) and (11.96) that on the upper part of the loop

γs =
√

t2
s − t2

{
x

r2
+ z

r2

t
√

t2
s − t2

}
. (11.102)

Comparison with (11.97) shows that

p = p5 : dp

dt
= γs√

t2
s − t2

, (11.103)

which enables to write the integral along this part of the loop as an integral over the
variable t . Actually, with (11.69) one obtains

w31 = Q

2πiμ

∫ ts

tq

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st)
√

t2
s − t2

dt, p = p5. (11.104)

In this case all the parameters in the integrand are real, except for γp . Because on this
part of the integration path 1/cp < p < 1/cs it follows that arg(1/c2

p − p2) = −π ,
so that γp is purely imaginary, and its argument is −π/2.

The Lower Branch of the Loop

Along the lower branch of the loop all quantities are the same as on the upper part of
the loop, except for γp , which now is the complex conjugate of the previous value.
Furthermore the integration path is from p = 1/cs to p = 1/cp , i.e. from the right
to the left. By reversing the integration path the result will be

w32 = − Q

2πiμ

∫ ts

tq

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st)
√

t2
s − t2

dt, p = p6 (11.105)

where it should be noted that the value of γp is the complex conjugate of the value
in the integral (11.104).
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The Sum of the Upper and Lower Branches

If the integral (11.104) is written as w31 = (a+ib)/i, the integral (11.105) will be of
the form w32 = −(a− ib)/i. The sum of these two integrals then is w31 +w32 = 2b.
This means that

w3 = Q

πμ
�

∫ ts

tq

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st)
√

t2
s − t2

dt, p = p5. (11.106)

The integral is again in the form of a Laplace transform. The Laplace transform
parameter s appears only in the factor exp(−st), but the time t may appear in various
forms in the integrand. It can be concluded that the original function is

w3 = Q

πμ
�
{

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tq)H(ts − t)

√
t2
s − t2

, p = p5.

(11.107)
It may be noted that the function H(t − tq)H(ts − t) is equal to 1 only in the interval
tq < t < ts , elsewhere it is zero.

Calculation of Numerical Data

The three components of the vertical displacement are defined by (11.68), (11.87)
and (11.107). In order to calculate numerical data it is most convenient to express
these equations in dimensionless form.

The first component of the vertical displacement is, from (11.68),

w1 = Q

πμ
�

{
γ 2
p(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

, p = p1, (11.108)

where tp = r/cp , r = √
x2 + z2, and p1 is defined by (11.55),

p1 = tx

r2 + iz

r2

√
t2 − t2

p. (11.109)

The quantities γp and γs are related to the variable p and the velocities of compres-
sion waves and shear waves by (11.50) and (11.51),

γp =
√

1/c2
p − p2, γs =

√
1/c2

s − p2. (11.110)

In general the quantities p, γp and γs are complex.
A suitable choice of basic dimensionless parameters seems to be

ξ = x/z, τ = cst/z, τp = cstp/z, τs = csts/z,
(11.111)

τq = cstq/z, a = p1cs.
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Some derived parameters are

r = z

√
1 + ξ2, gs = csγs =

√
1 − a2, gp = csγp =

√
η2 − a2. (11.112)

It now follows from equation (11.108) that

w1πμz

Qcs

= �
{

(1 − 2a2)g2
p

(1 − 2a2)2 + 4a2gpgs

}
H(τ − τp)
√

τ 2 − τ 2
p

, (11.113)

where the parameter a is defined by

a = (ξτ + i

√
τ 2 − τ 2

p )/(1 + ξ2). (11.114)

The second component of the vertical displacement is, from (11.87),

w2 = Q

πμ
�

{
2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − ts)√

t2 − t2
s

, p = p3, (11.115)

where ts = r/cs , and p3 is defined by (11.75),

p3 = tx

r2 + iz

r2

√
t2 − t2

s . (11.116)

The dimensionless form of p3 is defined as

b = p3cs. (11.117)

The dimensionless form of (11.115) is

w2πμz

Qcs

= �
{

2b2gpgs

(1 − 2b2)2 + 4b2gpgs

}
H(τ − τs)√

τ 2 − τ 2
s

, (11.118)

where the parameter b is defined by

b = (ξτ + i

√
τ 2 − τ 2

s )/(1 + ξ2). (11.119)

The third component of the displacement is, from (11.107),

w3 = Q

πμ
�
{

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tq)H(ts − t)

√
t2
s − t2

, p = p5,

(11.120)
where tq/ts = (xη + z

√
1 − η2)/r and p5 is defined by (11.96),

p5 = xt

r2
− z

r2

√
t2
s − t2. (11.121)
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The dimensionless form of p5 is defined as

c = p5cs. (11.122)

The dimensionless form of (11.120) is

w3πμz

Qcs

= �
{

2c2gpgs

(1 − 2c2)2 + 4c2gpgs

}
H(τ − τq)H(τs − τ)

√
τ 2
s − τ2

, (11.123)

where the parameter c is defined by

c = (ξτ −
√

τ 2
s − τ 2 )/(1 + ξ2). (11.124)

Computer Program

A function (in C, using complex calculus) to calculate the value of the dimensionless
parameter wπμz/Qcs as a function of the parameters ξ = x/z (with ξ ≥ 0), τ =
cpt/z and Poisson’s ratio ν, is shown below. The function consists of three parts, as
given by (11.113), (11.118) and (11.123). Great care must be taken to verify that the
arguments of the square roots are calculated correctly, in agreement with the range
determined by the analytic continuation of the original definitions of γp and γs . This
may require some preliminary verification of intermediate computations.

double LinePulseW(double xi,double tau,double nu)
{
double w,w1,w2,w3,n,nn,xi1,taup2,taus2,taus,tauq,tau2;
complex b,bb,b1,gp,gs,d,e,c,cc,c1;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);xi1=1+xi*xi;
taus2=xi1;taup2=nn*taus2;taus=sqrt(taus2);tauq=n*xi+sqrt(1-nn);tau2=tau*tau;
if (tau2<=taup2) w1=0;else
{
b=complex(xi*tau/xi1,(sqrt(tau2-taup2))/xi1);bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=b1*gp*gp;e=b1*b1+4*bb*gp*gs;
w1=real(d/e)/sqrt(tau2-taup2);
}

if (tau2<=taus2) w2=0;else
{
b=complex(xi*tau/xi1,(sqrt(tau2-taus2))/xi1);bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=2*bb*gp*gs;e=b1*b1+4*bb*gp*gs;
w2=real(d/e)/sqrt(tau2-taus2);
}

if ((tau<=tauq)||(tau>=taus)||(xi*sqrt(1-nn)<nn)) w3=0;else
{
c=complex((xi*tau-sqrt(taus2-tau2))/taus2,0);cc=c*c;c1=1-2*cc;
gp=sqrt(nn-cc);gs=sqrt(1-cc);d=2*cc*gp*gs;e=c1*c1+4*cc*gp*gs;
w3=imag(d/e)/sqrt(taus2-tau2);
}

w=w1+w2+w3;
return(w);
}

Some examples are shown in Figs. 11.4 and 11.5, for ν = 0, and cst/z = 5 and
cst/z = 40, respectively. In Fig. 11.4 the first wave, the compression wave, has
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Fig. 11.4 Line pulse—vertical displacement, ν = 0, cs t/z = 5

Fig. 11.5 Line pulse—vertical displacement, ν = 0, cs t/z = 40

reached the distance x/z = 7.01, and the second wave, the shear wave, has reached
a distance x/z = 4.91. It can easily be verified that these values agree well with
the theoretical values cpt/r = 1 and cst/r = 1, respectively. The Rayleigh wave
can be seen to follow some time after the shear wave in Fig. 11.5. By considering
other values of time it can be seen that the shape and amplitude of the Rayleigh
wave disturbance are practically independent of the horizontal distance. This is in
agreement with theoretical analysis of Rayleigh waves in the two-dimensional case,
see for instance Achenbach (1975), or the analysis of Rayleigh waves in Chap. 9 of
this book.
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11.1.4 The Vertical Displacement of the Surface

The expressions for the vertical displacement derived in the previous section are
not suitable at the surface z = 0, because z has been used as a factor in the dimen-
sionless parameters. Therefore another set of parameters must be introduced for the
displacements of the surface.

The First Component

The first component of the vertical displacement is, from (11.68),

w1 = Q

πμ
�

{
γ 2
p(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

, p = p1, (11.125)

where tp = r/cp , r = √
x2 + z2, and p1 is defined by (11.55),

p1 = tx

r2
+ iz

r2

√
t2 − t2

p. (11.126)

For z = 0 the radial coordinate is simply r = x, and the expression (11.126) reduces
to

z = 0 : p = t/x = τ/cs, (11.127)

where now

τ = cst/x, (11.128)

which will be considered as the basic variable.
From (11.59) it now follows that

z = 0 : γp = − ix

r2

√
t2 − t2

p = −i

√
τ 2 − η2/cs, (11.129)

where, as before,

η2 = c2
s

c2
p

= μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
. (11.130)

Using the parameter η the value of tp , as defined by (11.57), can be written as

z = 0 : tp = r/cp = ηx/cs, (11.131)

so that

z = 0 :
√

t2 − t2
p = (x/cs)

√
τ 2 − η2. (11.132)
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Also, it follows from (11.129) that

z = 0 : γ 2
p = −(τ 2 − η2)/c2

s . (11.133)

Furthermore, it follows from (11.51) that

z = 0 : γ 2
s = 1/c2

s − p2 = (1 − τ 2)/c2
s . (11.134)

It has been seen before that the first integral is unequal to zero only if t > tp, or
τ > η, where η is a constant smaller than 1. The value of γs now appears to depend
upon the value of τ with respect to 1,

z = 0, τ < 1 : γs =
√

1 − τ 2/cs, (11.135)

z = 0, τ > 1 : γs = −i
√

τ 2 − 1/cs. (11.136)

The minus sign in the last expression has been taken because arg(1/c2
s − p2) = −π

if p > 1/c2
s along the path p1 just above the real axis.

Finally, it follows that the expression (11.125) can be calculated as

z = 0, τ < η : w1 = 0, (11.137)

z = 0, η < τ < 1 : w1 = − Qcs

πμx
�

{
(1 − 2τ2)

√
τ 2 − η2

(1 − 2τ 2)2 − 4iτ 2
√

τ 2 − η2
√

1 − τ 2

}
,

(11.138)

z = 0, τ > 1 : w1 = − Qcs

πμx

{
(1 − 2τ 2)

√
τ 2 − η2

(1 − 2τ 2)2 − 4τ 2
√

τ 2 − η2
√

τ 2 − 1

}
. (11.139)

This defines the value of the first contribution to the surface displacements, as a
function of the dimensionless variable τ = cst/x.

The Second Component

The second component of the vertical displacement is, from (11.87),

w2 = Q

πμ
�

{
2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − ts)√

t2 − t2
s

, p = p3, (11.140)

where ts = r/cs , and p3 is defined by (11.75),

p3 = tx

r2 + iz

r2

√
t2 − t2

s . (11.141)

At the surface z = 0 the radial coordinate is r = x, and the expression (11.141)
reduces to

z = 0 : p = t/x = τ/cs, (11.142)
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where, as before, see (11.128),

τ = cst/x, (11.143)

which is the basic variable. It may be noted that in the part of the solution considered
here, see (11.140), the variable t > ts , where now ts = x/cs , see (11.77). This means
that τ > 1.

The values of γp and γs , as defined in general by (11.70) and (11.71), now are,
because the argument of the expressions 1/c2

p − p2 and 1/c2
s − p2 is −π for points

p following a path just above the real axis,

γp = −i

√
τ 2 − η2/cs, (11.144)

γs = −i
√

τ 2 − 1/cs. (11.145)

Furthermore,
√

t2 − t2
s = (x/cs)

√
τ 2 − 1. (11.146)

Using these results it follows that the expression (11.140) can be calculated as

z = 0, τ < 1 : w2 = 0, (11.147)

z = 0, τ > 1 : w2 = − Qcs

πμx

{
2τ 2

√
τ 2 − η2

(1 − 2τ 2)2 − 4τ 2
√

τ 2 − η2
√

τ 2 − 1

}
. (11.148)

This defines the value of the second contribution to the surface displacements, as a
function of the dimensionless variable τ = cst/x.

The Third Component

The third component of the displacement is, from (11.107),

w3 = Q

πμ
�
{

2p2γpγs

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tq)H(ts − t)

√
t2
s − t2

, p = p5,

(11.149)
where tq/ts = (xη + z

√
1 − η2)/r and p5 is defined by (11.96),

p5 = xt

r2 − z

r2

√
t2
s − t2. (11.150)

At the surface z = 0 the radial coordinate is r = x, and the expression (11.150)
reduces to

z = 0 : p = t/x = τ/cs, (11.151)

where, as before, see (11.128) and (11.143),

τ = cst/x, (11.152)
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which is the basic variable. It may be noted that in the part of the solution considered
here, see (11.149), the variable t varies in the range tq < t < ts . Because for z = 0
it follows from (11.100) that tq = tp , the range of t is tp < t < ts . This means
that η < τ < 1. It may also be noted that for z = 0 the condition (11.92), which is
necessary for this contribution to be applicable, is always satisfied.

In this case

γp = −i

√
τ 2 − η2/cs, (11.153)

γs =
√

1 − τ 2/cs, (11.154)
√

t2
s − t2 = (x/cs)

√
1 − τ 2. (11.155)

Using these results it follows that the expression (11.149) can be calculated as

z = 0, τ < η : w3 = 0, (11.156)

z = 0, η < τ < 1 : w3 = − Qcs

πμx
�
{

2iτ 2
√

τ 2 − η2

(1 − 2τ 2)2 − 4iτ2
√

τ 2 − η2
√

1 − τ 2

}
,

(11.157)

z = 0, τ > 1 : w3 = 0. (11.158)

This defines the value of the third contribution to the surface displacements, as a
function of the dimensionless variable τ = cst/x. This part of the solution is often
denoted as the head wave.

Total Surface Displacements

Adding the three contributions to the surface displacements, the final expressions
for the displacements of the surface z = 0 are, with τ = cst/x,

z = 0, τ < η : w = 0, (11.159)

z = 0, η < τ < 1 : w = − Qcs

πμx

{
(1 − 2τ 2)2

√
τ 2 − η2

(1 − 2τ 2)4 + 16τ 4(τ 2 − η2)(1 − τ 2)

}
, (11.160)

z = 0, τ > 1 : w = − Qcs

πμx

{ √
τ 2 − η2

(1 − 2τ 2)2 − 4τ 2
√

τ 2 − η2
√

τ 2 − 1

}
. (11.161)

This completely defines the surface displacements, as a function of the dimension-
less variable τ = cst/x. The displacement is a continuous function of this variable,
but there is a singularity for the value τ = β , where β denotes the arrival time of the
Rayleigh wave. Mathematically, this singularity is caused by a zero of the denom-
inator of the functions (11.160) and (11.161). This zero occurs in the range τ > 1,
indicating that the Rayleigh wave arrives (shortly) after the shear wave.
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Fig. 11.6 The three wave fronts

The solution derived here, as given in (11.159)–(11.161), is in agreement with
the solution given by Eringen and Suhubi (1975), and with Lamb’s original solu-
tion (Lamb, 1904). The present solution method has the advantage that it gives the
solution for every point x, z in the half-plane, see the previous section.

It may also be interesting to note that the first two parts of the solution represent
a compression wave (or P -wave), propagating at velocity cp , and a shear wave
(or S-wave), propagating at velocity cs . The P -wave part of the solution is defined
by (11.68), and the S-wave part of the solution is defined by (11.87). It has appeared,
however, that between the arrival of the compression wave and the shear wave an
additional solution is needed, near the surface (often denoted as the head wave), in
order to satisfy the zero stress boundary condition at the surface. This part of the
solution is defined by (11.107).

The three wave fronts are indicated in Fig. 11.6, see also Achenbach (1975). The
area affected by the head wave is indicated in the figure by shading. This area is
defined by the condition (11.92), or

z2

x2
<

c2
p

c2
s

− 1 = 1

1 − 2ν
. (11.162)

The figure has been drawn for ν = 0.25. The distances cst and cpt in the figure
indicate that the figure expands linearly with time.

Computer Program

A function (in C) that calculates the vertical displacement of the surface for given
values of ν and cst/x is reproduced below. It is assumed that x ≥ 0. For values of
x < 0 the displacements can be obtained using the symmetry of the solution.

The parameters ν and cst/x are denoted by nu and tau in the program. The
quantity tr denotes the parameter cstr/x, where tr is the Rayleigh wave velocity.
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Fig. 11.7 Vertical displacement of the surface, ν = 0.00

double LinePulseWS(double nu, double tau)
{
double pi,fac,n,nn,e,f,a,b,b1,b2,w,t,tt,tr,eps;
pi=4*atan(1.0);fac=1/pi;eps=0.0001;t=tau;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);e=0.000001;e*=e;f=1;b=(1-nu)/8;
if (nu>0.1) {while(f>e) {a=b;b=(1-nu)/(8*(1+a)*(nu+a));f=fabs(b-a);}}
else {while (f>e) {a=b;b=sqrt((1-nu)/(8*(1+a)*(1+nu/a)));f=fabs(b-a);}}
tr=sqrt(1+b);if (t<=n) w=0;else if (t<=1)
{
tt=t*t;a=sqrt(tt-nn);
b1=(1-2*tt)*(1-2*tt);b2=4*tt*sqrt((tt-nn)*(1-tt));b=b1*b1+b2*b2;
w=-fac*a*b1/b;
}

else
{
if (fabs(t-tr)<eps) {if (t<tr) t=tr-eps;else t=tr+eps;}
tt=t*t;a=sqrt(tt-nn);b=(1-2*tt)*(1-2*tt)-4*tt*sqrt((tt-nn)*(tt-1));
w=-fac*a/b;
}

return(w);
}

The surface displacements are shown in graphical form in the Figs. 11.7, 11.8
and 11.9, for three values of ν. In each case the displacements remain zero until
the arrival of the compression wave, and there is a singularity at the passage of
the Rayleigh wave. At the time of arrival of the shear wave, cst/x = 1, there is a
discontinuity in the slope of the curves.

11.1.5 The Horizontal Displacement

The general solution for the horizontal displacement u has been given in (11.35), in
the form of the Laplace transform of a Fourier integral,
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Fig. 11.8 Vertical displacement of the surface, ν = 0.25

Fig. 11.9 Vertical displacement of the surface, ν = 0.50

u = is

2π

∫ ∞

−∞
{αCp exp(−sγpz) + γsCs exp(−sγsz)} exp(−isαx)dα, (11.163)

where the constants Cp and Cs have been given in (11.44) and (11.45),

Cp = Q

μs

2α2 + 1/c2
s

(2α2 + 1/c2
s )

2 − 4α2γpγs

, (11.164)

Cs = − Q

μs

2αγp

(2α2 + 1/c2
s )

2 − 4α2γpγs

. (11.165)
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Substitution of these results in (11.163) gives

u = u1 + u2 + u3, (11.166)

where

u1 = iQ

2πμ

∫ ∞

−∞
α(2α2 + 1/c2

s )

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα, (11.167)

u2 + u3 = − iQ

2πμ

∫ ∞

−∞
2αγpγs

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα.

(11.168)

As in the analysis of the vertical displacement, the variable α is replaced by p = iα,
so that

u1 = iQ

2πμ

∫ i∞

−i∞
p(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

exp[−s(γpz + px)]dp, (11.169)

u2 + u3 = − iQ

2πμ

∫ i∞

−i∞
2pγpγs

(1/c2
s − 2p2)2 + 4p2γpγs

exp[−s(γsz + px)]dp,

(11.170)

where, as before,

γp =
√

1/c2
p − p2, γs =

√
1/c2

s − p2. (11.171)

These integrals can be evaluated in the same way as the integrals for the vertical
displacement, using a transformation of the integration path so that the Fourier in-
tegral is modified into a Laplace transform integral, and the inverse transform can
immediately be found.

In this case it would be sufficient to introduce branch cuts in the p-plane be-
tween the points p = 1/cp and p = 1/cs , and between the points p = −1/cs and
p = −1/cp , see Fig. 11.10, because this would make the integrands of (11.169)
and (11.170) single valued. Care should be taken to avoid passing the poles at 1/cr

or −1/cr , as was already pointed out by Lamb (1904).
The first component of the solution, obtained from (11.169) by transforming the

integration path into two parabolic curves, is found to be

u1 = Q

πμ
�

{
pγp(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

, p = p1, (11.172)

where p1 is defined by (11.109),

p1 = tx

r2
+ iz

r2

√
t2 − t2

p. (11.173)
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Fig. 11.10 Branch cuts in the
p-plane

The second component of the solution can be obtained from (11.170) by transform-
ing the integration into two parabolic curves and a loop around the first branch point.
The contribution of the two parabolic parts is

u2 = − Q

πμ
�

{
2pγpγ 2

s

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − ts)√

t2 − t2
s

, p = p3, (11.174)

where p3 is defined by (11.116),

p3 = tx

r2
+ iz

r2

√
t2 − t2

s . (11.175)

The third component of the solution is the contribution of the loop around the first
branch point,

u3 = − Q

πμ
�
{

2pγpγ 2
s

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tq)H(ts − t)

√
t2
s − t2

, p = p5,

(11.176)
where p5 is defined by (11.121),

p5 = xt

r2
− z

r2

√
t2
s − t2. (11.177)

The dimensionless form of (11.172) is

u1πμz

Qcs

= �
{

agp(1 − 2a2)

(1 − 2a2)2 + 4a2gpgs

}
H(τ − τp)
√

τ 2 − τ 2
p

, (11.178)

where the parameter a is defined by (11.114), i.e.

a = (ξτ + i

√
τ 2 − τ 2

p )/(1 + ξ2). (11.179)
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The dimensionless form of (11.174) is

u2πμz

Qcs

= −�
{

bgpg2
s

(1 − 2b2)2 + 4b2gpgs

}
H(τ − τs)√

τ 2 − τ 2
s

, (11.180)

where the parameter b is defined by (11.119), i.e.

b = (ξτ + i

√
τ 2 − τ 2

s )/(1 + ξ2). (11.181)

The dimensionless form of (11.176) is

u3πμz

Qcs

= −�
{

2cgpg2
s

(1 − 2c2)2 + 4c2gpgs

}
H(τ − τq)H(τs − τ)

√
τ 2
s − τ 2

, (11.182)

where the parameter c is defined by (11.124), i.e.

c = (ξτ −
√

τ 2
s − τ 2 )/(1 + ξ2). (11.183)

Calculation of Numerical Values

A function (in C, using complex calculus) to calculate the value of the dimensionless
parameter uπμz/Qcs as a function of the parameters ξ = x/z (with ξ ≥ 0), τ =
cpt/z and Poisson’s ratio ν, is shown below. The function consists of three parts, as
given by (11.178), (11.180) and (11.182).

double LinePulseU(double xi,double tau,double nu)
{
double u,u1,u2,u3,n,nn,tau2,taup2,taus2,taus,tauq;
complex a,aa,a1,b,bb,b1,gp,gs,d,e,c,cc,c1;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);tau2=tau*tau;
taus2=1+xi*xi;taup2=nn*taus2;taus=sqrt(taus2);tauq=n*xi+sqrt(1-nn);
if (tau2<=taup2) u1=0;else
{
a=complex(xi*tau/taus2,sqrt(tau2-taup2)/taus2);aa=a*a;a1=1-2*aa;
gp=sqrt(nn-aa);gs=sqrt(1-aa);d=a*gp*a1;
e=a1*a1+4*aa*gp*gs;u1=real(d/e)/(sqrt(tau2-taup2));
}

if (tau2<=taus2) u2=0;else
{
b=complex(xi*tau/taus2,sqrt(tau2-taus2)/taus2);bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=2*b*gp*gs*gs;
e=b1*b1+4*bb*gp*gs;u2=-real(d/e)/(sqrt(tau2-taus2));
}

if ((tau<=tauq)||(tau>=taus)||(xi*sqrt(1-nn)<nn)) u3=0;else
{
c=complex((xi*tau-sqrt(taus2-tau2))/taus2,0);cc=c*c;c1=1-2*cc;
gp=sqrt(nn-cc);gs=sqrt(1-cc);d=2*c*gp*gs*gs;e=c1*c1+4*cc*gp*gs;
u3=-imag(d/e)/sqrt(taus2-tau2);
}

u=u1+u2+u3;
return(u);
}
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Fig. 11.11 Line pulse—horizontal displacement, ν = 0, cs t/z = 5

Fig. 11.12 Line pulse—horizontal displacement, ν = 0, cs t/z = 40

Some examples are shown in Figs. 11.11 and 11.12, for ν = 0, and cst/z = 5 and
cst/z = 40, respectively. In Fig. 11.11 the first wave, the compression wave, has
reached the distance x/z = 7.01, and the second wave, the shear wave, has reached
a distance x/z = 4.91. It can easily be verified that these values agree well with the
theoretical values cpt/r = 1 and cst/r = 1, respectively. For large values of time,
practically the only effect remaining is the Rayleigh wave, see Fig. 11.12, arriving
shortly after the passage of the shear wave.
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11.1.6 The Horizontal Displacement of the Surface

The expressions for the horizontal displacement derived in the previous section can
not be used at the surface z = 0, because z has been used as the scaling factor in the
dimensionless parameters. Therefore another set of dimensionless parameters must
be introduced for the displacements of the surface.

The First Component

The first component of the horizontal displacement is, from (11.172),

u1 = Q

πμ
�

{
pγp(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

, p = p1, (11.184)

where

p1 = tx

r2 + iz

r2

√
t2 − t2

p. (11.185)

At the surface z = 0 the radial coordinate r coincides with x, r = x, so that p1 =
t/x. Introducing a dimensionless time variable τ , defined as

τ = cst/x, (11.186)

the parameter p1 can be written as p1 = τ/cs .
Because the integral (11.184) contains a factor H(t − tp), and tp = x/cp =

xη/cs = ηt/τ , non-zero results will be obtained only for τ > η.
The parameters γp and γs now are

z = 0, τ > η : γp = −i

√
τ 2 − η2/cs, (11.187)

z = 0, τ < 1 : γs =
√

1 − τ 2/cs, τ > 1 : γs = −i
√

τ 2 − 1/cs. (11.188)

And the factor
√

t2 − t2
p is

z = 0, τ > η :
√

t2 − t2
p = (x/cs)

√
τ 2 − η2, (11.189)

which shows that for all values τ > η the factor γp/
√

t2 − t2
p = −i/x.

As stated above, the result will be zero if τ < η. If η < τ < 1 the factor γpγs will
be imaginary, so that the denominator in the expression between brackets in (11.184)
will be complex. This leads to the result

z = 0, η < τ < 1 : u1 = Qcs

πμx
�
{

τ(1 − 2τ 2)

(1 − 2τ 2)2 − 4iτ 2
√

τ 2 − η2
√

1 − τ 2

}
.

(11.190)
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Fig. 11.13 Modified
integration path for z = 0

If τ > 1 the factor γpγs will be real, and the factor between brackets in (11.184) will
be imaginary, so that the real part is zero. This suggests that the expression u1 = 0
for τ > 1, but this may not be correct, because the denominator of (11.184) passes
through zero, at the value of p corresponding to the Rayleigh wave singularity. The
simplest way to investigate this is to return to the original integral (11.169), with
z = 0,

u1 = iQ

2πμ

∫ i∞

−i∞
p(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−spx)dp, (11.191)

and to analyze the behaviour of the integral along the modified integration path
when it passes the singularity at p = 1/cr , for z = 0, see Fig. 11.13. The integrand
of (11.169) is real along the real axis for p > 1/cs (this corresponds to τ > 1),
and therefore the contributions of the path just below the real axis (from right to
left) and the path just above the real axis (from left to right) cancel, as was also
obtained above. This requires, however, that the integral be considered as a Cauchy
principal value, because the integrand of (11.169) has a singularity on the positive
part of the real axis at p = 1/cr . The possible contribution of integrating around
this singularity can be determined by calculating the contribution to the integral of
a small circle surrounding the pole at p = 1/cr .

Therefore, let the denominator of the integral, the Rayleigh function, be denoted
by R(p2),

R(p2) = (2p2 − 1/c2
s )

2 − 4p2
√

p2 − 1/c2
p

√
p2 − 1/c2

s , (11.192)

where γp and γs have been given their appropriate values for z = 0 and large real
values of p. Introducing a dimensionless parameter q = pcs one may write, with
η = cs/cp ,

R(q2) = c4
s R(p2) = (2q2 − 1)2 − 4q2

√
q2 − η2

√
q2 − 1. (11.193)

For real values of q , such that q > 1, the function R(q2) is real, and it has a zero for
q = β = cs/cr , where cr is the Rayleigh wave velocity. It follows that

√
β2 − η2

√
β2 − 1 = (2β2 − 1)2/4β2. (11.194)
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In the vicinity of this zero, the function R(q2) can be written as

R(q2) = (q2 − β2)R′(q2)|q2=β2 , (11.195)

where R′(q2) = dR(q2)/dq2, or

R′(q2) = 4(2q2 − 1) − 4
√

q2 − η2
√

q2 − 1 + 2q2(2q2 − 1 − η2)
√

q2 − η2
√

q2 − 1
. (11.196)

Using (11.194) it follows, after some simple algebraic operations, that in the vicinity
of β

R(q2) = −2(q − β)
1 − 4β2 + 8(1 − η2)β6

β(2β2 − 1)2
. (11.197)

It now follows that integration along a small circle surrounding the pole p = 1/cr ,
in clockwise direction, gives a contribution

u1 = Q

2μ

β2(2β2 − 1)3

1 − 4β2 + 8(1 − η2)β6
exp(−sx/cr ). (11.198)

Inverse Laplace transformation gives

z = 0, τ > 1 : u1 = Q

2μ

β2(2β2 − 1)3

1 − 4β2 + 8(1 − η2)β6 δ(t − x/cr ), (11.199)

where δ(t −x/cr) is Dirac’s delta function. It appears that there is indeed a non-zero
contribution due to the pole at p = 1/cr .

The Second Component

The second component of the horizontal displacement is, from (11.174),

u2 = − Q

πμ
�

{
2pγpγ 2

s

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − ts)√

t2 − t2
s

, p = p3, (11.200)

where

p3 = tx

r2
+ iz

r2

√
t2 − t2

s . (11.201)

Again using the dimensionless time parameter τ = cst/x for points on the surface
z = 0, where p3 = t/x, and noting that contributions can only be expected for t > ts ,
or τ > 1, it can be seen that the denominator of the term between brackets is real,
and that the denominator is imaginary, so that the result would be zero, if it were
not for a possible contribution from the pole at p = 1/cr . This contribution can be
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determined in the same way as in the case of the first component. The expression
for u2 + u3 in the integral (11.170) is

u2 + u3 = − iQ

2πμ

∫ i∞

−i∞
2pγpγs

(1/c2
s − 2p2)2 + 4p2γpγs

exp[−s(γsz + px)]dp,

(11.202)
with

γp =
√

1/c2
p − p2, γs =

√
1/c2

s − p2. (11.203)

The parts of the integral along the real axis z = 0 are, if p > 1/cs ,

u2 = iQ

2πμ

∫ 2p

√
p2 − 1/cp

√
p2 − 1/cs

(2p2 − 1/c2
s )

2 − 4p2
√

p2 − 1/cp

√
p2 − 1/cs

exp(−spx)dp.

(11.204)
Along the real axis, for p > 1/cs , the integrand appears to be real, so that the two
parts of the integral just above and just below the real axis cancel, provided that
the two parts of the integral are considered as Cauchy principal values, because of
the singularity at p = 1/cr . Again, the possible contribution of integrating around
this singularity can be determined by calculating the contribution to the integral of a
small circle surrounding the pole at p = 1/cr . In this case this gives, using the same
type of analysis as previously,

u2 = − Q

4μ

(2β2 − 1)4

1 − 4β2 + 8(1 − η2)β6
exp(−sx/cr ). (11.205)

Inverse Laplace transformation gives

z = 0, τ > 1 : u2 = − Q

4μ

(2β2 − 1)4

1 − 4β2 + 8(1 − η2)β6 δ(t − x/cr). (11.206)

Again there appears to be a non-zero contribution due to the pole at p = 1/cr .

The Third Component

The third component of the horizontal displacement is, from (11.176),

u3 = − Q

πμ
�
{

2pγpγ 2
s

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tq)H(ts − t)

√
t2
s − t2

, p = p5,

(11.207)
where

p5 = xt

r2
− z

r2

√
t2
s − t2. (11.208)
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Using the dimensionless time parameter τ = cst/x for points on the surface z = 0,
this reduces to

z = 0, η < τ < 1 : u3 = Qcs

πμx
�
{

2iτ
√

τ 2 − η2
√

1 − τ2

(1 − 2τ 2)2 − 4iτ 2
√

τ 2 − η2
√

1 − τ 2

}
.

(11.209)
For other values of τ , notably τ < η or τ > 1, there is no contribution of this com-
ponent, u3 = 0.

Total Surface Displacements

Adding the contributions to the surface displacements, the final expressions for the
displacements of the surface z = 0 are, with τ = cst/x,

z = 0, τ < η : u = 0, (11.210)

z = 0, η < τ < 1 : u = Qcs

πμx

2τ(1 − 2τ 2)
√

τ 2 − η2
√

1 − τ2

(1 − 2τ 2)4 + 16τ 4(τ 2 − η2)(1 − τ 2)
, (11.211)

z = 0, τ > 1 : u = Qcs

4μx

(2τ 3 − 1)3

1 − 4β2 + 8(1 − η2)β6
δ(τ − β). (11.212)

In the last equation it has been used that

δ(τ − β) = (x/cs)δ(t − x/cr), (11.213)

which can be derived from the definition of Dirac’s delta function, (11.12).
The surface displacements are shown in graphical form in the Figs. 11.14, 11.15

and 11.16, for three values of ν. In each case the displacements are zero before the

Fig. 11.14 Horizontal displacement, ν = 0.00



260 11 Line Load on Elastic Half Space

Fig. 11.15 Horizontal displacement, ν = 0.25

Fig. 11.16 Horizontal displacement, ν = 0.50

arrival of the compression wave, and after the passage of the shear wave, except
for the singularity at the passage of the Rayleigh wave. The values indicating the
passage of the Rayleigh waves are not on scale, but their relative magnitude is in
agreement with the real value, as given in (11.212). It may be mentioned that the
sign of these factors is erroneous in some earlier publications, as noted by Kausel
(2006).

11.2 Constant Line Load

In this section the problem of a constant line load on a half plane, applied at time
t = 0 is considered, see Fig. 11.17, with special attention to the determination of
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Fig. 11.17 Half plane with
line load

the stress components (Verruijt, 2008a). This is the dynamic equivalent of the clas-
sical Flamant problem of elastostatics (Timoshenko and Goodier, 1970). It can be
expected that in the dynamic case compression waves and shear waves will be gen-
erated, and probably Rayleigh waves near the surface z = 0. It can also be expected
that for very large values of time the elastostatic solution will be recovered.

In this case the boundary condition for the normal stress on the boundary is

z = 0 : σzz = −FH(t)δ(x), (11.214)

where F is the magnitude of the load (per unit length), δ(x) is a Dirac delta function,
and H(t) is Heaviside’s unit step function. This boundary condition expresses that
a line load of magnitude F is applied at time t = 0, and that this load then remains
constant.

The Laplace transform of the boundary condition (11.214) is

z = 0 : σzz = −F

s
δ(x), (11.215)

or, when the delta-function is expressed as a Fourier integral,

z = 0 : σzz = − F

2π

∫ ∞

−∞
exp(−isαx)dα. (11.216)

The difference with the impulse problem considered in the previous section is that
the quantity Qs is now replaced by F . This is in agreement with the difference in
the loading function. Dirac’s delta function is the derivative of Heaviside’s unit step
function, and in the Laplace transforms this results in multiplication by s.

It can be concluded that in this case the two constants in the general solution of
the problem are, compare (11.44) and (11.45),

Cp = F

μs2

2α2 + 1/c2
s

(2α2 + 1/c2
s )

2 − 4α2γpγs

, (11.217)
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Cs = − F

μs2

2αγp

(2α2 + 1/c2
s )

2 − 4α2γpγs

. (11.218)

For this problem the stresses will be elaborated. The stresses are of particular interest
in geotechnical problems. They can be evaluated using De Hoop’s method, in the
same way as in the previous section. In this case not all the details of the analysis
will be given, as reference can be made to the previous problem.

11.2.1 Isotropic Stress

The simplest quantity to evaluate is the isotropic stress σ = (σxx + σzz)/2. It is
recalled from (11.41) that the Laplace transform of this isotropic stress is

σ = − (λ + μ)s2

2πc2
p

∫ ∞

−∞
Cp exp(−γpsz − isαx)dα. (11.219)

Substitution of (11.217) into this expression gives

σ = − (1 − η2)F

2πc2
s

∫ ∞

−∞
2α2 + 1/c2

s

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα,

(11.220)
where

η2 = c2
s

c2
p

= μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
. (11.221)

Using the same methods as in the previous section this integral can be transformed
into the form

σ = − (1 − η2)F

πc2
s

∫ ∞

0
�

{
(1/c2

s − 2p2)γp

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

exp(−st) dt,

(11.222)
where p = p1, which is defined by the equation

p1 = tx

r2 + iz

r2

√
t2 − t2

p, (11.223)

and, as before, tp = r/cp , γp =
√

1/c2
p − p2 and γs = √

1/c2
s − p2.

The integral (11.222) is of the form of a Laplace transform, which means that the
inverse Laplace transform is

σ = − (1 − η2)F

πc2
s

�
{

(1/c2
s − 2p2)γp

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

, p = p1. (11.224)

This is the final expression for the isotropic stress.
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Calculation of Numerical Values

Using the dimensionless variables

ξ = x/z, τ = cst/z, τp = cstp/z = η

√
1 + ξ2, b = p cs, (11.225)

it follows that suitable dimensionless forms of the quantities γp and γs are

gp = γpcs =
√

η2 − b2, gs = γscs =
√

1 − b2. (11.226)

The dimensionless form of (11.224) is

σπz

F
= −(1 − η2)�

{
(1 − 2b2)gp

(1 − 2b2)2 + 4b2gpgs

}
H(τ − τp)
√

τ 2 − τ 2
p

, (11.227)

where

b =
ξτ + i

√
τ 2 − τ 2

p

1 + ξ2 . (11.228)

It may be noted that τp = η
√

1 + ξ2, the dimensionless arrival time of the compres-
sion wave.

Equation (11.227) can be used to produce numerical results, by a simple com-
puter program. A function (in C, using complex calculus) to determine the value of
the dimensionless isotropic stress σπz/F as a function of the parameters ξ = x/z,
τ = cpt/z and Poisson’s ratio ν, is shown below.

double LineLoadS(double xi,double tau,double nu)
{
double s,n,nn,x1,tp2,t2;complex b,bb,b1,gp,gs,d,e;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);x1=1+x*x;tp2=nn*x1;t2=t*t;
if (t2<=tp2) s=0;else
{
b=complex(x*t/x1,(sqrt(t2-tp2))/x1);bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=b1*gp;e=b1*b1+4*bb*gp*gs;
s=-(1-nn)*real(d/e)/sqrt(t2-tp2);

}
return(s);
}

It may be noted that the argument of the parameters gp and gs should be taken
in the range (−π,0), and that the square roots should be calculated separately, to
ensure that the arguments are determined correctly.

Some examples are shown in Figs. 11.18, 11.19 and 11.20. The figures show
the isotropic stress as a function of x/z, for ν = 0 and for three increasing values of
time, cst/z = 2, cst/z = 10 and cst/z = 20. Although in these figures the maximum
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Fig. 11.18 Line load—isotropic stress, ν = 0, cs t/z = 2

Fig. 11.19 Line load—isotropic stress, ν = 0, cs t/z = 10

value of the dimensionless stress seems to be 1, larger values may occur in the im-
mediate vicinity of the wave front. In this case of the isotropic stress the wave front
travels with the velocity of compression waves. For ν = 0 the ratio of compression
waves and shear waves is cp/cs = √

2 = 1.4142. This can be seen in Fig. 11.18,
where the wave front has reached a distance of about x/z = 2.66 at time cst/z = 2,
which corresponds to cpt/r = 1, approximately. In Fig. 11.19, at time cst/z = 10,
the disturbance at cst/z ≈ 8.8 indicates the Rayleigh wave. In Fig. 11.20 the value
of time is so large that the static results are approached. Actually, the static solution
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Fig. 11.20 Line load—isotropic stress, ν = 0, cs t/z = 20

of this problem is (Timoshenko and Goodier, 1970)

t → ∞ : σ πz

F
= − 1

1 + x2/z2 . (11.229)

This static solution is shown in Fig. 11.20 by small asterisks. The agreement appears
to be excellent.

In general the numerical values depend upon the value of Poisson’s ratio, but for
very large values of time no such dependence is found, in agreement with the static
solution.

A comprehensive view of the results is shown in Fig. 11.21. This figure shows
contours of the isotropic stress as a function of x/z and cst/z. The interval between
successive contours is �σπz/F = 0.1. It is interesting to note that the Rayleigh
wave can clearly be distinguished in the results, as the tensile zone, progressing
towards infinity along the lines cst/x ≈ ±1.1. It appears that at very large dis-
tances from the point of application of the load the shape and the magnitude of the
Rayleigh wave are preserved, even when near the center the static results have long
been reached. This is in agreement with the classical analysis of Rayleigh waves
in the two-dimensional case, see for instance Achenbach (1975), or the analysis of
Rayleigh waves in Chap. 9 of this book. The results shown in Fig. 11.21 suggest
that, for sufficiently large values of time, the solution consists of the elastostatic
stresses plus a moving stress distribution representing the Rayleigh wave,

cst/z � 1 : σπz

F
= − 1

1 + x2/z2 + m

1 + (x − cr t)2/(wz)2 , (11.230)

where cr is the velocity of the Rayleigh wave, and the coefficients m and w can
be determined by fitting the curve with the exact results. For ν = 0 it follows that
m ≈ 0.28 and w ≈ 0.7.
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Fig. 11.21 Line load—contours of isotropic stress, ν = 0

Verification of the Elastostatic Limit

Although the numerical results have been found to be in agreement with the elas-
tostatic limit for very large values of time, it may be illustrative to also verify
this agreement analytically, by considering the limiting behaviour of the solution
(11.227) of the elastodynamic problem,

σπz

F
= −(1 − η2)�

{
(1 − 2b2)gp

(1 − 2b2)2 + 4b2gpgs

}
H(τ − τp)
√

τ 2 − τ 2
p

, (11.231)

where

b =
ξτ + i

√
τ 2 − τ 2

p

1 + ξ2 , (11.232)

gp = γpcs =
√

η2 − b2, gs = γscs =
√

1 − b2, τp = η

√
1 + ξ2. (11.233)

If τ � τp it follows from (11.232) that b = (ξ+i)τ

1+ξ2 , indicating that b tends to infinity,
if the dimensionless time parameter τ tends to infinity, assuming that the dimension-
less distance ξ remains finite, and does not also tend to infinity.

Taking into account that the real parts of gp and gs (the dimensionless forms of
the parameters γp and γs ) should be positive, and their imaginary parts should be
negative, as indicated in Sect. 11.1, it now follows from (11.233) that

gp = −ib(1 − η2/2b2), gs = −ib(1 − 1/2b2). (11.234)

In order to evaluate the limiting form of the denominator in (11.231) it may be noted
that

(1 − 2b2)2 = 4b4 − 4b2 + 1, 4b2gpgs = −4b4 + 2b2(1 + η2), (11.235)
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so that

(1 − 2b2)2 + 4b2gpgs = −2b2(1 − η2). (11.236)

On the other hand, the numerator in (11.231) is

(1 − 2b2)gp = 2ib3 = 2b2 i(ξ + i)τ

1 + ξ2
. (11.237)

It now follows that

�
{ (1 − 2b2)gp

(1 − 2b2)2 + 4b2gpgs

}
= τ

(1 − η2)(1 + ξ2)
. (11.238)

Finally it follows, substituting this result into (11.231), that

τ → ∞ : σπz

F
= − 1

1 + ξ2
. (11.239)

This is indeed the correct elastostatic solution, see (11.229).

Approximate Analysis of the Rayleigh Wave

It has already been observed from the complete solution that the line load produces
Rayleigh waves, see Fig. 11.21. These waves travel at a constant speed cr and with
constant shape to infinity, at both ends. This part of the solution may be further ana-
lyzed by investigating the behaviour of the general solution (11.227) in the vicinity
of the Rayleigh wave (Verruijt, 2008a).

For this purpose the general solution (11.227) is written in the form

σπz

F
= �

{
Q(b2)

R(b2)

}
H(τ − τp), (11.240)

where Q(b2) is defined by

Q(b2) = (1 − η2)(2b2 − 1)hp/

√
τ 2 − τ 2

p, (11.241)

and R(b2) is the Rayleigh function,

R(b2) = (2b2 − 1)2 − 4b2hphs. (11.242)

In these functions the following parameters have been used

b =
ξτ + i

√
τ 2 − τ 2

p

1 + ξ 2
, ξ = x/z, τ = cst/z, τp = η

√
1 + ξ2, (11.243)
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and

hp = igp =
√

b2 − η2, hs = igs =
√

b2 − 1. (11.244)

The function R(b2) assumes a zero value for the real value b = β , where

β = cs/cr , (11.245)

the ratio of the shear wave velocity cs to the Rayleigh wave velocity cr , see Chap. 9.
The value of β depends upon the value of Poisson’s ratio, but is always somewhat
larger than 1, indicating that the Rayleigh wave is always slightly slower than the
shear wave.

In the solution considered here the value of b is complex, see (11.243), but it
can be expected that for values of b close to β the absolute value of R(b2) will be
small, perhaps very small, so that the isotropic stress will be large. Using Taylor’s
expansion formula the function R(b2) for values of b close to β may be written as

R(b2) = −M(b2 − β2) ≈ −2Mβ(b − β), (11.246)

where

M = − dR

db2

∣∣∣∣
b=β

. (11.247)

The minus sign has been included in this definition to ensure that M > 0.
It follows from (11.242) and (11.244) that

dR

db2 = 4(2b2 − 1) − 4hphs − 2b2hs

hp

− 2b2hp

hs

. (11.248)

The parameter M can be calculated by taking b = β . With (11.247) this gives, mak-
ing use of the knowledge that R(β2) = 0,

M = 1 − 4β2 + 8(1 − η2)β6

β2(2β2 − 1)2 . (11.249)

It may be noted that this is a real (and positive) value. Table 11.1 shows the values of
η = cs/cp , β = cs/cr and M , as functions of Poisson’s ratio ν, together with some
other parameters, to be introduced later.

The Rayleigh wave is especially prominent for large values of ξ and τ , with ξ

in the vicinity of τ/β . If it is assumed that τ � 1 and that ξ ≈ τ/β it follows that
ξ � 1, so that 1+ξ2 ≈ ξ2. It then follows, with the last of (11.243), that τp ≈ ητ/β ,
so that τ 2 − τ 2

p ≈ τ 2(1 − η2/β2). Furthermore, the value of hp , defined in the first

of (11.244), can be approximated by hp ≈ √
β2 − η2, so that hp/

√
τ 2 − τ 2

p ≈ β/τ .

It follows that the expression for Q(b2), see (11.241), can be approximated by

ξ � 1, τ � 1 : Q(b2) ≈ Q(β2) ≈ (1 − η2)(2β2 − 1)β/τ. (11.250)
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Table 11.1 Rayleigh wave velocities, and some derived parameters

ν η = cs/cp β = cs/cr M m wp ws

0.00 0.707107 1.144123 1.381966 0.284432 0.786151 0.485868

0.05 0.688247 1.131612 1.512235 0.267257 0.793783 0.468064

0.10 0.666667 1.119688 1.664979 0.249677 0.803426 0.449846

0.15 0.641689 1.108377 1.844774 0.231905 0.815367 0.431277

0.20 0.612372 1.097700 2.057248 0.214161 0.829929 0.412415

0.25 0.577350 1.087664 2.309401 0.196660 0.847487 0.393320

0.30 0.534522 1.078269 2.610083 0.179596 0.868481 0.374040

0.35 0.480384 1.069504 2.970690 0.163133 0.893448 0.354613

0.40 0.408248 1.061351 3.406234 0.147398 0.923063 0.335064

0.45 0.301511 1.053786 3.936997 0.132478 0.958193 0.315397

0.50 0.000000 1.046778 4.591195 0.118420 1.000000 0.295598

In (11.246) the variable is b. With the first of (11.243), and assuming that ξ � 1 and
τ � 1, this quantity can be expressed as

ξ � 1, τ � 1 : b ≈ τ

ξ
+ i

√
τ 2 − η2ξ2

ξ 2 . (11.251)

Substitution into (11.246) gives

ξ � 1, τ � 1 : R(b2) ≈ −2Mβ

{
τ − ξβ

ξ
+ i

√
τ 2 − η2ξ2

ξ2

}
. (11.252)

Taking ξ = τ/β everywhere, except in the factor τ − ξβ , gives

ξ � 1, τ � 1 : R(b2) ≈ 2Mβ3

τ

[
(ξ − τ/β) − i

√
1 − η2/β2

]
. (11.253)

Substitution of (11.250) and (11.253) into (11.240) gives

ξ � 1, τ � 1 : σπz

F
≈ (1 − η2)(2β2 − 1)

2aβ2
√

1 − η2/β2

1

1 + (ξ − τ/β)2/(1 − η2/β2)
.

(11.254)
Using the original variables this can be written as

x/z � 1, cs t/z � 1 : σπz

F
≈ m

1 + (x − cr t)2/(wpz)2 , (11.255)

where m is the maximum value of the Rayleigh wave disturbance,

m = (1 − η2)(2β2 − 1)

2Mβ2wp

, (11.256)
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Fig. 11.22 Line load—isotropic stress, ν = 0, cs t/z = 40

and wp is a measure for the width of the Rayleigh wave disturbance,

wp =
√

1 − η2/β2. (11.257)

It may be noted that this form of the approximation is in agreement with the sug-
gestion of (11.230), but now the equation has been derived analytically.

It can be seen from (11.255) that for x = cr t , the stress parameter σπz/F = m,
and that for x = cr t ± wpz this value is σπz/F = m/2, indicating that the distance
2wpz is the total width of the disturbance at its medium height. The parameters m

and wp depend upon the value of Poisson’s ratio, see Table 11.1, but they do not de-
pend upon x/z or cst/z, thus confirming the well known property of Rayleigh waves
in the two dimensional case, that they are independent of the distance travelled.

To demonstrate the accuracy of the approximation two examples are shown in
Figs. 11.22 and 11.23. These figures show the values of the isotropic stress as a
function of x/z, for cst/z = 40, and for two values of Poisson’s ratio, ν = 0 and
ν = 0.5. The fully drawn lines show the exact results, calculated by (11.227), and
the dashed lines indicate the approximate results, calculated by a superposition of
the steady state solution (11.229) and the approximate formula for the Rayleigh
wave disturbance (11.255). This final approximate formula, valid for any value of
ξ = x/z, is

cst/z � 1 : σπz

F
≈ − 1

1 + x2/z2
+ m

1 + (x − cr t)2/(wpz)2
. (11.258)

It appears that the exact results and the approximate results can hardly be distin-
guished from each other, indicating that the approximate results are very accurate.
Actually, the maximum difference between the exact solution and the approximate
solution is less than 0.01, in both cases.
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Fig. 11.23 Line load—isotropic stress, ν = 0.5, cs t/z = 40

11.2.2 The Vertical Normal Stress

Probably the most interesting quantity for soil mechanics practice is the vertical
normal stress σzz. It is recalled from (11.38) that its Laplace transform is

σzz = − s2μ

2π

∫ ∞

−∞
{(2α2 + 1/c2

s )Cp exp(−γpsz) + 2αγsCs exp(−γssz)}

× exp(−isαx)dα. (11.259)

Substitution of the expressions (11.217) and (11.218) for the two constants Cp and
Cs gives

σzz = σ 1 + σ 2 + σ 3, (11.260)

where

σ 1 = − F

2π

∫ ∞

−∞
(2α2 + 1/c2

s )
2

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα, (11.261)

σ 2 + σ 3 = F

2π

∫ ∞

−∞
4α2γpγs

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα. (11.262)

The evaluation of the two integrals (11.261) and (11.262) can be performed using
the same procedures as for the first problem of this chapter, the vertical displacement
due to a pulse load.

The first integral, (11.261), leads to the expression

σ1 = −F

π
�

{
(1/c2

s − 2p2)2γp

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

, p = p1, (11.263)
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where p1 is defined by (11.223),

p1 = tx

r2
+ iz

r2

√
t2 − t2

p. (11.264)

The second integral, (11.262), leads to two contributions to the vertical normal
stress, which will be denoted by σ2 and σ3. The part σ2, which is generated by
integrating along the curved parts of the integration path shown in Fig. 11.3, is

σ2 = −F

π
�

{
4p2γpγ 2

s

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − ts)√

t2 − t2
s

, p = p2, (11.265)

where p2 is defined by

p2 = tx

r2 + iz

r2

√
t2 − t2

s . (11.266)

If

x2

z2
>

η2

1 − η2
, (11.267)

there is an additional contribution, denoted by σ3, to the second integral, produced
by integrating along the loop in the integration path shown in Fig. 11.3. This contri-
bution is

σ3 = −F

π
�
{

4p2γpγ 2
s

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tq)H(ts − t)

√
t2
s − t2

, p = p3,

(11.268)
where p3 is defined by

p3 = xt

r2 − z

r2

√
t2
s − t2, (11.269)

and tq is defined by

tq/ts = (ηx + z

√
1 − η2)/r, tq/ts < 1. (11.270)

It may be noted that the function H(t − tq)H(ts − t) is equal to 1 in the interval

tq < t < ts only, elsewhere it is zero. A factor H(x
√

1 − η2 − ηz) might be added
to take into account that a contribution of the loop should be included only if the
condition (11.267) is satisfied, but this is not really necessary as it is ensured by the
condition tq < ts , which is ensured by the factor H(t − tq)H(ts − t).

Calculation of Numerical Values

The vertical normal stress σzz can be written as

σzz = σ1 + σ2 + σ3, (11.271)
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where σ1 is given by (11.263), σ2 by (11.265) and σ3 by (11.268). For the computa-
tion of numerical results these formulas can be made dimensionless by introducing
a reference stress F/z and a reference time z/cp , and using the dimensionless pa-
rameters

ξ = x/z, τ = cst/z, τp = η

√
1 + ξ 2, τs =

√
1 + ξ2,

τq = ηξ +
√

1 − η2, a = csp, gp = csγp =
√

η2 − a2, (11.272)

gs = csγs =
√

1 − a2.

The dimensionless form of the first term is

σ1πz

F
= −�

{
(1 − 2a2)2

√
η2 − a2

(1 − 2a2)2 + 4a2
√

1 − a2
√

η2 − a2

}
H(τ − τp)
√

τ 2 − τ 2
p

, (11.273)

where

a =
τξ + i

√
τ 2 − τ 2

p

1 + ξ2
. (11.274)

The dimensionless form of the second term is

σ2πz

F
= −�

{
4b2(1 − b2)

√
η2 − b2

(1 − 2b2)2 + 4b2
√

1 − b2
√

η2 − b2

}
H(τ − τs)√

τ 2 − τ 2
s

, (11.275)

where

b = τξ + i
√

τ 2 − τ 2
s

1 + ξ2 . (11.276)

The dimensionless form of the third term is

σ3πz

F
= 4ηc2(1 − c2)(1 − 2c2)2

√
c2 − η2

(1 − 2c2)4 + 16c4(c2 − η2)(1 − c2)

H(τ − τq)H(τs − τ)
√

τ 2
s − τ 2

, (11.277)

where

c = ξτ − √
τ 2
s − τ 2

1 + ξ 2 . (11.278)

All factors in the expression (11.277) are real.
It should be noted that in the derivation of these expressions it has been assumed

that x > 0, so that ξ > 0. Values for ξ < 0 can be obtained by using the symmetry
of the problem.

A function to calculate the value of the dimensionless parameter σzzπz/2F as a
function of the parameters ξ = x/z (with ξ ≥ 0), τ = cpt/z and Poisson’s ratio ν, is
shown below. In this function the dimensionless parameters ξ , τ and ν are denoted
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Fig. 11.24 Line load—vertical normal stress, ν = 0, cs t/z = 1

by x, t and nu. The function consists of three parts, as given by (11.273), (11.275)
and (11.277).

double LineLoadSzz(double x,double t,double nu)
{
double s,s1,s2,s3,n,nn,nn1,tp2,ts2,ts,tq,t2,c,cc,f,g,h;
complex a,aa,a1,b,bb,b1,gp,gs,d,e;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);nn1=sqrt(1-nn);
ts2=1+x*x;tp2=nn*ts2;ts=sqrt(ts2);t2=t*t;tq=n*x+nn1;
if (t2<=tp2) s1=0;else
{
a=complex(x*t/ts2,sqrt(t2-tp2)/ts2);aa=a*a;a1=1-2*aa;
gp=sqrt(nn-aa);gs=sqrt(1-aa);d=a1*a1*gp;e=a1*a1+4*aa*gp*gs;
s1=-real(d/e)/(2*sqrt(t2-tp2));
}

if (t2<=ts2) s2=0;else
{
b=complex(x*t/ts2,sqrt(t2-ts2)/ts2);bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=4*bb*(1-bb)*gp;e=b1*b1+4*bb*gp*gs;
s2=-real(d/e)/(2*sqrt(t2-ts2));
}

if ((t<=tq)||(t>=ts)||(tq>ts)) s3=0;else
{
c=(x*t-sqrt(ts2-t2))/ts2;cc=c*c;f=(1-2*cc)*(1-2*cc);
g=4*n*cc*(1-cc)*f*sqrt(cc-nn);h=f*f+16*cc*cc*(1-cc)*(cc-nn);
s3=g/(2*h*sqrt(ts2-t2));
}

s=s1+s2+s3;
return(s);
}

Some results are shown in Figs. 11.24, 11.25 and 11.26. These figures show the
vertical normal stress σzz as a function of ξ = x/z, for ν = 0, and for the values
cst/z = 1, 8 and 40, respectively. The results for cst/z = 1 indicate that for rela-
tively small values of time non-zero values are obtained only if t > tp . For larger
values, for instance cst/z = 8, a discontinuity can be observed when the shear wave
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Fig. 11.25 Line load—vertical normal stress, ν = 0, cs t/z = 8

Fig. 11.26 Line load—vertical normal stress, ν = 0, cs t/z = 40

passes, and relatively large values are observed somewhat later, probably at the pass-
ing of the Rayleigh wave.

It may be noted from Fig. 11.24 that the first wave arrives at x/z = 1. This means
that then r/x = 1.414214. If it is assumed that this is the compression wave, arriving
at time cpt/r = 1.0, it would follow that cp/cs = 1.414214, which is precisely the
known value of this ratio for ν = 0.

Furthermore, from the numerical data used to produce Fig. 11.25 it follows that
for cst/z = 8 the shear wave discontinuity appears for x/z = 7.935, which can be
verified, approximately, by inspection of the figure. This means that r/z = 7.998, so
that this discontinuity appears if cst/r = 8/7.998 = 1.00025, which is very close to
the expected value of cst/r = 1. Secondly, it can be seen that a local maximum of
the stress appears if x/z = 6.99, again determined from the actual numerical data,
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used to draw Fig. 11.25. If it is postulated that this is the Rayleigh wave, arriving
at time cr t/x = 1.0, it would follow that cr/cs = 0.87375, which is very close to
the exact value cr/cs = 0.874032. It appears that the solution not only shows the
correct asymptotic behaviour for t → ∞, but that also certain characteristic values
are very close to the expected theoretical values.

For large enough values of time, say cst/z = 40, the results approach the elasto-
static values, which are indicated in Fig. 11.26 by dots. These elastostatic values are
(Timoshenko and Goodier, 1970)

τ � τp : σzzπz

2F
= − 1

(1 + ξ2)2
. (11.279)

Verification of the Elastostatic Limit

In addition to the numerical verification of the elastostatic limit, it may be illus-
trative to verify the elastostatic limit from the analytic solution (11.227) of the
elastodynamic problem, as described in its three components by (11.273), (11.275)
and (11.277). It may be noted that the third component vanishes after the arrival of
the shear wave, at time t = ts , so that only the first two components need to be taken
into account. Both these two components are unbounded for τ → ∞, but their sum
should be finite. To verify this property, it is necessary to use series expansions with
at least two or three terms.

Assuming that the dimensionless time parameter τ → ∞, while the dimension-
less distance ξ remains finite, and using an analysis similar to the one used for the
isotropic stress, the first component of the vertical stress, as given by (11.273), can
be approximated by

σ1πz

F
= −�

{
2iτ 2

(1 − η2)(ξ − i)2

[
1 − 3iη2

2τ 2 + (3η4 − 1)(ξ − i)

4τ 2(1 − η2)
+ η2(ξ + i)

2τ 2

]}
.

(11.280)

The limiting behaviour of the second component, (11.275) for large values of τ and
finite values of ξ is found to be

σ2πz

F
= �

{
2iτ 2

(1 − η2)(ξ − i)2

[
1 − 3i

2τ 2
+ (3η4 − 1)(ξ − i)

4τ 2(1 − η2)
+ ξ + i

2τ 2

]}
. (11.281)

It follows from (11.280) and (11.281) that for very large values of time the vertical
normal stress, which is the sum of the components σ1 and σ2, is

τ → ∞ : σzzπz

F
= �

{−2 + 3iξ + iξ3

(1 + ξ2)2

}
= − 2

(1 + ξ 2)2
. (11.282)

This is indeed the correct elastostatic solution, see (11.279).



11.2 Constant Line Load 277

Approximate Analysis of the Rayleigh Wave

For large values of time and the lateral coordinate x the solution for the vertical nor-
mal stress appears to have all the characteristics of a Rayleigh wave, as is suggested
by Fig. 11.25. This property can be further analyzed by considering the behaviour
of the analytical solution near the points where the denominator of the expressions
can be expected to become very small.

Using the same procedures as used for the analysis of the behaviour of the so-
lution for the isotropic stress, earlier in this chapter, leading to (11.255), it can be
derived that an approximation for the vertical normal stress for large values of the
time parameter τ = cst/z and the lateral coordinate ξ = x/z is, expressed in the
original variables,

x/z � 1, cs t/z � 1 : σzzπz

2F
≈ − m1

1 + (x − cr t)2/(wpz)2

+ m2

1 + (x − cr t)2/(wsz)2
, (11.283)

where

m1 = (2β2 − 1)2

4Mβ2wp

, wp =
√

1 − η2/β2, (11.284)

m2 = β2wp

M
, ws =

√
1 − 1/β2, (11.285)

where M is given by (11.249),

M = 1 − β2 + 8(1 − η2)β6

β2(2β2 − 1)2
. (11.286)

The two expressions in (11.283) are the approximations of (11.273) and (11.275)
for large values of cst/z, and values of x/z in the neighbourhood of cr t , where the
Rayleigh wave has its peak value. The third part of the solution, (11.277), does not
play a role, because this applies only for values of time before the passage of the
shear wave.

To demonstrate the accuracy of the approximation two examples are shown in
Figs. 11.27 and 11.28. These figures show the values of the vertical normal stress as
a function of x/z, for cst/z = 40, and for two values of Poisson’s ratio, ν = 0 and
ν = 0.5. The fully drawn lines show the exact results, and the dashed lines show
the approximate results, calculated by a superposition of the steady state solution
(11.279) and the approximate formula for the Rayleigh wave disturbance (11.283).
This final approximate formula, valid for any value of x/z, is

cst/z � 1 : σzzπz

2F
≈ − 1

(1 + x2/z2)2 − m1

1 + (x − cr t)2/(wpz)2

+ m2

1 + (x − cr t)2/(wsz)2
. (11.287)
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Fig. 11.27 Line load—vertical normal stress, ν = 0, cs t/z = 40

Fig. 11.28 Line load—vertical normal stress, ν = 0.5, cst/z = 40

As in the case of the isotropic stress the approximation appears to be very good.
The maximum difference between the exact solution and the approximate solution
is smaller than 0.01.

11.2.3 The Horizontal Normal Stress

It is recalled from (11.37) that the general expression for the Laplace transform of
the horizontal normal stress σxx in an elastic half plane is

σxx = s2μ

2π

∫ ∞

−∞
{(2α2 − λ/μc2

p)Cp exp(−γpsz) + 2αγsCs exp(−γssz)}
× exp(−isαx)dα. (11.288)
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Substitution of the expressions (11.217) and (11.218) for the two constants Cp

and Cs gives

σxx = σ 1 + σ 2 + σ 3, (11.289)

where

σ 1 = F

2π

∫ ∞

−∞
(2α2 + 1/c2

s )(2α2 − λ/μc2
p)

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα, (11.290)

σ 2 + σ 3 = − F

2π

∫ ∞

−∞
4α2γpγs

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα.

(11.291)

The two integrals can be evaluated using the techniques of De Hoop’s method, in
the same way as in the previous problems of this chapter.

The result is that the horizontal normal stress σxx can be written as the sum of
three contributions,

σxx = σ1 + σ2 + σ3. (11.292)

The first term is, in dimensionless form,

σ1πz

F
= −�

{
(1 − 2a2)(1 − 2η2 + 2a2)

√
η2 − a2

(1 − 2a2)2 + 4a2
√

1 − a2
√

η2 − a2

}
H(τ − τp)
√

τ 2 − τ 2
p

, (11.293)

where

a = (τξ + i

√
τ 2 − τ 2

p )/(1 + ξ2). (11.294)

The second term is

σ2πz

F
= �

{
4b2(1 − b2)

√
η2 − b2

(1 − 2b2)2 + 4b2
√

1 − b2
√

η2 − b2

}
H(τ − τs)√

τ 2 − τ 2
s

, (11.295)

where

b = (τξ + i

√
τ 2 − τ 2

s )/(1 + ξ2). (11.296)

And the third term is

σ3πz

F
= − 4ηc2(1 − c2)(1 − 2c2)2

√
c2 − η2

(1 − 2c2)4 + 16c4(c2 − η2)(1 − c2)

H(τ − τq)H(τs − τ)
√

τ 2
s − τ 2

, (11.297)

where

c = (ξτ −
√

τ 2
s − τ 2 )/(1 + ξ2). (11.298)
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Apart from the usual parameter η = cs/cp , the following dimensionless parameters
have been used,

ξ = x/z, τ = cst/z, τp = η

√
1 + ξ2, τs =

√
1 + ξ2,

(11.299)
τq = ξη +

√
1 − η2.

In the derivation of the expressions it has been assumed that x > 0, so that ξ > 0.
Values for ξ < 0 can be obtained using the symmetry of the problem.

Calculation of Numerical Values

A function to calculate the value of the dimensionless parameter σxxπz/2F as a
function of the parameters ξ = x/z (with ξ ≥ 0), τ = cst/z and Poisson’s ratio ν, is
shown below. In this function the dimensionless parameters ξ , τ and ν are denoted
by x, t and nu. The function consists of three parts, as given by (11.293), (11.295)
and (11.297).

double LineLoadSxx(double x,double t,double nu)
{
double s,s1,s2,s3,n,nn,nn1,tp2,ts2,ts,tq,t2,c,cc,f,g,h;
complex a,aa,a1,b,bb,b1,gp,gs,d,e;
nn=(1-2*nu)/(2*(1-nu));nn1=sqrt(1-nn);n=sqrt(nn);
ts2=1+x*x;tp2=nn*ts2;ts=sqrt(ts2);t2=t*t;tq=n*x+nn1;
if (t2<=tp2) s1=0;else
{
a=complex(x*t/ts2,sqrt(t2-tp2)/ts2);aa=a*a;a1=1-2*aa;
gp=sqrt(nn-aa);gs=sqrt(1-aa);d=a1*(1+2*aa-2*nn)*gp;e=a1*a1+4*aa*gp*gs;
s1=-real(d/e)/(2*sqrt(t2-tp2));
}

if (t2<=ts2) s2=0;else
{
b=complex(x*t/ts2,sqrt(t2-ts2)/ts2);bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=4*bb*(1-bb)*gp;e=b1*b1+4*bb*gp*gs;
s2=real(d/e)/(2*sqrt(t2-ts2));
}

if ((t<=tq)||(t>=ts)||(tq>ts)) s3=0;else
{
c=(x*t-sqrt(ts2-t2))/ts2;cc=c*c;f=(1-2*cc)*(1-2*cc);
g=4*n*cc*(1-cc)*f*sqrt(cc-nn);h=f*f+16*cc*cc*(cc-nn)*(1-cc);
s3=-g/(2*h*sqrt(ts2-t2));
}

s=s1+s2+s3;
return(s);
}

Some examples are shown in Figs. 11.29, 11.30 and 11.31. These figures show the
horizontal normal stress σxx as a function of x/z for ν = 0, and for three values
of time: cst/z = 1, cst/z = 8 and cst/z = 40. As in the case of the vertical normal
stress, the ratio of the various waves, the compression wave, the shear wave, and the
Rayleigh wave, may be verified from the results shown in Figs. 11.29 and 11.30, for
the cases cst/z = 1 and cst/z = 8.

The results for large values of cst/z are approaching the elastostatic values. In
general the numerical values depend upon the value of Poisson’s ratio, but for very
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Fig. 11.29 Line load—horizontal normal stress, ν = 0, cs t/z = 1

Fig. 11.30 Line load—horizontal normal stress, ν = 0, cs t/z = 8

large values of time no such dependence is found, in agreement with the elastostatic
solution,

t → ∞ : σxx πz

2F
= − x2/z2

(1 + x2/z2)2 . (11.300)

The elastostatic solution is also shown in Fig. 11.31, by dots. The agreement with
the numerical results for cst/z = 40 appears to be excellent.
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Fig. 11.31 Line load—horizontal normal stress, ν = 0, cs t/z = 40

Approximate Analysis of the Rayleigh Wave

For large values of time and the lateral coordinate x an approximation of the solution
for the horizontal normal stress can be obtained in the same way as used for the
isotropic stress and the vertical normal stress in the two preceding sections.

Using the same procedures as before, an approximation of the horizontal normal
stress for large values of the time parameter τ = cst/z and the lateral coordinate
ξ = x/z is found to be

x/z � 1, cs t/z � 1 : σxxπz

2F
≈ m3

1 + (x − cr t)2/(wpz)2

− m4

1 + (x − cr t)2/(wsz)2 , (11.301)

where now

m3 = (2β2 − 1)(2β2 + 1 − 2η2)

4Mβ2wp

, wp =
√

1 − η2/β2, (11.302)

m4 = β2wp

M
, ws =

√
1 − 1/β2, (11.303)

and M is defined in (11.249).
The two expressions in (11.301) are the approximations of (11.293) and (11.295)

for large values of cst/z, and values of x/z in the neighbourhood of cr t , where
the Rayleigh wave has its peak. The third part of the solution, (11.297), can be
disregarded, because this part vanishes after the passage of the shear wave.

To demonstrate the accuracy of the approximation two examples are shown in
Figs. 11.32 and 11.33. These figures show the values of the horizontal normal stress
as a function of x/z, for cst/z = 40, and for two values of Poisson’s ratio, ν = 0 and
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Fig. 11.32 Line load—horizontal normal stress, ν = 0, cs t/z = 40

Fig. 11.33 Line load—horizontal normal stress, ν = 0.5, cs t/z = 40

ν = 0.5. The fully drawn lines show the exact results, and the dashed lines show
the approximate results, calculated by a superposition of the steady state solution
(11.300) and the approximate formula for the Rayleigh wave disturbance (11.301).
This final approximate formula, valid for any value of x/z, is

cst/z � 1 : σxxπz

2F
≈ − x2/z2

(1 + x2/z2)2 + m3

1 + (x − cr t)2/(wpz)2

− m4

1 + (x − cr t)2/(wsz)2
. (11.304)

As in the case of the isotropic stress and the vertical normal stress the approximation
appears to be very good. The maximum difference between the exact solution and
the approximate solution in this case is smaller than 0.02.
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11.2.4 The Shear Stress

It is recalled from (11.39) that the Laplace transform of the shear stress σxz in an
elastic half plane is

σzx = − iμs2

2π

∫ ∞

−∞
{2αγpCp exp(−γpsz) + (2α2 + 1/c2

s )Cs exp(−γssz)}

× exp(−isαx)dα. (11.305)

Substitution of the expressions (11.217) and (11.218) for the two constants Cp and
Cs gives

σxz = σ 1 + σ 2 + σ 3, (11.306)

where

σ 1 = F

2πi

∫ ∞

−∞
2αγp(2α2 + 1/c2

s )

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα, (11.307)

σ 2 + σ 3 = − F

2πi

∫ ∞

−∞
2αγp(2α2 + 1/c2

s )

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα.

(11.308)

The two integrals can be evaluated using the techniques of De Hoop’s method, in
the same way as in the previous problems of this chapter.

The result is that the shear stress σxz can be written as the sum of three contribu-
tions,

σxz = σ1 + σ2 + σ3. (11.309)

The first term is found to be

σ1 = −2F

π
�

{
pγ 2

p(1/c2
s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp)
√

t2 − t2
p

, p = p1, (11.310)

where

p1 =
(
tx + iz

√
t2 − t2

p

)
/r2, (11.311)

and

γ 2
p = 1/c2

p − p2, γ 2
s = 1/c2

s − p2. (11.312)

In dimensionless form, (11.310) can be written as

σ1 πz

2F
= −�

{
a(η2 − a2)(1 − 2a2)

(1 − 2a2)2 + 4a2
√

1 − a2
√

η2 − a2

}
H(τ − τp)
√

τ 2 − τ 2
p

, (11.313)
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where

a =
(
ξτ + i

√
τ 2 − τ 2

p

)
/(1 + ξ2). (11.314)

The second term is found to be

σ2 = 2F

π
�

{
pγpγs(1/c2

s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − ts)√

t2 − t2
s

, p = p2, (11.315)

where

p2 =
(
tx + iz

√
t2 − t2

s

)
/r2, (11.316)

and γp and γs can be expressed into the variable p by the same relations as before,
see (11.312).

The dimensionless form of (11.315) is

σ2 πz

2F
= �

{
b
√

1 − b2
√

η2 − b2(1 − 2b2)

(1 − 2b2)2 + 4b2
√

1 − b2
√

η2 − b2

}
H(τ − τs)√

τ 2 − τ 2
s

, (11.317)

where

b = (ξτ + i

√
τ 2 − τ 2

s )/(1 + ξ2). (11.318)

Finally, the third term is found to be

σ3 = 2F

π
�
{

pγpγs(1/c2
s − 2p2)

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tq )H(ts − t)

√
t2
s − t2

, p = p3,

(11.319)
where

p3 =
(
xt − z

√
t2
s − t2

)
/r2, (11.320)

and the time tq is given by

tq/ts =
(
ηx + z

√
1 − η2

)
/r, tq/ts < 1. (11.321)

The dimensionless form of (11.319) is

σ3πz

2F
= − c(1 − 2c2)3

√
1 − c2

√
c2 − η2

(1 − 2c2)4 + 16c4(1 − c2)(c2 − η2)

H(τ − τq)H(τs − τ)
√

t2
s − τ 2

, (11.322)

where c is defined by

c =
(
ξτ −

√
τ 2
s − τ 2

)
/(1 + ξ2). (11.323)



286 11 Line Load on Elastic Half Space

In the equations given above the following dimensionless parameters have been
used,

ξ = x/z, τ = cst/z, τs =
√

1 + ξ2, τp = η

√
1 + ξ2,

(11.324)

τq = ξη +
√

1 − η2.

This means that the depth z is used as the length scale, and that the value of z/cs is
used as the time scale.

In the derivation of the expressions it has been assumed that x > 0, so that ξ > 0.
Values for ξ < 0 can be obtained using the antisymmetry of the shear stress.

Calculation of Numerical Values

A function to calculate the value of the dimensionless parameter σxzπz/2F as a
function of the parameters ξ = x/z (with ξ ≥ 0), τ = cpt/z and Poisson’s ratio ν, is
shown below. In this function the dimensionless parameters ξ , τ and ν are denoted
by x, t and nu. The function consists of three parts, as given by (11.313), (11.317)
and (11.322).

double LineLoadSxz(double x,double t,double nu)
{
double s,s1,s2,s3,n,nn,nn1,tp2,ts2,ts,tq,t2,c,cc,f,g,h;
complex a,aa,a1,b,bb,b1,gp,gs,d,e;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);nn1=sqrt(1-nn);
ts2=1+x*x;tp2=nn*ts2;ts=sqrt(ts2);t2=t*t;tq=n*x+nn1;
if (t2<=tp2) s1=0;else
{
a=complex(x*t/ts2,sqrt(t2-tp2)/ts2);aa=a*a;a1=1-2*aa;
gp=sqrt(nn-aa);gs=sqrt(1-aa);d=a*(nn-aa)*a1;e=a1*a1+4*aa*gp*gs;
s1=-real(d/e)/sqrt(t2-tp2);
}

if (t2<=ts2) s2=0;else
{
b=complex(x*t/ts2,sqrt(t2-ts2)/ts2);bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=b*b1*gp*gs;e=b1*b1+4*bb*gp*gs;
s2=real(d/e)/sqrt(t2-ts2);
}

if ((t<=tq)||(t>=ts)||(tq>ts)) s3=0;else
{
c=(x*t-sqrt(ts2-t2))/ts2;cc=c*c;f=(1-2*cc)*(1-2*cc);
g=n*c*(1-2*cc)*f*sqrt(1-cc)*sqrt(cc-nn);h=f*f+16*cc*cc*(1-cc)*(cc-nn);
s3=-g/(h*sqrt(ts2-t2));
}

s=s1+s2+s3;
return(s);
}

Some examples are shown in Figs. 11.34 and 11.35, for ν = 0, and for two values of
time: cst/z = 5 and cst/z = 20. The results for large values of cst/z are approaching
the elastostatic solution,

t → ∞ : σxz πz

2F
= − x/z

(1 + x2/z2)2
. (11.325)



11.2 Constant Line Load 287

Fig. 11.34 Line load—shear stress, ν = 0, cs t/z = 5

Fig. 11.35 Line load—shear stress, ν = 0, cs t/z = 20

The elastostatic solution is also shown in Fig. 11.35, by small asterisks. As before,
the agreement is excellent, which is also the case for other values of Poisson’s ratio.

Approximate Analysis of the Rayleigh Wave

For large values of time and the lateral coordinate x an approximation of the solution
for the shear stress can be obtained in the same way as used for the other stress
components in the preceding sections.
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Using the same procedures, an approximation of the shear stress for large values
of the time parameter τ = cst/z and the lateral coordinate ξ = x/z is found to be

x/z � 1, cs t/z � 1 : σxzπz

2F
≈ − m5(x − cr t)/(wpz)

1 + (x − cr t)2/(wpz)2

+ m6(x − cr t)/(wsz)

1 + (x − cr t)2/(ws)2
, (11.326)

where now

m5 = 2β2 − 1

2M
, wp =

√
1 − η2/β2, (11.327)

m6 = (2β2 − 1)wp

2Mws

, ws =
√

1 − 1/β2, (11.328)

and M is defined in (11.249).
The two expressions in (11.326) are the approximations of (11.313) and (11.317)

for large values of cst/z, and values of x/z in the neighbourhood of cr t , where
the Rayleigh wave has its peak. The third part of the solution, (11.322), can be
disregarded, because this applies only for values of time before the passage of the
shear wave. To demonstrate the accuracy of the approximation two examples are
shown in Figs. 11.36 and 11.37. These figures show the values of the vertical nor-
mal stress as a function of x/z, for cst/z = 40, and for two values of Poisson’s
ratio, ν = 0 and ν = 0.5. The fully drawn lines show the exact results, and the
dashed lines show the approximate results, calculated by a superposition of the
steady state solution (11.325) and the approximate formula for the Rayleigh wave
disturbance (11.326). This final approximate formula, valid for any value of x/z, is

Fig. 11.36 Line load—shear stress, ν = 0, cs t/z = 40
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Fig. 11.37 Line load—shear stress, ν = 0.5, cs t/z = 40

cst/z � 1 : σxzπz

2F
≈ − x/z

(1 + x2/z2)2 − m5(x − cr t)/(wpz)

1 + (x − cr t)2/(wpz)2

+ m6(x − cr t)/(wsz)

1 + (x − cr t)2/(wsz)2
. (11.329)

As in the case of the isotropic stress and the vertical normal stress the approximation
appears to be good. The maximum difference between the exact solution and the
approximate solution in this case is smaller than 0.03. This is somewhat larger than
for the other stress components. The largest error occurs for ν = 0.5 just before the
arrival of the Rayleigh wave. It seems that the error is caused by the magnitude of
the shear wave, which has just passed.

Conclusion

In this chapter the solution of the problem of a line pulse on an elastic half space has
been considered. The known solutions by De Hoop (1960) and Eringen and Suhubi
(1975) for the displacements of the surface have been rederived, and expressions for
the displacements in an arbitrary point of the half space have been derived.

As a second problem the elastodynamic equivalent of the Flamant problem, a
constant line load on the elastic half space, has been considered. Closed form ex-
pressions for the stress components have been derived.

The solutions have been validated by considering the limiting state for t → ∞.
Special attention has been given to the generation of Rayleigh waves in the vicinity
of the surface. In general, for large values of time the solutions appear to consist of
the elastostatic stress distribution plus a constant Rayleigh wave disturbance near
the surface. Although the constant value of the amplitude and the shape is a well
known property of Rayleigh waves in the two dimensional case, it has been shown
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that simple expressions for the magnitude and the width of the Rayleigh wave dis-
turbance can be derived, for each of the stress components. These approximations
appear to be in very good agreement with the complete analytical solution. The ap-
proximate solutions may be useful for the (approximate) analysis of the solution of
problems with a more general type of loading. Some examples of this will be given
in the next chapter.

Problems

11.1 Verify that the solutions given in Sect. 11.2 for σ , σzz and σxx satisfy that
σ = (σzz + σxx)/2.

11.2 Verify the same property for the approximate solutions, given in (11.258),
(11.287) and (11.304).

11.3 Verify, analytically, that the solution for the vertical normal stress caused by a
line load, as given in (11.227), with its three components given in (11.273), (11.275)
and (11.277), satisfies the boundary condition that σzz = 0 for z = 0, and |x| > 0.

11.4 Verify that the solution for the shear stress caused by a line load, as given
in (11.309), satisfies the boundary condition that for z = 0 the shear stress is zero,
σzx = 0.



Chapter 12
Strip Load on Elastic Half Space

In this chapter the problem of a strip load on the surface of an elastic half plane
is considered, i.e. problems in which the elastic half space is loaded by a load that
is constant over an area in the form of a strip of finite width, see Fig. 12.1. As a
function of time the load may be an impulse load or a step load. The case of an
impulse load will be considered first. The step load will be considered later, with
the solution being derived from the solution for the impulse load by integration over
time.

The solutions will be obtained as an application of De Hoop’s method (De Hoop,
1960, 1970), using an extension due to Stam (1990) to generalize the line load to a
loading over a strip of finite width, see also Verruijt (2008a).

Emphasis will be on the determination of the stress components as functions of
depth and time, as these are of main interest in soil engineering. For very large val-
ues of time the results for a step load should be in agreement with the elastostatic
solutions, and this condition will be used as a validation of the elastodynamic solu-
tions. Also, the Rayleigh wave should be recovered at large distances from the load,
and should conform to its required behaviour.

A computer program for the constant strip load is available as the program
STRIPLOAD.

Fig. 12.1 Half plane with
strip load

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
© Springer Science+Business Media B.V. 2010
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12.1 Strip Pulse

The first problem to be considered is the case of a strip pulse on an elastic half plane,
see Fig. 12.1. In this case the boundary conditions are

z = 0 : σzx = 0, (12.1)

z = 0 : σzz =
{

−q δ(t), if |x| < a,

0, if |x| > a.
(12.2)

The second boundary condition expresses that there is a homogeneous load on the
strip between the points x = −a and x = a in the form of a pulse of very short
duration.

The Laplace transform of this condition is

z = 0 : σzz =
{

−q, if |x| < a,

0, if |x| > a.
(12.3)

This can also be written in the form of a Fourier integral,

z = 0 : σzz = − q

π

∫ ∞

−∞
sin(sαa) exp(−isαx)

α
dα. (12.4)

It is recalled from the previous chapter, see (11.35) and (11.36), that the general
solution of the elastodynamic problem for a half plane is, in the form of the Laplace
transforms of the two displacement components,

u = is

2π

∫ ∞

−∞
{αCp exp(−sγpz) + γsCs exp(−sγsz)} exp(−isαx)dα, (12.5)

w = s

2π

∫ ∞

−∞
{γpCp exp(−sγpz) + αCs exp(−sγsz)} exp(−isαx)dα. (12.6)

Furthermore, the Laplace transforms of the stress components are, from (11.37),
(11.38) and (11.39),

σxx = s2

2π

∫ ∞

−∞
{(2μα2 − λ/c2

p)Cp exp(−sγpz) + 2μαγsCs exp(−sγsz)}

× exp(−isαx)dα, (12.7)

σ zz = −μs2

2π

∫ ∞

−∞
{(2α2 + 1/c2

s )Cp exp(−sγpz) + 2αγsCs exp(−sγsz)}

× exp(−isαx)dα, (12.8)

σxz = − iμs2

2π

∫ ∞

−∞
{2αγpCp exp(−sγpz) + (2α2 + 1/c2

s )Cs exp(−sγsz)}

× exp(−isαx)dα. (12.9)
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The Laplace transform of the isotropic stress σ = 1
2 (σxx + σzz) is given by (11.41),

σ = − (λ + μ)s2

2πc2
p

∫ ∞

−∞
Cp exp(−sγpz − isαx)dα. (12.10)

Using the boundary conditions (12.1) and (12.4) the two integration constants Cp

and Cs in the general solution are found to be

Cp = 2q

μs2

sin(sαa)

α

2α2 + 1/c2
s

(2α2 + 1/c2
s )

2 − 4α2γpγs

, (12.11)

Cs = − 2q

μs2

sin(sαa)

α

2αγp

(2α2 + 1/c2
s )

2 − 4α2γpγs

. (12.12)

The stress components will next be evaluated.

12.1.1 The Isotropic Stress

The simplest quantity to evaluate is the isotropic stress. With (12.10) and (12.11) it
is found that

σ

q
= − 1 − η2

πη2 c2
p

∫ ∞

−∞
sin(sαa)

α

2α2 + 1/c2
s

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα,

(12.13)
where η2 = c2

s /c
2
p = (1 − 2ν)/[2(1 − ν)].

Following a suggestion by Stam (1990), the function sin(sαa) is written as
[exp(isαa) − exp(−isαa)]/2i. This gives

σ

q
= 1 − η2

η2

{
g(x + a) − g(x − a)

}
, (12.14)

where

g(x) = 1

2πi c2
p

∫ ∞

−∞
1

α

2α2 + 1/c2
s

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα.

(12.15)
The value of this integral depends upon the sign of the variable x. The two possibil-
ities will be considered separately.

The Case x > 0

Using the substitution p = iα the integral (12.15) can be written as

g(x) = 1

2πi c2
p

∫ i∞

−i∞
1

p

1/c2
s − 2p2

(1/c2
s − 2p2)2 + 4p2γpγs

exp[−s(γpz + px)]dp,

(12.16)
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where now γp and γs are related to p by the equations

γ 2
p = 1/c2

p − p2, γ 2
s = 1/c2

s − p2. (12.17)

As in the previous chapter, the integration path in the complex p-plane is modified
such that the integral obtains the form of a Laplace transform integral. For this
purpose a parameter t is introduced (later to be identified with the time), defined
as

t = γpz + px, (12.18)

with t being real and positive, by assumption. The shape of the transformed integra-
tion path remains undetermined in this stage.

The integrand of the integral in (12.16) has singularities in the form of branch
points in the points p = ±1/cp and p = ±1/cs , simple poles in the points p =
±1/cr , where cr is the Rayleigh wave velocity, which is slightly smaller than the
shear wave velocity, and a simple pole in the point p = 0. It may be noted that
cp > cs > cr , so that 1/cp < 1/cs < 1/cr . The original integration path from p =
−i∞ to p = +i∞ is now modified to the sum of the two paths p2 and p1 shown
in Fig. 12.2, with the parameter t varying along these two curves from some initial
(positive) value to infinity.

It follows from (12.18) and (12.17) that

r2p2 − 2tpx + t2 − z2/c2
p = 0, (12.19)

where

r2 = x2 + z2. (12.20)

The quadratic equation (12.19) has two solutions for p,

p1 = tx

r2 + iz

r2

√
t2 − t2

p, (12.21)

Fig. 12.2 Modified integration path, for x > 0
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p2 = tx

r2 − iz

r2

√
t2 − t2

p, (12.22)

where

tp = r/cp. (12.23)

If it is assumed that tp < t < ∞ the two branches p1 and p2 shown in Fig. 12.2
form a continuous path, with the two branches intersecting for t = tp , where p =
p1 = p2 = (x/r)(1/cp), which is a point on the real axis, always located between
the origin and the first singularity at p = 1/cp . For the two integration paths to
be equivalent, the contributions of the parts of the closing contour at infinity must
vanish. This will indeed be the case if x > 0. It has been assumed that the original
integration path, along the imaginary axis, passes to the right of the pole in the
origin, see Fig. 12.2. This should then also be the case for the case x < 0, which
will have consequences for the contribution of this pole, of course.

It can be shown that along the path p1

1

p

dp

dt
= t

√
t2 − t2

p + ixz/c2
p

(t2 − z2/c2
p)

√
t2 − t2

p

. (12.24)

This means that the contribution of the path p1 to the integral (12.16) is

x > 0 : g1(x) = 1

2πi c2
p

∫ ∞

tp

t
√

t2 − t2
p + ixz/c2

p

(t2 − z2/c2
p)

√
t2 − t2

p

× 1/c2
s − 2p2

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st) dt. (12.25)

Along the path p2 all quantities will be complex conjugates, but the path is in inverse
direction, so that if one writes g1(x) = A + iB then g2(x) = −(A − iB). The sum
of these two contributions is 2iB . It now follows that the sum is

x > 0 : g(x) = 1

πc2
p

�
∫ ∞

tp

tr2
√

t2 − t2
p + ixzt2

p

r2(t2 − z2/c2
p)

√
t2 − t2

p

× 1/c2
s − 2p2

(1/c2
s − 2p2)2 + 4p2γpγs

exp(−st) dt. (12.26)

This expression happens to be in the form of a Laplace transform. Inverse Laplace
transformation gives

x > 0 : g(x) = 1

π c2
p

�
{

t
√

t2 − t2
p + ixz/c2

p

(t2 − z2/c2
p)

√
t2 − t2

p

× 1/c2
s − 2p2

(1/c2
s − 2p2)2 + 4p2γpγs

}
H(t − tp). (12.27)
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For the calculation of numerical values it is convenient to introduce the dimension-
less parameters

ξ = x/a, ζ = z/a, τ = cst/a, ρ =
√

ξ 2 + ζ 2, τp = ηρ,

(12.28)
βp = csp, η = cs/cp.

The parameter βp is a dimensionless complex variable defined by

βp =
(
τξ + iζ

√
τ 2 − η2ρ2

)
/ρ2, (12.29)

as follows immediately from (12.21). The important parameters γp and γs can now
be represented by their dimensionless equivalents

gp = csγp =
√

η2 − β2
p, gs = csγs =

√
1 − β2

p. (12.30)

Using these parameters equation (12.27) can be written as

ξ > 0 : g(x) = η2 cs

a
h(ξ), (12.31)

with

h(ξ) = 1

π
�
{

τ
√

τ 2 − η2ρ2 + iη2ξζ

(τ 2 − η2ζ 2)
√

τ 2 − η2ρ2

(1 − 2β2
p)

(1 − 2β2
p)2 + 4β2

pgpgs

}
H(τ − ηρ),

(12.32)
It may be noted that in (12.32) the parameter ξ > 0, and the only relevant values of
τ are those for which τ > ηρ.

The Case x < 0

If the parameter x < 0 the integration path must be transformed by moving the inte-
gration path to the left, in order that the contributions by the arcs at infinity vanish.
This means that the pole at p = 0 will be passed, resulting in a contribution to the
integral, see Fig. 12.3. In this figure the transformed integration path is indicated by
the path consisting of the curves p2 and p1, with a loop around the pole. It can be
shown that the result of the integration along p2 and p1 will be the same as before,
see (12.27). However, to this expression the contribution by integrating around the
pole must be added. Along this path the integration variable p is

p = ε exp(iθ), (12.33)

where ε → 0, and the angle θ runs from θ = −π to θ = +π along the small circle
around the pole. This contribution can be determined by considering the limiting
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Fig. 12.3 Modified
integration path, if x < 0

value of the Laplace transform g(x) as defined in (12.16) for p → 0. This leads to
an additional contribution

�g = η2 exp(−sz/cp). (12.34)

Inverse Laplace transformation gives

�g = η2 δ(t − z/cp). (12.35)

Because τ = cst/a this means that there is a second contribution to the function
h(ξ),

�h = δ(τ − ηζ ){1 − H(ξ)}, (12.36)

where the factor 1 − H(ξ) has been added to indicate that this contribution applies
only if ξ < 0, and where it has been assumed that δ(t − z/cp) = (cs/a)δ(τ − ηζ ),
because both delta functions should have an area equal to 1,

∫ +∞

−∞
δ(t − z/cp) dt =

∫ +∞

−∞
δ(τ − ηζ )dτ = 1. (12.37)

General Result

The results for ξ > 0 and ξ < 0 can be combined in the single formula

g(ξ, ζ, τ ) = η2 cs

a
{h(ξ, ζ, τ ) + �h(ξ, ζ, τ )}. (12.38)

Using the general formula (12.38), the expression for the isotropic stress (12.14)
becomes, after inverse Laplace transformation,

σ

σ0
= (1−η2){h(ξ +1, ζ, τ )+�h(ξ +1, ζ, τ )−h(ξ −1, ζ, τ )−�h(ξ −1, ζ, τ )},

(12.39)
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where σ0 is a reference stress, defined by

σ0 = q cs

a
. (12.40)

It may be noted that the physical dimension of q is a stress multiplied by time,
because the physical dimension of the delta function δ(t) in the boundary condition
(12.2) is the inverse of time, to ensure that its integral over time is 1. Thus, the
physical dimension of σ0 is indeed a stress.

Computer Program

The isotropic stress can be calculated as a function of ξ , ζ , τ and ν by the func-
tion StripPulseS shown below. This function uses the functions delta and
h, which are also shown. The delta function is approximated by a parabolic arc of
small width and of unit area.

double delta(double t,double z,double e)
{
double f;
if ((t<z-e)||(t>z+e)) f=0;else f=3*(e*e-(t-z)*(t-z))/(4*e*e*e);
return(f);
}
double h(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,tz,xx,zz,eps;
complex a,b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);eps=0.001;tt=t*t;
xx=x*x;zz=z*z;rr=xx+zz;tr=tt-nn*rr;tz=tt-nn*zz;
if (tr<=0) s=0;
else
{
a=complex(t/tz,nn*x*z/(tz*sqrt(tr)));b=complex(t*x/rr,(z/rr)*sqrt(tr));
bb=b*b;b1=1-2*bb;gp=sqrt(nn-bb);gs=sqrt(1-bb);d=a*b1;e=b1*b1+4*bb*gp*gs;
s=imag(d/e)/pi;
}

if (x<0) s+=delta(t,n*z,eps);
return(s);
}
double StripPulseS(double x,double z,double t,double nu)
{
double s,nn;
nn=(1-2*nu)/(2*(1-nu));s=(1-nn)*(h(x+1,z,t,nu)-h(x-1,z,t,nu));
return(s);
}

Figure 12.4 shows the isotropic stress as a function of time, for ν = 0, in the point
x/a = 0, z/a = 1. It appears that first the compressive wave below the load arrives,
at the time t = z/cp , so that cst/a = η = 1/

√
2, and then some time later (a factor√

2 later), the negative compression waves emanating from the end points of the
load arrive at this point. In this case of the isotropic stress, there is no effect of shear
waves.
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Fig. 12.4 Strip
pulse—isotropic stress,
ν = 0, x/a = 0, z/a = 1

12.1.2 The Vertical Normal Stress

Another interesting quantity is the vertical normal stress σzz. It is recalled
from (12.8) that the Laplace transform of this quantity is

σzz = − s2μ

2π

∫ ∞

−∞
{(2α2 + 1/c2

s )Cp exp(−γpsz) + 2αγsCs exp(−γssz)}

× exp(−isαx)dα. (12.41)

Substitution of the expressions (12.11) and (12.12) for the two constants Cp and Cs

gives

σzz = σ 1 + σ 2 + σ 3, (12.42)

where

σ 1 = − q

π

∫ ∞

−∞
sin(sαa)

α

(2α2 + 1/c2
s )

2

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα,

(12.43)

σ 2 = q

π

∫ ∞

−∞
sin(sαa)

α

4α2γsγp

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα.

(12.44)

These two integrals will be considered separately. It may be noted that the integrand
of the first integral has a singularity at α = 0, which means that special care must be
taken when transforming the integration path. When passing the origin, the contri-
bution of the pole must be taken into account. The integrand of the second integral
has no such singularity.
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The First Integral

Using the expression sin(αa) = [exp(isαa)− exp(−isαa)]/2i, the first integral can
be written as

σ 1 = q{g1(x + a) − g1(x − a)}, (12.45)

where

g1(x) = 1

2πi

∫ ∞

−∞
1

α

(2α2 + 1/c2
s )

2

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα, (12.46)

or, with p = iα,

g1(x) = 1

2πi

∫ i∞

−i∞
1

p

(1/c2
s − 2p2)2

(1/c2
s − 2p2)2 + 4p2γpγs

exp[−s(γpz + px)]dp. (12.47)

Comparison with the expression (12.16) for the function g(x) in the case of the
isotropic stress shows that the two expressions are very similar. The only differences
are a constant factor c2

p and the square of the factor 1/c2
s − 2p2. This means that

application of the same method to transform the integration path in the complex
p-plane will give, in this case,

x > 0 : g1(x) = 1

π
�
{

t
√

t2 − t2
p + ixz/c2

p

(t2 − z2/c2
p)

√
t2 − t2

p

(1/c2
s − 2p2)2

(1/c2
s − 2p2)2 + 4p2γpγs

}

× H(t − tp), (12.48)

where, as before,

r =
√

x2 + z2, (12.49)

tp = r/cp. (12.50)

Using the dimensionless parameters defined in (12.28) and (12.30) the function
g1(x) can be expressed as

ξ > 0 : g1(x) = cs

a
h1(ξ), (12.51)

with

h1(ξ) = 1

π
�
{

τ
√

τ 2 − η2ρ2 + iη2ξζ

(τ 2 − η2ζ 2)
√

τ 2 − η2ρ2

(1 − 2β2
p)2

(1 − 2β2
p)2 + 4β2

pgpgs

}
H(τ − ηρ).

(12.52)
Here the parameter βp is the dimensionless complex variable defined by (12.29),

βp =
(
τξ + iζ

√
τ 2 − η2ρ2

)
/ρ2, (12.53)
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and the parameters gp and gs are defined by (12.30), i.e.

gp =
√

η2 − β2
p, gs =

√
1 − β2

p. (12.54)

For x < 0 (or ξ < 0) the modified integration path again includes the small circle
around the pole at the origin p = 0. Using the same procedures as for the isotropic
stress, the contribution of this pole is found to be

�h1(ξ) = δ(τ − ηζ ){1 − H(ξ)}. (12.55)

Combination of (12.52) and (12.55) finally gives

h1(ξ) = 1

π
�
{

τ
√

τ 2 − η2ρ2 + iη2ξζ

(τ 2 − η2ζ 2)
√

τ 2 − η2ρ2

(1 − 2β2
p)2

(1 − 2β2
p)2 + 4β2

pgpgs

}
H(τ − ηρ)

+ δ(τ − ηζ ){1 − H(ξ)}, (12.56)

which is valid for all values of ξ .
With (12.45) and (12.51) the expression for the first term σ1 is

σ1

σ0
= {h1(ξ + 1) − h1(ξ − 1)}, (12.57)

where the function h1(ξ) is given in dimensionless form in (12.56), and where σ0 is
the reference stress defined by (12.40), i.e.

σ0 = q cs

a
. (12.58)

The Second Integral

Using the expression sin(αa) = [exp(isαa)− exp(−isαa)]/2i, the second integral,
(12.44), can be written as

σ 2 = q{g2(x + a) − g2(x − a)}, (12.59)

where

g2(x) = − 1

2πi

∫ ∞

−∞
4αγpγs

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα. (12.60)

The integration parameter is renamed by the substitution p = iα. This gives

g2(x) = 1

2πi

∫ i∞

−i∞
4pγpγs

(1/c2
s − 2p2)2 + 4p2γpγs

exp[−s(γsz + px)]dp, (12.61)

where

γp =
√

1/c2
p − p2, γs =

√
1/c2

s − p2. (12.62)
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The integral (12.61) can be evaluated in the same way as the integral σ 2 in (11.262)
in the previous chapter, the main difference being a factor p in the numerator of
the integrand. It should be noted that the integral may consist of two contributions,
one from the curved path up to infinity in the complex p-plane, and one from the
possible loop around the branch point at p = 1/cp .

The result, which will not be presented in detail here, is that the function g2(x)

can be expressed as

g2(x) = cs

a
{h2(ξ) + h3(ξ)}, (12.63)

where h2(ξ) is the dimensionless contribution of the integration along the curved
parts p1 and p2 in Fig. 11.3, and h3(ξ) is the possible contribution of the integration
along the loop on the real axis around the branch point p = 1/cp . The expression
for h2(ξ) is found to be

h2(ξ) = 1

π
�

{
4βsgpg2

s

(1 − 2β2
s )2 + 4β2

s gpgs

}
H(τ − ρ)
√

τ 2 − ρ2
, (12.64)

where the dimensionless complex parameter βs is defined by

βs =
(
ξ + iζ

√
τ 2 − ρ2

)
/ρ2, (12.65)

and the parameters gp and gs are defined by

gp =
√

η2 − β2
s , gs =

√
1 − β2

s . (12.66)

The expression for h3(ξ) is found to be

h3(ξ) = − 1

π

4βq(1 − β2
q)(1 − 2β2

q )2
√

β2
q − η2

(1 − 2β2
q )4 + 16β4

q(1 − β2
q )(β2

q − η2)

× H(τ − τq) − H(τ − τs)√
τ 2
s − τ 2

H(ξ − ηρ), (12.67)

where the dimensionless real parameter βq is defined by

βq =
(
ξτ − ζ

√
ρ2 − τ 2

)
/ρ2, (12.68)

and the dimensionless parameters τq and τs are defined by

τq = ηξ + ζ

√
1 − η2, τs = ρ. (12.69)

Equations (12.64) and (12.67) apply only for x > 0 or ξ > 0. For x < 0 the value
of g2(x) can be determined by noting that g2(−x) = −g2(x), which can be derived
from the definition (12.61) when the integration variable p is replaced by −p.
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The vertical normal stress σzz can be obtained by substituting the results derived
above into (12.42), using the further elaborations of σ 1 and σ 2. This gives

σzz

σ0
= h1(ξ + 1) − h1(ξ − 1) + h2(ξ + 1) − h2(ξ − 1) + h3(ξ + 1) − h3(ξ − 1),

(12.70)
where σ0 is a reference stress defined as

σ0 = qcs

a
, (12.71)

and where the functions h1(ξ), h2(ξ) and h3(ξ) are defined in (12.56), (12.64)
and (12.67).

Computer Program

The vertical normal stress σzz can be calculated by the function StripPulseSzz
shown below. This function uses the functions delta, h1, h2, and h3, which are
also shown. The delta function is approximated by a parabolic arc of small width
and of unit area.

double delta(double t,double z,double e)
{
double f;
if ((t<z-e)||(t>z+e)) f=0;else f=3*(e*e-(t-z)*(t-z))/(4*e*e*e);
return(f);
}
double h1(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,tz,xx,zz,eps;complex a,b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);eps=0.01;tt=t*t;
xx=x*x;zz=z*z;rr=xx+zz;tr=tt-nn*rr;tz=tt-nn*zz;
if (tr<=0) s=0;else
{
a=complex(t/tz,nn*x*z/(tz*sqrt(tr)));b=complex(t*x/rr,(z/rr)*sqrt(tr));
bb=b*b;b1=1-2*bb;gp=sqrt(nn-bb);gs=sqrt(1-bb);
d=a*b1*b1;e=b1*b1+4*bb*gp*gs;s=imag(d/e)/pi;

}
if (x<0) s+=delta(t,n*z,eps);
return(s);
}
double h2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);tt=t*t;
xx=x*x;zz=z*z;rr=xx+zz;tr=tt-rr;
if (tr<=0) s=0;else
{
b=complex(t*x/rr,(z/rr)*sqrt(tr));bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=4*b*gp*(1-bb);e=b1*b1+4*bb*gp*gs;
s=real(d/e)/(pi*sqrt(tr));
}

return(s);
}
double h3(double x,double z,double t,double nu)
{
double n,nn,rr,rt,pi,s,b,bb,tt,xx,zz,tq,b2,c,d;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);tt=t*t;
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xx=x*x;zz=z*z;rr=xx+zz;rt=rr-tt;tq=fabs(n*x)+z*sqrt(1-nn);
if ((rt<=0)||(t<=tq)||(xx<=nn*rr)) s=0;else
{
if (x>0) b=x*t/rr-(z/rr)*sqrt(rt);else b=x*t/rr+(z/rr)*sqrt(rt);
bb=b*b;b2=(1-2*bb)*(1-2*bb);c=4*b*(1-bb)*b2*sqrt(bb-nn);
d=b2*b2+16*bb*bb*(1-bb)*(bb-nn);
s=-c/(pi*d*sqrt(rt));
}

return(s);
}
double StripPulseSzz(double x,double z,double t,double nu)
{
double s;
s=h1(x+1,z,t,nu)-h1(x-1,z,t,nu);
s+=h2(x+1,z,t,nu)-h2(x-1,z,t,nu);
s+=h3(x+1,z,t,nu)-h3(x-1,z,t,nu);
return(s);
}

Examples

The vertical normal stress σzz in the point x = 0, z = a, is shown, as a function of
time, in the Figs. 12.5 and 12.6 for two values of Poisson’s ratio: ν = 0 and ν = 0.45.

In these figures the first singularity indicates the arrival of the compression wave
under the load, the second singularity indicates the arrival of the (negative) com-
pression waves emanating from the end points of the load (which arrive a factor

√
2

Fig. 12.5 Strip
pulse—vertical normal stress,
ν = 0, x/a = 0, z/a = 1

Fig. 12.6 Strip
pulse—vertical normal stress,
ν = 0.45, x/a = 0, z/a = 1
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later), and the third singularity indicates the arrival of the shear waves from these
points (which arrive at time t = a

√
2/cs ).

12.1.3 The Horizontal Normal Stress

The next quantity to be evaluated is the horizontal normal stress σxx . It is recalled
from (12.7) that the Laplace transform of this quantity is

σxx = s2

2π

∫ ∞

−∞
{(2μα2 − λ/c2

p)Cp exp(−sγpz) + 2μαγsCs exp(−sγsz)}

× exp(−isαx)dα. (12.72)

Substitution of the expressions (12.11) and (12.12) for the two constants Cp and Cs

gives

σxx = σ 1 + σ 2, (12.73)

where

σ 1 = q

π

∫ ∞

−∞
sin(sαa)

α

(2α2 + 1/c2
s )[2α2 − λ/(μc2

p)]
(2α2 + 1/c2

s )
2 − 4α2γpγs

exp[−s(γpz + iαx)]dα,

(12.74)

σ 2 = − q

π

∫ ∞

−∞
sin(sαa)

α

4α2γsγp

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα.

(12.75)

The first integral, (12.74), is very similar to the expression (12.43) obtained when
considering the vertical normal stress. Using the same procedures, with a change of
variable and a modification of the integration path, gives, by analogy with (12.57)
and (12.56),

σ1

q
= cp

a
{h1(ξ + 1) − h1(ξ − 1)}, (12.76)

where the function h1(ξ) is defined by the dimensionless form

h1(ξ) = 1

π
�
{

τ
√

τ 2 − η2ρ2 + iη2ξζ

(τ 2 − η2ζ 2)
√

τ 2 − η2ρ2

(1 − 2β2
p)(1 − 2η2 + 2β2

p)

(1 − 2β2
p)2 + 4β2

pgpgs

}
H(τ − ηρ)

+ (1 − 2η2)δ(τ − ηζ ){1 − H(ξ)}. (12.77)

The parameter βp is a dimensionless complex variable defined by equation (12.53),

βp =
(
τξ + iζ

√
τ 2 − η2ρ2

)
/ρ2. (12.78)
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The coefficient of the last term in (12.77) is a consequence of the limiting behaviour
of the integrand of (12.74) for α → 0, which determines the contribution of the pole
for x < 0.

The second integral, (12.75), is just the opposite of the expression in (12.44),
obtained when considering the vertical normal stress σzz. It follows that the final
expression for the second integral can be written as

σ2

q
= cp

a
{h2(ξ + 1) − h2(ξ − 1) + h3(ξ + 1) − h3(ξ − 1)}. (12.79)

The function h2(ξ) is the opposite of the function given in (12.64), i.e.

h2(ξ) = − 1

π
�

{
4βsgpg2

s

(1 − 2β2
s )2 + 4β2

s gpgs

}
H(τ − ρ)
√

τ 2 − ρ2
, (12.80)

where the dimensionless complex parameter βs is defined by (12.65),

βs =
(
τξ + iζ

√
τ 2 − ρ2

)
/ρ2, (12.81)

and the parameters gp and gs are defined by (12.66)

gp =
√

η2 − β2
s , gs =

√
1 − β2

s . (12.82)

The expression for h3(ξ) is the opposite of the value in (12.67), i.e.

h3(ξ) = 1

π

4βq(1 − β2
q)(1 − 2β2

q )2
√

β2
q − η2

(1 − 2β2
q)4 + 16β4

q(1 − β2
q )(β2

3 − η2)

× H(τ − τq) − H(τ − τs)√
τ 2
s − τ 2

H(ξ − ηρ), (12.83)

where the dimensionless real parameter βq is defined by (12.68),

βq =
(
ξτ − ζ

√
ρ2 − τ 2

)
/ρ2, (12.84)

and the dimensionless parameters τq and τs are defined by (12.69),

τq = ηξ + ζ

√
1 − η2, τs = ρ. (12.85)

The horizontal normal stress σxx can be obtained by substituting the results derived
above into (12.73), using the further elaborations of σ 1 and σ 2. This gives

σxx

σ0
= h1(ξ + 1) − h1(ξ − 1) + h2(ξ + 1) − h2(ξ − 1) + h3(ξ + 1) − h3(ξ − 1),

(12.86)
where σ0 is a reference stress defined as

σ0 = qcs

a
, (12.87)
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and where the functions h1(ξ), h2(ξ) and h3(ξ) are defined in (12.77), (12.80)
and (12.83). It should be noted that the functions h2(ξ) and h3(ξ) are antisymmetric
in ξ .

Computer Program

The horizontal normal stress σxx can be calculated by the function StripPulse-
Sxx shown below. This function uses the functions delta, h1, h2, and h3, which
are also shown. The delta function is approximated by a parabolic arc of small width
and of unit area.

double delta(double t,double z,double e)
{
double f;
if ((t<z-e)||(t>z+e)) f=0;else f=3*(e*e-(t-z)*(t-z))/(4*e*e*e);
return(f);
}
double h1(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,tz,xx,zz,eps;complex a,b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);eps=0.01;tt=t*t;
xx=x*x;zz=z*z;rr=xx+zz;tr=tt-nn*rr;tz=tt-nn*zz;
if (tr<=0) s=0;else
{
a=complex(t/tz,nn*x*z/(tz*sqrt(tr)));b=complex(t*x/rr,(z/rr)*sqrt(tr));
bb=b*b;b1=1-2*bb;gp=sqrt(nn-bb);gs=sqrt(1-bb);
d=a*b1*(1-2*nn+2*bb);e=b1*b1+4*bb*gp*gs;s=imag(d/e)/pi;
}

if (x<0) s+=(1-2*nn)*delta(t,n*z,eps);
return(s);
}
double h2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);tt=t*t;
xx=x*x;zz=z*z;rr=xx+zz;tr=tt-rr;
if (tr<=0) s=0;else
{
b=complex(t*x/rr,(z/rr)*sqrt(tr));bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=4*b*gp*(1-bb);
e=b1*b1+4*bb*gp*gs;s=-real(d/e)/(pi*sqrt(tr));
}

return(s);
}
double h3(double x,double z,double t,double nu)
{
double n,nn,rr,rt,pi,s,b,bb,tt,xx,zz,tq,b2,c,d;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);tt=t*t;
xx=x*x;zz=z*z;rr=xx+zz;rt=rr-tt;tq=fabs(n*x)+z*sqrt(1-nn);
if ((rt<=0)||(t<=tq)||(xx<=nn*rr)) s=0;else
{
if (x>0) b=x*t/rr-(z/rr)*sqrt(rt);else b=x*t/rr+(z/rr)*sqrt(rt);
bb=b*b;b2=(1-2*bb)*(1-2*bb);c=4*b*(1-bb)*b2*sqrt(bb-nn);
d=b2*b2+16*bb*bb*(1-bb)*(bb-nn);s=c/(pi*d*sqrt(rt));
}

return(s);
}
double StripPulseSxx(double x,double z,double t,double nu)
{
double s;
s=h1(x+1,z,t,nu)-h1(x-1,z,t,nu)+h2(x+1,z,t,nu)-h2(x-1,z,t,nu);
s+=h3(x+1,z,t,nu)-h3(x-1,z,t,nu);
return(s);
}
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Examples

The horizontal normal stress σxx in the point x = 0, z = a, is shown, as a function
of time, in the Figs. 12.7 and 12.8, for two values of Poisson’s ratio: ν = 0 and
ν = 0.45. In the first figure the possible first singularity, indicating the arrival of the
compression wave under the load does not appear (its strength appears to be zero),
the second singularity indicates the arrival of the (negative) compression waves em-
anating from the end points of the load (which arrive at time t = a

√
2/cp), and the

third singularity indicates the arrival of the shear waves from these points, at time
t = a

√
2/cs .

12.1.4 The Shear Stress

The last stress component to be evaluated is the shear stress σxz. It is recalled
from (12.9) that the Laplace transform of this quantity is

σxz = − iμs2

2π

∫ ∞

−∞
{2αγpCp exp(−γpsz) + (2α2 + 1/c2

s )Cs exp(−γssz)}

× exp(−isαx)dα. (12.88)

Fig. 12.7 Strip
pulse—horizontal normal
stress, ν = 0, x/a = 0,
z/a = 1

Fig. 12.8 Strip
pulse—horizontal normal
stress, ν = 0.45, x/a = 0,
z/a = 1
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Substitution of the expressions (12.11) and (12.12) for the two constants Cp and Cs

gives

σxz = σ 1 + σ 2, (12.89)

where

σ 1 = −2iq

π

∫ ∞

−∞
sin(sαa)

α

(2α2 + 1/c2
s )αγp

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γpz + iαx)]dα,

(12.90)

σ 2 = 2iq

π

∫ ∞

−∞
sin(sαa)

α

(2α2 + 1/c2
s )αγp

(2α2 + 1/c2
s )

2 − 4α2γpγs

exp[−s(γsz + iαx)]dα.

(12.91)

It may be interesting to note that it is immediately clear from these two expressions
that for z = 0 the two integrals cancel, so that the boundary condition along the up-
per surface, that the shear stress vanishes, is indeed satisfied. Inspection also shows
that in these expressions the point α = 0 is not a singularity.

Using the same methods as for the other stress components leads to the following
expression for the shear stress

σxz

σ0
= h1(ξ + 1) − h1(ξ − 1) + h2(ξ + 1) − h2(ξ − 1) + h3(ξ + 1) − h3(ξ − 1),

(12.92)
where σ0 is a reference stress defined as

σ0 = qcs

a
, (12.93)

and where the functions h1(ξ), h2(ξ) and h3(ξ) are defined as follows, using the
same dimensionless variables as before.

The function h1(ξ) is

h1(ξ) = 2

π
�

{
(η2 − β2

p)(1 − 2β2
p)

(1 − 2β2
p)2 + 4β2

p

√
1 − β2

p

√
η2 − β2

p

}
H(τ − ηρ)
√

τ 2 − η2ρ2
, (12.94)

where

βp =
(
ξτ + iζ

√
τ 2 − η2ρ2

)
/ρ2. (12.95)

The function h2(ξ) is

h2(ξ) = − 2

π
�

{ √
1 − β2

s

√
η2 − β2

s (1 − 2β2
s )

(1 − 2β2
s )2 + 4β2

s

√
1 − β2

s

√
η2 − β2

s

}
H(τ − ρ)
√

τ 2 − ρ2
, (12.96)

where

βs =
(
ξτ + iζ

√
τ 2 − ρ2

)
/ρ2. (12.97)
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The function h3(ξ) is

h3(ξ) = 2

π

(1 − 2β2
q)3

√
β2

q − η2
√

1 − β2
q

(1 − 2β2
q )4 + 16β4

q(1 − β2
q )(β2

q − η2)

× H(τ − τq) − H(τ − τs)√
τ 2
s − τ 2

H(ξ − ηρ), (12.98)

where

βq =
(
ξτ − ζ

√
ρ2 − τ 2

)
/ρ2. (12.99)

These expressions have been derived assuming that x > 0. For x < 0 the values
can be obtained by noting from the original integrals that the functions must be
symmetric in x. The shear stress itself should be antisymmetric.

Computer Program

The shear stress σxz can be calculated by the function StripPulseSxz shown
below. This function uses the functions h1, h2, and h3, which are also shown.

double h1(double x,double z,double t,double nu)
{
double xa,n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,b1,gp,gs,d,e;
xa=fabs(x);pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;tr=tt-nn*rr;
if (tr<=0) s=0;
else
{
b=complex(t*xa/rr,(z/rr)*sqrt(tr));bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=(nn-bb)*b1;e=b1*b1+4*bb*gp*gs;
s=2*real(d/e)/(pi*sqrt(tr));
}

return(s);
}
double h2(double x,double z,double t,double nu)
{
double xa,n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,b1,gp,gs,d,e;
xa=fabs(x);pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;tr=tt-rr;
if (tr<=0) s=0;
else
{
b=complex(t*xa/rr,(z/rr)*sqrt(tr));bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=gp*gs*b1;e=b1*b1+4*bb*gp*gs;
s=-2*real(d/e)/(pi*sqrt(tr));
}

return(s);
}
double h3(double x,double z,double t,double nu)
{
double xa,n,nn,rr,pi,s,b,bb,tt,xx,zz,rt,tq,b2,c,d;
xa=fabs(x);pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);tt=t*t;
xx=xa*xa;zz=z*z;rr=xx+zz;rt=rr-tt;tq=fabs(n*x)+z*sqrt(1-nn);
if ((rt<=0)||(t<=tq)||(xx<=nn*rr)) s=0;
else
{
b=xa*t/rr-(z/rr)*sqrt(rt);bb=b*b;b2=(1-2*bb)*(1-2*bb);
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c=b2*(1-2*bb)*sqrt(bb-nn)*sqrt(1-bb);d=b2*b2+16*bb*bb*(1-bb)*(bb-nn);
s=2*c/(pi*d*sqrt(rt));
}

return(s);
}
double StripPulseSxz(double x,double z,double t,double nu)
{
double s;
s=h1(x+1,z,t,nu)-h1(x-1,z,t,nu);
s+=h2(x+1,z,t,nu)-h2(x-1,z,t,nu);
s+=h3(x+1,z,t,nu)-h3(x-1,z,t,nu);
return(s);
}

Examples

The shear stress σxz in the point x = a, z = a, is shown, as a function of time, in the
Figs. 12.9 and 12.10 for two values of Poisson’s ratio: ν = 0 and ν = 0.45.

In these figures the first singularity indicates the arrival of the compression wave
under the load, and the further singularities indicate the arrival of the compression
waves and shear waves emanating from the end points of the loaded strip.

Fig. 12.9 Strip pulse—shear
stress, ν = 0, x/a = 1,
z/a = 1

Fig. 12.10 Strip
pulse—shear stress, ν = 0.45,
x/a = 1, z/a = 1
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12.2 Strip Load

The second problem to be considered in this chapter is the case of a strip load on
an elastic half plane, i.e. a load that is applied at time t = 0, and then remains
constant in time, see Fig. 12.11. The solution will be obtained by an integration of
the solution of the problem of a strip pulse, considered in the previous section, over
the time parameter t .

The elastostatic equivalent of this problem is a classical problem of applied me-
chanics (Timoshenko and Goodier, 1970; Sneddon, 1951). This means that the elas-
todynamic solutions to be derived in this chapter should reduce to the elastostatic
limits if t → ∞. Also, the solutions should reduce to those obtained for a line load
in the previous chapter, if the width of the loaded strip (2a) becomes very small.

In this case the boundary conditions are

z = 0 : σzx = 0, (12.100)

z = 0 : σzz =
{

−q H(t), if |x| < a,

0, if |x| > a.
(12.101)

The Laplace transform of the last condition is

z = 0 : σzz =
{

−q/s, if |x| < a,

0, if |x| > a.
(12.102)

Compared to the boundary condition in case of a strip pulse, see (12.3), the dif-
ference is a division by s. In the time domain this corresponds to integration with
respect to time t . The stresses will be evaluated for this case, taking the solutions
given in the previous section for the strip impulse as a start.

Fig. 12.11 Half plane with
strip load
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12.2.1 The Isotropic Stress

The isotropic stress is, on the basis of a time integration of (12.39),

σ

q
= (1−η2){f (ξ +1, ζ, τ )+�f (ξ +1, ζ, τ )−f (ξ −1, ζ, τ )−�f (ξ −1, ζ, τ )},

(12.103)
where

f (ξ, ζ, τ ) =
∫ τ

ηρ

h(ξ, ζ, κ) dκ, (12.104)

�f (ξ, ζ, τ ) =
∫ τ

ηρ

�h(ξ, ζ, κ) dκ. (12.105)

The factor cs/a in the reference value of the stress has been omitted, because dt =
(cs/a)dκ . In both integrals the lower limit of integration has been set equal to ηρ,
because for κ < ηρ the actual functions contain a factor zero. The two integrals
(12.104) and (12.105) will be considered separately.

The First Integral

In the first integral the integrand is, with (12.32),

h(ξ, ζ, κ) = 1

π
�
{

κ
√

κ2 − η2ρ2 + iη2ξζ

(κ2 − η2ζ 2)
√

κ2 − η2ρ2

(1 − 2β2
p)

(1 − 2β2
p)2 + 4β2

pgpgs

}
, (12.106)

where βp is defined in (12.29),

βp =
(
τξ + iζ

√
τ 2 − η2ρ2

)
/ρ2, (12.107)

and the parameters gp and gs are defined in (12.30),

gp =
√

η2 − β2
p, gs =

√
1 − β2

p. (12.108)

Because of the complex character of the expression (12.106) a numerical integra-
tion seems to be required. For such a numerical integration a complication is that
there is a singularity at the lower limit, for κ = ηρ, of the character 1/

√
κ2 − η2ρ2.

Although this is an integrable singularity, the results may be easier to compute, and
more accurate, if the function is written as

h(ξ, ζ, κ) = k(ξ, ζ, ηρ)

(κ2 − η2ζ 2)
√

κ2 − η2ρ2
+ h∗(ξ, ζ, κ), (12.109)

where

h∗(ξ, ζ, κ) = k(ξ, ζ, κ) − k(ξ, ζ, ηρ)

(κ2 − η2ζ 2)
√

κ2 − η2ρ2
, (12.110)



314 12 Strip Load on Elastic Half Space

and

k(ξ, ζ, κ) = 1

π
�
{

(κ
√

κ2 − η2ρ2 + iη2ξζ )(1 − 2β2
p)

(1 − 2β2
p)2 + 4β2

p

√
1 − β2

p

√
η2 − β2

p

}
. (12.111)

A standard integral is

∫ τ

ηρ

dκ

(κ2 − η2ζ 2)
√

κ2 − η2ρ2
= 1

η2ζ
√

ρ2 − ζ 2
arctan

(
ζ
√

τ 2 − η2ρ2

τ
√

ρ2 − ζ 2

)
, (12.112)

where ζ < ρ. The validity of this integral may be verified by differentiating the right
hand side with respect to τ .

Substitution of (12.109) into (12.104) gives, using the integral (12.112),

f (ξ, ζ, τ ) = k(ξ, ζ, ηρ)

η2ζ
√

ρ2 − ζ 2
arctan

(
ζ
√

τ 2 − η2ρ2

τ
√

ρ2 − ζ 2

)
+

∫ τ

ηρ

h∗(ξ, ζ, κ) dκ,

(12.113)
where the value of the function h∗(ξ, ζ, κ) at the lower limit of integration is zero,

h∗(ξ, ζ, ηρ) = 0. (12.114)

The integral in (12.113) can be computed accurately by numerical integration.

The Second Integral

The integrand of the second integral is, with (12.36)

�h(ξ, ζ, κ) = δ(τ − ηζ ){1 − H(ξ)}. (12.115)

Substitution into (12.105) gives

�f (ξ, ζ, τ ) = H(τ − ηζ ){1 − H(ξ)}. (12.116)

This represents a compression wave just below the load.

Computer Program

The isotropic stress can be calculated as a function of ξ , ζ , τ and ν by the function
StripLoadS shown below. The functions k, f and df, used by this function, are
also shown. The numerical integration is performed using Simspon’s rule.

double k(double x,double z,double w,double nu)
{
double n,nn,rr,pi,s,ww,xx,zz,wr;
complex a,b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
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ww=w*w;xx=x*x;zz=z*z;rr=xx+zz;wr=ww-nn*rr;
if (wr<=0) s=0;
else
{
a=complex(w*sqrt(wr),nn*x*z);b=complex(w*x/rr,(z/rr)*sqrt(wr));bb=b*b;
b1=1-2*bb;gp=sqrt(nn-bb);gs=sqrt(1-bb);d=a*b1;e=b1*b1+4*bb*gp*gs;
s=imag(d/e)/pi;
}

return(s);
}
double f(double x,double z,double t,double nu)
{
double n,nn,r,rr,xa,xx,zz,rz,tt,b,p,pp,pr,pz,s,s1,s2,s3,h,hh,eps;
h=0.001;eps=h*h;xa=x;nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;r=sqrt(rr);rz=rr-zz;
p=n*r+h;pp=p*p;b=k(xa,z,p,nu);hh=h*h;if (rz<hh) rz=hh;
if (tt<=nn*rr) s=0;else
{
s=(b/(nn*z*sqrt(rz)))*atan((z*sqrt(tt-nn*rr))/(t*sqrt(rz)));s1=0;
while (pp<tt)
{
p+=h;pp=p*p;pz=pp-nn*zz;pr=pp-nn*rr;s2=(k(xa,z,p,nu)-b)/(pz*sqrt(pr));
p+=h;pp=p*p;pz=pp-nn*zz;pr=pp-nn*rr;s3=(k(xa,z,p,nu)-b)/(pz*sqrt(pr));
s+=(s1+4*s2+s3)*h/3;s1=s3;
}

}
return(s);
}
double df(double x,double z,double t,double nu)
{
double s,n,nn;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
s=1;if ((t<=n*z)||(x>=0)) s=0;return(s);
}
double StripLoadS(double x,double z,double t,double nu)
{
double s,nn;
nn=(1-2*nu)/(2*(1-nu));
s=(1-nn)*(f(x+1,z,t,nu)+df(x+1,z,t,nu)-f(x-1,z,t,nu)-df(x-1,z,t,nu));
return(s);
}

In these functions special care has been taken to avoid discontinuities or singular-
ities at x=1 and x=-1, by introducing a small parameter eps. The magnitude of
the step in the numerical integration is denoted by h. Accuracy may be further im-
proved by giving this parameter a smaller value, at the price of computation time,
of course.

Examples

Figures 12.12 and 12.13 show the isotropic stress as a function of the lateral co-
ordinate x, for z/a = 1.0 and ν = 0.4, and for two values of time: cst/a = 2 and
cst/a = 20.

In the second figure the elastostatic values, which should obtain for t →
∞, are also shown, by small asterisks. These elastostatic stresses are, see e.g.
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Fig. 12.12 Strip load—isotropic stress, ν = 0.4, z/a = 1, cs t/a = 2

Fig. 12.13 Strip load—isotropic stress, ν = 0.4, z/a = 1, cs t/a = 20

Sneddon (1951),

σ

q
= − 1

π

{
arctan

(
x + a

z

)
− arctan

(
x − a

z

)}
. (12.117)

The agreement appears to be very good. It might be concluded from the figures that
the elastodynamic solution presented here is in agreement with the elastostatic limit.

This conclusion is a little too fast, however. By taking into account a wider range
of values of the lateral coordinate x/a, it appears that there is a difference be-
tween the elastodynamic solution and the elastostatic solution, as is illustrated in
Fig. 12.14. This figure shows the isotropic stress for five increasing values of the
dimensionless time parameter, namely cst/a = 20,40,60,80,100, in a range up to
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Fig. 12.14 Strip load—isotropic stress, ν = 0, z/a = 1, cs t/a = 20, 40, 60, 80, 100

x/a = 100, with the resolution of the graphs gradually decreasing, in order to dis-
tinguish between the various responses. As in the case of the line load, it appears
that the solution consists of the ultimate elastostatic solution, plus a time dependent
effect of a local disturbance, moving at the speed of the Rayleigh wave. This distur-
bance travels at constant speed, and with a constant amplitude and constant shape
towards infinity. If time becomes really infinitely large the disturbance vanishes be-
yond the boundary at infinity, of course, and this confirms the conclusion that the
elastodynamics solution is a proper generalization of the elastostatic solution, after
all. But is important to realize that the Rayleigh wave disturbance in a two dimen-
sional elastic problem does not exhibit any geometrical damping, and is visible for
all finite values of time.

Figure 12.14 has been drawn for the case ν = 0 and z/a = 1. For other values
of these parameters the Rayleigh wave disturbance also appears, but at somewhat
modified intensity or speed. Actually, in each case the velocity corresponds very
well with the theoretical velocity of the Rayleigh wave, as determined in Chap. 9 of
this book.

Approximation for Large Values of Time

The solution given in this section is exact, but so complex that numerical values
can be obtained only by a computer program. It would be useful to have an ap-
proximation that would be somewhat easier to handle. Such an approximation can
be obtained by extending the approximate solution for a line load derived in the
previous chapter, see (11.258),

cst/z � 1 : σπz

F
≈ − 1

1 + x2/z2 + m

1 + (x − cr t)2/(wpz)2 , (12.118)

where F is the magnitude of the line load, cr is the speed of the Rayleigh wave, and
m and wp are given by (11.256) and (11.257).
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Fig. 12.15 Half plane with
line load

If the load F is replaced by a distributed load q du at a distance u from the origin,
see Fig. 12.15, the solution for such a distributed load can be obtained from (12.118)
through replacing F by q du, and x by x − u. This gives

cst/z � 1 : σπz ≈ − q du

1 + (x − u)2/z2 + mq du

1 + (x − u − cr t)2/(wpz)2 . (12.119)

The isotropic stress due to a distributed load q(u) can now be obtained by integrating
over u. For the case of a strip load this involves integrals of the following general
form

∫ +a

−a

du

1 + (u − x)2/z2
= πzA(x, a, z), (12.120)

where A(x,a, z) is an elementary function defined by

A(x,a, z) = 1

π
arctan

(
x + a

z

)
− 1

π
arctan

(
x − a

z

)
. (12.121)

Using this notation the approximate expression for the isotropic stress caused by a
strip load is

cst/a � 1 : σ

q
≈ −A(x,a, z) + mwpA(x − cr t, a,wpz). (12.122)

This is indeed a much simpler formula, although it must be noted that it is valid
only for large values of the time parameter cst/a. The approximate formula con-
firms that for large values of time the solution consists of the elastostatic solution
and the Rayleigh wave, where the shape and the magnitude of the Rayleigh wave
disturbance remains unchanged as it travels to infinity.

It may be recalled from the previous chapter that the parameters in the approxi-
mate solution are

m = (1 − η2)(2β2 − 1)

2Mβ2w
, wp =

√
1 − η2/β2, (12.123)
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Fig. 12.16 Strip load—isotropic stress, ν = 0, z/a = 1, cs t/a = 10

Fig. 12.17 Strip load—isotropic stress, ν = 0.5, z/a = 0.1, cs t/a = 10

where η, β and M are defined by

η = cs/cp, β = cs/cr , M = 1 − 4β2 + 8(1 − η2)β6

β2(2β2 − 1)2 . (12.124)

Figure 12.16 shows a comparison of the exact analytical solution (in the left half
of the figure) and the approximate solution (in the right half, by the dashed curve),
for ν = 0 and z/a = 1 and cst/a = 10. The maximum error in the approximate
solution at that time is 0.018. For larger values of time the error is further reduced.

Figure 12.17 shows the results for ν = 0.5, z/a = 0.1 and cst/z = 10. In this
case the maximum error is 0.026, and again the error becomes smaller with time.
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12.2.2 The Vertical Normal Stress

The vertical normal stress σzz for the case of a strip load constant in time can be ob-
tained by integration with respect to time t of the solution of the strip pulse problem,
as given in (12.70). This gives

σzz

q
= f1(ξ + 1) − f1(ξ − 1) + f2(ξ + 1) − f2(ξ − 1) + f3(ξ + 1) − f3(ξ − 1),

(12.125)
where

f1(ξ, ζ, τ ) =
∫ τ

ηρ

h1(ξ, ζ, κ) dκ, (12.126)

f2(ξ, ζ, τ ) =
∫ τ

ρ

h2(ξ, ζ, κ) dκ, (12.127)

f3(ξ, ζ, τ ) =
∫ τ

τq

h3(ξ, ζ, κ) dκ, (12.128)

and where the functions h1(ξ), h2(ξ) and h3(ξ) are defined in (12.56), (12.64)
and (12.67). Because dκ = (cs/a) dt the factor cs/a in the reference stress σ0
in (12.58) has been eliminated.

The evaluation of the three integrals will be considered separately.

The First Integral

In the first integral the integrand is, with (12.56),

h1(ξ, ζ, κ) = 1

π
�
{

κ
√

κ2 − η2ρ2 + iη2ξζ

(κ2 − η2ζ 2)
√

κ2 − η2ρ2

(1 − 2β2
p)2

(1 − 2β2
p)2 + 4β2

pgpgs

}
H(κ − ηρ)

+ δ(κ − ηζ ){1 − H(ξ)}, (12.129)

where βp is defined by (12.53),

βp =
(
κξ + iζ

√
κ2 − η2ρ2

)
/ρ2, (12.130)

and the parameters gp and gs are defined by (12.54),

gp =
√

η2 − β2
p, gs =

√
1 − β2

p. (12.131)

To avoid the difficulties caused by the singularity at the lower limit of integration,
for κ = ηρ, the function h1(ξ, ζ, κ) is written as

h1(ξ, ζ, κ) = k1(ξ, ζ, ηρ)

(κ2 − η2ζ 2)
√

κ2 − η2ρ2
H(κ − ηρ) + h∗

1(ξ, ζ, κ)

+ δ(κ − ηζ ){1 − H(ξ)}, (12.132)
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where

h∗
1(ξ, ζ, κ) = k1(ξ, ζ, κ) − k1(ξ, ζ, ηρ)

(κ2 − η2ζ 2)
√

κ2 − η2ρ2
, (12.133)

and

k1(ξ, ζ, κ) = 1

π
�
{

(κ
√

κ2 − η2ρ2 + iη2ξζ ) (1 − 2β2
p)2

(1 − 2β2
p)2 + 4β2

p

√
1 − β2

p

√
η2 − β2

p

}
. (12.134)

Substitution of (12.132) into (12.126) gives, using the integral (12.112),

f1(ξ, ζ, τ ) = k1(ξ, ζ, ηρ)

η2ζ
√

ρ2 − ζ 2
arctan

(
ζ
√

τ 2 − η2ρ2

τ
√

ρ2 − ζ 2

)
H(τ − ηρ)

+
∫ τ

ηρ

h∗
1(ξ, ζ, κ) dκ + H(τ − ηζ ){1 − H(ξ)}, (12.135)

where the value of the function h∗
1(ξ, ζ, κ) at the lower limit of integration is zero,

h∗
1(ξ, ζ, ηρ) = 0. (12.136)

The integral in (12.135) can be computed numerically.

The Second Integral

In the second integral, equation (12.127), the integrand is, with (12.64),

h2(ξ, ζ, κ) = 1

π
�

{
4βsgpg2

s

(1 − 2β2
s )2 + 4β2

s gpgs

}
H(κ − ρ)
√

κ2 − ρ2
, (12.137)

where the parameter βs is defined by equation (12.65),

βs =
(
κξ + iζ

√
κ2 − ρ2

)
/ρ2, (12.138)

and the parameters gp and gs are defined by (12.66),

gp =
√

η2 − β2
s , gs =

√
1 − β2

s . (12.139)

In this case there is again a singularity at the beginning of the integration interval,
but this point is now located at κ = ρ. In order to avoid the numerical difficulties
caused by this singularity the function h2(ξ, ζ, κ) is written as

h2(ξ, ζ, κ) = k2(ξ, ζ, ρ)
√

κ2 − ρ2
H(κ − ρ) + h∗

2(ξ, ζ, κ), (12.140)
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where

h∗
2(ξ, ζ, κ) = k2(ξ, ζ, κ) − k2(ξ, ζ, ρ)

√
κ2 − ρ2

, (12.141)

and

k2(ξ, ζ, κ) = 1

π
�

{
4βs(1 − β2

s )
√

η2 − β2
s

(1 − 2β2
s )2 + 4β2

s

√
1 − β2

s

√
η2 − β2

s

}
. (12.142)

Substitution of (12.140) into (12.127) gives

f2(ξ, ζ, τ ) = k2(ξ, ζ, ρ) log

(
τ + √

τ 2 − ρ2

ρ

)
H(τ − ρ) +

∫ τ

ρ

h∗
2(ξ, ζ, κ) dκ,

(12.143)
where the value of the function h∗

2(ξ, ζ, κ) at the lower limit integration is zero,

h∗
2(ξ, ζ, ρ) = 0. (12.144)

The integral in (12.143) can be computed numerically.

The Third Integral

In the third integral, (12.128), the integrand is, with (12.67),

h3(ξ) = − 1

π

4βq(1 − β2
q)(1 − 2β2

q )2
√

β2
q − η2

(1 − 2β2
q )4 + 16β4

q(1 − β2
q )(β2

q − η2)

× H(κ − τq) − H(κ − τs)√
τ 2
s − κ2

H(ξ − ηρ), (12.145)

where the real parameter βq is defined by (12.68),

βq =
(
ξκ − ζ

√
ρ2 − κ2

)
/ρ2, (12.146)

and the parameters τq and τs are defined by (12.69),

τq = ηξ + ζ

√
1 − η2, τs = ρ. (12.147)

It may be noted that this third integral gives a non-zero contribution only if ξ > ηρ.
The lower limit of integration is τq and the upper limit is τs , or τ when this is
smaller. The integral can be computed numerically.
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Computer Program

The vertical normal stress can be calculated as a function of ξ , ζ , τ and ν by the
function StripLoadSzz shown below. The auxiliary functions used by this func-
tion, in which the three integrals are calculated, are also shown.

double k1(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex a,b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=x*x;zz=z*z;rr=xx+zz;tr=tt-nn*rr;if (tr<=0) s=0;
else

{
a=complex(t*sqrt(tr),nn*x*z);b=complex(t*x/rr,(z/rr)*sqrt(tr));bb=b*b;
b1=1-2*bb;gp=sqrt(nn-bb);gs=sqrt(1-bb);d=a*b1*b1;e=b1*b1+4*bb*gp*gs;
s=imag(d/e)/pi;

}
return(s);
}
double f1(double x,double z,double t,double nu)
{
double n,nn,r,rr,xx,zz,rz,tt,b,p,pp,pr,pz,s,s1,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;r=sqrt(rr);
hh=h*h;p=n*r+hh;pp=p*p;b=k1(xa,z,p,nu);rz=rr-zz;if (rz<hh) rz=hh;
if (tt<=pp) s=0;else
{
s=(b/(nn*z*sqrt(rz)))*atan((z*sqrt(tt-nn*rr))/(t*sqrt(rz)));s1=0;
while (pp<tt)
{
p+=h;pp=p*p;pz=pp-nn*zz;pr=pp-nn*rr;s2=(k1(xa,z,p,nu)-b)/(pz*sqrt(pr));
p+=h;pp=p*p;pz=pp-nn*zz;pr=pp-nn*rr;s3=(k1(xa,z,p,nu)-b)/(pz*sqrt(pr));
s+=(s1+4*s2+s3)*h/3;s1=s3;
}

}
if ((t>n*z)&&(xa<0)) s+=1;
return(s);
}
double k2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=x*x;zz=z*z;rr=xx+zz;tr=tt-rr;if (tr<=0) s=0;
else
{
b=complex(t*x/rr,(z/rr)*sqrt(tr));bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=4*b*(1-bb)*gp;e=b1*b1+4*bb*gp*gs;
s=real(d/e)/pi;
}

return(s);
}
double f2(double x,double z,double t,double nu)
{
double r,rr,tt,tr,b,p,pp,pr,s,s1,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;rr=xa*xa+z*z;r=sqrt(rr);tr=t/r;h=0.001;hh=h*h;
p=r+hh;pp=p*p;b=k2(xa,z,p,nu);if (tt<=pp) s=0;else
{
s=b*log(tr+sqrt(tr*tr-1));s1=0;
while (pp<tt)
{
p+=h;pp=p*p;pr=pp-rr;s2=(k2(xa,z,p,nu)-b)/sqrt(pr);
p+=h;pp=p*p;pr=pp-rr;s3=(k2(xa,z,p,nu)-b)/sqrt(pr);
s+=(s1+4*s2+s3)*h/3;s1=s3;
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}
}

return(s);
}
double k3(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,b,bb,tt,xx,zz,tq,b2,c,d;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=x*x;zz=z*z;rr=xx+zz;tq=n*fabs(x)+z*sqrt(1-nn);
if ((tt>=rr)||(t<=tq)||(xx<=nn*rr)) s=0;
else
{
if (x>0) b=x*t/rr-(z/rr)*sqrt(rr-tt);else b=x*t/rr+(z/rr)*sqrt(rr-tt);
bb=b*b;b2=(1-2*bb)*(1-2*bb);c=4*b*(1-bb)*b2*sqrt(bb-nn);
d=b2*b2+16*bb*bb*(1-bb)*(bb-nn);s=-c/(pi*d*sqrt(rr-tt));

}
return(s);
}
double f3(double x,double z,double t,double nu)
{
int m;double n,nn,xx,zz,r,rr,p,s,h,ts,tq;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
xx=x*x;zz=z*z;rr=xx+zz;r=sqrt(rr);ts=r;tq=n*fabs(x)+z*sqrt(1-nn);
if ((t<=tq)||(xx<=nn*rr)) s=0;else
{
if (t<ts) ts=t;m=10000;h=(ts-tq)/m;s=0;p=tq+h/2;
while (p<ts) {s+=k3(x,z,p,nu)*h;p+=h;}
}

return(s);
}
double StripLoadSzz(double x,double z,double t,double nu)
{
double s;
s=f1(x+1,z,t,nu)-f1(x-1,z,t,nu)+f2(x+1,z,t,nu)-f2(x-1,z,t,nu);
s+=f3(x+1,z,t,nu)-f3(x-1,z,t,nu);
return(s);
}

Examples

Figures 12.18 and 12.19 show the vertical normal stress as a function of the lateral
coordinate x, for ν = 0 and z/a = 1.0, and for two values of time, namely cst/a = 2
and cst/a = 20. In the second figure the elastostatic values, which should obtain for
t → ∞, are also shown, by small asterisks. These elastostatic stresses are, see e.g.
Sneddon (1951),

σzz

q
= − 1

π

{
arctan

(
x + a

z

)
− arctan

(
x − a

z

)
+ (x + a)z

(x + a)2 + z2 − (x − a)z

(x − a)2 + z2

}
.

(12.148)
The agreement appears to be very good. This has also been found to be the case for
other values of ν, so that it can be concluded that the solution is in agreement with
the elastostatic solution.

The agreement in Fig. 12.19 may be somewhat misleading, because the range of
values of x/a is considerably smaller than the value of cst/a, so that an eventual
effect at the passing of the shear wave and the Rayleigh wave can not be shown. The
behaviour of the solution for large values of time is studied below.
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Fig. 12.18 Strip load—vertical normal stress, ν = 0, z/a = 1, cs t/a = 2

Fig. 12.19 Strip load—vertical normal stress, ν = 0, z/a = 1, cs t/a = 20

Approximation for Large Values of Time

An approximation valid for large values of time can be obtained by integrating the
approximation for the case of a line load, as given in (11.287). This gives, using the
same type of analysis as used in deriving the expression (12.122) for the isotropic
stress, and using the notation A(x,a, z) defined in (12.121),

cst/a � 1 : σzz

q
≈ − 1

π

(x + a)z

(x + a)2 + z2
+ 1

π

(x − a)z

(x − a)2 + z2
− A(x,a, z)

− 2m1wpA(x − cr t, a,wpz) + 2m2wsA(x − cr t, a,wsz),

(12.149)
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Fig. 12.20 Strip load—vertical normal stress, ν = 0, z/a = 1, cs t/a = 10

in which

m1 = (2β2 − 1)2

4Mβ2wp

, wp =
√

1 − η2/β2, (12.150)

m2 = β2wp

M
, ws =

√
1 − 1/β2, (12.151)

and the parameters η, β and M have the same meaning as before.
It may be noted that

2m1wp − 2m2ws = (2β2 − 1)2 − 4β4
√

1 − η2/β2
√

1 − 1/β2

2Mβ2
= 0, (12.152)

because the expression in the numerator is just the Rayleigh function, the zero of
which defines the value of β = cs/cr , see Chap. 9.

To illustrate the accuracy of the approximation (12.149) two examples are shown
in Figs. 12.20 and 12.21, for z/a = 1 and cst/a = 10, and two values of Poisson’s
ratio: ν = 0 and ν = 0.5. The figures show the analytical solution in the left half, and
the approximate results in the left half, by a dashed curve. The agreement appears
to be very good. The maximum error is 0.023, and this error further decreases for
larger values of the time parameter cst/a.

12.2.3 The Horizontal Normal Stress

The horizontal normal stress σxx for the case of a strip load constant in time can
be obtained by integration with respect to time t of the solution of the strip pulse
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Fig. 12.21 Strip load—vertical normal stress, ν = 0.5, z/a = 1, cst/a = 10

problem, as given in (12.86). This gives

σxx

q
= f1(ξ + 1) − f1(ξ − 1) + f2(ξ + 1) − f2(ξ − 1) + f3(ξ + 1) − f3(ξ − 1),

(12.153)
where

f1(ξ, ζ, τ ) =
∫ τ

ηρ

h1(ξ, ζ, κ) dκ, (12.154)

f2(ξ, ζ, τ ) =
∫ τ

ρ

h2(ξ, ζ, κ) dκ, (12.155)

f3(ξ, ζ, τ ) =
∫ τ

τq

h3(ξ, ζ, κ) dκ, (12.156)

and where the functions h1(ξ), h2(ξ) and h3(ξ) are defined in (12.77), (12.80)
and (12.83).

Again the evaluation of the three integrals will be considered separately.

The First Integral

In the first integral the integrand is, with (12.77),

h1(ξ, ζ, κ) = 1

π
�
{

κ
√

κ2 − η2ρ2 + iη2ξζ

(κ2 − η2ζ 2)
√

κ2 − η2ρ2

(1 − 2β2
p)(1 − 2η2 + 2β2

p)

(1 − 2β2
p)2 + 4β2

pgpgs

}

× H(κ − ηρ) + (1 − 2η2)δ(κ − ηζ ){1 − H(ξ)}, (12.157)
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where βp is defined by (12.78),

βp =
(
κξ + iζ

√
κ2 − η2ρ2

)
/ρ2, (12.158)

and the parameters gp and gs are defined by

gp =
√

η2 − β2
p, gs =

√
1 − β2

p. (12.159)

To avoid the difficulties caused by the singularity at the lower limit of integration,
for κ = ηρ, the function h1(ξ, ζ, κ) is written as

h1(ξ, ζ, κ) = k1(ξ, ζ, ηρ)

(κ2 − η2ζ 2)
√

κ2 − η2ρ2
+ h∗

1(ξ, ζ, κ)

+ (1 − 2η2)δ(κ − ηζ ){1 − H(ξ)}, (12.160)

where

h∗
1(ξ, ζ, κ) = k1(ξ, ζ, κ) − k1(ξ, ζ, ηρ)

(κ2 − η2ζ 2)
√

κ2 − η2ρ2
, (12.161)

and

k1(ξ, ζ, κ) = 1

π
�
{

(κ
√

κ2 − η2ρ2 + iη2ξζ )(1 − 2β2
p)(1 − 2η2 + 2β2

p)

(1 − 2β2
p)2 + 4β2

p

√
1 − β2

p

√
η2 − β2

p

}
.

(12.162)
Substitution of (12.160) into (12.154) gives, using the integral (12.112),

f1(ξ, ζ, τ ) = k1(ξ, ζ, ηρ)

η2ζ
√

ρ2 − ζ 2
arctan

(
ζ
√

τ 2 − η2ρ2

τ
√

ρ2 − ζ 2

)
H(τ − ηρ)

+
∫ τ

ηρ

h∗
1(ξ, ζ, κ) dκ + (1 − 2η2)H(τ − ηζ ){1 − H(ξ)},

(12.163)

where the value of the function h∗
1(ξ, ζ, κ) at the lower limit integration is zero,

h∗
1(ξ, ζ, ρ) = 0. (12.164)

The integral in (12.163) can be computed numerically.

The Second Integral

In the second integral, (12.155), the integrand is, with (12.80),

h2(ξ, ζ, κ) = − 1

π
�

{
4β2gpg2

s

(1 − 2β2
s )2 + 4β2

s gpgs

}
H(κ − ρ)
√

κ2 − ρ2
, (12.165)
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where βs is defined by (12.81),

βs =
(
τξ + iζ

√
τ 2 − ρ2

)
/ρ2, (12.166)

and the parameters gp and gs are defined by (12.82),

gp =
√

η2 − β2
s , gs =

√
1 − β2

s . (12.167)

In this case there is again a singularity at the beginning of the integration interval,
but this point is now located at κ = ρ. In order to avoid the numerical difficulties
caused by this singularity the function h2(ξ, ζ, κ) is written as

h2(ξ, ζ, κ) = k2(ξ, ζ, ρ)
√

κ2 − ρ2
+ h∗

2(ξ, ζ, κ), (12.168)

where

h∗
2(ξ, ζ, κ) = k2(ξ, ζ, κ) − k2(ξ, ζ, ρ)

√
κ2 − ρ2

, (12.169)

and

k2(ξ, ζ, κ) = − 1

π
�

{
4βs(1 − β2

s )
√

η2 − β2
s

(1 − 2β2
s )2 + 4β2

s

√
1 − β2

s

√
η2 − β2

s

}
. (12.170)

Substitution of (12.168) into (12.155) gives

f2(ξ, ζ, τ ) = k2(ξ, ζ, ρ) log

(
τ + √

τ 2 − ρ2

ρ

)
+

∫ τ

ρ

h∗
2(ξ, ζ, κ) dκ, (12.171)

where the value of the function h∗
2(ξ, ζ, κ) at the lower limit integration is zero,

h∗
2(ξ, ζ, ρ) = 0. (12.172)

The integral in (12.171) can be computed numerically.

The Third Integral

In the third integral, (12.156), the integrand is, with (12.83),

h3(ξ, ζ, κ) = 1

π

4βq(1 − β2
q )(1 − 2β2

q )2
√

β2
q − η2

(1 − 2β2
q )4 + 16β4

q (1 − β2
q )(β2

q − η2)

× H(κ − τq) − H(κ − τs)√
τ 2
s − κ2

H(ξ − ηρ), (12.173)
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where the real parameter βq is defined by

βq =
(
ξκ − ζ

√
ρ2 − κ2

)
/ρ2, (12.174)

and where τq and τs are defined by (12.69),

τq = ηξ + ζ

√
1 − η2, τs = ρ. (12.175)

It may be noted that this third integral gives a non-zero contribution only if ξ > ηρ.
The lower limit of integration is τq and the upper limit is τs , or τ when this is
smaller. The integral can be computed numerically.

Computer Program

The horizontal normal stress can be calculated as a function of ξ , ζ , τ and ν by
the function StripLoadSxx shown below. The auxiliary functions used by this
function, in which the three integrals are calculated, are also shown.

double k1(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex a,b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=x*x;zz=z*z;rr=xx+zz;tr=tt-nn*rr;if (tr<=0) s=0;
else
{
a=complex(t*sqrt(tr),nn*x*z);b=complex(t*x/rr,(z/rr)*sqrt(tr));bb=b*b;
b1=1-2*bb;gp=sqrt(nn-bb);gs=sqrt(1-bb);
d=a*b1*(1+2*bb-2*nn);e=b1*b1+4*bb*gp*gs;s=imag(d/e)/pi;
}

return(s);
}
double f1(double x,double z,double t,double nu)
{
double m,mm,r,rr,xx,zz,rz,tt,b,p,pp,pr,pz,s,s1,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;r=sqrt(rr);
hh=h*h;p=n*r+hh;pp=p*p;b=k1(xa,z,p,nu);rz=rr-zz;if (rz<hh) rz=hh;
if (tt<=pp) s=0;else
{
s=(b/(nn*z*sqrt(rz)))*atan((z*sqrt(tt-nn*rr))/(t*sqrt(rz)));s1=0;
while (pp<tt)
{
p+=h;pp=p*p;pz=pp-nn*zz;pr=pp-nn*rr;s2=(k1(xa,z,p,nu)-b)/(pz*sqrt(pr));
p+=h;pp=p*p;pz=pp-nn*zz;pr=pp-nn*rr;s3=(k1(xa,z,p,nu)-b)/(pz*sqrt(pr));
s+=(s1+4*s2+s3)*h/3;s1=s3;
}

}
if ((t>n*z)&&(xa<0)) s+=1-2*nn;
return(s);
}
double k2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=x*x;zz=z*z;rr=xx+zz;tr=tt-rr;if (tr<=0) s=0;
else
{
b=complex(t*x/rr,(z/rr)*sqrt(tr));bb=b*b;b1=1-2*bb;
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gp=sqrt(nn-bb);gs=sqrt(1-bb);d=4*b*(1-bb)*gp;e=b1*b1+4*bb*gp*gs;
s=-real(d/e)/pi;
}

return(s);
}
double f2(double x,double z,double t,double nu)
{
double r,rr,tt,tr,b,p,pp,pr,s,s1,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;rr=xa*xa+z*z;r=sqrt(rr);tr=t/r;
hh=h*h;p=r+hh;pp=p*p;b=k2SxxX(xa,z,p,nu);
if (tt<=pp) s=0;else
{
s=b*log(tr+sqrt(tr*tr-1));s1=0;
while (pp<tt)
{
p+=h;pp=p*p;pr=pp-rr;s2=(k2(xa,z,p,nu)-b)/sqrt(pr);
p+=h;pp=p*p;pr=pp-rr;s3=(k2(xa,z,p,nu)-b)/sqrt(pr);
s+=(s1+4*s2+s3)*h/3;s1=s3;
}

}
return(s);
}
double k3(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,b,bb,tt,xx,zz,tq,b2,c,d;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=x*x;zz=z*z;rr=xx+zz;tq=n*fabs(x)+z*sqrt(1-nn);
if ((tt>=rr)||(t<=tq)||(xx<=nn*rr)) s=0;
else
{
if (x>0) b=x*t/rr-(z/rr)*sqrt(rr-tt);else b=x*t/rr+(z/rr)*sqrt(rr-tt);
bb=b*b;b2=(1-2*bb)*(1-2*bb);c=4*b*(1-bb)*b2*sqrt(bb-nn);
d=b2*b2+16*bb*bb*(1-bb)*(bb-nn);s=c/(pi*d*sqrt(rr-tt));
}

return(s);
}
double f3(double x,double z,double t,double nu)
{
int m;double n,nn,xx,zz,r,rr,p,s,h,ts,tq;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
xx=x*x;zz=z*z;rr=xx+zz;r=sqrt(rr);ts=r;tq=n*fabs(x)+z*sqrt(1-nn);
if ((t<=tq)||(xx<=nn*rr)) s=0;else
{
if (t<ts) ts=t;m=10000;h=(ts-tq)/m;s=0;p=tq+h/2;
while (p<ts) {s+=k3(x,z,p,nu)*h;p+=h;}
}

return(s);
}
double StripLoadSxx(double x,double t,double nu)
{
double s;
s=f1(x+1,z,t,nu)-f1(x-1,z,t,nu);
s+=f2(x+1,z,t,nu)-f2(x-1,z,t,nu);
s+=f3(x+1,z,t,nu)-f3(x-1,z,t,nu);return(s);
}

Examples

Figures 12.22 and 12.23 show the horizontal normal stress as a function of the lateral
coordinate x, for ν = 0 and z/a = 1.0, and for two values of time, namely cst/a = 2
and cst/a = 20. In the second figure the elastostatic values, which should obtain for
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Fig. 12.22 Strip load—horizontal normal stress, ν = 0, z/a = 1, cs t/a = 2

Fig. 12.23 Strip load—horizontal normal stress, ν = 0, z/a = 1, cs t/a = 20

t → ∞, are also shown. These elastostatic stresses are, see e.g. Sneddon (1951),

σxx

q
= − 1

π

{
arctan

(
x + a

z

)
−arctan

(
x − a

z

)
− (x + a)z

(x + a)2 + z2
+ (x − a)z

(x − a)2 + z2

}
.

(12.176)
The agreement appears to be very good. This has also been found to be the case for
other values of ν, so that it can be concluded that the solution is in agreement with
the elastostatic solution.

Again, the agreement with the elastostatic solution is so good because the value
of time in Fig. 12.23 is large compared to the distance from the loaded area consid-
ered. Actually, the elastostatic limit is approached when the distance traveled by the
shear wave is large compared to the distance from the loaded area. It may be noted
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that the compression wave travels faster, and the Rayleigh wave travels only slightly
slower than the shear wave, so that the shear wave velocity is indeed a convenient
parameter.

Approximation for Large Values of Time

An approximation valid for large values of time can be obtained by integrating the
approximation for the case of a line load, as given in (11.301). This gives, using the
same type of analysis as used in deriving the expression (12.122) for the isotropic
stress, and using the notation A(x,a, z) defined in (12.121),

cst/a � 1 : σxx

q
≈ 1

π

(x + a)z

(x + a)2 + z2
− 1

π

(x − a)z

(x − a)2 + z2
− A(x,a, z)

+ 2m3wpA(x − cr t, a,wpz) − 2m4wsA(x − cr t, a,wsz),

(12.177)

in which

m3 = (2β2 − 1)(4β2 + 1 − 2η2)

2Mβ2wp

, wp =
√

1 − η2/β2, (12.178)

m4 = β2wp

M
, ws =

√
1 − 1/β2, (12.179)

and the parameters η, β and M have the same meaning as before.
To illustrate the accuracy of the approximation (12.177) two examples are shown

in Figs. 12.24 and 12.25, for ν = 0 and cst/a = 10, and for two values of the depth:
z/a = 1 and z/a = 0.01. The figures show the analytical solution in the left half, and
the approximate results in the left half, by a dashed curve. The agreement appears

Fig. 12.24 Strip load—horizontal normal stress, ν = 0, z/a = 1, cs t/a = 10
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Fig. 12.25 Strip load—horizontal normal stress, ν = 0, z/a = 0.01, cs t/a = 10

Fig. 12.26 Maximum value of σxx in Rayleigh wave

to be very good. The maximum error is 0.034, and this error further decreases for
larger values of the time parameter cst/a.

Figure 12.25 illustrates that close to the surface the horizontal normal stress be-
low the load is practically equal to that load, which is a known property of the
elastostatic solution. This block wave appears to be reflected in the Rayleigh waves,
at a reduced magnitude, and of opposite sign. These tensile stresses, propagating
along the surface of the half plane, may lead to cracks, if the load is sufficiently
high compared to the tensile strength of the material.

The property of the solution that in the case of a compressive strip load large ten-
sile stresses are developed near the free surface, is further illustrated in Fig. 12.26.
This figure shows the horizontal stress just below the crest of the Rayleigh wave, for
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three values of Poisson’s ratio, as a function of depth. The maximum tensile stress
occurs if ν = 0, and its magnitude is about 45% of the magnitude of the compressive
load q . This tensile stress rapidly decreases with depth, with the half-width a of the
loaded strip as a scaling factor. In a material with a distinct tensile strength cracks
may appear to a certain depth, and the depth of these cracks is related to the magni-
tude of the compressive load q and the tensile strength of the material. Conversely,
the tensile strength of the material can be determined from the depth of the cracks
and the magnitude of the load.

12.2.4 The Shear Stress

The shear stress σxz for the case of a strip load constant in time can be obtained by
integration with respect to time t of the solution of the strip pulse problem, as given
in (12.92). This gives

σxz

q
= f1(ξ + 1) − f1(ξ − 1) + f2(ξ + 1) − f2(ξ − 1) + f3(ξ + 1) − f3(ξ − 1),

(12.180)
where

f1(ξ, ζ, τ ) =
∫ τ

ηρ

h1(ξ, ζ, κ) dκ, (12.181)

f2(ξ, ζ, τ ) =
∫ τ

ρ

h2(ξ, ζ, κ) dκ, (12.182)

f3(ξ, ζ, τ ) =
∫ τ

τq

h3(ξ, ζ, κ) dκ, (12.183)

and where the functions h1(ξ), h2(ξ) and h3(ξ) are defined in (12.94), (12.96)
and (12.98).

The evaluation of the three integrals will be considered separately.

The First Integral

In the first integral the integrand is, with (12.94),

h1(ξ, ζ, κ) = 2

π
�

{
(η2 − β2

p)(1 − 2β2
p)

(1 − 2β2
p)2 + 4β2

p

√
1 − β2

p

√
η2 − β2

p

}
H(κ − ηρ)
√

κ2 − η2ρ2
,

(12.184)
where

βp = ξκ + iζ
√

κ2 − η2ρ2

ρ2
. (12.185)
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To avoid the difficulties caused by the singularity at the lower limit of integration,
for κ = ηρ, the function h1(ξ, ζ, κ) is written as

h1(ξ, ζ, κ) = k1(ξ, ζ, ρ)
√

κ2 − η2ρ2
+ h∗

1(ξ, ζ, κ), (12.186)

where now

h∗
1(ξ, ζ, κ) = k1(ξ, ζ, κ) − k1(ξ, ζ, ηρ)

√
κ2 − η2ρ2

, (12.187)

and

k1(ξ, ζ, κ) = 2

π
�

{
(η2 − β2

p)(1 − 2β2
p)

(1 − 2β2
p)2 + 4β2

p

√
1 − β2

p

√
η2 − β2

p

}
H(κ − ηρ). (12.188)

Substitution of (12.186) into (12.181) gives, using a standard integral,

f1(ξ, ζ, τ ) = k1(ξ, ζ, ηρ) log

(
τ + √

τ 2 − η2ρ2

ηρ

)
H(τ − ηρ)

+
∫ τ

ηρ

h∗
1(ξ, ζ, κ) dκ, (12.189)

where the value of the function h∗
1(ξ, ζ, κ) at the lower limit integration is zero,

h∗
1(ξ, ζ, ηρ) = 0. (12.190)

The integral in (12.189) can be computed numerically.

The Second Integral

In the second integral, (12.182), the integrand is, with (12.96),

h2(ξ, ζ, κ) = − 2

π
�

{ √
1 − β2

s

√
η2 − β2

s (1 − 2β2
s )

(1 − 2β2
s )2 + 4β2

s

√
1 − β2

s

√
η2 − β2

s

}
H(κ − ρ)
√

κ2 − ρ2
, (12.191)

where

βs = ξκ + iζ
√

κ2 − ρ2

ρ2 . (12.192)

In this case there is again a singularity at the beginning of the integration interval,
but this point is now located at κ = ρ. In order to avoid the numerical difficulties
caused by this singularity the function h2(ξ, ζ, κ) is written as

h2(ξ, ζ, κ) = k2(ξ, ζ, ρ)
√

κ2 − ρ2
+ h∗

2(ξ, ζ, κ), (12.193)
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where

h∗
2(ξ, ζ, κ) = k2(ξ, ζ, κ) − k2(ξ, ζ, ρ)

√
κ2 − ρ2

, (12.194)

and

k2(ξ, ζ, κ) = − 2

π
�

{ √
1 − β2

s

√
η2 − β2

s (1 − 2β2
s )

(1 − 2β2
s )2 + 4β2

s

√
1 − β2

s

√
η2 − β2

s

}
H(κ − ρ). (12.195)

Substitution of (12.193) into (12.182) gives

f2(ξ, ζ, τ ) = k2(ξ, ζ, ρ) log

(
τ + √

τ 2 − ρ2

ρ

)
H(τ − ρ) +

∫ τ

ρ

h∗
2(ξ, ζ, κ) dκ,

(12.196)
where the value of the function h∗

2(ξ, ζ, κ) at the lower limit integration is zero,

h∗
2(ξ, ζ, ρ) = 0. (12.197)

The integral in (12.196) can be computed numerically.

The Third Integral

In the third integral, (12.183), the integrand is, with (12.98),

h3(ξ) = 2

π

(1 − 2β2
q)3

√
β2

q − η2
√

1 − β2
q

(1 − 2β2
q )4 + 16β4

q(1 − β2
q )(β2

q − η2)

× H(κ − τq) − H(κ − τs)√
τ 2
s − κ2

H(ξ − ηρ), (12.198)

where

βq =
(
ξκ − ζ

√
ρ2 − κ2

)
/ρ2. (12.199)

and where τq and τs are defined by (12.69),

τq = ηξ + ζ

√
1 − η2, τs = ρ. (12.200)

It may be noted that this third integral gives a non-zero contribution only if ξ > ηρ.
The lower limit of integration is τq and the upper limit is τs , or τ when this is
smaller. The integral can be computed numerically.
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Computer Program

The shear stress can be calculated as a function of ξ , ζ , τ and ν by the function
StripLoadSxz shown below. The auxiliary functions used by this function, in
which the three integrals are calculated, are also shown.

double k1(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
tt=t*t;xx=x*x;zz=z*z;rr=xx+zz;tr=tt-nn*rr;
if (tr<=0) s=0;
else
{
b=complex(t*x/rr,(z/rr)*sqrt(tr));bb=b*b;
b1=1-2*bb;gp=sqrt(nn-bb);gs=sqrt(1-bb);
d=b1*(nn-bb);e=b1*b1+4*bb*gp*gs;s=2*real(d/e)/pi;
}

return(s);
}
double f1(double x,double z,double t,double nu)
{
double n,nn,r,rr,xx,zz,tt,tr,b,p,pp,pr,s,s1,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;r=sqrt(rr);tr=t/(n*r);
hh=h*h;p=n*r+hh;pp=p*p;b=k1(xa,z,p,nu);
if (tt<=pp) s=0;else
{
s=b*log(tr+sqrt(tr*tr-1));s1=0;
while (pp<tt)
{
p+=h;pp=p*p;pr=pp-nn*rr;s2=(k1(xa,z,p,nu)-b)/sqrt(pr);
p+=h;pp=p*p;pr=pp-nn*rr;s3=(k1(xa,z,p,nu)-b)/sqrt(pr);
s+=(s1+4*s2+s3)*h/3;s1=s3;
}

}
return(s);
}
double k2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xa,xx,zz;complex b,bb,b1,gp,gs,d,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);xa=fabs(x);
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;tr=tt-rr;
if (tr<=0) s=0;else
{
b=complex(t*xa/rr,(z/rr)*sqrt(tr));bb=b*b;b1=1-2*bb;
gp=sqrt(nn-bb);gs=sqrt(1-bb);d=gp*gs*b1;e=b1*b1+4*bb*gp*gs;
s=-2*real(d/e)/pi;
}

return(s);
}
double f2(double x,double z,double t,double nu)
{
double r,rr,tt,tr,b,p,pp,pr,s,s1,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;rr=xa*xa+z*z;r=sqrt(rr);tr=t/r;
hh=h*h;p=r+hh;pp=p*p;b=k2(xa,z,p,nu);
if (tt<=pp) s=0;else
{
s=b*log(tr+sqrt(tr*tr-1));s1=0;
while (pp<tt)
{
p+=h;pp=p*p;pr=pp-rr;s2=(k2(xa,z,p,nu)-b)/sqrt(pr);
p+=h;pp=p*p;pr=pp-rr;s3=(k2(xa,z,p,nu)-b)/sqrt(pr);
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s+=(s1+4*s2+s3)*h/3;s1=s3;
}

}
return(s);
}
double k3(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,b,bb,tt,xa,xx,zz,tq,b2,c,e;
pi=4*atan(1.0);nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);xa=fabs(x);
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;tq=n*fabs(x)+z*sqrt(1-nn);
if ((tt>=rr)||(t<=tq)||(xx<=nn*rr)) s=0;else
{
b=xa*t/rr-(z/rr)*sqrt(rr-tt);bb=b*b;b2=(1-2*bb)*(1-2*bb);
c=(1-2*bb)*b2*sqrt(1-bb)*sqrt(bb-nn);
d=b2*b2+16*bb*bb*(1-bb)*(bb-nn);
s=2*c/(pi*d*sqrt(rr-tt));
}

return(s);
}
double f3(double x,double z,double t,double nu)
{
int m;double n,nn,xx,zz,r,rr,p,s,h,ts,tq;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);
xx=x*x;zz=z*z;rr=xx+zz;r=sqrt(rr);ts=r;tq=n*fabs(x)+z*sqrt(1-nn);
if ((t<=tq)||(xx<=nn*rr)) s=0;else
{
if (t<ts) ts=t;m=10000;h=(ts-tq)/m;s=0;p=tq+h/2;
while (p<ts) {s+=k3(x,z,p,nu)*h;p+=h;}
}

return(s);
}
double StripLoadSxz(double x,double z,double t,double nu)
{
double s;
s=f1(x+1,z,t,nu)-f1(x-1,z,t,nu);
s+=f2(x+1,z,t,nu)-f2(x-1,z,t,nu);
s+=f3(x+1,z,t,nu)-f3(x-1,z,t,nu);
if (x<0) s*=-1;
return(s);
}

Examples

Figures 12.27 and 12.28 show the shear stress as a function of the lateral coor-
dinate x, for ν = 0 and z/a = 1.0, and for two values of time: cst/a = 2 and
cst/a = 20.

In Fig. 12.28 the elastostatic values, which should obtain for t → ∞, are also
shown. For x > 0 these elastostatic stresses are, see e.g. Sneddon (1951),

σxz

q
= 1

π

{
z2

(x + a)2 + z2 − z2

(x − a)2 + z2

}
. (12.201)

The agreement appears to be very good. This has also been found to be the case for
other values of ν, so that it can be concluded that the solution is in agreement with
the elastostatic solution.

As before, the agreement with the elastostatic solution is so good because the
value of time in Fig. 12.28 is large compared to the distance from the loaded area
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Fig. 12.27 Strip load—shear stress, ν = 0, z/a = 1, cs t/a = 2

Fig. 12.28 Strip load—shear stress, ν = 0, z/a = 1, cs t/a = 20

considered. The actual criterion for the elastostatic limit to be approached is that the
distance traveled by the shear wave should be large compared to the distance from
the loaded area. As mentioned before the distance traveled by the shear wave is a
convenient criterion, because the compression wave travels faster, and the Rayleigh
wave travels only slightly slower than the shear wave.

Approximation for Large Values of Time

An approximation valid for large values of time can be obtained by integrating the
approximation for the case of a line load, as given in (11.326). This gives, using the
same type of analysis as used in deriving the expression (12.122) for the isotropic
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stress, and using the notation A(x,a, z) defined in (12.121),

cst/a � 1 : σxz

q
≈ 1

π

z2

(x + a)2 + z2 − 1

π

z2

(x − a)2 + z2

− m5wp log
(x − cr t + a)2 + (wpz)2

(x − cr t − a)2 + (wpz)2

+ m6ws log
(x − cr t + a)2 + (wsz)

2

(x − cr t − a)2 + (wsz)2 (12.202)

in which

m5 = 2β2 − 1

2M
, wp =

√
1 − η2/β2, (12.203)

m6 = (2β2 − 1)wp

2Mws

, ws =
√

1 − 1/β2, (12.204)

and the parameters η, β and M have the same meaning as before.
It may be noted that m5wp = m6ws , so that the two coefficients of the logarithms

in (12.202) are equal.
To illustrate the accuracy of the approximation (12.202) two examples are shown

in Figs. 12.29 and 12.30, for z/a = 1 and cst/a = 10, and for two values of Pois-
son’s ratio: ν = 0 and ν = 0.5. The figures show the analytical solution in the left
half, and the approximate results in the right half, by a dashed curve. The agree-
ment appears to be very good. The maximum error is 0.015, and this error further
decreases for larger values of the time parameter cst/a.

Fig. 12.29 Strip load—shear stress, ν = 0, z/a = 1, cs t/a = 10



342 12 Strip Load on Elastic Half Space

Fig. 12.30 Strip load—shear stress, ν = 0.5, z/a = 1, cs t/a = 10

Conclusion

In this chapter the solutions of the problems of a strip pulse and a strip load on an
elastic half space have been considered. Using De Hoop’s solution method, closed
form expressions for the stress components in the half space for the case of a strip
pulse have been derived, using a procedure proposed by Stam (1990). The solutions
for the case of a strip load, constant in time, have been derived using a numerical
integration over time.

The solutions have been validated by verifying that they are proper generaliza-
tions of the elastostatic problem, and of the line load problems considered in the
previous chapter. They are also in good agreement with results obtained using a
numerical (finite element) method (Verruijt et al., 2008).

Special attention has been given to the generation of Rayleigh waves in the vicin-
ity of the surface. In general, for large values of time the solutions appear to consist
of the elastostatic stress distribution plus a constant Rayleigh wave disturbance near
the surface. Simple analytical expressions for the stresses, valid for large values of
time, say cst/a > 10, have been derived, see also Verruijt (2008a).

An interesting result obtained in this chapter is that the Rayleigh waves result in
tensile horizontal stresses propagating along the surface, in case of a compressive
strip load. The magnitude of the tensile stresses may be as large as about half the
magnitude of the load.

Problems

12.1 Verify that the approximate solutions given in Sect. 12.2 for σ , σzz and σxx ,
see (12.122), (12.149) and (12.177), satisfy the relation σ = (σzz + σxx)/2.
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12.2 Verify that these approximate solutions reduce to the approximate solutions
given in the previous chapter for a constant line load if the width of the strip a → 0,
using the expression F = 2aq for the total load.

12.3 Consider the values of the approximate solution for the vertical normal stress,
(12.177), for −a < x − cr t < a, that is in the vicinity of the passage of the Rayleigh
wave. Using (12.152) show that this stress is zero for z → 0, as required by the
boundary condition.

12.4 Similarly, show that the approximate solution for the shear stress, (12.202),
satisfies the condition that for z → 0 this stress is zero, as required by the boundary
condition.





Chapter 13
Point Load on an Elastic Half Space

This chapter presents a solution by Pekeris (1955) of the problem of a point load on
the surface of an elastic half space. The derivation follows the presentation of the
solution in the original paper by Pekeris, but some notations have been modified, and
a numerical technique is used to evaluate certain integrals. This enables to generalize
the solution by Pekeris for other values of Poisson’s ratio than ν = 1/4. The solution
for other values of ν was given in closed form by Mooney (1974), and the solution
is further analyzed and discussed by Eringen and Suhubi (1975) and by Foinquinos
and Roësset (2000).

13.1 Problem

13.1.1 Basic Equations

The problem considered in this paper is a point load on the surface of an elastic half
space, applied at time t = 0, see Fig. 13.1. The basic differential equations are the
equations of motion in the radial and vertical directions r and z, for a linear elastic
material, characterized by the Lamé constants λ and μ. These equations are, when
expressed in terms of the displacement components u and w in radial and vertical
direction, respectively,

(λ + μ)
∂e

∂r
+ μ

(
∂2u

∂r2
+ 1

r

∂u

∂r
− u

r2
+ ∂2u

∂z2

)
= ρ

∂2u

∂t2
, (13.1)

Fig. 13.1 Point load on half
space
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(λ + μ)
∂e

∂z
+ μ

(
∂2w

∂r2 + 1

r

∂w

∂r
+ ∂2w

∂z2

)
= ρ

∂2w

∂t2 , (13.2)

where e is the volume strain,

e = ∂u

∂r
+ u

r
+ ∂w

∂z
. (13.3)

The boundary conditions are supposed to describe a vertical point load on a small
circular area, applied at time t = 0, with the shear stress being zero all along the
boundary z = 0 for all values of time,

z = 0 : σzr = 0, (13.4)

z = 0 : σzz =
{− P

πε2 if t > 0 and r < ε,

0 if t < 0 or r > ε.
(13.5)

Here P is the magnitude of the point load and ε is the small radius of the loaded
area, which tends towards zero.

The Laplace transforms of the displacements are defined by

u =
∫ ∞

0
u exp(−st) dt, (13.6)

w =
∫ ∞

0
w exp(−st) dt. (13.7)

Using some elementary properties of the Laplace transform (Churchill, 1972) the
basic equations now become, assuming that at time t = 0 all displacements and
velocities are zero,

(λ + μ)
∂e

∂r
+ μ

(
∂2u

∂r2
+ 1

r

∂u

∂r
− u

r2
+ ∂2u

∂z2

)
= ρs2u, (13.8)

(λ + μ)
∂e

∂z
+ μ

(
∂2w

∂r2 + 1

r

∂w

∂r
+ ∂2w

∂z2

)
= ρs2w. (13.9)

The axial symmetry of the problem suggests to seek the solution in the form of
Hankel integrals (Titchmarsh, 1948; Sneddon, 1951). For this purpose the following
Hankel transforms are introduced

U =
∫ ∞

0
urJ1(ξr) dr, (13.10)

W =
∫ ∞

0
wrJ0(ξr) dr, (13.11)

with the inverse transforms

u =
∫ ∞

0
UξJ1(rξ) dξ, (13.12)
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w =
∫ ∞

0
WξJ0(rξ) dξ. (13.13)

The use of the Bessel functions J1(ξr) and J0(ξr) in the transforms (13.10) and
(13.11) has been suggested by the nature of the radial operators in (13.8) and (13.9),
see Sneddon (1951).

Multiplication of (13.8) by rJ1(ξr), and integration over the interval from
r = 0 to r = ∞ gives, using a transformation of the integrals by partial integration,
following the usual Hankel transform methods (Sneddon, 1951),

μ
d2U

dz2 − [ρs2 + (λ + 2μ)ξ2]U − (λ + μ)ξ
dW

dz
= 0. (13.14)

Similarly, multiplication of (13.9) by rJ0(ξr), and integration over the interval from
r = 0 to r = ∞ gives

(λ + 2μ)
d2W

dz2 − [ρs2 + μξ2]W + (λ + μ)ξ
dU

dz
= 0. (13.15)

The form of these differential equations can be somewhat simplified by the intro-
duction of the following parameters,

cs = √
μ/ρ, (13.16)

k = s/cs, (13.17)

η2 = μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
= cs

cp

. (13.18)

The quantity cs is the propagation velocity of shear waves, cp is the propagation
velocity of compression waves, k is a simple scale transformation of the Laplace
transform parameter, and η is an auxiliary elastic parameter, completely defined by
the value of Poisson’s ratio ν. Using these parameters the basic equations can be
written as

η2 d2U

dz2
− (η2k2 + ξ2)U − (1 − η2)ξ

dW

dz
= 0, (13.19)

d2W

dz2 − η2(k2 + ξ2)W + (1 − η2)ξ
dU

dz
= 0. (13.20)

13.2 Solution

The general solution of (13.19) and (13.20) for the half space z > 0 is

U = Aα exp(−αz) + Bξ exp(−βz), (13.21)

W = Aξ exp(−αz) + Bβ exp(−βz), (13.22)
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in which

α2 = ξ 2 + k2, (13.23)

β2 = ξ 2 + η2k2. (13.24)

The validity of this solution can easily be verified by substitution into (13.19) and
(13.20). The solutions that increase exponentially for z → ∞ have been excluded
because of the conditions at infinity.

Inverse transformation of the two equations (13.21) and (13.22) now gives

u =
∫ ∞

0
[Aα exp(−αz) + Bξ exp(−βz)]ξJ1(rξ) dξ, (13.25)

w =
∫ ∞

0
[Aξ exp(−αz) + Bβ exp(−βz)]ξJ0(rξ) dξ. (13.26)

The boundary conditions are formulated in terms of the stresses σrz and σzz. Their
Laplace transforms can be related to those of the displacements by the equations

σ rz = μ

(
∂u

∂z
+ ∂w

∂x

)
, (13.27)

σzz = (λ + 2μ)
∂w

∂z
+ λ

(
∂u

∂r
+ u

r

)
. (13.28)

With (13.25) and (13.26) this gives, using the definitions (13.23) and (13.24),

σ rz = −μ

∫ ∞

0
[A(k2 + 2ξ 2) exp(−αz) + 2Bβξ exp(−βz)]ξJ1(rξ) dξ,

(13.29)

σ zz = −μ

∫ ∞

0
[2Aαξ exp(−αz) + B(k2 + 2ξ 2) exp(−βz)]ξJ0(rξ) dξ,

(13.30)

The coefficients A and B , which may depend upon the parameters s and ξ , may be
determined from the boundary conditions.

The Laplace transforms of the boundary conditions (13.4) and (13.5) are

z = 0 : σzr = 0, (13.31)

z = 0 : σzz =
{− P

πε2s
if r < ε,

0 if r > ε.
(13.32)

Using a well known Hankel integral representation, see for instance Erdélyi et al.
(1954), formula (8.3.18), the boundary condition (13.32) can also be written as

z = 0 : σzz = −
∫ ∞

0

P

2πs
ξ J0(rξ) dξ, (13.33)

where the parameter ε has been taken infinitely small, so that the load is a point
load.
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Substituting the general expressions (13.29) and (13.30) into these two boundary
conditions leads to the following equations for the determination of the coefficients
A and B ,

A(k2 + 2ξ 2) + 2Bβξ = 0, (13.34)

2Aαξ + B(k2 + 2ξ2) = P

2πμs
. (13.35)

Solution of these equations gives

A = − P

2πμs

2βξ

(k2 + 2ξ2)2 − 4αβξ2 , (13.36)

B = P

2πμs

k2 + 2ξ 2

(k2 + 2ξ2)2 − 4αβξ 2 . (13.37)

The final expressions for the Laplace transforms of the displacements are

u = − P

2πμs

∫ ∞

0

2αβ exp(−αz) − (k2 + 2ξ2) exp(−βz)

(k2 + 2ξ2)2 − 4αβξ 2 ξ 2 J1(rξ) dξ, (13.38)

w = − P

2πμs

∫ ∞

0

2ξ2 exp(−αz) − (k2 + 2ξ2) exp(−βz)

(k2 + 2ξ 2)2 − 4αβξ2 βξ J0(rξ) dξ, (13.39)

The remaining mathematical problem is to evaluate the integrals in these expres-
sions, and then to perform the inverse Laplace transform. This is a formidable task.
In this paper only the vertical displacements of the surface will be determined.

13.2.1 Vertical Displacement of the Surface

At the surface z = 0 of the half space the vertical displacement (13.39) is

w0 = Pk2

2πμs

∫ ∞

0

βξ

(k2 + 2ξ 2)2 − 4αβξ2
J0(rξ) dξ. (13.40)

This equation can be somewhat simplified by introducing the following (dimension-
less) parameters,

x = ξ/k, (13.41)

a = α/k, (13.42)

b = β/k. (13.43)

Noting that k/s = 1/cs , see (13.17), (13.40) can now be written as

w0 = P

2πμcs

∫ ∞

0

bx

(1 + 2x2)2 − 4abx2
J0(krx) dx. (13.44)
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In this expression the parameters a and b are defined by

a2 = x2 + 1, (13.45)

b2 = x2 + η2. (13.46)

The integral representation (13.44) can not easily be expressed into elementary
functions. Furthermore, the inverse Laplace transform has to be performed. Pekeris
(1955) has indicated that a closed form solution can be obtained by first transform-
ing the integration path in (13.44), then performing the inverse Laplace transform,
and finally elaborating the remaining integrals. This procedure will be described in
some detail below.

13.2.2 The Pekeris Procedure

To modify the integration path the variable x in the solution (13.44) is considered
to be the real part of a complex variable z = x + iy. The Bateman-Pekeris theorem
(see Appendix C) can now be used,

∫ ∞

0
xf (x)J0(px)dx = − 2

π
�

∫ ∞

0
yf (iy)K0(py)dy, (13.47)

which is valid if the function f (z) has no singularities for �(z) > 0, �(f (z)) = 0 for
�(z) = 0, and if the function z3/2f (z) tends towards zero for z → ∞. The parameter
p must be positive, p > 0.

In the case of the integral (13.44) the parameter p = kr = sr/cs , which indeed is
always positive. Furthermore in this case the function f (z) is

f (z) = b

(1 + 2z2)2 − 4abz2 , (13.48)

in which, by analytic continuation, the parameters a and b now are defined as

a2 = z2 + 1, (13.49)

b2 = z2 + η2. (13.50)

The function f (z) has singularities on the imaginary axis in the form of branch
points, at z = ± i and z = ±ηi. It follows from (13.18) that η varies between η =
1/

√
2 (for ν = 0) and η = 0 (for ν = 1

2 ). By assuming appropriate branch cuts in the
complex z-plane the function f (z) can be made single-valued in the entire plane,
see Fig. 13.2. It is assumed that the arguments of the parameters a and b are chosen
such that for z → ∞ they coincide with the argument of z. At infinity the function
f (z), as defined by (13.48) behaves as z−2 so that the condition that z3/2f (z) → 0
for z → ∞ is certainly satisfied.

The function f (z) may also have poles in the complex z-plane. The location of
these poles can be investigated by considering the values for which the denominator
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Fig. 13.2 The complex
z-plane

is zero. For this purpose a new variable ζ is introduced, defined as ζ = z2. The
denominator of f (z) will be zero if

(1 + 2ζ )2 = 4abζ, (13.51)

or, after squaring both sides,

(1 + 2ζ )4 = 16(ζ + 1)(ζ + η2)ζ 2. (13.52)

This leads to an algebraic equation of the third degree in ζ ,

16(1 − η2)ζ 3 + 8(3 − 2η2)ζ 2 + 8ζ + 1 = 0. (13.53)

The zeroes are shown, for various values of Poisson’s ratio ν in Table 13.1. Only
the zeroes ζ = ζ3 correspond to poles of the function f (z) in the area shown in
Fig. 13.2, the other singularities are located in other blades of the multivalued func-
tion. The negative values of ζ3 indicate that the poles are located along the imaginary
axis in the z-plane. They are indicated in Fig. 13.2 by dots.

It can be concluded that the Bateman-Pekeris theorem can indeed be applied, so
that (13.44) can be transformed into

w0 = − P

π2μcs

�
∫ ∞

0
y f (iy)K0(kry) dy, (13.54)

where the path of integration should pass the singularities on the imaginary axis on
the right side, see Fig. 13.3.
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Table 13.1 Zeroes of denominator

ν ζ1 ζ2 ζ3

0.00 −0.500000 −0.190983 −1.309017

0.05 −0.473680 −0.195773 −1.280547

0.10 −0.444357 −0.201942 −1.253701

0.15 −0.411138 −0.210361 −1.228500

0.20 −0.371900 −0.223155 −1.204945

0.25 −0.316987 −0.250000 −1.183013

0.30 −0.268668 + 0.055458i −0.268668 − 0.055458i −1.162663

0.35 −0.253081 + 0.083563i −0.253081 − 0.083563i −1.143838

0.40 −0.236767 + 0.102573i −0.236767 − 0.102573i −1.126466

0.45 −0.219768 + 0.116675i −0.219768 − 0.116675i −1.110464

0.50 −0.202128 + 0.127213i −0.202128 − 0.127213i −1.095744

Fig. 13.3 Integration path

The vertical displacement itself can be obtained from its Laplace transform by
application of the complex inversion integral (Churchill, 1972),

w0 = 1

2πi

∫ γ+i∞

γ−i∞
w0 exp(st) ds, (13.55)

where γ should be large enough to ensure that there are no singularities to the right
of the integration path. Substitution of (13.54) into (13.55) gives, after interchanging
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the orders of integration,

w0 = − P

π2μcs

�
∫ ∞

0
y f (iy)

{
1

2πi

∫ γ+i∞

γ−i∞
K0(sry/c) exp(st) ds

}
dy. (13.56)

The inverse Laplace transform between brackets can be found in standard tables,
see for instance Erdélyi et al. (1954), formula (5.15.8),

1

2πi

∫ γ+i∞

γ−i∞
K0(sry/c) ds =

{
0, t < ry/cs,

(t2 − r2y2/c2
s )

−1/2, t > ry/cs.
(13.57)

It follows that the integrand of the integral (13.56) will contain a factor zero if y >

cst/r . Hence this integral reduces to

w0 = − P

π2μr
�

∫ cs t/r

0

y f (iy)
√

c2
s t

2/r2 − y2
dy. (13.58)

In order to further evaluate this integral the behaviour of the function f (iy) along
the various parts of the path of integration must be considered. For this purpose it is
most convenient to consider the parts between the branch points separately.

The general definition of the function f (z) is, see (13.48),

f (z) = b

(1 + 2z2)2 − 4abz2 , (13.59)

where the parameters a and b are defined by

a2 = z2 + 1 = (z − i)(z + i), (13.60)

b2 = z2 + η2 = (z − ηi)(z + ηi), (13.61)

and the arguments of a and b coincide with that of z at infinity. For z = iy the
function f (z) becomes

f (iy) = b

(1 − 2y2)2 + 4aby2
, (13.62)

where the values of a and b depend upon the location of the point y on the imaginary
axis. In particular

0 < y < η : a =
√

1 − y2, b =
√

η2 − y2, (13.63)

η < y < 1 : a =
√

1 − y2, b = i

√
y2 − η2, (13.64)

1 < y < ∞ : a = i

√
y2 − 1, b = i

√
y2 − η2. (13.65)

It follows from (13.63) that for 0 < y < η the function f (iy) will be real. This
means that any integration along the interval 0 < y < η will give no contribution to
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the imaginary part of the integral in (13.58). Now, if the time parameter is so small
that cst/r < η it follows that there will be no contribution at all to the integral, and
it can be concluded that then the displacement is zero,

cst/r < η : w0 = 0. (13.66)

Because η is the ratio of the shear wave velocity and the compression wave velocity,
see (13.18), this can also be written as

cpt/r < 1 : w0 = 0. (13.67)

This result expresses that the displacements are zero until the arrival of the com-
pression wave.

Next consider the behaviour of the integral (13.58) if η < cst/r < 1. Then there
will be only contributions to the integral from the range η < y < cst/r , where the
largest possible value of cst/r is 1. In that range the function f (iy) is, if we write
τ = cst/r ,

η < y < τ : f (iy) = i
√

y2 − η2

(1 − 2y2)2 + 4iy2
√

1 − y2
√

y2 − η2
, (13.68)

For the evaluation of the integral only the imaginary part is relevant,

η < y < τ : �f (iy) =
√

y2 − η2(1 − 2y2)2

(1 − 2y2)4 + 16y4(1 − y2)(y2 − η2)
, (13.69)

or, after some elaboration,

η < y < τ : �f (iy) =
√

y2 − η2(1 − 2y2)2

[1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6] , (13.70)

The integral (13.58) now becomes

η < τ < 1 : w0 = − P

π2μr

×
∫ τ

n

y
√

y2 − η2(1 − 2y2)2

[1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6]√τ 2 − y2
dy,

(13.71)

where, as before,

τ = cst/r. (13.72)

This part of the solution can also be written as

η < τ < 1 : w0 = − P

π2μr
G1(ν, τ ), (13.73)
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where now

G1(ν, τ ) =
∫ τ

η

y
√

y2 − η2(1 − 2y2)2

[1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6]√τ 2 − y2
dy. (13.74)

The values of the integral G1(ν, τ ), in the range η < τ < 1, can be determined by a
numerical integration procedure. The integral has been evaluated in closed form by
Pekeris (1955) for the case that ν = 1

4 , i.e. η2 = 1
3 . For arbitrary values of ν a closed

form solution has been given by Mooney (1974).
For values of the dimensionless time variable τ > 1 there will also be a con-

tribution to the integral (13.58) from the interval 1 < y < τ . Actually, for large
enough values of τ there might also be a contribution to the integral from the small
semi-circle around the pole, see Fig. 13.3, but it can be shown that this leads to a
completely real value, so that its imaginary part is zero. On the interval 1 < y < τ

the function f (iy) is, with (13.65),

1 < y < τ : f (iy) = i
√

y2 − η2

(1 − 2y2)2 − 4y2
√

y2 − 1
√

y2 − η2
, (13.75)

which can also be written as

1 < y < τ : f (iy) = i
√

y2 − η2(1 − 2y2) + 4iy2(y2 − η2)
√

y2 − 1

[1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6]√y2 − η2
.

(13.76)
This is purely imaginary.

The displacement of the surface now can be written as

τ > 1 : w0 = − P

π2μr

{
G1(ν, τ ) + G2(ν, τ )

}
, (13.77)

where the function G1(ν, τ ) is the same as before, see (13.74), and the function
G2(ν, τ ) is defined by

G2(ν, τ ) =
∫ τ

1

4y3(y2 − η2)
√

y2 − 1

[1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6]√τ 2 − y2
dy. (13.78)

13.2.3 Numerical Evaluation of the Integrals

The First Integral

The first integral to be evaluated is G1(ν, τ ), see (13.74),

G1(ν, τ ) =
∫ τ

η

y
√

y2 − η2(1 − 2y2)2

[1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6]√τ 2 − y2
dy. (13.79)
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The integral can be somewhat simplified, and the singularity at y = τ can be re-
moved, by the substitution

y2 = η2 + (τ 2 − η2) sin2 θ, (13.80)

so that

y dy = (τ2 − η2) sin θ cos θ dθ, (13.81)
√

y2 − η2 =
√

τ 2 − η2 sin θ, (13.82)

and
√

τ 2 − y2 =
√

τ 2 − η2 cos θ. (13.83)

The integral (13.79) can now be written as

G1 = (τ 2 − η2)

∫ π/2

0

(1 − 2y2)2 sin2 θ

1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6
dθ, (13.84)

where y is defined by (13.80). The integrand of the integral (13.84) has no singular-
ities if η < τ < 1. This means that the value of this integral can easily be calculated
by a standard numerical algorithm. For larger values of τ the integrand may have a
pole, and the integral must be calculated as a Cauchy principal value. The contribu-
tion of integration along the semi-circle around the pole can be disregarded because
this can be shown to have a zero imaginary part.

The precise value of the location of the pole can be determined by writing y2 = p,
and assuming that the denominator is zero if p = pR = 1 + d , where d can be
supposed to be a small number, because the values of |ζ3| in Table 13.1 are only
slightly larger than 1,

p = pR = 1 + d. (13.85)

The value p = pR is a zero of the term between square brackets in the denominator
of the integrand of (13.94). It follows that

F(p) = 1 − 8pR + 8(3 − 4η2)p2
R − 16(1 − η2)p3

R = 0. (13.86)

This gives, with (13.85) and using the definition of η2 in (13.18),

d(d + 1)(d + ν) = (1 − ν)/8, (13.87)

from which it follows that

d = (1 − ν)/8

(1 + d)(d + ν)
. (13.88)

From this equation the value of d can be determined to any desired accuracy by an
iterative process, starting with the value d = (1 − ν)/8. It can be concluded that the
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value of pR , which determines the arrival of the Rayleigh wave, can be determined
with great accuracy. The corresponding value of yR then is

yR = √
pR = √

1 + d. (13.89)

and the corresponding value of θR is, with (13.80),

θR = arcsin

(
y2
R − η2

τ 2 − η2

)
. (13.90)

For values of τ < yR the pole is not on the path of integration, so that the integral
can be evaluated immediately from (13.84), but for values of τ > yR the pole is on
the path of integration, and the integral must be separated into two parts,

τ > yR : G1(ν, τ ) = G11(ν, τ ) + G12(ν, τ ), (13.91)

where

G11 = (τ 2 − η2)

∫ θR−ε

0

(1 − 2y2)2 sin2 θ

1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6 dθ, (13.92)

G12 = (τ 2 − η2)

∫ π/2

θR+ε

(1 − 2y2)2 sin2 θ

1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6
dθ, (13.93)

where ε is a very small number.

The Second Integral

The second integral to be evaluated is G2(ν, τ ), see (13.78),

G2(ν, τ ) =
∫ τ

1

4y3(y2 − η2)
√

y2 − 1

[1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6]√τ 2 − y2
dy. (13.94)

In this case a convenient substitution, which also removes the singularity at y = τ ,
is

y2 = 1 + (τ 2 − 1) sin2 θ, (13.95)

so that

y dy = (τ 2 − 1) sin θ cos θ dθ, (13.96)
√

y2 − 1 =
√

τ 2 − 1 sin θ, (13.97)

and
√

τ 2 − y2 =
√

τ 2 − 1 cos θ. (13.98)



358 13 Point Load on an Elastic Half Space

The integral (13.94) can now be written as

G2(ν, τ ) = 4(τ 2 − 1)

∫ π/2

0

y2(y2 − η2) sin2 θ

1 − 8y2 + 8(3 − 2η2)y4 − 16(1 − η2)y6 dθ, (13.99)

where the value of y now is determined by (13.95). Again, the integral can be cal-
culated directly if τ < yR , but for values of τ > yR the integration interval must be
separated into two parts, to calculate the Cauchy principal value.

13.2.4 Computer Program POINTLOAD

A function that calculates the vertical displacement for given values of ν and cst/r

is reproduced below.

double wpekeris(double nu, double t)
{
int j,k;
double pi,fac,n,nn,e,f,fa,a,b,g,s,ta,tt,tr,xa,xb,xr,dx,yy,ss,eps,eps1;
pi=4*atan(1.0);fac=1/(2*pi*pi);eps=0.000001;eps*=eps;eps1=0.001;
nn=(1-2*nu)/(2*(1-nu));n=sqrt(nn);e=0.000001;e*=e;f=1;b=(1-nu)/8;
if (nu>0.1) {while(f>e) {a=b;b=(1-nu)/(8*(1+a)*(nu+a));f=fabs(b-a);}}
else {while (f>e) {a=b;b=sqrt((1-nu)/(8*(1+a)*(1+nu/a)));f=fabs(b-a);}}
tr=sqrt(1+b); // tr is the arrival time of the Rayleigh wave
if (t<=n) g=0; // zero displacement before arrival of compression wave
else if (t<=1)
{
tt=t*t;xa=0;xb=pi/2;k=1000*(xb-xa);dx=(xb-xa)/k;fa=0;g=0;
for (j=0;j<k;j++)
{
s=sin(xa+j*dx);ss=s*s;yy=nn+(tt-nn)*ss;a=(1-2*yy)*(1-2*yy)*(tt-nn)*ss;
b=(1+8*yy*(-1+yy*(3-2*nn-2*yy*(1-nn))));f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;

}
}

else if (t>tr)
{
ta=t;if (t<tr-eps) ta=tr+eps1;tt=ta*ta;xr=ArcSin(sqrt((tr*tr-nn)/(tt-nn)));
xa=0;xb=xr-eps1;k=1000*(xb-xa);dx=(xb-xa)/k;fa=0;g=0;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx);ss=s*s;yy=nn+(tt-nn)*ss;a=(1-2*yy)*(1-2*yy)*(tt-nn)*ss;
b=(1+8*yy*(-1+yy*(3-2*nn-2*yy*(1-nn))));f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;

}
xa=xr+eps1;xb=pi/2;k=1000*(xb-xa);dx=(xb-xa)/k;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx);ss=s*s;yy=nn+(tt-nn)*ss;a=(1-2*yy)*(1-2*yy)*(tt-nn)*ss;
b=(1+8*yy*(-1+yy*(3-2*nn-2*yy*(1-nn))));f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;

}
xr=ArcSin(sqrt((tr*tr-1)/(tt-1)));xa=0;xb=xr-eps1;k=1000*(xb-xa);dx=(xb-xa)/k;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx);ss=s*s;yy=1+(tt-1)*ss;a=4*yy*(tt-1)*(yy-nn)*ss;
b=(1+8*yy*(-1+yy*(3-2*nn-2*yy*(1-nn))));f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;

}
xa=xr+eps1;xb=pi/2;k=1000*(xb-xa);dx=(xb-xa)/k;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx);ss=s*s;yy=1+(tt-1)*ss;a=4*yy*(tt-1)*(yy-nn)*ss;
b=(1+8*yy*(-1+yy*(3-2*nn-2*yy*(1-nn))));f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;
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}
}

else
{
ta=t;if (t>tr-eps) ta=tr-eps1;tt=ta*ta;xa=0;xb=pi/2;k=1000*(xb-xa);dx=(xb-xa)/k;g=0;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx);ss=s*s;yy=nn+(tt-nn)*ss;a=(1-2*yy)*(1-2*yy)*(tt-nn)*ss;
b=(1+8*yy*(-1+yy*(3-2*nn-2*yy*(1-nn))));f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;

}
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx);ss=s*s;yy=1+(tt-1)*ss;a=4*yy*(tt-1)*(yy-nn)*ss;
b=(1+8*yy*(-1+yy*(3-2*nn-2*yy*(1-nn))));f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;

}
}

return(g);
}

13.2.5 Results

Some results of the computations are shown in Figs. 13.4, 13.5 and 13.6, for the
values ν = 0.00, ν = 0.25 and ν = 0.50. The figures show the vertical displacements
as a function of the variable cst/r . The case ν = 0.25 is the case for which Pekeris
(1955) obtained a closed form solution. The results of the present computations are
in good agreement with the original results of Pekeris.

The figures show that a first effect occurs when the compression wave arrives, and
somewhat larger displacements occur upon arrival of the shear wave, with a discon-
tinuity in the slope of the curve. A singularity occurs upon arrival of the Rayleigh
wave, but after the passage of this wave the displacements remain constant. The val-

Fig. 13.4 Vertical displacement, ν = 0.00
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Fig. 13.5 Vertical displacement, ν = 0.25

Fig. 13.6 Vertical displacement, ν = 0.50

ues obtained for this final steady state displacement are in perfect agreement with
the result from the classical theory of elasticity,

ws = P(1 − ν)

2πμr
. (13.100)

Actually, for ν = 0.00 the numerical solution gives w = 0.159 P/μr , for ν = 0.25
the numerical solution gives w = 0.119 P/μr , and for ν = 0.50 the numerical solu-
tion gives w = 0.0795 P/μr . These values compare very well to the results obtained
using (13.100).



Chapter 14
Moving Loads on an Elastic Half Plane

In this chapter some analytical solutions are derived for problems of vertical loads
moving at constant speed over the upper boundary of the half plane z > 0. The ma-
terial is isotropic linear elastic with quasi-viscous damping to represent hysteretic
damping. The method used is a Fourier integral method (Sneddon, 1951). The anal-
ysis in this chapter is due to Verruijt and Cornejo Córdova (2001). The solution for
the undamped case was given by Cole and Huth (1958). A large number of problems
for moving loads, on beams, plates and half spaces, has been considered by Fryba
(1999).

14.1 Moving Wave

In this section the problem of a moving sinusoidal wave on the half plane z > 0 is
considered, for an isotropic elastic material with hysteretic damping. This will be
used as the basic case for the more general case of a moving strip load or a moving
point load. Hysteretic damping is defined as a special type of visco-elastic damping,
the special property being that the damping ratio in each full cycle of loading is
independent of the frequency of the loading (Hardin, 1965; Verruijt, 1999).

14.1.1 Basic Equations

The basic equations are the equations of motion,

∂σxx

∂x
+ ∂σzx

∂z
= ρ

∂2u

∂t2 , (14.1)

∂σxz

∂x
+ ∂σzz

∂z
= ρ

∂2w

∂t2
. (14.2)

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
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For a linear visco-elastic material the stresses are related to the displacements by the
following relations.

σxx = λ

(
∂u

∂x
+ ∂w

∂z

)
+ λtr

∂

∂t

(
∂u

∂x
+ ∂w

∂z

)
+ 2μ

∂u

∂x
+ 2μtr

∂

∂t

∂u

∂x
, (14.3)

σzz = λ

(
∂u

∂x
+ ∂w

∂z

)
+ λtr

∂

∂t

(
∂u

∂x
+ ∂w

∂z

)
+ 2μ

∂w

∂z
+ 2μtr

∂

∂t

∂w

∂z
, (14.4)

σxz = μ

(
∂u

∂z
+ ∂w

∂x

)
+ μtr

∂

∂t

(
∂u

∂z
+ ∂w

∂x

)
, (14.5)

where λ and μ are the Lamé constants of the material, and tr is a relaxation time. In
order to describe hysteretic damping the value of tr should be inversely proportional
to the frequency of the loading.

Substitution of (14.3)–(14.5) into (14.1) and (14.2) leads to the basic differential
equations

(λ + μ)
∂

∂x

(
∂u

∂x
+ ∂w

∂z

)
+ μ

(
∂2u

∂x2 + ∂2u

∂z2

)

+ (λ + μ)tr
∂

∂t

∂

∂x

(
∂u

∂x
+ ∂w

∂z

)
+ μtr

∂

∂t

(
∂2u

∂x2
+ ∂2u

∂z2

)
= ρ

∂2u

∂t2
, (14.6)

(λ + μ)
∂

∂z

(
∂u

∂x
+ ∂w

∂z

)
+ μ

(
∂2w

∂x2 + ∂2w

∂z2

)

+ (λ + μ)tr
∂

∂t

∂

∂z

(
∂u

∂x
+ ∂w

∂z

)
+ μtr

∂

∂t

(
∂2w

∂x2 + ∂2w

∂z2

)
= ρ

∂2w

∂t2 . (14.7)

These equations can also be written as

(λ + 2μ)
∂2u

∂x2
+ (λ + μ)

∂2w

∂z∂x
+ μ

∂2u

∂z2

+ (λ + 2μ)tr
∂3u

∂x2∂t
+ (λ + μ)tr

∂3w

∂z∂x∂t
+ μtr

∂3u

∂z2∂t
= ρ

∂2u

∂t2 , (14.8)

(λ + 2μ)
∂2w

∂z2
+ (λ + μ)

∂2u

∂z∂x
+ μ

∂2w

∂x2

+ (λ + 2μ)tr
∂3w

∂z2∂t
+ (λ + μ)tr

∂3u

∂x∂z∂t
+ μtr

∂3w

∂x2∂t
= ρ

∂2w

∂t2 . (14.9)

It is assumed that the problem is to determine stresses and displacements in the half
plane z > 0, subject to the boundary conditions

z = 0 : σzx = 0, (14.10)

z = 0 : σzz = −p0 exp[iα(x − vt)]. (14.11)
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These boundary conditions express that the half plane is loaded by a wave load
normal to the surface, moving at a speed v, in positive x-direction. Actually only the
real part of the boundary condition applies, because the stress σzz is a real quantity.
This means that the real part of all quantities should be taken to obtain physically
meaningful results.

14.1.2 Solutions

The solutions are assumed to be of the following form,

αu = A exp[iα(x − vt)] exp(−aαz), (14.12)

αw = B exp[iα(x − vt)] exp(−aαz), (14.13)

where α is a given positive real constant, and the (complex) constant a is unknown.
It is assumed that its real part is positive, so that the solution will vanish for z → ∞.
It is assumed that the imaginary part of a is negative, so that waves will propagate
in positive z-direction (this is Rayleigh’s radiation condition). If a = p − iq the
solution will contain a factor of the form exp[iα(qz − vt)], where q is a positive
number. This ensures that for a fixed value of x the wave is propagated in positive
z-direction.

The unknown coefficients A and B in general are complex. A factor α has been
added to the variables so that the constants A and B will be dimensionless.

The derivatives needed in the expressions for the stresses are as follows.

∂u

∂x
= iA exp[iα(x − vt)] exp(−aαz), (14.14)

∂u

∂z
= −Aa exp[iα(x − vt)] exp(−aαz), (14.15)

∂w

∂x
= iB exp[iα(x − vt)] exp(−aαz), (14.16)

∂w

∂z
= −Ba exp[iα(x − vt)] exp(−aαz), (14.17)

∂2u

∂x∂t
= Aαv exp[iα(x − vt)] exp(−aαz), (14.18)

∂2u

∂z∂t
= iAaαv exp[iα(x − vt)] exp(−aαz), (14.19)

∂2w

∂x∂t
= Bαv exp[iα(x − vt)] exp(−aαz), (14.20)

∂2w

∂z∂t
= iBaαv exp[iα(x − vt)] exp(−aαz). (14.21)
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The second and third order derivatives needed in the basic differential equations
(14.6) and (14.7) are as follows.

∂2u

∂x2
= −Aα exp[iα(x − vt)] exp(−aαz), (14.22)

∂2u

∂z2
= Aa2α exp[iα(x − vt)] exp(−aαz), (14.23)

∂2w

∂x2 = −Bα exp[iα(x − vt)] exp(−aαz), (14.24)

∂2w

∂z2 = Ba2α exp[iα(x − vt)] exp(−aαz), (14.25)

∂2u

∂x∂z
= −iAaα exp[iα(x − vt)] exp(−aαz), (14.26)

∂2w

∂x∂z
= −iBaα exp[iα(x − vt)] exp(−aαz), (14.27)

∂3u

∂x2∂t
= iAα2v exp[iα(x − vt)] exp(−aαz), (14.28)

∂3u

∂z2∂t
= −iAa2α2v exp[iα(x − vt)] exp(−aαz), (14.29)

∂3w

∂x2∂t
= iBα2v exp[iα(x − vt)] exp(−aαz), (14.30)

∂3w

∂z2∂t
= −iBa2α2v exp[iα(x − vt)] exp(−aαz), (14.31)

∂3u

∂x∂z∂t
= −Aaα2v exp[iα(x − vt)] exp(−aαz), (14.32)

∂3w

∂x∂z∂t
= −Baα2v exp[α(x − vt)] exp(−aαz). (14.33)

Substitution of these expressions into (14.8) and (14.9) now leads to the following
system of equations for the determination of the constants A and B ,

{[(λ + 2μ) − μa2 − ρv2] − 2iζ [(λ + 2μ) − μa2]}A
+ i(λ + μ)(1 − 2iζ )aB = 0, (14.34)

i(λ + μ)(1 − 2iζ )aA

+ {[μ − (λ + 2μ)a2 − ρv2] − 2iζ [μ − (λ + 2μ)a2]}B = 0, (14.35)

where the damping factor ζ is defined by

2ζ = αvtr . (14.36)
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In order to represent hysteretic damping, rather than visco-elastic damping, the
product of the parameters ω = αv and tr should be considered as a constant. Thus
the parameter ζ is an independent material parameter. This means that the relaxation
time tr must be inversely proportional to the frequency ω = αv.

Equations (14.34) and (14.35) can be somewhat simplified by introducing the
parameters

η2 = μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
= c2

s

c2
p

, (14.37)

ξ 2 = ρv2

μ
= v2

c2
s

. (14.38)

Here cp and cs are the propagation velocities of compression waves and shear waves
in the elastic material. The system of (14.34) and (14.35) now is

{
(1 − η2a2)(1 − 2iζ ) − η2ξ2}A + i(1 − η2)(1 − 2iζ )aB = 0, (14.39)

i(1 − η2)(1 − 2iζ )aA + {
(η2 − a2)(1 − 2iζ ) − η2ξ 2}B = 0. (14.40)

It may be noted that the matrix of this system of equations is symmetric.
The system of equations has a non-zero solution only if the determinant � is

zero. This determinant is defined as

� =
∣∣∣∣
(1 − η2a2)(1 − 2iζ ) − η2ξ 2 i(1 − η2)(1 − 2iζ )a

i(1 − η2)(1 − 2iζ )a (η2 − a2)(1 − 2iζ ) − η2ξ2

∣∣∣∣ (14.41)

or, after some elementary elaboration,

� = (1 − a2)2(1 − 2iζ )2 − (1 + η2)(1 − a2)(1 − 2iζ )ξ 2 + η2ξ4. (14.42)

The condition that this must be zero leads to the possible roots

1 − a2
1 = ξ2

1 − 2iζ
, 1 − a2

2 = η2ξ2

1 − 2iζ
. (14.43)

For the undamped case (ζ = 0) the roots are real, 1 − a2
1 = ξ2 and 1 − a2

2 = η2ξ 2,
in agreement with the known results for this case (Cole and Huth, 1958).

14.1.3 Solution 1

The first solution is determined by the root

a2
1 = 1 − ξ2

1 − 2iζ
= (1 − ξ2 + 4ζ 2) − 2iζ ξ2

1 + 4ζ 2
. (14.44)
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This is written as

a2
1 = R2

1 exp(−2iθ1), (14.45)

where R1 and θ1 are determined by the equations

R4
1 = (1 − ξ2 + 4ζ 2)2 + 4ζ 2ξ 4

(1 + 4ζ 2)2
, (14.46)

2θ1 = arctan

(
2ζ ξ2

1 − ξ2 + 4ζ 2

)
. (14.47)

It is assumed that the angle 2θ1 lies in the interval

0 ≤ 2θ1 < π. (14.48)

It may be noted that this definition of the function arctan(x) is different from the
usual definition of the principal value. The present definition has been used so that
the real part of a1 is always positive and the imaginary part of a1 is always negative.
This ensures that the solution vanishes for z → ∞, and that the waves are going
out, from the boundary towards infinity (this is a form of the radiation condition).
It may be noted that the present definition of the interval also ensures that 2θ1 is
continuous when ξ varies between 0 and ∞. If 2θ1 would be defined in the interval
−π/2 < 2θ1 < +π/2, the value of 2θ1 would jump from π/2 to −π/2 when ξ 2

passes the value 1 + 4ζ 2.
The value of a1 now is

a1 = R1 exp(−iθ1) = p1 − iq1, (14.49)

where

p1 = R1 cos(θ1), (14.50)

q1 = R1 sin(θ1). (14.51)

The value of p1, the real part of a1, is always positive because of the definition
(14.48). This ensures that the solution will vanish for z → ∞, as required. The
value of q1 is also always positive, so that all waves will travel towards infinity.

The values of the real and imaginary parts of a1 are shown graphically in
Fig. 14.1, for relatively small values of ζ . It may be noted that the point ξ = 0, ζ = 0
corresponds to a1 = 1. The point ξ = 1, ζ = 0 corresponds to a1 = 0, and the point
ξ = 2, ζ = 0 corresponds to a1 = −i

√
3. The real part of a1 is always positive, and

the imaginary part is always negative.
Substitution of the value of a2

1 into either of (14.39) or (14.40) shows that the
constants A1 and B are related by

A1 = −ia1B1 = −i(p1 − iq1)B1 = −(q1 + ip1)B1. (14.52)
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Fig. 14.1 First root a1 as a function of ξ and ζ , for small values of ζ

Thus the first solution is

αu = −ia1B1 exp[iα(x − vt)] exp(−a1αz), (14.53)

αw = B1 exp[iα(x − vt)] exp(−a1αz). (14.54)

The solution can also be written as

αu = −(q1 + ip1)B1 exp[iα(x + q1z − vt)] exp(−p1αz), (14.55)

αw = B1 exp[iα(x + q1z − vt)] exp(−p1αz). (14.56)

14.1.4 Solution 2

The second solution is determined by the root

a2
2 = 1 − η2ξ 2

1 − 2iζ
= (1 − η2ξ2 + 4ζ 2) − 2iζη2ξ 2

1 + 4ζ 2 . (14.57)

This is written as

a2
2 = R2

2 exp(−2iθ2), (14.58)
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where R2 and θ2 are determined by the equations

R4
2 = (1 − η2ξ 2 + 4ζ 2)2 + 4ζ 2η4ξ 4

(1 + 4ζ 2)2 , (14.59)

2θ2 = arctan

(
2ζη2ξ2

1 − η2ξ2 + 4ζ 2

)
. (14.60)

It is assumed that the angle 2θ2 lies in the interval

0 ≤ 2θ2 < π. (14.61)

The value of a2 now is

a2 = R2 exp(−iθ2) = p2 − iq2, (14.62)

where

p2 = R2 cos(θ2), (14.63)

q2 = R2 sin(θ2). (14.64)

The values of p2 and q2 are always positive because of the definition (14.61). This
ensures that the solution will vanish for z → ∞, and that the waves will be propa-
gated towards infinity, as required.

The values of the real and imaginary parts of a2 are shown graphically in
Fig. 14.2, for relatively large values of ζ . This is actually the same figure as
Fig. 14.1, except that ξ must be replaced by ηξ . It may be noted that the point
ξ = 0, ζ = 0 corresponds to a2 = 1. For large values of the damping parameter ζ

the values of a2 all approach the point a2 = 1. The real part of a2 is always positive,
and the imaginary part is always negative.

Substitution of the value of a2
2 into either of (14.39) or (14.40) shows that the

constants A2 and B2 are related by

B2 = ia2A2 = i(p2 − iq2)A2 = (q2 + ip2)A2. (14.65)

Thus the second solution is

αu = A2 exp[iα(x − vt)] exp(−a2αz), (14.66)

αw = ia2A2 exp[iα(x − vt)] exp(−a2αz). (14.67)

This solution can also be written as

αu = A2 exp[iα(x + q2z − vt)] exp(−p2αz), (14.68)

αw = (q2 + ip2)A2 exp[iα(x + q2z − vt)] exp(−p2αz). (14.69)
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Fig. 14.2 Second root a2 as a function of ξ/m and ζ , for large values of ζ

14.1.5 Completion of the Solution

By addition of the two possible solutions the general solution is obtained,

αu = [−ia1B1 exp(−a1αz) + A2 exp(−a2αz)
]

exp[iα(x − vt)], (14.70)

αw = [
B1 exp(−a1αz) + ia2A2 exp(−a2αz)

]
exp[iα(x − vt)]. (14.71)

The first order derivatives of these functions are

∂u

∂x
= [

a1B1 exp(−a1αz) + iA2 exp(−a2αz)
]

exp[iα(x − vt)], (14.72)

∂u

∂z
= [

ia2
1B1 exp(−a1αz) − a2A2 exp(−a2αz)

]
exp[iα(x − vt)], (14.73)

∂w

∂x
= [

iB1 exp(−a1αz) − a2A2 exp(−a2αz)
]

exp[iα(x − vt)], (14.74)

∂w

∂z
= [−a1B1 exp(−a1αz) − ia2

2A2 exp(−a2αz)
]

exp[iα(x − vt)]. (14.75)

It may be noted that the factor α, which was introduced in the general solutions for
the displacements, (14.70) and (14.71), does not appear in the derivatives, which are
dimensionless.
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14.1.6 First Boundary Condition

In order to satisfy the first boundary condition, which expresses that the shear
stresses at the surface z = 0 are zero, the following combination is needed,
(

∂u

∂z
+ ∂w

∂x

)
= [

i(1 + a2
1)B1 exp(−a1αz) − 2a2A2 exp(−a2αz)

]
exp[iα(x − vt)].

(14.76)
It now follows that

tr
∂

∂t

(
∂u

∂z
+ ∂w

∂x

)

= −2iζ
[
i(1 + a2

1)B1 exp(−a1αz) − 2a2A2 exp(−a2αz)
]

exp[iα(x − vt)].
(14.77)

Using these results the expression for the shear stress is

σzx

μ
= (1 − 2iζ )

[
i(1 + a2

1)B1 exp(−a1αz) − 2a2A2 exp(−a2αz)
]

exp[iα(x − vt)].
(14.78)

On the boundary z = 0 this must be zero, because of the boundary condition (14.10).
This gives

2a2A2 = i(1 + a2
1)B1. (14.79)

This enables to write the expression for the shear stress, (14.78), in a slightly simpler
form,

σzx

μ
= 2a2A2(1 − 2iζ )

[
exp(−a1αz) − exp(−a2αz)

]
exp[iα(x − vt)]. (14.80)

Written in this form it can immediately be seen that the boundary condition of zero
shear stress at the upper boundary z = 0 is indeed satisfied.

14.1.7 Second Boundary Condition

The second boundary condition refers to the vertical normal stress σzz, which is
prescribed along the boundary z = 0, see (14.11),

z = 0 : σzz = −p0 exp[iα(x − vt)]. (14.81)

This stress can be expressed into the displacement components u and w by (14.4),
which can also be written as

σzz

μ
= 1 − 2η2

η2

(
∂u

∂x
+ ∂w

∂z

)
+ 1 − 2η2

η2
tr

∂

∂t

(
∂u

∂x
+ ∂w

∂z

)
+ 2

∂w

∂z
+ 2tr

∂

∂t

∂w

∂z
.

(14.82)
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The first term (the volume strain) is, from (14.72) and (14.75),
(

∂u

∂x
+ ∂w

∂z

)
= i(1 − a2

2)A2 exp(−a2αz) exp[iα(x − vt)]. (14.83)

It may be noted that the volume strain due to the first solution, with the coefficient
B1, is zero. This suggests that the first solution represents the shear waves.

It follows from (14.83) that

tr
∂

∂t

(
∂u

∂x
+ ∂w

∂z

)
= 2ζ(1 − a2

2)A2 exp(−a2αz) exp[iα(x − vt)]. (14.84)

The value of ∂w/∂z has been given in (14.75),

∂w

∂z
= [−a1B1 exp(−a1αz) − ia2

2A2 exp(−a2αz)
]

exp[iα(x − vt)]. (14.85)

Differentiation with respect to t gives

tr
∂2w

∂z∂t
= 2iζ

[
a1B1 exp(−a1αz) + ia2

2A2 exp(−a2αz)
]

exp[iα(x − vt)]. (14.86)

Using these results the expression for the vertical normal stress is

σzz

μ
= (1 − 2iζ )

× [
i(−2 + 1/η2 − a2

2/η2)A2 exp(−a2αz) − 2a1B1 exp(−a1αz)
]

× exp[iα(x − vt)], (14.87)

or, because it follows from the definition of the roots a1 and a2, see (14.43), that
1/η2 − a2

2/η2 = 1 − a2
1 ,

σzz

μ
= −(1−2iζ )

[
i(1+a2

1)A2 exp(−a2αz)+2a1B1 exp(−a1αz)
]

exp[iα(x −vt)].
(14.88)

The boundary condition (14.81) now leads to the equation

i(1 + a2
1)A2 + 2a1B1 = p0

μ(1 − 2iζ )
, (14.89)

which is the second relation between the two constants A2 and B1, the first relation
being (14.79).

Equations (14.89) makes it possible to write the expression for the vertical nor-
mal stress, (14.88), in a slightly simpler form,

σzz

μ
= −p0

μ
exp(−a2αz) exp[iα(x − vt)]

+ 2a1(1 − 2iζ )B1
[
exp(−a2αz) − exp(−a1αz)

]
exp[iα(x − vt)]. (14.90)

Written in this form it can immediately be seen that the boundary condition for the
vertical normal stress at the upper boundary z = 0 is indeed satisfied.
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14.1.8 The Two Constants

The two constants A2 and B1 can be determined from (14.79) and (14.89). This
gives

A2 = − p0

μ(1 − 2iζ )

i(1 + a2
1)

(1 + a2
1)2 − 4a1a2

, (14.91)

B1 = − p0

μ(1 − 2iζ )

2a2

(1 + a2
1)2 − 4a1a2

. (14.92)

This completes the solution of the problem for a traveling wave load.

14.1.9 Final Solution

The final expressions for the displacements are

αu = ip0

μ(1 − 2iζ )

2a1a2 exp(−a1αz) − (1 + a2
1) exp(−a2αz)

(1 + a2
1)2 − 4a1a2

exp[iα(x − vt)],
(14.93)

αw = − p0

μ(1 − 2iζ )

2a2 exp(−a1αz) − a2(1 + a2
1) exp(−a2αz)

(1 + a2
1)2 − 4a1a2

exp[iα(x − vt)].
(14.94)

The final expressions for the stresses are found to be

σxx

p0
= (1 + a2

1)(1 − a2
1 + 2a2

2) exp(−a2αz) − 4a1a2 exp(−a1αz)

(1 + a2
1)2 − 4a1a2

exp[iα(x − vt)],
(14.95)

σzz

p0
= − (1 + a2

1)2 exp(−a2αz) − 4a1a2 exp(−a1αz)

(1 + a2
1)2 − 4a1a2

exp[iα(x − vt)], (14.96)

σxz

p0
= 2ia2(1 + a2

1)
[
exp(−a2αz) − exp(−a1αz)

]

(1 + a2
1)2 − 4a1a2

exp[iα(x − vt)]. (14.97)

The isotropic stress σ0 = 1
2 (σxx + σzz) is of a relatively simple form,

σ0

p0
= (1 + a2

1)(a2
2 − a2

1) exp(−a2αz)

(1 + a2
1)2 − 4a1a2

exp[iα(x − vt)]. (14.98)

This equation can also be derived immediately from the volume strain, of course.
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14.1.10 The Displacement of the Origin

Of particular interest is the vertical displacement of the surface z = 0 below the
center of the load, for x = vt . With (14.94) this gives

αwd = − p0

μ(1 − 2iζ )

a2(1 − a2
1)

(1 + a2
1)2 − 4a1a2

. (14.99)

It follows from the definition of a1, see (14.44), that 1 − a2
1 = ξ2/(1 − 2iζ ), hence

αwd = − p0

μ(1 − 2iζ )2

a2ξ
2

(1 + a2
1)2 − 4a1a2

. (14.100)

The actual value of the displacement is the real part of this expression. This means
that the amplitude of the displacement is determined by the absolute value |wd |.
This can be expressed in dimensionless form as

αμ|wd |
p0

= 1

|1 − 2iζ |2
|a2|ξ2

|(1 + a2
1)2 − 4a1a2|

. (14.101)

All quantities in the right hand side of this equation can be expressed in terms of
parameters introduced before. In fact,

|1 − 2iζ |2 = 1 + 4ζ 2, (14.102)

|a2| = R2, (14.103)

|(1 + a2
1)2 − 4a1a2| =

√
P 2 + Q2, (14.104)

where

P = (1 + p2
1 − q2

1 )2 − 4p2
1q

2
1 − 4p1p2 + 4q1q2, (14.105)

Q = 4(p1q2 + p2q1 − p1q1(1 + p2
1 − q2

1 ). (14.106)

The parameters in these expressions have been defined in Sects. 1.3 and 1.4.
The amplitude of the vertical displacement is shown as a function of the dimen-

sionless velocity of the wave load v/cs in Fig. 14.3, for ν = 0 and four values of
the damping ratio ζ . The amplitude is shown as a ratio to the static value, obtained
for v/cs → 0. It appears that there is a definite peak in the displacements, which
corresponds to the velocity of the Rayleigh wave in the undamped case. Actually,
for ν = 0 the velocity of the Rayleigh wave is cr = 0.874cs . The magnitude of the
peak depends very much upon the value of the damping ratio ζ . A damping ratio
ζ = 0.1 reduces the peak value to about three times the static value.
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Fig. 14.3 Moving wave load,
dynamic amplification factor,
ν = 0

14.2 Moving Strip Load

The solution for a moving strip load can be derived from the previous solution using
Fourier transforms. The boundary condition is supposed to be

z = 0 : σzz =
{

−p0, if |x − vt | < b,

0, if |x − vt | > b.
(14.107)

This boundary condition can also be written as

z = 0 : σzz = − 2p0

π

∫ ∞

0

sin(αb) cos[α(x − vt)]
α

dα. (14.108)

Comparing this with the boundary condition for the previous case, see (14.11), and
remembering that the real part of this boundary condition and of the solution should
be considered only, it follows that the solution of the problem for a moving strip
load (say F(x, z, t)) can be obtained from the solution of the problem for a moving
wave load (say f (x, z, t, α)) by multiplication of the real part of the solution by a
factor

2

π

sin(αb)

α
dα,

and then integrating from α = 0 to α = ∞. Hence

F(x, z, t) = 2

π

∫ ∞

0

sin(αb)�{f (x, z, t, α)}
α

dα, (14.109)

or, because only the function f (x, y, z, t) can be complex,

F(x, z, t) = 2

π
�

∫ ∞

0

sin(αb)f (x, z, t, α)

α
dα. (14.110)
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This is simply an application of the Fourier integral, of course. The same result
could have been obtained by using the Fourier transform method (Sneddon, 1951).
It may be noted that in the formulation used here the parameter α is always positive.

14.2.1 Vertical Displacement of the Surface

Application of the Fourier integral (14.110) to the expression (14.100) for the verti-
cal displacements gives, taking into account that the real part should be taken,

w = −2p0

πμ
�

∫ ∞

0

a2[2 exp(−a1αz) − (1 + a2
1) exp(−a2αz)]

α2(1 − 2iζ )[(1 + a2
1)2 − 4a1a2]

× sin(αb) exp[iα(x − vt)]dα. (14.111)

Because the coefficients a1 and a2 depend upon the velocity factor ξ (= v/cs) and
the damping ratio ζ , but not on α, this can also be written as

w = −p0

μ
�

{
a2[2I1 − (1 + a2

1)I2]
(1 − 2iζ )[(1 + a2

1)2 − 4a1a2]
}
, (14.112)

where

I1 = 2

π

∫ ∞

0

sin(αb) exp{α[i(x − vt) − a1z]}
α2 dα, (14.113)

I2 = 2

π

∫ ∞

0

sin(αb) exp{α[i(x − vt) − a2z]}
α2 dα. (14.114)

Although these integrals are of a relatively simple form, they can not be evaluated
in analytic form, because of the singularity for α = 0. This is a well known property
of elastic problems for a half plane with a load on its surface. The displacements
can not be determined uniquely, and the solution will have a logarithmic singular-
ity. It is possible, however, to consider some special properties of the solution, by
considering some special points, for instance.

As an example one may consider the displacements of the upper surface z = 0.
Then the two integrals (14.113) and (14.114) are equal,

I0 = I1 = I2 = 2

π

∫ ∞

0

sin(αb) exp[iα(x − vt)]
α2

dα, (14.115)

and the displacement of the surface is, using the definition of a1 in (14.44),

wd = −p0

μ
�

{
a2ξ

2

(1 − 2iζ )2[(1 + a2
1)2 − 4a1a2]

I0

}
. (14.116)
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Fig. 14.4 Moving strip load,
dynamic amplification factor,
ν = 0.3333

As before, the integral does not converge, but it is independent of ξ and ζ . Of par-
ticular interest is the amplitude of the displacement. Because the displacement will
always be a sinusoidal function of time, it follows that

|wd | = p0

μ

|a2| ξ2

|1 − 2iζ |2|(1 + a2
1)2 − 4a1a2|

|I0|. (14.117)

The static value is obtained by letting ξ → 0. This gives

|ws | = p0

2μ|1 − 2iζ |
1

1 − η2
|I0| = p0(1 − ν)

μ
√

1 + 4ζ 2
|I0|. (14.118)

The ratio of the dynamic to the static displacement now is

|wd |
|ws | = |a2|ξ2

(1 − ν)
√

1 + 4ζ 2|(1 + a2
1)2 − 4a1a2|

. (14.119)

The dynamic amplification factor is shown in graphical form in Fig. 14.4, for ν =
1
3 , and four values of the damping factor ζ . Actually, this is the same relationship as
for the wave loads, shown in Fig. 14.3. These figures differ only because the value
of ν is different.

14.2.2 Vertical Normal Stress

Application of the Fourier integral (14.110) to the expression (14.96) for the vertical
normal stress gives, taking into account that the real part should be taken,

σzz

p0
= −�

{
(1 + a2

1)2(J1 + iJ2) − 4a1a2(J3 + iJ4)

(1 + a2
1)2 − 4a1a2

}
, (14.120)
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where

J1 = 2

π

∫ ∞

0

sin(αb) cos[α(x − vt + q2z)]
α

exp(−p2αz)dα, (14.121)

J2 = 2

π

∫ ∞

0

sin(αb) sin[α(x − vt + q2z)]
α

exp(−p2αz)dα, (14.122)

J3 = 2

π

∫ ∞

0

sin(αb) cos[α(x − vt + q1z)]
α

exp(−p1αz)dα, (14.123)

J4 = 2

π

∫ ∞

0

sin(αb) sin[α(x − vt + q1z)]
α

exp(−p1αz)dα. (14.124)

These integrals can be evaluated using the standard integrals

2
∫ ∞

0

sin(αx) cos(αy)

α
exp(−αz)dα = arctan

{
y + x

z

}
− arctan

{
y − x

z

}
,

(14.125)

2
∫ ∞

0

sin(αx) sin(αy)

α
exp(−αz)dα = 1

2
log

{
z2 + (x + y)2

z2 + (x − y)2

}
. (14.126)

Using these integrals it follows that

J1 = 1

π
arctan

{
x − vt + q2z + b

p2z

}
− 1

π
arctan

{
x − vt + q2z − b

p2z

}
, (14.127)

J2 = 1

2π
log

{
p2

2z
2 + (x − vt + q2z + b)2

p2
2z

2 + (x − vt + q2z − b)2

}
, (14.128)

J3 = 1

π
arctan

{
x − vt + q1z + b

p1z

}
− 1

π
arctan

{
x − vt + q1z − b

p1z

}
, (14.129)

J4 = 1

2π
log

{
p2

1z
2 + (x − vt + q1z + b)2

p2
1z

2 + (x − vt + q1z − b)2

}
. (14.130)

It is now assumed that the width of the strip (2b) is very small, and the load p0 is
very large, so that the total load P = 2p0b remains finite. The load then is a point
load. Then the following approximations can be used,

arctan(x + ε) − arctan(x − ε) ≈ 2ε

1 + x2 , (14.131)

log

{
1 + ε

1 − ε

}
≈ 2ε. (14.132)

The expressions (14.127)–(14.130) now become

J1 = 2b

z
K1 = 2b

z

1

π

p2

p2
2 + [(x − vt)/z + q2]2

, (14.133)



378 14 Moving Loads on an Elastic Half Plane

J2 = 2b

z
K2 = 2b

z

1

π

(x − vt)/z + q2

p2
2 + [(x − vt)/z + q2]2

, (14.134)

J3 = 2b

z
K3 = 2b

z

1

π

p1

p2
1 + [(x − vt)/z + q1]2

, (14.135)

J4 = 2b

z
K4 = 2b

z

1

π

(x − vt)/z + q1

p2
1 + [(x − vt)/z + q1]2

. (14.136)

We now write, by definition of the factors C and D, which will depend upon ξ

and ζ ,

(1 + a2
1)2

(1 + a2
1)2 − 4a1a2

= 1

2
+ C + iD. (14.137)

Then

−4a1a2

(1 + a2
1)2 − 4a1a2

= 1

2
− C − iD, (14.138)

because the sum of these two quantities must be 1. Now taking into account that the
stress σzz is the real part of (14.120), it follows that

− σzzz

P
= 1

2
(K1 + K3) + C(K1 − K3) − D(K2 − K4), (14.139)

where P is the total load, P = 2p0b, and the functions K1 − K4 have been defined
in (14.133)–(14.136).

Equation (14.139) is the final expression for the vertical normal stress. The func-
tions K1–K4 can easily be expressed in terms of the constants defined before, and
the variable (x − vt)/z. The constants C and D can also be expressed in the con-
stants defined before, as will be shown below.

It follows from (14.137) that

C + iD = (1 + a2
1)2 + 4a1a2

2[(1 + a2
1)2 − 4a1a2]

, (14.140)

which enables to determine C and D. Actually, one may write

(1 + a2
1)2 = f1 + ig1 = [(1 + p2

1 − q2
1 )2 − 4p2

1q
2
1 ] + i[−4p1q1(1 + p2

1 − q2
1 )],

(14.141)

4a1a2 = f2 + ig2 = [4(p1p2 − q1q2)] + i[−4(p1q2 + p2q1], (14.142)

so that

C + iD = f1 + ig1 + f2 + ig2

2(f1 + ig1 − f2 − ig2)
= (f1 + f2) + i(g1 + g2)

2[(f1 − f2) + i(g1 − g2)] . (14.143)
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Fig. 14.5 Moving point load,
vertical normal stress,
ν = 0.0, ζ = 0.01

Fig. 14.6 Moving point load,
vertical normal stress,
ν = 0.0, ζ = 0.1

This means that

C = (f1 + f2)(f1 − f2) + (g1 + g2)(g1 − g2)

2[(f1 − f2)2 + (g1 − g2)2] , (14.144)

D = (f1 − f2)(g1 + g2) − (f1 + f2)(g1 − g2)

2[(f1 − f2)2 + (g1 − g2)2] . (14.145)

These expressions enable to evaluate numerical values of the vertical stress.
The distribution of the vertical normal stress is shown in graphical form in

Figs. 14.5 and 14.6 for ν = 0 and for two values of the damping ratio: ζ = 0.01,
ζ = 0.1, respectively.

The two figures show the stress distributions for three values of the velocity,
v/cs = 0.001, v/cs = 0.8 and v/cs = 2.0. The case v/cs = 0.001 can be considered
to be very close to the static case. The stress distribution for this case is in agreement
with the classical Flamant solution (Timoshenko and Goodier, 1970), as is indeed
the case in both figures. The maximum value of the stress in this case occurs for
(x − vt)/z = 0, and its theoretical value is σzzz/P = 2/π = 0.637. The values that
can be read from the two Figs. 14.5 and 14.6 are close to the theoretical value.
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Fig. 14.7 Comparison of
solutions, ν = 0.333333

For the case v/cs = 0.8 the results for ζ = 0.01 are in reasonable agreement
with the undamped solution given by Cole and Huth (1958), see also Fryba (1999).
A comparison with this solution will be presented in some more detail later. The
location of the two pulses for the supersonic case v/cs = 2.0 are also in good agree-
ment with the results obtained by Cole and Huth for the undamped problem. Actu-
ally, the two singularities are given by (x − vt) = −|as |z and (x − vt) = −|ap|z. In
the undamped case the values of |as| and |ap| are, for ν = 0 and v/cs = 2: |as | =

√
3

and ap = 1, which is in agreement with the location of the peaks in Fig. 14.5.
For larger values of the damping ratio ζ , see Fig. 14.6, the results indicate that

the effect of a moderate amount of damping is sufficient to limit the maximum
stresses to the level of the static stresses. This is an important result. It means that the
damping properties of soils eliminate the extreme peaks in the stresses that occur in
an elastic material without internal damping. This does not mean that it is advisable
to construct infrastructure for moving loads on soft soils. Peaks in the stresses may
be avoided by the damping of the material, but the displacements will be very large,
because the material is so soft.

Figure 14.7 shows a comparison of the present solution for a very small value of
the damping ratio with the solution by Cole and Huth (1958) for a purely elastic ma-
terial, without damping. The left half of the figure indicates the solution of Cole and
Huth, the right half of the figure represents the present solution with ζ = 0.000001.
The two solutions are indistinguishable, confirming that the present solution is a
proper generalization of the earlier solution by Cole and Huth (1958).

14.2.3 Isotropic Stress

Of the other stress components the isotropic stress σ0 = 1
2 (σxx + σzz) is perhaps the

simplest one to evaluate. Application of the Fourier integral (14.110) to the expres-
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sion (14.98) gives

σ0

p0
= �

{
(1 + a2

1)(a2
2 − a2

1)(J1 + iJ2)

(1 + a2
1)2 − 4a1a2

}
, (14.146)

where the integrals J1 and J2 have been defined in (14.121) and (14.122).
We now write, by definition of the constants E and F ,

(1 + a2
1)(a2

2 − a2
1)

(1 + a2
1)2 − 4a1a2

= E + iF. (14.147)

Furthermore it is again assumed that the width of the loaded strip (2b) is very small.
In that case (14.146) reduces to

σ0z

P
= �{

(E + iF )(K1 + iK2)
} = EK1 − FK2. (14.148)

This is the final expression for the isotropic stress. The constants E and F can be
calculated by elaborating the definition (14.147). This gives

E + iF = [(1 + p2
1 − q2

1 ) − 2ip1q1][(p2
2 − p2

1 − q2
2 + q2

1 ) + 2i(p1q1 − p2q2)]
(f1 − f2) + i(g1 − g2)

,

(14.149)
from which it follows that

E = (us − vt)(f1 − f2) + (vs + ut)(g1 − g2)

(f1 − f2)2 + (g1 − g2)2 , (14.150)

F = (vs + ut)(f1 − f2) − (us − vt)(g1 − g2)

(f1 − f2)2 + (g1 − g2)2
, (14.151)

where

u = 1 + p2
1 − q2

1 , (14.152)

v = −2p1q1, (14.153)

s = p2
2 − p2

1 − q2
2 + q2

1 , (14.154)

t = 2p1q1 − 2p2q2. (14.155)

This enables to elaborate the isotropic stress.
Some examples are shown in Fig. 14.8, for a practically undamped material, and

three values of the velocity. The pseudo-static case v/cs = 0.001 is in agreement
with the elastostatic solution (Timoshenko and Goodier, 1970).

14.2.4 Horizontal Normal Stress

The horizontal normal stress σxx can most simply be evaluated by noting that

σxx = 2σ0 − σzz. (14.156)
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Fig. 14.8 Moving point load,
isotropic stress, ν = 0.0,
ζ = 0.01

Fig. 14.9 Moving point load,
horizontal normal stress,
ν = 0.0, ζ = 0.01

Some examples are shown in Fig. 14.9, for a practically undamped material, and
three values of the velocity. As before, the pseudo-static case v/cs = 0.001 is in
agreement with the elastostatic solution (Timoshenko and Goodier, 1970).

14.2.5 Shear Stress

Application of the Fourier integral (14.110) to the expression (14.97) for the shear
stress gives, taking into account that the real part should be taken,

σxz

p0
= �

{
2ia2(1 + a2

1)(J1 + iJ2 − J3 − iJ4)

(1 + a2
1)2 − 4a1a2

}
, (14.157)

or, in the limiting case b → 0,

σxzz

P
= �

{
2ia2(1 + a2

1)(K1 + iK2 − K3 − iK4)

(1 + a2
1)2 − 4a1a2

}
. (14.158)
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Fig. 14.10 Moving point
load, shear stress, ν = 0.0,
ζ = 0.01

This can be elaborated by writing

2ia2(1 + a2
1)

(1 + a2
1)2 − 4a1a2

= G + iH. (14.159)

Then the final expression for the shear stress is

σxzz

P
= G(K1 − K3) − H(K2 − K4). (14.160)

The constants G and H can be calculated by elaborating the definition (14.159),

G + iH = 2(q2 + ip2)[(1 + p2
1 − q2

1 ) − 2ip1q1]
(f1 − f2) + i(g1 − g2)

. (14.161)

It follows that

G = 2(q2u − p2u)(f1 − f2) + 2(p2u + q2v)(g1 − g2)

(f1 − f2)2 + (g1 − g2)2 , (14.162)

H = 2(p2u + q2v)(f1 − f2) − 2(q2u − p2v)(g1 − g2)

(f1 − f2)2 + (g1 − g2)2 . (14.163)

Some examples are shown in Fig. 14.10, for a practically undamped material,
and three values of the velocity. As before, the pseudo-static case v/cs = 0.001 is in
agreement with the elastostatic solution (Timoshenko and Goodier, 1970).





Chapter 15
Foundation Vibrations

In this chapter the problem of propagation of vibration of waves in soils due to
vibrating foundation elements is considered. The type of problem is illustrated in
Fig. 15.1. The purpose of the discussions is not to derive rigorous theoretical so-
lutions, but rather to describe practical methods of analysis, based upon theoretical
solutions presented in earlier chapters, and in the literature, see e.g. Richart et al.
(1970), Gazetas (1991).

15.1 Foundation Response

In this section the response of a footing on an elastic soil will be considered. The
mass of the footing (perhaps including the mass of the machine causing the vibra-
tions) is denoted by M . The response of the foundation mass depends upon the
applied load and the soil reaction. If the contact pressure between the foundation
mass and the soil is denoted by p, the equation of motion of the foundation mass is

F − pA = M
d2w

dt2 , (15.1)

where A is the area of the footing, and w is the vertical displacement of the footing.
It is assumed that the footing is completely rigid, and that it remains in contact
with the soil at all times, so that the displacement of the footing w is equal to the
displacement of the soil surface immediately beneath it. It is now assumed that the
applied force, the soil reaction, and the displacement are all periodic, with a circular

Fig. 15.1 Foundation
element on soil

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
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frequency ω,

F = Re[F0 exp(iωt)], (15.2)

p = Re[p0 exp(iωt)], (15.3)

w = Re[w0 exp(iωt)]. (15.4)

Substitution of these equations into (15.1) gives

F0 = p0A − ω2Mw0. (15.5)

In earlier chapters the response of the soil to a periodic load was generally found to
be also periodic, but with a certain phase difference. In general one may therefore
write

p0A = (K + iωC)w0, (15.6)

where the dynamic stiffness K and the dynamic damping C may depend upon the
frequency ω, and upon parameters such as the shear modulus G, the soil density
ρ and the dimensions of the foundation plate, for instance the radius of a circular
plate a. Substitution of (15.6) into (15.5) gives

F0 = (K + iωC − ω2M)w0. (15.7)

This is the standard form of the differential equation for the response of a single
mass system, supported by a spring of stiffness K and a damper having a viscos-
ity C. This system has been considered in great detail in Chap. 1. All results obtained
there, such as the occurrence of resonance at certain frequencies, and the influence
of damping upon the maximum response, can be immediately applied to the present
system, but taking into account that the stiffness K and the damping C may depend
upon the frequency ω.

It remains to determine the dynamic parameters K and C for a particular system.
This requires the solution of the response problem of the soil for that particular case.

Circular Footing

In Chap. 9 the problem of a circular footing of radius a on an elastic half space has
been considered. For this case the relation between the amplitudes was found to be

w0 = p0a sin(ω/ω0)

m(λ + 2μ) (ω/ω0)
exp(−iω/ω0), (15.8)

where m is a material constant, defined by

m2 = μ

λ + 2μ
= 1 − 2ν

2(1 − ν)
, (15.9)
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and where ω0 is a characteristic frequency, defined by

ω2
0 = 4μ

ρa2 . (15.10)

It should be noted that this is an approximate solution, derived under the assumption
that the horizontal displacements are negligible, compared to the vertical displace-
ments. In (15.6) the inverse relation of (15.8) is needed. This inverse relation is

p0 = m(λ + 2μ)(ω/ω0)

a sin(ω/ω0)
exp(iω/ω0)w0. (15.11)

Comparing this with (15.6) shows that

K + iωC = m(λ + 2μ)(ω/ω0)

a sin(ω/ω0)
exp(iω/ω0)A. (15.12)

With A = πa2 it now follows that

K = m(λ + 2μ)πa
(ω/ω0)

tan(ω/ω0)
, (15.13)

and

C = m(λ + 2μ)πa

ω0
. (15.14)

These values will be used in the next section.
It is convenient to write the last term of (15.5), which represents the influence of

the mass M , in a somewhat different form, which involves the mass of the soil. For
this purpose the mass of the foundation M is expressed into a representative mass
of the soil by writing

M = 4ρa3

1 − ν
B = 4ρAa

π(1 − ν)
B, (15.15)

where B is a dimensionless factor, the mass ratio. The form of this expression is
suggested by the form of a similar factor introduced by Lysmer and Richart (1966).
Because ω2

0 can be expressed as

ω2
0 = 4μ

ρa2 = 4m2(λ + 2μ)

ρa2 , (15.16)

see (15.10), the mass M can also be written as

M = 16Am2(λ + 2μ)

πa(1 − ν)ω2
0

B. (15.17)
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Substitution of (15.17) and (15.12) into (15.7) finally gives the following relation
between the amplitudes of the applied force and the displacement,

F0

A
= m(λ + 2μ)

a

[
ω

ω0

exp(iω/ω0)

sin(ω/ω0)
− 16mB

π(1 − ν)

(
ω

ω0

)2]
w0. (15.18)

In the static case, with ω → 0, the value of sin(ω/ω0) can be approximated by
ω/ω0, and one obtains

F0

A
= m(λ + 2μ)

a
ws. (15.19)

The static displacement ws is a reference value, which can be used to present the
final results in dimensionless form. Using this reference value the dynamic response
can be written as

w0

ws

=
[

ω

ω0

exp(iω/ω0)

sin(ω/ω0)
− 16mB

π(1 − ν)

(
ω

ω0

)2]−1

. (15.20)

This expression gives the dynamic multiplication factor. For ν = 1/3 the absolute
value of the factor w0/ws is shown in Fig. 15.2, for various values of the mass
ratio B . It appears that for sufficiently large values of the mass ratio B a certain res-
onance may occur, for frequencies in the order of magnitude 1

4 ω0. For frequencies
large compared to ω0 the amplitude of the dynamic vibrations tends towards zero.

It is interesting to also show the force on the soil, as a ratio of the force applied
to the foundation mass. From (15.11) and (15.18) it follows that

p0A

F0
=

[
1 − 16mB

π(1 − ν)

(
ω

ω0

)
sin(ω/ω0)

exp(iω/ω0)

]−1

. (15.21)

This function is shown in Fig. 15.3, for various values of the mass ratio B and for
ν = 1/3. When the foundation has no mass (B = 0) the entire force is transmitted
to the soil, of course. For larger values of the mass ratio the force on the soil may be
somewhat smaller than the applied force, because part of the force is used to move

Fig. 15.2 Dynamic response
of footing



15.2 Equivalent Spring and Damping 389

Fig. 15.3 Force transmitted
to half space

the foundation mass. It can be seen, however, that the force between foundation and
soil may also be considerably larger than the applied force. It may also be mentioned
that for very high frequencies the force transmitted to the soil may be extremely
large, at least in theory.

Although the results shown in Figs. 15.2 and 15.3 should be considered as in-
dicative only, because of the approximate character of the solution used to construct
them, it is interesting to note that the general shape of the functions shown in the
figure is very similar to the behaviour obtained by Lysmer and Richart (1966) for a
circular footing, which is based upon a more rigorous analysis. This gives support
to the results of the approximate analysis presented here.

15.2 Equivalent Spring and Damping

The procedure described in the previous section can easily be generalized, on the
basis of the response function of the soil to a surface load. All that is needed is to
write the relation in the form of (15.6),

p0A = (K + iωC)w0. (15.22)

For one particular case, namely the response of a quasi-elastic half space due to
a uniform load on a circular area, approximate relations have been derived in the
previous section. There it was found, see (15.13) and (15.14) that

K = m(λ + 2μ)πa
(ω/ω0)

tan(ω/ω0)
, (15.23)

and

C = m(λ + 2μ)πa

ω0
. (15.24)

The formula for the spring constant is a function of the frequency ω, but it is a
slowly varying function, so that it can be approximated reasonably well, at least for
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relatively small frequencies, by the elastic value

K ≈ m(λ + 2μ)πa = πμa

m
. (15.25)

The expression for the dynamic damping C can be written in a somewhat different
form by using (15.9) and (15.10). The result is

C = πa2√ρμ

2m
, (15.26)

which is a constant, depending upon the area of the loaded surface, and the soil
properties, but independent of the frequency.

A more general procedure, based on work of Lysmer and Richart (1966) is as
follows (see also Gazetas, 1991). The spring constant K is defined by the elastic de-
formation of the footing in static conditions. For a rigid circular plate of radius a, for
instance, the relation between the applied load and the displacement is (Timoshenko
and Goodier, 1970)

w = π(1 − ν2)pa

2E
, (15.27)

so that for this case

K = 4μa

1 − ν
. (15.28)

This closely resembles the expression (15.25), which is of course not very surpris-
ing, as they all express the stiffness of an elastic half space. Relations of this form
are very common in soil dynamics, see for instance Richart et al. (1970).

The dynamic damping C can be obtained for various cases, at least as a first
approximation, by trial and error, and curve fitting. A convenient choice, due to
Lysmer, appears to be (Gazetas, 1991)

C = 3.4a2√ρμ

1 − ν
, (15.29)

which closely resembles (15.26). Again, relations of this form are often used in soil
dynamics.

The damping ratio ζ , which plays an important role in the analysis of dynamic
systems, is usually defined as

ζ = C

2
√

KM
. (15.30)

For the case of a rigid circular foundation plate, the mass ratio B is usually defined
as follows (Richart et al., 1970, p. 204),

B = (1 − ν)M

4ρa3
. (15.31)
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With (15.13), (15.14) and (15.31), (15.30) can also be written as

ζ = 0.425√
B

. (15.32)

This shows that for a very small mass the damping ratio will be very large, be-
cause then the mass ratio is small. For a very large mass the damping ratio is small,
because then the mass ratio is large. All this is due to the fact that the dynamic
damping of the elastic half space, which is caused by radiation damping, is con-
stant.

Expressions for equivalent dynamic stiffnesses K and for equivalent dynamic
dampings C for various cases are given, for instance, by Gazetas (1991). These in-
clude foundations with various shapes of the contact area, footings loaded by lateral
or rocking loads, and buried foundations.

15.3 Soil Properties

In order to determine the response of a foundation to vibrations the soil parameters
needed are the density ρ, the shear modulus G, and the Poisson ratio ν. Of these
the density can most easily be determined or estimated. Moreover, its variability is
rather restricted: most soils have a density of about 1600 kg/m3 when completely
dry, and about 2000 kg/m3 when completely saturated.

Poisson’s ratio is usually not so easy to measure, or to estimate. Fortunately, its
value does not influence the results very much. Common values are in the range
from 0.3 (for sand) to 0.5 (for clays, or saturated soils).

The most important parameter is the shear modulus G. Its value may vary be-
tween fairly wide limits, and its influence on the results is very large. A complica-
tion is that the value of the shear modulus for natural soils depends very much on
the magnitude of the shear strains. For very small strains the shear modulus may be
a factor 10 or even 100 larger than it is for large strains. A typical example is shown
in Fig. 15.4. Thus it is very important to know beforehand the order of magnitude
of the shear strains.

The actual value of the shear modulus may be determined from laboratory tests,
or from a field test. In field tests it is usually the propagation velocity of shear waves

Fig. 15.4 Dynamic shear
modulus
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cs that is measured. The shear modulus then follows from the formula

G = ρ2cs. (15.33)

Again it is of importance to note the dependence of the shear modulus of the shear
strain level. A value measured using very small deformations may not be represen-
tative for a case in which large deformations can be expected.

15.4 Propagation of Vibrations

In previous chapters the propagation of vibrations in space has been investigated
for various cases. These were restricted to linear elastic materials, in which the
only damping is due to radiation. In real soils some damping may occur due to
irreversible deformations (material damping). This is very difficult to estimate the-
oretically, but it may be quite significant, especially for large vibrations and soft
soils. Theoretical solutions, which are available only for a few cases of linear elastic
bodies, usually indicate that the amplitude of the vibrations decays with the radius
r of the distance in the form r0/r (for a wave from a cavity in an infinite body), or√

r0/r (for Rayleigh waves on the surface of a half space).
In order to include the effect of material damping as well, in addition to the

radiation damping, Bornitz (1931) has suggested to use a formula of the type

w

w0
=

√
r0

r
exp

(−α(r − r0)
)
. (15.34)

The value of the parameter α may vary between 1/(30 m) for very stiff soils to
1/(6 m) for very soft soils (Barkan, 1962).

The best procedure to determine the value of α in engineering practice is to per-
form a field test, in which the attenuation of the response to the action of a vibrator
(or, more simply, to a dropped weight) is measured at various distances from the
source of the disturbance.

15.5 Design Criteria

Vibrations in the soil may cause serious damage to structures. This means that strong
vibrations, such as caused by pile driving or heavy traffic, may not be allowable in
the vicinity of sensitive structures. In order to give criteria for the assessment of the
possibility of damage the vibrations are usually represented by a harmonic vibration
of the type

u = u0 sin(ωt) = u0 sin(2πf t), (15.35)

where u0 is the amplitude of the vibration, ω is the circular frequency, and f is the
frequency expressed in cycles per second (Hz). The velocity corresponding to this
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vibration is

v = ωu0 cos(ωt) = 2πf u0 cos(2πf t), (15.36)

and the acceleration is

a = −ω2u0 sin(ωt) = −4π2f 2u0 sin(2πf t). (15.37)

If the amplitude of the velocity is denoted by v0 and the amplitude of the accelera-
tion is denoted by a0, it follows that

v0 = 2πf u0, (15.38)

and

a0 = 4π2f 2u0. (15.39)

Design criteria are often expressed in terms of allowable velocities or allowable
accelerations, as a function of the frequency. Such criteria can conveniently be rep-
resented graphically in a diagram such as shown in Fig. 15.5. In this diagram the
relation between frequency, displacement and acceleration is given. The basic vari-
ables in the diagram are the frequency f , and the amplitude of the acceleration a0.
The frequency f is constant along vertical lines, and the acceleration is constant
along horizontal lines. A point in which the acceleration is a∗ corresponds to a dis-
placement a∗/(4π2f 2). This means that the displacement is constant along lines
of constant a/f 2. These lines are shown in the diagram as lines with a slope 2:1.
They give the displacement corresponding to a certain acceleration and a certain fre-
quency. Similarly, lines of constant velocity would be lines with a slope 1:1. They
are not shown in the figure. As an example one may consider the point on the lower
horizontal axis along which the acceleration is a0 = 10−2 m/s, and the displacement
is u0 = 10−2 m. With (15.39) the frequency is then found to be f = 0.159.

An alternative, even more convenient representation is shown in Fig. 15.6. In this
figure the basic parameters are the frequency f and the amplitude of the velocity v0.

Fig. 15.5 Frequency,
displacement and acceleration
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Fig. 15.6 Frequency,
displacement, velocity and
acceleration

Lines of constant displacement u0 = c can now be represented by lines with a slope
1:1 because, with (15.38), v0 = 2πf u0. Similarly, lines of constant acceleration,
say a0 = d can be represented by lines having a slope 1:1 in downward direction
because, with (15.38) and (15.39), v0 = a0/2πf .

As an example, or a check, one may consider the point for which f = 1 and
v0 = 10−1 m/s. In this case the corresponding displacement is, with (15.38), u0 =
0.0159 m. This value is indeed indicated by the scale of displacements on the right,
together with the upward sloping lines of constant displacement. The acceleration is
found to be a0 = 0.628 m/s2, which is indicated by the scale of accelerations at the
top of the figure, together with the downward sloping lines of constant acceleration.

Several countries have established design criteria in standards. Such a standard
may, for instance, give a maximum velocity for various categories of buildings,
distinguishing between newly constructed general purpose buildings, houses and
masonry structures, and monuments or sensitive buildings. Normal values for such
allowable velocities are 16 mm/s, 6 mm/s, and 3 mm/s. These values are the al-
lowable vibrations of structural elements, for the three categories of buildings. Al-
lowable vibrations of the foundation or the soil in its immediate vicinity, are usually
much smaller, of the order of magnitude of 4 mm/s or 2 mm/s. For tall buildings
the allowable vibrations at the top levels of the structure may be considerably larger
(say 40 mm/s, 15 mm/s or 8 mm/s for the three categories of buildings mentioned
above) because swaying of the structure may occur without causing structural dam-
age. In very tall buildings (skyscrapers) the displacements and velocities may be-
come so large that they cause severe discomfort for the residents, even though the
structure itself is perfectly safe. In some of these buildings movable masses have
been installed which counteract the natural vibrations, to reduce the discomfort.



Appendix A
Integral Transforms

In this appendix a brief review is given of some integral transform methods. These
are techniques used to reduce a differential equation to an algebraic equation. The
main transforms are the Laplace transform, the Fourier transform and the Hankel
transform. These will be presented here, together with some of their main properties.
Derivations of the theorems will be given in condensed form, or not at all. Complete
derivations are given by Titchmarsh (1948), Sneddon (1951) and Churchill (1972).
Extensive tables of transforms have been published by the staff of the Bateman
project (Erdélyi et al., 1954).

Short tables of Laplace transforms, Fourier transforms and Hankel transforms
are presented, with references to their derivation, and some numerical illustrations
and verifications.

Finally, an elegant and effective method is described for the determination of the
inverse Fourier-Laplace transform for certain problems, in particular problems of
elastodynamics (De Hoop, 1960).

A.1 Laplace Transforms

A.1.1 Definitions

The Laplace transform is particularly useful for problems in which the variables are
defined in a semi-infinite domain 0 < t < ∞, where t may, for instance, be the time,
and t = 0 indicates the initial value of time. The Laplace transform of a function
f (t) is defined as

F(s) =
∫ ∞

0
f (t) exp(−st) dt, (A.1)

where s is a parameter, which is assumed to be sufficiently large for the integral
to exist. By the integration over the time domain, for various values of s, the func-
tion f (t) is transformed into a function F(s). For various functions the Laplace
transform can be calculated, sometimes very easily, sometimes with considerable

A. Verruijt, An Introduction to Soil Dynamics,
Theory and Applications of Transport in Porous Media 24,
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Table A.1 Some Laplace
transforms No. f (t) F (s) = ∫ ∞

0 f (t) exp(−st) dt

1 1 1
s

2 t 1
s2

3 tn n!
sn+1

4 exp(at) 1
s−a

5 sin(at) a

s2+a2

6 cos(at) s

s2+a2

7 sin(at)
t

arctan( a
s
)

effort. Tables of such transforms are widely available (Churchill, 1972; Erdélyi et
al., 1954). A short table is given in Table A.1. The integrals in this table can all be
evaluated with little effort, using techniques such as partial integration.

The fundamental property of the Laplace transform appears when considering
the transform of the time derivative. Using partial integration this is found to be

∫ ∞

0

df (t)

dt
exp(−st) dt = sF (s) − f (0). (A.2)

Thus differentiation with respect to time is transformed into multiplication by s, and
subtraction of the initial value f (0).

A.1.2 Example

In order to illustrate the application of the Laplace transform technique consider the
differential equation

df (t)

dt
+ 2f = 0, (A.3)

with the initial condition f (0) = 5. Using the property (A.2) the differential equa-
tion (A.3) is transformed into the algebraic equation

(s + 2)F (s) − 5 = 0, (A.4)

the solution of which is

F(s) = 5

s + 2
. (A.5)

Inverse transformation now gives, using transform no. 4 from Table A.1,

f (t) = 5 exp(−2t). (A.6)
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Substitution into the original differential equation (A.3) will show that this is indeed
the correct solution, satisfying the given initial condition.

This example shows that the solution of the problem can be performed in a
straightforward way. The main problem is the inverse transformation of the so-
lution (A.5), which depends upon the availability of a sufficiently wide range of
Laplace transforms. If the inverse transformation can not be found in a table of
transforms it may be possible to use the general inverse transformation theorem
(Churchill, 1972), but this requires considerable mathematical skill.

A.1.3 Heaviside’s Expansion Theorem

A powerful inversion method is provided by the expansion theorem developed by
Heaviside, one of the pioneers of the Laplace transform method. This applies to
functions that can be written as a quotient of two polynomials,

F(s) = p(s)

q(s)
, (A.7)

where q(s) must be a polynomial of higher order than p(s). It is assumed that the
function q(s) possesses single zeroes only, so that it may be written as

q(s) = (s − s1)(s − s2) · · · (s − sn). (A.8)

One may now write

F(s) = p(s)

q(s)
= a1

s − s1
+ a2

s − s2
+ · · · + an

s − sn
. (A.9)

The coefficient ai can be determined by multiplication of both sides of (A.9) by
(s − si), and then passing into the limit s → si . This gives

ai = lim
s→si

(s − si)p(s)

q(s)
. (A.10)

Because q(si) = 0 the limit may be evaluated using L’Hôpital’s rule, giving

ai = p(si)

q ′(si)
. (A.11)

Inverse transformation of the expression (A.9) now gives, using formula no. 4 from
Table A.1,

f (t) =
n∑

i=1

p(si)

q ′(si)
exp(si t). (A.12)

This is Heaviside’s expansion theorem. It provides a useful method to determine
the inverse Laplace transform of functions of the form (A.7). It can also be used to
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determine the inverse transform of functions of a more general form, although such
inverse transforms can usually be found in a more general way by application of the
complex inversion integral (Churchill, 1972).

A.2 Fourier Transforms

A.2.1 Fourier Series

For certain partial differential equations the Fourier transform method can be used
to derive solutions. These include problems of potential flow, and elasticity prob-
lems, especially in the case of problems for infinite regions, semi-infinite regions,
or infinite strips. The main principles of the method will be presented in this sec-
tion.

The main property of the Fourier transform can most easily be derived by first
considering a Fourier series expansion. For this purpose let there be given a function
g(θ), which is periodic with a period 2π , such that g(θ +2π) = g(θ). This function
can be written as

g(θ) = 1

2
A0 +

∞∑

k=1

{
Ak cos(kθ) + Bk sin(kθ)

}
, (A.13)

where

Ak = 1

π

∫ +π

−π

g(t) cos(kt) dt, (A.14)

and

Bk = 1

π

∫ +π

−π

g(t) sin(kt) dt, (A.15)

These formulas can be derived by multiplication of (A.13) by cos(jθ) or sin(jθ),
and then integrating the result from θ = −π to θ = +π . It will then appear that
from the infinite series only one term is unequal to zero, namely for k = j . This
leads to (A.14) and (A.15).

For a function with period 2πl the Fourier expansion can be obtained from (A.13)
by replacing θ with x/l, t by t/ l and then renaming g(x/l) as f (x). The result is

f (x) = 1

2
A0 +

∞∑

k=1

{
Ak cos(kx/l) + Bk sin(kx/l)

}
, (A.16)

where now

Ak = 1

πl

∫ +πl

−πl

f (t) cos(kt/ l) dt, (A.17)
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and

Bk = 1

πl

∫ +πl

−πl

f (t) sin(kt/ l) dt. (A.18)

Example

As an example consider the block function defined by

f (x) =
{

0, |x| > πl/2,

1, |x| < πl/2.
(A.19)

For this case the coefficients Ak and Bk can easily be calculated, using the expres-
sions (A.17) and (A.18). The factors Bk are all zero, which is a consequence of the
fact that the function f (x) is even, f (−x) = f (x). The factors Ak are equal to zero
when k is even, and the uneven terms are proportional to 1/k. The series (A.16)
finally can be written as

f (x) = 1

2
+ 2

π

{
cos

(
x

l

)
− 1

3
cos

(
3x

l

)
+ 1

5
cos

(
5x

l

)
− 1

7
cos

(
7x

l

)
+ · · ·

}
.

(A.20)
The first term of this series represents the average value of the function, the sec-

ond term causes the main fluctuation, and the remaining terms together modify this
first sinusoidal fluctuation into the block function.

Figure A.1 shows the approximation of the series (A.20) by its first 40 terms. It
appears that the approximation is reasonably good, except very close to the discon-
tinuities. This is a well known effect, often referred to as the Gibbs phenomenon
(Weisstein, 1999). The approximation becomes better, of course, when more terms
are taken into account, but the overshoot near the discontinuities remains.

Fig. A.1 Fourier series, 40
terms
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A.2.2 From Fourier Series to Fourier Integral

Substitution of (A.17) and (A.18) into (A.16) gives

f (x) = 1

2πl

∫ +πl

−πl

f (t) dt +
∞∑

k=1

f (t)
1

πl

∫ +πl

−πl

f (t) cos[k(t − x)/ l]dt. (A.21)

The interval can be made very large by writing 1/l = �ξ . Then (A.21) becomes

f (x) = �ξ

2π

∫ +π/�ξ

−π/�ξ

f (t) dt +
∞∑

k=1

f (t)
�ξ

π

∫ +π/�ξ

−π/�ξ

f (t) cos[k�ξ(t − x)]dt.

(A.22)
Writing k�ξ = ξ and letting �ξ → 0 this reduces to

f (x) = 1

π

∫ ∞

0
dξ

∫ +∞

−∞
f (t) cos[ξ(x − t)]dt. (A.23)

This can also be written as

f (x) = 1

2π

∫ ∞

0

[
A(ξ) cos(xξ) + B(ξ) sin(xξ)

]
dξ, (A.24)

where

A(ξ) = 2
∫ ∞

−∞
f (t) cos(ξ t) dt, (A.25)

and

B(ξ) = 2
∫ ∞

−∞
f (t) sin(ξ t) dt. (A.26)

It can be seen from (A.25) that A(ξ) is an even function, A(−ξ) = A(ξ), and from
(A.26) it can be seen that B(ξ) is uneven, B(−ξ) = −B(ξ). Therefore, if F(ξ) =
1
2 [A(ξ) + iB(ξ)], it follows that

∫ ∞

−∞
F(ξ) exp(−ixξ) dξ =

∫ ∞

0

[
A(ξ) cos(xξ) + B(ξ) sin(xξ)

]
dξ, (A.27)

as can be verified by elaborating the functions in the integral on the left hand side.
It follows that (A.24) may also be written as

f (x) = 1

2π

∫ ∞

−∞
F(ξ) exp(−ixξ) dξ, (A.28)

where, if the integration variable t is replaced by x,

F(ξ) =
∫ ∞

−∞
f (x) exp(ixξ) dx. (A.29)
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This is the basic formula of the Fourier transform method. The function F(ξ) is
called the Fourier transform of f (x). It may be mentioned that the asymmetry of the
formulas is often eliminated by writing a factor 1/

√
2π in each of the two integrals.

The main property of the Fourier transform appears when considering the Fourier
transform of the second derivative d2f/dx2. This is found to be, using partial inte-
gration,

∫ ∞

−∞
d2f

dx2
exp(ixξ) dx = −ξ2 F(y), (A.30)

if it is assumed that f (x) and its derivative df/dx tend towards zero for ξ → −∞
and ξ → ∞. Thus, under these conditions, the second derivative is transformed into
multiplication by −ξ2.

When it is known that the function f (x) is even, f (−x) = f (x), one may write

f (x) = 2

π

∫ ∞

0
Fc(ξ) cos(xξ) dξ, (A.31)

where now

Fc(ξ) =
∫ ∞

0
f (x) cos(xξ) dx. (A.32)

The function Fc(ξ) is called the Fourier cosine-transform of f (x).
For uneven functions, f (−x) = −f (x), the Fourier sine-transform may be used,

f (x) = 2

π

∫ ∞

0
Fs(ξ) sin(xξ) dξ, (A.33)

where

Fs(ξ) =
∫ ∞

0
f (x) sin(xξ) dx. (A.34)

Both for the Fourier cosine transform and for the Fourier sine transform various
examples are given in the tables published by Churchill (1972) and Erdélyi et al.
(1954).

A.2.3 Application

As an example consider the problem of potential flow in a half plane y > 0, see
Fig. A.2. Along the upper boundary y = 0 the potential is given to be a step function.
The differential equation is

∂2f

∂x2
+ ∂2f

∂y2
= 0, (A.35)
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Fig. A.2 Half plane

and the boundary condition is supposed to be

y = 0 : f =
{

0, |x| > a,

p, |x| < a.
(A.36)

Because the boundary condition (A.36) is symmetric with respect to the y-axis,
it can be expected that the solution will be even, and therefore the Fourier cosine
transform (A.32) may be used. The transformed problem is, using (A.30),

−ξ2Fc + dFc

dy2
= 0. (A.37)

The solution of this ordinary differential equation that vanishes at infinity is

Fc = A(ξ) exp(−ξy). (A.38)

From this it follows that the value at the surface y = 0 is

y = 0 : Fc = A(ξ). (A.39)

The transformed boundary condition is, with (A.36) and (A.32),

y = 0 : Fc = 2p

π

sin(ξa)

ξ
. (A.40)

From (A.39) and (A.40) the integration factor A(ξ) can be determined,

A(ξ) = 2p

π

sin(ξa)

ξ
. (A.41)

The final solution of the transformed problem is

Fc = 2p

π

sin(ξa)

ξ
exp(−ξy). (A.42)
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The solution of the original problem can now be obtained by the inverse transform,
(A.31),

f = 2p

π

∫ ∞

0

sin(ξa) cos(ξx)

ξ
exp(−ξy) dξ. (A.43)

Although this integral has been obtained as a Fourier integral, it can actually most
easily be found in a table of Laplace transforms, because of the function exp(−ξy)

in the integral. In such tables the following integral may be found
∫ ∞

0

sin(at)

t
exp(−st) dt = arctan

(
a

s

)
. (A.44)

Using this result, and some trigonometric relations to bring the integrand of (A.43)
into the correct form to apply (A.44), the final solution of the problem considered
here is found to be

f = p

π
arctan

(
a + x

y

)
+ p

π
arctan

(
a − x

y

)
. (A.45)

It can easily be verified that this solution satisfies the differential equation (A.35) and
the boundary condition (A.36). Thus the expression (A.45) is indeed the solution of
the problem.

A.2.4 List of Fourier Transforms

In this section a number of Fourier transforms is listed, together with references or
indications for their derivation. For some integrals a numerical verification is shown,
using Simpson’s numerical integration scheme. The numerical results confirm the
analytical formulas.

In this section the Fourier cosine transform, see (A.32), is defined as

Fc(y) =
∫ ∞

0
f (x) cos(xy) dx. (A.46)

The inverse transform is, with (A.31),

f (x) = 2

π

∫ ∞

0
Fc(y) cos(xy) dy. (A.47)

The Fourier sine transform, see (A.34), is defined as

Fs(y) =
∫ ∞

0
f (x) sin(xy) dx. (A.48)

The inverse transform is, with (A.33),

f (x) = 2

π

∫ ∞

0
Fs(y) sin(xy) dy. (A.49)
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It may be noted that in some publications the definitions (A.46) and (A.48) contain
a factor

√
2/π . The inverse transforms then also contain this factor, so that the pair

of transforms becomes symmetric. This is especially valuable when constructing a
table of transforms.

A well known integral of the Laplace transform type (Churchill, 1972) is, when
formulated as a Fourier cosine transform,

∫ ∞

0
exp(−xt) cos(xy) dx = t

y2 + t2 . (A.50)

Using the inversion theorem (A.47) it follows that
∫ ∞

0

1

x2 + t2 cos(xy) dx = π

2t
exp(−yt). (A.51)

Differentiation of (A.51) with respect to t gives
∫ ∞

0

1

(x2 + t2)2
cos(xy) dx = π

4t3
(1 + yt) exp(−yt). (A.52)

Another well known integral of the Laplace transform type (Churchill, 1972) is,
when formulated as a Fourier sine transform,

∫ ∞

0
exp(−xt) sin(xy) dx = y

y2 + t2
. (A.53)

The inverse form of this integral is, with (A.49),
∫ ∞

0

x

x2 + t2
sin(xy) dx = π

2
exp(−yt). (A.54)

Differentiation of (A.54) with respect to t gives
∫ ∞

0

x

(x2 + t2)2 sin(xy) dx = πy

4t
exp(−yt). (A.55)

Differentiation of (A.53) with respect to y gives

∫ ∞

0
x exp(−xt) cos(xy) dx = t2 − y2

(t2 + y2)2 . (A.56)

Differentiation of (A.53) with respect to t gives
∫ ∞

0
x exp(−xt) sin(xy) dx = 2yt

(y2 + t2)2
. (A.57)

A well known discontinuous integral is (Titchmarsh, 1948, p. 177)

∫ ∞

0

sin(xt)

x
cos(xy) dx =

{
π
2 , y < t,

0, y > t.
(A.58)
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Fig. A.3
F(y) = ∫ ∞

0 [sin(x)/x] ×
cos(xy)dx

A numerical verification of the integral (A.58) is shown in Fig. A.3. The analytical
results, as given by (A.58), are indicated by the fully drawn lines. Some numerical
results, calculated using Simpson’s integration formula, are indicated by the dots.
An integral similar to (A.58) is (Titchmarsh, 1948, p. 179)

∫ ∞

0

sin(xt)

x
sin(xy) dx = 1

2
log

∣∣∣∣
t + y

t − y

∣∣∣∣. (A.59)

A comparison with the results of a numerical computation of this integral is shown
in Fig. A.4. Again the analytical results are indicated by the fully drawn lines, and
the numerical data are indicated by the dots.

Some integrals of the Weber-Schafheitlin type (Watson, 1944, p. 405) are

∫ ∞

0
J0(xt) sin(xy) dx =

{
0, y < t,

(y2 − t2)−1/2, y > t.
(A.60)

∫ ∞

0
J0(xt) cos(xy) dx =

{
(t2 − y2)−1/2, y < t,

0, y > t.
(A.61)

∫ ∞

0

J0(xt)

x
sin(xy) dx =

{
arcsin(y/t), y < t,

1
2π, y > t.

(A.62)

It may be noted that (A.61) may be derived from (A.62) by differentiation with
respect to the parameter y.
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Fig. A.4
F(y) = ∫ ∞

0 [sin(x)/x] ×
sin(xy)dx

Differentiating (A.62) with respect to t gives

∫ ∞

0
J1(xt) sin(xy) dx =

{
(y/t)(t2 − y2)−1/2, y < t,

0, y > t.
(A.63)

Finally, another useful Weber-Schafheitlin integral is (Watson, 1944, p. 405)

∫ ∞

0
J1(xt) cos(xy) dx =

⎧
⎨

⎩

1
t
, y < t,

− t√
y2−t2(y+

√
y2−t2 )

, y > t.
(A.64)

A.3 Hankel Transforms

A.3.1 Definitions

For problems with radial symmetry a useful solution method is provided by the
Hankel transform. This transform is defined by

F(y) =
∫ ∞

0
xf (x)J0(xy) dx. (A.65)

The inverse transform is

f (x) =
∫ ∞

0
yF(y)J0(xy) dy. (A.66)
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For a derivation of this relation the reader is referred to the literature, see e.g. Sned-
don (1951).

The main property of the Hankel transform is that it transforms the operator often
appearing in radially symmetric problems into a simple multiplication,

∫ ∞

0

[
d2f

dx2 + 1

x

df

dx

]
xJ0(xy) dx = −y2F(y). (A.67)

This property can be derived by using partial integration, and noting that the Bessel
function w = J0(xy) satisfies the differential equation

d2w

dx2
+ 1

x

dw

dx
+ y2w = 0. (A.68)

Thus the combination d2f/dx2 + (1/x)df/dx is transformed into multiplication
of the Hankel transform F(y) by −y2. This means that a differential equation in
which this combination of derivatives appears may be transformed into an algebraic
equation. In many cases this algebraic equation is relatively simple to solve, but
the problem then remains to find the inverse transform. For the inverse transforma-
tion tables of transforms may be consulted, but if the tables do not give the inverse
transform, it may be a formidable mathematical problem to derive it.

A.3.2 List of Hankel Transforms

In this section a number of Hankel transforms is listed, together with references or
indications for their derivation. For some integrals a numerical verification is shown,
using Simpson’s numerical integration scheme. The numerical results confirm the
analytical formulas.

A pair of integrals of the Weber-Schafheitlin type is (Abramowitz and Stegun,
1964, 11.4.33, 11.4.34)

∫ ∞

0

J1(xt)

x
J0(xy) dx =

⎧
⎨

⎩

2
π
E(

y2

t2 ), y < t,

2y
πt

{E( t2

y2 ) − (1 − t2

y2 )K( t2

y2 )}, y > t.
(A.69)

In these equations the functions K(x) and E(x) are complete elliptic integrals of the
first and second kind, respectively. A short list of values of these functions, adapted
from Abramowitz and Stegun (1964) is given in Table A.2.

Two well known integrals of the Hankel transform type are (Sneddon, 1951,
p. 528)

∫ ∞

0

x

(x2 + t2)1/2 J0(xy) dx = 1

y
exp(−yt). (A.70)

∫ ∞

0

x

(x2 + t2)3/2
J0(xy) dx = 1

t
exp(−yt). (A.71)
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Table A.2 Complete elliptic
integrals x K(x) E(x)

0.0 1.57079 1.57079

0.1 1.61244 1.53076

0.2 1.65962 1.48903

0.3 1.71389 1.44536

0.4 1.77751 1.39939

0.5 1.85407 1.35064

0.6 1.94956 1.29842

0.7 2.07536 1.24167

0.8 2.25720 1.17848

0.9 2.57809 1.10477

1.0 ∞ 1.00000

Differentiation of (A.71) with respect to t gives
∫ ∞

0

x

(x2 + t2)5/2
J0(xy) dx = 1 + yt

3t3
exp(−yt). (A.72)

Differentiating this again with respect to t gives

∫ ∞

0

x

(x2 + t2)7/2 J0(xy) dx = 3 + 3yt + (yt)2

15t5 exp(−yt). (A.73)

The inverse form of (A.71) is
∫ ∞

0
exp(−xt) x J0(xy) dx = t

(y2 + t2)3/2
. (A.74)

This integral can also be considered as a Laplace transform.
Integration of the integral (A.74) with respect to t gives

∫ ∞

0
exp(−xt) J0(xy) dx = 1

(y2 + t2)1/2 . (A.75)

Equation (A.75) is the inverse form of (A.70). It is a well known integral, which can
also be considered as a Laplace transform, and can be found in many tables (see e.g.
Churchill, 1972, p. 327).

A comparison of analytical and numerical computations of the integral (A.75) is
shown in Fig. A.5.

The Fourier transforms (A.60)–(A.64) can also be considered as Hankel trans-
forms. Written in the form of Hankel transforms these integrals are as follows.

∫ ∞

0
sin(xt) J0(xy) dx =

{
(t2 − y2)−1/2, y < t,

0, y > t.
(A.76)
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Fig. A.5 F(y) =∫ ∞
0 exp(−x)J0(xy)dx

∫ ∞

0
cos(xt) J0(xy) dx =

{
0, y < t,

(y2 − t2)−1/2, y > t.
(A.77)

∫ ∞

0

sin(xt)

x
J0(xy) dx =

{
1
2π, y < t,

arcsin(t/y), y > t.
(A.78)

∫ ∞

0
sin(xt)J1(xy) dx =

{
0, y < t,

(t/y)(y2 − t2)−1/2, y > t.
(A.79)

∫ ∞

0
cos(xt) J1(xy) dx =

{− y√
t2−y2(t+

√
t2−y2 )

, y < t,

1
y
, y > t.

(A.80)

A numerical verification of the integral (A.80) is shown in Fig. A.6.

A.4 De Hoop’s Inversion Method

A.4.1 Introduction

An elegant method to determine the inverse Laplace-Fourier transform for certain
problems was developed by De Hoop (1970). In this method the Laplace transform
and the Fourier transform are used, and the integration path for the inverse Fourier
transform is modified in such a way that the two inverse transforms can be traded off.
Actually, the inverse Fourier integral is transformed so that it obtains the form of a
Laplace transform. The inverse Laplace transform then simply is the function itself.
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Fig. A.6 F(y) =
− ∫ ∞

0 cos(x)J1(xy)dx

Fig. A.7 Half plane with
impulse load

The method is particularly useful for the solution of problems of elastodynamics.
It will be illustrated here by an example of general dynamics. Many references to
other applications are given by Duffy (1994).

A.4.2 Example

As an example consider a problem of dynamics for a half plane, see Fig. A.7, defined
by the partial differential equation

∂2w

∂t2
= c2

{
∂2w

∂x2
+ ∂2w

∂y2

}
, (A.81)
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where c is a given constant (the wave velocity), defined by c2 = μ/ρ, where μ is
the elasticity of the material, and ρ its density. The differential equation (A.81) is a
basic equation of acoustics (Morse and Ingard, 1968).

It is assumed that the boundary condition at the upper boundary y = 0 describes
a line impulse,

y = 0 : μ∂w

∂y
= −Pδ(x)δ(t), (A.82)

where P denotes the strength of the impulse, and μ is the elasticity of the medium.

Solution by Laplace and Fourier Transforms

The Laplace transform of the variable w is defined as

w =
∫ ∞

0
w exp(−st) dt. (A.83)

If it is assumed that at time t = 0 the system is at rest, the differential equation
(A.81) is transformed into

∂2w

∂x2 + ∂2w

∂y2 = (s2/c2)w. (A.84)

The Fourier transform of the function w is defined, using (A.29), as

W =
∫ ∞

−∞
w exp(ixξ) dx. (A.85)

Using the property (A.30) the differential equation (A.84) is further transformed
into

∂2W

∂y2 = (s2/c2 + ξ2)W. (A.86)

For mathematical convenience the parameter ξ is written as ξ = sα. This gives

∂2W

∂y2 = s2k2W, (A.87)

where

k2 = 1/c2 + α2. (A.88)

It may be noted that the inverse Fourier transform is, with (A.28),

w = 1

2π

∫ ∞

−∞
W exp(−ixξ) dξ, (A.89)
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or, with ξ = sα,

w = s

2π

∫ ∞

−∞
W exp(−isαx)dα. (A.90)

The general solution of the ordinary differential equation (A.87) is, assuming that
the solution should vanish for y → ∞,

W = A exp(−sky), (A.91)

The integration constant A must be determined from the boundary condition at the
surface y = 0.

The Laplace transform of the boundary condition (A.82) is

y = 0 : μ
∂w

∂y
= −Pδ(x), (A.92)

and the Fourier transform of this condition is, using (A.85),

y = 0 : μ
∂W

∂y
= −P. (A.93)

It follows from (A.91) and (A.93) that

A = P

μsk
. (A.94)

Substitution of this result in the general solution (A.91) gives

W = P

μsk
exp(−sky). (A.95)

Inverse Fourier transformation using (A.90) gives

w = P

2πμ

∫ ∞

−∞
exp[−s(iαx + ky)]

k
dα. (A.96)

where k is defined by (A.88), i.e. k2 = 1/c2 + α2.

Inverse Transform

The remaining mathematical problem is to evaluate the integral (A.96), and then
to determine the inverse Laplace transform. In general this may be a formidable
problem.

An elegant way to determine the inverse transforms was developed by De Hoop
(1960). In this method the integration variable α is first replaced by p = iα. The
integral (A.96) then becomes

w = P

2πiμ

∫ i∞

−i∞
exp[−s(px + ky)]

k
dp, (A.97)
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Fig. A.8 Integration path in
the complex p-plane

where now the parameter k can be expressed, with (A.88), into p as

k2 = 1/c2 − p2. (A.98)

The integrand of the integral is continued analytically in the complex p-plane, see
Fig. A.8.

Two branch cuts are necessary, from the branch points at p = ±1/c to infinity. It
is most convenient to let the branch cuts follow the real axis, as shown in the figure.

The integration path in the complex p-plane now is modified to a curved path,
also indicated in Fig. A.8. It is assumed that along this curved path a parameter t

can be defined so that

t = px + ky. (A.99)

It is assumed that t is a real and positive parameter. It will later be identified with
the time.

It follows from (A.98) and (A.99) that

k2 = 1/c2 − p2 = (t2 − 2tpx + p2x2)/y2, (A.100)

or

r2p2 − 2txp + t2 − y2/c2 = 0, (A.101)

where

r2 = x2 + y2. (A.102)

Equation (A.101) is a quadratic equation in p, with two solutions,

p1 = tx

r2
+ iy

r2

√
t2 − r2/c2, p2 = tx

r2
− iy

r2

√
t2 − r2/c2. (A.103)
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It is assumed that along the two parts of the integration path the variable t varies
between the limits

r/c < t < ∞. (A.104)

It follows that on the upper half of the curve in Fig. A.8 (indicated by p1) the value
of p varies from the real value p = x/rc, if t = r/c, to a complex value p = (x +
iy)t/r2, if t → ∞. The point p = x/rc is always located between the origin and
the branch point p = 1/c, if x > 0, which will be assumed here.

It now remains to express the integral (A.97) in terms of the new variable t . For
this purpose it may first be noted from the expressions (A.103) that

dp1

dt
= x

r2
+ iy

r2

t
√

t2 − r2/c2
,

dp2

dt
= x

r2
− iy

r2

t
√

t2 − r2/c2
. (A.105)

Furthermore, it follows from (A.99) that k = t/y − px/y. This gives, with (A.103),

k1 = ty

r2 − ix

r2

√
t2 − r2/c2, k2 = ty

r2 + ix

r2

√
t2 − r2/c2, (A.106)

or

ik1√
t2 − r2/c2

= x

r2
+ iy

r2

t
√

t2 − r2/c2
,

ik2√
t2 − r2/c2

= x

r2
− iy

r2

t
√

t2 − r2/c2
.

(A.107)
It now follows from (A.105) and (A.107) that

1

k1

dp1

dt
= i

√
t2 − r2/c2

,
1

k2

dp2

dt
= − i

√
t2 − r2/c2

. (A.108)

Substitution into the integral (A.97) now gives, noting that this consists of two
branches p1 and p2, with the integration path on p1 from t = r/c to t = ∞, and
on p2 from t = ∞ to t = r/c,

w = P

πμ

∫ ∞

r/c

exp(−st)
√

t2 − r2/c2
dt. (A.109)

This can also be written as

w = P

πμ

∫ ∞

0

H(t − r/c)
√

t2 − r2/c2
exp(−st) dt, (A.110)

where H(t − r/c) is Heaviside’s unit step function.
Equation (A.110) has precisely the form of a Laplace transform. It can be con-

cluded that the original function w is

w = P

πμ

H(t − r/c)
√

t2 − r2/c2
. (A.111)
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This completes the solution of the problem. It may be noted that it has been deter-
mined without using any explicit form of an inverse Fourier transform formula, or an
inverse Laplace transform formula. Actually, the inverse Fourier transform has been
modified into a Laplace transform, and the inverse Laplace transform of a Laplace
transform is just the original function itself.





Appendix B
Dual Integral Equations

This appendix gives a general procedure for the solution of a system of dual integral
equations, as developed by Sneddon (1966).

The system of equations is supposed to be
∫ ∞

0
F(ξ)A(ξ)J0(rξ) dξ = f (r), 0 ≤ r < a, (B.1)

∫ ∞

0
ξA(ξ)J0(rξ) dξ = 0, r > a, (B.2)

where the functions F(ξ) and f (r) are given in their domain of definition, and A(ξ)

is unknown.
The function A(ξ) is represented by a finite Fourier transform

A(ξ) =
∫ a

0
φ(t) cos(ξ t) dt. (B.3)

Using partial integration this can also be written as

A(ξ) = φ(a)
sin(ξa)

ξ
−

∫ a

0
φ′(t) sin(ξ t)

ξ
dt. (B.4)

Using the integral (A.76),
∫ ∞

0
sin(ξ t)J0(ξr) dξ = 0, r > t, (B.5)

it follows that (B.2) is automatically satisfied.
We now use the integral

∫ s

0

r

(s2 − r2)1/2
J0(ξr) dr = sin(ξs)

ξ
, (B.6)

which is the inverse form of the integral (A.76), when this is considered as the
Hankel transform of the function sin(ξ t)/ξ .
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Application of the operation defined by (B.6) to (B.1) gives
∫ ∞

0
F(ξ)A(ξ)

sin(ξs)

ξ
dξ = h(s), 0 ≤ s < a, (B.7)

where

h(s) =
∫ s

0

rf (r)

(s2 − r2)1/2 dr. (B.8)

Substitution of (B.3) into (B.7) gives

∫ a

0
φ(t)

{∫ ∞

0
F(ξ)

sin(ξs) cos(ξ t)

ξ
dξ

}
dt = h(s), 0 ≤ s < a, (B.9)

A well known Fourier cosine transform is (Titchmarsh, 1948, p. 177)

∫ ∞

0

sin(ξs) cos(ξ t)

ξ
dξ =

{
π
2 , t < s,

0, t > s.
(B.10)

It now follows that (B.9) can be written as

π

2

∫ s

0
φ(t) dt +

∫ a

0
φ(t)

{∫ ∞

0
[F(ξ) − 1] sin(ξs) cos(ξ t)

ξ
dξ

}
dt = h(s),

0 ≤ s < a. (B.11)

Differentiation with respect to s leads to the Fredholm integral equation

φ(s) +
∫ a

0
K(t, s)φ(t)dt = H(s), 0 ≤ s < a. (B.12)

where K(t, s) is the kernel function

K(t, s) = 2

π

∫ ∞

0
[F(ξ) − 1] cos(ξs) cos(ξ t) dξ, (B.13)

and H(s) is the given function

H(s) = 2

π
h′(s) = 2

π

d

ds

∫ s

0

rf (r)

(s2 − r2)1/2 dr. (B.14)

The problem has now been reduced to the solution of the Fredholm integral equa-
tion (B.12). If this can be solved, the unknown function A(ξ) can be determined
using (B.3). It may be noted that in the special case that F(ξ) = 1, the kernel
function vanishes, and the integral equation (B.12) reduces to the explicit solution
φ(s) = H(s).



Appendix C
Bateman-Pekeris Theorem

This appendix presents the Bateman-Pekeris theorem (Bateman and Pekeris, 1945),
which is used in Chap. 13.
The theorem is

∫ ∞

0
x f (x)J0(px)dx = − 2

π
�

∫ ∞

0
yf (iy)K0(py)dy, (C.1)

where p > 0, and f (z) is an analytic function of z in the half plane �(z) > 0, such
that f (z) is real if z is real, and satisfies the condition

lim
z→∞ z3/2f (z) = 0 (�(z) > 0). (C.2)

In order to prove this theorem the basic integral is written as

N(p) =
∫ ∞

0
x f (x)J0(px)dx. (C.3)

The Bessel function J0(z) can be written as the sum of two Hankel functions
(Abramowitz and Stegun, 1964, 9.1.3 and 9.1.4),

J0(z) = 1

2
H

(1)
0 (z) + 1

2
H

(2)
0 (z), (C.4)

so that the integral N(p) can be decomposed into two parts

N(p) = N1(p) + N2(p), (C.5)

where

N1(p) = 1

2

∫ ∞

0
xf (x)H

(1)
0 (px)dx, (C.6)

and

N2(p) = 1

2

∫ ∞

0
xf (x)H

(2)
0 (px)dx. (C.7)
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Fig. C.1 Quarter plane
�(z) > 0,�(z) > 0

The integral N1(p) will be considered first. Because the function f (z), by assump-
tion, is analytic in the half plane �(z) > 0, and H

(1)
0 (z) is an analytic function of

z in the entire plane except at infinity, the function zf (z)H
(1)
0 (pz) is analytic in

the quarter plane �(z) > 0,�(z) > 0. This means that the integral along the contour
OABCO in Fig. C.1 is zero,

∮
zf (z)H

(1)
0 (pz) dz = 0, (C.8)

for every value of the radius R.
It can be shown that the integral over the arc AB tends towards zero for large val-

ues of the radius R. For this purpose it may be noted that the asymptotic behaviour
of the function H

(1)
0 (z) is (Abramowitz and Stegun, 1964, 9.2.3)

H
(1)
0 (z) ≈

(
2

πz

)1/2

exp

(
ix − y − 1

4
iπ

)
(−π < arg(z) < 2π). (C.9)

Along the arc AB the Bessel function is H
(1)
0 (pz) ≈ (2/πRp)1/2. The integral of

the function zf (z)H
(1)
0 (pz) along the arc AB is, approximately,

IAB =
∫

AB

zf (z)H
(1)
0 (pz) dz ≈ Rf (A)

(
2

πRp

)1/2

Rα. (C.10)

Because of the condition (C.2) this will tend towards zero if R → ∞.
Along the arc BC the integral will also tend towards zero, because there the

integral can be overestimated by

1

2
πR2 f (R exp(iϕ))

(
2

πRp

)1/2

exp(−αRp). (C.11)
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For R → ∞ this will certainly tend towards zero, because of the exponential factor,

lim
R→∞ IBC = 0. (C.12)

Because the contour integral is zero, see (C.8), and the integral along the arc AC is
zero, it follows, with (C.6), that

N1(p) = −1

2

∫ ∞

0
yf (iy)H

(1)
0 (ipy)dy. (C.13)

The Hankel function of imaginary argument can be expressed into the modified
Bessel function K0(z) (Abramowitz and Stegun, 1964, 9.6.4),

K0(y) = 1

2
iπH

(1)
0 (iy), (C.14)

so that the final expression for the integral N1(p) is

N1(p) = i

π

∫ ∞

0
yf (iy)K0(py)dy. (C.15)

In a similar way the integral N2(p) can be transformed into an integral along the
imaginary axis. Because at infinity the behaviour of the function H

(2)
0 (z) is different

from that of H
(1)
0 (z), however,

H
(2)
0 (z) ≈

(
2

πz

)1/2

exp

(
−ix + y + 1

4
iπ

)
(−2π < arg(z) < π), (C.16)

the contour must now be closed by a quarter circle in the lower right half plane. This
will give

N2(p) = −1

2

∫ ∞

0
y f (−iy)H

(2)
0 (−ipy)dy. (C.17)

Again this can be expressed into the modified Bessel function K0(z), using the
formula (Abramowitz and Stegun, 1964, 9.6.4),

K0(y) = −1

2
iπ H

(2)
0 (−iy). (C.18)

The final expression for the integral N2(p) is

N2(p) = − i

π

∫ ∞

0
yf (−iy)K0(py)dy. (C.19)

Because the function f (z) is real along the real axis, it follows from the reflection
principle (Titchmarsh, 1948, p. 155) that

f (−iy) = f (iy). (C.20)
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Thus it follows that

N2(p) = N1(p). (C.21)

With (C.5) and (C.15) it now follows that

N(p) = − 2

π
�

∫ ∞

0
y f (iy)K0(py)dy. (C.22)

This proves the theorem.
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