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1 

The Science of Biogeography 

Biogeography is the science studying the distribution of species and ecosystems 
in geographic space and through time. It is usually considered a subset of physical 
geography because it often is related to the study of the physical environment, and 
how it affects species and shapes their distribution across space. It is concerned not 
only with habitation patterns, but also with the factors responsible for variations in 
distribution. It aims to analyze where species live, and in what abundance. 
Biogeography has strong ties to biology, ecology, evolution, climatology and soil 
science. 

Overview of the chapter 

This chapter provides the basic notations and ideas that form the foundation of 
biogeography-based optimization (BBO). This chapter first gives an introduction to 
natural biogeography in section 1.1, and then focuses on island biogeography in 
section 1.2. Some interesting factors that influence biogeography and that inspire 
BBO algorithmic features are described in section 1.3. 

1.1. Introduction 

The science of biogeography can be traced to the work of 19th Century 
naturalists, most notably Alfred Wallace [WAL 06] and Charles Darwin [KEY 01] 
(see Figure 1.1). Wallace is usually considered the father of biogeography, although 
Darwin is much better known because of his preeminence in publishing the theory 
of evolution. Science views the distribution of species in the world as a result of 
continuous evolution. Some species evolve locally. 

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Figure 1.1. Photographs of Charles  
Darwin (left) and Alfred Wallace (right) 

The science of biogeography answers many varied questions. As writer David 
Quammen put it [QUA 96], “...biogeography does more than ask Which species? and 
Where. It also asks Why? and, sometimes more crucially, Why not?” Biogeography 
developed in an attempt to answer some of these questions, such as why there are so 
many kinds of animals and plants in the world. It seeks to explain why some of these 
animals and plants are rare while others are common. It seeks to explain why some 
animals and plants are widely dispersed while others are confined to a limited area. It 
seeks to explain why some parts of this world are richer in species than others. The 
study of biogeography helps us to answer these types of questions. 

Modern biogeography is the study of the geographical distribution of animals 
and plants while taking into account species counts, present and past, the habitats in 
which they are found, and ecological relationships. By observing the geographic 
distribution of species, we can see that the following factors are associated with 
biogeography: air pressure, physiography, ocean currents, latitude, temperature, 
amount of sun light, precipitation and wind. Biogeography combines information 
and ideas from many fields, ranging from the physiological and ecological 
constraints on species dispersal, to geological and climatological phenomena that 
operate at global spatial scales and evolutionary time frames. The short-term 
interactions within a habitat and between species comprise the ecological application 
of biogeography. Historical biogeography deals with the long-term, evolutionary 
periods of time, and broader classifications of species. 

There are two important theories in biogeography that have been developed to 
address the distribution of biological species in the world: the distance-decay theory 
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Biogeography is most keenly focused on islands. Islands are often manageable 
areas of study because they are more condensed than larger ecosystems on the 
mainland. Islands are also attractive locations for study because they allow scientists 
to look at habitats that new invasive species have only recently colonized, and to 
observe how they disperse throughout the island and change it. Scientists can then 
apply their understanding to similar but more complex mainland habitats. Islands are 
very diverse in their biomes, ranging from tropical to arctic climates. This diversity 
allows for a wide range of species studies in different parts of the world. 

Mathematical models of island biogeography describe speciation (the evolution of 
new species), the migration of species between islands, and the extinction of species. 
The term island here is descriptive rather than literal. An island is considered any 
habitat that is geographically isolated from other habitats. In the classic sense of the 
term, an island is isolated from other habitats by water. But islands can also be habitats 
that are isolated by stretches of desert, rivers, mountain ranges, predators, man-made 
artifacts or other obstacles. For example, an island could consist of a riverbank that 
supports herbs, or a pond that supports insects [HAN 97]. 

Geographical areas that are friendly to life are said to have a high habitat 
suitability index (HSI) [WES 87]. Features that correlate with HSI include factors 
such as rainfall, vegetative diversity, topographic diversity, land area and air 
temperature. These features that characterize habitability are called suitability index 
variables (SIVs). In terms of habitability, SIVs are the independent variables of the 
habitat, and HSI is the dependent variable. 

Islands with a high HSI tend to support many species, and islands with a low HSI 
can support only a few species. Islands with a high HSI have many species that 
emigrate to nearby habitats, simply by virtue of the large number of species that they 
host. Emigration from an island with a high HSI does not occur because species want 
to leave their home; after all, the home island is an attractive place to live. The reason 
that emigration occurs from these islands is due to the accumulation of random effects 
on a large number of species with large populations. Emigration occurs as animals ride 
flotsam, swim, fly or ride the wind to neighboring islands. When a species emigrates 
from an island, the species does not completely disappear from the island; only a few 
representatives emigrate, so an emigrating species remains present on its home island 
while at the same time migrating to a neighboring island. 

Islands with a high HSI not only have a high emigration rate, but they have a low 
immigration rate because they already support many species. The species that arrive 
at such islands will tend not to survive, even though the HSI is high, because there is 
too much competition for resources. 

Islands with a low HSI have a high immigration rate because of their low 
populations. Again, this is not because species want to immigrate to such islands; 
after all, these islands are undesirable places to live. The reason that immigration 
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occurs on these islands is because there is a lot of geographical room for additional 
species. Whether or not the immigrating species can survive in its new home, and 
for how long, is another question. However, species diversity is correlated with HSI, 
so more species arriving at a low HSI island will result in a greater chance that the 
island’s HSI will increase [WES 87]. 

Figure 1.3 depicts species migration between islands, and Figure 1.4 illustrates a 
model of species abundance on a single island [MAC 67]. The immigration and 
emigration rates are functions of the number of species on the island. We have 
depicted the migration curves as straight lines, but in general they might be more 
complicated curves, as we will discuss later. 

 

Figure 1.3. Species migrate between islands via flotsam, wind, flying,  
swimming and other methods. For a color version of this figure, see  

www.iste.co.uk/ma-simon/evolutionary.zip 

μ

λ

 

Figure 1.4. Species migration model of an island, based  
on [MAC 67], where S0 is the equilibrium species count 
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Consider the immigration curve. The immigration rate λ decreases 
monotonically as the number of species on the island increases, since as S increases, 
there is less room on the island for new species. The maximum possible immigration 
rate to the habitat is I, which occurs when there are zero species on the island. As the 
number of species increases, the island becomes more crowded, fewer species are 
able to survive immigration, and the immigration rate decreases. The largest 
possible number of species that the habitat can support is Smax, at which point the 
immigration rate is zero. 

Now consider the emigration curve. The emigration rate μ should be, from 
reasoning parallel to that above, a monotonically increasing function of S. If area is 
proportional to population sizes, and emigrations are the chance result of 
demographic stochasticity, then as the number of species increases, the number of 
species that are subject to chance emigrations increases in proportion, and the 
relationship is linear. If there are no species on the island, then the emigration rate is 
zero. As the number of species on the island increases, it becomes more crowded, 
more species leave the island, and the emigration rate increases. The maximum 
emigration rate is E, which occurs when the island contains the largest number of 
species that it can support. 

Finally, consider the equilibrium species count. The migration model predicts 
that there is a value S0 at which the immigration rate and the emigration rate balance; 
there is a dynamic equilibrium. At that point, species on the island immigrate at a 
rate equal to disappearances due to emigration. This is a stable equilibrium since, if 
the number of species on the island is perturbed, the imbalance between the 
immigration and emigration rates at the new S would tend to return island diversity 
toward its equilibrium value. Below S0, additional species accumulate and the 
immigration rate is larger than the emigration rate. Above S0, the reverse is true, 
emigrations exceed immigrations, and the number of species declines to S0. 

1.3. Influence factors for biogeography 

We have discussed the basic theory of island biogeography, which is the study of 
the geographical distribution of biological species on islands. There are many 
interesting influence factors closely associated with biogeography, including the 
following. 

Nonlinear migration: Classic island biogeography theory assumes that the 
immigration and emigration rates are linear with respect to the number of species, as 
shown in Figure 1.4. However, there is no reason to suppose that the migration 
curves are linear. Empirical data suggest that biological migration rates are probably 
nonlinear functions of the number of species [MAC 67]. Pioneer species are likely to 
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rapidly colonize an island that has a higher immigration rate, and later less robust 
species follow. They will not only immigrate later, but the rate at which they 
immigrate will be lower because they have less intrinsic ability for colonization. The 
rate at which species accumulate on islands is therefore initially rapid and then 
slower. Also, among poor species, the successful immigration of any one species has 
less effect on the immigration rates of other species than does the earlier 
immigration of pioneer species. Therefore, this part of the immigration curve should 
be flatter; that is, the rate of immigration should be less affected by the arrival of 
poor species. The result is an immigration rate curve which is nonlinear. For the 
purpose of simplicity in evaluating the basic implications of the migration model, 
the emigration curve can be viewed as a mirror image of the immigration curve, and 
it would also be nonlinear in this case. 

Habitat similarity: In island biogeography, immigration rate is correlated with 
island isolation [ADL 94]. Islands that are isolated are relatively well buffered from 
immigration. This intuitive idea is called the distance effect [WU 95]. It also stands 
to reason that emigration rates are correlated with island isolation. The 
environmental uniqueness of an island is related to island isolation because 
environmental conditions vary predictably with geographical distance [LOM 00a]. 
Similar islands could be viewed as clustered together, and belong to the same 
archipelago. However, dissimilar islands are not part of an archipelago. This tends to 
increase the immigration and emigration rates between similar islands, and decrease 
those rates between dissimilar islands. On the other hand, islands in different 
archipelagos can interact with each other, just as species can migrate across 
archipelagos. However, migration across archipelagos is less likely than migration 
within archipelagos. A quantitative way to determine the effect of island isolation on 
migration rates is given in Hanski [HAN 99]. Figure 1.5 shows two well-known 
archipelagos: the Fernando de Noronha archipelago in Brazil and the Ksamil 
archipelago in Albania. 

Initial immigration: Classic island biogeography theory indicates that the 
immigration rate decreases as the number of species increase, as shown in  
Figure 1.4, which corresponds to a monotonic decrease in immigration rate with the 
number of species. However, recent advances in biogeography indicate that a 
monotonic immigration rate curve may be overly simplistic. For some pioneer 
species, an initial increase in species count results in an initial increase in the 
immigration rate [WU 95]. This is because these early immigrants modify the island 
to make it more hospitable to other species. That is, the positive effect of increased 
diversity due to initial immigration overcomes the negative effect of increased 
population size, which corresponds to an initial increase in immigration rate as 
species count increases. This phenomenon can be viewed as a temporary positive 
feedback mechanism in biogeography. That is, an island with a low HSI accepts 
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species from other islands, increasing its HSI, which subsequently increases its 
likelihood of accepting even more species from other islands. 

     

Figure 1.5. The Fernando de Noronha archipelago  
in Brazil (left) and the Ksamil archipelago in Albania (right) 

Species mobility: Classic island biogeography theory assumes that all species are 
equal in their migratory ability. In reality, some species are more mobile than others, 
and some species are better dispersers than others. For example, insect and bird 
species are generally more mobile than mammals and therefore are more likely to 
migrate. Figure 1.6 shows that bird species have fast migratory ability and elephant 
species have slow migratory ability. Efforts have been made in biogeography to 
incorporate species-specific characteristics into island biogeography theory [LOM 
00b]. The species migration model in Figure 1.4 assumes that all species are equally 
mobile. But the species migration model would be more accurate if species mobility 
were considered. That is, each individual species would have its own migration 
curves for each individual island. 

Population size: In island biogeography, an island not only has a certain number 
of species, but each species also has a population size. Those species that are well 
adapted to their environment tend to increase in population, while those that are not 
well adapted have a lower equilibrium population. That is, the correlation between a 
particular species and an island’s HSI could be used to determine the equilibrium 
population of each species. Species with a high HSI contribution would have high 
equilibrium populations, and those with a low HSI contribution would have  
low equilibrium populations. We could assume that each species approaches its 
equilibrium population exponentially [CAS 89]. This approach would result in more 
flexibility for the species migration model. In addition, those species with a large 
population would have a greater likelihood of immigrating to neighboring islands. 
This discussion of population size is similar to species mobility as discussed above. 
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Figure 1.6. Bird species with fast migratory ability (left)  
and elephant species with slow migratory ability (right) 

Species age: In biology, species age influences extinction rate and mobility 
[GRO 05]. Just as individual mortality is high at a young age, low at middle age and 
high again at old age, species mortality follows the same pattern. Young species 
tend to be unstable and susceptible to extinction. Middle-aged species are well 
established but still mobile. Old species are stagnant and less likely to adapt. That is, 
species of different ages have different emigration and immigration rates. Species 
that have been recently introduced to an island have a higher extinction rate and a 
lower emigration rate, middle-aged species have a lower extinction rate and a higher 
emigration rate, and older species revert to the pattern of high extinction rate and 
low emigration rate. 

Predator/prey relationships: In biology, certain species have adversarial 
relationships. These relationships do not necessarily harm the prey species. For 
instance, prey may respond to predators by reducing the exploitation of their 
resources, thus benefiting themselves in the long term [HAN 97]. However, the 
more common scenario is one in which predators reduce prey to such an extent that 
one or both populations face extinction. Predator/prey relationships can be inferred 
from a population by examining islands and noting which pairs of species have a 
low probability of coexisting. Those species can then be modeled as a predator/prey 
pair. Combining this information with the HSI contribution of each species would 
result in defining the predator species as the adversary that is positively correlated 
with island HSI, and the prey species as the adversary that is negatively correlated 
with island HSI. The predator/prey relationship might lead to a non-zero equilibrium 
population, or it might lead to the extinction of one or both populations [GOT 08, 
HAN 97]. Most predator/prey models in biology are for two-species systems, but a 
more complete description would be obtained if existing predator/prey models could 
be extended to multi-species systems. 
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Resource competition: In contrast to the predator/prey relationship described 
above, we note that similar species compete for similar resources. Therefore, it is 
unlikely that many similar species occupy the same island, especially if they have 
large populations [TIL 94]. This fact means that it is unlikely that species immigrate 
to islands that already have large populations that are similar to them. Alternatively, 
it could mean that emigration rate is not affected, but survival likelihood is lower 
following emigration. Resource competition also means that if two species have an 
equal probability of extinction, then the species that is the most similar to other 
species is more likely to become extinct. This is a different type of interaction than 
the predator/prey relationship described above. However, both models are plausible, 
and competition is generally viewed in biology as a more significant driver of 
community composition than predator/prey interactions. 

Time correlation: In island biogeography, if a species migrates to an island in a 
given geographical direction, it is likely to continue moving in the same direction to 
the next island. This feature is due to the fact that migration is influenced by 
prevailing winds and currents, and those winds and currents have a positive time 
correlation. This is described by biodiffusion theory, the telegraph equation and the 
equation of diffusion [OKU 01]. If a species migrates from island A to island B, it is 
likely to continue in the same direction to the next island in the chain at the next 
time step. This means that if a species migrates from one island to the next, it is 
likely to continue migrating in that direction. 

Other factors: The influence factors described above are not an exhaustive list of 
all of the aspects of biogeography; they comprise only a subset which may affect the 
development of BBO in the next chapter. Other aspects of biogeography could 
inspire other variations of BBO. The biogeography literature is so rich that there are 
many possibilities in this direction. 



2 

Biogeography and Biological Optimization 

Bio-inspired metaheuristics are computer systems that are motivated by ideas 
from the natural world. In addition, computer science research can be used to model 
and explore biological systems. These two approaches interact to advance the 
development of artificial intelligence. The approach to artificial intelligence taken by 
bio-inspired metaheuristics constructs simple systems that are able to evolve into 
more complex ones. Biological systems have many advantages over computer 
systems, such as less energy consumption, the ability to survive faults and even the 
ability to heal. Many of the ideas taken from biological optimization processes  
have been applied to design bio-inspired metaheuristic algorithms, leading to  
new developments in artificial intelligence. Biogeography is considered in  
this chapter as a natural optimization mechanism that can motivate the development 
of BBO. 

Overview of the chapter 

This chapter gives an overview of a mathematical model of biogeography in 
section 2.1 and discusses its interpretation as a naturally occurring optimization 
process in section 2.2. We discuss some bio-inspired metaheuristic algorithms other 
than BBO that are motivated by biological optimization processes in section 2.3. 

2.1. A mathematical model of biogeography 

In the previous chapter, we mentioned a mathematical model of island 
biogeography which is based on the idea that the number of species in an  
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undisturbed habitat is mostly determined by immigration and emigration. 
Immigration is the arrival of new species into a habitat or population, while 
emigration the departure of species. There are also other important factors that 
influence migration between habitats, including the distance to the nearest 
neighboring habitat, the size of the habitats, habitat similarity, species mobility and 
age, predator/prey relationships, resource competition and human activity. These 
factors make immigration and emigration curves more complicated than the linear 
model shown in Figure 1.4. 

In this section, we discuss the generalized mathematical formulations of island 
biogeography. We use the term “species count” to refer to the number of species in  
a given habitat. Biogeography models are based on differential equations for species 
count probabilities. Consider a model of species count in a single habitat, whose 
state at any time is represented by the species count. Suppose that the largest 
possible number of species that the habitat can support is n. Whenever there are  
k species in the habitat, new arrivals enter the habitat at an immigration rate λk, and 
species leave the habitat at an emigration rate μk. Note that as the number of the 
species increases, the habitat gets more crowded, so the immigration rate decreases 
and the emigration rate should increase. If there are n species in the habitat, then the 
immigration rate is zero. On the other hand, if there are no species in the habitat, 
then the emigration rate is zero. So the immigration and emigration rates are 
constrained by 0 0k nλ λ λ≥ ≥ ≥ ≥ =L L  and 00 k nμ μ μ= ≤ ≤ ≤ ≤L L , 
respectively, for 0, 1, , .k n= L  

DEFINITION 2.1.– The equilibrium species count 0k  is the point at which the 
immigration and emigration rates are equal; that is, 

0 0
.k kλ μ=  

Now consider the probability kP  that the habitat contains exactly k  species. kP  
changes from time t  to time ( )t t+ Δ  as follows: 

( ) ( ) ( ) 1 1 1 11k k k k k k k kP t t P t t t P t P tλ μ λ μ− − + ++ Δ = − Δ − Δ + Δ + Δ  [2.1] 

This equation holds because in order to have k  species at time ( )t t+ Δ , one of 
the following conditions must hold: 

1) There were k  species at time ,t  and no immigration or emigration occurred 
between t  and ( ) ;t t+ Δ  or 
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2) There were ( )1k −  species at time ,t  and one species immigrated; or 

3) There were ( )1k +  species at time ,t  and one species emigrated. 

We assume that tΔ  is small enough so that the probability of more than one 
immigration or emigration during that time period can be ignored. Taking the limit 
of equation [2.1] as 0tΔ →  gives: 

( )
0 0 1 1

1 1 1 1

1 1

, 0
, 1 1

,
k k k k k k k k

n n n n

P P k
P P P P k n

P P k n

λ μ
λ μ λ μ

μ λ
− − + +

− −

− + =⎧
⎪= − + + + ≤ ≤ −⎨
⎪− + =⎩

&  [2.2] 

It is noted that equation [2.2] is valid for 0,k n= L , and 0 0μ =  and 0nλ = . 

Define [ ]0
T

nP P P= L  for notational simplicity. We can then arrange equation 
[2.2] into the single matrix equation 

P AP=&  [2.3] 

where the matrix A  is given as: 

( )

( )

0 1

0 1 1 2

2 1 1

1

0 0

0 0
n n n n

n n

A

λ μ
λ λ μ μ

λ λ μ μ
λ μ

− − −

−

−⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥=
⎢ ⎥− +⎢ ⎥
⎢ ⎥−⎣ ⎦

L

O M

M O O O M

M O

L

 [2.4] 

Now consider the linear model of island biogeography shown in Figure 1.4, 
where the migration rates are straight lines, and define n = Smax, k = S and k0 = S0. 
We then have: 

( )1
k

k

Ek n
I k n

μ
λ

=
= −

 [2.5] 

For the special case when the maximum immigration rate and emigration rate are 
given as I = E = 1, we have: 

[ ]1 for all 0,k k E I k nλ μ+ = = = ∈  [2.6] 
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and 

1 1 0 0
1 2

2 1
0 0 1 1
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n n n

n

−⎡ ⎤
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 [2.7] 

THEOREM 2.1.– The steady-state value for the probability of the number of each 
species is given by: 

0
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 [2.8] 

The above theorem was proven in [MA 09]. Sufficient and necessary conditions 
for these limiting probabilities to exist are that 0kμ ≠  for all k  greater than 0. 

Note that Theorem 2.1 above is similar to Theorem 1 in [SIM 08], which was 
proven by singular value decomposition (SVD). But there are three differences 
between the two theorems. First, the above theorem is more general than that given 
in [SIM 08], which only considered the special case that 1k k nλ = −  and .k k nμ =  
Second, we have obtained the probability for any migration rates and species counts, 
which the theorem in [SIM 08] did not do. This theorem can help us to study how 
any migration model, including nonlinear models, impact the steady-state value of 
the probability of species counts.  

EXAMPLE 2.1.– 

Consider the linear model of island biogeography described in Figure 1.4. 
Suppose an island can support a maximum of four species, namely, n = 4. The  
 
 
 



Biogeography and Biological Optimization     15 

maximum immigration rate and emigration rate I = E = 1. Based on equations [2.5] 
and [2.7], we have: 

1 1 4 0 0 0
1 1 2 4 0 0
0 3 4 1 3 4 0
0 0 2 4 1 1
0 0 0 1 4 1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 [2.9] 

Theorem 2.1 tells us that the steady-state probability for the number of each 
species number is: 

( )
( )
( )
( )
( )

0

1

2

3

4

Pr 0 1 16

Pr 1 4 16

Pr 2 6 16

Pr 3 4 16

Pr 4 1 16

S P

S P

S P

S P

S P

= = =

= = =

= = =

= = =

= = =

 [2.10] 

These results are equivalent to those obtained by Theorem 1 in [SIM 08]. 

Next, we continue to study the characteristics of the equilibrium species counts 
in the mathematical model of island biogeography. 

THEOREM 2.2.– If the immigration and emigration rates satisfy 
0 0k nλ λ λ≥ ≥ ≥ ≥ =L L  and 00 k nμ μ μ= ≤ ≤ ≤ ≤L L , respectively, for 

0, 1, ,k n= L , then the steady-state probability of the number of each species 
satisfies 

0 0 00 1 1 1k k k nP P P P P P− +≤ ≤ ≤ ≤ ≥ ≥ ≥L L , where 0k  denotes the equilibrium 

species number. 

It is clear that this theorem is implied by Theorem 2.1. Another interesting 
characteristic of the steady-state probability of species count is stated in the 
following theorem. 

THEOREM 2.3.– If the immigration and emigration rates satisfy the conditions that 
k n kμ λ −=  for every 0, 1, ,k n= L , then k n kP P −=  for all 0, 1, , .k n= L  
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Examples of this theorem are shown in equation [2.8] and example 2.1. It 
implies that the steady-state probability of species count is symmetrical, and the 
equilibrium point is half of the maximum species count n  if k n kμ λ −=  for 

0, 1, ,k n= L . We note that with the special condition k n k k nμ λ −= =  for 
0, 1, ,k n= L , this theorem reduces to Observation 1 in [SIM 08]. Theorem 2.3 is 

therefore a generalization of Observation 1 in [SIM 08]. 

There are several remarks that should be made about Theorem 2.1, Theorem 2.2 
and Theorem 2.3. First, the equilibrium species count is given as the index at which 
the immigration and emigration rates are equal. Second, as shown in Theorem 2.1, 
the steady-state probabilities kP  are related to kλ  and kμ ; that is, kP  depends on the 
migration rates. Third, as shown in Theorems 2.2 and 2.3, the steady-state 
probabilities kP  have the characteristic that the probabilities at the end points are 
smaller than those near the equilibrium point. Finally, under the condition 

,k n kμ λ −=  the steady-state probabilities kP  are symmetric with respect to the 
equilibrium point. 

2.2. Biogeography as an optimization process 

We know that nature includes many processes that optimize [ALE 96]. In fact, 
this premise is the foundational principle of most EAs. However, is biogeography an 
optimization process? At first glance, it seems that biogeography simply maintains 
species count equilibria in habitats, and that it is not necessarily optimal. This 
section discusses biogeography from the viewpoint of optimality. 

Biogeography is nature’s way of distributing species, and it has often been 
studied as a process that maintains equilibrium in habitats. Species equilibrium in a 
biological habitat occurs when the combined speciation and immigration rates equal 
the emigration rate. Equilibrium can be seen at the point S0 shown in Figure 1.4 
where the immigration and emigration curves intersect. One reason that 
biogeography has been viewed from the equilibrium perspective is that this 
viewpoint was the first to place biogeography on a firm mathematical footing  
[MAC 67]. We have also discussed this perspective in the previous section. 
However, since then the equilibrium perspective has been increasingly questioned, 
or rather expanded, by biogeographers. 

Engineers often view stability and optimality as competing objectives; for 
example, a simple system is typically easier to stabilize than a complex system, 
while an optimal system is typically more complex and less stable than a simpler 
system [KEE 97]. However, in biogeography, stability and optimality are two 
perspectives of the same phenomenon. Optimality in biogeography involves 
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biologically diverse, complex communities that are highly adaptable to their 
environment. Stability in biogeography involves the persistence of existing 
populations. Field observations show that complex communities are more adaptable 
and stable than simple communities [HAR 06, p. 82], and this observation has also 
been supported by simulation [ELT 58, MAC 55]. 

Although the complementary nature of optimality and stability in biogeography 
has been challenged [MAY 73], those challenges have been adequately answered 
and the idea is generally accepted today [MCC 00, KON 06]. The equilibrium 
versus optimality debate in biogeography thus becomes a matter of semantics, 
because equilibrium and optimality are simply two different perspectives on the 
same phenomenon in biogeography. 

A dramatic example of the optimality of biogeography is Krakatoa, a volcanic 
island in the Indian Ocean which erupted in August 1883 [WIN 08]. The eruption was 
heard from thousands of miles away and resulted in the death of over 36,000 people, 
mostly from tidal waves whose remnants were recorded as far away as England. The 
eruption threw dust particles 30 miles high which remained aloft for months and 
were visible all around the world. Rogier Verbeek, a geologist and mining engineer, 
was the first visitor to Krakatoa 6 weeks after the eruption, but the surface of the 
island was too hot to touch and showed no evidence of life; the island was 
completely sterilized [WHI 93]. The first animal life (a spider) was discovered on 
Krakatoa in May 1884, 9 months after the eruption. By 1887, dense fields of grass 
were discovered on the island. By 1906, plant and animal life was abundant. 
Although volcanic activity continues today on Krakatoa, by 1983 (one century after 
its desolation), there were 88 species of trees and 53 species of shrubs, and the 
species number continues to increase linearly with time [WHI 93]. Life immigrates 
to Krakatoa, and immigration makes the island more habitable, which in turn makes 
the island more friendly to additional immigration. Figure 2.1 shows the evolution of 
Krakatoa over one hundred years. 

Biogeography is thus a positive feedback phenomenon − at least to a certain 
point. When a habitat is highly populated, it has many species and thus is likely to 
emigrate many species to nearby habitats, while few species immigrate to it because 
of the lack of additional resources for immigrating species. In the same way, when a 
habitat is sparsely populated, it has few species and thus is likely to receive many 
immigrants, while only a few species emigrate because of their sparse populations. 
The issue of whether or not immigrants can survive after migration is another 
question, but the immigration of new species can raise the biological diversity of a 
habitat and thereby improve the habitat’s suitability for additional species. 
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Figure 2.1. Krakatoa island. The left picture shows the eruption of Krakatoa in 1883, 
and the right picture shows how it evolved into a habitable island after 100 years 

This is similar to natural selection, or survival of the fittest. As species become 
more fit, they are more likely to survive. As they thrive, they disperse and become 
better able to adapt to their environment. Natural selection, like biogeography, 
entails positive feedback. However, the time scale of biogeography is much shorter 
than that of natural selection, which hints at the possibility of improved optimization 
performance by using biogeography rather than natural selection as a motivating 
paradigm for optimization algorithms. So we regard this positive feedback 
phenomenon of biogeography as an optimization process. This view of the 
environment as an optimizing system was first suggested in the 1990s [VOL 97]. 
Biogeographers claim that “biogeography based on optimizing environmental 
conditions for biotic activity seems more appropriate than a definition based on 
homeostasis” [KLE 04]. 

Another example of biogeography as an optimization process is the Amazon 
rainforest, which is a typical case of a mutually optimizing life/environment system 
[HAR 06]. The rainforest has a large capacity to recycle moisture, which decreases 
aridity and increases evaporation. This leads to cooler and wetter surfaces, which are 
more amenable to life. This suggests that a view of biogeography “based on 
optimizing environmental conditions for biotic activity seems more appropriate than 
a definition based on homeostasis” [KLE 04] (emphasis added). This view of the 
environment as a life-optimizing system was suggested as early as 1997 [VOL 97]. 
There are many other examples of the optimality of biogeography, such as Earth’s 
temperature [HAR 06], Earth’s atmospheric composition [LEN 98] and the ocean’s 
mineral content [LOV 90, LOV 95]. 
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This is not to say that biogeography is optimal for any particular species. For 
example, investigations of the Bikini Atoll show that the high level of radioactivity 
resulting from nuclear tests had little effect on its natural ecology, but mammals 
were seriously affected (Lovelock, page 37). This and similar studies indicate that 
the Earth “will take care of itself and environmental excesses will be ameliorated, 
but it’s likely that such restoration of the environment will occur in a world devoid 
of people” [MAR 96]. Interestingly, amid the current warnings about ozone 
depletion, it is easy to overlook the fact that for the first two billion years of life, 
Earth had no ozone at all [LOV 95, p. 109]. Life flourishes and evolves regardless of 
our opinions about Earth’s ecology, but not in a human-centric way. Although 
global warming or an ice age might be disastrous for humans and many other 
mammals, it would be a minor event in the overall history of biogeography on our 
planet. 

In summary, although the natural phenomenon of biogeography as an 
optimization process has been challenged, adequate answers have been put forth to 
answer these challenges. The premise that biogeography is an optimization process 
has motivated the development of BBO as a metaheuristic algorithm, which we 
discuss in the next chapter. 

2.3. Biological optimization 

This section gives an overview of some biological optimization paradigms that 
motivate bio-inspired metaheuristic techniques, including classical methods such as 
genetic algorithms (GAs), evolution strategies (ESs) and also some newer 
algorithms, such as particle swarm optimization (PSO) and artificial bee colony 
(ABC) optimization [BOU 13, MA 13a, MA 13b, MA 16c]. These algorithms are 
widely used to solve optimization problems and have attracted increasing attention 
in recent years. 

2.3.1. Genetic algorithms 

GAs are the earliest, most well-known and most widely used biologically 
motivated optimization algorithms. GAs were first introduced as a computational 
analogy of adaptive biological systems by John Holland in his book Adaptation in 
Natural and Artificial Systems [HOL 75]. GAs have proven to be an enormously 
powerful and successful problem-solving strategy, dramatically demonstrating the 
power of biologically motivated optimization. 

In nature, we have a population of individuals. Some individuals are good, and 
some are not so good. The good individuals have a relatively high chance of 
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reproducing, while the poor individuals have a relatively low chance of reproducing. 
Parents beget children, and then the parents drop out of the population to make way 
for their offspring. As generations come and go, the population as a whole becomes 
more fit. 

GAs are modeled on this natural selection in biological systems. Given an 
optimization problem, GAs use a set of candidate solutions as a population, and use 
fitness functions to evaluate these candidate solutions. During the optimization 
process, the candidate solutions improve through selection, recombination 
(crossover) and mutation, and then pass on the candidate solutions with the best 
fitness to the next generation. In GAs, selection is the first step, in which individuals 
are chosen from the population for breeding. Crossover is the second step, which is 
used to combine individuals from one generation to create individuals for the next 
generation. Mutation is the final step, in which individuals are randomly modified, 
and its purpose is to increase diversity among the population. 

2.3.2. Evolution strategies 

Evolution strategy (ES) was created in the early 1960s and was developed 
further in the 1970s and later by Ingo Rechenberg, Hans-Paul Schwefel and Peter 
Bienert [REC 68]. ESs are biologically motivated optimization techniques based on 
the ideas of adaptation and evolution. 

ES uses natural problem-dependent representations, and depends primarily on 
mutation and selection as search operators. During the process of evolution, 
mutation is performed by adding a normally distributed random value to each 
individual (that is, each candidate solution). The step size or mutation strength is 
often governed by self-adaptation. The selection operator in ES is deterministic and 
is based on fitness rankings. The simplest ES operates on a population of size two: 
the current point, called the parent individual, and the result of its mutation. If the 
mutant’s fitness is at least as good as the parent, it becomes the parent individual of 
the next generation; otherwise, the mutant is discarded. This particular ES is called a 
(1+1)-ES. 

The most popular ES is the (μ, λ)-ES, in which μ parent individuals produce λ 
offspring individuals using mutation. Each of the λ offspring individuals is assigned 
a fitness value depending on its quality. The best μ offspring individuals become the 
next generation’s parent individuals. This means that λ must be greater than or equal 
to μ. Note that the μ and λ that are used in the (μ, λ)-ES notation are not related to 
the μ and λ that are used in the mathematical model of island biogeography. 
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2.3.3. Particle swarm optimization 

Particle swarm optimization (PSO) is a metaheuristic developed by Kennedy and 
Eberhart in 1995. It is inspired by the social behavior of bird flocking or fish 
schooling [KEN 95], which is shown in Figure 2.2. During the past several years, 
PSO has been successfully applied to many research and application areas. It has 
been demonstrated that PSO achieves better optimization results with a faster, 
cheaper method compared to many other methods. 

     

Figure 2.2. Social behavior of bird flocking (left) and fish schooling  
(right), which inspired the particle swarm optimization algorithm 

PSO shares many similarities with other metaheuristics such as GAs. PSO is 
initialized with a population of random individuals, and searches for an optimum by 
updating the population one iteration at a time. However, unlike GAs, PSO does not 
have evolution operators such as crossover and mutation. In PSO, the individual is 
called a particle, and it moves through the problem search space by following the 
best particles in the population. 

Each particle keeps track of the coordinates in the problem space which are 
associated with the best location that it has achieved so far during the optimization 
process; this location is called Pbest. Another best location is determined by the 
globally best position of the entire swarm at the current iteration; this location is 
called Gbest. The PSO concept consists of changing the velocity of each particle 
toward the Pbest and Gbest. locations. The particle’s velocity is updated based on its 
current velocity, its previous best location Pbest and the global best location Gbest at 
the current iteration. 
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2.3.4. Artificial bee colony algorithm 

The artificial bee colony (ABC) algorithm is another metaheuristic, which was 
first published in Karaboga and Basturk [KAR 07]. ABC is based on different types 
of bees and their behaviors, which are shown in Figure 2.3. 

First, forager bees, also called employed bees, travel back and forth between  
a food source and their hive. Each forager is associated with a specific location,  
and remembers that location as it travels back and forth between the hive.  
When a forager takes nectar to the hive, it returns to its food source, but it  
also engages in local exploration as it searches in the nearby vicinity for a better 
source. 

Second, onlooker bees are not associated with any particular food source, but 
they observe the behavior of the foragers. Onlookers observe the amount of nectar 
that is returned to the hive by the foragers, and use that information to decide where 
to search for nectar. The onlookers’ search location is decided probabilistically 
based on their observations of the foragers. 

Third, scout bees are explorers and, like onlookers, are not associated with any 
particular food source. If a scout sees that a forager has stagnated and is not 
progressively increasing the amount of nectar that it returns to the hive, then the 
scout randomly searches for a new nectar source in the search space. Stagnation is 
indicated when the explorer fails to increase the amount of nectar it brings to the 
hive after a certain number of trips. 

These ideas lead to the ABC algorithm, which simulates foraging, onlooking and 
scouting behaviors to search for an optimal food source. The location of a food 
source is analogous to a location in the search space of an optimization problem. 
The amount of nectar at a location is analogous to the fitness of an individual. Each 
forager randomly modifies its position in the search space. If the random 
modification results in an improvement, then the forager moves to the new position. 
The onlooker bees also randomly modify the position of a forager, where the forager 
that is modified is randomly chosen using roulette-wheel selection. Again, if the 
random modification improves the forager, then the forager moves to the new 
position. Finally, a scout replaces a forager if the forager has not improved after a 
preset number of random modifications. 
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Figure 2.3. Behaviors and types of bees, which  
inspired the artificial bee colony algorithm 

2.4. Conclusion 

We have discussed several bio-inspired metaheuristics, including GAs, ES, PSO 
and ABC, the last two of which are sometimes classified as swarm intelligence 
rather than EAs. But all these algorithms have certain features in common, and they 
all adapt biological optimization processes to implement optimization algorithms. It 
seems that virtually any natural or biological optimization process can be interpreted 
as an optimization algorithm [ALE 96]. It is therefore difficult to know where one 
algorithm ends, and another begins. When does a new metaheuristic belong to its 
own class, and when should it instead be classified as a variation of an existing 
metaheuristic? One of the challenges for the research community is to encourage 
new research based on the abundance of biological optimization processes. 

There are many other metaheuristics that we have not had time to discuss, 
including the artificial fish swarm algorithm (AFSA) [LI 03], the shuffled frog 
leaping algorithm (SFLA) [EUS 03], the firefly algorithm (FA) [YAN 08,  
Chapter 8], the bacterial foraging optimization algorithm (BFOA) [PAS 02], and so 
on. These metaheuristics could doubtless provide a lifetime of productivity to the 
interested student and researcher. 

 



3 

A Basic BBO Algorithm 

Just as the science of genetics gave rise to genetic algorithms (GAs), and the 
study of animal swarms gave rise to particle swarm optimization (PSO), and the 
behaviors of bees gave rise to artificial bee colony optimization, so the science of 
biogeography has given rise to biogeography-based optimization (BBO). 

Overview of the chapter 

This chapter shows in section 3.1 how the biogeography theory of the previous 
chapter can be applied to optimization problems to build a basic BBO algorithm. 
Section 3.2 discusses the differences between BBO and other bio-inspired 
optimization algorithms. Section 3.3 demonstrates the performance of basic BBO on 
a set of standard benchmarks. 

3.1. BBO definitions and algorithm 

Biogeography is nature’s way of distributing species and optimizing 
environments for life, and operates according to underlying mathematical 
optimization rules. Suppose that we have an optimization problem and a population 
of candidate solutions that can be represented as vectors of independent variables; 
candidate solutions can be referred to as individuals, or solutions. Each independent 
variable in a solution is considered to be a suitability index variable (SIV) of 
biogeography. Further suppose that we have some way of assessing the goodness of 
the solutions. Those solutions that are good are considered to be habitats with a high 
habitat suitability index (HSI), and those that are poor are considered to be habitats 
with a low HSI. HSI is analogous to fitness in other bio-inspired optimization 
algorithms (GAs, for example). Good solutions resist change more than poor 
solutions, just like habitats with a high HSI have lower immigration rates than 
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habitats with a low HSI. By the same token, good solutions tend to share their SIVs 
with poor solutions, just like habitats with a high HSI have high emigration rates. 
Poor solutions are likely to accept new SIVs from good solutions, just like habitats 
with a low HSI are likely to receive many immigrants from habitats with a high HSI. 
The addition of new SIVs to poor solutions may raise the quality of those solutions. 
The bio-inspired optimization algorithm that is based on this approach is called 
BBO. 

3.1.1. Migration 

High HSI solutions represent habitats with many species, and low HSI solutions 
represent habitats with few species. We assume that each solution (habitat) has an 
identical species count curve with E I=  for simplicity. Figure 3.1 illustrates the 
migration rates for a BBO algorithm with these assumptions. The S value 
represented by the solution depends on its HSI. S1 in Figure 3.1 represents a low HSI 
solution due to only a few species in a habitat, while S2 represents a high HSI 
solution due to many species in a habitat. The immigration rate λ1 for S1 will 
therefore be higher than the immigration rate λ2 for S2. The emigration rate μ1 for S1 
will be lower than the emigration rate μ2 for S2. Figure 3.1 is called a linear 
migration model since the λ and μ values are linear functions of fitness. 

μ

λ

HSI

rate

1

(emigration)

(immigration)

2 max

 

Figure 3.1. BBO SIV-sharing relationships. S1 represents a low HSI solution  
with a low probability of sharing SIVs, but a high probability of receiving SIVs  
from other solutions. S2 represents a high HSI solution with a high probability  
of sharing SIVs, but a low probability of receiving SIVs from other solutions 
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We use the emigration and immigration rates of each solution to probabilistically 
share information between habitats. With a certain probability, we modify each 
solution based on other solutions. If a given solution is selected to be modified, then 
we use its immigration rate λ to probabilistically decide whether or not to modify 
each SIV in that solution. If a given SIV in a given solution Si is selected to be 
modified, then we use the emigration rates μ of the other solutions to 
probabilistically decide which of the solutions should migrate a randomly selected 
SIV to solution Si. 

3.1.2. Mutation 

Cataclysmic events (unusually large flotsam arriving from a neighboring habitat, 
disease, natural catastrophes, etc.) can drastically change the HSI of a natural 
habitat. They can also cause the species count to differ from its equilibrium value. A 
habitat’s HSI can therefore change suddenly due to random events, and we model 
such events as mutation. 

Mutation tends to increase diversity among the population. Without mutation, 
high HSI solutions will tend to be more dominant in the population. Mutation makes 
low HSI solutions likely to mutate, which gives them a chance of improving. It also 
makes high HSI solutions likely to mutate, which gives them a chance of improving 
even more than they already have. We usually use elitism, which is a common EA 
mechanism, to save the SIVs of the habitat that has the best solution in the 
optimization process, so even if mutation ruins its HSI, we have saved it and can 
revert back to it if needed. So we use mutation on both poor solutions and good 
solutions. Those solutions that are average are hopefully improving already, and so 
we avoid mutating them, although there is still some mutation probability, except for 
the most probable solution. 

The mutation mechanism is problem-dependent, just as it is for GAs. If a 
solution is selected for mutation, then we simply replace a randomly chosen SIV in 
the solution with a new, randomly generated SIV. We do not explore alternative 
mutation schemes in this chapter, but all of the mutation schemes that have been 
implemented for EAs could also be implemented for BBO. 

3.1.3. BBO implementation 

First we provide some definitions, and then we provide an outline of the basic 
BBO algorithm. We use R to refer to the set of real numbers, Z to refer to the set of 
integers and ∅ to refer to the empty set. 
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DEFINITION 3.1.– A habitat SIVmx ∈  is a vector of m  integers that represents a 
feasible solution to some optimization problem. 

DEFINITION 3.2.– A suitability index variable SIV C∈  is an integer that is an 
allowable value in a habitat. ∈ nC Z  is the set of all integers that are allowed in a 
habitat. 

DEFINITION 3.3.– A habitat suitability index HSI: x R→  is a measure of the 
goodness of the solution that is represented by the habitat. 

DEFINITION 3.4.– An ecosystem { }1 2, , , Nx x xL , also denoted as { }x , is a group of 
N habitats, where N is the size of the ecosystem. 

Note that in most bio-inspired optimization algorithms, x  is called a candidate 
solution or individual, SIV is called a decision variable or independent variable, HSI 
is called fitness and N is called population size. 

DEFINITION 3.5.– Immigration rate (HSI) : R Rλ →  is a monotonically non-
increasing function of HSI. iλ  is proportional to the likelihood that SIVs from 
neighboring habitats will migrate into habitat ix . 

DEFINITION 3.6.– Emigration rate (HSI) : R Rμ →  is a monotonically non-
decreasing function of HSI. μi is proportional to the likelihood that SIVs from 
habitat ix  will migrate into neighboring habitats. 

In practice, we assume that λ and μ are linear with the same maximum values. 
However, these assumptions are made only for mathematical convenience, and 
better optimization performance might be attained if these assumptions are relaxed. 

DEFINITION 3.7.– Migration { }( , ) : x xλ μΩ →  is a probabilistic operator that 
adjusts habitat x  based on the ecosystem of candidate solutions. The probability 
that x  is modified is proportional to its immigration rate λ, and the probability that 
the source of the modification comes from jx  is proportional to the emigration  
rate μj. 
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Migration can be loosely described as follows. 

For each habitat (candidate solution) kx    

   For each SIV (decision variable)  

      Use λk to probabilistically decide whether to immigrate to kx   

      If immigrating then 

         Use {μj} to probabilistically select the emigrating habitat jx  

         ( )SIVkx ← ( )SIVjx   

      End if 

   Next SIV 

Next habitat 

Figure 3.2. Migration in BBO. kx  is the kth candidate  
habitat and ( )SIVkx  is a decision variable, or SIV, in kx  

In Figure 3.2, the statement “Use λk to probabilistically decide whether to 
immigrate to kx ” can be implemented with the following logic, where rand(0, 1) is 
a random number uniformly distributed between 0 and 1: 

If λk < rand(0,1) then 

Immigration = true 

Else 

Immigration = false 

End if 

Also in Figure 3.2, the statement “Use {μj} to probabilistically select the emigrating 
habitat jx ” can be implemented with any fitness-based selection method. For 
instance, we could use tournament selection by randomly choosing two or more 
habitats for a tournament, and then selecting kx  as the fittest habitat in the 
tournament. If we use roulette-wheel selection, then 
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Figure 3.3 illustrates BBO migration as described above. 

 

Figure 3.3. Illustration of BBO migration for five SIVs in a habitat.  
SIV 1 is not selected for immigration, but SIVs 2–5 are selected for  
immigration. Equation [3.1] is used to select the emigrating habitats 

Figure 3.3 shows an example of habitat kx  immigrating SIVs as follows: 

1) Immigration is not selected for the first SIV; that is why the first SIV in kx  
remains unchanged. 

2) Immigration is selected for the second SIV, and equation [3.1] is used to 
choose 1x  as the emigrating habitat; this is why the second SIV in kx  is replaced by 
the second SIV from 1x . 

3) Immigration is selected for the third SIV, and equation [3.1] is used to choose 
3x  as the emigrating habitat; this is why the third SIV in kx  is replaced by the third 

SIV from 3x . 

4) Immigration is selected for the fourth SIV, and equation [3.1] is used to 
choose 2x  as the emigrating habitat; this is why the fourth SIV in kx  is replaced by 
the fourth SIV from 2x . 

5) Finally, immigration is selected for the fifth SIV, and equation [3.1] is used to 
choose Nx  as the emigrating habitat; this is why the fifth SIV in kx  is replaced by 
the fifth SIV from Nx . 
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DEFINITION 3.8.– Mutation ( ) :M , x xλ μ →  is a probabilistic operator that 
randomly modifies a habitat’s SIVs based on a given mutation rate.  

Mutation can be described as follows. 

For each SIV (decision variable) in habitat (candidate solution) ix    

If rand(0, 1) < Pm 

( )SIVix ← rand(Ls, Us) 

         End if 

Next SIV 

Figure 3.4. Mutation in BBO. Pm is the mutation probability, and  
rand(Ls, Us) is a uniformly distributed random number between Ls  

and Us, which are the lower and upper search bounds of the sth SIV 

In Figure 3.4, each SIV in the habitat (that is, in the population) is mutated with a 
probability of Pm. If mutation occurs for a given SIV, then that SIV is replaced with 
a random number within its search domain. This mutation is the same as is often 
used in other bio-inspired optimization algorithms. 

DEFINITION 3.9.– An ecosystem transition function { } { }( , , , , , ) :m N M x xψ λ μ= Ω →  
is a 6-tuple that modifies the ecosystem from one optimization iteration to the next. 

An ecosystem transition function can be written as follows: 

{ }HSI HSIMψ λ μ= Ωo o o o o  [3.2] 

In others words, the ecosystem transition function begins by computing the 
immigration and emigration rates of each habitat. Then, migration is performed on 
each habitat, followed by an HSI calculation. Finally, mutation is performed, 
followed by an HSI recalculation for each habitat. 

DEFINITION 3.10.– A BBO algorithm BBO ( , , )ϑ ψ Τ=  is a 3-tuple that proposes a 
solution to an optimization problem. ( ): { },{HSI}xϑ φ →  is a function that creates 
an initial ecosystem of habitats and computes each corresponding HSI. ψ  is the 
ecosystem transition function defined earlier, and :{ } { , }x true falseΤ →  is a 
termination criterion. 
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ϑ  could be implemented with random number generators, heuristic solutions to 
the optimization problem, or some other problem-dependent procedure. Τ  could 
depend on the number of ψ iterations, or the HSI of the best habitat, or some other 
problem-dependent termination criterion. A BBO algorithm can be broadly 
described as follows: 

  ϑ  

While not Τ  

  ψ  

End    

The above outline of BBO can be written as follows. 

Initialize a population of habitats (that is, candidate solutions) { kx } for k ∈ [1, N] 

While not (termination criterion) 

For each kx , set emigration rate μk proportional to HSI (fitness) of kx  with μk being 

normalized to [0,1] 

For each kx , set immigration rate λk = 1 − μk 

{ kz } ← { kx } 

Perform migration for each habitat kz  as shown in Figure 3.2 

Perform mutation for each habitat kz  as shown in Figure 3.4 

{ kx } ← { kz } 

Next generation 

Figure 3.5. Outline of a basic BBO algorithm with a population size of N.  
{ kx } is a population of habitats and { kz } is a temporary population of habitats 

Note that in Figure 3.5, migration and mutation for each habitat in the current 
generation occurs before any of the habitats are replaced in the population, which 
requires the use of the temporary population z . Borrowing from GA terminology 
[VAV 96], we say that Figure 3.5 depicts a generational BBO algorithm as opposed 
to a steady-state algorithm. 
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The BBO algorithm in Figure 3.5 can be informally described with the following 
algorithm. 

1) Initialize the BBO parameters. This step includes the derivation of a method 
of mapping problem solutions to SIVs and habitats (see Definitions 3.1 and 3.2), 
which is problem dependent. We also initialize the maximum species count Smax and 
the maximum migration rates E and I (see Figure 3.1), and define the mutation rate 
Pm. Note that the maximum species count and the maximum migration rates are 
relative quantities. That is, if they all change by the same percentage, then the 
behavior of BBO will not change. This is because if E and I and Smax change, then 
the migration rates λ and μ and the species count S will change by the same relative 
amount for each solution. In practice, we often normalize E and I to 1. 

2) Initialize a random set of habitats, each habitat corresponding to a potential 
solution to the given optimization problem. This is the implementation of the ϑ  
operator described above in Definition 3.10. 

3) For each habitat, map the HSI to the number of species S, the immigration  
rate λ and the emigration rate μ (see Figure 3.1 and Definitions 3.5 and 3.6). 

4) Before migration, copy the population {x} to temporary population  
{z}. Probabilistically use immigration and emigration to modify each habitat, and 
then compute each HSI (see Definition 3.7). 

5) Mutate each habitat based on the mutation rate, and recompute each HSI (see 
Definition 3.8). After mutation, copy temporary population { z } to population { x }. 

6) Go to step 3 for the next iteration. This loop can be terminated after a 
predefined number of generations, or after an acceptable problem solution has  
been found. This is the implementation of the Τ  operator described above in 
Definition 3.10. 

Note that after each habitat is modified (steps 2, 4 and 5), its feasibility as a 
problem solution should be verified. If it does not represent a feasible solution, then 
some method needs to be implemented to map it to the set of feasible solutions. 

EXAMPLE 3.1.– 

This simple BBO experiment is motivated by David Goldberg’s “GA simulation 
by hand” [GOL 89]. Suppose that we want to maximize 2x , where x  is encoded as 
a five-bit integer. We have to decide how many individuals we want in our 
population, and what mutation rate we want to use. We start with a randomly 
generated population of four individuals, and a mutation rate of 1% per bit. For each 
individual, we compute the fitness value x2, and then we assign migration rates in a 
linear manner as shown in Figure 3.1. Migration rates should be normalized to  
[0, 1], but we often set the smallest value to a number slightly greater than 0, and the 
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largest value to a number slightly less than 1. This allows some randomness (non-
determinism) even for the best and worst individuals in the population. For this 
example, we arbitrarily decide to use 1/N as the minimum values for λ and μ, and 
(N−1)/N as the maximum values, where N = 4 is the population size. Suppose that 
our random initial population is created, as shown in Table 3.1. 

String number x  (binary) x  (decimal) 2( )f x x=  μ  λ  

1 01101 13 169 2/5 3/5 

2 11000 24 576 4/5 1/5 

3 01000 8 64 1/5 4/5 

4 10011 19 361 3/5 2/5 

Table 3.1. Initial population for a simple BBO problem 

The first thing we do is copy the population x to temporary population z. Then 
we consider the possibility of immigration to each bit of the first individual in the 
temporary population 1z , which is equal to 1x  (01101). We order bit numbers from 
left to right starting with index 1. We therefore see that 

1 1 1 1 1(1) = 0, (2) =1, (3) = 1, (4) = 0, (5) =1z z z z z  

Since 1z  is the third most-fit individual, immigration rate 1 3 5λ = , so there is a 
60% chance of immigrating to each bit in 1z . We generate a random number 

~ [0,1]r rand  for each bit in 1z  to determine whether or not we should immigrate to 
that bit. 

1) Suppose 0.7.r =  Since 1,r λ>  we will not immigrate to ( )1 1z , so ( )1 1z  
remains equal to 0. 

2) Suppose the next random number that we generate is 0.3r = . Since 1r λ< , 

we immigrate to ( )1 2z . We use roulette-wheel selection to choose the emigrating 

bit. 2 (2)x  has the greatest probability of emigrating to ( )1 2z , 4 (2)x  has the 
second-greatest probability, 1(2)x  has the third-greatest probability, and 3 (2)x  has 
the least probability. We could exclude 1(2)x  from consideration since 1z  is a copy 
of 1x , but this is an implementation detail that depends on the preference of the 
programmer. Suppose that this roulette-wheel selection process results in the choice  
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of 3 (2)x  for immigration. Then, 1 3(2) (2) 1z x← = . Even though we immigrated to 
( )1 2z , it did not change from its original value. 

3) We continue this process for ( )1 3z , ( )1 4z  and ( )1 5z . Suppose that the 
random numbers that are generated result in the following: 

– z1 (3) = 1 (no immigration)    

– z1 (4) ← x4= 1 (immigration)  

– z1 (5) = 1 (no immigration) 

Now we have completed migration for 1z  and have obtained 1z = 01111. 

4) We repeat steps 1−3 for 2z , 3z and 4z . 

5) We next consider the possibility of mutation for each bit in each temporary 
individual 1z , 2z , 3z  and 4z . Mutation can be implemented as shown in Figure 3.4. 

6) Now that we have a modified population of { }kz  individuals, we copy zk to xk 
for k ∈ [1,4], and the first BBO generation is complete. 

The above process continues until some convergence criterion is met. For instance, 
we could continue for a specified number of generations, or continue until we achieve 
a satisfactory fitness value, or continue until the fitness value stops changing.       

3.2. Differences between BBO and other optimization algorithms 

This section first discusses the relationship between BBO and GAs to illustrate 
that BBO is distinctive enough to be considered a separate optimization algorithm 
rather than as a special type of GA. Then we show the similarity and difference 
between BBO and other bio-inspired optimization algorithms from the viewpoint of 
algorithmic features.  

3.2.1. BBO and genetic algorithms 

In GAs, one way of implementing recombination is called global uniform 
recombination, in which we randomly choose each child gene from one parent,  
where the parent population is equal to the entire GA population, and random 
selection is based on fitness values, for example, roulette-wheel selection. We call 
this approach genetic algorithm with global uniform recombination (GA/GUR), 
which is shown in Figure 3.6 [SIM 11b].  

□ 



36     Evolutionary Computation with Biogeography-based Optimization 

Initialize a population of individuals (candidate solutions) { }kx  for k ∈ [1, N] 

While not (termination criterion) 

For each individual kx  

        C [0 0 0] n
khild R← ⋅⋅ ⋅ ⋅ ∈L  

For each gene (decision variable)  

         Use fitness values to probabilistically select individual jx  

         ( ) ( )k jChild gene x gene←  

Next gene 

      Probabilistically mutate kChild  

Next individual 

   { } { }k kx Child←  

Next generation 

Figure 3.6. Outline of genetic algorithm with global uniform recombination  
(GA/GUR). N is the population size, { kx } is the entire population of  

individuals, kx  is the kth individual and ( )kx gene  is a decision variable in kx  

Comparing Figures 3.5 and 3.6, we see that BBO is a generalization of a specific 
type of GA/GUR. This is because if, rather than setting 1k kλ μ= −  in the BBO 
algorithm of Figure 3.5, we instead set 1kλ =  for all k , then the BBO algorithm of 
Figure 3.5 would be equivalent to the GA/GUR algorithm of Figure 3.6. 

We see that even though BBO and GAs have many similarities, BBO is 
distinctive enough to be considered a separate optimization algorithm rather than a 
special type of GA. There is also another more important reason to consider BBO as 
a separate optimization algorithm, and that is because the biogeography roots of 
BBO open up many avenues for extensions and modifications that would otherwise 
be unavailable to the researcher. We discussed some of these extensions in the next 
chapter.  

3.2.2. BBO and other algorithms 

BBO is a bio-inspired optimization method, which gives it certain features in 
common with other bio-inspired optimization algorithms, including GAs, ES, PSO, 
ant colony optimization (ACO) and differential evolution (DE). For example, they 
all adopt operators to share information between solutions. This makes BBO 
applicable to many problems that GAs and PSO are used for. 
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However, there are some distinctive characteristics of BBO compared to these 
other optimization algorithms. First, we note that GAs and ESs reproduce children 
by crossover; namely, their solutions disappear at the end of each generation, while 
BBO solutions are not discarded after each generation but are rather modified by 
migration. Second, we find that ACO generates a new set of solutions at each 
generation while BBO maintains its set of solutions from one generation to the next. 
Lastly, BBO is contrasted with PSO and DE because PSO solutions change by virtue 
of another variable (velocity) and DE solutions change based on differences between 
other solutions, while BBO solutions change directly via migration. 

It is these differences between BBO and other optimization algorithms that prove 
to be its strength. Some open research questions are: how do these differences  
make the performance of BBO differ from other optimization algorithms? What do 
these differences say about the types of problems that are most appropriate for 
BBO? This chapter presents the initial explorations into BBO but leaves these 
questions for further study. 

3.3. Simulations 

In this section, we look at the performance of BBO. A representative set of  
13 benchmark functions has been used for performance verification of BBO. These 
functions are briefly described in Table 3.2. A more detailed description of these 
functions can be found in Appendix A. The functions are divided into two 
categories: unimodal functions, including F01–F07, and multimodal functions, 
including F08–F13. All benchmark functions are minimization problems. 

A. Performance comparisons between BBO and other algorithms 

First we compare BBO with five other optimization algorithms, including ACO, 
DE, ES, GA and PSO, in terms of mean performance on a set of Monte Carlo 
simulations. For a fair comparison, we choose basic versions of the other algorithms 
to compare with BBO. This is because BBO is a relatively new global optimization 
algorithm and other algorithms have had many years to develop. Also, we use the 
basic version of BBO here rather than more advanced versions. For all optimization 
algorithms, we choose a reasonable set of tuning values and do not make any effort 
in finding the best parameter settings. For BBO, we use maximum migration rates  
I = 1 and E = 1, and mutation rate Pm = 0.01. For ACO, we use initial pheromone 
value 0 1E 06,τ = −  pheromone update constant Q = 20, exploration constant q0 = 1, 
global pheromone decay rate 0.9,gρ =  local pheromone decay rate 0.5,lρ =  
pheromone sensitivity 1α =  and visibility sensitivity 5.β =  For ES, we produce 

10λ =  offspring in each generation, and we use standard deviation 0.9σ =  for 
modifying solutions. For GA, we use roulette-wheel selection, single-point 
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crossover with a crossover probability equal to 1, and a mutation probability equal to 
0.01. For DE, we use a weighting factor F = 0.5 and a crossover constant CR = 0.5. 
For PSO, we use inertial constant equal to 0.3, cognitive constant equal to 1, social 
constant for swarm interaction equal to 1, and social constant for neighborhood 
interaction equal to 1. For each algorithm, we use a population size N = 50, and an 
elitism parameter equal to 2, which means that we keep the two best individuals 
from one generation to the next. The dimension of each benchmark function is D = 20, 
and the maximum number of fitness function evaluations (NFFEs) before program 
termination is set to 20,000. We ran 25 Monte Carlo simulations on each benchmark to 
get representative performances. To evaluate the performance of the algorithms, we 
define the error value as ( ) ( )*f x f x− , where *x  is the global minimum of the 
function and x  is the best value found by the algorithm. The results are given in Table 
3.3, which shows the mean minimum errors found by each algorithm. 

Function Name Search domain Minimum 

F01 Sphere Function 100 100ix− ≤ ≤  0 

F02 Schwefel’s Problem 2.22 10 10ix− ≤ ≤  0 

F03 Schwefel’s Problem 1.2 100 100ix− ≤ ≤  0 

F04 Schwefel’s Problem 2.21 100 100ix− ≤ ≤  0 

F05 Generalized Rosenbrock’s Function 30 30ix− ≤ ≤  0 

F06 Step Function 100 100ix− ≤ ≤  0 

F07 Quartic Function 1.28 1.28ix− ≤ ≤  0 

F08 Generalized Schwefel’s Problem 2.26 500 500ix− ≤ ≤  −12,569.5 

F09 Generalized Rastrigin’s Function 5.12 5.12ix− ≤ ≤  0 

F10 Ackley’s Function 32 32ix− ≤ ≤  0 

F11 Generalized Griewank’s Function 600 600ix− ≤ ≤  0 

F12 Generalized Penalized Function 1 50 50ix− ≤ ≤  0 

F13 Generalized Penalized Function 2 50 50ix− ≤ ≤  0 

Table 3.2. Benchmark functions; for the definitions  
of these benchmark functions, see Appendix A 
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From Table 3.3, we see that BBO performs best on 9 of the 13 benchmark 
functions, while PSO performs best on the other three functions (F08, F11 and F12). 
For function F06, both BBO and PSO perform best. Furthermore, we find that for 
the unimodal functions (F01−F07), BBO usually obtains the best performance. BBO 
performs as well as PSO for multimodal functions (F08−F13), and both algorithms 
perform better than the other algorithms. This indicates that BBO is a competitive 
optimization algorithm for solving optimization problems, including both unimodal 
and multimodal functions. 

Function BBO ACO DE ES GA PSO 

F01 1.04E-04 2.05E+01 3.16E+03 5.67E+04 1.43E-03 3.68E-01 

F02 6.29E-15 7.12E+02 5.38E+02 4.21E+03 3.80E+02 2.25E+02 

F03 3.84E+01 4.33E+02 2.16E+02 5.80E+02 4.43E+03 1.76E+02 

F04 6.35E-15 7.97E+01 2.34E+01 1.22E+01 4.10E+00 6.78E-01 

F05 8.85E-01 8.90E+02 3.41E+01 2.34E+03 6.73E+01 6.74E+00 

F06 0.00E+00 6.54E+00 2.15E+02 6.78E+03 3.24E+00 0.00E+00 

F07 8.61E-09 6.05E+02 2.38E+01 4.21E+02 5.33E+02 2.58E+00 

F08 4.97E+00 6.72E+02 1.25E+01 4.32E+01 1.05E+02 8.81E-01 

F09 8.77E-01 8.97E+01 1.16E+02 5.38E+02 2.76E+01 4.54E+02 

F10 4.18E-01 9.84E-01 3.87E+00 1.45E+00 3.40E-02 7.53E-01 

F11 6.53E+00 6.76E+01 2.31E+01 7.89E+01 3.76E+02 3.30E+00 

F12 4.64E-32 6.87E-08 2.53E-05 1.12E-07 3.54E-32 2.62E-32 

F13 8.47E-32 1.83E-01 2.51E-07 7.82E-07 6.06E-31 9.52E-32 

Table 3.3. Comparison of experimental results of BBO, ACO, DE, ES,  
GA and PSO. The best value in each row is indicated in bold 

B. Influence of population size 

Next, we investigate the influence of population size on the performance of 
BBO. In theory, increasing the population size will increase the diversity of the 
solutions and promote the exploration of the search space. However, the choice of 
the best population size is problem-specific. In this experiment, all the parameter 
settings are the same as those used above except for population size. Performance 
results for different population sizes are shown in Table 3.4.  
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From Table 3.4, we see that the performance of BBO with population size  
N = 50 is better than other population sizes (N = 20, 100, and 200) for the majority 
of the functions. The results tell us that although increasing population size can 
increase the solution diversity and result in better exploration of the search space, a 
population size that is too large (N = 100 or 200) considerably decreases the 
probability of finding the best solution, and thus degrades performance. On the other 
hand, when the population size is too small, for example N = 20, the algorithm lacks 
diversity so that BBO is easily trapped in local minima. So we can conclude that a 
moderate population size is best for obtaining the global optimum. 

Function N = 20 N = 50 N = 100 N = 200 

F01 6.77E-01 1.04E-04 8.03E+00 7.72E-02 

F02 1.23E-08 6.29E-15 7.67E-15 2.36E-10 

F03 5.31E+01 3.84E+01 9.53E+02 1.28E+02 

F04 2.24E-07 6.35E-15 1.26E-10 6.44E-14 

F05 6.32E+00 8.85E-01 2.93E+00 2.46E-01 

F06 5.70E-12 0.00E+00 0.00E+00 0.00E+00 

F07 1.38E-06 8.61E-09 8.43E-07 5.13E-09 

F08 2.24E+00 4.97E+00 9.02E+00 8.09E+00 

F09 6.70E-01 8.77E-01 8.29E-02 5.62E-01 

F10 5.52E-02 4.18E-01 1.10E-01 4.78E-03 

F11 1.86E+00 6.53E+00 6.72E+01 7.27E+00 

F12 3.36E-14 4.64E-32 3.14E-20 3.43E-15 

F13 2.74E-04 8.47E-32 5.65E-18 2.61E-12 

Table 3.4. Comparison of experimental results for population sizes N = 20,  
50, 100 and 200, where boldface indicates the best value in each row 

C. Influence of dimension 

In order to investigate the influence of problem dimension on the performance of 
BBO, in this experiment, we choose dimensions D = 20, 30, 50 and 100, while all 
other parameter settings are the same as those used above. The results are shown in 
Table 3.5 after D × 1,000 NFFEs. From Table 3.5, we see that overall performance 
decreases when the problem dimension increases. At D = 20, BBO can perform best 
for the majority of the functions, but at D = 100, BBO can only locate the near-
global optimum for all functions. From these results, we recognize that increasing 
the problem dimension makes the problem more difficult.  
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Function D = 20 D = 30 D = 50 D = 100 

F01 1.04E-04 6.70E-02 8.09E-01 6.76E-02 

F02 6.29E-15 1.32E-04 6.73E-04 2.31E-03 

F03 3.84E+01 8.39E-01 2.26E+02 1.45E+02 

F04 6.35E-15 4.23E-14 5.43E-12 3.92E-10 

F05 8.85E-01 2.16E+00 2.23E+00 1.45E+00 

F06 0.00E+00 0.00E+00 0.00E+00 4.86E-12 

F07 8.61E-09 7.38E-15 5.64E-10 9.02E-09 

F08 4.97E+00 5.32E+01 7.89E+02 7.78E+02 

F09 8.77E-01 1.89E-01 9.14E-01 2.31E+00 

F10 4.18E-01 3.12E+00 5.98E-01 8.32E-02 

F11 6.53E+00 7.78E+00 9.61E-01 4.43E+01 

F12 4.64E-32 3.54E-30 3.10E-32 2.67E-20 

F13 8.47E-32 3.56E-10 1.90E-08 5.51E-15 

Table 3.5. Comparison of experimental results  
for problem dimensions D = 20, 30, 50 and 100 at D × 1,000 NFFEs,  

where boldface indicates the best value in each row 

D. Influence of mutation rate 

Here we investigate the influence of mutation rate. Selecting the best mutation 
rate is not easy for a specific problem, and there are no general rules. Three different 
mutation rates, Pm = 0.1, 0.01 and 0.001, are used in this experiment. All remaining 
parameter values are the same as those used above. Table 3.6 shows the results for 
different mutation rates. Based on these results, we find that mutation rate Pm = 0.01 
gives the best performance. These results indicate that mutation helps increase 
diversity and increases the chances for finding a good solution, but a high mutation 
rate (Pm = 0.1) results in too much exploration and is detrimental to the search. As 
mutation rate decreases from 0.1 to 0.01, optimization performance increases 
greatly, but as the mutation rate continues to decrease to 0.001, optimization 
performance decreases rapidly. A small mutation rate is not able to sufficiently 
increase solution diversity. 
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Function Pm = 0.1 Pm = 0.01 Pm = 0.001 

F01 3.67E-03 1.04E-04 3.48E-05 

F02 8.81E-08 6.29E-15 4.55E-12 

F03 7.42E+01 3.84E+01 5.17E+01 

F04 1.55E-13 6.35E-15 7.89E-14 

F05 2.16E+00 8.85E-01 3.25E+00 

F06 4.37E-01 0.00E+00 1.26E-04 

F07 6.74E-05 8.61E-09 7.80E-07 

F08 9.03E+01 4.97E+00 5.75E+01 

F09 9.67E-01 8.77E-01 9.43E-01 

F10 8.47E-02 4.18E-01 3.56E-01 

F11 2.14E+00 6.53E+00 6.53E-01 

F12 3.22E-19 4.64E-32 7.80E-30 

F13 5.60E-15 8.47E-32 3.49E-31 

Table 3.6. Comparison of experimental results for mutation  
rates Pm = 0.1, 0.01 and 0.001, where boldface indicates  

the best value in each row 

E. Influence of maximum migration rate 

As mentioned above, the choice of maximum migration rate may be important 
for the performance of BBO. In this experiment, we test some combinations of 
maximum immigration rate I and maximum emigration rate E to test the 
performance. We use three combinations: (I = 1, E = 10), and (I = 1, E = 1), and  
(I = 10, E = 1). All other parameter values are the same as those used above, and the 
results are shown in Table 3.7. 

It can be seen in Table 3.7 that each combination obtains the best performance 
on the same number of functions, which indicates that the maximum migration rates 
do not have a noticeable effect on BBO performance. This is because migration rates 
are used in a relative sense; therefore, a simple scaling of their magnitudes does not 
affect BBO performance.  
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Function I = 1, E = 10 I = 1, E = 1 I = 10, E = 1 

F01 6.73E-02 1.04E-04 3.16E-05 

F02 1.26E-10 6.29E-15 0.00E+00 

F03 5.71E+01 3.84E+01 6.44E+00 

F04 5.34E-08 6.35E-15 5.27E-10 

F05 6.38E-02 8.85E-01 4.20E+00 

F06 0.00E+00 0.00E+00 0.00E+00 

F07 1.07E-07 8.61E-09 7.16E-07 

F08 2.35E+01 4.97E+00 6.65E+00 

F09 2.27E-02 8.77E-01 5.04E-02 

F10 5.43E-02 4.18E-01 3.47E-01 

F11 7.61E+00 6.53E+00 9.04E+00 

F12 1.49E-15 4.64E-32 2.12E-32 

F13 4.27E-32 8.47E-32 7.32E-10 

Table 3.7. Comparison of experimental results using maximum  
migration rates (I = 1, E = 10), and (I = 1, E = 1), and (I = 10,  
E = 1), where boldface indicates the best value in each row 

Discussion 

The BBO algorithm is a simple, robust and novel global optimization method. 
BBO has good optimization performance due to its migration and mutation 
operators. From the experimental results we can conclude the following: 

1) The BBO algorithm is an effective optimization method, and it can obtain the 
global optimum (or near-global optimum) for many benchmark functions. 

2) Experiment A (Table 3.3) shows that BBO is competitive with other 
optimization algorithms on the majority of functions. 

3) Experiment B (Table 3.4) shows that a moderate population size is best for 
obtaining the global optimum. 
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4) Experiment C (Table 3.5) shows that BBO has difficulty obtaining the 
optimum for high-dimensional functions. 

5) Experiment D (Table 3.6) shows that a moderate mutation rate of about 1% 
gives the best performance for BBO. 

6) Experiment E (Table 3.7) shows that the maximum migration rates do not 
greatly affect BBO performance. 

3.4. Conclusion 

We have seen how biogeography, the study of the geographical distribution of 
biological species, can be used to obtain the BBO algorithm. We have also seen that 
BBO has similarities with other bio-inspired optimization algorithms from the 
viewpoint of algorithmic features, but it is distinctive enough to be considered a 
separate optimization algorithm rather than a special type of some other EA. We 
have applied BBO to benchmark functions, and we have shown that BBO provides 
good performance in comparison with other optimization algorithms. The 
performance results show that BBO theory can be successfully applied to general 
optimization problems. In the next chapter, we will discuss other aspects of 
biogeography theory that can inspire variations in the BBO algorithm. 



4 

BBO Extensions 

If natural biogeography is an optimization process, then it stands to reason that 
modeling BBO more closely after natural biogeography could result in better 
optimization performance. With this idea in mind, we simulate these BBO 
extensions on a set of benchmark functions and application problems, with results 
that support the hypothesis that natural biogeography is itself an optimization 
process. 

Overview of the chapter 

This chapter discusses some extensions that can be made to BBO to improve 
performance. We first discuss the effects of different migration curve shapes on 
BBO in section 4.1, and we use blended migration to improve performance in 
section 4.2. We then provide some alternative approaches to BBO implementation in 
section 4.3. Finally, we apply BBO extensions to solve some real-world 
optimization problems in section 4.4. 

4.1. Migration curves 

Up to this point, we have assumed that the BBO migration curves are linear as 
shown in Figure 3.1. This is a convenient assumption, and it corresponds to linear 
rank-based selection in GAs. But in biogeography, migration curves are nonlinear, 
and the exact shape of biogeography migration curves is difficult to quantify and 
changes from one habitat to the next. It was surmised that nonlinear migration 
curves might give better performance than the linear curves in the basic BBO 
algorithm. This led to the investigation of several different migration curves. Here  
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we discuss three promising curves in detail, which are motivated by influence  
factors that are associated with biogeography, as described in Chapter 1. These curves 
include quadratic migration curves, sinusoidal migration curves and generalized 
sinusoidal migration curves, which are shown in Figure 4.1 [MA 10a, MA 11b]. It is 
assumed that the maximum immigration rate and maximum emigration rate are both 
equal to 1. 

Before introducing the nonlinear migration curves, we first review the 
normalized linear migration rates depicted in Figure 3.1: 

1k k

k k

r
r

λ
μ

= −
=

 [4.1] 

where kr  is the fitness rank of the kth solution in the population, and is normalized 
to the range [0, 1]. 0kr =  denotes the least fit solution, and 1kr =  denotes the most 
fit solution. This formulation means that the immigration rate λ and the emigration 
rate μ are linear functions of solution fitness rank. Although linear migration curves 
do not exist in natural biogeography, they exhibit migration features and properties 
that are much simpler than those exhibited by general, nonlinear migration curves. 

 
a)   b)   c) 

Figure 4.1. Three nonlinear migration curves, where a), b) and c),  
respectively, show a quadratic migration curve, sinusoidal migration  

curve and generalized sinusoidal migration curve. λ is the immigration rate  
and μ is the emigration rate, and it is assumed that the maximum immigration  

rate and the maximum emigration rate are both equal to 1 

The first nonlinear curve that we discuss is the quadratic migration curve, which 
assigns the migration rates as: 
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Migration rates λ and μ are concave quadratic functions of solution fitness rank, 
as shown in Figure 4.1(a). This curve is inspired by island biogeography, which was 
developed to explain the species distribution of biological habitats. Based on an 
experimentally tested theory of island biogeography [WHI 98], we know that 
migration in a single habitat follows a quadratic function of the size of the habitat 
and its geographical proximity to other habitats. According to equation [4.2], when 
the solution fitness rank is small, the immigration rate rapidly decreases from its 
maximum while the emigration rate slowly increases from zero. When the solution 
fitness rank is large, the immigration rate gradually decreases to zero and the 
emigration rate rapidly increases to its maximum. 

The second nonlinear curve is the sinusoidal migration curve, which assigns the 
migration rates as: 
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Migration rates λ and μ are sinusoidal functions of solution fitness rank, as shown 
in Figure 4.1(b). This curve takes into account species mobility, the evolution of 
particular species and population size. These factors make the migration curves look 
like sinusoids. Based on equation [4.3], when the solution fitness rank is small or 
large, the immigration rate and the emigration rate both change slowly from their 
extremes, and when the solution fitness rank is medium, the migration rates change 
rapidly.  

Classical island biogeography theory indicates that the immigration rate 
decreases and the emigration rate increases as the number of species increases in a 
habitat. In BBO, this corresponds to a monotonic decrease in immigration rate and a 
monotonic increase in emigration rate as solution fitness rank increases, as shown in 
the previous two migration curves, although their shapes are different. This means 
that as a solution becomes more fit, the probability of incorporating features from 
other solutions decreases. However, recent advances in biogeography indicate that 
for some pioneer species, at least for plants, an initial increase in species count 
results in an initial increase in immigration rate and an initial decrease in emigration 
rate [WU 95]. This is because the original unfavorable environmental conditions of 
the island are ameliorated by the first colonists, which make it more hospitable to 
additional species. That is, the positive effect of increased diversity due to initial  
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immigration overcomes the negative effect of increased species count. In BBO, this 
corresponds to an initial increase in immigration rate as a very poor candidate 
solution initially improves its fitness. This can be viewed as a temporary positive 
feedback mechanism in BBO. A very poor candidate solution accepts features from 
other solutions, increasing its fitness, which subsequently increases its likelihood of 
accepting even more features from other solutions. This idea can also be 
incorporated into other bio-inspired optimization algorithms [MÜH 93], but its 
motivation comes from biogeography. These migration curves are depicted in Figure 
4.1(c), and are expressed as: 
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where β is a negative trigonometric offset angle (typically between −π/2 and 0) that 
denotes the degree of temporary positive immigration rate feedback. With this 
curve, fitness rank is normalized to [0, 1−β/π]. This is called the generalized 
sinusoidal migration curve. This curve shows that immigration initially increases 
with solution fitness rank. It gives improving solutions the momentum that they 
need to continue improving. As a solution continues to become fitter after the initial 
increase in immigration, immigration begins to decrease to give less fit solutions 
relatively greater opportunities to immigrate good solution features. 

To test the performance of the proposed nonlinear migration curves, they are 
compared with the linear migration curve using 13 benchmark functions, which are 
described in Table 3.2, where F01−F07 are unimodal functions and F08−F13 are 
multimodal functions. For a fair comparison, we use the nonlinear migration curves 
instead of the linear migration curve in the basic BBO algorithm. The other 
parameters of BBO are the same as described in section 3.3 of Chapter 3. In 
addition, the dimension of each benchmark function is set to 30, and the maximum 
number of fitness function evaluations (NFFEs) is set to 20,000. The parameter β of 
the generalized sinusoidal migration curve is set to −π/2.  

Table 4.1 summarizes the performance on 13 benchmark functions for the four 
migration curves. It is seen from this table that the three nonlinear migration curves 
generally perform better than the linear migration curve, and the generalized 
sinusoidal migration curve performs the best for most of the functions. The results 
indicate that migration curves that are closely associated with biogeography improve 
the optimization ability of BBO. 
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Function Linear Quadratic Sinusoidal Generalized 

F01 2.17E−02 8.24E−02 6.38E−02 8.24E−03 

F02 1.84E−03 2.39E−04 8.03E−04 1.47E−04 

F03 6.33E−02 7.93E+03 1.31E−02 3.08E−03 

F04 5.68E−14 4.31E−14 4.34E−14 4.64E−14 

F05 9.24E−01 5.14E−01 3.47E+00 8.36E−01 

F06 0.00E+00 1.19E−02 0.00E+00 8.21E−15 

F07 1.37E−15 1.84E−04 1.16E−15 0.00E+00 

F08 2.63E−06 2.72E−07 5.08E−06 9.38E−09 

F09 1.55E−13 1.56E−01 1.21E−14 4.38E−04 

F10 0.00E+00 5.38E−01 9.71E−01 0.00E+00 

F11 7.49E−01 2.98E−01 1.97E−01 3.65E−01 

F12 2.26E−30 2.87E−22 4.11E−30 7.81E−25 

F13 1.28E−10 5.54E−32 7.36E−11 9.05E−11 

 

Table 4.1. Comparison of experimental results of linear migration curve, quadratic 
migration curve, sinusoidal migration curve and generalized sinusoidal migration 

curve. Bold face indicates the mean minimum error value for each function 

4.2. Blended migration 

In biogeography, migration is the movement of species between habitats. In 
BBO, migration is a probabilistic operator that adjusts each solution kx  by sharing 
features between solutions. In the basic BBO algorithm, the probability that the 
solution kx  is selected as the immigrating solution is proportional to its immigration 
rate λk, and the probability that the solution jx  is selected as the emigrating solution 
is proportional to the emigration rate μj. Migration can be expressed as: 

( ) ( )SIV SIVk jx x←  [4.5] 

where an SIV is a solution feature, equivalent to a gene in GAs. In other words, an 
SIV is a search variable and the set of all possible SIVs is the search space from  
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which an optimal solution will be selected. Equation [4.5] means that a solution 
feature of solution kx  is replaced by a feature from solution jx . 

Here we propose a migration operator called blended migration [MA 10b,  
MA 11a], which is a generalization of the basic BBO migration operator, and which 
is motivated by blended crossover in GAs. Blended crossover is frequently used in 
GAs [MÜH 93]. In blended crossover, instead of copying a parent’s gene to a child 
chromosome, the offspring are obtained by combining parents’ genes. In blended 
migration in BBO, a solution feature of solution kx  is not simply replaced by  
a feature from solution jx . Instead, a new solution feature in a BBO solution is 
comprised of two components: the migration of a feature from another solution, and 
the migration of a feature from itself. Blended migration is defined as: 

( ) ( ) ( ) ( )SIV SIV 1 SIVk k jx x xα α← + −  [4.6] 

where α is a real number between 0 and 1. It could be random or deterministic, or it 
could be proportional to the relative fitness of the solutions kx  and jx . Equation 
[4.6] means that the new solution feature (SIV) of kx  comes from a combination of 
its own SIV and the emigrating solution’s SIV.  

The core idea of the proposed blended migration operator is based on two 
considerations. First, the operator is easily used with continuous-domain 
optimization problems. Second, blended combination operators have been widely 
and successfully used in other bio-inspired optimization algorithms. Blended 
migration is an attractive BBO modification from a couple of different viewpoints. 
On the one hand, good solutions will be less likely to be degraded due to migration. 
On the other hand, poor solutions can still accept a lot of new features from good 
solutions. That is, if the solution xk is much more fit than the solution xj, it would 
make sense to have α close to 1; but if the solution xk is much less fit than the 
solution xj, it would make sense to have α close to 0. Blended migration is similar to 
the blended crossover approach of the breeder GA [MÜH 93] and ES [MCT 08], in 
which both of the parents can contribute characteristics to a single feature of an 
offspring. 

To explore the effect of blended migration on BBO performance, we test the 
basic BBO (α=0) and blended BBO (with α=0.5 and 0.8) on a set of benchmark 
functions. We use the same BBO parameters as described in the previous 
experiment, and the results are shown in Table 4.2. 
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Function 
Basic BBO 

(α=0) 
Blended BBO 

(α=0.5) 
Blended BBO 

(α=0.8) 

F01 2.17E−02  3.11E−03 3.25E−02 

F02 1.84E−03  5.26E−06 7.74E−05 

F03 6.33E−02 1.38E−03 2.36E−02 

F04 5.68E−14  2.87E−14 1.84E−14 

F05 9.24E−01 3.74E−01 6.25E+00 

F06 0.00E+00  0.00E+00 0.00E+00 

F07 1.37E−15 1.96E−15 8.65E−16 

F08 2.63E−06 4.35E−07 3.32E−06 

F09 1.55E−13 1.06E−13 8.74E−13 

F10 0.00E+00 6.32E−01 5.62E−01 

F11 7.49E−01 4.14E−01 2.97E+00 

F12 2.26E−30 4.43E−32 1.65E−30 

F13 1.28E−10 2.54E−11 3.11E−10 

Table 4.2. Comparison of experimental results of basic  
BBO, and blended BBO with α = 0.5 and 0.8, where boldface  

indicates the mean minimum error value for each function 

Table 4.2 shows that blended BBO with α = 0.5 performs the best on nine 
functions, blended BBO with α = 0.8 performs the best on two functions, and basic 
BBO (α = 0) performs the best on one function. For function F06, all the three 
algorithms attain the global optimum. This result indicates that the value of α is 
influential on BBO performance. Blended BBO with α > 0 generally outperforms 
basic BBO (α = 0), which means that blended migration can significantly improve the 
optimization ability of BBO. Also, blended BBO with α = 0.5 is better than blended 
BBO with α = 0.8, which indicates that the best migration option is for a new solution 
feature to be contributed equally from itself and the selected emigrating solution. 

4.3. Other approaches to BBO 

The basic BBO algorithm presented in Figure 3.5 in Chapter 3 is called partial 
immigration-based BBO. The word “partial” means that only one solution feature is 
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considered at a time for immigration. That is, for temporary solution zk, λk is tested 
against a random number once for every feature to decide whether or not to replace 
that feature in zk. The term “immigration-based” means that λk is first used to decide 
whether or not to immigrate to zk; then the μj variables are used to choose the 
emigrating solution, but only if immigration was selected as described in  
the standard BBO algorithm.  

However, there are also other ways that could be used to implement migration. 
Instead of testing λk against a random number once for each solution feature, we could 
test λk against a random number only once for each solution, and then if immigration 
were selected, we could replace all of the solution features in zk. We call this total 
immigration-based BBO, an outline of which is presented in Figure 4.2. 

Initialize a population of candidate solutions { kx } for k ∈ [1, N] 

While not (termination criterion) 

For each kx , set emigration rate μk proportional to the fitness of kx , where μk  

      is normalized to [0, 1] 

For each kx , set immigration rate λk = 1 − μk 

{ kz } ← { kx } 

For each solution zk  

          Use λk to probabilistically decide whether to immigrate to zk 

          If immigrating then 

             For each solution feature SIV 

                Use {μi} to probabilistically select the emigrating solution xj 

                zk(SIV) ← xj(SIV) 

             Next solution feature  

          End if 

          Probabilistically decide whether to mutate zk 

Next solution 

{ kx } ← { kz } 

Next generation 

Figure 4.2. Outline of total immigration-based BBO with a  
population size of N. { kx } is the population of solutions and { kz }  
is a temporary population of solutions. kx  is the kth candidate  

solution, and ( )kx SIV  is the solution feature SIV of kx  
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As a third option, we could first use μk to decide whether or not to emigrate a 
solution feature from a given solution. Then, if emigration were selected, the λj 
values could be used to select the immigrating solution. This idea results in partial 
emigration-based BBO, an outline of which is shown in Figure 4.3. 

Initialize a population of candidate solutions { kx } for k ∈ [1, N] 

While not (termination criterion) 

For each kx , set emigration rate μk proportional to the fitness of kx , where μk is 

normalized to [0,1] 

For each kx , set immigration rate λk = 1 − μk 

{ kz } ← { kx } 

For each solution xr (r = 1 to N ) 

For each solution feature SIV 

Use μr to probabilistically decide whether to emigrate from xr 

If emigrating then 

    Use {λj} to probabilistically select the immigrating solution zk 

    zk(SIV) ← xr(SIV) 

End if 

Next solution feature 

Next solution 

For each zk in the population, probabilistically decide whether to mutate zk  

{ kx } ← { kz } 

Next generation 

Figure 4.3. Outline of partial emigration-based BBO with a population size of N.  
{ kx } is the population of solutions and { kz } is a temporary population of solutions.  

kx  is the kth candidate solution, and ( )kx SIV  is the solution feature SIV of kx  

Finally, instead of testing μk against a random number once for each solution 
feature, we could test μk against a random number only once for each solution,  
and then if emigration were selected, all solution features could be emigrated  
from xk. This is called total emigration-based BBO, an outline of which is shown in 
Figure 4.4. 
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Initialize a population of candidate solutions { kx } for k ∈ [1, N] 

While not (termination criterion) 

For each kx , set emigration rate μk proportional to the fitness of kx , where μk is 

normalized to [0,1] 

For each kx , set immigration rate λk = 1 − μk 

{ kz } ← { kx } 

For each solution xr (r = 1 to N ) 

Use μr to probabilistically decide whether to emigrate from xr 

If emigrating then 

For each solution feature SIV 

    Use {λj} to probabilistically select the immigrating solution zk 

    zk(SIV) ← xr(SIV)  

Next solution feature 

End if 

Next solution 

For each zk in the population, probabilistically decide whether to mutate zk  

{ kx } ← { kz } 

Next generation 

Figure 4.4. Outline of total emigration-based BBO with a population  
size of N. { kx } is the population of solutions and { kz } is a  
temporary population of solutions. kx  is the kth candidate  

solution, and ( )kx SIV  is the solution feature SIV of kx  

These four combinations of partial/total and immigration/emigration are inspired 
by the original philosophy of BBO migration [SIM 11a, MA 13a, MA 13b]. In 
addition, each of these approaches could be combined with the nonlinear migration 
curves as discussed in section 4.1, and/or blended migration as discussed in  
section 4.2. As with any other EA, we can also implement elitism or other strategies, 
although these procedures are not shown in the outlines of the algorithms. 

To explore the effect of all the four BBO migration options, we use the same 
BBO parameters as described in the previous experiment. In addition, we use linear  
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migration curves as described in Figure 3.1. Table 4.3 summarizes the performance 
of all the four BBO migration options on the 13 benchmark functions. 

Function 

Partial 

immigration 

BBO  

Total immigration 

BBO 

Partial emigration 

BBO 

Total emigration 

BBO 

F01 2.17E−02  7.26E−02 3.57E−05 1.41E−05 

F02 1.84E−03  1.04E−03 7.86E−05  5.93E−05  

F03 6.33E−02 7.82E−01 9.16E−04 1.02E−04 

F04 5.68E−14  9.65E−15 6.45E−19  7.44E−20 

F05 9.24E−01 3.78E−01 1.46E−02 1.85E−02 

F06 0.00E+00  0.00E+00 0.00E+00 0.00E+00 

F07 1.37E−15 5.37E−14 9.23E−18 4.79E−19 

F08 2.63E−06 2.90E−06 6.14E−04 3.26E−04  

F09 1.55E−13 7.13E−12  8.91E−11 9.08E−11  

F10 0.00E+00 8.45E−11 2.93E−11  2.96E−11 

F11 7.49E−01 0.00E+00  8.24E−11 4.33E-10  

F12 2.26E−30 1.98E−30 8.75E−15  2.97E−14  

F13 1.28E−10 3.26E−10 3.81E−06 1.04E−05  

Table 4.3. Benchmark results for four BBO migration options, where bold face 
indicates the mean minimum error value for each function 

For unimodal functions F01−F07, total emigration-based BBO performs the best, 
except for function F06, for which all the four algorithms attain the global optimum, 
and function F05, for which partial emigration-based BBO performs the best. For 
multimodal functions F08−F13, partial immigration-based BBO performs the best 
on four functions (F08, F09, F10 and F13), and total immigration-based BBO 
performs the best on the other two functions (F11 and F12). The results indicate that 
emigration-based BBO algorithms are better than immigration-based BBO  
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algorithms for unimodal functions, and immigration-based BBO algorithms are 
better than emigration-based BBO algorithms for multimodal functions. These 
results show that migration approaches can affect BBO performance, and the four 
migration options of partial/total and immigration/emigration can be adapted for 
different classes of benchmark functions. 

4.4. Applications 

In this section, we investigate the performance of BBO extensions on some real-
world optimization problems from the 2011 IEEE Congress on Evolutionary 
Computation. These problems are briefly summarized in Table 4.4, and a more 
detailed description can be found in Das and Suganthan [DAS 10]. We compare 
total emigration-based BBO, combined with the generalized sinusoidal migration 
curve with β = −π/2 and blended migration with α = 0.5, which generally provided 
better performance than the other BBO extensions in the previous experiments, with 
some advanced versions of bio-inspired optimization algorithms. These other 
algorithms include stud GA (which we call SGA) [KHA 98], standard PSO 2007 
(which we call SPSO 07) [BRA 07, QU 12] and adaptive DE (which we call ADE) 
[DAS 11a, DAS 11b, GHO 11, GON 11]. We compare with SGA because SGA is 
an improvement of the classic GA and uses the best individual at each generation for 
crossover. We compare with PSO because it often offers good performance and is 
itself a relatively new evolutionary algorithm. We use the current standard PSO 
2007, obtained from Particle Swarm Central (http://www.particleswarm.info/). We 
compare with DE because it is one of the most powerful evolutionary algorithms 
and has demonstrated excellent performance on many problems. We use the 
adaptive DE proposed by Asafuddoula et al. [ASA 11], where control parameter 
settings are gradually adapted according to the learning progress, and which uses 
center-based differential-exponential crossover and incorporates local search to 
improve its efficiency.  

The other parameters used in BBO in this experiment are the same as those used 
in the previous experiment. For the SGA, we use real coding, roulette-wheel 
selection, single-point crossover with a crossover probability of 1 and a mutation 
probability of 0.001. For SPSO 07, we use an inertia weight of 0.8, a cognitive 
constant of 0.5, a social constant for swarm interaction of 1.0 and a social constant 
for neighborhood interaction of 1.0. For ADE, we use an adaptive scaling factor (F) 
with the range [0.1−0.5], and an adaptive crossover rate (CR) with the range 
[0.8−0.98]. Each algorithm has a population size of 50 and a maximum of 100,000 
fitness function evaluations. The results of solving these real-world optimization 
problems are given in Table 4.5. All results are computed from 25 Monte Carlo 
simulations. 
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Problem Dimension Comments 

P01 6 Parameter estimation for frequency-modulated (FM) sound waves 

P02 30 Lennard-Jones potential problem 

P03 1 Bifunctional catalyst blend optimal control problem 

P04 1 Optimal control of a nonlinear stirred tank reactor 

P05 30 Tersoff potential function minimization problem (instance 1) 

P06 30 Tersoff potential function minimization problem (instance 2) 

P07 20 Spread spectrum radar polyphase code design 

P08 7 Transmission network expansion planning problem 

P09 126 Large-scale transmission pricing problem 

P10 12 Circular antenna array design problem 

P11.1 120 Dynamic economic dispatch problem (instance 1) 

P11.2 216 Dynamic economic dispatch problem (instance 2) 

P11.3 6 Static economic load dispatch problem (instance 1) 

P11.4 13 Static economic load dispatch problem (instance 2) 

P11.5 15 Static economic load dispatch problem (instance 3) 

P11.6 40 Static economic load dispatch problem (instance 4) 

P11.7 140 Static economic load dispatch problem (instance 5) 

P11.8 96 Hydrothermal scheduling problem (instance 1) 

P11.9 96 Hydrothermal scheduling problem (instance 2) 

P11.10 96 Hydrothermal scheduling problem (instance 3) 

P12 26 Spacecraft trajectory optimization problem (Messenger) 

P13 22 Spacecraft trajectory optimization problem (Cassini 2) 

Table 4.4. Problem set descriptions. More details about these  
problems can be found in Das and Suganthan [DAS 10] 
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According to Table 4.5, BBO performs best on eight problems (P02, P05, P06, P10, 
P11.2, P11.8, P11.9 and P11.10), ADE performs best on seven problems (P01, P09, 
P11.4, P11.6, P11.7, P12 and P13), SGA performs best on three problems (P07, P11.1 
and P11.5) and SPSO 07 performs best on problem P04. In addition, we see that for 
problems P03 and P08, all the four algorithms attain the same optimum, and for problem 
P11.3, SGA, ADE and BBO, all attain the same optimum. These results indicate that 
BBO performs similarly to ADE, and is significantly better than SGA and SPSO 07. 

Problem SGA SPSO 07 ADE BBO 

P01 7.44E−18 2.60E−02 0.00E+00 7.35E−17 

P02 −2.62E+01 −2.81E+01 −2.60E+01 −2.83E+01 

P03 1.15E−05 1.15E−05 1.15E−05 1.15E−05 

P04 2.03E+01 1.37E+01 2.54E+01 1.43E+01 

P05 −3.68E+01 −3.27E+01 −3.66E+01 −3.69E+01 

P06 −2.91E+01 −2.68E+01 −2.91E+01 −2.92E+01 

P07 5.00E−01 5.08E−01 5.08E−01 9.97E−01 

P08 2.20E+02 2.20E+02 2.20E+02 2.20E+02 

P09 3.05E+02 1.60E+03 4.62E+01 1.04E+03 

P10 −2.01E+01 −2.09E+01 −2.17E+01 −2.18E+01 

P11.1 4.79E+04 1.50E+05 5.73E+04 5.25E+04 

P11.2 1.81E+07 6.10E+06 1.06E+06 1.05E+06 

P11.3 1.54E+04 1.58E+04 1.54E+04 1.54E+04 

P11.4 1.80E+04 1.82E+04 1.79E+04 1.89E+04 

P11.5 3.26E+04 3.27E+04 3.27E+04 3.29E+04 

P11.6 1.21E+05 1.37E+05 1.20E+05 1.32E+05 

P11.7 1.95E+06 2.13E+06 1.70E+06 1.91E+06 

P11.8 9.54E+05 1.16E+06 9.31E+05 9.23E+05 

P11.9 9.39E+05 1.60E+06 1.23E+06 9.30E+05 

P11.10 9.51E+05 1.21E+06 9.29E+05 9.24E+05 

P12 7.89E+00 1.38E+01 7.07E+00 1.64E+01 

P13 8.65E+00 8.78E+00 8.61E+00 1.43E+01 

Table 4.5. Comparison of real-world optimization results for SGA, SPSO 07,  
ADE and BBO. The best result in each row is shown in bold 



BBO Extensions     59 

If we use more advanced versions of GA, PSO and DE, it might be possible to 
obtain better results than those here. However, the same could be said for other 
improvements of BBO. The purpose of these comparisons is not to tune our 
algorithms to obtain the best possible performance for specific problems, but rather 
to show that BBO is a competitive algorithm for real-world optimization problems.  

4.5. Conclusion 

We have seen that BBO is actually a family of algorithms, and so it could be 
called a metaheuristic. It includes the options shown in Table 4.6 based on migration 
curves, migration blending and migration approaches. We have also seen that BBO 
is a competitive algorithm for benchmark functions and real-world optimization 
problems. A more intensive study of the combinations of the options in Table 4.6 
and other BBO extensions inspired by other aspects of biogeography remains as a 
task for future research. In the next chapter, we will discuss some of the theoretical 
aspects of BBO. 

Migration curves  Migration blending Migration approaches 

Linear None (α = 0) Partial immigration-based 

Quadratic α = 0.5 Total immigration-based 

Sinusoidal α = some other constant Partial emigration-based 

Generalized sinusoidal α ∝ fitness Total emigration-based 

Table 4.6. BBO implementation options. BBO can be implemented  
with the combination of any choice from column 1, any choice from  

column 2 and any choice from column 3 
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BBO as a Markov Process 

The study of bio-inspired optimization algorithms has often been ad hoc, 
simulation-based and non-analytic. Historically, engineers have been more 
concerned with the applications of algorithms than with their mathematical analyses. 
Gradually, engineers have begun to focus more on the questions of how and why. It 
is important for engineers who want to become well informed and well rounded in 
the area of evolutionary computation research to understand and answer these 
questions. Markov theory has become a fundamental area of mathematics with 
applications in physics, chemistry, computer science, social science, engineering, 
biology and other areas. Markov theory is a good way to answer theoretical 
questions about bio-inspired optimization algorithms, and it might also lead to 
unexpected and new avenues of research. 

Overview of the chapter 

In this chapter, we will see that Markov theory provides insight into BBO 
behavior. Section 5.1 gives an overview of Markov theory definitions and notations, 
and is the foundation of the BBO analysis in this chapter. Section 5.2 develops a 
Markov model for the basic BBO algorithm, and section 5.3 analyzes the 
convergence properties of BBO for binary problems. Section 5.4 develops and 
discusses Markov models of BBO extensions. 

5.1. Markov definitions and notations 

Markov models have been a valuable theoretical tool to analyze bio-inspired 
optimization algorithms, including simple genetic algorithms [DAV 93, MA 15a, MA 
16b, NIX 92, REE 03, SIM 13a, SIM 13b, SUZ 95, SUZ 98] and simulated annealing 
[LUN 86]. A Markov chain is a random process which has a discrete set of possible 

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
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state values S = {si} for i = 1, 2, …, T. For instance, the weather might be described by 
the set of states S = {rainy, nice, snowy}. We use the notation S(t) to denote the state at 
time step t. The initial state is S(0), the state at the next time step is S(1), and so on. 
The system state might change from one time step to the next, or it might remain the 
same from one time step to the next. The transition from one state to another is entirely 
probabilistic. In a first-order Markov process, also called a first-order Markov chain, 
the probability that the system transitions to any given state at the next time step 
depends only on the current state; that is, the probability is independent of all previous 
states. The probability that the system transitions from state si at time step t to sj is 
given by the probability pij(t), which is called a transition probability. If the transition 
probability is independent of t, that is, pij(t1) = pij(t2) for all i, j ∈ [1, T] and for all t1 
and t2, then the Markov chain is said to be homogeneous. The T × T matrix P = [pij] is 
called the transition matrix. Therefore, 

1
1 for 1, ,

T

ijj
p i T

=
Σ = = L  [5.1] 

where pij is the element in the ith row and jth column of matrix P, which is also 
called the probability matrix, or the stochastic matrix of the Markov process. 
Equation [5.1] indicates that the sum of the elements of each row of P is 1. 

EXAMPLE 5.1.– 

According to [KEN 74], the Land of Oz never has two nice days in a row. If it is 
nice one day, then the next day has a 50% chance of rain and a 50% chance of snow. 
If it rains, then the next day has a 50% chance of rain again, a 25% chance of snow 
and a 25% chance of nice weather. If it snows, then the next day has a 50% chance 
of snow again, a 25% chance of rain and a 25% chance of nice weather. We see that 
the weather forecast for a given day depends solely on the weather of the previous 
day. If we assign states R, N and S, to rain, nice weather and snow, respectively, then 
we can form a Markov matrix that represents the probability of various weather 
transitions: 

0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5

R N S
R

P N
S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [5.2] 

 

Suppose a Markov process begins in state si at time 0. We know from the 
previous discussion that the probability that the process is in state sk at time 1 is 
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given by Pr( (1) (0) )k i ikS s S s p= = = . Next, we consider the following time step. 
We can use the total probability theorem [MIT 05] to find the probability that the 
process is in state sj at time 2 as: 

1 1

2 2

1 1 2 2

1

Pr( (2) (0) )

Pr( (1) (0) ) Pr( (2) (1) )

Pr( (1) (0) ) Pr( (2) (1) )

Pr( (1) (0) ) Pr( (2) (1) )

j i

i j

i j

T i j T

i j i j iT Tj

T

ik kj
k

S s S s

S s S s S s S s

S s S s S s S s

S s S s S s S s

p p p p p p

p p
=

= =

= = = = = +

= = = = + ⋅⋅⋅ +

= = = =

= + + ⋅⋅⋅ +

=∑

 [5.3] 

But this is equal to the element in the ith row and jth column of the square of P; 
that is, 

2Pr( (2) (0) )j i ij
S s S s P⎡ ⎤= = = ⎣ ⎦  [5.4] 

Continuing this line of reasoning in an inductive manner, we find that: 

Pr( ( ) (0) ) t
j i ij

S t s S s P⎡ ⎤= = = ⎣ ⎦  [5.5] 

That is, the probability that the Markov process transitions from state si to state sj 
after t time steps is equal to the element in the ith row and jth column of .tP  

In Example 5.1, we can compute tP  for various values of t to obtain: 

2

0.4375 0.1875 0.3750
0.3750 0.2500 0.3750
0.3750 0.1875 0.4375

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

4

0.4023 0.1992 0.3984
0.3984 0.2031 0.3984
0.3984 0.1992 0.4023

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [5.6] 

8

0.4000 0.2000 0.4000
0.4000 0.2000 0.4000
0.4000 0.2000 0.4000

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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Now suppose that we do not know the initial state of the Markov process, but we 
do know the probabilities for each state; the probability that the initial state S(0) is 
equal to sk is given by ( ) [ ]0 , 1,kp k T∈ . Then, we can use the total probability 
theorem [MIT 05] to obtain: 

1 1 2 2

1

1

Pr( (1) )
Pr( (0) ) Pr( (0) ) Pr( (0) )

Pr( (0) )

(0)

i

i i T Ti

T

k ki
k

T

ki k
k

S s
S s p S s p S s p

S s p

p p

=

=

=
= = + = + ⋅⋅ ⋅ + =

= =

=

∑

∑

 [5.7] 

Generalizing the above equation, we obtain: 

1Pr( (1) )
(0)

Pr( (1) )

T

T

T

S s
p P

S s

=⎡ ⎤
⎢ ⎥⋅ ⋅ ⋅ =⎢ ⎥
⎢ ⎥=⎣ ⎦

 [5.8] 

where p(0) is the column vector comprised of [ ](0), 1,kp k T∈ . Note that in equation 
[5.8], the subscript T denotes the dimension number and the superscript T denotes 
the matrix transpose. Generalizing this development for multiple time steps, we 
obtain: 

1Pr( ( ) )
( ) (0)

Pr( ( ) )

T

T T t

T

S t s
p t p P

S t s

=⎡ ⎤
⎢ ⎥⋅ ⋅ ⋅ =⎢ ⎥
⎢ ⎥=⎣ ⎦

 [5.9] 

Equation [5.9] indicates that a Markov chain is completely specified by p(0) and P. 
For Markov chains, we have the following theorems. 

THEOREM 5.1.– A regular T × T transition matrix P, also called a primitive 
transition matrix, is one for which all elements of tP  are non-zero for some t. If P is 
a regular transition matrix, then: 

1) lim t

t
P π

→∞
= ; 

2) All rows of π  are identical and are denoted as iπ ; 

3) Each element of iπ  is positive; 
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4) The probability that the Markov process is in the jth state after an infinite 
number of transitions is equal to the jth element of iπ ; that is, 
lim Pr( ( ) ) lim t

j ij ijt t
S t s p π

→∞ →∞
= = = ; 

5) Each row iπ  is the unique probability vector which satisfies i iPπ π= . That 
is, T

iπ  is the eigenvector of TP corresponding to the eigenvalue 1, normalized so 

that its elements sum to 1, namely, 
1

1T
ii

π
=

=∑ ; 

6) If we form the matrices jP , [1, ]j T∈ , by replacing the jth column of P with 
zeros, then the jth element of iπ  is given as: 

1

j
ij T

i i

P I

P I
π

=

−
=

Σ −
 [5.10] 

where I is the T × T identity matrix and ⋅  is the determinant operator.  

The first five properties above are also called the Perron–Frobenius theorem, and 
the last property is called the Davis–Principe theorem in books on Markov chains. 
They comprise the fundamental limit theorem for regular Markov chains, and are 
proven in [GRI 97, Chapter 1] and [DAV 93]. 

The first four properties of Theorem 5.1 can be combined as follows [IOS 80,  
p. 123]. 

THEOREM 5.2.– Let P be a primitive transition matrix of order T; that is, all of the 
elements of Pt are positive for some integer t. Then, Pt converges as t → ∞ to a 
stochastic matrix which has positive entries. That is, for all i, j ∈ [1, T], 

( )lim
i

t

ijt

i T T

P p
π

π

∞

→∞

×

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

M  [5.11] 

where πi = (πi1, …, πiT) and πij > 0 for 1 ≤ j ≤ T. 

We also have the following theorem [IOS 80, p. 126]. 
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THEOREM 5.3.– Let P be a transition matrix of order T with the structure: 

0C
P

R Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [5.12] 

where C is a primitive stochastic matrix of order m, and R, Q ≠ 0. Then, Pt 

converges as t→ ∞ to a stochastic matrix. That is, 

( )lim
i

t

ijt

i T T

P p
π

π

∞

→∞

×

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

M  [5.13] 

where πi = (πi1, …, πim, 0, …, 0) and πij > 0 for 1 ≤ j ≤ m < T. 

Later in this chapter, we will use Theorem 5.1 to derive important properties of 
the BBO Markov transition matrix, and we will use Theorems 5.2 and 5.3 to derive 
BBO convergence properties. 

EXAMPLE 5.2.– 

Today’s weather forecast in Oz is 80% sun and 20% snow. What is the weather 
forecast for two days from now? 

From equation [5.9], 2(2) (0)T Tp p P= , where P is given in Example 5.1 and 

[ ](0) 0.0 0.8 0.2 Tp = . This gives [ ](2) 0.3750 0.2375 0.3875 Tp = . That is, 
two days from now there is a 37.5% chance of rain, a 23.75% chance of sun and a 
38.75% chance of snow. 

 
EXAMPLE 5.3.– 

Using equation [5.6] and applying Theorem 5.1 to Example 5.1, we see that any 
given day in the distant future has a 40% probability of rain, a 20% probability of 
sun and a 40% probability of snow. Therefore, 40% of the days in Oz are rainy, 20% 
are sunny and 40% are snowy. Furthermore, we can find the eigenvalues of TP  as 1, 
−0.25 and 0.25. The eigenvector corresponding to the eigenvalue 1 is 
[ ]0.4 0.2 0.4 T . 
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Markov models can be valuable tools for analyzing EAs because they give us 
exact results. We can run simulations to investigate the performance of various EAs, 
but simulations can be misleading. For instance, a set of Monte Carlo simulations 
might happen to give misleading results due to the particular sequence of random 
numbers generated during the simulation. In addition, the random number generator 
using in the simulation may be incorrect, which occurs more often than we would like 
to think, and which would give misleading results [SAV 08]. Finally, the number of 
Monte Carlo simulations required to estimate highly improbable outcomes might be so 
high as to not be attainable in a reasonable amount of computational time. Markov 
model results avoid all of these pitfalls and give exact results. 

Next, we define more notation that we will use later to derive a Markov model 
for BBO, which could also be suitable for Markov models for other EAs. 

We will focus on EAs with a population size N operating in a discrete search 
space. The set of candidate solutions is the set of all bit strings xi consisting of q bits 
each. Therefore, the cardinality of the search space is n =2q. We use v to denote the 
population vector, where the component vi is the number of candidate solutions xi in 
the population. We see that: 

1

n

ii
v N

=
Σ =  [5.14] 

This equation simply means that the total number of solutions in the population 
is equal to N. We use yk to denote the kth solution in the population: 

{ }1 1 1 1 2 2 2

1 2

, { , , , , , , , , , , , }N n n n

v copies v copies v copiesn

Y y y x x x x x x x x x= =L L L L L
14243 14243 14243

 [5.15] 

where the yk solutions have been ordered to group identical solutions. We use T to 
denote the total number of possible populations Y. That is, T is the number of n × 1 
integer vectors v such that 1

n
i iv N=Σ =  and [0, ]iv N∈ . 

We order yk in the same order as xi. That is: 

1 1

2 1 1 2

3 1 2 1 2 3

1

1

, for 1, ,
, for 1, ,
, for 1, ,

, for 1, ,

k

n
n ii

x k v
x k v v v

y x k v v v v v

x k v N−

=

⎧ =⎪
= + +⎪

⎪= = + + + +⎨
⎪
⎪
⎪ = +⎩ ∑

L

L

L

M

L

 [5.16] 
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This is also shown in equation [5.15] and can be written more compactly as: 

( ) for 1, 2, ,k m ky x k N= = L  [5.17] 

where m(k) is defined as: 

( )
1

min such that
r

i
i

m k r v k
=

= ≥∑  [5.18] 

EXAMPLE 5.4.– 

Suppose we have a two-bit optimization problem (q = 2, n = 4) with a population 
size N = 3. The search space consists of the bit strings x = {x1, x2, x3, x4} = {00, 01, 
10, 11}. Suppose that the candidate solutions in the current population are y = {x2, 
x4, x4} = {01, 11, 11}. Then, we have v1 = 0, v2 = 1, v3 = 0 and v4 = 2. 

 

How many possible EA populations exist for a population size N in a search 
space of cardinality n? That is, what is the value of T? This number can be 
calculated in several different ways. In [NIX 92], it is shown that: 

1n N
T

N
+ −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [5.19] 

We can also use the multinomial theorem [CHU 92, SIM 11d] to find T. The 
multinomial theorem can be stated in several ways, including the following. Given K 
classes of objects, the number of different ways that N objects can be selected 
(independent of order) while choosing from each class no more than M times is the 
coefficient Nq  in the polynomial: 

2

2
1 2

( ) (1 )
1

M K

N MK
N

q x x x x
q x q x q x x

= + + + ⋅⋅⋅ +
= + + + ⋅⋅⋅ + + ⋅⋅⋅ +

 [5.20] 

Recall that the population vector v is an n-element vector such that each element is an 
integer between 0 and N (inclusive), and the sum of its elements is N. T is the number of 
unique population vectors v. Thus, T is the number of ways that N objects can be selected 
(independent of order) from n classes of objects while choosing from each class no more 
than N times. Applying the multinomial theorem to this problem gives: 

2

2
1 2

( ) (1 )
1

N
N n

Nn

T q

q x x x x
q x q x x

=

= + + + ⋅⋅⋅ +
= + + + ⋅⋅⋅ +

 [5.21] 
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A different form of the multinomial theorem can also be used to find T. The 
multinomial theorem can be stated as: 

( ) { }

1 2
( ) 0

0

0

( ) 0 0

0

!( )
!

: 0,1,..., ,

j

j

N
kn

N jN
S k jjj

iN N
kjj
j

S k i ji

N
N

j j
j

nx x x x
k

k
x

k

S k k R k n k n

=
=

=

= =

=

+ + ⋅⋅ ⋅ + =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

⎧ ⎫
= ∈ ∈ =⎨ ⎬
⎩ ⎭

∑ ∏∏
∑∑∏ ∏

∑

 [5.22] 

Now, consider the polynomial 0 1 2(x )N nx x x+ + + ⋅⋅⋅ + . From equation [5.22] of 

the multinomial theorem, we see that the coefficient of 0 1 20 1 2[( ) ( ) ( ) ( ) ]Nk kk k Nx x x x⋅ ⋅ ⋅  
is given by: 

0

0

iN
jj

i i

k

k
=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∏  [5.23] 

If we sum up these terms for all k j such that: 

0

N

j
j

jk N
=

=∑  [5.24] 

then we obtain the coefficient of Nx . However, equation [5.21] shows that T is equal 
to the coefficient of Nx . Therefore, 

( ) { }

0

'( ) 0

1

0 0
' : 0,1,..., , ,

iN
jj

S k i i

N N
N

j j j
j j

k
T

k

S k k R k n k n jk n

=

=

+

= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

⎧ ⎫
= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑∑∏

∑ ∑
 [5.25] 

Equations [5.19], [5.21] and [5.25] give three equivalent expressions for T. 
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EXAMPLE 5.5.– 

Suppose that our population consists of 2-bit candidate solutions (q = 2, n = 4) 
and a population size N = 4. Equation [5.19] gives: 

7
35

4
T ⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 [5.26] 

Equation [5.21] gives: 
2 3 4 4

4 16

4

( ) (1 )
1 35

35

q x x x x x
x x

T q

= + + + +
= + ⋅⋅⋅ + + ⋅⋅ ⋅ +
= =

 [5.27] 

Equation [5.25] gives: 

( ) { }

( ) ( ) ( )
( ) ( )

4
0

'( ) 0

4 4
5

0 0
' : 0,1,..., 4 , 4, 4

3 0 0 0 1 , 2 1 0 1 0 , 2 0 2 0 0 ,

1 2 1 0 0 , 0 4 0 0 0

4 12 6 12 1 35

i
jj

S k i i

j j j
j j

k
T

k

S k k R k k jk

T

=

=

= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

⎧ ⎫
= ∈ ∈ = =⎨ ⎬
⎩ ⎭
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

= + + + + =

∑∑∏

∑ ∑  [5.28] 

As expected, all three methods for the calculation of T give the same result. 

 

Finally, we define another notation that we will later use to derive a Markov 
chain model for BBO; this idea is called generalized multinomial probability  
[BEA 99]. Suppose that an experiment has n possible outcomes { }1 2, , , nx x xL  and 
that the experiment is repeated N times. Suppose that the probability of obtaining 
outcome ix  on the kth trial is equal to kiP . Let [ ]1 2, , , nC C C C= L  be a vector of 
random variables, where iC  denotes the total number of times that ix  occurs in N 
trials, and let [ ]1 2, , , nγ γ γ γ= L  be a realization of C. Define: 

( ) { }
1 1

: 0, 1 , 1 for all , for all
n N

N n
ki ki ki i

i k

Y J R J J k J iγ γ×

= =

⎧ ⎫= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑ ∑  [5.29] 
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Note that the cardinality of ( )Y γ  is: 

( )
1

!
! !n

NY γ
γ γ

=
L

 [5.30] 

Then, the generalized multinomial theorem gives the following probability that 
the repeated experiment results in the outcome vector γ : 

( )
( ) 1 1

Pr ki

N n
J

ki
J Y k i

C P
γ

γ
∈ = =

= = ∑ ∏∏  [5.31] 

EXAMPLE 5.6.– 

Here we use a simple example to clarify generalized multinomial probability. 
Consider a simple EA experiment in which a trial can result in one of four possible 
solutions x1, x2, x3 and x4 with probabilities Qi1, Qi2, Qi3 and Qi4, respectively. 
Suppose that the total number of trials is equal to 2. Suppose that the probabilities 
are given as: 

Trial 1: 11 12 13 140.1, 0.3, 0.5, 0.1Q Q Q Q= = = =  

Trial 2: 21 22 23 240.1, 0.1, 0.1, 0.7Q Q Q Q= = = =  [5.32] 

In this example, we calculate the probability that x1 and x4 occur after two trials. 
In order to calculate this probability, let [ ]1 2, , , nC C C C= L  denote a vector of 
random variables, where Ci is the total number of times that xi occurs after two trials. 
Based on equation [5.31], we set C1 = 1, C2 = 0, C3 = 0 and C4 = 1 to obtain: 

( ) [ ]
2 4

1 2 3 4
1 1

Pr 1, 0, 0, 1 kiJ
ki

Y k i

C C C C Q
∈ = =

= = = = = ∑∏∏
J

 [5.33] 

where: 

{ }
4 2

2 4

1 1

: 0,1 , 1 for all , for allki ki ki i
i k

Y J R J J k J C i×

= =

⎧ ⎫= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑ ∑  [5.34] 

According to equation [5.34], J belongs to Y if it satisfies the following 
conditions: 

1) J is a 2 × 4 matrix; 

2) Each element of J is either 0 or 1; 
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3) The elements in each row of J add up to 1; 

4) The elements in the ith column of J add up to Ci. 

Note from equation [5.30] that the cardinality of Y is: 

( )1! ! !nY N C C= L  [5.35] 

So there are a total of ( ) ( )1! ! ! 2! 1!1! 0!1! 2nN C C = =L  matrices J(t) that 
satisfy these conditions, and they are found as: 

( ) 1 0 0 0
0 0 0 1

J ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1     ( ) 0 0 0 1
1 0 0 0

J ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2  [5.36] 

Substituting these matrices in equation [5.33] gives: 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )13 2311 12 14 21 22 24

1 2 3 4

2

11 12 13 14 21 22 23 24
1

11 24 14 21

Pr 1, 0, 0, 1

0.08

t tt t t t t tJ JJ J J J J J

t

C C C C

Q Q Q Q Q Q Q Q

Q Q Q Q
=

= = = =

= ×

= + =

∑  [5.37] 

 

5.2. Markov model of BBO 

This section defines a Markov model for a basic BBO algorithm [SIM 11b,  
SIM 11d, SIM 11c]. A Markov model of BBO provides us with the transition 
probability pij from the ith population distribution to the jth population distribution, 
where the states of the system include all possible population distributions (that is, 
all possible combinations of candidate solutions). In BBO, two main steps are 
significant, migration and mutation, so the transition probability includes the 
migration probability and the mutation probability for one generation. 

Before the formal derivation, we make some assumptions. First, all of the new 
BBO solutions are created before any solutions are replaced in the population; that 
is, we use a generational BBO algorithm rather than a steady-state BBO algorithm, 
which is clearly shown in Figure 3.5 in Chapter 3. 

Second, a solution can emigrate a bit to itself. This means that, in the statement 
“Use {μj} to probabilistically select the emigrating solution jx ” in Figure 3.2,  
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j might be chosen to be equal to k. that is, when a bit is replaced via migration in a 
given solution zk, the new bit might be chosen to come from zk itself. In this case, the 
bit is not actually replaced in zk. However, the probabilistic choice of the emigrating 
solution allows this self-migration to happen on occasion. 

A. Migration 

In the basic BBO algorithm, we use λi to denote the immigration probability of xi 
and μ i to denote the emigration probability of xi. Note that μ i is proportional to the 
fitness of xi, and λi decreases with the fitness of xi. We use the notation xi(s) to 
denote the sth bit of solution xi, and use the notation ςi(s) to denote the set of 
population indices j such that the sth bit of xj is equal to the sth bit of xi. That is: 

( ) ( ) ( ){ }:i j is j x s x sς = =  [5.38] 

EXAMPLE 5.7.– 

To clarify equation [5.38], an example is presented based on Example 5.3. First, 
we explain how to calculate ς1(1). We arbitrarily number bits from left to right; that 
is, in any given bit string, bit 1 is the left-most bit and bit 2 is the right-most bit. 
From the definition of ςi(s), we see that: 

( ) ( ) ( ){ }1 11 : 1 1jj x xς = =  [5.39] 

Since x1 = 00, we see that x1(1) = 0 (that is, the left-most bit is 0). Then, equation 
[5.39] can be written as: 

( ) ( ){ }1 1 : 1 0jj xς = =  [5.40] 

But xj(1) = 0 for xj ∈ {00, 01}, which in turn indicates that xj(1) = x1(1) for j ∈ 
[1, 2]; therefore, ς1(1) = {1, 2}. Continuing this process, we see that: 

( ) { } ( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { } ( ) { }

1 1 2 2

3 3 4 4

1 1, 2 , 2 1, 3 , 1 1, 2 , 2 2, 4

1 3, 4 , 2 1, 3 , 1 3, 4 , 2 2, 4

ς ς ς ς
ς ς ς ς

= = = =

= = = =
 [5.41] 

 

During migration, if the sth feature of yk is not selected for immigration during 
generation t, then: 

( ) ( ) ( ) ( ),1
, if no immigration to k k tm kt

y s x s y
+

=  [5.42] 
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That is, ( )ky s  does not change from generation t to generation t + 1. However, 
if the sth feature of yk is selected for immigration during generation t, the probability 
that yk(s)t + 1 is equal to xi(s) is proportional to the sum of the emigration rates of all 
solutions whose sth feature is equal to xi(s). This probability can be written as: 

( ) ( )( ) ( )
1

1

Pr immigration i
j jj s

k i nt
j jj

v
y s x s

v
ς

μ

μ
∈

+

=

= =
∑
∑

 [5.43] 

We can combine equations [5.42] and [5.43], along with the fact that the 
probability of immigration to yk(s) is equal to λm(k) to obtain the total probability as 
follows: 

( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )
( )

, 1

, , 1

, , 1

0 ( )

1

Pr

Pr no immigration to Pr no immigration

Pr immigration to Pr immigration

1 1 i

k t i

k t k t i

k t k t i

j jj s
m k im k m k n

j jj

y s x s

y y s x s

y y s x s

v
x s x s

v
ς

μ
λ λ

μ

+

+

+

∈

=

=

= = +

=

= − − +
∑
∑

 [5.44] 

where 10 is the indicator function on the set {0}. 

Now, recall that there are q bits in each solution. Use Mki(v) to denote the 
probability that immigration results in yk,t+1 = xi, given that the population 
distribution is described by the population count vector v. Mki(v) can be written as: 

( ) ( )

( )( ) ( ) ( )( ) ( )
( )

, 1

0 ( )
1

1

Pr

1 1 i

ki k t i

q j jj s
m k im k m k n

s j jj

M v y x

v
x s x s

v
ς

μ
λ λ

μ

+

∈

=
=

= =

⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥
⎣ ⎦

∑
∏

∑
 [5.45] 

Note that Mki(v) can be computed for each [ ]1,k N∈  and each [ ]1,i n∈  in order 
to form the N n×  matrix M(v). The kth row of M(v) corresponds to the kth iteration 
of the outer loop in algorithm description in Figure 3.5 (there are N iterations of the 
outer loop in Figure 3.5). The ith column of M(v) corresponds to the probability of 
obtaining solution xi during each outer loop iteration; that is, Mki(v) gives the 
probability of obtaining the ith outcome on the kth immigration trial. 
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B. Mutation 

Only migration is considered in equation [5.45]. Next, we consider the 
possibility of mutation. U is used to denote the n × n mutation matrix, where Uji is 
the probability that xj mutates to xi. As in typical EAs, mutation operates 
independently on each candidate solution by probabilistically reversing each bit in 
each candidate solution. Suppose that the event that each bit of a candidate solution 
is flipped is stochastically independent and occurs with probability pm ∈ (0, 1). 
Then, the probability Uji can be written as: 

( ) ( )Pr 1 ijij q HH
ji j i m mU x x p p −= → = −  [5.46] 

where Hij represents the Hamming distance between bit strings xi and xj. 

So the probability that the kth immigration trial, followed by mutation, results in 
xi is denoted as ( )kiP v . This can be written as: 

( ) ( )

( ) ( )
1

n

ki kj ji
j

P v M v U

P v M v U
=

=

=

∑
 [5.47] 

where the elements of M(v) are given in equation [5.45]. P(v) contains the 
probabilities when both migration and mutation are considered. u is defined as the 
population count vector after migration and mutation are completed for a given 
generation, where the component ui is the number of solutions xi in the population. 
The transition probability Pr(u|v) that we obtain a population count vector u after 
one generation, given that we started with a population count vector v, can be 
obtained from the generalized multinomial theorem described in section 5.1 as: 

( ) ( )

{ }
1 1

1 1

Pr ,

: 0,1 , 1 for all , for allwhere

ki
N n J

ki
J Y k i

n N
N n

ki ki ki i
i k

u v P v

Y J R J J k J u i

∈ = =

×

= =

= ⎡ ⎤⎣ ⎦

⎧ ⎫= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑∏∏

∑ ∑
 [5.48] 

Equation [5.48] can be used to find the transition matrix for the basic BBO 
algorithm with migration and mutation as described in Figure 3.5. 

The Markov transition matrix, denoted as Q, is obtained by computing equation 
[5.48] for each possible v and each possible u. Each element of Q will give the 
transition probability from one population count vector v to another population 
count vector u after one generation. Note that Q is a T × T matrix, where T is the 
total number of possible populations. T can be calculated by several different 
methods as described in section 5.1. Once we calculate the transition matrix Q, a 
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wealth of Markov tools [GRI 97] can be applied to explore the statistical properties 
of BBO, including the limiting probability of each possible BBO population as the 
generation count approaches infinity. 

EXAMPLE 5.8.– 

Here we confirm the BBO Markov model with simulation. We use the 3-bit one-
max problem with a search space cardinality of eight and a population size of four. 
The one-max problem has a fitness function that is proportional to the number of 
ones in the population member, and is a popular test function in EA research. The 
fitness values of the 3-bit one-max problem are given as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
000 1, 001 2, 010 2, 011 3,

100 2, 101 3, 110 3, 111 4.

f f f f

f f f f

= = = =

= = = =
 [5.49] 

From equation [5.19] in section 5.1, we calculate the total number of possible 
populations as: 

1 8 4 1
330

4
n N

T
N

+ − + −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 [5.50] 

We can use equation [5.48] to calculate the probability of transitioning between each 
of the 330 population distributions, which gives us a 330 × 330 transition matrix P. We 
can then calculate the limiting probability of each possible population distribution by 
Theorem 5.1. This is the probability, in the limit as the generation count approaches 
infinity, that the BBO population consists of any particular set of individuals.  

Table 5.1 shows the probabilities of obtaining an all-optimal population, along 
with the probabilities of obtaining a no-optimal population. The population count 
vector “All optimal” in Table 5.1 denotes the population that contains all optimal 
solutions, which is the population count vector (0 0 0 0 0 0 0 4). The population 
count vector “No optimal” in Table 5.1 denotes the population that does not contain 
any optimal solutions, which is the vector (* * * * * * * 0), where * denotes “don’t 
care bit”. Note that the notation ( 1 2 8, , ,v v vL ) indicates the numbers of solutions that 
are equal to ( 000,001, ,111L ). The Markov model and simulation results match 
well, which confirms the model. Table 5.1 shows that a high mutation rate of 10% 
per bit results in too much exploration, so the uniform optimal population is not one 
of the most probable populations. With this high 10% mutation rate, the probability 
that the population does not have any optimal solutions is 30%, as shown in the 
table. However, as the mutation rate decreases to the more typical values of 1% and 
0.1%, the probabilities that the population is composed entirely of optimal solutions 
increase to 53% and 86%, respectively, and the probabilities that the population has 
no optimal solutions decrease to 11% and 9%, respectively. 
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Mutation rate Population count vector 
Probability 

Markov Simulation 

0.1 
All optimal 0.0290 0.0285 
No optimal 0.2999 0.3026 

0.01 
All optimal 0.5344 0.5322 
No optimal 0.1134 0.1138 

0.001 
All optimal 0.8605 0.8437 
No optimal 0.0923 0.1092 

Table 5.1. BBO Markov model and simulation results for the 3-bit one-max  
problem. The table shows the probabilities of obtaining an all-optimal  

population (0 0 0 0 0 0 0 4) and the probabilities of obtaining a no-optimal  
population (* * * * * * * 0), where * denotes “don’t care bit”. Simulation  

results are the averages of 100 Monte Carlo simulations 

Figure 5.1 shows typical simulation results of 20,000 generations of BBO for the 
3-bit one-max problem with a mutation rate of 1% per bit. It is seen that the simulation 
results closely match the Markov results in Table 5.1. The simulation results are 
approximate, will vary from one run to the next and will equal the Markov results only 
as the number of generations approaches infinity. 

 

Figure 5.1. Typical BBO simulation results for a 3-bit one-max optimization problem 
with a mutation rate of 1% per bit. The plot shows the probability of obtaining an  

all-optimal population and the probability of obtaining a no-optimal population 
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EXAMPLE 5.9.– 

In this example, we compare Markov model results for the basic BBO algorithm 
with a GA with global uniform recombination (GA/GUR), as shown in Figure 3.6 in 
Chapter 3. In Figure 3.6, BBO reduces to GA/GUR when BBO has a constant 
immigration rate of λ = 1. We use the following fitness values: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
000 5, 001 2, 010 2, 011 3,

100 2, 101 3, 110 3, 111 4.

f f f f

f f f f

= = = =

= = = =
 [5.51] 

These fitness values are the same as those in equation [5.49], except that we 
made the 000 bit string the most fit solution. This is called a deceptive problem 
because usually when we add a 1 bit to one of the above solutions, its fitness 
increases. The exception is that 111 is not the most fit solution, but rather 000 is the 
most fit solution. 

Table 5.2 shows comparisons between Markov model results for GA/GUR and 
BBO. The table shows the probability of obtaining a population in which all 
solutions are optimal, and the probability of obtaining a population in which no 
solutions are optimal. It is seen from this table that the Markov model and simulation 
results match well for GA/GUR and BBO, which confirms the model. Furthermore, 
in every Markov performance comparison in the table, BBO performs significantly 
better than GA/GUR. This is especially true when the mutation rate is low (0.1% per 
bit), in which case BBO performs better than GA/GUR in its higher probability of 
obtaining a population with all optimal solutions (90% vs. 63%), and in its lower 
probability of obtaining a population with no optimal solutions (7% vs. 34%). 

Mutation rate Population 
count vector 

Probability 
BBO GA/GUR 

Markov Simulation Markov Simulation 

0.1 
All optimal 0.0120 0.0118 0.0109 0.0107 
No optimal 0.7954 0.7913 0.8325 0.8314 

0.01 
All optimal 0.6506 0.6487 0.4760 0.4715 
No optimal 0.1915 0.1891 0.4103 0.4004 

0.001 
All optimal 0.9074 0.9022 0.6383 0.6279 
No optimal 0.0730 0.0721 0.3482 0.3472 

Table 5.2. BBO and GA/GUR Markov model and simulation results for the 3-bit 
deceptive problem. The table shows the probabilities of obtaining an all-optimal 
population and the probabilities of obtaining a no-optimal population. The best 

Markov performance is shown in bold in each row 
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5.3. BBO convergence 

In the previous section, we obtained the migration probability and mutation 
probability, which can be calculated by equations [5.45] and [5.46], respectively:  
Mkj = Pr(yk,t+1 = xj) ≥ 0 and Uji = Pr(xj → xi) > 0. Therefore, M is a non-negative 
stochastic matrix; although it is not a transition matrix since it is not square, each 
row still sums to 1. We also see that U is a positive left stochastic matrix; that is, 
each of its columns sum to 1. We now present two theorems that show that there is a 
positive probability of obtaining any solution in the search space from any solution 
in a BBO population after migration and mutation. This means that there is a 
positive probability of transitioning from any population vector u to any other 
population vector v in one generation, which means that the BBO transition matrix is 
primitive. 

THEOREM 5.4.– If M is a positive stochastic matrix and U is a positive left stochastic 
matrix, then the product MU is positive. 

PROOF.– If M is positive and stochastic, then every entry of M is positive; that is,  
Mkj > 0 for k ∈ [1, N] and j ∈ [1, n], and 

1
1n

kjj
M

=
=∑  for all k. Similarly, if U is 

positive, then every entry of U is positive; that is, Uji > 0 for i, j ∈ [1, n]. Therefore, 

by matrix multiplication, ( )
1

0
n

kj jk
j

i iMU M U
=

= >∑  for k ∈ [1, N] and i ∈ [1, n]. 

THEOREM 5.5.– The transition matrix of BBO with migration and mutation is 
primitive. 

PROOF.– From equation [5.47], we know that if Pki(v) = [MU]ki > 0 for all k ∈ [1, N] 

and i ∈ [1, n], then ( ) ( )
1 1

Pr 0ki
N n J

ij ki
J Y k i

p u v P
∈ = =

= = >⎡ ⎤⎣ ⎦∑∏∏ v  for i, j ∈ [1, T], where Y 

is given in equation [5.47]. So the transition matrix P = (pij) of BBO is positive. 
Therefore, since every positive transition matrix is primitive, P is primitive. 

COROLLARY 5.1.– There exists a unique limiting distribution for the states of the 
BBO Markov chain. Also, the probability that the Markov chain is in the ith state at 
any time is positive for all i ∈ [1, T]. 
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PROOF.– Corollary 5.1 is an immediate consequence of Theorems 5.2 and 5.5. 

Before we obtain the convergence properties of BBO, some precise definitions 
of the term convergence are required [GUO 01, MA 14a, MA 14b]. Assume that the 
search space of a global optimization problem is I with cardinality | I | = n. Further 
assume that the BBO algorithm with population size N consists of both migration 
and mutation, as shown in Figure 3.5 in Chapter 3. 

DEFINITION 5.1.– Let ( ) [ ] ( ){ }( ) 1, ,i iA t a t i N a t I= ∈ ∈  be the population at 

generation t, where N is the population size, ai(t) denotes a candidate solution in the 
search space I and A(t) may contain duplicate elements; :f I R→  denotes a fitness 

function assigning real values to solutions; ( ){ }{ }* * * arg maxI a a f a a I= = ∈  is 

a subset in the search space, each member of which has the globally maximum 
fitness; and the best solutions in the population at generation t are 

( ){ } ( )* *( ) jI a At t t= ⊂ , where ( )( ) ( )( )*
ijf a t f a t≥  for all * *( ) ( )j ta I t∈  and for all 

[ ]1,i N∈ . 

We use the notation ( )*a t  to denote an arbitrary element of * ( )I t  (that is, one 
of the best solutions in the population at generation t). Because of migration and 
mutation, ( )*a t  and its fitness will change randomly over time. As t → ∞ , the 

convergence, or lack of convergence, of ( )*a t  to the subset *I  indicates whether or 
not the BBO algorithm is globally convergent. That is, BBO is said to converge if: 

( )( ) ( )( )* * *lim 1 liP m 1r Pr
t t

a t I a A t
→∞ →∞

∈ = ⇔ ∈ =  [5.52] 

Note that ( )*a t  is not necessarily unique. However, Definition 5.1 states that the 

BBO algorithm is globally convergent if and only if [5.52] holds for every ( )*a t . 

Clearly, the evolution of ( )*a t  is a homogeneous finite Markov chain, which we 

call an ( )*a t -chain. 

Now we sort all the states of I in order of descending fitness; that is, 
{ }1, , nI I I= L  and ( ) ( ) ( )1 2 nf I f I f I≥ ≥ ≥L . We define S as the set of indices of 

I; that is, { }1, 2, ,S n= L . Furthermore, we define S* as the elements { }j  of S such 

that *
jI I∈ ; that is, *

jI I∈  for all *j S∈ . This leads to the following definition. 
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DEFINITION 5.2.– Let ( )ˆ ˆ ijP p=  be the transition matrix of an ( )*a t -chain, where 

ˆ ijp  for , [1, ]i j n∈  is the probability that ( )*
ia t I=  transitions to ( )* 1 ja t I+ = . The 

BBO algorithm converges to a global optimum if and only if ( )*a t  transitions from 

any state i I∈  to *I  as t → ∞ with probability one, that is, if: 

( )
*

ˆlim 1 for allt

t
j S

ij
P i S

→∞
∈

= ∈∑  [5.53] 

As noted earlier, there may be more than one a*
 (t) -chain since more than one 

element of the search space may have a globally maximum fitness. Definition 5.2 
states that the BBO algorithm converges to a global optimum if and only if equation 
[5.53] holds for every ( )*a t -chain. Also note that P̂  depends on the other solutions 
in the population at generation t. Definition 5.2 states that the BBO algorithm 
converges to a global optimum if and only if [5.53] holds for every possible P̂  
transition matrix for every ( )*a t -chain. 

THEOREM 5.6.– If the transition matrix ( )ˆ ˆ ijP p=  of an ( )*a t -chain is a positive 

stochastic matrix, then BBO with migration and mutation does not converge to any 
of the global optima. 

PROOF.– Since every positive matrix is also a primitive one, it follows by Theorem 
5.2 that the limiting distribution of P̂  is unique with all positive entries. Therefore, 
for any i S∈ , 

( ) ( ) ( )
* * * * 1

ˆ ˆ ˆlim 1 lim 1 lim 1 1
S

t t t
jt t t

j S j S S j S S j S
ij ij ij

P P P π
→∞ →∞ →∞

∈ ∈ − ∈ − = +

= − = − = − <∑ ∑ ∑ ∑  [5.54] 

where we use the notation *S S−  to denote all elements of S that do not belong to 
S*. We see that equation [5.53] is not satisfied, which completes the proof. 

THEOREM 5.7.– If the transition matrix ( )ˆ ˆ ijP p=  of an ( )*a t -chain is a stochastic 

matrix with the structure: 

0ˆ C
P

R Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [5.55] 
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where C is a positive stochastic matrix of order *S , and , 0R Q ≠ , then the BBO 

algorithm converges to one or more of the global optima. 

PROOF.– From Theorem 5.3, we see that for all ,i j S∈ , 

( )ˆ ˆlim
i

t

ijt

i S S

P p
π

π
→∞

×

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

M∞  [5.56] 

where *1, , , 0, ,0i i i S
π π π⎛ ⎞= ⎜ ⎟

⎝ ⎠
L L , 0ijπ >  for *1 j S≤ ≤ , and 

*

1
1

S

ij
j

π
=

=∑ . It 

follows directly that for any i S∈ , 

( ) ( )
*

* * 1

ˆ ˆlim lim 1
S

ijt t jj S

t

ij
S

t

ij
j

P P π
→∞ →∞ =∈ ∈

= = =∑ ∑ ∑  [5.57] 

We see that equation [5.53] is satisfied, which completes the proof. 

Theorems 5.6 and 5.7 can be applied directly to determine the global 
convergence of BBO if the structure of the transition matrix of the Markov chain can 
be determined, as we will show in the remainder of this section. In particular, we 
will formalize the observation that the transition matrix of BBO without elitism 
satisfies the conditions of Theorem 5.6 (as stated in Theorem 5.5). We will further 
show that the transition matrix of the a*(t)-chain of BBO with elitism satisfies the 
conditions of Theorem 5.7. 

A. Elitism 

We now discuss a modified BBO which uses elitism, an idea which is also 
implemented in many other EAs. There are many ways to implement elitism, but 
here we define elitism as the preservation of the best solution at each generation in a 
separate partition of the population space. This enlarges the population size by one 
solution; the elite solution increases the population size from N to N + 1. However, 
note that the population size is still constant (that is, equal to N + 1) from one 
generation to the next. The elite solution does not take part in recombination or 
mutation, but is maintained separately from the other N members of the population.  
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At each generation, if a solution in the N-member main population is better than the 
elite solution, then the elite solution is replaced with a copy of the better solution. 

Relative to a standard N-member BBO population, elite BBO increases the 
number of possible population distributions by a factor of n, which is the search 
space size. That is, each possible population distribution of the N-member main 
population could also include one of n elite solutions. The number of possible 
population distributions increases by a factor of n, from T to nT. We order these new 
states so that each group of n states has the same elite solution. Also, the elite 
solution in the mth group of n states is the mth best solution in the search space for  
m = 1, …, n. 

The elitist-preserving process can be represented by an upgrade transition matrix 
O, which contains the probabilities that each population distribution of the (N+1)-
member population transitions to some other population distribution after the elitist-
preserving step. That is, the element in the ith row and jth column of O, denoted as 
O(i, j), is the probability that the ith population distribution transitions to the jth 
population distribution after the step in which the elite solution is replaced with the 
best solution from the N-member main population. The upgrade matrix is similar to 
the one in [RUD 94]. It does not include the effects of migration or mutation, but 
only includes the elitism-preserving step. The upgrade matrix only includes the 
probability of changing the elite solution; it does not include the probability of 
changing the N-member main population, since it does not include migration or 
mutation. If there are no solutions in the N-member main population that are better 
than the elite solution, then the elite solution does not change. The structure of the 
upgrade matrix O can be written as: 

11

21 22

1 , 1

0 0

0

n n n nn

O
O O

O

O O O−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

O M

M O O

L

 [5.58] 

where each Oij matrix is T × T, where T is the number of population distributions in 
BBO with a population size of N and search space cardinality of n. O11 is the identity 
matrix since the first n population distributions have the global optimum as their 
elite solution, and the elite solution can never be improved from the global optimum. 
Matrices Oaa with 2a ≥  are diagonal matrices composed of all zeros and ones. 
Since the population distributions are ordered by grouping common elite solutions, 
and since elite solutions in the population distribution ordering are in order of  
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decreasing fitness, the super block diagonals in O are zero matrices as shown in 
equation [5.58]; that is, there is zero probability that the ith population distribution  
transitions to the jth population distribution if i < j. So the Markov chain of elite 
BBO can be described as: 

11

21 22

1 , 1

11

21 22

1 , 1

0 00 0
0

0

di

0
0 0

)

0 0

0

ag(

n n n nn

n n n nn

P O
OP
O OP

O O OP

PO
PO PO

P

PO PO PO

−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟

=

⎜ ⎟
⎠

=

⎝

LL

O MO M

M O OM O O

LL

L

O M

M O O

L

+

 [5.59] 

where P is the T × T transition matrix described in equation [5.48] in section 5.2. 

EXAMPLE 5.10.– 

To explain the update matrix O described in equation [5.58], a simple example is 
presented. Suppose there exists a search space consisting of n = 3 candidate 
solutions which are given as x = {x1, x2, x3} where the fitness of x1 is lowest and the 
fitness of x3 is highest. Suppose the main population size is N = 1, so the elitist 
population size is N + 1 = 2. Thus, there are nine possible populations before the 
elitist-preserving step, which are {C1, C2, C3, C4, C5, C6, C7, C8, C9} = {{x3, x3}, {x3, 
x2}, {x3, x1}, {x2, x3}, {x2, x2}, {x2, x1}, {x1, x3}, {x1, x2}, {x1, x1}}. Note that the first 
element in each population is the elite solution, and the last N elements (N = 1 in this 
example) is the main population. Also note that the populations are ordered in such a 
way that the first three have the most fit solution as their elite solution, the next three 
have the second most fit solution as their elite solution, and the last three have the 
least fit solution as their elite solution. The update matrix O is a 9 × 9 matrix. 

The population C1 = {x3, x3} transitions to the population C1 = {x3, x3} with 
probability 1; that is, O(1, 1) = 1. Population C1 cannot transition to any other 
population Ci( 1i ≠ ); that is, O(1, i) = 0 for 1i ≠ . Similarly, population C2 = {x3, x2} 
transitions to C2 with probability 1 since the elite x3 is better than the main-member  
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population x2; therefore, O(2, 2) = 1, and O(2, i) = 0 for i ≠ 2. Continuing with this 
reasoning, we obtain the O matrix as follows: 

11 12 13

21 22 23

31 32 33

1
0 1
0 0 1
1 0 0 0
0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

O O O
O O O O

O O O

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 [5.60] 

where each Oij matrix is 3 × 3, and the blank elements above the diagonal are each 0. 

 

Now we consider the convergence of the a*(t)-chain, which is the sequence of 
elite solutions in the elite BBO algorithm. If the elite solution is equal to the global 
optimum, we call this an absorbing state of the a*(t)-chain. Recall that the elite 
solution in elite BBO can only be replaced by one with better fitness. Therefore, the 
a*(t)-chain of elite BBO contains three classes of states: 1) at least one absorbing 
state, 2) non-absorbing states which transition to absorbing states in one step and 3) 
non-absorbing states which transition to non-absorbing states in one step. So the 
transition matrix P̂  of the a*(t)-chain, which we introduced in equations 
[5.53]−[5.57], can be written as: 

0ˆ kI
P

R Q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [5.61] 

where Ik is a k × k unit matrix corresponding to optimal solutions (k is the number of 
optima), R is a matrix of order (|S| − k) × k corresponding to non-absorbing states that 
transition to absorbing states ( S  is the cardinality of the state space S, so S k−  is 
the number of non-absorbing states), and Q is a matrix of order (|S| − k) × (|S| − k) 
corresponding to non-absorbing states that transition to non-absorbing states. The 
matrix P̂  of equation [5.61] has the same structure as P̂  in Theorem 5.7. It follows 
from Theorem 5.7 that the a*(t)-chain of elite BBO is globally convergent. 
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These results are similar to the canonical GA [RUD 94], which is proven to 
never converge to the global optimum, but elitist variants of which are proven to 
converge to the global optimum. We sum up these results in the following corollary. 

COROLLARY 5.2.– BBO with migration and mutation does not converge to any of the 
global optima, but elite BBO, which preserves the best solution at each generation, 
converges to the global optimum. 

PROOF.– This is an immediate consequence of Theorems 5.5 and 5.6 (the non-
convergence of BBO without elitism), Theorem 5.7 (the convergence of BBO with 
elitism) and the discussion above. 

B. Convergence rate 

The previous subsection analyzed the convergence properties of elite BBO, and 
this subsection discusses its convergence rate. The transition matrix of elite BBO 
after t steps can be found from equation [5.61] as: 

ˆ 0kt
t

t

I
N R

P
Q

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 [5.62] 

where ( ) ( )12 1t tN I Q Q Q I Q I Q−−= + + + + = − −Lt . If 1Q < , then the limiting 

distribution of the Markov chain of BBO can be found from P̂∞ , which can be 
written as: 

( ) 1

0ˆlim
0

ˆ kt

t

I

I Q R
P P∞

−→∞

⎡ ⎤
= = ⎢ ⎥

−⎢ ⎥⎣ ⎦
 [5.63] 

Modified BBO with elitism has been proven to converge to a global optimum in 
the previous subsection, and there exists a limiting distribution ( )0 P̂π π ∞=* , where 

π(0) = [π1(0), …, πk(0), πk+1(0), …, π|S|(0)] ( ) ( )1 20 , 0π π= ⎡ ⎤⎣ ⎦ . (Recall that k is the 

number of global optima.) The convergence rate estimate of elite BBO can be 
obtained as follows. 

THEOREM 5.8.– If 1Q ρ= < , the convergence rate of elite BBO satisfies 

( ) ( )tt Oπ π ρ− ≤* . 
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PROOF.– 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( )( )

*

1

11 2

1
2

1
2

1 1
2

1 1 1
2

1
2

0 0

00
0

0

0 0
0 0

0

0

0

0

0 1

ˆ ˆt

kk
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t

t
t

t
t t

t
t

t t

t t

t

t

II
N R Q I Q R

N I Q R Q

N N I Q R Q

N I Q

P

R Q

I Q I Q I Q R Q

I Q I Q Q I Q R Q

R

P

I Q Q

π π π π

π

π π

π

π

π

π

π

−

−

−

−

− −

− − −

−

∞− = −

⎡ ⎤⎡ ⎤⎡ ⎤
= −⎢ ⎥⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎡ ⎤⎣ ⎦ − −⎢ ⎥⎣ ⎦

⎡ ⎤= − −
⎣ ⎦

≤ − − ⋅ +

= − − − − ⋅ +

= − − − − − ⋅ +

≤ − − ⋅ + ≤ ( )

( )
2 0 1

1
t

t

R
Q

Q

O

π

ρ

⎛ ⎞
+⎜ ⎟⎜ ⎟−⎝ ⎠

=

 [5.64] 

Note that elite BBO is guaranteed to converge to a global optimum regardless of 
the initial state. In addition, note that we can improve the convergence rate bound by 
decreasing the parameter ρ. That is, reducing the number of non-absorbing states 
which transition to other non-absorbing states can accelerate the convergence of elite 
BBO. In spite of differences between GAs and BBO [SIM 11d], we see from 
Theorem 5.8 that the convergence rate of BBO with elitism is very similar to that of 
GAs [HE 99, Theorem 5]. 

EXAMPLE 5.11.– 

Theorem 5.8 gives the upper bound of the convergence rate estimate of elite 
BBO. In this example, we use simulations to confirm this theorem. Note that in 
equation [5.64] the parameter ρ is a norm: Qρ = . Here we define .  as the 

infinity norm .
∞

; that is, 

1

max
n

iji j

Q q
∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  [5.65] 



88     Evolutionary Computation with Biogeography-based Optimization 

where qij is the element in the ith row and the jth column of matrix Q. Now note that 
the transition matrix P̂  in equation [5.61] can be obtained from equations [5.48] 
and [5.59] using elementary matrix transformations. We can thus use Theorem 5.7 
to check for BBO convergence, and we can use Theorem 5.8 to estimate the 
convergence rate of BBO. That is, we define ( )tπ π− *  as the error between a BBO 
population distribution and a distribution that includes at least one optimal solution. 
We then define the convergence criterion as an arbitrarily small error (for example, 

( ) 610tπ π −− =* ). We can then estimate the time t to convergence from equation 

[5.64] as follows: 

6log 10t ρ
−≈  [5.66] 

Test functions in this section are limited to 3-bit problems with a search space 
cardinality of eight and a population size of four. The fitness functions include the 
one-max problem described by equation [5.49] and the deceptive problem described 
by equation [5.51]. In addition, we add a multimodal problem, which is given as: 

( )4 2 2 3 2 3 3 4f =  [5.67] 

In equation [5.67], fitness values are listed in binary order, so the first element of 
the fitness function corresponds to the bit string 000, the second element 
corresponds to the bit string 001, and so on. For the BBO parameters, we use a 
maximum immigration rate and maximum emigration rate of 1, and we use linear 
migration curves. We test elite BBO with three different mutation rates which are 
applied to each bit in each solution at each generation: 0.1, 0.01 and 0.001. Note that 
we do not test with a zero mutation rate because the theory in this section requires 
that the mutation rate be positive (see Theorem 5.4). Convergence is not guaranteed 
unless the mutation rate is positive. 

Numerical calculations show that the transition matrices for these three problems 
satisfy the convergence conditions of Theorem 5.7, which indicates that the BBO 
algorithm converges to one or more of the global optima. As a heuristic test of 
Theorem 5.8, we use simulations to record the first generation number of obtaining a 
population in which all solutions are optimal, and all results are computed from 25 
Monte Carlo simulations. Tables 5.3−5.5 show comparisons of the theoretical 
convergence time t, the corresponding parameter ρ and the first generation number 
of finding an all-optimal population, averaged over 25 Monte Carlo simulations. For 
the one-max problem, the all-optimal population is (0 0 0 0 0 0 0 4), for the 
deceptive problem, the all-optimal population is (4 0 0 0 0 0 0 0), and for the 
multimodal problem, the all-optimal population is (* 0 0 0 0 0 0 *), where the sum 
of the * terms in the vector is 4. 
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Tables 5.3−5.5 show time to convergence, and time to finding an optimum for 
BBO. The tables confirm the statement following Theorem 5.8 that the convergence 
behavior of BBO is similar to that of GA. The tables show that GA converges 
slightly faster than BBO for high mutation rates, but BBO converges slightly faster 
for low mutation rates. The latter behavior is more important in practice because low 
mutation rates provide faster convergence. 

Mutation rate 
Theoretical analysis Average generation number using 

simulation Parameter ρ Convergence time t 
BBO GA BBO GA BBO GA 

0.1 0.87 0.85 99.20 90.45 87.58 82.39 
0.01 0.68 0.73 35.82 44.16 42.12 50.18 
0.001 0.30 0.44 11.47 16.81 11.63 17.37 

Table 5.3. Convergence rate comparison for the 3-bit one-max problem.  
The table shows the convergence time t in seconds, the corresponding ρ and  

the first generation number of finding an all-optimal population using BBO  
and GA, averaged over 25 Monte Carlo simulations 

Mutation rate 
Theoretical analysis Average generation number using 

simulation Parameter ρ Convergence time t 
BBO GA BBO GA BBO GA 

0.1 0.96 0.95 338.43 270.13 289.55 256.37 
0.01 0.48 0.52 18.82 21.49 20.65 22.44 
0.001 0.25 0.29 9.97 11.14 9.92 11.08 

Table 5.4. Convergence rate comparison for the 3-bit deceptive problem.  
The table shows the convergence time t in seconds, the corresponding ρ and  

the first generation number of finding an all-optimal population using BBO  
and GA, averaged over 25 Monte Carlo simulations 

Mutation rate 
Theoretical analysis Average generation number using 

simulation Parameter ρ Convergence time t 
BBO GA BBO GA BBO GA 

0.1 0.61 0.59 27.95 25.16 26.09 24.87 
0.01 0.11 0.17 6.26 7.95 6.17 7.72 
0.001 0.04 0.05 4.29 4.76 4.18 4.63 

Table 5.5. Convergence rate comparison for the 3-bit multimodal problem.  
The table shows the convergence time t in seconds, the corresponding ρ and  

the first generation number of finding an all-optimal population using BBO  
and GA, averaged over 25 Monte Carlo simulations 
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Several things are notable about the results in Tables 5.3−5.5. First, the mutation 
rate affects the convergence rate of BBO. For all test problems, the convergence rate 
improves when the mutation rate decreases. We can accelerate the convergence of 
BBO by decreasing the mutation rate. This may provide practical guidance for BBO 
tuning for real-world problems. Second, by analyzing the relationship of the 
parameter ρ and the convergence time t in Tables 5.3−5.5, we see that the 
convergence time t is exponentially related to the parameter ρ as predicted by 
Theorem 5.8. Third, the theoretical results and simulation results match well for 
most of the test problems, which confirms the convergence rate estimate provided 
by Theorem 5.8. 

 

5.4. Markov models of BBO extensions 

Section 5.2 set up the Markov model of the basic BBO algorithm, which is also 
called partial immigration-based BBO, and which considers the immigration of each 
solution feature as separate probabilistic trials. This section derives Markov models 
for the three variations of BBO as described in Figures 4.2, 4.3 and 4.4 in Chapter 4, 
including total immigration-based BBO, partial emigration-based BBO and total 
emigration-based BBO [MA 13a, MA 13b]. 

A. Total immigration-based BBO 

Total immigration-based BBO (Figure 4.2) bases migration on the immigration 
rate for each solution, and probabilistically decides whether or not to immigrate all 
solution features (that is, all independent variables) to a given solution. This is 
different from the basic BBO algorithm, which considers immigration of one 
solution feature at a time. For total immigration-based BBO, given that the 
population distribution at generation t is equal to v, the probability Pki(v) that 
immigration results in yk,t+1 = xi  at generation t+1 can be obtained as follows: 
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 [5.68] 

Note that the first term of the right side of equation [5.68] denotes the probability 
when immigration does not occur; that is, when yk is not selected for immigration. 
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The second term on the right side of equation [5.68] denotes the probability when 
immigration occurs, and it is proportional to the product of the summed emigration 
rates of all solutions whose bits are equal to those of xi. 

Now suppose that the mutation probability is the same as that in the basic BBO 
algorithm. That is, ( )kiP v  is defined as in equation [5.47], except that we use Mki(v) 
from equation [5.68] instead of Mki(v) from equation [5.47]. Then, the transition 
matrix for total immigration-based BBO is calculated as shown in equation [5.48]. 

B. Partial emigration-based BBO 

Partial emigration-based BBO (Figure 4.3) bases migration on emigration rates 
for each solution, and probabilistically decides whether or not to emigrate each 
solution feature. If emigration is selected, the immigrating solution is 
probabilistically selected based on immigration rates. For all BBO variations, the 
probability that yk is equal to some specific value includes the probability that 
immigration does not occur and the probability that immigration occurs. Suppose r 
denotes the current emigration trial number (there are N emigration trials of the 
outer loop in Figure 4.3). If the sth feature of yk is not selected for immigration 
during generation t, then: 

( ) ( ) ( ) ( )( ),1
if no immigration t on the th emigration trialo k k tm kt

y s x s y rs
+

=  [5.69] 

To calculate the probability that immigration does not occur, first consider the 
emigration probability of xm(r) on the rth emigration trial, which can be written as: 

( )emigration on the th emigration trial)P ( =r m rr μ  [5.70] 

where the meaning of m(r) is similar to m(k) in equation [5.18]. The immigration 
probability of yk is proportional to its immigration rate. So the probability that 
xm(r)(s) immigrates to yk(s) on the rth emigration trial can be written as: 
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 [5.71] 
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The probability that immigration does not occur for yk(s) on the rth emigration 
trial can be written as: 

( )
( )

1

Pr(no immigration to on the th emigration trial)
1 Pr(immigration to on the th emigration trial)

1
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 [5.72] 

However, if the sth feature of yk is selected for immigration on the rth emigration 
trial during generation t, then in order to have yk(s) = xi(s), the sth feature of the 
emigrating solution xm(r) must be equal to the sth feature of xi; that is, 

( ) ( ) ( ) ( )
( )( )

1

,if immigration to on the th emigration trial

k im rt
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= =
 [5.73] 

Equations [5.69], [5.70], [5.71] and [5.72] are combined to obtain the total 
migration probability of one bit of yk after R emigration trials. Here use R to denote 
the total number of emigration trials; this differs from r, which indicates a specific 
emigration trial. So the total migration probability can be written as: 
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Note that the above equation applies to one bit in one solution after R emigration 
trials. For example, consider the simple case of one emigration trial (R = 1). In this 
case, the probability that yk(s) = xi(s) at generation t+1 can be written as: 
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To express this in a more compact form, we introduce the notation ( )m kη  for 

( )
1

n

m k j j
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=
∑  in the following equations. So after two emigration trials, we obtain: 
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 [5.76] 

Note that the first term of the right side of the above equation denotes the 
probability when immigration does not occur on either of the two emigration trials, 
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the second term denotes the probability when immigration occurs on the first 
emigration trial but not on the second emigration trial, and the third term denotes the 
probability when immigration occurs on the second emigration trial. After N 
emigration trials (recall that the population size is N), we can use induction to see 
that the probability can be written as: 
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Note that the first term of the right side of the above equation denotes the 
probability when immigration does not occur on any of the N emigration trials, the 
second term denotes the probability when immigration occurs on the first emigration 
trial but none of the later emigration trials, the third term denotes the probability 
when immigration occurs on the second emigration trial but none of the later trials, 
and so on. A more compact form of equation [5.77] is: 
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We again use Pki(v) to denote the probability that immigration results in yk,t+1 = xi 
given that the population distribution at generation t is equal to v. Recalling that 
there are q bits in each solution, this can be written as: 
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The incorporation of mutation probability is the same as for basic BBO, so 
( )kiP v  is defined the same as equation [5.47], except we use Mki(v) from equation 

[5.79]. Then, the transition matrix for total immigration-based BBO is calculated as 
shown in equation [5.48]. 

C. Total emigration-based BBO 

Total emigration-based BBO (Figure 4.4) bases migration on the emigration rate 
for each solution, and probabilistically decides whether or not to emigrate all 
solution features from each solution. This differs from partial emigration-based 
BBO, which considers emigration of one solution feature at a time. But in total 
emigration-based BBO, the immigration probability of one bit of yk after R 
emigration trials is the same as in partial emigration-based BBO. This can be seen 
by carefully comparing Figures 4.3 and 4.4; the probability of immigrating to zk(s) is 
the same for both algorithms. Therefore, the Markov transition matrix is the same 
for total emigration-based BBO as it is for partial emigration-based BBO. 

EXAMPLE 5.12.– 

In this example, we use simulation to confirm the Markov models of three BBO 
variations: total immigration-based BBO, partial emigration-based BBO and total 
emigration-based BBO. To provide some comparisons, we also use the Markov 
model of the basic BBO algorithm in this example. For convenience, partial 
immigration-based BBO (the basic BBO) and total immigration-based BBO are 
called immigration-based BBO algorithms, and partial emigration-based BBO and 
total emigration-based BBO are called emigration-based BBO algorithms. The 
Markov transition matrices derived in sections 5.1 and 5.4 are used to obtain the 
probability, in the limit as the generation count approaches infinity, that the BBO 
population consists of a particular set of solutions. Test problems and population 
size are the same as those in Example 5.9. 
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Tables 5.6, 5.7 and 5.8 show Markov and simulated results for the four BBO 
algorithms with mutation rates of 0.1, 0.01 and 0.001 per bit per generation. The 
tables show the probability of obtaining a population in which all solutions  
are optimal, and the probability of obtaining a population in which no solutions are 
optimal. 

Mutation 

rate 

Population 

count  

vector 

Probability 

Partial immigration 

BBO (basic BBO) 

Total  

immigration BBO 

Partial  

emigration BBO 

Total emigration 

BBO 

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

0.1 

All  

Optimal 
0.0245 0.0251 0.0258 0.0265 0.0630 0.0616 0.0630 0.0631 

No  

Optimal 
0.2998 0.2970 0.3108 0.3232 0.2361 0.2358 0.2361 0.2312 

0.01 

All  

Optimal 
0.5343 0.5314 0.5330 0.5244 0.7551 0.7596 0.7551 0.7510 

No  

Optimal 
0.1134 0.1309 0.1175 0.1160 0.0328 0.0342 0.0328 0.0362 

0.001 

All  

Optimal 
0.8605 0.8590 0.8601 0.8587 0.9542 0.9547 0.9542 0.9527 

No  

Optimal 
0.0923 0.0975 0.0927 0.0900 0.0221 0.0230 0.0221 0.0267 

Table 5.6. Optimization results for the 3-bit one-max problem. The table shows  
the probabilities of obtaining an all-optimal population and the probabilities  

of obtaining a no-optimal population using BBO Markov models and  
simulations. The best Markov performance is in bold in each row 
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Mutation 

rate 

Population 

count vector 

Probability 

Partial immigration 

BBO (basic BBO) 

Total immigration 

BBO 

Partial emigration 

BBO 

Total emigration 

BBO 

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

0.1 
All Optimal 0.0315 0.0318 0.0328 0.0328 0.0313 0.0340 0.0313 0.0323 

No Optimal 0.3751 0.3765 0.3837 0.3889 0.4116 0.4261 0.4116 0.4201 

0.01 
All Optimal 0.6206 0.6209 0.6185 0.6142 0.5695 0.5510 0.5695 0.5704 

No Optimal 0.1362 0.1333 0.1399 0.1383 0.2250 0.2249 0.2250 0.2196 

0.001 
All Optimal 0.8771 0.8770 0.8766 0.8753 0.7817 0.7792 0.7817 0.7842 

No Optimal 0.0937 0.0927 0.0942 0.0952 0.1941 0.1917 0.1941 0.1896 

Table 5.7. Optimization results for the 3-bit deceptive problem. The table shows  
the probabilities of obtaining an all-optimal population and the probabilities  

of obtaining a no-optimal population using BBO Markov models and  
simulations. The best Markov performance is in bold in each row 

Mutation 

rate 

Population  

count vector 

Probability 

Partial immigration 

BBO (basic BBO) 

Total immigration 

BBO 

Partial emigration 

BBO 

Total emigration 

BBO 

Markov Simulation Markov Simulation Markov Simulation Markov Simulation 

0.1 
All Optimal 0.0485 0.0472 0.0506 0.0546 0.0487 0.0473 0.0487 0.0431 

No Optimal 0.1819 0.1825 0.1780 0.1716 0.2090 0.2060 0.2090 0.2038 

0.01 
All Optimal 0.6872 0.6937 0.6863 0.6813 0.7057 0.7195 0.7057 0.7172 

No Optimal 0.0484 0.0418 0.0499 0.0474 0.0846 0.0859 0.0846 0.0825 

0.001 
All Optimal 0.9352 0.9309 0.9350 0.9362 0.9070 0.8983 0.9070 0.9046 

No Optimal 0.0337 0.0323 0.0339 0.0318 0.0701 0.0857 0.0701 0.0693 

Table 5.8. Optimization results for the 3-bit multimodal problem. The table shows  
the probabilities of obtaining an all-optimal population and the probabilities  

of obtaining a no-optimal population using BBO Markov models and  
simulations. The best Markov performance is in bold in each row 
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Several things are notable about the results in Tables 5.6, 5.7 and 5.8. First, the 
mutation rate affects the performance for all the four BBO algorithms. For all the 
three problems, the performance of the four algorithms improves as the mutation 
rate decreases; that is, the probability of obtaining an all-optimal population 
increases, and the probability of obtaining a no-optimal population decreases. The 
tables show that a high mutation rate of 0.1 per bit results in too much exploration so 
the probability of obtaining an all-optimal population is low, and the probability of 
obtaining a no-optimal population is relatively high. However, as the mutation rate 
decreases to 0.01 and 0.001, the probability of obtaining an all-optimal population 
significantly increases, and the probability of obtaining a no-optimal population 
significantly decreases. The higher the mutation rate, the lower the probability that 
the optimum is found and kept for the next generation, which gives worse 
performance, as shown in the tables. 

Second, for the one-max problem in Table 5.6, the emigration-based BBO 
algorithms outperform the immigration-based BBO algorithms for all mutation 
rates; that is, emigration-based BBO algorithms have a higher probability of 
obtaining an all-optimal population and a lower probability of obtaining a no-
optimal population. For example, for a mutation rate of 0.001 per bit, the best 
performance is obtained by emigration-based BBO algorithms in their high 
probability of obtaining an all-optimal population (95.43%), and in their low 
probability of obtaining a no-optimal population (2.22%). Partial immigration-based 
BBO and total immigration-based BBO probabilities are 86.05% and 86.01%, 
respectively, for obtaining an all-optimal population, and 9.23% and 9.28%, 
respectively, for obtaining a no-optimal population. 

Third, for the deceptive problem in Table 5.7, the immigration-based BBO 
algorithms outperform the emigration-based BBO algorithms for all mutation rates, 
with partial immigration-based BBO slightly better than total immigration-based 
BBO. For example, for a mutation rate of 0.001 per bit, the best performance is 
obtained by partial immigration-based BBO in its high probability of obtaining an 
all-optimal population (87.71%), and in its low probability of obtaining a no-optimal 
population (9.38%). Total immigration-based BBO and emigration-based BBO 
algorithms are 87.67% and 78.18%, respectively, for obtaining an all-optimal 
population, and 9.43% and 19.41%, respectively, for obtaining a no-optimal 
population. 

Fourth, for the multimodal problem in Table 5.8, the probability of obtaining an 
all-optimal population and the probability of obtaining a no-optimal population are 
very similar for all the four BBO algorithms. Specifically, total immigration-based 
BBO outperforms the other three algorithms when the mutation rate is 0.1 per bit, 
and partial immigration-based BBO outperforms the other three algorithms when the 
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mutation rate is 0.001 per bit, but the emigration-based BBO algorithms outperform 
the immigration-based BBO algorithms when the mutation rate is 0.01 per bit. 

All of these results show that different variations of BBO provide different 
optimization performance for different types of problems. For the unimodal problem, 
the emigration-based BBO algorithms are better than the immigration-based BBO 
algorithms. For the deceptive problem, the immigration-based BBO algorithms are 
better than the emigration-based BBO algorithms. For the multimodal problem, the 
emigration-based BBO algorithms perform similarly to the immigration-based BBO 
algorithms. Tables 5.6−5.8 further show that the performance of partial immigration-
based BBO and total immigration-based BBO are similar for all test problems. These 
results are summarized in Table 5.9. 

Finally, Tables 5.6−5.8 show that the Markov model results and the simulation 
results match well for all of the test problems, which confirms the Markov models of 
the proposed BBO variations. 

Problem Best algorithm Other notes 

Unimodal 
problem 

Emigration-based BBO 
The two emigration-based BBO 
algorithms perform identically 

Deceptive 
problem 

Immigration-based BBO 
The two immigration-based BBO 

algorithms perform similarly 

Multimodal 
problem 

No significant difference 
between BBO algorithms 

All BBO algorithms perform better with 
low mutation rates 

Table 5.9. Conclusions from the Markov study of the four BBO algorithms on 3-bit 
problems. The “best algorithm” for each problem is determined from an inspection of 

Tables 5.6−5.8 

 

5.5. Conclusions 

In this chapter, we derived Markov models for BBO and its variations, and we 
discussed convergence based on the Markov models. These models give 
theoretically exact results, whereas simulations change from one run to the next due 
to initialization and the random number generator that is used for migration and 
mutation. Unfortunately, the dimension of the Markov model grows factorially with 
the population size and the search space size. This limits its application to very small 
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problems. However, Markov models are still useful for giving exact results without 
the need to rely on the random nature of stochastic simulations. 

In this concluding section, we discuss the curse of dimensionality of the Markov 
model. The curse of dimensionality is a phrase that was originally used in the 
context of dynamic programming [BEL 61; SIM 13a, p. 81]. However, it applies 
even more appropriately to Markov models of population-based optimization 
algorithms, including BBO. The size of the transition matrix of a Markov model of 
BBO is T × T, where T is calculated by equation [5.19]. The transition matrix 
dimensions for a few combinations of population size N, and search space 
cardinality n, which is equal to 2q for q-bit search spaces, are shown in Table 5.10. 
We see that the transition matrix dimension grows ridiculously large for problems of 
even modest dimension. This seems to indicate that Markov modeling is interesting 
only from a theoretical viewpoint and does not have any practical applications. 
However, there are a couple of reasons that such a response may be premature. 

Number of bits q n = 2q N T 
10 210 10 1023 
10 210 20 1042 
20 220 20 10102 
50 250 50 10688 

Table 5.10. Markov transition matrix dimensions for  
various search space cardinalities n and population  

sizes N. Adapted from [REE 03, p. 131] 

First, although we cannot apply Markov models to realistically sized problems, 
Markov models still give us exact probabilities for small problems. This allows us to 
look at the advantages and disadvantages of different EAs for small problems, 
assuming that we have Markov models for EAs other than BBO. A lot of research in 
EAs today is focused on simulations. The problem with simulations is that their 
outcomes depend on implementation details and on the specific random number 
generator that is used. Also, if some event has a very small probability of occurring, 
then it would take many simulations to discover that probability. Simulation results 
are useful and necessary, but they must always be taken with a dash of skepticism 
and a pinch of salt. 

Second, the dimension of the Markov transition matrices can be reduced. Our 
Markov models include T states, but many of these states are very similar to each  
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other. For example, consider BBO with a search space cardinality of 10 and a 
population size of 10. Table 5.10 shows us that the Markov model has 1023 states, 
but these include the states: 

( ) { }
( ) { }
( ) { }

1 5,5,0,0,0,0,0,0,0,0

2 4,6,0,0,0,0,0,0,0,0

3 6, 4,0,0,0,0,0,0,0,0

v

v

v

=

=

=

 [5.80] 

These three states are so similar that it makes sense to group them together and 
consider them as a single state. We can do this with many other states to get a new 
Markov model with a reduced state space. Each state in the reduced-order model 
consists of a group of the original states. The transition matrix would then specify 
the probability of transitioning from one group of original states to another group of 
original states. This idea was proposed in [SPE 97] and is further discussed in  
[REE 03]. It is hard to imagine how to group states to reduce a 1023 × 1023 matrix to 
a manageable size, but this idea may allow us to handle larger problems than we 
would be able to otherwise. 



6 

Dynamic System Models of BBO 

In the last chapter, we saw that the transition matrix for a BBO Markov model is 
found by calculating the cumulative probabilities of migration and mutation. We 
now develop this construction in more detail to examine the dynamics of a 
population as it transitions from generation to generation. This will give us a more 
complete model, which is called a dynamic system model. The dynamic system 
model is based on the Markov model, but the application is quite different. The 
Markov model gives the steady-state probability of each possible population as the 
generation count approaches infinity. The dynamic system model gives  
the time-varying proportion of each possible solution in the search space as the 
population size approaches infinity. 

Overview of the chapter 

This chapter develops a dynamic system model for the basic BBO algorithm. 
Section 6.1 presents the basic notation that we will use in later sections. Section 6.2 
derives the BBO dynamic system model and some of its properties, based on the 
Markov model. Section 6.3 uses our dynamic system model to solve some 
benchmark problems. 

6.1. Basic notation 

This section introduces the notation used in the BBO dynamic system model. 
Some of this notation may be more general or more specific in other contexts. The 
definitions indicated here are not universal, but nevertheless are commonly used, 
and more importantly for our purposes, are specifically used in this chapter. 

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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First, we note a difference between the notations of Markov processes and 
dynamic systems. A Markov process is a process whose state at time step (t + 1) 
depends only on the state at time t. The transition of the state from one time step to 
the next is probabilistic. A dynamic system is a process whose state at time step  
(t + 1) depends only on the state at time t, but the transition of the state from one 
time step to the next is deterministic. 

Second, the Markov model gives us the probability of occurrence of each 
possible population distribution as the number of generations approaches infinity. 
The dynamic system model is quite different; it gives us the proportion of each 
possible solution in the population as a function of time as the population size 
approaches infinity. 

Third, in the Markov model, each state represents a possible population 
distribution, that is, a possible distribution of solutions in the search space. The 
probability that the system transitions from state i to state j is given by the 
probability pij, which is the probability that the population transitions from the ith 
possible population distribution to the jth possible population distribution in one 
generation. The states in the dynamic system model are not the same as the states in 
the Markov model. Dynamic system model states represent the proportion of each 
possible solution in the population. 

Fourth, the number of states is different in the Markov model and in the dynamic 
system model. Recall from equation [5.19] in Chapter 5 that for a Markov model 
with a population size of N and a search space of cardinality n, the number of states 
T is given by: 

1n N
T

N
+ −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [6.1] 

For the dynamic system model, the number of states is equal to the search space 
cardinality n of the optimization problem. The number of states of the dynamic 
system model is thus only a small fraction of the number of states of the Markov 
model. This makes the dynamic system model applicable to larger problems than the 
Markov model. 

Finally, both the Markov model and the dynamic system model allow us to 
obtain exact results without the need to rely on the random nature of stochastic 
simulations. The results of the two models are more precise than simulation. The 
dynamic system model for EAs in general is explained in detail in [REE 03],  
[NIX 92], [VOS 90] and [VOS 91]. 
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EXAMPLE 6.1.– 

We use an example to illustrate the population distribution in the Markov model 
and the candidate solution proportions in the dynamic system model. Suppose there 
exists a search space consisting of n = 3 possible solutions which are x = {x1, x2, x3} = 
{00, 01, 10} with a population size N = 2. So there are six possible population 
distributions from equation [6.1], which are {{00, 00}, {00, 01}, {00, 10}, {01, 01}, 
{01, 10}, {10, 10}}, and the corresponding population count vectors are {{2, 0, 0}, 
{1, 1, 0}, {1, 0, 1}, {0, 2, 0}, {0, 1, 1}, {0, 0, 2}}. Suppose that the solutions in the 
current population are y = {x2, x3} = {01, 10}. Then, we have the population count 
vector v = {v1, v2, v3} = {0, 1, 1}, and the solution proportion vector p = v/N = {0, 
0.5, 0.5}. 

 

6.2. Dynamic system models of BBO 

In this section, we use the Markov model of the previous chapter to derive a 
dynamic system model of the basic BBO algorithm. Therefore, some parameters in 
this chapter are the same as those in the previous chapter. The view of a BBO as a 
dynamic system was originally published in [SIM 11a], which forms the basis of this 
chapter. 

First, recall the probability ( )kiP v  that the kth migration results in =k iy  x  at 
generation (t + 1), and is described as: 

( ) ( )

( )( ) ( ) ( )( ) ( )
( )

, 1

0 ( )
1

1

Pr

1 1 i

ki k t i

q j jj s
m k im k m k n

s j jj

P v y x

v
x s x s

v
ς

μ
λ λ

μ

+

∈

=
=

= =

⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥
⎣ ⎦

∑
∏

∑
 [6.2] 

In equation [6.2], yk is the kth solution in the population: 

{ }1 1 1 1 2 2 2

1 2

, { , , , , , , , , , , , }N n n n

v copies v copies v copiesn

y y x x x x x x x x x=L L L L L
14243 14243 14243

 [6.3] 
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where the yk solutions have been ordered to group identical solutions. That is, 

1 1

2 1 1 2

3 1 2 1 2 3

1

1

, for 1, ,
, for 1, ,
, for 1, ,

, for 1, ,

k

n
n ii

x k v
x k v v v

y x k v v v v v

x k v N−

=

⎧ =⎪
= + +⎪

⎪= = + + + +⎨
⎪
⎪
⎪ = +⎩ ∑

L

L

L

M

L

 [6.4] 

where N is the population size. So equation [6.3] can be rewritten more compactly 
as: 

( ) for 1, 2, ,k m ky x k N= = L  [6.5] 

where m(k) is defined as: 

( )
1

min such that
r

i
i

m k r v k
=

= ≥∑  [6.6] 

In equation [6.2], v is the population count vector at the tth generation, which is: 

{ }1 2, , , nv v v v= L  [6.7] 

where iv  is the number of copies of solution ix  in the population, so that: 

1

n

i
i

v N
=

=∑  [6.8] 

In order to derive a dynamic system model for BBO, we make a slight change in 
the basic BBO algorithm of Figure 3.5 in Chapter 3. We still cycle through the 
immigration loop N times; however, instead of deterministically cycling through 
each population member ky  for immigration, we randomly select a population 
member for immigration each of the N times through the loop. Therefore, each time 
we cycle through the immigration loop, each ky  has a 1/N chance of being selected 
for immigration. Note that as N → ∞ , this is equivalent to the algorithm of  
Figure 3.5. With this change, the basic BBO algorithm is modified to become the 
algorithm shown in Figure 6.1. 
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Initialize a population of candidate solutions { kx } for k ∈ [1, N] 

While not (termination criterion) 

For each ,kx  set emigration rate μk proportional to the fitness of ,kx  where μk is 

normalized to [0, 1] 

For each ,kx  set immigration rate λk = 1 − μk 

{ kz } ← { kx } 

For h = 1,…, N 

    Randomly select one of the kz  solutions 

    For each solution feature SIV 

        Use λk to probabilistically decide whether to immigrate to zk 

        If immigrating then 

             Use {μi} to probabilistically select the emigrating solution xj 

             zk(SIV) ← xj(SIV) 

        End if 

    Next solution feature  

    Probabilistically decide whether to mutate zk 

Next h 

{ kx } ← { kz } 

Next generation 

Figure 6.1. Outline of the BBO algorithm with random selection of the  
immigrating solution. { kx } is the population of solutions and { kz } is a temporary 

population of solutions. kx  is the kth candidate solution and ( )kx SIV  is the  
solution feature SIV of kx . For simplicity, we use s to denote SIV in the text 

For the algorithm described in Figure 6.1, the probability that the hth migration 
trial hM  results in ix  is: 

1

1Pr( ) Pr( )
N

h i k i
k

M x y x
N =

= = =∑  [6.9] 

Now note that: 

1 2 1 2
Pr( ) Pr( ) ifk i k i k ky x y x y y= = = =  [6.10] 



108     Evolutionary Computation with Biogeography-based Optimization 

Combining equations [6.4], [6.5], [6.6] and [6.10], we get: 

( )
1 2

( 1) ( )

1 2
1 1

Pr( ) Pr( ) if 1,
m k m k

k i k i i i
i i

y x y x k k v v
−

= =

⎡ ⎤
= = = = ∈ +⎢ ⎥

⎣ ⎦
∑ ∑  [6.11] 

Therefore, equation [6.9] can be written as: 

( )( ) ( )
0

1 1
1

1Pr( ) (1 )1 ( ) i
qn j jj s

h i k k k i k n
k s j jj

v
M x v x s x s

N v
ς

μ
λ λ

μ
∈

= =
=

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= = − − +⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑
∑ ∏

∑
 [6.12] 

Now we define the population-count proportionality vector p as: 

vp
N

=  [6.13] 

That is, ip  is the proportion of ix  solutions in the population for [ ]1,i n∈ , and 
the elements of p add up to 1. Equation [6.12] can then be written as: 

( )( ) ( )

( )( ) ( )

0
1 1

1

0
1 1

Pr( ) (1 )1 ( )

(1 )1 ( )
( )

i

i

qn j jj s
h i k k k i k n

k s j jj

qn
Tk

k k i k j jT q j s
k s

v
M x p x s x s

v

p p x s x s v
p

ς

ς

μ
λ λ

μ

μ λ λ μ
μ

∈

= =
=

∈
= =

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= = − − +⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤= − − +⎨ ⎬⎣ ⎦⎩ ⎭

∑
∑ ∏

∑

∑ ∑∏
 [6.14] 

The quantities on the right side of equation [6.14] are defined at the tth 
generation. The left side of equation [6.14] then gives probability of obtaining xi at 
generation (t + 1). 

Next, we introduce a theorem to represent the basic population dynamics 
relationship [REE 03, p. 144, VOS 99, Theorem 2]. 

THEOREM 6.1.–If the current population is given by the population vector p , then 
the next population expected is ( )f p , where ( )f ⋅  is a generational operator. 

According to Theorem 6.1, we see that the left side of equation [6.14] is equal to 
the proportion of xi solutions in the population at generation (t + 1): 

( )( ) ( )0
1 1

( )( 1) ( ) (1 )1 ( )
( ( ) ) i

qn
Tk

i k k i k j jT q j s
k s

p tp t p t x s x s v
p t ς

μ λ λ μ
μ ∈

= =

⎧ ⎫⎡ ⎤+ = − − +⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑∏  [6.15] 
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where p is explicitly shown as a function of t. Based on equation [6.15] for 
[ ]1, ,i n∈  we can see the nonlinear dynamic system for the evolution of the 

population-count proportionality vector: 

( 1) ( ( ))p t f p t+ =  [6.16] 

Next, we incorporate mutation into our model and denote the n × n mutation 
matrix as U, where jiU  is the probability that jx  mutates to ix . Suppose that the 
event that each bit of a candidate solution is flipped is stochastically independent 
and occurs with probability u ∈ (0, 1). Then, the probability Uji can be written as: 

( )1 ijij q HH
jiU u u −= −  [6.17] 

where Hij represents the Hamming distance between bit strings ix  and jx . 

This gives the dynamic system model equation: 

( 1) ( ( ))p t f p t U+ =  [6.18] 

If mutation is not used in the BBO algorithm, then U is the identity matrix and 
equation [6.18] reduces to equation [6.16]. 

EXAMPLE 6.2.– 

To verify the dynamic system model of BBO, we consider a simple 3-bit 
problem (n = 8) with a per-bit mutation rate u = 0.2. The fitness values are given as 
follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
000 8, 001 1, 010 1, 011 1,

100 1, 101 1, 110 1, 111 9.

f f f f

f f f f

= = = =

= = = =
 [6.19] 

This is a relatively difficult optimization problem because x1 = 000 has a high 
fitness, and every time we add a 1 bit to it the fitness decreases dramatically, but the 
solution with all 1’s has the highest fitness. We begin with an initial population with 
proportionality vector: 

( ) [ ]0 0.8 0.1 0.1 0 0 0 0 0 Tp =  [6.20] 
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Figure 6.2 shows the dynamic system model result and simulation result for 
BBO with a population size of 1,000. The plots provide confirmation for the 
dynamic system model of BBO. The simulation result oscillates around its mean 
value, which is expected because of the mutation operator. The simulation result will 
vary from one simulation to the next, and will never exactly match the theory due to 
the stochastic nature of the simulations. That is why the dynamic system model can 
be more useful than simulation; the model is exact while simulation result is only 
approximate. 

 

Figure 6.2. BBO dynamic system model result giving confirmation that simulation 
matches theory. The traces show the proportion of the optimal solutions for a typical 
simulation, the mean of that proportion over all generations and the proportion 
according to the dynamic system model. Reprinted from [SIM 11a] with permission 
from Elsevier. For a color version of this figure, see www.iste.co.uk/ma-
simon/evolutionary.zip 

 

A. Special case: 0λ =   

We now consider the dynamic system model of BBO when 0kλ =  for all k. In 
this case, there is no possibility of immigration and equation [6.15] reduces to: 

( )( )0
1 1

( 1) ( ) 1 ( )
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i k k i
k s

p t p t x s x s
= =

⎧ ⎫
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∑ ∏  [6.21] 

0 20 40 60 80 100
0

1

2

3

4

5

generation

pe
rc

en
t o

f o
pt

im
um

 

Simulation
Simulation mean
Dynamic model



Dynamic System Models of BBO     111 

Since each ix  is distinct, we see that: 

( )( ) ( )0 0
1

1 ( ) 1
q

k i
s

x s x s k i
=

− = −∏  [6.22] 

which gives: 

( )0
1

( 1) ( )1 ( )
n

i k i
k

p t p t k i p t
=

+ = − =∑  [6.23] 

That is, with no immigration and no mutation, the proportionality vector does not 
change from one generation to the next, which agrees with intuition. 

B. Special case: 1λ =  and random feature selection 

Next, we consider the dynamic system model of BBO when 1kλ =  for all k. The 
BBO algorithm of Figure 6.1 becomes a special type of a genetic algorithm with 
global uniform recombination (GA/GUR), which has been described in section 3.2 
in Chapter 3. GA/GUR can be implemented in many different ways, but if it is 
implemented with the entire population as potential contributors to the next 
generation, and with fitness-based selection for each solution feature in each 
offspring, then it is equivalent to BBO with 1kλ =  for all k. In this case, 
immigration takes place for all solutions in the population, and the new solution that 
results from each immigration can be thought of as an offspring of the previous 
generation. Suppose also that in addition to 1kλ =  for all k, each immigration trial 
migrates one randomly selected bit. Then, the BBO algorithm of Figure 6.1 becomes 
the GA/GUR algorithm of Figure 6.3. 

The probability that ky  at generation (t + 1) is equal to ix , given that solution 
feature s was selected for migration, can be written as: 

( ) ( )( ), 1 , , 1Pr ( = ) = Pr ( : ) = ( ) Pr s =k t i k t i k t iy x s y r r s x r : r s y x s+ +⎡ ⎤≠ ≠⎣ ⎦  [6.24] 

The first term on the right side of equation [6.24] is the proportion of the 
population which has all bits r, such that r s≠ , equal to the corresponding bits  
in .ix  We denote the indices of these solutions as ( )i sτ : 

( ) ( ) ( ){ } [ ]: : : , 1,i j is j x r r s x r r s i nτ = ≠ = ≠ ∈  [6.25] 
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Note that ( ) 2i sτ =  for all (i, s). Now we can write equation [6.24] as: 

( ) ( )
, 1

1 1

Pr( ) i i
j j jj s j s

k t i n n
j j jj j

v v
y x s

v v
τ ς
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μ
∈ ∈
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= =
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⎜ ⎟ ⎜ ⎟= =
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⎝ ⎠ ⎝ ⎠

∑ ∑
∑ ∑

 [6.26] 

Initialize a population of candidate solutions { kx } for k ∈ [1, N] 

While not (termination criterion) 

For each kx , set emigration rate μk proportional to the fitness of kx , where μk is 

normalized to [0, 1] 

{ kz } ← { kx } 

For h = 1,…, N 

  Randomly select one of the kz  solutions 

Randomly select a solution feature SIV 

     Use {μi} to probabilistically select the emigrating solution xj 

     zk(SIV) ← xj(SIV) 

Probabilistically decide whether to mutate zk 

Next h 

{ kx } ← { kz } 

Next generation 

Figure 6.3. Outline of GA/GUR with random selection of the immigrating  
solution and random selection of the migrating solution feature. { kx } is the  
population of solutions and { kz } is a temporary population of solutions. kx   

is the kth candidate solution and ( )kx SIV  is the solution feature  
SIV of kx . For simplicity, we use s to denote SIV in the text 

Combining equations [6.8] and [6.13], equation [6.26] can be written as: 

( )
, 1

( )
1

Pr( ) i

i

j jj s
k t i j n

j s j jj

p
y x s p

p
ς

τ

μ

μ
∈

+
∈

=

= =
∑

∑
∑

 [6.27] 
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Figure 6.3 shows that each bit [ ]1,s q∈  has a 1/q probability of being selected 
as the migrating feature. Therefore, 

( )( ) ( )( ), 1
1

1Pr( )
i i

q

k t i j j jT j s j s
s

y x p p
qp τ ς

μ
μ+ ∈ ∈

=

= = ∑ ∑ ∑  [6.28] 

This is a quadratic function of the pi terms and can thus be written as: 

, 1 ,
1 1

Pr( )
n n

k t i i ab a b
a b

y x Y p p+
= =

= = ∑∑  [6.29] 

Equation [6.28] shows that the 2
mp  coefficient on the right side of equation 

[6.29] for [ ]1,m n∈  can be written as: 

( )( ) ( )( ) ( ) ( )( )( ), 0 0 0
1 1

1 1 1
q q

i mm m i i m i i
s s

Y m s m s m s sμ ς τ μ ς τ
= =

= ∈ ∈ = ∈∑ ∑ I  [6.30] 

From the definition of ( )i sτ  in equation [6.25], we know that ( )ii sτ∈ . We also 
know that there is only one other element in ( )i sτ . The other element in ( )i sτ , say 
α , has a bit string such that ( ) ( )ix r x rα =  for all r s≠ . But since iα ≠ , we know 
that ( ) ( )ix s x sα ≠ , which means that ( )i sα ς∉ . Therefore, 

( ) ( ) { } for alli is s i sς τ =I  [6.31] 

Equation [6.30] can therefore be written as: 

( ) ( ), 0 0
1

1 1
q

i mm m m
s

Y m i q m iμ μ
=

= − = −∑  [6.32] 

We can use equation [6.28] to show that the m kp p  coefficient ( )k m≠  on the 
right side of equation [6.29] can be written as: 

( )( ) ( )( )

( )( ) ( )( )

, , 0 0
1

0 0
1

1 1

1 1 for

q

i mk i km m i i
s

q

k i i
s

Y Y m s k s

k s m s m k

μ ς τ

μ ς τ

=

=

+ = ∈ ∈

+ ∈ ∈ ≠

∑

∑
 [6.33] 

So the GA/GUR dynamic system model can be written as the following set of n 
coupled quadratic equations: 
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[ ]( 1) ( ) ( ), 1,T
i ip t p t Y p t i n+ = ∈  [6.34] 

where each element of iY  is ,i mkY , which denotes the mth row and kth column of iY . 
If mutation is included in the GA/GUR algorithm, then: 

( )( 1) diag ( ) ( )T
ip t p t Y p t U+ =  [6.35] 

where ( )diag ( ) ( )T
ip t Y p t  is the n × n diagonal matrix consisting of: 

( ) ( ) ( ) ( )1 , . . ., T T
np t Y p t p t Y p t  [6.36] 

EXAMPLE 6.3.– 

To verify the dynamic system model of BBO for the special case of 1λ =  and 
random feature selection, which is equivalent to GA/GUR, we use the same example 
described in Example 6.2 and the same initial population vector proportionality.  
Figure 6.4 shows the dynamic system model result and simulation result for GA/GUR. 
The plots provide confirmation for the dynamic system model of GA/GUR. 

 

Figure 6.4. GA/GUR dynamic system model result giving confirmation that simulation 
matches theory. The traces show the proportion of the optimal solutions for a  
typical simulation, the mean of that proportion over all generations and the  
proportion according to the dynamic system model. Reprinted from [SIM 11a] with 
permission from Elsevier. For a color version of this figure, see www.iste.co.uk/ma-
simon/evolutionary.zip 
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EXAMPLE 6.4.– 

In this example, we compare dynamic system model results between BBO, 
GA/GUR and GA with single-point crossover (GA/SP) and roulette-wheel selection, 
which was originally developed in [VOS 99]. GA/SP is a classic EA for a dynamic 
system model and is summarized in [REE 03] as: 

( ) ( ) ( )
( )2

( )diag diag ( )
( 1)

( )

T T

i T

p t f UC i U f p t
p t

f p t
+ =  [6.37] 

where ( )diag f  is the n × n diagonal matrix consisting of the fitness values of each 
candidate solution, and U is the mutation matrix given in equation [6.17]. C(i) is an 
n × n matrix such that the element in its mth row and kth column is the probability 
that mx  and kx  crossover to produce ix . 

We consider a problem whose fitness values are given as: 

( )
( )

8 for 0...0

9 for 1...1
1 for all other

i

i i

i

x

f x
x

=⎧
⎪

= =⎨
⎪
⎩

 [6.38] 

This is the same as equation [6.19] except that it is generalized for an arbitrary 
number of bits. The proportionality vector of the initial population is given as: 

( ) [ ]10 1 1 0
1

Tp
n

=
−

K  [6.39] 

That is, the initial population is evenly distributed among the sub-optimal 
solutions, and there are no optimal solutions. Figures 6.5–6.7 show steady-state 
dynamic system model results for three different search space cardinalities, plotted 
as functions of mutation rate. Figure 6.5 shows that BBO is much better at achieving 
a high percentage of optimal solutions than GA/GUR and GA/SP for small 
problems. Figures 6.6 and 6.7 show that as the problem dimension gets larger, BBO 
performance gets worse relative to the GAs for large mutation rates. However, BBO 
remains many orders of magnitude better than the GAs for small mutation rates, 
which are more typical for real-world problems. 
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Figure 6.5. Dynamic system model results for a 3-bit problem (search  
space cardinality n = 8) showing the steady-state proportion of optimal  

solutions. Reprinted from [SIM 11a] with permission from Elsevier. For a  
color version of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip 

 

Figure 6.6. Dynamic system model results for a 5-bit problem (search  
space cardinality n = 32) showing the steady-state proportion of optimal  
solutions. Reprinted from [SIM 11a] with permission from Elsevier. For a  

color version of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip 
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Figure 6.7. Dynamic system model results for a 7-bit problem (search  
space cardinality n = 128) showing the steady-state proportion of optimal  
solutions. Reprinted from [SIM 11a] with permission from Elsevier. For a  

color version of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip 

Figures 6.8–6.10 depict the same information as that shown in Figures 6.5–6.7, 
but presented in a different way. Figures 6.8–6.10 show dynamic system model 
results for three different mutation rates, plotted as functions of the problem 
dimension. Figure 6.8 shows that BBO is much better than the GAs for all problem 
dimensions if the mutation rate is low, as is typical of real-world problems. Figures 
6.9 and 6.10 show that as the mutation rate increases, BBO remains better than the 
GAs for small problem dimensions, but becomes worse than GA/SP as the problem 
dimension increases. 

Figure 6.8 shows that with realistic mutation rates, BBO is much better than the 
GAs for all problem dimensions. Furthermore, the relative advantage of BBO 
increases as the problem dimension increases, which is consistent with the 
conclusions presented in [SIM 11b] and [SIM 11d]. 
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Figure 6.8. Dynamic system model results for mutation rate = 0.1% per  
bit showing the steady-state proportion of optimal solutions. Reprinted  

from [SIM 11a] with permission from Elsevier. For a color version of  
this figure, see www.iste.co.uk/ma-simon/evolutionary.zip 

 

Figure 6.9. Dynamic system model results for mutation rate = 1% per  
bit showing the steady-state proportion of optimal solutions. Reprinted  

from [SIM 11a] with permission from Elsevier. For a color version  
of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip 
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Figure 6.10. Dynamic system model results for mutation rate = 10% per  
bit showing the steady-state proportion of optimal solutions. Reprinted  

from [SIM 11a] with permission from Elsevier. For a color version of  
this figure, see www.iste.co.uk/ma-simon/evolutionary.zip 

 

6.3. Applications to benchmark problems 

Next, we apply the dynamic system model results of BBO, GA/GUR and GA/SP 
to standard benchmark functions to show how the theory can be used to study the 
performance of algorithms and the effect of parameter settings. These benchmark 
functions include the needle function which is given in equation [6.38], the one-max 
function which has a fitness proportional to the number of 1-bits in each bit string, 
the deceptive function which is the same as the one-max function except that the bit 
string with all zeros has the highest fitness [BAC 96, YAO 99], and some 
continuous-domain functions that we list in the left column in Table 6.1 and which 
are described briefly in Table 3.2 in Chapter 3. A more detailed description of these 
functions can be found in Appendix A. We implemented the continuous functions as 
two-dimensional functions whose independent variables are coded with 3 or 4 bits 
per independent variable. This gives an optimization problem with either 6 or 8 bits 
in total, which results in a search space cardinality of either 64 or 256. We initialized  
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the population with a uniform distribution over all of the non-optimal solutions. The 
initial population did not include any optima. We recorded the percent of optimal 
solutions in the population after 10 generations, which gives an idea of how fast 
each algorithm converges. Tables 6.1 and 6.2 show the results. Note that these are 
not simulation results, but exact dynamic system model results. 

Function 
Cardinality = 64 

BBO GA/GUR GA/SP 

Needle 6.97E-03 2.32E-10 2.17E-06 

One-max 46.04 47.67 42.64 

Deceptive 3.89E-03 2.25E-04 2.33E-04 

Sphere Function 69.63 47.69 49.21 

Schwefel’s Problem 2.22 69.14 25.80 51.27 

Schwefel’s Problem 1.2 69.37 25.29 49.21 

Schwefel’s Problem 2.21 75.65 66.84 62.89 

Generalized Rosenbrock’s Function 10.37 3.56 9.13 

Step Function 50.04 25.04 37.56 

Quartic Function  39.09 26.13 34.12 

Generalized Schwefel’s Problem 2.26 15.93 0.47 1.30 

Generalized Rastrigin’s Function 43.93 50.05 41.79 

Ackley’s Function 58.92 25.40 71.38 

Generalized Griewank’s Function 67.82 44.18 49.00 

Generalized Penalized Function 1 29.69 24.98 27.77 

Generalized Penalized Function 2 32.83 24.96 28.98 

Table 6.1. Dynamic system model results on benchmark functions with  
a cardinality of 64. The number in each cell indicates the percentage  
of optimal solutions in the population after 10 generations. The best  

result for each benchmark is shown in bold 
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Function 
Cardinality = 256 

BBO GA/GUR GA/SP 

Needle 6.72E-03 9.95E-06 6.48E-06 

One-max 22.44 23.84 19.43 

Deceptive 1.03E-03 5.36E-05 5.13E-05 

Sphere Function 35.95 12.50 24.94 

Schwefel’s Problem 2.22 38.10 13.36 26.84 

Schwefel’s Problem 1.2 35.91 14.02 25.07 

Schwefel’s Problem 2.21 49.03 39.82 38.60 

Generalized Rosenbrock’s Function 6.60 4.18 6.49 

Step Function 25.51 12.52 19.45 

Quartic Function 18.64 12.49 17.01 

Generalized Schwefel’s Problem 2.26 38.07 15.69 8.70 

Generalized Rastrigin’s Function 46.85 14.64 42.43 

Ackley’s Function 43.40 54.17 70.00 

Generalized Griewank’s Function 36.12 15.07 25.61 

Generalized Penalized Function 1 26.22 25.02 25.68 

Generalized Penalized Function 2 13.03 12.51 14.08 

Table 6.2. Dynamic system results on benchmark functions with a  
cardinality of 256. The number in each cell indicates the percentage  
of optimal solutions in the population after 10 generations. The best  

result for each benchmark is shown in bold 

It can be seen from Tables 6.1 and 6.2 that for both the 64- and 256-bit problems, 
BBO performs the best in 13 out of 16 benchmarks. More importantly, for difficult 
problems (the needle and deceptive functions), BBO performs better than GA/GUR 
and GA/SP by orders of magnitude. 

These results are not intended to give a comprehensive comparison between 
BBO and GAs; extensive comparisons between BBO and other EAs using standard 
benchmark functions are shown in [MA 10a]. The theory and results here are instead 
intended to show how dynamic system models can be used to compare EAs in 
situations where probabilities are extremely small and where Monte Carlo 
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simulations are therefore not reliable. Dynamic system models can also be used  
to study the effect of parameter settings and learning approaches. Dynamic system 
models can also aid in the development of adaptive algorithms or parameter update 
schemes that work well on many different types of problems. These models can also 
be used to help understand the behavior of BBO; for example, how and why it works 
well, or does not work well, on certain types of problems.  

6.4. Conclusions 

In this chapter, we outlined dynamic system models for BBO based on the BBO 
Markov models, and in the process we obtained a dynamic system model for 
GA/GUR. These models give theoretically exact results, just like Markov models, 
and allow analytical comparisons between different types of BBO algorithms rather 
than a reliance on possibly unpredictable simulation results. Simulation results are 
important and necessary, but they can be misleading if used separately from theory. 
The Markov models and dynamic system models that we obtained provide a lot of 
room for additional application to BBO and other EAs. 



7 

Statistical Mechanics  
Approximations of BBO 

In the previous two chapters, we set up the Markov model and dynamic system 
model of BBO to analyze the behavior of BBO. Those models tell us the exact 
probability distribution over all possible populations, but in practice, those models 
rapidly become impractical as the size of the search space grows, which limits their 
application to very small problems. This is the curse of dimensionality for analytical 
EA models. It is therefore natural to investigate other methods to obtain practical 
models. The statistical mechanics approximation is used in this chapter to analyze 
the behavior of BBO. The idea of this modeling approach comes from the field of 
statistical mechanics, which involves averaging the behavior of many molecular 
particles to model the behavior of a group of molecules. We can use this idea to 
model BBO behavior with large populations and to better understand the evolution 
of BBO in realistic, high-dimensional optimization problems. 

Overview of the chapter 

In this chapter, we will see that statistical mechanics approximation theory 
provides insight into BBO behavior. Section 7.1 provides the preliminary foundation 
for statistical mechanics approximations. Section 7.2 derives a statistical mechanics 
model for the basic BBO algorithm. Section 7.3 discusses extensions of the BBO 
statistical mechanics model. 

7.1. Preliminary foundation 

Statistical mechanics is a branch of physics that applies probability theory to the 
study of the thermodynamic behavior of systems consisting of a huge number of 

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.



124     Evolutionary Computation with Biogeography-based Optimization 

interacting entities. It provides methods to calculate the gross or average properties 
of systems by treating the small-scale motions as random. It is often applied to the 
computation of the thermodynamic properties of particles interacting with a heat 
bath, and has recently been applied to EAs, including mathematical modeling for 
genetic algorithms [PRÜ 94, SHA 94, RAT 95, RAT 96, RAT 96] and simulated 
annealing [VAN 87]. The advantage of statistical mechanics for describing the 
dynamics of EAs is that it only assumes knowledge of the cumulants of the fitness 
distribution and the average correlation within the population.  

The cumulant is defined by the generating function, which is given by the natural 
logarithm of the Fourier transform of the probability distribution function. 
Cumulants of a probability distribution describe the shape of the distribution, and 
they contain the same information as the distribution function. The first and second 
cumulants are, respectively, called the mean and variance of the distribution, and the 
third cumulant is called the skewness and measures the degree of asymmetry of the 
distribution. All cumulants except the first two are zero for a Gaussian distribution, 
so the higher-order cumulants measure the non-Gaussian content of the distribution. 
Since EA populations are often initialized randomly, and fitness is a function of 
many variables, and the central limit theorem states that the accumulated distribution 
of random variables becomes more Gaussian as the number of variables increases, 
many real-world EA applications have a Gaussian fitness distribution during the 
early generations. 

Consider a scalar random variable X which can take non-negative integer values. 
For each 0k ≥ , there is a certain probability kP  that X takes the value k. So the 
characteristic function of the probability distribution of X can be described as: 

( ) ( )
0

Pr kz

k

z X k eϕ
≥

= =∑  [7.1] 

If we expand the characteristic function as a Taylor series in z, we obtain: 

( ) 2 331 21
1! 2! 3!

z z z z
ωω ωϕ = + + + +L  [7.2] 

where the coefficients kω  are called the moments of the probability distribution, 
which are given as: 

k
k E Xω ⎡ ⎤= ⎣ ⎦  [7.3] 
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Expanding the natural logarithm of the characteristic function ( )zϕ , called the 
cumulant generating function, in a Taylor series gives: 

( ) ( ) 2 3
0 1 2 3

2 331 2

log log( )

1! 2! 3!

z z zH z z P Pe P e P e

z z z

ϕ
κκ κ

= = + + + +

= + + +

L

L
 [7.4] 

where the coefficients kκ  for k = 1, 2, 3…, are called the cumulants of the 
probability distribution. The relationships between the first three cumulants and the 
moments of the probability distribution have simple expressions: 

[ ]
[ ]( )

[ ] [ ]( )

1 1

22 2
2 2 1

33 3 2
3 3 1 2 13 2 3 2

E X

E X E X

E X E X E X E X

κ ω

κ ω ω

κ ω ω ω ω

= =

⎡ ⎤= − = −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + = − ⋅ ⋅ + ⋅⎣ ⎦ ⎣ ⎦

 [7.5] 

Equation [7.5] shows that the first cumulant 1κ  is the mean of the distribution, 
and the second cumulant 2κ  is the variance. Since the Gaussian distribution is 
completely defined by its mean and variance and all the higher cumulants are zero, 
any distribution with very small values for the higher cumulants looks like a 
Gaussian. If a population is distributed approximately normally, we can truncate the 
series expansion of equation [7.4] and use just the first few cumulants to 
approximate the population distribution. 

The cumulants of a probability distribution have a linearity property which can 
be formulated as follows [GRI 97]. 

THEOREM 7.1.– If Xi is an independent random variable for i = 1, 2, 3…n, then the 
cumulants of the probability distribution can be found with the sum: 

1 2 1 2

1

n n i

n
X X X X XX X
k k k k k

i

κ κ κ κ κ+ + +

=

= + + + =∑L L  [7.6] 

Later in this chapter, we will use this very important theorem to derive the 
statistical mechanics model of BBO. 

EXAMPLE 7.1.– 

This example serves to clarify the notations of cumulants, and is based on  
[REE 03] and [MA 16a]. The one-max problem is considered, which has only one 
optimum. The fitness of a solution is the number of ones in the binary string. Given 
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n as the length of a binary string, and X as the possible fitness values, the one-max 
problem is defined as follows: 

Maximize X, where 
1

n

j
j

X x
=

=∑  [7.7] 

where { }0,1jx I∈ =  is bit j of a binary string. In this example, the length of the 
binary string n is set to 5, which is the maximum fitness, and the size of  
the population N is set to 24. If the initial population is random, it might be the 
following: 

00011 01001 10000 01110 10101 11110 11010 00101
00001 01000 11011 00111 01100 11111 00000 01000
10111 10100 11010 00101 01110 01001 01101 00101

 [7.8] 

Before calculating the cumulants, the independence of the bits is checked to 
confirm the linearity property of equation [7.6]. Considering bit 1 and bit 2, we 
obtain: 

[ ] [ ] [ ] [ ]

( ) ( ) ( ) ( )

1 2
0,1 0,1

1 2

1 2Pr( 1 0.20

Pr P

) Pr( 1) 9 24 1 24 43

r
i i

x

E i x i i

x

x ix E x
= =

⎛ ⎞ ⎛ ⎞
⋅ = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= ⋅ = ⋅ =

=

= =

=∑ ∑  [7.9] 

and: 

[ ] [ ]1 2 1 2
, 0,1

1 2

Pr ,

1Pr( ) 5 24 0 2 81 0, .
i j

E x x i j x i x j

x x
=

= = =

⋅ = ⋅ ⋅ = =

= =

∑
 [7.10] 

We see that: 

[ ] [ ] [ ]1 2 1 2.E x x E x E x⋅ ≈  [7.11] 

which is consistent with the fact that bit 1 and bit 2 are independent. Similarly, we 
can numerically confirm that all of the other bits in the population are independent, 
which confirms that the cumulants have the linearity property shown in  
equation [7.6] in the initial population.  

The population distribution over the set of possible fitness values is obtained as: 

 [7.12] [ ] [ ] [ ]
[ ] [ ] [ ]

Pr 0 0.041, Pr 1 0.167, Pr 2 0.333

Pr 3 0.292, Pr 4 0.125, Pr 5 0.041

X X X

X X X

= = = = = =

= = = = = =
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Based on equation [7.2], the characteristic function of the probability distribution 
and its Taylor series are: 

( ) 2 3 4 5

2 3 4

0.041 0.167 0.333 0.292 0.125 0.041
2.414 7.152 23.840 86.7721

1! 2! 3! 4!

z z z z zz e e e e e

z z z z

ϕ = + + + + +

= + + + + +L
 [7.13] 

Based on equation [7.5], the cumulants of the probability distribution are 
obtained as: 

 [7.14] 

We find that the mean is 2.414 and the variance is 1.324. This distribution is 
approximately Gaussian as shown in Figure 7.1. From this example, it can be seen 
that cumulants can approximate the population distribution by truncating its series 
expansion. 

 

Figure 7.1. Probability distribution of the fitness X. The solid line  
denotes a Gaussian distribution, and the dots denote the  

simulated probabilities of the population 
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7.2. Statistical mechanics model of BBO 

This section derives a statistical mechanics model for the basic BBO algorithm 
[MA 16a]. Before the formal derivation, we make some clarifications in the 
statistical mechanics model development.  

First, we assume that the immigration rate λ and the emigration rate μ are 
independent of the population distribution. That is, the best fitness is the best fitness 
for the problem, not the best fitness in the current population. Similarly, the worst 
fitness is the worst fitness for the problem. Alternatives to this assumption are 
commonly used in practice, but this assumption is needed for the statistical 
mechanics model development of BBO. 

Second, we assume that each bit in a given solution is independent because 
migration to each bit is independent of migration to the other bits, as shown in 
Figure 3.5 in Chapter 3. This is a simplistic assumption. Because of selection, BBO 
will introduce correlations between bits and will not remain independent for many 
generations. Our hypothesis here is that the bits will remain mostly independent, at 
least during the early generations. Similarly, mutation of each solution bit is 
independent, which helps maintain the independence of each bit in a given solution. 
The purpose of this assumption is to ensure that BBO migration and mutation satisfy 
Theorem 7.1. 

7.2.1. Migration 

The cumulants of a BBO fitness probability distribution provide certain average 
properties. The cumulants describe the fitness as a whole each generation. The 
cumulant dynamics tell us the trajectory of the distribution of the population fitness 
during the evolutionary process. In the following text, the equations of the dynamic 
evolution of BBO are derived based on the cumulants of the fitness distribution, and 
the specific one-max problem described in equation [7.7] is used to study the 
properties of BBO. 

Consider a single bit position xj, suppose that it has a randomly distributed 
population, and consider the effect of migration on the population values in this bit 
position. There are two ways in which a bit can be equal to 1 after an immigration 
trial (that is, after one iteration of the “for each decision variable s” loop in  
Figure 3.5). First, it can immigrate 1 from another solution in the population (that is, 
another solution emigrates a 1 to the bit). Second, it can be 1 before the immigration  
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trial, and not immigrate. So the expected value of this bit after an immigration trial 
is computed as: 

( )
( ) ( )

0,1

+ Pr( 1 | no immigration)Pr(no immigration)

Pr(emigrating bi

Pr Pr 1

Pr 1 immigration Pr immigr

t = 1)Pr(immigration)
+ Pr( 1 | no immigration)Pr(no immigration
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j j j
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E x i x i x

x

x

x

=

⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦

= =

=

=
=

∑

 [7.15] 

We first consider the first probability on the right side of equation [7.15], which 
is the probability that an emigrating bit is 1. This probability is proportional to the 
sum of the emigration rates of all solutions whose jth bit is equal to 1: 

 [7.16] 

where ρj(1) = {population indices of solutions whose jth bit is equal to 1} and N 
denotes the size of the population. 

Next, we consider the third probability on the right side of equation [7.15]. If 
immigration does not occur, the probability that the value of bit j is 1 after an 
immigration trial is equal to the probability that the value of bit j is 1 before the 
immigration trial, which can be written as: 

Pr( 1| no immigration) Pr( 1)j jx x′= = =  [7.17] 

where jx′  denotes the value of bit j before an immigration trial.  

The probability that the value of bit j is 1 before the immigration trial is denoted 
as: 

Pr( 1)j jxx E′ = = ′⎡ ⎤⎣ ⎦  [7.18] 

Note that the mean value of bit j before the immigration trial is: 

 [7.19] 

(1)

1
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k
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k
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ρ
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∈

=

=
∑

∑

(1)j
jE x

N
ρ

′⎡ ⎤ =⎣ ⎦
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where (1)jρ  denotes the number of solutions in the population whose jth bit is 

equal to 1. Combining equation [7.19] with equation [7.5], the first cumulant of the 
jth bit before the immigration trial is: 

( ) ( )
1 1

(1)j j j

N
κ

ρ
ω= =  [7.20] 

Next, we consider the probabilities Pr(immigration) and Pr(no immigration) in 
equation [7.15], which are the average values of the immigration curve; that is, they 
are independent of any information about the fitness value of any solution. 
Assuming that the migration curve is linear, as shown as Figure 3.1 in Chapter 3, the 
emigration rate kμ  is normalized as: 

fitness number of 1 bits
1 1k n n

μ = =
+ +

 [7.21] 

So the probability Pr(immigration) can be written as: 

[ ] [ ]
Pr(immigration) 1 Pr(emigration)

number of 1 bits
1 1 1

1k

E
E

n
μ μ

= −

= − = − = −
+

 [7.22] 

Furthermore, the average number of 1 bits in any given solution is [ ]E X , which 
denotes the mean of the fitness, and which is equal to the cumulant . The 
probabilities Pr(immigration) and Pr(no immigration) can thus be written as: 

1

1

Pr(immigration) 1
1

Pr(no immigration) 1 Pr(immigration)
1

n

n

κ

κ

= −
+

= − =
+

 [7.23] 

Note that if we used an immigration curve other than the one shown in  
Figure 3.1, we would need to re-compute the average of the immigration curve to 
find Pr(immigration) and Pr(no immigration). 

 

1κ
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We substitute equations [7.16], [7.17] and [7.23] into [7.15] to obtain the 
expected bit value after an immigration trial as: 

(1) 1 1

1

1 Pr( 1)
1 1

j

k
k

N j

k
k

j x
n

E x
n

ρ
μ

κ κ
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∈
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⎛ ⎞ ⎛ ⎞′= − + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∑

∑
 [7.24] 

Note that we have normalized the emigration rate so that it has a minimum of 0 
and a maximum of n/(n+1). Other normalizations are possible as long as the 
emigration rate is between 0 and 1, but this is a typical approach. We use equation 
[7.21] to obtain: 
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 [7.25] 

Now we note that: 
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Further note that: 
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 [7.27] 
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Assuming that the cumulants have the linearity property described in  
equation [7.6], the cumulant of the binary string is equal to the sum of cumulants of 
each bit of the binary string: 

( )
1 1

1

n
k

k

κ κ
=

=∑  [7.28] 

We combine equations [7.20], [7.26], [7.27] and [7.28] to obtain: 
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 [7.29] 

The expected value of bit jx  after an immigration trial can be written as: 
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 [7.30] 

Note that the subscripts t + 1 and t denote quantities after and before migration, 
respectively. For the other cumulants of bit jx , we note that bits can only take the 
values 0 and 1, so: 

k
j jx x=  [7.31] 

for all values of k. So the moments of all orders are equal and are given as: 

 [7.32] 

 

( )j k
k j jE x E xω ⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎣ ⎦
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Based on the relationships of moments and cumulants described in equation [7.5], 
we obtain the equations of cumulants ( )

2
jκ  and ( )

3
jκ  as follows: 
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The cumulant approximations of the population after migration are: 
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 [7.34] 

Equations [7.33] and [7.34] are derived in detail in [MA 16a]; note  
that 2, 1tκ +  and 3, 1tκ +  are approximations. Cumulants 1κ  and 2κ  denote the mean and 
the variance of the population fitness distribution, and cumulant 3κ  denotes the 
skewness, which measures the degree of asymmetry of the distribution.  

Cumulant 4κ  and other higher-order cumulants are not further discussed  
here. 4κ  denotes the kurtosis, which measures the peakedness of the distribution. 
EA researchers are typically more interested in the mean and the variance of fitness 
distributions, namely 1κ  and 2κ , and 4κ  only affects 3κ  based on equation [7.34]. 
In fact, it is apparent from equation [7.34] that the influence of 4κ  on 3κ  is 
relatively small. So we approximate 4κ  and other higher-order cumulants as zero, 
which gives us an approximation of the migration dynamics using just three 
variables. 
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7.2.2. Mutation 

The derivation above considers only migration. Mutation is now added to the 
statistical mechanics model. BBO mutation is the operator that modifies a decision 
variable of a candidate solution with a small probability, as in other EAs. The view 
of mutation as a statistical mechanics model has been explained in [REE 03], and 
the same theory can apply to BBO. 

For the one-max problem described in equation [7.7], suppose that we have a 
randomly distributed population. Consider the effect of mutation on the values in a 
single bit position. Similar to migration, there are two ways in which a bit can be 
equal to 1 after mutation. First, it can start as 0 and then mutate. Second, it can start 
as 1 and not mutate. If we suppose that the mutation probability is u, the expected 
value of this bit after mutation is computed as: 
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 [7.35] 

where jx′  denotes the value of bit j before mutation.  

Substituting equation [7.18] into equation [7.35], we obtain: 

(1 2 )j jE x u u E x′⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦  [7.36] 

Equation [7.32] indicates that the moments of all orders are equal, so we have: 

( ) ( )
, 1 ,(1 2 )j j

k t k tu uω ω+ = + −  [7.37] 

We now need to convert from moments to cumulants. Based on the relationship 
of moments and cumulants described in equation [7.5], we directly obtain the first 
cumulant ( )

1
jκ  for one bit as: 

( ) ( )
1, 1 1,(1 2 )j j

t tu uκ κ+ = + −  [7.38] 
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Thus, the first cumulant of the population after mutation is: 
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Next, we calculate the second cumulant ( )
2

jκ  as: 
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 [7.40] 

Summing over all the bits gives us the second cumulant of the population after 
mutation as: 

( ) ( )2
2, 1 2,1 1 2t tu u n uκ κ+ = − + −  [7.41] 

Similarly, we derive the third cumulant of the population after mutation as: 

( )( )( ) ( )3
3, 1 1, 3,1 1 2 2 1 2t t tu u u n uκ κ κ+ = − − − + −  [7.42] 

Finally, we combine equations [7.39], [7.41] and [7.42] with equation [7.34] for 
BBO migration to obtain the following model for BBO with both migration and 
mutation: 
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 [7.43] 

The above equations give the statistical properties of BBO population fitness 
values after migration and mutation in terms of those at the previous generation. We 
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can iterate these equations to obtain predictions for the evolution of BBO 
populations. 

EXAMPLE 7.2.– 

This example simulates the 100-bit one-max problem to verify the statistical 
mechanics model of BBO. The statistical approximations of BBO are obtained by 
iterating equation [7.34] if considering only migration, and by iterating  
equation [7.43] if considering both migration and mutation. We set  κ4,t = 0 in the 
iterations of equations [7.34] and [7.43]. The simulation parameters of BBO are as 
follows: population size of 50, maximum immigration rate and maximum 
emigration rate of 1, and 200 Monte Carlo simulations. Figures 7.2−7.4 show 
comparisons between theoretical (statistical approximation) and simulated BBO 
results with mutation rate u = 0.01. 

 

Figure 7.2. BBO approximation and simulation results of  
cumulant 1κ  for the 100-bit one-max problem, where the solid  

line denotes approximation values and the dashed line  
denotes simulation values 

Several things are notable about Figures 7.2−7.4. First, the approximation results of 
BBO show that as the generation count increases, the first cumulant 1κ  (mean) increases 
and the second cumulant 2κ  (variance) decreases with the generation count. This is 
consistent with the expected behavior of BBO: as the generation count increases, the 
mean fitness of the population increases and the population becomes more uniform. 
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Figure 7.3. BBO approximation and simulation results of cumulant 2κ for  
the 100-bit one-max problem, where the solid line denotes approximation  

values and the dashed line denotes simulation values 

 

Figure 7.4. BBO approximation and simulation results of cumulant  
3κ  for the 100-bit one-max problem, where the solid line denotes  

approximation values and the dashed line denotes simulation values 

Second, the cumulant approximations and the simulation results match well. This 
indicates that the statistical mechanics model of BBO is reasonable and that the 
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statistical mechanics approximation is valid for the one-max problem. This fact 
allows us to make quantitative conclusions from statistical mechanics 
approximations and to use those approximations to obtain valid conclusions 
regarding the performance of BBO with various tuning parameters.  

 

EXAMPLE 7.3.– 

In this example, we compare the statistical mechanics model of BBO with that of 
a simple GA using proportional selection and mutation [REE 03, PRÜ 94]. The 
statistical mechanics model of a GA with selection only is given as: 

( )

2,
1, 1 1,

1,

2

2, 3,
2, 1 2,

1, 1,,

3

2, 2, 3, 4,
3, 1 3, 2

1, 1,1,

2 3

t
t t

t

t t
t t

t t

t t t t
t t

t tt

κ
κ κ

κ

κ κ
κ κ

κ κ

κ κ κ κ
κ κ

κ κκ

+

+

+

= +

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
= + − +⎜ ⎟⎜ ⎟

⎝ ⎠

 [7.44] 

Recall that the mutation model is given in equation [7.43]. So the three-
parameter approximation equations for a simple GA with selection and mutation are: 
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 [7.45] 

We see that the approximation equations of BBO in equation [7.43] are similar 
to those of the GA in equation [7.45], and the difference is the additional coefficient 

11 1nκ− +  in some of the terms of the BBO model. As the problem size n becomes 
large, the BBO approximation approaches the GA approximation. These equations 
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can be used to compare the statistical mechanics models of BBO and GA for the 
100-bit one-max problem with mutation rate u = 0.01, as shown in Figures 7.5−7.7. 

 

Figure 7.5. Comparison of the approximation values of cumulant  
1κ between BBO and GA for the 100-bit one-max problem, where  
the solid line denotes BBO and the dashed line denotes GA 

 

Figure 7.6. Comparison of the approximation values of cumulant  
2κ between BBO and GA for the 100-bit one-max problem, where  
the solid line denotes BBO and the dashed line denotes GA 
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Figure 7.7. Comparison of the approximation values of cumulant  
3κ between BBO and GA for the 100-bit one-max problem, where  
the solid line denotes BBO and the dashed line denotes GA 

From Figures 7.5−7.7, several things are notable about the approximation 
comparisons between BBO and GA. First, the trends of the cumulants are similar for 
BBO and GA. As the generation count increases, the mean (the first cumulant 1κ ) 
increases and the variance (the second cumulant 2κ ) decreases. The only qualitative 
difference we see is that the skewness (the third cumulant 3κ ) of the GA suddenly 
changes slope during the first few generations, while the skewness of BBO changes 
more smoothly. These comparisons indicate that the expected behavior of BBO is 
similar to that of GA. This point has already been implied by equations [7.43] and 
[7.45]. It is not too surprising that BBO is similar to GA, because many EAs can be 
expressed in terms of each other. Chapters 5 and 6 compared the optimization 
performance of BBO and GA and have shown similar results. On the other hand, the 
figures show that differences do exist between BBO and GA. This indicates that 
BBO has its own particular characteristics that are distinct from GA. A BBO 
solution uses its own fitness before deciding how likely it is to accept features from 
other candidate solutions. This simple and intuitive idea does not have an analogy in 
genetics, but is motivated by biogeography. This implies that it is useful to retain the 
distinction between BBO and GA, and that the biogeographical foundation of BBO 
can motivate many algorithmic extensions. 

Second, Figure 7.5 shows that the mean fitness of BBO is smaller than that of 
GA, and Figure 7.6 shows that the fitness variance of BBO is larger than that of GA. 
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This indicates that GA might have better convergence properties than BBO for the 
one-max problem. 

Finally, we should be wary of drawing general conclusions about BBO versus 
GA comparisons from these results because the BBO and GA algorithms used here 
are basic versions, and the results in this experiment are limited to the 100-bit one-
max problem. 

 

7.3. Further discussion 

Next, we will discuss some questions related to the statistical mechanics model 
of BBO which affect the approximation performance. 

7.3.1. Finite population effects 

We have obtained the statistical mechanics model of BBO based on an infinite 
population, and have used the average properties of the population to determine the 
dynamic trajectory of the population as a whole. However, in actual simulations of 
BBO, we have a finite population and can no longer ignore the effect of population 
size. In statistical mechanics, if a balloon contained only two molecules, the chance 
of both of them being on one side of the balloon is quite high. Similarly, we must 
consider fluctuations caused by the finite population, which we view as sampling 
effects. In BBO, we effectively sample the fitness N times, where N is the 
population size. To account for finite population effects, we need to know the 
relationships of mean, variance and higher-order cumulants of the probability 
distribution, along with their expected values from this distribution. 

In general, the expected values of the cumulants of a finite sample are not the 
same as the cumulants of the distribution from which the sample is taken, and the 
size of the sample affects these values. In [REE 03], the expected values of mean, 
variance and the third cumulant are derived as: 
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where the terms on the left-hand sides represent the expected values of the 
cumulants of a sample of size N. Equation [7.46] shows that only the mean is 
unaffected by sample size. Note that as N → ∞ , the expected values of these 
cumulants are equal to the cumulants of the distribution. We can directly modify 
equation [7.43] to account for population size by multiplying by the appropriate 
factors.  

7.3.2. Separable fitness functions 

We have been treating the fitness of a population as a random variable with some 
probability distribution. We have estimated the cumulants of the distribution for the 
one-max problem, and have studied the way they change over time. One notable 
characteristic of the one-max problem is that its variables are separable. We can 
extend the derivation of the statistical mechanics model, which was limited to the 
one-max problem, to other functions if we assume that each bit in a given solution is 
separable. In Ma et al. [MA 16a, MA 16b, MA 16c], the derivation of a statistical 
mechanics model of BBO for a general separable function is given. Here we provide 
the approximation equations. A general separable function is written as: 

( ) 1f x x=  [7.47] 

where: 

[ ]1 nx x x= L  [7.48] 

{ }0,1jx I∈ =  is bit j of a binary string, and n is the length of this binary string 
as well as the number of features in each candidate solution. 

The first two cumulants of the statistical mechanics model of BBO for a general 
separable function are: 
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Comparing equation [7.49] with the first two equations of [7.34],  
we see that the cumulants 1, 1tκ +  and 2, 1tκ +  are the same. That is, the dynamics  
of the mean and the variance are identical for all separable functions. Note that  
higher-order cumulants quantify the non-Gaussian content of the distribution. These 
results indicate that approximations of BBO dynamics based on statistical mechanics 
can model how BBO works not only for the simple one-max problem, but also for 
general but separable fitness functions. Furthermore, for many complex, non-
separable functions, if we can find a method to approximate them as separable 
functions, we could successfully derive the statistical mechanics model of BBO for 
these functions. From this point of view, statistical mechanics terminology in 
evolutionary computation is a methodology that can approximate BBO behavior for 
functions other than separable functions. We can also apply this methodology to the 
analysis of other EAs. 

7.4. Conclusions 

In this chapter, we outlined a computational model for BBO based on ideas from 
statistical mechanics, and studied the dynamics of BBO for the one-max problem 
and other separable functions. The statistical mechanics model describes the 
evolution of the statistical properties of the BBO population fitness. Note that the 
statistical mechanics model is completely different from the Markov model 
described earlier in this book. The Markov model gives the probability of arriving at 
any given population as the generation count approaches infinity. But the Markov 
model may be of little practical use for real-world problems because transition 
probabilities are not known in real applications. The statistical mechanics model 
gives the average behavior of population fitness, which can lead to a better 
understanding of the evolution of BBO populations in realistic, high-dimensional 
optimization problems. 

We have shown three mathematical models of the dynamics of BBO in the past 
three chapters: the Markov model, the dynamic systems model and the statistical 
mechanics model. These models can provide insight into which problems are suitable 
for BBO, and why, from different viewpoints. The efficiency of BBO depends on the 
problem representation and the BBO tuning parameters. These parameters include the 
population size, the immigration curve shape, the emigration curve shape and the 
mutation rate. For many problems, BBO can be effective when a good representation 
is chosen and the parameters are set to appropriate values. When poor choices are 
made, BBO can perform similarly to a random search. The three mathematical  
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models, each of which are functions of BBO tuning parameters, can successfully 
predict the improvement in fitness from one generation to the next, and can assist in 
finding optimal values of the BBO tuning parameters. For example, consider a 
problem with very expensive fitness function evaluations; we may even need to do 
physical experiments to evaluate fitness. However, we could also use one of our 
three models to tune BBO parameters during early generations to quickly improve 
fitness, or to predict whether BBO will perform better than other EAs. These 
mathematical models of BBO could be useful for developing effective BBO 
modifications. More generally, models of BBO dynamics can be useful in producing 
insights into how the algorithm behaves and when it is likely to be effective. 



8 

BBO for Combinatorial Optimization 

Up until this point, this book has emphasized the framework and mathematical 
theory of BBO algorithms. In this chapter, we begin to discuss the applications of 
BBO. This chapter uses BBO to solve combinatorial optimization problems, which 
comprise a subset of mathematical optimization. Combinatorial optimization has 
important applications in many fields, including artificial intelligence, machine 
learning, auction theory and software engineering. Combinatorial optimization can 
be thought of as finding the optimal object from among a finite set of candidate 
objects: 

( ) { }1 2min where , , ,
xNx

f x x x x x∈ L  [8.1] 

where xN  is the cardinality of the search space. Theoretically, we can solve 
equation [8.1] by evaluating ( )f x  for all xN  possible solutions. But it is not 
feasible to check every possible solution when the combinatorial problem has a large 
search space.  

Some classic combinatorial optimization problems include the traveling 
salesman problem, the knapsack problem, the minimum spanning tree problem and 
many others. Figure 8.1 shows an example of a one-dimensional knapsack problem: 
which boxes should be chosen to maximize the amount of money while still keeping 
the overall weight less than or equal to 15 kg? A combinatorial optimization 
problem could consider both the weight and volume of the boxes. 

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Figure 8.1. An example of a one-dimensional  
knapsack problem. For a color version of this figure,  

see www.iste.co.uk/ma-simon/evolutionary.zip 

Another combinatorial optimization example is the minimum spanning tree 
problem, which is a spanning tree of a connected, undirected graph. The goal here is 
to connect all the vertices with the minimum total edge weights. The minimum 
spanning tree problem is a common combinatorial optimization problem, as shown 
in Figure 8.2. 

 

Figure 8.2. A planar graph and its minimum  
spanning tree, where each edge is labeled with its  
weight, which is roughly proportional to its length 
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Overview of the chapter 

Most of this chapter uses BBO algorithms to solve the TSP, which is perhaps the 
most famous, applicable and widely studied combinatorial optimization problem. 
Section 8.1 gives an overview of the TSP, and section 8.2 discusses and presents the 
application of BBO for the solution of TSPs. Sections 8.3 and 8.4 discuss the graph 
coloring problem and the knapsack problem, which are two other popular 
combinatorial optimization problems. 

8.1. Traveling salesman problem 

The TSP can be described by the following question: given a list of cities and the 
distances between each pair of cities, what is the shortest possible route that visits 
each city exactly once and returns to the original city? It is a classic problem in 
combinatorial optimization that has intrigued mathematicians and computer 
scientists for years. Most important, it has many applications in science and 
engineering, including robotics, circuit board drilling, welding, manufacturing, 
transportation and many other areas.  

Many people have studied this problem. The easiest and most expensive solution 
is to simply try all possibilities. The problem with this is that for n cities, there are 
(n−1)! possible combinations. This means that for a 50-city TSP, there are over  
49! = 6.1×1062 combinations, which is not feasible to solve using exhaustive search. 
For a circuit board with tens of thousands of holes, it is required to determine the 
best order in which a laser will drill. An efficient solution to this problem can reduce 
production costs for the manufacturer. 

In general, the TSP describes a salesman who must travel between n cities. The 
order in which he goes is something he does not care about, as long as he visits each 
city once during his trip, and finishes where he began. We assume that there is a 
known distance D(i, j) between cities i and j for all i∈[1, n] and j∈[1, n], and that 
D(i, j) = D(j, i). This is called the symmetric TSP because the distance from city i to 
city j is the same as the distance from city j to city i. Another possibility is D(i, j) ≠ 
D(j, i), which is called the asymmetric TSP.  

In this chapter, we mainly discuss the symmetric TSP. An example of a valid 
tour in a 4-city TSP is as follows: 

Valid 4 city tour : 3 2 4 1 3− → → → →  [8.2] 
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where the number denotes the city index and “→” denotes an edge or segment of a 
tour. Equation [8.2] consists of four edges, which indicates that an n-city tour 
includes n edges. 

In the TSP, we try to minimize the total distance. Suppose that n cities in a TSP 
are listed in the order 1 2 1nx x x x→ → → →L . Then, the total distance is: 

( ) ( )
1

1 1
1

, ,
n

T n i i
i

D D x x D x x
−

+
=

= +∑  [8.3] 

Note that we use the term “distance” in a general sense. It might refer to physical 
distance, financial cost or any other quantity that we want to minimize in a 
combinatorial problem. 

8.2. BBO for the TSP 

This section discusses the application of BBO for solving the TSP [DU 13]. In 
order to use BBO to solve the TSP, we need to code candidate solutions in BBO 
differently than we have up to this point in the book. An element in a solution is a 
city, so each element in the solution contains no information by itself. It is only the 
order of elements that determines the goodness of a solution. In order to determine 
the distance of the tour, we need to know the order of all the cities in the tour. Since 
the original BBO algorithm is not designed for combinatorial problems, we need to 
modify BBO to apply it to the TSP. 

8.2.1. Population initialization 

Population initialization is usually the first step for BBO. For most problems, we 
do not have a good understanding of the effect of each independent variable. That 
means we cannot create an initial population based on our expertise, so we instead 
randomly create the initial population. However, randomization is an inefficient way 
to create an initial population. If we could initialize BBO intelligently rather than 
randomly, we could greatly increase our chances of finding a good solution.  

One simple and common way to initialize a candidate TSP solution is with a 
nearest-neighbor strategy [COV 67]. The detailed procedure for an n-city TSP is 
described as follows: 

1) Initialize i = 1, and randomly select a city 1x ∈ [1, n] as the starting city. 
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2) ( ) [ ]{ }1 arg min , : for 1,i i kx D x x k iσ σ σ+ ← ∉ ∈ . That is, find the city that is 

closest to ix  that has not yet been assigned to an element of the tour, and assign it to 

1ix + . 

3) Increment i by one, and if i = n, terminate; otherwise, go to step 3. 

At the end of this process, we have an open tour 1 2 nx x x→ → →L  that gives 
us a reasonable guess for a good TSP solution. Note that here and in the below text, 
we use an open tour as a candidate solution for convenience. If we need a closed 
tour as in equation [8.2], we simply add the starting city to the end of the open tour. 

EXAMPLE 8.1.– 

Consider the following distance matrix: 

3 2 9 3
3 5 8 11
2 5 4 6
9 8 4 10
3 11 6 10

D

×⎡ ⎤
⎢ ⎥×⎢ ⎥
⎢ ⎥= ×
⎢ ⎥×⎢ ⎥
⎢ ⎥×⎣ ⎦

 [8.4] 

where Dij, which we can also write as ( ),D i j , represents the distance between city i 
and city j. If we start at city 1, the nearest-neighbor algorithm gives the tour 
1 3 4 2 5,→ → → →  which has a total cost of 25. If we start at city 2, the algorithm 
gives the tour 2 1 3 4 5,→ → → →  which has a total cost of 19. 

For a general n n×  symmetric distance matrix D, since the distance between city 
i and city j is the same as that between city j and city i, there are ( )1 2n n −  terms 

above the diagonal. Therefore, a symmetric n-city TSP has ( )1 2n n −  unique 
edges. 

To intelligently initialize BBO for solving the TSP, we can use nearest-neighbor 
initialization, as described above, for just one solution in the population, or for a few 
solutions in the population, or for the entire population. But if we initialize too many 
solutions this way, then we will probably obtain many duplicate solutions. We could 
also use a stochastic nearest-neighbor initialization algorithm. In this case, the 
probability of assigning a given city to 1ix +  at each iteration would be inversely  
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proportional to its distance from ix . We could also take the nearest-neighbor 
algorithm to another level by performing a “nearest two-neighbor” algorithm. In this 
approach, given ix , we would assign a city to 1ix +  that results in the smallest 
combined distance ( ) ( )1 1, ,i i iD x x D x σ+ ++ , where σ  is allowed to be equal to any 
city kx≠  for 1k i≤ + . 

8.2.2. Migration in the TSP 

BBO migration is a method for combining or modifying features based on parent 
solutions to create offspring, or new solutions. It is the most important component in 
BBO. Four types of migration methods for solving the TSP are introduced here: 
order migration, cycle migration, inver-over migration and matrix migration. The 
first three migrations use path representation, and the last migration uses matrix 
representation.  

Path representation is the most natural way of representing a TSP tour. In path 
representation, the vector: 

[ ]1 2 nx x x x= L  [8.5] 

represents the n-city tour 1 2 nx x x→ → →L .  

A. Order migration 

Order migration (OM) in BBO is similar to order crossover in GAs [DAV 85]. 
OM in BBO first chooses the immigrating and emigrating solutions based on the 
immigration rate and the emigration rate, respectively. Then, a section of the tour 
from the immigrating solution remains unchanged, which results in a child solution 
that has a partial tour. OM completes the child solution by copying the remaining 
required cities from the emigrating solution to the child solution, while maintaining 
the relative order of those cities from the emigrating solution.  

EXAMPLE 8.2.– 

Figure 8.3 shows BBO order migration for a TSP. We randomly select a subtour 
from the immigrating solution; suppose that we select subtour [4 5 6 7] from the 
immigrating solution, which gives a partial child solution. Now we see that the child 
solution still needs cities 1, 2, 3, 8, 9. Those cities occur in the order [2 1 8 9 3] in 
the emigrating solution. We therefore copy those cities in that order to the child 
solution to obtain the complete child solution [2 1 8 4 5 6 7 9 3]. 
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Emigration 
solution

Child solution

 

Figure 8.3. Order migration in BBO 

 

B. Cycle migration 

Cycle migration (CM) in BBO is similar to cycle crossover (CX) in GAs  
[OLI 87]. CM in BBO first chooses the immigrating and emigrating solutions based 
on the immigration rate and the emigration rate, respectively. Then, we create a 
child solution from two parent solutions in a way that preserves as much sequence 
information as possible from the immigrating solution, while completing the child 
solution with information from the emigrating solution. The basic procedure of CM 
is as follows: 

1) Randomly select a city as the starting point in the immigrating solution and 
record its position. 

2) In the emigrating solution, find the city in the position recorded above in the 
immigrating solution, and record this city. Go back to the immigrating solution, 
search for the city we found in the emigrating solution, and record its position in the 
immigrating solution. 

3) Repeat step 2 until we obtain a complete cycle, which means that we have 
returned to the starting city. Then, copy the remaining cities from the emigrating 
solution to the child solution.  

EXAMPLE 8.3.– 

Figure 8.4 shows BBO cycle migration for a TSP. We create a child solution as 
follows: 

1) Select a random index between 1 and n. Suppose that we select 1, and  
position 1 in the immigrating solution is city 1, so the child solution is initialized as 
[1 − − − − − − − −]. 



152     Evolutionary Computation with Biogeography-based Optimization 

2) Position 1 in the emigrating solution is city 4, and city 4 occurs in the  
fourth position of the immigrating solution, so the child is augmented to become  
[1 − − 4 − − − − −]. 

3) Position 4 in the emigrating solution is city 8, and city 8 occurs in the  
eighth position of the immigrating solution, so the child is augmented to become  
[1 − − 4 − − − 8 −]. 

4) Position 8 in the emigrating solution is city 3, and city 3 occurs in the  
third position of the immigrating solution, so the child is augmented to become  
[1 − 3 4 − − − 8 −]. 

5) Position 3 in the emigrating solution is city 2, and city 2 occurs in the  
second position of the immigrating solution, so the child is augmented to become  
[1 2 3 4 − − − 8 −]. 

6) Position 2 in the emigrating solution is city 1, but the child solution already 
includes city 1. Therefore, we copy the remaining cities from the emigrating solution 
to the child solution, which gives [1 2 3 4 7 6 9 8 5]. 

 

Figure 8.4. Cycle migration in BBO 

 

C. Inver-over migration 

Inver-over migration in BBO is similar to inver-over crossover in GAs  
[TAO 98]. Inver-over migration in BBO does not require expression transformation, 
and can guarantee that the generated child represents a valid and complete tour. Like 
other migration options, inver-over migration first chooses the immigrating and  
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emigrating solutions based on the immigration rate and the emigration rate, 
respectively. Then, we perform the following procedure: 

1) Randomly select a position s in the immigrating solution. Suppose that 
position s in the immigrating solution is city r. 

2) Suppose that city r is in the kth position in the emigrating solution. Set the  
(k + 1)st position in the emigrating solution as the end-point city e. 

3) Reverse the order of the cities between the city in the (s + 1)st position of the 
immigrating solution and city e to obtain the child solution. 

EXAMPLE 8.4.– 

Figure 8.5 illustrates inver-over migration in BBO for a TSP. We randomly 
select position s = 4 from the immigrating solution. We see that the fourth position 
in the immigrating solution is city 4. We see that city 4 occurs in the first position in 
the emigrating solution. So we set e = 1 as the end-point city. We then reverse the 
order of the cities between the city in the fifth position and city 1 of the immigrating 
solution to obtain the child solution.  

 

Figure 8.5. Inver-over migration in BBO 

 

D. Matrix migration 

The next migration method that we discuss is called matrix migration, which is 
similar to matrix crossover in GAs [FOX 91]. In matrix migration, the tour 
representation is different from the above three path representations. An n-city tour  
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is represented by an n × n matrix M containing only zeros and ones. 1ikM =  if and 
only if city i occurs before city k in the tour. For instance, consider the matrix: 

0 1 0 1 1
0 0 0 1 1
1 1 0 1 1
0 0 0 0 1
0 0 0 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.6] 

The ones in the first row indicate that city 1 is before cities 2, 4 and 5. The ones 
in the second row indicate that city 2 is before cities 4 and 5. The ones in the third 
row indicate that city 3 is before cities 1, 2, 4 and 5. The one in the fourth row 
indicate that city 4 is before city 5. Finally, the fact that the fifth row is comprised of 
all zeros indicates that city 5 is the last city in the tour. Therefore, equation [8.6] 
represents the tour 3 1 2 4 5→ → → → . 

Another way to interpret equation [8.6] is to note that the row with the most ones 
is the first city, the row with the second most ones is the second city, and so on; the 
row with the kth most ones is the kth city in the tour. We note several properties for 
an n × n matrix M that represents a valid tour. 

1) Exactly one row of M has (n − 1) ones, exactly one row of M has (n−2) ones, 
and so on. 

2) The above property allows us to find the number of ones in M: 

Number of ones = 
n

i 1
( ) ( 1) / 2n i n n

=

− = −∑  [8.7] 

3) No city occurs before itself in the tour, so ii 0M = for all i [1, ]n∈ . 

4) If city i occurs before city j, and city j occurs before city k, then city i occurs 
before city k. That is, 

( )1 and 1 1ij jk ikM M M= = ⇒ =  [8.8] 

The advantage of matrix migration is that it is straightforward and easy to 
operate, as we shall soon see. With matrix migration, a child solution can inherit 
partial information from both immigrating and emigrating solutions, but it will also  
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contain unique information. The drawback of matrix migration is that all sequence 
information is represented by matrices, and it requires a high computational effort 
when converting between tour information in a vector expression and tour 
information in a matrix expression. 

Now we discuss the details of matrix migration in BBO. First, we use roulette-
wheel selection to select two parent solutions. Once the parents are selected, we 
perform matrix migration operation on the two parent matrices to obtain the child 
matrix. We have a couple of ways that we can combine parent matrices to obtain 
children.  

The first way is the intersection method. We use an example to illustrate 
intersection. Suppose that equation [8.6] represents parent 1M , and that the second 
parent is given as: 

2

0 1 1 0 1
0 0 1 0 1
0 0 0 0 0
1 1 1 0 1
0 0 1 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.9] 

where 2M  represents the tour 4 1 2 5 3→ → → → . We obtain the intersection of 

1M  and 2M  by performing an element-by-element logical AND operation on the 
two matrices. This gives the partially defined child as: 

1 2

0 1 0 0 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∧ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.10] 

This does not represent a valid tour, but it does indicate that city 1 is before cities 
2 and 5, city 2 is before city 5 and city 4 is before city 5. This ordering occurs in the 
partially defined child because the same ordering occurs in both parents. In fact, this 
is the only ordering that is common in both parents. At this point, we can  
pseudo-randomly add ones to M until it is a valid tour (that is, until it satisfies all of  
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the properties enumerated above). For example, we might choose to add ones to M 
to obtain: 

0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 1
0 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 1

1 1
1 1

 [8.11] 

where the added ones are denoted in bold. M now satisfies all the properties of a 
valid tour, and so we can transform M from its matrix expression to a sequential 
representation to obtain the tour 1 4 5 2 3→ → → → . 

The second way to combine parent matrices is with the union method. We use 
the same example parent matrices as above to illustrate union. Suppose that 
equations [8.6] and [8.9] represent parents 1M  and 2M . We obtain the union of 1M  
and 2M  by performing an element-by-element logical OR operation on the two 
matrices to obtain the partially defined child: 

1 2

0 1 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
0 0 1 0 0

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∨ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.12] 

We next select a random cut point that divides M into four quadrants (not 
necessarily of equal size). Suppose that we generate a random cut point at the 
second row and the second column. We write M with the upper-left and lower-right 
quadrants unchanged, but with the lower-left and upper-right quadrants replaced 
with undefined terms: 

0 1
0 0

0 1 1
1 0 1
1 0 0

M

× × ×⎡ ⎤
⎢ ⎥× × ×⎢ ⎥
⎢ ⎥= × ×
⎢ ⎥× ×⎢ ⎥
⎢ ⎥× ×⎣ ⎦

 [8.13] 
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We next make necessary changes to M to remove contradictions. For example, 
34 1M =  and 43 1M = , so one of those elements needs to be changed to a 0. This 

gives the corrected but still partially defined child as: 

0 1
0 0

0 0 0
1 0 1
1 0 0

M

× × ×⎡ ⎤
⎢ ⎥× × ×⎢ ⎥
⎢ ⎥= × ×
⎢ ⎥× ×⎢ ⎥
⎢ ⎥× ×⎣ ⎦

 [8.14] 

Finally, we pseudo-randomly add ones to the off-diagonal blocks in M until it is 
a valid tour (that is, until it satisfies all of the properties enumerated earlier). For 
example, we might choose to add ones to M to obtain: 

0 1 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 1 0 1
0 0 1 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.15] 

M now satisfies all of the properties of a valid tour, and we can transform M from its 
matrix expression to a sequential representation to obtain the tour 
1 4 5 2 3→ → → → . 

8.2.3. Mutation in the TSP 

This section discusses a few ways to mutate TSP solutions. We restrict our 
discussion to path representations.  

A. Inversion 

Inversion reverses the order of the tour between two randomly selected indices 
[FOG 90]. For example, tour x  could be mutated to become mx  as follows: 

1 2 3 4 5 6 7 8 9

1 5 4 3 2 6 7 8 9m

x

x

= → → → → → → → →

= → → → → → → → →

1442443

6447448
 [8.16] 
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where we randomly selected the start and the end point of the mutated segment. 
Inversion is also called 2-opt mutation [BEY 02]. There are ( 1) 2n n −  unique ways 
to implement inversion in an n-city TSP tour. The lowest-cost solution that results 
from all possible inversions of an n-city TSP tour always results in a tour without 
any crossed edges. 

2-opt is a simple but effective mutation method. Instead of replacing two points 
in the solution, kopt, which is a mutation method, adaptively chooses the number of 
points to break and reconnect [JOH 97]. According to simulation results, as the 
number of replaced points increases, the performance of k-opt increases. But  
the computational burden also increases. We need to find a balance between the 
expected performance and the computational burden. For the first few optimization 
generations, the population is still diverse and there is a lot of information to exploit. 
In this case, we do not need k-opt to act aggressively, so k should be a small number. 
But as the optimization algorithm progresses, it begins to converge. In this situation, 
we need to increase the effectiveness of k-opt to increase the rate of improvement, so 
we should use a larger value of k. We conclude that k should increase as the 
generation count increases. One way of doing this is shown as follows: 

2
c

m

g c
k

g
⎢ ⎥

= ⎢ ⎥
⎣ ⎦

 [8.17] 

where c  is the number of cities, gm is the generation limit and gc is the current 
generation number. 

B. Insertion 

Insertion moves the city in position i to position k, where i and k are randomly 
selected [FOG 88]. For example, suppose that we have the tour 

[ ]1 2 3 4 5 6 7 8 9x = . Suppose that we randomly select i = 4 and k = 2. We then 
move city 7, which is in position 4, to position 2 to obtain the mutated tour 

1 4 2 3 5 6 7 8 9mx = → → → → → → → →  [8.18] 

C. Displacement 

Displacement is a generalization of insertion [MIC 96a, Chapter 10]. 
Displacement takes the sequence of q cities beginning at the ith position and moves 
them to the kth position in the tour, where q, i and k are randomly selected. For 
example, suppose that we have the tour [ ]1 2 3 4 5 6 7 8 9x =  and randomly select  
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q = 2, i = 4 and k = 2. We then take the two-city sequence beginning at position 4 
(cities 4 and 5) and move it to position 2 to obtain the mutated tour: 

1 4 5 2 3 6 7 8 9mx = → → → → → → → →  [8.19] 

We could also combine displacement with inversion by reversing the order of the 
selected cities before we move them to their new position. 

D. Reciprocal exchange 

Reciprocal exchange swaps the cities in the ith and kth positions, where i and k 
are randomly selected [BAN 90]. For example, suppose we have the tour 

[ ]1 2 3 4 5 6 7 8 9x = . Suppose that we randomly select i = 5 and k = 1. We swap the 
cities in the first and fifth positions to obtain the mutated tour: 

5 2 3 4 1 6 7 8 9mx = → → → → → → → →  [8.20] 

We could generalize this method by swapping sequences of cities rather than 
single cities. We could then combine this generalization with inversion by reversing 
the order of one or more of the swapped sequences. 

8.2.4. Implementation framework 

Given the background of the preceding sections, we now present a BBO 
algorithm to solve the TSP, which is shown in Figure 8.6. We have two options in 
the implementation of Figure 8.6. 

1) We have several options for migration, as discussed in section 8.2.2. We could 
also use more than one migration method, probabilistically switching between 
various methods from one generation to the next. Furthermore, we could keep track 
of which migration method gives the best results and adapt the frequency of the 
migration methods depending on the fitness of their offspring. 

2) We have several options for mutation, as discussed in section 8.2.3. As with 
migration, we could use more than one mutation method, probabilistically switching 
between various methods from one generation to next. We could keep track of 
which mutation method gives the best results and adapt the frequency of the 
mutation methods depending on the fitness of their results. 
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Initialize a population of candidate solutions { kx } for k ∈ [1, N] (see section 8.2.1) 

Represent the candidate solutions using either path or matrix representations 

Calculate the tour distance for each candidate solution 

While not (termination criterion) 

For each kx , set emigration rate μk proportional to the fitness of kx ,  

where μk is normalized to [0, 1] 

For each kx , set immigration rate λk = 1 − μk 

{ kz } ← { kx } 

For each solution zk  

Use λk to probabilistically decide whether to immigrate to zk 

If immigrating then 

     Use {μi} to probabilistically select the emigrating solution xj 

     Create a child ck using one of the migration methods discussed  

     in section 8.2.2: 

          If using path representation then 

               Use one of the first three migration methods to create ck 

          Else if using matrix representation then 

               Use the fourth migration method to create ck 

          End if 

End if  

Probabilistically decide whether to mutate zk using one of the  

mutation methods described in section 8.2.3 

Next solution 

{ kx } ← { kz } 

Next generation 

Figure 8.6. Outline of BBO for solving the TSP. { kx } is the population  
of solutions, { kz } is a temporary population of solutions and kx  is  

the kth candidate solution 
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EXAMPLE 8.5.– 

We investigate the Att-48 TSP, a data set of 48 capitals of the US. This problem 
is available on the TSPLIB website at http://www.iwr.uni-heidelberg.de/groups/ 
comopt/software/TSPLIB95/. We implement BBO for the TSP with the following 
parameters: we use a population size N = 50; we initialize the population using 
nearest-neighbor strategy as described in section 8.2.1; we use path representation 
and inver-over migration as described in section 8.2.2; we use a mutation rate of 
0.01 and inversion mutation as described in section 8.2.3; we define the fitness of a 
tour as shown in equation [8.3]; we run 20 Monte Carlo simulations, each for  
300 generations. Figure 8.7 shows a plot of the 48 cities and the best minimum-
distance closed tour of the 20 simulations. The average minimum-distance tour 
length is 48,958.1. 

 

Figure 8.7. The Att-48 TSP cities and  
the best minimum-distance tour 
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EXAMPLE 8.6.– 

In this example, we investigate the effect of different migration and mutation 
options for the TSP. We use the same TSP problem and parameters as described in 
Example 8.5. Table 8.1 gives the average minimum-distance tour for different 
migration and mutation options. Note that we try three different migration methods 
with inversion mutation, and we try three different mutation methods with OM. 
From Table 8.1, we see that OM works best when we use inversion mutation, and 
inversion mutation works best when we use inver-over migration. 

Inversion mutation Inver-over migration 

Order migration 44,598.6 Inversion mutation 48,958.1 

Cycle migration 51,049.2 Insertion mutation 55,661.8 

Inver-over migration 48,958.1 Reciprocal exchange 53,160.4 

Table 8.1. Average minimum-distance tours for different  
migration and mutation options for the Att-48 TSP 

 

EXAMPLE 8.7.– 

In this example, we compare the performance of BBO with GA/GUR for the 
TSP. The difference between a GA and a BBO implementation lies in the selection 
of the parents. With BBO, the parents are selected based on the immigration rate and 
the emigration rate. With GA/GUR, parents are selected using roulette-wheel 
selection, but each variable in a solution is taken from a different parent. Here for 
BBO, we use OM and inversion mutation, and for GA/GUR, we use order crossover 
and inversion mutation. 

We evaluated BBO and GA/GUR on six TSP benchmarks, all of which are available 
in [REI 08]. Att-48 is a data set of 48 capitals of the US. Berlin-52 is a data set of  
52 locations in Berlin, Germany. ST-70 is a 70-city problem, CH-130 is a 130-city 
problem, GR-202 is a 202-city problem and RAT-575 is a 575-city problem.  

Table 8.2 shows the average minimum-distance tour for BBO and GA/GUR after 
300 generations over 20 Monte Carlo simulations. The algorithms are still 
converging after 300 generations, so the numbers in Table 8.2 should not be 
compared with the best published solutions, but only with each other to measure the 
effect of BBO and GA/GUR for the TSP. Table 8.2 shows that BBO is significantly 
better than GA/GUR for all six of the benchmarks for the first 300 generations. 
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TSP problem BBO GA/GUR 

Att-48 44,598.6 50,321.7 

Berlin-52 15,816.3 17,074.6 

ST-70 2,078.2 2,255.9 

CH-130 33,954.1 35,762.3 

GR-202 24,762.5 2,674.2 

RAT-595 10,175.3 10,408.5 

Table 8.2. Average minimum-distance tours  
between BBO and GA/GUR for TSP benchmarks 

 

8.3. Graph coloring 

Graph coloring is a special case of graph labeling; it is an assignment of labels 
traditionally called “colors” to elements of a graph subject to certain constraints. In 
its simplest form, it is a way of coloring the vertices of a graph such that no two 
adjacent vertices share the same color; this is called vertex coloring. Similarly, edge 
coloring assigns a color to each edge so that no two adjacent edges share the same 
color, and face (or map) coloring in a planar graph assigns a color to each face or 
region so that no two faces that share a boundary have the same color. 

  There are many related but distinct graph coloring problem. The classical graph 
coloring problem is defined as follows: determine the smallest number of colors n 
such that each node of a connected graph can be colored with one of these n colors 
under the constraint that linked nodes are not assigned the same color. This problem 
is also called the n-coloring problem. The smallest number of colors needed to color 
a graph G is called its chromatic number and is often denoted ( )Gχ . A graph that 
can be assigned an n-coloring is n-colorable, and it is called n-chromatic if its 
chromatic number is exactly n. 

Figure 8.8 shows a graph coloring problem with 7 vertices and 13 edges, along 
with its solution. The minimum number of colors needed to solve the problem is 

( ) 4Gχ = . We have used different shapes instead of different colors in Figure 8.8 
for the sake of illustration. Note from the right side of Figure 8.8 that none of the 
circles are connected to each other, none of the squares are connected to each other 
and there is only one triangle and one oval. 
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Figure 8.8. Illustration of a graph coloring problem with 7 vertices and  
13 edges. The left figure shows the unsolved graph and the right figure  
shows the solved graph, where we have used shapes to indicate colors 

In this section, we combine BBO with a greedy algorithm to solve the graph 
coloring problem. With this approach, each candidate solution in the population 
stores an ordered list of vertices as its solution features. Information about the order 
of the vertices is shared among solutions using inver-over migration. The greedy 
algorithm of Figure 8.9 assigns colors to the vertices. The number of colors assigned 
by the greedy algorithm to a given solution is the cost of that solution, and is used to 
assign emigration and immigration rates in BBO. 

C = indices of available colors 

For each vertex iv   

    iN ← {neighbors of iv } 

    ( )iC N ← {colors of x : ix N∈ } 

    ic ← min { k C∈ : ( )ik C N∉ } 

    Assign ic  as the color of  iv  

Next vertex 

Figure 8.9. A greedy algorithm for the graph coloring problem.  
For each vertex, this algorithm finds the next available  

color that is not used by a neighbor 

To compare performance, we use GA/GUR with the same greedy algorithm. We 
evaluated three graph coloring benchmarks from the website http://mat.gsia.cmu. 
edu/COLOR/instances.html [TRI 95]. The first benchmark is the Leighton graph 
[LEI 79] and includes 450 vertices and 17,343 edges. The second benchmark is 
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based on the Mycielski transformation and includes 191 vertices and 2,360 edges. 
The third benchmark is called Flat and includes 300 vertices and 21,695 edges. 

Table 8.3 shows the average minimum number of colors for BBO and GA/GUR 
after 300 generations over 20 Monte Carlo simulations. We see from Table 8.3 that 
BBO is significantly better than GA/GUR for all three of the benchmarks. 

Graph coloring problem BBO GA/GUR 

Leighton 91.6 92.8 

Mycielski 25.7 26.1 

Flat 133.2 136.5 

Table 8.3. Average minimum number of colors for  
BBO and GA/GUR for graph coloring benchmarks 

8.4. Knapsack problem 

The knapsack problem is another combinatorial optimization problem: given a 
set of items, each with a weight and a value, determine the quantity of each item to 
include in a collection so that the total weight is less than or equal to a given limit 
and the total value is as large as possible. The knapsack problem often arises in 
resource allocation with financial constraints, and it has been studied for more than a 
century. The name “knapsack problem” dates back to the early work on the problem 
and refers to the commonplace problem of packing your most valuable items 
without overloading your luggage. 

The most common knapsack problem is the 0/1 knapsack problem, which can be 
described as follows. Consider a set of n  items where the ith item has weight iw  
and profit ip . The problem is to select a subset of the n  items to maximize overall 
profit without exceeding the weight constraint b . The problem can be 
mathematically modeled as follows: 

{ } { }
1

1

Maximize

Subject to ,   where 0, 1 1, 2, ,

n

i i
i

n

i i i
i

w x

p x b x i n

=

=

≤ ∈ ∀ ∈

∑

∑ L

 [8.21] 

ix  takes the value 1 or 0, which represents the selection or rejection of the ith item. 
Ten benchmark knapsack problems are studied here as summarized in  
Table 8.4. The parameters used in BBO and GA/GUR are the same as those in  
Example 8.5. 
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Table 8.5 shows comparisons of the best performance of BBO and GA/GUR 
after 300 generations over 20 Monte Carlo simulations. The results show that both 
algorithms perform the same for F03, F04 and F09, and BBO performs better than 
GA/GUR for the other seven benchmarks, which indicates that BBO is a good tool 
for solving knapsack problems. 

Fun. Dim. Parameters (w, p, b) 

F01 10 
w = {95, 4, 60, 32, 23, 72, 80, 62, 65, 46}; p = {55, 10, 47, 5, 4, 50, 8, 61, 85, 
87}; b = 269 

F02 20 

w = {92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83, 25, 96, 70, 48, 14, 
58};  
p = {44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 40, 77, 15, 61, 17, 75, 29, 75, 
63};  
b = 878 

F03 4 w = {9, 11, 13, 15}; p = {6, 5, 9, 7}; b = 20 

F04 4 w = {6, 10, 12, 13}; p = {2, 4, 6, 7}; b = 11 

F05 15 

w = {56.358531, 80.87405, 47.987304, 89.59624, 74.660482, 85.894345, 
51.353496, 1.498459, 36.445204, 16.589862, 44.569231, 0.466933, 
37.788018, 57.118442, 60.716575};  
p = {0.125126, 19.330424, 58.500931, 35.029145, 82.284005, 17.41081, 
71.050142, 30.399487, 9.140294, 14.731258, 98.852504, 11.908322, 
0.89114, 53.166295, 60.176397}; b = 375 

F06 10 
w = {30, 25, 20, 18, 17, 11, 5, 2, 1, 1}; p = {20, 18, 17, 15, 15, 10, 3, 1, 1};  
b = 60 

F07 7 w = {70, 20, 39, 37, 7, 5, 10}; p = {31, 10, 20, 19, 4, 3, 6}; b = 50 

F08 23 

w = {983, 982, 981, 980, 979, 978, 488, 976, 972, 486, 486, 972, 972, 485, 
485, 969, 966, 483, 964, 963, 961, 958, 959};  
p = {81, 980, 979, 978, 977, 976, 487, 974, 970, 485, 485, 970, 970, 484, 484, 
976, 974, 482, 962, 961, 959, 958, 857}; b = 10000 

F09 5 w = {33, 24, 36, 37, 12}; p = {15, 20, 17, 8, 31}; b = 80 

F10 20 

w = {84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14, 48, 70, 96, 32, 68, 
92};  
p = {91, 72, 90, 46, 55, 8, 35, 75, 61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40, 
44};  
b = 879 

Table 8.4. The dimensions and parameters of the 10 benchmark knapsack problems 
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Fun. BBO GA/GUR Fun. BBO GA/GUR 

F01 290 265 F06 54 49 

F02 950 860 F07 112 105 

F03 35 35 F08 9,820 9,724 

F04 23 23 F09 130 130 

F05 470 395 F10 1,020 870 

Table 8.5. Performance comparison between BBO and  
GA/GUR for the 10 benchmark knapsack problems 

8.5. Conclusion 

In this chapter, we have summarized the TSP and have discussed some of the 
most commonly used TSP representations and operators. We have shown how BBO 
combines these representations and operators to solve the TSP and obtained good 
results. In addition, we have discussed BBO for the solution of other combinational 
optimization problems including the graph coloring problem and the knapsack 
problem.  

There are many other popular and practical combinatorial optimization 
problems, including the minimum spanning tree problem, the job shop scheduling 
problem and the bin packing problem. Evolutionary algorithms have been applied to 
all of these problems, but there is plenty of room for BBO research on these 
problems. There are several BBO variations that have yet to be applied to some of 
these combinatorial optimization problems. Finally, we note that we need more 
theoretical results to quantify the performance of BBO (and other EAs) on 
combinatorial problems to provide guidance for practical applications. 
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Constrained BBO 

All real-world optimization problems are constrained, at least implicitly if not 
explicitly. Constrained optimization is the optimization of an objective function in 
the presence of constraints on the solution. Without loss of generality, a constrained 
optimization problem can be written as: 

( ) ( )
( )

min such that g 0 for [1, ]

and 0 for [1, ]

ix

j

f x x i m

h x j p

≤ ∈

= ∈
 [9.1] 

This problem includes (m+p) constraints, m of which are inequality constraints 
and p of which are equality constraints. The set of x that satisfies all (m+p) 
constraints is called the feasible set, and the set of x that violates one or more 
constraints is called the infeasible set: 

( ) ( ){ }
{ }

feasible set : 0 for [1, ] and 0 for [1, ]

infeasible set :
i jx g x i m h x j p

x x

Γ = ≤ ∈ = ∈

Γ = ∉ Γ  
[9.2] 

Constraints could be linear or nonlinear, and the objective of a constrained 
evolutionary algorithm is to minimize f(x) while at the same time satisfying the 
constraints ( )gi x  and ( )jh x . 

Overview of the chapter 

In this chapter, we discuss how to modify BBO for constrained optimization 
problems. Section 9.1 provides notation and concepts that often arise in constrained 
optimization. Section 9.2 introduces several popular constraint-handling approaches 
used in EAs, which are also suitable for BBO. Section 9.3 shows how we can 
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combine BBO with these popular constraint-handling methods to obtain constrained 
BBO algorithms, and presents a comparative study of these constrained BBO 
algorithms on standard constrained benchmark problems. The concluding section of 
this chapter provides references to additional resources, and suggests several 
important topics for future research for constrained BBO. 

9.1. Constrained optimization 

Various techniques have been proposed to handle constrained optimization 
problems. The methods that are based on penalty functions are the most popular 
approaches, thanks to their simplicity and ease of application. In this chapter, our 
constrained BBO algorithms will also use penalty function methods. So it is first 
necessary to review penalty function methods. 

Penalty function methods usually penalize candidate solutions that violate 
constraints. Penalty function approaches for general constrained optimization 
problems were first proposed by Courant [COU 43]. They are often cited as being 
the most popular algorithms for constrained optimization, but other approaches for 
constrained EAs are rapidly gaining in popularity. We could allow infeasible 
solutions in the EA population but penalize them in terms of cost, or in terms of 
selection for contributing to the next generation. This approach generally does not 
penalize feasible solutions, no matter how close they are to the constraint boundary. 

Penalty function methods transform the standard constrained optimization 
problem of equation [9.1] into the following unconstrained problem: 

1 1
min ( ),  where ( ) ( ) ( ) ( )

( ) [max(0, ( ))]

( ) ( )

pm

i i j jx i j

i i

j j

x x f x rG x c L x

G x g x

L x h x

β

γ

φ φ
= =

= + +

=

=

∑ ∑

 
[9.3] 

where ir  and jc  are positive constants that are called penalty factors, and β  and γ  
are positive constants that are often set equal to 1 or 2. ( )xφ  is called the penalized 
cost function, and we obtain ( )xφ  as a weighted sum of the original cost function 

( )f x  and the constraint violation magnitudes { }( )iG x  and { }( )jL x . We see that if 

x ∈Γ , then ( ) ( )x f xφ = . However, if x ∉Γ , then ( ) ( )x f xφ >  by an amount that 
increases with the amount of constraint violation. 
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Now that we have a penalized cost function ( )xφ , we can run an EA that uses 
( )xφ  as the cost function to select candidate solutions for the next generation. We 

can therefore extend the unconstrained BBO algorithms discussed in this book to 
constrained optimization problems; we simply use ( )xφ  instead of ( )f x  as the cost 
function. 

The constraints ( ) 0jh x =  are very unforgiving. If we randomly generate an 
initial population in a continuous search domain, we have essentially zero chance of 
obtaining candidate solutions that satisfy equality constraints. Therefore, we often 
change the hard equality constraints to soft constraints that require hj (x) 

 
to be 

approximately zero rather than exactly zero; that is: 

( )jh x ε≤  [9.4] 

where ε  is a small positive constant. 

Depending on the value of ε , we may have a reasonable chance of obtaining 
solutions that satisfy the soft constraint of equation [9.4]. One of the ways of 
assigning ε  is to use relatively large values of ε  early in the EA so that we can 
obtain some feasible solutions, and then gradually decrease ε  as the generation 
count increases [BRE 09, ZAV 09]. Many research papers that compare constrained 
optimization algorithms on benchmark functions use = 0.0001ε  [LIA 06]. 

The conversion of equality constraints to inequality constraints transforms 
equation [9.3] to: 

[ ]
1

min ( ), where ( ) ( ) ( )

max(0, ( )) for [1, ]
( )

max(0, ( ) ) for [ 1, ]

m p

i ix i

i
i

i

x x f x rG x

g x i m
G x

h x i m m p

β

β

φ φ

ε

+

=

= +

⎧ ∈⎪= ⎨
⎡ − ⎤ ∈ + +⎪⎣ ⎦⎩

∑
 [9.5] 

where we have simplified the problem by setting .γ β=  

Problems like equation [9.5] can be solved with static or dynamic methods. Static 
methods use values of ir , β  and ε  that are independent of the EA generation 
number. In contrast, dynamic methods use values of ir , β  and ε  that depend on  
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the EA generation number. Static methods are simpler to implement but dynamic 
methods may perform better because of their flexibility. Dynamic methods may be 
able to intelligently adapt their weights, based on the population distribution or the 
problem characteristics, to improve performance. Dynamic methods often increase 

ir  and β , and decrease ε , as the generation count increases. This increases the 
weight given to constraint violation, which results in a gradual attraction of more 
and more infeasible solutions toward the feasible region. 

9.2. Constraint-handling methods 

This section discusses several popular constraint-handling approaches used in 
EAs, which are variations of the basic penalty function method described in the 
previous section. These constraint-handling approaches are suitable for 
implementation in BBO. 

9.2.1. Static penalty methods 

The first constraint-handling method is a static penalty method. Homaifar et al. 
[HOM 94] set =2β  and ri  as a function of the constraint violation magnitude in 
equation [9.5]; that is, ri  is a non-decreasing function of i (x)G . Sometimes the 
penalty factor ri  is set equal to one of a set of discrete values depending on the 
amount of the constraint violation: 
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 [9.6] 

where q is the user-specified number of constraint levels, the ijR  values are user-
defined weights and the ijT  values are user-defined constraint thresholds. This is a 
static approach because the penalty on the constraints is not a function of the 
generation count. The disadvantage of this approach is that it requires 
(2 1)( )q m p− +  tuning parameters, although we can reduce this number by 
combining some of the weight levels and thresholds to simplify the algorithm. 
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9.2.2. Superiority of feasible points 

The method of the superiority of feasible points modifies the penalized cost 
function of equation [9.5] as follows [POW 93]: 

1

min ( ), where ( ) ( ) ( )

( ) ( ) ( )

x
m p

i i
i

x x x x

f x rG x x

φ φ φ θ

θ
+

=

′ ′ = +

= + +∑
 [9.7] 

where ( )xθ  is an additional term that is designed to guarantee that ( ) ( )x xφ φ′ ′≤  for 
all x ∈Γ  and for all x ∉Γ . That is, ( ) ( )x xφ φ′ ′≤  for all feasible x and for all 
infeasible x . This requirement can be satisfied by setting ( )xθ  as follows: 

0 if
( )

max ( ) : if
x

x
f y y x

θ
∈ Γ⎧

= ⎨ ∈ Γ ∉ Γ⎩
 [9.8] 

assuming that ( ) 0f x ≥  for all x . A less conservative way to implement this 
method, which does not assume that ( ) 0f x ≥ , is to set ( )xθ  as follows  
[MIC 96b]: 
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 [9.9] 

This definition of ( )xθ  gives '( ) ( )x xφ φ=  for all x  if ( ) ( )x xφ φ≤  for all x ∈Γ  
and for all x ∉ Γ . That is, if the penalized cost function of equation [9.5] results in 
all feasible solutions being ranked better than all infeasible solutions, then we do not 
make any changes to equation [9.5]. However, if equation [9.5] results in 

( ) ( )x xφ φ>  for some x ∈Γ  and for some x ∉ Γ , then equation [9.9] shifts the 
penalized cost function values of all the infeasible solutions so that 
min '( ) max '( )x xx xφ φ= ; that is, the best infeasible penalized cost is equal to the 
worst feasible penalized cost. 

The method of the superiority of feasible points may be an attractive approach if 
the optimization problem includes difficult constraints. If the constraints are hard to 
satisfy, then this method provides a lot of selection pressure for feasible points to 
remain in the population, which allows their information to continue to the next 
generation. 
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9.2.3. The eclectic evolutionary algorithm 

The eclectic EA provides another approach to enforcing the superiority of 
feasible points [MOR 98]. It defines the penalized cost function as: 

( ) if 
( ) ( )(1 ) if 

f x x
x s xK x

m p
φ

∈ Γ⎧
⎪= ⎨ ⋅ − ∉ Γ⎪ +⎩

 [9.10] 

where K  is a large constant, m p+  is the total number of constraints and ( )s x  is 
the number of constraints that are satisfied by x . The user-defined constant K  
needs to be large enough to ensure that ( ) ( )x xφ φ>  for all x ∈Γ  and for all x ∉ Γ . 
If we use a ranking method to select solutions for recombination, then there is no 
upper bound for K . However, if we use roulette-wheel selection, or some other 
method that uses absolute values of ( )φ ⋅  for selection, then we need to be careful not 
to set K  too large; we want to make sure that although infeasible solutions are 
ranked worse than feasible solutions, infeasible solutions still have a reasonable 
chance of being selected for recombination. 

The eclectic EA differs from equation [9.7] because the eclectic EA does not 
evaluate the cost ( )f x  for infeasible solutions. This could result in significant 
computational savings. Also, the eclectic EA only considers the number of 
constraint violations in determining the penalized cost function, and it does not 
consider the magnitude of the constraint violations. Equation [9.5], on the other 
hand, considers only the magnitude of constraint violation, and it does not consider 
the number of constraint violations. This could provide another computational 
advantage to the eclectic EA because in real-world problems it is often much easier 
to count the number of constraint violations than to quantify the exact level of those 
violations. 

9.2.4. Dynamic penalty methods 

If the penalized cost function of equation [9.5] uses 1β =  or 2 , and ( )ir ct α= , 
where c  and α  are constants, and where t  is the generation count, then we obtain: 
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This approach is called a dynamic penalty method because the penalty on the 
constraints increases with the generation count [JOI 94]. However, in order to  
be successful with this approach, the cost ( )f ⋅  and the constraint violation 
magnitude ( )M ⋅  should be normalized so that the penalized cost function ( )φ ⋅  is 
written as follows: 

( ) ( ) ( ) ( )
if max ( ) 0( ) max ( )

( )
 if max ( ) 0 0

( ) ( ) max ( )

xx
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x
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M xM x M x
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f x f x f x
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>⎧⎪′ = ⎨ =⎪⎩

′ =

 [9.12] 

assuming that ( ) 0f x >  for all x . This ensures that the components of the penalized 
cost ( )xφ  have approximately the same magnitude. Another option is to combine a 
dynamic penalty method with the superiority of feasible points method from section 
9.2.2. With this approach, the penalized cost is written as: 

( )  if  
( )

( ) ( ) ( ) ( )  if 
f x x

x
f x ct M x x xαφ

θ
′ ∈ Γ⎧

⎨ ′ ′+ + ∉ Γ⎩
 [9.13] 

where ( )xθ  is defined such that all feasible points have a lower penalized cost than 
all infeasible points. Joines and Houck [JOI 94] report typical constant values of 

1 / 2c =  and 1 or 2α = , but appropriate values of c  depend on the maximum 
generation count. For shorter EA simulations, c  should be larger than 1 / 2  by one 
or two orders of magnitude. If c  is too small, then the constraint violation penalty 
will be too small and the EA will assign too high a selection probability on solutions 
with low costs but large constraint violations. 

Next, we introduce a popular dynamic penalty method called the exponential 
dynamic penalty method, which is proposed in Carlson and Shonkwiler [CAR 98] 
as: 

( ) ( ) exp( ( ) )x f x M x Tφ =  [9.14] 

where ( )M x  is the constraint violation magnitude defined in equation [9.11], and T  
is a monotonically non-increasing function of the generation count t . 1T t=  is 
proposed in Carlson and Shonkwiler [CAR 98], which gives lim 0t T→∞ = , so the 
penalized cost of infeasible solutions tends to infinity as the generation count tends 
to infinity. 
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Equation [9.14] assumes that ( ) 0f x ≥  for all x ; otherwise, the constraint 
penalty would serve to decrease the cost. If this assumption is not satisfied, then we 
should shift the cost function values before we penalize them. We can also add a 
tuning parameter to the penalty part of ( )xφ : 

( ) ( ) exp( ( ) )
( ) ( ) min ( )

x

x f x M x T
f x f x f x
φ α′ ′=
′ = −  [9.15] 

where the normalized constraint violation magnitude ( )M x′  is defined in equation 
[9.12], and α  is a tuning parameter to adjust the relative importance of constraint 
violations. We find that values of α  around 10 usually work pretty well. 

As with the additive penalty method described in equation [9.12], we could 
combine the exponential dynamic penalty method with the superiority of feasible 
points method in section 9.2.2. With this approach, the penalized cost is written as: 
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or: 
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where ( )xθ  is large enough to ensure that all feasible points have a lower cost than 
all infeasible points. 

9.2.5. Adaptive penalty methods 

Dynamic penalty methods often work better than static methods, but they require 
additional tuning, which is problem-dependent. Penalties that are too high 
discourage exploration of the infeasible set, but sometimes we need to use infeasible 
solutions to find good solutions that satisfy the constraints. However, penalties that 
are too low result in too much exploration of the infeasible set, and poor 
convergence to feasible solutions. These considerations motivate adaptive penalty 
methods. Adaptive methods use feedback from the population to adjust the penalty  
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weights. One adaptive approach is proposed in Carlson and Shonkwiler [CAR 98], 
which sets the penalty weights of equation [9.5] as follows: 
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where t  is the generation number, 1 β  and 2 β  are constants satisfying 1 2 1β β> > , 
case 1 means that the best solution was feasible for each of the past k  generations, 
and case 2 means that there were no feasible solutions in any of the past k  
generations. The generation window k  is a tuning parameter that affects the speed 
of adaptation. We see that if the best solution in the population is feasible, we 
decrease the constraint weight to allow more infeasible solutions in the population. 
If there are no feasible solutions in the population, we increase the constraint weight 
to try to obtain some feasible solutions. The goal is to obtain a balanced mix of 
feasible and infeasible solutions to thoroughly explore the search space and the 
constraints. Typical constant values for this method are 1 2(1) 1, 4, 3ir β β= = =  and 
k n= , where n  is the problem dimension [HAD 93]. 

9.2.6. The niched-penalty approach 

The niched-penalty approach is motivated by the difficulty of tuning the 
parameters of penalty methods [DEB 99, DEB 00a]. It uses tournament selection to 
select solutions for recombination according to the following rules: 

– given two feasible solutions, the one with the lower cost wins the tournament; 

– given one feasible solution and one infeasible solution, the feasible solution 
wins the tournament; 

– given two infeasible solutions, the one with the smaller constraint violation 
wins the tournament. 

This method is attractive because of its simplicity, and it does not require any 
tuning of penalty parameters. A comparison of two infeasible solutions does not 
require any cost function evaluations, which can reduce computational effort. The 
niched-penalty approach often obtains good results on constrained optimization 
problems. However, its simplicity may also be a disadvantage because it considers a 
feasible solution with a very high cost to be better than a slightly infeasible solution 
with a very low cost. Therefore, it may not work well for problems whose solutions 
are on the constraint boundary, which is the case for many real-world optimization 
problems [LEG 09, RAY 09]. 
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The “niched” part of this approach is not integral to its constraint-handling 
ability, but is intended to preserve diversity in the population, and is described as 
follows. We do not allow solutions to participate in a tournament with each other if 
they are far from each other in domain space. After we randomly choose solutions 
for tournament selection, we then compute their distance from each other. If the 
solutions are too far apart from each other, then we randomly choose different 
solutions for the tournament. This helps prevent distant clusters of solutions from 
disappearing from the population and thus maintains diversity. 

9.2.7. Stochastic ranking 

Stochastic ranking adds a random component to constrained EAs [RUN 00]. 
Since randomness is such an important component of EAs, it makes sense to include 
randomness in their constraint-handling approach. Stochastic ranking sometimes 
ranks candidate solutions according to their cost ( )f ⋅ , and sometimes ranks them 
according to their constraint violation magnitude. The decision of how to rank 
solutions is stochastic. When we compare two solutions 1x  and 2x , we consider 
solution 1x  to be better than 2x  if one of the following applies: 

– both solutions are feasible and 1 2( ) ( )f x f x< ;  

– a randomly generated number ~ [0,1]r U  is less than a user-defined 
probability fP , and 1 2( ) ( )f x f x< ; 

– neither of the above conditions are satisfied, and 1x  has a smaller constraint 
violation than 2x . 

Otherwise, we consider 2x  to be better than 1x . We see that we might compare 

1x  and 2x  on the basis of their costs, or we might compare them on the basis of 
their constraint violations, depending on the outcome of a random number generator. 
After we have compared and sorted all of the solutions in the population, we then 
perform selection and recombination for the next generation. Probability values 

(0.4,0.5)fP ∈  give good results for many benchmark problems. 

9.2.8. ε -level comparisons 

ε -level comparisons are similar to the static penalty approach of section 9.2.1 in 
which different penalty function weights are used depending on the level of 
constraint violation. However, ε -level comparisons use only two levels of 
constraint violations for ranking [TAK 09]. 
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First, we quantify the constraint violation ( )M x  of each solution x  by either 
combining all constraint violations or by finding the maximum constraint violation: 
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Second, we rank two solutions x  and y  as follows: 
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where 0ε ≥  is a user-defined constraint violation threshold. We see that a constraint 
violation that is less than ε  is considered to be a feasible solution for the purpose of 
ranking. Note that if ε = ∞ , then solutions are ranked solely on the basis of cost. If 

0ε = , then feasible solutions are ranked on the basis of cost, infeasible solutions are 
ranked solely on the basis of their constraint violation and feasible solutions are 
always ranked better than infeasible solutions. We typically decrease ε  as the 
generation count increases, which gradually increases the importance of constraint 
satisfaction: 
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where ( )tε  is the value of ε  during the tth generation, px  is the solution with the 
pth smallest constraint violation, / 5p N= , N is the population size, and c  and cT  
are tuning parameters that are often set to values of about 100c =  and max / 5cT t=  
[TAK 09]. We could also try other tuning parameters and other profiles for 
decreasing ε  as a function of t . 

9.3. BBO for constrained optimization 

Since the constraint-handling methods discussed above are solely concerned with 
how to rank candidate solutions, we can use any EA in conjunction with any of these 
constraint-handling methods. So the combination of BBO with these constraint-
handling methods is conceptually simple. In this section, we use the BBO algorithm 
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of Figure 3.5 in Chapter 3, while calculating the fitness of each candidate solution 
using equation [9.5] with one of the eight constraint-handling methods discussed 
above. Then, we use the new fitness values to calculate the immigration rate and the 
emigration rate in the BBO algorithm. This results in constrained BBO algorithms. 

Although the implementations of constrained BBO algorithms are easy, their 
optimization performances may be completely different. In this section, we present 
comparisons between constrained BBO algorithms with different constraint-
handling methods. We use equation [9.11] to measure the constraint violation 
magnitude of a candidate solution, where ( )iG x  is given by equation [9.5] with 

1β = . The constraint-handling methods that we test, and their tuning parameters, 
include the following: 

– EE: the eclectic EA of section 9.2.3; 

– DP: the dynamic penalty method of equation [9.11] in section 9.2.4 with 
10c =  and 1α = ; 

– DS: the dynamic penalty method combined with the superiority of feasible 
points method, as defined by equation [9.13] in section 9.2.4, with 10c =  and 

2α = ; 

– EP: the exponential dynamic penalty method of equation [9.15] in section 9.2.4 
with 10α = ; 

– AP: the adaptive penalty method of equation [9.18] in section 9.2.5 with 
1 24, 3β β= = and k n= , where n  is the problem dimension; 

– NP: the niched-penalty approach of section 9.2.6; 

– SR: the stochastic ranking method of section 9.2.7 with 0.45fP = ; 

– LC: the ε -level comparison method of section 9.2.8 with 100c = , 200cT =  
and / 5p N= , where N is the population size. 

We test constrained BBO algorithms with the above constraint-handling methods 
on two sets of 2006 and 2010 IEEE Congress on Evolutionary Computation (CEC) 
benchmark functions listed in Appendix B. The 2006 CEC benchmarks are briefly 
summarized in Table 9.1 [LIA 06]. The 2010 benchmarks are briefly summarized in 
Table 9.2 [MAL 10]. We use the dimension 10D =  for each benchmark, and 
randomly generated the offset values { }io  and rotation matrix M for each 
benchmark. 
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Function D Function type Li Ni Le Ne A 
G01 13 Quadratic 9 0 0 0 6 
G02 20 Nonlinear 0 2 0 0 1 
G03 10 Polynomial 0 0 0 1 1 
G04 5 Quadratic 0 6 0 0 2 
G05 4 Cubic 2 0 0 3 3 
G06 2 Cubic 0 2 0 0 2 
G07 10 Quadratic 3 5 0 0 6 
G08 2 Nonlinear 0 2 0 0 0 
G09 7 Polynomial 0 4 0 0 2 
G10 8 Linear 3 3 0 0 6 
G11 2 Quadratic 0 0 0 1 1 
G12 3 Quadratic 0 1 0 0 0 
G13 5 Nonlinear 0 0 0 3 3 
G14 10 Nonlinear 0 0 3 0 3 
G15 3 Quadratic 0 0 1 1 2 
G16 5 Nonlinear 4 34 0 0 4 
G17 6 Nonlinear 0 0 0 4 4 
G18 9 Quadratic 0 13 0 0 6 
G19 15 Nonlinear 0 5 0 0 0 
G20 24 Linear 0 6 2 12 16 
G21 7 Linear 0 1 0 5 6 
G22 22 Linear 0 1 8 11 19 
G23 9 Linear 0 2 3 1 6 
G24 2 Linear 0 2 0 0 2 

Table 9.1. 2006 CEC benchmark functions. Li and Ni are the number of  
linear and nonlinear inequality constraints, Le and Ne are the number of  
linear and nonlinear equality constraints, D is the number of dimensions  

and A is the number of active constraints at the solution 

The parameters that we use in the BBO algorithm are: population size 50, 
maximum immigration rate and maximum emigration rate 1, and maximum mutation 
rate 0.01 with a mutated value randomly chosen from a uniform distribution in the 
search domain. We use linear migration curves. We allow BBO to run for 50,000 
fitness function evaluations. We run 25 Monte Carlo simulations on each benchmark 
to obtain representative performances. We use an elitism parameter of two, which 
means that we keep the two best solutions from each generation to the next. 
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Function Function type Ni Ne ρ 
C01 Non-separable 2 0 0.997689 
C02 Separable 2 1 0.000000 
C03 Non-separable 0 1 0.000000 
C04 Separable 0 4 0.000000 
C05 Separable 0 2 0.000000 
C06 Separable 0 2 0.000000 
C07 Non-separable 1 0 0.505123 
C08 Non-separable 1 0 0.379512 
C09 Non-separable 0 1 0.000000 
C10 Non-separable 0 1 0.000000 
C11 Rotated 0 1 0.000000 
C12 Separable 1 1 0.000000 
C13 Separable 3 0 0.000000 
C14 Non-separable 3 0 0.003112 
C15 Non-separable 3 0 0.003210 
C16 Non-separable 2 2 0.000000 
C17 Non-separable 2 1 0.000000 
C18 Non-separable 1 1 0.000000 

Table 9.2. 2010 CEC benchmark functions. Ni and Ne are the  
number of inequality and equality constraints and ρ is the ratio  
of the size of the feasible set to the size of the search space 

For the purpose of elitism, we define the best solution as the feasible solution 
with the lowest cost. If there are not any feasible solutions, then we define the best 
solution as the one with the lowest penalized cost, where we obtain penalized cost 
using one of the constraint-handling methods discussed above which ranks 
infeasible solutions better than feasible solutions. We can afford to use this approach 
when there are a relatively large number of solutions and the ranking is used for 
selection for recombination. But, for saving two elite solutions from one generation 
to the next, we need to make sure that feasible solutions are always preferred above 
infeasible ones for the purpose of defining elite solutions. This ensures that once 
BBO finds a feasible solution, it will always have at least one feasible solution for 
the rest of simulation. 

Tables 9.3 and 9.4 summarize the performance of the constraint-handling BBO 
algorithms on the 2006 and 2010 CEC benchmarks, respectively. For the 2006 CEC 
benchmarks, we notice that for most of the functions, the BBO algorithms with EP, 
AP and NP give the best performance, and the other algorithms cannot find feasible 
solutions (except for functions G20, G21 and G22, for which none of the algorithms 
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could find feasible solutions). This indicates that some functions, for example G04, 
are very easy, meaning that any method works well, and other functions, for 
example G20, are very hard, meaning that no method works well. The results also 
indicate that different constraint-handling methods have significantly different 
performance levels. EP, AP and NP combined with the BBO are better than other 
constraint-handling methods for the 2006 CEC benchmarks. 

Fun. Best known solution EE DP DS EP AP NP SR LC 

G01 – 15.000 – 14.998 – 14.982 – 14.791 – 15.000 – 15.000 – 15.000 – 14.991 – 14.842 

G02 – 0.80361 – 0.80215 – 0.79246 – 0.78346 – 0.80361 – 0.80361 – 0.80361 – 0.80192 – 0.78118 

G03 – 1.0005 – 1.0004 – 1.0000 – 0.9992 – 1.0005 – 1.0005 – 1.0005 – 1.0001 – 0.9997 

G04 – 30665.5 – 30665.5 – 30665.4 – 30665.1 – 30665.5 – 30665.5 – 30665.5 – 30665.5 – 30665.5 

G05 5126.497 5127.046 5127.048 5129.993 5126.497 5126.497 5126.497 5129.913 5129.391 

G06 – 6961.81 – 6961.00 – 6957.07 – 6942.65 – 6961.81 – 6961.81 – 6961.81 – 6960.87 – 6957.39 

G07 24.306 27.051 30.547 34.119 24.272 26.272 24.306 35.574 28.562 

G08 – 0.09582 – 0.09582 – 0.09425 – 0.09006 – 0.09582 – 0.09582 – 0.09582 – 0.09582 – 0.08917 

G09 680.630 680.677 688.637 699.758 680.630 680.630 680.630 681.328 698.027 

G10 7049.248 7057.369 7236.683 7377.902 7049.248 7049.248 7049.248 7139.645 7147.586 

G11 0.74990 0.74990 0.74992 0.74994 0.74990 0.74990 0.74990 0.74990 0.74997 

G12 – 1.00000 – 0.99994 – 0.99514 – 0.98725 – 1.00000 – 1.00000 – 1.00000 – 0.99991 – 1.00000 

G13 0.053942 0.055046 0.054264 0.054931 0.053942 0.053942 0.053942 0.056891 0.055284 

G14 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 

G15 961.715 962.627 968.648 972.114 961.715 961.715 961.715 965.736 967.728 

G16 – 1.90516 – 1.90511 – 1.90264 – 1.90017 – 1.90516 – 1.90516 – 1.90516 – 1.90508 – 1.90382 

G17 8853.540 8853.600 8854.231 8855.703 8853.540 8853.540 8853.540 8853.692 8855.376 

G18 – 0.86602 – 0.86552 – 0.86206 – 0.85742 – 0.86602 – 0.86602 – 0.86602 – 0.86303 – 0.85954 

G19 32.656 32.659 32.661 32.678 32.656 32.656 32.656 32.665 32.656 

G20 0.204979 – – – – – – – – 

G21 193.725 – – – – – – – – 

G22 236.431 – – – – – – – – 

G23 – 400.055 – 391.319 – 381.794 – 362.830 – 396.034 – 389.748 – 391.653 – 384.183 – 348.958 

G24 – 5.50801 – 5.50801 – 5.50800 – 5.50800 – 5.50801 – 5.50801 – 5.50801 – 5.50801 – 5.50801 

Table 9.3. Comparison of the best feasible cost function values  
found by constraint-handling BBO algorithms on the 2006 CEC  

benchmarks. The best value in each row is indicated in bold 
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Fun. EE DP DS EP AP NP SR LC 

C01 -3.41E-01 -1.98E-01 -2.16E-01 -7.65E-01 -7.43E-01 -7.12E-01 -6.65E-01 -4.43E-01 

C02 -5.19E+00 -2.07E+00 -1.23E+00 -4.56E+00 -7.01E+00 -2.33E+00 -1.24E+00 -6.89E+01 

C03 3.76E+02 2.50E+02 6.24E+02 1.25E+01 3.23E+01 7.48E+01 1.26E+02 4.35E+01 

C04 1.23E+02 4.32E+02 2.31E+02 1.27E+01 4.41E+01 7.58E+01 3.22E+02 1.78E+02 

C05 -4.36E+01 -4.78E+01 -2.19E+01 -7.78E+02 -1.25E+02 -1.47E+02 -7.69E+02 -1.12E+02 

C06 -4.45E+01 -5.11E+01 -1.63E+01 -4.87E+01 -1.46E+02 -2.34E+02 -4.55E+01 -1.39E+02 

C07 2.58E+03 4.80E+03 1.47E+03 2.69E+02 4.58E+02 1.14E+02 7.78E+02 4.65E+02 

C08 2.36E+06 5.82E+06 1.17E+06 7.84E+05 2.36E+05 1.46E+05 7.89E+05 3.65E+05 

C09 1.24E+08 6.12E+08 7.72E+07 1.36E+07 4.21E+07 7.63E+08 5.36E+08 2.16E+07 

C10 8.94E+07 7.93E+07 1.11E+07 2.31E+06 4.57E+06 3.26E+06 1.02E+07 3.50E+06 

C11 -4.78E+00 -5.82E+00 -7.85E+00 -7.63E+00 -7.12E+00 -4.63E+00 -3.69E+00 -7.85E+00 

C12 -4.56E+02 -7.90E+02 -2.36E+02 -8.54E+02 -2.24E+02 -2.13E+02 -2.17E+02 -1.48E+02 

C13 -8.52E+01 -2.74E+01 -4.11E+02 -2.36E+02 -3.68E+03 -7.58E+03 -6.63E+02 -2.21E+02 

C14 1.17E+09 2.91E+09 4.50E+09 4.45E+07 1.29E+07 4.51E+07 5.28E+08 7.58E+08 

C15 2.35E+09 8.54E+10 3.58E+09 1.21E+09 3.54E+09 2.36E+09 1.27E+09 1.30E+09 

C16 4.66E-01 1.51E-01 7.66E-01 3.36E-01 1.28E-02 3.17E-02 3.68E-01 4.45E-02 

C17 1.20E+00 6.92E+00 2.36E+00 7.85E-02 8.96E-01 1.22E-01 1.08E-01 1.28E-01 

C18 1.66E-01 2.42E-01 4.15E-01 4.10E-01 1.54E-01 8.57E-01 6.63E-01 3.07E-01 

Table 9.4. Comparison of the best feasible cost function values  
found by constraint-handling BBO algorithms on the 2010 CEC  

benchmarks. The best value in each row is indicated in bold 

For the 2010 CEC benchmarks, we notice that for most of the functions, BBO 
with EP, AP and NP give the best performance, while the other algorithms cannot 
find feasible solutions (except for function C11, for which DS and LS give the best 
performance). In particular, BBO with EP obtains the best feasible cost function 
values for functions C01, C03, C04, C05, C09, C10, C12, C15 and C17; BBO with 
AP obtains the best feasible cost function values for functions C02, C14, C16 and 
C18; and BBO with NP obtains the best feasible cost function values for functions 
C06, C07, C08 and C13. This indicates that for the 2010 CEC benchmarks, EP, AP 
and NP combined with BBO are better than the other constraint-handling methods. 
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Based on the above results, it appears that some constraint-handling methods 
provide similar performance levels, and some constraint-handling methods provide 
notably different constraint-handling abilities. In general, constrained BBO is a 
competitive algorithm for solving constrained optimization problems. 

9.4. Conclusion 

We see from this chapter that there are many constraint-handling methods that 
can be used with BBO. Some of these methods have similar performance levels, and 
others have significantly different performance levels. We showed how BBO can be 
combined with these constraint-handling methods to produce various constraint-
handling BBO algorithms. These combinations of BBO with various constraint-
handling methods can serve as a template for the extension of any other EA for 
constrained optimization. Rather than trying all possible constraint-handling BBO 
algorithms in search of the best combination, it is more instructive to remember the 
basic principles, summarized above, that we have uncovered. 

Many other constraint-handling methods have been proposed, and new ones 
continually appear in the literature. Constrained optimization surveys can be found 
in [EIB 01, COE 02a, COE 02b, COE 11]. Any reader who is interested in further 
research should note that Carlos Coello Coello maintains a bibliography of papers 
related to constrained evolutionary optimization, which includes 1,357 references as 
of May 2016 [COE 16a, COE 16b]. 

Constrained evolutionary optimization is an active research area because: (1) it is 
a relatively new area; (2) it is lacking in theoretical results; (3) real-world 
optimization problems are almost always constrained. In this concluding section, we 
mention some important topics for future constrained evolutionary optimization 
research. 

Incorporation of constraint-handling methods with newer EAs 

Much current research includes the incorporation of standard constraint-handling 
methods, such as those discussed in this chapter, into newer EAs. The literature 
continually introduces new EAs. These new EAs are often nothing more than 
modifications of older EAs, but sometimes they have distinctive new features and 
capabilities. It is important to explore how well current constraint-handling methods 
perform when incorporated into different types of EAs. The relative performance 
levels of different EAs on unconstrained problems does not necessarily correlate 
with their relative performance levels on constrained problems. 
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Constrained optimization theory and mathematical models 

Theoretical results would be a fruitful area for future research in constrained 
optimization. This book discusses Markov models, dynamic system models and 
statistical mechanics approximation models for BBO. Perhaps those tools, or others, 
could also be used to analyze constrained EAs. 

Combinations of different constraint-handling methods 

Just as EAs can be combined in various ways, constraint-handling methods can 
also be combined. For example, an ensemble of constraint-handling methods could 
all use the same cost function results, and the best method at each generation would 
dominate the next generation [MAL 10]. As a further level of abstraction beyond 
ensembles, hyper-heuristics combine multiple EAs and multiple constraint-handling 
methods into a single algorithm. Recall that a heuristic is a family of algorithms (for 
example, a family of BBO variations). A hyper-heuristic is a family of families of 
algorithms (for example, a family containing a BBO heuristic and other heuristics). 
Hyper-heuristics can be used for any type of optimization problem, but we mention 
them here because of their promise for constrained optimization problems [TIN 13]. 



10 

BBO in Noisy Environments 

Many optimization problems in science and engineering suffer from the effects of  
noise, which poses a challenge for EAs. Noise corrupts the calculation of objective 
functions via imperfect sensors, measurement devices and approximate numerical 
simulators [BEY 07, HAN 09, MA 15a, SCH 93, YU 08]. Noise results in two types 
of undesirable effects in EAs: (1) a superior candidate solution may be erroneously 
believed to be inferior, and (2) an inferior candidate solution may be erroneously 
believed to be superior. These effects result in false optima and reduced EA 
optimization performance, including reduced convergence rates and non-monotonic 
fitness improvement. 

Noise-handling methods in EAs can be classified into two categories: methods 
which require an increase in computational cost, including explicit averaging 
methods and implicit averaging methods, and methods which perform hypotheses 
testing on the noise, including the use of approximate fitness models and 
modification of selection schemes. 

Explicit averaging methods include re-sampling, which is the most common 
approach to deal with noise [PIE 04]. Re-sampling of the fitness values involves 
several noisy fitness value measurements, followed by averaging to obtain an 
improved fitness estimate. Averaging an increased number of samples reduces the 
variance of the estimated fitness. As the number of samples increases to infinity, the 
uncertainty in the fitness estimate decreases to zero, which transforms the noisy 
problem into a noiseless one. 
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Implicit averaging methods increase the population size so that solutions can be 
re-evaluated during the normal course of evolution, and so that neighboring 
solutions can be evaluated, which gives fitness estimates in neighboring regions of 
the search space. It has been shown that a large population size reduces the influence 
of noise on the optimization process [FIT 88].  

The main idea of approximated model methods is that measured fitness values of 
neighboring individuals can give good fitness estimates without extra evaluations 
[NER 08]. 

Overview of the chapter 

In this chapter, BBO is applied to the optimization of noisy problems. A noisy 
problem is one in which the fitness function is corrupted by random noise. Noise 
interferes with the BBO immigration rate and emigration rate, and adversely affects 
optimization performance. Section 10.1 introduces the notation of noisy fitness 
functions, and section 10.2 analyzes the effect of noise on BBO using the Markov 
model derived in Chapter 5. Section 10.3 incorporates the re-sampling approach into 
BBO to alleviate the effects of noise, and section 10.4 discusses the Kalman BBO 
algorithm, which uses a Kalman filter to estimate fitness function values. Section 
10.5 demonstrates the performance of BBO with re-sampling, along with Kalman 
BBO, on a set of standard benchmarks. 

10.1. Noisy fitness functions 

Fitness function evaluations in EAs are often accompanied by noise [JIN 05, 
SIM 13]. For example, sensor inaccuracies can cause noise in experimental fitness 
function evaluations. Also, if we measure fitness function values with simulation 
software, then approximation errors in our software could cause noise in fitness 
function evaluations. 

A noisy fitness function evaluation could result in a high fitness being 
mistakenly assigned to a low-fitness solution. Conversely, it could result in a low 
fitness being mistakenly assigned to a high-fitness solution. Figure 10.1 illustrates 
the PDFs of two noisy but unbiased fitness functions f (x1) and f (x2). We see that the 
true value of f (x1) is 0 and the true value of f (x2) is 5, but the evaluations are noisy. 
Therefore, x1 might have an evaluated fitness that is greater than that of x2. This 
situation would result in an inaccurate assessment of the relative fitness values of x1 
and x2, which could result in an EA selecting the wrong solution for recombination. 
That is, noise can deceive an EA. 
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Figure 10.1. The PDFs of two fitness functions. x2, which has a true value of  
5, is more fit than x1, which has a true value of 0. But depending on the noise  
that is realized during fitness function evaluation, the EA might think that x1 is  
more fit than x2. This could result in incorrect selection for the next generation 

When we have noisy fitness function evaluations, we cannot be sure which 
solution is best. Consider two solutions, x1 and x2. Their true fitness values are 
denoted by ft (x1) and ft (x2), respectively, and the fitness function evaluations are 
denoted by f (x1) and f (x2), respectively. Assume that the true fitness of x1 is better 
than that of x2, that is, 

ft (x1) > ft (x2) [10.1] 

But the evaluated fitness of x1 may be less than that of x2 because of noise: 

f (x1) < f (x2)  [10.2] 

That is, f (x1) < f (x2)  does not necessarily imply that ft (x1) < ft (x2). However, if 
we know the PDFs of f (x1) and f (x2), then we can calculate the probability that  
ft (x1) > ft (x2) given specific values of f (x1) and f (x2). We will not go through the 
mathematics here, but Du [DU 09] has computed the probability of relative fitness 
changes due to noise. 

During EA execution, we do not have the PDF of the noisy fitness function since 
we do not know the true fitness function. However, we might know the PDF of the 
true fitness function. This situation is analogous to that shown in Figure 10.1, except 
that instead of treating the noisy fitness function as a random variable with a mean 
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equal to the true fitness function, we can treat the true fitness function as a random 
variable with a mean equal to the noisy evaluated fitness function value. 

Fitness noise can be represented in a very general form, but here we assume the 
most simple and most common type of noise, which is additive and Gaussian, 
because it is the predominant noise model due to its frequent occurrence in 
measurement systems. Additive noise is often assumed to be Gaussian due to its 
wide prevalence in both natural and engineering systems. Non-Gaussian noise, such 
as Cauchy noise, has also been considered [ARN 03]. It is plausible to assume that 
the noise cannot exceed certain limits due to the characteristics of the fitness 
measurement instrument. These assumptions have theoretical and practical impacts 
on noisy EAs, but are not considered further in this chapter. 

10.2. Influence of noise on BBO 

BBO applications (along with other EA applications) are typically implemented 
on deterministic problems. That means that the fitness evaluation of each solution is 
noise-free. But in the real-world, noiseless environments do not exist. In a noisy 
environment, the evaluated fitness is not equal to the true fitness, the immigration 
and emigration rates in BBO will be calculated incorrectly, and BBO migration may 
not accomplish its intended purpose. 

In BBO, the immigration and emigration rates are assigned to different solutions 
according to the fitness of each solution. If the noise has a strong effect on the 
fitnesses of the solutions, the numerical order of the evaluated fitnesses could be 
much different from the numerical order of the true fitnesses. A solution with good 
fitness may be assigned a low emigration rate and a high immigration rate, and a 
solution with poor fitness may be assigned a high emigration rate and a low 
immigration rate. This is the opposite of what the true immigration and emigration 
rates ought to be. Therefore, the immigration and emigration rates may not 
accurately reflect the fitnesses of the solutions. This means that a solution with poor 
fitness may have a greater chance to emigrate its SIVs to other solutions compared 
to a solution with good fitness. If this happens, the migration mechanism of BBO is 
corrupted, and BBO will not perform as well as in a noiseless environment. 

Now we give an example of the effect of noise on BBO performance using the 
Markov transition probabilities derived in Chapter 5 [MA 15a]. 

EXAMPLE 10.1.– 

Suppose that we have a 2-bit problem (q = 2, n = 4) with a population size  
N = 3. The search space consists of bit strings { } { }1 2 3 4, , , 00, 01,10,11x x x x x= =  
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with corresponding fitness values ( ) ( ) ( ) ( ){ }1 2 3 4, , ,t t t tf f x f x f x f x=  

{ }0.2, 0.4, 0.6, 0.8= . Suppose that the three candidate solutions in the current 

population are { } { }1 2 3, , 00, 01,10y x x x= = . In the noise-free case, the fitness of 

x1 is ( )1 0.2tf x = , and its corresponding immigration rate and emigration rate are 

1 0.8λ =  and 1 0.2μ = , as indicated by a linear migration curve. The fitness of x2 is 

( )2 0.4tf x = , with corresponding immigration rate and emigration rate 2 0.6λ =  

and 2 0.4μ = . We perform probabilistic migration to see whether x1 and x2 can 

transition to the optimal solution 4 11x =  at the next generation. Based on equation 
[5.45] in Chapter 5, the probability of x1 transitioning to the optimal solution due to 
migration only (no mutation) is 
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The probability of x2 transitioning to the optimal solution due to migration only is 

( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( ) { }

( ) ( ) ( )( ) { }

4
2

4 2 2 4 2 4
1

1

3, 4
2 2 4 2 4

1

2, 4

2

2 2 4 2 4

1

Pr 1

1 1 1

1 2 2

0.180

j jj s

s j jj

j jj

j jj

j jj

j jj

v
x x x s x s

v

v
x x

v

v
x x

v

ς
μ

λ λ
μ

μ
λ λ

μ

μ
λ λ

μ

∈

=
=

∈

=

∈

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥× − − +
⎢

→

⎥
⎣ ⎦

=

∑
∏

∑
∑
∑
∑
∑

0

0

0

1

1

1

 [10.4] 



192     Evolutionary Computation with Biogeography-based Optimization 

Next suppose that noise corrupts the measured fitness of x1 and x2. Suppose that 
the measured fitness of x1 is ( )1 0.3f x =  and the measured fitness of x2 is 

( )2 0.2f x = , so that ( ) ( )1 2f x f x> . In this case, the immigration rate and the 

emigration rate of x1 are 1 0.7λ′ =  and 1 0.3μ′ = , respectively, and the immigration 

rate and the emigration rate of x2 are 2 0.8λ′ =  and 2 0.2μ′ = , respectively. We 
perform a migration trial to see whether x1 and x2 can transition to the optimal 
solution 4 11x = . Based on equation [5.45] in Chapter 5, the probability of x1 
transitioning to the optimal solution due to migration only is 
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The probability of x2 transitioning to the optimal solution due to migration only 
is 
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We see that the probabilities that the two solutions x1 and x2 transition to the 
optimal solution change significantly. We further find that these two probabilities 
both decrease, with the probability of x1 decreasing from 0.107 to 0.049, and the 
probability of x2 decreasing from 0.180 to 0.151. 

Now suppose that the mutation rate probability pm is 0.1 per bit. We can combine 
equations [5.45] and [5.46] in Chapter 5 to find the following transition probabilities 
in the noise-free and noisy cases: 

1 4

2 4
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We see that even with mutation, the probability of transitioning to the optimal 
solution x4 decreases when noise corrupts the fitness evaluations. However, mutation 
tends to even out the probabilities. Without mutation, we saw that the probability of 
x1 transitioning to the optimal solution decreases from 0.107 to 0.049, a decrease of 
54%; and the probability of x2 transitioning to the optimal solution decreases from 
0.180 to 0.151, a decrease of 16%. However, with a mutation rate of 0.1, we saw 
that the probability of x1 transitioning to the optimal solution decreases from 0.132 
to 0.082, a decrease of 38%; and the probability of x2 transitioning to the optimal 
solution decreases from 0.197 to 0.169, a decrease of 14%. Noise damages the 
migration mechanism of BBO, but some of that damage can be mitigated with a 
high mutation rate. 

10.3. BBO with re-sampling 

In this section, we apply re-sampling to BBO to improve BBO performance in 
noisy environments [MA 15a]. In noisy problems, evaluated fitness values include 
noise. Therefore, as we showed in the previous section, the evaluated values are not 
perfectly accurate, and they do not perfectly reflect the true value of the fitness. 
BBO uses the fitness of each solution to determine its immigration and emigration 
rates. Because of noise, evaluated fitness is not equal to true fitness, the immigration 
and emigration rates in BBO are incorrect, and this negatively affects BBO 
migration. 

Re-sampling is a simple approach that samples the fitness of each candidate 
solution several times and calculates the average as the evaluated fitness. If we 
evaluate a fitness function for a given candidate solution ι times, and the noise 
values of those ι samples are independent, then the variance of the average fitness 
function decreases by a factor of ι [GRI 97, MIT 05]. 

Suppose that the ith sample gi(x) of the fitness function of a candidate solution x 
is given by 

( ) ( )ti ig x f x w= +
 [10.8] 

where ( )tf x  is the true fitness, and wi is the zero-mean additive noise with a  
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variance of σ2 at the ith measurement. If we re-sample the evaluated fitness function 
ι times, the best estimate of the true fitness is  

( )
1

1ˆ ( )
l

i
if x g x

l =

= ∑  [10.9] 

and the variance of ( )f̂ x  is 2 lσ . Figure 10.2 illustrates this idea. The average of a 

set of ι noisy fitness function evaluations is ι times as accurate as a single evaluation.  

 

Figure 10.2. The re-sampling strategy for noisy fitness function evaluation. The  
solid line shows the PDF of a noisy fitness function. The dashed line shows the PDF 
of the average of four fitness function evaluations. Both have a mean of zero, but  
the averaged evaluation has a variance that is 1/4 that of a single evaluation.  
The averaged evaluation is likely to be much closer to its mean than a single 
evaluation 

However, the re-sampling strategy is theoretically valid only if the fitness 
function evaluation noise is independent from one sample to the next. For instance, 
suppose that we measure the fitness of candidate solutions with noisy 
instrumentation. If the instrumentation noise is time-correlated with itself from one 
sample time to the next, then averaging ι samples does not reduce the variance by a 
factor of ι. In this case, the amount by which the variance is reduced depends on the 
noise correlation from one sample to the next. 
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If we have ι fitness evaluations ( ){ }ig x  of a candidate solution x , then we can 

find an estimate 2σ̂  of the variance 2σ  of the fitness estimate as follows: 
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f x g x
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∑

∑
 [10.10] 

Intuitively, it seems that the equation for 2σ̂  should have ι instead of (ι – 1)  in 
the denominator, but the (ι – 1) term is preferred because it gives an unbiased 
estimate of the variance [SIM 06]. We can use equation [10.10] to see how many 
times we have to sample a noisy fitness function to achieve a desired variance in our 
fitness function evaluation. The desired variance is user-defined and depends on the 
particular problem. As ι → ∞, the variance goes to 0 and our fitness value estimate 
becomes error-free. 

 

Figure 10.3. Flowchart of BBO with re-sampling 
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Re-sampling is a straightforward and effective way to handle noise in fitness 
functions, and one of the most important contributions of re-sampling is that it does 
not need any control parameters except for the number of re-samples. The flowchart 
of BBO with re-sampling is shown in Figure 10.3 [MA 15a]. It is worth pointing out 
that in Figure 10.3 we can use GA, PSO or any other EA instead of BBO to alleviate 
the effects of noise. 

10.4. The Kalman BBO 

The Kalman filter was invented by  Kalman [KAL 60]. It is a recursive filter that 
can estimate states in a noisy environment. The contribution of the Kalman filter in 
noisy environments has been significant, and it is the theoretical foundation of many 
famous applications. One of the most important contributions of the Kalman filter is 
that it can provide an estimate of the true state of a dynamic system in a noisy 
environment. 

The Kalman BBO is designed for problems with noisy fitness function 
evaluations. In noisy optimization problems, each fitness is the sum of the true 
fitness and a random noise. Therefore, the evaluated fitness is not equal to the true 
fitness. According to section 10.2, noise adversely affects the emigration and 
immigration rates of each solution. The Kalman filter provides a better estimate of 
the true fitness of the solution compared to the evaluated one. 

The Kalman BBO assumes that the fitness of a given solution x  is constant 
within a single Kalman filter estimation cycle. We further assume that fitness 
evaluation noise is not a function of x . Each fitness is a scalar, therefore the 
Kalman filter only needs to estimate a scalar for each solution, not a vector. In this 
case, the Kalman filter is simplified to its scalar version, keeps track of the 
uncertainty of each fitness estimate and thus reduces the complexity of the 
calculations compared to the vector version of the Kalman filter.  

We denote the variance of a single fitness function evaluation as R. We denote 
the variance of the fitness estimate of a solution x  after k  fitness function 
evaluations as ( )kP x . We denote the value of the kth fitness function evaluation of 

x  as ( )kg x . Finally, we denote our estimate of the fitness of x  after k  fitness  
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function evaluations as ( )k̂f x . With this notation, we can use Kalman filter theory 

to write: 
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 [10.11] 

For 0,1, 2,k = L. We initialize ( )0P x = ∞  for all x , which gives 

( ) ( )
( )

1 1

1

f̂ x g x

P x R

=

=
 [10.12] 

That is, our estimate 1̂( )f x  after the first fitness function evaluation g1 (x) is 
simply equal to the first evaluation. Moreover, the uncertainty p1 (x) in our fitness 
estimate after the first evaluation is simply equal to the uncertainty in the evaluation.  

Equation [10.11] shows that each time we evaluate the fitness of x, we modify 
our estimate of  f (x) based on the previous estimate, its uncertainty and the most 
recent fitness function evaluation result g (x). Equation [10.11] shows that: 

( )
( ) ( )

( )
( ) ( )

10

1 1

ˆ ˆlim

ˆlim
k

k

k kP x

k kP x

f x f x

f x g x

+→

+ +→∞

=

=
 [10.13] 

In other words, if we are completely certain of the fitness of x  (that is, 
( ) 0kP x = ), then further evaluations of the fitness of x  will not change our estimate 

of its fitness. On the other hand, if we are completely uncertain of the fitness of x   
( ( )kP x = ∞ ), then we will set our estimate of its fitness equal to the next fitness 

function evaluation result. 
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Equation [10.11] also shows that each time we evaluate the fitness of x, our 
uncertainty P (x) in its value decreases; that is, our confidence in its estimated value 
increases. Equation [10.11] shows that: 

( ) ( )
( )
( ) ( )
( ) ( )

1 10

10

1

1

ˆlim

lim 0

ˆ ˆlim

lim

k kR

kR

k kR

k kR

f x g x

P x

f x f x

P x P x

+ +→

+→

+→∞

+→∞

=

=

=

=

 [10.14] 

These results agree with intuition. If the fitness function noise variance R  is 0, 
then the fitness function evaluation is perfect, thus our estimate is simply equal to 
the fitness function evaluation result, and the uncertainty in our fitness function 
estimate is 0. On the other hand, if the fitness function noise variance R  is infinite, 
then the noise is so large that fitness function evaluations do not provide us with any 
information. In this case, additional fitness function evaluations do not change our 
estimate of the fitness function value, nor do they reduce our uncertainty in its true 
value. 

The Kalman BBO keeps track of the fitness function estimate ( )k̂f x  and 
variance ( )kP x  for each solution x  from one fitness function evaluation to the next 

( )1, 2,k = L . We allocate a user-defined fraction F of the available fitness function 

evaluations to generate and evaluate new solutions. We initialize our fitness estimate 
and variance for each new solution as described in equation [10.12]. We use the 
fraction ( )1 F−  of the available evaluations to re-evaluate existing solutions. After 

re-evaluations, we update our fitness estimate and variance as shown in equation 
[10.11]. Each time we have sufficient resources for a fitness function evaluation, we 
generate a random number r  that is uniformly distributed on [0, 1]. If r F< , then 
we perform BBO migration and mutation to generate a new solution, and then we 
evaluate its fitness; otherwise, we re-evaluate an existing solution. 

When it is time to re-evaluate an existing solution, we consider two guiding 
principles. First, we can generate more information by re-evaluating solutions whose 
fitness estimate variance is high. Second, we can generate more useful information 
by re-evaluating solutions whose estimated fitness is good. That is, we do not care 
too much about obtaining high precision in the estimate of low-fitness solutions 
because we are probably not interested in recombining them for future BBO  
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generations. Stroud [STR 01] suggests the following strategy to select a solution sx  
for re-evaluation: 

( ) ( ){ }

mean of the population's estimated fitness values
standard deviation of the population's estimated fitness values

ˆarg max :s

f

x P x f x f

σ

σ

←
←

← > −
 [10.15] 

where we have omitted the subscript k on ( )f̂ x  and ( )P x  for convenience; we use 
the most recently updated values of ( )f̂ x  and ( )P x  for each solution x  in equation 

[10.15]. The equation shows that among all solutions whose estimated fitness is 
greater than one standard deviation below the mean, we select the one with the 
largest uncertainty for re-evaluation. This strategy assumes that ( )f x  is fitness, so 

large ( )f x  is better than small ( )f x . 

10.5. Experimental results 

In this section, we investigate the performance of BBO in noisy environments. A 
representative set of noiseless and noisy benchmark functions are used for 
performance testing. For the noiseless functions, we use the 13 benchmark functions 
briefly described in Table 3.2 in Chapter 3. A more detailed description of these 
functions can be found in Appendix A. The noisy benchmark functions are defined 
as 

( ) ( ) ( )0,1Noisy tf x f x N= +
 [10.16] 

where ( )0, 1N  is the absolute value of a Gaussian random variable with mean 0 

and variance 1. Note that all benchmark functions are minimization problems. 

We compare the performance of BBO in the noiseless case, BBO in the noisy 
case, BBO with re-sampling and Kalman BBO. The parameters used in each BBO 
algorithm are population size equal to 50, maximum immigration rate and maximum 
emigration rate equal to 1 and maximum mutation rate equal to 0.01 with a mutated 
value randomly chosen from a uniform distribution in the search domain. We  
use linear migration curves, l = 5 fitness re-samples for BBO with re-sampling  
and a fixed number of total fitness evaluations for each benchmark and  
each algorithm to provide fair performance comparisons. We terminate after  
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20,000 fitness function evaluations, and run 25 Monte Carlo simulations on each 
benchmark to obtain representative performances. 

Table 10.1 summarizes the performance of the BBO algorithms on these 
benchmarks and shows the mean minimum values found by each algorithm. We 
observe that the performance of BBO is dramatically different for noiseless and 
noisy benchmark functions, and noise strongly affects BBO performance. However, 
when we incorporate re-sampling and Kalman filtering into BBO, we obtain good 
optimization results that are almost the same as those obtained for most of the 
noiseless benchmark functions. This result indicates that re-sampling and Kalman 
filtering can alleviate the effect of noise for these benchmark functions. 
Furthermore, we see that for the noisy benchmark functions, BBO with re-sampling 
performs better than Kalman BBO on six functions, and Kalman BBO performs 
better than BBO with re-sampling on the other seven functions. This result shows 
that BBO with re-sampling achieves almost the same performance as Kalman BBO 
for noisy optimization problems. 

Function BBO in noiseless case 
BBO in  

noisy case 
BBO with 

re-sampling 
Kalman  

BBO 

F01 2.17E−02  4.26E+01 6.57E−02 9.67E−02 

F02 1.84E−03  1.78E+00 1.64E−02 7.65E−02 

F03 6.33E−02 3.57E+01 7.52E−01 8.94E−02 

F04 5.68E−14  4.28E+00 6.38E−14 7.83E−24 

F05 9.24E−01 1.19E+01 9.65E−01 7.89E−01 

F06 0.00E+00  7.80E+01 1.25E−10 7.82E−05 

F07 1.37E−15 5.26E−01 4.58E−10 9.63E−10 

F08 2.63E−06 3.45E+00 7.84E−06 3.41E−06 

F09 1.55E−13 7.89E+02 3.25E−02 2.30E−02 

F10 0.00E+00 1.31E+01 7.80E−05 1.17E−05 

F11 7.49E−01 2.65E+02 9.65E−01 9.52E−01 

F12 2.26E−30 5.74E+05 7.83E+00 7.84E+00 

F13 1.28E−10 2.30E+02 4.57E−02 1.26E−02 

Table 10.1. Comparison of results for BBO in the noiseless case, BBO in  
the noisy case, BBO with re-sampling and Kalman BBO. The table shows  

the best solution achieved, averaged over 25 Monte Carlo simulations 
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10.6. Conclusion 

In this chapter, we investigated noisy fitness functions and noise effects on BBO 
performance using a Markov model. Analysis indicated that migration between 
candidate solutions, the most critical operation of BBO, can be corrupted by fitness 
function evaluation noise. The analysis was confirmed with an example using a 
BBO Markov model. 

We used re-sampling and Kalman filtering in BBO to alleviate the effect of 
random noise on the fitness function evaluations of numerical benchmark functions. 
We also compared BBO in the noiseless case, BBO in the noisy case, BBO with re-
sampling, and Kalman BBO. Our numerical simulations showed the following: (1) 
BBO is a powerful evolutionary algorithm for noiseless benchmark functions, but 
fitness function evaluation noise is indeed a problem for BBO; (2) BBO with re-
sampling and Kalman BBO achieve almost the same optimization performance for 
noisy benchmark functions, and they can greatly improve the performance of BBO 
in noisy environments.  

This chapter focused on the fitness of candidate solutions contaminated by additive 
and normally distributed noise. There are several important areas for further studies. 
First, in many real-world applications, different types of fitness function noise can be 
encountered, so it is of interest to combine BBO with re-sampling or Kalman filtering 
to address other types of fitness function noise. Also, other types of noise (besides 
fitness function noise) can arise in optimization. For example, in distributed 
optimization, some nodes might temporarily drop out due to communication glitches; 
or during experimental optimization, some parameters might be corrupted during 
fitness function evaluation. Future research could explore the effects of these and other 
types of noise on EA performance. Another important area for future work is to 
explore the optimization performance of BBO combined with other noise-handling 
methods; for example, dynamic re-sampling, which uses different re-sampling rates at 
different points in the search domain, or other types of filtering besides Kalman 
filtering. 



11 

Multi-objective BBO 

Most real-world optimization problems are multi-objective, and therefore multi-
objective optimization has been applied in many fields of science, engineering, 
economics and logistics. Multi-objective optimization typically includes multiple 
objectives which usually conflict. For example, minimizing vehicle cost while 
maximizing comfort, or maximizing vehicle performance while minimizing fuel 
consumption and pollutant emissions, involves two and three conflicting objectives, 
respectively. 

Multi-objective optimization is also called multi-criteria optimization, multi-
performance optimization and vector optimization. In this chapter, we assume that a 
candidate solution is n-dimensional, and that our multi-objective optimization 
problem (MOP) is a minimization problem for each objective. An MOP can then be 
written as follows: 

( ) ( ) ( ) ( ){ }1 2min = min , , , kx x
f x f x f x f xL  [11.1] 

That is, we want to minimize a vector ( )f x  of functions. Of course, we cannot 
minimize a vector in the typical sense of the word minimize. Nevertheless, our goal 
in an MOP is to simultaneously minimize all k functions ( )f x . MOPs were first 
solved by evolutionary algorithms in [ROS 67], and we call those implementations 
multi-objective evolutionary algorithms (MOEAs). MOEAs have been widely 
studied by the operations research community for many years [SCH 85, EHR 05, 
SIM 13a, SIM 13b, ZIT 04]. 

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Overview of the chapter 

In this chapter, we discuss how to modify biogeography-based optimization 
(BBO) for MOPs. Section 11.1 provides some notation and concepts that often occur 
in MOPs. Section 11.2 shows how we can combine BBO with some well-known 
MOEA approaches. The combination of BBO with various MOEA approaches 
results in several multi-objective biogeography-based optimization (MOBBO) 
algorithms. Section 11.3 presents an application of MOBBO to an automatic 
warehouse scheduling problem. The concluding section of this chapter provides 
references to additional resources and suggests several important topics for future 
MOBBO research. 

11.1. Multi-objective optimization problems 

This section outlines some basic notation and concepts that are related to MOPs. 
We first list some definitions that are often used in multi-objective optimization: 

1) Domination: a solution *x  is said to dominate x  if the following two 
conditions hold: (1) ( *) ( )i if x f x≤  for all [1, ]i k∈  and (2) ( *) ( )j jf x f x<  for at 
least one [1, ]j k∈ . That is, *x  is at least as good as x  for all objective function 
values, and it is better than x  for at least one objective function value. We use the 
notation: 

*x xf  [11.2] 

to indicate that *x  dominates x . This notation can be confusing because the 
symbol f  looks like a “greater than” symbol, but since we deal with minimization 
problems in this chapter, the symbol f  means that the function values of *x  are 
less than or equal to those of x . However, this notation is standard in the literature, 
so this is the notation that we use. The statement “ *x  is superior to x ” is identical 
to the statement “ *x  dominates x ”. 

2) Weak domination: a solution *x  is said to weakly dominate x  if 
( *) ( )i if x f x≤  for all [1, ]i k∈ . That is, *x  is at least as good as x  for all objective 

function values. Note that if *x  dominates x , then it also weakly dominates x .  
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Also note that if ( *) ( )i if x f x=  for all [1, ]i k∈ , then *x  and x  weakly dominate 
each other. We use the notation: 

*x xf  [11.3] 

to indicate that *x  weakly dominates x . Some authors use the equivalent 
terminology that *x  covers x . 

3) Non-dominated: a solution *x  is said to be non-dominated if there is no x  
that dominates it. Non-inferior, admissible and efficient are synonyms for  
non-dominated. 

4) Pareto optimal solutions: a Pareto optimal solution *x , also called a Pareto 
solution, is one that is not dominated by any other x  in the search space. That is, 

{ *x  is Pareto optimal} ⇔  

{ ∃ x : ( ( ) ( *)i if x f x≤  for all [1, ]i k∈ , 

and ( ) ( *)j jf x f x<  for some [1, ]j k∈ )} [11.4] 

5) Pareto optimal set: the Pareto optimal set, also called the Pareto set and 
denoted as sP , is the set of all *x  that are non-dominated: 

sP =  { * :[ : ( ( ) ( *)i ix x f x f x∃ ≤  for all [1, ]i k∈ , 

and ( ) ( *)j jf x f x<  for some [1, ])]j k∈ } [11.5] 

The Pareto set is also called the efficient set, and it is sometimes called the 
admissible set, although this latter term usually implies constraint satisfaction rather 
than Pareto optimality. 

6) Pareto front: the Pareto front, also called the non-dominated set and denoted 
as fP , is the set of all vector functions ( )f x  corresponding to the Pareto set: 

{ ( *) : * }f sP f x x P= ∈  [11.6] 

EXAMPLE 11.1.– 

This example uses an airplane trip to illustrate Pareto optimal solutions and a 
Pareto front. Suppose that the two objectives in this problem are travel time and 
ticket price. We find the tickets shown in Table 11.1 for sale. 
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Ticket Travel time (hrs) Ticket price ($) 
A 10 1,700 
B 9 2,000 
C 8 1,800 
D 7.5 2,300 
E 6 2,200 

Table 11.1. Travel time and ticket price options of an airplane trip 

If we compare tickets A and B, we cannot say that either is superior without 
knowing the relative importance of travel time versus ticket price. However, we can 
see that C is better than B in both objectives, so we say that C dominates B. As long 
as C is a feasible option, there is no reason we would choose B. 

We also see that D is dominated by E. The rest of the options (A, C and E) have 
a trade-off associated with travel time versus ticket price, so none is clearly superior 
to the others. We call this the non-dominated set of solutions because none of the 
solutions are dominated. Usually, solutions of this type form a typical shape, as 
shown in Figure 11.1. Solutions that lie along the line are non-dominated solutions, 
while those that lie above and to the right of the line are dominated because there is 
always at least one solution on the line that has at least one objective that is better. 
The line is called the Pareto front and solutions on it are called Pareto optimal 
solutions. All Pareto optimal solutions are non-dominated. It is important in MOPs 
to find solutions as close as possible to the Pareto front. 

 

Figure 11.1. Pareto optimal solutions and  
Pareto front example using an airplane trip 

 



Multi-objective BBO     207 

It is important to determine performance metrics for multi-objective optimization 
algorithms; that is, how can we judge the performance of an MOEA? For a  
single-objective optimization algorithm, performance is usually straightforward: 
performance is quantified by the minimum value of the cost function that is  
determined. However, even in single-objective optimization, we might be interested 
in several different performance metrics for an EA. We might be interested not only 
in finding the minimum cost function value, but also in quickly finding a “good” 
solution that is not necessarily the best. We might also be interested in finding many 
good solutions in diverse regions of the search space. So even in the apparently 
straightforward problem of single-objective optimization, we may have several 
possible performance metrics. This complication increases with multiple-objective 
optimization. Some potential criteria for MOEA performance might be the following 
[ZIT 03]: 

1) Maximize the number of solutions that we find within a certain distance of the 
true Pareto set. 

2) Minimize the average distance between the MOEA-approximated Pareto set 
and the true Pareto set. 

3) Maximize the diversity of the solutions that we find in the approximated 
Pareto set. 

4) Minimize the distance from the MOEA-approximated Pareto front to an ideal 
point. 

Criteria 1 and 2 are concerned with finding the “best” approximation of the true 
Pareto set. Criterion 3 is concerned with finding a diverse set of solutions so that the 
human decision maker has enough resources to make an informed decision among 
the possible trade-offs. In contrast to the other criteria, Criterion 4 is concerned with 
finding solution candidates that are as close as possible to the decision maker’s ideal 
solution, which may or may not exist. However, most MOEAs are primarily 
concerned with finding the best approximation to the true Pareto set. 

Criteria 1 and 2 assume that we know the true Pareto set in the first place, so 
those criteria might be useful when testing MOEAs on well-understood benchmarks, 
but the criteria are useless (unless modified) when running an MOEA on a  
real-world optimization problem with an unknown Pareto set. But if we know the true  
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Pareto set sP , and an MOEA gives us an approximate Pareto set ŝP , the average  

distance ˆ( , )s sM P P  between them can be computed as: 

1 *ˆ

1ˆ( , ) min *
ˆ s

s

s s x P
x Ps

M P P x x
P ∈

∈

= −∑  [11.7] 

where ⋅
 
is any user-specified distance metric. 

Criterion 3 can be measured in a few different ways. First, we could measure the 
average distance of each solution to its nearest neighbor in the approximated Pareto 
set. Second, we could measure the distance between the two extreme solutions in the 
approximated Pareto set. Third, we could compute the normalized number of 
solutions that are beyond a certain threshold from each element in the approximate 
Pareto set [ZIT 00]: 

2
ˆ

1ˆ ˆ( ) ' : '
ˆ

s

s s
x Ps

M P x P x x
P

σ
∈

= ∈ − >∑  [11.8] 

where σ  is a user-specified distance threshold. In general, 2M  increases as the 

number of elements in ŝP  increases, and also as the diversity of the elements in ŝP  
increases. Khare et al. [KHA 03] discusses some additional diversity metrics for 
MOPs. 

Criterion 4 is called target vector optimization [WIE 92], goal attainment  
[WIL 93] or goal programming. It assumes that the user is thinking of some ideal 
point in objective function space, and it requires a definition of “distance”. Usually, 
we use the Euclidean distance 2D , also called the two-norm distance, between an 
objective function vector f  and an ideal point *f . The squared distance between 
f  and *f  is defined as follows: 

22 2
2 2

1
( *( ), ( )) *( ) ( ) ( *( ) ( ))

k

i i
i

D f x f x f x f x f x f x
=

= − = −∑  [11.9] 

However, we can also use other distance measures, such as the weighted  
two-norm, the one-norm or the infinity-norm. 
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EXAMPLE 11.2.– 

Figure 11.2 shows the performance of three different EAs on an MOP.  
Figure 11.2(a) shows a solution that is fairly diverse and reasonably close to the true 
Pareto front. Figure 11.2(b) shows a solution that is more diverse than Figure 11.2(a) 
in the sense that the distance between the extreme solutions is farther, but  
Figure 11.2(b) includes only three solutions while Figure 11.2(a) includes four 
solutions. Figure 11.2(c) shows solutions that are closer to the true Pareto front than 
Figure 11.2(a) or (b), but the diversity is not good. Which of the three solutions is 
“best”? It depends on the priorities of the decision maker. 

 
a)   b)   c) 

Figure 11.2. Three potential EA solutions to a two-objective MOP, where the true 
Pareto front is the dotted line and the circles are the approximations that were found 

by each EA. Which solution is “best”? It depends on the priorities of the decision 
maker with respect to solution diversity and closeness to the true Pareto front 

 

Another metric that researchers often use to measure the quality of a Pareto front 
is its hypervolume. Suppose that an MOEA has found M points in an approximate 
Pareto front ˆ { ( )}f jP f x=  for [1, ]j M= , where ( )jf x  is a k-dimensional function. 
The hypervolume can be computed as: 

1 1

ˆ( ) ( )
kM

f i j
j i

S P f x
= =

=∑∏  [11.10] 

Given two MOEAs that compute two Pareto front approximations to a given 
MOP, we can use the hypervolume measure to quantify how good the two 
approximations are relative to each other. For a minimization problem, a smaller 
hypervolume indicates a better Pareto front approximation. 
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11.2. Multi-objective BBO 

This section shows how BBO is combined with some of the popular MOEA 
approaches in the literature to obtain various MOBBO algorithms. This section 
could also serve as a template for the extension of any other EA to multi-objective 
optimization. 

11.2.1. Vector evaluated BBO 

Vector evaluated biogeography-based optimization (VEBBO) combines ideas 
from BBO with the vector evaluated genetic algorithm (VEGA). First, we recall the 
VEGA algorithm, which was one of the original MOEAs and operates by 
performing selection on the population using one objective function at a time  
[SCH 85]. This gives a set of subpopulations, one set for each objective function. 
We then select solutions from the subpopulations to obtain the parents for the next 
generation, and combine the parents using standard recombination methods to obtain 
children. Figure 11.4 gives an outline of VEGA. 

Initialize a population of candidate solution { }jP x=  for [1, ]j N∈  

M N K← ⎡ ⎤⎢ ⎥  
While not (termination criterion) 

Compute the cost ( )i jf x  for each objective i  for each solution jx P∈  

For each objective i  where [ ]1,i k∈  

iP M←  solutions probabilistically selected from P  using ( )if ⋅  
Next objective 
P N←  solutions selected from { }1, , kP P⋅ ⋅ ⋅  

C N←  children created from recombining solutions from P  

Probabilistically mutate the children in C  

P C←  
Next generation 

Figure 11.4. Outline of VEGA for solving an optimization  
problem with k objectives and a population size of N 

Figure 11.4 shows that VEGA begins with a population of N  candidate solutions 
that we usually generate randomly. At each generation, we compute the value of all k  
objective function values for all N  solutions. We then use any desired selection 
scheme to select M  solutions, where M N K= ⎡ ⎤⎢ ⎥  is the smallest integer that is 
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greater than or equal to N K . We perform this selection probabilistically, first using 

1( )f ⋅  to create population 1P , then using 2 ( )f ⋅  to create population 2P , and so on. 
After we have created the iP  subpopulations, we combine them to obtain a parent 
population P . We then recombine the solutions in P  to create a set of children C . 
We can perform recombination using any EA method. We see that the name VEGA is 
somewhat of an anachronism; depending on the recombination method that we use, we 
could call it VEBBO if we use BBO migration for recombination. 

Initialize a population of candidate solutions { }jP x= for [ ]1,j N∈  

While not (termination criterion) 
Compute the cost ( )i jf x  for each objective i  for each solution jx P∈  

For each objective i  where [ ]1,i k∈  

jiγ ← rank of jx  with respect to the thi objective function for [ ]1,j N∈  

Immigration rates 
1

N
ji ji qiq

λ γ γ
=

← ∑  for [ ] [ ]1, , 1,j N i k∈ ∈  

Emigration rates 1ji jiμ λ← −  for [ ] [ ]1, , 1,j N i k∈ ∈  

For each solution jx  where [ ]1,j N∈  

For each decision variable [ ]1,s n∈  

( )rand 1,ik k←  = uniformly distributed integer between 1 and k 

( )rand 0, 1δ ← = uniformly distributed real number between 0 and 1 

If , ij kδ λ<  then  

( )rand 1,ek k←  =  uniformly distributed integer between 1 and k 

Probabilistically select emigrant ex , where Pr( )ex xβ= =
 

                             
   , ,1e e

N
k q kqβμ μ

=∑ for [ ]1, Nβ ∈  

( ) ( )j ex s x s←  
End if 

Next decision variable 
Next solution 

Next objective 
Probabilistically mutate the population P  as in the standard BBO algorithm 

Next generation 

Figure 11.5. Outline of VEBBO for solving an n-dimensional optimization  
problem with k objectives and a population size of N. At each generation,  

the best solution bx  with respect to the thi  objective value has  
rank 1biγ = , and the worst solution wx  has rank wi Nγ =  
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VEBBO first produces a set of subpopulations, one set for each objective 
function. Then, solutions are selected from the subpopulations to obtain parents, 
which create children by using the BBO migration method. The outline of VEBBO 
for a k -objective optimization problem is shown in Figure 11.5, where BBO 
immigration is based on the thik  objective function value of each solution, and ik  is 
a random objective function index at the thi  migration trial. Then, emigration is 
based on the thek  objective function value of each solution, where ek  is also a 
random objective function index. 

11.2.2. Non-dominated sorting BBO 

Next, non-dominated sorting BBO (NSBBO) is proposed, which combines BBO 
with the non-dominated sorting genetic algorithm (NSGA). Recall that NSGA, 
which was one of the original MOEAs, assigns the cost of each solution based on its 
dominance level [DEB 02, SRI 94]. First, all solutions are copied to a temporary 
population .T  Then, we find all non-dominated solutions in T ; these solutions, 
which are denoted as the set ,B  are assigned the lowest cost value. Recall that a 
solution x  is dominated by a solution *x  if *x  performs at least as good as x  in 
all objectives, and performs better than x  in at least one objective. A solution is 
called non-dominated if there are no solutions in the population (T in this case) that 
dominate it. Next, B  is removed from ,T  and we find all non-dominated solutions 
in the reduced set .T  These solutions are assigned the second-lowest cost value. 
This process is repeated to obtain a cost for each solution that is based on its level of 
non-domination. Figure 11.6 gives an outline of NSGA. 

Figure 11.6 shows that we begin with a population of N  candidate solutions, 
usually generated randomly. At each generation, we compute the value of all k  
objective function values for all N  solutions. We copy the solutions to a temporary 
population .T  We assign a cost value of 1 to all solutions that are non-dominated. 
We remove all of those solutions from ,T  find all the solutions in the reduced set T  
that are non-dominated, and assign them a cost value of 2. We repeat this process 
until all solutions have been assigned a cost value based on their level of 
domination. We then use the cost values ( )φ ⋅  in Figure 11.6 to perform selection, 
and we recombine selected solutions using any desired EA recombination method. 
Finally, we mutate the child population, replace the parents with the children and 
continue to the next generation. 
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Initialize a population of candidate solutions { }jP x=  for [1, ]j N∈  

While not (termination criterion) 

Temporary population T P←  

Non-domination level 1c ←  

While 0T >  

B ←  non-dominated solutions in T  

Cost ( )x cφ ←  for all x B∈  

Remove B  from T  

1c c← +  

End while 

C N←  children created from recombining the solutions in P  

Probabilistically mutate the children in C  

P C←  

Next generation 

Figure 11.6. Outline of NSGA for solving an optimization problem  
with k  objectives. We use the cost values ( )jxφ  to select  

parents for recombination 

NSGA-II is a modification of NSGA [DEB 02]. NSGA-II computes the cost of a 
solution by taking into account not only the solutions that dominate it, but also the 
solutions that it dominates. For each solution, we also compute a crowding distance 
by finding the distance to the nearest solutions along each objective function 
dimension. We use the crowding distance to modify the fitness of each solution. 
NSGA sets the crowding distance of each solution equal to the average distance to 
its nearest neighbors along each objective function dimension. For example, suppose 
that we have N  solutions. Further suppose that solution x has the objective function 
vector: 

1( ) [ ( ), , ( )]kf x f x f x= ⋅⋅⋅  [11.14] 
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For each objective function dimension, we find the closest larger value and the 
closest smaller value in the population as follows: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

*

*

* *

* *

max such that

min such that

j j j j
x

j j j j
x

f x f x f x f x

f x f x f x f x

−

+

= <

= >
 [11.15] 

We then compute the crowding distance of x  as: 

( ) ( ) ( )( )
1

k

j j
j

d x f x f x+ −

=

= −∑  [11.16] 

Solutions that are in more crowded regions of the objective function space tend 
to have a smaller crowding distance. Solutions at the extreme values of the objective 
function space have an infinite crowding distance: 

( ) ( ) ( ) [ ]{ }*
for arg min * arg max * for all 1,i ix x

d x x f x f x i k= ∞ ∈ ∈U  [11.17] 

The crowding distance of x corresponds to half of the perimeter of the largest 
hypercube, called a cuboid [DEB 00a, DEB 00b], whose boundaries do not extend 
beyond the objective function space coordinates of the nearest neighbors of x in each 
dimension. 

Now that the crowding distance has been computed for each solution in the 
population, we use crowding distance as a secondary sorting parameter for obtaining 
the rank of each solution. As in the NSGA algorithm of Figure 11.6, we rank each 
solution on the basis of its non-domination level, but we also use a more  
fine-grained ranking metric using crowding distance. That is, x  is ranked better than 

*x  if ( ) ( *)x xφ φ< , or if ( ) ( *)x xφ φ=  and ( ) ( *)d x d x> . While NSGA uses ( )xφ  
to select parents for recombination in Figure 11.6, NSGA-II instead uses the ranks 
described above to select parents for recombination. 

Next we combine BBO with NSGA by changing the recombination logic in 
NSGA to BBO migration operations, which results in the NSBBO algorithm shown 
in Figure 11.7. 
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Initialize a population of candidate solutions { }jP x=  for [ ]1,j N∈  
While not (termination criterion) 

Temporary population T P←  
Non-domination level 1c ←  
While the temporary population size 0T >  
    B ← non-dominated solutions in T  
    Cost ( )f x c←  for all x B∈  
    Remove B from T 
    1c c← +  
End while 

Immigration rates 
1

( ) ( )N
j j qq

f x f xλ
=

← ∑  for [ ]1,j N∈  

Emigration rates 1j jμ λ← −   for [ ]1,j N∈  
For each solution jx  where [ ]1,j N∈  

For each decision variable [ ]1,s n∈  
( )rand 0, 1δ ← = uniformly distributed real number between 0 and 1 

If jδ λ<  then 

Probabilistically select emigrant ex , where Pr( )ex xβ= =
 

                            
   

1

N
qqβμ μ

=∑  
for [ ]1, Nβ ∈  

( ) ( )j ex s x s←  
End if 

Next decision variable 
Next solution 
Probabilistically mutate the population P as described in the standard BBO algorithm 

Next generation 

Figure 11.7. Outline of NSBBO for solving an n-dimensional  
optimization problem with k objectives and a population size of N 

11.2.3. Niched Pareto BBO 

Niched Pareto BBO (NPBBO) combines BBO with the niched Pareto genetic 
algorithm (NPGA). NPGA was one of the original MOEAs and is similar to NSGA 
in its assignment of cost on the basis of domination [HOR 94]. NPGA is an attempt 
to reduce the computational effort of NSGA. Two candidate solutions x1 and x2 are 
randomly selected from the population, and then a subset S  of the population is also 
randomly selected, which is typically around 10% of the population. If one of the 
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solutions x1 and x2 is dominated by any of the solutions in S , and the other is not, 
then the non-dominated solution, denoted as 0x , wins the tournament and is selected 
for recombination. If both solutions x1 and x2 are dominated by at least one solution 
in S , or both solutions are not dominated by any solutions in S , then fitness 
sharing is used to decide the tournament winner; that is, the solution in the least 
crowded region of the objective function space wins the tournament. This selection 
process can be described as follows: 

[ ]
[ ]

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

1 1 2 1 2

1 2 1 2

2

: for 1, 2

Crowding distance of for 1, 2

0 and 0 , or

if 0 and 0 and , or

0 and 0 and

otherwise

i i

i i

d x* S x* x i

c x i

d d

x d d c c
r

d d c c

x

= ∈ ∈

= ∈

⎧ = >⎧
⎪ ⎪

> > <⎪ ⎨= ⎨ ⎪ = = <⎪ ⎩
⎪
⎩

f

 [11.18] 

where id  is the number of solutions that dominate ix , ic  is the crowding distance 
of ix  and r is the solution (either 1x  or 2x ) that we select for recombination. The 
crowding distance ic  could be computed by equation [11.16]. The crowding 
distance is smaller for solutions that are in more crowded regions of the search space 
or the objective function space. Figure 11.8 gives an outline of NPGA. 

Initialize a population of candidate solutions { }jP x=  for [1, ]j N∈  
While not (termination criterion) 

R ← ∅  
While R N<  

Randomly select two solutions 1x  and 2x  from P  
Randomly select a population subset S P⊂  
Use equation [11.18] to select r  from 1 2{ , }x x  

{ , }P R r←  
End while 
Recombine the solutions in R  to obtain N  children 
Probabilistically mutate the children 
P ← children 

Next generation 

Figure 11.8. Outline of NPGA for solving an optimization  
problem with k objectives and a population size of N 
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Initialize a population of candidate solutions { }jP x=  for [ ]1,j N∈  

While not (termination criterion) 

Temporary population T φ←  

While the temporary population size T N<  

    Randomly select two solutions 1x  and 2x  from P  

    Randomly select a population subset S P⊂  

    Use equation [11.18] to select 0x  from { }1 2,x x  

    { }0,T T x←  

End while 

For each solution jx T∈ , where [ ]1,j N∈  

For each decision variable [ ]1,s n∈  

( )rand 0, 1δ ← = uniformly distributed real number between 0 and 1 

If 1 Nδ <  then 

Probabilistically select emigrant ex , where Pr( ) 1ex x Nβ= =   

for [ ]1, Nβ ∈  

( ) ( )j ex s x s←  

End if 

Next decision variable 

Next solution 

Probabilistically mutate the population P as described in the standard BBO algorithm 

Next generation 

Figure 11.9. Outline of NPBBO for solving an n-dimensional  
optimization problem with k objectives and a population size of N 

11.2.4. Strength Pareto BBO 

Strength Pareto BBO (SPBBO) combines BBO with the strength Pareto 
evolutionary algorithm (SPEA). SPEA was one of the original MOEAs, and was the 
first MOEA to explicitly use elitism [ZIT 99, ZIT 04]. Of course, any of the MOEAs 
can be implemented with elitism, but for some reason most of them did not  
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incorporate elitism when originally introduced. Elitism is usually a common-sense 
option in both single-objective and multi-objective EAs. Also, elitism is 
theoretically necessary to guarantee convergence in some MOEAs [RUD 00]. 

SPEA maintains all non-dominated solutions that are found during the 
evolutionary process in an archive. Whenever we find a non-dominated solution, we 
copy it to the archive. We assign a strength value ( )S α  to each archived solution 
based on the number of solutions in the population that α  dominates: 

{ } such that 
( )  for all 

1
x P x

S A
N

α
α α

∈
= ∈

+
f

 [11.19] 

where P  is the set of candidate solutions, N  is the size of P  and A  is the archive 
set. Note that ( ) [0,1)S a ∈ . For each solution x  in P , we find the set ( )xα  of all 
archived solutions that dominate it. We then compute the raw cost of x , denoted as 

( )R x , as the sum of the strengths of the solutions in ( )xα : 

* ( )
( ) 1 ( *),  for all 

where ( ) { * : * }.
x x

R x s x x P

x x A x x
α

α
∈

= + ∈

= ∈

∑
f

 [11.20] 

Adding one in equation [11.20] ensures that ( ) 1R x ≥ , which in turn ensures that 

( ) ( )R x S α>  for all x P∈  and all Aα ∈ . Note that if x  has a low raw cost, then 
x  is a high-performing solution. 

As mentioned above, at each generation, all solutions in { , }P A  that are non-
dominated are added to the archive A . However, this can result in unbounded 
growth of the archive. SPEA handles this potential problem with a clustering 
method [ZIT 99]. Supposing that the archive has A  solutions, we define each 
solution as a cluster. We then merge the two closest clusters into a single cluster so 
that the cluster count of A  is reduced by one. We repeat this process until the 
archive contains AN  clusters, which is the desired archive size. Finally, we retain 
only one point from each cluster, usually the one that is closest to the cluster center. 
Figure 11.10 gives an outline of SPEA, where N is the population size, NA is the 
maximum archive size and usually AN N< . 
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Initialize a population of candidate solutions { }jP x=  for [1, ]j N∈  
Initialize the archive A  as the empty set 

While not (termination criterion) 

Copy non-dominated solutions from P  to :A       

       { }{ : ( * { , }: * )A A x P x P A x x← ∈ ∃ ∈U f  
Remove dominated solutions from A  

While AA N<  
Use a clustering method to remove a solution from A  

End while 
Use equation [11.20] to calculate the cost of each solution in P  
Select parents from { , }P A  
Use a recombination method to create children C  from the parents 
Probabilistically mutate the child population C  
Use a replacement method to replace solutions in P  with solutions from C  

Next generation 

Figure 11.10. Outline of SPEA for solving an optimization  
problem with k objectives and a population size of N 

We can modify Figure 11.10 for BBO by changing the “Select parents” 
statement and the “Use a recombination method” statement. We do this by 
calculating migration rates with the raw cost of equation [11.20]. We can then 
implement BBO migration using these rates. In this section, we take the SPEA 
approach in which parents can be selected from both the population P  and the 
archive A . This results in the SPBBO algorithm of Figure 11.11. 

EXAMPLE 11.4.– 

In this example, we present simulation results for the MOBBO algorithms 
presented above. We test four MOBBO algorithms (VEBBO, NSBBO, NPBBO and 
SPBBO) on a set of 10 unconstrained functions and 10 constrained functions from 
the CEC 2009 benchmark set [ZHA 08]. These functions are summarized in 
Appendix C, where U01–U10 are unconstrained multi-objective benchmark 
functions and C01–C10 are constrained multi-objective benchmark functions.  
U01–U07 and C01–C07 are two-objective problems, and U08–U10 and C08–C10 
are three-objective problems. The constrained multi-objective benchmark functions 
include one or two inequality constraints. 
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Initialize a population of candidate solutions { }jP x=  for [ ]1,j N∈  

Initialize the archive A  as the empty set 

While not (termination criterion) 

Copy non-dominated solutions from P  to A :  

        { }{ : ( * { , } : * )A A x P x P A x x← ∈ ∃ ∈U f  
Remove dominated solutions from A  

While AA N<  
Use a clustering method to remove a solution from A  

End while 
Use equation [11.19] to calculate the strength ( )S α  of each solution Aα ∈  

Calculate the cost ( ) 1 ( )R Sα α← −  for each Aα ∈  

Use equation [11.20] to calculate the cost ( )R x  of each solution x P∈  

Immigration rates 
1

( ) / ( ) for all P
j j q jq

R x R x x Pλ
=

← ∈∑  

Emigration rates  
1

( ) / ( ) for all { , }P A
j j q jq

R x R x x P Aμ +

=
← ∈∑

 
For each solution jx P∈ , where [ ]1,j N∈  

For each decision variable [ ]1,s n∈  
 rand (0,1)r ←  

If jr λ<  then  
                Probabilistically select emigrant ex ,  

where 
1

Pr( ) /  for { , } P A
e m m q mq

x x x P Aμ μ+

=
= = ∈∑  

                ( ) ( )j ex s x s←  
End if 

        Next decision variable 
Next solution 

Probabilistically mutate the population C as described in the standard BBO algorithm 
Use a replacement method to replace solutions in P  with solutions from C  

Next generation 

Figure 11.11. Outline of SPBBO for solving an n-dimensional  
optimization problem with k objectives and a population size of N 

We use a population size of 150 and a mutation rate of 0.01 per solution decision 
variable per generation. If mutation occurs, the mutated value of the new 
independent variable is uniformly distributed in the search space. For constrained 
multi-objective benchmark functions, we incorporate constraints into MOEAs in the 
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same way that we incorporate them into single-objective EAs (see Chapter 9). We 
evaluate each algorithm 30 times, with a maximum number of function evaluations 
equal to 300,000 for each simulation. We use the hypervolume and normalized 
hypervolume as performance metrics. 

Tables 11.2 and 11.3 summarize the performance comparisons of the four 
MOBBO algorithms. It can be seen from Table 11.2 that for unconstrained 
benchmark functions, SPBBO performs best on six functions (U01, U03, U04, U05, 
U07 and U09) and NPBBO performs best on the other four functions (U02, U06, 
U08 and U10). It can be seen from Table 11.3 that for constrained benchmark 
functions, SPBBO performs best on six functions (C01, C03, C04, C06, C07 and 
U09), NPBBO performs best on three functions (C02, C05 and C10) and VEBBO 
performs best on C08. In summary, we can say that SPBBO performs better than the 
other three MOBBO algorithms for both the unconstrained and constrained multi-
objective benchmark functions. 

Functions 
Multi-objective BBO 

VEBBO NSBBO NPBBO SPBBO 

U01 (58.59, 0.26) (73.61, 0.33) (51.56, 0.23) (42.51, 0.19) 

U02 (24.39, 0.26) (30.58, 0.33) (17.37, 0.18) (22.35, 0.24) 

U03 (288.9, 0.24) (398.4, 0.33) (232.9, 0.21) (231.6, 0.21) 

U04 (8.549, 0.24) (11.45, 0.31) (8.373, 0.23) (8.012, 0.22) 

U05 (286.7, 0.35) (282.9, 0.34) (130.8, 0.16) (121.4, 0.15) 

U06 (697.5, 0.27) (795.4, 0.31) (485.4, 0.19) (570.3, 0.22) 

U07 (55.72, 0.29) (57.96, 0.30) (40.51, 0.21) (40.40, 0.21) 

U08 (550.4, 0.22) (763.2, 0.31) (428.8, 0.17) (711.3, 0.29) 

U09 (2,003.4, 0.26) (2,447.6, 0.31) (1,870.1, 0.24) (1,518.6, 0.19)  

U10 (2,526.9, 0.24) (3,505.4, 0.33) (1,811.7, 0.17) (2,768.2, 0.26) 

Table 11.2. MOBBO results for 10 unconstrained multi-objective  
benchmark functions. The table shows the hypervolume and  
normalized hypervolume, averaged over 30 simulations. The  

best results in each row are shown in bold 
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Functions 
Multi-objective BBO 

VEBBO NSBBO NPBBO SPBBO 

C01 (6.240, 0.30) (6.545, 0.31) (4.254, 0.20) (3.915, 0.19) 

C02 (15.53, 0.26) (20.41, 0.34) (8.040, 0.14) (15.37, 0.26) 

C03 (723.6, 0.29) (730.5, 0.29) (529.6, 0.21) (502.1, 0.20) 

C04 (9.890, 0.26) (15.30, 0.40) (7.199, 0.19) (6.223, 0.16) 

C05 (39.29, 0.21) (73.61, 0.39) (30.89, 0.16) (44.65, 0.24) 

C06 (0.280, 0.21) (0.561, 0.43) (0.238, 0.18) (0.231, 0.18)  

C07 (54.11, 0.18) (152.1, 0.51) (50.28, 0.17) (42.15, 0.14) 

C08 (121.6, 0.21) (186.1, 0.32) (123.7, 0.21) (166.7, 0.28) 

C09 (137.0, 0.23) (176.9, 0.30) (155.2, 0.26) (124.6, 0.21)  

C10 (1,439.5, 0.21) (2,631.5, 0.38) (1,334.8, 0.19) (1,478.1, 0.21) 

Table 11.3. MOBBO results for 10 constrained multi-objective  
benchmark functions. The table shows the hypervolume and  
normalized hypervolume, averaged over 30 simulations. The  

best results in each row are shown in bold 

11.3. Real-world applications 

In this section, we formulate a real-world automated warehouse scheduling 
problem as a constrained MOP. Then, we use the MOBBO algorithms from the 
previous section to solve the problem. 

11.3.1. Warehouse scheduling model 

Warehousing is an important part of production supply chain management, and 
serves as the backbone in many manufacturing enterprises. Warehousing keeps 
stocks of products until they are ready to be delivered to the market. A delay in 
product delivery may lead to the failure of production supply chains. Efficient 
warehouse management contributes to the timely delivery of the product [CHO 13, 
YEU 10, YEU 11, MA 15b]. Modern warehouses are equipped with storage and 
retrieval (S/R) machines to pick up products from an input/output (I/O) location and 
store them at specific locations, and then to retrieve outgoing products from other  
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storage locations and deliver them to the I/O location. Although S/R machines 
enhance warehouse management, scheduling is a challenging and vital task  
[LER 15, WAN 11a, WAN 11b]. The time and cost of product allocation and 
delivery are important variables to consider during warehouse scheduling. 

Warehouse scheduling is a typical NP-hard problem, which is one of the most 
challenging types of combinatorial optimization problems [GAG 12]. Since this 
problem is so important for production supply chain success, more research needs to 
be conducted to make automated warehouse scheduling more robust and efficient. 

The layout of the automated warehouse system is shown in Figure 11.12  
[YAN 13], and is called a multi-aisle automated storage and retrieval system  
(multi-aisle AS/RS) with a curve-going S/R machine. It includes six types of 
components: S/R machine, picking aisles, cross warehouse aisle, storage racks 
(SRs), rolling conveyor and I/O location. As shown in the figure, the S/R machine 
can go in and out at both ends of every picking aisle, pick up products at the I/O 
location and store them at specific storage units in SRs, and then retrieve outgoing 
products from other storage units and deliver them to the I/O location. The aim of an 
automated warehouse scheduling system is to optimize scheduling efficiency. 

x′

z′

 

Figure 11.12. Layout of the warehouse system.  
Reprinted from [MA 15b] with permission from Elsevier 
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In this model, there are many storage units in each SR. There are a  storage 
products, whose storage units are denoted as ( )1 2 3, , , ,u u u uap p p pL . There are b  

outgoing products, whose storage units are denoted as ( )1 2 3, , , ,o o o obp p p pL . In 
general, the numbers and units of the storage products are not the same as those of 
the outgoing products; namely, a b≠  and ui oip p≠ . 

Suppose that the S/R machine can hold 0N  products at a time. Then, the S/R 
machine picks up 0N  or fewer products from the I/O location and puts them into 
storage units. Next, it retrieves 0N  or fewer outgoing products from the other 
storage units, and delivers them to the I/O location. For a  storage products  
and b  outgoing products, there are a b+  storage units, namely 
( )1 2 1, , , , ,a a a bp p p p p+ +L L , and the S/R machine needs to execute 

{ }0 0max ,a N b N⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥  tasks to store and transport all products, where ϕ⎡ ⎤⎢ ⎥  denotes 
the smallest integer greater than or equal to ϕ . When each task corresponds to one 
route, the automated warehouse scheduling problem is translated into the 
optimization problem of selecting the optimal { }0 0max ,a N b N⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥  routes from 

all possible routes to complete the storage/retrieval tasks while satisfying real-world 
constraints. 

In Figure 11.12, x′  and z′  are the two directions in the horizontal plane. The 
velocities in the x′  and z′  directions are called horizontal velocities, and the 
corresponding horizontal velocities are xv  and zv , which are equal to each other. y′  
is the vertical direction and the corresponding vertical velocity is yv , which is 
independent from xv . The distance between adjacent SRs in the same picking aisle 
is D , and the number of storage units in each SR is C . The width, length and 
height of each storage unit are denoted as W , L  and H , respectively. The 
Euclidean coordinates of each storage unit are denoted as ( ), ,p x y z′ ′ ′ , and the I/O 

location of the S/R machine is denoted as ( )0 0, 0, 0p . The following assumptions 
are made: 

– the multi-aisle AS/RS is divided into picking aisles with SRs on both sides, so 
there are double SRs between the picking aisles and a single SR along each 
warehouse wall; 

– there is one S/R machine; 

– the S/R machine is able to move along the cross warehouse aisle by using the 
curved rails at the end of the picking aisles; 



226     Evolutionary Computation with Biogeography-based Optimization 

– the S/R machine travels at a constant velocity both in the horizontal and 
vertical directions; 

– the S/R machine simultaneously begins lifting and traveling in the pick aisle; 

– the input station dwell-point strategy is used. That is, the S/R machine stays at 
the input location when it is idle; 

– the randomized storage assignment policy is used. That is, any storage location 
within the S/R is equally likely to be selected for the storage or retrieval request; 

– as a first-order approximation, the pickup and set down times, and additional 
overhead times for manipulating the S/R machine, are ignored. 

DEFINITION 11.1.– If the S/R machine travels the route ( )0 01, , ,m max a N b N⎡ ⎤∈ ⎡ ⎤⎢ ⎥⎣ ⎦  

then 1ml = ; otherwise, 0ml = . If the storage unit ip  belongs to route m , then 
1img = ; otherwise, 0img = . 

DEFINITION 11.2.– If the S/R machine travels from storage unit ( ), ,i i i ip x y z′ ′ ′  to 

another storage unit ( ), ,j j j jp x y z′ ′ ′  for [ ], 1,i j a b∈ + , then 1ije = ; otherwise, 

0ije = . The travel distance ijd  and time ijt  of the S/R machine is denoted as: 

( ) ( )
,

min

i j i j i j

i i j i jij

i j

i j i j i j

W x x H y y if z z

W x x H y y D z zd
if z z

W C x C x H y y D z z

⎧ ′ ′ ′ ′ ′ ′× − + × − =
⎪
⎪ ⎛ ⎞′ ′ ′ ′ ′ ′× − + × − + × −= ⎨ ⎜ ⎟ ′ ′≠⎪ ⎜ ⎟′ ′ ′ ′ ′ ′× − − − + × − + × −⎪ ⎝ ⎠⎩

 [11.21] 

and: 

( ) ( )( )
( )

( ) ( )( ) ( )

max ,

,
max min ,

i j x i j y i j

ij i j i j x

i j y i j

i j i j x

W x x v H y y v if z z

t W x x D z z v
H y y v if z z

W C x C x D z z v

⎧ ′ ′ ′ ′ ′ ′× − × − =
⎪
⎪ ⎛ ⎞⎛ ⎞′ ′ ′ ′= × − + × −⎨ ⎜ ⎟⎜ ⎟ ′ ′ ′ ′⎪ × − ≠⎜ ⎟⎜ ⎟⎪ ′ ′ ′ ′⎜ ⎟× − − − + × −⎜ ⎟⎝ ⎠⎝ ⎠⎩

 [11.22] 

The first expressions of each of the above two equations denote that the two 
storage units are the same SR because i jz z′ ′= . The second expressions in each of 
the equations denote that the two storage units are not the same SR because i jz z′ ′≠ , 
so we need to first compute the minimum distance that the S/R machine drives 
between the two ends of a picking aisle to compute travel distance and travel time. 
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DEFINITION 11.3.– The execution time of each task must be less than or equal to the 
specified scheduling time mT , in which it will not affect the scheduling quality. If it 
is larger than mT , it will affect the scheduling quality by an amount equal to the 
product of the time exceeding mT  and the weight coefficient mw . 

Now the mathematic model of the automated warehouse scheduling problem is 
formulated as an MOP. 

DEFINITION 11.4.– Suppose the warehouse throughput capacity is Q  and the 
number of products in the warehouse is q . The automated warehouse scheduling 
problem has two objectives: the scheduling quality effect should be minimized, and 
the travel distance should be minimized. The two objectives are defined as follows: 

( ) ( ) ( )( )1 2min min ,f e f e f e=  [11.23] 

( )
{ }0 0,

1
1 1 1

max 0,
max a N b N a b a b

ij ij im jm m m m
m i j

f e t e g g T w l
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ + +

= = =

⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎪= − ⋅ ⋅⎜ ⎟⎨ ⎜ ⎟ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠
∑ ∑∑  [11.24] 

( )
{ }0 0,

2
1 1 1

max a N b N a b a b

ij ij im jm m
m i j

f e d e g g l
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ + +

= = =

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
∑ ∑∑  [11.25] 

where equation [11.23] denotes that two objectives are to be minimized, equation 
[11.24] denotes the scheduling quality effect and equation [11.25] denotes the travel 
distance. 

The solution must also satisfy the following constraints: 

Total number of routes: 

{ }
{ }

0 0,

0 0
1

max ,
max a N b N

m
m

l a N b N
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

=

= ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥∑  [11.26] 

Total number of storage and outgoing products: 

{ }0 0,

1 1

max a N b N a b

jm m
m j

g l a b
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ +

= =

= +∑ ∑  [11.27] 
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Each storage or outgoing product is handled exactly once: 

{ }
{ }

0 0,

1
1, for 1, 2, ,

max a N b N

jm
m

g j a b
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

=

= ∈ +∑ L  [11.28] 

S/R machine load: 

{ }{ }0 0 02 , for 1, , max ,
a b

jm
j

g N r a N b N
+

≤ ∈ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥∑ L  [11.29] 

Input location: 

{ }
{ }

0 0,

0 0
1

, for 1, 2, ,
max a N b N

j m
m

e l a N j a b
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

=

= ∈ +⎡ ⎤⎢ ⎥∑ L  [11.30] 

Output location: 

{ }
{ }

0 0,

0 0
1

, for 1, 2, ,
max a N b N

i m
m

e l b N i a b
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

=

= ∈ +⎡ ⎤⎢ ⎥∑ L  [11.31] 

Storage product priorities: 

( )for , , ,u oj i j up p m p p p∈ L  [11.32] 

Throughput capacity: 

q a b Q+ + ≤  [11.33] 

Equation [11.26] constrains the number of S/R machine routes to the total 
number of tasks, equation [11.27] constrains the total number of storage and 
outgoing products, equation [11.28] constrains each storage and outgoing product to 
exactly one route, equation [11.29] constrains the total number of storage and 
outgoing products to no more than twice the S/R machine capacity each route, 
equations [11.30] and [11.31] constrain the I/O location where the output location is 
the same as the input location since the S/R machine returns to the input location 
after each task is completed, equation [11.32] constrains storage products to be 
handled before outgoing products and equation [11.33] constrains the number of 
products to be no more than the throughput capacity of the warehouse. 
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Now that a warehouse model and scheduling problem have been presented, the 
following section applies MOBBO algorithms to solve the problem. 

11.3.2. Optimization of warehouse scheduling 

For the automated warehouse scheduling model described in the previous 
section, we set the width 0.3 m,W =  length 0.4 mH =  and height 0.4 mH =  for 
each storage unit, the distance between adjacent SRs 1.8 m,D =  the number of 
storage units in each SR 75,C =  the warehouse throughput capacity 600Q =  and 
the number of products in the warehouse 250.q =  We set the S/R machine capacity 

0 4N = , its horizontal velocity 1 m/sxv =  and its vertical velocity 0.5 m/s.yv =  
The required time for each task is 120 s. All these parameters are taken from a real-
world automated warehouse scheduling problem. We consider five implementation 
schemes. Scheme 1 (number of storage products 20a =  and number of outgoing 
products 20b = ) is described as follows: 

p1: (12, 6, 2, 50, 1), p2: (51, 8, 1, 45, 1), p3: (40, 3, 5, 46, 1), p4: (37, 3, 4, 113, 1), 
p5: (14, 7, 1, 40, 1), p6: (13, 5, 2, 50, 1), p7: (45, 5, 5, 50, 1), p8: (18, 7, 3, 33, 1), 
p9: (7, 3, 2, 35, 1), p10: (11, 4, 3, 110, 1), p11: (15, 2, 1, 34, 1), p12: (36, 8, 4, 40, 1), 
p13: (8, 6, 5, 47, 1), p14: (56, 2, 3, 34, 1), p15: (42, 8, 3, 30, 1), p16: (23, 4, 1, 50, 1), 
p17: (4, 6, 2, 50, 1), p18: (13, 1, 1, 36, 1), p19: (39, 6, 4, 42, 1), p20: (45, 6, 5, 55, 1) 
p21: (50, 8, 1, 67, 2), p22: (3, 1, 2, 74, 2), p23: (55, 4, 3, 68, 2), p24: (6, 7, 4, 85, 2), 
p25: (17, 4, 5, 74, 2), p26: (60, 7, 3, 80, 2), p27: (35, 6, 2, 67, 2), p28: (15, 2, 1, 70, 2), 
p29: (57, 4, 2, 80, 2), p30: (2, 1, 4, 62, 2), p31: (25, 8, 2, 76, 2), p32: (5, 2, 4, 64, 2), 
p33: (17, 5, 3, 76, 2), p34: (41, 2, 5, 91, 2), p35: (19, 3, 2, 70, 2), p36: (20, 1, 1, 82, 2), 
p37: (42, 6, 2, 88, 2), p38: (32, 6, 3, 75, 2), p39: (9, 7, 1, 82, 2), p40: (58, 5, 4, 69, 2) 

Each storage or retrieval operator is denoted by ( ), , , ,x y z w u′ ′ ′ , where ,x y′ ′  
and z′  are the Euclidean coordinates of each storage unit (meters), w is the 
weighting coefficient described in Definition 11.3 and affects the scheduling quality, 
u = 1 indicates a storage product, and u = 2 indicates an outgoing product. 

Scheme 2 ( 20, 16a b= = ) includes all the storage products of Scheme 1 but only 
the first 16 outgoing products of Scheme 1. Scheme 3 ( 20, 12a b= = ) includes all 
the storage products of Scheme 1 but only the first 12 outgoing products. Scheme 4  
( 16, 20a b= = ) includes the first 16 storage products of Scheme 1 and all of the 
outgoing products. Scheme 5 ( 12, 20a b= = ) includes the first 12 storage products 
of Scheme 1 and all of the outgoing products. 
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The tuning parameters of the MOBBO algorithms are the same as those used in 
Example 11.4. The optimization results are summarized in Table 11.4. It can be seen 
from Table 11.4 that SPBBO performs best for all of the schemes except Scheme 4, 
for which NPBBO is the best because of its shortest travel distance and its lowest 
scheduling quality effect. 

Problem (a, b) 
VEBBO NSBBO NPBBO SPBBO 

Distance Effect Distance Effect Distance Effect Distance Effect 

Scheme 1 (20, 20) 129.3 2,591.3 122.2 2,504.3 124.3 2,555.3 121.7 2,369.4 

Scheme 2 (20, 16) 92.5 1,531.0 98.3 1,562.7 89.7 1,453.6 80.5 1,392.8 

Scheme 3 (20, 12) 71.0 826.2 63.2 857.7 62.3 798.7 61.1 764.3 

Scheme 4 (16, 20) 109.4 1,823.8 97.6 1,467.9 88.0 1,295.5 88.2 1,306.0 

Scheme 5 (12, 20) 69.8 840.0 60.5 839.4 67.7 908.6 60.3 837.0 

Table 11.4. MOBBO results for five varieties of the automated warehouse  
scheduling problem. “Distance” denotes the shortest travel distance,  

which is measured in meters, and “Effect” denotes the lowest scheduling  
quality effect. The best results in each row are shown in bold 

A sample SPBBO scheduling route output is shown in Table 11.5 for Scheme 1. 
It can be seen that the automated warehouse scheduling problem is divided into five 
routes, and each route includes eight storage units, where the first four storage units 
are used to store products and the last four storage units are used to retrieve 
products. 

Route Scheduling orders 

1 p9 → p1 → p8 → p15 → p27 → p21 → p36 → p33 

2 p13 → p11 → p19 → p2 → p26 → p37 → p25 → p32 

3 p10 → p6 → p4 → p3 → p23 → p40 → p31 → p24 

4 P16 → p18 → p20 → p14 → p34 → p38 → p28 → p30 

5 p17 → p5 → p12 → p7 → p29 → p35 → p39 → p22 

Table 11.5. Scheduling orders for Scheme 1 as optimized by the SPBBO  
algorithm. “Route” denotes the route number index and “Scheduling orders”  
denotes the scheduling orders that the S/R machine implements each route 



Multi-objective BBO     231 

11.4. Conclusion 

In this chapter, we discussed some of the most popular MOEAs and associated 
ideas, and showed how BBO combines with these MOEA ideas to produce in  
multi-objective BBO algorithms, including VEBBO, NSBBO, NPBBO and SPBBO. 
Combinations of BBO with various MOEAs have served as a template for the 
extension of any other EA to multi-objective optimization. In addition, we  
have provided a warehouse scheduling problem as a real-world application  
example to illustrate the optimization performance of the multi-objective BBO 
algorithms. 

This chapter is not intended to provide a complete exposition of the subject of 
MOEAs, but has shown only how BBO can be modified to solve MOPs. Many other 
MOEAs have been proposed and new ones are continually appearing in related 
literature. Coello Coello [COE 06] gives an interesting, high-level, historical view of 
MOEAs. He maintains an exhaustive and useful Web-based bibliography of papers 
related to multi-objective evolutionary optimization, and his bibliography included 
more than 10,000 references as of May 2016 [COE 16a, COE 16b]. 

In this concluding section, we mention some important topics for future MOEA 
research, including the following: 

Hybridization of MOEAs with local search strategies 

The incorporation of local search strategies in MOEAs is an important topic. In 
particular, MOEAs can be hybridized with derivative-based algorithms or other 
local search methods to fine-tune the optimization results. Such algorithms are 
called memetic algorithms because they involve the use of problem-specific 
information in the hybridized algorithm. Memetic strategies seem to be used a lot in 
single-objective optimization [ONG 07], but they have not yet been used much in 
MOPs, although there are a few exceptions [JAS 06]. 

MOEAs for many objectives (more than three) 

The design of MOEAs for many objectives is another important area for future 
research. Some results have been published in this area, but the more challenging 
problem is not necessarily the approximation of the Pareto set but rather how to help 
human decision makers choose a solution from an MOEA’s Pareto set 
approximation. Some research on many-objective problem emphasizes their special 
challenges [FLE 05], but other research shows that it is actually easier to find a good 
Pareto set approximation for problems with many objectives [SCH 11]. 

However, even though a Pareto set approximation may be easier to find with 
more objectives, the EA will also require more candidate solutions. For example, if 
we suppose that 10 candidate solutions can give a good Pareto set approximation for 
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a two-objective problem, then we probably need at least 100 individuals in the  
two-objective MOEA. This means that we might need 10k  individuals for a  
k -objective MOP, which means that we might need 100,000 individuals for a 
relatively small five-objective MOP. So the problem with many-objective problems 
is not the theoretical difficulty of approximating the Pareto set, but the practical 
difficulties of computational effort and of approximating high-dimensional surfaces 
with only a few points. 

MOEA theory and mathematical models 

Theoretical results for MOEAs are sparse and so there is a lot of room for 
contributions in this area. Rudolph and Agapie [RUD 00] provide a preliminary 
Markov model for MOEAs, and a few other researchers have studied MOEA theory 
[ZIT 10], but compared to single-objective EAs, theoretical studies for MOEAs are 
sparse. 
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Hybrid BBO Algorithms 

Hybrid evolutionary algorithms (EAs) are attractive alternatives to standard EAs. 
The combination of several algorithms in hybrid EAs allows it to exploit the 
strength of each algorithm. It has been shown that by properly selecting the 
constituent algorithms and hybridization strategies, hybrid EAs can outperform their 
constituent algorithms due to their synergy. This characteristic is strong motivation 
for the study of hybrid EAs. Many hybrid EAs have been proposed to improve 
performance and to find global optima. Although some of these improvements are 
significant, the development of new hybrid EAs and strategies is worthy of further 
investigation.  

Current research directions in hybrid EAs involve several major areas. The first 
area is the determination of how to hybridize a given set of EAs into a single 
algorithm; that is, how to determine the hybridization strategy. The second area is 
the determination of which EAs to combine in a hybrid algorithm. The third area  
is the application of hybrid EAs to special types of optimization problems, such as 
constrained optimization and multi-objective optimization. The fourth area is the 
application of hybrid EAs to real-world optimization problems. The goal of this 
chapter is to address the first and second areas; that is, we emphasize the mechanism 
of hybridization to improve the optimization performance of EAs. 

Overview of the chapter 

In this chapter, we propose several hybrid EAs by combining some popular 
search strategies or EAs with BBO. Section 12.1 outlines how opposition-based 
learning (OBL) can be incorporated into an EA, and in particular how it can be used 
to improve the performance of BBO. Section 12.2 describes the incorporation  
of various types of local search methods into BBO to improve performance.  
Section 12.3 describes the hybridization of BBO with other EAs, including the use 
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of biogeography-based hybridization strategies at both the iteration level and the 
algorithm level. The concluding section of this chapter provides references to 
additional resources and suggests several important topics for future hybrid BBO 
research. 

12.1. Opposition-based BBO 

This section first presents some general definitions of opposition as related to 
mathematics. We then discuss how opposition can be extended to EAs, including 
BBO. 

12.1.1. Opposition definitions and concepts 

We first discuss definitions and concepts related to the opposite of a scalar or 
vector. We begin by considering scalars. We begin by assuming that a variable x  is 
defined on the domain [ , ]a b , and that the center of the domain is c :  

[ , ] where  
( ) 2

x a b a b
c a b

∈ <
= +

 [12.1] 

We can think of several different ways to define the opposite of a scalar x   
[TIZ 08]. For example, the reflected opposite of x  is defined as 

.ox a b x= + −  [12.2] 

This means that ox  is the same distance as x  from the center of the domain: 

oc x x c− = −  [12.3] 

Figure 12.1 illustrates the reflected opposite. 

ca bx ox
 

Figure 12.1. Illustration of the reflected opposite of a scalar x . The  
scalar x  is defined on the domain [ , ]a b , and c  is the center of the  

domain. The reflected opposite ox  is the same distance as x  from c  
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Next we extend the reflected opposite to vectors in a simple but straightforward 
way. Suppose that x  is a D -dimensional vector defined on a rectangular domain, 
that is, ix  defined on the domain [ , ]i ia b , and the center of the domain of ix  is ic : 

where 
1           [  ... ]

[ , ] and  for [1, ]
          ( ) / 2 for [1, ]

D

i i i i i

i i i

x x x
x a b a b i D

c a b i D

=
∈ < ∈

= + ∈
 [12.4] 

The reflected opposite of x  is defined as  

where 1           [  ... ]
  for [1, ].

o o oD

oi i i i

x x x
x a b x i D

=
= + − ∈

 [12.5] 

Now we define three other types of opposites: quasi opposite, super opposite and 
quasi reflected opposite. As before, we consider the scalar [ , ]x a b∈  with c  as the 
center of its domain. 

The quasi opposite of x  is defined as follows [TIZ 08]: 

rand( , )qo ox c x=  [12.6] 

where ox  is the standard reflected opposite defined in equation [12.2]. That is, qox  
is the realization of a random number that is uniformly distributed on [ , ]oc x . Note 
that we define the rand function in such a way that its result is independent of the 
order of its arguments; that is, the notations rand ( , )oc x  and rand ( , )ox c  are 
equivalent. 

The super opposite of x  is defined as follows [TIZ 08]: 

rand( , )  if 
rand( , )  if 

o
so

o

x b x c
x

a x x c
<⎧

= ⎨ >⎩
 [12.7] 

That is, sox  is the realization of a random number that is uniformly distributed 
between ox  and the domain boundary that is farthest from x . This definition is not 
complete because it does not define sox  for the case x c= , but that special situation  
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can be handled by arbitrarily changing one of the inequalities in equation [12.7] so 
that it includes both equality and inequality. 

The quasi reflected opposite of x  is defined as follows [ERG 09, ERG 14,  
ERG 15]: 

rand( , )qrx x c=  [12.8] 

That is, qrx  is the realization of a random number that is uniformly distributed 
between x  and c . Note that the use of word “reflected” in the term “quasi 
reflected” is not related to the word “reflected” in the term “reflected opposite” (see 
equation [12.2]). 

Figure 12.2 illustrates four different methods of opposition. We can extend these 
definitions to vectors by following the procedures presented in equations [12.4] and 
[12.5]. 

ca bx ox

}}}qrx qox sox

 

Figure 12.2. Suppose we have a scalar [ , ]x a b∈ . The opposite of x  is ox , which is 
obtained by reflecting x  across the center of domain c . The quasi opposite of x  is 

qox , which is obtained by generating a random number between c  and ox . The 
super opposite of x  is sox , which is obtained by generating a random number 
between ox  and the domain boundary that is farthest from x . The quasi reflected 
opposite of x  is qrx , which is obtained by generating a random number between x  
and c  

12.1.2. Oppositional BBO 

Now we show how the oppositional concepts presented above can be used in 
BBO. We combine the standard BBO algorithm of Figure 3.5 in Chapter 3 with 
OBL to obtain oppositional BBO (OBBO) [ERG 09]. Figure 12.3 shows an outline 
of the OBBO algorithm. Note that the algorithm of Figure 12.3 is identical to that of 
Figure 3.5 except for the pseudo-code between the lines “Comment: Begin 
Opposition Logic” and “Comment: End Opposition Logic”. 
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Initialize a population of candidate solutions { kx } for k ∈ [1, N] 

While not (termination criterion) 

For each kx , set emigration rate μk proportional to the fitness of kx , where μk is 

normalized to [0, 1] 

For each kx , set immigration rate λk = 1 − μk  

{ kz } ← { kx } 

For each solution zk  

For each decision variable s  

Use λk to probabilistically decide whether to immigrate to zk 

If immigrating then 

    Use {μi} to probabilistically select the emigrating solution xj 

    zk(s) ← xj(s) 

End if 

Next decision variable    

Probabilistically decide whether to mutate zk 

Next solution 

Comment: Begin Opposition Logic 

[ ]0, 1r U←  

If rr J<  then 

Use { kz } to create opposite population { }kz  

{ }kz ← the best N solutions from { } { }k kz zU  

End if 

Comment: End Opposition Logic 

{ kx } ← { kz } 

Next generation 

Figure 12.3. Outline of OBBO with a population size of N. { kx } is the  
population of solutions and { kz } is a temporary population of  

solutions. kx  is the kth candidate solution and ( )kx s  is the decision  
variable s of kx . Jr is the jumping rate, which is described below 
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We see from the OBBO algorithm that OBL can augment any EA. One simple 
approach to use an OBL with any EA is to perform the following steps: 

1) When the N  solutions of the EA population are initialized, N  opposite 
solutions are created, each opposite solution corresponding to one of the N  original 
solutions. Given our 2N  solutions ( N  original solutions and N  opposite 
solutions), we keep the best N  as the initial population of the opposition-based EA.  

2) We perform a standard implementation of an EA. As we have seen earlier, 
this involves a loop of cost function evaluations, migration and mutation. By 
definition, the loop executes once per generation. 

3) Once every few generations, we compute the opposite of each of the N  
solutions. Of these 2N  solutions ( N  standard EA solutions and N  opposite 
solutions), we keep the best N  for the next EA generation. At each generation, we 
perform this step with probability [0,1]rJ ∈ , which is a tuning parameter called the 
jumping rate. 

We have to make some decisions when implementing an opposition-based EA. 

1) Which EA should we use? Answering this question means that we must 
choose all of the tuning parameters of the EA. 

2) What type of opposition should we use? We can choose one of at least four 
OBL methods, including reflected opposite, quasi opposite, super opposite and 
reflected quasi opposite. We can also create new OBL methods to combine with EAs. 

3) What value should we use for the jumping rate rJ ? The jumping rate is a 
tuning parameter. We do not have many guidelines for the value of rJ , but we do 
not want to make it too high. The reason that we periodically create an opposite 
population is to explore new areas of the search space. However, we do not want to 
create an opposite population every generation because then we would just be 
repeatedly jumping back and forth in the search space, which would waste function 
evaluations. Results from opposition-based differential evolution (DE) indicate that 

0.3rJ =  provides a good balance [RAH 08]. 

12.1.3. Experimental results 

In this section, we investigate the performance of OBBO on a representative set of 
13 benchmark functions. These functions are briefly described in Table 3.2 in Chapter 3. 
A more detailed description of these functions can be found in Appendix A. All 
benchmark functions are minimization problems. For the OBBO algorithms, we 
combine BBO with the four OBL methods described above: reflected opposite, quasi 
opposite, super opposite and reflected quasi opposite. We call the resulting algorithms 
reflected OBBO, quasi OBBO, super OBBO and quasi reflected OBBO, respectively.  
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For these comparisons, the parameters used in the OBBO algorithms and 
standard BBO are the same: population size 50, maximum immigration rate and 
maximum emigration rate 1, and maximum mutation rate 0.01 with a mutated value 
randomly chosen from a uniform distribution in the search domain. We use linear 
migration curves. The jumping rate sets 0.3rJ =  in the OBBO algorithms. We 
terminated after a maximum of 20,000 fitness function evaluations. We run 25 
Monte Carlo simulations on each benchmark to obtain representative performances. 

Table 12.1 summarizes the performance of the OBBO algorithms and the 
standard BBO algorithm on these benchmarks, which shows the mean minimum 
values found by each algorithm. From Table 12.1, we see that quasi reflected OBBO 
performs the best on 6 of the 13 benchmark functions (F01, F03, F05, F07, F11 and 
F12), quasi OBBO performs the best on four functions (F04, F08, F09 and F13) and 
super OBBO performs the other two functions (F02 and F10). For function F06, all 
OBBO algorithms obtain the global optimum. The table indicates that OBL 
accelerates BBO performance, and that OBBO significantly outperforms BBO. It 
also indicates that quasi reflection is the preferred oppositional method for OBBO. 

Function BBO 
Reflected 

OBBO 
Quasi OBBO Super OBBO 

Quasi reflected 
OBBO 

F01 1.04E-04 2.31E-04 6.76E-05 5.37E-04 1.25E-05 

F02 6.29E-15 6.73E-14 8.90E-15 1.53E-15 9.05E-15 

F03 3.84E+01 5.89E+00 3.26E+00 6.33E+00 1.83E+00 

F04 6.35E-15 3.12E-15 1.25E-15 4.16E-15 5.79E-15 

F05 8.85E-01 6.90E-02 6.25E-03 4.16E-03 2.08E-03 

F06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F07 8.61E-09 2.01E-10 6.78E-12 2.15E-12 5.44E-14 

F08 4.97E+00 4.35E-02 3.47E-02 6.82E-02 7.80E-02 

F09 8.77E-01 1.27E-03 1.24E-04 6.92E-04 5.65E-04 

F10 4.18E-01 8.86E-02 8.90E-02 2.31E-02 5.66E-02 

F11 6.53E+00 3.44E+00 5.12E+00 4.32E+00 1.80E+00 

F12 4.64E-32 6.18E-32 6.79E-32 5.21E-32 2.44E-32 

F13 8.47E-32 7.29E-32 1.23E-32 6.87E-32 6.04E-32 

Table 12.1. Comparison of results for BBO and OBBO algorithms. The  
table shows the average of the best performance of 25 Monte Carlo  

simulations. The best value in each row is indicated in bold 
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12.2. BBO with local search 

This section discusses several local search methods that can be incorporated into 
BBO to improve its performance [SIM 14]. One drawback of BBO is its poor local 
search ability, so we discuss local search operators that can be included in BBO, 
including gradient descent, boundary search, grid search and Latin hypercube search. 

12.2.1. Local search methods 

A. Gradient descent 

Gradient descent is a first-order optimization algorithm. To find a local 
minimum of a function using gradient descent, we take steps that are proportional to 
the negative of the gradient of the function at the current search point. If we instead 
take steps that are proportional to the gradient, we approach a local maximum of the 
function; the procedure is then known as gradient ascent. The outline of local search 
using gradient descent is given in Figure 12.4. 

If max min min min 1FE  FE  or ( ( ) ( 1)) / ( )f g f g f gα ε> − + <  then  

For the best gN  candidate solutions kx  ( 1k =  to gN ) 

( )k k kx x f xγ← − ⋅∇  

Next solution 

End if 

Figure 12.4. Outline of gradient descent on each candidate solution of an EA, 
performed under two conditions which are described below 

Figure 12.4 shows that gradient descent is implemented on the best gN  solutions in 

the population by subtracting a term ( )kf xγ ⋅∇ , where γ  is a step size which is allowed 

to change every generation, and ( )f∇ ⋅  is the first-order derivative of the function with 
respect to its decision variable. The purpose of gradient descent is to move against the 
gradient and down toward the minimum. The figure shows that gradient descent is 
implemented under two conditions. The first condition involves FE, which is the current 
number of function evaluations that have been performed so far, and maxFE , which is the 
maximum function evaluation limit. [0,1]α ∈  is a factor that determines when gradient 
descent is activated. We typically use = 1 2α  so that gradient descent is activated when 
we have used 50% or more of our allotted function evaluations. The second condition 
involves min ( )f g , which is the minimum function value obtained by BBO during the 
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( 1)stg +  (current) generation. The quantity min min min( ( ) ( 1)) / ( )f g f g f g− +  indicates 
the relative improvement in the best function value (taken over all candidate solutions) 
found by BBO from the thg  generation to the ( 1)stg +  generation. 1ε  is a threshold 
that determines when gradient descent is activated. This condition assumes that the cost 
value ( )f ⋅  is positive for all candidate solutions. We typically use 1 = 0.1ε  so that 
gradient descent is activated whenever the best candidate solution in the population 
improves by less than 10% from one generation to the next. 

B. Boundary search 

Many real-world optimization problems have their solution on the boundary of the 
search space. This is not surprising because we normally expect to obtain an 
optimization goal by using all of the available energy, or force, or some other resource.  

We implement boundary search in BBO as follows. If any of the decision 
variables of the best solution in the population are within a certain threshold of the 
search space boundary, then we move the decision variable to the search space 
boundary and perform local search (gradient descent) on the other decision 
variables. This idea is shown in Figure 12.5.  

If min min min 2( ( ) ( 1)) ( )f g f g f g ε− + <  then  

For the best gN  candidate solutions kx  ( 1k =  to gN )  

For each decision variable s   

If ( ( )) ( )s k s s sU x s U Lα− < −  then  

( )k sx s U←  

End if 

If ( ( ) ) ( )k s s s sx s L U Lα− < −  then 

( )k sx s L←  

End if  
Next decision variable 
Perform gradient descent on unbounded dimensions of kx  

Next solution 

End if 

Figure 12.5. Outline of boundary search combined with gradient descent 

Figure 12.5 shows that boundary search is implemented under similar conditions 
as gradient descent in Figure 12.4. That is, boundary search is implemented 
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whenever the best solution in the population improves by a factor of less than 2ε  
from one generation to the next. We implement boundary search for the best gN  
solutions in the population. If any decision variable of the best gN  solutions is 
within a factor sα  of the upper boundary of the search domain, we set that decision 
variable equal to the upper boundary. Similarly, if any decision variable of the best 

gN  solutions is within a factor sα  of the lower boundary of search domain, we set 
that decision variable equal to the lower boundary. Then, we perform gradient 
descent on those solutions. However, we perform gradient descent only on decision 
variables that are not equal to a search space boundary. 

C. Grid search 

The next type of search that we implement is grid search. This search 
systematically covers the search space, as shown in Figure 12.6. 

If min min min 3( ( ) ( 1)) / ( )f g f g f g ε− + <  then 

0= ( )s sU LΔ α −  

For the best gN
 
candidate solutions kx  ( 1k =  to gN )  

     k kw x=  

     For each decision variable s   

          While ( )k sw s L≥
 
 

             argmin{ ( ), ( )}k k kx f x f w←  

             ( ) ( )k kw s w s Δ← −      

          End while 

     Next decision variable  

     k kw x=  

     For each decision variable s   

          While ( )k sw s U≤
 
 

             argmin{ ( ), ( )}k k kx f x f w←  

             ( ) ( )k kw s w s Δ← +  

          End while 

     Next decision variable 
Next solution 

End if 

Figure 12.6. Outline of grid search 
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Figure 12.6 shows that grid search is implemented under similar conditions as 
gradient descent in Figure 12.4 and boundary search in Figure 12.5. Grid search is 
implemented whenever the best solution in the population improves by a factor of 
less than 3ε  from one generation to the next. We implement grid search for the best 

gN  solutions in the population. Figure 12.6 shows that for the best gN  solutions, we 
increment or decrement each decision variable by a specific fraction 0α  of the 
search space size. For example, if 0α = 0.1, grid search decreases the value of a 
given decision variable of kx  by an increment equal to 10% of the search space size, 
one increment at a time, until it reaches the lower boundary of the search space. Grid 
search then increases the values of a given decision variable until it reaches the 
upper boundary of the search space. Grid search performs this process for each 
decision variable and updates the solution with the best value that it finds. 

D. Latin hypercube search 

Latin hypercube sampling divides a domain into intervals in each dimension,  
and then places sample points in such a way that each interval in each  
dimension contains only one sample point [SIM 13a]. This idea is illustrated in 
Figure 12.7. 

 

Figure 12.7. The figure on the left shows uniform sampling  
of four points in a search domain. The figure on the right shows  

Latin hypercube sampling. Note that there is only one point in each  
row and only one point in each column 

Latin hypercube sampling can sometimes capture the unpredictable, unknown 
nature of a function better than uniform sampling. Also, Latin hypercube sampling is  
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more efficient than uniform sampling. With uniform sampling of a D-dimensional 
search space where each dimension is divided into n intervals, we need Dx  sample 
points, but with Latin hypercube sampling, we need only n sample points.  

We perform Latin hypercube sampling every LG  generations around the current 
best solution in the population if we seem to be converging to an optimum. We 
perform this search under the following two conditions, both of which must be 
satisfied. 

The first condition is that the best solution in the population has a cost that is less 
than βe, where e is the function value required for success and β is a scale factor. 
Note that this requires that we know a priori what function value is required for 
success. Although this is not always the case, in real-world problems, we often know 
the target value of our optimization problem ahead of time. We typically set 

10LG =  and 1000β = . 

The second condition is that the best solution in the population is not improving 
sufficiently fast. That is, 

min min min 4 ( ( ) ( )) / ( )L Lf g G f g f g G ε− − − <  [12.9] 

where min ( )f g  is the cost function value of the best solution in the population and 

4ε  is a relative tolerance.  

We perform a Latin hypercube search within a domain of size ( )L U Lα −  that is 
centered at the best solution in the population, where U  and L  are the upper and 
lower search space bounds, and Lα  defines the relative size of the hypercube within 
which we search. We divide each dimension of the search space into n evenly 
spaced points within the search range, and then find n search points within the 
search range. We then perform gradient descent on the best Ln  of those solutions. 
We combine these solutions with the N-member population to obtain a temporary 
population size of LN n+ . We then save the best n of these solutions as the 
population of the next generation. 

E. BBO with local search 

The hybrid BBO algorithm, including all of the new components discussed 
above, is summarized in Figure 12.8. Each method in Figure 12.8 executes  
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regardless of the success or failure of the previous methods in the algorithm. Note 
that the performance of BBO might be affected if the methods in Figure 12.8 are 
implemented in a different order. 

For each solution kx , calculate kλ  and kμ  based on the fitness of kx  

{ kz } ← { kx } 

Use standard BBO migration to update kz  

Apply gradient descent if needed  

Apply boundary search if needed  

Apply grid search if needed  

Apply Latin hypercube search if needed  

{ kx } ← { kz } 

Figure 12.8. One iteration of the  
BBO algorithm with local search 

12.2.2. Simulation results 

In this section, we investigate the performance of the BBO algorithm with local 
search for the same benchmark functions as those used above. All the parameter 
settings of BBO are the same as those described previously. Furthermore, to address 
the relative importance of each of local search methods, including gradient descent, 
boundary search, grid search and Latin hypercube search, we conduct the following 
simple test. First, we run standard BBO, and BBO with all components of local 
search. Then, we run BBO with all components of local search except the first one; 
that is, we skip gradient descent in the BBO algorithm with local search. Next, we 
run BBO with all components of local search except the second one; that is, we skip 
boundary search in the BBO algorithm with local search. In general, we run  
BBO with all components of local search except the nth one, for [ ]1, 4n ∈ . 

Table 12.2 summarizes the performance of BBO, BBO with all local search 
components, and BBO with the nth component omitted for [ ]1, 4n ∈ , on the 
benchmark functions. The table shows the mean minimum errors found by each 
algorithm over 25 Monte Carlo simulations. The table shows that BBO with all local  
search components performs the best on 9 of the 13 benchmark functions, and BBO  
 
 
 



246     Evolutionary Computation with Biogeography-based Optimization 

with the nth component of local search removed (for each [ ]1, 4n ∈ ) performs 
better than standard BBO for the majority of the functions. These results indicate 
that local search can significantly improve the performance of BBO. From Table 
12.2, we see that except for standard BBO, BBO without gradient descent performs 
the worst on most of the functions, and BBO without grid search performs better 
than all of the other cases of BBO with the nth component omitted. This means that 
gradient descent is the most important component of BBO with local search, and 
grid search is the least important component. We conclude that BBO might not be 
very effective unless it is augmented with a local search method such as gradient 
descent. 

Function BBO 
BBO with 
all local 
search 

No gradient No boundary No grid No Latin 

F01 1.04E-04 2.14E-08 6.70E-01 7.11E-04 4.43E-06 2.16E-04 

F02 6.29E-15 1.65E-18 1.29E-16 2.39E-16 6.78E-18 4.92E-16 

F03 3.84E+01 3.75E+00 5.43E+00 5.33E+00 2.50E+00 3.39E+00 

F04 6.35E-15 4.23E-16 7.55E-15 1.98E-15 1.86E-15 2.43E-15 

F05 8.85E-01 1.19E-05 3.23E-01 6.86E-02 6.08E-05 3.85E-02 

F06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F07 8.61E-09 2.06E-12 8.39E-09 2.43E-10 7.23E-12 8.08E-10 

F08 4.97E+00 5.76E-02 7.45E-01 1.08E-01 9.44E-02 3.75E-01 

F09 8.77E-01 2.33E-04 1.28E-02 5.84E-03 2.53E-04 1.66E-03 

F10 4.18E-01 7.01E-03 9.04E-01 3.22E-02 7.08E-03 6.21E-02 

F11 6.53E+00 3.11E-01 8.77E+00 7.24E+00 5.36E-01 4.21E+00 

F12 4.64E-32 0.00E+00 2.54E-32 1.98E-32 0.00E+00 1.66E-32 

F13 8.47E-32 0.00E+00 1.25E-32 2.00E-32 0.00E+00 2.30E-32 

Table 12.2. Comparison between BBO, BBO with all local search components  
and BBO with the nth local search component omitted for each [ ]n 1, 4∈ .  

The best value in each row is indicated in bold 
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12.3. BBO with other EAs 

This section discusses the combination of BBO with other popular EAs, which 
results in hybrid BBO algorithms [MA 14a, MA 14b]. Biogeography-based 
hybridization is discussed at both the iteration level and the algorithm level, which is 
based on migration behaviors in biogeography. Popular EAs that could be hybridized 
with BBO include evolution strategy (ES), genetic algorithm (GA), DE, particle 
swarm optimization (PSO), and so on. Here we present a general biogeography-based 
hybridization strategy and demonstrate its performance on a representative set of 
benchmarks. 

12.3.1. Iteration-level hybridization 

Iteration-level hybridization is a straightforward method in which various EAs 
are executed in sequence. Iteration-level hybridization divides the search procedure 
into two stages:  

1) In the first stage, one EA with high convergence speed is used to shrink the 
search region to promising areas; 

2) In the second stage, another EA with good exploration ability is used to 
explore the previously limited area more extensively to find better solutions.  

Iteration-level hybridization will perform at least as well as one algorithm alone, 
and more often will perform better due to the synergy of exploration and 
exploitation. Previous studies have found that this kind of hybrid EA improves 
optimization performance [JAI 05]. Another attractive feature of iteration-level 
hybridization is that its structure is simple and easily programmed. 

Here we implement iteration-level hybridization by combining popular EAs with 
BBO, in which a popular EA is used in the first stage to obtain good candidate 
solutions, and then BBO is used in the second stage to improve the candidate 
solutions obtained by the first EA. The goal of this hybridization approach is to 
balance the exploration and exploitation ability of various EAs. A general flowchart 
of iteration-level hybridization is shown in Figure 12.9. The main procedure of 
iteration-level hybridization is shown in Figure 12.10.  
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Figure 12.9. Flowchart of iteration-level hybridization combining a  
popular EA with BBO, where P is the parent population and O is the  

offspring population. Reprinted from [MA 14] with permission from Elsevier 

Randomly initialize the parent population P  

Evaluate the fitness of all candidate solutions in P 

While not (termination criterion) 

Execute a popular EA (for example, DE or PSO) to create offspring population O 

Evaluate the fitness of each solution in offspring population O 

Calculate the immigration rate λ and emigration rate μ of each solution 

Perform one generation of BBO as shown in Figure 3.5 in Chapter 3 to 

improve the solutions in the offspring population O 

Replace the parent population P with the offspring population O 

Next generation 

Figure 12.10. Outline of iteration-level hybridization of BBO with other EAs 



Hybrid BBO Algorithms     249 

EXAMPLE 12.1.– 

Figure 12.11 shows one generation of an iteration-level hybridization of DE and 
BBO, which is a special case of Figure 12.10. Note that Figure 12.10 is provided for 
purposes of illustration. Any EA could be hybridized at the iteration level with 
BBO, in which case Figure 12.11 would be modified accordingly.  

{ kz } ← { kx } 

For each candidate solution zk  (k = 1 to N ) 

For each decision variable s  

Pick three random solutions xr 1, xr 2 and xr 3 mutually distinct from  

each other and from zk 

Pick a random index n between 1 and N 

Use CR (probabilistic) or n (deterministic) to decide on recombination 

If recombination then  

( ) ( ) ( )( )1 2 3( )k r r rz s x s F x s x s← + ⋅ −  

End if 

Next decision variable 

Evaluate the fitness of each candidate solution zk in the population 

For each zk define emigration rate μk proportional to the fitness of zk,  

where μk ∈ [0,1] 

For each candidate solution zk define immigration rate λk = 1 − μk 

For each decision variable s  

Use λk to probabilistically decide whether to immigrate to zk 

If immigrating then 

Use {μ} to probabilistically select the emigrating solution yj 

( ) ( )k jz s x s←  

End if 

Next decision variable 

Next solution 

{ kx } ← { kz } 

Figure 12.11. One generation of an iteration-level hybridization of DE  
and BBO, where N is the population size. { kx } and { kz } comprise the entire 
population of candidate solutions, xk is the kth candidate solution, and xk(s)  
is the sth decision variable of xk. CR and F are the probability of crossover  

and the scaling factor of DE, respectively [DAS 11a, DAS 11b] 
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12.3.2. Algorithm-level hybridization 

Algorithm-level hybridization is a method that involves several subpopulations 
running independently and periodically exchanging information with each other 
[JAI 05]; see Figure 12.12. The information exchange provides the mechanism to 
enhance a given subpopulation with the improvements achieved in other 
subpopulations. Therefore, algorithm-level hybridization will perform at least as 
well as each constituent algorithm, and more often it will perform better due to the 
exchange of information among the algorithms.  

 

Figure 12.12. Illustration of algorithm-level hybridization. Reprinted from  
[MA 14a, MA 14b] with permission from Elsevier. For a color version  

of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip 

An important aspect of algorithm-level hybridization is the migration strategy, 
which is configured by various parameters. (Note that “migration” in this context is 
different from standard BBO migration.) 

1) Migration frequency: how often is information shared between algorithms? 

2) Migration rate: how much information migrates between algorithms? 

3) Information selection: what information is selected to migrate between 
algorithms? 
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4) Migration topology: which subpopulations exchange information with each 
other? 

A study of migration parameters has been presented in Jaimes and Coello Coello 
[JAI 05], but that strategy should be adjusted based on a priori knowledge of the 
problem. It is hard to obtain useful information about the best migration strategy in 
most real-world problems. 

In our approach to algorithm-level hybridization, the fitness of each solution is 
used by BBO to determine the migration strategy between each algorithm, including 
migration frequency, migration rate, information selection and migration topology. 
That is, even though BBO is not one of the constituent EAs, the BBO approach is 
used to migrate information between EAs. This migration strategy is naturally 
adaptive because of the information-exchanging mechanism of BBO. The advantage 
of this method is that BBO determines the migration parameter settings of 
algorithm-level hybridization, and interaction with a human decision maker does not 
need to occur during optimization. This hybridization approach, which combines 
recently developed EAs using biogeography-based strategies, has the common 
features of algorithm-level hybridization but also has the distinctive migration 
characteristics of BBO.  

A flowchart of algorithm-level hybridization combining popular EAs using 
biogeography is shown in Figure 12.13, where three subpopulations are used, although 
fewer or more could also be used, depending on the application. Subpopulations 
execute independently and generate their own offspring subpopulations. The offspring 
subpopulations are combined with biogeography-based migration. In this way, 
algorithm-level hybridization will always keep the solutions that are improved by 
migration, which will lead to better optimization performance than that achieved by a 
single constituent algorithm. The main procedure of this approach to algorithm-level 
hybridization is shown in Figure 12.14.  

Note that in iteration-level hybridization, we combine various EAs with BBO, 
and in algorithm-level hybridization, we combine various EA populations using 
ideas from biogeography. In algorithm-level hybridization, we do not necessarily 
combine a particular EA with BBO; instead, we use the BBO migration strategy to 
combine multiple EAs. In this approach, various EAs are taken as the baseline 
algorithms, and then we use the migration mechanism of BBO to adaptively 
improve the solutions. That is, the constituent EAs generate offspring solutions each 
generation, and then we use the BBO migration operator to exchange information 
between these solutions.  
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Divide the overall population into 
subpopulations 1, 2, and 3 

Maximum number of
function evaluations reached?

Create offspring 1 
from 1 using a

popular EA

Create offspring 2 
from 2 using a

popular EA

Create offspring 3 
from 3 using a

popular EA

Migrate information between 1, 2 
and 3 using BBO. Replace parent 

populations with offspring populations

Output

N

Y

 
Figure 12.13. Flowchart of algorithm-level hybridization combining popular EAs  
with biogeography-based migration, where there are three subpopulations. P1,  

P2, P3 are parent subpopulations, and O1, O2, O3 are offspring subpopulations. 
Reprinted from [MA 14a, MA 14b] with permission from Elsevier 

Randomly initialize the overall population P and divide it into subpopulations Pi  
(i = 1…n, where n denotes the number of subpopulations) 
Evaluate the fitness of all candidate solutions in P 

While not (termination criterion) 
For each subpopulation Pi   

Perform an independent EA to create offspring subpopulation Oi 
Next subpopulation 
Evaluate the fitness of offspring population O, which is composed of  
all subpopulations Oi 
Calculate the immigration rate λ and emigration rate μ for  
each offspring in population O 
For each offspring subpopulation Oi  

Immigrate solution information from the overall offspring population  
O using one generation of BBO as shown in Figure 3.5 in Chapter 3 

Next subpopulation 

Next generation 

Figure 12.14. Outline of algorithm-level hybridization of BBO with other EAs 
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{ kz } ← { kx } 
Divide { kz } into subpopulations Pi  (i = 1 to n ) 
For each subpopulation Pi   

For each candidate solution zik  (k = 1 to K )  
For each decision variable s  

Pick three random solutions xr 1, xr 2 and xr 3 mutually distinct from each other  
                and from zik 

Pick a random index n between 1 and the population size 
Use CR (probabilistic) or n (deterministic) to decide on recombination 

If recombination then  

( ) ( ) ( )( )1 2 3( )k r r rz s x s F x s x s← + ⋅ −  
End if 

Next decision variable 
Next solution 

Next subpopulation 
Evaluate the fitness of each candidate solution zik in all subpopulations 
For each zik  define emigration rate μik proportional to fitness of zik, where μik ∈ [0,1] 
For each candidate solution zik define immigration rate λik = 1 − μik 
For each subpopulation Pi   

For each candidate solution zik   
For each decision variable s  

Use λik to probabilistically decide whether to immigrate to zik 
If immigrating then 

Use {μ} to probabilistically select the emigrating solution xj from 
the combined population 

( ) ( )k jz s x s←  
End if 

Next decision variable 
Next solution 

Next subpopulation 
{ kx } ← { kz } 

Figure 12.15. One generation of an algorithm-level hybridization of DE and BBO, 
where Pi is the subpopulation, n is the number of subpopulations and K is the size of 
each subpopulation. { kx } and { kz } are the entire population of candidate solutions, xk 
is the kth candidate solution and xk(s) is the sth decision variable of xk. CR and F are 
the probability of crossover and the scaling factor of DE, respectively 
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EXAMPLE 12.2.– 

Figure 12.15 shows one generation of an algorithm-level hybridization of DE 
and BBO, which is a special case of Figure 12.14. Any set of EAs could be 
hybridized at the algorithm level, in which case Figure 12.15 would be modified 
accordingly. 

12.3.3. Experimental results 

In this section, we investigate the performance of hybrid EAs for the same 
benchmark functions as those used above. We evaluate the performance of iteration-
level and algorithm-level hybridization combining various EAs with BBO. The EAs 
that we use include ES, GA, DE and PSO. We choose these algorithms because they 
are some of the most popular EAs. The four algorithms that we choose form a 
representative set rather than a complete set. We could hybridize many other 
algorithms besides these four. However, the goal here is not to be exhaustive,  
rather to demonstrate a general biogeography-based hybridization strategy on a 
representative set of constituent algorithms and benchmarks.  

In summary, we investigate the following hybrid EAs: GA/BBO-I, GA/BBO-A, 
ES/BBO-I, ES/BBO-A, DE/BBO-I, DE/BBO-A, PSO/BBO-I and PSO/BBO-A, 
where I and A denote iteration-level hybridization and algorithm-level hybridization, 
respectively. For example, GA/BBO-I denotes iteration-level hybridization of GA 
and BBO, as given in Figures 12.10 and 12.11, where DE in the algorithm is 
replaced with GA. Similarly, GA/BBO-A denotes algorithm-level hybridization of 
GA and BBO, as given in Figures 12.14 and 12.15, where DE in the algorithm is 
replaced with GA. Similar statements can be made for each of the other hybrid BBO 
algorithms.  

The next step is to set the parameters of each constituent algorithm. For BBO, 
we use the same parameters as those used in the previous experiments. For the other 
EAs, we use the same parameters as those used in section 3.3 in Chapter 3. For 
algorithm-level hybridization, we use three subpopulations, and each subpopulation 
implements the same EA. The population size of each subpopulation in algorithm-
level hybridization is 50, so the total population size is 150. For fair comparisons, 
the population size of iteration-level hybridization is also set to 150. We use a 
maximum of 20,000 fitness function evaluations.  
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Tables 12.3 and 12.4 summarize the performance of the algorithms, and show 
the mean minimum errors found by each algorithm over 25 Monte Carlo 
simulations. From Table 12.3, we see that for each group of hybrid algorithms (for 
example, considering GA, GA/BBO-I and GA/BBO-A as one group), iteration-level 
hybridization and algorithm-level hybridization perform better than the constituent 
algorithm for all benchmark functions. This indicates that hybrid biogeography-
based algorithms improve performance for these benchmark functions. 

We also note from Tables 12.3 and 12.4 that algorithm-level hybrid algorithms 
perform better than iteration-level hybrid algorithms for most of the benchmark 
functions. This result indicates the superiority of algorithm-level hybridization over 
iteration-level hybridization. This may be due to the interacting subpopulations that 
comprise algorithm-level hybridization, which is a structure that other research has 
also found to be highly efficient for global optimization [DAS 11a, DAS 11b,  
LAS 10]. 

Function GA GA/BBO-I GA/BBO-A ES ES/BBO-I ES/BBO-A 

F01 1.43E-03 6.79E-04 3.16E-05 5.67E+04 6.37E+02 5.43E+01 

F02 3.80E+02 5.78E-05 4.43E-07 4.21E+03 4.65E-02 3.36E-02 

F03 4.43E+03 2.54E+01 3.54E+00 5.80E+02 7.75E+02 6.28E+01 

F04 4.10E+00 6.65E-12 4.31E-14 1.22E+01 4.12E-10 8.08E-06 

F05 6.73E+01 8.98E-00 4.67E-00 2.34E+03 5.34E-02 7.80E-02 

F06 3.24E+00 2.15E-02 5.30E-04 6.78E+03 1.28E+01 6.85E+00 

F07 5.33E+02 4.34E-08 8.94E-09 4.21E+02 1.75E-02 6.77E-01 

F08 1.05E+02 2.78E+01 3.26E+00 4.32E+01 2.59E+00 8.93E+00 

F09 2.76E+01 1.54E-01 5.44E-02 5.38E+02 1.26E+02 1.25E+02 

F10 3.40E-02 3.22E-04 3.28E-05 1.45E+00 4.41E-01 8.15E-03 

F11 3.76E+02 7.80E+01 1.69E+01 7.89E+01 6.74E+01 4.24E+00 

F12 3.54E-32 0.00E+00 0.00E+00 1.12E-07 7.35E-10 8.95E-10 

F13 6.06E-31 0.00E+00 0.00E+00 7.82E-07 3.35E-09 1.28E-09 

Table 12.3. Comparison of results of hybrid algorithms combining BBO with  
GA and ES based on iteration-level hybridization and algorithm-level  

hybridization. The best value in each row is indicated in bold 
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Function DE DE/BBO-I DE/BBO-A PSO PSO/BBO-I PSO/BBO-A 

F01 3.16E+03 5.67E+02 7.98E+01 3.68E-01 1.32E-03 6.65E-05 

F02 5.38E+02 3.12E-11 3.25E-12 2.25E+02 9.03E-11 2.33E-11 

F03 2.16E+02 5.67E+00 5.87E+00 1.76E+02 7.25E+01 4.31E+00 

F04 2.34E+01 7.89E-10 6.55E-12 6.78E-01 5.34E-13 6.74E-15 

F05 3.41E+01 2.18E-01 4.32E-02 6.74E+00 3.22E-02 5.87E-02 

F06 2.15E+02 4.33E+00 1.26E-01 0.00E+00 0.00E+00 0.00E+00 

F07 2.38E+01 6.84E+00 7.86E-04 2.58E+00 1.23E-08 4.90E-06 

F08 1.25E+01 1.22E-02 3.25E-03 8.81E-01 3.19E-03 5.70E-05 

F09 1.16E+02 3.90E+00 5.79E-01 4.54E+02 3.32E+01 5.32E+01 

F10 3.87E+00 5.43E+00 1.25E-02 7.53E-01 5.66E-02 7.17E-03 

F11 2.31E+01 6.78E+00 8.94E-01 3.30E+00 7.16E+00 1.81E+00 

F12 2.53E-05 1.26E-08 2.51E-10 2.62E-32 0.00E+00 0.00E+00 

F13 2.51E-07 6.39E-08 6.89E-08 9.52E-32 0.00E+00 0.00E+00 

Table 12.4. Comparison of results of hybrid algorithms combining BBO with  
DE and PSO based on iteration-level hybridization and algorithm-level  

hybridization. The best value in each row is indicated in bold 

12.4. Conclusion 

In this chapter, we discussed hybrid BBO algorithms that combine BBO with 
various popular search methods, including local search and global search, and 
including learning strategies and hybrid strategies. First, we showed how OBL could 
be incorporated into BBO to produce OBBO algorithms. Then, we showed how 
several local search methods could be incorporated into BBO to produce hybrid 
BBO algorithms. Finally, we showed the hybridization of BBO with other popular 
EAs at both the iteration level and the algorithm level based on the information 
exchange mechanism of biogeography. The simulation results indicate that all of 
these hybrid BBO algorithms can improve the optimization performance of BBO. In 
addition, these combinations of BBO with various search methods can serve as a 
template for the improvement or hybridization of any other EA. 

This chapter is not intended to provide a complete exposition of the subject of hybrid 
BBO algorithms, but has only shown how BBO can be combined with various search 
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methods, and particularly how hybridization can improve the performance of BBO. 
More hybrid BBO algorithms have been proposed and new ones are continually 
appearing in the literature [BHA 10, BOU 11a, BOU 11b, CHA 12, WAN 11b]. As of 
June 2016, INSPEC included more than 400 publications about hybrid BBO algorithms.  

In this concluding section, we mention some important topics for future research 
of hybrid EAs. 

New hybridization approaches 

Just as ideas from BBO have been used in this chapter to develop new 
hybridization approaches, ideas from other EAs could also be used to develop new 
hybridization approaches. For example, information exchange mechanisms based on 
DE, PSO, GA or any other EA could be used to combine EAs running in parallel 
[BLU 11, NIK 09]. The use of BBO as a hybridization strategy should motivate the 
investigation of other EAs as hybridization strategies, and then these hybridization 
strategies could be compared with one another. 

Adaptation in hybrid EAs 

Adaptation might be a promising way to pursue improved performance in hybrid 
EAs [WAN 09, ZHA 11]. Because there are usually many tuning parameters in a 
hybrid EA, we need to decrease the number of manual tuning parameters. 
Adaptation could be implemented in different ways. For example, since an OBBO 
population tends to converge to good solutions as the generation count increases, 
perhaps OBL should be implemented more often in the early stages of BBO 
operation and less often in the later stages. This could be done by making the jump 
rate a decreasing function of the generation number. Other ways of implementing 
adaptation in hybrid EAs might include changing the types of search methods based 
on the generation count or based on individual fitness values. 

Applications of hybrid EAs 

Another important topic is the application of hybrid EAs to real-world problems. 
Many application results have been published [MAK 10, MON 12, NGU 07,  
PRO 11], but more challenging problems are found in various fields of society and 
science. Research on multi-objective problems, constrained problems and large-
scale problems emphasizes their special challenges, and we need to find good hybrid 
EAs to solve these problems. 
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Theory and mathematical models 

Theoretical results for hybrid EAs are sparse and so there is a lot of room for 
contributions in this area. For example, we could use the Markov models and 
dynamic system models from the previous chapters to compare various hybrid EAs 
on an analytical level rather than relying on simulation.  
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Appendix A 

Unconstrained Benchmark Functions 

The problem is to minimize ( )f x  over all x . We use *x  to represent the 

optimizing value of x , and ( )*f x  is the minimum value of ( )f x : 

( )arg min*

x
x = f x  [A.1] 

Many of the benchmarks that we present in this section are from Yao et al. 
[YAO 99]. Detailed information about the unconstrained benchmarks and evaluation 
metrics for EA competitions at the 2005 IEEE Congress on Evolutionary 
Computation can be found in Suganthan et al. [SUG 05]. For the benchmarks 
presented here, their dimensionality can be varied so that performance can be 
explored as a function of the number of dimensions n. 
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F12 Generalized Penalized Function 1 
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Note that in this benchmark, values for , andk a m  are not given, but we usually 
use 100, 10 and 4k a m= = = . 
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Note that in this benchmark, like the generalized penalized function 1, values for 
, andk a m  are not given but we usually use 100, 5 and 4k a m= = = . 



Appendix B 

Constrained Benchmark Functions 

A constrained optimization problem involves the minimization of ( )f x  over all 

x  such that nx R∈ Γ ∈ , where Γ  is the feasible set and n is the problem dimension. 
We use *x  to represent the optimizing value of x , and ( )*f x  is the constrained 

minimum value of ( )f x : 

( )
( )
( )

arg min

such that g 0 for [1, ]

and  0 for [1, ]

*

x

i

j

x = f x

x i m

h x j p

≤ ∈

= ∈

 [B.1] 

This problem includes (m + p) constraints, m of which are inequality constraints 
and p of which are equality constraints. In this section, we only show simple 
constrained benchmarks, while detailed information and evaluation metrics for  
EA competitions at the 2006 and 2010 IEEE Congress on Evolutionary 
Computation can be found in Liang et al. [LIA 06] and Mallipeddi and Suganthan 
[MAL 10]. 
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where 20n =  and 0 10 ( 1,..., )ix i n< ≤ = . The optimum solution is 

( )* 0.80361910412559f x = − . 
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where 10n =  and 0 1 ( 1,..., ).ix i n≤ ≤ =  The optimum solution is 

( )* 1.00050010001000.f x = −  
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The G04 Function 
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where 1 278 102, 33 45x x≤ ≤ ≤ ≤  and 27 45 ( 3, 4,5)ix i≤ ≤ = . The optimum 

solution is ( )* 3.066553867178332 004f x e= − + . 
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where 1 2 30 1200, 0 1200, 0.55 0.55x x x≤ ≤ ≤ ≤ − ≤ ≤  and 40.55 0.55.x− ≤ ≤  The 

optimum solution is ( )* 5126.4967140071f x = . 
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where 113 100x≤ ≤  and 20 100.x≤ ≤  The optimum solution is 

( )* 6961.81387558015f x = − . 
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where 10 10 ( 1,...,10)ix i− ≤ ≤ = . The optimum solution is ( )*f x =

24.30620906818 . 
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where 10 10x≤ ≤  and 20 10x≤ ≤ . The optimum solution is 

( )* 0.0958250414180359f x = − . 



Appendix B     269 
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where 10 10ix− ≤ ≤  for 1, ,7i = L . The optimum solution is 

( )* 680.630057374402f x =r . 

The G10 Function 

( )
( )
( )
( )
( )
( )
( )

1 2 3

1 4 6

2 5 7 4

3 8 5

4 1 6 4 1

5 2 7 5 2 4 4

6 3 8 3 5 5

1 0.0025( ) 0

1 0.0025( ) 0

1 0.01( ) 0

833.33252 100 83333.333 0

1250 1250 0

1250000 2500 0

f x x x x

g x x x

g x x x x

g x x x

g x x x x x

g x x x x x x x

g x x x x x x

= + +

= − + + ≤

= − + + − ≤

= − + − ≤

= − + + − ≤

= − + + − ≤

= − + + − ≤

 [B.11] 

where 1100 10000,1000 10000 ( 2,3)ix x i≤ ≤ ≤ ≤ =  and 10 1000 ( 4,...,8).ix i≤ ≤ =  

The optimum solution is ( )* 7049.24802052867f x = . 
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where 11 1x− ≤ ≤  and 21 1x− ≤ ≤ . The optimum solution is ( )* 0.7499f x = . 
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The G12 Function 
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where 0 10 ( 1,2,3)ix i≤ ≤ =  and , , 1, 2, ,9p q r = L . The optimum solution is 

( )* 1f x = − . 
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1 2 3 4 5

2 2 2 2 2
1 1 2 3 4 5

2 2 3 4 5

3 3
3 1 2

10 0

5 0

1 0

x x x x xf x e

h x x x x x x

h x x x x x

h x x x

=

= + + + + − =

= − =

= + + =

 [B.14] 

where ( )2.3 2.3 1, 2ix i− ≤ ≤ =  and ( )3.2 3.2 3,4,5ix i− ≤ ≤ = . The optimum 

solution is ( )* 0.053941514041898f x = . 

The G14 Function 

( )

( )
( )
( )

10

10
1

1

1 1 2 3 6 10

2 4 5 6 7

3 3 7 8 9 10

ln

2 2 2 0

2 1 0
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i
i i

i jj

x
f x x c

x

h x x x x x x

h x x x x x

h x x x x x x

=
=

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

= + + + + − =

= + + + − =

= + + + + − =

∑
∑

 [B.15] 

where 0 10 ( 1,...,10)ix i< ≤ =  and 1 2 3 46.089, 17.164, 34.054, 5.914,c c c c= − = − = − = −

5 6 7 8 9 1024.721, 14.986, 24.1, 10.708, 26.662, 22.179.c c c c c c= − = − = − = − = − = −

The optimum solution is ( )* 47.7648884594915.f x = −  
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The G15 Function 

( )
( )
( )

2 2 2
1 2 3 1 2 1 3

2 2 2
1 1 2 3

2 1 2 3

1000 2

25 0

8 14 7 56 0

f x x x x x x x x

h x x x x

h x x x x

= − − − − −

= + + − =

= + + − =

 [B.16] 

where ( )0 10 1, 2,3ix i≤ ≤ = . The optimum solution is ( )* 961.715022289961f x = . 

The G16 Function 

( )
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c y
y
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g x x x
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g x
c

g x y
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g x y

g
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6 1
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x y

g x y
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 [B.17] 

( )
( )
( )
( )
( )
( )
( )

9 3

10 3

11 4

12 4

13 5

14 5

15 6

11.275 0

35.03 0

214.228 0

665.585 0

7.458 0

584.463 0

0.961 0

g x y

g x y

g x y

g x y

g x y

g x y

g x y

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤
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( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

16 6

17 7

18 7

19 8

20 8
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22 9
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( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

28 12

29 13

30 13

31 14

32 14
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34 15
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38 17

537.141 0

1072.163 0

3247.039 0

8961.448 0

26844.086 0
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g x y
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= − ≤

= − ≤

 

where 

1 2 3

1 4

2
1

41.6
0.024 4.62
12.5 12

y x x
c x

y
c

= + +
= −

= +
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2
2 1 1 2 1

3 1 2 1

2
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2
1 3

4 1 3 4 3
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5 2

6 1 3 4
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7
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5 6 7
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13 10 2 4 14

13
15

13

16 15 13 15 13

14 10 2

14
17 10 11

12

13 13
15

15

16 15

17 9 5

0.995 60.8 48 0.1121 5095

148000 331000 40 61
2324 28740000

14130000 1328 531

0.52
1.104 0.72

c y x x y
y

y
c

y y y y y
c y y

c
y y y

c
y y

c
y

c y
c y x

= + + − −

=

= − + −
= −

= − − +

= −

= −
= +

 

and where 1704.4148 906.3855x≤ ≤ , 268.6 288.88x≤ ≤ , 30 134.75x≤ ≤ , 

4193 287.0966x≤ ≤  and 525 84.1988x≤ ≤ . The optimum solution is 

( )* 1.90515525853479f x = − . 

The G17 Function 

( ) ( ) ( )

( )

( )

1 1 2 2

1 1
1 1

1 1

2 2
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30 0 300
31 300 400
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x x
f x x x

x x
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⎪= ≤ <⎨
⎪ ≤ <⎩

 [B.18] 

( )

( )

( )

( )

2
3 4 3

1 1 6

2
3 4 4

2 2 6

2
3 4 4

3 5 6

4

0.90798
300 cos(1.48477 ) cos(1.47588)
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x x x
h x x x

x x x
h x x x

x x x
h x x x

h x

= − + − − +

= − − + +

= − − + +

=
2

3 4 3
6

0.90798
200 sin(1.48477 ) sin(1.47588)

131.078 131.078
x x x

x− − +
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where 10 400x≤ ≤ , 20 1000x≤ ≤ , 3340 420x≤ ≤ , 4340 420,x≤ ≤  

51000 1000x− ≤ ≤  and 60 0.5236x≤ ≤ . The optimum solution is ( )* 8853.53f x =

967480648 . 

The G18 Function 

( )
( )
( )
( )
( )
( )
( )
( )
( )

1 4 2 3 3 9 5 9 5 8 6 7

2 2
1 3 4

2
2 9

2 2
3 5 6

2 2
4 1 2 9

2 2
5 1 5 2 6

2 2
6 1 7 2 8

2 2
7 3 5 4 6

2 2
8 3 7 4 8

0.5( )

1 0

1 0

1 0

( ) 1 0
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( ) ( ) 1 0

( ) ( ) 1 0

f x x x x x x x x x x x x x

g x x x

g x x
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g x x x x

g x x x x x

g x x x x x
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g x x x x x

g

= − − + − + −

= + − ≤

= − ≤

= + − ≤

= + − − ≤

= − + − − ≤

= − + − − ≤

= − + − − ≤

= − + − − ≤

( )
( )
( )
( )
( )

2 2
9 7 8 9

10 2 3 1 4

11 3 9

12 5 9

13 6 7 5 8

( ) 1 0

0

0

0

0

x x x x

g x x x x x

g x x x

g x x x

g x x x x x

= + − − ≤

= − ≤

= − ≤

= ≤

= − ≤

 [B.19] 

where 10 10 ( 1,...,8)ix i− ≤ ≤ =  and 90 20.x≤ ≤  The optimum solution is 

( )* 0.866025403784439f x = − . 

The G19 Function 

( )

( ) ( )

5 5 5 10
3

(10 ) (10 ) (10 )
1 1 1 1

5 10
2

(10 ) 10
1 1

2

2 3 0 1, ,5

ij i j j j i i
j i j i

j ij i j j ij ij
i i

f x c x x d x b x

g x c x d x e a x j

+ + +
= = = =

+ +
= =

= + −

= − − − + ≤ =

∑∑ ∑ ∑

∑ ∑ L

 [B.20] 
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where [ 40, 2, 0.25, 4, 4, 1, 40, 60, 5.1]b = − − − − − − − −  and the remaining data is 
given in Table B.1. The bounds are 0 10 ( 1,...,15)ix i≤ ≤ = . The optimum solution 

is ( )* 32.6555929502463f x = . 

j 1 2 3 4 5 

ej −15 −27 −36 −18 −12 

c1j 30 −20 −10 32 −10 

c2j −20 39 −6 −31 32 

c3j −10 −6 10 −6 −10 

c4j 32 −31 −6 39 −20 

c5j −10 32 −10 −20 30 

dj 4 8 10 6 2 

a1j −16 2 0 1 0 

a2j 0 −2 0 0.4 2 

a3j −3.5 0 2 0 0 

a4j 0 −2 0 −4 −1 

a5j 0 −9 −2 1 −2.8 

a6j 2 0 −4 0 0 

a7j −1 −1 −1 −1 −1 

a8j −1 −2 −3 −2 −1 

a9j 1 2 3 4 5 

a10j 1 1 1 1 1 

Table B.1. Data set for benchmark function G19 
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The G20 Function 

( )
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( )
0 4, 5, 6
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1.671 0
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i i
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j ij
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i
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i i i
i
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i ij j
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i
i

i i

i ii i

f x a x

x x
g x i

x e

x x
g x i

x e

x c x
h x i

x x
b b

b b

h x x

x x
h x k

d b

=

+

=

+ +

=

+

+ = =

=

= =

=

+
= ≤ =

+

+
= ≤ =

+

= − = =

= − =

= + − =

∑

∑

∑

∑ ∑

∑

∑ ∑

L

 [B.21] 

where ( )( )( )0.7302 530 14.7 40k =  and the data set is detailed in Table B.2. The 
bounds are 0 10 ( 1,..., 24)ix i≤ ≤ = . This solution is a little infeasible and no 
feasible solution is found so far. 

i ai bi ci di ei 

1 0.0693 44.094 123.7 31.244 0.1 

2 0.0577 58.12 31.7 36.12 0.3 

3 0.05 58.12 45.7 34.784 0.4 

3 0.2 137.4 14.7 92.7 0.3 

4 0.26 120.9 84.7 82.7 0.6 

5 0.55 170.9 27.7 91.6 0.3 

7 0.06 62.501 49.7 56.708 – 

8 0.1 84.94 7.1 82.7 – 

9 0.12 133.425 2.1 80.8 – 

10 0.18 82.507 17.7 64.517 – 

11 0.1 46.07 0.85 49.4 – 
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12 0.09 60.097 0.64 49.1 – 

13 0.0693 44.094 – – – 

14 0.0577 58.12 – – – 

15 0.05 58.12 – – – 

16 0.2 137.4 – – – 

17 0.26 120.9 – – – 

18 0.55 170.9 – – – 

19 0.06 62.501 – – – 

20 0.1 84.94 – – – 

21 0.12 133.425 – – – 

22 0.18 82.507 – – – 

23 0.1 46.07 – – – 

24 0.09 60.097 – – – 

Table B.2. Data set for benchmark function G20 

The G21 Function 

( )
( )
( )
( )
( )
( )
( )

1

0.6 0.6
1 1 2 3

1 3 5 6 4 5 4 6 3 4

2 2 4 7 2 4 4 7

3 5 4

4 6 4

5 7 4

35 35 0

300 7500 7500 25 25 0

100 155.365 2500 25 15536.5 0

ln( 900) 0

ln( 300) 0

ln( 2 700) 0

f x x

g x x x x

h x x x x x x x x x x

h x x x x x x x x

h x x x

h x x x

h x x x

=

= − + + ≤

= − + − − + + =

= + + − − − =

= − + − + =

= − + + =

= − + − + =

 [B.22] 

where 10 1000x≤ ≤ , 2 30 , 40x x≤ ≤ , 4100 300x≤ ≤ , 5 66.3 6.7, 5.9 6.4x x≤ ≤ ≤ ≤ , 

and 74.5 6.25x≤ ≤ . The optimum solution is ( )* 193.724510070035.f x =  
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The G22 Function 

( )
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( )
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0
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f x x
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h x x x x

h
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= + − × =
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17 8 10 13 18 13 19

80 0

40 0

0

0

ln( 100) 0

ln( 300) 0

ln( ) 0

ln( 400) 0

ln( ) 0

4

x x x x

h x x x x

h x x x x

h x x x x
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h x x x

h x x x
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h x x x

h x x x x x x x

= − =

= − =

= − + =

= − + =

= − + − =

= − + − + =

= − + =

= − + − + =

= − + =

= − − + − +

( )
( )

18 8 9 11 14 20 14 21

19 9 12 15 15 22

00 0

400 0

4.60517 100 0

h x x x x x x x x

h x x x x x x

=

= − − + − + =

= − − + + =

 [B.23] 

where 10 20000x≤ ≤ , 6
2 3 40 , , 1 10x x x≤ ≤ × , 7

5 6 70 , , 4 10x x x≤ ≤ × , 8100 x≤ ≤
290.99 , 9100 399.99x≤ ≤ , 10100.01 300x≤ ≤ , 11100 400x≤ ≤ , 12100 600x≤ ≤ , 

13 14 150 , , 500x x x≤ ≤ , 160.01 300x≤ ≤ , 170.01 400x≤ ≤  and 18 194.7 , ,x x− ≤

20 21 22, , 6.25x x x ≤ . The optimum solution is ( )* 236.430975504001f x = . 
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The G23 Function 

( )
( )
( )

( )
( )
( )
( )

5 8 1 2 6 7

1 9 3 6 5

2 9 4 7 8

1 1 2 3 4

2 1 2 9 3 4

3 3 6 5

4 4 7 8

9 15 6 16 10( )
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0

0.03 0.01 ( ) 0

0

0

f x x x x x x x

g x x x x x

g x x x x x

h x x x x x

h x x x x x x

h x x x x

h x x x x
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= + − ≤
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= + − + =

= + − =

= + − =

 [B.24] 

where 1 2 60 , , 300x x x≤ ≤ , 3 5 70 , , 100x x x≤ ≤ , 4 80 , 200x x≤ ≤  and 

90.01 0.03x≤ ≤ . The optimum solution is ( )* 400.055099999999584f x = − . 

The G24 Function 

( )
( )
( )

1 2

4 3 2
1 1 1 1 2

4 3 2
2 1 1 1 1 2

2 8 8 2 0

4 32 88 96 36 0

f x x x

g x x x x x

g x x x x x x

= − −

= − + − + − ≤

= − + − + + − ≤

 [B.25] 

where 10 3x≤ ≤  and 20 4x≤ ≤ . The optimum solution is ( )*f x =
5.50801327159536.−  

The C01 Function 

4 2

1 1

2

1

1
1

2
1

cos ( ) 2 cos ( )
( )  

( ) 0.75 0

( ) 0.75 0

[0,10]

nn

i i
i i

n

i

n

i
i

n

i
i

i

z z
f x

iz

g x z

g x z D

x

= =

=

=

=

−
= −

= − ≤

= − ≤

∈

∑ ∏

∑

∏

∑

 [B.26] 

where  i i iz x o= −  for [ ]1,i n∈ . In this function and the functions below, we use io  
to refer to a random offset and M to refer to a random rotation matrix. 
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The C02 Function 

( )
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∑

 [B.27] 

where  i i iz x o= −  and 0.5i iy z= −  for [ ]1,i n∈ . 

The C03 Function 
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where  i i iz x o= −  for [ ]1,i n∈ . 

The C04 Function 
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 [B.29] 

where  i i iz x o= −  for [ ]1,i n∈ . 
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The C05 Function 
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 [B.30] 

where  i i iz x o= −  for [ ]1,i n∈ . 

The C06 Function 
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 [B.31] 

where  i i iz x o= −  for [ ]1,i n∈ . 

The C07 Function 
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− + ≤

∈ −

∑

∑

∑

 [B.32] 

where i i iy x o= −  and 1i i iz x o= + −  for [ ]1,i n∈ . 
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The C08 Function 

1
2 2 2

1
1

2

1

1

 ( ) 100( ) ( 1)

1 ( ) 0.5 exp( 0.1 )

13exp( cos(0.1 ) exp(1) 0

[ 140,140]

n

i i i
i

n

i
i

n

i
i

i

f x z z z

g x y
n

y
n

x

−

+
=

=

=

⎡ ⎤= − + −⎣ ⎦

= − −

− + ≤

∈ −

∑

∑

∑

 [B.33] 

where ( )i i iy x o M= −  and 1i i iz x o= + −  for [ ]1,i n∈ . 

The C09 Function 

1
2 2 2

1
1

1

 ( ) 100( ) ( 1)

( ) ( sin ) 0

[ 500,500]

n

i i i
i
n

i
i

i

f x z z z

h x y y

x

−

+
=

=

⎡ ⎤= − + −⎣ ⎦

= =

∈ −

∑

∑  [B.34] 

where i i iy x o= −  and 1i i iz x o= + −  for [ ]1,i n∈ . 

The C10 Function 

1
2 2 2

1
1

1

( ) 100( ) ( 1)

( ) ( sin ) 0

[ 500,500]

n

i i i
i
n

i i
i

i

f x z z z

h x y y

x

−

+
=

=

⎡ ⎤= − + −⎣ ⎦

= =

∈ −

∑

∑  [B.35] 

where ( )i i iy x o M= −  and 1i i iz x o= + −  for [ ]1,i n∈ . 
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The C11 Function 

( )
1

1
2 2

1

1( ) cos 2

( ) (100( ) ( 1) ) 0

[ 100,100]

n

i i
i

n

i i i
i

i

f x z z
n

h x y y y

x

=

−

+

⎡ ⎤= −⎢ ⎥⎣ ⎦

= − + − =

∈ −

∑

∑  [B.36] 

where ( )i i iy x o M= −  and 1i i iz x o= + −  for [ ]1,i n∈ . 

The C12 Function 

1

2 2
1

1

1

( ) sin

( ) ( ) 0

( ) ( 100cos(0.1 ) 10) 0

[ 1000,1000]

n

i i
i

n

i i
i

n

i i
i

i

f x z z

h x z z

g x z z

x

=

+
=

=

=

= − =

= − + ≤

∈ −

∑

∑

∑

 [B.37] 

where  i i iz x o= −  for [ ]1,i n∈ . 

The C13 Function 

1

2
1

1( ) sin

1( ) 50 0
100

n

i i
i

n

i
i

f x z z
n

g x z
n

=

⎡ ⎤= −⎣ ⎦

= − + ≤

∑

∑
 [B.38] 
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2
1

2

3
1 1

50 1( ) sin( ) 0
50

( ) 75 50 cos( ) 1 0
4000

[ 500,500]

n

i
i

nn
i i

i i

i

g x z
n

z z
g x

i
x

π
=

= =

= ≤

⎡ ⎤
= − − + ≤⎢ ⎥

⎣ ⎦
∈ −

∑

∑ ∏  

where  i i iz x o= −  for [ ]1,i n∈ . 

The C14 Function 

1
2 2 2

1
1

1
1

2
1

3
1

( ) 100( ) ( 1)

( ) ( cos ) 0

( ) ( cos ) 0

( ) ( sin ) 10 0

[ 1000,1000]

n

i i i
i

n

i i
i

n

i i
i

n

i i
i

i

f x z z z

g x y y n

g x y y n

g x y y n

x

−

+
=

=

=

=

⎡ ⎤= − + −⎣ ⎦

= − − ≤

= − ≤

= − ≤

∈ −

∑

∑

∑

∑

 [B.39] 

where i i iy x o= −  and 1i i iz x o= + −  for [ ]1,i n∈ . 

The C15 Function 

1
2 2 2

1
1

1
1

2
1

3
1

( ) 100( ) ( 1)

( ) ( cos ) 0

( ) ( cos ) 0

( ) ( sin ) 10 0

[ 1000,1000]

n

i i i
i

n

i i
i

n

i i
i

n

i i
i

i

f x z z z

g x y y n

g x y y n

g x y y n

x

−

+
=

=

=

=

⎡ ⎤= − + −⎣ ⎦

= − − ≤

= − ≤

= − ≤

∈ −

∑

∑

∑

∑

 [B.40] 

where ( )i i iy x o M= −  and 1i i iz x o= + −  for [ ]1,i n∈ . 
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The C16 Function 

2

1 1

2
1

1

2
1

1
1

2
1

 ( ) cos( ) 1 
4000

( ) [ 100cos( ) 10] 0

( ) 0

( ) ( sin ) 0

( ) ( sin ) 0
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i i
n

i i
i

n

i
i
n

i i
i

n

i i
i

i

z zf x
i

g x z z

g x z

h x z z

h x z z

x

π

= =

=

=

=

=

= − +

= − + ≤

= ≤

= =

= − =

∈ −

∑ ∏

∑

∏

∑

∑

 [B.41] 

where  i i iz x o= −  for [ ]1,i n∈ . 

The C17 Function 

1
2

+1
1

1
1

2
1

1

( ) ( )

( ) 0

( ) 0

( ) sin(4 ) 0

[ 10,10]

n

i i
i

n

i
i
n

i
i

n

i i
i

i

f x z z

g x z

g x z

h x z z

x

−

=

=

=

=

= −

= ≤

= ≤

= =

∈ −

∑

∏

∑

∑

 [B.42] 

where  i i iz x o= −  for [ ]1,i n∈ . 

The C18 Function 

1
2

+1
1

1

( ) ( )  

1( ) ( sin ) 0

n

i i
i

n

i i
i

f x z z

g x z z
n

−

=

=

= −

= − ≤

∑

∑
 [B.43] 
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1

1( ) ( sin ) 0

[ 50,50]

n

i i
i

i

h x z z
n

x
=

= =

∈ −

∑  

where  i i iz x o= −  for [ ]1,i n∈ . 



Appendix C 

Multi-objective Benchmark Functions 

A multi-objective optimization problem (MOP) involves the minimization of 
( )f x  over all x , where ( )f x  is a vector, and x  is the n-dimensional decision 

vector. Vector minimization is undefined in the normal sense of the word, and so we 
define the Pareto set sP  and the Pareto front fP  in Chapter 11. We can then pose an 
MOP as the problem of finding the “best” possible sP  and fP . 

Detailed information about the multi-objective benchmarks and evaluation 
metrics for EA competition at the 2009 IEEE Congress on Evolutionary 
Computation can be found in Zhang et al. [ZHA 08]. The dimension of the 
independent variable in the benchmarks given below is variable, but the CEC 2009 
competition used 30n = . 

U01 Unconstrained Problem 1  

The two objectives to be minimized: 

1

2

2
1 1 1

1

2
2 1 1

2

2 [ sin(6 )]

21 [ sin(6 )]

j
j J

j
j J

jf x x x
J n

jf x x x
J n

ππ

ππ

∈

∈

= + − +

= − + − +

∑

∑
 [C.1] 

where 1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ . 
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The search space is 1[0,1] [ 1,1]n−× − . 

Its Pareto front is 

1 2 10 1, 1f f f≤ ≤ = −  [C.2] 

Its Pareto set is 

1 10 1, sin(6 ), 2,....j
jx x x j n
n
ππ≤ ≤ = + =  [C.3] 

U02 Unconstrained Problem 2 

The two objectives to be minimized: 

1

2

2
1 1

1

2
2 1

2

2

21

j
j J

j
j J

f x y
J

f x y
J

∈

∈

= +

= − +

∑

∑
 [C.4] 

where  

1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,  

and 

2
1 1 1 1 1

2
1 1 1 1 2

4[0.3 cos(24 ) 0.6 ]cos(6 )  

4[0.3 cos(24 ) 0.6 ]sin(6 )  

j

j

j

j jx x x x x j J
n ny
j jx x x x x j J
n n

π ππ π

π ππ π

⎧ − + + + ∈⎪⎪= ⎨
⎪ − + + + ∈
⎪⎩

 [C.5] 

Its search space is 1[0,1] [ 1,1]n−× − . 

Its Pareto front is 

1 2 10 1, 1f f f≤ ≤ = −  [C.6] 
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Its Pareto set is 

1

2
1 1 1 1 1

2
1 1 1 1 2

0 1
4{0.3 cos(24 ) 0.6 }cos(6 )  

4{0.3 cos(24 ) 0.6 }sin(6 )  

j

x
j jx x x x j Jx n n
j jx x x x j J
n n

π ππ π

π ππ π

≤ ≤⎧
⎪
⎪ + + + ∈= ⎨
⎪
⎪ + + + ∈
⎩

 [C.7] 

U03 Unconstrained Problem 3 

The two objectives to be minimized: 

1 1

2 2

2
1 1

1

2
2 1

2

202 (4 2 cos( ) 2)

2021 (4 2 cos( ) 2)

j
j

j J j J

j
j

j J j J

y
f x y

J j
y

f x y
J j

π

π
∈ ∈

∈ ∈

= + − +

= − + − +

∑ ∏

∑ ∏
 [C.8] 

where 1J  and 2J  are the same as those of U01, and 

3( 2)0.5(1.0
2

1 , 2,....
j

n
j jy x x j n

−+
−= − =  [C.9] 

Its search space is [0,1]n . 

Its Pareto front is 

2 1 11 ,0 1f f f= − ≤ ≤  [C.10] 

Its Pareto set is 
3( 2)0.5(1.0

2
1 10 1, , 2,....

j
n

ix x x j n
−+

−≤ ≤ = =  [C.11] 

U04 Unconstrained Problem 4 

The two objectives to be minimized: 

1

2

1 1
1

2
2 1

2

2 ( )

21 ( )

j
j J

j
j J

f x h y
J

f x h y
J

∈

∈

= +

= − +

∑

∑
 [C.12] 
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where 1J  and 2J  are the same as those of U01, and 

1sin (6 ), 2,....j j
jy x x j n
n
ππ= − + =  [C.13] 

and 

2
( )

1 t

t
h t

e
=

+
 [C.14] 

Its search space is 1[0,1] [ 2, 2]n−× − . 

Its Pareto front is 

2
1 2 20 1, 1f f f≤ ≤ = −  [C.15] 

Its Pareto set is 

1 10 1, sin (6 ), 2,....j
jx x x j n
n
ππ≤ ≤ = + =  [C.16] 

U05 Unconstrained Problem 5 

The two objectives to be minimized: 

1

2

1 1 1
1

2 1 1
2

1 2( ) sin(2 ) ( )
2

1 21 ( ) sin(2 ) ( )
2

j
j J

j
j J

f x N x h y
N J

f x N x h y
N J

ε π

ε π

∈

∈

= + + +

= − + + +

∑

∑
 [C.17] 

where 1J  and 2J  are the same as those of U01, N  is an integer ( 10N =  in the CEC 
2009 competition), 0ε >  ( 0.5ε =  in the CEC 2009 competition), and 

1sin (6 ), 2,....j j
jy x x j n
n
ππ= − + =  [C.18] 
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and 

2( ) 2 cos(4 ) 1h t t tπ= − +  [C.19] 

The search space is 1[0,1] [ 1,1]n−× − . 

Its Pareto front has ( )2 + 1N  discrete points: 

( ,1 )
2 2
i i
N N

−  [C.20] 

for 0,1,....2 .i N=  

Its Pareto set also contains ( )2 +1N  discrete points, but they cannot be expressed 
analytically, so we do not show them here. 

U06 Unconstrained Problem 6 

The two objectives to be minimized: 

( )
1 1

2 2

1 1 1

2

1

2 1 1

2

2

1+max{0, 2( )sin(2 )}
2

202 4 2 cos( ) 2

11 +max{0, 2( )sin(2 )}
2

202 (4 2 cos( ) 2)

j
j

j J j J

j
j

j J j J

f x N x
N

y
y

J j

f x N x
N

y
y

J j

ε π

π

ε π

π

∈ ∈

∈ ∈

= +

+ − +

= − +

+ − +

∑ ∏

∑ ∏

 [C.21] 

where N  is an integer ( 2N =  in the CEC 2009 competition), 0ε >  ( 0.1ε =  in the 
CEC 2009 competition) and 

[ ]
1 1

2 202 4 2 cos( ) 2 , 1, 2j
i j

j J j Ji

y
z y i

J j

π

∈ ∈

⎛ ⎞
= − + ∈⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∏  [C.22] 
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where 1J  and 2J  are the same as those of U01, and 

1sin (6 ), 2,....j j
jy x x j n
n
ππ= − + =  [C.23] 

The search space is 1[0,1] [ 1,1]n−× − . 

Its Pareto front consists of one isolated point (0, 1), and the following N  
disconnected parts: 

1 2 1
1

2 1 2[ , ), 1
2 2

N

i

i if f f
N N=

−∈ = −U  [C.24] 

Its Pareto set consists of discrete points, but they cannot be expressed 
analytically, so we do not show them here. 

U07 Unconstrained Problem 7 

The two objectives to be minimized: 

1

2

25
1 1

1

25
2 1

2

2

21

j
j J

j
j J

f x y
J

f x y
J

∈

∈

= +

= − +

∑

∑
 [C.25] 

where 1J  and 2J  are the same as those of U01, and 

1sin (6 ), 2,....j j
jy x x j n
n
ππ= − + =  [C.26] 

The search space is 1[0,1] [ 1,1]n−× − . 

Its Pareto front is 

1 2 10 1, 1f f f≤ ≤ = −  [C.27] 
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Its Pareto set is 

1 10 1, sin (6 ), 2,....j
jx x x j n
n
ππ≤ ≤ = + =  [C.28] 

U08 Unconstrained Problem 8 

The three objectives to be minimized: 

1

2

3

2
1 1 2 2 1

1

2
2 1 2 2 1

2

2
3 1 2 1

3

2cos(0.5 ) cos(0.5 ) ( 2 sin(2 ))

2cos(0.5 ) cos(0.5 ) ( 2 sin(2 ))

2sin(0.5 ) ( 2 sin(2 ))

j
j J

j
j J

j
j J

jf x x x x x
J n

jf x x x x x
J n

jf x x x x
J n

ππ π π

ππ π π

ππ π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.29] 

where 

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and  is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.30] 

The search space is 2 2[0,1] [ 2,2]n−× − . 

Its Pareto front is 

2 2 3
1 2 3 1 2 30 , , 1, 1f f f f f f≤ ≤ + + =  [C.31] 

Its Pareto set is 

1 2 2 10 1, 0 1, 2 sin (2 ), 3,....j
jx x x x x j n
n
ππ≤ ≤ ≤ ≤ = + =  [C.32] 
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U09 Unconstrained Problem 9 

The three objectives to be minimized: 

1

2

3

2
1 1 1 2

2
2 1

1

2
2 1 1 2

2
2 1

2

2
3 2 2 1

3

0.5[max{0, (1 )(1 4(2 1) )} 2 ]
2 ( 2 sin(2 ))

0.5[max{0, (1 )(1 4(2 1) )} 2 ]
2 ( 2 sin(2 ))

21 ( 2 sin(2 ))

j
j J

j
j J

j
j J

f x x x
jx x x

J n

f x x x
jx x x

J n
jf x x x x

J n

ε
ππ

ε
ππ

ππ

∈

∈

∈

= + − − +

+ − +

= + − − +

+ − +

= − + − +

∑

∑

∑

 [C.33] 

where 

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and  is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.34] 

and 0.1ε = , which can take any other positive values. 

The search space is 2[0,1] [ 2,2]n−× − . 

The Pareto front has two parts. The first part is 

3

1 3

2 1 3

0 1
10 (1 )
4

1

f

f f

f f f

≤ ≤

≤ ≤ −

= − −

 [C.35] 

and the second one is 

3

3 1

2 1 3

0 1
3 (1 ) 1
4

1

f

f f

f f f

≤ ≤

− ≤ ≤

= − −

 [C.36] 

 



Appendix C     297 

The Pareto set is 

1 2

2 1

[0, 0.25] [0.75,1], 0 1,

2 sin (2 ), 3,....j

x x
jx x x j n
n
ππ

∈ ≤ ≤

= + =

U

 [C.37] 

U10 Unconstrained Problem 10 

The three objectives to be minimized: 

1

2

3

2
1 1 2

1

2
2 1 2

2

2
3 1

3

2cos(0.5 )cos(0.5 ) [4 cos(8 ) 1]

2cos(0.5 )sin(0.5 ) [4 cos(8 ) 1]

2sin(0.5 ) [4 cos(8 ) 1]

j j
j J

j j
j J

j j
j J

f x x y y
J

f x x y y
J

f x y y
J

π π π

π π π

π π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.38] 

where 

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and  is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.39] 

and 

2 12 sin (2 ), 3,....j j
jy x x x j n
n
ππ= − + =  [C.40] 

The search space is 2 2[0,1] [ 2,2]n−× − . 

Its Pareto front is 

2 2 3
1 2 3 1 2 30 , , 1, 1f f f f f f≤ ≤ + + =  [C.41] 

Its Pareto set is 

1 2 2 10 1, 0 1, 2 sin (2 ), 3,....j
jx x x x x j n
n
ππ≤ ≤ ≤ ≤ = + =  [C.42] 
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C01 Constrained Problem 1 

The two objectives to be minimized: 

1

2

3( 2)0.5(1.0 ) 22
1 1 1

1

3( 2)0.5(1.0 ) 22
2 1 1

2

2 ( )

21 ( )

j
n

j
j J

j
n

j
j J

f x x x
J

f x x x
J

−+
−

∈

−+
−

∈

= + + −

= − + −

∑

∑
 [C.43] 

where 1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ . 

The constraint is 

1 2 1 2sin[ ( 1)] 1 0f f a N f fπ+ − − + − ≥  [C.44] 

where N  is an integer and 
1

2
a

N
≥ . 

The search space is [0,1]n . 

The Pareto front in the objective space consists of 2 +1N  points: 

( / 2 ,1 / 2 ), 0,1,...., 2i N i N i N− =  [C.45] 

10, 1 and 10N a n= = =  in the CEC 2009 competition. 

C02 Constrained Problem 2 

The two objectives to be minimized: 

1

2

2
1 1 1

1

2
2 1 1

2

2 ( sin(6 ))

21 ( cos(6 ))

j
j J

j
j J

jf x x x
J n

jf x x x
J n

ππ

ππ

∈

∈

= + − +

= − + − +

∑

∑
 [C.46] 

where  

1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ . 
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The search space is 1[0,1] [ 1,1]n−× − . 

The constraint is 

4
0

1 t

t
e

≥
+

 [C.47] 

where 

2 1 1 2+ sin[ ( 1)] 1t f f a N f fπ= − − + −  [C.48] 

Its Pareto front consists of an isolated Pareto optimal solution (0, 1), and N 
disconnected parts, the ith part is 

2 2
2 1 1

2 1 21 , ( ) ( ) , 1,....,
2 2
i if f f i N
N N
−= − ≤ ≤ =  [C.49] 

2, 1 and 10N a n= = =  in the CEC 2009 competition. 

C03 Constrained Problem 3 

The two objectives to be minimized: 

1 1

2 2

2
1 1

1

2 2
2 1

2

202 (4 2 cos( ) 2)

2021 (4 2 cos( ) 2)

j
j

j J j J

j
j

j J j J

y
f x y

J j
y

f x y
J j

π

π
∈ ∈

∈ ∈

= + − +

= − + − +

∑ ∏

∑ ∏
 [C.50] 

where  

1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,  

and 

1sin (6 ), 2,....j j
jy x x j n
n
ππ= − + =  [C.51] 
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The constraint is 

2 2
2 1 1 2sin[ ( 1)] 1 0f f a N f fπ+ − − + − ≥  [C.52] 

The search space is 1[0,1] [ 2, 2]n−× − . 

Its Pareto front consists of an isolated Pareto optimal solution (0, 1), and N 
disconnected parts, the ith part is 

2
2 1 1

2 1 21 , , 1,....,
2 2
i if f f i N
N N
−= − ≤ ≤ =  [C.53] 

2, 1 and 10N a n= = =  in the CEC 2009 competition. 

C04 Constrained Problem 4 

The two objectives to be minimized: 

1

2

1 1

2 1

( )

1 ( )

j j
j J

j j
j J

f x h y

f x h y
∈

∈

= +

= − +

∑

∑
 [C.54] 

where  

1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,  

and 

1sin (6 ), 2,....j j
jy x x j n
n
ππ= − + =  [C.55] 

The search space is 1[0,1] [ 2, 2]n−× − . 

2
2

3 2if (1 )( ) 2 2
0.125 ( 1) otherwise

t th t
t

⎧
< −⎪= ⎨

⎪ + −⎩

 [C.56] 
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and 

2( )jh t t=  [C.57] 

For 3, 4,....,j n= . 

The constraint is 

4
0

1 t

t
e

≥
+

 [C.58] 

where 

2 1 1
2sin (6 ) 0.5 0.25.t x x x
n
ππ= − + − +  [C.59] 

The Pareto front is 

1 1

2 1 1

1 1

1 if 0 0.5
30.5 if 0.5 0.75
4

1 0.125 if 0.75 1

f f

f f f

f f

− ≤ ≤⎧
⎪⎪= − + ≤ ≤⎨
⎪

− + ≤ ≤⎪⎩

 [C.60] 

10n =  in the CEC 2009 competition. 

C05 Constrained Problem 5 

The two objectives to be minimized: 

1

2

1 1

2 1

( )

1 ( )

j j
j J

j j
j J

f x h y

f x h y
∈

∈

= +

= − +

∑

∑
 [C.61] 

where  

1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,  
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and 

1 1 1

1 1 2

0.8 cos (6 ), if 

0.8 sin (6 ), if 

j

j

j

jx x x j J
ny

jx x x j J
n

ππ

ππ

⎧ − + ∈⎪⎪= ⎨
⎪ − + ∈
⎪⎩

 [C.62] 

2
2

3 2if (1 )( ) 2 2
0.125 ( 1) otherwise

t th t
t

⎧
< −⎪= ⎨

⎪ + −⎩

 [C.63] 

and 

2( ) 2 cos(4 ) 1jh t t tπ= − +  [C.64] 

for 3, 4,....,j n= . 

The search space is 1[0,1] [ 2, 2]n−× −  

The constraint is 

2 1 1 1
20.8 sin (6 ) 0.5 0.25 0x x x x
n
ππ− + − + ≥  [C.65] 

The Pareto front is 

1 1

2 1 1

1 1

1 if 0 0.5
30.5 if 0.5 0.75
4

1 0.125 if 0.75 1

f f

f f f

f f

− ≤ ≤⎧
⎪⎪= − + ≤ ≤⎨
⎪

− + ≤ ≤⎪⎩

 [C.66] 

10n =  in the CEC 2009 competition. 

C06 Constrained Problem 6 

The two objectives to be minimized: 

2
1

2

2
1 1

2
2 1(1 )

j
j J

j
j J

f x y

f x y
∈

∈

= +

= − +

∑

∑
 [C.67] 
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where  

1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,  

and 

1 1 1

1 1 2

0.8 cos (6 ), if 

0.8 sin (6 ), if 

j

j

j

jx x x j J
ny

jx x x j J
n

ππ

ππ

⎧ − + ∈⎪⎪= ⎨
⎪ − + ∈
⎪⎩

 [C.68] 

The search space is 1[0,1] [ 2, 2]n−× − . 

The constraint is 

2 1 1 1

2 2
1 1 1

20.8 sin (6 ) (0.5(1 )

(1 ) ) 0.5(1 ) (1 ) 0

x x x sign x
n

x x x

ππ− + − −

− − − − − ≥
 [C.69] 

and 

4 1 1 1

1 1 1

20.8 sin (6 ) (0.25(1 )

0.5(1 )) 0.25(1 ) 0.5(1 ) 0

x x x sign x
n

x x x

ππ− + − −

− − − − − ≥
 [C.70] 

The Pareto front is 

2
1 1

2 1 1

1 1

(1 ) if 0 0.5
0.5(1 ) if 0.5 0.75

0.25 (1 ) if 0.75 1

f f
f f f

f f

⎧ − ≤ ≤
⎪

= − ≤ ≤⎨
⎪ − ≤ ≤⎩

 [C.71] 

10n =  in the CEC 2009 competition. 
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C07 Constrained Problem 7 

The two objectives to be minimized: 

1

2

1 1

2
2 1

( )

(1 ) ( )

j j
j J

j j
j J

f x h y

f x h y
∈

∈

= +

= − +

∑

∑
 [C.72] 

where  

1 2{  is odd and 2 } and {  is even and  2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,  

and 

1 1

1 2

cos (6 ), if 

sin (6 ), if 

j

j

j

jx x j J
ny

jx x j J
n

ππ

ππ

⎧ − + ∈⎪⎪= ⎨
⎪ − + ∈
⎪⎩

 [C.73] 

2
2 4( ) ( )h t h t t= =  

and 

2( ) 2 cos(4 ) 1jh t t tπ= − +  [C.74] 

for 3, 4,....,j n= . 

The search space is 1[0,1] [ 2, 2]n−× − . 

The constraint is 

2 1 1

2 2
1 1 1

2sin (6 ) (0.5(1 )

(1 ) ) 0.5(1 ) (1 ) 0

x x sign x
n

x x x

ππ− + − −

− − − − − ≥
 [C.75] 

and 

4 1 1

1 1 1

4sin (6 ) (0.25 1

0.5(1 )) 0.25 1 0.5(1 ) 0

x x sign x
n

x x x

ππ− + − −

− − − − − ≥
 [C.76] 
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The Pareto front is 

2
1 1

2 1 1

1 1

(1 ) if 0 0.5
0.5(1 ) if 0.5 0.75

0.25 (1 ) if 0.75 1

f f
f f f

f f

⎧ − ≤ ≤
⎪

= − ≤ ≤⎨
⎪ − ≤ ≤⎩

 [C.77] 

10n =  in the CEC 2009 competition. 

C08 Constrained Problem 8 

The three objectives to be minimized: 

1

2

3

2
1 1 2 2 1

1

2
2 1 2 2 1

2

2
3 1 2 1

3

2cos(0.5 )cos(0.5 ) ( 2 sin(2 ))

2cos(0.5 )sin(0.5 ) ( 2 sin(2 ))

2sin(0.5 ) ( 2 sin(2 ))

j
j J

j
j J

j
j J

jf x x x x x
J n

jf x x x x x
J n

jf x x x x
J n

ππ π π

ππ π π

ππ π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.78] 

where 

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and  is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.79] 

The search space is 2 2[0,1] [ 4,4]n−× − . 

The constraint is 

2 2 2 2
1 2 1 2

2 2
3 3

sin[ ( 1)] 1 0
1 1
f f f f

a N
f f

π+ −
− + − ≥

− −
 [C.80] 

Its Pareto front will have 2 1N +  disconnected parts: 

1
2 2

1 3

1
2 2 2

2 1 3

3

[ (1 )]
2

[1 ]
0 1

if f
N

f f f
f

= −

= − −
≤ ≤

 [C.81] 
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for 0,1,...., 2j N= . 

2, 4 and 10N a n= = =  in the CEC 2009 competition. 

C09 Constrained Problem 9 

The three objectives to be minimized: 

1

2

3

2
1 1 2 2 1

1

2
2 1 2 2 1

2

2
3 1 2 1

3

2cos(0.5 )cos(0.5 ) ( 2 sin(2 ))

2cos(0.5 )sin(0.5 ) ( 2 sin(2 ))

2sin(0.5 ) ( 2 sin(2 ))

j
j J

j
j J

j
j J

jf x x x x x
J n

jf x x x x x
J n

jf x x x x
J n

ππ π π

ππ π π

ππ π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.82] 

where 

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and  is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.83] 

The search space is 2 2[0,1] [ 2,2]n−× − . 

The constraint is 

2 2 2 2
1 2 1 2

2 2
3 3

sin[ ( 1)] 1 0
1 1
f f f f

a N
f f

π+ −
− + − ≥

− −
 [C.84] 

Its Pareto front consists of a curve: 

1

2
1

2 2
3 2

0
0 1

(1 )

f
f

f f

=
≤ ≤

= −

 [C.85] 
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and N  disconnected nonlinear surfaces, the ith one is 

3
1 1

2 22 2
3 1 3

1
2 2 2

2 1 3

0 1

2 1 2{ (1 )} { (1 )}
2 2

[1 ]

f

i if f f
N N

f f f

≤ ≤

− − ≤ ≤ −

= − −

 [C.86] 

2, 3 and 10N a n= = =  in the CEC 2009 competition. 

C10 Constrained Problem 10 

The three objectives to be minimized: 

1

2

3

2
1 1 2

1

2
2 1 2

2

2
3 1

3

2cos(0.5 ) cos(0.5 ) [4 cos(8 ) 1]

2cos(0.5 )sin(0.5 ) [4 cos(8 ) 1]

2sin(0.5 ) [4 cos(8 ) 1]

j j
j J

j j
j J

j j
j J

f x x y y
J

f x x y y
J

f x y y
J

π π π

π π π

π π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.87] 

where 

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and  is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.88] 

and 

1sin (6 ), 2,....j j
jy x x j n
n
ππ= − + =  [C.89] 

for 3,....,j n= . 

The search space is 2 2[0,1] [ 2,2]n−× − . 
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The constraint is 

2 2 2 2
1 2 1 2

2 2
3 3

sin[ ( 1)] 1 0
1 1
f f f f

a N
f f

π+ −
− + − ≥

− −
 [C.90] 

Its Pareto front consists of a curve: 

1

2
1

2 2
3 2

0
0 1

(1 )

f
f

f f

=
≤ ≤

= −

 [C.91] 

and N  disconnected nonlinear surfaces, the ith one is 

3
1 1

2 22 2
3 1 3

1
2 2 2

2 1 3

0 1

2 1 2{ (1 )} { (1 )}
2 2

[(1 )]

f

i if f f
N N

f f f

≤ ≤

− − ≤ ≤ −

= − −

 [C.92] 

2, 1 and 10N a n= = =  in the CEC 2009 competition. 
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