
Evolutionary Computation with Biogeography-based

Optimization

Metaheuristics Set
coordinated by

Nicolas Monmarché and Patrick Siarry

Volume 8

Evolutionary Computation
with Biogeography-based

Optimization

Haiping Ma
Dan Simon

First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2017
The rights of Haiping Ma and Dan Simon to be identified as the authors of this work have been asserted
by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2016954823

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-807-9

Contents

Chapter 1. The Science of Biogeography . 1

1.1. Introduction . 1
1.2. Island biogeography . 3
1.3. Influence factors for biogeography . 6

Chapter 2. Biogeography and Biological Optimization 11

2.1. A mathematical model of biogeography . 11
2.2. Biogeography as an optimization process . 16
2.3. Biological optimization . 19

2.3.1. Genetic algorithms . 19
2.3.2. Evolution strategies . 20
2.3.3. Particle swarm optimization . 21
2.3.4. Artificial bee colony algorithm . 22

2.4. Conclusion . 23

Chapter 3. A Basic BBO Algorithm . 25

3.1. BBO definitions and algorithm . 25
3.1.1. Migration . 26
3.1.2. Mutation . 27
3.1.3. BBO implementation . 27

3.2. Differences between BBO and other
optimization algorithms . 35

3.2.1. BBO and genetic algorithms . 35
3.2.2. BBO and other algorithms . 36

3.3. Simulations . 37
3.4. Conclusion . 44

vi Evolutionary Computation with Biogeography-based Optimization

Chapter 4. BBO Extensions . 45

4.1. Migration curves . 45
4.2. Blended migration . 49
4.3. Other approaches to BBO . 51
4.4. Applications . 56
4.5. Conclusion . 59

Chapter 5. BBO as a Markov Process . 61

5.1. Markov definitions and notations . 61
5.2. Markov model of BBO . 72
5.3. BBO convergence . 79
5.4. Markov models of BBO extensions . 90
5.5. Conclusions . 99

Chapter 6. Dynamic System Models of BBO . 103

6.1. Basic notation . 103
6.2. Dynamic system models of BBO . 105
6.3. Applications to benchmark problems . 119
6.4. Conclusions . 122

Chapter 7. Statistical Mechanics Approximations of BBO 123

7.1. Preliminary foundation . 123
7.2. Statistical mechanics model of BBO . 128

7.2.1. Migration . 128
7.2.2. Mutation . 134

7.3. Further discussion . 141
7.3.1. Finite population effects . 141
7.3.2. Separable fitness functions . 142

7.4. Conclusions . 143

Chapter 8. BBO for Combinatorial Optimization 145

8.1. Traveling salesman problem . 147
8.2. BBO for the TSP . 148

8.2.1. Population initialization . 148
8.2.2. Migration in the TSP . 150
8.2.3. Mutation in the TSP . 157
8.2.4. Implementation framework . 159

8.3. Graph coloring . 163
8.4. Knapsack problem . 165
8.5. Conclusion . 167

Contents vii

Chapter 9. Constrained BBO . 169

9.1. Constrained optimization . 170
9.2. Constraint-handling methods . 172

9.2.1. Static penalty methods . 172
9.2.2. Superiority of feasible points . 173
9.2.3. The eclectic evolutionary algorithm . 174
9.2.4. Dynamic penalty methods . 174
9.2.5. Adaptive penalty methods . 176
9.2.6. The niched-penalty approach . 177
9.2.7. Stochastic ranking . 178
9.2.8. ε-level comparisons . 178

9.3. BBO for constrained optimization . 179
9.4. Conclusion . 185

Chapter 10. BBO in Noisy Environments . 187

10.1. Noisy fitness functions . 188
10.2. Influence of noise on BBO . 190
10.3. BBO with re-sampling . 193
10.4. The Kalman BBO . 196
10.5. Experimental results . 199
10.6. Conclusion . 201

Chapter 11. Multi-objective BBO . 203

11.1. Multi-objective optimization problems . 204
11.2. Multi-objective BBO . 211

11.2.1. Vector evaluated BBO . 211
11.2.2. Non-dominated sorting BBO . 213
11.2.3. Niched Pareto BBO . 216
11.2.4. Strength Pareto BBO . 218

11.3. Real-world applications . 223
11.3.1. Warehouse scheduling model . 223
11.3.2. Optimization of warehouse scheduling 229

11.4. Conclusion . 231

Chapter 12. Hybrid BBO Algorithms . 233

12.1. Opposition-based BBO . 234
12.1.1. Opposition definitions and concepts . 234
12.1.2. Oppositional BBO . 236
12.1.3. Experimental results . 238

viii Evolutionary Computation with Biogeography-based Optimization

12.2. BBO with local search . 240
12.2.1. Local search methods . 240
12.2.2. Simulation results . 245

12.3. BBO with other EAs . 247
12.3.1. Iteration-level hybridization . 247
12.3.2. Algorithm-level hybridization . 250
12.3.3. Experimental results . 254

12.4. Conclusion . 256

Appendices . 259

Appendix A. Unconstrained Benchmark Functions 261

Appendix B. Constrained Benchmark Functions 265

Appendix C. Multi-objective Benchmark Functions 289

Bibliography . 309

Index . 325

1

The Science of Biogeography

Biogeography is the science studying the distribution of species and ecosystems
in geographic space and through time. It is usually considered a subset of physical
geography because it often is related to the study of the physical environment, and
how it affects species and shapes their distribution across space. It is concerned not
only with habitation patterns, but also with the factors responsible for variations in
distribution. It aims to analyze where species live, and in what abundance.
Biogeography has strong ties to biology, ecology, evolution, climatology and soil
science.

Overview of the chapter

This chapter provides the basic notations and ideas that form the foundation of
biogeography-based optimization (BBO). This chapter first gives an introduction to
natural biogeography in section 1.1, and then focuses on island biogeography in
section 1.2. Some interesting factors that influence biogeography and that inspire
BBO algorithmic features are described in section 1.3.

1.1. Introduction

The science of biogeography can be traced to the work of 19th Century
naturalists, most notably Alfred Wallace [WAL 06] and Charles Darwin [KEY 01]
(see Figure 1.1). Wallace is usually considered the father of biogeography, although
Darwin is much better known because of his preeminence in publishing the theory
of evolution. Science views the distribution of species in the world as a result of
continuous evolution. Some species evolve locally.

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

2 Evolutionary Computation with Biogeography-based Optimization

Figure 1.1. Photographs of Charles
Darwin (left) and Alfred Wallace (right)

The science of biogeography answers many varied questions. As writer David
Quammen put it [QUA 96], “...biogeography does more than ask Which species? and
Where. It also asks Why? and, sometimes more crucially, Why not?” Biogeography
developed in an attempt to answer some of these questions, such as why there are so
many kinds of animals and plants in the world. It seeks to explain why some of these
animals and plants are rare while others are common. It seeks to explain why some
animals and plants are widely dispersed while others are confined to a limited area. It
seeks to explain why some parts of this world are richer in species than others. The
study of biogeography helps us to answer these types of questions.

Modern biogeography is the study of the geographical distribution of animals
and plants while taking into account species counts, present and past, the habitats in
which they are found, and ecological relationships. By observing the geographic
distribution of species, we can see that the following factors are associated with
biogeography: air pressure, physiography, ocean currents, latitude, temperature,
amount of sun light, precipitation and wind. Biogeography combines information
and ideas from many fields, ranging from the physiological and ecological
constraints on species dispersal, to geological and climatological phenomena that
operate at global spatial scales and evolutionary time frames. The short-term
interactions within a habitat and between species comprise the ecological application
of biogeography. Historical biogeography deals with the long-term, evolutionary
periods of time, and broader classifications of species.

There are two important theories in biogeography that have been developed to
address the distribution of biological species in the world: the distance-decay theory

[NEK 99
asserts th
locations
biogeogr
biologica
that spec
tiny isola
theories
distributi
to under
species d

Beca
other, an
focus ins
solve op

1.2. Isla

In th
mathema
The Theo
distribut
extinctio
biogeogr
photogra

9] and the isla
hat the correl
s will continu
raphy asserts
al species than
cies on closely
ated islands. G
were develop
ion or even th
rstand the fac
distribution, an

ause of the foc
nd we do not f
stead on using
timization pro

and biogeog

he early 1960
atical models
ory of Island
ion of species

on and migr
raphy has bec
aphs of Robert

M

and biogeogra
lation and sim
e decreasing a
that those isl

n islands that
y spaced island
Geographic inf
ped in order t
he movement o
ctors affecting
nd to solve eco

cus of this boo
further discus
g island bioge
oblems: bioge

graphy

s, Robert Ma
of island biog
Biogeography

s between neig
ration of spe
come a major
t MacArthur a

Figure 1.2
MacArthur (lef

aphy theory [M
milarity betwe
as the distanc
lands that are
are far apart.
ds are rarely th
formation syst
to explain the
of humans. Th
g species distr
ological proble

ok, we do not
s the essence
eography to i

eography-base

acArthur and
geography, cu
y [MAC 67].
ghboring islan
ecies. Since
r subset of bio
and Edward W

2. Photograph
ft) and Edward

The Scie

MAC 67]. The
en species in

ce between the
e closely spac
It is this seco
hreatened by e
tems scientists
 distribution o

hat is, the purp
ribution, to p
ems that have

emphasize on
of the science

inspire an evo
ed optimization

Edward Wils
ulminating in t

They were m
nds, and math

MacArthur
ology [HAN

Wilson.

s of Robert
d Wilson (righ

ence of Biogeog

e distance-dec
any two geo

e two increase
ced will supp
nd theory that
extinction, com
s say that the a
of species, bu

pose of these t
predict future
a spatial aspec

ne theory more
e of biogeogra
olutionary alg
n (BBO).

son began wo
their classic 1

mostly interest
ematical mod
and Wilson
97]. Figure 1

t)

graphy 3

cay theory
ographical
es. Island
port more
t explains
mpared to
above two
ut not the
theories is
trends in

ct.

e than the
aphy. We
orithm to

orking on
967 book
ted in the

dels of the
n’s work,
1.2 shows

4 Evolutionary Computation with Biogeography-based Optimization

Biogeography is most keenly focused on islands. Islands are often manageable
areas of study because they are more condensed than larger ecosystems on the
mainland. Islands are also attractive locations for study because they allow scientists
to look at habitats that new invasive species have only recently colonized, and to
observe how they disperse throughout the island and change it. Scientists can then
apply their understanding to similar but more complex mainland habitats. Islands are
very diverse in their biomes, ranging from tropical to arctic climates. This diversity
allows for a wide range of species studies in different parts of the world.

Mathematical models of island biogeography describe speciation (the evolution of
new species), the migration of species between islands, and the extinction of species.
The term island here is descriptive rather than literal. An island is considered any
habitat that is geographically isolated from other habitats. In the classic sense of the
term, an island is isolated from other habitats by water. But islands can also be habitats
that are isolated by stretches of desert, rivers, mountain ranges, predators, man-made
artifacts or other obstacles. For example, an island could consist of a riverbank that
supports herbs, or a pond that supports insects [HAN 97].

Geographical areas that are friendly to life are said to have a high habitat
suitability index (HSI) [WES 87]. Features that correlate with HSI include factors
such as rainfall, vegetative diversity, topographic diversity, land area and air
temperature. These features that characterize habitability are called suitability index
variables (SIVs). In terms of habitability, SIVs are the independent variables of the
habitat, and HSI is the dependent variable.

Islands with a high HSI tend to support many species, and islands with a low HSI
can support only a few species. Islands with a high HSI have many species that
emigrate to nearby habitats, simply by virtue of the large number of species that they
host. Emigration from an island with a high HSI does not occur because species want
to leave their home; after all, the home island is an attractive place to live. The reason
that emigration occurs from these islands is due to the accumulation of random effects
on a large number of species with large populations. Emigration occurs as animals ride
flotsam, swim, fly or ride the wind to neighboring islands. When a species emigrates
from an island, the species does not completely disappear from the island; only a few
representatives emigrate, so an emigrating species remains present on its home island
while at the same time migrating to a neighboring island.

Islands with a high HSI not only have a high emigration rate, but they have a low
immigration rate because they already support many species. The species that arrive
at such islands will tend not to survive, even though the HSI is high, because there is
too much competition for resources.

Islands with a low HSI have a high immigration rate because of their low
populations. Again, this is not because species want to immigrate to such islands;
after all, these islands are undesirable places to live. The reason that immigration

The Science of Biogeography 5

occurs on these islands is because there is a lot of geographical room for additional
species. Whether or not the immigrating species can survive in its new home, and
for how long, is another question. However, species diversity is correlated with HSI,
so more species arriving at a low HSI island will result in a greater chance that the
island’s HSI will increase [WES 87].

Figure 1.3 depicts species migration between islands, and Figure 1.4 illustrates a
model of species abundance on a single island [MAC 67]. The immigration and
emigration rates are functions of the number of species on the island. We have
depicted the migration curves as straight lines, but in general they might be more
complicated curves, as we will discuss later.

Figure 1.3. Species migrate between islands via flotsam, wind, flying,
swimming and other methods. For a color version of this figure, see

www.iste.co.uk/ma-simon/evolutionary.zip

μ

λ

Figure 1.4. Species migration model of an island, based
on [MAC 67], where S0 is the equilibrium species count

6 Evolutionary Computation with Biogeography-based Optimization

Consider the immigration curve. The immigration rate λ decreases
monotonically as the number of species on the island increases, since as S increases,
there is less room on the island for new species. The maximum possible immigration
rate to the habitat is I, which occurs when there are zero species on the island. As the
number of species increases, the island becomes more crowded, fewer species are
able to survive immigration, and the immigration rate decreases. The largest
possible number of species that the habitat can support is Smax, at which point the
immigration rate is zero.

Now consider the emigration curve. The emigration rate μ should be, from
reasoning parallel to that above, a monotonically increasing function of S. If area is
proportional to population sizes, and emigrations are the chance result of
demographic stochasticity, then as the number of species increases, the number of
species that are subject to chance emigrations increases in proportion, and the
relationship is linear. If there are no species on the island, then the emigration rate is
zero. As the number of species on the island increases, it becomes more crowded,
more species leave the island, and the emigration rate increases. The maximum
emigration rate is E, which occurs when the island contains the largest number of
species that it can support.

Finally, consider the equilibrium species count. The migration model predicts
that there is a value S0 at which the immigration rate and the emigration rate balance;
there is a dynamic equilibrium. At that point, species on the island immigrate at a
rate equal to disappearances due to emigration. This is a stable equilibrium since, if
the number of species on the island is perturbed, the imbalance between the
immigration and emigration rates at the new S would tend to return island diversity
toward its equilibrium value. Below S0, additional species accumulate and the
immigration rate is larger than the emigration rate. Above S0, the reverse is true,
emigrations exceed immigrations, and the number of species declines to S0.

1.3. Influence factors for biogeography

We have discussed the basic theory of island biogeography, which is the study of
the geographical distribution of biological species on islands. There are many
interesting influence factors closely associated with biogeography, including the
following.

Nonlinear migration: Classic island biogeography theory assumes that the
immigration and emigration rates are linear with respect to the number of species, as
shown in Figure 1.4. However, there is no reason to suppose that the migration
curves are linear. Empirical data suggest that biological migration rates are probably
nonlinear functions of the number of species [MAC 67]. Pioneer species are likely to

The Science of Biogeography 7

rapidly colonize an island that has a higher immigration rate, and later less robust
species follow. They will not only immigrate later, but the rate at which they
immigrate will be lower because they have less intrinsic ability for colonization. The
rate at which species accumulate on islands is therefore initially rapid and then
slower. Also, among poor species, the successful immigration of any one species has
less effect on the immigration rates of other species than does the earlier
immigration of pioneer species. Therefore, this part of the immigration curve should
be flatter; that is, the rate of immigration should be less affected by the arrival of
poor species. The result is an immigration rate curve which is nonlinear. For the
purpose of simplicity in evaluating the basic implications of the migration model,
the emigration curve can be viewed as a mirror image of the immigration curve, and
it would also be nonlinear in this case.

Habitat similarity: In island biogeography, immigration rate is correlated with
island isolation [ADL 94]. Islands that are isolated are relatively well buffered from
immigration. This intuitive idea is called the distance effect [WU 95]. It also stands
to reason that emigration rates are correlated with island isolation. The
environmental uniqueness of an island is related to island isolation because
environmental conditions vary predictably with geographical distance [LOM 00a].
Similar islands could be viewed as clustered together, and belong to the same
archipelago. However, dissimilar islands are not part of an archipelago. This tends to
increase the immigration and emigration rates between similar islands, and decrease
those rates between dissimilar islands. On the other hand, islands in different
archipelagos can interact with each other, just as species can migrate across
archipelagos. However, migration across archipelagos is less likely than migration
within archipelagos. A quantitative way to determine the effect of island isolation on
migration rates is given in Hanski [HAN 99]. Figure 1.5 shows two well-known
archipelagos: the Fernando de Noronha archipelago in Brazil and the Ksamil
archipelago in Albania.

Initial immigration: Classic island biogeography theory indicates that the
immigration rate decreases as the number of species increase, as shown in
Figure 1.4, which corresponds to a monotonic decrease in immigration rate with the
number of species. However, recent advances in biogeography indicate that a
monotonic immigration rate curve may be overly simplistic. For some pioneer
species, an initial increase in species count results in an initial increase in the
immigration rate [WU 95]. This is because these early immigrants modify the island
to make it more hospitable to other species. That is, the positive effect of increased
diversity due to initial immigration overcomes the negative effect of increased
population size, which corresponds to an initial increase in immigration rate as
species count increases. This phenomenon can be viewed as a temporary positive
feedback mechanism in biogeography. That is, an island with a low HSI accepts

8 Evolutionary Computation with Biogeography-based Optimization

species from other islands, increasing its HSI, which subsequently increases its
likelihood of accepting even more species from other islands.

Figure 1.5. The Fernando de Noronha archipelago
in Brazil (left) and the Ksamil archipelago in Albania (right)

Species mobility: Classic island biogeography theory assumes that all species are
equal in their migratory ability. In reality, some species are more mobile than others,
and some species are better dispersers than others. For example, insect and bird
species are generally more mobile than mammals and therefore are more likely to
migrate. Figure 1.6 shows that bird species have fast migratory ability and elephant
species have slow migratory ability. Efforts have been made in biogeography to
incorporate species-specific characteristics into island biogeography theory [LOM
00b]. The species migration model in Figure 1.4 assumes that all species are equally
mobile. But the species migration model would be more accurate if species mobility
were considered. That is, each individual species would have its own migration
curves for each individual island.

Population size: In island biogeography, an island not only has a certain number
of species, but each species also has a population size. Those species that are well
adapted to their environment tend to increase in population, while those that are not
well adapted have a lower equilibrium population. That is, the correlation between a
particular species and an island’s HSI could be used to determine the equilibrium
population of each species. Species with a high HSI contribution would have high
equilibrium populations, and those with a low HSI contribution would have
low equilibrium populations. We could assume that each species approaches its
equilibrium population exponentially [CAS 89]. This approach would result in more
flexibility for the species migration model. In addition, those species with a large
population would have a greater likelihood of immigrating to neighboring islands.
This discussion of population size is similar to species mobility as discussed above.

The Science of Biogeography 9

Figure 1.6. Bird species with fast migratory ability (left)
and elephant species with slow migratory ability (right)

Species age: In biology, species age influences extinction rate and mobility
[GRO 05]. Just as individual mortality is high at a young age, low at middle age and
high again at old age, species mortality follows the same pattern. Young species
tend to be unstable and susceptible to extinction. Middle-aged species are well
established but still mobile. Old species are stagnant and less likely to adapt. That is,
species of different ages have different emigration and immigration rates. Species
that have been recently introduced to an island have a higher extinction rate and a
lower emigration rate, middle-aged species have a lower extinction rate and a higher
emigration rate, and older species revert to the pattern of high extinction rate and
low emigration rate.

Predator/prey relationships: In biology, certain species have adversarial
relationships. These relationships do not necessarily harm the prey species. For
instance, prey may respond to predators by reducing the exploitation of their
resources, thus benefiting themselves in the long term [HAN 97]. However, the
more common scenario is one in which predators reduce prey to such an extent that
one or both populations face extinction. Predator/prey relationships can be inferred
from a population by examining islands and noting which pairs of species have a
low probability of coexisting. Those species can then be modeled as a predator/prey
pair. Combining this information with the HSI contribution of each species would
result in defining the predator species as the adversary that is positively correlated
with island HSI, and the prey species as the adversary that is negatively correlated
with island HSI. The predator/prey relationship might lead to a non-zero equilibrium
population, or it might lead to the extinction of one or both populations [GOT 08,
HAN 97]. Most predator/prey models in biology are for two-species systems, but a
more complete description would be obtained if existing predator/prey models could
be extended to multi-species systems.

10 Evolutionary Computation with Biogeography-based Optimization

Resource competition: In contrast to the predator/prey relationship described
above, we note that similar species compete for similar resources. Therefore, it is
unlikely that many similar species occupy the same island, especially if they have
large populations [TIL 94]. This fact means that it is unlikely that species immigrate
to islands that already have large populations that are similar to them. Alternatively,
it could mean that emigration rate is not affected, but survival likelihood is lower
following emigration. Resource competition also means that if two species have an
equal probability of extinction, then the species that is the most similar to other
species is more likely to become extinct. This is a different type of interaction than
the predator/prey relationship described above. However, both models are plausible,
and competition is generally viewed in biology as a more significant driver of
community composition than predator/prey interactions.

Time correlation: In island biogeography, if a species migrates to an island in a
given geographical direction, it is likely to continue moving in the same direction to
the next island. This feature is due to the fact that migration is influenced by
prevailing winds and currents, and those winds and currents have a positive time
correlation. This is described by biodiffusion theory, the telegraph equation and the
equation of diffusion [OKU 01]. If a species migrates from island A to island B, it is
likely to continue in the same direction to the next island in the chain at the next
time step. This means that if a species migrates from one island to the next, it is
likely to continue migrating in that direction.

Other factors: The influence factors described above are not an exhaustive list of
all of the aspects of biogeography; they comprise only a subset which may affect the
development of BBO in the next chapter. Other aspects of biogeography could
inspire other variations of BBO. The biogeography literature is so rich that there are
many possibilities in this direction.

2

Biogeography and Biological Optimization

Bio-inspired metaheuristics are computer systems that are motivated by ideas
from the natural world. In addition, computer science research can be used to model
and explore biological systems. These two approaches interact to advance the
development of artificial intelligence. The approach to artificial intelligence taken by
bio-inspired metaheuristics constructs simple systems that are able to evolve into
more complex ones. Biological systems have many advantages over computer
systems, such as less energy consumption, the ability to survive faults and even the
ability to heal. Many of the ideas taken from biological optimization processes
have been applied to design bio-inspired metaheuristic algorithms, leading to
new developments in artificial intelligence. Biogeography is considered in
this chapter as a natural optimization mechanism that can motivate the development
of BBO.

Overview of the chapter

This chapter gives an overview of a mathematical model of biogeography in
section 2.1 and discusses its interpretation as a naturally occurring optimization
process in section 2.2. We discuss some bio-inspired metaheuristic algorithms other
than BBO that are motivated by biological optimization processes in section 2.3.

2.1. A mathematical model of biogeography

In the previous chapter, we mentioned a mathematical model of island
biogeography which is based on the idea that the number of species in an

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

12 Evolutionary Computation with Biogeography-based Optimization

undisturbed habitat is mostly determined by immigration and emigration.
Immigration is the arrival of new species into a habitat or population, while
emigration the departure of species. There are also other important factors that
influence migration between habitats, including the distance to the nearest
neighboring habitat, the size of the habitats, habitat similarity, species mobility and
age, predator/prey relationships, resource competition and human activity. These
factors make immigration and emigration curves more complicated than the linear
model shown in Figure 1.4.

In this section, we discuss the generalized mathematical formulations of island
biogeography. We use the term “species count” to refer to the number of species in
a given habitat. Biogeography models are based on differential equations for species
count probabilities. Consider a model of species count in a single habitat, whose
state at any time is represented by the species count. Suppose that the largest
possible number of species that the habitat can support is n. Whenever there are
k species in the habitat, new arrivals enter the habitat at an immigration rate λk, and
species leave the habitat at an emigration rate μk. Note that as the number of the
species increases, the habitat gets more crowded, so the immigration rate decreases
and the emigration rate should increase. If there are n species in the habitat, then the
immigration rate is zero. On the other hand, if there are no species in the habitat,
then the emigration rate is zero. So the immigration and emigration rates are
constrained by 0 0k nλ λ λ≥ ≥ ≥ ≥ =L L and 00 k nμ μ μ= ≤ ≤ ≤ ≤L L ,
respectively, for 0, 1, , .k n= L

DEFINITION 2.1.– The equilibrium species count 0k is the point at which the
immigration and emigration rates are equal; that is,

0 0
.k kλ μ=

Now consider the probability kP that the habitat contains exactly k species. kP
changes from time t to time ()t t+ Δ as follows:

() () () 1 1 1 11k k k k k k k kP t t P t t t P t P tλ μ λ μ− − + ++ Δ = − Δ − Δ + Δ + Δ [2.1]

This equation holds because in order to have k species at time ()t t+ Δ , one of
the following conditions must hold:

1) There were k species at time ,t and no immigration or emigration occurred
between t and () ;t t+ Δ or

Biogeography and Biological Optimization 13

2) There were ()1k − species at time ,t and one species immigrated; or

3) There were ()1k + species at time ,t and one species emigrated.

We assume that tΔ is small enough so that the probability of more than one
immigration or emigration during that time period can be ignored. Taking the limit
of equation [2.1] as 0tΔ → gives:

()
0 0 1 1

1 1 1 1

1 1

, 0
, 1 1

,
k k k k k k k k

n n n n

P P k
P P P P k n

P P k n

λ μ
λ μ λ μ

μ λ
− − + +

− −

− + =⎧
⎪= − + + + ≤ ≤ −⎨
⎪− + =⎩

& [2.2]

It is noted that equation [2.2] is valid for 0,k n= L , and 0 0μ = and 0nλ = .

Define []0
T

nP P P= L for notational simplicity. We can then arrange equation
[2.2] into the single matrix equation

P AP=& [2.3]

where the matrix A is given as:

()

()

0 1

0 1 1 2

2 1 1

1

0 0

0 0
n n n n

n n

A

λ μ
λ λ μ μ

λ λ μ μ
λ μ

− − −

−

−⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥=
⎢ ⎥− +⎢ ⎥
⎢ ⎥−⎣ ⎦

L

O M

M O O O M

M O

L

 [2.4]

Now consider the linear model of island biogeography shown in Figure 1.4,
where the migration rates are straight lines, and define n = Smax, k = S and k0 = S0.
We then have:

()1
k

k

Ek n
I k n

μ
λ

=
= −

 [2.5]

For the special case when the maximum immigration rate and emigration rate are
given as I = E = 1, we have:

[]1 for all 0,k k E I k nλ μ+ = = = ∈ [2.6]

14 Evolutionary Computation with Biogeography-based Optimization

and

1 1 0 0
1 2

2 1
0 0 1 1

n
n n n

A
n n n

n

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

L

O M

M O O O M

M O

L

 [2.7]

THEOREM 2.1.– The steady-state value for the probability of the number of each
species is given by:

0
0 1 1

1 1 2

0 1 1

0 1 1
1 2

1 1 2

1 , 0
1

,1
1

n
i

i i
k

k
k n

i
k

i i

P k

P
P k n

λ λ λ
μ μ μ

λ λ λ
λ λ λμ μ μ
μ μ μ

−

=

−

−

=

⎧ = =⎪
⎪ +
⎪

= ⎨
⎪ = ≤ ≤
⎪ ⎛ ⎞

+⎪ ⎜ ⎟
⎝ ⎠⎩

∑

∑

L

L

L

L
L

L

 [2.8]

The above theorem was proven in [MA 09]. Sufficient and necessary conditions
for these limiting probabilities to exist are that 0kμ ≠ for all k greater than 0.

Note that Theorem 2.1 above is similar to Theorem 1 in [SIM 08], which was
proven by singular value decomposition (SVD). But there are three differences
between the two theorems. First, the above theorem is more general than that given
in [SIM 08], which only considered the special case that 1k k nλ = − and .k k nμ =
Second, we have obtained the probability for any migration rates and species counts,
which the theorem in [SIM 08] did not do. This theorem can help us to study how
any migration model, including nonlinear models, impact the steady-state value of
the probability of species counts.

EXAMPLE 2.1.–

Consider the linear model of island biogeography described in Figure 1.4.
Suppose an island can support a maximum of four species, namely, n = 4. The

Biogeography and Biological Optimization 15

maximum immigration rate and emigration rate I = E = 1. Based on equations [2.5]
and [2.7], we have:

1 1 4 0 0 0
1 1 2 4 0 0
0 3 4 1 3 4 0
0 0 2 4 1 1
0 0 0 1 4 1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 [2.9]

Theorem 2.1 tells us that the steady-state probability for the number of each
species number is:

()
()
()
()
()

0

1

2

3

4

Pr 0 1 16

Pr 1 4 16

Pr 2 6 16

Pr 3 4 16

Pr 4 1 16

S P

S P

S P

S P

S P

= = =

= = =

= = =

= = =

= = =

 [2.10]

These results are equivalent to those obtained by Theorem 1 in [SIM 08].

Next, we continue to study the characteristics of the equilibrium species counts
in the mathematical model of island biogeography.

THEOREM 2.2.– If the immigration and emigration rates satisfy
0 0k nλ λ λ≥ ≥ ≥ ≥ =L L and 00 k nμ μ μ= ≤ ≤ ≤ ≤L L , respectively, for

0, 1, ,k n= L , then the steady-state probability of the number of each species
satisfies

0 0 00 1 1 1k k k nP P P P P P− +≤ ≤ ≤ ≤ ≥ ≥ ≥L L , where 0k denotes the equilibrium

species number.

It is clear that this theorem is implied by Theorem 2.1. Another interesting
characteristic of the steady-state probability of species count is stated in the
following theorem.

THEOREM 2.3.– If the immigration and emigration rates satisfy the conditions that
k n kμ λ −= for every 0, 1, ,k n= L , then k n kP P −= for all 0, 1, , .k n= L

16 Evolutionary Computation with Biogeography-based Optimization

Examples of this theorem are shown in equation [2.8] and example 2.1. It
implies that the steady-state probability of species count is symmetrical, and the
equilibrium point is half of the maximum species count n if k n kμ λ −= for

0, 1, ,k n= L . We note that with the special condition k n k k nμ λ −= = for
0, 1, ,k n= L , this theorem reduces to Observation 1 in [SIM 08]. Theorem 2.3 is

therefore a generalization of Observation 1 in [SIM 08].

There are several remarks that should be made about Theorem 2.1, Theorem 2.2
and Theorem 2.3. First, the equilibrium species count is given as the index at which
the immigration and emigration rates are equal. Second, as shown in Theorem 2.1,
the steady-state probabilities kP are related to kλ and kμ ; that is, kP depends on the
migration rates. Third, as shown in Theorems 2.2 and 2.3, the steady-state
probabilities kP have the characteristic that the probabilities at the end points are
smaller than those near the equilibrium point. Finally, under the condition

,k n kμ λ −= the steady-state probabilities kP are symmetric with respect to the
equilibrium point.

2.2. Biogeography as an optimization process

We know that nature includes many processes that optimize [ALE 96]. In fact,
this premise is the foundational principle of most EAs. However, is biogeography an
optimization process? At first glance, it seems that biogeography simply maintains
species count equilibria in habitats, and that it is not necessarily optimal. This
section discusses biogeography from the viewpoint of optimality.

Biogeography is nature’s way of distributing species, and it has often been
studied as a process that maintains equilibrium in habitats. Species equilibrium in a
biological habitat occurs when the combined speciation and immigration rates equal
the emigration rate. Equilibrium can be seen at the point S0 shown in Figure 1.4
where the immigration and emigration curves intersect. One reason that
biogeography has been viewed from the equilibrium perspective is that this
viewpoint was the first to place biogeography on a firm mathematical footing
[MAC 67]. We have also discussed this perspective in the previous section.
However, since then the equilibrium perspective has been increasingly questioned,
or rather expanded, by biogeographers.

Engineers often view stability and optimality as competing objectives; for
example, a simple system is typically easier to stabilize than a complex system,
while an optimal system is typically more complex and less stable than a simpler
system [KEE 97]. However, in biogeography, stability and optimality are two
perspectives of the same phenomenon. Optimality in biogeography involves

Biogeography and Biological Optimization 17

biologically diverse, complex communities that are highly adaptable to their
environment. Stability in biogeography involves the persistence of existing
populations. Field observations show that complex communities are more adaptable
and stable than simple communities [HAR 06, p. 82], and this observation has also
been supported by simulation [ELT 58, MAC 55].

Although the complementary nature of optimality and stability in biogeography
has been challenged [MAY 73], those challenges have been adequately answered
and the idea is generally accepted today [MCC 00, KON 06]. The equilibrium
versus optimality debate in biogeography thus becomes a matter of semantics,
because equilibrium and optimality are simply two different perspectives on the
same phenomenon in biogeography.

A dramatic example of the optimality of biogeography is Krakatoa, a volcanic
island in the Indian Ocean which erupted in August 1883 [WIN 08]. The eruption was
heard from thousands of miles away and resulted in the death of over 36,000 people,
mostly from tidal waves whose remnants were recorded as far away as England. The
eruption threw dust particles 30 miles high which remained aloft for months and
were visible all around the world. Rogier Verbeek, a geologist and mining engineer,
was the first visitor to Krakatoa 6 weeks after the eruption, but the surface of the
island was too hot to touch and showed no evidence of life; the island was
completely sterilized [WHI 93]. The first animal life (a spider) was discovered on
Krakatoa in May 1884, 9 months after the eruption. By 1887, dense fields of grass
were discovered on the island. By 1906, plant and animal life was abundant.
Although volcanic activity continues today on Krakatoa, by 1983 (one century after
its desolation), there were 88 species of trees and 53 species of shrubs, and the
species number continues to increase linearly with time [WHI 93]. Life immigrates
to Krakatoa, and immigration makes the island more habitable, which in turn makes
the island more friendly to additional immigration. Figure 2.1 shows the evolution of
Krakatoa over one hundred years.

Biogeography is thus a positive feedback phenomenon − at least to a certain
point. When a habitat is highly populated, it has many species and thus is likely to
emigrate many species to nearby habitats, while few species immigrate to it because
of the lack of additional resources for immigrating species. In the same way, when a
habitat is sparsely populated, it has few species and thus is likely to receive many
immigrants, while only a few species emigrate because of their sparse populations.
The issue of whether or not immigrants can survive after migration is another
question, but the immigration of new species can raise the biological diversity of a
habitat and thereby improve the habitat’s suitability for additional species.

18 Evolutionary Computation with Biogeography-based Optimization

Figure 2.1. Krakatoa island. The left picture shows the eruption of Krakatoa in 1883,
and the right picture shows how it evolved into a habitable island after 100 years

This is similar to natural selection, or survival of the fittest. As species become
more fit, they are more likely to survive. As they thrive, they disperse and become
better able to adapt to their environment. Natural selection, like biogeography,
entails positive feedback. However, the time scale of biogeography is much shorter
than that of natural selection, which hints at the possibility of improved optimization
performance by using biogeography rather than natural selection as a motivating
paradigm for optimization algorithms. So we regard this positive feedback
phenomenon of biogeography as an optimization process. This view of the
environment as an optimizing system was first suggested in the 1990s [VOL 97].
Biogeographers claim that “biogeography based on optimizing environmental
conditions for biotic activity seems more appropriate than a definition based on
homeostasis” [KLE 04].

Another example of biogeography as an optimization process is the Amazon
rainforest, which is a typical case of a mutually optimizing life/environment system
[HAR 06]. The rainforest has a large capacity to recycle moisture, which decreases
aridity and increases evaporation. This leads to cooler and wetter surfaces, which are
more amenable to life. This suggests that a view of biogeography “based on
optimizing environmental conditions for biotic activity seems more appropriate than
a definition based on homeostasis” [KLE 04] (emphasis added). This view of the
environment as a life-optimizing system was suggested as early as 1997 [VOL 97].
There are many other examples of the optimality of biogeography, such as Earth’s
temperature [HAR 06], Earth’s atmospheric composition [LEN 98] and the ocean’s
mineral content [LOV 90, LOV 95].

Biogeography and Biological Optimization 19

This is not to say that biogeography is optimal for any particular species. For
example, investigations of the Bikini Atoll show that the high level of radioactivity
resulting from nuclear tests had little effect on its natural ecology, but mammals
were seriously affected (Lovelock, page 37). This and similar studies indicate that
the Earth “will take care of itself and environmental excesses will be ameliorated,
but it’s likely that such restoration of the environment will occur in a world devoid
of people” [MAR 96]. Interestingly, amid the current warnings about ozone
depletion, it is easy to overlook the fact that for the first two billion years of life,
Earth had no ozone at all [LOV 95, p. 109]. Life flourishes and evolves regardless of
our opinions about Earth’s ecology, but not in a human-centric way. Although
global warming or an ice age might be disastrous for humans and many other
mammals, it would be a minor event in the overall history of biogeography on our
planet.

In summary, although the natural phenomenon of biogeography as an
optimization process has been challenged, adequate answers have been put forth to
answer these challenges. The premise that biogeography is an optimization process
has motivated the development of BBO as a metaheuristic algorithm, which we
discuss in the next chapter.

2.3. Biological optimization

This section gives an overview of some biological optimization paradigms that
motivate bio-inspired metaheuristic techniques, including classical methods such as
genetic algorithms (GAs), evolution strategies (ESs) and also some newer
algorithms, such as particle swarm optimization (PSO) and artificial bee colony
(ABC) optimization [BOU 13, MA 13a, MA 13b, MA 16c]. These algorithms are
widely used to solve optimization problems and have attracted increasing attention
in recent years.

2.3.1. Genetic algorithms

GAs are the earliest, most well-known and most widely used biologically
motivated optimization algorithms. GAs were first introduced as a computational
analogy of adaptive biological systems by John Holland in his book Adaptation in
Natural and Artificial Systems [HOL 75]. GAs have proven to be an enormously
powerful and successful problem-solving strategy, dramatically demonstrating the
power of biologically motivated optimization.

In nature, we have a population of individuals. Some individuals are good, and
some are not so good. The good individuals have a relatively high chance of

20 Evolutionary Computation with Biogeography-based Optimization

reproducing, while the poor individuals have a relatively low chance of reproducing.
Parents beget children, and then the parents drop out of the population to make way
for their offspring. As generations come and go, the population as a whole becomes
more fit.

GAs are modeled on this natural selection in biological systems. Given an
optimization problem, GAs use a set of candidate solutions as a population, and use
fitness functions to evaluate these candidate solutions. During the optimization
process, the candidate solutions improve through selection, recombination
(crossover) and mutation, and then pass on the candidate solutions with the best
fitness to the next generation. In GAs, selection is the first step, in which individuals
are chosen from the population for breeding. Crossover is the second step, which is
used to combine individuals from one generation to create individuals for the next
generation. Mutation is the final step, in which individuals are randomly modified,
and its purpose is to increase diversity among the population.

2.3.2. Evolution strategies

Evolution strategy (ES) was created in the early 1960s and was developed
further in the 1970s and later by Ingo Rechenberg, Hans-Paul Schwefel and Peter
Bienert [REC 68]. ESs are biologically motivated optimization techniques based on
the ideas of adaptation and evolution.

ES uses natural problem-dependent representations, and depends primarily on
mutation and selection as search operators. During the process of evolution,
mutation is performed by adding a normally distributed random value to each
individual (that is, each candidate solution). The step size or mutation strength is
often governed by self-adaptation. The selection operator in ES is deterministic and
is based on fitness rankings. The simplest ES operates on a population of size two:
the current point, called the parent individual, and the result of its mutation. If the
mutant’s fitness is at least as good as the parent, it becomes the parent individual of
the next generation; otherwise, the mutant is discarded. This particular ES is called a
(1+1)-ES.

The most popular ES is the (μ, λ)-ES, in which μ parent individuals produce λ
offspring individuals using mutation. Each of the λ offspring individuals is assigned
a fitness value depending on its quality. The best μ offspring individuals become the
next generation’s parent individuals. This means that λ must be greater than or equal
to μ. Note that the μ and λ that are used in the (μ, λ)-ES notation are not related to
the μ and λ that are used in the mathematical model of island biogeography.

Biogeography and Biological Optimization 21

2.3.3. Particle swarm optimization

Particle swarm optimization (PSO) is a metaheuristic developed by Kennedy and
Eberhart in 1995. It is inspired by the social behavior of bird flocking or fish
schooling [KEN 95], which is shown in Figure 2.2. During the past several years,
PSO has been successfully applied to many research and application areas. It has
been demonstrated that PSO achieves better optimization results with a faster,
cheaper method compared to many other methods.

Figure 2.2. Social behavior of bird flocking (left) and fish schooling
(right), which inspired the particle swarm optimization algorithm

PSO shares many similarities with other metaheuristics such as GAs. PSO is
initialized with a population of random individuals, and searches for an optimum by
updating the population one iteration at a time. However, unlike GAs, PSO does not
have evolution operators such as crossover and mutation. In PSO, the individual is
called a particle, and it moves through the problem search space by following the
best particles in the population.

Each particle keeps track of the coordinates in the problem space which are
associated with the best location that it has achieved so far during the optimization
process; this location is called Pbest. Another best location is determined by the
globally best position of the entire swarm at the current iteration; this location is
called Gbest. The PSO concept consists of changing the velocity of each particle
toward the Pbest and Gbest. locations. The particle’s velocity is updated based on its
current velocity, its previous best location Pbest and the global best location Gbest at
the current iteration.

22 Evolutionary Computation with Biogeography-based Optimization

2.3.4. Artificial bee colony algorithm

The artificial bee colony (ABC) algorithm is another metaheuristic, which was
first published in Karaboga and Basturk [KAR 07]. ABC is based on different types
of bees and their behaviors, which are shown in Figure 2.3.

First, forager bees, also called employed bees, travel back and forth between
a food source and their hive. Each forager is associated with a specific location,
and remembers that location as it travels back and forth between the hive.
When a forager takes nectar to the hive, it returns to its food source, but it
also engages in local exploration as it searches in the nearby vicinity for a better
source.

Second, onlooker bees are not associated with any particular food source, but
they observe the behavior of the foragers. Onlookers observe the amount of nectar
that is returned to the hive by the foragers, and use that information to decide where
to search for nectar. The onlookers’ search location is decided probabilistically
based on their observations of the foragers.

Third, scout bees are explorers and, like onlookers, are not associated with any
particular food source. If a scout sees that a forager has stagnated and is not
progressively increasing the amount of nectar that it returns to the hive, then the
scout randomly searches for a new nectar source in the search space. Stagnation is
indicated when the explorer fails to increase the amount of nectar it brings to the
hive after a certain number of trips.

These ideas lead to the ABC algorithm, which simulates foraging, onlooking and
scouting behaviors to search for an optimal food source. The location of a food
source is analogous to a location in the search space of an optimization problem.
The amount of nectar at a location is analogous to the fitness of an individual. Each
forager randomly modifies its position in the search space. If the random
modification results in an improvement, then the forager moves to the new position.
The onlooker bees also randomly modify the position of a forager, where the forager
that is modified is randomly chosen using roulette-wheel selection. Again, if the
random modification improves the forager, then the forager moves to the new
position. Finally, a scout replaces a forager if the forager has not improved after a
preset number of random modifications.

Biogeography and Biological Optimization 23

Figure 2.3. Behaviors and types of bees, which
inspired the artificial bee colony algorithm

2.4. Conclusion

We have discussed several bio-inspired metaheuristics, including GAs, ES, PSO
and ABC, the last two of which are sometimes classified as swarm intelligence
rather than EAs. But all these algorithms have certain features in common, and they
all adapt biological optimization processes to implement optimization algorithms. It
seems that virtually any natural or biological optimization process can be interpreted
as an optimization algorithm [ALE 96]. It is therefore difficult to know where one
algorithm ends, and another begins. When does a new metaheuristic belong to its
own class, and when should it instead be classified as a variation of an existing
metaheuristic? One of the challenges for the research community is to encourage
new research based on the abundance of biological optimization processes.

There are many other metaheuristics that we have not had time to discuss,
including the artificial fish swarm algorithm (AFSA) [LI 03], the shuffled frog
leaping algorithm (SFLA) [EUS 03], the firefly algorithm (FA) [YAN 08,
Chapter 8], the bacterial foraging optimization algorithm (BFOA) [PAS 02], and so
on. These metaheuristics could doubtless provide a lifetime of productivity to the
interested student and researcher.

3

A Basic BBO Algorithm

Just as the science of genetics gave rise to genetic algorithms (GAs), and the
study of animal swarms gave rise to particle swarm optimization (PSO), and the
behaviors of bees gave rise to artificial bee colony optimization, so the science of
biogeography has given rise to biogeography-based optimization (BBO).

Overview of the chapter

This chapter shows in section 3.1 how the biogeography theory of the previous
chapter can be applied to optimization problems to build a basic BBO algorithm.
Section 3.2 discusses the differences between BBO and other bio-inspired
optimization algorithms. Section 3.3 demonstrates the performance of basic BBO on
a set of standard benchmarks.

3.1. BBO definitions and algorithm

Biogeography is nature’s way of distributing species and optimizing
environments for life, and operates according to underlying mathematical
optimization rules. Suppose that we have an optimization problem and a population
of candidate solutions that can be represented as vectors of independent variables;
candidate solutions can be referred to as individuals, or solutions. Each independent
variable in a solution is considered to be a suitability index variable (SIV) of
biogeography. Further suppose that we have some way of assessing the goodness of
the solutions. Those solutions that are good are considered to be habitats with a high
habitat suitability index (HSI), and those that are poor are considered to be habitats
with a low HSI. HSI is analogous to fitness in other bio-inspired optimization
algorithms (GAs, for example). Good solutions resist change more than poor
solutions, just like habitats with a high HSI have lower immigration rates than

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

26 Evolutionary Computation with Biogeography-based Optimization

habitats with a low HSI. By the same token, good solutions tend to share their SIVs
with poor solutions, just like habitats with a high HSI have high emigration rates.
Poor solutions are likely to accept new SIVs from good solutions, just like habitats
with a low HSI are likely to receive many immigrants from habitats with a high HSI.
The addition of new SIVs to poor solutions may raise the quality of those solutions.
The bio-inspired optimization algorithm that is based on this approach is called
BBO.

3.1.1. Migration

High HSI solutions represent habitats with many species, and low HSI solutions
represent habitats with few species. We assume that each solution (habitat) has an
identical species count curve with E I= for simplicity. Figure 3.1 illustrates the
migration rates for a BBO algorithm with these assumptions. The S value
represented by the solution depends on its HSI. S1 in Figure 3.1 represents a low HSI
solution due to only a few species in a habitat, while S2 represents a high HSI
solution due to many species in a habitat. The immigration rate λ1 for S1 will
therefore be higher than the immigration rate λ2 for S2. The emigration rate μ1 for S1
will be lower than the emigration rate μ2 for S2. Figure 3.1 is called a linear
migration model since the λ and μ values are linear functions of fitness.

μ

λ

HSI

rate

1

(emigration)

(immigration)

2 max

Figure 3.1. BBO SIV-sharing relationships. S1 represents a low HSI solution
with a low probability of sharing SIVs, but a high probability of receiving SIVs
from other solutions. S2 represents a high HSI solution with a high probability
of sharing SIVs, but a low probability of receiving SIVs from other solutions

A Basic BBO Algorithm 27

We use the emigration and immigration rates of each solution to probabilistically
share information between habitats. With a certain probability, we modify each
solution based on other solutions. If a given solution is selected to be modified, then
we use its immigration rate λ to probabilistically decide whether or not to modify
each SIV in that solution. If a given SIV in a given solution Si is selected to be
modified, then we use the emigration rates μ of the other solutions to
probabilistically decide which of the solutions should migrate a randomly selected
SIV to solution Si.

3.1.2. Mutation

Cataclysmic events (unusually large flotsam arriving from a neighboring habitat,
disease, natural catastrophes, etc.) can drastically change the HSI of a natural
habitat. They can also cause the species count to differ from its equilibrium value. A
habitat’s HSI can therefore change suddenly due to random events, and we model
such events as mutation.

Mutation tends to increase diversity among the population. Without mutation,
high HSI solutions will tend to be more dominant in the population. Mutation makes
low HSI solutions likely to mutate, which gives them a chance of improving. It also
makes high HSI solutions likely to mutate, which gives them a chance of improving
even more than they already have. We usually use elitism, which is a common EA
mechanism, to save the SIVs of the habitat that has the best solution in the
optimization process, so even if mutation ruins its HSI, we have saved it and can
revert back to it if needed. So we use mutation on both poor solutions and good
solutions. Those solutions that are average are hopefully improving already, and so
we avoid mutating them, although there is still some mutation probability, except for
the most probable solution.

The mutation mechanism is problem-dependent, just as it is for GAs. If a
solution is selected for mutation, then we simply replace a randomly chosen SIV in
the solution with a new, randomly generated SIV. We do not explore alternative
mutation schemes in this chapter, but all of the mutation schemes that have been
implemented for EAs could also be implemented for BBO.

3.1.3. BBO implementation

First we provide some definitions, and then we provide an outline of the basic
BBO algorithm. We use R to refer to the set of real numbers, Z to refer to the set of
integers and ∅ to refer to the empty set.

28 Evolutionary Computation with Biogeography-based Optimization

DEFINITION 3.1.– A habitat SIVmx ∈ is a vector of m integers that represents a
feasible solution to some optimization problem.

DEFINITION 3.2.– A suitability index variable SIV C∈ is an integer that is an
allowable value in a habitat. ∈ nC Z is the set of all integers that are allowed in a
habitat.

DEFINITION 3.3.– A habitat suitability index HSI: x R→ is a measure of the
goodness of the solution that is represented by the habitat.

DEFINITION 3.4.– An ecosystem { }1 2, , , Nx x xL , also denoted as { }x , is a group of
N habitats, where N is the size of the ecosystem.

Note that in most bio-inspired optimization algorithms, x is called a candidate
solution or individual, SIV is called a decision variable or independent variable, HSI
is called fitness and N is called population size.

DEFINITION 3.5.– Immigration rate (HSI) : R Rλ → is a monotonically non-
increasing function of HSI. iλ is proportional to the likelihood that SIVs from
neighboring habitats will migrate into habitat ix .

DEFINITION 3.6.– Emigration rate (HSI) : R Rμ → is a monotonically non-
decreasing function of HSI. μi is proportional to the likelihood that SIVs from
habitat ix will migrate into neighboring habitats.

In practice, we assume that λ and μ are linear with the same maximum values.
However, these assumptions are made only for mathematical convenience, and
better optimization performance might be attained if these assumptions are relaxed.

DEFINITION 3.7.– Migration { }(,) : x xλ μΩ → is a probabilistic operator that
adjusts habitat x based on the ecosystem of candidate solutions. The probability
that x is modified is proportional to its immigration rate λ, and the probability that
the source of the modification comes from jx is proportional to the emigration
rate μj.

A Basic BBO Algorithm 29

Migration can be loosely described as follows.

For each habitat (candidate solution) kx

 For each SIV (decision variable)

 Use λk to probabilistically decide whether to immigrate to kx

 If immigrating then

 Use {μj} to probabilistically select the emigrating habitat jx

 ()SIVkx ← ()SIVjx

 End if

 Next SIV

Next habitat

Figure 3.2. Migration in BBO. kx is the kth candidate
habitat and ()SIVkx is a decision variable, or SIV, in kx

In Figure 3.2, the statement “Use λk to probabilistically decide whether to
immigrate to kx ” can be implemented with the following logic, where rand(0, 1) is
a random number uniformly distributed between 0 and 1:

If λk < rand(0,1) then

Immigration = true

Else

Immigration = false

End if

Also in Figure 3.2, the statement “Use {μj} to probabilistically select the emigrating
habitat jx ” can be implemented with any fitness-based selection method. For
instance, we could use tournament selection by randomly choosing two or more
habitats for a tournament, and then selecting kx as the fittest habitat in the
tournament. If we use roulette-wheel selection, then

1

Pr(emigration from) N

k

j
j

k

x
μ

μ
=

=
∑

 [3.1]

30 Evolutionary Computation with Biogeography-based Optimization

Figure 3.3 illustrates BBO migration as described above.

Figure 3.3. Illustration of BBO migration for five SIVs in a habitat.
SIV 1 is not selected for immigration, but SIVs 2–5 are selected for
immigration. Equation [3.1] is used to select the emigrating habitats

Figure 3.3 shows an example of habitat kx immigrating SIVs as follows:

1) Immigration is not selected for the first SIV; that is why the first SIV in kx
remains unchanged.

2) Immigration is selected for the second SIV, and equation [3.1] is used to
choose 1x as the emigrating habitat; this is why the second SIV in kx is replaced by
the second SIV from 1x .

3) Immigration is selected for the third SIV, and equation [3.1] is used to choose
3x as the emigrating habitat; this is why the third SIV in kx is replaced by the third

SIV from 3x .

4) Immigration is selected for the fourth SIV, and equation [3.1] is used to
choose 2x as the emigrating habitat; this is why the fourth SIV in kx is replaced by
the fourth SIV from 2x .

5) Finally, immigration is selected for the fifth SIV, and equation [3.1] is used to
choose Nx as the emigrating habitat; this is why the fifth SIV in kx is replaced by
the fifth SIV from Nx .

A Basic BBO Algorithm 31

DEFINITION 3.8.– Mutation () :M , x xλ μ → is a probabilistic operator that
randomly modifies a habitat’s SIVs based on a given mutation rate.

Mutation can be described as follows.

For each SIV (decision variable) in habitat (candidate solution) ix

If rand(0, 1) < Pm

()SIVix ← rand(Ls, Us)

 End if

Next SIV

Figure 3.4. Mutation in BBO. Pm is the mutation probability, and
rand(Ls, Us) is a uniformly distributed random number between Ls

and Us, which are the lower and upper search bounds of the sth SIV

In Figure 3.4, each SIV in the habitat (that is, in the population) is mutated with a
probability of Pm. If mutation occurs for a given SIV, then that SIV is replaced with
a random number within its search domain. This mutation is the same as is often
used in other bio-inspired optimization algorithms.

DEFINITION 3.9.– An ecosystem transition function { } { }(, , , , ,) :m N M x xψ λ μ= Ω →
is a 6-tuple that modifies the ecosystem from one optimization iteration to the next.

An ecosystem transition function can be written as follows:

{ }HSI HSIMψ λ μ= Ωo o o o o [3.2]

In others words, the ecosystem transition function begins by computing the
immigration and emigration rates of each habitat. Then, migration is performed on
each habitat, followed by an HSI calculation. Finally, mutation is performed,
followed by an HSI recalculation for each habitat.

DEFINITION 3.10.– A BBO algorithm BBO (, ,)ϑ ψ Τ= is a 3-tuple that proposes a
solution to an optimization problem. (): { },{HSI}xϑ φ → is a function that creates
an initial ecosystem of habitats and computes each corresponding HSI. ψ is the
ecosystem transition function defined earlier, and :{ } { , }x true falseΤ → is a
termination criterion.

32 Evolutionary Computation with Biogeography-based Optimization

ϑ could be implemented with random number generators, heuristic solutions to
the optimization problem, or some other problem-dependent procedure. Τ could
depend on the number of ψ iterations, or the HSI of the best habitat, or some other
problem-dependent termination criterion. A BBO algorithm can be broadly
described as follows:

 ϑ

While not Τ

 ψ

End

The above outline of BBO can be written as follows.

Initialize a population of habitats (that is, candidate solutions) { kx } for k ∈ [1, N]

While not (termination criterion)

For each kx , set emigration rate μk proportional to HSI (fitness) of kx with μk being

normalized to [0,1]

For each kx , set immigration rate λk = 1 − μk

{ kz } ← { kx }

Perform migration for each habitat kz as shown in Figure 3.2

Perform mutation for each habitat kz as shown in Figure 3.4

{ kx } ← { kz }

Next generation

Figure 3.5. Outline of a basic BBO algorithm with a population size of N.
{ kx } is a population of habitats and { kz } is a temporary population of habitats

Note that in Figure 3.5, migration and mutation for each habitat in the current
generation occurs before any of the habitats are replaced in the population, which
requires the use of the temporary population z . Borrowing from GA terminology
[VAV 96], we say that Figure 3.5 depicts a generational BBO algorithm as opposed
to a steady-state algorithm.

A Basic BBO Algorithm 33

The BBO algorithm in Figure 3.5 can be informally described with the following
algorithm.

1) Initialize the BBO parameters. This step includes the derivation of a method
of mapping problem solutions to SIVs and habitats (see Definitions 3.1 and 3.2),
which is problem dependent. We also initialize the maximum species count Smax and
the maximum migration rates E and I (see Figure 3.1), and define the mutation rate
Pm. Note that the maximum species count and the maximum migration rates are
relative quantities. That is, if they all change by the same percentage, then the
behavior of BBO will not change. This is because if E and I and Smax change, then
the migration rates λ and μ and the species count S will change by the same relative
amount for each solution. In practice, we often normalize E and I to 1.

2) Initialize a random set of habitats, each habitat corresponding to a potential
solution to the given optimization problem. This is the implementation of the ϑ
operator described above in Definition 3.10.

3) For each habitat, map the HSI to the number of species S, the immigration
rate λ and the emigration rate μ (see Figure 3.1 and Definitions 3.5 and 3.6).

4) Before migration, copy the population {x} to temporary population
{z}. Probabilistically use immigration and emigration to modify each habitat, and
then compute each HSI (see Definition 3.7).

5) Mutate each habitat based on the mutation rate, and recompute each HSI (see
Definition 3.8). After mutation, copy temporary population { z } to population { x }.

6) Go to step 3 for the next iteration. This loop can be terminated after a
predefined number of generations, or after an acceptable problem solution has
been found. This is the implementation of the Τ operator described above in
Definition 3.10.

Note that after each habitat is modified (steps 2, 4 and 5), its feasibility as a
problem solution should be verified. If it does not represent a feasible solution, then
some method needs to be implemented to map it to the set of feasible solutions.

EXAMPLE 3.1.–

This simple BBO experiment is motivated by David Goldberg’s “GA simulation
by hand” [GOL 89]. Suppose that we want to maximize 2x , where x is encoded as
a five-bit integer. We have to decide how many individuals we want in our
population, and what mutation rate we want to use. We start with a randomly
generated population of four individuals, and a mutation rate of 1% per bit. For each
individual, we compute the fitness value x2, and then we assign migration rates in a
linear manner as shown in Figure 3.1. Migration rates should be normalized to
[0, 1], but we often set the smallest value to a number slightly greater than 0, and the

34 Evolutionary Computation with Biogeography-based Optimization

largest value to a number slightly less than 1. This allows some randomness (non-
determinism) even for the best and worst individuals in the population. For this
example, we arbitrarily decide to use 1/N as the minimum values for λ and μ, and
(N−1)/N as the maximum values, where N = 4 is the population size. Suppose that
our random initial population is created, as shown in Table 3.1.

String number x (binary) x (decimal) 2()f x x= μ λ

1 01101 13 169 2/5 3/5

2 11000 24 576 4/5 1/5

3 01000 8 64 1/5 4/5

4 10011 19 361 3/5 2/5

Table 3.1. Initial population for a simple BBO problem

The first thing we do is copy the population x to temporary population z. Then
we consider the possibility of immigration to each bit of the first individual in the
temporary population 1z , which is equal to 1x (01101). We order bit numbers from
left to right starting with index 1. We therefore see that

1 1 1 1 1(1) = 0, (2) =1, (3) = 1, (4) = 0, (5) =1z z z z z

Since 1z is the third most-fit individual, immigration rate 1 3 5λ = , so there is a
60% chance of immigrating to each bit in 1z . We generate a random number

~ [0,1]r rand for each bit in 1z to determine whether or not we should immigrate to
that bit.

1) Suppose 0.7.r = Since 1,r λ> we will not immigrate to ()1 1z , so ()1 1z
remains equal to 0.

2) Suppose the next random number that we generate is 0.3r = . Since 1r λ< ,

we immigrate to ()1 2z . We use roulette-wheel selection to choose the emigrating

bit. 2 (2)x has the greatest probability of emigrating to ()1 2z , 4 (2)x has the
second-greatest probability, 1(2)x has the third-greatest probability, and 3 (2)x has
the least probability. We could exclude 1(2)x from consideration since 1z is a copy
of 1x , but this is an implementation detail that depends on the preference of the
programmer. Suppose that this roulette-wheel selection process results in the choice

A Basic BBO Algorithm 35

of 3 (2)x for immigration. Then, 1 3(2) (2) 1z x← = . Even though we immigrated to
()1 2z , it did not change from its original value.

3) We continue this process for ()1 3z , ()1 4z and ()1 5z . Suppose that the
random numbers that are generated result in the following:

– z1 (3) = 1 (no immigration)

– z1 (4) ← x4= 1 (immigration)

– z1 (5) = 1 (no immigration)

Now we have completed migration for 1z and have obtained 1z = 01111.

4) We repeat steps 1−3 for 2z , 3z and 4z .

5) We next consider the possibility of mutation for each bit in each temporary
individual 1z , 2z , 3z and 4z . Mutation can be implemented as shown in Figure 3.4.

6) Now that we have a modified population of { }kz individuals, we copy zk to xk
for k ∈ [1,4], and the first BBO generation is complete.

The above process continues until some convergence criterion is met. For instance,
we could continue for a specified number of generations, or continue until we achieve
a satisfactory fitness value, or continue until the fitness value stops changing.

3.2. Differences between BBO and other optimization algorithms

This section first discusses the relationship between BBO and GAs to illustrate
that BBO is distinctive enough to be considered a separate optimization algorithm
rather than as a special type of GA. Then we show the similarity and difference
between BBO and other bio-inspired optimization algorithms from the viewpoint of
algorithmic features.

3.2.1. BBO and genetic algorithms

In GAs, one way of implementing recombination is called global uniform
recombination, in which we randomly choose each child gene from one parent,
where the parent population is equal to the entire GA population, and random
selection is based on fitness values, for example, roulette-wheel selection. We call
this approach genetic algorithm with global uniform recombination (GA/GUR),
which is shown in Figure 3.6 [SIM 11b].

□

36 Evolutionary Computation with Biogeography-based Optimization

Initialize a population of individuals (candidate solutions) { }kx for k ∈ [1, N]

While not (termination criterion)

For each individual kx

 C [0 0 0] n
khild R← ⋅⋅ ⋅ ⋅ ∈L

For each gene (decision variable)

 Use fitness values to probabilistically select individual jx

 () ()k jChild gene x gene←

Next gene

 Probabilistically mutate kChild

Next individual

 { } { }k kx Child←

Next generation

Figure 3.6. Outline of genetic algorithm with global uniform recombination
(GA/GUR). N is the population size, { kx } is the entire population of

individuals, kx is the kth individual and ()kx gene is a decision variable in kx

Comparing Figures 3.5 and 3.6, we see that BBO is a generalization of a specific
type of GA/GUR. This is because if, rather than setting 1k kλ μ= − in the BBO
algorithm of Figure 3.5, we instead set 1kλ = for all k , then the BBO algorithm of
Figure 3.5 would be equivalent to the GA/GUR algorithm of Figure 3.6.

We see that even though BBO and GAs have many similarities, BBO is
distinctive enough to be considered a separate optimization algorithm rather than a
special type of GA. There is also another more important reason to consider BBO as
a separate optimization algorithm, and that is because the biogeography roots of
BBO open up many avenues for extensions and modifications that would otherwise
be unavailable to the researcher. We discussed some of these extensions in the next
chapter.

3.2.2. BBO and other algorithms

BBO is a bio-inspired optimization method, which gives it certain features in
common with other bio-inspired optimization algorithms, including GAs, ES, PSO,
ant colony optimization (ACO) and differential evolution (DE). For example, they
all adopt operators to share information between solutions. This makes BBO
applicable to many problems that GAs and PSO are used for.

A Basic BBO Algorithm 37

However, there are some distinctive characteristics of BBO compared to these
other optimization algorithms. First, we note that GAs and ESs reproduce children
by crossover; namely, their solutions disappear at the end of each generation, while
BBO solutions are not discarded after each generation but are rather modified by
migration. Second, we find that ACO generates a new set of solutions at each
generation while BBO maintains its set of solutions from one generation to the next.
Lastly, BBO is contrasted with PSO and DE because PSO solutions change by virtue
of another variable (velocity) and DE solutions change based on differences between
other solutions, while BBO solutions change directly via migration.

It is these differences between BBO and other optimization algorithms that prove
to be its strength. Some open research questions are: how do these differences
make the performance of BBO differ from other optimization algorithms? What do
these differences say about the types of problems that are most appropriate for
BBO? This chapter presents the initial explorations into BBO but leaves these
questions for further study.

3.3. Simulations

In this section, we look at the performance of BBO. A representative set of
13 benchmark functions has been used for performance verification of BBO. These
functions are briefly described in Table 3.2. A more detailed description of these
functions can be found in Appendix A. The functions are divided into two
categories: unimodal functions, including F01–F07, and multimodal functions,
including F08–F13. All benchmark functions are minimization problems.

A. Performance comparisons between BBO and other algorithms

First we compare BBO with five other optimization algorithms, including ACO,
DE, ES, GA and PSO, in terms of mean performance on a set of Monte Carlo
simulations. For a fair comparison, we choose basic versions of the other algorithms
to compare with BBO. This is because BBO is a relatively new global optimization
algorithm and other algorithms have had many years to develop. Also, we use the
basic version of BBO here rather than more advanced versions. For all optimization
algorithms, we choose a reasonable set of tuning values and do not make any effort
in finding the best parameter settings. For BBO, we use maximum migration rates
I = 1 and E = 1, and mutation rate Pm = 0.01. For ACO, we use initial pheromone
value 0 1E 06,τ = − pheromone update constant Q = 20, exploration constant q0 = 1,
global pheromone decay rate 0.9,gρ = local pheromone decay rate 0.5,lρ =
pheromone sensitivity 1α = and visibility sensitivity 5.β = For ES, we produce

10λ = offspring in each generation, and we use standard deviation 0.9σ = for
modifying solutions. For GA, we use roulette-wheel selection, single-point

38 Evolutionary Computation with Biogeography-based Optimization

crossover with a crossover probability equal to 1, and a mutation probability equal to
0.01. For DE, we use a weighting factor F = 0.5 and a crossover constant CR = 0.5.
For PSO, we use inertial constant equal to 0.3, cognitive constant equal to 1, social
constant for swarm interaction equal to 1, and social constant for neighborhood
interaction equal to 1. For each algorithm, we use a population size N = 50, and an
elitism parameter equal to 2, which means that we keep the two best individuals
from one generation to the next. The dimension of each benchmark function is D = 20,
and the maximum number of fitness function evaluations (NFFEs) before program
termination is set to 20,000. We ran 25 Monte Carlo simulations on each benchmark to
get representative performances. To evaluate the performance of the algorithms, we
define the error value as () ()*f x f x− , where *x is the global minimum of the
function and x is the best value found by the algorithm. The results are given in Table
3.3, which shows the mean minimum errors found by each algorithm.

Function Name Search domain Minimum

F01 Sphere Function 100 100ix− ≤ ≤ 0

F02 Schwefel’s Problem 2.22 10 10ix− ≤ ≤ 0

F03 Schwefel’s Problem 1.2 100 100ix− ≤ ≤ 0

F04 Schwefel’s Problem 2.21 100 100ix− ≤ ≤ 0

F05 Generalized Rosenbrock’s Function 30 30ix− ≤ ≤ 0

F06 Step Function 100 100ix− ≤ ≤ 0

F07 Quartic Function 1.28 1.28ix− ≤ ≤ 0

F08 Generalized Schwefel’s Problem 2.26 500 500ix− ≤ ≤ −12,569.5

F09 Generalized Rastrigin’s Function 5.12 5.12ix− ≤ ≤ 0

F10 Ackley’s Function 32 32ix− ≤ ≤ 0

F11 Generalized Griewank’s Function 600 600ix− ≤ ≤ 0

F12 Generalized Penalized Function 1 50 50ix− ≤ ≤ 0

F13 Generalized Penalized Function 2 50 50ix− ≤ ≤ 0

Table 3.2. Benchmark functions; for the definitions
of these benchmark functions, see Appendix A

A Basic BBO Algorithm 39

From Table 3.3, we see that BBO performs best on 9 of the 13 benchmark
functions, while PSO performs best on the other three functions (F08, F11 and F12).
For function F06, both BBO and PSO perform best. Furthermore, we find that for
the unimodal functions (F01−F07), BBO usually obtains the best performance. BBO
performs as well as PSO for multimodal functions (F08−F13), and both algorithms
perform better than the other algorithms. This indicates that BBO is a competitive
optimization algorithm for solving optimization problems, including both unimodal
and multimodal functions.

Function BBO ACO DE ES GA PSO

F01 1.04E-04 2.05E+01 3.16E+03 5.67E+04 1.43E-03 3.68E-01

F02 6.29E-15 7.12E+02 5.38E+02 4.21E+03 3.80E+02 2.25E+02

F03 3.84E+01 4.33E+02 2.16E+02 5.80E+02 4.43E+03 1.76E+02

F04 6.35E-15 7.97E+01 2.34E+01 1.22E+01 4.10E+00 6.78E-01

F05 8.85E-01 8.90E+02 3.41E+01 2.34E+03 6.73E+01 6.74E+00

F06 0.00E+00 6.54E+00 2.15E+02 6.78E+03 3.24E+00 0.00E+00

F07 8.61E-09 6.05E+02 2.38E+01 4.21E+02 5.33E+02 2.58E+00

F08 4.97E+00 6.72E+02 1.25E+01 4.32E+01 1.05E+02 8.81E-01

F09 8.77E-01 8.97E+01 1.16E+02 5.38E+02 2.76E+01 4.54E+02

F10 4.18E-01 9.84E-01 3.87E+00 1.45E+00 3.40E-02 7.53E-01

F11 6.53E+00 6.76E+01 2.31E+01 7.89E+01 3.76E+02 3.30E+00

F12 4.64E-32 6.87E-08 2.53E-05 1.12E-07 3.54E-32 2.62E-32

F13 8.47E-32 1.83E-01 2.51E-07 7.82E-07 6.06E-31 9.52E-32

Table 3.3. Comparison of experimental results of BBO, ACO, DE, ES,
GA and PSO. The best value in each row is indicated in bold

B. Influence of population size

Next, we investigate the influence of population size on the performance of
BBO. In theory, increasing the population size will increase the diversity of the
solutions and promote the exploration of the search space. However, the choice of
the best population size is problem-specific. In this experiment, all the parameter
settings are the same as those used above except for population size. Performance
results for different population sizes are shown in Table 3.4.

40 Evolutionary Computation with Biogeography-based Optimization

From Table 3.4, we see that the performance of BBO with population size
N = 50 is better than other population sizes (N = 20, 100, and 200) for the majority
of the functions. The results tell us that although increasing population size can
increase the solution diversity and result in better exploration of the search space, a
population size that is too large (N = 100 or 200) considerably decreases the
probability of finding the best solution, and thus degrades performance. On the other
hand, when the population size is too small, for example N = 20, the algorithm lacks
diversity so that BBO is easily trapped in local minima. So we can conclude that a
moderate population size is best for obtaining the global optimum.

Function N = 20 N = 50 N = 100 N = 200

F01 6.77E-01 1.04E-04 8.03E+00 7.72E-02

F02 1.23E-08 6.29E-15 7.67E-15 2.36E-10

F03 5.31E+01 3.84E+01 9.53E+02 1.28E+02

F04 2.24E-07 6.35E-15 1.26E-10 6.44E-14

F05 6.32E+00 8.85E-01 2.93E+00 2.46E-01

F06 5.70E-12 0.00E+00 0.00E+00 0.00E+00

F07 1.38E-06 8.61E-09 8.43E-07 5.13E-09

F08 2.24E+00 4.97E+00 9.02E+00 8.09E+00

F09 6.70E-01 8.77E-01 8.29E-02 5.62E-01

F10 5.52E-02 4.18E-01 1.10E-01 4.78E-03

F11 1.86E+00 6.53E+00 6.72E+01 7.27E+00

F12 3.36E-14 4.64E-32 3.14E-20 3.43E-15

F13 2.74E-04 8.47E-32 5.65E-18 2.61E-12

Table 3.4. Comparison of experimental results for population sizes N = 20,
50, 100 and 200, where boldface indicates the best value in each row

C. Influence of dimension

In order to investigate the influence of problem dimension on the performance of
BBO, in this experiment, we choose dimensions D = 20, 30, 50 and 100, while all
other parameter settings are the same as those used above. The results are shown in
Table 3.5 after D × 1,000 NFFEs. From Table 3.5, we see that overall performance
decreases when the problem dimension increases. At D = 20, BBO can perform best
for the majority of the functions, but at D = 100, BBO can only locate the near-
global optimum for all functions. From these results, we recognize that increasing
the problem dimension makes the problem more difficult.

A Basic BBO Algorithm 41

Function D = 20 D = 30 D = 50 D = 100

F01 1.04E-04 6.70E-02 8.09E-01 6.76E-02

F02 6.29E-15 1.32E-04 6.73E-04 2.31E-03

F03 3.84E+01 8.39E-01 2.26E+02 1.45E+02

F04 6.35E-15 4.23E-14 5.43E-12 3.92E-10

F05 8.85E-01 2.16E+00 2.23E+00 1.45E+00

F06 0.00E+00 0.00E+00 0.00E+00 4.86E-12

F07 8.61E-09 7.38E-15 5.64E-10 9.02E-09

F08 4.97E+00 5.32E+01 7.89E+02 7.78E+02

F09 8.77E-01 1.89E-01 9.14E-01 2.31E+00

F10 4.18E-01 3.12E+00 5.98E-01 8.32E-02

F11 6.53E+00 7.78E+00 9.61E-01 4.43E+01

F12 4.64E-32 3.54E-30 3.10E-32 2.67E-20

F13 8.47E-32 3.56E-10 1.90E-08 5.51E-15

Table 3.5. Comparison of experimental results
for problem dimensions D = 20, 30, 50 and 100 at D × 1,000 NFFEs,

where boldface indicates the best value in each row

D. Influence of mutation rate

Here we investigate the influence of mutation rate. Selecting the best mutation
rate is not easy for a specific problem, and there are no general rules. Three different
mutation rates, Pm = 0.1, 0.01 and 0.001, are used in this experiment. All remaining
parameter values are the same as those used above. Table 3.6 shows the results for
different mutation rates. Based on these results, we find that mutation rate Pm = 0.01
gives the best performance. These results indicate that mutation helps increase
diversity and increases the chances for finding a good solution, but a high mutation
rate (Pm = 0.1) results in too much exploration and is detrimental to the search. As
mutation rate decreases from 0.1 to 0.01, optimization performance increases
greatly, but as the mutation rate continues to decrease to 0.001, optimization
performance decreases rapidly. A small mutation rate is not able to sufficiently
increase solution diversity.

42 Evolutionary Computation with Biogeography-based Optimization

Function Pm = 0.1 Pm = 0.01 Pm = 0.001

F01 3.67E-03 1.04E-04 3.48E-05

F02 8.81E-08 6.29E-15 4.55E-12

F03 7.42E+01 3.84E+01 5.17E+01

F04 1.55E-13 6.35E-15 7.89E-14

F05 2.16E+00 8.85E-01 3.25E+00

F06 4.37E-01 0.00E+00 1.26E-04

F07 6.74E-05 8.61E-09 7.80E-07

F08 9.03E+01 4.97E+00 5.75E+01

F09 9.67E-01 8.77E-01 9.43E-01

F10 8.47E-02 4.18E-01 3.56E-01

F11 2.14E+00 6.53E+00 6.53E-01

F12 3.22E-19 4.64E-32 7.80E-30

F13 5.60E-15 8.47E-32 3.49E-31

Table 3.6. Comparison of experimental results for mutation
rates Pm = 0.1, 0.01 and 0.001, where boldface indicates

the best value in each row

E. Influence of maximum migration rate

As mentioned above, the choice of maximum migration rate may be important
for the performance of BBO. In this experiment, we test some combinations of
maximum immigration rate I and maximum emigration rate E to test the
performance. We use three combinations: (I = 1, E = 10), and (I = 1, E = 1), and
(I = 10, E = 1). All other parameter values are the same as those used above, and the
results are shown in Table 3.7.

It can be seen in Table 3.7 that each combination obtains the best performance
on the same number of functions, which indicates that the maximum migration rates
do not have a noticeable effect on BBO performance. This is because migration rates
are used in a relative sense; therefore, a simple scaling of their magnitudes does not
affect BBO performance.

A Basic BBO Algorithm 43

Function I = 1, E = 10 I = 1, E = 1 I = 10, E = 1

F01 6.73E-02 1.04E-04 3.16E-05

F02 1.26E-10 6.29E-15 0.00E+00

F03 5.71E+01 3.84E+01 6.44E+00

F04 5.34E-08 6.35E-15 5.27E-10

F05 6.38E-02 8.85E-01 4.20E+00

F06 0.00E+00 0.00E+00 0.00E+00

F07 1.07E-07 8.61E-09 7.16E-07

F08 2.35E+01 4.97E+00 6.65E+00

F09 2.27E-02 8.77E-01 5.04E-02

F10 5.43E-02 4.18E-01 3.47E-01

F11 7.61E+00 6.53E+00 9.04E+00

F12 1.49E-15 4.64E-32 2.12E-32

F13 4.27E-32 8.47E-32 7.32E-10

Table 3.7. Comparison of experimental results using maximum
migration rates (I = 1, E = 10), and (I = 1, E = 1), and (I = 10,
E = 1), where boldface indicates the best value in each row

Discussion

The BBO algorithm is a simple, robust and novel global optimization method.
BBO has good optimization performance due to its migration and mutation
operators. From the experimental results we can conclude the following:

1) The BBO algorithm is an effective optimization method, and it can obtain the
global optimum (or near-global optimum) for many benchmark functions.

2) Experiment A (Table 3.3) shows that BBO is competitive with other
optimization algorithms on the majority of functions.

3) Experiment B (Table 3.4) shows that a moderate population size is best for
obtaining the global optimum.

44 Evolutionary Computation with Biogeography-based Optimization

4) Experiment C (Table 3.5) shows that BBO has difficulty obtaining the
optimum for high-dimensional functions.

5) Experiment D (Table 3.6) shows that a moderate mutation rate of about 1%
gives the best performance for BBO.

6) Experiment E (Table 3.7) shows that the maximum migration rates do not
greatly affect BBO performance.

3.4. Conclusion

We have seen how biogeography, the study of the geographical distribution of
biological species, can be used to obtain the BBO algorithm. We have also seen that
BBO has similarities with other bio-inspired optimization algorithms from the
viewpoint of algorithmic features, but it is distinctive enough to be considered a
separate optimization algorithm rather than a special type of some other EA. We
have applied BBO to benchmark functions, and we have shown that BBO provides
good performance in comparison with other optimization algorithms. The
performance results show that BBO theory can be successfully applied to general
optimization problems. In the next chapter, we will discuss other aspects of
biogeography theory that can inspire variations in the BBO algorithm.

4

BBO Extensions

If natural biogeography is an optimization process, then it stands to reason that
modeling BBO more closely after natural biogeography could result in better
optimization performance. With this idea in mind, we simulate these BBO
extensions on a set of benchmark functions and application problems, with results
that support the hypothesis that natural biogeography is itself an optimization
process.

Overview of the chapter

This chapter discusses some extensions that can be made to BBO to improve
performance. We first discuss the effects of different migration curve shapes on
BBO in section 4.1, and we use blended migration to improve performance in
section 4.2. We then provide some alternative approaches to BBO implementation in
section 4.3. Finally, we apply BBO extensions to solve some real-world
optimization problems in section 4.4.

4.1. Migration curves

Up to this point, we have assumed that the BBO migration curves are linear as
shown in Figure 3.1. This is a convenient assumption, and it corresponds to linear
rank-based selection in GAs. But in biogeography, migration curves are nonlinear,
and the exact shape of biogeography migration curves is difficult to quantify and
changes from one habitat to the next. It was surmised that nonlinear migration
curves might give better performance than the linear curves in the basic BBO
algorithm. This led to the investigation of several different migration curves. Here

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

46 Evolutionary Computation with Biogeography-based Optimization

we discuss three promising curves in detail, which are motivated by influence
factors that are associated with biogeography, as described in Chapter 1. These curves
include quadratic migration curves, sinusoidal migration curves and generalized
sinusoidal migration curves, which are shown in Figure 4.1 [MA 10a, MA 11b]. It is
assumed that the maximum immigration rate and maximum emigration rate are both
equal to 1.

Before introducing the nonlinear migration curves, we first review the
normalized linear migration rates depicted in Figure 3.1:

1k k

k k

r
r

λ
μ

= −
=

 [4.1]

where kr is the fitness rank of the kth solution in the population, and is normalized
to the range [0, 1]. 0kr = denotes the least fit solution, and 1kr = denotes the most
fit solution. This formulation means that the immigration rate λ and the emigration
rate μ are linear functions of solution fitness rank. Although linear migration curves
do not exist in natural biogeography, they exhibit migration features and properties
that are much simpler than those exhibited by general, nonlinear migration curves.

a) b) c)

Figure 4.1. Three nonlinear migration curves, where a), b) and c),
respectively, show a quadratic migration curve, sinusoidal migration

curve and generalized sinusoidal migration curve. λ is the immigration rate
and μ is the emigration rate, and it is assumed that the maximum immigration

rate and the maximum emigration rate are both equal to 1

The first nonlinear curve that we discuss is the quadratic migration curve, which
assigns the migration rates as:

()
()

2

2

1k k

k k

r

r

λ

μ

= −

=
 [4.2]

BBO Extensions 47

Migration rates λ and μ are concave quadratic functions of solution fitness rank,
as shown in Figure 4.1(a). This curve is inspired by island biogeography, which was
developed to explain the species distribution of biological habitats. Based on an
experimentally tested theory of island biogeography [WHI 98], we know that
migration in a single habitat follows a quadratic function of the size of the habitat
and its geographical proximity to other habitats. According to equation [4.2], when
the solution fitness rank is small, the immigration rate rapidly decreases from its
maximum while the emigration rate slowly increases from zero. When the solution
fitness rank is large, the immigration rate gradually decreases to zero and the
emigration rate rapidly increases to its maximum.

The second nonlinear curve is the sinusoidal migration curve, which assigns the
migration rates as:

()()

()()

1 cos 1
2
1 cos 1
2

k k

k k

r

r

λ π

μ π

= ⋅ +

= − ⋅ +
 [4.3]

Migration rates λ and μ are sinusoidal functions of solution fitness rank, as shown
in Figure 4.1(b). This curve takes into account species mobility, the evolution of
particular species and population size. These factors make the migration curves look
like sinusoids. Based on equation [4.3], when the solution fitness rank is small or
large, the immigration rate and the emigration rate both change slowly from their
extremes, and when the solution fitness rank is medium, the migration rates change
rapidly.

Classical island biogeography theory indicates that the immigration rate
decreases and the emigration rate increases as the number of species increases in a
habitat. In BBO, this corresponds to a monotonic decrease in immigration rate and a
monotonic increase in emigration rate as solution fitness rank increases, as shown in
the previous two migration curves, although their shapes are different. This means
that as a solution becomes more fit, the probability of incorporating features from
other solutions decreases. However, recent advances in biogeography indicate that
for some pioneer species, at least for plants, an initial increase in species count
results in an initial increase in immigration rate and an initial decrease in emigration
rate [WU 95]. This is because the original unfavorable environmental conditions of
the island are ameliorated by the first colonists, which make it more hospitable to
additional species. That is, the positive effect of increased diversity due to initial

48 Evolutionary Computation with Biogeography-based Optimization

immigration overcomes the negative effect of increased species count. In BBO, this
corresponds to an initial increase in immigration rate as a very poor candidate
solution initially improves its fitness. This can be viewed as a temporary positive
feedback mechanism in BBO. A very poor candidate solution accepts features from
other solutions, increasing its fitness, which subsequently increases its likelihood of
accepting even more features from other solutions. This idea can also be
incorporated into other bio-inspired optimization algorithms [MÜH 93], but its
motivation comes from biogeography. These migration curves are depicted in Figure
4.1(c), and are expressed as:

()()

()()

1 cos 1
2
1 cos 1
2

k k

k k

r

r

λ π β

μ π β

= ⋅ + +

= − ⋅ + +
 [4.4]

where β is a negative trigonometric offset angle (typically between −π/2 and 0) that
denotes the degree of temporary positive immigration rate feedback. With this
curve, fitness rank is normalized to [0, 1−β/π]. This is called the generalized
sinusoidal migration curve. This curve shows that immigration initially increases
with solution fitness rank. It gives improving solutions the momentum that they
need to continue improving. As a solution continues to become fitter after the initial
increase in immigration, immigration begins to decrease to give less fit solutions
relatively greater opportunities to immigrate good solution features.

To test the performance of the proposed nonlinear migration curves, they are
compared with the linear migration curve using 13 benchmark functions, which are
described in Table 3.2, where F01−F07 are unimodal functions and F08−F13 are
multimodal functions. For a fair comparison, we use the nonlinear migration curves
instead of the linear migration curve in the basic BBO algorithm. The other
parameters of BBO are the same as described in section 3.3 of Chapter 3. In
addition, the dimension of each benchmark function is set to 30, and the maximum
number of fitness function evaluations (NFFEs) is set to 20,000. The parameter β of
the generalized sinusoidal migration curve is set to −π/2.

Table 4.1 summarizes the performance on 13 benchmark functions for the four
migration curves. It is seen from this table that the three nonlinear migration curves
generally perform better than the linear migration curve, and the generalized
sinusoidal migration curve performs the best for most of the functions. The results
indicate that migration curves that are closely associated with biogeography improve
the optimization ability of BBO.

BBO Extensions 49

Function Linear Quadratic Sinusoidal Generalized

F01 2.17E−02 8.24E−02 6.38E−02 8.24E−03

F02 1.84E−03 2.39E−04 8.03E−04 1.47E−04

F03 6.33E−02 7.93E+03 1.31E−02 3.08E−03

F04 5.68E−14 4.31E−14 4.34E−14 4.64E−14

F05 9.24E−01 5.14E−01 3.47E+00 8.36E−01

F06 0.00E+00 1.19E−02 0.00E+00 8.21E−15

F07 1.37E−15 1.84E−04 1.16E−15 0.00E+00

F08 2.63E−06 2.72E−07 5.08E−06 9.38E−09

F09 1.55E−13 1.56E−01 1.21E−14 4.38E−04

F10 0.00E+00 5.38E−01 9.71E−01 0.00E+00

F11 7.49E−01 2.98E−01 1.97E−01 3.65E−01

F12 2.26E−30 2.87E−22 4.11E−30 7.81E−25

F13 1.28E−10 5.54E−32 7.36E−11 9.05E−11

Table 4.1. Comparison of experimental results of linear migration curve, quadratic
migration curve, sinusoidal migration curve and generalized sinusoidal migration

curve. Bold face indicates the mean minimum error value for each function

4.2. Blended migration

In biogeography, migration is the movement of species between habitats. In
BBO, migration is a probabilistic operator that adjusts each solution kx by sharing
features between solutions. In the basic BBO algorithm, the probability that the
solution kx is selected as the immigrating solution is proportional to its immigration
rate λk, and the probability that the solution jx is selected as the emigrating solution
is proportional to the emigration rate μj. Migration can be expressed as:

() ()SIV SIVk jx x← [4.5]

where an SIV is a solution feature, equivalent to a gene in GAs. In other words, an
SIV is a search variable and the set of all possible SIVs is the search space from

50 Evolutionary Computation with Biogeography-based Optimization

which an optimal solution will be selected. Equation [4.5] means that a solution
feature of solution kx is replaced by a feature from solution jx .

Here we propose a migration operator called blended migration [MA 10b,
MA 11a], which is a generalization of the basic BBO migration operator, and which
is motivated by blended crossover in GAs. Blended crossover is frequently used in
GAs [MÜH 93]. In blended crossover, instead of copying a parent’s gene to a child
chromosome, the offspring are obtained by combining parents’ genes. In blended
migration in BBO, a solution feature of solution kx is not simply replaced by
a feature from solution jx . Instead, a new solution feature in a BBO solution is
comprised of two components: the migration of a feature from another solution, and
the migration of a feature from itself. Blended migration is defined as:

() () () ()SIV SIV 1 SIVk k jx x xα α← + − [4.6]

where α is a real number between 0 and 1. It could be random or deterministic, or it
could be proportional to the relative fitness of the solutions kx and jx . Equation
[4.6] means that the new solution feature (SIV) of kx comes from a combination of
its own SIV and the emigrating solution’s SIV.

The core idea of the proposed blended migration operator is based on two
considerations. First, the operator is easily used with continuous-domain
optimization problems. Second, blended combination operators have been widely
and successfully used in other bio-inspired optimization algorithms. Blended
migration is an attractive BBO modification from a couple of different viewpoints.
On the one hand, good solutions will be less likely to be degraded due to migration.
On the other hand, poor solutions can still accept a lot of new features from good
solutions. That is, if the solution xk is much more fit than the solution xj, it would
make sense to have α close to 1; but if the solution xk is much less fit than the
solution xj, it would make sense to have α close to 0. Blended migration is similar to
the blended crossover approach of the breeder GA [MÜH 93] and ES [MCT 08], in
which both of the parents can contribute characteristics to a single feature of an
offspring.

To explore the effect of blended migration on BBO performance, we test the
basic BBO (α=0) and blended BBO (with α=0.5 and 0.8) on a set of benchmark
functions. We use the same BBO parameters as described in the previous
experiment, and the results are shown in Table 4.2.

BBO Extensions 51

Function
Basic BBO

(α=0)
Blended BBO

(α=0.5)
Blended BBO

(α=0.8)

F01 2.17E−02 3.11E−03 3.25E−02

F02 1.84E−03 5.26E−06 7.74E−05

F03 6.33E−02 1.38E−03 2.36E−02

F04 5.68E−14 2.87E−14 1.84E−14

F05 9.24E−01 3.74E−01 6.25E+00

F06 0.00E+00 0.00E+00 0.00E+00

F07 1.37E−15 1.96E−15 8.65E−16

F08 2.63E−06 4.35E−07 3.32E−06

F09 1.55E−13 1.06E−13 8.74E−13

F10 0.00E+00 6.32E−01 5.62E−01

F11 7.49E−01 4.14E−01 2.97E+00

F12 2.26E−30 4.43E−32 1.65E−30

F13 1.28E−10 2.54E−11 3.11E−10

Table 4.2. Comparison of experimental results of basic
BBO, and blended BBO with α = 0.5 and 0.8, where boldface

indicates the mean minimum error value for each function

Table 4.2 shows that blended BBO with α = 0.5 performs the best on nine
functions, blended BBO with α = 0.8 performs the best on two functions, and basic
BBO (α = 0) performs the best on one function. For function F06, all the three
algorithms attain the global optimum. This result indicates that the value of α is
influential on BBO performance. Blended BBO with α > 0 generally outperforms
basic BBO (α = 0), which means that blended migration can significantly improve the
optimization ability of BBO. Also, blended BBO with α = 0.5 is better than blended
BBO with α = 0.8, which indicates that the best migration option is for a new solution
feature to be contributed equally from itself and the selected emigrating solution.

4.3. Other approaches to BBO

The basic BBO algorithm presented in Figure 3.5 in Chapter 3 is called partial
immigration-based BBO. The word “partial” means that only one solution feature is

52 Evolutionary Computation with Biogeography-based Optimization

considered at a time for immigration. That is, for temporary solution zk, λk is tested
against a random number once for every feature to decide whether or not to replace
that feature in zk. The term “immigration-based” means that λk is first used to decide
whether or not to immigrate to zk; then the μj variables are used to choose the
emigrating solution, but only if immigration was selected as described in
the standard BBO algorithm.

However, there are also other ways that could be used to implement migration.
Instead of testing λk against a random number once for each solution feature, we could
test λk against a random number only once for each solution, and then if immigration
were selected, we could replace all of the solution features in zk. We call this total
immigration-based BBO, an outline of which is presented in Figure 4.2.

Initialize a population of candidate solutions { kx } for k ∈ [1, N]

While not (termination criterion)

For each kx , set emigration rate μk proportional to the fitness of kx , where μk

 is normalized to [0, 1]

For each kx , set immigration rate λk = 1 − μk

{ kz } ← { kx }

For each solution zk

 Use λk to probabilistically decide whether to immigrate to zk

 If immigrating then

 For each solution feature SIV

 Use {μi} to probabilistically select the emigrating solution xj

 zk(SIV) ← xj(SIV)

 Next solution feature

 End if

 Probabilistically decide whether to mutate zk

Next solution

{ kx } ← { kz }

Next generation

Figure 4.2. Outline of total immigration-based BBO with a
population size of N. { kx } is the population of solutions and { kz }
is a temporary population of solutions. kx is the kth candidate

solution, and ()kx SIV is the solution feature SIV of kx

BBO Extensions 53

As a third option, we could first use μk to decide whether or not to emigrate a
solution feature from a given solution. Then, if emigration were selected, the λj
values could be used to select the immigrating solution. This idea results in partial
emigration-based BBO, an outline of which is shown in Figure 4.3.

Initialize a population of candidate solutions { kx } for k ∈ [1, N]

While not (termination criterion)

For each kx , set emigration rate μk proportional to the fitness of kx , where μk is

normalized to [0,1]

For each kx , set immigration rate λk = 1 − μk

{ kz } ← { kx }

For each solution xr (r = 1 to N)

For each solution feature SIV

Use μr to probabilistically decide whether to emigrate from xr

If emigrating then

 Use {λj} to probabilistically select the immigrating solution zk

 zk(SIV) ← xr(SIV)

End if

Next solution feature

Next solution

For each zk in the population, probabilistically decide whether to mutate zk

{ kx } ← { kz }

Next generation

Figure 4.3. Outline of partial emigration-based BBO with a population size of N.
{ kx } is the population of solutions and { kz } is a temporary population of solutions.

kx is the kth candidate solution, and ()kx SIV is the solution feature SIV of kx

Finally, instead of testing μk against a random number once for each solution
feature, we could test μk against a random number only once for each solution,
and then if emigration were selected, all solution features could be emigrated
from xk. This is called total emigration-based BBO, an outline of which is shown in
Figure 4.4.

54 Evolutionary Computation with Biogeography-based Optimization

Initialize a population of candidate solutions { kx } for k ∈ [1, N]

While not (termination criterion)

For each kx , set emigration rate μk proportional to the fitness of kx , where μk is

normalized to [0,1]

For each kx , set immigration rate λk = 1 − μk

{ kz } ← { kx }

For each solution xr (r = 1 to N)

Use μr to probabilistically decide whether to emigrate from xr

If emigrating then

For each solution feature SIV

 Use {λj} to probabilistically select the immigrating solution zk

 zk(SIV) ← xr(SIV)

Next solution feature

End if

Next solution

For each zk in the population, probabilistically decide whether to mutate zk

{ kx } ← { kz }

Next generation

Figure 4.4. Outline of total emigration-based BBO with a population
size of N. { kx } is the population of solutions and { kz } is a
temporary population of solutions. kx is the kth candidate

solution, and ()kx SIV is the solution feature SIV of kx

These four combinations of partial/total and immigration/emigration are inspired
by the original philosophy of BBO migration [SIM 11a, MA 13a, MA 13b]. In
addition, each of these approaches could be combined with the nonlinear migration
curves as discussed in section 4.1, and/or blended migration as discussed in
section 4.2. As with any other EA, we can also implement elitism or other strategies,
although these procedures are not shown in the outlines of the algorithms.

To explore the effect of all the four BBO migration options, we use the same
BBO parameters as described in the previous experiment. In addition, we use linear

BBO Extensions 55

migration curves as described in Figure 3.1. Table 4.3 summarizes the performance
of all the four BBO migration options on the 13 benchmark functions.

Function

Partial

immigration

BBO

Total immigration

BBO

Partial emigration

BBO

Total emigration

BBO

F01 2.17E−02 7.26E−02 3.57E−05 1.41E−05

F02 1.84E−03 1.04E−03 7.86E−05 5.93E−05

F03 6.33E−02 7.82E−01 9.16E−04 1.02E−04

F04 5.68E−14 9.65E−15 6.45E−19 7.44E−20

F05 9.24E−01 3.78E−01 1.46E−02 1.85E−02

F06 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F07 1.37E−15 5.37E−14 9.23E−18 4.79E−19

F08 2.63E−06 2.90E−06 6.14E−04 3.26E−04

F09 1.55E−13 7.13E−12 8.91E−11 9.08E−11

F10 0.00E+00 8.45E−11 2.93E−11 2.96E−11

F11 7.49E−01 0.00E+00 8.24E−11 4.33E-10

F12 2.26E−30 1.98E−30 8.75E−15 2.97E−14

F13 1.28E−10 3.26E−10 3.81E−06 1.04E−05

Table 4.3. Benchmark results for four BBO migration options, where bold face
indicates the mean minimum error value for each function

For unimodal functions F01−F07, total emigration-based BBO performs the best,
except for function F06, for which all the four algorithms attain the global optimum,
and function F05, for which partial emigration-based BBO performs the best. For
multimodal functions F08−F13, partial immigration-based BBO performs the best
on four functions (F08, F09, F10 and F13), and total immigration-based BBO
performs the best on the other two functions (F11 and F12). The results indicate that
emigration-based BBO algorithms are better than immigration-based BBO

56 Evolutionary Computation with Biogeography-based Optimization

algorithms for unimodal functions, and immigration-based BBO algorithms are
better than emigration-based BBO algorithms for multimodal functions. These
results show that migration approaches can affect BBO performance, and the four
migration options of partial/total and immigration/emigration can be adapted for
different classes of benchmark functions.

4.4. Applications

In this section, we investigate the performance of BBO extensions on some real-
world optimization problems from the 2011 IEEE Congress on Evolutionary
Computation. These problems are briefly summarized in Table 4.4, and a more
detailed description can be found in Das and Suganthan [DAS 10]. We compare
total emigration-based BBO, combined with the generalized sinusoidal migration
curve with β = −π/2 and blended migration with α = 0.5, which generally provided
better performance than the other BBO extensions in the previous experiments, with
some advanced versions of bio-inspired optimization algorithms. These other
algorithms include stud GA (which we call SGA) [KHA 98], standard PSO 2007
(which we call SPSO 07) [BRA 07, QU 12] and adaptive DE (which we call ADE)
[DAS 11a, DAS 11b, GHO 11, GON 11]. We compare with SGA because SGA is
an improvement of the classic GA and uses the best individual at each generation for
crossover. We compare with PSO because it often offers good performance and is
itself a relatively new evolutionary algorithm. We use the current standard PSO
2007, obtained from Particle Swarm Central (http://www.particleswarm.info/). We
compare with DE because it is one of the most powerful evolutionary algorithms
and has demonstrated excellent performance on many problems. We use the
adaptive DE proposed by Asafuddoula et al. [ASA 11], where control parameter
settings are gradually adapted according to the learning progress, and which uses
center-based differential-exponential crossover and incorporates local search to
improve its efficiency.

The other parameters used in BBO in this experiment are the same as those used
in the previous experiment. For the SGA, we use real coding, roulette-wheel
selection, single-point crossover with a crossover probability of 1 and a mutation
probability of 0.001. For SPSO 07, we use an inertia weight of 0.8, a cognitive
constant of 0.5, a social constant for swarm interaction of 1.0 and a social constant
for neighborhood interaction of 1.0. For ADE, we use an adaptive scaling factor (F)
with the range [0.1−0.5], and an adaptive crossover rate (CR) with the range
[0.8−0.98]. Each algorithm has a population size of 50 and a maximum of 100,000
fitness function evaluations. The results of solving these real-world optimization
problems are given in Table 4.5. All results are computed from 25 Monte Carlo
simulations.

BBO Extensions 57

Problem Dimension Comments

P01 6 Parameter estimation for frequency-modulated (FM) sound waves

P02 30 Lennard-Jones potential problem

P03 1 Bifunctional catalyst blend optimal control problem

P04 1 Optimal control of a nonlinear stirred tank reactor

P05 30 Tersoff potential function minimization problem (instance 1)

P06 30 Tersoff potential function minimization problem (instance 2)

P07 20 Spread spectrum radar polyphase code design

P08 7 Transmission network expansion planning problem

P09 126 Large-scale transmission pricing problem

P10 12 Circular antenna array design problem

P11.1 120 Dynamic economic dispatch problem (instance 1)

P11.2 216 Dynamic economic dispatch problem (instance 2)

P11.3 6 Static economic load dispatch problem (instance 1)

P11.4 13 Static economic load dispatch problem (instance 2)

P11.5 15 Static economic load dispatch problem (instance 3)

P11.6 40 Static economic load dispatch problem (instance 4)

P11.7 140 Static economic load dispatch problem (instance 5)

P11.8 96 Hydrothermal scheduling problem (instance 1)

P11.9 96 Hydrothermal scheduling problem (instance 2)

P11.10 96 Hydrothermal scheduling problem (instance 3)

P12 26 Spacecraft trajectory optimization problem (Messenger)

P13 22 Spacecraft trajectory optimization problem (Cassini 2)

Table 4.4. Problem set descriptions. More details about these
problems can be found in Das and Suganthan [DAS 10]

58 Evolutionary Computation with Biogeography-based Optimization

According to Table 4.5, BBO performs best on eight problems (P02, P05, P06, P10,
P11.2, P11.8, P11.9 and P11.10), ADE performs best on seven problems (P01, P09,
P11.4, P11.6, P11.7, P12 and P13), SGA performs best on three problems (P07, P11.1
and P11.5) and SPSO 07 performs best on problem P04. In addition, we see that for
problems P03 and P08, all the four algorithms attain the same optimum, and for problem
P11.3, SGA, ADE and BBO, all attain the same optimum. These results indicate that
BBO performs similarly to ADE, and is significantly better than SGA and SPSO 07.

Problem SGA SPSO 07 ADE BBO

P01 7.44E−18 2.60E−02 0.00E+00 7.35E−17

P02 −2.62E+01 −2.81E+01 −2.60E+01 −2.83E+01

P03 1.15E−05 1.15E−05 1.15E−05 1.15E−05

P04 2.03E+01 1.37E+01 2.54E+01 1.43E+01

P05 −3.68E+01 −3.27E+01 −3.66E+01 −3.69E+01

P06 −2.91E+01 −2.68E+01 −2.91E+01 −2.92E+01

P07 5.00E−01 5.08E−01 5.08E−01 9.97E−01

P08 2.20E+02 2.20E+02 2.20E+02 2.20E+02

P09 3.05E+02 1.60E+03 4.62E+01 1.04E+03

P10 −2.01E+01 −2.09E+01 −2.17E+01 −2.18E+01

P11.1 4.79E+04 1.50E+05 5.73E+04 5.25E+04

P11.2 1.81E+07 6.10E+06 1.06E+06 1.05E+06

P11.3 1.54E+04 1.58E+04 1.54E+04 1.54E+04

P11.4 1.80E+04 1.82E+04 1.79E+04 1.89E+04

P11.5 3.26E+04 3.27E+04 3.27E+04 3.29E+04

P11.6 1.21E+05 1.37E+05 1.20E+05 1.32E+05

P11.7 1.95E+06 2.13E+06 1.70E+06 1.91E+06

P11.8 9.54E+05 1.16E+06 9.31E+05 9.23E+05

P11.9 9.39E+05 1.60E+06 1.23E+06 9.30E+05

P11.10 9.51E+05 1.21E+06 9.29E+05 9.24E+05

P12 7.89E+00 1.38E+01 7.07E+00 1.64E+01

P13 8.65E+00 8.78E+00 8.61E+00 1.43E+01

Table 4.5. Comparison of real-world optimization results for SGA, SPSO 07,
ADE and BBO. The best result in each row is shown in bold

BBO Extensions 59

If we use more advanced versions of GA, PSO and DE, it might be possible to
obtain better results than those here. However, the same could be said for other
improvements of BBO. The purpose of these comparisons is not to tune our
algorithms to obtain the best possible performance for specific problems, but rather
to show that BBO is a competitive algorithm for real-world optimization problems.

4.5. Conclusion

We have seen that BBO is actually a family of algorithms, and so it could be
called a metaheuristic. It includes the options shown in Table 4.6 based on migration
curves, migration blending and migration approaches. We have also seen that BBO
is a competitive algorithm for benchmark functions and real-world optimization
problems. A more intensive study of the combinations of the options in Table 4.6
and other BBO extensions inspired by other aspects of biogeography remains as a
task for future research. In the next chapter, we will discuss some of the theoretical
aspects of BBO.

Migration curves Migration blending Migration approaches

Linear None (α = 0) Partial immigration-based

Quadratic α = 0.5 Total immigration-based

Sinusoidal α = some other constant Partial emigration-based

Generalized sinusoidal α ∝ fitness Total emigration-based

Table 4.6. BBO implementation options. BBO can be implemented
with the combination of any choice from column 1, any choice from

column 2 and any choice from column 3

5

BBO as a Markov Process

The study of bio-inspired optimization algorithms has often been ad hoc,
simulation-based and non-analytic. Historically, engineers have been more
concerned with the applications of algorithms than with their mathematical analyses.
Gradually, engineers have begun to focus more on the questions of how and why. It
is important for engineers who want to become well informed and well rounded in
the area of evolutionary computation research to understand and answer these
questions. Markov theory has become a fundamental area of mathematics with
applications in physics, chemistry, computer science, social science, engineering,
biology and other areas. Markov theory is a good way to answer theoretical
questions about bio-inspired optimization algorithms, and it might also lead to
unexpected and new avenues of research.

Overview of the chapter

In this chapter, we will see that Markov theory provides insight into BBO
behavior. Section 5.1 gives an overview of Markov theory definitions and notations,
and is the foundation of the BBO analysis in this chapter. Section 5.2 develops a
Markov model for the basic BBO algorithm, and section 5.3 analyzes the
convergence properties of BBO for binary problems. Section 5.4 develops and
discusses Markov models of BBO extensions.

5.1. Markov definitions and notations

Markov models have been a valuable theoretical tool to analyze bio-inspired
optimization algorithms, including simple genetic algorithms [DAV 93, MA 15a, MA
16b, NIX 92, REE 03, SIM 13a, SIM 13b, SUZ 95, SUZ 98] and simulated annealing
[LUN 86]. A Markov chain is a random process which has a discrete set of possible

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

62 Evolutionary Computation with Biogeography-based Optimization

state values S = {si} for i = 1, 2, …, T. For instance, the weather might be described by
the set of states S = {rainy, nice, snowy}. We use the notation S(t) to denote the state at
time step t. The initial state is S(0), the state at the next time step is S(1), and so on.
The system state might change from one time step to the next, or it might remain the
same from one time step to the next. The transition from one state to another is entirely
probabilistic. In a first-order Markov process, also called a first-order Markov chain,
the probability that the system transitions to any given state at the next time step
depends only on the current state; that is, the probability is independent of all previous
states. The probability that the system transitions from state si at time step t to sj is
given by the probability pij(t), which is called a transition probability. If the transition
probability is independent of t, that is, pij(t1) = pij(t2) for all i, j ∈ [1, T] and for all t1
and t2, then the Markov chain is said to be homogeneous. The T × T matrix P = [pij] is
called the transition matrix. Therefore,

1
1 for 1, ,

T

ijj
p i T

=
Σ = = L [5.1]

where pij is the element in the ith row and jth column of matrix P, which is also
called the probability matrix, or the stochastic matrix of the Markov process.
Equation [5.1] indicates that the sum of the elements of each row of P is 1.

EXAMPLE 5.1.–

According to [KEN 74], the Land of Oz never has two nice days in a row. If it is
nice one day, then the next day has a 50% chance of rain and a 50% chance of snow.
If it rains, then the next day has a 50% chance of rain again, a 25% chance of snow
and a 25% chance of nice weather. If it snows, then the next day has a 50% chance
of snow again, a 25% chance of rain and a 25% chance of nice weather. We see that
the weather forecast for a given day depends solely on the weather of the previous
day. If we assign states R, N and S, to rain, nice weather and snow, respectively, then
we can form a Markov matrix that represents the probability of various weather
transitions:

0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5

R N S
R

P N
S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [5.2]

Suppose a Markov process begins in state si at time 0. We know from the
previous discussion that the probability that the process is in state sk at time 1 is

BBO as a Markov Process 63

given by Pr((1) (0))k i ikS s S s p= = = . Next, we consider the following time step.
We can use the total probability theorem [MIT 05] to find the probability that the
process is in state sj at time 2 as:

1 1

2 2

1 1 2 2

1

Pr((2) (0))

Pr((1) (0)) Pr((2) (1))

Pr((1) (0)) Pr((2) (1))

Pr((1) (0)) Pr((2) (1))

j i

i j

i j

T i j T

i j i j iT Tj

T

ik kj
k

S s S s

S s S s S s S s

S s S s S s S s

S s S s S s S s

p p p p p p

p p
=

= =

= = = = = +

= = = = + ⋅⋅⋅ +

= = = =

= + + ⋅⋅⋅ +

=∑

 [5.3]

But this is equal to the element in the ith row and jth column of the square of P;
that is,

2Pr((2) (0))j i ij
S s S s P⎡ ⎤= = = ⎣ ⎦ [5.4]

Continuing this line of reasoning in an inductive manner, we find that:

Pr(() (0)) t
j i ij

S t s S s P⎡ ⎤= = = ⎣ ⎦ [5.5]

That is, the probability that the Markov process transitions from state si to state sj
after t time steps is equal to the element in the ith row and jth column of .tP

In Example 5.1, we can compute tP for various values of t to obtain:

2

0.4375 0.1875 0.3750
0.3750 0.2500 0.3750
0.3750 0.1875 0.4375

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

4

0.4023 0.1992 0.3984
0.3984 0.2031 0.3984
0.3984 0.1992 0.4023

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [5.6]

8

0.4000 0.2000 0.4000
0.4000 0.2000 0.4000
0.4000 0.2000 0.4000

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

64 Evolutionary Computation with Biogeography-based Optimization

Now suppose that we do not know the initial state of the Markov process, but we
do know the probabilities for each state; the probability that the initial state S(0) is
equal to sk is given by () []0 , 1,kp k T∈ . Then, we can use the total probability
theorem [MIT 05] to obtain:

1 1 2 2

1

1

Pr((1))
Pr((0)) Pr((0)) Pr((0))

Pr((0))

(0)

i

i i T Ti

T

k ki
k

T

ki k
k

S s
S s p S s p S s p

S s p

p p

=

=

=
= = + = + ⋅⋅ ⋅ + =

= =

=

∑

∑

 [5.7]

Generalizing the above equation, we obtain:

1Pr((1))
(0)

Pr((1))

T

T

T

S s
p P

S s

=⎡ ⎤
⎢ ⎥⋅ ⋅ ⋅ =⎢ ⎥
⎢ ⎥=⎣ ⎦

 [5.8]

where p(0) is the column vector comprised of [](0), 1,kp k T∈ . Note that in equation
[5.8], the subscript T denotes the dimension number and the superscript T denotes
the matrix transpose. Generalizing this development for multiple time steps, we
obtain:

1Pr(())
() (0)

Pr(())

T

T T t

T

S t s
p t p P

S t s

=⎡ ⎤
⎢ ⎥⋅ ⋅ ⋅ =⎢ ⎥
⎢ ⎥=⎣ ⎦

 [5.9]

Equation [5.9] indicates that a Markov chain is completely specified by p(0) and P.
For Markov chains, we have the following theorems.

THEOREM 5.1.– A regular T × T transition matrix P, also called a primitive
transition matrix, is one for which all elements of tP are non-zero for some t. If P is
a regular transition matrix, then:

1) lim t

t
P π

→∞
= ;

2) All rows of π are identical and are denoted as iπ ;

3) Each element of iπ is positive;

BBO as a Markov Process 65

4) The probability that the Markov process is in the jth state after an infinite
number of transitions is equal to the jth element of iπ ; that is,
lim Pr(()) lim t

j ij ijt t
S t s p π

→∞ →∞
= = = ;

5) Each row iπ is the unique probability vector which satisfies i iPπ π= . That
is, T

iπ is the eigenvector of TP corresponding to the eigenvalue 1, normalized so

that its elements sum to 1, namely,
1

1T
ii

π
=

=∑ ;

6) If we form the matrices jP , [1,]j T∈ , by replacing the jth column of P with
zeros, then the jth element of iπ is given as:

1

j
ij T

i i

P I

P I
π

=

−
=

Σ −
 [5.10]

where I is the T × T identity matrix and ⋅ is the determinant operator.

The first five properties above are also called the Perron–Frobenius theorem, and
the last property is called the Davis–Principe theorem in books on Markov chains.
They comprise the fundamental limit theorem for regular Markov chains, and are
proven in [GRI 97, Chapter 1] and [DAV 93].

The first four properties of Theorem 5.1 can be combined as follows [IOS 80,
p. 123].

THEOREM 5.2.– Let P be a primitive transition matrix of order T; that is, all of the
elements of Pt are positive for some integer t. Then, Pt converges as t → ∞ to a
stochastic matrix which has positive entries. That is, for all i, j ∈ [1, T],

()lim
i

t

ijt

i T T

P p
π

π

∞

→∞

×

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

M [5.11]

where πi = (πi1, …, πiT) and πij > 0 for 1 ≤ j ≤ T.

We also have the following theorem [IOS 80, p. 126].

66 Evolutionary Computation with Biogeography-based Optimization

THEOREM 5.3.– Let P be a transition matrix of order T with the structure:

0C
P

R Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [5.12]

where C is a primitive stochastic matrix of order m, and R, Q ≠ 0. Then, Pt

converges as t→ ∞ to a stochastic matrix. That is,

()lim
i

t

ijt

i T T

P p
π

π

∞

→∞

×

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

M [5.13]

where πi = (πi1, …, πim, 0, …, 0) and πij > 0 for 1 ≤ j ≤ m < T.

Later in this chapter, we will use Theorem 5.1 to derive important properties of
the BBO Markov transition matrix, and we will use Theorems 5.2 and 5.3 to derive
BBO convergence properties.

EXAMPLE 5.2.–

Today’s weather forecast in Oz is 80% sun and 20% snow. What is the weather
forecast for two days from now?

From equation [5.9], 2(2) (0)T Tp p P= , where P is given in Example 5.1 and

[](0) 0.0 0.8 0.2 Tp = . This gives [](2) 0.3750 0.2375 0.3875 Tp = . That is,
two days from now there is a 37.5% chance of rain, a 23.75% chance of sun and a
38.75% chance of snow.

EXAMPLE 5.3.–

Using equation [5.6] and applying Theorem 5.1 to Example 5.1, we see that any
given day in the distant future has a 40% probability of rain, a 20% probability of
sun and a 40% probability of snow. Therefore, 40% of the days in Oz are rainy, 20%
are sunny and 40% are snowy. Furthermore, we can find the eigenvalues of TP as 1,
−0.25 and 0.25. The eigenvector corresponding to the eigenvalue 1 is
[]0.4 0.2 0.4 T .

BBO as a Markov Process 67

Markov models can be valuable tools for analyzing EAs because they give us
exact results. We can run simulations to investigate the performance of various EAs,
but simulations can be misleading. For instance, a set of Monte Carlo simulations
might happen to give misleading results due to the particular sequence of random
numbers generated during the simulation. In addition, the random number generator
using in the simulation may be incorrect, which occurs more often than we would like
to think, and which would give misleading results [SAV 08]. Finally, the number of
Monte Carlo simulations required to estimate highly improbable outcomes might be so
high as to not be attainable in a reasonable amount of computational time. Markov
model results avoid all of these pitfalls and give exact results.

Next, we define more notation that we will use later to derive a Markov model
for BBO, which could also be suitable for Markov models for other EAs.

We will focus on EAs with a population size N operating in a discrete search
space. The set of candidate solutions is the set of all bit strings xi consisting of q bits
each. Therefore, the cardinality of the search space is n =2q. We use v to denote the
population vector, where the component vi is the number of candidate solutions xi in
the population. We see that:

1

n

ii
v N

=
Σ = [5.14]

This equation simply means that the total number of solutions in the population
is equal to N. We use yk to denote the kth solution in the population:

{ }1 1 1 1 2 2 2

1 2

, { , , , , , , , , , , , }N n n n

v copies v copies v copiesn

Y y y x x x x x x x x x= =L L L L L
14243 14243 14243

 [5.15]

where the yk solutions have been ordered to group identical solutions. We use T to
denote the total number of possible populations Y. That is, T is the number of n × 1
integer vectors v such that 1

n
i iv N=Σ = and [0,]iv N∈ .

We order yk in the same order as xi. That is:

1 1

2 1 1 2

3 1 2 1 2 3

1

1

, for 1, ,
, for 1, ,
, for 1, ,

, for 1, ,

k

n
n ii

x k v
x k v v v

y x k v v v v v

x k v N−

=

⎧ =⎪
= + +⎪

⎪= = + + + +⎨
⎪
⎪
⎪ = +⎩ ∑

L

L

L

M

L

 [5.16]

68 Evolutionary Computation with Biogeography-based Optimization

This is also shown in equation [5.15] and can be written more compactly as:

() for 1, 2, ,k m ky x k N= = L [5.17]

where m(k) is defined as:

()
1

min such that
r

i
i

m k r v k
=

= ≥∑ [5.18]

EXAMPLE 5.4.–

Suppose we have a two-bit optimization problem (q = 2, n = 4) with a population
size N = 3. The search space consists of the bit strings x = {x1, x2, x3, x4} = {00, 01,
10, 11}. Suppose that the candidate solutions in the current population are y = {x2,
x4, x4} = {01, 11, 11}. Then, we have v1 = 0, v2 = 1, v3 = 0 and v4 = 2.

How many possible EA populations exist for a population size N in a search
space of cardinality n? That is, what is the value of T? This number can be
calculated in several different ways. In [NIX 92], it is shown that:

1n N
T

N
+ −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [5.19]

We can also use the multinomial theorem [CHU 92, SIM 11d] to find T. The
multinomial theorem can be stated in several ways, including the following. Given K
classes of objects, the number of different ways that N objects can be selected
(independent of order) while choosing from each class no more than M times is the
coefficient Nq in the polynomial:

2

2
1 2

() (1)
1

M K

N MK
N

q x x x x
q x q x q x x

= + + + ⋅⋅⋅ +
= + + + ⋅⋅⋅ + + ⋅⋅⋅ +

 [5.20]

Recall that the population vector v is an n-element vector such that each element is an
integer between 0 and N (inclusive), and the sum of its elements is N. T is the number of
unique population vectors v. Thus, T is the number of ways that N objects can be selected
(independent of order) from n classes of objects while choosing from each class no more
than N times. Applying the multinomial theorem to this problem gives:

2

2
1 2

() (1)
1

N
N n

Nn

T q

q x x x x
q x q x x

=

= + + + ⋅⋅⋅ +
= + + + ⋅⋅⋅ +

 [5.21]

BBO as a Markov Process 69

A different form of the multinomial theorem can also be used to find T. The
multinomial theorem can be stated as:

() { }

1 2
() 0

0

0

() 0 0

0

!()
!

: 0,1,..., ,

j

j

N
kn

N jN
S k jjj

iN N
kjj
j

S k i ji

N
N

j j
j

nx x x x
k

k
x

k

S k k R k n k n

=
=

=

= =

=

+ + ⋅⋅ ⋅ + =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

⎧ ⎫
= ∈ ∈ =⎨ ⎬
⎩ ⎭

∑ ∏∏
∑∑∏ ∏

∑

 [5.22]

Now, consider the polynomial 0 1 2(x)N nx x x+ + + ⋅⋅⋅ + . From equation [5.22] of

the multinomial theorem, we see that the coefficient of 0 1 20 1 2[() () () ()]Nk kk k Nx x x x⋅ ⋅ ⋅
is given by:

0

0

iN
jj

i i

k

k
=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∏ [5.23]

If we sum up these terms for all k j such that:

0

N

j
j

jk N
=

=∑ [5.24]

then we obtain the coefficient of Nx . However, equation [5.21] shows that T is equal
to the coefficient of Nx . Therefore,

() { }

0

'() 0

1

0 0
' : 0,1,..., , ,

iN
jj

S k i i

N N
N

j j j
j j

k
T

k

S k k R k n k n jk n

=

=

+

= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

⎧ ⎫
= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑∑∏

∑ ∑
 [5.25]

Equations [5.19], [5.21] and [5.25] give three equivalent expressions for T.

70 Evolutionary Computation with Biogeography-based Optimization

EXAMPLE 5.5.–

Suppose that our population consists of 2-bit candidate solutions (q = 2, n = 4)
and a population size N = 4. Equation [5.19] gives:

7
35

4
T ⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 [5.26]

Equation [5.21] gives:
2 3 4 4

4 16

4

() (1)
1 35

35

q x x x x x
x x

T q

= + + + +
= + ⋅⋅⋅ + + ⋅⋅ ⋅ +
= =

 [5.27]

Equation [5.25] gives:

() { }

() () ()
() ()

4
0

'() 0

4 4
5

0 0
' : 0,1,..., 4 , 4, 4

3 0 0 0 1 , 2 1 0 1 0 , 2 0 2 0 0 ,

1 2 1 0 0 , 0 4 0 0 0

4 12 6 12 1 35

i
jj

S k i i

j j j
j j

k
T

k

S k k R k k jk

T

=

=

= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

⎧ ⎫
= ∈ ∈ = =⎨ ⎬
⎩ ⎭
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

= + + + + =

∑∑∏

∑ ∑ [5.28]

As expected, all three methods for the calculation of T give the same result.

Finally, we define another notation that we will later use to derive a Markov
chain model for BBO; this idea is called generalized multinomial probability
[BEA 99]. Suppose that an experiment has n possible outcomes { }1 2, , , nx x xL and
that the experiment is repeated N times. Suppose that the probability of obtaining
outcome ix on the kth trial is equal to kiP . Let []1 2, , , nC C C C= L be a vector of
random variables, where iC denotes the total number of times that ix occurs in N
trials, and let []1 2, , , nγ γ γ γ= L be a realization of C. Define:

() { }
1 1

: 0, 1 , 1 for all , for all
n N

N n
ki ki ki i

i k

Y J R J J k J iγ γ×

= =

⎧ ⎫= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑ ∑ [5.29]

BBO as a Markov Process 71

Note that the cardinality of ()Y γ is:

()
1

!
! !n

NY γ
γ γ

=
L

 [5.30]

Then, the generalized multinomial theorem gives the following probability that
the repeated experiment results in the outcome vector γ :

()
() 1 1

Pr ki

N n
J

ki
J Y k i

C P
γ

γ
∈ = =

= = ∑ ∏∏ [5.31]

EXAMPLE 5.6.–

Here we use a simple example to clarify generalized multinomial probability.
Consider a simple EA experiment in which a trial can result in one of four possible
solutions x1, x2, x3 and x4 with probabilities Qi1, Qi2, Qi3 and Qi4, respectively.
Suppose that the total number of trials is equal to 2. Suppose that the probabilities
are given as:

Trial 1: 11 12 13 140.1, 0.3, 0.5, 0.1Q Q Q Q= = = =

Trial 2: 21 22 23 240.1, 0.1, 0.1, 0.7Q Q Q Q= = = = [5.32]

In this example, we calculate the probability that x1 and x4 occur after two trials.
In order to calculate this probability, let []1 2, , , nC C C C= L denote a vector of
random variables, where Ci is the total number of times that xi occurs after two trials.
Based on equation [5.31], we set C1 = 1, C2 = 0, C3 = 0 and C4 = 1 to obtain:

() []
2 4

1 2 3 4
1 1

Pr 1, 0, 0, 1 kiJ
ki

Y k i

C C C C Q
∈ = =

= = = = = ∑∏∏
J

 [5.33]

where:

{ }
4 2

2 4

1 1

: 0,1 , 1 for all , for allki ki ki i
i k

Y J R J J k J C i×

= =

⎧ ⎫= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑ ∑ [5.34]

According to equation [5.34], J belongs to Y if it satisfies the following
conditions:

1) J is a 2 × 4 matrix;

2) Each element of J is either 0 or 1;

72 Evolutionary Computation with Biogeography-based Optimization

3) The elements in each row of J add up to 1;

4) The elements in the ith column of J add up to Ci.

Note from equation [5.30] that the cardinality of Y is:

()1! ! !nY N C C= L [5.35]

So there are a total of () ()1! ! ! 2! 1!1! 0!1! 2nN C C = =L matrices J(t) that
satisfy these conditions, and they are found as:

() 1 0 0 0
0 0 0 1

J ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 () 0 0 0 1
1 0 0 0

J ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2 [5.36]

Substituting these matrices in equation [5.33] gives:

()
() () () ()() () () () ()()13 2311 12 14 21 22 24

1 2 3 4

2

11 12 13 14 21 22 23 24
1

11 24 14 21

Pr 1, 0, 0, 1

0.08

t tt t t t t tJ JJ J J J J J

t

C C C C

Q Q Q Q Q Q Q Q

Q Q Q Q
=

= = = =

= ×

= + =

∑ [5.37]

5.2. Markov model of BBO

This section defines a Markov model for a basic BBO algorithm [SIM 11b,
SIM 11d, SIM 11c]. A Markov model of BBO provides us with the transition
probability pij from the ith population distribution to the jth population distribution,
where the states of the system include all possible population distributions (that is,
all possible combinations of candidate solutions). In BBO, two main steps are
significant, migration and mutation, so the transition probability includes the
migration probability and the mutation probability for one generation.

Before the formal derivation, we make some assumptions. First, all of the new
BBO solutions are created before any solutions are replaced in the population; that
is, we use a generational BBO algorithm rather than a steady-state BBO algorithm,
which is clearly shown in Figure 3.5 in Chapter 3.

Second, a solution can emigrate a bit to itself. This means that, in the statement
“Use {μj} to probabilistically select the emigrating solution jx ” in Figure 3.2,

BBO as a Markov Process 73

j might be chosen to be equal to k. that is, when a bit is replaced via migration in a
given solution zk, the new bit might be chosen to come from zk itself. In this case, the
bit is not actually replaced in zk. However, the probabilistic choice of the emigrating
solution allows this self-migration to happen on occasion.

A. Migration

In the basic BBO algorithm, we use λi to denote the immigration probability of xi
and μ i to denote the emigration probability of xi. Note that μ i is proportional to the
fitness of xi, and λi decreases with the fitness of xi. We use the notation xi(s) to
denote the sth bit of solution xi, and use the notation ςi(s) to denote the set of
population indices j such that the sth bit of xj is equal to the sth bit of xi. That is:

() () (){ }:i j is j x s x sς = = [5.38]

EXAMPLE 5.7.–

To clarify equation [5.38], an example is presented based on Example 5.3. First,
we explain how to calculate ς1(1). We arbitrarily number bits from left to right; that
is, in any given bit string, bit 1 is the left-most bit and bit 2 is the right-most bit.
From the definition of ςi(s), we see that:

() () (){ }1 11 : 1 1jj x xς = = [5.39]

Since x1 = 00, we see that x1(1) = 0 (that is, the left-most bit is 0). Then, equation
[5.39] can be written as:

() (){ }1 1 : 1 0jj xς = = [5.40]

But xj(1) = 0 for xj ∈ {00, 01}, which in turn indicates that xj(1) = x1(1) for j ∈
[1, 2]; therefore, ς1(1) = {1, 2}. Continuing this process, we see that:

() { } () { } () { } () { }
() { } () { } () { } () { }

1 1 2 2

3 3 4 4

1 1, 2 , 2 1, 3 , 1 1, 2 , 2 2, 4

1 3, 4 , 2 1, 3 , 1 3, 4 , 2 2, 4

ς ς ς ς
ς ς ς ς

= = = =

= = = =
 [5.41]

During migration, if the sth feature of yk is not selected for immigration during
generation t, then:

() () () (),1
, if no immigration to k k tm kt

y s x s y
+

= [5.42]

74 Evolutionary Computation with Biogeography-based Optimization

That is, ()ky s does not change from generation t to generation t + 1. However,
if the sth feature of yk is selected for immigration during generation t, the probability
that yk(s)t + 1 is equal to xi(s) is proportional to the sum of the emigration rates of all
solutions whose sth feature is equal to xi(s). This probability can be written as:

() ()() ()
1

1

Pr immigration i
j jj s

k i nt
j jj

v
y s x s

v
ς

μ

μ
∈

+

=

= =
∑
∑

 [5.43]

We can combine equations [5.42] and [5.43], along with the fact that the
probability of immigration to yk(s) is equal to λm(k) to obtain the total probability as
follows:

() ()()
() () ()()
() () ()()

()() () ()() ()
()

, 1

, , 1

, , 1

0 ()

1

Pr

Pr no immigration to Pr no immigration

Pr immigration to Pr immigration

1 1 i

k t i

k t k t i

k t k t i

j jj s
m k im k m k n

j jj

y s x s

y y s x s

y y s x s

v
x s x s

v
ς

μ
λ λ

μ

+

+

+

∈

=

=

= = +

=

= − − +
∑
∑

 [5.44]

where 10 is the indicator function on the set {0}.

Now, recall that there are q bits in each solution. Use Mki(v) to denote the
probability that immigration results in yk,t+1 = xi, given that the population
distribution is described by the population count vector v. Mki(v) can be written as:

() ()

()() () ()() ()
()

, 1

0 ()
1

1

Pr

1 1 i

ki k t i

q j jj s
m k im k m k n

s j jj

M v y x

v
x s x s

v
ς

μ
λ λ

μ

+

∈

=
=

= =

⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥
⎣ ⎦

∑
∏

∑
 [5.45]

Note that Mki(v) can be computed for each []1,k N∈ and each []1,i n∈ in order
to form the N n× matrix M(v). The kth row of M(v) corresponds to the kth iteration
of the outer loop in algorithm description in Figure 3.5 (there are N iterations of the
outer loop in Figure 3.5). The ith column of M(v) corresponds to the probability of
obtaining solution xi during each outer loop iteration; that is, Mki(v) gives the
probability of obtaining the ith outcome on the kth immigration trial.

BBO as a Markov Process 75

B. Mutation

Only migration is considered in equation [5.45]. Next, we consider the
possibility of mutation. U is used to denote the n × n mutation matrix, where Uji is
the probability that xj mutates to xi. As in typical EAs, mutation operates
independently on each candidate solution by probabilistically reversing each bit in
each candidate solution. Suppose that the event that each bit of a candidate solution
is flipped is stochastically independent and occurs with probability pm ∈ (0, 1).
Then, the probability Uji can be written as:

() ()Pr 1 ijij q HH
ji j i m mU x x p p −= → = − [5.46]

where Hij represents the Hamming distance between bit strings xi and xj.

So the probability that the kth immigration trial, followed by mutation, results in
xi is denoted as ()kiP v . This can be written as:

() ()

() ()
1

n

ki kj ji
j

P v M v U

P v M v U
=

=

=

∑
 [5.47]

where the elements of M(v) are given in equation [5.45]. P(v) contains the
probabilities when both migration and mutation are considered. u is defined as the
population count vector after migration and mutation are completed for a given
generation, where the component ui is the number of solutions xi in the population.
The transition probability Pr(u|v) that we obtain a population count vector u after
one generation, given that we started with a population count vector v, can be
obtained from the generalized multinomial theorem described in section 5.1 as:

() ()

{ }
1 1

1 1

Pr ,

: 0,1 , 1 for all , for allwhere

ki
N n J

ki
J Y k i

n N
N n

ki ki ki i
i k

u v P v

Y J R J J k J u i

∈ = =

×

= =

= ⎡ ⎤⎣ ⎦

⎧ ⎫= ∈ ∈ = =⎨ ⎬
⎩ ⎭

∑∏∏

∑ ∑
 [5.48]

Equation [5.48] can be used to find the transition matrix for the basic BBO
algorithm with migration and mutation as described in Figure 3.5.

The Markov transition matrix, denoted as Q, is obtained by computing equation
[5.48] for each possible v and each possible u. Each element of Q will give the
transition probability from one population count vector v to another population
count vector u after one generation. Note that Q is a T × T matrix, where T is the
total number of possible populations. T can be calculated by several different
methods as described in section 5.1. Once we calculate the transition matrix Q, a

76 Evolutionary Computation with Biogeography-based Optimization

wealth of Markov tools [GRI 97] can be applied to explore the statistical properties
of BBO, including the limiting probability of each possible BBO population as the
generation count approaches infinity.

EXAMPLE 5.8.–

Here we confirm the BBO Markov model with simulation. We use the 3-bit one-
max problem with a search space cardinality of eight and a population size of four.
The one-max problem has a fitness function that is proportional to the number of
ones in the population member, and is a popular test function in EA research. The
fitness values of the 3-bit one-max problem are given as:

() () () ()
() () () ()
000 1, 001 2, 010 2, 011 3,

100 2, 101 3, 110 3, 111 4.

f f f f

f f f f

= = = =

= = = =
 [5.49]

From equation [5.19] in section 5.1, we calculate the total number of possible
populations as:

1 8 4 1
330

4
n N

T
N

+ − + −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 [5.50]

We can use equation [5.48] to calculate the probability of transitioning between each
of the 330 population distributions, which gives us a 330 × 330 transition matrix P. We
can then calculate the limiting probability of each possible population distribution by
Theorem 5.1. This is the probability, in the limit as the generation count approaches
infinity, that the BBO population consists of any particular set of individuals.

Table 5.1 shows the probabilities of obtaining an all-optimal population, along
with the probabilities of obtaining a no-optimal population. The population count
vector “All optimal” in Table 5.1 denotes the population that contains all optimal
solutions, which is the population count vector (0 0 0 0 0 0 0 4). The population
count vector “No optimal” in Table 5.1 denotes the population that does not contain
any optimal solutions, which is the vector (* * * * * * * 0), where * denotes “don’t
care bit”. Note that the notation (1 2 8, , ,v v vL) indicates the numbers of solutions that
are equal to (000,001, ,111L). The Markov model and simulation results match
well, which confirms the model. Table 5.1 shows that a high mutation rate of 10%
per bit results in too much exploration, so the uniform optimal population is not one
of the most probable populations. With this high 10% mutation rate, the probability
that the population does not have any optimal solutions is 30%, as shown in the
table. However, as the mutation rate decreases to the more typical values of 1% and
0.1%, the probabilities that the population is composed entirely of optimal solutions
increase to 53% and 86%, respectively, and the probabilities that the population has
no optimal solutions decrease to 11% and 9%, respectively.

BBO as a Markov Process 77

Mutation rate Population count vector
Probability

Markov Simulation

0.1
All optimal 0.0290 0.0285
No optimal 0.2999 0.3026

0.01
All optimal 0.5344 0.5322
No optimal 0.1134 0.1138

0.001
All optimal 0.8605 0.8437
No optimal 0.0923 0.1092

Table 5.1. BBO Markov model and simulation results for the 3-bit one-max
problem. The table shows the probabilities of obtaining an all-optimal

population (0 0 0 0 0 0 0 4) and the probabilities of obtaining a no-optimal
population (* * * * * * * 0), where * denotes “don’t care bit”. Simulation

results are the averages of 100 Monte Carlo simulations

Figure 5.1 shows typical simulation results of 20,000 generations of BBO for the
3-bit one-max problem with a mutation rate of 1% per bit. It is seen that the simulation
results closely match the Markov results in Table 5.1. The simulation results are
approximate, will vary from one run to the next and will equal the Markov results only
as the number of generations approaches infinity.

Figure 5.1. Typical BBO simulation results for a 3-bit one-max optimization problem
with a mutation rate of 1% per bit. The plot shows the probability of obtaining an

all-optimal population and the probability of obtaining a no-optimal population

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

50

60

70

80

generation number

cu
m

ul
at

iv
e

pe
rc

en
t o

f p
op

ul
at

io
n

All optimal
No optimal

78 Evolutionary Computation with Biogeography-based Optimization

EXAMPLE 5.9.–

In this example, we compare Markov model results for the basic BBO algorithm
with a GA with global uniform recombination (GA/GUR), as shown in Figure 3.6 in
Chapter 3. In Figure 3.6, BBO reduces to GA/GUR when BBO has a constant
immigration rate of λ = 1. We use the following fitness values:

() () () ()
() () () ()
000 5, 001 2, 010 2, 011 3,

100 2, 101 3, 110 3, 111 4.

f f f f

f f f f

= = = =

= = = =
 [5.51]

These fitness values are the same as those in equation [5.49], except that we
made the 000 bit string the most fit solution. This is called a deceptive problem
because usually when we add a 1 bit to one of the above solutions, its fitness
increases. The exception is that 111 is not the most fit solution, but rather 000 is the
most fit solution.

Table 5.2 shows comparisons between Markov model results for GA/GUR and
BBO. The table shows the probability of obtaining a population in which all
solutions are optimal, and the probability of obtaining a population in which no
solutions are optimal. It is seen from this table that the Markov model and simulation
results match well for GA/GUR and BBO, which confirms the model. Furthermore,
in every Markov performance comparison in the table, BBO performs significantly
better than GA/GUR. This is especially true when the mutation rate is low (0.1% per
bit), in which case BBO performs better than GA/GUR in its higher probability of
obtaining a population with all optimal solutions (90% vs. 63%), and in its lower
probability of obtaining a population with no optimal solutions (7% vs. 34%).

Mutation rate Population
count vector

Probability
BBO GA/GUR

Markov Simulation Markov Simulation

0.1
All optimal 0.0120 0.0118 0.0109 0.0107
No optimal 0.7954 0.7913 0.8325 0.8314

0.01
All optimal 0.6506 0.6487 0.4760 0.4715
No optimal 0.1915 0.1891 0.4103 0.4004

0.001
All optimal 0.9074 0.9022 0.6383 0.6279
No optimal 0.0730 0.0721 0.3482 0.3472

Table 5.2. BBO and GA/GUR Markov model and simulation results for the 3-bit
deceptive problem. The table shows the probabilities of obtaining an all-optimal
population and the probabilities of obtaining a no-optimal population. The best

Markov performance is shown in bold in each row

BBO as a Markov Process 79

5.3. BBO convergence

In the previous section, we obtained the migration probability and mutation
probability, which can be calculated by equations [5.45] and [5.46], respectively:
Mkj = Pr(yk,t+1 = xj) ≥ 0 and Uji = Pr(xj → xi) > 0. Therefore, M is a non-negative
stochastic matrix; although it is not a transition matrix since it is not square, each
row still sums to 1. We also see that U is a positive left stochastic matrix; that is,
each of its columns sum to 1. We now present two theorems that show that there is a
positive probability of obtaining any solution in the search space from any solution
in a BBO population after migration and mutation. This means that there is a
positive probability of transitioning from any population vector u to any other
population vector v in one generation, which means that the BBO transition matrix is
primitive.

THEOREM 5.4.– If M is a positive stochastic matrix and U is a positive left stochastic
matrix, then the product MU is positive.

PROOF.– If M is positive and stochastic, then every entry of M is positive; that is,
Mkj > 0 for k ∈ [1, N] and j ∈ [1, n], and

1
1n

kjj
M

=
=∑ for all k. Similarly, if U is

positive, then every entry of U is positive; that is, Uji > 0 for i, j ∈ [1, n]. Therefore,

by matrix multiplication, ()
1

0
n

kj jk
j

i iMU M U
=

= >∑ for k ∈ [1, N] and i ∈ [1, n].

THEOREM 5.5.– The transition matrix of BBO with migration and mutation is
primitive.

PROOF.– From equation [5.47], we know that if Pki(v) = [MU]ki > 0 for all k ∈ [1, N]

and i ∈ [1, n], then () ()
1 1

Pr 0ki
N n J

ij ki
J Y k i

p u v P
∈ = =

= = >⎡ ⎤⎣ ⎦∑∏∏ v for i, j ∈ [1, T], where Y

is given in equation [5.47]. So the transition matrix P = (pij) of BBO is positive.
Therefore, since every positive transition matrix is primitive, P is primitive.

COROLLARY 5.1.– There exists a unique limiting distribution for the states of the
BBO Markov chain. Also, the probability that the Markov chain is in the ith state at
any time is positive for all i ∈ [1, T].

80 Evolutionary Computation with Biogeography-based Optimization

PROOF.– Corollary 5.1 is an immediate consequence of Theorems 5.2 and 5.5.

Before we obtain the convergence properties of BBO, some precise definitions
of the term convergence are required [GUO 01, MA 14a, MA 14b]. Assume that the
search space of a global optimization problem is I with cardinality | I | = n. Further
assume that the BBO algorithm with population size N consists of both migration
and mutation, as shown in Figure 3.5 in Chapter 3.

DEFINITION 5.1.– Let () [] (){ }() 1, ,i iA t a t i N a t I= ∈ ∈ be the population at

generation t, where N is the population size, ai(t) denotes a candidate solution in the
search space I and A(t) may contain duplicate elements; :f I R→ denotes a fitness

function assigning real values to solutions; (){ }{ }* * * arg maxI a a f a a I= = ∈ is

a subset in the search space, each member of which has the globally maximum
fitness; and the best solutions in the population at generation t are

(){ } ()* *() jI a At t t= ⊂ , where ()() ()()*
ijf a t f a t≥ for all * *() ()j ta I t∈ and for all

[]1,i N∈ .

We use the notation ()*a t to denote an arbitrary element of * ()I t (that is, one
of the best solutions in the population at generation t). Because of migration and
mutation, ()*a t and its fitness will change randomly over time. As t → ∞ , the

convergence, or lack of convergence, of ()*a t to the subset *I indicates whether or
not the BBO algorithm is globally convergent. That is, BBO is said to converge if:

()() ()()* * *lim 1 liP m 1r Pr
t t

a t I a A t
→∞ →∞

∈ = ⇔ ∈ = [5.52]

Note that ()*a t is not necessarily unique. However, Definition 5.1 states that the

BBO algorithm is globally convergent if and only if [5.52] holds for every ()*a t .

Clearly, the evolution of ()*a t is a homogeneous finite Markov chain, which we

call an ()*a t -chain.

Now we sort all the states of I in order of descending fitness; that is,
{ }1, , nI I I= L and () () ()1 2 nf I f I f I≥ ≥ ≥L . We define S as the set of indices of

I; that is, { }1, 2, ,S n= L . Furthermore, we define S* as the elements { }j of S such

that *
jI I∈ ; that is, *

jI I∈ for all *j S∈ . This leads to the following definition.

BBO as a Markov Process 81

DEFINITION 5.2.– Let ()ˆ ˆ ijP p= be the transition matrix of an ()*a t -chain, where

ˆ ijp for , [1,]i j n∈ is the probability that ()*
ia t I= transitions to ()* 1 ja t I+ = . The

BBO algorithm converges to a global optimum if and only if ()*a t transitions from

any state i I∈ to *I as t → ∞ with probability one, that is, if:

()
*

ˆlim 1 for allt

t
j S

ij
P i S

→∞
∈

= ∈∑ [5.53]

As noted earlier, there may be more than one a*
 (t) -chain since more than one

element of the search space may have a globally maximum fitness. Definition 5.2
states that the BBO algorithm converges to a global optimum if and only if equation
[5.53] holds for every ()*a t -chain. Also note that P̂ depends on the other solutions
in the population at generation t. Definition 5.2 states that the BBO algorithm
converges to a global optimum if and only if [5.53] holds for every possible P̂
transition matrix for every ()*a t -chain.

THEOREM 5.6.– If the transition matrix ()ˆ ˆ ijP p= of an ()*a t -chain is a positive

stochastic matrix, then BBO with migration and mutation does not converge to any
of the global optima.

PROOF.– Since every positive matrix is also a primitive one, it follows by Theorem
5.2 that the limiting distribution of P̂ is unique with all positive entries. Therefore,
for any i S∈ ,

() () ()
* * * * 1

ˆ ˆ ˆlim 1 lim 1 lim 1 1
S

t t t
jt t t

j S j S S j S S j S
ij ij ij

P P P π
→∞ →∞ →∞

∈ ∈ − ∈ − = +

= − = − = − <∑ ∑ ∑ ∑ [5.54]

where we use the notation *S S− to denote all elements of S that do not belong to
S*. We see that equation [5.53] is not satisfied, which completes the proof.

THEOREM 5.7.– If the transition matrix ()ˆ ˆ ijP p= of an ()*a t -chain is a stochastic

matrix with the structure:

0ˆ C
P

R Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [5.55]

82 Evolutionary Computation with Biogeography-based Optimization

where C is a positive stochastic matrix of order *S , and , 0R Q ≠ , then the BBO

algorithm converges to one or more of the global optima.

PROOF.– From Theorem 5.3, we see that for all ,i j S∈ ,

()ˆ ˆlim
i

t

ijt

i S S

P p
π

π
→∞

×

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

M∞ [5.56]

where *1, , , 0, ,0i i i S
π π π⎛ ⎞= ⎜ ⎟

⎝ ⎠
L L , 0ijπ > for *1 j S≤ ≤ , and

*

1
1

S

ij
j

π
=

=∑ . It

follows directly that for any i S∈ ,

() ()
*

* * 1

ˆ ˆlim lim 1
S

ijt t jj S

t

ij
S

t

ij
j

P P π
→∞ →∞ =∈ ∈

= = =∑ ∑ ∑ [5.57]

We see that equation [5.53] is satisfied, which completes the proof.

Theorems 5.6 and 5.7 can be applied directly to determine the global
convergence of BBO if the structure of the transition matrix of the Markov chain can
be determined, as we will show in the remainder of this section. In particular, we
will formalize the observation that the transition matrix of BBO without elitism
satisfies the conditions of Theorem 5.6 (as stated in Theorem 5.5). We will further
show that the transition matrix of the a*(t)-chain of BBO with elitism satisfies the
conditions of Theorem 5.7.

A. Elitism

We now discuss a modified BBO which uses elitism, an idea which is also
implemented in many other EAs. There are many ways to implement elitism, but
here we define elitism as the preservation of the best solution at each generation in a
separate partition of the population space. This enlarges the population size by one
solution; the elite solution increases the population size from N to N + 1. However,
note that the population size is still constant (that is, equal to N + 1) from one
generation to the next. The elite solution does not take part in recombination or
mutation, but is maintained separately from the other N members of the population.

BBO as a Markov Process 83

At each generation, if a solution in the N-member main population is better than the
elite solution, then the elite solution is replaced with a copy of the better solution.

Relative to a standard N-member BBO population, elite BBO increases the
number of possible population distributions by a factor of n, which is the search
space size. That is, each possible population distribution of the N-member main
population could also include one of n elite solutions. The number of possible
population distributions increases by a factor of n, from T to nT. We order these new
states so that each group of n states has the same elite solution. Also, the elite
solution in the mth group of n states is the mth best solution in the search space for
m = 1, …, n.

The elitist-preserving process can be represented by an upgrade transition matrix
O, which contains the probabilities that each population distribution of the (N+1)-
member population transitions to some other population distribution after the elitist-
preserving step. That is, the element in the ith row and jth column of O, denoted as
O(i, j), is the probability that the ith population distribution transitions to the jth
population distribution after the step in which the elite solution is replaced with the
best solution from the N-member main population. The upgrade matrix is similar to
the one in [RUD 94]. It does not include the effects of migration or mutation, but
only includes the elitism-preserving step. The upgrade matrix only includes the
probability of changing the elite solution; it does not include the probability of
changing the N-member main population, since it does not include migration or
mutation. If there are no solutions in the N-member main population that are better
than the elite solution, then the elite solution does not change. The structure of the
upgrade matrix O can be written as:

11

21 22

1 , 1

0 0

0

n n n nn

O
O O

O

O O O−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

O M

M O O

L

 [5.58]

where each Oij matrix is T × T, where T is the number of population distributions in
BBO with a population size of N and search space cardinality of n. O11 is the identity
matrix since the first n population distributions have the global optimum as their
elite solution, and the elite solution can never be improved from the global optimum.
Matrices Oaa with 2a ≥ are diagonal matrices composed of all zeros and ones.
Since the population distributions are ordered by grouping common elite solutions,
and since elite solutions in the population distribution ordering are in order of

84 Evolutionary Computation with Biogeography-based Optimization

decreasing fitness, the super block diagonals in O are zero matrices as shown in
equation [5.58]; that is, there is zero probability that the ith population distribution
transitions to the jth population distribution if i < j. So the Markov chain of elite
BBO can be described as:

11

21 22

1 , 1

11

21 22

1 , 1

0 00 0
0

0

di

0
0 0

)

0 0

0

ag(

n n n nn

n n n nn

P O
OP
O OP

O O OP

PO
PO PO

P

PO PO PO

−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟

=

⎜ ⎟
⎠

=

⎝

LL

O MO M

M O OM O O

LL

L

O M

M O O

L

+

 [5.59]

where P is the T × T transition matrix described in equation [5.48] in section 5.2.

EXAMPLE 5.10.–

To explain the update matrix O described in equation [5.58], a simple example is
presented. Suppose there exists a search space consisting of n = 3 candidate
solutions which are given as x = {x1, x2, x3} where the fitness of x1 is lowest and the
fitness of x3 is highest. Suppose the main population size is N = 1, so the elitist
population size is N + 1 = 2. Thus, there are nine possible populations before the
elitist-preserving step, which are {C1, C2, C3, C4, C5, C6, C7, C8, C9} = {{x3, x3}, {x3,
x2}, {x3, x1}, {x2, x3}, {x2, x2}, {x2, x1}, {x1, x3}, {x1, x2}, {x1, x1}}. Note that the first
element in each population is the elite solution, and the last N elements (N = 1 in this
example) is the main population. Also note that the populations are ordered in such a
way that the first three have the most fit solution as their elite solution, the next three
have the second most fit solution as their elite solution, and the last three have the
least fit solution as their elite solution. The update matrix O is a 9 × 9 matrix.

The population C1 = {x3, x3} transitions to the population C1 = {x3, x3} with
probability 1; that is, O(1, 1) = 1. Population C1 cannot transition to any other
population Ci(1i ≠); that is, O(1, i) = 0 for 1i ≠ . Similarly, population C2 = {x3, x2}
transitions to C2 with probability 1 since the elite x3 is better than the main-member

BBO as a Markov Process 85

population x2; therefore, O(2, 2) = 1, and O(2, i) = 0 for i ≠ 2. Continuing with this
reasoning, we obtain the O matrix as follows:

11 12 13

21 22 23

31 32 33

1
0 1
0 0 1
1 0 0 0
0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

O O O
O O O O

O O O

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 [5.60]

where each Oij matrix is 3 × 3, and the blank elements above the diagonal are each 0.

Now we consider the convergence of the a*(t)-chain, which is the sequence of
elite solutions in the elite BBO algorithm. If the elite solution is equal to the global
optimum, we call this an absorbing state of the a*(t)-chain. Recall that the elite
solution in elite BBO can only be replaced by one with better fitness. Therefore, the
a*(t)-chain of elite BBO contains three classes of states: 1) at least one absorbing
state, 2) non-absorbing states which transition to absorbing states in one step and 3)
non-absorbing states which transition to non-absorbing states in one step. So the
transition matrix P̂ of the a*(t)-chain, which we introduced in equations
[5.53]−[5.57], can be written as:

0ˆ kI
P

R Q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [5.61]

where Ik is a k × k unit matrix corresponding to optimal solutions (k is the number of
optima), R is a matrix of order (|S| − k) × k corresponding to non-absorbing states that
transition to absorbing states (S is the cardinality of the state space S, so S k− is
the number of non-absorbing states), and Q is a matrix of order (|S| − k) × (|S| − k)
corresponding to non-absorbing states that transition to non-absorbing states. The
matrix P̂ of equation [5.61] has the same structure as P̂ in Theorem 5.7. It follows
from Theorem 5.7 that the a*(t)-chain of elite BBO is globally convergent.

86 Evolutionary Computation with Biogeography-based Optimization

These results are similar to the canonical GA [RUD 94], which is proven to
never converge to the global optimum, but elitist variants of which are proven to
converge to the global optimum. We sum up these results in the following corollary.

COROLLARY 5.2.– BBO with migration and mutation does not converge to any of the
global optima, but elite BBO, which preserves the best solution at each generation,
converges to the global optimum.

PROOF.– This is an immediate consequence of Theorems 5.5 and 5.6 (the non-
convergence of BBO without elitism), Theorem 5.7 (the convergence of BBO with
elitism) and the discussion above.

B. Convergence rate

The previous subsection analyzed the convergence properties of elite BBO, and
this subsection discusses its convergence rate. The transition matrix of elite BBO
after t steps can be found from equation [5.61] as:

ˆ 0kt
t

t

I
N R

P
Q

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 [5.62]

where () ()12 1t tN I Q Q Q I Q I Q−−= + + + + = − −Lt . If 1Q < , then the limiting

distribution of the Markov chain of BBO can be found from P̂∞ , which can be
written as:

() 1

0ˆlim
0

ˆ kt

t

I

I Q R
P P∞

−→∞

⎡ ⎤
= = ⎢ ⎥

−⎢ ⎥⎣ ⎦
 [5.63]

Modified BBO with elitism has been proven to converge to a global optimum in
the previous subsection, and there exists a limiting distribution ()0 P̂π π ∞=* , where

π(0) = [π1(0), …, πk(0), πk+1(0), …, π|S|(0)] () ()1 20 , 0π π= ⎡ ⎤⎣ ⎦ . (Recall that k is the

number of global optima.) The convergence rate estimate of elite BBO can be
obtained as follows.

THEOREM 5.8.– If 1Q ρ= < , the convergence rate of elite BBO satisfies

() ()tt Oπ π ρ− ≤* .

BBO as a Markov Process 87

PROOF.–

() () ()

() ()

() () ()()
() ()()
() ()()
() () () ()()
() () () ()()
() ()()

*

1

11 2

1
2

1
2

1 1
2

1 1 1
2

1
2

0 0

00
0

0

0 0
0 0

0

0

0

0

0 1

ˆ ˆt

kk
t

t

t
t

t
t t

t
t

t t

t t

t

t

II
N R Q I Q R

N I Q R Q

N N I Q R Q

N I Q

P

R Q

I Q I Q I Q R Q

I Q I Q Q I Q R Q

R

P

I Q Q

π π π π

π

π π

π

π

π

π

π

−

−

−

−

− −

− − −

−

∞− = −

⎡ ⎤⎡ ⎤⎡ ⎤
= −⎢ ⎥⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎡ ⎤⎣ ⎦ − −⎢ ⎥⎣ ⎦

⎡ ⎤= − −
⎣ ⎦

≤ − − ⋅ +

= − − − − ⋅ +

= − − − − − ⋅ +

≤ − − ⋅ + ≤ ()

()
2 0 1

1
t

t

R
Q

Q

O

π

ρ

⎛ ⎞
+⎜ ⎟⎜ ⎟−⎝ ⎠

=

 [5.64]

Note that elite BBO is guaranteed to converge to a global optimum regardless of
the initial state. In addition, note that we can improve the convergence rate bound by
decreasing the parameter ρ. That is, reducing the number of non-absorbing states
which transition to other non-absorbing states can accelerate the convergence of elite
BBO. In spite of differences between GAs and BBO [SIM 11d], we see from
Theorem 5.8 that the convergence rate of BBO with elitism is very similar to that of
GAs [HE 99, Theorem 5].

EXAMPLE 5.11.–

Theorem 5.8 gives the upper bound of the convergence rate estimate of elite
BBO. In this example, we use simulations to confirm this theorem. Note that in
equation [5.64] the parameter ρ is a norm: Qρ = . Here we define . as the

infinity norm .
∞

; that is,

1

max
n

iji j

Q q
∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ [5.65]

88 Evolutionary Computation with Biogeography-based Optimization

where qij is the element in the ith row and the jth column of matrix Q. Now note that
the transition matrix P̂ in equation [5.61] can be obtained from equations [5.48]
and [5.59] using elementary matrix transformations. We can thus use Theorem 5.7
to check for BBO convergence, and we can use Theorem 5.8 to estimate the
convergence rate of BBO. That is, we define ()tπ π− * as the error between a BBO
population distribution and a distribution that includes at least one optimal solution.
We then define the convergence criterion as an arbitrarily small error (for example,

() 610tπ π −− =*). We can then estimate the time t to convergence from equation

[5.64] as follows:

6log 10t ρ
−≈ [5.66]

Test functions in this section are limited to 3-bit problems with a search space
cardinality of eight and a population size of four. The fitness functions include the
one-max problem described by equation [5.49] and the deceptive problem described
by equation [5.51]. In addition, we add a multimodal problem, which is given as:

()4 2 2 3 2 3 3 4f = [5.67]

In equation [5.67], fitness values are listed in binary order, so the first element of
the fitness function corresponds to the bit string 000, the second element
corresponds to the bit string 001, and so on. For the BBO parameters, we use a
maximum immigration rate and maximum emigration rate of 1, and we use linear
migration curves. We test elite BBO with three different mutation rates which are
applied to each bit in each solution at each generation: 0.1, 0.01 and 0.001. Note that
we do not test with a zero mutation rate because the theory in this section requires
that the mutation rate be positive (see Theorem 5.4). Convergence is not guaranteed
unless the mutation rate is positive.

Numerical calculations show that the transition matrices for these three problems
satisfy the convergence conditions of Theorem 5.7, which indicates that the BBO
algorithm converges to one or more of the global optima. As a heuristic test of
Theorem 5.8, we use simulations to record the first generation number of obtaining a
population in which all solutions are optimal, and all results are computed from 25
Monte Carlo simulations. Tables 5.3−5.5 show comparisons of the theoretical
convergence time t, the corresponding parameter ρ and the first generation number
of finding an all-optimal population, averaged over 25 Monte Carlo simulations. For
the one-max problem, the all-optimal population is (0 0 0 0 0 0 0 4), for the
deceptive problem, the all-optimal population is (4 0 0 0 0 0 0 0), and for the
multimodal problem, the all-optimal population is (* 0 0 0 0 0 0 *), where the sum
of the * terms in the vector is 4.

BBO as a Markov Process 89

Tables 5.3−5.5 show time to convergence, and time to finding an optimum for
BBO. The tables confirm the statement following Theorem 5.8 that the convergence
behavior of BBO is similar to that of GA. The tables show that GA converges
slightly faster than BBO for high mutation rates, but BBO converges slightly faster
for low mutation rates. The latter behavior is more important in practice because low
mutation rates provide faster convergence.

Mutation rate
Theoretical analysis Average generation number using

simulation Parameter ρ Convergence time t
BBO GA BBO GA BBO GA

0.1 0.87 0.85 99.20 90.45 87.58 82.39
0.01 0.68 0.73 35.82 44.16 42.12 50.18
0.001 0.30 0.44 11.47 16.81 11.63 17.37

Table 5.3. Convergence rate comparison for the 3-bit one-max problem.
The table shows the convergence time t in seconds, the corresponding ρ and

the first generation number of finding an all-optimal population using BBO
and GA, averaged over 25 Monte Carlo simulations

Mutation rate
Theoretical analysis Average generation number using

simulation Parameter ρ Convergence time t
BBO GA BBO GA BBO GA

0.1 0.96 0.95 338.43 270.13 289.55 256.37
0.01 0.48 0.52 18.82 21.49 20.65 22.44
0.001 0.25 0.29 9.97 11.14 9.92 11.08

Table 5.4. Convergence rate comparison for the 3-bit deceptive problem.
The table shows the convergence time t in seconds, the corresponding ρ and

the first generation number of finding an all-optimal population using BBO
and GA, averaged over 25 Monte Carlo simulations

Mutation rate
Theoretical analysis Average generation number using

simulation Parameter ρ Convergence time t
BBO GA BBO GA BBO GA

0.1 0.61 0.59 27.95 25.16 26.09 24.87
0.01 0.11 0.17 6.26 7.95 6.17 7.72
0.001 0.04 0.05 4.29 4.76 4.18 4.63

Table 5.5. Convergence rate comparison for the 3-bit multimodal problem.
The table shows the convergence time t in seconds, the corresponding ρ and

the first generation number of finding an all-optimal population using BBO
and GA, averaged over 25 Monte Carlo simulations

90 Evolutionary Computation with Biogeography-based Optimization

Several things are notable about the results in Tables 5.3−5.5. First, the mutation
rate affects the convergence rate of BBO. For all test problems, the convergence rate
improves when the mutation rate decreases. We can accelerate the convergence of
BBO by decreasing the mutation rate. This may provide practical guidance for BBO
tuning for real-world problems. Second, by analyzing the relationship of the
parameter ρ and the convergence time t in Tables 5.3−5.5, we see that the
convergence time t is exponentially related to the parameter ρ as predicted by
Theorem 5.8. Third, the theoretical results and simulation results match well for
most of the test problems, which confirms the convergence rate estimate provided
by Theorem 5.8.

5.4. Markov models of BBO extensions

Section 5.2 set up the Markov model of the basic BBO algorithm, which is also
called partial immigration-based BBO, and which considers the immigration of each
solution feature as separate probabilistic trials. This section derives Markov models
for the three variations of BBO as described in Figures 4.2, 4.3 and 4.4 in Chapter 4,
including total immigration-based BBO, partial emigration-based BBO and total
emigration-based BBO [MA 13a, MA 13b].

A. Total immigration-based BBO

Total immigration-based BBO (Figure 4.2) bases migration on the immigration
rate for each solution, and probabilistically decides whether or not to immigrate all
solution features (that is, all independent variables) to a given solution. This is
different from the basic BBO algorithm, which considers immigration of one
solution feature at a time. For total immigration-based BBO, given that the
population distribution at generation t is equal to v, the probability Pki(v) that
immigration results in yk,t+1 = xi at generation t+1 can be obtained as follows:

() ()
() ()
() ()

()() () ()
()

, 1

, 1,

, 1

0 ()
1

,

1

Pr

Pr no immigration Pr no immigration

Pr immigration Pr immigrati

to

to on

1 1 i

ki k t i

k t i

k t i

q j jj s
m k im k m k n

s j j

k

j

k t

t

y

y

M v y x

y x

y x

v
x x

v
ς

μ
λ λ

μ

+

+

+

∈

=
=

= =

= = +

=

= − − +
∑

∏
∑

 [5.68]

Note that the first term of the right side of equation [5.68] denotes the probability
when immigration does not occur; that is, when yk is not selected for immigration.

BBO as a Markov Process 91

The second term on the right side of equation [5.68] denotes the probability when
immigration occurs, and it is proportional to the product of the summed emigration
rates of all solutions whose bits are equal to those of xi.

Now suppose that the mutation probability is the same as that in the basic BBO
algorithm. That is, ()kiP v is defined as in equation [5.47], except that we use Mki(v)
from equation [5.68] instead of Mki(v) from equation [5.47]. Then, the transition
matrix for total immigration-based BBO is calculated as shown in equation [5.48].

B. Partial emigration-based BBO

Partial emigration-based BBO (Figure 4.3) bases migration on emigration rates
for each solution, and probabilistically decides whether or not to emigrate each
solution feature. If emigration is selected, the immigrating solution is
probabilistically selected based on immigration rates. For all BBO variations, the
probability that yk is equal to some specific value includes the probability that
immigration does not occur and the probability that immigration occurs. Suppose r
denotes the current emigration trial number (there are N emigration trials of the
outer loop in Figure 4.3). If the sth feature of yk is not selected for immigration
during generation t, then:

() () () ()(),1
if no immigration t on the th emigration trialo k k tm kt

y s x s y rs
+

= [5.69]

To calculate the probability that immigration does not occur, first consider the
emigration probability of xm(r) on the rth emigration trial, which can be written as:

()emigration on the th emigration trial)P (=r m rr μ [5.70]

where the meaning of m(r) is similar to m(k) in equation [5.18]. The immigration
probability of yk is proportional to its immigration rate. So the probability that
xm(r)(s) immigrates to yk(s) on the rth emigration trial can be written as:

()
()

1

Pr(immigration to on the th emigration trial)
Pr(emigration on the th emigration trial)

Pr(immigration to emigration on the th emigration trial)

k

k

m k
m r n

j j
j

y r
r

y r

v

λ
μ

λ
=

=
×

=
∑

 [5.71]

92 Evolutionary Computation with Biogeography-based Optimization

The probability that immigration does not occur for yk(s) on the rth emigration
trial can be written as:

()
()

1

Pr(no immigration to on the th emigration trial)
1 Pr(immigration to on the th emigration trial)

1

k

k

m k
m r n

j j
j

y r
y r

v

λ
μ

λ
=

= −

= −
∑

 [5.72]

However, if the sth feature of yk is selected for immigration on the rth emigration
trial during generation t, then in order to have yk(s) = xi(s), the sth feature of the
emigrating solution xm(r) must be equal to the sth feature of xi; that is,

() () () ()
()()

1

,if immigration to on the th emigration trial

k im rt

k t r

y s x s x s

y s
+

= =
 [5.73]

Equations [5.69], [5.70], [5.71] and [5.72] are combined to obtain the total
migration probability of one bit of yk after R emigration trials. Here use R to denote
the total number of emigration trials; this differs from r, which indicates a specific
emigration trial. So the total migration probability can be written as:

, 1

,

, 1

,

, 1

() () after emigration trials)
Pr(no immigration to on th emigration trial)

Pr(() () after -1 emigration trials)
Pr(immigration to on th emigration tri

Pr

al)
Pr((

(

) () |

k t i

k t

k t i

k t

k t i

s x s R
y R

y s x s R
y R

y s x

y

s

+

+

+

=
=

× =
+

× =

()

()

(
()

0

)

()

()

1

()
()

1

Pr () () afte

immigration on th emi

r (1) emigration trials

1 ()

gra

(

tion t

)

rial)

1 m k i

m

m k
m R n

j j
j

m k
m R n

j j
j

R i

x s x s R

x s x s

R

v

v

λ
μ

λ

λ
μ

λ

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= = −
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟+ −
⎜ ⎟
⎜ ⎟

⎠

−

⎝

∑

∑

 [5.74]

BBO as a Markov Process 93

Note that the above equation applies to one bit in one solution after R emigration
trials. For example, consider the simple case of one emigration trial (R = 1). In this
case, the probability that yk(s) = xi(s) at generation t+1 can be written as:

, 1

,

, 1

,

, 1

() () after 1 emigration trial)
Pr(no immigration to on 1st emigration trial)

Pr(() () | no immigration)
Pr(immigration to on 1st emigration trial)

Pr(() () | immigration

Pr(k t i

k t

k t i

k t

k t i

s x s
y

y s x s
y

y s x s

y +

+

+

=
=

× =
+

× =

() ()0 (
() ()

() 0 (1)1) (1)

1 1

on 1st emigration trial

1 ()

)

1 () 1 () ()m k
m k m k

m mn n

j j j j
j

i m i

j

x s x s x s x s
v v

λ λ
μ μ

λ λ
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= − + −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
∑ ∑

 [5.75]

To express this in a more compact form, we introduce the notation ()m kη for

()
1

n

m k j j
j

vλ λ
=
∑ in the following equations. So after two emigration trials, we obtain:

, 1

,

, 1

,

, 1

() () after 2 emigration trials)
Pr(no immigration to on 2nd emigration trial)

Pr(() () after 1 emigration trial)
Pr(immigration to on 2nd emigration trial)

Pr(()

Pr(k t i

k t

k t i

k t

k t

s x s
y

y

y s x s
y

y s

+

+

+

=
=

× =
+

× =

()() ()
()() ()

()() ()() ()
()() ()

()()

()

0

(2)

(2)

(1)

(2)

(1)

(2

(2)

0 ()

0 (1)

0)

Pr () () after 1emigration trial

1

() | immigration on

() ()

2nd emigration trial)

1

1
1

1 () ()

1 () ()

1

m k im k

m im k

m k im k

m k

m

i

m

m

m

m

im k

mmm k

m

x s x s

x

x s

s x s

x s x s

x s x s

x

η

η

η
η

μ

μ

μ
μ

μ

μ

η

η

= =

+ −

⎛ ⎞−
⎜ ⎟= ⎜ ⎟⎜ ⎟+ −⎝ ⎠

−

−
−

+ ()
()() ()() ()

()() ()() () ()() ()
(2) (1)

(2) (1) (2

(2)

0 ()

0 (1) 0) (2)

() ()

1 () ()

1 () () 1 () ()

1 1

1

i

m k im k m k

m i m im

m m

m m mk m k m k

s x s

x s x s

x s x s x s x s

η η

η η

μ μ

μ ημ μ

− −

−

−

= −

+ − + −

 [5.76]

Note that the first term of the right side of the above equation denotes the
probability when immigration does not occur on either of the two emigration trials,

94 Evolutionary Computation with Biogeography-based Optimization

the second term denotes the probability when immigration occurs on the first
emigration trial but not on the second emigration trial, and the third term denotes the
probability when immigration occurs on the second emigration trial. After N
emigration trials (recall that the population size is N), we can use induction to see
that the probability can be written as:

, 1

,

, 1

,

, 1

() () after emigration trials)
Pr(no immigration to on th emigration trial)

Pr(() () after -1emigration trials)
Pr(immigration to on th emigration tri

Pr(

al)
Pr(()

k t i

k t

k t i

k t

k t

s x s N
y N

y s x s N
y N

y s

y +

+

+

=
=

× =
+

× =

()() ()
()() ()

()() ()()
()() ()() ()() ()

()

()

() (1)

(3) (2) (1)

(

()

0 ()

0 ()

)

Pr ()

() | immigration on th emigration trial)

1

1 1

1 1 1

() after (1) emigration trials

1 () ()

1 () ()

1

m k im k

m N im

i

m N

m N

m N m N

m

k

m k m k

m k im k m k mm

m N

km

m

x s N

x s x s N

x s x s

x s x s

η

η

η η

η η η

μ

μ

μ μ

μ

η

μ μ

μ

−

= = −

+ −

−

− −

− − −−

−

=

+

L

()() ()()
()() ()() ()() ()

()() ()() ()() ()() ()

()() ()

(1)

(3) (2) (1)

(

0 (1)

0 (2) (1) (3) (2)

()

)

0 ()

1 () ()

1 () ()

1 () ()

1

1 1

1 1 1

k m k

m im k m k m k

m im k

m N

m m m

m N m N mm k m m

m N

k m k

m N im k

x s x s

x s x s

x s x s

μ

μ μ μ

μ μ

η

η η η

η η η η

μ η

μ μ

−

−

−

+ −

+ −

−

− −

− − −

L

L

L

 [5.77]

Note that the first term of the right side of the above equation denotes the
probability when immigration does not occur on any of the N emigration trials, the
second term denotes the probability when immigration occurs on the first emigration
trial but none of the later emigration trials, the third term denotes the probability
when immigration occurs on the second emigration trial but none of the later trials,
and so on. A more compact form of equation [5.77] is:

()() ()

()() ()() ()

()() ()

, 1

()

(1)

0 ()
1

11

0 ()
1

0

()

() ()

() () after emigration tPr(

1 () ()

1 () ()

1

ri

() (

als)

)

1

1

N

m k im k
l

NN

m L im k m k
L l L

m N i

k t i

m l

m l m L

m N m k

s xy

x s x s

x s x s

x s x s

s N

μ

μ μ

μ

η

η η

η

+

=

−

= =
+

−

= −

⎡ ⎤+ −⎢ ⎥
⎣ ⎦

+ −

=

−

−

∏

∑ ∏
 [5.78]

BBO as a Markov Process 95

We again use Pki(v) to denote the probability that immigration results in yk,t+1 = xi
given that the population distribution at generation t is equal to v. Recalling that
there are q bits in each solution, this can be written as:

() ()
()

1

1
, 1

,Pr

Pr(() () after emigration trials)k t i

ki k t i

q

s

s x

v x

y s

M

N

y +

+
=

= =

= =∏
 [5.79]

The incorporation of mutation probability is the same as for basic BBO, so
()kiP v is defined the same as equation [5.47], except we use Mki(v) from equation

[5.79]. Then, the transition matrix for total immigration-based BBO is calculated as
shown in equation [5.48].

C. Total emigration-based BBO

Total emigration-based BBO (Figure 4.4) bases migration on the emigration rate
for each solution, and probabilistically decides whether or not to emigrate all
solution features from each solution. This differs from partial emigration-based
BBO, which considers emigration of one solution feature at a time. But in total
emigration-based BBO, the immigration probability of one bit of yk after R
emigration trials is the same as in partial emigration-based BBO. This can be seen
by carefully comparing Figures 4.3 and 4.4; the probability of immigrating to zk(s) is
the same for both algorithms. Therefore, the Markov transition matrix is the same
for total emigration-based BBO as it is for partial emigration-based BBO.

EXAMPLE 5.12.–

In this example, we use simulation to confirm the Markov models of three BBO
variations: total immigration-based BBO, partial emigration-based BBO and total
emigration-based BBO. To provide some comparisons, we also use the Markov
model of the basic BBO algorithm in this example. For convenience, partial
immigration-based BBO (the basic BBO) and total immigration-based BBO are
called immigration-based BBO algorithms, and partial emigration-based BBO and
total emigration-based BBO are called emigration-based BBO algorithms. The
Markov transition matrices derived in sections 5.1 and 5.4 are used to obtain the
probability, in the limit as the generation count approaches infinity, that the BBO
population consists of a particular set of solutions. Test problems and population
size are the same as those in Example 5.9.

96 Evolutionary Computation with Biogeography-based Optimization

Tables 5.6, 5.7 and 5.8 show Markov and simulated results for the four BBO
algorithms with mutation rates of 0.1, 0.01 and 0.001 per bit per generation. The
tables show the probability of obtaining a population in which all solutions
are optimal, and the probability of obtaining a population in which no solutions are
optimal.

Mutation

rate

Population

count

vector

Probability

Partial immigration

BBO (basic BBO)

Total

immigration BBO

Partial

emigration BBO

Total emigration

BBO

Markov Simulation Markov Simulation Markov Simulation Markov Simulation

0.1

All

Optimal
0.0245 0.0251 0.0258 0.0265 0.0630 0.0616 0.0630 0.0631

No

Optimal
0.2998 0.2970 0.3108 0.3232 0.2361 0.2358 0.2361 0.2312

0.01

All

Optimal
0.5343 0.5314 0.5330 0.5244 0.7551 0.7596 0.7551 0.7510

No

Optimal
0.1134 0.1309 0.1175 0.1160 0.0328 0.0342 0.0328 0.0362

0.001

All

Optimal
0.8605 0.8590 0.8601 0.8587 0.9542 0.9547 0.9542 0.9527

No

Optimal
0.0923 0.0975 0.0927 0.0900 0.0221 0.0230 0.0221 0.0267

Table 5.6. Optimization results for the 3-bit one-max problem. The table shows
the probabilities of obtaining an all-optimal population and the probabilities

of obtaining a no-optimal population using BBO Markov models and
simulations. The best Markov performance is in bold in each row

BBO as a Markov Process 97

Mutation

rate

Population

count vector

Probability

Partial immigration

BBO (basic BBO)

Total immigration

BBO

Partial emigration

BBO

Total emigration

BBO

Markov Simulation Markov Simulation Markov Simulation Markov Simulation

0.1
All Optimal 0.0315 0.0318 0.0328 0.0328 0.0313 0.0340 0.0313 0.0323

No Optimal 0.3751 0.3765 0.3837 0.3889 0.4116 0.4261 0.4116 0.4201

0.01
All Optimal 0.6206 0.6209 0.6185 0.6142 0.5695 0.5510 0.5695 0.5704

No Optimal 0.1362 0.1333 0.1399 0.1383 0.2250 0.2249 0.2250 0.2196

0.001
All Optimal 0.8771 0.8770 0.8766 0.8753 0.7817 0.7792 0.7817 0.7842

No Optimal 0.0937 0.0927 0.0942 0.0952 0.1941 0.1917 0.1941 0.1896

Table 5.7. Optimization results for the 3-bit deceptive problem. The table shows
the probabilities of obtaining an all-optimal population and the probabilities

of obtaining a no-optimal population using BBO Markov models and
simulations. The best Markov performance is in bold in each row

Mutation

rate

Population

count vector

Probability

Partial immigration

BBO (basic BBO)

Total immigration

BBO

Partial emigration

BBO

Total emigration

BBO

Markov Simulation Markov Simulation Markov Simulation Markov Simulation

0.1
All Optimal 0.0485 0.0472 0.0506 0.0546 0.0487 0.0473 0.0487 0.0431

No Optimal 0.1819 0.1825 0.1780 0.1716 0.2090 0.2060 0.2090 0.2038

0.01
All Optimal 0.6872 0.6937 0.6863 0.6813 0.7057 0.7195 0.7057 0.7172

No Optimal 0.0484 0.0418 0.0499 0.0474 0.0846 0.0859 0.0846 0.0825

0.001
All Optimal 0.9352 0.9309 0.9350 0.9362 0.9070 0.8983 0.9070 0.9046

No Optimal 0.0337 0.0323 0.0339 0.0318 0.0701 0.0857 0.0701 0.0693

Table 5.8. Optimization results for the 3-bit multimodal problem. The table shows
the probabilities of obtaining an all-optimal population and the probabilities

of obtaining a no-optimal population using BBO Markov models and
simulations. The best Markov performance is in bold in each row

98 Evolutionary Computation with Biogeography-based Optimization

Several things are notable about the results in Tables 5.6, 5.7 and 5.8. First, the
mutation rate affects the performance for all the four BBO algorithms. For all the
three problems, the performance of the four algorithms improves as the mutation
rate decreases; that is, the probability of obtaining an all-optimal population
increases, and the probability of obtaining a no-optimal population decreases. The
tables show that a high mutation rate of 0.1 per bit results in too much exploration so
the probability of obtaining an all-optimal population is low, and the probability of
obtaining a no-optimal population is relatively high. However, as the mutation rate
decreases to 0.01 and 0.001, the probability of obtaining an all-optimal population
significantly increases, and the probability of obtaining a no-optimal population
significantly decreases. The higher the mutation rate, the lower the probability that
the optimum is found and kept for the next generation, which gives worse
performance, as shown in the tables.

Second, for the one-max problem in Table 5.6, the emigration-based BBO
algorithms outperform the immigration-based BBO algorithms for all mutation
rates; that is, emigration-based BBO algorithms have a higher probability of
obtaining an all-optimal population and a lower probability of obtaining a no-
optimal population. For example, for a mutation rate of 0.001 per bit, the best
performance is obtained by emigration-based BBO algorithms in their high
probability of obtaining an all-optimal population (95.43%), and in their low
probability of obtaining a no-optimal population (2.22%). Partial immigration-based
BBO and total immigration-based BBO probabilities are 86.05% and 86.01%,
respectively, for obtaining an all-optimal population, and 9.23% and 9.28%,
respectively, for obtaining a no-optimal population.

Third, for the deceptive problem in Table 5.7, the immigration-based BBO
algorithms outperform the emigration-based BBO algorithms for all mutation rates,
with partial immigration-based BBO slightly better than total immigration-based
BBO. For example, for a mutation rate of 0.001 per bit, the best performance is
obtained by partial immigration-based BBO in its high probability of obtaining an
all-optimal population (87.71%), and in its low probability of obtaining a no-optimal
population (9.38%). Total immigration-based BBO and emigration-based BBO
algorithms are 87.67% and 78.18%, respectively, for obtaining an all-optimal
population, and 9.43% and 19.41%, respectively, for obtaining a no-optimal
population.

Fourth, for the multimodal problem in Table 5.8, the probability of obtaining an
all-optimal population and the probability of obtaining a no-optimal population are
very similar for all the four BBO algorithms. Specifically, total immigration-based
BBO outperforms the other three algorithms when the mutation rate is 0.1 per bit,
and partial immigration-based BBO outperforms the other three algorithms when the

BBO as a Markov Process 99

mutation rate is 0.001 per bit, but the emigration-based BBO algorithms outperform
the immigration-based BBO algorithms when the mutation rate is 0.01 per bit.

All of these results show that different variations of BBO provide different
optimization performance for different types of problems. For the unimodal problem,
the emigration-based BBO algorithms are better than the immigration-based BBO
algorithms. For the deceptive problem, the immigration-based BBO algorithms are
better than the emigration-based BBO algorithms. For the multimodal problem, the
emigration-based BBO algorithms perform similarly to the immigration-based BBO
algorithms. Tables 5.6−5.8 further show that the performance of partial immigration-
based BBO and total immigration-based BBO are similar for all test problems. These
results are summarized in Table 5.9.

Finally, Tables 5.6−5.8 show that the Markov model results and the simulation
results match well for all of the test problems, which confirms the Markov models of
the proposed BBO variations.

Problem Best algorithm Other notes

Unimodal
problem

Emigration-based BBO
The two emigration-based BBO
algorithms perform identically

Deceptive
problem

Immigration-based BBO
The two immigration-based BBO

algorithms perform similarly

Multimodal
problem

No significant difference
between BBO algorithms

All BBO algorithms perform better with
low mutation rates

Table 5.9. Conclusions from the Markov study of the four BBO algorithms on 3-bit
problems. The “best algorithm” for each problem is determined from an inspection of

Tables 5.6−5.8

5.5. Conclusions

In this chapter, we derived Markov models for BBO and its variations, and we
discussed convergence based on the Markov models. These models give
theoretically exact results, whereas simulations change from one run to the next due
to initialization and the random number generator that is used for migration and
mutation. Unfortunately, the dimension of the Markov model grows factorially with
the population size and the search space size. This limits its application to very small

100 Evolutionary Computation with Biogeography-based Optimization

problems. However, Markov models are still useful for giving exact results without
the need to rely on the random nature of stochastic simulations.

In this concluding section, we discuss the curse of dimensionality of the Markov
model. The curse of dimensionality is a phrase that was originally used in the
context of dynamic programming [BEL 61; SIM 13a, p. 81]. However, it applies
even more appropriately to Markov models of population-based optimization
algorithms, including BBO. The size of the transition matrix of a Markov model of
BBO is T × T, where T is calculated by equation [5.19]. The transition matrix
dimensions for a few combinations of population size N, and search space
cardinality n, which is equal to 2q for q-bit search spaces, are shown in Table 5.10.
We see that the transition matrix dimension grows ridiculously large for problems of
even modest dimension. This seems to indicate that Markov modeling is interesting
only from a theoretical viewpoint and does not have any practical applications.
However, there are a couple of reasons that such a response may be premature.

Number of bits q n = 2q N T
10 210 10 1023
10 210 20 1042
20 220 20 10102
50 250 50 10688

Table 5.10. Markov transition matrix dimensions for
various search space cardinalities n and population

sizes N. Adapted from [REE 03, p. 131]

First, although we cannot apply Markov models to realistically sized problems,
Markov models still give us exact probabilities for small problems. This allows us to
look at the advantages and disadvantages of different EAs for small problems,
assuming that we have Markov models for EAs other than BBO. A lot of research in
EAs today is focused on simulations. The problem with simulations is that their
outcomes depend on implementation details and on the specific random number
generator that is used. Also, if some event has a very small probability of occurring,
then it would take many simulations to discover that probability. Simulation results
are useful and necessary, but they must always be taken with a dash of skepticism
and a pinch of salt.

Second, the dimension of the Markov transition matrices can be reduced. Our
Markov models include T states, but many of these states are very similar to each

BBO as a Markov Process 101

other. For example, consider BBO with a search space cardinality of 10 and a
population size of 10. Table 5.10 shows us that the Markov model has 1023 states,
but these include the states:

() { }
() { }
() { }

1 5,5,0,0,0,0,0,0,0,0

2 4,6,0,0,0,0,0,0,0,0

3 6, 4,0,0,0,0,0,0,0,0

v

v

v

=

=

=

 [5.80]

These three states are so similar that it makes sense to group them together and
consider them as a single state. We can do this with many other states to get a new
Markov model with a reduced state space. Each state in the reduced-order model
consists of a group of the original states. The transition matrix would then specify
the probability of transitioning from one group of original states to another group of
original states. This idea was proposed in [SPE 97] and is further discussed in
[REE 03]. It is hard to imagine how to group states to reduce a 1023 × 1023 matrix to
a manageable size, but this idea may allow us to handle larger problems than we
would be able to otherwise.

6

Dynamic System Models of BBO

In the last chapter, we saw that the transition matrix for a BBO Markov model is
found by calculating the cumulative probabilities of migration and mutation. We
now develop this construction in more detail to examine the dynamics of a
population as it transitions from generation to generation. This will give us a more
complete model, which is called a dynamic system model. The dynamic system
model is based on the Markov model, but the application is quite different. The
Markov model gives the steady-state probability of each possible population as the
generation count approaches infinity. The dynamic system model gives
the time-varying proportion of each possible solution in the search space as the
population size approaches infinity.

Overview of the chapter

This chapter develops a dynamic system model for the basic BBO algorithm.
Section 6.1 presents the basic notation that we will use in later sections. Section 6.2
derives the BBO dynamic system model and some of its properties, based on the
Markov model. Section 6.3 uses our dynamic system model to solve some
benchmark problems.

6.1. Basic notation

This section introduces the notation used in the BBO dynamic system model.
Some of this notation may be more general or more specific in other contexts. The
definitions indicated here are not universal, but nevertheless are commonly used,
and more importantly for our purposes, are specifically used in this chapter.

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

104 Evolutionary Computation with Biogeography-based Optimization

First, we note a difference between the notations of Markov processes and
dynamic systems. A Markov process is a process whose state at time step (t + 1)
depends only on the state at time t. The transition of the state from one time step to
the next is probabilistic. A dynamic system is a process whose state at time step
(t + 1) depends only on the state at time t, but the transition of the state from one
time step to the next is deterministic.

Second, the Markov model gives us the probability of occurrence of each
possible population distribution as the number of generations approaches infinity.
The dynamic system model is quite different; it gives us the proportion of each
possible solution in the population as a function of time as the population size
approaches infinity.

Third, in the Markov model, each state represents a possible population
distribution, that is, a possible distribution of solutions in the search space. The
probability that the system transitions from state i to state j is given by the
probability pij, which is the probability that the population transitions from the ith
possible population distribution to the jth possible population distribution in one
generation. The states in the dynamic system model are not the same as the states in
the Markov model. Dynamic system model states represent the proportion of each
possible solution in the population.

Fourth, the number of states is different in the Markov model and in the dynamic
system model. Recall from equation [5.19] in Chapter 5 that for a Markov model
with a population size of N and a search space of cardinality n, the number of states
T is given by:

1n N
T

N
+ −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [6.1]

For the dynamic system model, the number of states is equal to the search space
cardinality n of the optimization problem. The number of states of the dynamic
system model is thus only a small fraction of the number of states of the Markov
model. This makes the dynamic system model applicable to larger problems than the
Markov model.

Finally, both the Markov model and the dynamic system model allow us to
obtain exact results without the need to rely on the random nature of stochastic
simulations. The results of the two models are more precise than simulation. The
dynamic system model for EAs in general is explained in detail in [REE 03],
[NIX 92], [VOS 90] and [VOS 91].

Dynamic System Models of BBO 105

EXAMPLE 6.1.–

We use an example to illustrate the population distribution in the Markov model
and the candidate solution proportions in the dynamic system model. Suppose there
exists a search space consisting of n = 3 possible solutions which are x = {x1, x2, x3} =
{00, 01, 10} with a population size N = 2. So there are six possible population
distributions from equation [6.1], which are {{00, 00}, {00, 01}, {00, 10}, {01, 01},
{01, 10}, {10, 10}}, and the corresponding population count vectors are {{2, 0, 0},
{1, 1, 0}, {1, 0, 1}, {0, 2, 0}, {0, 1, 1}, {0, 0, 2}}. Suppose that the solutions in the
current population are y = {x2, x3} = {01, 10}. Then, we have the population count
vector v = {v1, v2, v3} = {0, 1, 1}, and the solution proportion vector p = v/N = {0,
0.5, 0.5}.

6.2. Dynamic system models of BBO

In this section, we use the Markov model of the previous chapter to derive a
dynamic system model of the basic BBO algorithm. Therefore, some parameters in
this chapter are the same as those in the previous chapter. The view of a BBO as a
dynamic system was originally published in [SIM 11a], which forms the basis of this
chapter.

First, recall the probability ()kiP v that the kth migration results in =k iy x at
generation (t + 1), and is described as:

() ()

()() () ()() ()
()

, 1

0 ()
1

1

Pr

1 1 i

ki k t i

q j jj s
m k im k m k n

s j jj

P v y x

v
x s x s

v
ς

μ
λ λ

μ

+

∈

=
=

= =

⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥
⎣ ⎦

∑
∏

∑
 [6.2]

In equation [6.2], yk is the kth solution in the population:

{ }1 1 1 1 2 2 2

1 2

, { , , , , , , , , , , , }N n n n

v copies v copies v copiesn

y y x x x x x x x x x=L L L L L
14243 14243 14243

 [6.3]

106 Evolutionary Computation with Biogeography-based Optimization

where the yk solutions have been ordered to group identical solutions. That is,

1 1

2 1 1 2

3 1 2 1 2 3

1

1

, for 1, ,
, for 1, ,
, for 1, ,

, for 1, ,

k

n
n ii

x k v
x k v v v

y x k v v v v v

x k v N−

=

⎧ =⎪
= + +⎪

⎪= = + + + +⎨
⎪
⎪
⎪ = +⎩ ∑

L

L

L

M

L

 [6.4]

where N is the population size. So equation [6.3] can be rewritten more compactly
as:

() for 1, 2, ,k m ky x k N= = L [6.5]

where m(k) is defined as:

()
1

min such that
r

i
i

m k r v k
=

= ≥∑ [6.6]

In equation [6.2], v is the population count vector at the tth generation, which is:

{ }1 2, , , nv v v v= L [6.7]

where iv is the number of copies of solution ix in the population, so that:

1

n

i
i

v N
=

=∑ [6.8]

In order to derive a dynamic system model for BBO, we make a slight change in
the basic BBO algorithm of Figure 3.5 in Chapter 3. We still cycle through the
immigration loop N times; however, instead of deterministically cycling through
each population member ky for immigration, we randomly select a population
member for immigration each of the N times through the loop. Therefore, each time
we cycle through the immigration loop, each ky has a 1/N chance of being selected
for immigration. Note that as N → ∞ , this is equivalent to the algorithm of
Figure 3.5. With this change, the basic BBO algorithm is modified to become the
algorithm shown in Figure 6.1.

Dynamic System Models of BBO 107

Initialize a population of candidate solutions { kx } for k ∈ [1, N]

While not (termination criterion)

For each ,kx set emigration rate μk proportional to the fitness of ,kx where μk is

normalized to [0, 1]

For each ,kx set immigration rate λk = 1 − μk

{ kz } ← { kx }

For h = 1,…, N

 Randomly select one of the kz solutions

 For each solution feature SIV

 Use λk to probabilistically decide whether to immigrate to zk

 If immigrating then

 Use {μi} to probabilistically select the emigrating solution xj

 zk(SIV) ← xj(SIV)

 End if

 Next solution feature

 Probabilistically decide whether to mutate zk

Next h

{ kx } ← { kz }

Next generation

Figure 6.1. Outline of the BBO algorithm with random selection of the
immigrating solution. { kx } is the population of solutions and { kz } is a temporary

population of solutions. kx is the kth candidate solution and ()kx SIV is the
solution feature SIV of kx . For simplicity, we use s to denote SIV in the text

For the algorithm described in Figure 6.1, the probability that the hth migration
trial hM results in ix is:

1

1Pr() Pr()
N

h i k i
k

M x y x
N =

= = =∑ [6.9]

Now note that:

1 2 1 2
Pr() Pr() ifk i k i k ky x y x y y= = = = [6.10]

108 Evolutionary Computation with Biogeography-based Optimization

Combining equations [6.4], [6.5], [6.6] and [6.10], we get:

()
1 2

(1) ()

1 2
1 1

Pr() Pr() if 1,
m k m k

k i k i i i
i i

y x y x k k v v
−

= =

⎡ ⎤
= = = = ∈ +⎢ ⎥

⎣ ⎦
∑ ∑ [6.11]

Therefore, equation [6.9] can be written as:

()() ()
0

1 1
1

1Pr() (1)1 () i
qn j jj s

h i k k k i k n
k s j jj

v
M x v x s x s

N v
ς

μ
λ λ

μ
∈

= =
=

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= = − − +⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑
∑ ∏

∑
 [6.12]

Now we define the population-count proportionality vector p as:

vp
N

= [6.13]

That is, ip is the proportion of ix solutions in the population for []1,i n∈ , and
the elements of p add up to 1. Equation [6.12] can then be written as:

()() ()

()() ()

0
1 1

1

0
1 1

Pr() (1)1 ()

(1)1 ()
()

i

i

qn j jj s
h i k k k i k n

k s j jj

qn
Tk

k k i k j jT q j s
k s

v
M x p x s x s

v

p p x s x s v
p

ς

ς

μ
λ λ

μ

μ λ λ μ
μ

∈

= =
=

∈
= =

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= = − − +⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤= − − +⎨ ⎬⎣ ⎦⎩ ⎭

∑
∑ ∏

∑

∑ ∑∏
 [6.14]

The quantities on the right side of equation [6.14] are defined at the tth
generation. The left side of equation [6.14] then gives probability of obtaining xi at
generation (t + 1).

Next, we introduce a theorem to represent the basic population dynamics
relationship [REE 03, p. 144, VOS 99, Theorem 2].

THEOREM 6.1.–If the current population is given by the population vector p , then
the next population expected is ()f p , where ()f ⋅ is a generational operator.

According to Theorem 6.1, we see that the left side of equation [6.14] is equal to
the proportion of xi solutions in the population at generation (t + 1):

()() ()0
1 1

()(1) () (1)1 ()
(()) i

qn
Tk

i k k i k j jT q j s
k s

p tp t p t x s x s v
p t ς

μ λ λ μ
μ ∈

= =

⎧ ⎫⎡ ⎤+ = − − +⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑∏ [6.15]

Dynamic System Models of BBO 109

where p is explicitly shown as a function of t. Based on equation [6.15] for
[]1, ,i n∈ we can see the nonlinear dynamic system for the evolution of the

population-count proportionality vector:

(1) (())p t f p t+ = [6.16]

Next, we incorporate mutation into our model and denote the n × n mutation
matrix as U, where jiU is the probability that jx mutates to ix . Suppose that the
event that each bit of a candidate solution is flipped is stochastically independent
and occurs with probability u ∈ (0, 1). Then, the probability Uji can be written as:

()1 ijij q HH
jiU u u −= − [6.17]

where Hij represents the Hamming distance between bit strings ix and jx .

This gives the dynamic system model equation:

(1) (())p t f p t U+ = [6.18]

If mutation is not used in the BBO algorithm, then U is the identity matrix and
equation [6.18] reduces to equation [6.16].

EXAMPLE 6.2.–

To verify the dynamic system model of BBO, we consider a simple 3-bit
problem (n = 8) with a per-bit mutation rate u = 0.2. The fitness values are given as
follows:

() () () ()
() () () ()
000 8, 001 1, 010 1, 011 1,

100 1, 101 1, 110 1, 111 9.

f f f f

f f f f

= = = =

= = = =
 [6.19]

This is a relatively difficult optimization problem because x1 = 000 has a high
fitness, and every time we add a 1 bit to it the fitness decreases dramatically, but the
solution with all 1’s has the highest fitness. We begin with an initial population with
proportionality vector:

() []0 0.8 0.1 0.1 0 0 0 0 0 Tp = [6.20]

110 Evolutionary Computation with Biogeography-based Optimization

Figure 6.2 shows the dynamic system model result and simulation result for
BBO with a population size of 1,000. The plots provide confirmation for the
dynamic system model of BBO. The simulation result oscillates around its mean
value, which is expected because of the mutation operator. The simulation result will
vary from one simulation to the next, and will never exactly match the theory due to
the stochastic nature of the simulations. That is why the dynamic system model can
be more useful than simulation; the model is exact while simulation result is only
approximate.

Figure 6.2. BBO dynamic system model result giving confirmation that simulation
matches theory. The traces show the proportion of the optimal solutions for a typical
simulation, the mean of that proportion over all generations and the proportion
according to the dynamic system model. Reprinted from [SIM 11a] with permission
from Elsevier. For a color version of this figure, see www.iste.co.uk/ma-
simon/evolutionary.zip

A. Special case: 0λ =

We now consider the dynamic system model of BBO when 0kλ = for all k. In
this case, there is no possibility of immigration and equation [6.15] reduces to:

()()0
1 1

(1) () 1 ()
qn

i k k i
k s

p t p t x s x s
= =

⎧ ⎫
+ = −⎨ ⎬

⎩ ⎭
∑ ∏ [6.21]

0 20 40 60 80 100
0

1

2

3

4

5

generation

pe
rc

en
t o

f o
pt

im
um

Simulation
Simulation mean
Dynamic model

Dynamic System Models of BBO 111

Since each ix is distinct, we see that:

()() ()0 0
1

1 () 1
q

k i
s

x s x s k i
=

− = −∏ [6.22]

which gives:

()0
1

(1) ()1 ()
n

i k i
k

p t p t k i p t
=

+ = − =∑ [6.23]

That is, with no immigration and no mutation, the proportionality vector does not
change from one generation to the next, which agrees with intuition.

B. Special case: 1λ = and random feature selection

Next, we consider the dynamic system model of BBO when 1kλ = for all k. The
BBO algorithm of Figure 6.1 becomes a special type of a genetic algorithm with
global uniform recombination (GA/GUR), which has been described in section 3.2
in Chapter 3. GA/GUR can be implemented in many different ways, but if it is
implemented with the entire population as potential contributors to the next
generation, and with fitness-based selection for each solution feature in each
offspring, then it is equivalent to BBO with 1kλ = for all k. In this case,
immigration takes place for all solutions in the population, and the new solution that
results from each immigration can be thought of as an offspring of the previous
generation. Suppose also that in addition to 1kλ = for all k, each immigration trial
migrates one randomly selected bit. Then, the BBO algorithm of Figure 6.1 becomes
the GA/GUR algorithm of Figure 6.3.

The probability that ky at generation (t + 1) is equal to ix , given that solution
feature s was selected for migration, can be written as:

() ()(), 1 , , 1Pr (=) = Pr (:) = () Pr s =k t i k t i k t iy x s y r r s x r : r s y x s+ +⎡ ⎤≠ ≠⎣ ⎦ [6.24]

The first term on the right side of equation [6.24] is the proportion of the
population which has all bits r, such that r s≠ , equal to the corresponding bits
in .ix We denote the indices of these solutions as ()i sτ :

() () (){ } []: : : , 1,i j is j x r r s x r r s i nτ = ≠ = ≠ ∈ [6.25]

112 Evolutionary Computation with Biogeography-based Optimization

Note that () 2i sτ = for all (i, s). Now we can write equation [6.24] as:

() ()
, 1

1 1

Pr() i i
j j jj s j s

k t i n n
j j jj j

v v
y x s

v v
τ ς

μ

μ
∈ ∈

+

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
∑ ∑

 [6.26]

Initialize a population of candidate solutions { kx } for k ∈ [1, N]

While not (termination criterion)

For each kx , set emigration rate μk proportional to the fitness of kx , where μk is

normalized to [0, 1]

{ kz } ← { kx }

For h = 1,…, N

 Randomly select one of the kz solutions

Randomly select a solution feature SIV

 Use {μi} to probabilistically select the emigrating solution xj

 zk(SIV) ← xj(SIV)

Probabilistically decide whether to mutate zk

Next h

{ kx } ← { kz }

Next generation

Figure 6.3. Outline of GA/GUR with random selection of the immigrating
solution and random selection of the migrating solution feature. { kx } is the
population of solutions and { kz } is a temporary population of solutions. kx

is the kth candidate solution and ()kx SIV is the solution feature
SIV of kx . For simplicity, we use s to denote SIV in the text

Combining equations [6.8] and [6.13], equation [6.26] can be written as:

()
, 1

()
1

Pr() i

i

j jj s
k t i j n

j s j jj

p
y x s p

p
ς

τ

μ

μ
∈

+
∈

=

= =
∑

∑
∑

 [6.27]

Dynamic System Models of BBO 113

Figure 6.3 shows that each bit []1,s q∈ has a 1/q probability of being selected
as the migrating feature. Therefore,

()() ()(), 1
1

1Pr()
i i

q

k t i j j jT j s j s
s

y x p p
qp τ ς

μ
μ+ ∈ ∈

=

= = ∑ ∑ ∑ [6.28]

This is a quadratic function of the pi terms and can thus be written as:

, 1 ,
1 1

Pr()
n n

k t i i ab a b
a b

y x Y p p+
= =

= = ∑∑ [6.29]

Equation [6.28] shows that the 2
mp coefficient on the right side of equation

[6.29] for []1,m n∈ can be written as:

()() ()() () ()()(), 0 0 0
1 1

1 1 1
q q

i mm m i i m i i
s s

Y m s m s m s sμ ς τ μ ς τ
= =

= ∈ ∈ = ∈∑ ∑ I [6.30]

From the definition of ()i sτ in equation [6.25], we know that ()ii sτ∈ . We also
know that there is only one other element in ()i sτ . The other element in ()i sτ , say
α , has a bit string such that () ()ix r x rα = for all r s≠ . But since iα ≠ , we know
that () ()ix s x sα ≠ , which means that ()i sα ς∉ . Therefore,

() () { } for alli is s i sς τ =I [6.31]

Equation [6.30] can therefore be written as:

() (), 0 0
1

1 1
q

i mm m m
s

Y m i q m iμ μ
=

= − = −∑ [6.32]

We can use equation [6.28] to show that the m kp p coefficient ()k m≠ on the
right side of equation [6.29] can be written as:

()() ()()

()() ()()

, , 0 0
1

0 0
1

1 1

1 1 for

q

i mk i km m i i
s

q

k i i
s

Y Y m s k s

k s m s m k

μ ς τ

μ ς τ

=

=

+ = ∈ ∈

+ ∈ ∈ ≠

∑

∑
 [6.33]

So the GA/GUR dynamic system model can be written as the following set of n
coupled quadratic equations:

114 Evolutionary Computation with Biogeography-based Optimization

[](1) () (), 1,T
i ip t p t Y p t i n+ = ∈ [6.34]

where each element of iY is ,i mkY , which denotes the mth row and kth column of iY .
If mutation is included in the GA/GUR algorithm, then:

()(1) diag () ()T
ip t p t Y p t U+ = [6.35]

where ()diag () ()T
ip t Y p t is the n × n diagonal matrix consisting of:

() () () ()1 , . . ., T T
np t Y p t p t Y p t [6.36]

EXAMPLE 6.3.–

To verify the dynamic system model of BBO for the special case of 1λ = and
random feature selection, which is equivalent to GA/GUR, we use the same example
described in Example 6.2 and the same initial population vector proportionality.
Figure 6.4 shows the dynamic system model result and simulation result for GA/GUR.
The plots provide confirmation for the dynamic system model of GA/GUR.

Figure 6.4. GA/GUR dynamic system model result giving confirmation that simulation
matches theory. The traces show the proportion of the optimal solutions for a
typical simulation, the mean of that proportion over all generations and the
proportion according to the dynamic system model. Reprinted from [SIM 11a] with
permission from Elsevier. For a color version of this figure, see www.iste.co.uk/ma-
simon/evolutionary.zip

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

generation

pe
rc

en
t o

f o
pt

im
um

Simulation
Simulation mean
Dynamic model

Dynamic System Models of BBO 115

EXAMPLE 6.4.–

In this example, we compare dynamic system model results between BBO,
GA/GUR and GA with single-point crossover (GA/SP) and roulette-wheel selection,
which was originally developed in [VOS 99]. GA/SP is a classic EA for a dynamic
system model and is summarized in [REE 03] as:

() () ()
()2

()diag diag ()
(1)

()

T T

i T

p t f UC i U f p t
p t

f p t
+ = [6.37]

where ()diag f is the n × n diagonal matrix consisting of the fitness values of each
candidate solution, and U is the mutation matrix given in equation [6.17]. C(i) is an
n × n matrix such that the element in its mth row and kth column is the probability
that mx and kx crossover to produce ix .

We consider a problem whose fitness values are given as:

()
()

8 for 0...0

9 for 1...1
1 for all other

i

i i

i

x

f x
x

=⎧
⎪

= =⎨
⎪
⎩

 [6.38]

This is the same as equation [6.19] except that it is generalized for an arbitrary
number of bits. The proportionality vector of the initial population is given as:

() []10 1 1 0
1

Tp
n

=
−

K [6.39]

That is, the initial population is evenly distributed among the sub-optimal
solutions, and there are no optimal solutions. Figures 6.5–6.7 show steady-state
dynamic system model results for three different search space cardinalities, plotted
as functions of mutation rate. Figure 6.5 shows that BBO is much better at achieving
a high percentage of optimal solutions than GA/GUR and GA/SP for small
problems. Figures 6.6 and 6.7 show that as the problem dimension gets larger, BBO
performance gets worse relative to the GAs for large mutation rates. However, BBO
remains many orders of magnitude better than the GAs for small mutation rates,
which are more typical for real-world problems.

116 Evolutionary Computation with Biogeography-based Optimization

Figure 6.5. Dynamic system model results for a 3-bit problem (search
space cardinality n = 8) showing the steady-state proportion of optimal

solutions. Reprinted from [SIM 11a] with permission from Elsevier. For a
color version of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip

Figure 6.6. Dynamic system model results for a 5-bit problem (search
space cardinality n = 32) showing the steady-state proportion of optimal
solutions. Reprinted from [SIM 11a] with permission from Elsevier. For a

color version of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

probability of mutation

pe
rc

en
t o

f o
pt

im
um

BBO
GA/SP
GA/GUR

10
-3

10
-2

10
-1

10
-10

10
-5

probability of mutation

pe
rc

en
t o

f o
pt

im
um

BBO
GA/SP
GA/GUR

Dynamic System Models of BBO 117

Figure 6.7. Dynamic system model results for a 7-bit problem (search
space cardinality n = 128) showing the steady-state proportion of optimal
solutions. Reprinted from [SIM 11a] with permission from Elsevier. For a

color version of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip

Figures 6.8–6.10 depict the same information as that shown in Figures 6.5–6.7,
but presented in a different way. Figures 6.8–6.10 show dynamic system model
results for three different mutation rates, plotted as functions of the problem
dimension. Figure 6.8 shows that BBO is much better than the GAs for all problem
dimensions if the mutation rate is low, as is typical of real-world problems. Figures
6.9 and 6.10 show that as the mutation rate increases, BBO remains better than the
GAs for small problem dimensions, but becomes worse than GA/SP as the problem
dimension increases.

Figure 6.8 shows that with realistic mutation rates, BBO is much better than the
GAs for all problem dimensions. Furthermore, the relative advantage of BBO
increases as the problem dimension increases, which is consistent with the
conclusions presented in [SIM 11b] and [SIM 11d].

10
-3

10
-2

10
-1

10
-15

10
-10

10
-5

probability of mutation

pe
rc

en
t o

f o
pt

im
um

BBO
GA/SP
GA/GUR

118 Evolutionary Computation with Biogeography-based Optimization

Figure 6.8. Dynamic system model results for mutation rate = 0.1% per
bit showing the steady-state proportion of optimal solutions. Reprinted

from [SIM 11a] with permission from Elsevier. For a color version of
this figure, see www.iste.co.uk/ma-simon/evolutionary.zip

Figure 6.9. Dynamic system model results for mutation rate = 1% per
bit showing the steady-state proportion of optimal solutions. Reprinted

from [SIM 11a] with permission from Elsevier. For a color version
of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip

10
1

10
2

10
-20

10
-15

10
-10

10
-5

problem dimension

pe
rc

en
t o

f o
pt

im
um

BBO
GA/SP
GA/GUR

10
1

10
2

10
-10

10
-5

problem dimension

pe
rc

en
t o

f o
pt

im
um

BBO
GA/SP
GA/GUR

Dynamic System Models of BBO 119

Figure 6.10. Dynamic system model results for mutation rate = 10% per
bit showing the steady-state proportion of optimal solutions. Reprinted

from [SIM 11a] with permission from Elsevier. For a color version of
this figure, see www.iste.co.uk/ma-simon/evolutionary.zip

6.3. Applications to benchmark problems

Next, we apply the dynamic system model results of BBO, GA/GUR and GA/SP
to standard benchmark functions to show how the theory can be used to study the
performance of algorithms and the effect of parameter settings. These benchmark
functions include the needle function which is given in equation [6.38], the one-max
function which has a fitness proportional to the number of 1-bits in each bit string,
the deceptive function which is the same as the one-max function except that the bit
string with all zeros has the highest fitness [BAC 96, YAO 99], and some
continuous-domain functions that we list in the left column in Table 6.1 and which
are described briefly in Table 3.2 in Chapter 3. A more detailed description of these
functions can be found in Appendix A. We implemented the continuous functions as
two-dimensional functions whose independent variables are coded with 3 or 4 bits
per independent variable. This gives an optimization problem with either 6 or 8 bits
in total, which results in a search space cardinality of either 64 or 256. We initialized

120 Evolutionary Computation with Biogeography-based Optimization

the population with a uniform distribution over all of the non-optimal solutions. The
initial population did not include any optima. We recorded the percent of optimal
solutions in the population after 10 generations, which gives an idea of how fast
each algorithm converges. Tables 6.1 and 6.2 show the results. Note that these are
not simulation results, but exact dynamic system model results.

Function
Cardinality = 64

BBO GA/GUR GA/SP

Needle 6.97E-03 2.32E-10 2.17E-06

One-max 46.04 47.67 42.64

Deceptive 3.89E-03 2.25E-04 2.33E-04

Sphere Function 69.63 47.69 49.21

Schwefel’s Problem 2.22 69.14 25.80 51.27

Schwefel’s Problem 1.2 69.37 25.29 49.21

Schwefel’s Problem 2.21 75.65 66.84 62.89

Generalized Rosenbrock’s Function 10.37 3.56 9.13

Step Function 50.04 25.04 37.56

Quartic Function 39.09 26.13 34.12

Generalized Schwefel’s Problem 2.26 15.93 0.47 1.30

Generalized Rastrigin’s Function 43.93 50.05 41.79

Ackley’s Function 58.92 25.40 71.38

Generalized Griewank’s Function 67.82 44.18 49.00

Generalized Penalized Function 1 29.69 24.98 27.77

Generalized Penalized Function 2 32.83 24.96 28.98

Table 6.1. Dynamic system model results on benchmark functions with
a cardinality of 64. The number in each cell indicates the percentage
of optimal solutions in the population after 10 generations. The best

result for each benchmark is shown in bold

Dynamic System Models of BBO 121

Function
Cardinality = 256

BBO GA/GUR GA/SP

Needle 6.72E-03 9.95E-06 6.48E-06

One-max 22.44 23.84 19.43

Deceptive 1.03E-03 5.36E-05 5.13E-05

Sphere Function 35.95 12.50 24.94

Schwefel’s Problem 2.22 38.10 13.36 26.84

Schwefel’s Problem 1.2 35.91 14.02 25.07

Schwefel’s Problem 2.21 49.03 39.82 38.60

Generalized Rosenbrock’s Function 6.60 4.18 6.49

Step Function 25.51 12.52 19.45

Quartic Function 18.64 12.49 17.01

Generalized Schwefel’s Problem 2.26 38.07 15.69 8.70

Generalized Rastrigin’s Function 46.85 14.64 42.43

Ackley’s Function 43.40 54.17 70.00

Generalized Griewank’s Function 36.12 15.07 25.61

Generalized Penalized Function 1 26.22 25.02 25.68

Generalized Penalized Function 2 13.03 12.51 14.08

Table 6.2. Dynamic system results on benchmark functions with a
cardinality of 256. The number in each cell indicates the percentage
of optimal solutions in the population after 10 generations. The best

result for each benchmark is shown in bold

It can be seen from Tables 6.1 and 6.2 that for both the 64- and 256-bit problems,
BBO performs the best in 13 out of 16 benchmarks. More importantly, for difficult
problems (the needle and deceptive functions), BBO performs better than GA/GUR
and GA/SP by orders of magnitude.

These results are not intended to give a comprehensive comparison between
BBO and GAs; extensive comparisons between BBO and other EAs using standard
benchmark functions are shown in [MA 10a]. The theory and results here are instead
intended to show how dynamic system models can be used to compare EAs in
situations where probabilities are extremely small and where Monte Carlo

122 Evolutionary Computation with Biogeography-based Optimization

simulations are therefore not reliable. Dynamic system models can also be used
to study the effect of parameter settings and learning approaches. Dynamic system
models can also aid in the development of adaptive algorithms or parameter update
schemes that work well on many different types of problems. These models can also
be used to help understand the behavior of BBO; for example, how and why it works
well, or does not work well, on certain types of problems.

6.4. Conclusions

In this chapter, we outlined dynamic system models for BBO based on the BBO
Markov models, and in the process we obtained a dynamic system model for
GA/GUR. These models give theoretically exact results, just like Markov models,
and allow analytical comparisons between different types of BBO algorithms rather
than a reliance on possibly unpredictable simulation results. Simulation results are
important and necessary, but they can be misleading if used separately from theory.
The Markov models and dynamic system models that we obtained provide a lot of
room for additional application to BBO and other EAs.

7

Statistical Mechanics
Approximations of BBO

In the previous two chapters, we set up the Markov model and dynamic system
model of BBO to analyze the behavior of BBO. Those models tell us the exact
probability distribution over all possible populations, but in practice, those models
rapidly become impractical as the size of the search space grows, which limits their
application to very small problems. This is the curse of dimensionality for analytical
EA models. It is therefore natural to investigate other methods to obtain practical
models. The statistical mechanics approximation is used in this chapter to analyze
the behavior of BBO. The idea of this modeling approach comes from the field of
statistical mechanics, which involves averaging the behavior of many molecular
particles to model the behavior of a group of molecules. We can use this idea to
model BBO behavior with large populations and to better understand the evolution
of BBO in realistic, high-dimensional optimization problems.

Overview of the chapter

In this chapter, we will see that statistical mechanics approximation theory
provides insight into BBO behavior. Section 7.1 provides the preliminary foundation
for statistical mechanics approximations. Section 7.2 derives a statistical mechanics
model for the basic BBO algorithm. Section 7.3 discusses extensions of the BBO
statistical mechanics model.

7.1. Preliminary foundation

Statistical mechanics is a branch of physics that applies probability theory to the
study of the thermodynamic behavior of systems consisting of a huge number of

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

124 Evolutionary Computation with Biogeography-based Optimization

interacting entities. It provides methods to calculate the gross or average properties
of systems by treating the small-scale motions as random. It is often applied to the
computation of the thermodynamic properties of particles interacting with a heat
bath, and has recently been applied to EAs, including mathematical modeling for
genetic algorithms [PRÜ 94, SHA 94, RAT 95, RAT 96, RAT 96] and simulated
annealing [VAN 87]. The advantage of statistical mechanics for describing the
dynamics of EAs is that it only assumes knowledge of the cumulants of the fitness
distribution and the average correlation within the population.

The cumulant is defined by the generating function, which is given by the natural
logarithm of the Fourier transform of the probability distribution function.
Cumulants of a probability distribution describe the shape of the distribution, and
they contain the same information as the distribution function. The first and second
cumulants are, respectively, called the mean and variance of the distribution, and the
third cumulant is called the skewness and measures the degree of asymmetry of the
distribution. All cumulants except the first two are zero for a Gaussian distribution,
so the higher-order cumulants measure the non-Gaussian content of the distribution.
Since EA populations are often initialized randomly, and fitness is a function of
many variables, and the central limit theorem states that the accumulated distribution
of random variables becomes more Gaussian as the number of variables increases,
many real-world EA applications have a Gaussian fitness distribution during the
early generations.

Consider a scalar random variable X which can take non-negative integer values.
For each 0k ≥ , there is a certain probability kP that X takes the value k. So the
characteristic function of the probability distribution of X can be described as:

() ()
0

Pr kz

k

z X k eϕ
≥

= =∑ [7.1]

If we expand the characteristic function as a Taylor series in z, we obtain:

() 2 331 21
1! 2! 3!

z z z z
ωω ωϕ = + + + +L [7.2]

where the coefficients kω are called the moments of the probability distribution,
which are given as:

k
k E Xω ⎡ ⎤= ⎣ ⎦ [7.3]

Statistical Mechanics Approximations of BBO 125

Expanding the natural logarithm of the characteristic function ()zϕ , called the
cumulant generating function, in a Taylor series gives:

() () 2 3
0 1 2 3

2 331 2

log log()

1! 2! 3!

z z zH z z P Pe P e P e

z z z

ϕ
κκ κ

= = + + + +

= + + +

L

L
 [7.4]

where the coefficients kκ for k = 1, 2, 3…, are called the cumulants of the
probability distribution. The relationships between the first three cumulants and the
moments of the probability distribution have simple expressions:

[]
[]()

[] []()

1 1

22 2
2 2 1

33 3 2
3 3 1 2 13 2 3 2

E X

E X E X

E X E X E X E X

κ ω

κ ω ω

κ ω ω ω ω

= =

⎡ ⎤= − = −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + = − ⋅ ⋅ + ⋅⎣ ⎦ ⎣ ⎦

 [7.5]

Equation [7.5] shows that the first cumulant 1κ is the mean of the distribution,
and the second cumulant 2κ is the variance. Since the Gaussian distribution is
completely defined by its mean and variance and all the higher cumulants are zero,
any distribution with very small values for the higher cumulants looks like a
Gaussian. If a population is distributed approximately normally, we can truncate the
series expansion of equation [7.4] and use just the first few cumulants to
approximate the population distribution.

The cumulants of a probability distribution have a linearity property which can
be formulated as follows [GRI 97].

THEOREM 7.1.– If Xi is an independent random variable for i = 1, 2, 3…n, then the
cumulants of the probability distribution can be found with the sum:

1 2 1 2

1

n n i

n
X X X X XX X
k k k k k

i

κ κ κ κ κ+ + +

=

= + + + =∑L L [7.6]

Later in this chapter, we will use this very important theorem to derive the
statistical mechanics model of BBO.

EXAMPLE 7.1.–

This example serves to clarify the notations of cumulants, and is based on
[REE 03] and [MA 16a]. The one-max problem is considered, which has only one
optimum. The fitness of a solution is the number of ones in the binary string. Given

126 Evolutionary Computation with Biogeography-based Optimization

n as the length of a binary string, and X as the possible fitness values, the one-max
problem is defined as follows:

Maximize X, where
1

n

j
j

X x
=

=∑ [7.7]

where { }0,1jx I∈ = is bit j of a binary string. In this example, the length of the
binary string n is set to 5, which is the maximum fitness, and the size of
the population N is set to 24. If the initial population is random, it might be the
following:

00011 01001 10000 01110 10101 11110 11010 00101
00001 01000 11011 00111 01100 11111 00000 01000
10111 10100 11010 00101 01110 01001 01101 00101

 [7.8]

Before calculating the cumulants, the independence of the bits is checked to
confirm the linearity property of equation [7.6]. Considering bit 1 and bit 2, we
obtain:

[] [] [] []

() () () ()

1 2
0,1 0,1

1 2

1 2Pr(1 0.20

Pr P

) Pr(1) 9 24 1 24 43

r
i i

x

E i x i i

x

x ix E x
= =

⎛ ⎞ ⎛ ⎞
⋅ = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= ⋅ = ⋅ =

=

= =

=∑ ∑ [7.9]

and:

[] []1 2 1 2
, 0,1

1 2

Pr ,

1Pr() 5 24 0 2 81 0, .
i j

E x x i j x i x j

x x
=

= = =

⋅ = ⋅ ⋅ = =

= =

∑
 [7.10]

We see that:

[] [] []1 2 1 2.E x x E x E x⋅ ≈ [7.11]

which is consistent with the fact that bit 1 and bit 2 are independent. Similarly, we
can numerically confirm that all of the other bits in the population are independent,
which confirms that the cumulants have the linearity property shown in
equation [7.6] in the initial population.

The population distribution over the set of possible fitness values is obtained as:

 [7.12] [] [] []
[] [] []

Pr 0 0.041, Pr 1 0.167, Pr 2 0.333

Pr 3 0.292, Pr 4 0.125, Pr 5 0.041

X X X

X X X

= = = = = =

= = = = = =

Statistical Mechanics Approximations of BBO 127

Based on equation [7.2], the characteristic function of the probability distribution
and its Taylor series are:

() 2 3 4 5

2 3 4

0.041 0.167 0.333 0.292 0.125 0.041
2.414 7.152 23.840 86.7721

1! 2! 3! 4!

z z z z zz e e e e e

z z z z

ϕ = + + + + +

= + + + + +L
 [7.13]

Based on equation [7.5], the cumulants of the probability distribution are
obtained as:

 [7.14]

We find that the mean is 2.414 and the variance is 1.324. This distribution is
approximately Gaussian as shown in Figure 7.1. From this example, it can be seen
that cumulants can approximate the population distribution by truncating its series
expansion.

Figure 7.1. Probability distribution of the fitness X. The solid line
denotes a Gaussian distribution, and the dots denote the

simulated probabilities of the population

()
()

1 1
22

2 2 1

33
3 3 1 2 1

2.414

7.152 2.414 1.324

3 2 23.840 3 2.414 7.152 2 2.414 0.180

κ ω

κ ω ω

κ ω ω ω ω

= =

= − = − =

= − + = − × × + × =

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fitness

Pr
ob

ab
ili

ty

128 Evolutionary Computation with Biogeography-based Optimization

7.2. Statistical mechanics model of BBO

This section derives a statistical mechanics model for the basic BBO algorithm
[MA 16a]. Before the formal derivation, we make some clarifications in the
statistical mechanics model development.

First, we assume that the immigration rate λ and the emigration rate μ are
independent of the population distribution. That is, the best fitness is the best fitness
for the problem, not the best fitness in the current population. Similarly, the worst
fitness is the worst fitness for the problem. Alternatives to this assumption are
commonly used in practice, but this assumption is needed for the statistical
mechanics model development of BBO.

Second, we assume that each bit in a given solution is independent because
migration to each bit is independent of migration to the other bits, as shown in
Figure 3.5 in Chapter 3. This is a simplistic assumption. Because of selection, BBO
will introduce correlations between bits and will not remain independent for many
generations. Our hypothesis here is that the bits will remain mostly independent, at
least during the early generations. Similarly, mutation of each solution bit is
independent, which helps maintain the independence of each bit in a given solution.
The purpose of this assumption is to ensure that BBO migration and mutation satisfy
Theorem 7.1.

7.2.1. Migration

The cumulants of a BBO fitness probability distribution provide certain average
properties. The cumulants describe the fitness as a whole each generation. The
cumulant dynamics tell us the trajectory of the distribution of the population fitness
during the evolutionary process. In the following text, the equations of the dynamic
evolution of BBO are derived based on the cumulants of the fitness distribution, and
the specific one-max problem described in equation [7.7] is used to study the
properties of BBO.

Consider a single bit position xj, suppose that it has a randomly distributed
population, and consider the effect of migration on the population values in this bit
position. There are two ways in which a bit can be equal to 1 after an immigration
trial (that is, after one iteration of the “for each decision variable s” loop in
Figure 3.5). First, it can immigrate 1 from another solution in the population (that is,
another solution emigrates a 1 to the bit). Second, it can be 1 before the immigration

Statistical Mechanics Approximations of BBO 129

trial, and not immigrate. So the expected value of this bit after an immigration trial
is computed as:

()
() ()

0,1

+ Pr(1 | no immigration)Pr(no immigration)

Pr(emigrating bi

Pr Pr 1

Pr 1 immigration Pr immigr

t = 1)Pr(immigration)
+ Pr(1 | no immigration)Pr(no immigration

ation

)

j j j
i

j

j

j

E x i x i x

x

x

x

=

⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦

= =

=

=
=

∑

 [7.15]

We first consider the first probability on the right side of equation [7.15], which
is the probability that an emigrating bit is 1. This probability is proportional to the
sum of the emigration rates of all solutions whose jth bit is equal to 1:

 [7.16]

where ρj(1) = {population indices of solutions whose jth bit is equal to 1} and N
denotes the size of the population.

Next, we consider the third probability on the right side of equation [7.15]. If
immigration does not occur, the probability that the value of bit j is 1 after an
immigration trial is equal to the probability that the value of bit j is 1 before the
immigration trial, which can be written as:

Pr(1| no immigration) Pr(1)j jx x′= = = [7.17]

where jx′ denotes the value of bit j before an immigration trial.

The probability that the value of bit j is 1 before the immigration trial is denoted
as:

Pr(1)j jxx E′ = = ′⎡ ⎤⎣ ⎦ [7.18]

Note that the mean value of bit j before the immigration trial is:

 [7.19]

(1)

1

Pr(emigrating bit = 1) j

N

k
k

k
k

ρ
μ

μ

∈

=

=
∑

∑

(1)j
jE x

N
ρ

′⎡ ⎤ =⎣ ⎦

130 Evolutionary Computation with Biogeography-based Optimization

where (1)jρ denotes the number of solutions in the population whose jth bit is

equal to 1. Combining equation [7.19] with equation [7.5], the first cumulant of the
jth bit before the immigration trial is:

() ()
1 1

(1)j j j

N
κ

ρ
ω= = [7.20]

Next, we consider the probabilities Pr(immigration) and Pr(no immigration) in
equation [7.15], which are the average values of the immigration curve; that is, they
are independent of any information about the fitness value of any solution.
Assuming that the migration curve is linear, as shown as Figure 3.1 in Chapter 3, the
emigration rate kμ is normalized as:

fitness number of 1 bits
1 1k n n

μ = =
+ +

 [7.21]

So the probability Pr(immigration) can be written as:

[] []
Pr(immigration) 1 Pr(emigration)

number of 1 bits
1 1 1

1k

E
E

n
μ μ

= −

= − = − = −
+

 [7.22]

Furthermore, the average number of 1 bits in any given solution is []E X , which
denotes the mean of the fitness, and which is equal to the cumulant . The
probabilities Pr(immigration) and Pr(no immigration) can thus be written as:

1

1

Pr(immigration) 1
1

Pr(no immigration) 1 Pr(immigration)
1

n

n

κ

κ

= −
+

= − =
+

 [7.23]

Note that if we used an immigration curve other than the one shown in
Figure 3.1, we would need to re-compute the average of the immigration curve to
find Pr(immigration) and Pr(no immigration).

1κ

Statistical Mechanics Approximations of BBO 131

We substitute equations [7.16], [7.17] and [7.23] into [7.15] to obtain the
expected bit value after an immigration trial as:

(1) 1 1

1

1 Pr(1)
1 1

j

k
k

N j

k
k

j x
n

E x
n

ρ
μ

κ κ

μ

∈

=

⎡ ⎤⎣ ⎦
⎛ ⎞ ⎛ ⎞′= − + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∑

∑
 [7.24]

Note that we have normalized the emigration rate so that it has a minimum of 0
and a maximum of n/(n+1). Other normalizations are possible as long as the
emigration rate is between 0 and 1, but this is a typical approach. We use equation
[7.21] to obtain:

[]

1 1

1

number of 1 bits in the th solution
1

number of 1 bits in entire population
1

1 1

k
k k

N N k
n

n
N E X N

n n

μ

κ

= =

=
+

=
+

⋅
= =

+ +

∑ ∑

 [7.25]

Now we note that:

[]

(1) (1)

number of 1 in the th solution th
1

1 (1) number of 1 bits in any solution

bits whose bit is 1

whose th bit is1
1

j j

k
k k

j

k j
n

E j
n

ρ ρ
μ

ρ

∈ ∈

=
+

= ⋅
+

∑ ∑
[7.26]

Further note that:

[]
()

() () ()

() ()

1 1

1 1
1

number of 1 bits in any solution whose th bit is 1

1 number of 1 bits in remaining 1 bits except the th bit

11 1
1 1

1

n n
jk k

k k
k j

n
k j

k

E j

E n j

N N N

ρρ ρ

κ κ

= =
≠

=

= + −⎡ ⎤⎣ ⎦

= + = + −

= + −

∑ ∑

∑

 [7.27]

132 Evolutionary Computation with Biogeography-based Optimization

Assuming that the cumulants have the linearity property described in
equation [7.6], the cumulant of the binary string is equal to the sum of cumulants of
each bit of the binary string:

()
1 1

1

n
k

k

κ κ
=

=∑ [7.28]

We combine equations [7.20], [7.26], [7.27] and [7.28] to obtain:

()()
()

()()

1
(1)

1
1

1

1

1 (1) 1
1

1
1

j

j
k j

k

j
j

n

N
n

ρ
κμ κ

κ κκ

ρ
∈

+ −
+

+

=

= −
+

∑
 [7.29]

The expected value of bit jx after an immigration trial can be written as:

()

()
()() ()

()
() ()()

(1) 1, 1,

1

1

1, 1

1,
1, 1, 1,

1,

2

1,1,
1,

1, 1,

, 1,

1, 1,

1 Pr(1)
1 1

1
1

1 1

1
1

1 1

jj
t j N

j
j jt

t t t
t

jj
t

k
k t t

j

k
k

t t

t tj t
t

t t

x
n n

n n

n n

E x ρκ

κ
κ κ κ

μ
κ κ

μ

κ κ
κ

κκ
κ

κ κ
κ κ

+
∈

=

⎛ ⎞ ⎛ ⎞′= − + =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟+ +

⎡ ⎤= ⎣ ⎦

+

⎝ ⎠

+

⎝

−

−
⎠

+

∑

∑

 [7.30]

Note that the subscripts t + 1 and t denote quantities after and before migration,
respectively. For the other cumulants of bit jx , we note that bits can only take the
values 0 and 1, so:

k
j jx x= [7.31]

for all values of k. So the moments of all orders are equal and are given as:

 [7.32]

()j k
k j jE x E xω ⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎣ ⎦

Statistical Mechanics Approximations of BBO 133

Based on the relationships of moments and cumulants described in equation [7.5],
we obtain the equations of cumulants ()

2
jκ and ()

3
jκ as follows:

() ()
() ()

() ()
() () ()

()
()

2

2, 3,
2, 1 2,

1, 1,

3

2, 2, 3, 4,
3, 1 3, 2

1, 1

2
1, 1,

3

,1,

2
1, 1, 1,

1 1
1 1

1 12 13
1 1 1

2

j j
j j t t
t t

t t

j j j j
j j t t t t
t t

t t

t

t t

t

t

t

n n

n n n

κ κ
κ κ

κ κ

κ κ κ κ
κ κ

κ

κ κ

κ κ κ
κκ

+

+

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
= + − +⎜ ⎟⎟ ⎠⎜

⎝ ⎠

 [7.33]

The cumulant approximations of the population after migration are:

()

()

()

1, 2,
1, 1 1, 1 1,

1 1,

2

2
2

, 3,1, 1,

3

2, 1 2, 1 2,
1 1, 1,

3

2,
3, 1 3, 1 3,

1

,

1,

1

1,

1
1

1 1
1 1

1
1

13
1

2

n
j t

t t t
j t

n
j t t

t t t
j t t

n
j t

t t t
j t

t

t t

t

t

n

n n

n

n

κ

κ κ

κ

κ
κ κ κ

κ

κ κ
κ κ κ

κ

κ
κ κ κ

κ

κ

κ

+ +
=

+ +
=

+ +
=

= = +

⎛ ⎞
= ≈ − +⎜ ⎟⎜

⎛ ⎞
−⎜ ⎟+⎝ ⎠

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟

⎝ ⎠

⎛ ⎞
= ≈ + ⎜ ⎟⎜ ⎟

⎝

⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞
−⎜ ⎟+

−
+

−

⎠ ⎠⎝

∑

∑

∑

()
2, 3, 4,

2
1,1,

2
1,1

1
tt t t

tt
n

κ κ κκ
κκ

⎛ ⎞ ⎛ ⎞
−+⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 [7.34]

Equations [7.33] and [7.34] are derived in detail in [MA 16a]; note
that 2, 1tκ + and 3, 1tκ + are approximations. Cumulants 1κ and 2κ denote the mean and
the variance of the population fitness distribution, and cumulant 3κ denotes the
skewness, which measures the degree of asymmetry of the distribution.

Cumulant 4κ and other higher-order cumulants are not further discussed
here. 4κ denotes the kurtosis, which measures the peakedness of the distribution.
EA researchers are typically more interested in the mean and the variance of fitness
distributions, namely 1κ and 2κ , and 4κ only affects 3κ based on equation [7.34].
In fact, it is apparent from equation [7.34] that the influence of 4κ on 3κ is
relatively small. So we approximate 4κ and other higher-order cumulants as zero,
which gives us an approximation of the migration dynamics using just three
variables.

134 Evolutionary Computation with Biogeography-based Optimization

7.2.2. Mutation

The derivation above considers only migration. Mutation is now added to the
statistical mechanics model. BBO mutation is the operator that modifies a decision
variable of a candidate solution with a small probability, as in other EAs. The view
of mutation as a statistical mechanics model has been explained in [REE 03], and
the same theory can apply to BBO.

For the one-max problem described in equation [7.7], suppose that we have a
randomly distributed population. Consider the effect of mutation on the values in a
single bit position. Similar to migration, there are two ways in which a bit can be
equal to 1 after mutation. First, it can start as 0 and then mutate. Second, it can start
as 1 and not mutate. If we suppose that the mutation probability is u, the expected
value of this bit after mutation is computed as:

()
() ()

()

0,1

+ Pr(1 | no mutation)Pr(no mutat

Pr Pr 1

Pr 1 mutation Pr mutation

Pr 0 1 Pr 1

(1 Pr 1) (1) Pr 1

(1 2) Pr

ion)

1

j j j
i

j

j

j j

j j

j

E x i x i x

x

x

u x u x

u x u x

u u x

=

⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦

= =

=

′ ′⎡ ⎤ ⎡ ⎤= = + − =⎣ ⎦ ⎣ ⎦
′ ′⎡ ⎤ ⎡ ⎤= − = + − =⎣ ⎦ ⎣ ⎦

′⎡ ⎤= + − =⎣ ⎦

∑

 [7.35]

where jx′ denotes the value of bit j before mutation.

Substituting equation [7.18] into equation [7.35], we obtain:

(1 2)j jE x u u E x′⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦ [7.36]

Equation [7.32] indicates that the moments of all orders are equal, so we have:

() ()
, 1 ,(1 2)j j

k t k tu uω ω+ = + − [7.37]

We now need to convert from moments to cumulants. Based on the relationship
of moments and cumulants described in equation [7.5], we directly obtain the first
cumulant ()

1
jκ for one bit as:

() ()
1, 1 1,(1 2)j j

t tu uκ κ+ = + − [7.38]

Statistical Mechanics Approximations of BBO 135

Thus, the first cumulant of the population after mutation is:

()

()()
()

1, 1 1, 1
1

1,
1

1,

(1 2)

1 2

n
j

t t
j

n
j
t

j

t

u u

un u

κ κ

κ

κ

+ +
=

=

=

= + −

= + −

∑

∑ [7.39]

Next, we calculate the second cumulant ()
2

jκ as:

() () ()() () ()

() () () ()()()
() () ()

2

2, 1 1, 1,

22
1, 1,

2
2,

1 2 1 2

1 1 2

1 1 2

j j j
t t t

j j
t t

j
t

u u u u

u u u

u u u

κ κ κ

κ κ

κ

+
⎡ ⎤= + − − + −⎣ ⎦

= − + − −

= − + −

 [7.40]

Summing over all the bits gives us the second cumulant of the population after
mutation as:

() ()2
2, 1 2,1 1 2t tu u n uκ κ+ = − + − [7.41]

Similarly, we derive the third cumulant of the population after mutation as:

()()() ()3
3, 1 1, 3,1 1 2 2 1 2t t tu u u n uκ κ κ+ = − − − + − [7.42]

Finally, we combine equations [7.39], [7.41] and [7.42] with equation [7.34] for
BBO migration to obtain the following model for BBO with both migration and
mutation:

()

() ()

()()

2,
1, 1 1,

1,

2
2 2, 3,

2, 1 2

1,

2
1, 1,

1,

,
1, 1,

2,
3, 1 1,

1,

1 2 1
1

1 1
1 1

1
1

1 1 2

1 1 2 2

t t
t t

t

t t
t t

t t

t
t

t
t

t

t t

n

n

un u

u u n u

u u u

n

n
n

κ

κ κ

κ
κ κ

κ

κ κ
κ κ

κ κ

κ
κ κ

κ
κ

+

+

+

⎛ ⎞
= + − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞⎜ ⎟= − + − − +⎜ ⎟⎜

⎛ ⎞
−⎜ ⎟+⎝ ⎠

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛

⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟= − − − +⎜

⎞
−⎜ ⎟+⎝

⎟⎜ ⎟⎜ ⎠⎝ ⎠ ⎟⎝ ⎠

()
()

3 3
3 2, 2, 3, 4,

3

2
1, 1

, 2
1, 1,

,

,1

, 11 1 11 2 2
1

3
1 1

t t t t
t

t

t tt

t t

n n n
u

κ κ κ κ
κ

κ
κ κ κ

κκ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +

⎛ ⎞⎛ ⎞⎜ ⎟+ − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ +⎝ ⎠ ⎝ ⎠ ⎝⎠⎝ ⎠⎠

 [7.43]

The above equations give the statistical properties of BBO population fitness
values after migration and mutation in terms of those at the previous generation. We

136 Evolutionary Computation with Biogeography-based Optimization

can iterate these equations to obtain predictions for the evolution of BBO
populations.

EXAMPLE 7.2.–

This example simulates the 100-bit one-max problem to verify the statistical
mechanics model of BBO. The statistical approximations of BBO are obtained by
iterating equation [7.34] if considering only migration, and by iterating
equation [7.43] if considering both migration and mutation. We set κ4,t = 0 in the
iterations of equations [7.34] and [7.43]. The simulation parameters of BBO are as
follows: population size of 50, maximum immigration rate and maximum
emigration rate of 1, and 200 Monte Carlo simulations. Figures 7.2−7.4 show
comparisons between theoretical (statistical approximation) and simulated BBO
results with mutation rate u = 0.01.

Figure 7.2. BBO approximation and simulation results of
cumulant 1κ for the 100-bit one-max problem, where the solid

line denotes approximation values and the dashed line
denotes simulation values

Several things are notable about Figures 7.2−7.4. First, the approximation results of
BBO show that as the generation count increases, the first cumulant 1κ (mean) increases
and the second cumulant 2κ (variance) decreases with the generation count. This is
consistent with the expected behavior of BBO: as the generation count increases, the
mean fitness of the population increases and the population becomes more uniform.

0 20 40 60 80 100
50

52

54

56

58

60

Generations

Cu
m

ul
an

t K
1

Approximation
Simulation

Statistical Mechanics Approximations of BBO 137

Figure 7.3. BBO approximation and simulation results of cumulant 2κ for
the 100-bit one-max problem, where the solid line denotes approximation

values and the dashed line denotes simulation values

Figure 7.4. BBO approximation and simulation results of cumulant
3κ for the 100-bit one-max problem, where the solid line denotes

approximation values and the dashed line denotes simulation values

Second, the cumulant approximations and the simulation results match well. This
indicates that the statistical mechanics model of BBO is reasonable and that the

0 20 40 60 80 100
24

26

28

30

32

34

36

Generations

Cu
m

ul
an

t K
2

Approximation
Simulation

0 20 40 60 80 100
-1

-0.5

0

0.5

Generations

Cu
m

ul
an

t K
3

Approximation
Simulation

138 Evolutionary Computation with Biogeography-based Optimization

statistical mechanics approximation is valid for the one-max problem. This fact
allows us to make quantitative conclusions from statistical mechanics
approximations and to use those approximations to obtain valid conclusions
regarding the performance of BBO with various tuning parameters.

EXAMPLE 7.3.–

In this example, we compare the statistical mechanics model of BBO with that of
a simple GA using proportional selection and mutation [REE 03, PRÜ 94]. The
statistical mechanics model of a GA with selection only is given as:

()

2,
1, 1 1,

1,

2

2, 3,
2, 1 2,

1, 1,,

3

2, 2, 3, 4,
3, 1 3, 2

1, 1,1,

2 3

t
t t

t

t t
t t

t t

t t t t
t t

t tt

κ
κ κ

κ

κ κ
κ κ

κ κ

κ κ κ κ
κ κ

κ κκ

+

+

+

= +

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
= + − +⎜ ⎟⎜ ⎟

⎝ ⎠

 [7.44]

Recall that the mutation model is given in equation [7.43]. So the three-
parameter approximation equations for a simple GA with selection and mutation are:

()

() ()

()()

()
()

2,
1, 1 1,

1,

2
2 2, 3,

2, 1 2,
1, 1,,

2,
3, 1 1,

1,

3
3 2, 2, 3, 4,

3, 2
1, 1,1,

1 2

1 1 2

1 1 2 2

1 2 2 3

t
t t

t

t t
t t

t t

t
t t

t

t t t t
t

t tt

un u

u u n u

u u u n

u

κ
κ κ

κ

κ κ
κ κ

κ κ

κ
κ κ

κ

κ κ κ κ
κ

κ κκ

+

+

+

⎛ ⎞
= + − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟= − + − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= − − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎜ ⎟+ − + − +⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
⎟

 [7.45]

We see that the approximation equations of BBO in equation [7.43] are similar
to those of the GA in equation [7.45], and the difference is the additional coefficient

11 1nκ− + in some of the terms of the BBO model. As the problem size n becomes
large, the BBO approximation approaches the GA approximation. These equations

Statistical Mechanics Approximations of BBO 139

can be used to compare the statistical mechanics models of BBO and GA for the
100-bit one-max problem with mutation rate u = 0.01, as shown in Figures 7.5−7.7.

Figure 7.5. Comparison of the approximation values of cumulant
1κ between BBO and GA for the 100-bit one-max problem, where
the solid line denotes BBO and the dashed line denotes GA

Figure 7.6. Comparison of the approximation values of cumulant
2κ between BBO and GA for the 100-bit one-max problem, where
the solid line denotes BBO and the dashed line denotes GA

0 20 40 60 80 100
45

50

55

60

65

70

Generations

Cu
m

ul
an

t K
1

BBO
GA

0 20 40 60 80 100
22

24

26

28

30

32

34

36

Generations

Cu
m

ul
an

t K
2

BBO
GA

140 Evolutionary Computation with Biogeography-based Optimization

Figure 7.7. Comparison of the approximation values of cumulant
3κ between BBO and GA for the 100-bit one-max problem, where
the solid line denotes BBO and the dashed line denotes GA

From Figures 7.5−7.7, several things are notable about the approximation
comparisons between BBO and GA. First, the trends of the cumulants are similar for
BBO and GA. As the generation count increases, the mean (the first cumulant 1κ)
increases and the variance (the second cumulant 2κ) decreases. The only qualitative
difference we see is that the skewness (the third cumulant 3κ) of the GA suddenly
changes slope during the first few generations, while the skewness of BBO changes
more smoothly. These comparisons indicate that the expected behavior of BBO is
similar to that of GA. This point has already been implied by equations [7.43] and
[7.45]. It is not too surprising that BBO is similar to GA, because many EAs can be
expressed in terms of each other. Chapters 5 and 6 compared the optimization
performance of BBO and GA and have shown similar results. On the other hand, the
figures show that differences do exist between BBO and GA. This indicates that
BBO has its own particular characteristics that are distinct from GA. A BBO
solution uses its own fitness before deciding how likely it is to accept features from
other candidate solutions. This simple and intuitive idea does not have an analogy in
genetics, but is motivated by biogeography. This implies that it is useful to retain the
distinction between BBO and GA, and that the biogeographical foundation of BBO
can motivate many algorithmic extensions.

Second, Figure 7.5 shows that the mean fitness of BBO is smaller than that of
GA, and Figure 7.6 shows that the fitness variance of BBO is larger than that of GA.

0 20 40 60 80 100
-1

-0.5

0

0.5

1

Generations

Cu
m

ul
an

t K
3

BBO
GA

Statistical Mechanics Approximations of BBO 141

This indicates that GA might have better convergence properties than BBO for the
one-max problem.

Finally, we should be wary of drawing general conclusions about BBO versus
GA comparisons from these results because the BBO and GA algorithms used here
are basic versions, and the results in this experiment are limited to the 100-bit one-
max problem.

7.3. Further discussion

Next, we will discuss some questions related to the statistical mechanics model
of BBO which affect the approximation performance.

7.3.1. Finite population effects

We have obtained the statistical mechanics model of BBO based on an infinite
population, and have used the average properties of the population to determine the
dynamic trajectory of the population as a whole. However, in actual simulations of
BBO, we have a finite population and can no longer ignore the effect of population
size. In statistical mechanics, if a balloon contained only two molecules, the chance
of both of them being on one side of the balloon is quite high. Similarly, we must
consider fluctuations caused by the finite population, which we view as sampling
effects. In BBO, we effectively sample the fitness N times, where N is the
population size. To account for finite population effects, we need to know the
relationships of mean, variance and higher-order cumulants of the probability
distribution, along with their expected values from this distribution.

In general, the expected values of the cumulants of a finite sample are not the
same as the cumulants of the distribution from which the sample is taken, and the
size of the sample affects these values. In [REE 03], the expected values of mean,
variance and the third cumulant are derived as:

[]

[]

[]

1 1

2 2

3 3

11

1 21 1

E

E
N

E
N N

κ κ

κ κ

κ κ

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 [7.46]

142 Evolutionary Computation with Biogeography-based Optimization

where the terms on the left-hand sides represent the expected values of the
cumulants of a sample of size N. Equation [7.46] shows that only the mean is
unaffected by sample size. Note that as N → ∞ , the expected values of these
cumulants are equal to the cumulants of the distribution. We can directly modify
equation [7.43] to account for population size by multiplying by the appropriate
factors.

7.3.2. Separable fitness functions

We have been treating the fitness of a population as a random variable with some
probability distribution. We have estimated the cumulants of the distribution for the
one-max problem, and have studied the way they change over time. One notable
characteristic of the one-max problem is that its variables are separable. We can
extend the derivation of the statistical mechanics model, which was limited to the
one-max problem, to other functions if we assume that each bit in a given solution is
separable. In Ma et al. [MA 16a, MA 16b, MA 16c], the derivation of a statistical
mechanics model of BBO for a general separable function is given. Here we provide
the approximation equations. A general separable function is written as:

() 1f x x= [7.47]

where:

[]1 nx x x= L [7.48]

{ }0,1jx I∈ = is bit j of a binary string, and n is the length of this binary string
as well as the number of features in each candidate solution.

The first two cumulants of the statistical mechanics model of BBO for a general
separable function are:

1, 2,
1, 1 1,

1,

2
1, 1

2

2, 3,
2, 1 2,

1

,

, 1,

1
1

1 1
1 1

t t
t t

t

t t tt
t t

t t

n

n n

κ κ
κ κ

κ

κ κκ κ
κ κ

κ κ+

+

⎛ ⎞
≈ − +⎜

⎛ ⎞
= + −⎜ ⎟+⎝ ⎠

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟+ +⎝ ⎝⎝⎠ ⎠

⎟⎜ ⎟
⎠

 [7.49]

Statistical Mechanics Approximations of BBO 143

Comparing equation [7.49] with the first two equations of [7.34],
we see that the cumulants 1, 1tκ + and 2, 1tκ + are the same. That is, the dynamics
of the mean and the variance are identical for all separable functions. Note that
higher-order cumulants quantify the non-Gaussian content of the distribution. These
results indicate that approximations of BBO dynamics based on statistical mechanics
can model how BBO works not only for the simple one-max problem, but also for
general but separable fitness functions. Furthermore, for many complex, non-
separable functions, if we can find a method to approximate them as separable
functions, we could successfully derive the statistical mechanics model of BBO for
these functions. From this point of view, statistical mechanics terminology in
evolutionary computation is a methodology that can approximate BBO behavior for
functions other than separable functions. We can also apply this methodology to the
analysis of other EAs.

7.4. Conclusions

In this chapter, we outlined a computational model for BBO based on ideas from
statistical mechanics, and studied the dynamics of BBO for the one-max problem
and other separable functions. The statistical mechanics model describes the
evolution of the statistical properties of the BBO population fitness. Note that the
statistical mechanics model is completely different from the Markov model
described earlier in this book. The Markov model gives the probability of arriving at
any given population as the generation count approaches infinity. But the Markov
model may be of little practical use for real-world problems because transition
probabilities are not known in real applications. The statistical mechanics model
gives the average behavior of population fitness, which can lead to a better
understanding of the evolution of BBO populations in realistic, high-dimensional
optimization problems.

We have shown three mathematical models of the dynamics of BBO in the past
three chapters: the Markov model, the dynamic systems model and the statistical
mechanics model. These models can provide insight into which problems are suitable
for BBO, and why, from different viewpoints. The efficiency of BBO depends on the
problem representation and the BBO tuning parameters. These parameters include the
population size, the immigration curve shape, the emigration curve shape and the
mutation rate. For many problems, BBO can be effective when a good representation
is chosen and the parameters are set to appropriate values. When poor choices are
made, BBO can perform similarly to a random search. The three mathematical

144 Evolutionary Computation with Biogeography-based Optimization

models, each of which are functions of BBO tuning parameters, can successfully
predict the improvement in fitness from one generation to the next, and can assist in
finding optimal values of the BBO tuning parameters. For example, consider a
problem with very expensive fitness function evaluations; we may even need to do
physical experiments to evaluate fitness. However, we could also use one of our
three models to tune BBO parameters during early generations to quickly improve
fitness, or to predict whether BBO will perform better than other EAs. These
mathematical models of BBO could be useful for developing effective BBO
modifications. More generally, models of BBO dynamics can be useful in producing
insights into how the algorithm behaves and when it is likely to be effective.

8

BBO for Combinatorial Optimization

Up until this point, this book has emphasized the framework and mathematical
theory of BBO algorithms. In this chapter, we begin to discuss the applications of
BBO. This chapter uses BBO to solve combinatorial optimization problems, which
comprise a subset of mathematical optimization. Combinatorial optimization has
important applications in many fields, including artificial intelligence, machine
learning, auction theory and software engineering. Combinatorial optimization can
be thought of as finding the optimal object from among a finite set of candidate
objects:

() { }1 2min where , , ,
xNx

f x x x x x∈ L [8.1]

where xN is the cardinality of the search space. Theoretically, we can solve
equation [8.1] by evaluating ()f x for all xN possible solutions. But it is not
feasible to check every possible solution when the combinatorial problem has a large
search space.

Some classic combinatorial optimization problems include the traveling
salesman problem, the knapsack problem, the minimum spanning tree problem and
many others. Figure 8.1 shows an example of a one-dimensional knapsack problem:
which boxes should be chosen to maximize the amount of money while still keeping
the overall weight less than or equal to 15 kg? A combinatorial optimization
problem could consider both the weight and volume of the boxes.

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

146 Evolutionary Computation with Biogeography-based Optimization

Figure 8.1. An example of a one-dimensional
knapsack problem. For a color version of this figure,

see www.iste.co.uk/ma-simon/evolutionary.zip

Another combinatorial optimization example is the minimum spanning tree
problem, which is a spanning tree of a connected, undirected graph. The goal here is
to connect all the vertices with the minimum total edge weights. The minimum
spanning tree problem is a common combinatorial optimization problem, as shown
in Figure 8.2.

Figure 8.2. A planar graph and its minimum
spanning tree, where each edge is labeled with its
weight, which is roughly proportional to its length

BBO for Combinatorial Optimization 147

Overview of the chapter

Most of this chapter uses BBO algorithms to solve the TSP, which is perhaps the
most famous, applicable and widely studied combinatorial optimization problem.
Section 8.1 gives an overview of the TSP, and section 8.2 discusses and presents the
application of BBO for the solution of TSPs. Sections 8.3 and 8.4 discuss the graph
coloring problem and the knapsack problem, which are two other popular
combinatorial optimization problems.

8.1. Traveling salesman problem

The TSP can be described by the following question: given a list of cities and the
distances between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the original city? It is a classic problem in
combinatorial optimization that has intrigued mathematicians and computer
scientists for years. Most important, it has many applications in science and
engineering, including robotics, circuit board drilling, welding, manufacturing,
transportation and many other areas.

Many people have studied this problem. The easiest and most expensive solution
is to simply try all possibilities. The problem with this is that for n cities, there are
(n−1)! possible combinations. This means that for a 50-city TSP, there are over
49! = 6.1×1062 combinations, which is not feasible to solve using exhaustive search.
For a circuit board with tens of thousands of holes, it is required to determine the
best order in which a laser will drill. An efficient solution to this problem can reduce
production costs for the manufacturer.

In general, the TSP describes a salesman who must travel between n cities. The
order in which he goes is something he does not care about, as long as he visits each
city once during his trip, and finishes where he began. We assume that there is a
known distance D(i, j) between cities i and j for all i∈[1, n] and j∈[1, n], and that
D(i, j) = D(j, i). This is called the symmetric TSP because the distance from city i to
city j is the same as the distance from city j to city i. Another possibility is D(i, j) ≠
D(j, i), which is called the asymmetric TSP.

In this chapter, we mainly discuss the symmetric TSP. An example of a valid
tour in a 4-city TSP is as follows:

Valid 4 city tour : 3 2 4 1 3− → → → → [8.2]

148 Evolutionary Computation with Biogeography-based Optimization

where the number denotes the city index and “→” denotes an edge or segment of a
tour. Equation [8.2] consists of four edges, which indicates that an n-city tour
includes n edges.

In the TSP, we try to minimize the total distance. Suppose that n cities in a TSP
are listed in the order 1 2 1nx x x x→ → → →L . Then, the total distance is:

() ()
1

1 1
1

, ,
n

T n i i
i

D D x x D x x
−

+
=

= +∑ [8.3]

Note that we use the term “distance” in a general sense. It might refer to physical
distance, financial cost or any other quantity that we want to minimize in a
combinatorial problem.

8.2. BBO for the TSP

This section discusses the application of BBO for solving the TSP [DU 13]. In
order to use BBO to solve the TSP, we need to code candidate solutions in BBO
differently than we have up to this point in the book. An element in a solution is a
city, so each element in the solution contains no information by itself. It is only the
order of elements that determines the goodness of a solution. In order to determine
the distance of the tour, we need to know the order of all the cities in the tour. Since
the original BBO algorithm is not designed for combinatorial problems, we need to
modify BBO to apply it to the TSP.

8.2.1. Population initialization

Population initialization is usually the first step for BBO. For most problems, we
do not have a good understanding of the effect of each independent variable. That
means we cannot create an initial population based on our expertise, so we instead
randomly create the initial population. However, randomization is an inefficient way
to create an initial population. If we could initialize BBO intelligently rather than
randomly, we could greatly increase our chances of finding a good solution.

One simple and common way to initialize a candidate TSP solution is with a
nearest-neighbor strategy [COV 67]. The detailed procedure for an n-city TSP is
described as follows:

1) Initialize i = 1, and randomly select a city 1x ∈ [1, n] as the starting city.

BBO for Combinatorial Optimization 149

2) () []{ }1 arg min , : for 1,i i kx D x x k iσ σ σ+ ← ∉ ∈ . That is, find the city that is

closest to ix that has not yet been assigned to an element of the tour, and assign it to

1ix + .

3) Increment i by one, and if i = n, terminate; otherwise, go to step 3.

At the end of this process, we have an open tour 1 2 nx x x→ → →L that gives
us a reasonable guess for a good TSP solution. Note that here and in the below text,
we use an open tour as a candidate solution for convenience. If we need a closed
tour as in equation [8.2], we simply add the starting city to the end of the open tour.

EXAMPLE 8.1.–

Consider the following distance matrix:

3 2 9 3
3 5 8 11
2 5 4 6
9 8 4 10
3 11 6 10

D

×⎡ ⎤
⎢ ⎥×⎢ ⎥
⎢ ⎥= ×
⎢ ⎥×⎢ ⎥
⎢ ⎥×⎣ ⎦

 [8.4]

where Dij, which we can also write as (),D i j , represents the distance between city i
and city j. If we start at city 1, the nearest-neighbor algorithm gives the tour
1 3 4 2 5,→ → → → which has a total cost of 25. If we start at city 2, the algorithm
gives the tour 2 1 3 4 5,→ → → → which has a total cost of 19.

For a general n n× symmetric distance matrix D, since the distance between city
i and city j is the same as that between city j and city i, there are ()1 2n n − terms

above the diagonal. Therefore, a symmetric n-city TSP has ()1 2n n − unique
edges.

To intelligently initialize BBO for solving the TSP, we can use nearest-neighbor
initialization, as described above, for just one solution in the population, or for a few
solutions in the population, or for the entire population. But if we initialize too many
solutions this way, then we will probably obtain many duplicate solutions. We could
also use a stochastic nearest-neighbor initialization algorithm. In this case, the
probability of assigning a given city to 1ix + at each iteration would be inversely

150 Evolutionary Computation with Biogeography-based Optimization

proportional to its distance from ix . We could also take the nearest-neighbor
algorithm to another level by performing a “nearest two-neighbor” algorithm. In this
approach, given ix , we would assign a city to 1ix + that results in the smallest
combined distance () ()1 1, ,i i iD x x D x σ+ ++ , where σ is allowed to be equal to any
city kx≠ for 1k i≤ + .

8.2.2. Migration in the TSP

BBO migration is a method for combining or modifying features based on parent
solutions to create offspring, or new solutions. It is the most important component in
BBO. Four types of migration methods for solving the TSP are introduced here:
order migration, cycle migration, inver-over migration and matrix migration. The
first three migrations use path representation, and the last migration uses matrix
representation.

Path representation is the most natural way of representing a TSP tour. In path
representation, the vector:

[]1 2 nx x x x= L [8.5]

represents the n-city tour 1 2 nx x x→ → →L .

A. Order migration

Order migration (OM) in BBO is similar to order crossover in GAs [DAV 85].
OM in BBO first chooses the immigrating and emigrating solutions based on the
immigration rate and the emigration rate, respectively. Then, a section of the tour
from the immigrating solution remains unchanged, which results in a child solution
that has a partial tour. OM completes the child solution by copying the remaining
required cities from the emigrating solution to the child solution, while maintaining
the relative order of those cities from the emigrating solution.

EXAMPLE 8.2.–

Figure 8.3 shows BBO order migration for a TSP. We randomly select a subtour
from the immigrating solution; suppose that we select subtour [4 5 6 7] from the
immigrating solution, which gives a partial child solution. Now we see that the child
solution still needs cities 1, 2, 3, 8, 9. Those cities occur in the order [2 1 8 9 3] in
the emigrating solution. We therefore copy those cities in that order to the child
solution to obtain the complete child solution [2 1 8 4 5 6 7 9 3].

BBO for Combinatorial Optimization 151

1 2 3 8 9

4 5 2 9 3

8 9 32 1

Immigration
solution

Emigration
solution

Child solution

Figure 8.3. Order migration in BBO

B. Cycle migration

Cycle migration (CM) in BBO is similar to cycle crossover (CX) in GAs
[OLI 87]. CM in BBO first chooses the immigrating and emigrating solutions based
on the immigration rate and the emigration rate, respectively. Then, we create a
child solution from two parent solutions in a way that preserves as much sequence
information as possible from the immigrating solution, while completing the child
solution with information from the emigrating solution. The basic procedure of CM
is as follows:

1) Randomly select a city as the starting point in the immigrating solution and
record its position.

2) In the emigrating solution, find the city in the position recorded above in the
immigrating solution, and record this city. Go back to the immigrating solution,
search for the city we found in the emigrating solution, and record its position in the
immigrating solution.

3) Repeat step 2 until we obtain a complete cycle, which means that we have
returned to the starting city. Then, copy the remaining cities from the emigrating
solution to the child solution.

EXAMPLE 8.3.–

Figure 8.4 shows BBO cycle migration for a TSP. We create a child solution as
follows:

1) Select a random index between 1 and n. Suppose that we select 1, and
position 1 in the immigrating solution is city 1, so the child solution is initialized as
[1 − − − − − − − −].

152 Evolutionary Computation with Biogeography-based Optimization

2) Position 1 in the emigrating solution is city 4, and city 4 occurs in the
fourth position of the immigrating solution, so the child is augmented to become
[1 − − 4 − − − − −].

3) Position 4 in the emigrating solution is city 8, and city 8 occurs in the
eighth position of the immigrating solution, so the child is augmented to become
[1 − − 4 − − − 8 −].

4) Position 8 in the emigrating solution is city 3, and city 3 occurs in the
third position of the immigrating solution, so the child is augmented to become
[1 − 3 4 − − − 8 −].

5) Position 3 in the emigrating solution is city 2, and city 2 occurs in the
second position of the immigrating solution, so the child is augmented to become
[1 2 3 4 − − − 8 −].

6) Position 2 in the emigrating solution is city 1, but the child solution already
includes city 1. Therefore, we copy the remaining cities from the emigrating solution
to the child solution, which gives [1 2 3 4 7 6 9 8 5].

Figure 8.4. Cycle migration in BBO

C. Inver-over migration

Inver-over migration in BBO is similar to inver-over crossover in GAs
[TAO 98]. Inver-over migration in BBO does not require expression transformation,
and can guarantee that the generated child represents a valid and complete tour. Like
other migration options, inver-over migration first chooses the immigrating and

BBO for Combinatorial Optimization 153

emigrating solutions based on the immigration rate and the emigration rate,
respectively. Then, we perform the following procedure:

1) Randomly select a position s in the immigrating solution. Suppose that
position s in the immigrating solution is city r.

2) Suppose that city r is in the kth position in the emigrating solution. Set the
(k + 1)st position in the emigrating solution as the end-point city e.

3) Reverse the order of the cities between the city in the (s + 1)st position of the
immigrating solution and city e to obtain the child solution.

EXAMPLE 8.4.–

Figure 8.5 illustrates inver-over migration in BBO for a TSP. We randomly
select position s = 4 from the immigrating solution. We see that the fourth position
in the immigrating solution is city 4. We see that city 4 occurs in the first position in
the emigrating solution. So we set e = 1 as the end-point city. We then reverse the
order of the cities between the city in the fifth position and city 1 of the immigrating
solution to obtain the child solution.

Figure 8.5. Inver-over migration in BBO

D. Matrix migration

The next migration method that we discuss is called matrix migration, which is
similar to matrix crossover in GAs [FOX 91]. In matrix migration, the tour
representation is different from the above three path representations. An n-city tour

154 Evolutionary Computation with Biogeography-based Optimization

is represented by an n × n matrix M containing only zeros and ones. 1ikM = if and
only if city i occurs before city k in the tour. For instance, consider the matrix:

0 1 0 1 1
0 0 0 1 1
1 1 0 1 1
0 0 0 0 1
0 0 0 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.6]

The ones in the first row indicate that city 1 is before cities 2, 4 and 5. The ones
in the second row indicate that city 2 is before cities 4 and 5. The ones in the third
row indicate that city 3 is before cities 1, 2, 4 and 5. The one in the fourth row
indicate that city 4 is before city 5. Finally, the fact that the fifth row is comprised of
all zeros indicates that city 5 is the last city in the tour. Therefore, equation [8.6]
represents the tour 3 1 2 4 5→ → → → .

Another way to interpret equation [8.6] is to note that the row with the most ones
is the first city, the row with the second most ones is the second city, and so on; the
row with the kth most ones is the kth city in the tour. We note several properties for
an n × n matrix M that represents a valid tour.

1) Exactly one row of M has (n − 1) ones, exactly one row of M has (n−2) ones,
and so on.

2) The above property allows us to find the number of ones in M:

Number of ones =
n

i 1
() (1) / 2n i n n

=

− = −∑ [8.7]

3) No city occurs before itself in the tour, so ii 0M = for all i [1,]n∈ .

4) If city i occurs before city j, and city j occurs before city k, then city i occurs
before city k. That is,

()1 and 1 1ij jk ikM M M= = ⇒ = [8.8]

The advantage of matrix migration is that it is straightforward and easy to
operate, as we shall soon see. With matrix migration, a child solution can inherit
partial information from both immigrating and emigrating solutions, but it will also

BBO for Combinatorial Optimization 155

contain unique information. The drawback of matrix migration is that all sequence
information is represented by matrices, and it requires a high computational effort
when converting between tour information in a vector expression and tour
information in a matrix expression.

Now we discuss the details of matrix migration in BBO. First, we use roulette-
wheel selection to select two parent solutions. Once the parents are selected, we
perform matrix migration operation on the two parent matrices to obtain the child
matrix. We have a couple of ways that we can combine parent matrices to obtain
children.

The first way is the intersection method. We use an example to illustrate
intersection. Suppose that equation [8.6] represents parent 1M , and that the second
parent is given as:

2

0 1 1 0 1
0 0 1 0 1
0 0 0 0 0
1 1 1 0 1
0 0 1 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.9]

where 2M represents the tour 4 1 2 5 3→ → → → . We obtain the intersection of

1M and 2M by performing an element-by-element logical AND operation on the
two matrices. This gives the partially defined child as:

1 2

0 1 0 0 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∧ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.10]

This does not represent a valid tour, but it does indicate that city 1 is before cities
2 and 5, city 2 is before city 5 and city 4 is before city 5. This ordering occurs in the
partially defined child because the same ordering occurs in both parents. In fact, this
is the only ordering that is common in both parents. At this point, we can
pseudo-randomly add ones to M until it is a valid tour (that is, until it satisfies all of

156 Evolutionary Computation with Biogeography-based Optimization

the properties enumerated above). For example, we might choose to add ones to M
to obtain:

0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 1
0 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 1

1 1
1 1

 [8.11]

where the added ones are denoted in bold. M now satisfies all the properties of a
valid tour, and so we can transform M from its matrix expression to a sequential
representation to obtain the tour 1 4 5 2 3→ → → → .

The second way to combine parent matrices is with the union method. We use
the same example parent matrices as above to illustrate union. Suppose that
equations [8.6] and [8.9] represent parents 1M and 2M . We obtain the union of 1M
and 2M by performing an element-by-element logical OR operation on the two
matrices to obtain the partially defined child:

1 2

0 1 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
0 0 1 0 0

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∨ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.12]

We next select a random cut point that divides M into four quadrants (not
necessarily of equal size). Suppose that we generate a random cut point at the
second row and the second column. We write M with the upper-left and lower-right
quadrants unchanged, but with the lower-left and upper-right quadrants replaced
with undefined terms:

0 1
0 0

0 1 1
1 0 1
1 0 0

M

× × ×⎡ ⎤
⎢ ⎥× × ×⎢ ⎥
⎢ ⎥= × ×
⎢ ⎥× ×⎢ ⎥
⎢ ⎥× ×⎣ ⎦

 [8.13]

BBO for Combinatorial Optimization 157

We next make necessary changes to M to remove contradictions. For example,
34 1M = and 43 1M = , so one of those elements needs to be changed to a 0. This

gives the corrected but still partially defined child as:

0 1
0 0

0 0 0
1 0 1
1 0 0

M

× × ×⎡ ⎤
⎢ ⎥× × ×⎢ ⎥
⎢ ⎥= × ×
⎢ ⎥× ×⎢ ⎥
⎢ ⎥× ×⎣ ⎦

 [8.14]

Finally, we pseudo-randomly add ones to the off-diagonal blocks in M until it is
a valid tour (that is, until it satisfies all of the properties enumerated earlier). For
example, we might choose to add ones to M to obtain:

0 1 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 1 0 1
0 0 1 0 0

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [8.15]

M now satisfies all of the properties of a valid tour, and we can transform M from its
matrix expression to a sequential representation to obtain the tour
1 4 5 2 3→ → → → .

8.2.3. Mutation in the TSP

This section discusses a few ways to mutate TSP solutions. We restrict our
discussion to path representations.

A. Inversion

Inversion reverses the order of the tour between two randomly selected indices
[FOG 90]. For example, tour x could be mutated to become mx as follows:

1 2 3 4 5 6 7 8 9

1 5 4 3 2 6 7 8 9m

x

x

= → → → → → → → →

= → → → → → → → →

1442443

6447448
 [8.16]

158 Evolutionary Computation with Biogeography-based Optimization

where we randomly selected the start and the end point of the mutated segment.
Inversion is also called 2-opt mutation [BEY 02]. There are (1) 2n n − unique ways
to implement inversion in an n-city TSP tour. The lowest-cost solution that results
from all possible inversions of an n-city TSP tour always results in a tour without
any crossed edges.

2-opt is a simple but effective mutation method. Instead of replacing two points
in the solution, kopt, which is a mutation method, adaptively chooses the number of
points to break and reconnect [JOH 97]. According to simulation results, as the
number of replaced points increases, the performance of k-opt increases. But
the computational burden also increases. We need to find a balance between the
expected performance and the computational burden. For the first few optimization
generations, the population is still diverse and there is a lot of information to exploit.
In this case, we do not need k-opt to act aggressively, so k should be a small number.
But as the optimization algorithm progresses, it begins to converge. In this situation,
we need to increase the effectiveness of k-opt to increase the rate of improvement, so
we should use a larger value of k. We conclude that k should increase as the
generation count increases. One way of doing this is shown as follows:

2
c

m

g c
k

g
⎢ ⎥

= ⎢ ⎥
⎣ ⎦

 [8.17]

where c is the number of cities, gm is the generation limit and gc is the current
generation number.

B. Insertion

Insertion moves the city in position i to position k, where i and k are randomly
selected [FOG 88]. For example, suppose that we have the tour

[]1 2 3 4 5 6 7 8 9x = . Suppose that we randomly select i = 4 and k = 2. We then
move city 7, which is in position 4, to position 2 to obtain the mutated tour

1 4 2 3 5 6 7 8 9mx = → → → → → → → → [8.18]

C. Displacement

Displacement is a generalization of insertion [MIC 96a, Chapter 10].
Displacement takes the sequence of q cities beginning at the ith position and moves
them to the kth position in the tour, where q, i and k are randomly selected. For
example, suppose that we have the tour []1 2 3 4 5 6 7 8 9x = and randomly select

BBO for Combinatorial Optimization 159

q = 2, i = 4 and k = 2. We then take the two-city sequence beginning at position 4
(cities 4 and 5) and move it to position 2 to obtain the mutated tour:

1 4 5 2 3 6 7 8 9mx = → → → → → → → → [8.19]

We could also combine displacement with inversion by reversing the order of the
selected cities before we move them to their new position.

D. Reciprocal exchange

Reciprocal exchange swaps the cities in the ith and kth positions, where i and k
are randomly selected [BAN 90]. For example, suppose we have the tour

[]1 2 3 4 5 6 7 8 9x = . Suppose that we randomly select i = 5 and k = 1. We swap the
cities in the first and fifth positions to obtain the mutated tour:

5 2 3 4 1 6 7 8 9mx = → → → → → → → → [8.20]

We could generalize this method by swapping sequences of cities rather than
single cities. We could then combine this generalization with inversion by reversing
the order of one or more of the swapped sequences.

8.2.4. Implementation framework

Given the background of the preceding sections, we now present a BBO
algorithm to solve the TSP, which is shown in Figure 8.6. We have two options in
the implementation of Figure 8.6.

1) We have several options for migration, as discussed in section 8.2.2. We could
also use more than one migration method, probabilistically switching between
various methods from one generation to the next. Furthermore, we could keep track
of which migration method gives the best results and adapt the frequency of the
migration methods depending on the fitness of their offspring.

2) We have several options for mutation, as discussed in section 8.2.3. As with
migration, we could use more than one mutation method, probabilistically switching
between various methods from one generation to next. We could keep track of
which mutation method gives the best results and adapt the frequency of the
mutation methods depending on the fitness of their results.

160 Evolutionary Computation with Biogeography-based Optimization

Initialize a population of candidate solutions { kx } for k ∈ [1, N] (see section 8.2.1)

Represent the candidate solutions using either path or matrix representations

Calculate the tour distance for each candidate solution

While not (termination criterion)

For each kx , set emigration rate μk proportional to the fitness of kx ,

where μk is normalized to [0, 1]

For each kx , set immigration rate λk = 1 − μk

{ kz } ← { kx }

For each solution zk

Use λk to probabilistically decide whether to immigrate to zk

If immigrating then

 Use {μi} to probabilistically select the emigrating solution xj

 Create a child ck using one of the migration methods discussed

 in section 8.2.2:

 If using path representation then

 Use one of the first three migration methods to create ck

 Else if using matrix representation then

 Use the fourth migration method to create ck

 End if

End if

Probabilistically decide whether to mutate zk using one of the

mutation methods described in section 8.2.3

Next solution

{ kx } ← { kz }

Next generation

Figure 8.6. Outline of BBO for solving the TSP. { kx } is the population
of solutions, { kz } is a temporary population of solutions and kx is

the kth candidate solution

BBO for Combinatorial Optimization 161

EXAMPLE 8.5.–

We investigate the Att-48 TSP, a data set of 48 capitals of the US. This problem
is available on the TSPLIB website at http://www.iwr.uni-heidelberg.de/groups/
comopt/software/TSPLIB95/. We implement BBO for the TSP with the following
parameters: we use a population size N = 50; we initialize the population using
nearest-neighbor strategy as described in section 8.2.1; we use path representation
and inver-over migration as described in section 8.2.2; we use a mutation rate of
0.01 and inversion mutation as described in section 8.2.3; we define the fitness of a
tour as shown in equation [8.3]; we run 20 Monte Carlo simulations, each for
300 generations. Figure 8.7 shows a plot of the 48 cities and the best minimum-
distance closed tour of the 20 simulations. The average minimum-distance tour
length is 48,958.1.

Figure 8.7. The Att-48 TSP cities and
the best minimum-distance tour

0 2000 4000 6000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

Longitude

La
tit

ud
e

162 Evolutionary Computation with Biogeography-based Optimization

EXAMPLE 8.6.–

In this example, we investigate the effect of different migration and mutation
options for the TSP. We use the same TSP problem and parameters as described in
Example 8.5. Table 8.1 gives the average minimum-distance tour for different
migration and mutation options. Note that we try three different migration methods
with inversion mutation, and we try three different mutation methods with OM.
From Table 8.1, we see that OM works best when we use inversion mutation, and
inversion mutation works best when we use inver-over migration.

Inversion mutation Inver-over migration

Order migration 44,598.6 Inversion mutation 48,958.1

Cycle migration 51,049.2 Insertion mutation 55,661.8

Inver-over migration 48,958.1 Reciprocal exchange 53,160.4

Table 8.1. Average minimum-distance tours for different
migration and mutation options for the Att-48 TSP

EXAMPLE 8.7.–

In this example, we compare the performance of BBO with GA/GUR for the
TSP. The difference between a GA and a BBO implementation lies in the selection
of the parents. With BBO, the parents are selected based on the immigration rate and
the emigration rate. With GA/GUR, parents are selected using roulette-wheel
selection, but each variable in a solution is taken from a different parent. Here for
BBO, we use OM and inversion mutation, and for GA/GUR, we use order crossover
and inversion mutation.

We evaluated BBO and GA/GUR on six TSP benchmarks, all of which are available
in [REI 08]. Att-48 is a data set of 48 capitals of the US. Berlin-52 is a data set of
52 locations in Berlin, Germany. ST-70 is a 70-city problem, CH-130 is a 130-city
problem, GR-202 is a 202-city problem and RAT-575 is a 575-city problem.

Table 8.2 shows the average minimum-distance tour for BBO and GA/GUR after
300 generations over 20 Monte Carlo simulations. The algorithms are still
converging after 300 generations, so the numbers in Table 8.2 should not be
compared with the best published solutions, but only with each other to measure the
effect of BBO and GA/GUR for the TSP. Table 8.2 shows that BBO is significantly
better than GA/GUR for all six of the benchmarks for the first 300 generations.

BBO for Combinatorial Optimization 163

TSP problem BBO GA/GUR

Att-48 44,598.6 50,321.7

Berlin-52 15,816.3 17,074.6

ST-70 2,078.2 2,255.9

CH-130 33,954.1 35,762.3

GR-202 24,762.5 2,674.2

RAT-595 10,175.3 10,408.5

Table 8.2. Average minimum-distance tours
between BBO and GA/GUR for TSP benchmarks

8.3. Graph coloring

Graph coloring is a special case of graph labeling; it is an assignment of labels
traditionally called “colors” to elements of a graph subject to certain constraints. In
its simplest form, it is a way of coloring the vertices of a graph such that no two
adjacent vertices share the same color; this is called vertex coloring. Similarly, edge
coloring assigns a color to each edge so that no two adjacent edges share the same
color, and face (or map) coloring in a planar graph assigns a color to each face or
region so that no two faces that share a boundary have the same color.

 There are many related but distinct graph coloring problem. The classical graph
coloring problem is defined as follows: determine the smallest number of colors n
such that each node of a connected graph can be colored with one of these n colors
under the constraint that linked nodes are not assigned the same color. This problem
is also called the n-coloring problem. The smallest number of colors needed to color
a graph G is called its chromatic number and is often denoted ()Gχ . A graph that
can be assigned an n-coloring is n-colorable, and it is called n-chromatic if its
chromatic number is exactly n.

Figure 8.8 shows a graph coloring problem with 7 vertices and 13 edges, along
with its solution. The minimum number of colors needed to solve the problem is

() 4Gχ = . We have used different shapes instead of different colors in Figure 8.8
for the sake of illustration. Note from the right side of Figure 8.8 that none of the
circles are connected to each other, none of the squares are connected to each other
and there is only one triangle and one oval.

164 Evolutionary Computation with Biogeography-based Optimization

Figure 8.8. Illustration of a graph coloring problem with 7 vertices and
13 edges. The left figure shows the unsolved graph and the right figure
shows the solved graph, where we have used shapes to indicate colors

In this section, we combine BBO with a greedy algorithm to solve the graph
coloring problem. With this approach, each candidate solution in the population
stores an ordered list of vertices as its solution features. Information about the order
of the vertices is shared among solutions using inver-over migration. The greedy
algorithm of Figure 8.9 assigns colors to the vertices. The number of colors assigned
by the greedy algorithm to a given solution is the cost of that solution, and is used to
assign emigration and immigration rates in BBO.

C = indices of available colors

For each vertex iv

 iN ← {neighbors of iv }

 ()iC N ← {colors of x : ix N∈ }

 ic ← min { k C∈ : ()ik C N∉ }

 Assign ic as the color of iv

Next vertex

Figure 8.9. A greedy algorithm for the graph coloring problem.
For each vertex, this algorithm finds the next available

color that is not used by a neighbor

To compare performance, we use GA/GUR with the same greedy algorithm. We
evaluated three graph coloring benchmarks from the website http://mat.gsia.cmu.
edu/COLOR/instances.html [TRI 95]. The first benchmark is the Leighton graph
[LEI 79] and includes 450 vertices and 17,343 edges. The second benchmark is

BBO for Combinatorial Optimization 165

based on the Mycielski transformation and includes 191 vertices and 2,360 edges.
The third benchmark is called Flat and includes 300 vertices and 21,695 edges.

Table 8.3 shows the average minimum number of colors for BBO and GA/GUR
after 300 generations over 20 Monte Carlo simulations. We see from Table 8.3 that
BBO is significantly better than GA/GUR for all three of the benchmarks.

Graph coloring problem BBO GA/GUR

Leighton 91.6 92.8

Mycielski 25.7 26.1

Flat 133.2 136.5

Table 8.3. Average minimum number of colors for
BBO and GA/GUR for graph coloring benchmarks

8.4. Knapsack problem

The knapsack problem is another combinatorial optimization problem: given a
set of items, each with a weight and a value, determine the quantity of each item to
include in a collection so that the total weight is less than or equal to a given limit
and the total value is as large as possible. The knapsack problem often arises in
resource allocation with financial constraints, and it has been studied for more than a
century. The name “knapsack problem” dates back to the early work on the problem
and refers to the commonplace problem of packing your most valuable items
without overloading your luggage.

The most common knapsack problem is the 0/1 knapsack problem, which can be
described as follows. Consider a set of n items where the ith item has weight iw
and profit ip . The problem is to select a subset of the n items to maximize overall
profit without exceeding the weight constraint b . The problem can be
mathematically modeled as follows:

{ } { }
1

1

Maximize

Subject to , where 0, 1 1, 2, ,

n

i i
i

n

i i i
i

w x

p x b x i n

=

=

≤ ∈ ∀ ∈

∑

∑ L

 [8.21]

ix takes the value 1 or 0, which represents the selection or rejection of the ith item.
Ten benchmark knapsack problems are studied here as summarized in
Table 8.4. The parameters used in BBO and GA/GUR are the same as those in
Example 8.5.

166 Evolutionary Computation with Biogeography-based Optimization

Table 8.5 shows comparisons of the best performance of BBO and GA/GUR
after 300 generations over 20 Monte Carlo simulations. The results show that both
algorithms perform the same for F03, F04 and F09, and BBO performs better than
GA/GUR for the other seven benchmarks, which indicates that BBO is a good tool
for solving knapsack problems.

Fun. Dim. Parameters (w, p, b)

F01 10
w = {95, 4, 60, 32, 23, 72, 80, 62, 65, 46}; p = {55, 10, 47, 5, 4, 50, 8, 61, 85,
87}; b = 269

F02 20

w = {92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83, 25, 96, 70, 48, 14,
58};
p = {44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 40, 77, 15, 61, 17, 75, 29, 75,
63};
b = 878

F03 4 w = {9, 11, 13, 15}; p = {6, 5, 9, 7}; b = 20

F04 4 w = {6, 10, 12, 13}; p = {2, 4, 6, 7}; b = 11

F05 15

w = {56.358531, 80.87405, 47.987304, 89.59624, 74.660482, 85.894345,
51.353496, 1.498459, 36.445204, 16.589862, 44.569231, 0.466933,
37.788018, 57.118442, 60.716575};
p = {0.125126, 19.330424, 58.500931, 35.029145, 82.284005, 17.41081,
71.050142, 30.399487, 9.140294, 14.731258, 98.852504, 11.908322,
0.89114, 53.166295, 60.176397}; b = 375

F06 10
w = {30, 25, 20, 18, 17, 11, 5, 2, 1, 1}; p = {20, 18, 17, 15, 15, 10, 3, 1, 1};
b = 60

F07 7 w = {70, 20, 39, 37, 7, 5, 10}; p = {31, 10, 20, 19, 4, 3, 6}; b = 50

F08 23

w = {983, 982, 981, 980, 979, 978, 488, 976, 972, 486, 486, 972, 972, 485,
485, 969, 966, 483, 964, 963, 961, 958, 959};
p = {81, 980, 979, 978, 977, 976, 487, 974, 970, 485, 485, 970, 970, 484, 484,
976, 974, 482, 962, 961, 959, 958, 857}; b = 10000

F09 5 w = {33, 24, 36, 37, 12}; p = {15, 20, 17, 8, 31}; b = 80

F10 20

w = {84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14, 48, 70, 96, 32, 68,
92};
p = {91, 72, 90, 46, 55, 8, 35, 75, 61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40,
44};
b = 879

Table 8.4. The dimensions and parameters of the 10 benchmark knapsack problems

BBO for Combinatorial Optimization 167

Fun. BBO GA/GUR Fun. BBO GA/GUR

F01 290 265 F06 54 49

F02 950 860 F07 112 105

F03 35 35 F08 9,820 9,724

F04 23 23 F09 130 130

F05 470 395 F10 1,020 870

Table 8.5. Performance comparison between BBO and
GA/GUR for the 10 benchmark knapsack problems

8.5. Conclusion

In this chapter, we have summarized the TSP and have discussed some of the
most commonly used TSP representations and operators. We have shown how BBO
combines these representations and operators to solve the TSP and obtained good
results. In addition, we have discussed BBO for the solution of other combinational
optimization problems including the graph coloring problem and the knapsack
problem.

There are many other popular and practical combinatorial optimization
problems, including the minimum spanning tree problem, the job shop scheduling
problem and the bin packing problem. Evolutionary algorithms have been applied to
all of these problems, but there is plenty of room for BBO research on these
problems. There are several BBO variations that have yet to be applied to some of
these combinatorial optimization problems. Finally, we note that we need more
theoretical results to quantify the performance of BBO (and other EAs) on
combinatorial problems to provide guidance for practical applications.

9

Constrained BBO

All real-world optimization problems are constrained, at least implicitly if not
explicitly. Constrained optimization is the optimization of an objective function in
the presence of constraints on the solution. Without loss of generality, a constrained
optimization problem can be written as:

() ()
()

min such that g 0 for [1,]

and 0 for [1,]

ix

j

f x x i m

h x j p

≤ ∈

= ∈
 [9.1]

This problem includes (m+p) constraints, m of which are inequality constraints
and p of which are equality constraints. The set of x that satisfies all (m+p)
constraints is called the feasible set, and the set of x that violates one or more
constraints is called the infeasible set:

() (){ }
{ }

feasible set : 0 for [1,] and 0 for [1,]

infeasible set :
i jx g x i m h x j p

x x

Γ = ≤ ∈ = ∈

Γ = ∉ Γ
[9.2]

Constraints could be linear or nonlinear, and the objective of a constrained
evolutionary algorithm is to minimize f(x) while at the same time satisfying the
constraints ()gi x and ()jh x .

Overview of the chapter

In this chapter, we discuss how to modify BBO for constrained optimization
problems. Section 9.1 provides notation and concepts that often arise in constrained
optimization. Section 9.2 introduces several popular constraint-handling approaches
used in EAs, which are also suitable for BBO. Section 9.3 shows how we can

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

170 Evolutionary Computation with Biogeography-based Optimization

combine BBO with these popular constraint-handling methods to obtain constrained
BBO algorithms, and presents a comparative study of these constrained BBO
algorithms on standard constrained benchmark problems. The concluding section of
this chapter provides references to additional resources, and suggests several
important topics for future research for constrained BBO.

9.1. Constrained optimization

Various techniques have been proposed to handle constrained optimization
problems. The methods that are based on penalty functions are the most popular
approaches, thanks to their simplicity and ease of application. In this chapter, our
constrained BBO algorithms will also use penalty function methods. So it is first
necessary to review penalty function methods.

Penalty function methods usually penalize candidate solutions that violate
constraints. Penalty function approaches for general constrained optimization
problems were first proposed by Courant [COU 43]. They are often cited as being
the most popular algorithms for constrained optimization, but other approaches for
constrained EAs are rapidly gaining in popularity. We could allow infeasible
solutions in the EA population but penalize them in terms of cost, or in terms of
selection for contributing to the next generation. This approach generally does not
penalize feasible solutions, no matter how close they are to the constraint boundary.

Penalty function methods transform the standard constrained optimization
problem of equation [9.1] into the following unconstrained problem:

1 1
min (), where () () () ()

() [max(0, ())]

() ()

pm

i i j jx i j

i i

j j

x x f x rG x c L x

G x g x

L x h x

β

γ

φ φ
= =

= + +

=

=

∑ ∑

[9.3]

where ir and jc are positive constants that are called penalty factors, and β and γ
are positive constants that are often set equal to 1 or 2. ()xφ is called the penalized
cost function, and we obtain ()xφ as a weighted sum of the original cost function

()f x and the constraint violation magnitudes { }()iG x and { }()jL x . We see that if

x ∈Γ , then () ()x f xφ = . However, if x ∉Γ , then () ()x f xφ > by an amount that
increases with the amount of constraint violation.

Constrained BBO 171

Now that we have a penalized cost function ()xφ , we can run an EA that uses
()xφ as the cost function to select candidate solutions for the next generation. We

can therefore extend the unconstrained BBO algorithms discussed in this book to
constrained optimization problems; we simply use ()xφ instead of ()f x as the cost
function.

The constraints () 0jh x = are very unforgiving. If we randomly generate an
initial population in a continuous search domain, we have essentially zero chance of
obtaining candidate solutions that satisfy equality constraints. Therefore, we often
change the hard equality constraints to soft constraints that require hj (x)

to be

approximately zero rather than exactly zero; that is:

()jh x ε≤ [9.4]

where ε is a small positive constant.

Depending on the value of ε , we may have a reasonable chance of obtaining
solutions that satisfy the soft constraint of equation [9.4]. One of the ways of
assigning ε is to use relatively large values of ε early in the EA so that we can
obtain some feasible solutions, and then gradually decrease ε as the generation
count increases [BRE 09, ZAV 09]. Many research papers that compare constrained
optimization algorithms on benchmark functions use = 0.0001ε [LIA 06].

The conversion of equality constraints to inequality constraints transforms
equation [9.3] to:

[]
1

min (), where () () ()

max(0, ()) for [1,]
()

max(0, ()) for [1,]

m p

i ix i

i
i

i

x x f x rG x

g x i m
G x

h x i m m p

β

β

φ φ

ε

+

=

= +

⎧ ∈⎪= ⎨
⎡ − ⎤ ∈ + +⎪⎣ ⎦⎩

∑
 [9.5]

where we have simplified the problem by setting .γ β=

Problems like equation [9.5] can be solved with static or dynamic methods. Static
methods use values of ir , β and ε that are independent of the EA generation
number. In contrast, dynamic methods use values of ir , β and ε that depend on

172 Evolutionary Computation with Biogeography-based Optimization

the EA generation number. Static methods are simpler to implement but dynamic
methods may perform better because of their flexibility. Dynamic methods may be
able to intelligently adapt their weights, based on the population distribution or the
problem characteristics, to improve performance. Dynamic methods often increase

ir and β , and decrease ε , as the generation count increases. This increases the
weight given to constraint violation, which results in a gradual attraction of more
and more infeasible solutions toward the feasible region.

9.2. Constraint-handling methods

This section discusses several popular constraint-handling approaches used in
EAs, which are variations of the basic penalty function method described in the
previous section. These constraint-handling approaches are suitable for
implementation in BBO.

9.2.1. Static penalty methods

The first constraint-handling method is a static penalty method. Homaifar et al.
[HOM 94] set =2β and ri as a function of the constraint violation magnitude in
equation [9.5]; that is, ri is a non-decreasing function of i (x)G . Sometimes the
penalty factor ri is set equal to one of a set of discrete values depending on the
amount of the constraint violation:

() (]
() (]

() (

1 1

2 1 2

, 1

if 0,

if ,
r

if ,

i i i

i i i i
i

iq i i q

R G x T

R G x T T

R G x T −

⎧ ∈
⎪

∈⎪
= ⎨
⎪
⎪ ⎤∈ ∞⎦⎩

M
 [9.6]

where q is the user-specified number of constraint levels, the ijR values are user-
defined weights and the ijT values are user-defined constraint thresholds. This is a
static approach because the penalty on the constraints is not a function of the
generation count. The disadvantage of this approach is that it requires
(2 1)()q m p− + tuning parameters, although we can reduce this number by
combining some of the weight levels and thresholds to simplify the algorithm.

Constrained BBO 173

9.2.2. Superiority of feasible points

The method of the superiority of feasible points modifies the penalized cost
function of equation [9.5] as follows [POW 93]:

1

min (), where () () ()

() () ()

x
m p

i i
i

x x x x

f x rG x x

φ φ φ θ

θ
+

=

′ ′ = +

= + +∑
 [9.7]

where ()xθ is an additional term that is designed to guarantee that () ()x xφ φ′ ′≤ for
all x ∈Γ and for all x ∉Γ . That is, () ()x xφ φ′ ′≤ for all feasible x and for all
infeasible x . This requirement can be satisfied by setting ()xθ as follows:

0 if
()

max () : if
x

x
f y y x

θ
∈ Γ⎧

= ⎨ ∈ Γ ∉ Γ⎩
 [9.8]

assuming that () 0f x ≥ for all x . A less conservative way to implement this
method, which does not assume that () 0f x ≥ , is to set ()xθ as follows
[MIC 96b]:

{ }
0 if

()
max 0, max () min () if

yy

x
x

f y y x
θ

φ
∉Γ∈Γ

∈ Γ⎧
⎪= ⎨ − ∉ Γ⎪⎩

 [9.9]

This definition of ()xθ gives '() ()x xφ φ= for all x if () ()x xφ φ≤ for all x ∈Γ
and for all x ∉ Γ . That is, if the penalized cost function of equation [9.5] results in
all feasible solutions being ranked better than all infeasible solutions, then we do not
make any changes to equation [9.5]. However, if equation [9.5] results in

() ()x xφ φ> for some x ∈Γ and for some x ∉ Γ , then equation [9.9] shifts the
penalized cost function values of all the infeasible solutions so that
min '() max '()x xx xφ φ= ; that is, the best infeasible penalized cost is equal to the
worst feasible penalized cost.

The method of the superiority of feasible points may be an attractive approach if
the optimization problem includes difficult constraints. If the constraints are hard to
satisfy, then this method provides a lot of selection pressure for feasible points to
remain in the population, which allows their information to continue to the next
generation.

174 Evolutionary Computation with Biogeography-based Optimization

9.2.3. The eclectic evolutionary algorithm

The eclectic EA provides another approach to enforcing the superiority of
feasible points [MOR 98]. It defines the penalized cost function as:

() if
() ()(1) if

f x x
x s xK x

m p
φ

∈ Γ⎧
⎪= ⎨ ⋅ − ∉ Γ⎪ +⎩

 [9.10]

where K is a large constant, m p+ is the total number of constraints and ()s x is
the number of constraints that are satisfied by x . The user-defined constant K
needs to be large enough to ensure that () ()x xφ φ> for all x ∈Γ and for all x ∉ Γ .
If we use a ranking method to select solutions for recombination, then there is no
upper bound for K . However, if we use roulette-wheel selection, or some other
method that uses absolute values of ()φ ⋅ for selection, then we need to be careful not
to set K too large; we want to make sure that although infeasible solutions are
ranked worse than feasible solutions, infeasible solutions still have a reasonable
chance of being selected for recombination.

The eclectic EA differs from equation [9.7] because the eclectic EA does not
evaluate the cost ()f x for infeasible solutions. This could result in significant
computational savings. Also, the eclectic EA only considers the number of
constraint violations in determining the penalized cost function, and it does not
consider the magnitude of the constraint violations. Equation [9.5], on the other
hand, considers only the magnitude of constraint violation, and it does not consider
the number of constraint violations. This could provide another computational
advantage to the eclectic EA because in real-world problems it is often much easier
to count the number of constraint violations than to quantify the exact level of those
violations.

9.2.4. Dynamic penalty methods

If the penalized cost function of equation [9.5] uses 1β = or 2 , and ()ir ct α= ,
where c and α are constants, and where t is the generation count, then we obtain:

1

() () () ()

() ()
m p

i
i

x f x ct M x

M x G x

αφ
+

=

= +

= ∑
 [9.11]

Constrained BBO 175

This approach is called a dynamic penalty method because the penalty on the
constraints increases with the generation count [JOI 94]. However, in order to
be successful with this approach, the cost ()f ⋅ and the constraint violation
magnitude ()M ⋅ should be normalized so that the penalized cost function ()φ ⋅ is
written as follows:

() () () ()
if max () 0() max ()

()
 if max () 0 0

() () max ()

xx

x

x

x f x ct M x
M xM x M x

M x
M x

f x f x f x

αφ ′ ′= +
>⎧⎪′ = ⎨ =⎪⎩

′ =

 [9.12]

assuming that () 0f x > for all x . This ensures that the components of the penalized
cost ()xφ have approximately the same magnitude. Another option is to combine a
dynamic penalty method with the superiority of feasible points method from section
9.2.2. With this approach, the penalized cost is written as:

() if
()

() () () () if
f x x

x
f x ct M x x xαφ

θ
′ ∈ Γ⎧

⎨ ′ ′+ + ∉ Γ⎩
 [9.13]

where ()xθ is defined such that all feasible points have a lower penalized cost than
all infeasible points. Joines and Houck [JOI 94] report typical constant values of

1 / 2c = and 1 or 2α = , but appropriate values of c depend on the maximum
generation count. For shorter EA simulations, c should be larger than 1 / 2 by one
or two orders of magnitude. If c is too small, then the constraint violation penalty
will be too small and the EA will assign too high a selection probability on solutions
with low costs but large constraint violations.

Next, we introduce a popular dynamic penalty method called the exponential
dynamic penalty method, which is proposed in Carlson and Shonkwiler [CAR 98]
as:

() () exp(())x f x M x Tφ = [9.14]

where ()M x is the constraint violation magnitude defined in equation [9.11], and T
is a monotonically non-increasing function of the generation count t . 1T t= is
proposed in Carlson and Shonkwiler [CAR 98], which gives lim 0t T→∞ = , so the
penalized cost of infeasible solutions tends to infinity as the generation count tends
to infinity.

176 Evolutionary Computation with Biogeography-based Optimization

Equation [9.14] assumes that () 0f x ≥ for all x ; otherwise, the constraint
penalty would serve to decrease the cost. If this assumption is not satisfied, then we
should shift the cost function values before we penalize them. We can also add a
tuning parameter to the penalty part of ()xφ :

() () exp(())
() () min ()

x

x f x M x T
f x f x f x
φ α′ ′=
′ = − [9.15]

where the normalized constraint violation magnitude ()M x′ is defined in equation
[9.12], and α is a tuning parameter to adjust the relative importance of constraint
violations. We find that values of α around 10 usually work pretty well.

As with the additive penalty method described in equation [9.12], we could
combine the exponential dynamic penalty method with the superiority of feasible
points method in section 9.2.2. With this approach, the penalized cost is written as:

() if
()

() exp(()) () if
f x x

x
f x M x T x x

φ
θ

′ ∈ Γ⎧
= ⎨ ′ + ∉ Γ⎩

 [9.16]

or:

() if
()

() exp(()) () if
f x x

x
f x M x T x x

φ
α θ

′ ∈ Γ⎧
= ⎨ ′ ′ + ∉ Γ⎩

 [9.17]

where ()xθ is large enough to ensure that all feasible points have a lower cost than
all infeasible points.

9.2.5. Adaptive penalty methods

Dynamic penalty methods often work better than static methods, but they require
additional tuning, which is problem-dependent. Penalties that are too high
discourage exploration of the infeasible set, but sometimes we need to use infeasible
solutions to find good solutions that satisfy the constraints. However, penalties that
are too low result in too much exploration of the infeasible set, and poor
convergence to feasible solutions. These considerations motivate adaptive penalty
methods. Adaptive methods use feedback from the population to adjust the penalty

Constrained BBO 177

weights. One adaptive approach is proposed in Carlson and Shonkwiler [CAR 98],
which sets the penalty weights of equation [9.5] as follows:

1

2

() if case 1
(1) () if case 2

() otherwise

i

i i

i

r t
r t r t

r t

β
β

⎧
⎪+ = ⎨
⎪
⎩

 [9.18]

where t is the generation number, 1 β and 2 β are constants satisfying 1 2 1β β> > ,
case 1 means that the best solution was feasible for each of the past k generations,
and case 2 means that there were no feasible solutions in any of the past k
generations. The generation window k is a tuning parameter that affects the speed
of adaptation. We see that if the best solution in the population is feasible, we
decrease the constraint weight to allow more infeasible solutions in the population.
If there are no feasible solutions in the population, we increase the constraint weight
to try to obtain some feasible solutions. The goal is to obtain a balanced mix of
feasible and infeasible solutions to thoroughly explore the search space and the
constraints. Typical constant values for this method are 1 2(1) 1, 4, 3ir β β= = = and
k n= , where n is the problem dimension [HAD 93].

9.2.6. The niched-penalty approach

The niched-penalty approach is motivated by the difficulty of tuning the
parameters of penalty methods [DEB 99, DEB 00a]. It uses tournament selection to
select solutions for recombination according to the following rules:

– given two feasible solutions, the one with the lower cost wins the tournament;

– given one feasible solution and one infeasible solution, the feasible solution
wins the tournament;

– given two infeasible solutions, the one with the smaller constraint violation
wins the tournament.

This method is attractive because of its simplicity, and it does not require any
tuning of penalty parameters. A comparison of two infeasible solutions does not
require any cost function evaluations, which can reduce computational effort. The
niched-penalty approach often obtains good results on constrained optimization
problems. However, its simplicity may also be a disadvantage because it considers a
feasible solution with a very high cost to be better than a slightly infeasible solution
with a very low cost. Therefore, it may not work well for problems whose solutions
are on the constraint boundary, which is the case for many real-world optimization
problems [LEG 09, RAY 09].

178 Evolutionary Computation with Biogeography-based Optimization

The “niched” part of this approach is not integral to its constraint-handling
ability, but is intended to preserve diversity in the population, and is described as
follows. We do not allow solutions to participate in a tournament with each other if
they are far from each other in domain space. After we randomly choose solutions
for tournament selection, we then compute their distance from each other. If the
solutions are too far apart from each other, then we randomly choose different
solutions for the tournament. This helps prevent distant clusters of solutions from
disappearing from the population and thus maintains diversity.

9.2.7. Stochastic ranking

Stochastic ranking adds a random component to constrained EAs [RUN 00].
Since randomness is such an important component of EAs, it makes sense to include
randomness in their constraint-handling approach. Stochastic ranking sometimes
ranks candidate solutions according to their cost ()f ⋅ , and sometimes ranks them
according to their constraint violation magnitude. The decision of how to rank
solutions is stochastic. When we compare two solutions 1x and 2x , we consider
solution 1x to be better than 2x if one of the following applies:

– both solutions are feasible and 1 2() ()f x f x< ;

– a randomly generated number ~ [0,1]r U is less than a user-defined
probability fP , and 1 2() ()f x f x< ;

– neither of the above conditions are satisfied, and 1x has a smaller constraint
violation than 2x .

Otherwise, we consider 2x to be better than 1x . We see that we might compare

1x and 2x on the basis of their costs, or we might compare them on the basis of
their constraint violations, depending on the outcome of a random number generator.
After we have compared and sorted all of the solutions in the population, we then
perform selection and recombination for the next generation. Probability values

(0.4,0.5)fP ∈ give good results for many benchmark problems.

9.2.8. ε -level comparisons

ε -level comparisons are similar to the static penalty approach of section 9.2.1 in
which different penalty function weights are used depending on the level of
constraint violation. However, ε -level comparisons use only two levels of
constraint violations for ranking [TAK 09].

Constrained BBO 179

First, we quantify the constraint violation ()M x of each solution x by either
combining all constraint violations or by finding the maximum constraint violation:

1
() constraint sum method

()
maximum constraint methodmax ()

m p

i
i

i

G x
M x

G x

+

=

⎧
⎪= ⎨
⎪
⎩

∑
 [9.19]

Second, we rank two solutions x and y as follows:

() () and () and () , or
is better than if : () () and () (), or

() () and ()

f x f y M x M y
x y f x f y M x M y

M x M y M y

ε ε

ε

< ≤ ≤⎧
⎪ < =⎨
⎪ < >⎩

 [9.20]

where 0ε ≥ is a user-defined constraint violation threshold. We see that a constraint
violation that is less than ε is considered to be a feasible solution for the purpose of
ranking. Note that if ε = ∞ , then solutions are ranked solely on the basis of cost. If

0ε = , then feasible solutions are ranked on the basis of cost, infeasible solutions are
ranked solely on the basis of their constraint violation and feasible solutions are
always ranked better than infeasible solutions. We typically decrease ε as the
generation count increases, which gradually increases the importance of constraint
satisfaction:

(0) ()

 if 0(0)(1)
()

if 0

p

c
cc

c

M x

t Tt T
t

t T

ε

εε

=

< <⎧ −
= ⎨ ≥⎩

 [9.21]

where ()tε is the value of ε during the tth generation, px is the solution with the
pth smallest constraint violation, / 5p N= , N is the population size, and c and cT
are tuning parameters that are often set to values of about 100c = and max / 5cT t=
[TAK 09]. We could also try other tuning parameters and other profiles for
decreasing ε as a function of t .

9.3. BBO for constrained optimization

Since the constraint-handling methods discussed above are solely concerned with
how to rank candidate solutions, we can use any EA in conjunction with any of these
constraint-handling methods. So the combination of BBO with these constraint-
handling methods is conceptually simple. In this section, we use the BBO algorithm

180 Evolutionary Computation with Biogeography-based Optimization

of Figure 3.5 in Chapter 3, while calculating the fitness of each candidate solution
using equation [9.5] with one of the eight constraint-handling methods discussed
above. Then, we use the new fitness values to calculate the immigration rate and the
emigration rate in the BBO algorithm. This results in constrained BBO algorithms.

Although the implementations of constrained BBO algorithms are easy, their
optimization performances may be completely different. In this section, we present
comparisons between constrained BBO algorithms with different constraint-
handling methods. We use equation [9.11] to measure the constraint violation
magnitude of a candidate solution, where ()iG x is given by equation [9.5] with

1β = . The constraint-handling methods that we test, and their tuning parameters,
include the following:

– EE: the eclectic EA of section 9.2.3;

– DP: the dynamic penalty method of equation [9.11] in section 9.2.4 with
10c = and 1α = ;

– DS: the dynamic penalty method combined with the superiority of feasible
points method, as defined by equation [9.13] in section 9.2.4, with 10c = and

2α = ;

– EP: the exponential dynamic penalty method of equation [9.15] in section 9.2.4
with 10α = ;

– AP: the adaptive penalty method of equation [9.18] in section 9.2.5 with
1 24, 3β β= = and k n= , where n is the problem dimension;

– NP: the niched-penalty approach of section 9.2.6;

– SR: the stochastic ranking method of section 9.2.7 with 0.45fP = ;

– LC: the ε -level comparison method of section 9.2.8 with 100c = , 200cT =
and / 5p N= , where N is the population size.

We test constrained BBO algorithms with the above constraint-handling methods
on two sets of 2006 and 2010 IEEE Congress on Evolutionary Computation (CEC)
benchmark functions listed in Appendix B. The 2006 CEC benchmarks are briefly
summarized in Table 9.1 [LIA 06]. The 2010 benchmarks are briefly summarized in
Table 9.2 [MAL 10]. We use the dimension 10D = for each benchmark, and
randomly generated the offset values { }io and rotation matrix M for each
benchmark.

Constrained BBO 181

Function D Function type Li Ni Le Ne A
G01 13 Quadratic 9 0 0 0 6
G02 20 Nonlinear 0 2 0 0 1
G03 10 Polynomial 0 0 0 1 1
G04 5 Quadratic 0 6 0 0 2
G05 4 Cubic 2 0 0 3 3
G06 2 Cubic 0 2 0 0 2
G07 10 Quadratic 3 5 0 0 6
G08 2 Nonlinear 0 2 0 0 0
G09 7 Polynomial 0 4 0 0 2
G10 8 Linear 3 3 0 0 6
G11 2 Quadratic 0 0 0 1 1
G12 3 Quadratic 0 1 0 0 0
G13 5 Nonlinear 0 0 0 3 3
G14 10 Nonlinear 0 0 3 0 3
G15 3 Quadratic 0 0 1 1 2
G16 5 Nonlinear 4 34 0 0 4
G17 6 Nonlinear 0 0 0 4 4
G18 9 Quadratic 0 13 0 0 6
G19 15 Nonlinear 0 5 0 0 0
G20 24 Linear 0 6 2 12 16
G21 7 Linear 0 1 0 5 6
G22 22 Linear 0 1 8 11 19
G23 9 Linear 0 2 3 1 6
G24 2 Linear 0 2 0 0 2

Table 9.1. 2006 CEC benchmark functions. Li and Ni are the number of
linear and nonlinear inequality constraints, Le and Ne are the number of
linear and nonlinear equality constraints, D is the number of dimensions

and A is the number of active constraints at the solution

The parameters that we use in the BBO algorithm are: population size 50,
maximum immigration rate and maximum emigration rate 1, and maximum mutation
rate 0.01 with a mutated value randomly chosen from a uniform distribution in the
search domain. We use linear migration curves. We allow BBO to run for 50,000
fitness function evaluations. We run 25 Monte Carlo simulations on each benchmark
to obtain representative performances. We use an elitism parameter of two, which
means that we keep the two best solutions from each generation to the next.

182 Evolutionary Computation with Biogeography-based Optimization

Function Function type Ni Ne ρ
C01 Non-separable 2 0 0.997689
C02 Separable 2 1 0.000000
C03 Non-separable 0 1 0.000000
C04 Separable 0 4 0.000000
C05 Separable 0 2 0.000000
C06 Separable 0 2 0.000000
C07 Non-separable 1 0 0.505123
C08 Non-separable 1 0 0.379512
C09 Non-separable 0 1 0.000000
C10 Non-separable 0 1 0.000000
C11 Rotated 0 1 0.000000
C12 Separable 1 1 0.000000
C13 Separable 3 0 0.000000
C14 Non-separable 3 0 0.003112
C15 Non-separable 3 0 0.003210
C16 Non-separable 2 2 0.000000
C17 Non-separable 2 1 0.000000
C18 Non-separable 1 1 0.000000

Table 9.2. 2010 CEC benchmark functions. Ni and Ne are the
number of inequality and equality constraints and ρ is the ratio
of the size of the feasible set to the size of the search space

For the purpose of elitism, we define the best solution as the feasible solution
with the lowest cost. If there are not any feasible solutions, then we define the best
solution as the one with the lowest penalized cost, where we obtain penalized cost
using one of the constraint-handling methods discussed above which ranks
infeasible solutions better than feasible solutions. We can afford to use this approach
when there are a relatively large number of solutions and the ranking is used for
selection for recombination. But, for saving two elite solutions from one generation
to the next, we need to make sure that feasible solutions are always preferred above
infeasible ones for the purpose of defining elite solutions. This ensures that once
BBO finds a feasible solution, it will always have at least one feasible solution for
the rest of simulation.

Tables 9.3 and 9.4 summarize the performance of the constraint-handling BBO
algorithms on the 2006 and 2010 CEC benchmarks, respectively. For the 2006 CEC
benchmarks, we notice that for most of the functions, the BBO algorithms with EP,
AP and NP give the best performance, and the other algorithms cannot find feasible
solutions (except for functions G20, G21 and G22, for which none of the algorithms

Constrained BBO 183

could find feasible solutions). This indicates that some functions, for example G04,
are very easy, meaning that any method works well, and other functions, for
example G20, are very hard, meaning that no method works well. The results also
indicate that different constraint-handling methods have significantly different
performance levels. EP, AP and NP combined with the BBO are better than other
constraint-handling methods for the 2006 CEC benchmarks.

Fun. Best known solution EE DP DS EP AP NP SR LC

G01 – 15.000 – 14.998 – 14.982 – 14.791 – 15.000 – 15.000 – 15.000 – 14.991 – 14.842

G02 – 0.80361 – 0.80215 – 0.79246 – 0.78346 – 0.80361 – 0.80361 – 0.80361 – 0.80192 – 0.78118

G03 – 1.0005 – 1.0004 – 1.0000 – 0.9992 – 1.0005 – 1.0005 – 1.0005 – 1.0001 – 0.9997

G04 – 30665.5 – 30665.5 – 30665.4 – 30665.1 – 30665.5 – 30665.5 – 30665.5 – 30665.5 – 30665.5

G05 5126.497 5127.046 5127.048 5129.993 5126.497 5126.497 5126.497 5129.913 5129.391

G06 – 6961.81 – 6961.00 – 6957.07 – 6942.65 – 6961.81 – 6961.81 – 6961.81 – 6960.87 – 6957.39

G07 24.306 27.051 30.547 34.119 24.272 26.272 24.306 35.574 28.562

G08 – 0.09582 – 0.09582 – 0.09425 – 0.09006 – 0.09582 – 0.09582 – 0.09582 – 0.09582 – 0.08917

G09 680.630 680.677 688.637 699.758 680.630 680.630 680.630 681.328 698.027

G10 7049.248 7057.369 7236.683 7377.902 7049.248 7049.248 7049.248 7139.645 7147.586

G11 0.74990 0.74990 0.74992 0.74994 0.74990 0.74990 0.74990 0.74990 0.74997

G12 – 1.00000 – 0.99994 – 0.99514 – 0.98725 – 1.00000 – 1.00000 – 1.00000 – 0.99991 – 1.00000

G13 0.053942 0.055046 0.054264 0.054931 0.053942 0.053942 0.053942 0.056891 0.055284

G14 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765 – 47.765

G15 961.715 962.627 968.648 972.114 961.715 961.715 961.715 965.736 967.728

G16 – 1.90516 – 1.90511 – 1.90264 – 1.90017 – 1.90516 – 1.90516 – 1.90516 – 1.90508 – 1.90382

G17 8853.540 8853.600 8854.231 8855.703 8853.540 8853.540 8853.540 8853.692 8855.376

G18 – 0.86602 – 0.86552 – 0.86206 – 0.85742 – 0.86602 – 0.86602 – 0.86602 – 0.86303 – 0.85954

G19 32.656 32.659 32.661 32.678 32.656 32.656 32.656 32.665 32.656

G20 0.204979 – – – – – – – –

G21 193.725 – – – – – – – –

G22 236.431 – – – – – – – –

G23 – 400.055 – 391.319 – 381.794 – 362.830 – 396.034 – 389.748 – 391.653 – 384.183 – 348.958

G24 – 5.50801 – 5.50801 – 5.50800 – 5.50800 – 5.50801 – 5.50801 – 5.50801 – 5.50801 – 5.50801

Table 9.3. Comparison of the best feasible cost function values
found by constraint-handling BBO algorithms on the 2006 CEC

benchmarks. The best value in each row is indicated in bold

184 Evolutionary Computation with Biogeography-based Optimization

Fun. EE DP DS EP AP NP SR LC

C01 -3.41E-01 -1.98E-01 -2.16E-01 -7.65E-01 -7.43E-01 -7.12E-01 -6.65E-01 -4.43E-01

C02 -5.19E+00 -2.07E+00 -1.23E+00 -4.56E+00 -7.01E+00 -2.33E+00 -1.24E+00 -6.89E+01

C03 3.76E+02 2.50E+02 6.24E+02 1.25E+01 3.23E+01 7.48E+01 1.26E+02 4.35E+01

C04 1.23E+02 4.32E+02 2.31E+02 1.27E+01 4.41E+01 7.58E+01 3.22E+02 1.78E+02

C05 -4.36E+01 -4.78E+01 -2.19E+01 -7.78E+02 -1.25E+02 -1.47E+02 -7.69E+02 -1.12E+02

C06 -4.45E+01 -5.11E+01 -1.63E+01 -4.87E+01 -1.46E+02 -2.34E+02 -4.55E+01 -1.39E+02

C07 2.58E+03 4.80E+03 1.47E+03 2.69E+02 4.58E+02 1.14E+02 7.78E+02 4.65E+02

C08 2.36E+06 5.82E+06 1.17E+06 7.84E+05 2.36E+05 1.46E+05 7.89E+05 3.65E+05

C09 1.24E+08 6.12E+08 7.72E+07 1.36E+07 4.21E+07 7.63E+08 5.36E+08 2.16E+07

C10 8.94E+07 7.93E+07 1.11E+07 2.31E+06 4.57E+06 3.26E+06 1.02E+07 3.50E+06

C11 -4.78E+00 -5.82E+00 -7.85E+00 -7.63E+00 -7.12E+00 -4.63E+00 -3.69E+00 -7.85E+00

C12 -4.56E+02 -7.90E+02 -2.36E+02 -8.54E+02 -2.24E+02 -2.13E+02 -2.17E+02 -1.48E+02

C13 -8.52E+01 -2.74E+01 -4.11E+02 -2.36E+02 -3.68E+03 -7.58E+03 -6.63E+02 -2.21E+02

C14 1.17E+09 2.91E+09 4.50E+09 4.45E+07 1.29E+07 4.51E+07 5.28E+08 7.58E+08

C15 2.35E+09 8.54E+10 3.58E+09 1.21E+09 3.54E+09 2.36E+09 1.27E+09 1.30E+09

C16 4.66E-01 1.51E-01 7.66E-01 3.36E-01 1.28E-02 3.17E-02 3.68E-01 4.45E-02

C17 1.20E+00 6.92E+00 2.36E+00 7.85E-02 8.96E-01 1.22E-01 1.08E-01 1.28E-01

C18 1.66E-01 2.42E-01 4.15E-01 4.10E-01 1.54E-01 8.57E-01 6.63E-01 3.07E-01

Table 9.4. Comparison of the best feasible cost function values
found by constraint-handling BBO algorithms on the 2010 CEC

benchmarks. The best value in each row is indicated in bold

For the 2010 CEC benchmarks, we notice that for most of the functions, BBO
with EP, AP and NP give the best performance, while the other algorithms cannot
find feasible solutions (except for function C11, for which DS and LS give the best
performance). In particular, BBO with EP obtains the best feasible cost function
values for functions C01, C03, C04, C05, C09, C10, C12, C15 and C17; BBO with
AP obtains the best feasible cost function values for functions C02, C14, C16 and
C18; and BBO with NP obtains the best feasible cost function values for functions
C06, C07, C08 and C13. This indicates that for the 2010 CEC benchmarks, EP, AP
and NP combined with BBO are better than the other constraint-handling methods.

Constrained BBO 185

Based on the above results, it appears that some constraint-handling methods
provide similar performance levels, and some constraint-handling methods provide
notably different constraint-handling abilities. In general, constrained BBO is a
competitive algorithm for solving constrained optimization problems.

9.4. Conclusion

We see from this chapter that there are many constraint-handling methods that
can be used with BBO. Some of these methods have similar performance levels, and
others have significantly different performance levels. We showed how BBO can be
combined with these constraint-handling methods to produce various constraint-
handling BBO algorithms. These combinations of BBO with various constraint-
handling methods can serve as a template for the extension of any other EA for
constrained optimization. Rather than trying all possible constraint-handling BBO
algorithms in search of the best combination, it is more instructive to remember the
basic principles, summarized above, that we have uncovered.

Many other constraint-handling methods have been proposed, and new ones
continually appear in the literature. Constrained optimization surveys can be found
in [EIB 01, COE 02a, COE 02b, COE 11]. Any reader who is interested in further
research should note that Carlos Coello Coello maintains a bibliography of papers
related to constrained evolutionary optimization, which includes 1,357 references as
of May 2016 [COE 16a, COE 16b].

Constrained evolutionary optimization is an active research area because: (1) it is
a relatively new area; (2) it is lacking in theoretical results; (3) real-world
optimization problems are almost always constrained. In this concluding section, we
mention some important topics for future constrained evolutionary optimization
research.

Incorporation of constraint-handling methods with newer EAs

Much current research includes the incorporation of standard constraint-handling
methods, such as those discussed in this chapter, into newer EAs. The literature
continually introduces new EAs. These new EAs are often nothing more than
modifications of older EAs, but sometimes they have distinctive new features and
capabilities. It is important to explore how well current constraint-handling methods
perform when incorporated into different types of EAs. The relative performance
levels of different EAs on unconstrained problems does not necessarily correlate
with their relative performance levels on constrained problems.

186 Evolutionary Computation with Biogeography-based Optimization

Constrained optimization theory and mathematical models

Theoretical results would be a fruitful area for future research in constrained
optimization. This book discusses Markov models, dynamic system models and
statistical mechanics approximation models for BBO. Perhaps those tools, or others,
could also be used to analyze constrained EAs.

Combinations of different constraint-handling methods

Just as EAs can be combined in various ways, constraint-handling methods can
also be combined. For example, an ensemble of constraint-handling methods could
all use the same cost function results, and the best method at each generation would
dominate the next generation [MAL 10]. As a further level of abstraction beyond
ensembles, hyper-heuristics combine multiple EAs and multiple constraint-handling
methods into a single algorithm. Recall that a heuristic is a family of algorithms (for
example, a family of BBO variations). A hyper-heuristic is a family of families of
algorithms (for example, a family containing a BBO heuristic and other heuristics).
Hyper-heuristics can be used for any type of optimization problem, but we mention
them here because of their promise for constrained optimization problems [TIN 13].

10

BBO in Noisy Environments

Many optimization problems in science and engineering suffer from the effects of
noise, which poses a challenge for EAs. Noise corrupts the calculation of objective
functions via imperfect sensors, measurement devices and approximate numerical
simulators [BEY 07, HAN 09, MA 15a, SCH 93, YU 08]. Noise results in two types
of undesirable effects in EAs: (1) a superior candidate solution may be erroneously
believed to be inferior, and (2) an inferior candidate solution may be erroneously
believed to be superior. These effects result in false optima and reduced EA
optimization performance, including reduced convergence rates and non-monotonic
fitness improvement.

Noise-handling methods in EAs can be classified into two categories: methods
which require an increase in computational cost, including explicit averaging
methods and implicit averaging methods, and methods which perform hypotheses
testing on the noise, including the use of approximate fitness models and
modification of selection schemes.

Explicit averaging methods include re-sampling, which is the most common
approach to deal with noise [PIE 04]. Re-sampling of the fitness values involves
several noisy fitness value measurements, followed by averaging to obtain an
improved fitness estimate. Averaging an increased number of samples reduces the
variance of the estimated fitness. As the number of samples increases to infinity, the
uncertainty in the fitness estimate decreases to zero, which transforms the noisy
problem into a noiseless one.

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

188 Evolutionary Computation with Biogeography-based Optimization

Implicit averaging methods increase the population size so that solutions can be
re-evaluated during the normal course of evolution, and so that neighboring
solutions can be evaluated, which gives fitness estimates in neighboring regions of
the search space. It has been shown that a large population size reduces the influence
of noise on the optimization process [FIT 88].

The main idea of approximated model methods is that measured fitness values of
neighboring individuals can give good fitness estimates without extra evaluations
[NER 08].

Overview of the chapter

In this chapter, BBO is applied to the optimization of noisy problems. A noisy
problem is one in which the fitness function is corrupted by random noise. Noise
interferes with the BBO immigration rate and emigration rate, and adversely affects
optimization performance. Section 10.1 introduces the notation of noisy fitness
functions, and section 10.2 analyzes the effect of noise on BBO using the Markov
model derived in Chapter 5. Section 10.3 incorporates the re-sampling approach into
BBO to alleviate the effects of noise, and section 10.4 discusses the Kalman BBO
algorithm, which uses a Kalman filter to estimate fitness function values. Section
10.5 demonstrates the performance of BBO with re-sampling, along with Kalman
BBO, on a set of standard benchmarks.

10.1. Noisy fitness functions

Fitness function evaluations in EAs are often accompanied by noise [JIN 05,
SIM 13]. For example, sensor inaccuracies can cause noise in experimental fitness
function evaluations. Also, if we measure fitness function values with simulation
software, then approximation errors in our software could cause noise in fitness
function evaluations.

A noisy fitness function evaluation could result in a high fitness being
mistakenly assigned to a low-fitness solution. Conversely, it could result in a low
fitness being mistakenly assigned to a high-fitness solution. Figure 10.1 illustrates
the PDFs of two noisy but unbiased fitness functions f (x1) and f (x2). We see that the
true value of f (x1) is 0 and the true value of f (x2) is 5, but the evaluations are noisy.
Therefore, x1 might have an evaluated fitness that is greater than that of x2. This
situation would result in an inaccurate assessment of the relative fitness values of x1
and x2, which could result in an EA selecting the wrong solution for recombination.
That is, noise can deceive an EA.

BBO in Noisy Environments 189

Figure 10.1. The PDFs of two fitness functions. x2, which has a true value of
5, is more fit than x1, which has a true value of 0. But depending on the noise
that is realized during fitness function evaluation, the EA might think that x1 is
more fit than x2. This could result in incorrect selection for the next generation

When we have noisy fitness function evaluations, we cannot be sure which
solution is best. Consider two solutions, x1 and x2. Their true fitness values are
denoted by ft (x1) and ft (x2), respectively, and the fitness function evaluations are
denoted by f (x1) and f (x2), respectively. Assume that the true fitness of x1 is better
than that of x2, that is,

ft (x1) > ft (x2) [10.1]

But the evaluated fitness of x1 may be less than that of x2 because of noise:

f (x1) < f (x2) [10.2]

That is, f (x1) < f (x2) does not necessarily imply that ft (x1) < ft (x2). However, if
we know the PDFs of f (x1) and f (x2), then we can calculate the probability that
ft (x1) > ft (x2) given specific values of f (x1) and f (x2). We will not go through the
mathematics here, but Du [DU 09] has computed the probability of relative fitness
changes due to noise.

During EA execution, we do not have the PDF of the noisy fitness function since
we do not know the true fitness function. However, we might know the PDF of the
true fitness function. This situation is analogous to that shown in Figure 10.1, except
that instead of treating the noisy fitness function as a random variable with a mean

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

f(x)

PD
F(

f(
x)

)
f(x

1
)

f(x
2
)

190 Evolutionary Computation with Biogeography-based Optimization

equal to the true fitness function, we can treat the true fitness function as a random
variable with a mean equal to the noisy evaluated fitness function value.

Fitness noise can be represented in a very general form, but here we assume the
most simple and most common type of noise, which is additive and Gaussian,
because it is the predominant noise model due to its frequent occurrence in
measurement systems. Additive noise is often assumed to be Gaussian due to its
wide prevalence in both natural and engineering systems. Non-Gaussian noise, such
as Cauchy noise, has also been considered [ARN 03]. It is plausible to assume that
the noise cannot exceed certain limits due to the characteristics of the fitness
measurement instrument. These assumptions have theoretical and practical impacts
on noisy EAs, but are not considered further in this chapter.

10.2. Influence of noise on BBO

BBO applications (along with other EA applications) are typically implemented
on deterministic problems. That means that the fitness evaluation of each solution is
noise-free. But in the real-world, noiseless environments do not exist. In a noisy
environment, the evaluated fitness is not equal to the true fitness, the immigration
and emigration rates in BBO will be calculated incorrectly, and BBO migration may
not accomplish its intended purpose.

In BBO, the immigration and emigration rates are assigned to different solutions
according to the fitness of each solution. If the noise has a strong effect on the
fitnesses of the solutions, the numerical order of the evaluated fitnesses could be
much different from the numerical order of the true fitnesses. A solution with good
fitness may be assigned a low emigration rate and a high immigration rate, and a
solution with poor fitness may be assigned a high emigration rate and a low
immigration rate. This is the opposite of what the true immigration and emigration
rates ought to be. Therefore, the immigration and emigration rates may not
accurately reflect the fitnesses of the solutions. This means that a solution with poor
fitness may have a greater chance to emigrate its SIVs to other solutions compared
to a solution with good fitness. If this happens, the migration mechanism of BBO is
corrupted, and BBO will not perform as well as in a noiseless environment.

Now we give an example of the effect of noise on BBO performance using the
Markov transition probabilities derived in Chapter 5 [MA 15a].

EXAMPLE 10.1.–

Suppose that we have a 2-bit problem (q = 2, n = 4) with a population size
N = 3. The search space consists of bit strings { } { }1 2 3 4, , , 00, 01,10,11x x x x x= =

BBO in Noisy Environments 191

with corresponding fitness values () () () (){ }1 2 3 4, , ,t t t tf f x f x f x f x=

{ }0.2, 0.4, 0.6, 0.8= . Suppose that the three candidate solutions in the current

population are { } { }1 2 3, , 00, 01,10y x x x= = . In the noise-free case, the fitness of

x1 is ()1 0.2tf x = , and its corresponding immigration rate and emigration rate are

1 0.8λ = and 1 0.2μ = , as indicated by a linear migration curve. The fitness of x2 is

()2 0.4tf x = , with corresponding immigration rate and emigration rate 2 0.6λ =

and 2 0.4μ = . We perform probabilistic migration to see whether x1 and x2 can

transition to the optimal solution 4 11x = at the next generation. Based on equation
[5.45] in Chapter 5, the probability of x1 transitioning to the optimal solution due to
migration only (no mutation) is

() () () ()()() ()

() () ()() { }

() () ()() { }

4
2

4 1 1 4 1 4
1

1

3, 4
1 1 4 1 4

1

2, 4

1

1 1 4 1 4

1

Pr 1

1 1 1

1 2 2

0.107

j jj s

s j jj

j jj

j jj

j jj

j jj

v
x x x s x s

v

v
x x

v

v
x x

v

ς
μ

λ λ
μ

μ
λ λ

μ

μ
λ λ

μ

∈

=
=

∈

=

∈

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥× − − +
⎢

→

⎥
⎣ ⎦

=

∑
∏

∑
∑
∑
∑
∑

0

0

0

1

1

1

 [10.3]

The probability of x2 transitioning to the optimal solution due to migration only is

() () () ()()() ()

() () ()() { }

() () ()() { }

4
2

4 2 2 4 2 4
1

1

3, 4
2 2 4 2 4

1

2, 4

2

2 2 4 2 4

1

Pr 1

1 1 1

1 2 2

0.180

j jj s

s j jj

j jj

j jj

j jj

j jj

v
x x x s x s

v

v
x x

v

v
x x

v

ς
μ

λ λ
μ

μ
λ λ

μ

μ
λ λ

μ

∈

=
=

∈

=

∈

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥= − − +
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥× − − +
⎢

→

⎥
⎣ ⎦

=

∑
∏

∑
∑
∑
∑
∑

0

0

0

1

1

1

 [10.4]

192 Evolutionary Computation with Biogeography-based Optimization

Next suppose that noise corrupts the measured fitness of x1 and x2. Suppose that
the measured fitness of x1 is ()1 0.3f x = and the measured fitness of x2 is

()2 0.2f x = , so that () ()1 2f x f x> . In this case, the immigration rate and the

emigration rate of x1 are 1 0.7λ′ = and 1 0.3μ′ = , respectively, and the immigration

rate and the emigration rate of x2 are 2 0.8λ′ = and 2 0.2μ′ = , respectively. We
perform a migration trial to see whether x1 and x2 can transition to the optimal
solution 4 11x = . Based on equation [5.45] in Chapter 5, the probability of x1
transitioning to the optimal solution due to migration only is

()

() () ()()() ()4

4

2

1 1 4 1 4

noise 1

1
1

Pr

1

0.049

j jj s

s j jj

x x

v
x s x s

v
ς

μ
λ λ

μ
∈

=
=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
=

→

∑
∏

∑
01 [10.5]

The probability of x2 transitioning to the optimal solution due to migration only
is

()

() () ()()() ()4

4

2

2 2 4 2 4

noise 2

1
1

Pr

1

0.151

j jj s

s j jj

x x

v
x s x s

v
ς

μ
λ λ

μ
∈

=
=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
=

→

∑
∏

∑
01 [10.6]

We see that the probabilities that the two solutions x1 and x2 transition to the
optimal solution change significantly. We further find that these two probabilities
both decrease, with the probability of x1 decreasing from 0.107 to 0.049, and the
probability of x2 decreasing from 0.180 to 0.151.

Now suppose that the mutation rate probability pm is 0.1 per bit. We can combine
equations [5.45] and [5.46] in Chapter 5 to find the following transition probabilities
in the noise-free and noisy cases:

1 4

2 4

,noise 1 4

,noise 2 4

Pr () 0.132
Pr () 0.197

Pr () 0.082
Pr () 0.169

m

m

m

m

x x
x x
x x
x x

→ =
→ =
→ =
→ =

 [10.7]

BBO in Noisy Environments 193

We see that even with mutation, the probability of transitioning to the optimal
solution x4 decreases when noise corrupts the fitness evaluations. However, mutation
tends to even out the probabilities. Without mutation, we saw that the probability of
x1 transitioning to the optimal solution decreases from 0.107 to 0.049, a decrease of
54%; and the probability of x2 transitioning to the optimal solution decreases from
0.180 to 0.151, a decrease of 16%. However, with a mutation rate of 0.1, we saw
that the probability of x1 transitioning to the optimal solution decreases from 0.132
to 0.082, a decrease of 38%; and the probability of x2 transitioning to the optimal
solution decreases from 0.197 to 0.169, a decrease of 14%. Noise damages the
migration mechanism of BBO, but some of that damage can be mitigated with a
high mutation rate.

10.3. BBO with re-sampling

In this section, we apply re-sampling to BBO to improve BBO performance in
noisy environments [MA 15a]. In noisy problems, evaluated fitness values include
noise. Therefore, as we showed in the previous section, the evaluated values are not
perfectly accurate, and they do not perfectly reflect the true value of the fitness.
BBO uses the fitness of each solution to determine its immigration and emigration
rates. Because of noise, evaluated fitness is not equal to true fitness, the immigration
and emigration rates in BBO are incorrect, and this negatively affects BBO
migration.

Re-sampling is a simple approach that samples the fitness of each candidate
solution several times and calculates the average as the evaluated fitness. If we
evaluate a fitness function for a given candidate solution ι times, and the noise
values of those ι samples are independent, then the variance of the average fitness
function decreases by a factor of ι [GRI 97, MIT 05].

Suppose that the ith sample gi(x) of the fitness function of a candidate solution x
is given by

() ()ti ig x f x w= +
 [10.8]

where ()tf x is the true fitness, and wi is the zero-mean additive noise with a

194 Evolutionary Computation with Biogeography-based Optimization

variance of σ2 at the ith measurement. If we re-sample the evaluated fitness function
ι times, the best estimate of the true fitness is

()
1

1ˆ ()
l

i
if x g x

l =

= ∑ [10.9]

and the variance of ()f̂ x is 2 lσ . Figure 10.2 illustrates this idea. The average of a

set of ι noisy fitness function evaluations is ι times as accurate as a single evaluation.

Figure 10.2. The re-sampling strategy for noisy fitness function evaluation. The
solid line shows the PDF of a noisy fitness function. The dashed line shows the PDF
of the average of four fitness function evaluations. Both have a mean of zero, but
the averaged evaluation has a variance that is 1/4 that of a single evaluation.
The averaged evaluation is likely to be much closer to its mean than a single
evaluation

However, the re-sampling strategy is theoretically valid only if the fitness
function evaluation noise is independent from one sample to the next. For instance,
suppose that we measure the fitness of candidate solutions with noisy
instrumentation. If the instrumentation noise is time-correlated with itself from one
sample time to the next, then averaging ι samples does not reduce the variance by a
factor of ι. In this case, the amount by which the variance is reduced depends on the
noise correlation from one sample to the next.

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fitness

PD
F

BBO in Noisy Environments 195

If we have ι fitness evaluations (){ }ig x of a candidate solution x , then we can

find an estimate 2σ̂ of the variance 2σ of the fitness estimate as follows:

()

()()
1

2
2

1

1ˆ ()

1 ˆˆ ()
1

i
i

l

i
i

l

f x g x
l

f x g x
l

=

=

=

σ = −
−

∑

∑
 [10.10]

Intuitively, it seems that the equation for 2σ̂ should have ι instead of (ι – 1) in
the denominator, but the (ι – 1) term is preferred because it gives an unbiased
estimate of the variance [SIM 06]. We can use equation [10.10] to see how many
times we have to sample a noisy fitness function to achieve a desired variance in our
fitness function evaluation. The desired variance is user-defined and depends on the
particular problem. As ι → ∞, the variance goes to 0 and our fitness value estimate
becomes error-free.

Figure 10.3. Flowchart of BBO with re-sampling

196 Evolutionary Computation with Biogeography-based Optimization

Re-sampling is a straightforward and effective way to handle noise in fitness
functions, and one of the most important contributions of re-sampling is that it does
not need any control parameters except for the number of re-samples. The flowchart
of BBO with re-sampling is shown in Figure 10.3 [MA 15a]. It is worth pointing out
that in Figure 10.3 we can use GA, PSO or any other EA instead of BBO to alleviate
the effects of noise.

10.4. The Kalman BBO

The Kalman filter was invented by Kalman [KAL 60]. It is a recursive filter that
can estimate states in a noisy environment. The contribution of the Kalman filter in
noisy environments has been significant, and it is the theoretical foundation of many
famous applications. One of the most important contributions of the Kalman filter is
that it can provide an estimate of the true state of a dynamic system in a noisy
environment.

The Kalman BBO is designed for problems with noisy fitness function
evaluations. In noisy optimization problems, each fitness is the sum of the true
fitness and a random noise. Therefore, the evaluated fitness is not equal to the true
fitness. According to section 10.2, noise adversely affects the emigration and
immigration rates of each solution. The Kalman filter provides a better estimate of
the true fitness of the solution compared to the evaluated one.

The Kalman BBO assumes that the fitness of a given solution x is constant
within a single Kalman filter estimation cycle. We further assume that fitness
evaluation noise is not a function of x . Each fitness is a scalar, therefore the
Kalman filter only needs to estimate a scalar for each solution, not a vector. In this
case, the Kalman filter is simplified to its scalar version, keeps track of the
uncertainty of each fitness estimate and thus reduces the complexity of the
calculations compared to the vector version of the Kalman filter.

We denote the variance of a single fitness function evaluation as R. We denote
the variance of the fitness estimate of a solution x after k fitness function
evaluations as ()kP x . We denote the value of the kth fitness function evaluation of

x as ()kg x . Finally, we denote our estimate of the fitness of x after k fitness

BBO in Noisy Environments 197

function evaluations as ()k̂f x . With this notation, we can use Kalman filter theory

to write:

() ()
() () ()()

()

() ()
()

1

1

1

ˆ
ˆ ˆ k k k

k k
k

k
k

k

P x g x f x
f x f x

P x R

P x R
P x

P x R

+

+

+

−
= +

+

=
+

 [10.11]

For 0,1, 2,k = L. We initialize ()0P x = ∞ for all x , which gives

() ()
()

1 1

1

f̂ x g x

P x R

=

=
 [10.12]

That is, our estimate 1̂()f x after the first fitness function evaluation g1 (x) is
simply equal to the first evaluation. Moreover, the uncertainty p1 (x) in our fitness
estimate after the first evaluation is simply equal to the uncertainty in the evaluation.

Equation [10.11] shows that each time we evaluate the fitness of x, we modify
our estimate of f (x) based on the previous estimate, its uncertainty and the most
recent fitness function evaluation result g (x). Equation [10.11] shows that:

()
() ()

()
() ()

10

1 1

ˆ ˆlim

ˆlim
k

k

k kP x

k kP x

f x f x

f x g x

+→

+ +→∞

=

=
 [10.13]

In other words, if we are completely certain of the fitness of x (that is,
() 0kP x =), then further evaluations of the fitness of x will not change our estimate

of its fitness. On the other hand, if we are completely uncertain of the fitness of x
(()kP x = ∞), then we will set our estimate of its fitness equal to the next fitness

function evaluation result.

198 Evolutionary Computation with Biogeography-based Optimization

Equation [10.11] also shows that each time we evaluate the fitness of x, our
uncertainty P (x) in its value decreases; that is, our confidence in its estimated value
increases. Equation [10.11] shows that:

() ()
()
() ()
() ()

1 10

10

1

1

ˆlim

lim 0

ˆ ˆlim

lim

k kR

kR

k kR

k kR

f x g x

P x

f x f x

P x P x

+ +→

+→

+→∞

+→∞

=

=

=

=

 [10.14]

These results agree with intuition. If the fitness function noise variance R is 0,
then the fitness function evaluation is perfect, thus our estimate is simply equal to
the fitness function evaluation result, and the uncertainty in our fitness function
estimate is 0. On the other hand, if the fitness function noise variance R is infinite,
then the noise is so large that fitness function evaluations do not provide us with any
information. In this case, additional fitness function evaluations do not change our
estimate of the fitness function value, nor do they reduce our uncertainty in its true
value.

The Kalman BBO keeps track of the fitness function estimate ()k̂f x and
variance ()kP x for each solution x from one fitness function evaluation to the next

()1, 2,k = L . We allocate a user-defined fraction F of the available fitness function

evaluations to generate and evaluate new solutions. We initialize our fitness estimate
and variance for each new solution as described in equation [10.12]. We use the
fraction ()1 F− of the available evaluations to re-evaluate existing solutions. After

re-evaluations, we update our fitness estimate and variance as shown in equation
[10.11]. Each time we have sufficient resources for a fitness function evaluation, we
generate a random number r that is uniformly distributed on [0, 1]. If r F< , then
we perform BBO migration and mutation to generate a new solution, and then we
evaluate its fitness; otherwise, we re-evaluate an existing solution.

When it is time to re-evaluate an existing solution, we consider two guiding
principles. First, we can generate more information by re-evaluating solutions whose
fitness estimate variance is high. Second, we can generate more useful information
by re-evaluating solutions whose estimated fitness is good. That is, we do not care
too much about obtaining high precision in the estimate of low-fitness solutions
because we are probably not interested in recombining them for future BBO

BBO in Noisy Environments 199

generations. Stroud [STR 01] suggests the following strategy to select a solution sx
for re-evaluation:

() (){ }

mean of the population's estimated fitness values
standard deviation of the population's estimated fitness values

ˆarg max :s

f

x P x f x f

σ

σ

←
←

← > −
 [10.15]

where we have omitted the subscript k on ()f̂ x and ()P x for convenience; we use
the most recently updated values of ()f̂ x and ()P x for each solution x in equation

[10.15]. The equation shows that among all solutions whose estimated fitness is
greater than one standard deviation below the mean, we select the one with the
largest uncertainty for re-evaluation. This strategy assumes that ()f x is fitness, so

large ()f x is better than small ()f x .

10.5. Experimental results

In this section, we investigate the performance of BBO in noisy environments. A
representative set of noiseless and noisy benchmark functions are used for
performance testing. For the noiseless functions, we use the 13 benchmark functions
briefly described in Table 3.2 in Chapter 3. A more detailed description of these
functions can be found in Appendix A. The noisy benchmark functions are defined
as

() () ()0,1Noisy tf x f x N= +
 [10.16]

where ()0, 1N is the absolute value of a Gaussian random variable with mean 0

and variance 1. Note that all benchmark functions are minimization problems.

We compare the performance of BBO in the noiseless case, BBO in the noisy
case, BBO with re-sampling and Kalman BBO. The parameters used in each BBO
algorithm are population size equal to 50, maximum immigration rate and maximum
emigration rate equal to 1 and maximum mutation rate equal to 0.01 with a mutated
value randomly chosen from a uniform distribution in the search domain. We
use linear migration curves, l = 5 fitness re-samples for BBO with re-sampling
and a fixed number of total fitness evaluations for each benchmark and
each algorithm to provide fair performance comparisons. We terminate after

200 Evolutionary Computation with Biogeography-based Optimization

20,000 fitness function evaluations, and run 25 Monte Carlo simulations on each
benchmark to obtain representative performances.

Table 10.1 summarizes the performance of the BBO algorithms on these
benchmarks and shows the mean minimum values found by each algorithm. We
observe that the performance of BBO is dramatically different for noiseless and
noisy benchmark functions, and noise strongly affects BBO performance. However,
when we incorporate re-sampling and Kalman filtering into BBO, we obtain good
optimization results that are almost the same as those obtained for most of the
noiseless benchmark functions. This result indicates that re-sampling and Kalman
filtering can alleviate the effect of noise for these benchmark functions.
Furthermore, we see that for the noisy benchmark functions, BBO with re-sampling
performs better than Kalman BBO on six functions, and Kalman BBO performs
better than BBO with re-sampling on the other seven functions. This result shows
that BBO with re-sampling achieves almost the same performance as Kalman BBO
for noisy optimization problems.

Function BBO in noiseless case
BBO in

noisy case
BBO with

re-sampling
Kalman

BBO

F01 2.17E−02 4.26E+01 6.57E−02 9.67E−02

F02 1.84E−03 1.78E+00 1.64E−02 7.65E−02

F03 6.33E−02 3.57E+01 7.52E−01 8.94E−02

F04 5.68E−14 4.28E+00 6.38E−14 7.83E−24

F05 9.24E−01 1.19E+01 9.65E−01 7.89E−01

F06 0.00E+00 7.80E+01 1.25E−10 7.82E−05

F07 1.37E−15 5.26E−01 4.58E−10 9.63E−10

F08 2.63E−06 3.45E+00 7.84E−06 3.41E−06

F09 1.55E−13 7.89E+02 3.25E−02 2.30E−02

F10 0.00E+00 1.31E+01 7.80E−05 1.17E−05

F11 7.49E−01 2.65E+02 9.65E−01 9.52E−01

F12 2.26E−30 5.74E+05 7.83E+00 7.84E+00

F13 1.28E−10 2.30E+02 4.57E−02 1.26E−02

Table 10.1. Comparison of results for BBO in the noiseless case, BBO in
the noisy case, BBO with re-sampling and Kalman BBO. The table shows

the best solution achieved, averaged over 25 Monte Carlo simulations

BBO in Noisy Environments 201

10.6. Conclusion

In this chapter, we investigated noisy fitness functions and noise effects on BBO
performance using a Markov model. Analysis indicated that migration between
candidate solutions, the most critical operation of BBO, can be corrupted by fitness
function evaluation noise. The analysis was confirmed with an example using a
BBO Markov model.

We used re-sampling and Kalman filtering in BBO to alleviate the effect of
random noise on the fitness function evaluations of numerical benchmark functions.
We also compared BBO in the noiseless case, BBO in the noisy case, BBO with re-
sampling, and Kalman BBO. Our numerical simulations showed the following: (1)
BBO is a powerful evolutionary algorithm for noiseless benchmark functions, but
fitness function evaluation noise is indeed a problem for BBO; (2) BBO with re-
sampling and Kalman BBO achieve almost the same optimization performance for
noisy benchmark functions, and they can greatly improve the performance of BBO
in noisy environments.

This chapter focused on the fitness of candidate solutions contaminated by additive
and normally distributed noise. There are several important areas for further studies.
First, in many real-world applications, different types of fitness function noise can be
encountered, so it is of interest to combine BBO with re-sampling or Kalman filtering
to address other types of fitness function noise. Also, other types of noise (besides
fitness function noise) can arise in optimization. For example, in distributed
optimization, some nodes might temporarily drop out due to communication glitches;
or during experimental optimization, some parameters might be corrupted during
fitness function evaluation. Future research could explore the effects of these and other
types of noise on EA performance. Another important area for future work is to
explore the optimization performance of BBO combined with other noise-handling
methods; for example, dynamic re-sampling, which uses different re-sampling rates at
different points in the search domain, or other types of filtering besides Kalman
filtering.

11

Multi-objective BBO

Most real-world optimization problems are multi-objective, and therefore multi-
objective optimization has been applied in many fields of science, engineering,
economics and logistics. Multi-objective optimization typically includes multiple
objectives which usually conflict. For example, minimizing vehicle cost while
maximizing comfort, or maximizing vehicle performance while minimizing fuel
consumption and pollutant emissions, involves two and three conflicting objectives,
respectively.

Multi-objective optimization is also called multi-criteria optimization, multi-
performance optimization and vector optimization. In this chapter, we assume that a
candidate solution is n-dimensional, and that our multi-objective optimization
problem (MOP) is a minimization problem for each objective. An MOP can then be
written as follows:

() () () (){ }1 2min = min , , , kx x
f x f x f x f xL [11.1]

That is, we want to minimize a vector ()f x of functions. Of course, we cannot
minimize a vector in the typical sense of the word minimize. Nevertheless, our goal
in an MOP is to simultaneously minimize all k functions ()f x . MOPs were first
solved by evolutionary algorithms in [ROS 67], and we call those implementations
multi-objective evolutionary algorithms (MOEAs). MOEAs have been widely
studied by the operations research community for many years [SCH 85, EHR 05,
SIM 13a, SIM 13b, ZIT 04].

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

204 Evolutionary Computation with Biogeography-based Optimization

Overview of the chapter

In this chapter, we discuss how to modify biogeography-based optimization
(BBO) for MOPs. Section 11.1 provides some notation and concepts that often occur
in MOPs. Section 11.2 shows how we can combine BBO with some well-known
MOEA approaches. The combination of BBO with various MOEA approaches
results in several multi-objective biogeography-based optimization (MOBBO)
algorithms. Section 11.3 presents an application of MOBBO to an automatic
warehouse scheduling problem. The concluding section of this chapter provides
references to additional resources and suggests several important topics for future
MOBBO research.

11.1. Multi-objective optimization problems

This section outlines some basic notation and concepts that are related to MOPs.
We first list some definitions that are often used in multi-objective optimization:

1) Domination: a solution *x is said to dominate x if the following two
conditions hold: (1) (*) ()i if x f x≤ for all [1,]i k∈ and (2) (*) ()j jf x f x< for at
least one [1,]j k∈ . That is, *x is at least as good as x for all objective function
values, and it is better than x for at least one objective function value. We use the
notation:

*x xf [11.2]

to indicate that *x dominates x . This notation can be confusing because the
symbol f looks like a “greater than” symbol, but since we deal with minimization
problems in this chapter, the symbol f means that the function values of *x are
less than or equal to those of x . However, this notation is standard in the literature,
so this is the notation that we use. The statement “ *x is superior to x ” is identical
to the statement “ *x dominates x ”.

2) Weak domination: a solution *x is said to weakly dominate x if
(*) ()i if x f x≤ for all [1,]i k∈ . That is, *x is at least as good as x for all objective

function values. Note that if *x dominates x , then it also weakly dominates x .

Multi-objective BBO 205

Also note that if (*) ()i if x f x= for all [1,]i k∈ , then *x and x weakly dominate
each other. We use the notation:

*x xf [11.3]

to indicate that *x weakly dominates x . Some authors use the equivalent
terminology that *x covers x .

3) Non-dominated: a solution *x is said to be non-dominated if there is no x
that dominates it. Non-inferior, admissible and efficient are synonyms for
non-dominated.

4) Pareto optimal solutions: a Pareto optimal solution *x , also called a Pareto
solution, is one that is not dominated by any other x in the search space. That is,

{ *x is Pareto optimal} ⇔

{ ∃ x : (() (*)i if x f x≤ for all [1,]i k∈ ,

and () (*)j jf x f x< for some [1,]j k∈)} [11.4]

5) Pareto optimal set: the Pareto optimal set, also called the Pareto set and
denoted as sP , is the set of all *x that are non-dominated:

sP = { * :[: (() (*)i ix x f x f x∃ ≤ for all [1,]i k∈ ,

and () (*)j jf x f x< for some [1,])]j k∈ } [11.5]

The Pareto set is also called the efficient set, and it is sometimes called the
admissible set, although this latter term usually implies constraint satisfaction rather
than Pareto optimality.

6) Pareto front: the Pareto front, also called the non-dominated set and denoted
as fP , is the set of all vector functions ()f x corresponding to the Pareto set:

{ (*) : * }f sP f x x P= ∈ [11.6]

EXAMPLE 11.1.–

This example uses an airplane trip to illustrate Pareto optimal solutions and a
Pareto front. Suppose that the two objectives in this problem are travel time and
ticket price. We find the tickets shown in Table 11.1 for sale.

206 Evolutionary Computation with Biogeography-based Optimization

Ticket Travel time (hrs) Ticket price ($)
A 10 1,700
B 9 2,000
C 8 1,800
D 7.5 2,300
E 6 2,200

Table 11.1. Travel time and ticket price options of an airplane trip

If we compare tickets A and B, we cannot say that either is superior without
knowing the relative importance of travel time versus ticket price. However, we can
see that C is better than B in both objectives, so we say that C dominates B. As long
as C is a feasible option, there is no reason we would choose B.

We also see that D is dominated by E. The rest of the options (A, C and E) have
a trade-off associated with travel time versus ticket price, so none is clearly superior
to the others. We call this the non-dominated set of solutions because none of the
solutions are dominated. Usually, solutions of this type form a typical shape, as
shown in Figure 11.1. Solutions that lie along the line are non-dominated solutions,
while those that lie above and to the right of the line are dominated because there is
always at least one solution on the line that has at least one objective that is better.
The line is called the Pareto front and solutions on it are called Pareto optimal
solutions. All Pareto optimal solutions are non-dominated. It is important in MOPs
to find solutions as close as possible to the Pareto front.

Figure 11.1. Pareto optimal solutions and
Pareto front example using an airplane trip

Multi-objective BBO 207

It is important to determine performance metrics for multi-objective optimization
algorithms; that is, how can we judge the performance of an MOEA? For a
single-objective optimization algorithm, performance is usually straightforward:
performance is quantified by the minimum value of the cost function that is
determined. However, even in single-objective optimization, we might be interested
in several different performance metrics for an EA. We might be interested not only
in finding the minimum cost function value, but also in quickly finding a “good”
solution that is not necessarily the best. We might also be interested in finding many
good solutions in diverse regions of the search space. So even in the apparently
straightforward problem of single-objective optimization, we may have several
possible performance metrics. This complication increases with multiple-objective
optimization. Some potential criteria for MOEA performance might be the following
[ZIT 03]:

1) Maximize the number of solutions that we find within a certain distance of the
true Pareto set.

2) Minimize the average distance between the MOEA-approximated Pareto set
and the true Pareto set.

3) Maximize the diversity of the solutions that we find in the approximated
Pareto set.

4) Minimize the distance from the MOEA-approximated Pareto front to an ideal
point.

Criteria 1 and 2 are concerned with finding the “best” approximation of the true
Pareto set. Criterion 3 is concerned with finding a diverse set of solutions so that the
human decision maker has enough resources to make an informed decision among
the possible trade-offs. In contrast to the other criteria, Criterion 4 is concerned with
finding solution candidates that are as close as possible to the decision maker’s ideal
solution, which may or may not exist. However, most MOEAs are primarily
concerned with finding the best approximation to the true Pareto set.

Criteria 1 and 2 assume that we know the true Pareto set in the first place, so
those criteria might be useful when testing MOEAs on well-understood benchmarks,
but the criteria are useless (unless modified) when running an MOEA on a
real-world optimization problem with an unknown Pareto set. But if we know the true

208 Evolutionary Computation with Biogeography-based Optimization

Pareto set sP , and an MOEA gives us an approximate Pareto set ŝP , the average

distance ˆ(,)s sM P P between them can be computed as:

1 *ˆ

1ˆ(,) min *
ˆ s

s

s s x P
x Ps

M P P x x
P ∈

∈

= −∑ [11.7]

where ⋅

is any user-specified distance metric.

Criterion 3 can be measured in a few different ways. First, we could measure the
average distance of each solution to its nearest neighbor in the approximated Pareto
set. Second, we could measure the distance between the two extreme solutions in the
approximated Pareto set. Third, we could compute the normalized number of
solutions that are beyond a certain threshold from each element in the approximate
Pareto set [ZIT 00]:

2
ˆ

1ˆ ˆ() ' : '
ˆ

s

s s
x Ps

M P x P x x
P

σ
∈

= ∈ − >∑ [11.8]

where σ is a user-specified distance threshold. In general, 2M increases as the

number of elements in ŝP increases, and also as the diversity of the elements in ŝP
increases. Khare et al. [KHA 03] discusses some additional diversity metrics for
MOPs.

Criterion 4 is called target vector optimization [WIE 92], goal attainment
[WIL 93] or goal programming. It assumes that the user is thinking of some ideal
point in objective function space, and it requires a definition of “distance”. Usually,
we use the Euclidean distance 2D , also called the two-norm distance, between an
objective function vector f and an ideal point *f . The squared distance between
f and *f is defined as follows:

22 2
2 2

1
(*(), ()) *() () (*() ())

k

i i
i

D f x f x f x f x f x f x
=

= − = −∑ [11.9]

However, we can also use other distance measures, such as the weighted
two-norm, the one-norm or the infinity-norm.

Multi-objective BBO 209

EXAMPLE 11.2.–

Figure 11.2 shows the performance of three different EAs on an MOP.
Figure 11.2(a) shows a solution that is fairly diverse and reasonably close to the true
Pareto front. Figure 11.2(b) shows a solution that is more diverse than Figure 11.2(a)
in the sense that the distance between the extreme solutions is farther, but
Figure 11.2(b) includes only three solutions while Figure 11.2(a) includes four
solutions. Figure 11.2(c) shows solutions that are closer to the true Pareto front than
Figure 11.2(a) or (b), but the diversity is not good. Which of the three solutions is
“best”? It depends on the priorities of the decision maker.

a) b) c)

Figure 11.2. Three potential EA solutions to a two-objective MOP, where the true
Pareto front is the dotted line and the circles are the approximations that were found

by each EA. Which solution is “best”? It depends on the priorities of the decision
maker with respect to solution diversity and closeness to the true Pareto front

Another metric that researchers often use to measure the quality of a Pareto front
is its hypervolume. Suppose that an MOEA has found M points in an approximate
Pareto front ˆ { ()}f jP f x= for [1,]j M= , where ()jf x is a k-dimensional function.
The hypervolume can be computed as:

1 1

ˆ() ()
kM

f i j
j i

S P f x
= =

=∑∏ [11.10]

Given two MOEAs that compute two Pareto front approximations to a given
MOP, we can use the hypervolume measure to quantify how good the two
approximations are relative to each other. For a minimization problem, a smaller
hypervolume indicates a better Pareto front approximation.

210 Ev

Hype
Equation
smallest
hypervol

S

EXAMPL

Supp
Pareto fr
front app

P̂

which h
approxim

P̂

which ha

of equati

Fi

volutionary Com

ervolume can
n [11.10] show
possible valu

lume, which i

ˆ(ˆ() f
n f

S P
S P

M
=

LE 11.3.–

pose that we h
ront of a two-
proximations. F

1
ˆ (1) {[(f jP f x=

has the hype
mation points:

1
ˆ (2) {[(f jP f x=

as the hyperv

ion [11.10], F

a)

gure 11.3. Tw
hypervolume
approximatio

16, and the

putation with Bi

nnot be blindl
ws that an em
ue of S. There
s given as:

)

have two MOE
objective mini
Figure 11.3(a)

2), ()]} {j jf x =

ervolume 5+6

2), ()]}j jf x =

volume 4 +9 +

igure 11.3(a)

wo Pareto fron
measurement

on. The approx
e approximatio

iogeography-ba

ly used as an
mpty Pareto fro
efore, a more

EAs, each of w
imization prob
has the Pareto

{[1,5],[2,3],[5

6+5=16 . Fig

{[1, 4],[3,3],[4

+ 4 =17 . Acco

gives a slightl

nt approximatio
t is used to qu
ximation on th
on on the right

ased Optimizatio

n indicator of
ont approxima
accurate mea

which is desig
blem. Figure 1
front approxim

5,1]}

gure 11.3(b)

4,1]}

ording to the h

ly better ˆ
fP th

ons to a two-o
uantify the goo
he left has a hy
t has a hyperv

on

f Pareto fron
ation (M = 0)
asure is the no

gned to approx
11.3 shows th
mation points:

has the Par

hyper volume

han Figure 11

b)

objective MOP
odness of each
ypervolume of
volume of 17

t quality.
gives the

ormalized

[11.11]

ximate the
eir Pareto

[11.12]

eto front

[11.13]

e measure

1.3(b).

P. A
h
f

Multi-objective BBO 211

11.2. Multi-objective BBO

This section shows how BBO is combined with some of the popular MOEA
approaches in the literature to obtain various MOBBO algorithms. This section
could also serve as a template for the extension of any other EA to multi-objective
optimization.

11.2.1. Vector evaluated BBO

Vector evaluated biogeography-based optimization (VEBBO) combines ideas
from BBO with the vector evaluated genetic algorithm (VEGA). First, we recall the
VEGA algorithm, which was one of the original MOEAs and operates by
performing selection on the population using one objective function at a time
[SCH 85]. This gives a set of subpopulations, one set for each objective function.
We then select solutions from the subpopulations to obtain the parents for the next
generation, and combine the parents using standard recombination methods to obtain
children. Figure 11.4 gives an outline of VEGA.

Initialize a population of candidate solution { }jP x= for [1,]j N∈

M N K← ⎡ ⎤⎢ ⎥
While not (termination criterion)

Compute the cost ()i jf x for each objective i for each solution jx P∈

For each objective i where []1,i k∈

iP M← solutions probabilistically selected from P using ()if ⋅
Next objective
P N← solutions selected from { }1, , kP P⋅ ⋅ ⋅

C N← children created from recombining solutions from P

Probabilistically mutate the children in C

P C←
Next generation

Figure 11.4. Outline of VEGA for solving an optimization
problem with k objectives and a population size of N

Figure 11.4 shows that VEGA begins with a population of N candidate solutions
that we usually generate randomly. At each generation, we compute the value of all k
objective function values for all N solutions. We then use any desired selection
scheme to select M solutions, where M N K= ⎡ ⎤⎢ ⎥ is the smallest integer that is

212 Evolutionary Computation with Biogeography-based Optimization

greater than or equal to N K . We perform this selection probabilistically, first using

1()f ⋅ to create population 1P , then using 2 ()f ⋅ to create population 2P , and so on.
After we have created the iP subpopulations, we combine them to obtain a parent
population P . We then recombine the solutions in P to create a set of children C .
We can perform recombination using any EA method. We see that the name VEGA is
somewhat of an anachronism; depending on the recombination method that we use, we
could call it VEBBO if we use BBO migration for recombination.

Initialize a population of candidate solutions { }jP x= for []1,j N∈

While not (termination criterion)
Compute the cost ()i jf x for each objective i for each solution jx P∈

For each objective i where []1,i k∈

jiγ ← rank of jx with respect to the thi objective function for []1,j N∈

Immigration rates
1

N
ji ji qiq

λ γ γ
=

← ∑ for [] []1, , 1,j N i k∈ ∈

Emigration rates 1ji jiμ λ← − for [] []1, , 1,j N i k∈ ∈

For each solution jx where []1,j N∈

For each decision variable []1,s n∈

()rand 1,ik k← = uniformly distributed integer between 1 and k

()rand 0, 1δ ← = uniformly distributed real number between 0 and 1

If , ij kδ λ< then

()rand 1,ek k← = uniformly distributed integer between 1 and k

Probabilistically select emigrant ex , where Pr()ex xβ= =

 , ,1e e

N
k q kqβμ μ

=∑ for []1, Nβ ∈

() ()j ex s x s←
End if

Next decision variable
Next solution

Next objective
Probabilistically mutate the population P as in the standard BBO algorithm

Next generation

Figure 11.5. Outline of VEBBO for solving an n-dimensional optimization
problem with k objectives and a population size of N. At each generation,

the best solution bx with respect to the thi objective value has
rank 1biγ = , and the worst solution wx has rank wi Nγ =

Multi-objective BBO 213

VEBBO first produces a set of subpopulations, one set for each objective
function. Then, solutions are selected from the subpopulations to obtain parents,
which create children by using the BBO migration method. The outline of VEBBO
for a k -objective optimization problem is shown in Figure 11.5, where BBO
immigration is based on the thik objective function value of each solution, and ik is
a random objective function index at the thi migration trial. Then, emigration is
based on the thek objective function value of each solution, where ek is also a
random objective function index.

11.2.2. Non-dominated sorting BBO

Next, non-dominated sorting BBO (NSBBO) is proposed, which combines BBO
with the non-dominated sorting genetic algorithm (NSGA). Recall that NSGA,
which was one of the original MOEAs, assigns the cost of each solution based on its
dominance level [DEB 02, SRI 94]. First, all solutions are copied to a temporary
population .T Then, we find all non-dominated solutions in T ; these solutions,
which are denoted as the set ,B are assigned the lowest cost value. Recall that a
solution x is dominated by a solution *x if *x performs at least as good as x in
all objectives, and performs better than x in at least one objective. A solution is
called non-dominated if there are no solutions in the population (T in this case) that
dominate it. Next, B is removed from ,T and we find all non-dominated solutions
in the reduced set .T These solutions are assigned the second-lowest cost value.
This process is repeated to obtain a cost for each solution that is based on its level of
non-domination. Figure 11.6 gives an outline of NSGA.

Figure 11.6 shows that we begin with a population of N candidate solutions,
usually generated randomly. At each generation, we compute the value of all k
objective function values for all N solutions. We copy the solutions to a temporary
population .T We assign a cost value of 1 to all solutions that are non-dominated.
We remove all of those solutions from ,T find all the solutions in the reduced set T
that are non-dominated, and assign them a cost value of 2. We repeat this process
until all solutions have been assigned a cost value based on their level of
domination. We then use the cost values ()φ ⋅ in Figure 11.6 to perform selection,
and we recombine selected solutions using any desired EA recombination method.
Finally, we mutate the child population, replace the parents with the children and
continue to the next generation.

214 Evolutionary Computation with Biogeography-based Optimization

Initialize a population of candidate solutions { }jP x= for [1,]j N∈

While not (termination criterion)

Temporary population T P←

Non-domination level 1c ←

While 0T >

B ← non-dominated solutions in T

Cost ()x cφ ← for all x B∈

Remove B from T

1c c← +

End while

C N← children created from recombining the solutions in P

Probabilistically mutate the children in C

P C←

Next generation

Figure 11.6. Outline of NSGA for solving an optimization problem
with k objectives. We use the cost values ()jxφ to select

parents for recombination

NSGA-II is a modification of NSGA [DEB 02]. NSGA-II computes the cost of a
solution by taking into account not only the solutions that dominate it, but also the
solutions that it dominates. For each solution, we also compute a crowding distance
by finding the distance to the nearest solutions along each objective function
dimension. We use the crowding distance to modify the fitness of each solution.
NSGA sets the crowding distance of each solution equal to the average distance to
its nearest neighbors along each objective function dimension. For example, suppose
that we have N solutions. Further suppose that solution x has the objective function
vector:

1() [(), , ()]kf x f x f x= ⋅⋅⋅ [11.14]

Multi-objective BBO 215

For each objective function dimension, we find the closest larger value and the
closest smaller value in the population as follows:

() () () (){ }
() () () (){ }

*

*

* *

* *

max such that

min such that

j j j j
x

j j j j
x

f x f x f x f x

f x f x f x f x

−

+

= <

= >
 [11.15]

We then compute the crowding distance of x as:

() () ()()
1

k

j j
j

d x f x f x+ −

=

= −∑ [11.16]

Solutions that are in more crowded regions of the objective function space tend
to have a smaller crowding distance. Solutions at the extreme values of the objective
function space have an infinite crowding distance:

() () () []{ }*
for arg min * arg max * for all 1,i ix x

d x x f x f x i k= ∞ ∈ ∈U [11.17]

The crowding distance of x corresponds to half of the perimeter of the largest
hypercube, called a cuboid [DEB 00a, DEB 00b], whose boundaries do not extend
beyond the objective function space coordinates of the nearest neighbors of x in each
dimension.

Now that the crowding distance has been computed for each solution in the
population, we use crowding distance as a secondary sorting parameter for obtaining
the rank of each solution. As in the NSGA algorithm of Figure 11.6, we rank each
solution on the basis of its non-domination level, but we also use a more
fine-grained ranking metric using crowding distance. That is, x is ranked better than

*x if () (*)x xφ φ< , or if () (*)x xφ φ= and () (*)d x d x> . While NSGA uses ()xφ
to select parents for recombination in Figure 11.6, NSGA-II instead uses the ranks
described above to select parents for recombination.

Next we combine BBO with NSGA by changing the recombination logic in
NSGA to BBO migration operations, which results in the NSBBO algorithm shown
in Figure 11.7.

216 Evolutionary Computation with Biogeography-based Optimization

Initialize a population of candidate solutions { }jP x= for []1,j N∈
While not (termination criterion)

Temporary population T P←
Non-domination level 1c ←
While the temporary population size 0T >
 B ← non-dominated solutions in T
 Cost ()f x c← for all x B∈
 Remove B from T
 1c c← +
End while

Immigration rates
1

() ()N
j j qq

f x f xλ
=

← ∑ for []1,j N∈

Emigration rates 1j jμ λ← − for []1,j N∈
For each solution jx where []1,j N∈

For each decision variable []1,s n∈
()rand 0, 1δ ← = uniformly distributed real number between 0 and 1

If jδ λ< then

Probabilistically select emigrant ex , where Pr()ex xβ= =

1

N
qqβμ μ

=∑
for []1, Nβ ∈

() ()j ex s x s←
End if

Next decision variable
Next solution
Probabilistically mutate the population P as described in the standard BBO algorithm

Next generation

Figure 11.7. Outline of NSBBO for solving an n-dimensional
optimization problem with k objectives and a population size of N

11.2.3. Niched Pareto BBO

Niched Pareto BBO (NPBBO) combines BBO with the niched Pareto genetic
algorithm (NPGA). NPGA was one of the original MOEAs and is similar to NSGA
in its assignment of cost on the basis of domination [HOR 94]. NPGA is an attempt
to reduce the computational effort of NSGA. Two candidate solutions x1 and x2 are
randomly selected from the population, and then a subset S of the population is also
randomly selected, which is typically around 10% of the population. If one of the

Multi-objective BBO 217

solutions x1 and x2 is dominated by any of the solutions in S , and the other is not,
then the non-dominated solution, denoted as 0x , wins the tournament and is selected
for recombination. If both solutions x1 and x2 are dominated by at least one solution
in S , or both solutions are not dominated by any solutions in S , then fitness
sharing is used to decide the tournament winner; that is, the solution in the least
crowded region of the objective function space wins the tournament. This selection
process can be described as follows:

[]
[]

() ()
() () ()
() () ()

1 2

1 1 2 1 2

1 2 1 2

2

: for 1, 2

Crowding distance of for 1, 2

0 and 0 , or

if 0 and 0 and , or

0 and 0 and

otherwise

i i

i i

d x* S x* x i

c x i

d d

x d d c c
r

d d c c

x

= ∈ ∈

= ∈

⎧ = >⎧
⎪ ⎪

> > <⎪ ⎨= ⎨ ⎪ = = <⎪ ⎩
⎪
⎩

f

 [11.18]

where id is the number of solutions that dominate ix , ic is the crowding distance
of ix and r is the solution (either 1x or 2x) that we select for recombination. The
crowding distance ic could be computed by equation [11.16]. The crowding
distance is smaller for solutions that are in more crowded regions of the search space
or the objective function space. Figure 11.8 gives an outline of NPGA.

Initialize a population of candidate solutions { }jP x= for [1,]j N∈
While not (termination criterion)

R ← ∅
While R N<

Randomly select two solutions 1x and 2x from P
Randomly select a population subset S P⊂
Use equation [11.18] to select r from 1 2{ , }x x

{ , }P R r←
End while
Recombine the solutions in R to obtain N children
Probabilistically mutate the children
P ← children

Next generation

Figure 11.8. Outline of NPGA for solving an optimization
problem with k objectives and a population size of N

218 Evolutionary Computation with Biogeography-based Optimization

Initialize a population of candidate solutions { }jP x= for []1,j N∈

While not (termination criterion)

Temporary population T φ←

While the temporary population size T N<

 Randomly select two solutions 1x and 2x from P

 Randomly select a population subset S P⊂

 Use equation [11.18] to select 0x from { }1 2,x x

 { }0,T T x←

End while

For each solution jx T∈ , where []1,j N∈

For each decision variable []1,s n∈

()rand 0, 1δ ← = uniformly distributed real number between 0 and 1

If 1 Nδ < then

Probabilistically select emigrant ex , where Pr() 1ex x Nβ= =

for []1, Nβ ∈

() ()j ex s x s←

End if

Next decision variable

Next solution

Probabilistically mutate the population P as described in the standard BBO algorithm

Next generation

Figure 11.9. Outline of NPBBO for solving an n-dimensional
optimization problem with k objectives and a population size of N

11.2.4. Strength Pareto BBO

Strength Pareto BBO (SPBBO) combines BBO with the strength Pareto
evolutionary algorithm (SPEA). SPEA was one of the original MOEAs, and was the
first MOEA to explicitly use elitism [ZIT 99, ZIT 04]. Of course, any of the MOEAs
can be implemented with elitism, but for some reason most of them did not

Multi-objective BBO 219

incorporate elitism when originally introduced. Elitism is usually a common-sense
option in both single-objective and multi-objective EAs. Also, elitism is
theoretically necessary to guarantee convergence in some MOEAs [RUD 00].

SPEA maintains all non-dominated solutions that are found during the
evolutionary process in an archive. Whenever we find a non-dominated solution, we
copy it to the archive. We assign a strength value ()S α to each archived solution
based on the number of solutions in the population that α dominates:

{ } such that
() for all

1
x P x

S A
N

α
α α

∈
= ∈

+
f

 [11.19]

where P is the set of candidate solutions, N is the size of P and A is the archive
set. Note that () [0,1)S a ∈ . For each solution x in P , we find the set ()xα of all
archived solutions that dominate it. We then compute the raw cost of x , denoted as

()R x , as the sum of the strengths of the solutions in ()xα :

* ()
() 1 (*), for all

where () { * : * }.
x x

R x s x x P

x x A x x
α

α
∈

= + ∈

= ∈

∑
f

 [11.20]

Adding one in equation [11.20] ensures that () 1R x ≥ , which in turn ensures that

() ()R x S α> for all x P∈ and all Aα ∈ . Note that if x has a low raw cost, then
x is a high-performing solution.

As mentioned above, at each generation, all solutions in { , }P A that are non-
dominated are added to the archive A . However, this can result in unbounded
growth of the archive. SPEA handles this potential problem with a clustering
method [ZIT 99]. Supposing that the archive has A solutions, we define each
solution as a cluster. We then merge the two closest clusters into a single cluster so
that the cluster count of A is reduced by one. We repeat this process until the
archive contains AN clusters, which is the desired archive size. Finally, we retain
only one point from each cluster, usually the one that is closest to the cluster center.
Figure 11.10 gives an outline of SPEA, where N is the population size, NA is the
maximum archive size and usually AN N< .

220 Evolutionary Computation with Biogeography-based Optimization

Initialize a population of candidate solutions { }jP x= for [1,]j N∈
Initialize the archive A as the empty set

While not (termination criterion)

Copy non-dominated solutions from P to :A

 { }{ : (* { , }: *)A A x P x P A x x← ∈ ∃ ∈U f
Remove dominated solutions from A

While AA N<
Use a clustering method to remove a solution from A

End while
Use equation [11.20] to calculate the cost of each solution in P
Select parents from { , }P A
Use a recombination method to create children C from the parents
Probabilistically mutate the child population C
Use a replacement method to replace solutions in P with solutions from C

Next generation

Figure 11.10. Outline of SPEA for solving an optimization
problem with k objectives and a population size of N

We can modify Figure 11.10 for BBO by changing the “Select parents”
statement and the “Use a recombination method” statement. We do this by
calculating migration rates with the raw cost of equation [11.20]. We can then
implement BBO migration using these rates. In this section, we take the SPEA
approach in which parents can be selected from both the population P and the
archive A . This results in the SPBBO algorithm of Figure 11.11.

EXAMPLE 11.4.–

In this example, we present simulation results for the MOBBO algorithms
presented above. We test four MOBBO algorithms (VEBBO, NSBBO, NPBBO and
SPBBO) on a set of 10 unconstrained functions and 10 constrained functions from
the CEC 2009 benchmark set [ZHA 08]. These functions are summarized in
Appendix C, where U01–U10 are unconstrained multi-objective benchmark
functions and C01–C10 are constrained multi-objective benchmark functions.
U01–U07 and C01–C07 are two-objective problems, and U08–U10 and C08–C10
are three-objective problems. The constrained multi-objective benchmark functions
include one or two inequality constraints.

Multi-objective BBO 221

Initialize a population of candidate solutions { }jP x= for []1,j N∈

Initialize the archive A as the empty set

While not (termination criterion)

Copy non-dominated solutions from P to A :

 { }{ : (* { , } : *)A A x P x P A x x← ∈ ∃ ∈U f
Remove dominated solutions from A

While AA N<
Use a clustering method to remove a solution from A

End while
Use equation [11.19] to calculate the strength ()S α of each solution Aα ∈

Calculate the cost () 1 ()R Sα α← − for each Aα ∈

Use equation [11.20] to calculate the cost ()R x of each solution x P∈

Immigration rates
1

() / () for all P
j j q jq

R x R x x Pλ
=

← ∈∑

Emigration rates
1

() / () for all { , }P A
j j q jq

R x R x x P Aμ +

=
← ∈∑

For each solution jx P∈ , where []1,j N∈

For each decision variable []1,s n∈
 rand (0,1)r ←

If jr λ< then
 Probabilistically select emigrant ex ,

where
1

Pr() / for { , } P A
e m m q mq

x x x P Aμ μ+

=
= = ∈∑

 () ()j ex s x s←
End if

 Next decision variable
Next solution

Probabilistically mutate the population C as described in the standard BBO algorithm
Use a replacement method to replace solutions in P with solutions from C

Next generation

Figure 11.11. Outline of SPBBO for solving an n-dimensional
optimization problem with k objectives and a population size of N

We use a population size of 150 and a mutation rate of 0.01 per solution decision
variable per generation. If mutation occurs, the mutated value of the new
independent variable is uniformly distributed in the search space. For constrained
multi-objective benchmark functions, we incorporate constraints into MOEAs in the

222 Evolutionary Computation with Biogeography-based Optimization

same way that we incorporate them into single-objective EAs (see Chapter 9). We
evaluate each algorithm 30 times, with a maximum number of function evaluations
equal to 300,000 for each simulation. We use the hypervolume and normalized
hypervolume as performance metrics.

Tables 11.2 and 11.3 summarize the performance comparisons of the four
MOBBO algorithms. It can be seen from Table 11.2 that for unconstrained
benchmark functions, SPBBO performs best on six functions (U01, U03, U04, U05,
U07 and U09) and NPBBO performs best on the other four functions (U02, U06,
U08 and U10). It can be seen from Table 11.3 that for constrained benchmark
functions, SPBBO performs best on six functions (C01, C03, C04, C06, C07 and
U09), NPBBO performs best on three functions (C02, C05 and C10) and VEBBO
performs best on C08. In summary, we can say that SPBBO performs better than the
other three MOBBO algorithms for both the unconstrained and constrained multi-
objective benchmark functions.

Functions
Multi-objective BBO

VEBBO NSBBO NPBBO SPBBO

U01 (58.59, 0.26) (73.61, 0.33) (51.56, 0.23) (42.51, 0.19)

U02 (24.39, 0.26) (30.58, 0.33) (17.37, 0.18) (22.35, 0.24)

U03 (288.9, 0.24) (398.4, 0.33) (232.9, 0.21) (231.6, 0.21)

U04 (8.549, 0.24) (11.45, 0.31) (8.373, 0.23) (8.012, 0.22)

U05 (286.7, 0.35) (282.9, 0.34) (130.8, 0.16) (121.4, 0.15)

U06 (697.5, 0.27) (795.4, 0.31) (485.4, 0.19) (570.3, 0.22)

U07 (55.72, 0.29) (57.96, 0.30) (40.51, 0.21) (40.40, 0.21)

U08 (550.4, 0.22) (763.2, 0.31) (428.8, 0.17) (711.3, 0.29)

U09 (2,003.4, 0.26) (2,447.6, 0.31) (1,870.1, 0.24) (1,518.6, 0.19)

U10 (2,526.9, 0.24) (3,505.4, 0.33) (1,811.7, 0.17) (2,768.2, 0.26)

Table 11.2. MOBBO results for 10 unconstrained multi-objective
benchmark functions. The table shows the hypervolume and
normalized hypervolume, averaged over 30 simulations. The

best results in each row are shown in bold

Multi-objective BBO 223

Functions
Multi-objective BBO

VEBBO NSBBO NPBBO SPBBO

C01 (6.240, 0.30) (6.545, 0.31) (4.254, 0.20) (3.915, 0.19)

C02 (15.53, 0.26) (20.41, 0.34) (8.040, 0.14) (15.37, 0.26)

C03 (723.6, 0.29) (730.5, 0.29) (529.6, 0.21) (502.1, 0.20)

C04 (9.890, 0.26) (15.30, 0.40) (7.199, 0.19) (6.223, 0.16)

C05 (39.29, 0.21) (73.61, 0.39) (30.89, 0.16) (44.65, 0.24)

C06 (0.280, 0.21) (0.561, 0.43) (0.238, 0.18) (0.231, 0.18)

C07 (54.11, 0.18) (152.1, 0.51) (50.28, 0.17) (42.15, 0.14)

C08 (121.6, 0.21) (186.1, 0.32) (123.7, 0.21) (166.7, 0.28)

C09 (137.0, 0.23) (176.9, 0.30) (155.2, 0.26) (124.6, 0.21)

C10 (1,439.5, 0.21) (2,631.5, 0.38) (1,334.8, 0.19) (1,478.1, 0.21)

Table 11.3. MOBBO results for 10 constrained multi-objective
benchmark functions. The table shows the hypervolume and
normalized hypervolume, averaged over 30 simulations. The

best results in each row are shown in bold

11.3. Real-world applications

In this section, we formulate a real-world automated warehouse scheduling
problem as a constrained MOP. Then, we use the MOBBO algorithms from the
previous section to solve the problem.

11.3.1. Warehouse scheduling model

Warehousing is an important part of production supply chain management, and
serves as the backbone in many manufacturing enterprises. Warehousing keeps
stocks of products until they are ready to be delivered to the market. A delay in
product delivery may lead to the failure of production supply chains. Efficient
warehouse management contributes to the timely delivery of the product [CHO 13,
YEU 10, YEU 11, MA 15b]. Modern warehouses are equipped with storage and
retrieval (S/R) machines to pick up products from an input/output (I/O) location and
store them at specific locations, and then to retrieve outgoing products from other

224 Evolutionary Computation with Biogeography-based Optimization

storage locations and deliver them to the I/O location. Although S/R machines
enhance warehouse management, scheduling is a challenging and vital task
[LER 15, WAN 11a, WAN 11b]. The time and cost of product allocation and
delivery are important variables to consider during warehouse scheduling.

Warehouse scheduling is a typical NP-hard problem, which is one of the most
challenging types of combinatorial optimization problems [GAG 12]. Since this
problem is so important for production supply chain success, more research needs to
be conducted to make automated warehouse scheduling more robust and efficient.

The layout of the automated warehouse system is shown in Figure 11.12
[YAN 13], and is called a multi-aisle automated storage and retrieval system
(multi-aisle AS/RS) with a curve-going S/R machine. It includes six types of
components: S/R machine, picking aisles, cross warehouse aisle, storage racks
(SRs), rolling conveyor and I/O location. As shown in the figure, the S/R machine
can go in and out at both ends of every picking aisle, pick up products at the I/O
location and store them at specific storage units in SRs, and then retrieve outgoing
products from other storage units and deliver them to the I/O location. The aim of an
automated warehouse scheduling system is to optimize scheduling efficiency.

x′

z′

Figure 11.12. Layout of the warehouse system.
Reprinted from [MA 15b] with permission from Elsevier

Multi-objective BBO 225

In this model, there are many storage units in each SR. There are a storage
products, whose storage units are denoted as ()1 2 3, , , ,u u u uap p p pL . There are b

outgoing products, whose storage units are denoted as ()1 2 3, , , ,o o o obp p p pL . In
general, the numbers and units of the storage products are not the same as those of
the outgoing products; namely, a b≠ and ui oip p≠ .

Suppose that the S/R machine can hold 0N products at a time. Then, the S/R
machine picks up 0N or fewer products from the I/O location and puts them into
storage units. Next, it retrieves 0N or fewer outgoing products from the other
storage units, and delivers them to the I/O location. For a storage products
and b outgoing products, there are a b+ storage units, namely
()1 2 1, , , , ,a a a bp p p p p+ +L L , and the S/R machine needs to execute

{ }0 0max ,a N b N⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ tasks to store and transport all products, where ϕ⎡ ⎤⎢ ⎥ denotes
the smallest integer greater than or equal to ϕ . When each task corresponds to one
route, the automated warehouse scheduling problem is translated into the
optimization problem of selecting the optimal { }0 0max ,a N b N⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ routes from

all possible routes to complete the storage/retrieval tasks while satisfying real-world
constraints.

In Figure 11.12, x′ and z′ are the two directions in the horizontal plane. The
velocities in the x′ and z′ directions are called horizontal velocities, and the
corresponding horizontal velocities are xv and zv , which are equal to each other. y′
is the vertical direction and the corresponding vertical velocity is yv , which is
independent from xv . The distance between adjacent SRs in the same picking aisle
is D , and the number of storage units in each SR is C . The width, length and
height of each storage unit are denoted as W , L and H , respectively. The
Euclidean coordinates of each storage unit are denoted as (), ,p x y z′ ′ ′ , and the I/O

location of the S/R machine is denoted as ()0 0, 0, 0p . The following assumptions
are made:

– the multi-aisle AS/RS is divided into picking aisles with SRs on both sides, so
there are double SRs between the picking aisles and a single SR along each
warehouse wall;

– there is one S/R machine;

– the S/R machine is able to move along the cross warehouse aisle by using the
curved rails at the end of the picking aisles;

226 Evolutionary Computation with Biogeography-based Optimization

– the S/R machine travels at a constant velocity both in the horizontal and
vertical directions;

– the S/R machine simultaneously begins lifting and traveling in the pick aisle;

– the input station dwell-point strategy is used. That is, the S/R machine stays at
the input location when it is idle;

– the randomized storage assignment policy is used. That is, any storage location
within the S/R is equally likely to be selected for the storage or retrieval request;

– as a first-order approximation, the pickup and set down times, and additional
overhead times for manipulating the S/R machine, are ignored.

DEFINITION 11.1.– If the S/R machine travels the route ()0 01, , ,m max a N b N⎡ ⎤∈ ⎡ ⎤⎢ ⎥⎣ ⎦

then 1ml = ; otherwise, 0ml = . If the storage unit ip belongs to route m , then
1img = ; otherwise, 0img = .

DEFINITION 11.2.– If the S/R machine travels from storage unit (), ,i i i ip x y z′ ′ ′ to

another storage unit (), ,j j j jp x y z′ ′ ′ for [], 1,i j a b∈ + , then 1ije = ; otherwise,

0ije = . The travel distance ijd and time ijt of the S/R machine is denoted as:

() ()
,

min

i j i j i j

i i j i jij

i j

i j i j i j

W x x H y y if z z

W x x H y y D z zd
if z z

W C x C x H y y D z z

⎧ ′ ′ ′ ′ ′ ′× − + × − =
⎪
⎪ ⎛ ⎞′ ′ ′ ′ ′ ′× − + × − + × −= ⎨ ⎜ ⎟ ′ ′≠⎪ ⎜ ⎟′ ′ ′ ′ ′ ′× − − − + × − + × −⎪ ⎝ ⎠⎩

 [11.21]

and:

() ()()
()

() ()() ()

max ,

,
max min ,

i j x i j y i j

ij i j i j x

i j y i j

i j i j x

W x x v H y y v if z z

t W x x D z z v
H y y v if z z

W C x C x D z z v

⎧ ′ ′ ′ ′ ′ ′× − × − =
⎪
⎪ ⎛ ⎞⎛ ⎞′ ′ ′ ′= × − + × −⎨ ⎜ ⎟⎜ ⎟ ′ ′ ′ ′⎪ × − ≠⎜ ⎟⎜ ⎟⎪ ′ ′ ′ ′⎜ ⎟× − − − + × −⎜ ⎟⎝ ⎠⎝ ⎠⎩

 [11.22]

The first expressions of each of the above two equations denote that the two
storage units are the same SR because i jz z′ ′= . The second expressions in each of
the equations denote that the two storage units are not the same SR because i jz z′ ′≠ ,
so we need to first compute the minimum distance that the S/R machine drives
between the two ends of a picking aisle to compute travel distance and travel time.

Multi-objective BBO 227

DEFINITION 11.3.– The execution time of each task must be less than or equal to the
specified scheduling time mT , in which it will not affect the scheduling quality. If it
is larger than mT , it will affect the scheduling quality by an amount equal to the
product of the time exceeding mT and the weight coefficient mw .

Now the mathematic model of the automated warehouse scheduling problem is
formulated as an MOP.

DEFINITION 11.4.– Suppose the warehouse throughput capacity is Q and the
number of products in the warehouse is q . The automated warehouse scheduling
problem has two objectives: the scheduling quality effect should be minimized, and
the travel distance should be minimized. The two objectives are defined as follows:

() () ()()1 2min min ,f e f e f e= [11.23]

()
{ }0 0,

1
1 1 1

max 0,
max a N b N a b a b

ij ij im jm m m m
m i j

f e t e g g T w l
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ + +

= = =

⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎪= − ⋅ ⋅⎜ ⎟⎨ ⎜ ⎟ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠
∑ ∑∑ [11.24]

()
{ }0 0,

2
1 1 1

max a N b N a b a b

ij ij im jm m
m i j

f e d e g g l
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ + +

= = =

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
∑ ∑∑ [11.25]

where equation [11.23] denotes that two objectives are to be minimized, equation
[11.24] denotes the scheduling quality effect and equation [11.25] denotes the travel
distance.

The solution must also satisfy the following constraints:

Total number of routes:

{ }
{ }

0 0,

0 0
1

max ,
max a N b N

m
m

l a N b N
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

=

= ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥∑ [11.26]

Total number of storage and outgoing products:

{ }0 0,

1 1

max a N b N a b

jm m
m j

g l a b
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ +

= =

= +∑ ∑ [11.27]

228 Evolutionary Computation with Biogeography-based Optimization

Each storage or outgoing product is handled exactly once:

{ }
{ }

0 0,

1
1, for 1, 2, ,

max a N b N

jm
m

g j a b
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

=

= ∈ +∑ L [11.28]

S/R machine load:

{ }{ }0 0 02 , for 1, , max ,
a b

jm
j

g N r a N b N
+

≤ ∈ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥∑ L [11.29]

Input location:

{ }
{ }

0 0,

0 0
1

, for 1, 2, ,
max a N b N

j m
m

e l a N j a b
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

=

= ∈ +⎡ ⎤⎢ ⎥∑ L [11.30]

Output location:

{ }
{ }

0 0,

0 0
1

, for 1, 2, ,
max a N b N

i m
m

e l b N i a b
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

=

= ∈ +⎡ ⎤⎢ ⎥∑ L [11.31]

Storage product priorities:

()for , , ,u oj i j up p m p p p∈ L [11.32]

Throughput capacity:

q a b Q+ + ≤ [11.33]

Equation [11.26] constrains the number of S/R machine routes to the total
number of tasks, equation [11.27] constrains the total number of storage and
outgoing products, equation [11.28] constrains each storage and outgoing product to
exactly one route, equation [11.29] constrains the total number of storage and
outgoing products to no more than twice the S/R machine capacity each route,
equations [11.30] and [11.31] constrain the I/O location where the output location is
the same as the input location since the S/R machine returns to the input location
after each task is completed, equation [11.32] constrains storage products to be
handled before outgoing products and equation [11.33] constrains the number of
products to be no more than the throughput capacity of the warehouse.

Multi-objective BBO 229

Now that a warehouse model and scheduling problem have been presented, the
following section applies MOBBO algorithms to solve the problem.

11.3.2. Optimization of warehouse scheduling

For the automated warehouse scheduling model described in the previous
section, we set the width 0.3 m,W = length 0.4 mH = and height 0.4 mH = for
each storage unit, the distance between adjacent SRs 1.8 m,D = the number of
storage units in each SR 75,C = the warehouse throughput capacity 600Q = and
the number of products in the warehouse 250.q = We set the S/R machine capacity

0 4N = , its horizontal velocity 1 m/sxv = and its vertical velocity 0.5 m/s.yv =
The required time for each task is 120 s. All these parameters are taken from a real-
world automated warehouse scheduling problem. We consider five implementation
schemes. Scheme 1 (number of storage products 20a = and number of outgoing
products 20b =) is described as follows:

p1: (12, 6, 2, 50, 1), p2: (51, 8, 1, 45, 1), p3: (40, 3, 5, 46, 1), p4: (37, 3, 4, 113, 1),
p5: (14, 7, 1, 40, 1), p6: (13, 5, 2, 50, 1), p7: (45, 5, 5, 50, 1), p8: (18, 7, 3, 33, 1),
p9: (7, 3, 2, 35, 1), p10: (11, 4, 3, 110, 1), p11: (15, 2, 1, 34, 1), p12: (36, 8, 4, 40, 1),
p13: (8, 6, 5, 47, 1), p14: (56, 2, 3, 34, 1), p15: (42, 8, 3, 30, 1), p16: (23, 4, 1, 50, 1),
p17: (4, 6, 2, 50, 1), p18: (13, 1, 1, 36, 1), p19: (39, 6, 4, 42, 1), p20: (45, 6, 5, 55, 1)
p21: (50, 8, 1, 67, 2), p22: (3, 1, 2, 74, 2), p23: (55, 4, 3, 68, 2), p24: (6, 7, 4, 85, 2),
p25: (17, 4, 5, 74, 2), p26: (60, 7, 3, 80, 2), p27: (35, 6, 2, 67, 2), p28: (15, 2, 1, 70, 2),
p29: (57, 4, 2, 80, 2), p30: (2, 1, 4, 62, 2), p31: (25, 8, 2, 76, 2), p32: (5, 2, 4, 64, 2),
p33: (17, 5, 3, 76, 2), p34: (41, 2, 5, 91, 2), p35: (19, 3, 2, 70, 2), p36: (20, 1, 1, 82, 2),
p37: (42, 6, 2, 88, 2), p38: (32, 6, 3, 75, 2), p39: (9, 7, 1, 82, 2), p40: (58, 5, 4, 69, 2)

Each storage or retrieval operator is denoted by (), , , ,x y z w u′ ′ ′ , where ,x y′ ′
and z′ are the Euclidean coordinates of each storage unit (meters), w is the
weighting coefficient described in Definition 11.3 and affects the scheduling quality,
u = 1 indicates a storage product, and u = 2 indicates an outgoing product.

Scheme 2 (20, 16a b= =) includes all the storage products of Scheme 1 but only
the first 16 outgoing products of Scheme 1. Scheme 3 (20, 12a b= =) includes all
the storage products of Scheme 1 but only the first 12 outgoing products. Scheme 4
(16, 20a b= =) includes the first 16 storage products of Scheme 1 and all of the
outgoing products. Scheme 5 (12, 20a b= =) includes the first 12 storage products
of Scheme 1 and all of the outgoing products.

230 Evolutionary Computation with Biogeography-based Optimization

The tuning parameters of the MOBBO algorithms are the same as those used in
Example 11.4. The optimization results are summarized in Table 11.4. It can be seen
from Table 11.4 that SPBBO performs best for all of the schemes except Scheme 4,
for which NPBBO is the best because of its shortest travel distance and its lowest
scheduling quality effect.

Problem (a, b)
VEBBO NSBBO NPBBO SPBBO

Distance Effect Distance Effect Distance Effect Distance Effect

Scheme 1 (20, 20) 129.3 2,591.3 122.2 2,504.3 124.3 2,555.3 121.7 2,369.4

Scheme 2 (20, 16) 92.5 1,531.0 98.3 1,562.7 89.7 1,453.6 80.5 1,392.8

Scheme 3 (20, 12) 71.0 826.2 63.2 857.7 62.3 798.7 61.1 764.3

Scheme 4 (16, 20) 109.4 1,823.8 97.6 1,467.9 88.0 1,295.5 88.2 1,306.0

Scheme 5 (12, 20) 69.8 840.0 60.5 839.4 67.7 908.6 60.3 837.0

Table 11.4. MOBBO results for five varieties of the automated warehouse
scheduling problem. “Distance” denotes the shortest travel distance,

which is measured in meters, and “Effect” denotes the lowest scheduling
quality effect. The best results in each row are shown in bold

A sample SPBBO scheduling route output is shown in Table 11.5 for Scheme 1.
It can be seen that the automated warehouse scheduling problem is divided into five
routes, and each route includes eight storage units, where the first four storage units
are used to store products and the last four storage units are used to retrieve
products.

Route Scheduling orders

1 p9 → p1 → p8 → p15 → p27 → p21 → p36 → p33

2 p13 → p11 → p19 → p2 → p26 → p37 → p25 → p32

3 p10 → p6 → p4 → p3 → p23 → p40 → p31 → p24

4 P16 → p18 → p20 → p14 → p34 → p38 → p28 → p30

5 p17 → p5 → p12 → p7 → p29 → p35 → p39 → p22

Table 11.5. Scheduling orders for Scheme 1 as optimized by the SPBBO
algorithm. “Route” denotes the route number index and “Scheduling orders”
denotes the scheduling orders that the S/R machine implements each route

Multi-objective BBO 231

11.4. Conclusion

In this chapter, we discussed some of the most popular MOEAs and associated
ideas, and showed how BBO combines with these MOEA ideas to produce in
multi-objective BBO algorithms, including VEBBO, NSBBO, NPBBO and SPBBO.
Combinations of BBO with various MOEAs have served as a template for the
extension of any other EA to multi-objective optimization. In addition, we
have provided a warehouse scheduling problem as a real-world application
example to illustrate the optimization performance of the multi-objective BBO
algorithms.

This chapter is not intended to provide a complete exposition of the subject of
MOEAs, but has shown only how BBO can be modified to solve MOPs. Many other
MOEAs have been proposed and new ones are continually appearing in related
literature. Coello Coello [COE 06] gives an interesting, high-level, historical view of
MOEAs. He maintains an exhaustive and useful Web-based bibliography of papers
related to multi-objective evolutionary optimization, and his bibliography included
more than 10,000 references as of May 2016 [COE 16a, COE 16b].

In this concluding section, we mention some important topics for future MOEA
research, including the following:

Hybridization of MOEAs with local search strategies

The incorporation of local search strategies in MOEAs is an important topic. In
particular, MOEAs can be hybridized with derivative-based algorithms or other
local search methods to fine-tune the optimization results. Such algorithms are
called memetic algorithms because they involve the use of problem-specific
information in the hybridized algorithm. Memetic strategies seem to be used a lot in
single-objective optimization [ONG 07], but they have not yet been used much in
MOPs, although there are a few exceptions [JAS 06].

MOEAs for many objectives (more than three)

The design of MOEAs for many objectives is another important area for future
research. Some results have been published in this area, but the more challenging
problem is not necessarily the approximation of the Pareto set but rather how to help
human decision makers choose a solution from an MOEA’s Pareto set
approximation. Some research on many-objective problem emphasizes their special
challenges [FLE 05], but other research shows that it is actually easier to find a good
Pareto set approximation for problems with many objectives [SCH 11].

However, even though a Pareto set approximation may be easier to find with
more objectives, the EA will also require more candidate solutions. For example, if
we suppose that 10 candidate solutions can give a good Pareto set approximation for

232 Evolutionary Computation with Biogeography-based Optimization

a two-objective problem, then we probably need at least 100 individuals in the
two-objective MOEA. This means that we might need 10k individuals for a
k -objective MOP, which means that we might need 100,000 individuals for a
relatively small five-objective MOP. So the problem with many-objective problems
is not the theoretical difficulty of approximating the Pareto set, but the practical
difficulties of computational effort and of approximating high-dimensional surfaces
with only a few points.

MOEA theory and mathematical models

Theoretical results for MOEAs are sparse and so there is a lot of room for
contributions in this area. Rudolph and Agapie [RUD 00] provide a preliminary
Markov model for MOEAs, and a few other researchers have studied MOEA theory
[ZIT 10], but compared to single-objective EAs, theoretical studies for MOEAs are
sparse.

12

Hybrid BBO Algorithms

Hybrid evolutionary algorithms (EAs) are attractive alternatives to standard EAs.
The combination of several algorithms in hybrid EAs allows it to exploit the
strength of each algorithm. It has been shown that by properly selecting the
constituent algorithms and hybridization strategies, hybrid EAs can outperform their
constituent algorithms due to their synergy. This characteristic is strong motivation
for the study of hybrid EAs. Many hybrid EAs have been proposed to improve
performance and to find global optima. Although some of these improvements are
significant, the development of new hybrid EAs and strategies is worthy of further
investigation.

Current research directions in hybrid EAs involve several major areas. The first
area is the determination of how to hybridize a given set of EAs into a single
algorithm; that is, how to determine the hybridization strategy. The second area is
the determination of which EAs to combine in a hybrid algorithm. The third area
is the application of hybrid EAs to special types of optimization problems, such as
constrained optimization and multi-objective optimization. The fourth area is the
application of hybrid EAs to real-world optimization problems. The goal of this
chapter is to address the first and second areas; that is, we emphasize the mechanism
of hybridization to improve the optimization performance of EAs.

Overview of the chapter

In this chapter, we propose several hybrid EAs by combining some popular
search strategies or EAs with BBO. Section 12.1 outlines how opposition-based
learning (OBL) can be incorporated into an EA, and in particular how it can be used
to improve the performance of BBO. Section 12.2 describes the incorporation
of various types of local search methods into BBO to improve performance.
Section 12.3 describes the hybridization of BBO with other EAs, including the use

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

234 Evolutionary Computation with Biogeography-based Optimization

of biogeography-based hybridization strategies at both the iteration level and the
algorithm level. The concluding section of this chapter provides references to
additional resources and suggests several important topics for future hybrid BBO
research.

12.1. Opposition-based BBO

This section first presents some general definitions of opposition as related to
mathematics. We then discuss how opposition can be extended to EAs, including
BBO.

12.1.1. Opposition definitions and concepts

We first discuss definitions and concepts related to the opposite of a scalar or
vector. We begin by considering scalars. We begin by assuming that a variable x is
defined on the domain [,]a b , and that the center of the domain is c :

[,] where
() 2

x a b a b
c a b

∈ <
= +

 [12.1]

We can think of several different ways to define the opposite of a scalar x
[TIZ 08]. For example, the reflected opposite of x is defined as

.ox a b x= + − [12.2]

This means that ox is the same distance as x from the center of the domain:

oc x x c− = − [12.3]

Figure 12.1 illustrates the reflected opposite.

ca bx ox

Figure 12.1. Illustration of the reflected opposite of a scalar x . The
scalar x is defined on the domain [,]a b , and c is the center of the

domain. The reflected opposite ox is the same distance as x from c

Hybrid BBO Algorithms 235

Next we extend the reflected opposite to vectors in a simple but straightforward
way. Suppose that x is a D -dimensional vector defined on a rectangular domain,
that is, ix defined on the domain [,]i ia b , and the center of the domain of ix is ic :

where
1 [...]

[,] and for [1,]
 () / 2 for [1,]

D

i i i i i

i i i

x x x
x a b a b i D

c a b i D

=
∈ < ∈

= + ∈
 [12.4]

The reflected opposite of x is defined as

where 1 [...]
 for [1,].

o o oD

oi i i i

x x x
x a b x i D

=
= + − ∈

 [12.5]

Now we define three other types of opposites: quasi opposite, super opposite and
quasi reflected opposite. As before, we consider the scalar [,]x a b∈ with c as the
center of its domain.

The quasi opposite of x is defined as follows [TIZ 08]:

rand(,)qo ox c x= [12.6]

where ox is the standard reflected opposite defined in equation [12.2]. That is, qox
is the realization of a random number that is uniformly distributed on [,]oc x . Note
that we define the rand function in such a way that its result is independent of the
order of its arguments; that is, the notations rand (,)oc x and rand (,)ox c are
equivalent.

The super opposite of x is defined as follows [TIZ 08]:

rand(,) if
rand(,) if

o
so

o

x b x c
x

a x x c
<⎧

= ⎨ >⎩
 [12.7]

That is, sox is the realization of a random number that is uniformly distributed
between ox and the domain boundary that is farthest from x . This definition is not
complete because it does not define sox for the case x c= , but that special situation

236 Evolutionary Computation with Biogeography-based Optimization

can be handled by arbitrarily changing one of the inequalities in equation [12.7] so
that it includes both equality and inequality.

The quasi reflected opposite of x is defined as follows [ERG 09, ERG 14,
ERG 15]:

rand(,)qrx x c= [12.8]

That is, qrx is the realization of a random number that is uniformly distributed
between x and c . Note that the use of word “reflected” in the term “quasi
reflected” is not related to the word “reflected” in the term “reflected opposite” (see
equation [12.2]).

Figure 12.2 illustrates four different methods of opposition. We can extend these
definitions to vectors by following the procedures presented in equations [12.4] and
[12.5].

ca bx ox

}}}qrx qox sox

Figure 12.2. Suppose we have a scalar [,]x a b∈ . The opposite of x is ox , which is
obtained by reflecting x across the center of domain c . The quasi opposite of x is

qox , which is obtained by generating a random number between c and ox . The
super opposite of x is sox , which is obtained by generating a random number
between ox and the domain boundary that is farthest from x . The quasi reflected
opposite of x is qrx , which is obtained by generating a random number between x
and c

12.1.2. Oppositional BBO

Now we show how the oppositional concepts presented above can be used in
BBO. We combine the standard BBO algorithm of Figure 3.5 in Chapter 3 with
OBL to obtain oppositional BBO (OBBO) [ERG 09]. Figure 12.3 shows an outline
of the OBBO algorithm. Note that the algorithm of Figure 12.3 is identical to that of
Figure 3.5 except for the pseudo-code between the lines “Comment: Begin
Opposition Logic” and “Comment: End Opposition Logic”.

Hybrid BBO Algorithms 237

Initialize a population of candidate solutions { kx } for k ∈ [1, N]

While not (termination criterion)

For each kx , set emigration rate μk proportional to the fitness of kx , where μk is

normalized to [0, 1]

For each kx , set immigration rate λk = 1 − μk

{ kz } ← { kx }

For each solution zk

For each decision variable s

Use λk to probabilistically decide whether to immigrate to zk

If immigrating then

 Use {μi} to probabilistically select the emigrating solution xj

 zk(s) ← xj(s)

End if

Next decision variable

Probabilistically decide whether to mutate zk

Next solution

Comment: Begin Opposition Logic

[]0, 1r U←

If rr J< then

Use { kz } to create opposite population { }kz

{ }kz ← the best N solutions from { } { }k kz zU

End if

Comment: End Opposition Logic

{ kx } ← { kz }

Next generation

Figure 12.3. Outline of OBBO with a population size of N. { kx } is the
population of solutions and { kz } is a temporary population of

solutions. kx is the kth candidate solution and ()kx s is the decision
variable s of kx . Jr is the jumping rate, which is described below

238 Evolutionary Computation with Biogeography-based Optimization

We see from the OBBO algorithm that OBL can augment any EA. One simple
approach to use an OBL with any EA is to perform the following steps:

1) When the N solutions of the EA population are initialized, N opposite
solutions are created, each opposite solution corresponding to one of the N original
solutions. Given our 2N solutions (N original solutions and N opposite
solutions), we keep the best N as the initial population of the opposition-based EA.

2) We perform a standard implementation of an EA. As we have seen earlier,
this involves a loop of cost function evaluations, migration and mutation. By
definition, the loop executes once per generation.

3) Once every few generations, we compute the opposite of each of the N
solutions. Of these 2N solutions (N standard EA solutions and N opposite
solutions), we keep the best N for the next EA generation. At each generation, we
perform this step with probability [0,1]rJ ∈ , which is a tuning parameter called the
jumping rate.

We have to make some decisions when implementing an opposition-based EA.

1) Which EA should we use? Answering this question means that we must
choose all of the tuning parameters of the EA.

2) What type of opposition should we use? We can choose one of at least four
OBL methods, including reflected opposite, quasi opposite, super opposite and
reflected quasi opposite. We can also create new OBL methods to combine with EAs.

3) What value should we use for the jumping rate rJ ? The jumping rate is a
tuning parameter. We do not have many guidelines for the value of rJ , but we do
not want to make it too high. The reason that we periodically create an opposite
population is to explore new areas of the search space. However, we do not want to
create an opposite population every generation because then we would just be
repeatedly jumping back and forth in the search space, which would waste function
evaluations. Results from opposition-based differential evolution (DE) indicate that

0.3rJ = provides a good balance [RAH 08].

12.1.3. Experimental results

In this section, we investigate the performance of OBBO on a representative set of
13 benchmark functions. These functions are briefly described in Table 3.2 in Chapter 3.
A more detailed description of these functions can be found in Appendix A. All
benchmark functions are minimization problems. For the OBBO algorithms, we
combine BBO with the four OBL methods described above: reflected opposite, quasi
opposite, super opposite and reflected quasi opposite. We call the resulting algorithms
reflected OBBO, quasi OBBO, super OBBO and quasi reflected OBBO, respectively.

Hybrid BBO Algorithms 239

For these comparisons, the parameters used in the OBBO algorithms and
standard BBO are the same: population size 50, maximum immigration rate and
maximum emigration rate 1, and maximum mutation rate 0.01 with a mutated value
randomly chosen from a uniform distribution in the search domain. We use linear
migration curves. The jumping rate sets 0.3rJ = in the OBBO algorithms. We
terminated after a maximum of 20,000 fitness function evaluations. We run 25
Monte Carlo simulations on each benchmark to obtain representative performances.

Table 12.1 summarizes the performance of the OBBO algorithms and the
standard BBO algorithm on these benchmarks, which shows the mean minimum
values found by each algorithm. From Table 12.1, we see that quasi reflected OBBO
performs the best on 6 of the 13 benchmark functions (F01, F03, F05, F07, F11 and
F12), quasi OBBO performs the best on four functions (F04, F08, F09 and F13) and
super OBBO performs the other two functions (F02 and F10). For function F06, all
OBBO algorithms obtain the global optimum. The table indicates that OBL
accelerates BBO performance, and that OBBO significantly outperforms BBO. It
also indicates that quasi reflection is the preferred oppositional method for OBBO.

Function BBO
Reflected

OBBO
Quasi OBBO Super OBBO

Quasi reflected
OBBO

F01 1.04E-04 2.31E-04 6.76E-05 5.37E-04 1.25E-05

F02 6.29E-15 6.73E-14 8.90E-15 1.53E-15 9.05E-15

F03 3.84E+01 5.89E+00 3.26E+00 6.33E+00 1.83E+00

F04 6.35E-15 3.12E-15 1.25E-15 4.16E-15 5.79E-15

F05 8.85E-01 6.90E-02 6.25E-03 4.16E-03 2.08E-03

F06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F07 8.61E-09 2.01E-10 6.78E-12 2.15E-12 5.44E-14

F08 4.97E+00 4.35E-02 3.47E-02 6.82E-02 7.80E-02

F09 8.77E-01 1.27E-03 1.24E-04 6.92E-04 5.65E-04

F10 4.18E-01 8.86E-02 8.90E-02 2.31E-02 5.66E-02

F11 6.53E+00 3.44E+00 5.12E+00 4.32E+00 1.80E+00

F12 4.64E-32 6.18E-32 6.79E-32 5.21E-32 2.44E-32

F13 8.47E-32 7.29E-32 1.23E-32 6.87E-32 6.04E-32

Table 12.1. Comparison of results for BBO and OBBO algorithms. The
table shows the average of the best performance of 25 Monte Carlo

simulations. The best value in each row is indicated in bold

240 Evolutionary Computation with Biogeography-based Optimization

12.2. BBO with local search

This section discusses several local search methods that can be incorporated into
BBO to improve its performance [SIM 14]. One drawback of BBO is its poor local
search ability, so we discuss local search operators that can be included in BBO,
including gradient descent, boundary search, grid search and Latin hypercube search.

12.2.1. Local search methods

A. Gradient descent

Gradient descent is a first-order optimization algorithm. To find a local
minimum of a function using gradient descent, we take steps that are proportional to
the negative of the gradient of the function at the current search point. If we instead
take steps that are proportional to the gradient, we approach a local maximum of the
function; the procedure is then known as gradient ascent. The outline of local search
using gradient descent is given in Figure 12.4.

If max min min min 1FE FE or (() (1)) / ()f g f g f gα ε> − + < then

For the best gN candidate solutions kx (1k = to gN)

()k k kx x f xγ← − ⋅∇

Next solution

End if

Figure 12.4. Outline of gradient descent on each candidate solution of an EA,
performed under two conditions which are described below

Figure 12.4 shows that gradient descent is implemented on the best gN solutions in

the population by subtracting a term ()kf xγ ⋅∇ , where γ is a step size which is allowed

to change every generation, and ()f∇ ⋅ is the first-order derivative of the function with
respect to its decision variable. The purpose of gradient descent is to move against the
gradient and down toward the minimum. The figure shows that gradient descent is
implemented under two conditions. The first condition involves FE, which is the current
number of function evaluations that have been performed so far, and maxFE , which is the
maximum function evaluation limit. [0,1]α ∈ is a factor that determines when gradient
descent is activated. We typically use = 1 2α so that gradient descent is activated when
we have used 50% or more of our allotted function evaluations. The second condition
involves min ()f g , which is the minimum function value obtained by BBO during the

Hybrid BBO Algorithms 241

(1)stg + (current) generation. The quantity min min min(() (1)) / ()f g f g f g− + indicates
the relative improvement in the best function value (taken over all candidate solutions)
found by BBO from the thg generation to the (1)stg + generation. 1ε is a threshold
that determines when gradient descent is activated. This condition assumes that the cost
value ()f ⋅ is positive for all candidate solutions. We typically use 1 = 0.1ε so that
gradient descent is activated whenever the best candidate solution in the population
improves by less than 10% from one generation to the next.

B. Boundary search

Many real-world optimization problems have their solution on the boundary of the
search space. This is not surprising because we normally expect to obtain an
optimization goal by using all of the available energy, or force, or some other resource.

We implement boundary search in BBO as follows. If any of the decision
variables of the best solution in the population are within a certain threshold of the
search space boundary, then we move the decision variable to the search space
boundary and perform local search (gradient descent) on the other decision
variables. This idea is shown in Figure 12.5.

If min min min 2(() (1)) ()f g f g f g ε− + < then

For the best gN candidate solutions kx (1k = to gN)

For each decision variable s

If (()) ()s k s s sU x s U Lα− < − then

()k sx s U←

End if

If (()) ()k s s s sx s L U Lα− < − then

()k sx s L←

End if
Next decision variable
Perform gradient descent on unbounded dimensions of kx

Next solution

End if

Figure 12.5. Outline of boundary search combined with gradient descent

Figure 12.5 shows that boundary search is implemented under similar conditions
as gradient descent in Figure 12.4. That is, boundary search is implemented

242 Evolutionary Computation with Biogeography-based Optimization

whenever the best solution in the population improves by a factor of less than 2ε
from one generation to the next. We implement boundary search for the best gN
solutions in the population. If any decision variable of the best gN solutions is
within a factor sα of the upper boundary of the search domain, we set that decision
variable equal to the upper boundary. Similarly, if any decision variable of the best

gN solutions is within a factor sα of the lower boundary of search domain, we set
that decision variable equal to the lower boundary. Then, we perform gradient
descent on those solutions. However, we perform gradient descent only on decision
variables that are not equal to a search space boundary.

C. Grid search

The next type of search that we implement is grid search. This search
systematically covers the search space, as shown in Figure 12.6.

If min min min 3(() (1)) / ()f g f g f g ε− + < then

0= ()s sU LΔ α −

For the best gN

candidate solutions kx (1k = to gN)

 k kw x=

 For each decision variable s

 While ()k sw s L≥

 argmin{ (), ()}k k kx f x f w←

 () ()k kw s w s Δ← −

 End while

 Next decision variable

 k kw x=

 For each decision variable s

 While ()k sw s U≤

 argmin{ (), ()}k k kx f x f w←

 () ()k kw s w s Δ← +

 End while

 Next decision variable
Next solution

End if

Figure 12.6. Outline of grid search

Hybrid BBO Algorithms 243

Figure 12.6 shows that grid search is implemented under similar conditions as
gradient descent in Figure 12.4 and boundary search in Figure 12.5. Grid search is
implemented whenever the best solution in the population improves by a factor of
less than 3ε from one generation to the next. We implement grid search for the best

gN solutions in the population. Figure 12.6 shows that for the best gN solutions, we
increment or decrement each decision variable by a specific fraction 0α of the
search space size. For example, if 0α = 0.1, grid search decreases the value of a
given decision variable of kx by an increment equal to 10% of the search space size,
one increment at a time, until it reaches the lower boundary of the search space. Grid
search then increases the values of a given decision variable until it reaches the
upper boundary of the search space. Grid search performs this process for each
decision variable and updates the solution with the best value that it finds.

D. Latin hypercube search

Latin hypercube sampling divides a domain into intervals in each dimension,
and then places sample points in such a way that each interval in each
dimension contains only one sample point [SIM 13a]. This idea is illustrated in
Figure 12.7.

Figure 12.7. The figure on the left shows uniform sampling
of four points in a search domain. The figure on the right shows

Latin hypercube sampling. Note that there is only one point in each
row and only one point in each column

Latin hypercube sampling can sometimes capture the unpredictable, unknown
nature of a function better than uniform sampling. Also, Latin hypercube sampling is

244 Evolutionary Computation with Biogeography-based Optimization

more efficient than uniform sampling. With uniform sampling of a D-dimensional
search space where each dimension is divided into n intervals, we need Dx sample
points, but with Latin hypercube sampling, we need only n sample points.

We perform Latin hypercube sampling every LG generations around the current
best solution in the population if we seem to be converging to an optimum. We
perform this search under the following two conditions, both of which must be
satisfied.

The first condition is that the best solution in the population has a cost that is less
than βe, where e is the function value required for success and β is a scale factor.
Note that this requires that we know a priori what function value is required for
success. Although this is not always the case, in real-world problems, we often know
the target value of our optimization problem ahead of time. We typically set

10LG = and 1000β = .

The second condition is that the best solution in the population is not improving
sufficiently fast. That is,

min min min 4 (() ()) / ()L Lf g G f g f g G ε− − − < [12.9]

where min ()f g is the cost function value of the best solution in the population and

4ε is a relative tolerance.

We perform a Latin hypercube search within a domain of size ()L U Lα − that is
centered at the best solution in the population, where U and L are the upper and
lower search space bounds, and Lα defines the relative size of the hypercube within
which we search. We divide each dimension of the search space into n evenly
spaced points within the search range, and then find n search points within the
search range. We then perform gradient descent on the best Ln of those solutions.
We combine these solutions with the N-member population to obtain a temporary
population size of LN n+ . We then save the best n of these solutions as the
population of the next generation.

E. BBO with local search

The hybrid BBO algorithm, including all of the new components discussed
above, is summarized in Figure 12.8. Each method in Figure 12.8 executes

Hybrid BBO Algorithms 245

regardless of the success or failure of the previous methods in the algorithm. Note
that the performance of BBO might be affected if the methods in Figure 12.8 are
implemented in a different order.

For each solution kx , calculate kλ and kμ based on the fitness of kx

{ kz } ← { kx }

Use standard BBO migration to update kz

Apply gradient descent if needed

Apply boundary search if needed

Apply grid search if needed

Apply Latin hypercube search if needed

{ kx } ← { kz }

Figure 12.8. One iteration of the
BBO algorithm with local search

12.2.2. Simulation results

In this section, we investigate the performance of the BBO algorithm with local
search for the same benchmark functions as those used above. All the parameter
settings of BBO are the same as those described previously. Furthermore, to address
the relative importance of each of local search methods, including gradient descent,
boundary search, grid search and Latin hypercube search, we conduct the following
simple test. First, we run standard BBO, and BBO with all components of local
search. Then, we run BBO with all components of local search except the first one;
that is, we skip gradient descent in the BBO algorithm with local search. Next, we
run BBO with all components of local search except the second one; that is, we skip
boundary search in the BBO algorithm with local search. In general, we run
BBO with all components of local search except the nth one, for []1, 4n ∈ .

Table 12.2 summarizes the performance of BBO, BBO with all local search
components, and BBO with the nth component omitted for []1, 4n ∈ , on the
benchmark functions. The table shows the mean minimum errors found by each
algorithm over 25 Monte Carlo simulations. The table shows that BBO with all local
search components performs the best on 9 of the 13 benchmark functions, and BBO

246 Evolutionary Computation with Biogeography-based Optimization

with the nth component of local search removed (for each []1, 4n ∈) performs
better than standard BBO for the majority of the functions. These results indicate
that local search can significantly improve the performance of BBO. From Table
12.2, we see that except for standard BBO, BBO without gradient descent performs
the worst on most of the functions, and BBO without grid search performs better
than all of the other cases of BBO with the nth component omitted. This means that
gradient descent is the most important component of BBO with local search, and
grid search is the least important component. We conclude that BBO might not be
very effective unless it is augmented with a local search method such as gradient
descent.

Function BBO
BBO with
all local
search

No gradient No boundary No grid No Latin

F01 1.04E-04 2.14E-08 6.70E-01 7.11E-04 4.43E-06 2.16E-04

F02 6.29E-15 1.65E-18 1.29E-16 2.39E-16 6.78E-18 4.92E-16

F03 3.84E+01 3.75E+00 5.43E+00 5.33E+00 2.50E+00 3.39E+00

F04 6.35E-15 4.23E-16 7.55E-15 1.98E-15 1.86E-15 2.43E-15

F05 8.85E-01 1.19E-05 3.23E-01 6.86E-02 6.08E-05 3.85E-02

F06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F07 8.61E-09 2.06E-12 8.39E-09 2.43E-10 7.23E-12 8.08E-10

F08 4.97E+00 5.76E-02 7.45E-01 1.08E-01 9.44E-02 3.75E-01

F09 8.77E-01 2.33E-04 1.28E-02 5.84E-03 2.53E-04 1.66E-03

F10 4.18E-01 7.01E-03 9.04E-01 3.22E-02 7.08E-03 6.21E-02

F11 6.53E+00 3.11E-01 8.77E+00 7.24E+00 5.36E-01 4.21E+00

F12 4.64E-32 0.00E+00 2.54E-32 1.98E-32 0.00E+00 1.66E-32

F13 8.47E-32 0.00E+00 1.25E-32 2.00E-32 0.00E+00 2.30E-32

Table 12.2. Comparison between BBO, BBO with all local search components
and BBO with the nth local search component omitted for each []n 1, 4∈ .

The best value in each row is indicated in bold

Hybrid BBO Algorithms 247

12.3. BBO with other EAs

This section discusses the combination of BBO with other popular EAs, which
results in hybrid BBO algorithms [MA 14a, MA 14b]. Biogeography-based
hybridization is discussed at both the iteration level and the algorithm level, which is
based on migration behaviors in biogeography. Popular EAs that could be hybridized
with BBO include evolution strategy (ES), genetic algorithm (GA), DE, particle
swarm optimization (PSO), and so on. Here we present a general biogeography-based
hybridization strategy and demonstrate its performance on a representative set of
benchmarks.

12.3.1. Iteration-level hybridization

Iteration-level hybridization is a straightforward method in which various EAs
are executed in sequence. Iteration-level hybridization divides the search procedure
into two stages:

1) In the first stage, one EA with high convergence speed is used to shrink the
search region to promising areas;

2) In the second stage, another EA with good exploration ability is used to
explore the previously limited area more extensively to find better solutions.

Iteration-level hybridization will perform at least as well as one algorithm alone,
and more often will perform better due to the synergy of exploration and
exploitation. Previous studies have found that this kind of hybrid EA improves
optimization performance [JAI 05]. Another attractive feature of iteration-level
hybridization is that its structure is simple and easily programmed.

Here we implement iteration-level hybridization by combining popular EAs with
BBO, in which a popular EA is used in the first stage to obtain good candidate
solutions, and then BBO is used in the second stage to improve the candidate
solutions obtained by the first EA. The goal of this hybridization approach is to
balance the exploration and exploitation ability of various EAs. A general flowchart
of iteration-level hybridization is shown in Figure 12.9. The main procedure of
iteration-level hybridization is shown in Figure 12.10.

248 Evolutionary Computation with Biogeography-based Optimization

Figure 12.9. Flowchart of iteration-level hybridization combining a
popular EA with BBO, where P is the parent population and O is the

offspring population. Reprinted from [MA 14] with permission from Elsevier

Randomly initialize the parent population P

Evaluate the fitness of all candidate solutions in P

While not (termination criterion)

Execute a popular EA (for example, DE or PSO) to create offspring population O

Evaluate the fitness of each solution in offspring population O

Calculate the immigration rate λ and emigration rate μ of each solution

Perform one generation of BBO as shown in Figure 3.5 in Chapter 3 to

improve the solutions in the offspring population O

Replace the parent population P with the offspring population O

Next generation

Figure 12.10. Outline of iteration-level hybridization of BBO with other EAs

Hybrid BBO Algorithms 249

EXAMPLE 12.1.–

Figure 12.11 shows one generation of an iteration-level hybridization of DE and
BBO, which is a special case of Figure 12.10. Note that Figure 12.10 is provided for
purposes of illustration. Any EA could be hybridized at the iteration level with
BBO, in which case Figure 12.11 would be modified accordingly.

{ kz } ← { kx }

For each candidate solution zk (k = 1 to N)

For each decision variable s

Pick three random solutions xr 1, xr 2 and xr 3 mutually distinct from

each other and from zk

Pick a random index n between 1 and N

Use CR (probabilistic) or n (deterministic) to decide on recombination

If recombination then

() () ()()1 2 3()k r r rz s x s F x s x s← + ⋅ −

End if

Next decision variable

Evaluate the fitness of each candidate solution zk in the population

For each zk define emigration rate μk proportional to the fitness of zk,

where μk ∈ [0,1]

For each candidate solution zk define immigration rate λk = 1 − μk

For each decision variable s

Use λk to probabilistically decide whether to immigrate to zk

If immigrating then

Use {μ} to probabilistically select the emigrating solution yj

() ()k jz s x s←

End if

Next decision variable

Next solution

{ kx } ← { kz }

Figure 12.11. One generation of an iteration-level hybridization of DE
and BBO, where N is the population size. { kx } and { kz } comprise the entire
population of candidate solutions, xk is the kth candidate solution, and xk(s)
is the sth decision variable of xk. CR and F are the probability of crossover

and the scaling factor of DE, respectively [DAS 11a, DAS 11b]

250 Evolutionary Computation with Biogeography-based Optimization

12.3.2. Algorithm-level hybridization

Algorithm-level hybridization is a method that involves several subpopulations
running independently and periodically exchanging information with each other
[JAI 05]; see Figure 12.12. The information exchange provides the mechanism to
enhance a given subpopulation with the improvements achieved in other
subpopulations. Therefore, algorithm-level hybridization will perform at least as
well as each constituent algorithm, and more often it will perform better due to the
exchange of information among the algorithms.

Figure 12.12. Illustration of algorithm-level hybridization. Reprinted from
[MA 14a, MA 14b] with permission from Elsevier. For a color version

of this figure, see www.iste.co.uk/ma-simon/evolutionary.zip

An important aspect of algorithm-level hybridization is the migration strategy,
which is configured by various parameters. (Note that “migration” in this context is
different from standard BBO migration.)

1) Migration frequency: how often is information shared between algorithms?

2) Migration rate: how much information migrates between algorithms?

3) Information selection: what information is selected to migrate between
algorithms?

Hybrid BBO Algorithms 251

4) Migration topology: which subpopulations exchange information with each
other?

A study of migration parameters has been presented in Jaimes and Coello Coello
[JAI 05], but that strategy should be adjusted based on a priori knowledge of the
problem. It is hard to obtain useful information about the best migration strategy in
most real-world problems.

In our approach to algorithm-level hybridization, the fitness of each solution is
used by BBO to determine the migration strategy between each algorithm, including
migration frequency, migration rate, information selection and migration topology.
That is, even though BBO is not one of the constituent EAs, the BBO approach is
used to migrate information between EAs. This migration strategy is naturally
adaptive because of the information-exchanging mechanism of BBO. The advantage
of this method is that BBO determines the migration parameter settings of
algorithm-level hybridization, and interaction with a human decision maker does not
need to occur during optimization. This hybridization approach, which combines
recently developed EAs using biogeography-based strategies, has the common
features of algorithm-level hybridization but also has the distinctive migration
characteristics of BBO.

A flowchart of algorithm-level hybridization combining popular EAs using
biogeography is shown in Figure 12.13, where three subpopulations are used, although
fewer or more could also be used, depending on the application. Subpopulations
execute independently and generate their own offspring subpopulations. The offspring
subpopulations are combined with biogeography-based migration. In this way,
algorithm-level hybridization will always keep the solutions that are improved by
migration, which will lead to better optimization performance than that achieved by a
single constituent algorithm. The main procedure of this approach to algorithm-level
hybridization is shown in Figure 12.14.

Note that in iteration-level hybridization, we combine various EAs with BBO,
and in algorithm-level hybridization, we combine various EA populations using
ideas from biogeography. In algorithm-level hybridization, we do not necessarily
combine a particular EA with BBO; instead, we use the BBO migration strategy to
combine multiple EAs. In this approach, various EAs are taken as the baseline
algorithms, and then we use the migration mechanism of BBO to adaptively
improve the solutions. That is, the constituent EAs generate offspring solutions each
generation, and then we use the BBO migration operator to exchange information
between these solutions.

252 Evolutionary Computation with Biogeography-based Optimization

Divide the overall population into
subpopulations 1, 2, and 3

Maximum number of
function evaluations reached?

Create offspring 1
from 1 using a

popular EA

Create offspring 2
from 2 using a

popular EA

Create offspring 3
from 3 using a

popular EA

Migrate information between 1, 2
and 3 using BBO. Replace parent

populations with offspring populations

Output

N

Y

Figure 12.13. Flowchart of algorithm-level hybridization combining popular EAs
with biogeography-based migration, where there are three subpopulations. P1,

P2, P3 are parent subpopulations, and O1, O2, O3 are offspring subpopulations.
Reprinted from [MA 14a, MA 14b] with permission from Elsevier

Randomly initialize the overall population P and divide it into subpopulations Pi
(i = 1…n, where n denotes the number of subpopulations)
Evaluate the fitness of all candidate solutions in P

While not (termination criterion)
For each subpopulation Pi

Perform an independent EA to create offspring subpopulation Oi
Next subpopulation
Evaluate the fitness of offspring population O, which is composed of
all subpopulations Oi
Calculate the immigration rate λ and emigration rate μ for
each offspring in population O
For each offspring subpopulation Oi

Immigrate solution information from the overall offspring population
O using one generation of BBO as shown in Figure 3.5 in Chapter 3

Next subpopulation

Next generation

Figure 12.14. Outline of algorithm-level hybridization of BBO with other EAs

Hybrid BBO Algorithms 253

{ kz } ← { kx }
Divide { kz } into subpopulations Pi (i = 1 to n)
For each subpopulation Pi

For each candidate solution zik (k = 1 to K)
For each decision variable s

Pick three random solutions xr 1, xr 2 and xr 3 mutually distinct from each other
 and from zik

Pick a random index n between 1 and the population size
Use CR (probabilistic) or n (deterministic) to decide on recombination

If recombination then

() () ()()1 2 3()k r r rz s x s F x s x s← + ⋅ −
End if

Next decision variable
Next solution

Next subpopulation
Evaluate the fitness of each candidate solution zik in all subpopulations
For each zik define emigration rate μik proportional to fitness of zik, where μik ∈ [0,1]
For each candidate solution zik define immigration rate λik = 1 − μik
For each subpopulation Pi

For each candidate solution zik
For each decision variable s

Use λik to probabilistically decide whether to immigrate to zik
If immigrating then

Use {μ} to probabilistically select the emigrating solution xj from
the combined population

() ()k jz s x s←
End if

Next decision variable
Next solution

Next subpopulation
{ kx } ← { kz }

Figure 12.15. One generation of an algorithm-level hybridization of DE and BBO,
where Pi is the subpopulation, n is the number of subpopulations and K is the size of
each subpopulation. { kx } and { kz } are the entire population of candidate solutions, xk
is the kth candidate solution and xk(s) is the sth decision variable of xk. CR and F are
the probability of crossover and the scaling factor of DE, respectively

254 Evolutionary Computation with Biogeography-based Optimization

EXAMPLE 12.2.–

Figure 12.15 shows one generation of an algorithm-level hybridization of DE
and BBO, which is a special case of Figure 12.14. Any set of EAs could be
hybridized at the algorithm level, in which case Figure 12.15 would be modified
accordingly.

12.3.3. Experimental results

In this section, we investigate the performance of hybrid EAs for the same
benchmark functions as those used above. We evaluate the performance of iteration-
level and algorithm-level hybridization combining various EAs with BBO. The EAs
that we use include ES, GA, DE and PSO. We choose these algorithms because they
are some of the most popular EAs. The four algorithms that we choose form a
representative set rather than a complete set. We could hybridize many other
algorithms besides these four. However, the goal here is not to be exhaustive,
rather to demonstrate a general biogeography-based hybridization strategy on a
representative set of constituent algorithms and benchmarks.

In summary, we investigate the following hybrid EAs: GA/BBO-I, GA/BBO-A,
ES/BBO-I, ES/BBO-A, DE/BBO-I, DE/BBO-A, PSO/BBO-I and PSO/BBO-A,
where I and A denote iteration-level hybridization and algorithm-level hybridization,
respectively. For example, GA/BBO-I denotes iteration-level hybridization of GA
and BBO, as given in Figures 12.10 and 12.11, where DE in the algorithm is
replaced with GA. Similarly, GA/BBO-A denotes algorithm-level hybridization of
GA and BBO, as given in Figures 12.14 and 12.15, where DE in the algorithm is
replaced with GA. Similar statements can be made for each of the other hybrid BBO
algorithms.

The next step is to set the parameters of each constituent algorithm. For BBO,
we use the same parameters as those used in the previous experiments. For the other
EAs, we use the same parameters as those used in section 3.3 in Chapter 3. For
algorithm-level hybridization, we use three subpopulations, and each subpopulation
implements the same EA. The population size of each subpopulation in algorithm-
level hybridization is 50, so the total population size is 150. For fair comparisons,
the population size of iteration-level hybridization is also set to 150. We use a
maximum of 20,000 fitness function evaluations.

Hybrid BBO Algorithms 255

Tables 12.3 and 12.4 summarize the performance of the algorithms, and show
the mean minimum errors found by each algorithm over 25 Monte Carlo
simulations. From Table 12.3, we see that for each group of hybrid algorithms (for
example, considering GA, GA/BBO-I and GA/BBO-A as one group), iteration-level
hybridization and algorithm-level hybridization perform better than the constituent
algorithm for all benchmark functions. This indicates that hybrid biogeography-
based algorithms improve performance for these benchmark functions.

We also note from Tables 12.3 and 12.4 that algorithm-level hybrid algorithms
perform better than iteration-level hybrid algorithms for most of the benchmark
functions. This result indicates the superiority of algorithm-level hybridization over
iteration-level hybridization. This may be due to the interacting subpopulations that
comprise algorithm-level hybridization, which is a structure that other research has
also found to be highly efficient for global optimization [DAS 11a, DAS 11b,
LAS 10].

Function GA GA/BBO-I GA/BBO-A ES ES/BBO-I ES/BBO-A

F01 1.43E-03 6.79E-04 3.16E-05 5.67E+04 6.37E+02 5.43E+01

F02 3.80E+02 5.78E-05 4.43E-07 4.21E+03 4.65E-02 3.36E-02

F03 4.43E+03 2.54E+01 3.54E+00 5.80E+02 7.75E+02 6.28E+01

F04 4.10E+00 6.65E-12 4.31E-14 1.22E+01 4.12E-10 8.08E-06

F05 6.73E+01 8.98E-00 4.67E-00 2.34E+03 5.34E-02 7.80E-02

F06 3.24E+00 2.15E-02 5.30E-04 6.78E+03 1.28E+01 6.85E+00

F07 5.33E+02 4.34E-08 8.94E-09 4.21E+02 1.75E-02 6.77E-01

F08 1.05E+02 2.78E+01 3.26E+00 4.32E+01 2.59E+00 8.93E+00

F09 2.76E+01 1.54E-01 5.44E-02 5.38E+02 1.26E+02 1.25E+02

F10 3.40E-02 3.22E-04 3.28E-05 1.45E+00 4.41E-01 8.15E-03

F11 3.76E+02 7.80E+01 1.69E+01 7.89E+01 6.74E+01 4.24E+00

F12 3.54E-32 0.00E+00 0.00E+00 1.12E-07 7.35E-10 8.95E-10

F13 6.06E-31 0.00E+00 0.00E+00 7.82E-07 3.35E-09 1.28E-09

Table 12.3. Comparison of results of hybrid algorithms combining BBO with
GA and ES based on iteration-level hybridization and algorithm-level

hybridization. The best value in each row is indicated in bold

256 Evolutionary Computation with Biogeography-based Optimization

Function DE DE/BBO-I DE/BBO-A PSO PSO/BBO-I PSO/BBO-A

F01 3.16E+03 5.67E+02 7.98E+01 3.68E-01 1.32E-03 6.65E-05

F02 5.38E+02 3.12E-11 3.25E-12 2.25E+02 9.03E-11 2.33E-11

F03 2.16E+02 5.67E+00 5.87E+00 1.76E+02 7.25E+01 4.31E+00

F04 2.34E+01 7.89E-10 6.55E-12 6.78E-01 5.34E-13 6.74E-15

F05 3.41E+01 2.18E-01 4.32E-02 6.74E+00 3.22E-02 5.87E-02

F06 2.15E+02 4.33E+00 1.26E-01 0.00E+00 0.00E+00 0.00E+00

F07 2.38E+01 6.84E+00 7.86E-04 2.58E+00 1.23E-08 4.90E-06

F08 1.25E+01 1.22E-02 3.25E-03 8.81E-01 3.19E-03 5.70E-05

F09 1.16E+02 3.90E+00 5.79E-01 4.54E+02 3.32E+01 5.32E+01

F10 3.87E+00 5.43E+00 1.25E-02 7.53E-01 5.66E-02 7.17E-03

F11 2.31E+01 6.78E+00 8.94E-01 3.30E+00 7.16E+00 1.81E+00

F12 2.53E-05 1.26E-08 2.51E-10 2.62E-32 0.00E+00 0.00E+00

F13 2.51E-07 6.39E-08 6.89E-08 9.52E-32 0.00E+00 0.00E+00

Table 12.4. Comparison of results of hybrid algorithms combining BBO with
DE and PSO based on iteration-level hybridization and algorithm-level

hybridization. The best value in each row is indicated in bold

12.4. Conclusion

In this chapter, we discussed hybrid BBO algorithms that combine BBO with
various popular search methods, including local search and global search, and
including learning strategies and hybrid strategies. First, we showed how OBL could
be incorporated into BBO to produce OBBO algorithms. Then, we showed how
several local search methods could be incorporated into BBO to produce hybrid
BBO algorithms. Finally, we showed the hybridization of BBO with other popular
EAs at both the iteration level and the algorithm level based on the information
exchange mechanism of biogeography. The simulation results indicate that all of
these hybrid BBO algorithms can improve the optimization performance of BBO. In
addition, these combinations of BBO with various search methods can serve as a
template for the improvement or hybridization of any other EA.

This chapter is not intended to provide a complete exposition of the subject of hybrid
BBO algorithms, but has only shown how BBO can be combined with various search

Hybrid BBO Algorithms 257

methods, and particularly how hybridization can improve the performance of BBO.
More hybrid BBO algorithms have been proposed and new ones are continually
appearing in the literature [BHA 10, BOU 11a, BOU 11b, CHA 12, WAN 11b]. As of
June 2016, INSPEC included more than 400 publications about hybrid BBO algorithms.

In this concluding section, we mention some important topics for future research
of hybrid EAs.

New hybridization approaches

Just as ideas from BBO have been used in this chapter to develop new
hybridization approaches, ideas from other EAs could also be used to develop new
hybridization approaches. For example, information exchange mechanisms based on
DE, PSO, GA or any other EA could be used to combine EAs running in parallel
[BLU 11, NIK 09]. The use of BBO as a hybridization strategy should motivate the
investigation of other EAs as hybridization strategies, and then these hybridization
strategies could be compared with one another.

Adaptation in hybrid EAs

Adaptation might be a promising way to pursue improved performance in hybrid
EAs [WAN 09, ZHA 11]. Because there are usually many tuning parameters in a
hybrid EA, we need to decrease the number of manual tuning parameters.
Adaptation could be implemented in different ways. For example, since an OBBO
population tends to converge to good solutions as the generation count increases,
perhaps OBL should be implemented more often in the early stages of BBO
operation and less often in the later stages. This could be done by making the jump
rate a decreasing function of the generation number. Other ways of implementing
adaptation in hybrid EAs might include changing the types of search methods based
on the generation count or based on individual fitness values.

Applications of hybrid EAs

Another important topic is the application of hybrid EAs to real-world problems.
Many application results have been published [MAK 10, MON 12, NGU 07,
PRO 11], but more challenging problems are found in various fields of society and
science. Research on multi-objective problems, constrained problems and large-
scale problems emphasizes their special challenges, and we need to find good hybrid
EAs to solve these problems.

258 Evolutionary Computation with Biogeography-based Optimization

Theory and mathematical models

Theoretical results for hybrid EAs are sparse and so there is a lot of room for
contributions in this area. For example, we could use the Markov models and
dynamic system models from the previous chapters to compare various hybrid EAs
on an analytical level rather than relying on simulation.

APPENDICES

Appendix A

Unconstrained Benchmark Functions

The problem is to minimize ()f x over all x . We use *x to represent the

optimizing value of x , and ()*f x is the minimum value of ()f x :

()arg min*

x
x = f x [A.1]

Many of the benchmarks that we present in this section are from Yao et al.
[YAO 99]. Detailed information about the unconstrained benchmarks and evaluation
metrics for EA competitions at the 2005 IEEE Congress on Evolutionary
Computation can be found in Suganthan et al. [SUG 05]. For the benchmarks
presented here, their dimensionality can be varied so that performance can be
explored as a function of the number of dimensions n.

F01 Sphere Function

2

1
*

*

() , 100

0
() 0

n

i i
i

f x x x

x
f x

=

= ≤

=
=

∑
 [A.2]

F02 Schwefel’s Problem 2.22

1 1

*

*

() , 10

0
() 0

nn

i i i
i i

f x x x x

x
f x

= =

= + ≤

=
=

∑ ∏
 [A.3]

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

262 Evolutionary Computation with Biogeography-based Optimization

F03 Schwefel’s Problem 1.2

2

1 1

*

*

() , 100

0
() 0

n i

j i
i j

f x x x

x
f x

= =

⎛ ⎞
= ≤⎜ ⎟

⎝ ⎠
=
=

∑ ∑

 [A.4]

F04 Schwefel’s Problem 2.21

()
*

*

() max : {1, , } 100

0
() 0

i ii
f x x i n x

x
f x

= ∈ ≤

=
=

L

 [A.5]

F05 Generalized Rosenbrock’s Function

…,

1
2 2 2

1
1

*

*

() 100() (1) 30

[1, 1]
() 0

n

i i i i
i

f x x x x x

x
f x

−

+
=

⎡ ⎤= − + − ≤⎣ ⎦

=
=

∑
 [A.6]

F06 Step Function

()2

1
*

*

() 0.5 100

0
() 0

n

i i
i

f x x x

x
f x

=

= + ≤⎢ ⎥⎣ ⎦

=
=

∑
 [A.7]

F07 Quartic Function

4

1

*

*

() 1.28

0
() 0

n

i i
i

f x ix x

x
f x

=

= ≤

=
=

∑
 [A.8]

Appendix A 263

F08 Generalized Schwefel’s Problem 2.26

1
*

*

() sin 500

[420.9687, 420.9687]
() 12569.5

n

i i i
i

f x x x x

x
f x

=

= − ≤

=
= −

∑
L [A.9]

F09 Generalized Rastrigin’s Function

()2

1
*

*

() 10cos 2 10 5.12

0
() 0

n

i i i
i

f x x x x

x
f x

π
=

⎡ ⎤= − + ≤⎣ ⎦

=
=

∑
 [A.10]

F10 Ackley’s Function

2

1 1

*

*

() 20 20exp(0.2 /) exp((cos 2) /) 32

0
() 0

n n

i i i
i i

f x e x n x n x

x
f x

π
= =

= + − − − ≤

=
=

∑ ∑
[A.11]

F11 Generalized Griewank’s Function

2

1 1
*

*

() 1 / 4000 cos(/) 600

0
() 0

nn

i i i
i i

f x x x i x

x
f x

= =

= + − ≤

=

=

∑ ∏
 [A.12]

264 Evolutionary Computation with Biogeography-based Optimization

F12 Generalized Penalized Function 1

1
2 2 2 2

1 1
1

1

*

*

() 10sin () (1) [1 10sin ()] (1)

50

()
0

()

1 (1) / 4

[1, ,1]
() 0

n

i i n
i

n

i
i

m
i i

i i
m

i i

i i

f x y y y y
n

u x

k x a x a
u a x a

k x a x a

y x

x
f x

π π π
−

+
=

=

⎧ ⎫= + − + + −⎨ ⎬
⎩ ⎭

+ ≤

⎧ − >
⎪= − ≤ ≤⎨
⎪ − − < −⎩

= + +

=

=

∑

∑

L

 [A.13]

Note that in this benchmark, values for , andk a m are not given, but we usually
use 100, 10 and 4k a m= = = .

F13 Generalized Penalized Function 2

()

2 2
1

1
1

2 2
1

1

*

*

() 0.1{sin (3) (1)

1 [1 sin (3)]} 50

()
0

()

[1, ,1]
() 0

n

i n
i

n

i i i
i

m
i i

i i
m

i i

f x u x x

x x x

k x a x a
u a x a

k x a x a

x
f x

π

π

=

−

+
=

= + + −

+ − + ≤

⎧ − >
⎪= − ≤ ≤⎨
⎪ − − <⎩

=
=

∑

∑

L

 [A.14]

Note that in this benchmark, like the generalized penalized function 1, values for
, andk a m are not given but we usually use 100, 5 and 4k a m= = = .

Appendix B

Constrained Benchmark Functions

A constrained optimization problem involves the minimization of ()f x over all

x such that nx R∈ Γ ∈ , where Γ is the feasible set and n is the problem dimension.
We use *x to represent the optimizing value of x , and ()*f x is the constrained

minimum value of ()f x :

()
()
()

arg min

such that g 0 for [1,]

and 0 for [1,]

*

x

i

j

x = f x

x i m

h x j p

≤ ∈

= ∈

 [B.1]

This problem includes (m + p) constraints, m of which are inequality constraints
and p of which are equality constraints. In this section, we only show simple
constrained benchmarks, while detailed information and evaluation metrics for
EA competitions at the 2006 and 2010 IEEE Congress on Evolutionary
Computation can be found in Liang et al. [LIA 06] and Mallipeddi and Suganthan
[MAL 10].

The G01 Function

()

()
()
()

4 4 13
2

1 1 5

1 1 2 10 11

2 1 3 10 11

3 2 3 11 12

5 5

2 2 10 0

2 2 10 0

2 2 10 0

i i i
i i i

f x x x x

g x x x x x

g x x x x x

g x x x x x

= = =

= − −

= + + + − ≤

= + + + − ≤

= + + + − ≤

∑ ∑ ∑
 [B.2]

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

266 Evolutionary Computation with Biogeography-based Optimization

()
()
()
()
()
()

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6 7 11

9 8 9 12

8 0

8 0

8 0

2 0

2 0

2 0

g x x x

g x x x

g x x x

g x x x x

g x x x x

g x x x x

= − + ≤

= − + ≤

= − + ≤

= − − + ≤

= − − + ≤

= − − + ≤

where 0 1 (1,...,9), 0 100 (10,11,12)i ix i x i≤ ≤ = ≤ ≤ = and 130 1x≤ ≤ . The

optimum solution is ()* 15f x = − .

The G02 Function

() () ()

()

()

4 2
1 1

2
1

1
1

2
1

cos 2 cos

0.75 0

0.75 0

nn
i ii i

n
ii

n

i
i

n

i
i

x x
f x

ix

g x x

g x x n

= =

=

=

=

−
= −

= − ≤

= − ≤

∑ ∏
∑

∏

∑

 [B.3]

where 20n = and 0 10 (1,...,)ix i n< ≤ = . The optimum solution is

()* 0.80361910412559f x = − .

The G03 Function

()

()
1

2

1

()

1 0

n
n

i
i

n

i
i

f x n x

h x x

=

=

= −

= − =

∏

∑
 [B.4]

where 10n = and 0 1 (1,...,).ix i n≤ ≤ = The optimum solution is

()* 1.00050010001000.f x = −

Appendix B 267

The G04 Function

()
()
()
()

2
3 1 5 1

1 2 5 1 4 3 5

2 2 5 1 4 3 5

3 2 5

5.3578547 0.8356891 37.293239 40792.141

85.334407 0.0056858 0.0006262 0.0022053 92 0

85.334407 0.0056858 0.0006262 0.0022053 0

80.51249 0.0071317 0.00

f x x x x x

g x x x x x x x

g x x x x x x x

g x x x

= + + −

= + + − − ≤

= − − − + ≤

= + +

()
()
()

2
1 2 3

2
4 2 5 1 2 3

5 3 5 1 3 3 4

6 3 5 1 3 3

29955 0.0021813 110 0

80.51249 0.0071317 0.0029955 0.0021813 90 0

9.300961 0.0047026 0.0012547 0.0019085 25 0

9.300961 0.0047026 0.0012547 0.0019085

x x x

g x x x x x x

g x x x x x x x

g x x x x x x x

+ − ≤

= − − − − + ≤

= + + + − ≤

= − − − − 4 20 0+ ≤

 [B.5]

where 1 278 102, 33 45x x≤ ≤ ≤ ≤ and 27 45 (3, 4,5)ix i≤ ≤ = . The optimum

solution is ()* 3.066553867178332 004f x e= − + .

The G05 Function

() ()
()
()
()
()
()

3 3
1 1 2 2

1 4 3

2 3 4

3 3 4 1

4 3 3 4 2

5 4

3 0.000001 2 0.000002 3

0.55 0

0.55 0

1000sin(0.25) 1000sin(0.25) 894.8 0

1000sin(0.25) 1000sin(0.25) 894.8 0

1000sin(0.25) 1000sin(

f x x x x x

g x x x

g x x x

h x x x x

h x x x x x

h x x x

= + + +

= − + − ≤

= − + − ≤

= − − + − − + − =

= − + − − + − =

= − + 4 3 0.25) 1294.8 0x− − + =

 [B.6]

where 1 2 30 1200, 0 1200, 0.55 0.55x x x≤ ≤ ≤ ≤ − ≤ ≤ and 40.55 0.55.x− ≤ ≤ The

optimum solution is ()* 5126.4967140071f x = .

The G06 Function

() () ()
()
()

3 3
1 2

2 2
1 1 2

2 2
2 1 2

10 20

(5) (5) 100 0

(6) (5) 82.81 0

f x x x

g x x x

g x x x

= − + −

= − − − − + ≤

= − + − − ≤

 [B.7]

where 113 100x≤ ≤ and 20 100.x≤ ≤ The optimum solution is

()* 6961.81387558015f x = − .

268 Evolutionary Computation with Biogeography-based Optimization

The G07 Function

()

()
()
()
()

2 2 2
1 2 1 2 1 2 3

2 2 2 2
4 5 6 7

2 2 2
8 9 10

1 1 2 7 8

2 1 2 7 8

3 1 2 9 10

2 2 2
4 1 2 3

14 16 (10)

4(5) (3) 2(1) 5

7(11) 2(10) (7) 45
105 4 5 3 9 0

10 8 17 2 0

8 2 5 2 12 0

3(2) 4(3) 2 7

f x x x x x x x x

x x x x

x x x
g x x x x x

g x x x x x

g x x x x x

g x x x x

= + + − − + −

+ − + − + − +

+ − + − + − +
= − + + − + ≤

= − − + ≤

= − + + − − ≤

= − + − + −

()
()
()
()

4

2 2
5 1 2 3 4

2 2
6 1 2 1 2 5 6

2 2 2
7 1 2 5 6

2
8 1 2 9 10

120 0

5 8 (6) 2 40 0

2(2) 2 14 6 0

0.5(8) 2(4) 3 30 0

3 6 12(8) 7 0

x

g x x x x x

g x x x x x x x

g x x x x x

g x x x x x

− ≤

= + + − − − ≤

= + − − + − ≤

= − + − + − − ≤

= − + + − − ≤

 [B.8]

where 10 10 (1,...,10)ix i− ≤ ≤ = . The optimum solution is ()*f x =

24.30620906818 .

The G08 Function

()

()
()

3
1 2

3
1 1 2

2
1 1 2

2
2 1 2

sin (2)sin(2)
()

1 0

1 (4) 0

x x
f x

x x x

g x x x

g x x x

π π
= −

+

= − + ≤

= − + − ≤

 [B.9]

where 10 10x≤ ≤ and 20 10x≤ ≤ . The optimum solution is

()* 0.0958250414180359f x = − .

Appendix B 269

The G09 Function

()

()
()
()
()

2 2 4 2
1 2 3 4

6 2 4
5 6 7 6 7 6 7

2 4 2
1 1 2 3 4 5

2
2 1 2 3 4 5

2 2
3 1 2 6 7

2 2 2
4 1 2 1 2 3 6 7

(10) 5(12) 3(11)

10 7 4 10 8

127 2 3 4 5 0

282 7 3 10 0

196 23 6 8 0

4 3 2 5 11 0

f x x x x x

x x x x x x x

g x x x x x x

g x x x x x x

g x x x x x

g x x x x x x x x

= − + − + + −

+ + + − − −

= − + + + + + ≤

= − + + + + − ≤

= − + + + − ≤

= + − + + − ≤

 [B.10]

where 10 10ix− ≤ ≤ for 1, ,7i = L . The optimum solution is

()* 680.630057374402f x =r .

The G10 Function

()
()
()
()
()
()
()

1 2 3

1 4 6

2 5 7 4

3 8 5

4 1 6 4 1

5 2 7 5 2 4 4

6 3 8 3 5 5

1 0.0025() 0

1 0.0025() 0

1 0.01() 0

833.33252 100 83333.333 0

1250 1250 0

1250000 2500 0

f x x x x

g x x x

g x x x x

g x x x

g x x x x x

g x x x x x x x

g x x x x x x

= + +

= − + + ≤

= − + + − ≤

= − + − ≤

= − + + − ≤

= − + + − ≤

= − + + − ≤

 [B.11]

where 1100 10000,1000 10000 (2,3)ix x i≤ ≤ ≤ ≤ = and 10 1000 (4,...,8).ix i≤ ≤ =

The optimum solution is ()* 7049.24802052867f x = .

The G11 Function

()
()

2 2
1 2

2
2 1

(1)

0

f x x x

h x x x

= + −

= − =
 [B.12]

where 11 1x− ≤ ≤ and 21 1x− ≤ ≤ . The optimum solution is ()* 0.7499f x = .

270 Evolutionary Computation with Biogeography-based Optimization

The G12 Function

()
()

2 2 2
1 2 3

2 2 2
1 2 3

(100 (5) (5) (5)) /100

() () () 0.0625 0

f x x x x

g x x p x q x r

= − − − − − − −

= − + − + − − ≤
 [B.13]

where 0 10 (1,2,3)ix i≤ ≤ = and , , 1, 2, ,9p q r = L . The optimum solution is

()* 1f x = − .

The G13 Function

()
()
()
()

1 2 3 4 5

2 2 2 2 2
1 1 2 3 4 5

2 2 3 4 5

3 3
3 1 2

10 0

5 0

1 0

x x x x xf x e

h x x x x x x

h x x x x x

h x x x

=

= + + + + − =

= − =

= + + =

 [B.14]

where ()2.3 2.3 1, 2ix i− ≤ ≤ = and ()3.2 3.2 3,4,5ix i− ≤ ≤ = . The optimum

solution is ()* 0.053941514041898f x = .

The G14 Function

()

()
()
()

10

10
1

1

1 1 2 3 6 10

2 4 5 6 7

3 3 7 8 9 10

ln

2 2 2 0

2 1 0

2 1 0

i
i i

i jj

x
f x x c

x

h x x x x x x

h x x x x x

h x x x x x x

=
=

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

= + + + + − =

= + + + − =

= + + + + − =

∑
∑

 [B.15]

where 0 10 (1,...,10)ix i< ≤ = and 1 2 3 46.089, 17.164, 34.054, 5.914,c c c c= − = − = − = −

5 6 7 8 9 1024.721, 14.986, 24.1, 10.708, 26.662, 22.179.c c c c c c= − = − = − = − = − = −

The optimum solution is ()* 47.7648884594915.f x = −

Appendix B 271

The G15 Function

()
()
()

2 2 2
1 2 3 1 2 1 3

2 2 2
1 1 2 3

2 1 2 3

1000 2

25 0

8 14 7 56 0

f x x x x x x x x

h x x x x

h x x x x

= − − − − −

= + + − =

= + + − =

 [B.16]

where ()0 10 1, 2,3ix i≤ ≤ = . The optimum solution is ()* 961.715022289961f x = .

The G16 Function

()

()

()

()

()

()

14 13

16 12 5

15 2
17

16 12

1 5 4

2 3 2

2
3

12

4 1
17

5 1

0.000117 0.1365 0.00002358
0.000001502 0.0321 0.004324

0.0001 37.48 0.0000005843

0.28 0
0.72

1.5 0

3496 21 0

62212110.6 0

213.1 0

f x y y
y y y

c y
y

c c

g x y y

g x x x
y

g x
c

g x y
c

g x y

g

= + +
+ + +

+ + −

= − ≤

= − ≤

= − ≤

= + − ≤

= − ≤

()
()
()

6 1

7 2

8 2

405.23 0

17.505 0

1053.6667 0

x y

g x y

g x y

= − ≤

= − ≤

= − ≤

 [B.17]

()
()
()
()
()
()
()

9 3

10 3

11 4

12 4

13 5

14 5

15 6

11.275 0

35.03 0

214.228 0

665.585 0

7.458 0

584.463 0

0.961 0

g x y

g x y

g x y

g x y

g x y

g x y

g x y

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

272 Evolutionary Computation with Biogeography-based Optimization

()
()
()
()
()
()
()
()
()
()
()
()

16 6

17 7

18 7

19 8

20 8

21 9

22 9

23 10

24 10

25 11

26 11

27 12

265.916 0

1.612 0

7.046 0

0.146 0

0.222 0

107.99 0

273.366 0

922.693 0

1286.105 0

926.832 0

1444.046 0

18.766

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤ 0

()
()
()
()
()
()
()
()
()
()
()

28 12

29 13

30 13

31 14

32 14

33 15

34 15

35 16

36 16

37 17

38 17

537.141 0

1072.163 0

3247.039 0

8961.448 0

26844.086 0

0.063 0

0.386 0

71084.33 0

140000 0

2802713 0

12146108 0

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

= − ≤

where

1 2 3

1 4

2
1

41.6
0.024 4.62
12.5 12

y x x
c x

y
c

= + +
= −

= +

Appendix B 273

2
2 1 1 2 1

3 1 2 1

2
3

3

4 3

2
1 3

4 1 3 4 3
2

5 2

6 1 3 4

4
7

5

5 6 7

6 1 5 4 3

8 5 4

8
7

0.0003535 0.5311 0.08705
0.052 78 0.002377

19

0.1956()
0.04782() 0.6376 1.594

100

0.950

0.995()

c x x y x
c x y x

cy
c

y y

x y
c x y y y

x
c x
c x y y

c
c

c
y c c
y x y y y
c y y

c
y

= + +
= + +

=

=

−
= − + + +

=
= − −

= −

=
= − − −
= +

=
1

8
8 3798

y
c

y =

7
9 7

8

9 1
9

10 5 4 3 6

11 1 4 3

10

11 2 1

12 10

11
12 10 1

12

13 12 2

14 2

0.0663
0.3153

96.82 0.321

1.29 1.258 2.29 1.71
1.71 0.452 0.580
12.3
752.3
(1.75)(0.995)
0.995 1998

1.75

3623 64.4 58.4

y
c y

y

y y
c

y y y y y
y x y y

c

c y x
c y

c
y c x

c
y c y

y x

= − −

= +

= + + +
= − +

=

=
= +

= +

= −

= + + 3
9 5

146312x
y x

+
+

274 Evolutionary Computation with Biogeography-based Optimization

13 10 2 4 14

13
15

13

16 15 13 15 13

14 10 2

14
17 10 11

12

13 13
15

15

16 15

17 9 5

0.995 60.8 48 0.1121 5095

148000 331000 40 61
2324 28740000

14130000 1328 531

0.52
1.104 0.72

c y x x y
y

y
c

y y y y y
c y y

c
y y y

c
y y

c
y

c y
c y x

= + + − −

=

= − + −
= −

= − − +

= −

= −
= +

and where 1704.4148 906.3855x≤ ≤ , 268.6 288.88x≤ ≤ , 30 134.75x≤ ≤ ,

4193 287.0966x≤ ≤ and 525 84.1988x≤ ≤ . The optimum solution is

()* 1.90515525853479f x = − .

The G17 Function

() () ()

()

()

1 1 2 2

1 1
1 1

1 1

2 2

2 2 2 2

2 2

30 0 300
31 300 400

28 0 100
29 100 200
30 200 1000

f x f x f x

x x
f x

x x

x x
f x x x

x x

= +

≤ <⎧
= ⎨ ≤ ≤⎩

≤ <⎧
⎪= ≤ <⎨
⎪ ≤ <⎩

 [B.18]

()

()

()

()

2
3 4 3

1 1 6

2
3 4 4

2 2 6

2
3 4 4

3 5 6

4

0.90798
300 cos(1.48477) cos(1.47588)

131.078 131.078
0.90798

cos(1.48477) cos(1.47588)
131.078 131.078

0.90798
sin(1.48477) sin(1.47588)

131.078 131.078

x x x
h x x x

x x x
h x x x

x x x
h x x x

h x

= − + − − +

= − − + +

= − − + +

=
2

3 4 3
6

0.90798
200 sin(1.48477) sin(1.47588)

131.078 131.078
x x x

x− − +

Appendix B 275

where 10 400x≤ ≤ , 20 1000x≤ ≤ , 3340 420x≤ ≤ , 4340 420,x≤ ≤

51000 1000x− ≤ ≤ and 60 0.5236x≤ ≤ . The optimum solution is ()* 8853.53f x =

967480648 .

The G18 Function

()
()
()
()
()
()
()
()
()

1 4 2 3 3 9 5 9 5 8 6 7

2 2
1 3 4

2
2 9

2 2
3 5 6

2 2
4 1 2 9

2 2
5 1 5 2 6

2 2
6 1 7 2 8

2 2
7 3 5 4 6

2 2
8 3 7 4 8

0.5()

1 0

1 0

1 0

() 1 0

() () 1 0

() () 1 0

() () 1 0

() () 1 0

f x x x x x x x x x x x x x

g x x x

g x x

g x x x

g x x x x

g x x x x x

g x x x x x

g x x x x x

g x x x x x

g

= − − + − + −

= + − ≤

= − ≤

= + − ≤

= + − − ≤

= − + − − ≤

= − + − − ≤

= − + − − ≤

= − + − − ≤

()
()
()
()
()

2 2
9 7 8 9

10 2 3 1 4

11 3 9

12 5 9

13 6 7 5 8

() 1 0

0

0

0

0

x x x x

g x x x x x

g x x x

g x x x

g x x x x x

= + − − ≤

= − ≤

= − ≤

= ≤

= − ≤

 [B.19]

where 10 10 (1,...,8)ix i− ≤ ≤ = and 90 20.x≤ ≤ The optimum solution is

()* 0.866025403784439f x = − .

The G19 Function

()

() ()

5 5 5 10
3

(10) (10) (10)
1 1 1 1

5 10
2

(10) 10
1 1

2

2 3 0 1, ,5

ij i j j j i i
j i j i

j ij i j j ij ij
i i

f x c x x d x b x

g x c x d x e a x j

+ + +
= = = =

+ +
= =

= + −

= − − − + ≤ =

∑∑ ∑ ∑

∑ ∑ L

 [B.20]

276 Evolutionary Computation with Biogeography-based Optimization

where [40, 2, 0.25, 4, 4, 1, 40, 60, 5.1]b = − − − − − − − − and the remaining data is
given in Table B.1. The bounds are 0 10 (1,...,15)ix i≤ ≤ = . The optimum solution

is ()* 32.6555929502463f x = .

j 1 2 3 4 5

ej −15 −27 −36 −18 −12

c1j 30 −20 −10 32 −10

c2j −20 39 −6 −31 32

c3j −10 −6 10 −6 −10

c4j 32 −31 −6 39 −20

c5j −10 32 −10 −20 30

dj 4 8 10 6 2

a1j −16 2 0 1 0

a2j 0 −2 0 0.4 2

a3j −3.5 0 2 0 0

a4j 0 −2 0 −4 −1

a5j 0 −9 −2 1 −2.8

a6j 2 0 −4 0 0

a7j −1 −1 −1 −1 −1

a8j −1 −2 −3 −2 −1

a9j 1 2 3 4 5

a10j 1 1 1 1 1

Table B.1. Data set for benchmark function G19

Appendix B 277

The G20 Function

()

()

()

()

()

()

24

1

(12)
24

1

(3) (15)
24

1

(12)

24 12
(12) 13 1

24

13
1

12 24

14
1 13

()
0 1, 2, 3

()
0 4, 5, 6

0 1, ,12
40

1 0

1.671 0

i i
i

i i
i

j ij

i i
i

j ij

i i i
i

j j
i ij j

j j

i
i

i i

i ii i

f x a x

x x
g x i

x e

x x
g x i

x e

x c x
h x i

x x
b b

b b

h x x

x x
h x k

d b

=

+

=

+ +

=

+

+ = =

=

= =

=

+
= ≤ =

+

+
= ≤ =

+

= − = =

= − =

= + − =

∑

∑

∑

∑ ∑

∑

∑ ∑

L

 [B.21]

where ()()()0.7302 530 14.7 40k = and the data set is detailed in Table B.2. The
bounds are 0 10 (1,..., 24)ix i≤ ≤ = . This solution is a little infeasible and no
feasible solution is found so far.

i ai bi ci di ei

1 0.0693 44.094 123.7 31.244 0.1

2 0.0577 58.12 31.7 36.12 0.3

3 0.05 58.12 45.7 34.784 0.4

3 0.2 137.4 14.7 92.7 0.3

4 0.26 120.9 84.7 82.7 0.6

5 0.55 170.9 27.7 91.6 0.3

7 0.06 62.501 49.7 56.708 –

8 0.1 84.94 7.1 82.7 –

9 0.12 133.425 2.1 80.8 –

10 0.18 82.507 17.7 64.517 –

11 0.1 46.07 0.85 49.4 –

278 Evolutionary Computation with Biogeography-based Optimization

12 0.09 60.097 0.64 49.1 –

13 0.0693 44.094 – – –

14 0.0577 58.12 – – –

15 0.05 58.12 – – –

16 0.2 137.4 – – –

17 0.26 120.9 – – –

18 0.55 170.9 – – –

19 0.06 62.501 – – –

20 0.1 84.94 – – –

21 0.12 133.425 – – –

22 0.18 82.507 – – –

23 0.1 46.07 – – –

24 0.09 60.097 – – –

Table B.2. Data set for benchmark function G20

The G21 Function

()
()
()
()
()
()
()

1

0.6 0.6
1 1 2 3

1 3 5 6 4 5 4 6 3 4

2 2 4 7 2 4 4 7

3 5 4

4 6 4

5 7 4

35 35 0

300 7500 7500 25 25 0

100 155.365 2500 25 15536.5 0

ln(900) 0

ln(300) 0

ln(2 700) 0

f x x

g x x x x

h x x x x x x x x x x

h x x x x x x x x

h x x x

h x x x

h x x x

=

= − + + ≤

= − + − − + + =

= + + − − − =

= − + − + =

= − + + =

= − + − + =

 [B.22]

where 10 1000x≤ ≤ , 2 30 , 40x x≤ ≤ , 4100 300x≤ ≤ , 5 66.3 6.7, 5.9 6.4x x≤ ≤ ≤ ≤ ,

and 74.5 6.25x≤ ≤ . The optimum solution is ()* 193.724510070035.f x =

Appendix B 279

The G22 Function

()
()
()
()
()
()
()
()
()

1

0.6 0.6 0.6
1 1 2 3 4

7
1 5 8

2 6 8 9

7
3 7 9

7
4 5 10

7
5 6 11

7
6 7 12

7 5 2 13

0

100000 1 10 0

100000 100000 0

100000 5 10 0

100000 3.3 10 0

100000 4.4 10 0

100000 6.6 10 0

120 0

f x x

g x x x x x

h x x x

h x x x x

h x x x

h x x x

h x x x

h x x x

h x x x x

h

=

= − + + + ≤

= − + × =

= + − =

= + − × =

= + − × =

= + − × =

= + − × =

= − =

()
()
()
()
()
()
()
()
()
()

8 6 3 14

9 7 4 15

10 8 11 16

11 9 12 17

12 18 10

13 19 8

14 20 16

15 21 9

16 22 17

17 8 10 13 18 13 19

80 0

40 0

0

0

ln(100) 0

ln(300) 0

ln() 0

ln(400) 0

ln() 0

4

x x x x

h x x x x

h x x x x

h x x x x

h x x x

h x x x

h x x x

h x x x

h x x x

h x x x x x x x

= − =

= − =

= − + =

= − + =

= − + − =

= − + − + =

= − + =

= − + − + =

= − + =

= − − + − +

()
()

18 8 9 11 14 20 14 21

19 9 12 15 15 22

00 0

400 0

4.60517 100 0

h x x x x x x x x

h x x x x x x

=

= − − + − + =

= − − + + =

 [B.23]

where 10 20000x≤ ≤ , 6
2 3 40 , , 1 10x x x≤ ≤ × , 7

5 6 70 , , 4 10x x x≤ ≤ × , 8100 x≤ ≤
290.99 , 9100 399.99x≤ ≤ , 10100.01 300x≤ ≤ , 11100 400x≤ ≤ , 12100 600x≤ ≤ ,

13 14 150 , , 500x x x≤ ≤ , 160.01 300x≤ ≤ , 170.01 400x≤ ≤ and 18 194.7 , ,x x− ≤

20 21 22, , 6.25x x x ≤ . The optimum solution is ()* 236.430975504001f x = .

280 Evolutionary Computation with Biogeography-based Optimization

The G23 Function

()
()
()

()
()
()
()

5 8 1 2 6 7

1 9 3 6 5

2 9 4 7 8

1 1 2 3 4

2 1 2 9 3 4

3 3 6 5

4 4 7 8

9 15 6 16 10()

0.02 0.025 0

0.02 0.015 0

0

0.03 0.01 () 0

0

0

f x x x x x x x

g x x x x x

g x x x x x

h x x x x x

h x x x x x x

h x x x x

h x x x x

= − − + + + +

= + − ≤

= + − ≤

= + − − =

= + − + =

= + − =

= + − =

 [B.24]

where 1 2 60 , , 300x x x≤ ≤ , 3 5 70 , , 100x x x≤ ≤ , 4 80 , 200x x≤ ≤ and

90.01 0.03x≤ ≤ . The optimum solution is ()* 400.055099999999584f x = − .

The G24 Function

()
()
()

1 2

4 3 2
1 1 1 1 2

4 3 2
2 1 1 1 1 2

2 8 8 2 0

4 32 88 96 36 0

f x x x

g x x x x x

g x x x x x x

= − −

= − + − + − ≤

= − + − + + − ≤

 [B.25]

where 10 3x≤ ≤ and 20 4x≤ ≤ . The optimum solution is ()*f x =
5.50801327159536.−

The C01 Function

4 2

1 1

2

1

1
1

2
1

cos () 2 cos ()
()

() 0.75 0

() 0.75 0

[0,10]

nn

i i
i i

n

i

n

i
i

n

i
i

i

z z
f x

iz

g x z

g x z D

x

= =

=

=

=

−
= −

= − ≤

= − ≤

∈

∑ ∏

∑

∏

∑

 [B.26]

where i i iz x o= − for []1,i n∈ . In this function and the functions below, we use io
to refer to a random offset and M to refer to a random rotation matrix.

Appendix B 281

The C02 Function

()
2

1
1

2
2

1

2

1

() max

1() 10 [10cos(2) 10] 0

1() [10cos(2) 10] 15 0

1() [10cos(2) 10] 20 0

[5.12, 5.12]

ii

n

i i
i

n

i i
i

n

i i
i

i

f x z

g x z z
n

g x z z
n

h x y y
n

x

π

π

π

=

=

=

=

= − − + ≤

= − + − ≤

= − + − =

∈ −

∑

∑

∑

 [B.27]

where i i iz x o= − and 0.5i iy z= − for []1,i n∈ .

The C03 Function

1
2 2 2 2

1
1
1

2
1

1

() 100() (1)

() () 0

[1000,1000]

n

i i i
i

n

i i
i

i

f x z z z

h x z z

x

−

+
=

−

+
=

⎡ ⎤= − + −⎣ ⎦

= − =

∈ −

∑

∑ [B.28]

where i i iz x o= − for []1,i n∈ .

The C04 Function

()

1
=1

/ 2 1
2

2 1
=1

2 2
3 1

= /2 1

4
1

() max

1() (cos() 0

() () 0

() () 0

() 0

[50,50]

ii
n

i i
i

n

i i
i

n

i i
i n

n

i
i

i

f x z

h x z z
n

h x z z

h x z z

h x z

x

−

+

+
+

=

=

= =

= − =

= − =

= =

∈ −

∑

∑

∑

∑

 [B.29]

where i i iz x o= − for []1,i n∈ .

282 Evolutionary Computation with Biogeography-based Optimization

The C05 Function

()

1
1

2
1

() max

1() (sin() 0

1() (cos() 0

[600,600]

ii

n

i i
i

n

i i
i

i

f x z

h x z z
n

h x z z
n

x

=

=

=

= − =

= − =

∈ −

∑

∑
 [B.30]

where i i iz x o= − for []1,i n∈ .

The C06 Function

()

1
1

2
1

() max

 (483.6106156535) 483.6106156535
1() (sin() 0

1() (cos(0.5) 0

[600,600]

ii

i i

n

i i
i

n

i i
i

i

f x z

y z M

h x y y
n

h x y y
n

x

=

=

=

= + −

= − =

= − =

∈ −

∑

∑

 [B.31]

where i i iz x o= − for []1,i n∈ .

The C07 Function

1
2 2 2

1
1

2

1

1

() 100() (1)

1() 0.5 exp(0.1)

13exp(cos(0.1) exp(1) 0

[140,140]

n

i i i
i

n

i
i

n

i
i

i

f x z z z

g x y
n

y
n

x

−

+
=

=

=

⎡ ⎤= − + −⎣ ⎦

= − −

− + ≤

∈ −

∑

∑

∑

 [B.32]

where i i iy x o= − and 1i i iz x o= + − for []1,i n∈ .

Appendix B 283

The C08 Function

1
2 2 2

1
1

2

1

1

 () 100() (1)

1 () 0.5 exp(0.1)

13exp(cos(0.1) exp(1) 0

[140,140]

n

i i i
i

n

i
i

n

i
i

i

f x z z z

g x y
n

y
n

x

−

+
=

=

=

⎡ ⎤= − + −⎣ ⎦

= − −

− + ≤

∈ −

∑

∑

∑

 [B.33]

where ()i i iy x o M= − and 1i i iz x o= + − for []1,i n∈ .

The C09 Function

1
2 2 2

1
1

1

 () 100() (1)

() (sin) 0

[500,500]

n

i i i
i
n

i
i

i

f x z z z

h x y y

x

−

+
=

=

⎡ ⎤= − + −⎣ ⎦

= =

∈ −

∑

∑ [B.34]

where i i iy x o= − and 1i i iz x o= + − for []1,i n∈ .

The C10 Function

1
2 2 2

1
1

1

() 100() (1)

() (sin) 0

[500,500]

n

i i i
i
n

i i
i

i

f x z z z

h x y y

x

−

+
=

=

⎡ ⎤= − + −⎣ ⎦

= =

∈ −

∑

∑ [B.35]

where ()i i iy x o M= − and 1i i iz x o= + − for []1,i n∈ .

284 Evolutionary Computation with Biogeography-based Optimization

The C11 Function

()
1

1
2 2

1

1() cos 2

() (100() (1)) 0

[100,100]

n

i i
i

n

i i i
i

i

f x z z
n

h x y y y

x

=

−

+

⎡ ⎤= −⎢ ⎥⎣ ⎦

= − + − =

∈ −

∑

∑ [B.36]

where ()i i iy x o M= − and 1i i iz x o= + − for []1,i n∈ .

The C12 Function

1

2 2
1

1

1

() sin

() () 0

() (100cos(0.1) 10) 0

[1000,1000]

n

i i
i

n

i i
i

n

i i
i

i

f x z z

h x z z

g x z z

x

=

+
=

=

=

= − =

= − + ≤

∈ −

∑

∑

∑

 [B.37]

where i i iz x o= − for []1,i n∈ .

The C13 Function

1

2
1

1() sin

1() 50 0
100

n

i i
i

n

i
i

f x z z
n

g x z
n

=

⎡ ⎤= −⎣ ⎦

= − + ≤

∑

∑
 [B.38]

Appendix B 285

2
1

2

3
1 1

50 1() sin() 0
50

() 75 50 cos() 1 0
4000

[500,500]

n

i
i

nn
i i

i i

i

g x z
n

z z
g x

i
x

π
=

= =

= ≤

⎡ ⎤
= − − + ≤⎢ ⎥

⎣ ⎦
∈ −

∑

∑ ∏

where i i iz x o= − for []1,i n∈ .

The C14 Function

1
2 2 2

1
1

1
1

2
1

3
1

() 100() (1)

() (cos) 0

() (cos) 0

() (sin) 10 0

[1000,1000]

n

i i i
i

n

i i
i

n

i i
i

n

i i
i

i

f x z z z

g x y y n

g x y y n

g x y y n

x

−

+
=

=

=

=

⎡ ⎤= − + −⎣ ⎦

= − − ≤

= − ≤

= − ≤

∈ −

∑

∑

∑

∑

 [B.39]

where i i iy x o= − and 1i i iz x o= + − for []1,i n∈ .

The C15 Function

1
2 2 2

1
1

1
1

2
1

3
1

() 100() (1)

() (cos) 0

() (cos) 0

() (sin) 10 0

[1000,1000]

n

i i i
i

n

i i
i

n

i i
i

n

i i
i

i

f x z z z

g x y y n

g x y y n

g x y y n

x

−

+
=

=

=

=

⎡ ⎤= − + −⎣ ⎦

= − − ≤

= − ≤

= − ≤

∈ −

∑

∑

∑

∑

 [B.40]

where ()i i iy x o M= − and 1i i iz x o= + − for []1,i n∈ .

286 Evolutionary Computation with Biogeography-based Optimization

The C16 Function

2

1 1

2
1

1

2
1

1
1

2
1

 () cos() 1
4000

() [100cos() 10] 0

() 0

() (sin) 0

() (sin) 0

[10,10]

nn
i i

i i
n

i i
i

n

i
i
n

i i
i

n

i i
i

i

z zf x
i

g x z z

g x z

h x z z

h x z z

x

π

= =

=

=

=

=

= − +

= − + ≤

= ≤

= =

= − =

∈ −

∑ ∏

∑

∏

∑

∑

 [B.41]

where i i iz x o= − for []1,i n∈ .

The C17 Function

1
2

+1
1

1
1

2
1

1

() ()

() 0

() 0

() sin(4) 0

[10,10]

n

i i
i

n

i
i
n

i
i

n

i i
i

i

f x z z

g x z

g x z

h x z z

x

−

=

=

=

=

= −

= ≤

= ≤

= =

∈ −

∑

∏

∑

∑

 [B.42]

where i i iz x o= − for []1,i n∈ .

The C18 Function

1
2

+1
1

1

() ()

1() (sin) 0

n

i i
i

n

i i
i

f x z z

g x z z
n

−

=

=

= −

= − ≤

∑

∑
 [B.43]

Appendix B 287

1

1() (sin) 0

[50,50]

n

i i
i

i

h x z z
n

x
=

= =

∈ −

∑

where i i iz x o= − for []1,i n∈ .

Appendix C

Multi-objective Benchmark Functions

A multi-objective optimization problem (MOP) involves the minimization of
()f x over all x , where ()f x is a vector, and x is the n-dimensional decision

vector. Vector minimization is undefined in the normal sense of the word, and so we
define the Pareto set sP and the Pareto front fP in Chapter 11. We can then pose an
MOP as the problem of finding the “best” possible sP and fP .

Detailed information about the multi-objective benchmarks and evaluation
metrics for EA competition at the 2009 IEEE Congress on Evolutionary
Computation can be found in Zhang et al. [ZHA 08]. The dimension of the
independent variable in the benchmarks given below is variable, but the CEC 2009
competition used 30n = .

U01 Unconstrained Problem 1

The two objectives to be minimized:

1

2

2
1 1 1

1

2
2 1 1

2

2 [sin(6)]

21 [sin(6)]

j
j J

j
j J

jf x x x
J n

jf x x x
J n

ππ

ππ

∈

∈

= + − +

= − + − +

∑

∑
 [C.1]

where 1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ .

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

290 Evolutionary Computation with Biogeography-based Optimization

The search space is 1[0,1] [1,1]n−× − .

Its Pareto front is

1 2 10 1, 1f f f≤ ≤ = − [C.2]

Its Pareto set is

1 10 1, sin(6), 2,....j
jx x x j n
n
ππ≤ ≤ = + = [C.3]

U02 Unconstrained Problem 2

The two objectives to be minimized:

1

2

2
1 1

1

2
2 1

2

2

21

j
j J

j
j J

f x y
J

f x y
J

∈

∈

= +

= − +

∑

∑
 [C.4]

where

1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,

and

2
1 1 1 1 1

2
1 1 1 1 2

4[0.3 cos(24) 0.6]cos(6)

4[0.3 cos(24) 0.6]sin(6)

j

j

j

j jx x x x x j J
n ny
j jx x x x x j J
n n

π ππ π

π ππ π

⎧ − + + + ∈⎪⎪= ⎨
⎪ − + + + ∈
⎪⎩

 [C.5]

Its search space is 1[0,1] [1,1]n−× − .

Its Pareto front is

1 2 10 1, 1f f f≤ ≤ = − [C.6]

Appendix C 291

Its Pareto set is

1

2
1 1 1 1 1

2
1 1 1 1 2

0 1
4{0.3 cos(24) 0.6 }cos(6)

4{0.3 cos(24) 0.6 }sin(6)

j

x
j jx x x x j Jx n n
j jx x x x j J
n n

π ππ π

π ππ π

≤ ≤⎧
⎪
⎪ + + + ∈= ⎨
⎪
⎪ + + + ∈
⎩

 [C.7]

U03 Unconstrained Problem 3

The two objectives to be minimized:

1 1

2 2

2
1 1

1

2
2 1

2

202 (4 2 cos() 2)

2021 (4 2 cos() 2)

j
j

j J j J

j
j

j J j J

y
f x y

J j
y

f x y
J j

π

π
∈ ∈

∈ ∈

= + − +

= − + − +

∑ ∏

∑ ∏
 [C.8]

where 1J and 2J are the same as those of U01, and

3(2)0.5(1.0
2

1 , 2,....
j

n
j jy x x j n

−+
−= − = [C.9]

Its search space is [0,1]n .

Its Pareto front is

2 1 11 ,0 1f f f= − ≤ ≤ [C.10]

Its Pareto set is
3(2)0.5(1.0

2
1 10 1, , 2,....

j
n

ix x x j n
−+

−≤ ≤ = = [C.11]

U04 Unconstrained Problem 4

The two objectives to be minimized:

1

2

1 1
1

2
2 1

2

2 ()

21 ()

j
j J

j
j J

f x h y
J

f x h y
J

∈

∈

= +

= − +

∑

∑
 [C.12]

292 Evolutionary Computation with Biogeography-based Optimization

where 1J and 2J are the same as those of U01, and

1sin (6), 2,....j j
jy x x j n
n
ππ= − + = [C.13]

and

2
()

1 t

t
h t

e
=

+
 [C.14]

Its search space is 1[0,1] [2, 2]n−× − .

Its Pareto front is

2
1 2 20 1, 1f f f≤ ≤ = − [C.15]

Its Pareto set is

1 10 1, sin (6), 2,....j
jx x x j n
n
ππ≤ ≤ = + = [C.16]

U05 Unconstrained Problem 5

The two objectives to be minimized:

1

2

1 1 1
1

2 1 1
2

1 2() sin(2) ()
2

1 21 () sin(2) ()
2

j
j J

j
j J

f x N x h y
N J

f x N x h y
N J

ε π

ε π

∈

∈

= + + +

= − + + +

∑

∑
 [C.17]

where 1J and 2J are the same as those of U01, N is an integer (10N = in the CEC
2009 competition), 0ε > (0.5ε = in the CEC 2009 competition), and

1sin (6), 2,....j j
jy x x j n
n
ππ= − + = [C.18]

Appendix C 293

and

2() 2 cos(4) 1h t t tπ= − + [C.19]

The search space is 1[0,1] [1,1]n−× − .

Its Pareto front has ()2 + 1N discrete points:

(,1)
2 2
i i
N N

− [C.20]

for 0,1,....2 .i N=

Its Pareto set also contains ()2 +1N discrete points, but they cannot be expressed
analytically, so we do not show them here.

U06 Unconstrained Problem 6

The two objectives to be minimized:

()
1 1

2 2

1 1 1

2

1

2 1 1

2

2

1+max{0, 2()sin(2)}
2

202 4 2 cos() 2

11 +max{0, 2()sin(2)}
2

202 (4 2 cos() 2)

j
j

j J j J

j
j

j J j J

f x N x
N

y
y

J j

f x N x
N

y
y

J j

ε π

π

ε π

π

∈ ∈

∈ ∈

= +

+ − +

= − +

+ − +

∑ ∏

∑ ∏

 [C.21]

where N is an integer (2N = in the CEC 2009 competition), 0ε > (0.1ε = in the
CEC 2009 competition) and

[]
1 1

2 202 4 2 cos() 2 , 1, 2j
i j

j J j Ji

y
z y i

J j

π

∈ ∈

⎛ ⎞
= − + ∈⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∏ [C.22]

294 Evolutionary Computation with Biogeography-based Optimization

where 1J and 2J are the same as those of U01, and

1sin (6), 2,....j j
jy x x j n
n
ππ= − + = [C.23]

The search space is 1[0,1] [1,1]n−× − .

Its Pareto front consists of one isolated point (0, 1), and the following N
disconnected parts:

1 2 1
1

2 1 2[,), 1
2 2

N

i

i if f f
N N=

−∈ = −U [C.24]

Its Pareto set consists of discrete points, but they cannot be expressed
analytically, so we do not show them here.

U07 Unconstrained Problem 7

The two objectives to be minimized:

1

2

25
1 1

1

25
2 1

2

2

21

j
j J

j
j J

f x y
J

f x y
J

∈

∈

= +

= − +

∑

∑
 [C.25]

where 1J and 2J are the same as those of U01, and

1sin (6), 2,....j j
jy x x j n
n
ππ= − + = [C.26]

The search space is 1[0,1] [1,1]n−× − .

Its Pareto front is

1 2 10 1, 1f f f≤ ≤ = − [C.27]

Appendix C 295

Its Pareto set is

1 10 1, sin (6), 2,....j
jx x x j n
n
ππ≤ ≤ = + = [C.28]

U08 Unconstrained Problem 8

The three objectives to be minimized:

1

2

3

2
1 1 2 2 1

1

2
2 1 2 2 1

2

2
3 1 2 1

3

2cos(0.5) cos(0.5) (2 sin(2))

2cos(0.5) cos(0.5) (2 sin(2))

2sin(0.5) (2 sin(2))

j
j J

j
j J

j
j J

jf x x x x x
J n

jf x x x x x
J n

jf x x x x
J n

ππ π π

ππ π π

ππ π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.29]

where

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.30]

The search space is 2 2[0,1] [2,2]n−× − .

Its Pareto front is

2 2 3
1 2 3 1 2 30 , , 1, 1f f f f f f≤ ≤ + + = [C.31]

Its Pareto set is

1 2 2 10 1, 0 1, 2 sin (2), 3,....j
jx x x x x j n
n
ππ≤ ≤ ≤ ≤ = + = [C.32]

296 Evolutionary Computation with Biogeography-based Optimization

U09 Unconstrained Problem 9

The three objectives to be minimized:

1

2

3

2
1 1 1 2

2
2 1

1

2
2 1 1 2

2
2 1

2

2
3 2 2 1

3

0.5[max{0, (1)(1 4(2 1))} 2]
2 (2 sin(2))

0.5[max{0, (1)(1 4(2 1))} 2]
2 (2 sin(2))

21 (2 sin(2))

j
j J

j
j J

j
j J

f x x x
jx x x

J n

f x x x
jx x x

J n
jf x x x x

J n

ε
ππ

ε
ππ

ππ

∈

∈

∈

= + − − +

+ − +

= + − − +

+ − +

= − + − +

∑

∑

∑

 [C.33]

where

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.34]

and 0.1ε = , which can take any other positive values.

The search space is 2[0,1] [2,2]n−× − .

The Pareto front has two parts. The first part is

3

1 3

2 1 3

0 1
10 (1)
4

1

f

f f

f f f

≤ ≤

≤ ≤ −

= − −

 [C.35]

and the second one is

3

3 1

2 1 3

0 1
3 (1) 1
4

1

f

f f

f f f

≤ ≤

− ≤ ≤

= − −

 [C.36]

Appendix C 297

The Pareto set is

1 2

2 1

[0, 0.25] [0.75,1], 0 1,

2 sin (2), 3,....j

x x
jx x x j n
n
ππ

∈ ≤ ≤

= + =

U

 [C.37]

U10 Unconstrained Problem 10

The three objectives to be minimized:

1

2

3

2
1 1 2

1

2
2 1 2

2

2
3 1

3

2cos(0.5)cos(0.5) [4 cos(8) 1]

2cos(0.5)sin(0.5) [4 cos(8) 1]

2sin(0.5) [4 cos(8) 1]

j j
j J

j j
j J

j j
j J

f x x y y
J

f x x y y
J

f x y y
J

π π π

π π π

π π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.38]

where

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.39]

and

2 12 sin (2), 3,....j j
jy x x x j n
n
ππ= − + = [C.40]

The search space is 2 2[0,1] [2,2]n−× − .

Its Pareto front is

2 2 3
1 2 3 1 2 30 , , 1, 1f f f f f f≤ ≤ + + = [C.41]

Its Pareto set is

1 2 2 10 1, 0 1, 2 sin (2), 3,....j
jx x x x x j n
n
ππ≤ ≤ ≤ ≤ = + = [C.42]

298 Evolutionary Computation with Biogeography-based Optimization

C01 Constrained Problem 1

The two objectives to be minimized:

1

2

3(2)0.5(1.0) 22
1 1 1

1

3(2)0.5(1.0) 22
2 1 1

2

2 ()

21 ()

j
n

j
j J

j
n

j
j J

f x x x
J

f x x x
J

−+
−

∈

−+
−

∈

= + + −

= − + −

∑

∑
 [C.43]

where 1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ .

The constraint is

1 2 1 2sin[(1)] 1 0f f a N f fπ+ − − + − ≥ [C.44]

where N is an integer and
1

2
a

N
≥ .

The search space is [0,1]n .

The Pareto front in the objective space consists of 2 +1N points:

(/ 2 ,1 / 2), 0,1,...., 2i N i N i N− = [C.45]

10, 1 and 10N a n= = = in the CEC 2009 competition.

C02 Constrained Problem 2

The two objectives to be minimized:

1

2

2
1 1 1

1

2
2 1 1

2

2 (sin(6))

21 (cos(6))

j
j J

j
j J

jf x x x
J n

jf x x x
J n

ππ

ππ

∈

∈

= + − +

= − + − +

∑

∑
 [C.46]

where

1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ .

Appendix C 299

The search space is 1[0,1] [1,1]n−× − .

The constraint is

4
0

1 t

t
e

≥
+

 [C.47]

where

2 1 1 2+ sin[(1)] 1t f f a N f fπ= − − + − [C.48]

Its Pareto front consists of an isolated Pareto optimal solution (0, 1), and N
disconnected parts, the ith part is

2 2
2 1 1

2 1 21 , () () , 1,....,
2 2
i if f f i N
N N
−= − ≤ ≤ = [C.49]

2, 1 and 10N a n= = = in the CEC 2009 competition.

C03 Constrained Problem 3

The two objectives to be minimized:

1 1

2 2

2
1 1

1

2 2
2 1

2

202 (4 2 cos() 2)

2021 (4 2 cos() 2)

j
j

j J j J

j
j

j J j J

y
f x y

J j
y

f x y
J j

π

π
∈ ∈

∈ ∈

= + − +

= − + − +

∑ ∏

∑ ∏
 [C.50]

where

1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,

and

1sin (6), 2,....j j
jy x x j n
n
ππ= − + = [C.51]

300 Evolutionary Computation with Biogeography-based Optimization

The constraint is

2 2
2 1 1 2sin[(1)] 1 0f f a N f fπ+ − − + − ≥ [C.52]

The search space is 1[0,1] [2, 2]n−× − .

Its Pareto front consists of an isolated Pareto optimal solution (0, 1), and N
disconnected parts, the ith part is

2
2 1 1

2 1 21 , , 1,....,
2 2
i if f f i N
N N
−= − ≤ ≤ = [C.53]

2, 1 and 10N a n= = = in the CEC 2009 competition.

C04 Constrained Problem 4

The two objectives to be minimized:

1

2

1 1

2 1

()

1 ()

j j
j J

j j
j J

f x h y

f x h y
∈

∈

= +

= − +

∑

∑
 [C.54]

where

1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,

and

1sin (6), 2,....j j
jy x x j n
n
ππ= − + = [C.55]

The search space is 1[0,1] [2, 2]n−× − .

2
2

3 2if (1)() 2 2
0.125 (1) otherwise

t th t
t

⎧
< −⎪= ⎨

⎪ + −⎩

 [C.56]

Appendix C 301

and

2()jh t t= [C.57]

For 3, 4,....,j n= .

The constraint is

4
0

1 t

t
e

≥
+

 [C.58]

where

2 1 1
2sin (6) 0.5 0.25.t x x x
n
ππ= − + − + [C.59]

The Pareto front is

1 1

2 1 1

1 1

1 if 0 0.5
30.5 if 0.5 0.75
4

1 0.125 if 0.75 1

f f

f f f

f f

− ≤ ≤⎧
⎪⎪= − + ≤ ≤⎨
⎪

− + ≤ ≤⎪⎩

 [C.60]

10n = in the CEC 2009 competition.

C05 Constrained Problem 5

The two objectives to be minimized:

1

2

1 1

2 1

()

1 ()

j j
j J

j j
j J

f x h y

f x h y
∈

∈

= +

= − +

∑

∑
 [C.61]

where

1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,

302 Evolutionary Computation with Biogeography-based Optimization

and

1 1 1

1 1 2

0.8 cos (6), if

0.8 sin (6), if

j

j

j

jx x x j J
ny

jx x x j J
n

ππ

ππ

⎧ − + ∈⎪⎪= ⎨
⎪ − + ∈
⎪⎩

 [C.62]

2
2

3 2if (1)() 2 2
0.125 (1) otherwise

t th t
t

⎧
< −⎪= ⎨

⎪ + −⎩

 [C.63]

and

2() 2 cos(4) 1jh t t tπ= − + [C.64]

for 3, 4,....,j n= .

The search space is 1[0,1] [2, 2]n−× −

The constraint is

2 1 1 1
20.8 sin (6) 0.5 0.25 0x x x x
n
ππ− + − + ≥ [C.65]

The Pareto front is

1 1

2 1 1

1 1

1 if 0 0.5
30.5 if 0.5 0.75
4

1 0.125 if 0.75 1

f f

f f f

f f

− ≤ ≤⎧
⎪⎪= − + ≤ ≤⎨
⎪

− + ≤ ≤⎪⎩

 [C.66]

10n = in the CEC 2009 competition.

C06 Constrained Problem 6

The two objectives to be minimized:

2
1

2

2
1 1

2
2 1(1)

j
j J

j
j J

f x y

f x y
∈

∈

= +

= − +

∑

∑
 [C.67]

Appendix C 303

where

1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,

and

1 1 1

1 1 2

0.8 cos (6), if

0.8 sin (6), if

j

j

j

jx x x j J
ny

jx x x j J
n

ππ

ππ

⎧ − + ∈⎪⎪= ⎨
⎪ − + ∈
⎪⎩

 [C.68]

The search space is 1[0,1] [2, 2]n−× − .

The constraint is

2 1 1 1

2 2
1 1 1

20.8 sin (6) (0.5(1)

(1)) 0.5(1) (1) 0

x x x sign x
n

x x x

ππ− + − −

− − − − − ≥
 [C.69]

and

4 1 1 1

1 1 1

20.8 sin (6) (0.25(1)

0.5(1)) 0.25(1) 0.5(1) 0

x x x sign x
n

x x x

ππ− + − −

− − − − − ≥
 [C.70]

The Pareto front is

2
1 1

2 1 1

1 1

(1) if 0 0.5
0.5(1) if 0.5 0.75

0.25 (1) if 0.75 1

f f
f f f

f f

⎧ − ≤ ≤
⎪

= − ≤ ≤⎨
⎪ − ≤ ≤⎩

 [C.71]

10n = in the CEC 2009 competition.

304 Evolutionary Computation with Biogeography-based Optimization

C07 Constrained Problem 7

The two objectives to be minimized:

1

2

1 1

2
2 1

()

(1) ()

j j
j J

j j
j J

f x h y

f x h y
∈

∈

= +

= − +

∑

∑
 [C.72]

where

1 2{ is odd and 2 } and { is even and 2 }J j j j n J j j j n= ≤ ≤ = ≤ ≤ ,

and

1 1

1 2

cos (6), if

sin (6), if

j

j

j

jx x j J
ny

jx x j J
n

ππ

ππ

⎧ − + ∈⎪⎪= ⎨
⎪ − + ∈
⎪⎩

 [C.73]

2
2 4() ()h t h t t= =

and

2() 2 cos(4) 1jh t t tπ= − + [C.74]

for 3, 4,....,j n= .

The search space is 1[0,1] [2, 2]n−× − .

The constraint is

2 1 1

2 2
1 1 1

2sin (6) (0.5(1)

(1)) 0.5(1) (1) 0

x x sign x
n

x x x

ππ− + − −

− − − − − ≥
 [C.75]

and

4 1 1

1 1 1

4sin (6) (0.25 1

0.5(1)) 0.25 1 0.5(1) 0

x x sign x
n

x x x

ππ− + − −

− − − − − ≥
 [C.76]

Appendix C 305

The Pareto front is

2
1 1

2 1 1

1 1

(1) if 0 0.5
0.5(1) if 0.5 0.75

0.25 (1) if 0.75 1

f f
f f f

f f

⎧ − ≤ ≤
⎪

= − ≤ ≤⎨
⎪ − ≤ ≤⎩

 [C.77]

10n = in the CEC 2009 competition.

C08 Constrained Problem 8

The three objectives to be minimized:

1

2

3

2
1 1 2 2 1

1

2
2 1 2 2 1

2

2
3 1 2 1

3

2cos(0.5)cos(0.5) (2 sin(2))

2cos(0.5)sin(0.5) (2 sin(2))

2sin(0.5) (2 sin(2))

j
j J

j
j J

j
j J

jf x x x x x
J n

jf x x x x x
J n

jf x x x x
J n

ππ π π

ππ π π

ππ π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.78]

where

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.79]

The search space is 2 2[0,1] [4,4]n−× − .

The constraint is

2 2 2 2
1 2 1 2

2 2
3 3

sin[(1)] 1 0
1 1
f f f f

a N
f f

π+ −
− + − ≥

− −
 [C.80]

Its Pareto front will have 2 1N + disconnected parts:

1
2 2

1 3

1
2 2 2

2 1 3

3

[(1)]
2

[1]
0 1

if f
N

f f f
f

= −

= − −
≤ ≤

 [C.81]

306 Evolutionary Computation with Biogeography-based Optimization

for 0,1,...., 2j N= .

2, 4 and 10N a n= = = in the CEC 2009 competition.

C09 Constrained Problem 9

The three objectives to be minimized:

1

2

3

2
1 1 2 2 1

1

2
2 1 2 2 1

2

2
3 1 2 1

3

2cos(0.5)cos(0.5) (2 sin(2))

2cos(0.5)sin(0.5) (2 sin(2))

2sin(0.5) (2 sin(2))

j
j J

j
j J

j
j J

jf x x x x x
J n

jf x x x x x
J n

jf x x x x
J n

ππ π π

ππ π π

ππ π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.82]

where

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.83]

The search space is 2 2[0,1] [2,2]n−× − .

The constraint is

2 2 2 2
1 2 1 2

2 2
3 3

sin[(1)] 1 0
1 1
f f f f

a N
f f

π+ −
− + − ≥

− −
 [C.84]

Its Pareto front consists of a curve:

1

2
1

2 2
3 2

0
0 1

(1)

f
f

f f

=
≤ ≤

= −

 [C.85]

Appendix C 307

and N disconnected nonlinear surfaces, the ith one is

3
1 1

2 22 2
3 1 3

1
2 2 2

2 1 3

0 1

2 1 2{ (1)} { (1)}
2 2

[1]

f

i if f f
N N

f f f

≤ ≤

− − ≤ ≤ −

= − −

 [C.86]

2, 3 and 10N a n= = = in the CEC 2009 competition.

C10 Constrained Problem 10

The three objectives to be minimized:

1

2

3

2
1 1 2

1

2
2 1 2

2

2
3 1

3

2cos(0.5) cos(0.5) [4 cos(8) 1]

2cos(0.5)sin(0.5) [4 cos(8) 1]

2sin(0.5) [4 cos(8) 1]

j j
j J

j j
j J

j j
j J

f x x y y
J

f x x y y
J

f x y y
J

π π π

π π π

π π

∈

∈

∈

= + − +

= + − +

= + − +

∑

∑

∑

 [C.87]

where

1

2

3

{ 3 ,and 1 is a multiple of 3}

{ 3 ,and 2 is a multiple of 3}

{ 3 ,and is a multiple of 3}

J j j n j

J j j n j

J j j n j

= ≤ ≤ −

= ≤ ≤ −

= ≤ ≤

 [C.88]

and

1sin (6), 2,....j j
jy x x j n
n
ππ= − + = [C.89]

for 3,....,j n= .

The search space is 2 2[0,1] [2,2]n−× − .

308 Evolutionary Computation with Biogeography-based Optimization

The constraint is

2 2 2 2
1 2 1 2

2 2
3 3

sin[(1)] 1 0
1 1
f f f f

a N
f f

π+ −
− + − ≥

− −
 [C.90]

Its Pareto front consists of a curve:

1

2
1

2 2
3 2

0
0 1

(1)

f
f

f f

=
≤ ≤

= −

 [C.91]

and N disconnected nonlinear surfaces, the ith one is

3
1 1

2 22 2
3 1 3

1
2 2 2

2 1 3

0 1

2 1 2{ (1)} { (1)}
2 2

[(1)]

f

i if f f
N N

f f f

≤ ≤

− − ≤ ≤ −

= − −

 [C.92]

2, 1 and 10N a n= = = in the CEC 2009 competition.

Bibliography

[ADL 94] ADLER F., NUERNBERGER B., “Persistence in patchy irregular landscapes”,
Theoretical Population Biology, vol. 45, no. 1, pp. 1989–2017, 1994.

[ALE 96] ALEXANDER R., Optima for Animals, Princeton University Press, 1996.

[ARN 03] ARNOLD D.-V., BEYER H.-G., “On the effects of outliers on evolutionary
optimization”, Lecture Notes in Computer Science, vol. 2690, no. 2690, pp. 151–160,
2003.

[ASA 11] ASAFUDDOULA M., RAY T., SARKER, R., “An adaptive differential evolution
algorithm and its performance on real world optimization problems”, IEEE Congress on
Evolutionary Computation, New Orleans, pp. 1057–1062, 2011.

[BAC 96] BACK T., Evolutionary Algorithms in Theory and Practice, Oxford University
Press, 1996.

[BAN 90] BANZHAF W., “The ‘molecular’ traveling salesman”, Biological Cybernetics,
vol. 64, no. 1, pp. 7–14, 1990.

[BEA 99] BEAULIEU N., “On the generalized multinomial distribution, optimal multinomial
detectors, and generalized weighted partial decision detectors”, IEEE Transactions on
Communications, vol. 39, no. 2, pp. 193–194, 1999.

[BEL 61] BELLMAN R., Adaptive Control Processes: A Guided Tour, Princeton University
Press, 1961.

[BEY 02] BEYER H.G., SCHWEFEL H.P., “Evolution strategies: a comprehensive introduction”,
Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[BEY 07] BEYER H.G., SENDHOFF B., “Robust optimization – a comprehensive survey”,
Computer Methods in Applied Mechanics & Engineering, vol. 196, no. 33, pp. 3190–
3218, 2007.

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

310 Evolutionary Computation with Biogeography-based Optimization

[BHA 10] BHATTACHARYA A., CHATTOPADHYAY P., “Hybrid differential evolution with
biogeography-based optimization for solution of ecomomic load dispath”, IEEE
Transactions on Power Systems, vol. 25, no. 4, pp. 1955–1964, 2010.

[BLU 11] BLUM C., PUCHINER J., RAIDL G. et al., “Hybrid metaheuristics in combinatorial
optimization: a survey”, Applied Soft Computing, vol. 11, no. 6, pp. 4135–4151, 2011.

[BOU 11a] BOUSSAÏD I., CHATTERJEE A., SIARRY P. et al., “Two-stage update biogeography
based optimization using differential evolution algorithm (DBBO)”, Computers &
Operations Research, vol. 38, no. 8, pp. 1188–1198, 2011.

[BOU 11b] BOUSSAЇD I., CHATTERJEE A., SIARRY P. et al., “Hybridizing biogeography-based
optimization with differential evolution for optimal power allocation in wireless sensor
networks”, IEEE Transactions on Vehicle Technology, vol. 60, no. 5, pp. 2347–2353,
2011.

[BOU 13] BOUSSAÏD I., LEPAGNOT J., SIARRY P., “A survey on optimization metaheuristics”,
Information Sciences, vol. 237, pp. 82–117, 2013.

[BRA 07] BRATTON D., KENNEDY J., “Defining a standard for particle swarm optimization”,
IEEE Swarm Intelligence Symposium, Honolulu, Hawaii, pp. 120–127, 2007.

[BRE 09] BREST J., “Constrained real-parameter optimization with є-self-adaptive differential
evolution”, in MEZURA-MONTES E. (ed.), Constraint-Handling in Evolutionary
Computation, Springer, 2009.

[CAR 98] CARLSON S., SHONKWILER R., “Annealing a genetic algorithm over constraints”,
IEEE International Conference on Systems, Man, and Cybernetics, San Diego, pp. 3931–
3936, 1998.

[CAS 89] CASWELL H., Matrix Population Models, Sinauer Associates, 1989.

[CHA 12] CHATTERJEE A., SIARRY P., NAKIB A. et al., “An improved biogeography-based
optimization approach for segmentation of human head CT-scan images employing fuzzy
entropy”, Engineering Applications of Artificial Intelligence, vol. 25, no. 8, pp. 1698–
1709, 2012.

[CHO 13] CHOI T.M., YEUNG W.K., CHENG T.C.E., “Scheduling and co-ordination of multi-
suppliers single-warehouse-operator single-manufacturer supply chains with variable
production rates and storage costs”, International Journal of Production Research,
vol. 51, no. 9, pp. 2593–2601, 2013.

[CHU 92] CHUAN-CHONG C., KHEE-MENG K., Principles and Techniques in Combinatorics,
World Scientific, Hackensack, 1992.

[COE 02a] COELLO COELLO C., “Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: a survey of the state of the art”, Computer Methods in
Applied Mechanics and Engineering, vol. 191, nos 11–12, pp. 1245–1287, 2002.

[COE 02b] COELLO COELLO C., “Use of a self-adaptive penalty approach for engineering
optimization technique”, Computers in Industry, vol. 41, no. 2, pp. 113–127, 2002.

Bibliography 311

[COE 06] COELLO COELLO C., “Evolutionary multiobjective optimization: a historical view of
the field”, IEEE Computational Intelligence Magazine, vol. 1, no. 1, pp. 28–36, 2006.

[COE 09] COELLO COELLO C., “Evolutionary multi-objective optimization: some current
research trends and toptics that remain to be explored”, Frontiers of Computer Science in
China, vol. 3, no. 1, pp. 18–30, 2009.

[COE 11] COELLO COELLO C., MEZURA-MONTES E., “Constraint-handling in nature-inspired
numerical optimization: past, present and future”, Swarm and Evolutionary Computation,
vol. 1, no. 4, pp. 173–194, 2011.

[COE 16a] COELLO COELLO C., “List of references on evolutionary multiobjective
optimization”, available at: http://delta.cs.cinvestav.mx/~ccoello/EMOO/EMOObib.html,
2016.

[COE 16b] COELLO COELLO C., “List of references on constraint-handling techniques used
with evolutionary algorithms”, available at: https://www.cs.cinvestav.mx/~constraint/,
2016.

[COU 43] COURANT R., “Variational methods for the solution of problems of equilibrium and
vibrations”, Bulletin of the American Mathematical Society, vol. 49, no. 1, pp. 1–23, 1943.

[COV 67] COVER T., HART P., “Nearest neighbor pattern classification”, IEEE Transactions
on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[DAS 10] DAS S., SUGANTHAN P.N., Problem definitions and evaluation criteria for CEC 2011
competition on testing evolutionary algorithms on real world optimization problems,
Technical report, Jadavpur University, Nanyang Technological University, 2010.

[DAS 11a] DAS S., SUGANTHAN P.N., “Differential evolution – a survey of the state-of-the-
art”, IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4–31, 2011.

[DAS 11b] DAS S., MAITY S., QU B.-Y. et al., “Real-parameter evolutionary multimodal
optimization − a survey of the state-of-the-art”, Swarm and Evolutionary Computation,
vol. 1, no. 2, pp. 71–88, 2011.

[DAV 85] DAVIS L., “Job shop scheduling with genetic algorithms”, International Conference
on Genetic Algorithms and Their Application, Pittsburgh, Pennsylvania, pp. 136–140,
1985.

[DAV 93] DAVIS T., PRINCIPE J., “A Markov chain framework for the simple genetic
algorithm”, Evolutionary Computation, vol. 1, no. 3, pp. 269–288, 1993.

[DEB 99] DEB K., AGRAWAL S., “A niched-penalty approach for constraint handling in
genetic algorithms”, International Conference on Artificial Neural Nets and Genetic
Algorithms, Portoroz, Slovenia, pp. 235–242, 1999.

[DEB 00a] DEB K., “An efficient constraint handling method for genetic algorithms”,
Computer Methods in Applied Mechanics and Engineering, vol. 186, nos 2–4, pp. 311–
338, 2000.

312 Evolutionary Computation with Biogeography-based Optimization

[DEB 00b] DEB K., AGRAWAL S., PRATAP A. et al., “A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II”, in SCHOENAUER M., DEB
K., RUDOLPH G. et al. (eds), Parallel Problem Solving from Nature – PPSN VI, Springer,
2000.

[DEB 02] DEB K., PRATAP A., AGRAWAL S. et al., “A fast and elitist multi-objective
optimization genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[DU 09] DU D., Biogeography-based optimization: synergies with evolutionary strategies,
immigration refusal, and Kalman filters, Masters Thesis, Cleveland State University,
2009.

[DU 13] DU D., SIMON D., “Biogeography-based optimization for large scale combinatorial
problem”, in IGELNIC B., ZURADA J. (eds), Efficiency and Scalability Methods for
Computational Intellect, IGI Global, 2013.

[EHR 05] EHRGOTT M., Multicriteria Optimization, Springer, 2005.

[EIB 01] EIBEN A., “Evolutionary algorithms and constraint satisfaction: definitions, survey,
methodology, and research directions”, in KALLEL L., NAUDTS B., ROGERS A. (eds),
Theoretical Aspects of Evolutionary Commutating, Springer, 2001.

[ELT 58] ELTON C., Ecology of Invasions by Animals and Plants, Chapman & Hall, London,
1958.

[ERG 09] ERGEZER M., SIMON D., DU D., “Oppositional biogeography-based optimization”,
IEEE Conference on Systems, Man, and Cybernetics, San Antonio, Texas, pp. 1035–1040,
2009.

[ERG 14] ERGEZER M., SIMON D., “Mathematical and experimental analyses of oppositional
algorithms”, IEEE Transactions on Cybernetics, vol. 44, no. 11, pp. 2178–2189, 2014.

[ERG 15] ERGEZER M., SIMON D., “Probabilistic properies of fitness-based quasi-reflection in
evolutionary algorithms”, Computer & Operations Research, vol. 63, pp. 114–124, 2015.

[EUS 03] EUSUFF M., LANSEY K., “Optimization of water distribution network design using
the shuffled frog leaping algorithm (SFLA)”, Journal of Water Resources Planning and
Management, vol. 129, no. 3, pp. 210–225, 2003.

[FIT 88] FITZPATRICK J.M., GREFENSTETTE J.J., “Genetic algorithms in noisy environments”,
Machine Learning, vol. 3, no. 2, pp. 101–120, 1988.

[FLE 05] FLEMING P., PURSHOUSE R., LYGOE R., “Many-objective optimization: an
engineering design perspective”, in COELLO COELLO C., HERNÁNDEZ AGUIRRE A., ZITZLER
E. (eds), Evolutionary Multi-Criterion Optimization, Springer, 2005.

[FOG 88] FOGEL D., “An evolutionary approach to the traveling salesman problem”,
Biological Cybernetics, vol. 60, no. 2, pp. 139–144, 1988.

[FOG 90] FOGEL D., “A parallel processing approach to a multiple traveling salesman
problem using evolutionary programming”, Fourth Annual Parallel Processing
Symposium, Fullerton, California, pp. 318–326, 1990.

Bibliography 313

[FOX 91] FOX B., MCMAHON M., “Genetic operators for sequencing problems”, in RAWLINS
G. (ed.), Foundations of Genetic Algorithms, Springer, 1991.

[GAG 12] GAGLIARDI J.P., RENAUD J., RUIZ A., “Models for automated storage and retrieval
systems: a literature review”, International Journal of Production Research, vol. 50,
no. 24, pp. 7110–7125, 2012.

[GHO 11] GHOSH A., DAS S., CHOWDHURY A. et al., “An improved differential evolution
algorithm with fitness-based adaptation of the control parameters”, Information Sciences,
vol. 181, no. 18, pp. 3749–3765, 2011.

[GOL 89] GOLDBERG D., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison Wesley, 1989.

[GON 11] GONG W., FIALHO Á., CAI Z. et al., “Adaptive strategy selection in differential
evolution for numerical optimization: an empirical study”, Information Sciences, vol. 181,
no. 24, pp. 5364–5386, 2011.

[GOT 08] GOTELLI N., A Primer of Ecology, Sinauer Associates, 2008.

[GRI 97] GRINSTEAD C., SNELL J., Introduction to Probability, American Mathematical
Society, Providence, 1997.

[GRO 05] GROOM M., MEFFE G., CARROLL C., Principles of Conservation Biology, Sinauer
Associates, 2005.

[GUO 01] GUO G., YU S., “The unified method analyzing convergence of genetic algorithms”,
Control Theory and Applications, vol. 18, no. 3, pp. 43–446, 2001.

[HAD 93] HADJ-ALOUANE A., BEAN J., A genetic algorithm for the multiple choice integer
program, Technical report, Department of Industrial and Operations Engineering,
University of Michigan, 1993.

[HAN 97] HANSKE I., GILPIN M., Metapopulation Biology, Academic Press, 1997.

[HAN 99] HANSKI I., “Habitat connectivity, habitat continuity, and metapopulations in
dynamic handscapes”, Oikos, vol. 87, no. 2, pp. 209–219, 1999.

[HAN 09] HANSEN N., NIEDERBERGER A., GUZZELLA L. et al., “A method for handling
uncertainty in evolutionary optimization with an application to feedback control of
combustion”, IEEE Transactions on Evolutionary Computation, vol. 13, no. 1, pp. 180–
197, 2009.

[HAR 06] HARDING S., Animate Earth, Chelsea Green Publishing Company, 2006.

[HE 99] HE J., KANG L., “On the convergence rates of genetic algorithms”, Theoretical
Computer Science, vol. 229, no. 1, pp. 23–39, 1999.

[HOL 75] HOLLAND J., Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

[HOM 94] HOMAIFAR A., QI C., LAI S., “Constrained optimization via genetic algorithms”,
Simulation, vol. 62, no. 4, pp. 242–253, 1994.

314 Evolutionary Computation with Biogeography-based Optimization

[HOR 94] HORN J., NAFPLIOTIS N., GOLDBERG D., “A niched Pareto genetic algorithm for
multiobjective optimization”, IEEE Congress on Evolutionary Computation, Orlando,
Florida, pp. 82–87, 1994.

[IOS 80] IOSIFESCU M., Finite Markov Processes and Their Applications, John Wiley & Sons,
1980.

[JAI 05] JAIMES A.L., COELLO COELLO C., “MRMOGA: parallel evolutionary multiobjective
optimization using multiple resolutions”, IEEE Congress on Evolutionary Computation,
pp. 2294–2301, 2005.

[JAS 06] JASZKIEWICZ A., ZIELNIEWICZ S., “Pareto memetic algorithm with path relinking for
bi-objective traveling salesperson problem”, European Journal of Operational Research,
vol. 193, no. 3, pp. 885–890, 2006.

[JIN 05] JIN Y., BRANKE J., “Evolutionary optimization in uncertain environments – a
survey”, IEEE Transactions on Evolutionary Computation, vol. 9, no. 3, pp. 303–317,
2005.

[JOH 97] JOHNSON D., MCGEOCH L., “The traveling salesman problem: a case study in local
optimization”, in AARTS E., LENSTRA J. (eds), Local Search in Combinatorial
Optimization, Princeton University Press, 1997.

[JOI 94] JOINES J., HOUCK C., “On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with GA’s”, IEEE World Congress on
Computational Intelligence, Orlando, Florida, 1994.

[KAL 60] KALMAN R.E., “A new approach to linear filtering a prediction problem”, Journal
of Basic Engineering, vol. 82, pp. 35–45, 1960.

[KAR 07] KARABOGA D., BASTURK B., “A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm”, Journal Global
Optimization, vol. 39, pp. 459–471, 2007.

[KEE 97] KEEL L., BHATTACHARYYA S., “Robust, fragile, or optimal?”, IEEE Transactions on
Automatic Control, vol. 42, no. 8, pp. 1098–1105, 1997.

[KEN 74] KENNEDY J., SNELL J., THOMPSON G., Introduction to Finite Mathematics, Prentice-
Hall, 1974.

[KEN 95] KENNEDY J., EBERHART R., “Particle swarm optimization”, IEEE International
Conference on Neural Networks, Perth, WA, pp. 1942–1948, 1995.

[KEY 01] KEYNES R. (ed.), Charles Darwin’s Beagle Diary, Cambridge University Press,
2001.

[KHA 98] KHATIB W., FLEMING P., “The stud GA: a mini revolution?”, in EIBEN A., BACK T.,
SCHOENAUER M. et al. (eds), Parallel Problem Solving from Nature, Springer, 1998.

[KHA 03] KHARE V., YAO X., DEB K., “Performance scaling of multi-objective evolutionary
algorithms”, in FONSECA C., FLEMING P., ZITZLER E. et al. (eds), Evolutionary Multi-
Criterion Optimization: Second International Conference, 2003.

Bibliography 315

[KLE 04] KLEIDON A., “Amazonian biogeography as a test for Gaia”, in SCHNEIDER S.,
MILLER J., CRIST E. et al. (eds), Scientists Debate Gaia, MIT Press, 2004.

[KON 06] KONDOH M., “Does foraging adaptation create the positive complexity–stability
relationship in realistic food-web structure?”, Journal of Theoretical Biology, vol. 238,
no. 3, pp. 646–651, 2006.

[LAS 10] LASSIG J., SUDHOLT D., “The benefit of migration in parallel evolutionary
algorithms”, Genetic and Evolutionary Computation Conference, pp. 1105–1112, 2010.

[LEG 09] LEGUIZAMÓN G., COELLO COELLO C., “Boundary search for constrained numerical
optimization problems”, in MEZURA-MONTES E. (ed.), Constraint-Handling in
Evolutionary Computation, MIT Press, 2009.

[LEI 79] LEIGHTON F., “A graph coloring algorithm for large scheduling problems”, Journal
of Research of the National Bureau of Standards, vol. 84, pp. 489–505, 1979.

[LEN 98] LENTON T., “Gaia and natural selection”, Nature, vol. 394, no. 6692, pp. 439–447,
1998.

[LER 15] LERHER T., EKREN B.Y., SARI Z. et al., “Simulation analysis of shuttle based storage
and retrieval systems”, International Journal of Simulation Modelling, vol. 14, no. 1,
pp. 11–23, 2015.

[LI 03] LI X., SHAO Z., QIAN J., “An optimizing method based on autonomous animals: fish-
swarm algorithm”, Systems Engineering – Theory and Practice, vol. 22, no. 11, pp. 32–
38, 2003.

[LIA 06] LIANG J.J., RUNARSSON T.P., MEZURA-MONTES E. et al., Problem definitions and
evaluation criteria for the CEC 2006 special session on constrained real-parameter
optimization, Technical report, Nanyang Technological University, Singapore, 2006.

[LOM 00a] LOMOLINO M., “A call for a new paradigm of island biogeography”, Global
Ecology and Biogeography, vol. 9, no. 1, pp. 1–6, 2000.

[LOM 00b] LOMOLINO M., “A species-based theory of insular zoogeography”, Global
Ecology and Biogeography, vol. 9, no. 1, pp. 39–58, 2000.

[LOV 90] LOVELOCK J., “Hands up for the Gaia hypothesis”, Nature, vol. 344, no. 6262,
pp. 100–102, 1990.

[LOV 95] LOVELOCK J. (ed.) Gaia, Oxford University Press, 1995.

[LUN 86] LUNDY M., MEES A., “Convergence of an annealing algorithm”, Mathematical
Programming, vol. 34, no. 1, pp. 111–124, 1986.

[MA 09] MA H., NI S., SUN M., “Equilibrium species counts and migration model tradeoffs
for biogeography-based optimization”, IEEE Conference on Decision and Control and
28th Chinese Control Conference, Shanghai, China, pp. 3306–3310, 2009.

316 Evolutionary Computation with Biogeography-based Optimization

[MA 10a] MA H., “An analysis of the equilibrium of migration models for biogeography-
based optimization”, Information Sciences, vol. 180, no. 18, pp. 3444–3464, 2010.

[MA 10b] MA H., SIMON D., “Biogeography-based optimization with blended migration for
constrained optimization problems”, Genetic and Evolutionary Computation Conference
(GECCO), Portland, Oregon, USA, pp. 417–418, 2010.

[MA 11a] MA H., SIMON D., “Blended biogeography-based optimization for constrained
optimization”, Engineering Applications of Artificial Intelligence, vol. 24, no. 3, pp. 517–
525, 2011.

[MA 11b] MA H., SIMON D., “Analysis of migration models of biogeography-based
optimization using Markov theory”, Engineering Applications of Artificial Intelligence,
vol. 24, no. 6, pp. 1052–1060, 2011.

[MA 13a] MA H., SIMON D., FEI M. et al., “On the equivalences and differences of
evolutionary algorithms”, Engineering Applications of Artificial Intelligence, vol. 26,
no. 10, pp. 2397–2407, 2013.

[MA 13b] MA H., SIMON D., FEI M. et al., “Variations of biogeography-based optimization
and Markov analysis”, Information Sciences, vol. 220, no. 1, pp. 492–506, 2013.

[MA 14a] MA H., SIMON D., FEI M., “On the convergence of biogeography-based
optimization for binary problems”, Mathematical Problems in Engineering, vol. 2014, 11
pp., 2014.

[MA 14b] MA H., SIMON D., FEI M. et al., “Hybrid biogeography-based evolutionary
algorithms”, Engineering Applications of Artificial Intelligence, vol. 30, pp. 213–224, 2014.

[MA 15a] MA H., FEI M., SIMON D. et al., “Biogeography-based optimization in noisy
environments”, Transactions of the Institute of Measurement and Control, vol. 37, no. 2,
pp. 190–204, 2015.

[MA 15b] MA H., SU S., SIMON D. et al., “Ensemble multi-objective biogeography-based
optimization with application to automated warehouse scheduling”, Engineering
Applications of Artificial Intelligence, vol. 44, pp. 79–90, 2015.

[MA 16a] MA H., SIMON D., FEI M., “Statistical mechanics approximation of biogeography-
based optimization”, Evolutionary Computation, vol. 24, pp. 3427–3458, 2016.

[MA 16b] MA H., SIMON D., FEI M. et al., “Interactive Markov models of optimization search
strategies”, IEEE Transactions on Systems, Man and Cybernetics: Systems, In press,
2016.

[MA 16c] MA H., YE S., SIMON D. et al., “Conceptual and numerical comparisons of swarm
intelligence optimization algorithms”, Soft Computing, In press, 2016.

[MAC 55] MACARTHUR R., “Fluctuations of animal populations and a measure of community
stability”, Ecology, vol. 36, no. 3, pp. 533–536, 1955.

[MAC 67] MACARTHUR R., WILSON E., The Theory of Island Biogeography, Princeton
University Press, 1967.

Bibliography 317

[MAK 10] MAKEYEV O., SAZONOV E., MOKLYACHUK M. et al., “Hybrid evolutionary
algorithm for microscrew thread parameter estimation”, Engineering Applications of
Artificial Intelligence, vol. 23, no. 4, pp. 446–452, 2010.

[MAL 10] MALLIPEDDI R., SUGANTHAN P.N., Problem definitions and evaluation criteria for
the CEC 2010 competition on constrained real-parameter optimization, Technical report,
Nanyang Technological University, Singapore, 2010.

[MAR 96] MARGULIS L., “Gaia is a tough bitch”, in BROCKMAN J. (ed.), The Third Culture:
Beyond the Scientific Revolution, Touchstone, 1996.

[MAY 73] MAY R., Stability and Complexity in Model Ecosystems, Princeton University
Press, 1973.

[MCC 00] MCCANN K., “The diversity–stability debate”, Nature, vol. 405, no. 6783, pp. 228–
233, 2000.

[MCT 08] MCTAVISH T., RESTREPO D., “Evolving solutions: the genetic algorithm and
evolution strategies for finding optimal parameters”, in SMOLINSKI T., MILANOVA M.,
HASSANIEN A. (eds), Applications of Computational Intelligence in Biology, Springer,
2008.

[MIC 96a] MICHALEWICZ Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer, 1996.

[MIC 96b] MICHALEWICZ Z., SCHOENAUER M., “Evolutionary algorithms for constrained
parameter optimization problems”, Evolutionary Computation, vol. 4, no. 1, pp. 1–32,
1996.

[MIT 05] MITZENMACHER M., UPFAL E., Probability and Computing: Randomized Algorithms
and Probabilistic Analysis, Cambridge University Press, 2005.

[MON 12] MONGUS D., REPNIK B., MERNIK M. et al., “A hybrid evolutionary algorithm for
tuning a cloth-simulation model”, Applied Soft Computing, vol. 12, no. 1, pp. 266–273,
2012.

[MOR 98] MORALES A., QUEZADA C., “A universal eclectic genetic algorithm for constrained
optimization”, Sixth European Congress on Intelligent Techniques and Soft Computing,
Aachen, Germany, pp. 518–522, 1998.

[MÜH 93] MÜHLENBEIN H., SCHLIERKAMP-VOOSEN D., “Predictive models for the breeder
genetic algorithm I. Continuous parameter optimization”, Evolutionary Computation,
vol. 1, no. 1, pp. 25–49, 1993.

[NEK 99] NEKOLA C., WHITE S., “The distance decay of similarity in biogeography and
ecology”, Journal of Biogeography, vol. 26, pp. 867–878, 1999.

[NER 08] NERI F., GARCIA X.T., CASCELLA G.L. et al., “Surrogate assisted local search in
PMSM drive design”, Compel International Journal of Computations & Mathematics in
Electrical, vol. 27, no. 3, pp. 573–592, 2008.

318 Evolutionary Computation with Biogeography-based Optimization

[NGU 07] NGUYEN H.D., YOSHIHARA I., YAMAMORI K. et al., “Implementation of an effective
hybrid GA for large-scale traveling salesman problems”, IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 37, no. 1, pp. 92–99, 2007.

[NIK 09] NIKNAM T., “An efficient hybrid evolutionary algorithm based on PSO and HBMO
algorithms for multi-objective distribution feeder reconfiguration”, Energy Conversion
and Management, vol. 50, no. 8, pp. 2074–2082, 2009.

[NIX 92] NIX A., VOSE M., “Modeling genetic algorithms with Markov chains”, Annals of
Mathematics and Artificial Intelligence, vol. 5, no. 1, pp. 79–88, 1992.

[OKU 01] OKUBO A., LEVIN S., Diffusion and Ecological Problems, Springer, 2001.

[OLI 87] OLIVER I., SMITH D., HOLLAND J., “A study of permutation crossover operators on
the traveling salesman problem”, International Conference on Genetic Algorithms,
Cambridge, Massachusetts, pp. 224–230, 1987.

[ONG 07] ONG Y.-S., KRASNOGOR N., ISHIBUCHI H., “Special issue on memetic algorithms”,
IEEE Transactions on System, Man, Cybernetics – Part B: Cybernetics, vol. 37, no. 1,
pp. 2–5, 2007.

[PAS 02] PASSINO K., “Biomimicry of bacterial foraging”, IEEE Control Systems Magazine,
vol. 22, no. 3, pp. 52–67, 2002.

[PIE 04] PIETRO A., WHILE L., BARONE L., “Applying evolutionary algorithms to problems
with noisy, time-consuming fitness functions”, 2004 Congress on Evolutionary
Computation, Portland, Oregon, USA, pp. 1254–1261, 2004.

[POW 93] POWELL D., SKOLNICK M., “Using genetic algorithms in engineering design
optimization with non-linear constraints”, International Conference on Genetic
Algorithms, Urbana, Champaign, Illinois, pp. 424–432, 1993.

[PRO 11] PRODHON C., “A hybrid evolutionary algorithm for the periodic location-routing
problem”, European Journal of Operational Research, vol. 210, no. 2, pp. 204–212,
2011.

[PRÜ 94] PRÜGEL-BENNETT A., SHAPIRO J.L., “An analysis of genetic algorithms using
statistic mechanics”, Physics Review Letters, vol. 72, no. 9, pp. 1305–1324, 1994.

[QU 12] QU B., LIANG J., SUGANTHAN P.N., “Niching particle swarm optimization with local
search for multi-modal optimization”, Information Sciences, vol. 197, no. 15, pp. 131–
143, 2012.

[QUA 96] QUAMMEN D., The Song of the Dodo: Island Biogeography in an Age of
Extinctions, Scribner Press, 1996.

[RAH 08] RAHNAMAYAN S., TIZHOOSH H., SALAMA M., “Opposition-based differential
evolution”, IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 64–79,
2008.

[RAT 95] RATTRAY M., “The dynamics of a genetic algorithm under stabilizing selection”,
Complex Systems, vol. 9, no. 3, pp. 213–234, 1995.

Bibliography 319

[RAT 96a] RATTRAY M., SHAPIRO J.L., “The dynamics of a genetic algorithm for a simple
learning problem”, Journal of Physics A, vol. 29, no. 23, pp. 7451–7473, 1996.

[RAT 96b] RATTRAY M., Modeling the dynamics of genetic algorithms using statistical
mechanics, PhD Thesis, University of Manchester, 1996.

[RAY 09] RAY T., SINGH H., ISAACS A. et al., “Infeasibility driven evolutionary algorithm for
constrained optimization”, in MEZURA-MONTES E. (ed.), Constraint-Handling in
Evolutionary Computation, MIT Press, 2009.

[REC 68] RECHENBERG I., “Cybernetic solution path of an experimental problem”, in FOGEL D.
(ed.), Evolutionary Computation: The Fossil Record, Wiley-IEEE Press, 1968.

[REE 03] REEVES C., ROWE J., Genetic Algorithms: Principles and Perspectives, Kluwer
Academic Publishers, Norwell, 2003.

[REI 08] REINELT G., “TSPLIB”, available at: http://www.iwr.uni-heidelberg.de/groups/
comopt- /software/TSPLIB95/, 2008.

[ROS 67] ROSENBERG R., Simulation of genetic populations with biochemical properties, PhD
Thesis, University of Michigan, 1967.

[RUD 94] RUDOLPH G., “Convergence analysis of canonical genetic algorithm”, IEEE
Transactions on Neural Networks, vol. 5, no. 1, pp. 96–101, 1994.

[RUD 00] RUDOLPH G., AGAPIE A., “Convergence properties of some multi-objective
evolutionary algorithm”, IEEE Congress on Evolutionary Computation, San Diego,
California, pp. 1010–1016, 2000.

[RUN 00] RUNARSSON T., YAO X., “Stochastic ranking for constrained evolutionary
optimization”, IEEE Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 284–
294, 2000.

[SAV 08] SAVICKY P., ROBNIK-SIKONJA M., “Learning random numbers: a Matlab anomaly”,
Applied Artificial Intelligence, vol. 22, no. 3, pp. 254–265, 2008.

[SCH 85] SCHAFFER J., “Multiple objective optimization with vector evaluated genetic
algorithms”, International Conference on Genetic Algorithms and Their Application,
Pittsburgh, Pennsylvania, pp. 93–100, 1985.

[SCH 93] SCHWEFEL H.P., Evolution and Optimum Seeking, John Wiley & Sons, 1993.

[SCH 11] SCHÜTZE O., LARA A., COELLO COELLO C., “On the influence of the number of
objectives on the hardness of a multiobjective optimization problem”, IEEE Transactions
on Evolutionary Computation, vol. 15, no. 4, pp. 444–454, 2011.

[SHA 94] SHAPIRO J.L., PRÜGEL-BENNETT A., RATTRAY M., “A statistical mechanical
formulation of the dynamics of genetic algorithms”, Lecture Notes in Computer Science,
vol. 865, pp. 17–27, 1994.

[SIM 06] SIMON D., Optimal State Estimation, John Wiley & Sons, 2006.

[SIM 08] SIMON D., “Biogeography-based optimization”, IEEE Transactions on Evolutionary
Computation, vol. 12, no. 6, pp. 702–713, 2008.

320 Evolutionary Computation with Biogeography-based Optimization

[SIM 11a] SIMON D., “A dynamic system model of biogeography-based optimization”,
Applied Soft Computing, vol. 11, pp. 5652–5661, 2011.

[SIM 11b] SIMON D., ERGEZER M., DU D. et al., “Markov models for biogeography-based
optimization”, IEEE Transactions on Systems, Man, and Cybernetics – Part B:
Cybernetics, vol. 41, no. 1, pp. 299–304, 2011.

[SIM 11c] SIMON D., “A probabilistic analysis of a simplified biogeography-based
optimization algorithm”, Evolutionary Computation, vol. 19, no. 2, pp. 167–188, 2011.

[SIM 11d] SIMON D., RARICK R., ERGEZER M. et al., “Analytical and numerical comparisons
of biogeography-based optimization and genetic algorithms”, Information Sciences,
vol. 181, no. 7, pp. 1224–1248, 2011.

[SIM 13a] SIMON D., Evolutionary Optimization Algorithms, John Wiley & Sons, Hoboken,
2013.

[SIM 13b] SIMON D., SHAH A., SCHEIDEGGER C., “Distributed learning with biogeography-
based optimization: Markov modeling and robot control”, Swarm and Evolutionary
Computation, vol. 10, pp. 12–24, 2013.

[SIM 14] SIMON D., OMRAN M., CLERC M., “Linearized biogeography-based optimization
with re-initialization and local search”, Information Sciences, vol. 267, pp. 140–157,
2014.

[SPE 97] SPEARS W., DE JONG K., “Analyzing GAs using Markov models with semantically
ordered and lumped states”, in BELEW R., VOSE M. (eds), Foundations of Genetic
Algorithms, Springer, vol. 4, 1997.

[SRI 94] SRINIVAS N., DEB K., “Multiobjective optimization using nondominated sorting in
genetic algorithm”, Evolutionary Computation, vol. 2, no. 3, pp. 221–248, 1994.

[STR 01] STROUD P., “Kalman-extended genetic algorithm for search in nonstationary
environments with noisy fitness evaluations”, IEEE Transactions on Evolutionary
Computation, vol. 5, no. 1, pp. 66–77, 2001.

[SUG 05] SUGANTHAN P., HANSEN N., LIANG J. et al., Problem definitions and evaluation
criteria for the CEC 2005 special session on real-parameter optimization, Technical
report, Nanyang Technological University, Singapore, 2005.

[SUZ 95] SUZUKI J., “A Markov chain analysis on simple genetic algorithms”, IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 25, no. 4,
pp. 655–659, 1995.

[SUZ 98] SUZUKI J., “A further result on the Markov chain model of genetic algorithms and
its application to a simulated annealing-like strategy”, IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 28, no. 1, pp. 95–102, 1998.

[TAK 09] TAKAHAMA T., SAKAI S., “Solving difficult constrained optimization problems by
the є-constrained differential evolution with gradient-based mutation”, in MEZURA-
MONTES E. (ed.), Constraint-Handling in Evolutionary Computation, MIT Press,
2009.

Bibliography 321

[TAO 98] TAO G., MICHALEWICZ Z., “Inver-over operator for the TSP”, in EIBEN A., BACK T.,
SCHOENAUER M. et al. (eds), Parallel Problem Solving from Nature, Springer, 1998.

[TIL 94] TILMAN D., MAY R., LEHMAN C. et al., “Habitat destruction and the extinction debt”,
Nature, vol. 371, no. 3, pp. 65–66, 1994.

[TIN 13] TINOCO J., COELLO COELLO C., “hypDE: a hyper-heuristic based on differential
evolution for solving constrained optimization problems”, in SCHÜTZE O., COELLO
COELLO C., TANTAR A.-A. et al. (eds), EVOLVE – A Bridge between Probability, Set
Oriented Numerics, and Evolutionary Computation II, Springer, 2013.

[TIZ 08] TIZHOOSH H., VENTRESCA M., RAHNAMAYAN S., “Opposition-based computing”, in
TIZHOOSH H., VENTRESCA M. (eds), Oppositional Concepts in Computational Intelligence,
Springer, pp. 11–28, 2008.

[TRI 95] TRICK M., “Graph coloring instances”, available at: http://mat.gsia.cmu.edu/COLOR/
instances.html, 1995.

[VAN 87] VAN LAARHOVEN P.J., AARTS E.H., Simulated Annealing: Theory and Applications,
Springer, 1987.

[VAV 96] VAVAK F., FOGARTY T., “Comparison of steady state and generational genetic
algorithms for use in nonstationary environments”, IEEE conference on Evolutionary
Computation, Nagoya, Japan, pp. 192–195, 1996.

[VOL 97] VOLK T., Gaia’s Body: Toward a Physiology of Earth, Springer, 1997.

[VOS 90] VOSE M., “Formalizing genetic algorithms”, IEEE Workshop on Genetic
Algorithms, Neural Networks, and Simulated Annealing Applied to Signal and Image
Processing, Glasgow, Scotland, 1990.

[VOS 91] VOSE M., LIEPINS G., “Punctuated equilibria in genetic search”, Complex Systems,
vol. 5, no. 1, pp. 31–44, 1991.

[VOS 99] VOSE M., “Random heuristic search”, Theoretical Computer Science, vol. 229,
pp. 1224–1248, 1999.

[WAL 06] WALLACE A., The Geographical Distribution of Animals (Volumes 1 and 2),
Adamant Media Corporation, 2006.

[WAN 09] WANG Y., CAI Z., ZHOU Y. et al., “Constrained optimization based on hybrid
evolutionary algorithm and adaptive constraint-handling technique”, Structural and
Multidisciplinary Optimization, vol. 37, no. 4, pp. 395–413, 2009.

[WAN 11a] WANG L., FANG C., “An effective shuffled frog-leaping algorithm for multi-mode
resource-constrained project scheduling problem”, Information Sciences, vol. 181, no. 20,
pp. 4804–4822, 2011.

[WAN 11b] WANG L., XU Y., “An effective hybrid biogeography-based optimization
algorithm for parameter estimation of chaotic systems”, Expert Systems with Applications,
vol. 38, no. 12, pp. 15103–15109, 2011.

322 Evolutionary Computation with Biogeography-based Optimization

[WES 87] WESCHE T., GOERTLER G., HUBERT W., “Modified habitat suitability index model
for brown trout in southeastern Wyoming”, North American Journal of Fisheries
Management, vol. 7, no. 2, pp. 232–237, 1987.

[WHI 93] WHITTAKER R., BUSH M., “Dispersal and establishment of tropical forest
assemblages, Krakatoa, Indonesia”, in MILES J., WALTON D. (eds), Primary Succession on
Land, Blackwell Science, 1993.

[WHI 98] WHITTAKER R., Island Biogeography, Oxford University Press, 1998.

[WIE 92] WIENKE D., LUCASIUS C., KATEMAN G., “Multicriteria target vector optimization of
analytical procedures using a genetic algorithm: Part I. Theory, numerical simulations and
application to atomic emission spectroscopy”, Analytica Chimica Act, vol. 265, no. 2,
pp. 211–225, 1992.

[WIL 93] WILSON P., MACLEOD M., “Low implementation cost IIR digital filter design using
genetic algorithms”, IEEE Workshop on Natural Algorithms in Signal Processing,
Chelmsford, England, pp. 4–8, 1993.

[WIN 08] WINCHESTER S., The Day the World Exploded, Collins, Melbourne, 2008.

[WU 95] WU J., VANKAT J., “Island biogeography theory and applications”, in NIERENBERGY
W. (ed.), Encyclopedia of Environmental Biology, Academic Press, 1995.

[YAN 08] YANG X.S. (ed.), Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008.

[YAN 13] YANG W., DENG L., NIU Q. et al., “Improved shuffled frog leaping algorithm for
solving multi-aisle automated warehouse scheduling optimization”, Communications in
Computer and Information Science, vol. 402, pp. 82–92, 2013.

[YAO 99] YAO X., LIU Y., LIN G., “Evolutionary programming made faster”, IEEE
Transactions on Evolutionary Computation, vol. 3, no. 1, pp. 82–102, 1999.

[YEU 10] YEUNG W.K., CHOI T.M., CHENG T.C.E., “Optimal scheduling in a single-supplier
single-manufacturer supply chain with common due windows”, IEEE Transactions on
Automatic Control, vol. 55, pp. 2767–2777, 2010.

[YEU 11] YEUNG W.K., CHOI T.M., CHENG T.C.E., “Supply chain scheduling and
coordination with dual delivery modes and inventory storage cost”, International Journal
of Production Economics, vol. 132, pp. 223–229, 2011.

[YU 08] YU X., TANG K., CHEN T. et al., “Empirical analysis of evolutionary algorithms
with immigrants schemes for dynamic optimization”, Memetic Computing, vol. 1, no. 1,
pp. 3–24, 2008.

[ZAV 09] ZAVALA A., AGUIRRE A., DIHARCE E., “Continuous constrained optimization with
dynamic tolerance using the COPSO algorithm”, in MEZURA-MONTES E. (ed.),
Constraint-Handling in Evolutionary Computation, MIT Press, 2009.

[ZHA 08] ZHANG Q., ZHOU A., ZHAO S. et al., Multi-objective optimization test instances for
the CEC 2009 special session and competition, Technical report, University of Essex and
Nanyang Technological University, 2008.

Bibliography 323

[ZHA 11] ZHAO S.Z., SUGANTHAN P.N., DAS S., “Self-adaptive differential evolution with
multi-trajectory search for large-scale optimization”, Soft Computing, vol. 15, no. 11,
pp. 2175–2185, 2011.

[ZIT 90] ZITZLER E., THIELe L., “On set-based multiobjective optimization”, IEEE
Transactions on Evolutionary Computation, vol. 14, no. 1, pp. 58-79, 1990.

[ZIT 99] ZITZLER E., THIELE L., “Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach”, IEEE Transactions on Evolutionary
Computation, vol. 3, no. 4, pp. 257–271, 1999.

[ZIT 00] ZITZLER E., DEB K., THIELE L., “Comparison of multiobjective evolutionary
algorithms: empirical results”, Evolutionary Computation, vol. 8, no. 2, pp. 173–195,
2000.

[ZIT 03] ZITZLER E., THIELE L., LAUMANNS M. et al., “Performance assessment of
multiobjective optimizers: an analysis and review”, IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 117–132, 2003.

[ZIT 04] ZITZLER E., LAUMANNS M., BLEULER S., “A tutorial on evolutionary multiobjective
optimization”, Lecture Notes in Economics and Mathematical Systems, vol. 535, no. 3,
pp. 3–37, 2004.

Index

ε-level comparisons, 178, 179

A, B, C

adaptive penalty methods, 176, 177
algorithm-level hybridization, 250–254
ant colony optimization, 36
approximate fitness, 187
artificial

bee colony, 19, 22, 23
intelligence, 11, 145

binary, 61, 88, 125, 126, 132, 142
biogeography, 1
biogeography-based optimization, 1, 25
bio-inspired metaheuristics, 11, 23
biological optimization, 11
blended migration, 49–56
boundary search, 240–243
characteristic function, 124, 125, 127
combinatorial optimization, 145
constrained optimization, 169–172,

179–185, 233
convergence rate, 86–90, 187
cumulant generating function, 125
cycle migration, 150–152

D, E, F

Davis-Principe theorem, 65
deceptive function, 119, 121

differential evolution, 36, 238
displacement, 158, 159
domination, 204, 216
dynamic

penalty methods, 174–176
system model, 103

eclectic evolutionary algorithm, 174
ecosystem, 1, 4, 28, 31
ecosystem transition function, 31
elitism, 27, 38, 54, 82–87, 181, 182,

218, 219
equality constraints, 169, 171, 181, 182
equilibrium, 5, 6, 8, 9, 12, 15–17, 27
evolution strategy, 20, 247
explicit averaging, 187
extensions of BBO, 123
feasible set, 169, 182
finite population effects, 141, 142
fitness

evaluations, 193, 199
noise, 190

G, H, I

Gaussian distribution, 124, 125, 127
generalized

multinomial theorem, 71, 75
sinusoidal migration, 46, 48, 49, 56

Evolutionary Computation with Biogeography-based Optimization, First Edition.
Haiping Ma and Dan Simon.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.

326 Evolutionary Computation with Biogeography-based Optimization

genetic algorithm, 19, 20, 35, 36, 61, 111,
124, 247

geographical distribution, 2, 6, 44
global

optimum, 40, 43, 51, 55, 81, 83,
85–87, 239
uniform recombination, 35, 36, 78, 111

gradient descent, 240, 241
graph coloring, 163–165
grid search, 242, 243
habitat

similarity, 7, 12
suitability index, 4, 25, 28

high-HSI solutions, 26, 27
homogeneous, 2, 80
hybrid EAs, 233, 254, 257
implicit averaging, 187, 188
inequality constraints, 169, 171, 181, 220
infeasible set, 169, 176
influence of noise, 188, 190–193
initial immigration, 7
insertion mutation, 162
inver-over migration, 152, 153
inversion mutation, 161, 162
island biogeography, 1, 4, 6–8, 10, 11,

13–15, 20, 47
iteration-level hybridization, 247–249,

251, 254–256

J, K, L

jumping rate, 237–239
Kalman filter, 188, 196, 197, 200, 201
knapsack problem, 165–167
Latin hypercube sampling, 243, 244
limiting distribution, 79, 81, 86
local search, 240–244
low HSI solutions, 26, 27

M, N, O

Markov process, 61
mathematical model, 4, 11–16, 20, 124,

143, 144, 186, 232, 257

matrix
dimensions, 100
migration, 153–157

maximum migration rate, 33, 37, 42–44
migration

approaches, 56, 59
curves, 45–49

minimum spanning tree
problem, 145, 167

multi-criteria optimization, 203
multinomial theorem, 68, 69, 71, 75
multi-objective

EAs, 219
optimization, 203, 204, 207, 211,
231, 233

natural selection, 18, 20
needle function, 119
next population, 108
niched Pareto BBO, 216–218
niched-penalty approach, 177, 178
non-dominated, 205, 206, 213, 216–221

sorting BBO, 213–216
nondominated, 219
nonlinear migration, 6, 7
one-max function, 119
opposition-based learning, 233
optimization process, 16–19
order migration, 150, 151

P, Q, R

Pareto
front, 205, 206, 209
optimal set, 205
optimal solutions, 205, 206

partial emigration-based BBO, 91–95
particle swarm optimization, 21, 247
penalty function methods, 170
Perron-Frobenius theorem, 65
population initialization, 148–150
predator/prey relationships, 9, 12
primitive transition matrix, 64, 65
probabilistic operator, 28, 31, 49

Index 327

proportionality vector, 108, 109, 111, 115
quadratic migration, 46, 49
quasi

opposite, 235, 236, 238
reflected opposite, 235, 236

random feature selection, 111, 114
reciprocal exchange mutation, 159
re-evaluation, 198, 199
reflected opposite, 234–236, 238
re-sampling, 187, 188, 193–196, 199–201
resource competition, 10, 12

S, T

separable fitness functions, 142, 143
simulated annealing, 61, 124
single-point crossover, 56, 115
sinusoidal migration, 46–49, 56
species

age, 9
mobility, 8, 12, 47

static penalty methods, 172

statistical mechanics, 123
steady-state, 14–16, 32, 72, 103,

115–119
stochastic ranking, 178
strength Pareto BBO, 218–223
suitability index variables, 4
super opposite, 235, 236, 238
superiority of feasible points, 173
time correlation, 10
total emigration-based BBO, 53–56,

90, 95–99
total immigration-based BBO, 90, 91
traveling salesman problem, 147, 148

U, V, W

upgrade matrix, 83
vector

evaluated BBO, 211–213
optimization, 203, 208

warehouse scheduling, 223–229
weak domination, 204

Other titles from

in

Computer Engineering

2016
BLUM Christian, FESTA Paola
Metaheuristics for String Problems in Bio-informatics
(Metaheuristics Set – Volume 6)

DEROUSSI Laurent
Metaheuristics for Logistics
(Metaheuristics Set – Volume 4)

DHAENENS Clarisse and JOURDAN Laetitia
Metaheuristics for Big Data (Metaheuristics Set – Volume 5)

LABADIE Nacima, PRINS Christian, PRODHON Caroline
Metaheuristics for Vehicle Routing Problems
(Metaheuristics Set – Volume 3)

LEROY Laure
Eyestrain Reduction in Stereoscopy

LUTTON Evelyne, PERROT Nathalie, TONDA Albert
Evolutionary Algorithms for Food Science and Technology
(Metaheuristics Set – Volume 7)

MAGOULÈS Frédéric, ZHAO Hai-Xiang
Data Mining and Machine Learning in Building Energy Analysis

RIGO Michel
Advanced Graph Theory and Combinatorics

2015
BARBIER Franck, RECOUSSINE Jean-Luc
COBOL Software Modernization: From Principles to Implementation with
the BLU AGE® Method

CHEN Ken
Performance Evaluation by Simulation and Analysis with Applications to
Computer Networks

CLERC Maurice
Guided Randomness in Optimization (Metaheuristics Set – Volume 1)

DURAND Nicolas, GIANAZZA David, GOTTELAND Jean-Baptiste,
ALLIOT Jean-Marc
Metaheuristics for Air Traffic Management (Metaheuristics Set – Volume 2)

MAGOULÈS Frédéric, ROUX François-Xavier, HOUZEAUX Guillaume
Parallel Scientific Computing

MUNEESAWANG Paisarn, YAMMEN Suchart
Visual Inspection Technology in the Hard Disk Drive Industry

2014
BOULANGER Jean-Louis
Formal Methods Applied to Industrial Complex Systems

BOULANGER Jean-Louis
Formal Methods Applied to Complex Systems: Implementation of the
B Method

GARDI Frédéric, BENOIST Thierry, DARLAY Julien, ESTELLON Bertrand,
MEGEL Romain
Mathematical Programming Solver based on Local Search

KRICHEN Saoussen, CHAOUACHI Jouhaina
Graph-related Optimization and Decision Support Systems

LARRIEU Nicolas, VARET Antoine
Rapid Prototyping of Software for Avionics Systems: Model-oriented
Approaches for Complex Systems Certification

OUSSALAH Mourad Chabane
Software Architecture 1
Software Architecture 2

PASCHOS Vangelis Th
Combinatorial Optimization – 3-volume series, 2nd Edition
Concepts of Combinatorial Optimization – Volume 1, 2nd Edition
Problems and New Approaches – Volume 2, 2nd Edition
Applications of Combinatorial Optimization – Volume 3, 2nd Edition

QUESNEL Flavien
Scheduling of Large-scale Virtualized Infrastructures: Toward Cooperative
Management

RIGO Michel
Formal Languages, Automata and Numeration Systems 1: Introduction to
Combinatorics on Words
Formal Languages, Automata and Numeration Systems 2: Applications to
Recognizability and Decidability

SAINT-DIZIER Patrick
Musical Rhetoric: Foundations and Annotation Schemes

TOUATI Sid, DE DINECHIN Benoit
Advanced Backend Optimization

2013
ANDRÉ Etienne, SOULAT Romain
The Inverse Method: Parametric Verification of Real-time Embedded
Systems

BOULANGER Jean-Louis
Safety Management for Software-based Equipment

DELAHAYE Daniel, PUECHMOREL Stéphane
Modeling and Optimization of Air Traffic

FRANCOPOULO Gil
LMF — Lexical Markup Framework

GHÉDIRA Khaled
Constraint Satisfaction Problems

ROCHANGE Christine, UHRIG Sascha, SAINRAT Pascal
Time-Predictable Architectures

WAHBI Mohamed
Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction
Problems

ZELM Martin et al.
Enterprise Interoperability

2012

ARBOLEDA Hugo, ROYER Jean-Claude
Model-Driven and Software Product Line Engineering

BLANCHET Gérard, DUPOUY Bertrand
Computer Architecture

BOULANGER Jean-Louis
Industrial Use of Formal Methods: Formal Verification

BOULANGER Jean-Louis
Formal Method: Industrial Use from Model to the Code

CALVARY Gaëlle, DELOT Thierry, SÈDES Florence, TIGLI Jean-Yves
Computer Science and Ambient Intelligence

MAHOUT Vincent
Assembly Language Programming: ARM Cortex-M3 2.0: Organization,
Innovation and Territory

MARLET Renaud
Program Specialization

SOTO Maria, SEVAUX Marc, ROSSI André, LAURENT Johann
Memory Allocation Problems in Embedded Systems: Optimization Methods

2011

BICHOT Charles-Edmond, SIARRY Patrick
Graph Partitioning

BOULANGER Jean-Louis
Static Analysis of Software: The Abstract Interpretation

CAFERRA Ricardo
Logic for Computer Science and Artificial Intelligence

HOMES Bernard
Fundamentals of Software Testing

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Distributed Systems: Design and Algorithms

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Models and Analysis in Distributed Systems

LORCA Xavier
Tree-based Graph Partitioning Constraint

TRUCHET Charlotte, ASSAYAG Gerard
Constraint Programming in Music

VICAT-BLANC PRIMET Pascale et al.
Computing Networks: From Cluster to Cloud Computing

2010
AUDIBERT Pierre
Mathematics for Informatics and Computer Science

BABAU Jean-Philippe et al.
Model Driven Engineering for Distributed Real-Time Embedded Systems
2009

BOULANGER Jean-Louis
Safety of Computer Architectures

MONMARCHE Nicolas et al.
Artificial Ants

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2010

PASCHOS Vangelis Th
Combinatorial Optimization – 3-volume series
Concepts of Combinatorial Optimization – Volume 1
Problems and New Approaches – Volume 2
Applications of Combinatorial Optimization – Volume 3

SIGAUD Olivier et al.
Markov Decision Processes in Artificial Intelligence

SOLNON Christine
Ant Colony Optimization and Constraint Programming

AUBRUN Christophe, SIMON Daniel, SONG Ye-Qiong et al.
Co-design Approaches for Dependable Networked Control Systems

2009
FOURNIER Jean-Claude
Graph Theory and Applications

GUEDON Jeanpierre
The Mojette Transform / Theory and Applications

JARD Claude, ROUX Olivier
Communicating Embedded Systems / Software and Design

LECOUTRE Christophe
Constraint Networks / Targeting Simplicity for Techniques and Algorithms

2008
BANÂTRE Michel, MARRÓN Pedro José, OLLERO Hannibal, WOLITZ Adam
Cooperating Embedded Systems and Wireless Sensor Networks

MERZ Stephan, NAVET Nicolas
Modeling and Verification of Real-time Systems

PASCHOS Vangelis Th
Combinatorial Optimization and Theoretical Computer Science: Interfaces
and Perspectives

WALDNER Jean-Baptiste
Nanocomputers and Swarm Intelligence

2007
BENHAMOU Frédéric, JUSSIEN Narendra, O’SULLIVAN Barry
Trends in Constraint Programming

JUSSIEN Narendra
A to Z of Sudoku

2006
BABAU Jean-Philippe et al.
From MDD Concepts to Experiments and Illustrations – DRES 2006

HABRIAS Henri, FRAPPIER Marc
Software Specification Methods

MURAT Cecile, PASCHOS Vangelis Th
Probabilistic Combinatorial Optimization on Graphs

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2006 / IFAC-IFIP
I-ESA’2006

2005
GÉRARD Sébastien et al.
Model Driven Engineering for Distributed Real Time Embedded Systems

PANETTO Hervé
Interoperability of Enterprise Software and Applications 2005

	get.pdf (p.1-7)
	Half-Title Page
	Title Page
	Copyright Page
	Contents

	get (1).pdf (p.8-17)
	1. The Science of Biogeography
	1.1. Introduction
	1.2. Island biogeography
	1.3. Influence factors for biogeography

	get (2).pdf (p.18-30)
	2. Biogeography and Biological Optimization
	2.1. A mathematical model of biogeography
	2.2. Biogeography as an optimization process
	2.3. Biological optimization
	2.3.1. Genetic algorithms
	2.3.2. Evolution strategies
	2.3.3. Particle swarm optimization
	2.3.4. Artificial bee colony algorithm

	2.4. Conclusion

	get (3).pdf (p.31-50)
	3. A Basic BBO Algorithm
	3.1. BBO definitions and algorithm
	3.1.1. Migration
	3.1.2. Mutation
	3.1.3. BBO implementation

	3.2. Differences between BBO and other optimization algorithms
	3.2.1. BBO and genetic algorithms
	3.2.2. BBO and other algorithms

	3.3. Simulations
	3.4. Conclusion

	get (4).pdf (p.51-65)
	4. BBO Extensions
	4.1. Migration curves
	4.2. Blended migration
	4.3. Other approaches to BBO
	4.4. Applications
	4.5. Conclusion

	get (5).pdf (p.66-106)
	5. BBO as a Markov Process
	5.1. Markov definitions and notations
	5.2. Markov model of BBO
	5.3. BBO convergence
	5.4. Markov models of BBO extensions
	5.5. Conclusions

	get (6).pdf (p.107-126)
	6. Dynamic System Models of BBO
	6.1. Basic notation
	6.2. Dynamic system models of BBO
	6.3. Applications to benchmark problems
	6.4. Conclusions

	get (7).pdf (p.127-148)
	7. Statistical Mechanics Approximations of BBO
	7.1. Preliminary foundation
	7.2. Statistical mechanics model of BBO
	7.2.1. Migration
	7.2.2. Mutation

	7.3. Further discussion
	7.3.1. Finite population effects
	7.3.2. Separable fitness functions

	7.4. Conclusions

	get (8).pdf (p.149-171)
	8. BBO for Combinatorial Optimization
	8.1. Traveling salesman problem
	8.2. BBO for the TSP
	8.2.1. Population initialization
	8.2.2. Migration in the TSP
	8.2.3. Mutation in the TSP
	8.2.4. Implementation framework

	8.3. Graph coloring
	8.4. Knapsack problem
	8.5. Conclusion

	get (9).pdf (p.172-189)
	9. Constrained BBO
	9.1. Constrained optimization
	9.2. Constraint-handling methods
	9.2.1. Static penalty methods
	9.2.2. Superiority of feasible points
	9.2.3. The eclectic evolutionary algorithm
	9.2.4. Dynamic penalty methods
	9.2.5. Adaptive penalty methods
	9.2.6. The niched-penalty approach
	9.2.7. Stochastic ranking
	9.2.8. ε-level comparisons

	9.3. BBO for constrained optimization
	9.4. Conclusion

	get (10).pdf (p.190-204)
	10. BBO in Noisy Environments
	10.1. Noisy fitness functions
	10.2. Influence of noise on BBO
	10.3. BBO with re-sampling
	10.4. The Kalman BBO
	10.5. Experimental results
	10.6. Conclusion

	get (11).pdf (p.205-234)
	11. Multi-objective BBO
	11.1. Multi-objective optimization problems
	11.2. Multi-objective BBO
	11.2.1. Vector evaluated BBO
	11.2.2. Non-dominated sorting BBO
	11.2.3. Niched Pareto BBO
	11.2.4. Strength Pareto BBO

	11.3. Real-world applications
	11.3.1. Warehouse scheduling model
	11.3.2. Optimization of warehouse scheduling

	11.4. Conclusion

	get (12).pdf (p.235-260)
	12. Hybrid BBO Algorithms
	12.1. Opposition-based BBO
	12.1.1. Opposition definitions and concepts
	12.1.2. Oppositional BBO
	12.1.3. Experimental results

	12.2. BBO with local search
	12.2.1. Local search methods
	12.2.2. Simulation results

	12.3. BBO with other EAs
	12.3.1. Iteration-level hybridization
	12.3.2. Algorithm-level hybridization
	12.3.3. Experimental results

	12.4. Conclusion

	get (13).pdf (p.261-265)
	APPENDICES
	Appendix A: Unconstrained Benchmark Functions

	get (14).pdf (p.266-288)
	Appendix B:
Constrained Benchmark Functions

	get (15).pdf (p.289-308)
	Appendix C: Multi-objective Benchmark Functions

	get (16).pdf (p.309-323)
	Bibliography

	get (17).pdf (p.324-326)
	Index

	get (18).pdf (p.327-334)
	Other titles from iSTE in Computer Engineering

