HTML Dog

The Best-Practice Guide to

XHTML&CSS

Patrick Griffiths

New
Riders

HTML Dog
Patrick Griffiths

New Riders

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
800/283-9444
510/524-2221 (fax)

Find us on the Web at: www.newriders.com
To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education
Copyright © 2007 by Patrick Griffiths

Editor: Doug Adrianson

Production Coordinator: Andrei Pasternak

Tech Editor: Joe Marini

Copyeditor: Hope Frazier

Compositor: Maureen Forys, Happenstance Type-O-Rama
Indexer: Julie Bess

Cover Design: Aren Howell

Cover Photo: Veer/Brian Summers

Interior Design: Maureen Forys Happenstance Type-O-Rama

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For infor-
mation on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions
contained in this book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations
appear as requested by the owner of the trademark. All other product names and services identified throughout
this book are used in editorial fashion only and for the benefit of such companies with no intention of infringement
of the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affilia-
tion with this book.

ISBN 0-321-31139-6
987654321

Printed and bound in the United States of America

www.newriders.com

Acknowledgements

A good website follows conventions to keep users happy and responsive. | can only
assume that a good web design book should do the same. So here are some people
“without whom this would not have been possible.” Or something like that...

To my mother, for her share of my genetic material and all of the environmental
stuff, for buying me my first computer, for putting up with my Kevin & Perry teen-
age crap, and, most of all, for forbidding me to get a Michael Jackson perm at the
age of 10, ta, Ma.

Even though her grasp of language is somewhat limited, for frequently walking
across my keyboard Nutmeg, the feline member of the family, should probably have
a co-author credit. At least blame any typos on her.

| am proud to be a member of such an open, intelligent, friendly professional
community. Andy Budd, Andy Clarke, Jon Hicks, Jeremy Keith, Drew McLellan,
Rich Rutter, Mike Stenhouse, and the rest of the Britpack (and the mighty Pub
Standards, for that matter) have been an invaluable source of discussion, ideas,
and constructive criticism, and have become good friends to boot. And there’s a
plethora of luminaries further from home who have influenced me, and this book,
in one way or another: Doug Bowman, Dan Cederholm, Joe Clark, Charles Darwin,
Molly Holzschlag, Steve Krug, Jakob Nielsen, Valentino Rossi, and Jeffrey Zeldman
in particular. Through raising awareness, it’s due to many of these people (and many
more), and organizations like the Web Standards Project (webstandards.org) that
the quality web design landscape is a much lusher one now than it was even a few
years ago, so thanks are due not only for their influence, but for making books like
this, and interest in them, possible.

Dan Webb (danwebb.net) has been the single most influential person when it comes
to HTML Dog (site, book, and philosophy). From working together on numerous
projects across the years to idle pub banter (across even more years), Dan is the
first person | talked with about web standards, long before the emergence of that
hat-wearing dude’s little orange book, the person | have discussed around 43,082.6
aspects of web design with, from liquid layouts to accessibility to Microformats

to the absurdity of the term Web 2.0, and the person who has proofread, edited,
tested, and critiqued pretty much every single article and website that | have ever
been involved in. Cheers, Dan.

Iv | ACKNOWLEDGEMENTS

I've had a little something to do with a bash called @media (vivabit.com/atmedia)
for almost as long as the HTML Dog book project. Thanks to everyone who has
made that possible, including all of those who have attended it. It has been a great
example of a genuine appetite for pushing best-practice web design and develop-
ment to their limits, and it has kept my enthusiasm and passion for the subject
fresh. @media and HTML Dog are my babies, so they must be related.

| have always regarded New Riders as by far the best, most discerning, and most
respectable publisher of Web-related books. It has been a roller-coaster ride, but |
am very proud to finally be a published New Riders author alongside so many great
Web heavyweights. So, to the publisher, and extended family and friends, thanks to
David Fugate, Linda Bump Harrison, Darcy DiNucci, Marjorie Baer, Nancy Davis, Joe
Marini, Doug Adrianson, and everyone else involved in building this quality culturally
infused slab of ink-sprinkled reconstituted plant fibers.

—Patrick Griffiths
October 2006

Contents

Introduction XV

(] E T FR Getting Started

HTML Syntax.o 1
Elements, Tags, and Attributes, 2
Common Attributes 4
The Basic Structure of an HTML Document........................ 8
The Generalist Tags—Divand Span............................ 16

CSS SyNtaX. .o 17
RUIES . . 17
Selectors . ..o 18
Properties 23
Values ... 25

Chapter 2:

Structuring Text 37
Basic Text Elements: Paragraphs, Line Breaks, and Emphasis........ 39
Headings 40
Quotations. ... 42
Abbreviations and Acronyms 43
Preformatted Text and Computer Code 44
Editorial Insertions and Deletions 46
Multilanguage and Bidirectional Text 47

AdAreSSeS . .\ 47

vi | CONTENTS

Styling Text. ... 48
FONES . 48
Color .. 50
SIZ8 o 50
Line Height 53
Bold and Italics. 54
Upperand Lower Case.cooiiiiii i 55
The Font Shorthand Property i, 55
Underline and Strikethrough 56
Letter and Word Spacing 57
Indenting. 58
Horizontal Alignment. 58
Vertical Alignment. 59
More Text Styling Techniques.ccoo i, 60

Chapter 3:

Anchor Elements and Hypertext References.......................... 62
Page AnChors.o 63

Link States: Link, Visited, Hover, Focus, and Active 65

Accessible Links. 67
Tabbing 67
ACCESS KBS . . oot 68
Link Titles ..o 70
POp-UPS. 71
Adjacent Links. 71
Skipping Navigation 72

Chapter 4:

Theimg Element 77
Image Maps. ... 81

Background Images 82

Image Replacement: Providing Graphical Alternatives for Text 88

CONTENTS | vl

Chapter 5:

The BoxModel 94
Width and Height. 95
Padding. 97
Borders 98
Margin. ... 100

The display Property ... 104

PoSItionNing 107
Static. ... 107
Relative.o 108
Absolute. . ..o 108
Fixed ..o 110

Floatingo 110

Sample Page Layouts........... 119
Creating Columns 120
AddingaPageHeader............. 126
AddingaFooter....... 127

Putting It All Together. 130

Chapter 6:

Structuring Lists 136
Unordered and Ordered Lists.............. ..., 136
Definition Listso 138
Lists as Navigation i 140

Presenting Lists 142
List Markers—Bullets, Numbers, and Images 142
Horizontal Lists 146

(o ETi (-1 v PRl S cripts & 0bjects

JavaScriptand the DOM. 147
The script Element. 147

viil | CONTENTS

Event Attributes. 148
Manipulatingthe DOM. o 149
ODJBCES . oot 150

Chapter 8: | |ElIlE

Basic Tables.o 156
Merging Cells. i 158
CaptiONS. . .o 160
GroupiNg ROWS . . .o o 161
Targeting Columns o 162
Accessibility Considerations with Tables 164
SUMMANIES et 164
Associating Headersto Cells. ...t 165
Associating Cellsto Headers, 165
Presenting Tables. i 167
Border Collapsingo 167
Speedier Tables: the Fixed Layout Algorithm 169
EmptyCells 170
Chapter 9:
Form Elements o 173
Form Fields and Buttons: input, textarea, and select 174
The name Attribute.o 174
Putting Controls in Blocks. L 175
NPUL 175
BEXEAr@A . . oot e 182
SEleCt ..o 183
Fleldsets.o 185
Accessible Forms 186

Labels . ..o 186

CONTENTS | 1x

Styling Form Fields. 187
Borders 188

Chapter 10:

Applying Media-Specific CSS o 195
The media Attribute. 196

Appendix A:

<ACTONYM></ACTONYM> . .. oottt ettt e e e 210
<address></address>............ i 211
QATBA /> 212
<base /> 213
<bdo></bdo>. 214
<blockquote></blockquote> 214
<body></body>..... 215
Or > 216
<button></button>..... 216
<caption></caption>. 217

<Cites</Cite>. 218

X | CONTENTS

<COde></COUE> 218
OOl /> 219
<colgroup></colgroup>. 220
<dd></dd> ..o 221
.. 222
<dfn></dfn>. ... 222
<AV></AIV>. o 223
<dl></dl> ... 224
<Ab></dt>. ..o 224
LEM></OM>. oo 225
<fieldset></fieldset>. o 225
<form></form>. 226
<hl></h1>, <h2></h2>, <h3></h3>, <hd></hd>,

<h5></hb>, <hb></hb> 227
<head></head>............. ... i 228
<html></html>.. 229
<M /> 230
<INPUE /> 231
<INS></INS>. o 232
<kbd></kbd>.. 233
<label></label>....... 233
<legend></legend>. i 234
 ..o 234
<link />, 235
<MAP></MAP> . oottt e 236
<Meta /> 237
<NOSCript></NOSCript>. 238
<object></object>. 239
<OI>. . 240
<optgroup></optgroup> 241

<option></option>. 241

CONTENTS | x1

P> D> 242
PATAM /> 243
PIES</PIE> 244
OS> 244
<SAMP></SAMD >, . ettt et et 245
<SCHpt></SCript> ... 246
<select></select> 247
<SPANS/SPAN>. .« ottt 248
 248
<styles</style> 249
<table></table> 250
<tbody></thody>........ 251
<td></td>. ... 252
<textarea></textarea>............. i 254
<tfoot></tfoot>.. 255
<th></th> 256
<thead></thead> i 258
<title></title> 259
<A< 260
US> L 261
QUAMSIVATS Lo 262
Bad Tags ... 262

Rotten Attributes.o 264

x11 | CONTENTS

lang . 267
Tt 267
K. 268
41 P 268
VISR, Lo 268
Pseudo-elements 269
after. 269
before . ..o 269
first-letter. ..o 269
Airst-line ..o 270
AE-TULES 270
@ImpPOrt ..o 270
@MeEdia. ..o 270
@DAZE. . .ot 271
Properties. ... 271
background 272
background-attachment, 272
background-color. 273
background-image 274
background-position 275
background-repeat 275
border, border-top, border-right, border-bottom, border-left 276
border-collapset 277
border-color, border-top-color, border-right-color,
border-bottom-color, border-left-color. 278
border-spacing 278
border-style, border-top-style, border-right-style,
border-bottom-style, border-left-style. 279
border-width, border-top-width, border-right-width,
border-bottom-width, border-left-width 281

bottom. ..o 281

CONTENTS | xi1n

caption-side 282
Clear L 283
ClD 283
COlOT. 284
CONteNt L 285
counter-increment. 286
CoUNter-TeSel 286
CUTSOT v et e et e e e e e e e 2817
direCtiono 289
display.o 289
emply-CellS ... 291
float. ... 291
font .. 292
font-family. 293
font-size 293
font-style. 294
font-variant. 295
font-weight 295
height ... 296
] 297
letter-Spacing 297
line-height. 298
list-style 299
list-style-image. 299
list-style-position 300
list-style-type 300
margin, margin-top, margin-right, margin-bottom, margin-left. 301
max-height 302
max-width. 303
min-height. 303

min-width ... 304

xi1v | CONTENTS

OTPNANS . . 304
outlingo 305
outline-color 305
outline-style. 306
outline-width 307
overflow. ... 307

page-break-after. 309
page-break-before 309
page-break-inside........ 310
POSIEION . . 310
QUOTES . e 311
41 312
table-layout. 313
text-align. ... 313
text-decoration 314
text-indent. 315
text-transform 315
(0TS 316
unicode-bidi 316
vertical-align. 317
visibility. 318
WhiIte-SPaCe. . . .ttt 319
WIdOWS. . 320
Width . . 320
WOId-SPaACINg. . ettt 321
Z-NABX. L 322

Introduction

THE BEST WAY to build web pages is with web-standards-compliant
HTML and CSS. HTML lays the foundation by structuring the content,
and then CSS dolls it up and presents the page.

Using them in the right way—with web standards—Ileads to web pages
that are faster, more manageable, more cross-compatible, and more
accessible than web pages built any other “old-school” way.

This book is designed to take you through these symbiotic languages,
explaining how to use them the web-standard way, comprehensively cov-
ering the components that make up a web page and the technical details
involved in making those components.

HTML Dog?

The HTML Dog (www.htmldog.com) first popped into the world in 2003. Its
mission was to provide short and easy-to-follow guides in (X)HTML and CSS,
following best practices from the ground up (rather than teaching old-school
methods first and then moving on to the right way of doing things), which no
other resource did, and few do even now. Since then the website has grown
both in size and popularity, and is now one of the web’s most-used resources
for web designers.

www.htmldog.com

xVvi | INTRODUCTION

L)

The Best Practice Guide
To ¥HTML and C55

Tutorials
HTML Beginner
C5S Beginner
HTML Intermediate
C55 Intermediate
HTML advanced
C5S Advanced

References
HTML Tags
C5S Properties

Articles
Examples

The Book
CSS Training
Ahout HTML Dog
Link To HTML Dog
Contact HTML Dog

External Links
Site Map

[@ Search

HTML and CSS Tutorials. And Stuff.

Welcome to HTML Dog, the web designer's resource for everything HTML and €55, the most
common technologies used in making web pages.

&

Quick and easy-to-follow practical guides to get you up and

running with HTML and CSS, following best-practices every

step of the way. Mew visuals accompany
awhole host of new

content.
The reference section, which is cross-linked from throughout Updated Tutorials,
HTML Dog, outlines all of the valid XHTML tags and C5S extra Articles, and
properties available to you. Eramples aplenty!

If you find this web site
useful, please link to it.
It's a karma kinda

A handful of articles expand on the tutorials, going into a few
more specific areas and a bit more detail.

thang.

Bare-bone examples complement the tutorials, references,
and articles, and should help you to grasp how bits of HTML and C55 waork a bit better by
seeing them in action.

The new HTML Dog book, published by Mew Riders, will hit the shelves this
Movember,

Building on and complementing the web site, it is a comprehensive (yet
concise, and utterly entertainadelic) resource for those whao really want to
get to grips with (XIHTML and 55, and use them in the best possible way
from the outset, Logically divided chapters coupled with tag and property
appendizes make it a damned fine reference book, too.

You can pre-order your copy at a discounted price from Amazon.com -, Amazon,co.uk
Amazon.ca -, Amazonfr ©, Amazon.de &, or Amazon.co.jp

FIGURE 0.1 This book expands on the popular HTML Dog website: http://www.htmldog.com.

http://www.htmldog.com

INTRODUCTION | xvii

So What Are XHTML and CSS?

XHTML (eXtensible HTML) is the latest, Sly-Stone-funkiest version of HyperText
Markup Language. HTML is a simple language used to structure hyperlinking con-
tent that is at the core of most web pages. The whole idea behind HTML since
Day One has simply been to apply meaning to chunks of content and link them all
together, regardless of platform.

In technical terms, XHTML is “HTML reformed as XML,” but to most people, and for
the purpose of this book, it simply means a more modern version of HTML (which is
why “HTML" is usually referred to throughout the book rather than “XHTML") with an
ever so slightly stricter syntax (explained in Chapter 1, “Getting Started”). Although
there are lesser, “transitional” versions of XHTML, this book jumps in at the deep
end and follows XHTML Strict—the purest form of XHTML, which harnesses all of
its intended benefits. If this sounds daunting to you, don’t worry—it’s really not more
difficult to use than other versions, but it is the best one to opt for if you have the
ability to do so.

CSS (Cascading Style Sheets) is a language used to present a web page that was
introduced to remedy the increasing introduction (by browser manufacturers) and
use of presentational HTML elements. Not only does it lend even greater control
over the appearance of a web page, it removes the need for presentational elements
in the HTML document itself. It has taken a while for browsers to cotton on, but
most CSS is now supported by a vast majority of browsers. Its use is not only a
genuine option, but also the best option for presenting web pages. As you will see
later in this Introduction, this ability to separate content (HTML) and presentation
(CSS) leads to great benefits. What are style sheets and how do they cascade? See
Chapter 1.

As with HTML, there are various versions of CSS. This book largely follows CSS 2.1,
the complete and widely supported revised version of CSS 2. This provides control
not only over basic font decorations, but powerful positioning capabilities (goodbye,
table layouts!) and the handling of different media types.

xviil | INTRODUCTION

What Are Web Standards?

Web standards are universal rules that dictate how something should be used, inde-
pendent of any single thing (such as one particular browser). By utilizing web stan-
dards you are helping to ensure universal compatibility and flexibility. Because they
are based on logical reasoning with no commercial pressure (well, that's the idea
anyway!), following them also tends to lead to greatly optimized solutions.

These standards are the creation of the W3C (World Wide Web Consortium, www.w3.

org), an independent body that counts Google, Intel, AOL, Apple, various universities,
the BBC, Sony, Microsoft, and many more amongst its members and is contributed to
by hundreds in the web community. The standards are wide-ranging, encompassing a

large number of web technologies and initiatives, including HTML and CSS.

W3C itibbatiiiilt
Leading the Web to Its Full Potential..

Activities | Technical Reports | Site Index | New Visitors | About W3C | Join W3C | Contact W3C

The Waorld Wide Web Consortium (W3C) develops interoperable technologies (specifications, guidelines, software, and tools) to lead the Web to its full potential. W3C is
a forum for information, commerce, communication, and collective understanding. On this page, you'll find W3C news, links to ¥W3C technolonies and ways to get

invalved. Mew visitors can find help in Finding Your Way st W3C We organizations to learn more about W3C and about YW3C Membersk

W3C Supporters Program News Se:

TW3C thanks W3C Members and the i

A nele snd organiabionn who » New Editions of Core XML Google

‘;znénhute lumegnnsnmumthmughthe Standards Published Search W3C

— \ I[o]
M 2006-08-16: The World Wide Web Consartium today —
published new editions of four care XML standards: the fourth
5 h W3 C Mailing List

Current job opportunitiss at W3C are edition of Extensible Markup Language (XML} 1.0 and o2 il

Wohile Web Aceess Specialist, North second editions of Extensible Markup Language (ALY 1.1,

amesican Business Manager, Web MNamespaces in XML 1.0 and Namespaces in XML 1.1

Accessibility Engineer and the W3C Th it t i 1o all K
Elliows Blostamn ese new editions INCorporate Corrections to all known

errata. Read the press release and visit the AML home page AME Info FZLLC

Mobile Web Initiative TNews archive
The goal of the Mobile Web Initiative is to www.ameinfo.com

snaks Wela aceess from a mobile device as » Compound Document Framework

simple, easy, and convenient as Web AME Info was founded in 1996 and is the

sccess froma desktop device. Read sbowt || @A WICD Profiles: Working Drafts Ieailing Middle Rest frasifinss risninie
WWT and leam how o sponsor MW covering 14 countiies. AME Infa jeined the
2006-08-11. Addressing Last Call comments, the W3C to show commitment to open

standards in a drive to make the Web

Compound Document Formats Working Group has released accessible for all (Member testimonials

four updated Warking Drafts: Compound Document by

Accessibility Reference Framework, WICD Core 1.0, WICD Full 1.0, and
%{%a WICD Mobile 1.0. The Web Integration Compound Document
(WICD, pronaunced "wicked") is a device independent
X ‘ Io
(016t Compound Document profile based on XHTML, CSS and mgmgg gignn?iaps?or?s
* Compound Document Formats sy The drafts describe behavior when single documents M
¢ £S5 contain multiple formats. Read mare about Rich Veb Clients e
+ CSS Validator Meetings
et Mews archive N
« Databinding Fellows
Device Independence R B
- DOM » SVG Tiny 1.2 Is a Candidate uEd
LCificient AL Interchange A 5
8 EESET Al Intercange Recommendation WaC Membership Benefits
e . Reasons to Join WaC
* Health Care and Life Sciences| 2006-08-10° WaC is pleased to announce the advancement T
HThAL £ Soanlahl o r*»—pmm O\ Tired 2 o Canid Mailing Lists

FIGURE 0.2 The W3C'’s site (www.w3.0rg), although a little difficult to penetrate, is a great
source of information.

www.w3.org
www.w3.org
www.w3.org

INTRODUCTION | xIx

HTML standards are based on semantics. This is the process of using tags to apply
meaning, such as “this piece of text is a paragraph” or “the HTML in this element
makes a table.” It may not sound that important, but it's at the heart of the first
step toward web standards success: separating structure and presentation.

Structure and Presentation

This page, and in particular the big fat statement below, is more important than the
rest of this book put together.

HTML = CONTENT
CSS = PRESENTATION

This is the magical key to unlocking better web pages. If you apply this rule when
building web pages then you're already halfway toward achieving web standards and
the benefits that come with them.

A central philosophy of web standards is “separation of content and presentation.”
Variations include “separation of meaning and presentation” and “separation of
structure and presentation.” There are pedantic arguments why one of these is bet-
ter than another, but all of the phrases are perfectly valid and essentially imply the
same thing. If we were more precise (but less snappy), we might say “the separa-
tion of [content made meaningful by structure] and [presentation].” What it means
is that HTML is for one thing and CSS is for the other—HTML should be used solely
to construct content and CSS should be used solely to present it.

Amongst other things, this means that font tags are out and it means tables are
fine for tabular data, but not for layout (see Chapter 8, “Tables”). It also means that
when you have a heading it should be marked up as a heading, not just presented
to look like one, and it means that em tags should be used for emphasis, not just
CSS decoration.

INTRODUCTION

4 CSSZENGARDEN™

tasitsie ol
0 The mption why Lt chiah wo dravw ol i o st b
g w g swomparkl Fike e
© Brurs B hevkan 61 PR
by s s
B Crsarr By o v i Bom el i] i
" i Tk et ke ghrares s b
0 prthoparter wiyes wrbires il Wil baa w32 AP ard s
e [————
U hie Ly
by e
o o
£ dedat b
O regrmnn
1y armdieh bk Eiiivte B o i 1
@ T =ty
b b el
e
Trare i clawily & nees for €430 1o e rken serisusty iy grapnic amises The 3
L Gl i [£CRE, kgire, And oncour e pUBOnN. Ti B e $ome of
= et ez the wuiesing designs in the bez, Socki vy o sl ot e Frvie shegt i this
5. 4psasion danigr wiry pagr. The cede freviaies e 1 i TR 1Rk s ENANGE B8 INE Externl
s 8 gt wvs e Yew ek
CE50 ahows COMmpe Bk b Lever The syl of The
iy w545 S0 b AU R 11 &Ry B S B AL N iy e v
Famrve & Whae It ean ouly be, tnee the sens are plazed in o banas of those abée b tresme
2o bewity fram st To i, st anbimes o nesk wicas and hatks bave been
bl s AeMAnFtr¥has by MFUCRUTIETE And £25494 Daagnars hiws Wit e maks Shele ek Thi
< Too— neea 1o Change
ey
S S

Craghis Armets anly plesee, Yo ie Wsdifang tis gage. 0 streng CIAT gt wre
heEEBY A, S TNE £ ample DIES At Sttty Well Encegh that eve 24D savests
fewEng painte Meass et e CS5 Bebuece, Cudh Ter SSvanced
Tt ris e B 8 ikt G50

e ey oy the stle sheet m mw sk o wish, Eul nenthe HTULE This sy
stem Swnting ¥ (ITFE ¥ you've ever marked tuls way 45072, BT Tokiow the Jied
Btk b e v, et e the seresle fies 25 3 guide

Dol e e [l R 3170 €500 % work 0n & dopy caby Oree vess
campied your mag Nirosmed ey upiasd

o

WY AFHEIBET i rSagition, InEpE AL,
Taking S cabe for CI50-baed dergn. Toes 15 oty needed, even aduy: Mere ind
BT FAARAE £RWE A0 ENEIRG e AR, Bk A ANcig Baen CIne SNy 118 Ul will be
A héstonied cutiasing TG da 0 Nt TR

Wb B

FrT

et 21 b

meen CHID W paeemie AT oAU Do Heea T4
idily-s<RRoEd ehemiems ony. The £55 Ten Carden s 3bsut funciona, pracncs
A2 anal sz e larern Blesiling—dgn Tricks vermakle by 25 af sor beosesing pulile
The anily 1841 Fequi e e fres 18 TRt yoUe 55 S veidites

Per uht eads 15 BEANADE in dnuther, Vi

bie Bl rominy

e BEsmees page Tor wfarmation on some of the fives s

& e v, i w00 01 e pect pom b came up
Dot Bt 08 UL in A4 ey X e £an I
o beAsT 5 e ket MOEETR (ran by deer B0 of The
oL weeet

W a4k L 0 UV Gl A, PREEE SEADEES SOBYTIENS (s, Pinkas hasy
Objemisastie et 4 mnRLRE PSR nUSD) I8 CEEpRBIE, oG
Bormagraghy I b rejtoea

T 1 & AMRIAG ideeinn 1 il 8 BamanE N Yo reen 1) csgypighe on
VOUI Grapis (R fanied excessans, ser SUbmiTPOn Suideines), butwe ak au
18484 ytr CUSIH Whdiy b Cradthos Cammane Sesnes pntieal 16 the gad a0

0 THAT oot & et T o wark

Baswnilih graciousty Sinated by Qusambine Uatioy Wow evatesic fen Caiden she
bzt

FIGURE 0.3 The CSS Zen Garden—a great example of separating content and presentation.
Design by Didier Hilhorst.

Wi st

i

.‘»#‘f-‘

g, MDNRRAAN S |

ZITTUY

Ruoune

e ﬁ [RRRRNNN

PINSS

INTRODUCTION | xXx1

FIGURE 0.4 With exactly the same XHTML, different CSS can achieve radically different

designs. Design by Samuel Marin.

xX11 | INTRODUCTION

FIGURE 0.5 The structured content, independent of presentation, is all in place as it should
be, and it can be presented however the designer chooses. Design by Mikhel Proulx.

If there’s anything you're doing with HTML that even hints at presentation, stop—
CSS can do it better. That means everything from using it just to italicize text to
using tables for layout. And if there’s content that has genuine specific meaning
(such as emphasis), making it look different with CSS isn't enough—HTML should
be used to apply that meaning through structure.

Example Structure or HTML or
Presentation? CSS?

A heading Structure XHTML
Size of a heading Presentation CSS

A paragraph Structure XHTML
Color of the text in a paragraph Presentation CSS

A table of figures Structure XHTML
A border around table cells Presentation CSS
An image, such as a portrait photo Structure XHTML
An image, such as a tessellating background Presentation CSS

A group of navigation links Structure XHTML
The placement of a group of navigation links on a page Presentation CSS

This isn't just about whether valid tags are being used individually, because a page
where tables are used for layout, for example, or where b (for bold) tags are being
used can quite plausibly be a “valid” page. It's about the bigger picture and good

INTRODUCTION | xxI11

practice through using HTML tags as they were intended—to mark up data and
apply meaning to it.

The majority of the practical benefits of using web standards stem from this philoso-
phy. It's a good one. It works.

The Practicalities of Web Standards

designing with
web standards

He'L'L'i%
Riders

FIGURE 0.6 Jeffrey Zeldman's Designing With Web Standards set the scene by
explaining what web standards are all about and why we should be using them.

xX1v | INTRODUCTION

Web standards aren’t just some form of Jedi mind trick, and web standards evange-
lists tend not (too often) to be loony cult members. No one would seriously take any
notice of web standards, let alone use them, if there weren't real, substantial, prac-
tical benefits. Here are some of the most important ones:

e Cross-compatibility: What sets web standards apart from the old school
is that there’s nothing specific to one browser or another. A common web
design problem has been the “necessity” of developing one page for one
browser and one page for another. Even today, some sites are made to work
solely in Microsoft’s Internet Explorer (IE), excluding a small, but significant,
percentage of users. But barring a few minor discrepancies, following web
standards will ensure that pages will work everywhere. No alternative versions
needed, no “IE only (we're too lazy),” no exclusion of users.

e Forward compatibility: Thanks to the increased likelihood of cross-compatibility,
web pages will be more likely to work as desired on future browsers than they
would be if they depended on the nonstandard proprietary oddities of current
browsers.

e Centralized control of presentation: As will be explained in Chapter 1, follow-
ing web standards and using CSS allows a single, or multiple, global file(s) to
apply presentation to all web pages across a site. Separating out the presen-
tation from the HTML in this way makes it much easier and quicker to make
site-wide presentational changes, resulting in a more consistent design than
a situation in which you have to change every web page individually.

e Device independence: Think that everyone looking at a web page is staring
at a computer screen? Well, most of them are, but some might be printing
out web pages or using some form of mobile device (Chapter 10, “Multiple
Media”). You might think that to properly accommodate multiple devices
you would need multiple versions of web pages. But you don’t, not with web
standards. By separating structure and presentation, the same content can
be displayed differently depending on the device.

INTRODUCTION | xxv

e Search engine optimization: Search engines love web standards. They used
to love metadata (data about the web page explicitly written into it by the
author) but this subjective tagging was easy to exploit and led to search
results that weren’t necessarily that relevant. Now search engines are much
more sophisticated and use more advanced techniques to rate the relevancy
of a page to a search query. They tend to analyze the content itself and take
special interest in things such as headings and even how close relevant con-
tent is to the top of the page. So if you're using font tags to make text look
like headings instead of his and h2s (see Chapter 2, “Text”) or if you've got
all of that table mess surrounding more table mess surrounding the content,
then you're not doing yourself any favors.

e Lightweight pages: Perhaps the most immediately impressive advantage is
just how lightweight pages become. Lighter pages mean decreases in band-
width (reducing hosting costs) and web page loading time (increasing usabil-
ity). An equivalent “old-school” page made with tables for layout and font
tags for text decoration is a relatively fat load of markup. Without the need
for such bulky code or unnecessary graphics (such as transparent “spacer”
images and graphical text that could be replicated with CSS), it isn't uncom-
mon to produce pages that are as much as 60 or 70 percent lighter.

e Accessihility: Making it easier for users with disabilities to access web pages
satisfies a moral duty, opens up your website to a wider market, and helps it
to comply with antidiscrimination laws. A large proportion of web accessibility
issues are technical and are tackled by using good web-standard HTML and
CSs.

e Employer and client expectations: If you're not sold on web standards, plenty
of other people are. The ability to code to W3C (X)HTML, CSS, and acces-
sibility standards is fast becoming a must-have skill in a web designer. If you
are on the market for a web design job or if you design sites for others, hav-
ing web standards in your arsenal is massive plus.

xXVI | INTRODUCTION

A fundamental principle behind web standards is that they are browser-inde-
pendent. You shouldn’t have to create browser-specific code—the whole idea is
that if browser manufacturers fully supported the web standards laid out by the
W3C, then one page could suit all. But we live in the real world and no browser
is perfect. When you think of all the technical intricacies—their syntax and their
behavior—involved in HTML and CSS, it’s little surprise that not every rule is
applied 100 percent correctly, if applied at all, by every browser.

Does this mean web standards are useless in practical terms? No. The great
news is that all popular modern browsers support a vast majority of web
standards. It's just a few little niggles that sometimes cause irritation. A little
scratch and they tend to go away.

By far the most popular browser out there is Internet Explorer for Windows. IE is
pretty much universally derided in the web standards community because it has
many shortcomings—either lack of support or incorrect interpretations of quite
a few web standard rules.

More modern browsers, such as Firefox and Safari, are technically superior
pieces of software (a statement that few could truthfully argue against—even
Microsoft), but unfortunately for the web designer (and to the ultimate detri-
ment of the user) there are only a handful of computer users who use anything
other than the pre-installed browser on their machine. This means predominantly
Windows and this means Internet Explorer.

But IE is not a complete idiot. It handles most areas of HTML and CSS W3C
standards very well. There are no gaping holes that prevent an author from
achieving a certain page structure or force him or her to compromise on a par-
ticular layout, for example. It’s only when it comes down to more specific details
that incompatibilities can get frustrating. The good news is that Microsoft has
finally gotten the message and has worked hard to fix many of these problems in
the latest, seventh incarnation of IE, which has now landed on Planet Web.

INTRODUCTION | xxviI

Browser shortcomings will be pointed out where applicable throughout this book,
but in general terms there is absolutely no practical reason not to adopt web
standards—all modern browsers are more than capable to deal with them.

We do have to work in a multibrowser world and even the best web makers
encounter discrepancies in their pages between browsers. They are usually easy
to iron out, and as long as you test your pages on multiple browsers to make
sure designs work, compatibility issues shouldn’t cause too many headaches.

It isn't true that lots of “hacks” are needed for web standard design. In fact,
that’s a bit of a contradiction.

There is a large quantity of hacks out there (particularly for CSS) that allow

you to dish out different code to different browsers, but they are generally just
unnecessary quick fixes for something that wasn't constructed properly in the
first place. In fact, in practical terms, there isn’t usually a need to use anything
other than one simple hack—the box model hack—that is necessary to accom-
modate a calculating error in IE 5.x (see Chapter 5, “Layout™).

Working on data collected from the Middle Ages, there are still those who bang
on about Netscape 4. “Does it work on Netscape 4? Because Netscape 4's really
important. It has to work in Netscape 4.”

[t's the most infamous of the “backwards compatibility” arguments, but it's also
the best example of taking backwards compatibility too far.

xXVill | INTRODUCTION

The first step on judging whether you should accommodate a browser is the
number of people who use it. The second step is judging to what extent you have
to compromise a web design to accommodate that browser.

Only a tiny fraction of a percentage of people now use Netscape 4. But even
though it could be accommodated (a tiny percentage is still a percentage, after
all), it's not worth it.

A confused sage once said “The pinnacle of good web design is a web design
that works on all browsers.”

Piffle.
Yes, a web design should work on as many browsers as possible, but at what cost?

Bending over backwards to accommodate old browsers will be to the detriment
of those who use newer browsers. What you lose by accommodating old browsers
are the practical benefits of web standards, mentioned above. Wave goodbye to
flexibility, lighter pages, increased accessibility, heightened usability, and lower
maintenance. You are going to lose more visitors through lack of optimization
than you are going to gain through the accommodation of obscure antiques.

The content of a well-structured HTML document should still be completely
accessible on older browsers—those that do not understand CSS or those that
are tricked into ignoring it (see “Applying CSS” in Chapter 1) will simply render
the HTML in the browser’s default style. The design may be lost, but the func-
tionality won't be.

Accessibility is all about how easy it is for someone, in whatever situation, to
gain access to something. Although this is quite a general area (and in rela-
tion to the Web it can include access to a site via “alternative” devices such as
mobiles, for example), it tends to focus on issues that arise concerning people

INTRODUCTION | xXx1x

with disabilities and how easy it is for them to access the information on a web
page or website.

The extent of accessibility considerations can fill a whole book (and they
do—see Joe Clark’s excellent Building Accessible Websites (New Riders) or Web
Accessibility: Web Standards and Regulatory Compliance (Friends of Ed), for
example—but we will explore them a bit here because HTML and CSS are the
tools ultimately used to tackle a majority of accessibility issues.

7l Buiwing (/)
|| accessiBie |7/

= =S

FIGURE 0.7 Although some years old, Constructing Accessible Websites by Joe Clark
is still the best, most comprehensive source for understanding web accessibility and
applying accessibility techniques in web design.

In many cases, very simple HTML and (to a lesser degree) CSS steps can greatly
improve accessibility, but there are a lot of those simple steps, particularly with
components of a page that require interaction—see Chapter 3, “Links,” and
Chapter 9, “Forms.” Although the issues surrounding various accessibility initia-
tives are not explicitly explored in this book (again, that is something for another
book), the techniques for achieving most of them are.

xXX | INTRODUCTION

Who Is This Book For?

This book is for those who want to get to grips with best-practice (X)HTML and
CSS, and for those who want a solid, reliable reference book.

Although the topic of web standards may appeal more to intermediate-to-advanced
web designers, the comprehensive nature of the book should suit beginners and
experts alike, both as a guide through how to author components of a web page
and as a reference to make sure you're using the correct syntax.

I've written something that | myself would find useful now, but something | also
would have found very useful back when | was first getting to grips with HTML,
CSS, and web standards.

How This Book Works

The book comprehensively works through the various components of a web page
(except Chapter 10, which is slightly different), explaining how to structure them and
how to present them. Component by component, by the end of the book, all practical
web standards (XHTML 1.0 Strict and CSS 2.1) tools will have been covered.

Practical Web Standards

Due to the current state of browser compatibility, not every W3C detail is covered in
this book because even as we promote the philosophy of using web standards, we
must also be practical. There’s no point in banging on about a technique that is fine
in theory but doesn’t work in a majority of browsers. It would be a waste of paper
and a waste of your time. Be secure in the knowledge that most web standards
options are practical and are covered. It's just a baby’s handful of pesky goblins that
try to spoil the fun.

Note that Appendixes A and B cover every valid (nonpresentational—see below)
HTML (XHTML 1.0 Strict) tag, CSS (2.1) property, and every valid attribute and
value. When browser incompatibilities crop up, a note to that effect will be attached.

In the name of good practice, presentational HTML tags such as b and i (that are
actually valid XHTML 1 tags) are also banished. We're going with the separation of

INTRODUCTION | xxxI1

structure and presentation here and the practical benefits it brings, so there’s no
room for these dated lingerers that are destined for the scrap heap anyway.

A brief look at some of the commonly used tags and attributes that don't fit into
the philosophy of this book (mainly invalid tags, but also tags such as b and i) are
noted in the “Bad Tags” section of Appendix A.

www.htmldog.com

There should be enough in this book to make at least a small cluster of your brain
cells feel all warm and fuzzy, but part of its design is to work hand-in-hand with the
HTML Dog website to give you even more help with HTML and CSS. Throughout
the book, you will find references to articles, which might go into more detail about
certain techniques, for example, and you will also find numerous pointers to “bare-
bone” examples. These examples were designed to strip away all but the necessary
code to demonstrate a small part of HTML or CSS, such as headings, or forms,
background images, or vertical alignment. Simply view the page source (an option
which can be found under the “View” menu item of most browsers) to see what’s
going on.

When they pop up in the book, they'll look a little something like this:

=3 www.htmldog.com/examples/verticalalign.html

A list of the gamut of 70-odd examples can be found at www.htmldog.com/examples/

The Chapters

Neatly nestled into 10 chapters you will find explanations of pretty much every com-
ponent of HTML and CSS you'll need, along with a few fancy techniques to add a
little bit of pizzazz to your pages.

e Chapter 1, “Getting Started”—sets the ball rolling by explaining the syntax of
HTML and CSS: what they look like, how they should be used, and how they
can be linked together.

e Chapter 2, “Text”"—covers all of the HTML tags used to structure various
types of text: paragraphs, headings, emphasis, abbreviations, and much

www.htmldog.com
www.htmldog.com/examples/verticalalign.html
www.htmldog.com/examples/

xXX11 | INTRODUCTION

more. The chapter then looks at the CSS that can be used to apply things
such as fonts, sizes, italics, and character spacing.

e Chapter 3, “Links”"—looks at just one tag, but it's such an important one that
it has been honored with its own chapter. From basic links and page anchors
through to making links more accessible and good practices in styling them.

e Chapter 4, “Images”—covers how to add content with the img tag and how to
add striking presentation with the powerful CSS background image.

e Chapter 5, “Layout”—explains how you can achieve various layouts using CSS.

e Chapter 6, “Lists”—goes over ordered, unordered, and definition lists and
how they can be styled to make page components such as navigational tabs.

e Chapter 7, “Scripts & Objects”—explains how JavaScript and objects such as
Flash movies can be incorporated into an HTML page.

e Chapter 8, “Tables”—covers everything you need to know about how to mark
up tabular data (not how to use tables for layout!), including how to make
tables more accessible. There are also a few specific CSS techniques thrown
in that can be used to make their presentation all the prettier.

e Chapter 9, “Forms”—covers how to structure and present forms and form
fields for user input, and explains the limitations of styling form elements.

e Chapter 10, “Multiple Media”—Ilooks at how web pages work in media other
than your standard desktop or laptop computer, and how you can optimize
the CSS of your web pages (without touching the HTML) so they are dis-
played more appropriately when printed out.

chapter 1

Getting Started

GETTING STARTED is often the most difficult thing to do. Sometimes it's
easier not to start at the beginning, but rather just jump in halfway and
start messing about with images or forms, for example. That might get
you on the road to a more interesting-looking web page quicker, but your
car would probably be in better condition afterwards if you learned how
to drive properly first. It's the same as with any other subject—there’s
always a whole load of theory to plow through, but getting through it will
make life easier and better in the long run.

This chapter will tell you pretty much everything you need to know about
putting together the basic components of a web page. It splits quite
neatly into two—how to use HTML and how to use CSS.

HTML Syntax

HTML has a very straightforward syntax: Content is structured into elements
using tags with extra information supplied by attributes. XHTML, which we'll
be using, has a stricter syntax than older (non-X) HTML versions, but if you

follow the simple rules, you should reap the benefits.

2 | CHAPTER 1: GETTING STARTED

Elements, Tags, and Attributes

All you are doing with HTML is taking content and defining what each piece of
it means by wrapping the pieces in tags. To define a few terms, in the following
example:

HTML Dog

“" is an opening tag, which defines the start
of an element.

“" is a closing tag, which defines the end of an element.

“href” is an attribute, which is a setting for an element. (In this example, “href” is
the destination of a link—see Chapter 3, “Links.”)

“http://www.htmldog.com/" is an attribute value, used to specify what the attribute
should be set to.

“HTML Dog” is content.

“HTML Dog" (the whole shebang) is an ele-
ment.

There are a few simple rules to follow when it comes to tags (besides using valid
tags and attributes, which the chapters will cover).

Firstly, XHTML requires that all tags and attributes must be lowercase. <p></p>
and <blockquote></blockquote> are valid, but <P></P> and <BLOCKQUOTE>
</BLOCKQUOTE> are not. (If you aren’t familiar with some of the tags in this
chapter, don’t worry; they are covered later in the book.)

Secondly, all tags must close. In the above example, the end of the element is
marked by . <h1> must be closed with an </h1>, <div> must be closed with
a </div>, and so on. There are special cases where an element has no content,
such as br or input. In these cases there is no explicit closing tag, but rather
the single tag closes itself with the “/” character at the end, as in
 or

<input />.

http://www.htmldog.com/

HTML SYNTAX | 3

Thirdly, all attribute values must be in quotation marks (and all attributes must have
values). For example, HTML Dog is not valid—
it must be HTML Dog.

Fourthly, elements must be nested properly.
Nested elements are elements enclosed in other elements.
An example is:
<p>Why not try out HTML Dog?</p>

In this case, the a element (a link—see Chapter 3) is nested inside the p element (a
paragraph—see Chapter 2, “Text”).

You have to be careful when nesting elements—one must fit snugly inside another.
So, for example,

HTML Dog
is good, but
HTML Dog

is not. If the a element is to be inside the em element (emphasis—see Chapter 2)
then the closing tag for the a element must come before the closing em tag.

IT'S A FAMILY AFFAIR

The relationship of one element to another can be defined in terms of family con-
nections. With nested elements, an element within another element can be called
a child of the containing element. In turn, the containing element is known as
the parent of that child.

S0 in <p>Lemon pie</p>, the p element is the parent of the em ele-
ment, which is the child of the p element.

You will also come across terms such as siblings, ancestors, and descendants.

4 | CHAPTER 1: GETTING STARTED

BLOCK AND INLINE ELEMENTS
All HTML elements are one of two types—nblock or inline.

Block elements collect together other block elements or inline elements, or even
plain old textual content, and are used to structure something that is greater
than a simple line of content. They include div (used to divide up code by split-
ting it into chunks—explained in detail later), p (paragraphs—see Chapter 2)
and table (Chapter 8, “Tables”).

Inline elements are just that—elements within a line. They include span (see later),
em (emphasis—see Chapter 2) and img (image—see Chapter 4, “Images”).

Keep in mind that you can't have a block element inside an inline element (such
as <p>Ra ra</p>). See Appendix A for more details on what elements
can be nested within certain elements.

Common Attributes

Throughout this book you will come across many attributes that are specific to cer-
tain tags or collections of tags. There is, however, a group of “common attributes”
that can be used with most tags.

The common attributes consist of core, i18n, and event attributes.

Core attributes
The core attributes are class, id, title, and style.

Classes and ids apply an extra little label to an element, and are used for page
anchors (a position on a page to which a link can jump, as explained in Chapter 3),
manipulation of elements with JavaScript, and, most commonly, as a way of directly
targeting an element with CSS.

<div id="content">

<p class="chair">Lorem ... ipsum ... etc.</p>
<p>Lorem ... schmipsum ... etc.</p>
<p class="chair">Etc. ... ipsum ... schmipsum.</p>

</div>

HTML SYNTAX | 5

a Search

f2) HTML and CSS Tutorials. And Stuff.

Welcome to HTML Dog, the web designer's resource for everything HTML and C55, the most
HTML DOg commaon technologies used in making web pages.

The Best Practice Guide
To ¥HTML and CS5

4
Quick and easy-to-follow practical guides to get you up and
runhing with HTML and C55, following best-practices every

Tutorials
HTML Beginner
CSS Beginner
HTML Intermediate
CSS Intermediate

step of the way. New visuals accompany
a whole host of new

HTML Advanced cantent.
£S5 Advancad The reference section, which is crass-linked fraom thraughout Updated Tutorials,
HTML Dog, outlines all of the valid XHTML tags and €SS extra Articles, and
References properties available to you. Exzmples aplenty!
HTML Tags

C5S Properties

If you find this web site

Articles £ handful of articles expand on the tutarials, going into a few
5 i _ useful, please link to it.
more specific areas and a bit more detail, F L Kind
Examples It's a karma kinda
thang.

The Book

g Bare-bone examples complement the tutorials, references
CS5 Training L i " !

and articles, and should help you to grasp how bits of HTML and C55 work a bit better by
seeing them in action,

Lbhout HTML Dog

Link To HTML Dog

Contact HTML Dog

External Links C 3

Site Map N The new HTML Dog hook, published by Mew Riders, will hit the shelves this
2 Movember,

Building on and complementing the web site, it is 3 comprehensive (yet
concise, and utterly entertainadelic) resource for those who really want to
get to grips with (XJHTML and CS5, and use them in the best possible way
from the outset. Logically divided chapters coupled with tag and property
appendixes make it a damned fine reference boolk, too,

You can pre-order your copy at a discounted price from Amazon.com -, Amazon.co.uk -,
Amazon.ca -, Amazon.fr &, Amazon.de &, or Amazon.co.jp

FIGURE 1.1 The illustrations in this chapter are taken from the HTML Dog website
(www.htmldog.com).

www.htmldog.com

6 | CHAPTER 1: GETTING STARTED

Home Tutarials k ‘Q Search

<f§>) HTML Intermediate Tutorial

wWhereas the purpose of the HTML Beginner Tutorial was to teach the bare essentials, this
HTML DOg guide adds a few nuts and bolts, which shouldn't be particularly difficult as such, but will add a

The Best Practice Guide bit more to our understanding of HTML and enable us to do a few more things.
To XHTML and 55

Tutorials Ay
Contents
HTML Beginner
55 Beginner

= Span and Div - The 'meaningless’ elements, used with C5S.
m [Meta Tags - Bolting on extra information about your web page.
= Tables II - Expanding on the Tables page of the HTML Beginner Tutorial, looking at

5 do
s header-cells and merging cells.
Meta Tags
= Definition Lists - The forgotten lists.
Tables

m Javascriph - How to add Javascript to your HTML,
= Bad Tags - The HTML elements and attributes you should avoid.

Definition Lists

Javascript

FIGURE 1.2 A few examples of the components that are block elements: paragraphs, head-
ings, forms, and lists. The list items are also block elements.

ids are used when there is just one unique element that needs a CSS association
(or an anchor) and uniquely identifies a part of a document (such as “content” in
the above example). Only one element in an HTML document can have an id with a
certain value so for example, you can’t have:

<h2 id="plant">Tree</h2>
<h2 id="plant">Bush</h2>

Unlike ids, any number of elements in an HTML document can have a class with a
certain value. They are used when there is more than one element that needs the
same CSS association, so, for example, you could have:

<h2 class="plant">Tree</h2>
<h2 class="plant">Bush</h2>

Classes and ids will come up again in this chapter, when we look at class and id
CSS selectors.

title adds a title to an element. A handy little critter, title can be used to add a
bit more information. This is commonly used with elements such as abbr to define
the phrase that an abbreviation is representing (see Chapter 2); blockquote, to give
more information on where a quote has come from (again, see Chapter 2); or a, to
give more information on what to expect at the destination of a link (see Chapter 3).

HTML SYNTAX | 7

The value of a title attribute can be read out by screen readers (increasing acces-
sibility), and browsers will commonly turn the value of the title attribute into a little
“tool tip,” popping it up by the cursor when it moves over the element. This can be
useful in providing more information about a certain element, such as what an acro-
nym stands for or where a link will take the user.

Home Tutarials ‘Q Search

<f;§>) HTML Intermediate Tutorial

wWhereas the purpose of the HTML Beginner Tutorial was to teach the bare essentials, this
HTML DOg guide adds a few nuts and baolts, which shouldn't be particularly difficult as such, but will add a

The Best Practice Guide bit more to our understanding of HTML and enable us to do a few more things.
To XHTML and £S5

Tutorials
HTML Beginner
S5 Beginner

= Span and Div - The 'meaningless’ elements, used with CSS.
m [Meta Tags - Bolting on extra information about your web page.
= Tables II - Expanding on the Tables page of the HTML Beginner Tutorial, looking at

Span and Div
i header-cells and merging cells.
Meta Tags . . 7
= Definition Lists - The forgotten lists.
Tables

m Javascriph - How to add Javascript to your HTML,
= Bad Tags - The HTML elements and attributes you should avoid.

Definition Lists

Javascript

FIGURE 1.3 ...And a few examples of inline elements: links, form fields, images, and empha-
sized text.

The style attribute, which is used to inject CSS directly into the HTML (with a
blunt, uncomfortable needle), will be explained later (as will the reference to the
blunt, uncomfortable needle) under the “Applying CSS to HTML” heading.

i18n attributes
The i18n attributes, so called because few people can be bothered to write the
18 characters in between j and n in internationalization, are dir and xml:lang.

dir specifies the direction of content. Values can be 1tr (left to right—for languages
such as English) or rtl (right to left—for languages such as Arabic).

xml:Llang specifies the language of the content of an element, such as en for
English, de for German or mg for Malagasy.

8 | CHAPTER 1: GETTING STARTED

Event attributes

The onclick, ondblclick, onmousedown, onmouseup, onmouseover, onmousemove,
onmouseout, onkeypress, onkeydown, and onkeyup attributes invoke the JavaScript
value when the user takes certain actions. You can read more about event attri-
butes, and why you should avoid using them, in Chapter 7, “Scripts & Objects.”

The Basic Structure of an HTML Document
A number of basic structural elements are required to make a valid (X)HTML page.
Basically, everything should fit into a structure outline that looks something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:1lang="en">

<head>
<title></title>
</head>

<body>
</body>

</html>

At the very top is a document-type declaration and following that is an html element.
Inside the html element there are two elements—head and body. The contents of the
head element (including the required title element) give general information about the
content of the HTML document. The content of the body element is where everything
else goes—the viewable (or audible, or otherwise experienced) web page content.

Declarations

There are a few things that need to be done to define a valid HTML document
before really getting stuck in to the HTML. A document-type declaration lets the
browser know what version of HTML you're using, the primary language should also
be stated, and you also need to specify the file type and character set of the docu-

HTML SYNTAX | 9

ment. This might sound a bit daunting, but all it involves is a few lines of standard
code at the top of your web page. Once the code’s there you don’t have to worry
about it.

Document Type At the very top of your web pages, you need a document declara-
tion. That’s right, you need it.

Without specifying a doctype, your HTML just isn’t valid HTML and most browsers
displaying it will switch to “quirks mode,” which means they will assume that you,
the author, don’t have a clue what you're doing and so they will make up their own
mind about what to do with your code.

At this moment in time, the best document declaration to use in most situations is
for XHTML 1.0 Strict. And it looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1l-strict.dtd">

The following is the document declaration for XHTML 1.1, which may seem prefer-
able, being the latest version of XHTML, but there are a few problems with browser
compatibility (because a lot of them don’t really know about it yet). To the web page
author, this has few differences from XHTML 1.0 Strict anyway.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtml11.dtd">

This line of code (which is usually broken in two, as above, just to make things a
little neater) tells the browser what version of HTML to expect and where the “docu-
ment type definition” can be found. It must be at the very top of the HTML docu-
ment, with no content preceding it, otherwise it will not take effect and the browser
will slip into quirks mode.

Note that the DOCTYPE statement doesn’t follow any of the syntax rules you just
learned for writing HTML tags. Don’t think of it as a part of the HTML as such, but
as its own animal. Type it exactly as shown, with “DOCTYPE"” in uppercase, adorned
with an exclamation mark and unclosed, and you'll be fine.

There is no real need to use a doctype other than those already mentioned, but
there are also doctypes for various versions of HTML, for an XHTML frameset, and
also for XHTML 1.0 Transitional.

10 | CHAPTER 1: GETTING STARTED

WHY NOT XHTML TRANSITIONAL?

XHTML Transitional is just that—a transition. It is designed to help developers
make the move from one technical standard—HTML 4—to another techni-

cal standard—XHTML (Strict). This is a great learning step if you're stuck in

your HTML 4 ways, but it shouldn’t be seen as an ultimate goal. The difference
between the Transitional XHTML and Strict XHTML is nothing more than the for-
mer allowing more tags and attributes than the latter. This might sound prefera-
ble, but in the long run it's not. XHTML Strict strips out most of the presentational
crap that we're trying to get away from. By applying XHTML Strict we are helping
to ensure that there is as little presentational junk in the markup as possible.

One increasingly unjustifiable reason why developers might opt for Transitional
XHTML is if they have a need to accommodate older, rarely used browsers.
Presentational elements might result in better presentation in browsers such as
Netscape 4 but using such elements will be detrimental to the efficiency, and
possibly accessibility, of your web pages.

Another reason might be if you are working with other, less knowledgeable
people, or even completely handing over your code to someone (such as a client)
who wants to add/alter/mangle it as they please. But in these cases, there’s not
much point in having a doctype at all (because, remember, quirks mode is for
people who don’t know what they're doing).

In fact, Transitional XHTML only makes sense when you don’t have complete
control over what you're doing. If you're not starting from scratch, or if you have
to accommodate certain foibles or the whims of naive project managers, for
example, then you might not have much choice. And if you can use a doctype
(and validate to it), it's better to use something than nothing at all.

But for the sake of argument, let’s assume that we're not going to be handing
over our Da Vinci to a manic toddler with a pack of crayons. Let’s assume that
we do have complete control over what we're doing (or at least striving to apply
the highest standards). And let’s assume that the best approach to web design
is to completely separate structure and presentation (because, well, it is). And so
let's assume that Strict XHTML is the way to go.

HTML SYNTAX | 11

Language You should identify the primary language of a document either through
an HTTP header (“HyperText Transfer Protocol”—it’s a server thing—detail that is
sent to the browser along with the HTML) or with the xml:lang attribute inside the
opening html tag. Although this is not necessary to produce a valid HMTL docu-
ment, it is an accessibility consideration. The value is an abbreviation, such as “en”
(English), “fr” (French), “de” (German) or “mg” (Malagasy). Have a gander at www.
w3.org/International/articles/language-tags/ for more on the use of language codes.

The declaration for a document with primarily English content, for example, would
look like this:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">

After declaring a primary language, if you use languages other than that in your
content you should further use the xml:lang attribute inline (such as <span xml:
lang="de">HTML Hund).

Content Type The media type and character set of an HTML document also need to
be specified, and this is done with an HTTP header:

Content-Type: text/html; charset=UTF-8

The first part (in this example, the text/html bit) is the MIME type (Multipurpose
Internet Mail Extension) of the file, and this lets the browser know what media type
a file is and therefore what to do with it. All files have some kind of MIME type. A
JPEG image is image/jpeg, a CSS file is text/css, and the type most commonly
used for HTML is text/html.

The second part of the HTTP header (in this example, the UTF-8) is the character set.

Character sets include “ISO-8859-1" for many Western, Latin-based languages,
“SHIFT_JIS” for Japanese, and “UTF-8,” a version of Unicode Transformation
Format, which provides a wide range of unique characters used in most languages.
Basically, you should use a character set that you know will be recognized by your
audience. So if the language is wholly English, for example, ISO-8859-1 is a code
that is widely recognized. If there is a mix of languages, or a language that is not
Latin based, the more general UTF-8 might be preferable. If the language is wholly
Japanese and your target audience is also Japanese, SHIFT-JIS is the one to go for.

You can read more about character sets at joelonsoftware.com/articles/Unicode.html.

www.w3.org/International/articles/language-tags/
www.w3.org/International/articles/language-tags/

12 | CHAPTER 1: GETTING STARTED

Perhaps the easiest way to set an HTTP header (or mimic it) is to use an “HTTP-
equivalent” meta tag in the HTML, which would look something like this:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

All you need to do is pop that inside the head element (more on head and meta ele-
ments shortly), the browser will be able to work out the content type, and everything
will come up smelling of roses.

HTML, Head, and Body

Right. So those are the all-important declarations out of the way. Now we can get on
with applying those all-important HTML tags, using HTML to contain the two main
page parts: head and body.

SETTING CONTENT TYPES SERVER-SIDE

The HTTP-equivalent meta tag does the job of setting a page’s content type, but
if at all possible it is preferable to use a genuine HTTP header. With the meta
tag, the browser must receive the HTML file and then decipher the content type,
but by establishing the content type on the server side before the HTML file is
sent, the browser will be told what to expect beforehand.

One way of sending the content type is by using a server-side scripting language
such as PHP:

<? header("Content-Type: text/html; charset= UTF-8"); 7>

If you don’t want to (or can’t) use a server-side scripting language, you might be
able to go straight to the server with an “.htaccess” file. Most servers (Apache
compatible) can have a small text file with the file name “.htaccess” that sits in
the root directory and with the following line in it, you can associate all files with
the extension “.html” with a MIME type and character set:

AddType text/html;charset=UTF-8 html

HTML SYNTAX | 13

A basic page structure is going to look something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1l-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>

<title>Uncle Jack's Sea Cow Farm</title>
</head>
<body>
<!-- A whole load of content -->
</body>
</html>

After the doctype declaration, we have html, which is the root element that specifies
that the content of the document is HTML. It contains the remainder of the page
information after the document-type declaration.

The first thing we find inside the html element is head. This is the header of an
HTML document where information about the document is placed.

The head element comes straight after the opening html tag and contains informa-
tion about the page that is not actually content. There are a few different elements
that can go inside the head element, but one is required: title (we'll come to the
title element, and those few others, in just a moment).

Finally, after the head element comes the all-important body element. This is the
main body of an HTML document where all of the content is placed. This is the stuff
that people will see, hear, or otherwise experience when they visit the web page.

HTML COMMENTS
You can place a comment anywhere in your XHTML like this:
<!-- Here's a comment -->

Absolutely nothing will change in terms of the visible or audible content—it is
just a simple notice to anyone looking at the code of the web page.

14 | CHAPTER 1: GETTING STARTED

Inside the Head... This isn't the place to go into much detail about the various tags
that can be used inside the body element—there are many, and there’s a lot to say
about them, so you'll find more information about these in the rest of the book.

The head element is slightly different, however, with a much narrower scope of tags
that can be used. title, link, meta and base are the four lonesome, specific tags
described here. Other tags that can be used inside the head element are style,
which is used to define page-specific CSS, and is explained in detail later in this
chapter, and script, used to define page-specific scripts, such as JavaScript, which
is given the coverage it deserves in Chapter 7.

title simply gives a title to the document. It will appear as the title of the browser
window, as is also used for bookmarks.

<head>
<title>Uncle Jack's Sea Cow Farm</title>
</head>

The 1ink element defines a link to an external resource such as a CSS file, a short-
cut icon, or customized navigation. There are a whole bunch of specific attributes
that can be used (see the tag reference appendix for the details), but the most com-
monly used are href, which specifies the target of the link (much like text links, as
will be explained in Chapter 2), and rel.

rel specifies the relationship of the target of the link to the current page. There

are some universally understood values for the rel attribute, such as “shortcut
icon” that browsers will recognize as the icon that should be used alongside the
web address (in a “favorites” menu, for example) and “stylesheet,” which browsers
will recognize as the CSS file that should be linked to the page (see below). Some
browsers will also allow the author to define customizable navigation elements with
the link tag, such as next page, previous page, home, contact, etc., that will appear
as options in the browser interface itself rather than the web page.

Here are a few examples of common uses of the 1ink element:

<link rel="stylesheet" type="text/css" title="Some title" href="/
somefile.css" />

<link rel="alternate stylesheet" type="text/css" title="Some
alternative title" href="/someotherfile.css" />

HTML SYNTAX | 15

<link rel="shortcut icon" href="/favicon.ico" />
<link rel="next" title="Next page" href="nextpage.html" />

sdth of HML and G55, The Beginner Tute — FIGURE 1.4 A “tool tip” will pop up

zontain ”d best- when the cursor hovers over an ele-

ment containing a title attribute.

The meta element specifies meta information, which is used to provide information
about the HTML page (meta information being information about information).

We have already come across one type of meta tag—the “HTTP Equivalent” (see
“Content type,” above), but the simplest and most common form is a simply named
meta tag, such as “keywords” or “author.”

The important attributes that slot inside the meta tag are content, which is the
meta information itself (and is therefore required), and name, which is, um, the
name given to that information. name can be anything that tickles your fancy, but
widely used examples are “keywords” and “description.”

So, if you use meta tags, you might have a whole bunch of 'em, like this:

<meta name="keywords" content="fruit, banana, orange, apple,
kumquat, cucumber" />

<meta name="description" content="News, reviews and opinion on all
things fruity." />

<meta name="author" content="The Fruit Farmers Association of
Bujumburra" />

And then there’s base. base defines the base location for links on a page. It isn't
used that often, but in the interests of comprehensiveness, here’s what it looks like:

<base href="/images/tootlepops/" />

If you were to slot this example into the head, what would happen is every file ref-
erence in the page would be in relation to “/images/tootlepops/”. So, for example,
 would actually point to “/images/tootle-
pops/banana.jpg” and Cucumber would
point to “/images/tootlepops/morefruit/cucumber.html”.

16 | CHAPTER 1: GETTING STARTED

META TAGS: WHAT'S THE POINT?

The primary application of meta tags used to be in the optimization of a web page for
search engine rankings. Keywords and descriptions were used by the search engine
algorithms to judge how closely a web page matched a given phrase. Nowadays, how-
ever, few search engines take any notice of meta tags that specify page keywords due
to their misuse and tendency to lead to irrelevant material. Instead, search engines
tend to base their results on the page content itself. Google, for example, will only

use the meta tag “description” to accompany a search result, but ignores meta tags
altogether when it comes to judging a page’s rank. It bases its results primarily on
content, the page title, and also terms that are used to link to the page in question.

So is there any real point? Meta tags certainly aren't the force they used to be
when it comes to search engines, but they can still be used to convey useful
information about the page. Even if an application doesn't directly use a meta
tag, someone looking at the page source itself could still benefit from such
information. Another common value for the name attribute is “copyright,” which
won't be directly used by anything (such as search engines or browsers), but can
be used to point out copyright information to a casual observer. On a large-scale
site with multiple developers, you could also use meta tags to convey information
about a page that means nothing to the outside world but can help internally.

The Generalist Tags—div and span

Throughout this book many tags will be mentioned, most of which have very specific
purposes and are used to mark up very specific elements (such as images, tables,
or quotes). There are two “generalists” that apply little meaning but are commonly
used to group together sections of HTML and apply CSS to those groupings.

div is a division. It's a block-level element that groups together a chunk of HTML,
and might look something like this:

<div id="content">

<hl>How to make a falafel</hl> <p>Buy a falafel seed and plant
it in your garden.</p>
</div>

CSS SYNTAX | 17

You will come across div more in Chapter 5, “Layout,” where it is used to define
navigation and content areas of a page, for example.

span is an inline element that groups together a chunk of inline HTML, such as
single words or short phrases.

<h1>How to make a falafel</hl>

span tags should be used sparingly because when a more meaningful tag can be
used as an alternative (such as em for emphasis—see Chapter 2), that is more ben-
eficial to the HTML structure. So, in the previous example, falafel would
be better if you were actually attempting to emphasize the word falafel.

CSS Syntax

Although intrinsically linked with HTML in the formation of a web page, CSS, the
language used for presentation of a page (see Introduction for more) has a com-
pletely different syntax, consisting of a collection of rules that are made up of selec-
tors, properties, and values.

Rules
A typical CSS rule might look something like this:
hl { font-size: 2em; }
Where:
“h1” is a selector, which defines which part of the HTML to apply the CSS to.

“font-size” is a property, which defines what specific presentational aspect of the
targeted element you want to set.

“2em” is a value, which defines what the property should be set to.
“font-size: 2em;” is known as a statement.

And the whole lot, “h1 { font-size: 2em; }” is collectively known as a rule.

18 | CHAPTER 1: GETTING STARTED

Selectors

Selectors specify which HTML elements the style declarations should be applied
to. There are three main kinds of selectors: HTML selectors, id selectors, and class
selectors.

HTML selectors simply specify an HTML element to which the declarations should
be applied, so

h2 { color: red; }
Will make all h2 HTML elements red.

id selectors attach styles to the HTML element with that corresponding id. So, if
you had something like this in your HTML:

<h2 id="tree">Tree</h2>

And you just wanted to apply styles to that element, you would do this (note the #
character at the start of the selector):

#tree { color: red; }

class selectors attach styles to HTML elements with a corresponding class. So, if
you had something like this in your HTML:

<h2 class="plant">Tree</h2>

And you wanted to apply styles to that element and every other element with
class="plant”, you would do this (note the dot at the start of the selector):

.plant { color: red; }

You can attach a number of classes to an HTML element by separating them with
spaces, such as:

<h2 class="plant leafy">Tree</h2>
Which will apply both of these rules:

.plant { color: red; }
.leafy { font-style: italic; }

CSS SYNTAX | 19

WHAT SHOULD MAKE A CLASS OR ID NAME?

When choosing names for id and class attributes you should remember the
structure and presentation separation. Once more, the values you choose should
not suggest presentation.

Having:

<p class="redtext">Beach bottom bikinis...</p>
with the CSS to style it:

.redtext { color: red; }

is kind of missing the point. In this example, although class="redtext" doesn’t
actually do anything on its own, it is still not separating the suggestion of pre-
sentation from structure.

To put it in practical terms, what if you decided that you didn't want those par-
ticular classes in red any more? It would be a bit daft to then have:

.redtext { color: blue; }
So your class and id names should also be semantic, just like tag names.
<p class="bikinis">Beach bottom bikinis...</p>

This example makes much more sense to the structured semantic document and
because it has nothing to do with presentation, you can apply any color or any-
thing else to it and it will remain completely sensible.

And it’s not just something as simple as colors or boldness, for example. Think
whether the class or id names are suggesting what the corresponding CSS rule
set is using and if they are they're not good.

id="largebox", class="hidden", id="float1" are all just as bad as class=
"redtext".

Note that an id or class name cannot start with a number—it must begin with a
letter or an underscore.

20 | CHAPTER 1: GETTING STARTED

You can also be more specific as to which elements a class applies to by putting the
class selector straight after another selector. If you only wanted to associate styles
to an h2 element with the class “plant,” for example, then you could use the selec-
tor h2.plant. You could then use the selector p.plant to apply specific styles to p
elements with the class “plant” and so on.

Pseudo-classes and Pseudo-elements

Pseudo-classes and pseudo-elements, which are bolted onto a selector with a colon,
increase the specificity of a selector by adding a further condition, such as the first
letter of an element (whatever:first-letter) or when the cursor moves over an ele-
ment (whatever:hover).

The most widely used is probably :hover, which is applied like this:
a:hover { text-decoration: none; }

(This would cause a link’s underline to disappear when it is hovered over by the cur-
sor—see Chapter 3, “Links.”)

There aren’'t many of these and most are very specific in what they do. You can find
out more about what pseudo-classes and pseudo-elements do in Chapters 2, “Text,”
and Chapter 3.

Grouped Selectors
If there is a specific style you want to apply to more than one selector, there is no
need to do something like this:

h2 { color: red; }
#kumquat { color red; }
.panda { color: red; }

To apply the same declaration block to more than one selector, all you need to do is
separate selectors with commas, like this:

h2, #kumquat, .panda { color: red; }
Nested Selectors

You can directly target styles at nested HTML elements (elements within other ele-
ments) by specifying a space-separated list of parents before the desired element.

CSS SYNTAX | 21

For example, if you wanted to apply a style to only those em elements that were
within p elements, then you would do something like this:

p em { font-weight: bold; }

or if you only wanted to style em elements that were within p elements within an ele-
ment with the id “content”:

#content p em { font-weight: bold; }

and you don’t have to specify every parent element. For example, if you wanted to
style every em element in that “content” element:

#content em { font-weight: bold; }

Nested selectors often remove the need to apply id and especially classes as CSS
hooks because you can target elements by their relationship to other elements. So,
for example, if you wanted the links in a navigation area to be a different color than
the links in the main content area, you could have something like this in your HTML:

This

That

The other
<l-- etc -->

And then use this CSS:
.prune { color: orange }
But it would be much more sensible if you had something like this as the HTML:

<div id="navigation">

This

That

The other
<l-- etc -—>

</div>

And then this as the CSS:
#navigation a { color: orange }

Which allows you to really cut down on HTML code.

22 | CHAPTER 1: GETTING STARTED

SPECIFICITY

If you have two (or more) conflicting CSS rules that point to the same element,
there are some basic rules that a browser follows to determine which one wins
out. If the selectors are the same, then the one that is specified last in the style
sheet will always take precedence. For example, if you had:

p { color: red; }
p { color: blue; }
p elements would be colored blue because that rule came last.

However, you won't usually have identical selectors with conflicting declarations
on purpose (because there’s not much point). Conflicts quite legitimately come
up, however, when you have nested selectors. In the following example:

div p { color: red; }
p { color: blue; }

It might seem that p elements within a div element would be colored blue, see-
ing as a rule to color p elements blue comes last, but they would actually be col-
ored red due to the specificity of the first selector. Basically, the more specific a
selector, the more preference it will be given when it comes to conflicting styles.

The actual specificity of a selector takes some calculating, however, and isn't as
straightforward as it might seem. There is a fixed way of calculating a selector’s
specificity and it goes like this:

You count the number of id attributes and call that number “a,” then you count
the number of other attributes (such as class selectors and pseudo-classes) and
call that number “b,” then you count the number of HTML selectors and call that
number “c.” Finally, you take a, b, and ¢, push them together and the number
“a,b,c” is the overall specificity. Confused? A few examples might clear things up:

p has a specificity of 0,0,1 (a=0, b=0, c=1).

CSS SYNTAX | 23

div p has a specificity of 0,0,2 (a=0, b=0, c=2).
.tree has a specificity of 0,1,0 (a=0, b=1, c=0).

div p.tree has a specificity of 0,1,2 (a=0, b=1, c=2).
#baobab has a specificity of 1,0,0 (a=1, b=0, c=0).

So if all of these examples were used, div p.tree (with a specificity of 0,1,2)
would win out over div p (with a specificity of 0,0,2), and #baobab (with a
specificity of 1,0,0) would win out over all of the others in this example.

It helps to keep the commas (having 1,0,0 rather saying “100") because it works
on an infinite-base system (rather than base-10, which we commonly use).

11 class selectors (“0,11,0” rather than “0110”), for (an unlikely, in practice)
example, is still less specific than one id selector (“1,0,0” rather than “100").

At-rules

At-rules use special types of selector that don’t rear their heads all that often. CSS
2.1 has just three valid at-rules: @import, used to include one CSS file in another
one (explained in more detail below); @media, used to assign a block of CSS to a
specific media type such as screen or print (see Chapter 10, “Multiple Media”); and
@page, which is used for paged media to apply properties to specific printed-page
conditions.

Properties

So with the selectors you can associate styles to specific pieces of HTML. But what
about the styles themselves? Properties are the presentational parts of an element
that you can alter. There's a great deal of them, ranging from colors and font sizes
to much more specific things such as white-space and border-collapse. The prop-
erties themselves will be covered in the relevant chapters.

24 | CHAPTER 1: GETTING STARTED

EXTENDING SELECTORS: >, +, *, AND [X=Y]

The CSS standard allows a great deal of versatility and specificity with selec-
tors. On top of grouping and nesting, in theory you can also have child selectors,
universal selectors, adjacent sibling selectors, and attribute selectors. In prac-
tice, though, only universal selectors are widely supported (as in, supported by
Internet Explorer 6).

Universal selectors (using the “*” symbol) match any and everything. So form * will
target every box within a form element. An example of their use is in a user style
sheet (see later in this chapter) to ensure that all text and backgrounds are a certain
color by using something like body * { color: black; background: white },
which states that all boxes within the body should have black-on-white text.

Child selectors (using the “>" symbol) allow you to target the immediate descen-
dant of an element, that is, the first nested element within a particular element.
body > p will target p elements that are directly nested within the body ele-
ment, but not p elements that are further nested in other elements, for example.

Adjacent sibling selectors (using the “+” symbol) allow you to apply a rule to an
element that directly follows another element. h1 + h2, for example, will only
apply an associated declaration block to hz2 elements that directly follow an h1
element.

Attribute selectors will apply CSS to an HTML element with a specific attribute
or attribute value. The syntax is elementname/attributename=attributevalue]. So,
for example, abbr[title] will apply styles to abbr elements that have a title
attribute (regardless of their value) and abbr[title=Cascading Style Sheets]
will apply styles to abbr elements that have a title attribute with the value
“Cascading Style Sheets.” Instead of “=" you can also use “~=", which will
match the selector to a word (of a space-separated list) within an attribute value
(such as abbr[title~=Cascading]) or “I=", which will match the selector to
the first “word” of a hyphen-separated list (designed primarily for the xml:1ang
attribute, where abbr[xml:1langl=en] Will match both xml:1ang="en" and xm1:
lang="en-us"; for example).

CSS SYNTAX | 25

INHERITANCE

When you apply a property to a box, it will often be inherited by all the boxes
contained within it as the descendants inherit styles from their ancestors. So, for
example, when you apply a font size to the body element, blocks within the body
(as in everything you see on the web page) will inherit that font size.

Not all properties are automatically inherited in this way. Dimensions, padding,
borders, and margins, for example (see Chapter 5, “Layout”), will apply those
elements to which they are explicitly applied. Although there is no general rule
as to which properties are inherited by default and which are not, it is generally
quite logical—it is likely that you will want colors and font sizes to be inherited
more often than not, but highly unlikely that you would want all elements to be
the same height as their parent element, for example.

Values

The values you can assign to different properties are often specific to each property
(and will be covered throughout the chapters). But there are also values that are
used by many different properties, namely units of measurement and color values.

Units
Units of measurement can be split into numbers, percentages, and lengths.

Unit Suffix Example
Number [none] line-height: 1.5
Percentage % width: 80%
" Em em font-size: 2em
Pixel pX font-size: 16px
Point pt font-size: 12pt
Length { Pica pc font-size: 10pc
Centimeter cm width: 10cm
Millimeter mm width: 100mm
W Inch in width: 2in

26 | CHAPTER 1: GETTING STARTED

ABSOLUTE AND RELATIVE UNITS

Absolute units are those that are irrevocably fixed no matter what the context—
they are not dependent on anything. Meters and yards are examples of absolute
units. In the case of CSS, cm (centimeters) and in (inches) are examples of
absolute units.

Relative units, on the other hand, result in actual sizes that are dependent on
(or relative to) something else. A percentage is relative, as is an em—the actual
computed size of an object measured in such units depends on the situation in
which they find themselves.

Whether pixels are absolute or relative is a contentious issue. Although they are
popularly thought of as absolute units, they are relative, due to the fact that they
can be different sizes depending on the size of monitor and screen resolution—
a pixel could be 0.1 mm wide or it could be 10mm wide, for example. But in web
design it is more helpful to think of pixels as absolute units, and that is how they
will be treated throughout this book.

Sizes made up of relative units will have different computed sizes depending on
browser preferences, such as text-size setting (ems) or the width of the browser
window (%), but sizes made up of pixels remain fixed unless the user changes
screen resolution, in which case all elements—text, images, layout, etc.—shrink
or grow in real terms (as in their size in millimeters, for example) in the same
relation to one another.

So because users do change things such as text size or window size and tend not
to change their resolution (and even when they do, every relative size changes
with it), the distinction between relative units (minus pixels) and absolute units
(plus pixels) is much more helpful when it comes to understanding and manipu-
lating the effects between the two different approaches.

“Absolute vs. Relative values” is discussed in Chapter 2 (in relation to text sizes)
and in Chapter 5 (in relation to dimensions in layout).

CSS SYNTAX | 27

An “em” represents the computed value of the font size. So if the text in a contain-
ing element is displayed at 16 pixels, then 1em will be the equivalent of 16 pixels
and 2em will be the equivalent of 32 pixels, etc.

Note that the units come straight after the number, with no spaces, such as “12px”
rather than “12 px.”

Color Values
Color values, which are used to color fonts, backgrounds, and borders, can be used
to specify one of more than 16 million colors.

They can take the form of a hex (hexadecimal) value, an RGB (red, green, blue)
value, or a color name.

Hex values use hexadecimal (once, and more accurately, known as “sexadecimal”)
values, based on the base-16 number system (as opposed to the more familiar base-10
number system of decimal values), using digits from O to f (O to 9 and then a to f).

Hex values are made up of a hash character (“#") followed by either three or six
hexadecimal characters. The three-digit version is essentially a compressed version
of the six-digit version, where #f00 is the same as #ff0000 and #c96 is the same as
#cc9966, for example. The three-digit version is easier to decipher (the first charac-
ter, like the first value in RGB, is red, the second green, and the third blue), but the
six-digit version gives you finer control over the exact color. For example, this CSS
rule specifies white text on a blue background:

p{
color: #fff;

background-color: #0000ff;
}

RGB values allow you to set decimal numeric values or percentages for the amount of
red, green, and blue that make up a specific color. The three values within the RGB value
can be from O to 255, O being the lowest level (for example, no red), 255 being the high-
est level (for example, full red). So, the previous example rule could also be written as:

p{
color: rgb(255, 255, 255);
background-color: rgb (0%, 0%, 100%);

28 | CHAPTER 1: GETTING STARTED

There are 17 valid color names that can also be used. These are aqua, black, blue,
fuchsia, gray, green, lime, maroon, navy, olive, orange, purple, red, silver, tedl,
white and yellow. You can also use the value transparent.

p{

color: white;
background-color: blue;

THE THREE STYLE SHEETS

There are three types of style sheet that get involved in the styling of a page:
browser, author, and user.

The browser style sheet is that used by the browser to establish the default render-
ings of HTML elements. You should be able to rely on certain browser defaults such
as strong elements being bold, or links being underlined, which, thankfully, means
you don’t have to specify every presentational aspect of every element on a page.

-
£ HTML and €55 Tutorials, References, Articles and Hews - HTHL Dog - Hozil

File Edit “ew Go Bookmarks Tools Help

- - & & http e Hemidog. comf

Bookarks (%] | .Q'"HTML and... || @media 2|

e The Internet Movie Database (IM. .

Okayplayer.com &,
% PETA UK: People For the Ethical T... 3))
= Madagascar Travel Information | ... %

£ Mozila.org - Home of the Mozilla ...

g Amazon,com: Online Shopping For... H ™ L DOg
|1 Blogs The Best Practice Guide
|7 Inflatable Sheep L. To XHTML and C53

|) Development Resources

FIGURE 1.5 A page’s title will appear in the top of the browser window, as well as in
bookmarks. Also note the use of the link element to specify an icon, which appears
next to the web address in the bookmarks and also in this browser’s tabs.

The author style sheet is where you, as the page author, come in. This is the CSS
that you apply to the HTML to make it look how you want. Rules in the author
style sheet are given greater preference than the browser style sheet, but less
preference than the user style sheet.

CSS SYNTAX | 29

The Best Practice Guide To XHTML and C35

Articles

Building on the Tutorials, a small selection of articles, going into a few more specific areas, and a bit more detail

Beginner/Intermediate

+ 55 Tabs - how to create basic tab-like navigation

+ Pull Quotes - recreating a tradiional prmt effect

* Drop Caps - another pnnt tradition

+ Superscript and Subscript - alternatives to the wvercical-align property

* Custornised Underlines - alternatives to using text—decoration

* Image Rollovers - one way to swap the images in links when the cursor howers ower them
& Laying Out Forms - a few options for aligning labels with form fields

* Styling Anchors with target - a simple C3353 effect

Advanced/Professional

* Zons of Suckerfish - & collection of seven articles explaining how to achieve effects such as dropdown menus
+ Elastic Design - Using relative units in web design

& Dr Strangeswitcher - A fun little style-switching experiment

+ Broader Border Corners - A short article demonstrating one way to achieve rounded corners

Related Pages

+ Tutorials
* References

© Patrick Griffiths, 2003-2006.
Terms of use

+ Tutorials
o HIML Beginner
CE5 Beginner
HTML Intermediate
CE3 Interme diate
HTML Advanced
o C55 Advanced
+ References
o HTMTL Tags
o CE3 Properties
* Articles
+ Examples
+ The Book
¢ CZ3 Trammng
¢ Home
+ About HTMT Dog
+ Link To HTML Dog
s Contact HTMIL De,
* Esternal Links
+ Site Map

Search '77_

FIGURE 1.6 A so-called unstyled page is actually applying the browser style sheet,
which specifies things such as a serif font, underlining for links, and making head-
ing elements large and bold.

30 | CHAPTER 1: GETTING STARTED

The user style sheet is a style sheet that an individual user can apply to any

or all web sites. Generally, this is for users with strong preferences or special
needs. A user with poor eyesight might set a browser to always show content
in a large type size, for example. Rules in the user style sheet are given greater
preference than both the author and the browser style sheets.

Home Q

(ﬁ-b) Articles

Building on the Tutaorials, a small selection of articles, going into a few more specific areas, and
HTML DOg a bit more detail,

The Best Practice Guide
To ®HTML and CS5

Tutorials
HTML Beginner
€55 Beainner
HTML Intermediate
58 Intermediate
HTML Advanced
C5S Advanced

® 55 Tabs - how to create basic tab-like navigation

® Pull Quotes - recreating a traditional print effect

= Drop Caps - another print tradition

® Superscript and Subscript - alternatives to the verrical-aliom property

= Customised Underlines - alternatives to using text-decaration

= Image Rollovers - one way to swap the images in links when the cursar havers aver them
= Laying Out Forms - a few options for aligning labels with form fields

References ® Styling Anchors with ttarget - a simple CSS3 effect

HTML Tags
CS5 Properties
® Sons of Suckerfish - & collection of seven articles explaining how to achieve effects such as

dropdown menus
® Elastic Design - Using relative units in web design

Examples
= D, Strangeswitcher - & fun little style-switching experiment
The Book ® Broader Border Cormers - & short article demonstrating one way to achieve rounded
corners.
€S8 Training
Home
About HTML Dog
Link To HTML Dog
= Tutorials

Contact HTML Dog
External Links
Site Map

= References

FIGURE 1.7 With the author style sheet sitting on top of the browser style sheet.

Articles

Building on the Tutorial

Tutorials
HTML Beginner
ginner
HTML
Intermediate
C55
Intermediate

References
HTML Tag

Articles
images in lin

Examples them
The Book * Layin
aligning labels with form fields

CSS Training ling Anchors with :target -

External Li
Site Map

article
demonstrat - ounded

corne

FIGURE 1.8 A user can also decide to lay his or her own style sheet on
top, which could be used to aid accessibility by reversing foreground
and background colors or making the text larger.

CSS SYNTAX

31

32 | CHAPTER 1: GETTING STARTED

Applying CSS to HTML

So now you should have an idea of how CSS works, but it's pretty useless on its own.
You need to attach it to the HTML—and there are a number of ways of doing this.

Inline CSS
Inline CSS is a “quick fix,” sometimes used in testing but generally discouraged as
a method of applying CSS.

It relies on the style attribute (which is actually deprecated, that is, outdated by
something newer, and destined to be made obsolete, in XHTML 1.1) and goes a
little something like this:

<p style="color: red;">Don't eat the pomegranate!</p>

Although this utilizes the language of CSS, it loses many of the large benefits that
CSS is famous for—namely separating presentation from structure and the ability to
make global style changes from a single source.

Embedded CSS

As mentioned earlier in this chapter, style is another tag that you can use within
the head element, and it is used to apply page-specific, or embedded, CSS to an
HTML page.

This method is much better than inline CSS (because it pulls presentation out of
the body), but still doesn’t completely separate structure and presentation (because
there’s still presentation in the HTML page). It should only be used when there are
styles that will apply only to that single page.

The “bare bone” web page examples mentioned throughout this book largely use
embedded CSS, mainly so you can see what is going on with greater ease but also
because they are stand-alone single pages.

So, let’s dip our toe in the HTML pool for a moment.

CSS SYNTAX | 33

The style element is used to define CSS at a page level. This sits inside the head
element, and its contents are simply a big ol’ list of CSS rules, kinda like this:

<head>
<title>Bujumburra</title>
<style type="text/css">
body {
font-family: arial, Helvetica, sans-serif;
color: black;

1
/* etc. etc. */

</style>
</head>

Notice that inside the opening style tag is the type attribute, which tells the
browser the content of the element. It's required, and the value of it, for our pur-
poses, should be “text/css.”

You can also use the media attribute, which states what media are associated with
the styles. The value can be aurdl, braille, embossed, handheld, print, projec-
tion, screen, tty (teletype), or tv (television), but don’t expect wide support for
much more than screen and print. You could also have media="all", but that’s the
same as not having any media attribute at all.

CSS COMMENTS
You can place a comment anywhere in your CSS like this:

/* Here's a comment */

Like an HTML comment, it won't add anything to the CSS rules, and is used just
to provide a note for those looking at the code.

34 | CHAPTER 1: GETTING STARTED

External CSS

External CSS is the kipper’s knickers when it comes to applying CSS. It involves
having the CSS rules in a completely separate file (with an extension of “.css”), to
which HTML pages can link in a number of ways.

The first and most traditional way is by using the link tag, which needs to go inside
the head element (see above) and would look like this (if the CSS file was called
“somefile.css,” for example):

<link rel="stylesheet" type="text/css" href="somefile.css" />

You can also manipulate an embedded style sheet to simply pull in an external style
sheet using the @import at-rule. Instead of placing the CSS rules between the open-
ing and closing style tags, you do something like this:

<style type="text/css">@import url("somefile.css");</style>

You should also be able to add a condition to the @import rule to target the style
sheet at a specific media type, such as print:

<style type="text/css">@import url("somefile.css") print;</style>

Internet Explorer doesn’t like this, but you can still have such a condition by apply-
ing a media attribute in the opening style tag, just like you can in a link tag:

<style type="text/css" media="print">@import url("somefile.css");
</style>

This @import method is sometimes used in preference over the 1ink method
because it hides the entire CSS file from browsers that don’t have a firm grasp of
CSS (such as Netscape 4.x) and could actually throw up an almighty mess. Such
browsers will then simply apply their browser style sheet by itself, which, if the
HTML is constructed properly, should be perfectly functional.

CSS SYNTAX | 35

MULTIPLE STYLE SHEETS

Although on most occasions only one author style sheet is required and even
preferable (holding all of a site’s presentation in one file), it can be advanta-
geous to have more than one. In the case of large, multisection sites, there may
be a host of CSS rules that are only applicable to one section. If these rules are
substantially large, it would be unnecessary for the rest of the sections to have
to download them, or it could just be that it would be easier to manage this
way (particularly if you have different developers for different sections). In such
a case, you could have a CSS file specific to the section that is applied to the
pages along with a core set of styles for the site.

There are a number of ways to apply multiple style sheets (such as simply having
two 1ink elements), but perhaps the easiest is to use the @import rule. An HTML
page can simply link to the section style sheet and, within that style sheet, the
core styles are brought in via @import. So, at the top of the section style sheet,
you can simply have:

@import url("/css/core.css™);

Just like in the method described for applying External CSS to a page (above),
this will import another CSS file and essentially become a part of that one. There
is no limit to the number of times this can be done (a style sheet can import
another style sheet that imports two style sheets that each import another style
sheet, for example) and they will all “cascade” into one another (just as “The
Three Style Sheets” will) and live together as a happily intermarried family.

This page intentionally left blank

chapter 2

Text

IMAGES, MUSIC, ANIMATIONS, and even movies are splattered all over
the Web in mind-boggling abundance. Amongst the squillions of bytes
that make up the Web, though, the most common form of information is
plain old text.

Without text you can’t have hypertext, and without hypertext you can’t
have HyperText Markup Language. The T in HTML is fundamental to a
web page, so it seems like a pretty good place to get the ball rolling and
start putting something tangible on those pages.

In this chapter we'll first look at how to properly structure text, applying
meaning with HTML, and then how that structured text can be manipu-
lated to look exactly how you want it to look with CSS.

Structuring Text

Marking up text is an area where a lot of web designers have fallen into some
bad practices. Before CSS came along, HTML had to be battered about to
gain some rudimentary presentation, resulting in bloated, inaccessible, inflex-
ible junk. Bad practices, which are still common, include the misuse of the br
(break) tag to visually separate out chunks of text when p (paragraph) should
be used, and bumping up the size and boldness of plain text so that it looks
like a heading when a heading tag (such as h1) should be used. Keep in mind
that although most browsers will render some elements in similar ways, it isn’t
what each tag makes the element look like that is important (or even signifi-
cant), but rather what meaning they apply.

38 | CHAPTER 2: TEXT

Welcome Back!

The @media conference retums to Londen on 15th- 16th June,
bigger and batter than before, 1t's the svent of the yesr for
aryone nterasted in leaming about and dscussng the latest
approaches to web design with some of the world's mast highly
respacted axparts.

@mada, Europa's "

@meia 2005 was a great success

foramost
profossional wab clagy, and can madia 2008 promises 10 be even bigger
deskgn conferance, wafuly be and atter

brrgi together some of the world's doclirnd & "

mogt ugtty reEpected wab on great success. W : 5

o tak about the latest majr B

happenings, best-practice thiking, T Wil b e 2

naxt yoar, but in the mean
tema, biewp 40 o8 on this web
sit for ks to presentatson
shded, and podeasis.

and cutting-sdge tachniques in tha

warld af wat: detign. It was an incredible two days, and it

felt much shorter than that. Fd wish it
never stopped, High-level experte
blew my mind away.

nd panais wit
tackle a multitude of aspects of

Wi delign, covaning taped such
w1 uswr-intadacn dusign, veab
standards, CHE, DOM serigting, and aconssibility.

rack, two day confeeance schadule i Rurther balt upon to

Eravide plenty of vahuable retworking time and svenng scERitH c SO0

M TITAN e

et

Rarcwned speskers wil be coming 1o @meda from the LS,
Canada, S=eden, Esigium, Tha Nethartands and tha U

Names you might recognsa from thesr bocks, articies and

gereral Custing-wdge insight inchide Eric My, Don ..
Aty Elarke, Mally . Ieftroy Van, Jon Micks, x
accd Dave Sha 19 menton but & handhul MAXDOX

1f last year & anything to go by, the speskers wil be joned by delegates
frorn al wilks of web-Ha, Bnthusiasts, freels
consultants, and project managers from chanties, gowernment
departments, design studes, and multi-national comorations, not oty
from the LK, but from right across Europe, and bayond

@madia 2006 15 cheerily orgarsed by
. oot with 1he

1, desigraes, davelopers,

arsiter, i eantral
Landon. it hat Graat transport nka with 1he L, Burcpe, and
the rest of the word and you wil find plenty of hatels, bars,

aned restaurants i the ansa, not fo mantion attractions such as Th

Housirs of Parllamsant sndd Wistainstar Abliey are sbmast arsly oo

5, we know veryone Lays that,
but consdanng thare are bmited places, and last year's svent soid out
pratty quck-smart, we realy maan ! Uptate: Too tate - Soid outl

O, and by the way, wa thought & ktte discussion comer would be &
oo isun 5 That you & o

1ot b what you

cenfarente plant, srange ment-upi, or chit about what aver ek

n

FIGURE 2.1 The illustrations in this chapter are taken from the @media
2006 website (www.vivabit.com/atmedia2006/).

www.vivabit.com/atmedia2006/

STRUCTURING TEXT | 39

Although it may not seem necessary to mark up text elements such as quotations,
abbreviations, and computer code (especially if no particular style is desired), by the
same logic that the p tag should be used to mark up paragraphs, appropriate tags
should also be used for other elements.

Basic Text Elements: Paragraphs, Line Breaks, and Emphasis

Perhaps the most important, fundamental text-related element is the paragraph (p), if
only because it should usually make up the bulk of content in any text-rich web page.

<p>Greetings one and all. Welcome to the world of paragraphs.</p>
<p>This will be the second paragraph then...</p>

You've also got the br tag at your disposal, which can be used to insert a line break:

<p>Greetings one and all.
Welcome to the world of line

breaks.</p>

Last Year

@media 2005 was a huge success. 330 people enjoyed presentations from the likes of Jeffrey Zeldman, Joe Clark, Molly
Holzschlag, and Doug Bowman, and had a umque opportumty to mingle with other lkemmded, progressive web designers,
who came not only from across the length and breadth of the TTK, but from Europe and even further afield

Photographs

We've selected a choice nmumber of photos for you to flick through which might help to give you an impression of what the
@media conference is all about, or bring back a few fond memories if you were one of those who was there last year!

FIGURE 2.2 A very common, simple page structure containing paragraphs and headings.
Shown here naked, without the author style sheet, even the default browser style makes it
clear straight away—we have chunks of text, which are paragraphs, and big bold headings.
There’s even a bit of strong emphasis going on in there.

40 | CHAPTER 2: TEXT

TWO brs DO NOT A p MAKE

It is important to remember that a line break is not the same as starting a new
paragraph, which has been a common misuse of the element—two line breaks
may give the appearance of starting a new paragraph, but when we're talk-

ing about HTML, appearance doesn’t mean a thing. A line break should only be
used when there is a logical break in the flow of text, such as the new line of an
address or a new line in a poem. As you will see later in this chapter, the look of
paragraphs, including the spacing between them, can be manipulated, should be
manipulated, and is easier to manipulate with CSS.

To emphasize text inside a paragraph—or other places, such as a heading (see next
section) or in a table cell (see Chapter 8, “Tables”)—there are two tags fit for the
job: em (emphasis) and strong (strong emphasis):

<p>You lookin' at me? You lookin' at me?</p>

NOT i AND b!

em and strong are not replacements for the old presentational i (italic) and

b (bold) tags. Although most browsers will display them in italics or bold by
default, the important thing is that they apply meaning, whereas i and b apply
only presentation (CSS's job). General emphasis is more than a visual thing—it
can also be vocalized, for example, whereas bold and italics mean absolutely
nothing to a blind person.

Headings

In most written documents, paragraphs make up the bulk of the content, but there’s
usually a need to break things up with headings and subheadings.

We've got six tags to play with here: hl (which is the highest level heading), h2, h3,
h4, h5, and hé (the lowest level subheading).

STRUCTURING TEXT | 41

=3 www.htmldog.com/examples/headings1.html

The idea is to use the elements in order, with a single hl element for the page
heading, then any number of h2 elements for subheadings, any number of h3 ele-
ments for sub-subheadings, and so on. They should be used in order, so, for exam-
ple, an h4 should be a subheading of an h3, which should be a subheading of an h2.
And remember, don’t worry if the default styling for a heading looks too big or too
small—you can just use CSS to make it the size you want.

<h1>Headings</h1>

<p>This is all about headings.</p>

<h2>The First Subheading</h2>

<p>The first subheading was called Bob. Bob was a figurine cleaner
in a past life.</p>

<h2>The Second Subheading</h2>

<p>The second subheading was called Labella. She used to be a
chimney sweep.</p>

<h3>Labella's Chimney Sweeping</h3>

<p>Labella can still be persuaded to sweep chimneys for five beans a
chimney.</p>

<h2>The Third Subheading</h2>

<p>The third subheading was called John. He wasn't particularly
interesting.</p>

0 www.htmldog.com/examples/headings2.html

IF IT'S A HEADING, MARK IT UP AS SUCH

If something is a genuine heading then you should use one of these tags rather
than styling a paragraph or other piece of text to simply look bigger, which has
been a common bad practice in the past.

You will find that, by default, browsers will display these headings in bold with vari-
ous sizes and spacing, but, as with paragraphs (and all other HTML elements), CSS
can control all of these things so you can make them appear however you choose.

www.htmldog.com/examples/headings1.html
www.htmldog.com/examples/headings2.html

42 | CHAPTER 2: TEXT

Quotations

As this part of the chapter progresses, you will find less commonly used tags that
mark up very specific types of text as we go along. Just because they are used less
frequently than paragraphs, emphasis, or headings doesn’'t mean that they’re not
important. Sticking with the ethos of applying meaning, you should always try to use
these specific tags if you come across a piece of content that could be made more
meaningful by using them. If you have a quotation or citation, for example, you
should mark it up as such, using blockquote, g, or cite.

blockquote is used for a large, usually stand-alone, block-level quotation. Its con-
tent must be made up of other block-level elements, which in practice would usually
be p elements.

If the source of the quote can be found online, you can supply a bit more informa-
tion about the blockquote by using the cite attribute.

<blockquote cite="http://www.htmldog.com/guides/htmladvanced/text/">
<p>blockquote is designed to be for large, stand-alone quotations,
whereas q (quote) is used for smaller inline quotes.</p>
</blockquote>

QUOTATION SOURCES

As mentioned in Chapter 1, the Common title attribute can be used, and com-
monly is used, to show where a quotation or citation has come from when the
cite attribute, the value of which should be a URI, is not appropriate.

q can also be used for smaller, inline quotes (and you can also use the cite attri-
bute in the same way as used with blockquote).

In a mildly confusing way, there is also a cite tag, which can be used to mark up
citations.

<p>So I asked <cite>Bob</cite> about quotations and he said <g>I
know as much about quotations as I do about pigeon fancying</g>.
Luckily, I found HTML Dog and it said...</p>

The feedback for @media 2005 was stunning. & good time was had by all, as
the following randorm selection of these quotes, from feedback forms and from
blog comments, are testament ta,

It truly was a great experience and one I'll not forget for a while, Both

the social and educational aspects where outstanding.

I'd expected the first conference to be 'testing the waters' with a
basic venue, but that wasn't that case. It was a swish location in

London's south bank, with the 2 days being very slickly organised.

I've met really interesting people and I've really enjoyed being here. 1

think it's a great event and it wil be continued

It's fantastic to hear all the speakers and face them. Great
organisation! See you next year.

STRUCTURING TEXT | 43

FIGURE 2.3 When it's a quotation, it’s gotsta be marked up as a quotation. Underneath
these pretty little representations of quotes are blockquotes, with the name of the person

who made the quote marked up in a cite element.

Abbreviations and Acronyms

Again, we're getting specific, but if you come across abbreviations, you should mark

them up as such.

abbr can be used for abbreviations—a shortened form of a word or phrase. HTML is

an abbreviation, as is CSS, for example.

You can also use acronym, but keep in mind that an acronym is much more
specific—it is a pronounceable abbreviation that is made up of the initial

44 | CHAPTER 2: TEXT

letters or parts of words of that phrase. NATO is an example of an acronym, as is

UNICEF.

<p>Scientists at <acronym title="National Aeronautics and Space
Administration">NASA</acronym> were attempting to teach Jiminy
the locust <abbr title="HyperText Markup Language">HTML</abbr>.
They seemed to overlook the fact that he was a <abbr title="Dumb

insect who couldn't comprehend what a computer was, let alone use
one">DIWCCWACWLAUO</abbr>, however.

NOT ALL ABBREVIATIONS ARE ACRONYMS!

An acronym is a form of abbreviation, but an abbreviation is not necessarily an
acronym. HIML and CSS are not acronyms because they are not (supposed to be)

pronounceable.

We want to know what we
TBC" slots, Again, please r

910 Be Confirmed pally-want:to

Design

B e

FIGURE 2.4 All hail the tool tip!
If an abbreviation has a title
attribute, its value can be used
to state the full phrase that the
abbreviation represents.

Preformatted Text and Computer Code

If you want to mark up code in your HTML, there’s a tag just for the job, and it's code.

<code>nascaristhedullestofallmotorsports=true;</code>

There's even a tag, var, for variables in computer code:

<code><var>nascaristhedullestofallmotorsports</var>=true;</code>

samp is another close relation of code, and defines sample output, from a computer

program, for example:

<p>The result will either be <samp>Kid</samp> or <samp>Koala

</samp>.</p>

STRUCTURING TEXT | 45

Most elements don’t take too much notice of white space, that is, things such as
spaces, tabs, and carriage returns. In a p element, for example, if there are places in
the text where there are consecutive spaces, or if you start new lines, the end result
will actually be truncated—the browser doesn’t see much meaning in white space.

Simply save one the the following button images (if you're using a Windows
mouse you can right-click on the image and select "save as"), upload it to wour

website and apply the corresponding HTML:

<img

sro="atwedia buttonl.gif" height="105" width="17%3" border="0"
alt="Fmedia Z006: Europe's Premier Webh Design Conference. London,
15th - 16th June." /></ax

 <img

sre="atmedia buttonl.gif” height="78" widcth="12Z4" border="0"
alt="Emedia 2006: Europe's Premier Webh Design Conference. London,
15th - 16th June." /»

o

<& href="http://wyy.vivabit.com/atwediaz00s6, "> <img

sro="atmedia button?.gif” height="50" widch="80" border="0"
alt="Emedia 2006: Europe's Premier Weh Design Conference. London,
15th - 16th June.™ /»></fa>

FIGURE 2.5 If it's computer code, ladies and gentlemen, it belongs in a code
element. Simple.

The pre element is slightly different—spaces, tabs, and line breaks become as
important a part of the content as the letters, numbers, and other characters, and
the default browser rendering of displaying this white space (unlike the default ren-
dering of most elements) reflects this.

pre is most commonly used to mark up blocks of computer code (where indenta-
tions, etc., can be meaningful and important).

<pre><code>
<div id="intro"& gt;

46 | CHAPTER 2: TEXT

&1t;hl>Some heading</hl>

&1t;p>Some paragraph paragraph thing thing thingy.</
p></div>
</code></pre>
One last oddity is kbd, which is used to specifically suggest text
that should be entered by the user:
<p>Now type <kbd>kumquat</kbd>.</p>

Editorial Insertions and Deletions

Have you ever used “Track Changes” in Microsoft Word? It can be used to show
insertions and deletions, which can be helpful when more than one author is work-
ing on the same document. HTML documents are just that: documents, much like
Word documents. Although probably less useful than in word processing, HTML has
equivalents of “Track Changes” and they are ins (for insertions) and del (for, wait
for it... deletions).

You can use the datetime attribute, the value of which (in the format of
YYYYMMDD) would explain when the insertion or deletion was made. Like quotes,
you can also use the cite attribute, which, in this case, is intended to point to infor-
mation explaining why the given change was made.

<p>Patrick was walking down the road when he saw a <del datetime="2
0040329">fluffy kitten<ins cite="http://www.htmldog.com">giant
rabid snarling mutant saber-toothed goat</ins>.</p>

It's worth noting that ins and del are peculiar in that they can be used as either
inline (such as in the previous example) or block elements (containing multiple para-
graphs, for example). However, you should note that when ins and del are being
used as inline elements, they cannot contain block-level elements. For example, the
following would not be legal:

<p>
<ins><div>giant rabid snarling mutant saber-toothed goat<div></ins>.
</p>

Remember (from Chapter 1, “Getting Started”) that you still can’t put block ele-
ments inside inline elements, so if you're intending an ins element to be inline, for
example, then it can’t contain block elements.

STRUCTURING TEXT | 47

DEFAULT EDITORIAL STYLES

Following the word-processing tradition, insertions are usually shown underlined
and deletions with a strikethrough. Of course, this default style can be changed
with CSS.

Multilanguage and Bidirectional Text

As explained in Chapter 1, the xml:lang attribute can be used in just about any
HTML tag to define the language of its content, but sometimes a language will also
need to be read in a different direction from its surrounding content.

The bdo tag can also be used to define bidirectional text, such as languages that are
read in a different direction from the default language (Hebrew in an English docu-
ment, for example).

The dir attribute, which is required, is used to define the direction of the text, and
its values can be 1tr (left-to-right) or rtl (right-to-left).

<bdo dir="rtl">smug desserts</bdo>

Addresses
...and there’s even a tag to mark up your address.

address is very specifically intended to mark up the contact details, such as a street
address, for a page, or major part of a page (such as a contact form).

<address>

HTML Dog House

HTML Street

Dogsville

The Oligarchic Republic of Dogland
</address>

48 | CHAPTER 2: TEXT

Styling Text

Excellent. So now you're a master in the art of structuring text with HTML. If you
view these elements in a browser as they are, with their default visual rendering,
it's quite probable that they're not exactly how you would want them to look. The
browser can only go so far in establishing some basic styles; the rest is up to you
and your friend CSS. With the text styling properties outlined here you can take full
control of font types, sizes, colors, and spacing.

Fonts

Because a web page with lots of different fonts looks about as hot as a hippopota-
mus with a skin complaint, you probably won’t find yourself wanting to change the
font style—using font-family—that often. In most circumstances, you would apply
it to the body, setting the base font for the entire page, and then maybe sparingly
on some specific elements.

The value of font-family can be a single font name (which, if it is made up of more
than one word, should be written in quotation marks), or multiple font names, sepa-
rated by commas. By doing this, if a browser cannot find the first choice font, it will
move on to the next in the list. This is used to provide a backup for when preferred
fonts fail or for when similar fonts with different names appear on different operat-
ing systems. For example, traditionally you would find the Arial font on PCs but
Helvetica on Macs, so specifying these fonts would cover both adequately. Finally,
it is a good idea to back up the pack with a generic font keyword such as serif,
sans-serif or monospace in case all else fails.

body { font-family: "Times New Roman" }
h2 { font-family: arial, helvetica, sans-serif }

STYLING TEXT | 49

A BROWSER CAN ONLY DISPLAY FONTS INSTALLED ON
THE USER’'S COMPUTER

You might have 3.2 billion fonts gathered from a stack of magazine cover discs
and downloaded from the Internet, but if those looking at your web pages don’t
have the same fonts installed on their computer then the computer simply won't
be able to apply them. You need to be careful which fonts you specify. There are
certain “safe” fonts that most users will have on their computers—they will
probably have Arial or Helvetica but you're probably pushing it if you count on
Slug Invader Hieroglyphics or Curly Gothic Roman Dings Bold Condensed 5.

If you really want to use a relatively obscure font, you can use the comma-
separated value to specify the very specific font on the off chance that a user
will have it but providing a backup by specifying safer fonts for the browser to
fall back on. It is probably a good idea to test the web pages in the backup fonts
in situations like this, though...

body { font-family: "Slug Invader Hieroglyphics'; aridl, helvetica,
sans-serif }

A S

The @media conference returns to London on 15tH
and better than before, It's the event of the year fd
interested in learning about and discussing the lates

web design with some of the world's most highly rd

@media, Europe's

-
foremost professional @m_@diﬂ

FIGURE 2.6 There are a number of fallbacks going on here to achieve a semi-common
font. Most Windows PCs are armed with the Century Gothic font, and most Macs
have the similar Avant Garde installed. So with something along the lines of hi1, h2
{ font-family: "Century Gothic', "Avant Garde" }, the headings get a little bit of
special treatment compared to the rest of the text (which is set by body { font-
family: Verdana, Geneva, Aridl, Helvetica, sans-serif }).

50 | CHAPTER 2: TEXT

Color

As already mentioned in Chapter 1, the color and background-color properties
can be used to specify the colors of just about anything on a web page. Although
background-color can be used on other elements as well as textual elements, the
color property, which means the foreground color, essentially applies only to text
(although it can also apply to borders—see Chapter 5, “Layout”).

body {
font-family: "Times New Roman", Times, serif;
color: white;
background-color: black;

}
code { color: #900; }
blockquote { background-color: #efe; }

BASE COLORS

Like font-family, it is common practice to apply a color to the body, which will
set the base text color of the page, being inherited by text throughout. Individual
elements can then, of course, be colored separately if needed.

Size

font-size sets the font size. Well, duh.

The most commonly used units for computer displays are px, em, %, and keywords
(such as small, medium, or large—see the CSS Property Appendix for the whole

lot), although things are done slightly differently when it comes to other types of
media (see “Styling for Print” in Chapter 10, “Multiple Media”).

body { font-size: 80%; }
hl { font-size: 2em; }

STYLING TEXT | 51

SIZE EXAMPLE

Figure 2.6 is also a good example of font sizes. The page kicks off with a font
size of 80 percent. his are then set to 4ems, hzs to 2ems, and h3s to 1.5ems

ABSOLUTE VS. RELATIVE VALUES I

So which unit should you use to size text on a computer screen—an absolute
unit such as pixels, or a relative unit such as ems?

Ems. It's as simple as that. Pixels should not be used to size text.

Well, OK, it’s not as simple as that. Actually, any unit relative to the screen size
(so that’s not pixels, no matter who tries to tell you a pixel is a relative unit) is
OK—percentages and font-size keywords will do just as nicely.

The reason? Because these units allow text to be elastic—to expand or contract
depending on the user’s text-size settings. It accommodates a user’s preferences.

When CSS came along and opened up the control over a web page’s visuals,
many grabbed on the fact that for the first time they could use pixels to define a
font’s size. Such pixel-perfect control sounds like a good thing—as a designer
you have complete control over what the final thing will look like. It is more likely
that what you see on your computer screen is what users will see on theirs. But
that’s kind of missing the point of the Web, which is such a flexible beast.

Here’s the crux of the matter: Text sized using pixels is less accessible than

text sized using ems. Usability should be enough to convince—if users prefer
something a certain way (such as larger or even smaller text) then they are going
to respond better if their preference is accommodated. But it’s not just about
usability and preference. To many it is about necessity: If a user cannot com-
fortably read text, then he or she will benefit by being able to resize that text.
Accessibility isn't only about blindness and screen readers—visual impairment

52 | CHAPTER 2: TEXT

is enough to warrant such attention. And visual impairment is something that we
will all encounter as we grow older.

A web page on a computer screen is not a printed piece of paper. Dimensions
can be changed and user preferences can be accommodated. It's a great fea-
ture. Most acknowledge this, but even those who did continued to use pixels
because they felt that there was no alternative.

The problem lay in Internet Explorer. The first problem (for pixel-fan designers,
anyway) was that whereas browsers such as Mozilla offered a “text-zoom” func-
tion, which increased the size of even pixel-sized text, [E did not. To IE a pixel is
a pixel is a pixel. If the designer specifies pixels, the browser delivers pixels. So
when the user opts to change the text size setting, nothing happens to the pixel-
sized text.

So to accommodate Internet Explorer’s text-sizing accessibility feature, relative
units are the only option. But here comes the second problem...

When you specify fonts in ems, for example, the jumps between sizes in Internet
Explorer are so large that on the “smaller” setting text becomes unreadable. And
because “smaller” is a popular setting, you are hindering accessibility—even to
people with 20/20 vision, let alone anyone else.

But then percentages came to the rescue. By setting the initial font size of the
body in a percentage and then in ems thereafter, the jumps between IE’s text-
size settings become smaller, and everyone, from those who browse at “small-
est” to those who browse at “largest,” can be happy.

body { font-size: 80%; }
hl { font-size: 2em; }
h2 { font-size: 1.5em; }

At the end of the day there are real benefits to sizing text using relative units
and there are no real reasons not to.

STYLING TEXT | 53

\ ‘_medlfl _onpon

I5th-I6th JUNE

Over 20 renowned
leading-web-design-lights from seven
countries will be descending on @media
2006 to share their extensive expertise and

experience.
2 Cameron Adams 2 Stuart Langridge
32 Rarhel Andrew 3 Patrick H | auke

FIGURE 2.7 Because the font sizes are all set in ems (after an initial setting in per-
centages), users can bump up the size of the text, if they so choose, which is a
great accessibility benefit. If they were set in pixels, the majority of web surfers,
using IE, would not have this benefit.

You can read more about “Elastic Text” at www.htmldog.com/articles/elasticdesign/,
which also covers the pros and cons of using absolute and relative values in lay-
out—a technique that will be looked at in Chapter 5.

Line Height

You can adjust the height of the lines in text, such as a paragraph, without adjusting
the size of the font, just like line spacing in a word processor. line-height is handy
little critter—if used wisely, it can make your text much more readable.

p { line-height: 1.5 }

www.htmldog.com/articles/elasticdesign/

54 | CHAPTER 2: TEXT

SUFFIXLESS

Line-height is one of only two properties (z-index being the other—see Chapter
5) that do not require a suffix (although you can specify any length or percent-
age, if you want). line-height: 1.5 is the same as line-height: 1.5em.

OO D STy P (IO e s 1T LT SIS ST S F s, SPOC SO, Tag g,
progressive enhancement, and antlcwpatory interaction, philosophical
shifts in business towards openness, generosity, and collabaration with
users.

5 Jeffrey
Veen

andy Clarke is a designer who sees weh pages wherever he goes. From
paintings on the walls of Tate Modern to posters on the walls of tube
stations. He sees weh pages everywhere, leaping out from the pages of
magazines and newspapers, record covers, political posters, It might be
that Andy just needs to remember to take his medication, but he finds
inspiration for innowative designs in the most unlikely of places,

In his presentation, Andy will take you for a ride around his world,
showing how he gains inspiration for layouts and designs which break
with the boxey conventions which are sometimes associated with web
standards and how we can use advanced CSS to implement them in
progressive and accessible ways,

Andy Clarke

wWith a technological revolution and 500 years of typographic tradition
under our belts, why in the warld has the Wweb been stuck with Yerdana
and Arial for so long? There are now multiple ways to include custom
fonts in an HTML document, and each has its advantages and

e

L Ti ke £ bl " £ 4l

FIGURE 2.8 The base line-height of the @media 2006 site is set at 1.7, as shown in
the rest of the figures in this chapter. If left at the default, the text is a bit more
squashed and a bit more difficult to read.

Bold and Italics

Don’t forget that we're not using HTML for presentation anymore—not even b or i
tags are allowed. When we want to set the thickness or slant of text, there’s CSS
that does the job much better.

STYLING TEXT | 55

font-weight sets the boldness of a font. By far the most commonly used and prac-
tical values are bold or normal.

a { font-weight: bold }
h2 { font-weight: normal }

Text can be italicized (or de-italicized) using font-style, using italic (or normal) as
the value.

hl, h2 { font-style: italic }

Upper and Lower Case

If you really want to get hard core (and why not?) you shouldn’t even be writing
words all in capitals in your HTML just to achieve a certain look for a heading, or
emphasis, for example. Instead of <h1>THIS IS A DAMNED FINE HEADING</hl>, why
not try <h1>This is a damned fine heading</hl> and trying out font-variant or
text-transform?

font-variant: small-caps will convert lowercase letters to small uppercase letters,
but that’s probably not as useful as text-transform, which properly (no pussy-footing
around with “small caps” here) converts the case of letters. Values for text-trans-
form can be capitalize (which capitalizes the first letter of every word), uppercase
(every letter uppercase), or lowercase (every letter lowercase).

hl, h2 { text-transform: uppercase }

0 www.htmldog.com/examples/case.html

The font Shorthand Property

We're going to come across “shorthand” properties a few times throughout this book.
They're great little shortcuts that enable us to define a number of styles (which can
otherwise be defined separately) in one property, so reducing code. They might be
more confusing to read than the separate, specific properties at first, but the more
you get used to them, the snappier your code will be.

font can be used to specify italics, small-caps, boldness, size, line-height, and font
name all in the one property. The value is, essentially, a combination of font-style,

www.htmldog.com/examples/case.html

56 | CHAPTER 2: TEXT

font-variant, font-weight, font-size, line-height, and font-family, and is used
in the format of font: font-style font-variant font-weight font-size/line-height font-
family. Only the font-size and font-family parts are required.

p { font: italic small-caps bold 0.8em/1.5 arial, Helvetica,
sans-serif }
.booba { font: bold 3.5em arial, helvetica, sans-serif }

font WILL RESET PREVIOUS STYLES

Before applying any values, font will reset any previous font-style, font-variant,
font-weight, font-size, line-height, or font-family values to their initial settings.
So for example...

.wooha {
font-weight: bold;
font-variant: small-caps;
font: 2em arial;

}

...will not apply bold or small-caps because font comes along after the font-
weight and font-variant declarations and unashamedly resets them.

Underline and Strikethrough

text-decoration can be used to underline, overline, strikethrough, or turn off any
existing decoration (such as on links) using the values underline, overline, line-

through, or none

ins { text-decoration: none }

STYLING TEXT | 57

UNDERLINE WITH CAUTION

Underlined elements are commonly recognized as links (or insertions, if text is
in an editorial context), so you need to be careful about where you apply this
style. The practice of styling acronyms and abbreviations with dotted underlines
(using border-bottom: 1px dotted) has become a popular way of discerning them
from the crowd, but there is a possibility that even this will be confusing. See
Chapter 3, “Links,” for more, including how to make your own custom underlines
with borders and images.

DON'T BLINK!

Even if it did work in IE, it would be an extremely bad idea to use text-decora-
tion: blink. Blinking text is notoriously disliked by users and is BAD from an
accessibility point of view—and not in a Michael Jackson way, either.

Letter and Word Spacing

OK... now there’s a danger of getting carried away with all of this power CSS is giv-
ing us. If used willy-nilly, things such as the self-descriptive letter-spacing and
word-spacing can make your page look a mess, but, as always, use it wisely (maybe
for something a little different than the norm in headings, for example), and the
results could be rewarding.

p{
letter-spacing: 0.3em;
word-spacing: lem;

58 | CHAPTER 2: TEXT

Indenting

Another property rooted in traditional print styling that doesn’t translate quite
as well on a web page (because it's not really a convention on the Web) is text-
indent, which indents the first line of text in a box by a length or percentage.

p { text-indent: lem }

0 www.htmldog.com/examples/textalign.ntml

Horizontal Alignment

text-dlign horizontally aligns text within a block box, such as a default paragraph,
to the left (which is usually the default), right, or center; or justify.

p { text-align: right; }

Another word of warning: Left-aligned text is easier to read on the Web than justi-
fied text, so use the justify setting sparingly.

Andy Clarke is 2 designer who sees web
pages wherever he goes, From paintings on the walls of
Tate Modern to posters on the walls of tube stations. He
sees web pages everywhere, leaping out from the pages of
magazines and newspapers, record covers, political posters,
It might be that aAndy just needs to remember to take his
medication, but he finds inspiration for innovative designs in

the most unlikely of places,

In his presentation, andy will take you for a
ride around his world, showing how he gains inspiration for
layouts and designs which break with the boxey conventions
which are sometimes associated with web standards and how
we can use advanced CSS to implement them in progressive
and accessible ways.

Andy Clarke

FIGURE 2.9 Going crazy with letter-spacing, word-spacing, text-indent,
and text-align.

www.htmldog.com/examples/textalign.html

STYLING TEXT | 59

Vertical Alignment

vertical-align is not quite as exciting as it might at first sound (because | just
know you were getting excited there). It applies only to inline boxes (usually text),
and is not meant to align chunks of a page vertically. In many cases, as explained
later, there are better alternatives to using vertical-align.

Values top, middle, bottom, text-top, text-bottom, sub (subscript), and super
(superscript) rely on the styled box being smaller than some or all of the text in the
rest of the line (otherwise it will already be at all of those positions).

A length or percentage can also be used.

.power {
font-size: 80%;
vertical-align: super;

A daft ®™"* to what cn beq With the

show

vertical-align fe P

FIGURE 2.10 Using the vertical-align property can push parts of the text to any degree
up or down, but doing this will alter the height of the line such an effect sits on. See
www.htmldog.com/examples/verticalalign.html.

You can also achieve vertical alignment by using positioning (see Chapter 5 for
more), which is a tad more complicated, but gives you a smidgen more control.
Take a glance at the Superscript and Subscript article (www.htmldog.com/articles/
superscript/) and corresponding example (www.htmldog.com/examples/superscript.
html) on the HTML Dog website for more.

www.htmldog.com/examples/verticalalign.html
www.htmldog.com/articles/superscript/
www.htmldog.com/articles/superscript/
www.htmldog.com/examples/superscript.html
www.htmldog.com/examples/superscript.html

60 | CHAPTER 2: TEXT

More Text Styling Techniques

To achieve more specific traditionally print-related styles, you can expand your text-
styling options by playing around with other CSS properties (particularly those cov-
ered in Chapter 5).

You might have a penchant for drop caps, for example:

3 www.htmldog.com/articles/dropcaps/
0 www.htmldog.com/examples/dropcops1.html, dropcaps2.html, and dropcaps3.html

Or you might fall giddy with glee at the mere waft of a pull-quote or two:

O www.htmldog.com/articles/pullquotes/
=3 www.htmldog.com/examples/pullquotes1.html, pullquotes2.html, and pullquotes3.html

www.htmldog.com/articles/dropcaps/
www.htmldog.com/examples/dropcops1.html,dropcaps2.html,anddropcaps3.html
www.htmldog.com/articles/pullquotes/
www.htmldog.com/examples/pullquotes1.html,pullquotes2.html,andpullquotes3.html

chapter

Links

WE'VE JUST COVERED the Tin HTML, but it’s links that give it the HT—
HyperText is the method of moving between places by selecting links.

Reweatch and curalion © Dusimess contre © Aboul us @ Ssarch [~
NATURAL
HISTORY :
MUSEUM

Hemn \isfus | Mabweonline | Kawanly | Goucation | Tokspan Duy sl

Dig those dinosaurs

An Incredible
summer of
dinosaur fun

14 July - 3 September

i Jaws -
Come Face 10 100 with Ning of The mos? Rk
mning dievssinars evee crestad, in our
spectaculas new family | 3

30 Jun 2006 - 15 Ape 2007

The Ship: The A of Climate Change
Dawalop an undérstandng of clmate changs
nrough the work of nsts, sechilecls and

m;::m- 03 84 2008
Entry is free!

4 [Experience the Antarctic onbine
hae b 4 shange ot bempaiany wohibilass) F_f Contervators are weorking Srough the Antinctic
r ‘winler on presenving Shackielon’s hut Read
Monday o Sunday 000 - 1750 ihair rmgulary upciated blog.
Tho Musoum is apan avory day eucond 2428 RN JL AR TG
‘Duceriber. Lsst admission & a1 1730, . z
Hatural History Musaum, Craevesll Road,
London WY 880, L
Tol +&4 (20 7942 5000

Teachw " rusource

Flanning a school visk or lesson?
‘§aarch our onbne database of
paranes,

teachar

Eantast and anquings | desemibitey | Sfemap | Tems ot e ® [rere

FIGURE 3.1 The illustrations in this chapter are taken from London’s
Natural History Museum website (www.nhm.ac.uk).

www.nhm.ac.uk

62 | CHAPTER 3: LINKS

It's really not very difficult to create a hypertext link; in fact, we're only talking
about one HTML tag here. There’s a lot to take into account with this indepen-
dent little fella, though, from the way links are created, to what they can link
to, to the countless options you have in styling them (whilst remembering that
some restraint is needed to keep them as user-friendly as possible), to the area
of accessibility, which has particular importance when it comes to links.

Anchor Elements and Hypertext References

So what tag do we use? 1ink? Nope. That’s for something else (see Chapter 1,
“Getting Started”). Why, it's the diminutive a tag, of course! That'’s right: a for
anchor.

What?!

We’'ll come to the reasoning behind this in a minute, but the most important part
of an a element is actually the href attribute (meaning “hypertext reference”). The
value of this attribute specifies the target of the link—where the browser should
navigate to when the link is selected.

A page

URLS

A Universal Resource Locator is the location you want to link to (in the case of
links, the value of the href attribute), be it a website, page, or any other file. The
form of the URL can be different, depending on where the target is located—on
the same page (such as “#something”—see “Page Anchors,” below); in the
same folder (such as “something.html”); the same site (such as “afolder/some-
thing.jpg” or “../alowerfolder/something.html”); or on a different server entirely
(such as “http://www.htmldog.com/guides/”).

http://www.htmldog.com/guides/

ANCHOR ELEMENTS AND HYPERTEXT REFERENCES | 63

Research a {}2) -ation @ | Busin {b antre © | Al {r_n] 0 | Search (o]

& NATURAL
HISTORY

s MUSEUM

@ h‘ @ Natt @ e K @ y E @ n T {b“‘ E {5 e
ﬂ

ne = Biodiversity

Blodlversny

A
The science of
history

External links

m {b _j iodiversity Hotspots
» Biodiversi gb rer life
Introcdus N Ju\l@ re
bioc {b Cons { ?n
Committ
Wy conseny {b Lofgdon Biodiversity
biodi 2 =
versity a@ersﬁp
What 1ens our = Hat' gl Biodiversity
biodi 2 Iiei'.uli\l‘b
Biodiversiy at the The term biodiversity describes the variety of life on Earh, from = World {P_r‘-.‘)e““?
1 micro-organisms to mighty whales, along with the habitats they Databaze
Explosing Biodiyfksity depend upon. Discover why the world's biodiversity is under
@ threat and what will happen to us as biodiversity decreases.
Bats — Tl - bad, Also, find out about the problems that come with trying to Toolbox
and th ideo) measure it, and how the Museum's work is helping in the study
Fitier o and consenvation of biodiversity. . D;{E.) SEoaon
i m Er @vﬂge
Yoo o Introduct hiodiversity
What is bitJversity, what are the threats and what
? o i ANa
extinction? i {b is the Mus=um doing to help conserve -@:
Tadpo {b @-._‘1, biodiversity?
Are We is

FIGURE 3.2 A whole bunch o’ links, a whole bunch o’ a elements.

Page Anchors

0K, so here’s the reason why we're using a tag called “anchor.” In the olden days,
back when giant reptiles were plodding around and all mammals were the size of
shrews, “page anchors”—the points in a page that can be jumped to from selecting
a link—were defined with the a element.

Nowadays, such an explicit page anchor element isn’t needed because any element
with an id attribute (see Chapter 1) can act as an anchor.

Linking to a completely different page with something like href="something.html"

is very straightforward, but jumping down (or up) a page to a page anchor is just

as simple. To refer to a page anchor, you simply put a number sign—#—before the
name of the id you want to jump to. The label that follows the # character is referred
to as the “fragment.” So in the following example, selecting the “nitty-gritty” link

64 | CHAPTER 3: LINKS

(with the attribute href="#nittygritty™) will cause the browser to jump down the
page to the “Nitty-Gritty” h2 element (with the attribute id="nittygritty"):

<p>Jump straight to the nitty-gritty
<!--[A whole load of content]-->
<h2 id="nittygritty">Nitty-Gritty</h2>

3 www.htmldog.com/examples/target.html

You can also jump to an anchor in another page by simply bolting on the "#what-
ever" to the end of the URL. So to jump to the above “Nitty-Gritty” element from
another page, you would use href="whatever.html#nitty-gritty".

W il MIUSEUM

Home Visit us Nature online Kids only Education Take part Buy online

You are here: Home = Research and curation = Library and archives = Museum archives = FAQs

IR Frequently asked questions

About us) Toolbox

1. My ancestor warked for The Natural History Museum. What
General and zoology information do you have? = Print version
B 2. | am interested in the history of The Matural History Museurm. w Eirmil thin e

Botany library Wihere can | find out more®

. 1 am looking for general mFErmatiun on The Matural History
Museurmn buildings and a, cture. What do you have?

. How can | access the do ntzifl am unahle to make a

Digital ibrary vigit to the Archives?

. lwantto use a photogr
Wfuseurn in my forthe ol

o

Earth sciences library

Entomology library

-

o

ted to The Matural History
k. How can | acouire 3 copy?

~Museum archives

Ahout the archiue

3) 1am looking for general information on The Natural History
M buildi and architecture. What do you have?

An architectural bibliography is
available and this provides a good
starting point for those interested
in the Museumn huilding. Several
books are available in the
Museum Libraries - please check
the online catalogue to establish
their location. Recenttities are
alzo available in the hookshop ar
via our online bookshop.

4) How can | access the
if Lam unabla to

FIGURE 3.3 FAQ pages commonly use page anchors—a link at the top of the page scrolls the
browser to a heading farther down the page.

www.htmldog.com/examples/target.html

LINK STATES: LINK, VISITED, HOVER, FOCUS, AND ACTIVE | 65

Link States: Link, Visited, Hover, Focus, and Active
There are five link states that become particularly prevalent when using CSS:
1. One for when a link has not yet been visited
2. One for when a link has been visited
3. One for when a link is being hovered over

4. One for when a link receives focus (for example, when it is tabbed to by
keyboard input)

5. One for when a link is being selected.

By default, browsers tend to render unvisited links in blue, visited links in purple (or
mushroom-soup-sick brown in IE) and active links in red, but you can style these,
as well as the hover and focus states, however you choose.

By using the selector a on its own, you can set properties that will apply to all of the
link states (such as a { color: blue }). This is a common practice, but one that
should be followed up with styles for the individual link states to take advantage of
the valuable cues they can provide to users. To change the properties of the link
states independently, you can use the pseudo-classes link (for the default, unvis-
ited state), visited, hover, focus, and active, as in the following example:

a:link { color: blue; }

a:visited { color: purple; }

a:hover { text-decoration: none; }
a:focus { background-color: yellow; }
a:active { color: red; }

Link State. A color that stands out from surrounding text is usually selected for a
link, but to recognize the needs of colorblind users you should not rely on color
alone. An underline text decoration is applied by default with the a element. If you
decide to have links without underlines, consider adding another visual cue, such as
displaying them in bold. Keep in mind, though, that underlines are still associated
with links and make them more instantly recognizable than any other visual cue,
particularly when they appear in the middle of content. (This is not as important
for links in a well-defined navigation area, for example.)

66 | CHAPTER 3: LINKS

Visited State. The visited state is notoriously underused. By making use of the
visited pseudo-class to make links look slightly different (in a lighter color, for
example), you present a cue to let users know which pages they have already been
to, and which pages they haven't—a distinction that has been shown in usability
tests to help users make sense of a site.

Hover State. The hover state, which comes into play when the cursor moves over a
link, has also been shown to be useful to users.

Possible and popular combinations include turning off the underline on links using
a:link { text-decoration: none; } and then having it appear when the link is
hovered over with a:hover { text-decoration: underline; }.

You can obviously change colors, too, but it isn’t usually wise to change the size,
font-weight, or font-style of a link when it is hovered over because it can push out
surrounding content (what with it taking up more room than it did in its pre-hover
state).

So a basic hover effect you would use might look something like this:

a{
color: #900;
font-weight: bold;
text-decoration: none;
}

a:visited {
color: #c00;

}
a:hover {
color: #900;
text-decoration: underline;
1

The initial, unvisited link will have no underline, but will be bold to make it stand
out from surrounding text. Visited links will be slightly lighter to differentiate them
from links that have not been selected. And when the link is hovered over, an under-
line will appear.

Focus State. The focus pseudo-class, which—although it could provide a good
visual indicator for people tabbing through links—is actually the least helpful of

ACCESSIBLE LINKS | 67

these pseudo-classes because it isn't supported by Internet Explorer (although its
effects can be mimicked with JavaScript—see www.htmldog.com/articles/suckerfish/
focus/).

Active State. Finally, the active pseudo-class can be used to style a link that is
being selected (as in, being clicked), for that extra bit of user feedback.

The green seed of the white-flowering climbing leguminous papilionaceous

plant, pisum sativum, has become a dining-table favourite for good reason.

brings joy to bilions worldwide, be they fresh, frozen, canned or dried.

FIGURE 3.4 OK, so underlining links with text-decoration is quite common.
But you could be a bit fancier and apply borders or even background images
to achieve a more customized result. Take a read of the short article at
www.htmldog.com/articles/underlines/ or just jump in and take a look at the
bare-bones example:

3 www.htmldog.com/examples/underlines.html

Accessible Links

Links are an essential tool of navigation—without them, the Web would be a very
difficult place to get around. For that reason, it's important to pay special attention
to the accessibility of links to make sure everyone can use web pages effectively,
even if they don’t use pointing devices or if they rely on nonvisual browsers. This
section covers some techniques for addressing those considerations.

Tabbing

Those who do not or cannot use a pointing device such as a mouse will often
“tab” through links with a keyboard or other input device, whereby the user can
cycle through the links with every press of a key (such as the Tab key). One of
the benefits of building web pages according to web standards is that the content
tends to fall into a logical order, as do any links within it, so a good tab order is
usually automatic.

www.htmldog.com/articles/suckerfish/focus/
www.htmldog.com/articles/suckerfish/focus/
www.htmldog.com/articles/underlines/
www.htmldog.com/examples/underlines.html

68 | CHAPTER 3: LINKS

To explicitly set the tab order of links on a page, you can use the tabindex attri-
bute. Numerical values dictate what links will come where in the order, 1 being first,
2 being second, etc.

Wherever

You may want to do this if you believe some links are of greater importance or inter-
est to the user than others and so want to make the process of focusing in on those
links quicker.

Access Keys

Links can also be accessed by keyboard shortcuts, which remove the need for tab-
bing through a large number of links before reaching the desired link. These short-
cuts can be applied using the accesskey attribute.

Whatever

When a user presses the access key, plus Ctrl or Alt (depending on the platform),
the browser will move focus to the link assigned to that access key.

It isn’t always necessary—or even realistically possible—to add access keys to all
links on a page, but it is suggested that they should be added to major links, such
as primary navigation.

THE (BIG) PROBLEM(S) WITH ACCESS KEYS
There are two major problems with access keys.

The first is that although some screen-readers will read out access key values,
there is no good way of letting the user know visually what the access keys are.
As there is no universally accepted standard, websites tend to use different
access keys to accomplish different tasks in different ways.

ACCESSIBLE LINKS | 69

Suggestions for conveying the access key information have included explicitly stat-
ing what the access key is (such as Blah
(B)) or using CSS to underline or in some other way highlight the letter of the
corresponding access key within the link text. The problem with this approach is
that you cannot expect a user to know what the hell these things indicate. Most
people won't want to use access keys or even care what they are let alone know
what they are. ldeally, the browser would somehow convey access keys indepen-
dently of the web page view itself, but there’s nothing the web designer can do
about this.

Another method of conveying access key information is to have an accessibil-

ity statement web page that explicitly states what they are and what links they
are assigned to. The downside of this is that users have to navigate to another
page before reading the page they are really interested in. This is something that
users notoriously rarely do.

[f you choose to use access keys despite this problem, there is a second problem
waiting in the shadows to spoil the fun. This problem is that access keys can
cause conflicts with browser shortcuts. A user may want to select the File menu
from the browser window menu by pressing Alt+F on the keyboard, but find that
something quite unexpected happens because F is assigned to a link on the web
page and steals the limelight.

It is extremely difficult to predict what, if any, keyboard shortcuts are safe to

use as access keys. You can work out what shortcuts apply to your browser, even
to a number of browsers, but what about browsers in different languages? The
trouble is that if you want your web page to appeal to an international audience
(this is the /nternet we're talking about, after all) then all of those browser menu
options you are used to will have different wording and with it different keyboard
shortcuts. This means that pretty much any letter assigned to an access key will
conflict with a browser shortcut somewhere, causing confusion, hindering usabil-
ity, and defeating the whole object of the access key.

70 | CHAPTER 3: LINKS

So what to do? Firstly, due to the unfortunate problems, don't worry too much
about them—they're just not very practical. If you do choose to use them, how-
ever, try sticking to numeric access keys and go with that rarely visited acces-
sibility statement (such as the one in Figure 3.5).

EEEET 3
Home | Visitus Nature online Kids only | Education Take part Buy online 4@ F)

Youare here: Home = About us = Website help = Accessibilty = Access keys

I \Nebsite access keys

~ Accessibility Access keys are keyboard shorteuts, and help users who have Toolbox
difficulty using pointing devices such as a mouse. B B
» Access keys = Printversion
Site map This website uses the UK Government access key standards = Email this page
Below is a description of the access keys that are used on this
Terms of use site
N Contact s
; Hatural History Museum
2\ihat's new. Cromuvel Road
3 Site map Loneon
=T SED
4 Search Uk
6 Help Tel +44 (0020 7942 5000

8 Terms of use

9 Feedback.

0 Access key details.

Depending upon your broveser, use the shorteuts as follows:

Microsoft Internet Explarer 4 - hold down alt and the
letterinumber atthe same time.

Microsoft Internet Explarer 5 and abave- hold down alt and the
letterinumber at the same time, then press the enter key.

Mozilla 1.8 and above, Metscape 8 and above - hold down alt
and the letterinumber atthe same time

FIGURE 3.5 Like many sites that have access keys, the NHM site has a page explain-
ing what they are and where they will take the user. Note that the site has also cho-
sen numeric access keys to minimize problems with browser shortcuts.

Link Titles

As with many tags, you can use the common attribute title within the opening a
tag to provide more information about a link, such as a description of where the link
will take the user.

Although the text making up a link should describe the target, if it doesn't (if you
are forced to use “click here” or “more” as the link text, for example), then the title

ACCESSIBLE LINKS | 71

can be used to provide more information. Don’t assume this fixes the problem of
crap link text, though—a user’s screen-reader isn’t necessarily going to be set up to
read link titles.

Pop-ups

Pop-ups are a serious accessibility no-no because they unexpectedly navigate the
user to a new window and break the “back button” functionality. If you find yourself
in the position of using them, however, there are a few steps you can take to make
their application more accessible.

Firstly, the link title should be used to state that the link will cause a new window to
pop up.

Secondly, the value of the href attribute should be the page used in the pop-up and
the JavaScript used to launch the pop-up should return false. This way, if a user
does not have JavaScript or has it disabled, the content of the pop-up will be navi-
gated to, just not in a pop-up.

<a href="eviltroll.html" title="Launch Evil Troll in a little
pop-up" onclick="popup(this); return false;">Evil Troll

Contrary to popular belief, you do not need to replicate the onclick event with the
onkeypress event, although this would seem to make sense in accommodating key-
board input as well as “clicking” input. This is because as well as being invoked by
clicking, onclick will also be invoked by key-pressing.

Adjacent Links

Another issue raised by the Web Accessibility Initiative (WAI) is that adjacent links
should be separated by more than just spaces so that they can be discerned by
screen-readers.

There is argument over the continued validity of this point due to advances in
screen-reader technology that allow links to be read more clearly, but a problem still
remains with adjacent links, and they should be avoided if at all possible.

Separating navigation links with spaces is rarely anything more than presentational,
and smacks of the bad practice of using a number of (nonbreaking space)

72 | CHAPTER 3: LINKS

characters for quick-fix presentation. It is bad grammar to have a series of unbro-
ken, unrelated words (or abbreviations) in a paragraph.

This case usually calls for such items to be placed in a list (see Chapter 6, “Lists”),
but sometimes situations may arise where a paragraph is preferred.

For example, if you had a number of links claiming standards compliance, you might
want “XHTML CSS WAI,” but if this were placed in a paragraph it should be punc-
tuated with commas such as “XHTML, CSS, WAI" or at least with some separator,
such as “XHTML | CSS | WAL."

It is not entirely uncommon (particularly in blogs) to find adjacent words in a phrase
linking to different places (such as <a>as <a>some <a>have <a>said</
a>). The trouble with this is that the link text rarely describes where it is taking the
user.

Skipping Navigation

When a sighted user is presented with a page, it doesn’t take that long to focus on
the content—he or she doesn’t need to read all of the navigation options. Those
who rely on screen-readers don’t necessarily have this luxury. A screen-reader will
read through the entire content of a web page in the order it appears in the HTML,
which often means large portions of navigational elements being read out on every
page before it gets to the intended informative content.

To take this situation into account, you can create a link that will give the user the
option to skip the navigation and jump straight into the content.

<p class="accessaid">Skip to content</p>
<!--[Big chunk of navigation]-->
<div id="content">
<!--[The nitty gritty]-->
</div>

This code should look familiar—it is simply a basic link to a page anchor (defined by
the ID “content”). Not only would the browser jump down the page when the “Skip
to content” link is selected, the point at which a screen-reader continues to read
would also jump to that point, so bypassing the reading of the navigation.

ACCESSIBLE LINKS | 73

Although there may be users (such as those with motor disabilities) who exploit visu-
als but do not use pointing devices to whom this skip-to-content technique would be
beneficial, it is still a good idea to hide this link from view using CSS to avoid con-
fusion (the link won’t seem to do anything to the vast majority of users, who won’t
need to use it):

.accessaid {
position: absolute;
height: 0;
overflow: hidden;

}

(This method of hiding, and the properties used in the example, are described in
Chapter 5, “Layout.”)

Natur'e online - explore the natural world

Nature news

FIGURE 3.6 When the CSS is turned off, the Skip navigation links are revealed.

74 | CHAPTER 3: LINKS

On the flip side of this, a page could be structured whereby the content comes
before the navigation options. In this case, you can just as easily add a “Skip to
navigation” option for users who might want to access the navigation without having
to read through all of the content.

chapter 4

Images

IMAGES ARE PERHAPS the most obvious way to add visual appeal to
a web page. If you want anything more than the most minimal of mini-
mal sites you'll want to use images in one way or another, whether it's
showing off your holiday photos or adding curved corners to your layout.
Images also used to be used all over the place to help lay out pages as
invisible “spacer GIFs,” but now that we've got CSS layout on our side
(see Chapter 5, “Layout”), we can do away with those crazy days.

You can split the use of images quite neatly into two camps: one for
content (such as those holiday photos) and one for presentation (that’ll
be those curved corners), and unless you've just opened the book for the
first time and landed on this page, you should know by now that HTML
should be used for the former and CSS for the latter.

76 | CHAPTER 4: IMAGES

Cv ivabit @media event wax

Smarter Event Management

Welcome

Vivabit brings events and the web together. We
organise web design conferences, in the guise of
@ ia and we produce it Wax, a web-based
administration tool for event organisers.

unt

@media 2006 is the next

Vivabit event. 800 people from over
30 countries will gather in London
i mi ne to see some of the
world's most highly respected web

Started by renowned experts, Vivabit began life as a web development
consultancy with a facus on best practices and the cutting edge. We may
not offer the game gervices any more, but the passion and expertise hasnt
gone anywhere

Multiple ticket

experts.

YWe know the web damned well. It's just that we started nailing events, too.
It's become a bit of a ménage a trois thing, only without the guilt @media Love

@media

FIGURE 4.1 The illustrations in this chapter are taken from the Vivabit website (vivabit.com).

THE IMG ELEMENT | 77

The img Element

The img element allows you to plonk an image straight into your HTML.

The required src attribute points to the location of the image file.

The alt attribute, which is also required, is for specifying alternative text. It serves
an important accessibility task: It provides an “alternative” to the image for those
who cannot see the image itself (such as those reliant on screen-readers). As an
added bonus, most browsers use this attribute to provide placeholder text while the
image is downloading. The value can give an idea of what the image represents,
but doesn’t have to—it can be anything that would adequately serve as alternative
content to the image.

O www.htmldog.com/examples/images1.html

You can also use the longdesc attribute, the value of which would be the location
(in the form of a URL) of a description of the image. The idea behind this is that
when there is a very detailed image (such as a map or a chart) that may need a
solid, long explanation, you don’t necessarily want to bog down the page with mas-
sive alt attributes (which should be short and sweet). longdesc gives the user an
option to navigate to a page that will explain what is going on.

BORDER ANNIHILATION

Note that if you include an img element inside a link, browsers will tend to

apply a border to the image by default. You can easily annihilate the border with
CSS—img { border: ©; }. See Chapter 3 for more on links and Chapter 5 for
more on borders.

www.htmldog.com/examples/images1.html

78 | CHAPTER 4: IMAGES

(Qv/i vabit h event wax

The Web's Cutting Edge Vivabit Sonot

Web events company Vivabit organises the renowned nedia
conference, and is the maker of , the web-based event
management application.

uated in the

Started by experienced web professionals, Yivabit began life as a web design and developrnent
consultancy, gradually concentrating more and mare on the events side of our sewvices, until
events became our sole focus:

What Floats Our Boat

= Technical excellence, being genuinely cutting-edge, applying the |atest technigues and
working with the best in the business.

@ Stan

ards compliance, following best technological practices for best results
= User centric web design, because the happier the user, the more successful the web site,

= Good communication being just as impartant as technical expertisa

@ High levels of accessi ty without compromising graphic design.

= Having fun and enjoying what we do.

‘We could rant on about the organisations we've been proud to work with, the world-class talent
that warks for Vivabit or maybe even our argumentative take on the state of accessibility, but we
win't, because you'e most likely got the general idea. If there's anything you want to know
about us, just ask. We probably wont bite.

The Players

We're asmall team, and proud of it. From a core base of technical experts, we tap into a
close network of world-leading specialists whenever necessary.

Patrick Griffiths

Sorne years ago Patrick decided to put all of his eggs in one basket and
concentrate on front-end web development. Since then he has worked on
wehsites for Vodafone, Wiley and local government and has established
himself as a leader in his field with several well received professional articles

and a book to hig name

He's a film lover and a music man, but rates Charles Darwin and Valentino Rossi as history's
two greatest figures

Dan Webb
A web application development nut, Dan has demonstrated his considerable

skills working on projects for the likes of Nike, Sainsbury’s, Duls Nestle

and various and and in a past life was a
senior developer for tber-agency AKOA,

On those occasions he's not programming, he enjoys hip-hop and cheese
slices, Although not necessariy at the same time

Oh, and yes, that s his real name

FIGURE 4.2 Even in a graphically rich web page, img elements tend to be few and far
between. Take a sub-page from this website, for example...

THE IMG ELEMENT | 79

+ (@media
+ Event Wex
+ Blog

* About Us

T v 1 .
The Web's Cutting Edge
Web events company Vivabit organises the renowned @media conference, and is the maker of Event Woax, the web-based event management application

Started by experienced web professionals, Vivabit began life as a web design and development consultancy, gradually concentrating more and more on the events
side of our services, until events became our sole focus

‘What Floats Our Boat

+ Technical excellence, being gemuinely cutting-edge, applying the latest techniques and working with the best in the business
+ Standards compliance, following best technological practices for best results

+ User centric web design, because the happier the user, the more successfil the web site

+ Good communication being just as important as technical expertise

+ High levels of accessibility without compromising graphic design.

+ Having fun and enjoying what we do.

TWe could rant on about the organizations we've been proud to work with, the world-class talent that works for Vivabit or maybe even our argumentative take on

the state of accessibility, but we won't, because you've most likely got the general idea. I there's anything you want to know about us, just ask. We probably won't
bite

The Players
We're a small teamn, and proud of it. From a core base of technical experts, we tap into a close network of world-leading specialists whenever necessary.

Patrick Griffiths

4 Seme years ago Patrick decided to put all of his eggs in one basket and concentrate on front-end web development. Since then he has worked on
websites for Vodafone, Wiley and local government and has established himself as a leader in his field with several well received professional articles and a book
to his name

He's a filem lover and a music man, but rates Chatles Darwin and Valentino Rossi as history's twe greatest fiures

Dan Webb

B

mﬁ. web application development nut, Dan has demonstrated his considerable skills working on projects for the likes of Nike, Sainshuwry's, Dulux,
1 institutions and in a past ife was a senior developer for itber-agency AKQA

Nestle and various educational and
On those occasions he's not programming, he enjoys hip-hop and cheese slices. Although not necessarily at the same time.

Oh, and yes, that iz his real name

FIGURE 4.3 The only img elements in the HTML are the logo and the headshots.

80 | CHAPTER 4: IMAGES

WIDTH? HEIGHT? IN HTML?

The width and height attributes can be quite useful. They let the browser know
how much space to reserve on a page even before the image itself starts to
download. Without this information, the browser will only know the image size
once the image starts to download, which can mean that it needs to redraw the
page, causing surrounding content to jump all over the place. For example, if
there is an img element without width and height settings in a page surrounded
by a whole load of text, the browser will render the text first, leaving a small
default area for the image. When it comes to download the image and realizes
that it is actually bigger than the space it left, it will need to readjust where the
text flows to accommodate the image.

<img src="images/sifaka.jpg" dalt="Leaping sifaka" width="500"
height="129" />

But hold on a minute! Width and height are spatial concepts—completely pre-
sentational; shouldn’t this be something that is done with CSS? Well, ideally,
yes, with the width and height properties (width: 50@px; height: 129px;
for example—see Chapter 5). But this approach isn’t always practical. If you
had a lot of different img elements on a page (or across a whole site, for that
matter) and they all had different dimensions (if it was some kind of online
photo album, for example), then you would need to create classes for every
image (see Chapter 1, “Getting Started”), which could lead to an unwieldy
amount of CSS. In such a case, although it messes with the whole structure/
presentation philosophy, the width and height attributes might be the most
practical route to take.

THE IMG ELEMENT | 81

JPEG, GIF, OR PNG?

This is a little outside the realms of HTML and CSS, but because it is so impor-
tant in the construction of a web page with images it is worth briefly noting the
different image file formats for any beginners out there.

JPEG, GIF, and PNG use compression algorithms to deliver lightweight images

for web pages. These algorithms work in different ways and each is suitable for
different situations. Most decent image manipulation software programs will give
you some control over the degree of compression, allowing you to strike a bal-
ance between quality and file size (the more compressed an image, the smaller
the file size and the lower the quality).

JPEGs should normally be used for detailed images such as photographs.

GIFs should be used for images with solid blocks of color. This format allows
up to 256 colors, including transparency. The fewer the colors in an image, the
smaller the file size.

PNGs achieve a similar result to GIFs but in a more sophisticated way. They allow
more colors and also “alpha” transparency, which means individual pixels can

be set to a certain degree of transparency (ranging from opaque to completely
transparent). Unfortunately, the alpha transparency in PNGs is not supported in
the commonly used Internet Explorer 6, although IE7 will be more well behaved.

Image Maps

Let’s keep this brief: Image maps, which allow a user to click on various parts within
an image, are not widely used (certainly not in a good way, anyway) and there are
usually better alternatives.

82 | CHAPTER 4: IMAGES

There are two flavors: server-side image maps, which belong in Satan’s toolbox
and are discussed in Chapter 9, “Forms,” and client-side image maps, which are
cobbled together with the map and area elements.

<map name="atlas" id="atlas">

<area shape="rect" coords="0,0,115,90" href="northamerica.html"
alt="North America" />

<area shape="poly" coords="113,39,187,21,180,72,141,77,117,86"
href="europe.hmtl" alt="Europe" />

<area shape="poly" coords="119,80,162,82,175,102,183,102,175,148
,122,146" href="africa.html" alt="Africa" />
</map>

In this example, the img element is the image. The map element then links onto
that image via the usemap attribute in the img element matching the name attribute
in the map element. Each area element then defines an area on the image (with a
shape and coordinates) and provides a link. So if this were a map of the world, then
you could make each continent clickable.

Why aren’t these much use? Because there aren't many valid applications for them
(geographical maps are the most obvious use), and even when you have a valid use
(splitting one big image into navigational links, a popular crime of the past, is not
a valid use) they're not very user friendly because it's not immediately obvious that
the image is a clickable map. They may seem clever, but they're perhaps too clever
for their own good.

Background Images

Because images are so often used in a purely presentational capacity, rather than
as genuine content, CSS is usually preferable to HTML for dealing with them. img
elements used to be prolific—plastered any and everywhere to achieve even the
slightest presentational effect (and are still commonly used as such today). But now,
in the web standards era, the image niche is dominated by another, slicker animal—
the CSS background image.

BACKGROUND IMAGES | 83

The background-image property can be used to specify an image to be used as a
background for just about any element box—from the page body to a paragraph to a
link. Use it on its own, and the image will magically tile itself across the background
of the element starting from the top left corner and repeating horizontally and verti-
cally, filling the box.

body { background-image: url(images/sifakabg.gif); }

0 www.htmldog.com/examples/images2.htm|

(\ ivabit @media | eventwax | blog about us

Vivabit brings events and the web together. We
organise web design conferences, in the guise of
a and we produce Event Wax, a web-based

administration tool for event organisers. : I 2
@media 2006 is the next big

Vivabit everit. 800 people Irom over
30 courtries w' erin London
inmid-June to ne of the
world's most highiy respected web
experis.

Started by renowned sxperts, Vivabit began life as a web development
consultancy with a focus on best practices and the cutting edge. We may
not offer the same sarvices any more, but the passion and sxpertise hasn't
gone anywhere

We know the web darmnad well. It's just that we started nailing events, ton
It's become a bit of a ménage a trois thing, only without the guilt @media Love

end o 4ok up o your o

FIGURE 4.4 Spot the background images. They're all over the place—15 in this screenshot
alone.

You can control aspects of the background image with the background-attachment,
background-repeat, and background-position CSS properties.

background-attachment determines whether the background image should scroll
with the content of a box. It can be used to specify whether the image should scroll

www.htmldog.com/examples/images2.html

84 | CHAPTER 4: IMAGES

with the rest of the page (which it normally would do) or whether it should be fixed
to the viewport (the viewing area of the browser window, rather than the page).

body {
background-image: url(images/sifakabg.gif);
background-attachment: fixed;

}

This example will plaster the “sifakabg.gif” image across the page, and, rather than
the pattern scrolling as it would do on a long page with lots of content, it will stick
right where it is, with the rest of the page scrolling over the top.

You don’t have to have the background image tiled (repeated over and over, horizon-
tally and vertically as space allows). By using the background-repeat property you
can decide whether you want it to repeat just horizontally (repeat-x), just vertically
(repeat-y), or not at all (no-repeat).

body {
background-image: url(images/sifakabg.gif);
background-repeat: no-repeat;

}

3 www.htmldog.com/examples/images3.html

Those areas of the element that are not taken up by the background image will be
transparent, unless coupled with a background color (see Chapter 1), which would
paint the rest of the area that color.

Background images will start at the top left corner of a box by default, but you can
change this with the background-position property, which is particularly useful
when background-repeat is set to no-repeat, for example.

Values can be top, right, bottom, left, center, a length, a percentage, or a combi-
nation of these (such as top left).

body {
background-image: url(images/sifakabg.gif);
background-repeat: no-repeat;
background-position: center;

www.htmldog.com/examples/images3.html

BACKGROUND IMAGES | 85

THE WEB'S CUTTING EDGE.

FIGURE 4.5 The leaf image is set to background-repeat: no-repeat to achieve just one
instance of it. The little spots that make up rest of the strip are one small tessellating
image set to repeat.

Another one of those funky shorthand properties is background, which can combine
some or all of background-color (which we came across in Chapter 2, “Text”),
background-image, background-repeat, background-attachment, and background-
position into one.

body { background: #0084c7 url(images/sifakabg.gif) top left fixed
no-repeat; }

Although all of the examples so far have been applying backgrounds to the body
element box, you can apply them to any visible element on the page, be it a para-
graph, a link, a table, or even a partially transparent img element, if you really
want to.

86 | CHAPTER 4: IMAGES

TECHNIQUE: ROUNDED CORNERS

Background images aren'’t just about the bigger picture—they are used for every
decorative effect. In Figure 4.6 two rounded corners are applied to a content
area. The first is applied to the area’s container and the last is applied to the
bottom paragraph, so there is no need for any extra markup.

3

Welcome

Vivabit brings events and the web together. We
organise web design conferences, in the guise of
@media and we produce Event Wax, a web-based
administration tool for event organisers.

Started by renowned experts, Vivabit began life as a web developrment
consultancy with a focus on best practices and the cutting edge. We may
not offer the same services any maore, but the passion and experise hasnt
gone anywhere.

We know the web damned well. It's just that we started nailing events, too
It's become a bit of a ménage & trois thing, only without the guilt

4

FIGURE 4.6 Two rounded corners are applied to a content area.

As long as you have enough elements to latch CSS onto, you can apply more than
one background to a part of the page. For example, you could add one rounded
corner to a paragraph by applying a background image to the top left of a p
element, but if you had something like <p>whatever
</span</p> then you could apply a rounded corner to each of

BACKGROUND IMAGES | 87

the elements (p for the top left corner, p span for the top right corner, p span
span for the bottom left corner, and p span span span for the bottom right
corner) using something like this:

p{

background: white url(images/sifakaptl.gif) top left no-
repeat;
1
p span {

background: url(images/sifakaptr.gif) top right no-repeat;
1
p span span {

background: url(images/sifakapbr.gif) bottom right no-repeat;
1
p span span span {

background: url(images/sifakapbl.gif) bottom left no-repeat;
1

The p element applies one of the corner images (top left) and also sets the back-
ground color of the box. Each of the nested span elements then applies another
corner.

3 www.htmldog.com/examples/images3_2.html

More @media Master Classes

ancements

FIGURE 4.7 In this example, some extra HTML span tag
“scaffolding” is necessary so that there is something
to hook each corner onto.

www.htmldog.com/examples/images3_2.html

88 | CHAPTER 4: IMAGES

More @media
Master Classes

FIGURE 4.8 With four separate corners,
the box can accommodate different
widths and heights...

More @media Master Classes

Griffiths: XHTML & CSS

Covering areas such as text, images, lists,
forms, and table-free layout, and how to
apply them following best-practices. ¥

Keith: DOM Scripting
How to make exciting, functional

FIGURE 4.9 ...and if the user bumps up the text size, there isn’'t a problem.

Image Replacement: Providing Graphical
Alternatives for Text

Image replacement is the process of using CSS to replace functional text with a
graphical representation of that text. It has become an important part of web stan-
dards design, relegating img elements to a purely content-focused role in the same
way that CSS layout has relegated tables.

IMAGE REPLACEMENT: PROVIDING GRAPHICAL ALTERNATIVES FOR TEXT | 89

A meaningful heading (for example) is simply something like “Plastic Banana
Factory,” which is easily sorted, as it should be, with text in HTML. If you want that
heading presented with fancy yellow letters made up of bananas, for example, you
shouldn’t try and do that with HTML and an img tag because that carries no more
meaning. What do we use for presentation, boys and girls? “CSS!” | hear you har-
monize. Well done.

So the structured content is in place—simple, functional, accessible text in HTML.
But we don’t actually want to see that text—what we need to do is make it invisible
and replace it with an alternative visual representation in the form of a CSS back-
ground image.

By keeping the images controlled by the CSS, you can also change them as you
choose from one location. If you used it for a site-wide logo, for example, and the
logo changes, you can swap the images globally with one small change to the CSS
file. Rollovers too, where the image changes when the user moves the cursor over a
link, can be achieved simply, without the need for JavaScript.

The CSS Zen Garden (csszengarden.com) is an excellent example of image replace-
ment techniques, where the underlying HTML remains unchanged across all designs
and includes no images at all. The headings are often replaced with images using
CSS to achieve the desired look.

There are a number of ways to apply the technique. The basic idea is to hide the
functional text somehow and then slap a background image in the “empty” box.

N ﬁ

Welcome
Vivabit brings events and
organise web design con| F|GURE 4.10 Before: “Welcome” as func-
@media and we produce] tiona| text (in a bold, Arial font)...

N E

Welcome FIGURE 4.1 ...and after: The “Welcome” text
Vivabit brings events and is pushed out of sight and replaced by a
organise web design conl packground image showing “Welcome” as
@media and we produce| grahhical text, using the Dax font type.

90 | CHAPTER 4: IMAGES

We could start with HTML like this:
<h1>Sifaka</h1>
and then apply...

hl {
background-image: url(images/sifakalogo.gif);
width: 300px;
height: 129px;

}
hl span {

display: none;
1

The above example applies a background image to the hl element (which is made the
same size as the image) and then the span element within it is hidden, hiding the text.

This traditional method is known as the Fahrner Image Replacement (FIR) tech-
nique. Unfortunately, it has one rather serious flaw. One of the supposed benefits

of using image replacement techniques is that it aids accessibility. When display:
none is used, however, not only can you not see that element, but most screen-read-
ers will also ignore it; when a screen-reader comes across the FIR, it simply won't
read anything at all.

The way around this isn't too difficult—you just need to use another way of hiding
an element such as:

hl span {
display: block;
height: 0;

overflow: hidden;

}

(See Chapter 5 for more on these properties, in particular display: none

alternatives.)

For all intents and purposes the span element within the h1 is still displayed there—
whereas to the eye zero height equals invisibility, to something that cares nothing for
spatial parameters (such as a screen-reader) the element lives on in all its glory.

3 www.htmldog.com/examples/images4.html

www.htmldog.com/examples/images4.html

IMAGE REPLACEMENT: PROVIDING GRAPHICAL ALTERNATIVES FOR TEXT | 91

Another image replacement method removes the need for the span tag scaffolding,
so with the following slimline HTML:

<h1>The Sifaka</hl>
We can apply this CSS:

hl {
background-image: url(images/sifakalogo.gif);
width: 300px;
height: 129px;
font-size: 1px;
text-indent: -999em;
}

This applies the background image as before but by using a large negative text-
indent the containing text is yanked out of view. The font-size is set to one pixel for
the sole reason that otherwise it could push out the height of the hl element (any
height less than the height of the image would do).

3 www.htmldog.com/examples/images5.html

The problem with these image replacement techniques is that they fail to show
anything at all when images are turned off but CSS is on—the image won't load
and the text will be hidden. The issue isn’t only that it affects people who choose
to switch off images for faster page downloads, but it also means that there is no
placeholder text while the replacement image loads, so it doesn’t have an advantage
that the img alt text has.

Another image replacement technique gets around this CSS on/images off problem
by reintroducing the span tag scaffolding, but in a slightly different arrangement:

<h1>Sifaka</h1>
To this we can apply the following CSS:

hl {
position: relative;
width: 300px;
height: 129px;

www.htmldog.com/examples/images5.html

92 | CHAPTER 4: IMAGES

font-size: 50px;

}
hl span {

position: absolute;

top: 0;

width: 300px;

height: 129px;

background-image: url(images/sifakalogo.gif);
}

This effectively lays the span element on top of the text in the hl element. The only
restrictions are that the image background cannot be transparent (or else the under-
lying text will show through) and the text needs to be equal to or less than the size
of the image (otherwise it will spill out from under the image).

www.htmldog.com/examples/images6.html demonstrates this method and shows up
the problem of the necessity for a solid background: If the width of the browser is
too narrow, the blue background of the logo will overlap the background of the page.

For a good rundown of the different techniques, hop on over to mezzoblue.com/
tests/revised-image-replacement/

In theory, there are similar methods that can be used but do not require the span
tag scaffolding, including manipulating the :before pseudo-element or, even easier,
using the CSS3 content property (h1 { content: url(images/sifakdlogo.gif); 1,
which replaces the content of an element, such as text, with something else, such
as an image). Unfortunately, at the moment very few browsers (and Internet Explorer
isn't one of them) can handle such Space Age methods, so there isn't much point in
going into them here.

www.htmldog.com/examples/images6.html

chapter 5

Layout

PRETTY TEXT and fancy images are all well and nice, but in terms of real
layout—placing bits of a page exactly where you want them—things are
a bit linear so far in this book.

Before CSS 2 became widely supported, the only practical way of laying
out a page in anything other than a long single column was with HTML
tables, transparent “spacer.gif” images, and lots of non-breaking spaces:
nbsp; ...

Now that CSS 2 is widely supported, you can manipulate the position
of every HTML element on a page with style sheets. Not only does this
approach dramatically reduce page weight and download time (those
multiple nested table elements and spacer images didn’'t half fatten
things up), CSS layout also leads to more manageable, flexible, and
uniform page layouts throughout a whole website from a single file. And,
as a nice little bonus, it improves accessibility—thanks to the logical
order of the underlying HTML (which isn’t disturbed or compromised by
presentational markup).

There's a fair bit to get through, but it'll all be worth it in the end.
Starting with the basics of padding, borders, and margins of the box
model through to the display property and positioning, this chapter ends
with some practical examples to show how the theory can be brought
together to achieve solid CSS page layouts.

94 | CHAPTER 5: LAYOUT

The Box Model

Grand multicolumn page layouts might be your ultimate goal, but before moving on
to see how that kind of thing can be achieved let’s start with the basics of laying
out elements: the box model. Every element on a web page is surrounded by a force
field—a simple multi-layered box that can be manipulated to create sophisticated
effects.

FIGURE 5.1 The mighty box model. At the center is the content itself. Surrounding that
is the padding. Surrounding that is the border and surrounding that is the margin.

ack and Jill went up the hill to fetch a pail of water. Tt was a

ridiculous waste of time though because there had been a drought
in the region for months.

FIGURE 5.2 The box model applies to all elements displayed on a web page. Paragraphs, for
example...

THE BOX MODEL | 95

FIGURE 5.3 ...images...

FIGURE 5.4 ...or lists, not to mention links, tables, forms, strong elements, etc., etc., etc.

Width and Height

You can set the width and height of an element using the width and height CSS
properties.

These set the dimensions of the inner (content) box only, and do not take into
account the padding, border, or margin. So if you set width to 100px and have a
50-pixel border, 50-pixel padding, and 50-pixel margin, the total width of the box
will actually be 400 pixels (100px + 50px left border + 50px right border + 50px
left padding + 50px right padding + 50px left margin + 50px right margin).

96 | CHAPTER 5: LAYOUT

350px

4 100px p

4 400px [3

FIGURE 5.5 The dimensions of a box set to width: 100px
(the width of the inner-most rectangle), height: 5@px (the
height of the innermost rectangle), padding: 50px (the rect-
angle around the innermost rectangle), border: 50px solid
(the rectangle around that), and margin: 50px (the outer-
most rectangle).

The CSS standard also allows min-width, min-height, max-width, and max-height
properties to set minimum and maximum widths and heights, but since Internet
Explorer 6 doesn’t support these properties, unfortunately they aren’t a practical
option at this time (although the problem is remedied in IE 7).

Overflow

If content is too large to fit into a box with a specified height and width, then the
“overflow”—that portion of the content that doesn't fit in the box—can be set to do
a number of things with the overflow property. This can be set to:

e visible (which is the default), whereby the overflow spills over the box.

e hidden, where any content that doesn't fit in the box will be “clipped”—cut
off at the edge of the box.

THE BOX MODEL | 97

e scroll, which displays scrollbars, allowing the user to scroll the box to see
the overflow.

e auto, which displays scrollbars only if they are necessary (whereas overflow:
scroll will show them even if the content of the box fits without any overflow).

Internet Explorer slips into a state of undignified discombobulation when it comes
to overflow:visible (which is the default behavior on all boxes). It will expand the
box’s height beyond that specified, effectively interpreting height as min-height
should be interpreted.

The clip property can also be used with absolutely positioned boxes (described later
in this chapter) to specify an area of a box that is visible.

clip: rect(1@px 120px 120px 10px), for example, will clip a region starting at
10px in from the left and 10px in from the top and end at 120px in from the left
(the “right” part) and 120px from the top (the “bottom” part), leaving a 110px by
110px area.

Padding

Individual sides of the box can be padded by using the padding-top, padding-right,
padding-bottom, and padding-left properties (for example, padding-top: 2em)

If you want to set the padding on more than one side, though, you can use the pad-
ding property, with which you can apply different amounts of padding to each side
of a box if you so choose (see “Shorthand Values” sidebar).

#header {
padding-bottom: lem;
}
#content {
padding: lem 2em;
1

Backgrounds, be they images or colors, will fill the area of the content and the padding.

98 | CHAPTER 5: LAYOUT

SHORTHAND VALUES

With padding, border-width, and margin you can provide a single value to
specify uniform padding/border width/margin in a box. To set different values for
different sides you could use properties like padding-top and padding-left or
border-right-width and border-bottom-width, for example, but you can also
apply different values to different sides of a box in one shorthand property. By
specifying two, three, or four values to padding, border-width, or margin, you can
target different sides as the following table indicates:

Values Example Applies to
1 padding: lem all sides
2 margin: 10px 2em [top and bottom] [left and right]

3 border-width: 1px Spx 2px [top] [right and left] [bottom]
4 padding: 10px 10px lem lem [top] [right] [bottom] [left](clockwise)

Note that the values don't all have to be the same—you can mix up pixels, ems,
and more if that floats your boat.

Borders

Borders have a bit more to them than padding because not only can you specify
their width, you can specify their style and color.

Border width works much in the same way padding does—you can specify measure-
ments for individual sides (using border-top-width, border-right-width, border-
bottom-width, and border-left-width) or you can specify multiple sides at once
using border-width with one, two, three, or four values.

Before border-width does anything, however, you need to specify what kind of bor-
der you want with border-style.

Some values for border-style, which are as mad as a particularly mad clown in a
mental asylum, include groove, ridge, inset, and outset. These render differently

THE BOX MODEL | 99

in different browsers, look pretty nasty due to their generic “embossed” style any-
way, and, therefore, are almost as useful as a saucepan made out of cream cheese.

This property’s most commonly used values are the self-descriptive solid, dotted, or
dashed, which are a tad more useful. Whereas browsers will normally render dotted
borders as a series of equally separated dots, Internet Explorer 6 (and earlier versions),
in an interesting quirk, will render them as dashed lines if the border is 1 pixel wide.

You can specify different styles for different sides of the border using border-
top-style, border-right-style, border-bottom-style, and border-left-style or
specify more than one value with border-style (following the same principles as
the border-width shorthand—see sidebar). border-style: solid dotted dashed
solid, for example, will apply a solid border to the top, a dotted border to the right,
a dashed border to the bottom and a solid border to the left of the box.

border-color (and border-top-color, border-right-color, border-bottom-color,
and border-left-color) can be used to change the color of a border.

If a border color is not specified, it will assume the color of the color property of
the box.

You can further simplify things by combining border settings with the border short-
hand property, which allows you to set the border-width, border-style, and bor-
der-color styles in one handy property. border-top, border-right, border-bottom,
and border-left achieve the same things for individual sides of the border.

border: 1px solid black, for example, will set a one-pixel-wide solid black border
to a box. If you don’t want a uniform border, you can follow the border declaration
with separate specific declarations:

#orangutan {
border: dotted red;
border-width: 2px 1@px;
1
#chimpanzee {
border: 2px solid;
border-color: black #333 #666 #999;
}

3 www.htmldog.com/examples/border.html

www.htmldog.com/examples/border.html

100 | CHAPTER 5: LAYOUT

border: 1px solid; border: 1px dotted:

horder: 2Zpx dashed #oco; border: solid;

border-width: 1px Spx 10px 1S5px:

border: Spx: border: Spx solid:

horder-style: solid dotted dashed solid; border-color: black #444 #888 fcco;

FIGURE 5.6 Some examples of different border styles and property combinations. See www.
htmldog.com/examples/borders.html.

Margin

And so to margins—the transparent outer wrapping of the box. We return to the
simplicity of padding in terms of defining them—you simply specify the width. Once
more, you can set the sides individually with margin-top, margin-right, margin-
bottom, and margin-left, or use margin with one, two, three, or four values:

#bonobo {
margin-top: lem;
}
#human {
margin: 3em lem;
}

Margin Collapsing

If two or more vertical margins come into contact, a phenomenon known as mar-
gin collapsing will occur. The distance between two boxes will be the distance of
the greater of the two margins, rather than the sum of both. The smaller margin
will “collapse” and disappear—only the larger margin will remain to space out the
two boxes.

So if you had a number of paragraphs, one after the other, and their margin was set
to lem, the margin between each paragraph would be lem, not 2.

www.htmldog.com/examples/borders.html
www.htmldog.com/examples/borders.html

THE BOX MODEL | 101

margin: 40px

margin: 80px

FIGURE 5.7 “Margin collapsing”: When two vertical margins come into
contact, only one will apply.

Margin collapsing happens not only to boxes that follow each other, but also within
boxes. So if you were to have a paragraph with a lem margin inside a div with a
lem margin, the paragraph margins would disappear into the margin of the div.

This element-within-element collapsing only occurs when there is no other box level
between the margins. Using the last example, if the div has any padding or border
applied to it, then that will act as a boundary, and the paragraph margins will not
come into contact with the div margins, preventing them from collapsing.

0 www.htmldog.com/examples/margincollapse.html

www.htmldog.com/examples/margincollapse.html

102 | CHAPTER 5: LAYOUT

orem psum dolor sit amet, consectetur adipisicmg elit, sed do emsmod tempor
incididunt ut labore et dolore magna aliqua. Tt enim ad minitm veniam, quis nostrud
exercitation ullameo laboris msi ut aliquip ex ea commodo consecuat. Duis aute irure
dolor i reprehendent m voluptate welit esse cillum dolore ew fugat nulla paratur
mcepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
ollit anim id est laborum

orem ipsum dolor sit amet, consectetur adipisicing elit, sed do esmod tempor
incicidunt ut labore et dolore magna aliqua. Tt enim ad minim veniam, quis nostrud
exercitation ullameo labons mei ut aliquip ex ea commodo consequat. Duis aute wrure

dolor in reprehendertt in voluptate velit esse cillum dolore eu figiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mnellt amm 1d est laborum.

FIGURE 5.8 Both paragraphs and divs (dark background) have a margin
of lem. The div in the second block has a 1px border, preventing the
margin collapse with the paragraphs.

THE BOX MODEL HACK
Internet Explorer 5.0 and 5.5 for Windows handle the box model incorrectly.

Instead of applying width and height properties to the inner content box, they
will be applied to the content box plus the padding plus the border.

4 164px P

FIGURE 5.9 How IE 5.x renders a box set
4 200px 4 to width: 200px; padding: 20px;
border: 3px solid;.

So when you are applying padding and borders to an element, you need to
specify a different height and width for IE 5.x than you do for other browsers.
There is no “proper” way of doing this because CSS (and HTML, for that matter)
is supposed to be browser-independent. In the real world, however, practical
problems like this sometimes arise, and that’s when we resort to a hack to tackle

THE BOX MODEL | 103

them. The Box Model Hack can take a number of forms, but the simplest goes
something like this:

#somebox {
width: 200px
wid\th: 154px;
padding: 20px;
border: 3px solid;

}

Basically, IE 5.x won't recognize property names that are “escaped” in this way
in the middle. In this case it won't recognize “wid\th” as “width,” whereas other
browsers will.

So by specifying the incorrect width first with width (that all browsers, including
[E 5.x, will understand) and then the correct width afterwards with wid\th (that
all browsers except IE 5.x will understand), IE 5.x will apply the first “incorrect”
width declaration (because it won't understand the second) and all other well-
behaved browsers will apply the “correct” width (because they will understand
both declarations and give preference to the latest one).

In fact, you can use this hack with any property. As long as the “\" doesn’'t come
before an a, b, ¢, d, e, or f (which conflicts with the hex codes used in colors), it
will work.

There are a number of hacks that will hide various things from various browsers
(dithered.com/css_filters is one source for a good, comprehensive outline) but
they should be avoided if at all possible. There is rarely a need to use them—
one of the beauties of web standards is that by using them you can feel safer in
cross-browser compatibility and reliability. The Box Model Hack, however, is the
most important and most widely used of hacks because it deals with such a big
fault in a commonly used technique in a commonly used browser.

104 | CHAPTER 5: LAYOUT

The display Property

Boxes can be block or inline. These terms are derived from block and inline ele-
ments (see Chapter 1, “Getting Started”) whereby a block element (such as p or
div) is displayed with a line-break before and after it (a block box) by default and an
inline element (such as em or span) is displayed on the same line (an inline box) by
default. But these presentational aspects need not apply to specific elements—you
can take any element and display it any way you choose—either in a block box or
an inline box.

Block boxes, as well as starting on a new line and forcing anything following them to
start on a new line, will also stretch to fit the width of their containing box (unless
an explicit width is specified). The width of an inline box equates to the width of
the content.

3 www.htmldog.com/examples/blockinlinel.html

Control over the box type is an important aspect of gaining complete visual control
over your pages. You don't want to compromise the markup, because you should apply
meaningful tags where appropriate, but you might not want to accept the default
rendering of the element. You might choose to have the links in a navigation bar dis-
played as block boxes or headings displayed inline, for example. Another example is
one of the methods for creating horizontal lists, as described in Chapter 6, “Lists,”
where list items have their display style changed so that they are side-by-side instead
of on different lines.

Block

This

[The Other FIGURE 5.10 Block boxes will start on new lines

= and stretch to fit the width of the containing box,

Inline whereas inline boxes will remain on the same

[rieThaiThe Otherd 1| line and only be as wide as the content (see www.
htmldog.com /examples/blockinlinel.html).

Additionally, inline boxes handle vertical parameters differently than block boxes.
Vertical margins are not applied and padding and borders, rather than pushing out
content above or below, will spill over the line and lay on top of anything above and

www.htmldog.com/examples/blockinline1.html
www.htmldog.com/examples/blockinline1.html
www.htmldog.com/examples/blockinline1.html

THE DISPLAY PROPERTY | 105

below it. Note, however, that IE 5.0 does not apply padding, borders, or margins to
inline boxes at all.

3 www.htmldog.com/examples/blockinline2.html

Block
This
The Other
FIGURE 5.11 With padding, border, and mar-
_ gin applied, block boxes will behave as you
might expect (also note the margin collaps-

ing). Inline boxes, however, will ignore verti-
cal margins and the padding and border
Theagitiee will spill over the line (see www.htmldog.

com/examples/blockinline2.html).

You can set any element you want to be any type of box you choose using the
display property.

The most common values are block and inline, for your basic block and inline
boxes, but you can also use none (which doesn’t render the box at all, basically
pulling it out from the page).

The other, much less used (and supported), display types are variations on the block
and inline theme. list-item and the various table-related components such as table
and table-row can perhaps best be understood by looking at a browser’s default
rendering of the equivalent HTML elements (such as 1i, table, and tr elements—
see the display property in the CSS Appendix for more).

inline-block works like a block box wrapped in an inline box. These boxes have the
same characteristics as an inline box (staying on the same line and being the width
of the content) but the vertical padding, border, and margin work the same way as
a block box, pushing out that which surrounds it. Unfortunately, this display type is
not supported by Mozilla and is somewhat buggy in Internet Explorer (IE will only
apply it if the element in question is an inline element).

=3 www.htmldog.com/examples/blockinline3.html

www.htmldog.com/examples/blockinline2.html
www.htmldog.com/examples/blockinline2.html
www.htmldog.com/examples/blockinline2.html
www.htmldog.com/examples/blockinline3.html

106 | CHAPTER 5: LAYOUT

THE PROBLEM WITH display: none

Sometimes you'll have something in your HTML that you might not want in the
visual display of the page. It is sometimes an accessibility consideration (such
as the “skip navigation” link mentioned in Chapter 3, “Links”) or it could be that
you want to maintain a flexible document, leaving open different styling options
(such as not wanting certain elements displayed when printed—see Chapter 10,
“Multiple Media”). Both of these boil down to the idea that the HTML should work
as a structured, CSS-independent document with all of the meaningful pieces in
place, regardless if you want them seen or not.

display: none would seem an obvious candidate to remove elements from
sight—it does exactly what it says. The only trouble is that it does a bit more
too. Not only does display: none hide an element from sight, it also hides it
from screen-readers. It won't be seen, but it won't be heard, either. So if you're
hiding some information that should actually remain accessible to screen-read-
ers, this isn’t much help.

What about visibility: hidden? It makes an element invisible (rather than
removing it completely as display: none does), but it has the same problem as
display: none, rendering the element invisible to screen-readers as well. It also
leaves behind a space where the element would normally be seen, which usually
isn't desirable.

Since these obvious options are out, we need to try something less obvious. The
solution is to keep the element hypothetically visible, but with zero width and/or
height:

.accessaid {
position: absolute;
height: 0;
overflow: hidden;

POSITIONING | 107

There are variations on this CSS, but the principle is the same. To the eye, zero
height or zero width equals invisibility, but to something that cares nothing for
spatial parameters (such as a screen-reader) the element lives on in all its glory.

When the element box itself is needed for CSS (such as with image replacement
techniques—See Chapter 4, “Images”), the content alone can be smacked out of
view with a negative text-indent:

hl {
text-indent: -999em;

Positioning

Boxes can be positioned on a page in various ways—statically, relatively, absolutely,
or fixed using the position property.

Static

By default, element boxes are static. Static boxes follow the normal flow of the
page, immediately following and preceding other static elements (the boxes in
Figures 5.10 and 5.11 are all static, for example).

3 www.htmldog.com/examples/positioningl.html

Lorem ipsum dolor sit amet, consectetur adipisicin
et dolore magna aliqua. Ut enim ad minim veniam,
aliquip ex ea commodo consequat. Duis aute irure
dolore eu fugiat nulla pariatur. Exceptedr sint occae
deserunt mollit anim id est laborum.

Larem ipsum dolor sit amet, consectetur adipisicin
et dolore ["RZDZ Fred " magna:
exgrcitation ullamca laboris nisi ut aliquip ex ea col
reprehenderit in voluptate welit esse cillum dolore &
cupidatat non proident, suntin culpa qui officia des

FIGURE 5.12 A static box inside a static paragraph.

www.htmldog.com/examples/positioning1.html

108 | CHAPTER 5: LAYOUT

Relative

A relatively positioned box is one that can be moved to a position that is relative to
its initial position, leaving an empty space where it once was. When a box is made
relative, you can specify values for top, right, bottom, or left, from which the box
will be offset. The values tell a browser how far to offset the box from that position,
S0 position: relative; left: 1@em, for example, will push the box 10 ems to the
right (10 ems from the left of the initial position). By the same token, position:
relative; right: 1@em will push the box 10 ems to the left.

The position of any boxes that follow a relatively positioned box will be calculated
from the initial position of the offset box, not from the offset position. So the posi-
tion of a box (let’s call it Fred) that follows a relative box (which we'll call Torquil)
will not be calculated from the actual position of Torquil’s box, but rather from the
original position, as if Torquil wasn't offset.

Lorem ipsum dolor sit amet, consectetur adipisicin
et dolore magna aliqua. Ut enim ad minim weniam,
aliquip ex ea commodo consequat. Duis aute irure
dolore eu fugiat nulla pariatur. Excepteur sint occat
deserunt moliit anim id est laborum

Larem ipsum dolor sit amet, consectetur adipisicin
et dolore | R202 Fred magna
exercitation ulamco labog | LIip &3 ea col

reprehenderit in voluptate velit esse cillum dolare e
cupidatat non proident, suntin culpa qui officia des

FIGURE 5.13 A relatively positioned box (position:
relative; top: 2em; left: 2em;) inside a paragraph.

=3 www.htmldog.com/examples/positioning2.html

Absolute

Boxes can also be positioned absolutely. Unlike a relative box, an absolute box is off-
set from the position of its containing block, which will be the page itself unless the
box exists inside a relative or absolute block, in which case it will be offset from that.

www.htmldog.com/examples/positioning2.html

POSITIONING | 109

position: absolute makes a box absolute and, once more, top, right, bottom, and

left are used to position it.

3 www.htmldog.com/examples/positioning3.html

Absolute boxes are pulled out of the normal flow of a page, existing independently

from the rest of the content. Whereas relative boxes leave behind the space where

the box once was, the position of a box that follows an absolute box (which we'll
again call Torquil—he did such a great job) will be calculated from the start of

Torquil’s original position, as if Torquil didn't even exist.

e aliqua. Ut enim ad minim veniam,
aliquip ex ea commodo consequat. Duis aute irure
dolore eu fugiat nulla pariatur. Excepteur sint occae
deserunt mollit anim id est laborum

Lorem ipsum dolor sit amet, consectetur adipisicin
et dolore | R2D2 Fred maagna aliqua. Ut eni
ullamco laboris nisi ut aliquip ex ea commodo cong
woluptate velit esse cillum dolore eu fugiat nulla par
proident, sunt in culpa qui officia deserunt mollit an

FIGURE 5.14 An absolutely positioned box

(position: absolute; top: 2em; left: 2em;)

inside the same static paragraph.

Lorem ipsum dolor sit amet, consectstur adipisicin
et dolore magna aliqua. Ut enim ad minim veniam,
aliquip ex ea commodo conseguat. Duis aute irure
dolore eu fugiat nulla pariatur. Excepteur sint occas
deserunt mollit anim id est laborum

Laorem ipsum dolor sit amet, consectetur adipisicin
et dm Fred maagna aliqua. Ut eni
ullamco labons nisi ut aliquip ex ea commodo cons
voluptate velit esse cillum dolore eu fugiat nulla par
proident, sunt in culpa qui officia deserunt mollit an

FIGURE 5.15 The same absolutely positioned box

inside a relatively positioned paragraph.

3 www.htmldog.com/examples/positioning4.html

www.htmldog.com/examples/positioning3.html
www.htmldog.com/examples/positioning4.html

110 | CHAPTER 5: LAYOUT

Fixed

Fixed boxes (position: fixed) are similar to absolutely positioned boxes, apart from
the fact that they are fixed to the viewport. Like background images set to back-
ground-attachment: fixed (see Chapter 4), fixed boxes will not scroll when the
rest of the content does. Unlike fixed backgrounds, though, fixed boxes are not sup-
ported by Internet Explorer 6 (though they are supported in IE 7).

THE Z-INDEX

Because positioned boxes are pulled out of the normal flow and can sit on top of
one another, you may want to control which of these boxes appears where in this
stacking order. Suddenly we have three dimensions to think about—we have the
x-axis that governs where something is horizontally, the y-axis where something
is vertically, and now we have the z-axis, which governs depth. The x and y axes
are controlled by width, height, left, right, top, bottom, padding, margin,
and so on, but we don’t need anything so elaborate with the z-axis, we just need
to state the order in which things appear on top of each other.

Like Mighty Mouse, z-index is here to save the day.

This property is used to specify where in the stacking order a positioned box
should be. The higher the number, the higher the box is in the stack. z-index:
3 will be below z-index: 5 but above z-index: 1, for example.

Floating

Floating, using the float property, is another method that can be used to push
around boxes and manipulate how others respond to them.

A floated box will basically push the box to the far left (float: left) or right
(float: right) of its container and cause surrounding content to flow around it

FLOATING | 111

rather than continue underneath it. A floated box will override any display type set-
ting and render the box as a block box.

3 www.htmldog.com/examples/float].html
C www.htmldog.com/examples/float2.htm|

First paragraph. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aligua. Lt enim ad minim veniam, guis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dalor in reprehenderit in voluptate welit esse cillum dolore eu fugiat nulla pariatur.

hird paragraph. Lorem ipsumn dolar sit amet, consectetur adipisicing elit, sed do eiusmod ternpor incididunt ut
lzbore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo labaoris nisi ut aliguip
ey ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillurm dolore eu fugiat

nulla pariatur
width: 7em;

L RN S S B ourth paragraph. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempar incididunt ut
plied lzbore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut aliguip
ey ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolare eu fugiat

nulla pariatur.

Fifth paragraph. Larern ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmaod termpar incididunt ut labore et dolore magna
aliqua. Lt enim ad minirm veniam, quis nostrud exercitation ullamco laboris nisi ot aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

FIGURE 5.16 A left-floated paragraph. See www.htmldog.com/examples/floatl.html.

First paragraph. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aligua. Lt enim ad minim veniam, guis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commaodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur,

hird paragraph. Lorerm ipsum daolor sit amet, consectetur adipisicing elit, sed do eiusmod termpor incididunt ut
lzbore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut aliguip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolare eu fugiat

nulla pariatur.
width: 7em;

b B B T S B ifth paragraph. Lorem ipsum dolor sit amet, consectetur
ied. adipisicing elit, sed do eiusmod tempor incididunt ut labore et

Faurth p. ph. Has

dolore magna aliqua. Ut enim ad minim veniam, quis nostrud w1(1t.]-;: AN RO
applied

exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute 3

irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Sixth paragraph. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod termpor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur,

FIGURE 5.17 A left-floated paragraph and a right-floated paragraph. See www.htmldog.com/
examples/float2.html.

www.htmldog.com/examples/float1.html
www.htmldog.com/examples/float2.html
www.htmldog.com/examples/float1.html
www.htmldog.com/examples/float2.html
www.htmldog.com/examples/float2.html

112 | CHAPTER 5: LAYOUT

If you want an element that follows a floating box to start underneath the floated
box, rather than flow around it, you can use the property clear.

clear: left will clear all left-floated boxes, clear: right will clear all right-floated
boxes, and clear: both will do something I'm sure you'd never expect.

C www.htmldog.com/examples/float3.html

First paragraph. Larem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aligua. Lt enim ad minim veniam, guis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

hird paragraph. Lorem ipsum dolar sit amet, consectetur adipisicing elit, sed do eiusmod ternpor incididunt ut
lzbore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo labaris nisi ut aliguip
ey ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat

the
width: T7em;
left

nulla pariatur.

Fourth paragraph. Has the CSS elear: left applied

Fifth paragraph. Larern ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempar incididunt ut labore et dolore magna
aliqua. Lit enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure

dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

FIGURE 5.18 The fourth paragraph is set to clear: left and so starts underneath the left-
floated paragraph rather than flowing around it. See www.htmldog.com/examples/float3.html.

Essentially, clearing works by increasing the top margin of the cleared box enough
so that it will start below the floated element. Because of this, the rules of margin
collapsing should be remembered: If the cleared box has a top margin explicitly
applied, it will only work if that margin is larger than the height of the floated box.
Then the margin will apply from the position of the box before it was cleared, rather
than from the bottom of the floated box.

For a few simple techniques involving floats, take a gander at www.htmldog.com/
articles/dropcaps/ and www.htmldog.com/articles/pullquotes/, which are accompa-
nied by a few bare-bone examples.

www.htmldog.com/examples/float3.html
www.htmldog.com/examples/float3.html
www.htmldog.com/articles/dropcaps/
www.htmldog.com/articles/dropcaps/
www.htmldog.com/articles/pullquotes/

ABSOLUTE VS. RELATIVE VALUES II

In Chapter 2, “Text,” the pros and cons of using absolute units such as pixels
and relative units such as ems are looked at in relation to text. But the choice
is there for the dimensions of all boxes on a web page, and the choice between
absolute and relative values can lead to vastly different results.

There are three approaches to defining the sizes of boxes—fixed, liquid, and
elastic.

Fixed Layout

In fixed layouts, the widths of areas of the layout are explicitly specified in
lengths (rather than not specified at all or specified in percentages), which are
usually defined using pixels as units.

The advantage of fixed layouts is that the width of lines of text can be con-
strained to keep them easy to read—the line length will remain unchanged
no matter what size the user’'s window. The relationship between text area
widths and image widths can also be maintained (if you have a 500px-
wide image, for example, then a 500px-wide paragraph can be used to com-
plement it).

The main disadvantage of fixed layouts is that they don’t take advantage of the
full area of the screen, leaving wasted space and a greater likelihood that a user
will have to scroll to reach more content.

FLOATING | 113

114 | CHAPTER 5: LAYOUT

FIGURE 5.19 Jon Hicks' blog (hicksdesign.co.uk/journal) utilizes a
900px fixed-width design.

FLOATING | 115

FIGURE 5.20 In a wider window the content area remains the same width even if the
text-size changes.

Liquid Layout

In liquid, or fluid, layouts, the widths of some or all areas of the layout are
specified in percentages or not specified at all, so that the layout will stretch or
shrink, depending on the size of the browser window.

The advantage of liquid layouts is that they take full advantage of a user’s
computer display capabilities. Users who have large monitors can stretch their
browser windows to show more content “above the fold.” The flexible nature
means that not only do fluid layouts take advantage of larger screens, they also
have more chance of working on smaller screens, such as those on PDAs or the
latest generation of mobile phones (see Chapter 10, “Multiple Media™).

The disadvantage of a liquid layout is that longer lines, which can come about on
larger displays, can be more uncomfortable to read. From a graphic design point
of view, size-based relationships with fixed-width objects, such as images, are
also difficult.

116 | CHAPTER 5: LAYOUT

bt Friends and Affiliates

FIGURE 5.21 Dan Webb's site (danwebb.net) employs
a content area that has a liquid width.

. DANHEBB:NET

2, Why Mephisto? Who's This Bloke?

FLOATING | 117

FIGURE 5.22 The content area will stretch to fill the width of the window.

Elastic Layout

Elastic layout is a cousin of fixed and liquid layouts. It involves using relative
units such as ems, rather than absolute values such as pixels, to define widths,
so that the entire layout will expand and contract depending on the text-size
preferences of the user’s browser. This approach can use elements from fixed
and fluid layouts, whereby areas can either be fixed (where all widths are defined
in ems) or fluid (where only some widths, such as those of navigation columns,
are defined in ems).

Elastic layouts can aid accessibility by increasing proportions as well as text size,
making areas of text more comfortable to read for those who are visually impaired
and need to bump up the text size. By maintaining text-size to box-dimension
ratios constant, this approach can also prevent things such as unwanted line
wrapping, due to containing boxes increasing in size with their contents.

The downside is that a fixed-elastic layout can become too wide if the text size
is increased too much. A good rule of thumb is to check that it will display on an
800px-wide screen on Internet Explorer’s “largest” text-size setting.

118 | CHAPTER 5: LAYOUT

SELECT A DESIGN:

o Dazzting et

Thers is clatly & need for 58 10 ba taken
seriously by graphic arlisls. The Zen Oarden
aims bo extily, inspire, and uncourage
DUBCIDANON. To begin, vwew sume of i
NG SN in T i Chekng on any
a0t will 1580 e S48 SRaaL it Tis ety
age Tho codo remains Ba sama, o baly
=ing Mat has changod s o staemal £ss
s Vas, raally.

(CSE alows complete and teal contral over
e hyle of & trymertexd document The onky
iy his cian e ilistrated in & wey that
DUOPH Rl i by demensiratng what i
£ Buly D, 0@ i RNt aré placed im
hinds of Sann Akt b Cral hoauly
ahhire, Ta dato, Mt samplas of naat
Hicks And Nacks Ravd Haen domansirated by
Stnsturkets 300 codars, Dagignars vyl
%0 make thair mark: This needs o changs

Wby participaia For mecogrdon, inspiration,
ANt A rs0LITE wa can 3l et to whan
making the ¢ass fo C95-baged design
This in sorely needed, even todiy. More and
meee malor sites 18 faking e leap, b nol
nogh have. Cme day this gabery will be o
historical curiosity, Bl diny ts nol loday.

FIGURE 5.23 The “Elastic Lawn” design on the CSS Zen Garden
(see csszengarden.com/?cssfile=063/063.css) at the “normal”
text-size setting.

SAMPLE PAGE LAYOUTS | 119

A demonstration of what can be p visually g Download the sample
€S5S-baced design. Select any style sheet from the list to load it himi file and css file
Into this page.

SELECT A DESIGN:
Dazzling Beauty

by Deny Si Supriyeno
Dark Rose

by Rose Fu

Leggo My Ego
by Jon Tan

LuGoZee
by Viallon Pieme-Anloine

The Diary
by Alexandar
Shabuniewicz

FIGURE 5.24 When the text size is changed, the dimensions of the layout will change
as well.

You can read more about elastic layouts at www.htmldog.com/articles/elasticdesign/.

“Which layout method is better?” is one of the biggest arguments in web design.
When it comes down to it, though, there is no one correct answer. Each of these
approaches has its advantages and disadvantages and whereas one may be
more appropriate for one website, a different approach may be more appropriate
for another site.

Sample Page Layouts

Swell. Now we've got the theory sussed, let’s put it to practice on a grand scale:
page layouts. All it takes is a combination of manipulating the box model, position-
ing, and floating.

The thought process behind laying out a page should go a little something like this:
“Right. I've got this chunk of content and | want it there. So I'll just shove that
there. And I've got this chunk of content and | want that over there. Cool. I'll just
shove that there and shift it along a bit. Excellent.” CSS layout is all about grabbing
chunks of HTML and placing them wherever you want on the page.

www.htmldog.com/articles/elasticdesign/

120 | CHAPTER 5: LAYOUT

The initial examples that we'll go through here—creating columns, headers, and

footers—are simple bare-bones layouts used to demonstrate the techniques without

any extra bells and whistles getting in the way and confusing things. With these
basic arrangements you can flesh things out and make your pages look as appealing
as your imagination will allow.

And although these examples are used in the context of page layouts, the same
techniques can be used with any part of a page—remember, we're just talking about
chunks here. It doesn’'t matter if they're large or small.

Creating Columns

Biology
Evolution

Matural Selection

Genetics

Erasmug Darwin
Lamarck
Chartles Darwin
Wallace
Dawking

On the Origin of The Origin

Darwin's father was dead set on his son becoming a cleric but even though the young rapscallion
began to study theology he found worms much more interesting

When a lonely man with a moustache asked Darwin to ride with him on his boat named after a dog,
Darwin agreed and set off around the world fiddling with wildlife

Some say it was a load of birds from a bunch of islands hundreds of miles off the Ecuadorean coast
that inspired his now widely accepted explanation of the mechanism of evolution. "Why does that
bird an that island have a beak like that while that finch on that island has a beak like that? AHA! I've
got it! Matural Selection!" he thought. It wasn't actually quite like that, but, yknow, it's a fine, popular
ramantic myth.

The Origin

Upon return from his jaunt, Charles chronicled his escapades (as The Vovage of the Beagle) and got
a bit carried away with barnacles, although his theory of evolution was ahways ticking away in the
back of his mind

Some 20 or so year after he returned to England, a Welsh naturalist by the name of Wallace popped
up with a similar idea to Darwin's grand theory, Darwin got a move on

In 1858 a paper jointly attributed to Darwin and Wallace was presented to the Linnean Society of
Londaon that sent rumbles across the establishment and really ticked off a fair few people. The next
year saw the publication of Darwin's 500-page "abstract” - On The Ongin of Species by Weans of
Matural Selection or the Preservation of Favowred Races in The Struggle For Life (or
OTOOSBMONSOTPOFRITSFL for short)

Darwin, already a prominent arc in scientific circles, was propelled into megastardom

FIGURE 5.25 A basic two-column page.

Two columns are all we need to tie down the basics of page layout. By following

these simple principles, it isn’t difficult to take the next step and move all manner
of chunks around a page.

First we need to start with a well-structured document. There is a tag specifically
designed to divide up large chunks of content—div (see Chapter 1), and this is

SAMPLE PAGE LAYOUTS | 121

usually the best choice for defining important chunks. We can then latch on to their
IDs with CSS and move them about.

<div id="navigation">
<!--stuff-->

</div>

<div id="content">
<!--stuff-->

</div>

For this example, we want the navigation to be a thin column in comparison to the
main content, so we need to explicitly set the width of it. Then, to move it to the
left we need to yank it out of the flow using absolute positioning:

#navigation {
position: absolute;
left: 0;
width: 30em;

+ Diolo

+ Evolution

s Matural Selection
* Genetics

* Erasmus Darwin
* Lamarck

* Charles Darwin
* Wallace

* Dawking

FIGURE 5.26 The navigation box now sits on top of the content.

3 www.htmldog.com/examples/pagelayoutl.html

Things are starting to take form (no, honestly, they are), but at the moment the navi-
gation is sitting on top of the content, which isn’t all too helpful. So how can
we shift all of the content into view? Well, there’s a number of ways, but the most

www.htmldog.com/examples/pagelayout1.html

122 | CHAPTER 5: LAYOUT

obvious is to simply set the left margin of the content div to push the content past
the width of the navigation area:

#content {
margin-left: 30em;

}

The result? Two separate areas, just like Figure 5.25.

0 www.htmldog.com/examples/pagelayout2.html

A Solid Navigation Column

To visually separate the two parts of a page, you might want to specify a background
color for the navigation column, but sometimes the content area will be much longer
and the background color will of course end at the bottom of the navigation box (as
in Figure 5.25). ldeally, you would want the bottom of the navigation area to line up
with the bottom of the content area.

On the Origin of The Origin

s Biology

+ Evolution L . .))
el e etion Darwin's father was dead set on his son becoming a cleric but even though the young rapscallion
* Genetics began to study theology he found worms much more interesting

When a lonely man with a moustache asked Darwin to ride with him on his boat named after a dog,

Erasmus Darwin i % A i
R Darwin agreed and set off around the world fiddling with wildlife

Lamarck

W Snm_e say it was a load of birds frorm a bunch n_flslands hundredg of miles nﬁ_the Ecuadorean coast

TS GirE lhal |n5p|red_ his nowe widely acc_epted explgnatlon of the mecha_msm of evolution. "Why does that

== bird on that igland have a beak like that while that finch on that island has a beak like that? AHA! I've
got itl Matural Selection!” he thought. It wasnt actually quite like that, but, yknow, it's a fine, popular
rarnantic myth.

The Origin

Upon return from his jaunt, Charles chronicled his escapades (as The Yoyage of the Beagle) and got
a hit carried away with barnacles, although his theory of evolution was ahways ticking away in the
back of his mind.

FIGURE 5.27 Using a colored border to shift along the content area and serve as a back-
ground for the navigation column.

margin seems like the obvious choice to shunt across the content div, as we have
used above, but you can use any part of the box model—you also have padding
and border at your disposal. By using border you can also color that area, which

www.htmldog.com/examples/pagelayout2.html

SAMPLE PAGE LAYOUTS | 123

will give the impression of a solid navigation bar that runs as long as the content
area does.

#navigation {
position: absolute;
left: 0;
width: 30em;
background: #ccf;

1
#content {

border-left: 30em #ccf solid;
}

3 www.htmldog.com/examples/pagelayout3.html

Another way to get around the short navigation bar problem is to set the background
color of the containing block (such as the page) to the color you want for the navi-
gation area (yellow, for example) and then color the rest of the boxes (such as the
header and the content) to the main color you want for the page (such as white).
You can use the same technique with background images, too.

Floating Column
Alternatively to positioning, you can also float your page chunks.

#navigation {
left: 0;
width: 30em;

}
#content {

float: right;
}

This should result in a layout that looks similar to Figure 5.25.

www.htmldog.com/examples/pagelayout3.html

124 | CHAPTER 5: LAYOUT

Three or More Columns
Creating layouts with three columns—or more, for that matter—isn’t much different
than creating two-column layouts.

On the Origin of The Origin

* Biology ® Erasmus Darwin

* Evolution . o Lamarck

o Matina] Sttt Darwin's father was dead set on his son becoming a cleric but even & Chatee D

W Genates though the young rgpscall\on began to study theology he found waorms o Wallace
- much more interesting. » Dawking

When a lonely rman with a moustache asked Darwin to ride with him on
his boat named after a dog, Darwin agreed and set off around the warld
fiddling with wildlife.

Some say it was a load of birds from a bunch of islands hundreds of
miles off the Ecuadorean coast that inspired his now widely accepted
explanation of the mechanism of evolution. "Why does that bird on that
island have a beak like that while that finch an that island has a beak like
that? AHAI [ve got it! Natural Selection!” he thought. It wasnt actually
guite like that, but, v'know, it's a fine, popular ramantic myth.

FIGURE 5.28 Three columns—content flanked by two navigation bars.

So, let’s assume our HTML chunks are structured like this:

<div id="navigationl" class="nav">
<!--stuff-->

</div>

<div id="navigation2" class="nav">
<!--stuff-->

</div>

<div id="content">
<!--stuff-->

</div>

Taking it one step at a time, positioning the first navigation chunk is just the same
as in the two-column layout:

#navigationl {
position: absolute;
left: 0;
width: 200px;

}

And we can do almost the same thing with the second navigation chunk:

SAMPLE PAGE LAYOUTS | 125

#navigation2 {
position: absolute;
right: 0;
width: 150px;

1

Now, with the content area, all we need to do is squeeze it in on both sides, rather
than just the left:

#content {
margin: @ 150px @ 200px;
}

=3 www.htmldog.com/examples/pagelayout.html

If you don’t want the navigation bars to flank the content but to stand next to each
other instead, all you have to do is manipulate the various left, right, and margin
declarations, for example:

#navigationl {
position: absolute;
left: 0;
width: 200px;

}

#navigation2 {
position: absolute;
left: 200px;
width: 150px;

}
#content {

margin-left: 350px;
}

Another approach to placing columns side by side would be to float the columns in
exactly the same way as described for two columns.

www.htmldog.com/examples/pagelayout4.html

126 | CHAPTER 5: LAYOUT

These approaches can be used for as many columns as you like, but just keep

in mind that there are still a lot of users out there whose screens are only 800

pixels wide.

Adding a Page Header

Biology
Evolution

Charles Darwin

On the Origin of The Origin

Darwin's father was dead set on his son becoming a cleric but even though the young rapscallion began to
study theology he found worms much mare interesting

Matural Selection ¥when a lonely man with a moustache asked Darwin to ride with him on his boat named after a dog, Danwin

Genetics

Erasmug Darwin

Lamarck
Charles Darwin
Wallace
Dawkins

agreed and set off around the warld fiddling with wildlife

Some say it was a load of birds from a bunch of islands hundreds of miles off the Ecuadorean coast that
inspired his now widely accepted explanation of the mechanism of evolution, "Why does that bird on that
island have a beak like that while that finch on that island has a beak like that? AHAI Ive gat it Matural
Selection!" he thought. It wasn't actually guite like that, but, yknow, it's a fine, popular romantic myth

The Origin
Upan return fram his jaunt, Charles chronicled his escapades (as The Yovage of the Beagls) and got a bit

carried away with bamacles, although his theory of evolution was always ticking away in the back of his
rind

FIGURE 5.29 Popping a header on top of columns.

Adding a page header—space that might be used for branding and/or navigation—
is easy. All you need to do is make sure that any absolutely positioned boxes are

explicitly positioned below it. Continuing with the practice of separating specific

chunks of the document with divs, we can work with the following HTML:

<div id="header">

<!--stuff-->

</div>

<div id="navigation">

<!--stuff-->

</div>

<div id="content">

<!--stuff-->

</div>

In this two-column example, all that needs to be positioned is the navigation bar,
because once this is taken out of the flow the content area will automatically sit

SAMPLE PAGE LAYOUTS | 127

beneath the header, so you don't really need to do much different in the CSS
(unless you want to):

#navigation {
position: absolute;
left: 0;
top: 100px;
width: 150px;
1
#content {
margin-left: 150px;
}

3 www.htmldog.com/examples/pagelayout5.html

Adding a Footer

Footers are a bit trickier than headers due to the nature of absolutely positioned
boxes sitting on top of other non-positioned elements. Still, let’s see what we can do
by starting with the following HTML.:

<div id="header">
<!--stuff-->

</div>

<div id="navigation">
<!--stuff-->

</div>

<div id="content">
<!--stuff-->

</div>

<div id="footer">
<!--stuff-->

</div>

If you can guarantee that the navigation area will be shorter than the content area
then you have no worries. Applying similar CSS as before, you don’t actually need to
do anything special with the footer box because it will sit directly below the content
automatically.

www.htmldog.com/examples/pagelayout5.html

128 | CHAPTER 5: LAYOUT

Charles Darwin
On the Origin of The Origin

+ Biology

: Ev?luhlug acti Darwin's father was dead set on his son beco
aslelo EECHon study theology he found worms much mare int

s Genetics

When a lonely man with a rmoustache asked OV

* Erasmis:Danhin agreed and set off around the waorld fiddling wit
s Lamarck

¢ Charles Damin Some say it was a load of birds from a bunch
¢ Wallace inspired his now widely accepted explanation o
* Dawkins island have a beak like that while that finch on

i :
Laveint insur dalas sit Selection!" he thought. It wasnt actually quite |

amet, consectetur PP
adipisicing elit, sed do The o"gln
eiusrmod tempar
incididunt ut labore et
dolore magna aligua, Ut
enim ad minim veniam,
guis nostrud exercitation Spme 20 ar so year after he returmed to Engla

ullamca labotis nisi Ut 5 gimilar idea to Darwin's grand theory. Darwin
aligquip ex ea commaodo

consequat. Duis aute In 1858 a paper jointly attributed to Darwin and

irure dolor in reprehenderitthat sent rumbles across the establishment an

in voluptate velit esse publication of Darwin's 500-page "abstract” - O

cillumn dolare eu fugiat Preservation of Favoured Races In The Strugg,

nulla pariatur. Excepteur

sint occaecat cupidatat Darwin, already a prominent arc in scientific ci

nan proident, sunt in L.

culpa qui oficia deserunt After The Orlgln

mollit anirm id est

laborum. Chuck D revised The Origin five times, toning d
appease his religious wife. Who also happened

Larem ipsum dalar sit trying to disguise the logical conclusion that h

amet, consectetur other animals and his third classic, The Descel

adipisicing elit, sed do establishment.

eiusrmod tempar

incididunt ut labore et

dolore magna aligua, Ut

enim ad minim veniam,

yuis nostrud exercitation

ullarmco laboris nisi ut

aliquip ex ea commodo

consequat. Duis aute

irure dolor in reprehenderit

in voluptate velit esse

cillum dolore eu fugiat

nulla pariatur. Excepteur

sint occaecat cupidatat

non proident, sunt in

culpa gui oficia deserunt

maollit anirm id est

laborum.

Upan return from his jaunt, Charles chronicled
cartied away with barnacles, although his theo
mind

Content is © Copyright Patrick Griffiths 2006,
This page is valid x"HTML1.0 Strict and C355 2.1,

FIGURE 5.30 Tucking in a footer.

More often than not, though, you can’t rely on the navigation bar being shorter than
the content area. As Figure 5.31 demonstrates, using the above method of incorpo-
rating a footer, if the navigation bar is longer than the content, because it is abso-
lutely positioned it will lie on top of the static footer.

Charles Darwin
On the Origin of The Origin

+ Biology

: Ev?luhlug acti Darwin's father was dead set on his son beco
aslelo EECHon study theology he found worms much mare int

s Genetics

When a lonely man with a rmoustache asked OV

* Erasmis:Danhin agreed and set off around the waorld fiddling wit
s Lamarck

¢ Charles Damin Some say it was a load of birds from a bunch
¢ Wallace inspired his now widely accepted explanation o
* Dawkins island have a beak like that while that finch on

i :
Laveint insur dalas sit Selection!" he thought. It wasnt actually quite |

amet, consectetur PP
adipisicing elit, sed do The o"gln
eiusrmod tempar
incididunt ut labore et
dolore magna aligua, Ut
enim ad minim veniam,
guis nostrud exercitation Spme 20 ar so year after he returmed to Engla

ullamca labotis nisi Ut 5 gimilar idea to Darwin's grand theory. Darwin
aligquip ex ea commaodo

consequat. Duis aute In 1858 a paper jointly attributed to Darwin and

irure dolor in reprehenderitthat sent rumbles across the establishment an

in voluptate velit esse publication of Darwin's 500-page "abstract” - O

cillumn dolare eu fugiat Preservation of Favoured Races In The Strugg,

nulla pariatur. Excepteur

sint occaecat cupidatat Darwin, already a prominent arc in scientific ci

nan proident, sunt in L.

culpa qui oficia deserunt After The Orlgln

mollit anirm id est

laborum. Chuck D revised The Origin five times, toning d
appease his religious wife. Who also happened

Larem ipsum dalar sit trying to disguise the logical conclusion that h

amet, consectetur other animals and his third classic, The Descel

adipisicing elit, sed do establishment.

eiusrmod tempar

Ireid efinis 8| Slepright Patrick Griffiths 2006,

{hisreaaegaaainaE TML1.0 Strict and C3S 2.1,

enim ad minim veniam,

yuis nostrud exercitation

ullarmco laboris nisi ut

aliquip ex ea commodo

consequat. Duis aute

irure dolor in reprehenderit

in voluptate velit esse

cillum dolore eu fugiat

nulla pariatur. Excepteur

sint occaecat cupidatat

non proident, sunt in

culpa gui oficia deserunt

maollit anirm id est

laborum.

Upan return from his jaunt, Charles chronicled
cartied away with barnacles, although his theo
mind

FIGURE 5.31 A static footer will fall underneath the
navigation if the navigation is too long.

SAMPLE PAGE LAYOUTS | 129

If you could rely on the navigation area always being longer than the content area, then

you could absolutely position the content area instead, and leave the navigation area as
the static box that the footer can sit under, but this is rarely a practical option.

=3 www.htmldog.com/examples/pagelayout6.html

www.htmldog.com/examples/pagelayout6.html

130 | CHAPTER 5: LAYOUT

It is because of absolutely positioned boxes being pulled out of the normal flow of
the page that it is impossible to predict where they will end (where the bottom of
the box will be)—you can’t place something on a page in relation to an absolute
box. So, if you want a footer that works, a sensible option would be to go for floating
columns and simply clear the footer of the floats:

#navigation {
width: 1Qem;
background: lime;
float: left;

}
#content {
margin-left: 1@em;
}
#footer {
clear: both;

}

If the content is longer than the navigation, then nothing will happen—the footer
will happily just sit below it. If the navigation is longer, however, the footer will clear
the float and sit underneath that instead.

O www.htmldog.com/examples/pagelayout7.html

Putting It All Together

This example (shown in Figure 5.32) demonstrates most of the methods mentioned
in this chapter, incorporating different padding, border, and margin situations as
well as display types together with floated elements all inside a positioned layout.

The basic structure of the HTML looks something like this:

<div id="container">
<div id="header">

<!--stuff-->
</div>
<div id="navigation">
<!--stuff-->

</div>

www.htmldog.com/examples/pagelayout7.html

PUTTING IT ALL TOGETHER | 131

<div id="content">
<!--stuff-->

</div>

</div>

The header has a fixed height and a background image, with the hl element, which
is necessary for the structured document, removed from sight with the display:
none alternative.

#header {
padding: 0.5em;
background: url(images/charlesdarwin.gif);

charles . A { X

On the Origin of The Origin

Darwin's father was dead set on his son
becoming a cleric but even though the young
rapscallion began to study theology he found
wortns much maore interesting.

When a lanely man with a moustache asked
Darwin to ride with him on his boat named
after a dog, Darwin agreed and set off around
the world fiddling with wildlife.

. Some say it was a load of birds frorm a bunch
of islands hundreds of miles off the Ecuadorean coast that inspired
his now widely accepted explanation of the mechanism of
evolution. "Why does that bird on that island have a besk like that
while that finch on that island has a beak like that? AHAI Ve got it!
Matural Selection!" he thought. It wasnt actually quite like that,
but, y'know, it's a fine, popular ramantic myth.

The Origin

Upon return fram his jaunt, Charles chronicled his escapades (as
The Voyage of the Beagle) and got a bit carried away with
barnacles, although his theory of evalution was always ticking
away in the back of his mind.

Some 20 ar so year after he returned to England, a Welsh
naturalist by the name of YWallace popped up with a similar idea to
Darwin's grand theory. Darwin got 2 move on.

* In 1858 a paper jointly attributed to Darwin and Wallace was
presented to the Linnean Society of London that sent rumbles
across the establishment and really ticked off a fair few people
The next year saw the publication of Darwin's 500-page "abstract” -
On The Origin of Species by Means of Natural Selection or the
Preservation of Favoured Races In The Stuggle For Life (or
OTOOSBMONSOTPOFRITSFL for short).

Darwin, already a prominent arc in scientific circles, was propelled
into megastardarm.

FIGURE 5.32 Positioning, padding, borders, margins, and floating a go-go.

132 | CHAPTER 5: LAYOUT

The navigation area is positioned to the left, underneath the header, with padding
applied:

#navigation {
position: absolute;
top: Sem;
left: 0;
width: 7em;
w\idth: Sem;
background: #069;
color: white;
padding: lem;

}

Note that because a width and padding are involved, the box model hack is needed
to take care of IE 5.

Inside the navigation area, the links, which sit inside unordered lists (as is appro-
priate—see Chapter 6) have their display type set to block (they are inline by
default) so that they will stretch to a uniform, “clickable” width.

There is also a “skip navigation” link (see Chapter 3) before this group of visible
links, which, like the hl element, is removed from sight.

The content area itself provides the background color for the navigation bar with a
thick left border, and has its own contents padded.

#content {

padding: lem;

border-left: 7em solid #069;
}

Inside the content div, images are set to float to the right, with margins to the left
and below to space them out from surrounding text. A 1px-wide border and padding
create the subtle but effective outline.

PUTTING IT ALL TOGETHER | 133

Finally, the page is made a fixed width and centered:

#container {
width: 600px;
border: solid #900;
border-width: @ 1px;
margin: auto;

}

And there you have it.

3 www.htmldog.com/examples/darwin.html

The techniques explained in this chapter don’t have to involve building blocks as

specific as “headers” or “navigation bars.” They can be applied to elements large
and small, one after another or one inside another. The general principles are the
same—it’s all about shifting chunks around the page.

www.htmldog.com/examples/darwin.html

This page intentionally left blank

chapter

Lists

LISTS MIGHT NOT seem like that big a deal. Now and then they may pop
up in your content, and you certainly need to take control of them, but
even if your content is primarily made up of paragraphs and pictures lists
should usually make their way onto a page because they are the best way
to structure navigation.

A e U o b . ot

77, what iF's missing é,. -
sy —

e TN g 18 M 4 et

FIGURE 6.1 The illustrations in this chapter are taken from Digital Web Magazine
(digital-web.com).

136 | CHAPTER 6: LISTS

Structuring Lists

You should find that pretty much any list will fit into one of the three types available
to you: an unordered list, an ordered list, or a definition list.

hat Wb desip

prgeets Th s iy @l @ [wirtually eliminates the "us ve. them" ideology, which usually ends up
Wi des ctis

4 hurting both disciplines
It doesn't place boundaries around the roles. Instead, it treats the roles

as a continuum.
It allowes Web designers to realize that they know mare about infarmation

wehbeczd el o architecture than they think
e # It helps Web designers transition from that role to an infarmatian

architecturs role more easily.

Havigation

dekgn AS indneh

s vemamran123

Write down the names of all your pages on pieces of paper.
1. Witn doum tha nirras of - . i
@ amimmiceood 2 Ask the participant to group therm, creating subgroups if necessary
3 Aok th paricgant fo 1

3. Ask the participant to name the groups.

b what ioormaticn srchincts call & taecnteny 3
brrarctvcal clayséaton schama This tarmmemy wil prove mriremely vabisble
when deciding on your rugation [abels and the se mag for your sle

FIGURE 6.2 Straightforward unordered (top) and ordered (bottom) lists, with
their default bullet and numbered styling, within an article by Joshua Kaufman.

Unordered and Ordered Lists

Unordered and ordered lists are your bog-standard list lists. ul defines an unordered
list (for non-ordinal items, in which any item could feel just as at home at one point
in the list as any other); ol defines an ordered list (in which each item is in some
way lower or higher than the item before or after it); and in either list, list items are
defined with 1i. Easy!

This</1i>
That</1i>
The other</1i>

STRUCTURING LISTS | 137

The first thing</1i>
The second thing</1i>
<1i>The third thing</1i>

3 www.htmldog.com/examples/lists1.html

Nested Lists
You can use these same elements to create more complex, nested lists, as well—
simply plonk another ul or ol element inside an 1i element:

This

<1li>This type of this</1i>
That type of this

This type of that type of this</1li>
That type of that type of this</1i>
The other type of that type of this</1li>

The other type of this</1li>

</1i>
That</1i>
<1li>The other</1i>

3 www.htmldog.com/examples/lists2.html

www.htmldog.com/examples/lists1.html
www.htmldog.com/examples/lists2.html

138 | CHAPTER 6: LISTS

11. Test, Test, Test

After you have finished the design of your landing page, test it with a
small user group. Go over a checklist with your design team:

o |z the whole page focused?

o Does the message match the advertisement?
o Have you reduced all distractions?

o |z critical information above the fold?

o Are thete enough conversion exits?

o Does the page enhance your brand?

FIGURE 6.3 Nested lists and more: In this Digital Web article
by Michael Nguyen, the tail end of an ordered list sees
paragraphs and an unordered list within the list items.

Definition Lists

Definition lists do away with ul, ol, and 1i elements. They use a separate set of
elements to achieve a list that involves a combination of terms and descriptions
for each “item”: d1 (the definition list), dt (a definition term), and dd (a definition
description of the term).

<dl>
<dt>Cat</dt>
<dd>A little furry thing that purrs.</dd>
<dt>Dog</dt>
<dd>A big shaggy thing that barks.</dd>
</d1>

dt and dd always need to go together, but it doesn’t matter which comes first and
it doesn’t matter how many you have for each item. You can have x terms followed
by y descriptions, or x descriptions followed by y terms (depending on how you want
your glossary to work, for example):

<dl>

<dt>Cat</dt>

<dd>Any member of the family Felidae.</dd>

<dd>The domesticated species of that family, Felis silvestris.
</dd>

<dd>A little furry thing that purrs.</dd>

STRUCTURING LISTS | 139

<dt>Dog</dt>

<dt>Yo Momma</dt>

<dd>A big shaggy thing that barks.</dd>
</d1>

3 www.htmldog.com/examples/lists3.html

The extent to which definition lists should be used has raised a few arguments.
Whereas one school of thought believes you should only use them to define a list of
explicit terms and definitions (something that | happen to agree with—we are talking
about semantics, after all), there is another that claims it is just as valid to use them
for any list where each set of items is related. One example (made directly by the
W3C no less) is that of dialogue, in which the person speaking can be defined by the
dt element and what they are saying by the dd element. Another would be a list of
websites, whose names are marked up with dt and descriptions of them with dd.

The second value in the example applies to the border—=tyle. This propery
can take on the following values (as defined by the W3C):

none
ko border; the border width is zero.
hidden
Sarme as 'none', except in special cases.
dotted
The border is a series of dote.
dashed
The border is a series of short line segments.
solid
The border is a single line segment
double
The border is two solid lines. The sum of the two lines and the space
between them equals the value of "border-width'.
groove
The border looks as though it were carved into the canvas.
ridge
The opposite of ‘groove’: the border looks as though it were coming out of
the canvas.
Inset
The border makes the box look as though it were embedded in the
canvas
outset
The opposite of 'inset’: the border makes the box look as though it were
coming out of the canvas

FIGURE 6.4 Nested lists and more: In this Digital Web article by
Michael Nguyen, the tail end of an ordered list sees paragraphs
and an unordered list within the list items.

www.htmldog.com/examples/lists3.html

140 | CHAPTER 6: LISTS

Lists as Navigation

Essentially, a navigation bar on a website is simply a list of links. So, accepting this,
the most obvious choice for marking up a navigation area is a list element of some
sort—usually an unordered list, or number of unordered lists

This could take the form of a big nested list:

Services

Peanut farming</1li>
Hamster sitting</1i>
Car valet</1i>

</1i>

Products

Peanuts</1i>
Flat hamsters</1i>
Cars</1i>

</1i>

Misc.

About us</1i>
Contact us</1li>
Site map</1li>

</1i>

Or it could take the form of a number of lists:

<h2>Services</h2>

Peanut farming</1i>
Hamster sitting</1li>

STRUCTURING LISTS | 141

Car valet</1i>

<h2>Products</h2>

Peanuts</1i>
Flat hamsters</1i>
Cars</1i>

<h2>Misc.</h2>

About us</1li>
Contact us</1i>
Site map</1li>

Then again, some might argue it could even take the form of a definition list:

<dl>
<dt>Services</dt>
<dd>Peanut farming</dd>
<dd>Hamster sitting</dd>
<dd>Car valet</dd>

<dt>Products</dt>
<dd>Peanuts</dd>
<dd>Flat hamsters</dd>
<dd>Cars</dd>

<dt>Misc.</dt>

<dd>About us</dd>

<dd>Contact us</dd>

<dd>Site map</dd>
</dl>

As Chapter 5, “Layout,” makes clear, lists in this situation will normally be surrounded
by div tags or have an id applied to the opening list tag so that they can be specifi-
cally targeted by CSS without affecting other ul, ol, or d1 elements in the web page.

142 | CHAPTER 6: LISTS

* Arhicles by topic

e Articles by date

: W FIGURE 6.5 The secondary navigation in
ClES DY £

o Aticles bt D|g|ta_| WeblMagazme is a simple list

. Semh17!|_m| containing links and a form, shown here

in a browser’s default styles.

I [COTrE | RSO

Authors by Last Name

5 articles by topic

S aticles by date . ah & Gallant,
= articles by author Contributing Yriter Contributi
= articles by title » Almond, Michael °
e e Contributing Yriter 5
Interviewe
Almovist, Par
»imuist; Car Cantribut
Caontributing Writer
& szarch ® Garrett, N

Farmer Assistant
| sl;ul Book Review Writer e Gillespie |
Contributi

& Arnoc

FIGURE 6.6 With the author CSS on top, the navigation is
transformed into something quite spiffingly eye-catching.

Presenting Lists

Once the list structure is in place, you can bend and stretch every presentational
aspect of it you like. Not only can you change the text, links, or images you might have
inside the list items with the techniques discussed in Chapters 2, 3, and 4, you can
also take the list by the scruff of the neck and alter list markers, margins, and even
change the top-to-bottom vertical nature of the list to a left-to-right horizontal list.

List Markers—Bullets, Numbers, and Images

List markers in unordered and ordered lists can vary. These defaults tend to be the
same from browser to browser, but you can change them to suit, choosing from
filled-circle, square, or empty-circle bullets or numbers or Roman numerals.

The color and the size of the list item marker in ul and ol elements is taken from
the color and font-size properties (see Chapter 2, “Text”) of the list item.

The list-style-type property can be used to set the type of the list marker bullet
or numbering system within a list. This can be applied to any (non-definition) list

PRESENTING LISTS | 143

regardless of whether it is ordered or unordered. These are some of the more practi-
cal values that can be used:

e none—No list marker. This can be handy when you want to present lists that
don’t appear in main content and don’t need to stand out from the crowd
with markers—as in navigation bars, for example.

e disc—solid circles

e circle—hollow circles

e square—solid squares

e decimal (which is default for ol elements)—1, 2, 3, 4, etc.
e lower-roman—i, ii, iii, iv, etc.

e upper-roman—I, Il, llI, 1V, etc.

ol { list-style-type: lower-roman; }
ul { list-style-type: square; }
ul ul { list-style-type: circle; }

This example applies lower-roman numerals to ordered lists, square bullets to top-
level unordered lists, and circular bullets to all unordered lists nested within unor-
dered lists.

0 www.htmldog.com/examples/lists4.htm|

You can also provide something more customized by using list-style-image. This
specifies an image to be used as the list marker for a list item. It can be used if you
just don't like any of the list-style-type options and replaces the list item markers
with your own custom-made wonders.

ul { list-style-image: url(images/arrow.gif); }

Note that another popular way of styling bullets is to apply small, non-repeating
background images (see Chapter 4, “Images”) and a bit of padding (see Chapter 5)
to the left of each list item.

By default, lists will place the marker of each list item outside the content box,
which means that when it comes to styling list items with backgrounds or borders,
for example, the bullet will aloofly hang about outside. You can pull the marker

www.htmldog.com/examples/lists4.html

144 | CHAPTER 6: LISTS

inside the content box to deal with such circumstances by setting the list-style-
position property to inside.

ul { list-style-position: inside; }

FIGURE 6.7 The third list item is set to list-style-

+ This L. g !] e
position: inside; pulling the list marker inside the
¢ That content area of the 1i box. The dark solid border
+ The other shows the outline of the ul e!ement and .the light
dotted borders show the outline of the 1i elements.

0 www.htmldog.com/examples/lists5.html

list-style is a shorthand property used to specify the style of a list item marker by
combining list-style-type, list-style-position, and list-style-image.

Like all shorthand properties, this simply involves specifying one or more values that
you would otherwise use in the longhand versions.

ul { list-style: none url(images/arrow.gif) inside; }
ul ul { list-style: disc outside; }

DOING AWAY WITH UNWANTED PADDING AND MARGINS

Although padding and margins are discussed in detail in Chapter 5, they are

worth mentioning here because a browser will usually apply padding and mar-
gins to lists by default and it is quite possibly something that you will want to
manipulate or even get rid of (especially if you are using a list for navigation).

A margin above and below lists will probably come as no surprise, but ul and ol
elements will also have spacing to the left by default. IE will apply a margin and
other browsers will apply padding. So if you want to get rid of this, simply apply:

ul {
padding: O;
margin: 0;

3

dd elements also have a left margin by default, which can be eradicated in the
same way if you so choose.

www.htmldog.com/examples/lists5.html

PRESENTING LISTS | 145

IE AND UNWANTED SPACES

When list items that contain other elements, such as links, are displayed inline,
you may find IE inexplicably putting spacing between the list items. This is actu-
ally a space character that comes about from the browser incorrectly handling
the white space within the code.

For example, if you have:

This</1i>
That</1i>
The other</1i>

And you apply display: inline to the list items, you will find that there are
spaces after each item, which will often be unwanted, particularly if you want
very tight control over the styling of the list.

Unfortunately, the only way to get around this is to arrange the HTML so that the
list items are right next to one another, such as:

This</1li>That</
Lli>The other

If you want to maintain your indentations so that the code is more readable, you
could try one of the following methods:

This</1li><
li>That</1i><
li>The other<
/ul>

or:

This<!--
-->That</1i><!--
-->The other<!--

-->

146 | CHAPTER 6: LISTS

Horizontal Lists

| WeB
noms' - [Ecoppio RIS e IS ol S FIGURE 6.8 Digital Web's site-wide primary
Articles by Date navigation and the years depicted at

the top of this page are unordered and
ordered lists, respectively. The primary
2006 navigation (the tabs) is made up of list
items set to float left. The list of years
comprises list items set to display inline.

* 200B/08/08 - Lnd

OOEMZAL -

Chapter 5 explains how you can alter the way an element box behaves by using the
display property. It doesn’t take a great leap of imagination to figure out how to
break the default vertical style of a list and present list items side by side, which
you might want to do if you want a horizontal navigation bar. The default display
of a list item in an unordered or ordered list is 1list-item, which itself is block-line
in its rendering. Simply changing the display of 1i to inline will override this, and
voila!—the list items line up horizontally as opposed to vertically.

1i { display: inline; }

Floating each list item is an alternative method of achieving horizontal lists (once again,
see Chapter 5 for more details on floating), and although it is slightly more complicated,
it is also more versatile than the display: inline method because you can maintain
block-level qualities such as manipulation of vertical padding and borders, etc. If you
want to apply more complex styles to horizontal list items, this may be preferable.

To contain the list items you can also float the list itself, enabling you to manipulate
its background/border properties, etc. As long as the element following the list is set
to clear the float, you should find yourself with the basics of a smooth horizontal list.

ul, 1i { float: left; }
#afteralist { clear: left; }

TECHNIQUE: TABS

Shimmy over to www.htmldog.com/articles/tabs/ for further insight, and a
plethora of examples, about horizontal lists, and techniques for achieving that
iiber-sexy way of presenting navigation—uwith tabs.

www.htmldog.com/articles/tabs/

chapter 7

Scripts & Objects

IT JUST SITS THERE. It doesn’'t do anything. Well, that’s kind of the
point of HTML and CSS—it’s just a way of structuring and presenting
largely textual content. The whiz-bang-pop is the job of other languages
and file types. Close to home you've got JavaScript, which allows you to
dynamically manipulate the parts of an HTML page and then you've got
your completely alien objects like videos and Flash files. They may not
be a part of HTML or CSS, but they still rely on HTML to get them to
work in a web page.

JavaScript and the DOM

JavaScript is a commonly used and widely supported scripting language that
can be used to add interactive behaviors such as rollovers, form validation,
and even switching between different style sheets. It can be applied to an
HTML document with the script element or “event attributes” in individual
tags. Through the Document Object Model (DOM), the W3C'’s standardized
model for the structure of a web page, it is possible to manipulate any part of
a web page with JavaScript.

The script Element

script defines a block of script, and is the tool of choice for inserting a chunk
of JavaScript into an HTML page.

148 | CHAPTER 7: SCRIPTS AND OBJECTS

The script itself can be placed between the opening and closing script tags,
like so:

<script type="text/javascript">
function satsuma() {

alert("SAAAATSUUUUMAAAA!III™Y 3
</script>

Alternatively, a script can be kept in a separate file and applied like so:
<script type="text/javascript" src="kumquat.js"></script>

The type attribute is required, and will always have the value “text/javascript”
when using JavaScript, and just like in an img tag, the src attribute points to the
location of the external file.

To accommodate users who don't have JavaScript-enabled browsers, or those who
choose to switch it off, you can provide alternative content by using a noscript ele-
ment anywhere inside the body element. The content of this element will only show
up when the browser can't detect JavaScript.

<noscript>

<p>What? No JavaScript? Well what am I supposed to do now? Can't you
get a new browser or something?</p>

</noscript>

Event Attributes

JavaScript code can be invoked when the user does something, such as clicking a
button, rolling over an element, or loading a page. You can apply event attributes to
just about any opening HTML tag (such as onclick in a submit button, onmouseover
in a link, or onload in the body tag) that will pick up on such actions and when they
take place, the value of the attribute, which would be a piece of JavaScript code,
will be executed:

DO IT!

JAVASCRIPT AND THE DOM | 149

While the value of the attribute could contain all of the required JavaScript (such
as that in the example above), it usually doesn’t. The values of event attributes
tend to make calls to functions defined in the script element (whether those
functions are actually in the page or in an external file). This cuts down on the
volume of inline code and makes common actions available in a central, reusable,
location:

D0 IT!

Having said all that, similar to the point made in Chapter 1, “Getting Started,”
about the style attribute, if you're taking JavaScript seriously it should be unobtru-
sive—HTML elements can be targeted through the DOM with JavaScript without the
need of event attributes, which is a much nicer, easier way to manage, and more
powerful way of doing things.

Manipulating the DOM

Put simply, the DOM is a standardized model of every part of a web page, including
the HTML and CSS code, that is commonly manipulated with JavaScript.

The powerful ability to manipulate any and every part of any and every element on

a page means that you can do away with event attributes altogether and separate
out another layer: behavior, which carries similar benefits to separating structure and
presentation. With the DOM you should be able to place all of your code inside a
script element (be that in the page itself or accessed in a .js file) and dynamically
remote-control the page.

This is the modern, cutting-edge way of using JavaScript. Like web-standard HTML
and CSS, using DOM JavaScript leads to lighter, more manageable code. The phi-
losophy and practice of DOM Scripting is a huge subject unto itself, and is some-
what outside the remit of this book. There are now many good quality books (see
Figure 7.1) and online resources that delve right into it (http:/www.webstandards.
org/action/dstf/ is a good starting point).

http://www.webstandards.org/action/dstf/
http://www.webstandards.org/action/dstf/

150 | CHAPTER 7: SCRIPTS AND OBJECTS

DOM Scripting

Web Design with JavaScript and the Document Object Model

Separate behavior from structure using
unobtrusive JavaScript.

Add dynamic effects with progressive
enhancement.

Ensure backwards-compatibility through
graceful degradation.

Jeremy Keith S
Foreword by Dave Shea 'l'ieﬂd’ﬂ@

FIGURE 7.1 If you want to get to grips with best-practice JavaScript, once
you're confident with your HTML and CSS, there are many good books
out there, such as DOM Scripting by Jeremy Keith (Friends of Ed), which
will give you a great introduction.

Objects

If you have a snazzy little file like an MPEG video or a Flash movie that you want
to put it in your web page, you can “embed” such a foreign object with an object
element.

Objects usually depend on some form of “plug-in"—a special piece of software that
is added on to the browser (such as the Flash Player) so that the file can be deci-
phered and viewed (or heard).

OBJECTS | 151

The basic idea is quite a simple one: Inside the opening object tag, you use the
type attribute to let the browser know what kind of object it is (and which plug-in
to use), the data attribute to point the browser to the actual object file, and then
inside the object element you pass parameters to the object-playing plug-in using
param elements.

If the user does not have the plug-in required to execute the file in an object, you
can provide alternative content that will be applied in the object’s place. This can
be an error message, or replacement image (or any chunk of HTML you choose).

<object type="blueberry/kumquat" data="whatever.kmq">

<param name="tangy" value="true" />

<param name="segments" value="9" />

<p>You don't have the Kumquat plugin, so you won't get any
juice.</p>
</object>

So object defines the object, param passes parameters to the object, and the rest
of the HTML works as alternative content. Easy.

There is a host of other attributes that lend more control over the object (check out
Appendix A, “XHTML Reference,” to find out more), but perhaps the most important
thing to point out at this stage is that IT DOESN'T WORK.

EMBEDDING OBJECTS IN A WEB STANDARDS WAY

The most popular way of inserting a Flash movie in an HTML page is by using

a rather ugly block of code vomited up by someone at Macromedia many moons
ago. Not only is this notorious code ugly, it's completely invalid because it
involves the use of the embed tag, which has never been a part of any standard.

The much simpler, more logical, valid, pleasing-to-the-eye, and ultimately correct
method looks something like this:

<object type="application/x-shockwave-flash" data="whatever.swf">
</object>

152 | CHAPTER 7: SCRIPTS AND OBJECTS

But unfortunately it’s not that easy. Using this sensible method, the nonsensi-
cal Internet Explorer will wait until the Flash movie has completely downloaded
before playing it. This may be fine with small Flash movies, but with longer ones
you'll probably want to take advantage of Flash’s ability to stream the movie—to
play it while it is downloading.

Dammit.

There are two less-than-perfect methods for getting around this problem. The
first is known as “Flash Satay” (see alistapart.com/articles/flashsatay) and this
involves using similar code to that above, but twiddling the Flash movie itself so
that a small Flash movie is used to play the main, streaming movie.

The second method revolves around the fact that Internet Explorer requires infor-
mation given by the classid and codebase attributes in the opening object tag
to work properly. Unfortunately, by applying these to get Flash to work in IE, it
breaks down in other browsers where the movie won't work. Hixie’s method (/n.
hixie.ch/?start=1081798064&count=1) utilizes the strange IE “feature” of con-
ditional comments, whereby Internet Explorer can be forced to ignore a chunk of
HTML that displays the movie in other browsers:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=6,0,40,0">

<param name="movie" vadlue="whatever.swf">

<I--[if !IE]> <-—->

<object type="application/x-shockwave-flash" data="whatever.
swf" ></object>

<I--> <l[endif]-->

</object>

There is no pretty way of embedding a Flash movie in HTML. The two methods
mentioned above are standards-compliant, but they still require hacks, which
should only be used when there’s no other option. In this case, unfortunately, it
seems there isn’t.

As another example, Quicktime videos have the same kind of problem as Flash
movies. You should be able to embed them in a page with this code:

<object type="video/quicktime" data="whatever.mov">
<p>You aint got Quicktime.</p>
</object>

But once again, this straightforward code doesn’t work in Internet Explorer and

once more the code suggested by Quicktime’s creator is daft embed tag nonsense.

To get it to work in |E you need something like this:

<object classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
codebase="http://www.apple.com/qtactivex/qtplugin.cab">
<param name="src" value="whatever.mov" />

</object>
But this won’t work anywhere else.

The solution? Well, as with Flash, you could serve up different code to different
browsers if you've got the server-side scripting skills or once more you could
use Hixie's conditional comments. You can even use Flash Satay to display the
Quicktime movie through a Flash movie. ..

Objects truly are a cross-compatibility headache.

OBJECTS | 153

This page intentionally left blank

chapter

Tables

TABLES ARE INFAMOUS in the web standards world. At the slightest
whisper of their name, web standards aficionados have been known to
experience involuntarily muscle spasms and bouts of uncontrollable curs-
ing. The table’s bad reputation comes from its prolific use as a means
for laying out web pages—ijust a short casual web browse will reveal that
most pages on the web have tables all over the place.

’ P Lubricate Your Event!

‘Gefting an account is quick, easy, and lree. Give it a whirll

Account name

- Account address, hitp /lacco Mmm
eventvvax ... oo

The Easier, Smarter Way To Organize Special

Events, From Conferences And Workshops To Password I
Parties, Gigs, And Receptions. Confirm Password |
There are a few 1emms & conditions
Take theJour! Yepl | have read and agree to the terms & conditions [
5 = o ctio
W=l St >

Features: « Cuslomizable hosled web sile for your evenl = ARarnatvely, hook up the registration pages wilh your own sie
= Accepl payments through your PayPal accound = Quick, searchable, sortable access lo atlendee delails » Keep track of
actvity through RSS feeds « Comprehenswe help, accessible externaly, or within your admin area = Dynamic mailing lsts
that can be targeted at allandass, or groups of attendees « Export data as spreadsheets or XML

Coming Soon: = Full, remote control and access with @ feature-nch AP1 = Extensive integrabon with Upcoming org
= Sand out invites and collect RSVPs & Multiple payment acceptance options, including invoicing and poputar payment
gatoways such as Authonze Net and Secpay = Thomed ovent sites with comments, attondee profiles, and ofner new
interactive options.

Event Wa s dremed and canned a the Wb factory. It has nof decn fested on Ron-fuman animais
Questons? Comments? Please confact us al INfoghevenhyar. com

FIGURE 8.1 The illustrations in this chapter are taken from Event Wax
(www.eventwax.com).

www.eventwax.com

156 | CHAPTER 8: TABLES

They’re not the best choice for layout—CSS is (see Chapter 5, “Layout”), but
they’re not entirely evil. A common mistake is believing that tables have no
place on Planet Web Standards, but they do, in a slightly more modest role
than page layout, but a much more sensible one for them: structuring and
presenting genuine tabular data.

This is the place where you'll get to know how to do just that—from construct-
ing basic data tables through to accessibility considerations and specific
methods of styling them.

Basic Tables

Big, complex tables can get quite complicated to code, but they follow very logical
structural rules. To create a basic table, all you need to do is establish a table ele-
ment, then fill it with table rows (tr), and then fill them with cells of table data (td).

So let’s start with the rows at first. Here’s the beginnings of a table with three rows:

<table>
<tr></tr>
<tr></tr>
<tr></tr>

</table>

You can’t have rows without columns, though—it would all be just too one-dimen-
sional. Although we don’t define the columns explicitly, we can define each cell in
the row, using td elements:

<table>

<tr>
<td>Cats</td>
<td>Dogs</td>
<td>Lemurs</td>

</tr>

<tr>
<td>Tiger</td>
<td>Grey wolf</td>

BASIC TABLES | 157

<td>Indri</td>

</tr>

<tr>
<td>Cheetah</td>
<td>Cape hunting dog</td>
<td>Sifaka</td>

</tr>

</table>

So here we have a table with three rows with three cells in each row, making it a
3x3 table. Capisce?

3 www.htmldog.com/examples/basictable.html

Now let's make this example a little bit more meaningful. Because “Cats,” “Dogs,”
and “Lemurs” are actually headers of their respective columns, we can change them
from td elements into th elements. It's still a cell, it still works pretty much the same,
but the essential difference is that rather than your bog-standard table data cell, it's a
table header cell. So all we would need to do is change that first row to:

<tr>
<th>Cats</th>
<th>Dogs</th>
<th>Lemurs</th>
</tr>

Table header cells can also be used as headers for rows. For example, the table
could be turned around the other way, and be structured like this:

<table>

<tr>
<th>Cats</th>
<td>Tiger</td>
<td>Cheetah</td>

</tr>

<tr>
<th>Dogs</th>
<td>Grey wolf</td>
<td>Cape hunting dog</td>

www.htmldog.com/examples/basictable.html

158 | CHAPTER 8: TABLES

</tr>
<tr>
<th>Lemurs</th>
<td>Indri</td>
<td>Sifaka</td>
</tr>
</table>

=3 www.htmldog.com/examples/headercells.html

Account: testaccount Event: thisevent

LR Ticket Types Event Site

Attendees

[0 ATTENDEE TICKET BOOKING BOOKING BOOKED BY REQU
TYPE HUMBER DATE
|:| Slec Guinness (] Stancard 320 13 Feh 06 Bobky McFerrin [
|:| Boariz Harloff Standard 314 10 Feh O& David
Aftenbarough 2
(4| Donald Duck Stancard pex =] 12 Feb 06 Eddie Felzon 2]
|:| Elaine Miles b= Stanclard jex =] 12 Feh 0B Jean-Pierre
Jeunet [
.| Juan Manuel Stancard 319 12 Feh OB Hobo Abe
Fangia 6
.l tarlon Brands = Stanclard 308 09 Feb 06 Morrin Radd E=]
() Penfold 52 Stancard e 10 Feb 06 Robert Crumb =
I Socrates B Stanclard 324 13 Fek 06 Zach Braft £

FIGURE 8.2 All dolled up with CSS, but below the surface is a straightforward table
structure, with table, tr, th, and td elements.

Merging Cells

Not every row has to have the same number of cells in it and neither does every col-
umn. By manipulating the rowspan and colspan attributes inside the opening td or
th tags, you can make those cells cover more than one row or column.

www.htmldog.com/examples/headercells.html

For example, if we wanted a higher classification than “Cats,” “Dogs,” and
“Lemurs,” we might have a slightly different top row:

<table>
<tr>
<th colspan="2">Carnivores</th>
<th>Primates</th>
</tr>
<tr>
<td>Tiger</td>
<td>Grey Wolf</td>
<td>Indri</td>
</tr>
<l-- etc. -—>
</table>

MERGING CELLS | 159

The first th element (with the content “Carnivores”) will span the first two columns,
leaving the third for the second th element (“Primates”). Because the three col-

umns are covered, there is no need for a third th element.

0 www.htmldog.com/examples/colspan.html

Similarly, rowspan will cause a cell to spill over any number of rows:

<table>

<tr>
<th rowspan="2">Carnivores</th>
<td>Tiger</td>
<td>Cheetah</td>

</tr>

<tr>
<td>Grey Wolf</td>
<td>Cape hunting dog</td>

</tr>

<tr>
<th>Primates</th>
<td>Indri</td>
<td>Sifaka</td>

www.htmldog.com/examples/colspan.html

160 | CHAPTER 8: TABLES

</tr>
</table>

As the first th element in this example spans two rows, the second tr element
contains two rather than three td elements because the first column of that row is
already taken care of.

3 www.htmldog.com/examples/rowspan.html

Farniouces Tiger Cheetah Caracal Wildcat
Grey Wolf Cape hunting dog Eed fox Fennec

Primates Indn Sitakca Brown lemur Dwart letur

Carnivores Primates

Tiger Grey Welf Indr

Cheetah Cape hunting dog Sifaka

Caracal Red fox Browm lemur

Wildcat Fetmec Dwrart letnur

FIGURE 8.3 A bare-bones example, demonstrating the affects of rowspan and colspan.

Combinations of row- and column-spanned cells can lead to very complex tables and
the bigger the table gets, the more difficult it can be to keep track of what should
go where. It's often handy to work out exactly how you want the table structured
beforehand (I have to admit to drawing such tables on a piece of paper first so that
| can more easily figure out which cell needs to do what, where).

Captions

You can slap a caption on a table by using a caption element. This should be placed
directly after the opening table tag and will be displayed above the table by default:

<table>
<caption>Animal groups</caption>
<l-- etc.
</table>

-->

www.htmldog.com/examples/rowspan.html

GROUPING ROWS | 161

CAPTION POSITIONING

You can position the caption with the caption-side CSS property. Applying this
to the table element (not the caption element) dictates on which side of the
table the caption should be placed. See www.htmldog.com/examples/colgroup.htm/
for an example, which also demonstrates, unfortunately, that caption-side isn't
supported by Internet Explorer 6.

Values can be top (default), right, bottom, and left.

Grouping Rows

You can group together rows and split a table into a header, footer, and body by
organizing rows into thead, tfoot, and tbody elements.

When tables are in some way broken, this should allow table parts to be repeated.
When large tables are printed and take up more than one page, for example, the
header and footer should appear on every printed page. Unfortunately, this isn’t the
case with Internet Explorer (which will just print them at the top and the bottom of
the whole table), but is a nice feature with other, more compliant browsers.

Grouping rows can also provide a handy block to latch CSS on to (if you wanted to
change the background color of a block of rows in a table, for example), and can aid
accessibility, giving divisions of code for users to jump between.

These elements must be defined in the order thead > tfoot > tbody and not
thead > tbody > tfoot. Don't worry—the final result will still have the tbody ele-
ment sandwiched in between the header and the footer.

You can, if you want, have more than one tbody element, but you can only have one
thead and tfoot.

<table>
<thead>
<tr>

www.htmldog.com/examples/colgroup.html

162 | CHAPTER 8: TABLES

<td>Header
<td>Header
<td>Header
</tr>
</thead>
<tfoot>
<tr>
<td>Footer
<td>Footer
<td>Footer
</tr>
</tfoot>
<tbody>
<tr>

1</td>
2</td>
3</td>

1</td>
2</td>
3</td>

<td>Cell 1</td>
<td>Cell 2</td>
<td>Cell 3</td>

</tr>

<l-- etc. -->
</tbody>
</table>

Targeting Columns

Although tables are built row by row, you can target columns with the colgroup and
col elements, allowing you to apply attributes, such as a class, to all of the cells in

a column or groups of columns.

colgroup allows attributes to be applied to set of columns and can be used on its
own, along with the span attribute (in a similar way to using rowspan and colspan in
td and th tags), to group the first x columns.

<table>

<colgroup span="2" class="alternative"></colgroup>

<tr>

<th>Cats</th>
<th>Dogs</th>
<th>Lemurs</th>

TARGETING COLUMNS | 163

</tr>
<l-- etc. -—>
</table>

This example will, essentially, apply the “alternative” class to the first two columns.

Alternatively, colgroup can be used with col elements to focus on individual

columns.

<table>
<colgroup>
<col />
<col class="alternative" />
<col />
</colgroup>
<tr>
<th>Cats</th>
<th>Dogs</th>
<th>Lemurs</th>
</tr>
<l-- etc. -—>
</table>

Here, the styles of the class “alternative” will be applied to the second column, i.e.,
the second cell in every row.

3 www.htmldog.com/examples/colgroup.html

You can also use the span attribute with col elements, and could, for example,
apply them like this:

<table>
<colgroup>
<col />
<col span="2" class="alternative" />
</colgroup>
<l-- etc. -->
</table>

www.htmldog.com/examples/colgroup.html

164 | CHAPTER 8: TABLES

Oh, but there had to be a catch, didn’t there? Here it is: The only styles you can
validly apply to columns are backgrounds (see Chapter 4, “Images”), borders, width,
and visibility (Chapter 5).

In a strange twist of fate, Internet Explorer appears to behave much better than
other browsers because it applies pretty much any CSS property to columns via col
and colgroup elements, but, as it turns out, this is only because it acts in a mad
wacky way. For a detailed explanation of this peculiar anomaly, go to this catchy
web address to let lan Hixon explain: In.hixie.ch/?start=1070385285&count=1.

Accessibility Considerations with Tables

If you follow the methods mentioned so far with content that is sensible tabular
data, you should be well on your way to creating accessible tables. The major prob-
lem in terms of accessibility, however, is the two-dimensional nature of tables: You
have rows and you have columns. Your eyes can see vertical and horizontal associa-
tions with little problem, but if you had to rely on your ears—if the table became
linearized and were read out to you cell by cell by a screen-reader—it could get very
confusing. Listening to a ream of numbers, completely out of context, for example,
would not be very helpful.

Summaries

A quick and easy accessibility consideration is to always apply a summary to the
table. This can be specified through the use of the summary attribute in the opening
table tag.

<table summary="A brief overview of animals belonging to certain
taxonomic groups">

<caption>Animal groups</caption>

<!-- etc. -->
</table>

The value of summary won't be displayed, but it will be recognized—and read out—
by screen-readers. This brief description of what’s going on can make the gist of the
table content much easier and quicker to understand, or completely ignore if it isn’t
of interest.

ACCESSIBILITY CONSIDERATIONS WITH TABLES | 165

Associating Headers to Cells

With a summary, the user can get an idea of what to expect. But this doesn’t solve
the problem of tables becoming linearized and cells being taken out of their context
when a screen-reader comes to tackle a table. Explicit associations between the
cells and their headers can aid this process, allowing the row or column heading to
be read out along with the data itself, giving the visually impaired user the context
that a visually able user has.

By using the scope attribute within a header cell you can explicitly define what the
header cell is a header for. The value of this attribute can be row, col, rowgroup
(for thead, tfoot, and tbody elements), or colgroup.

<table>
<tr>
<th scope="col">Cats</th>
<th scope="col">Dogs</th>
<th scope="col">Lemurs</th>
</tr>
<tr>
<td>Tiger</td>
<td>Grey Wolf</td>
<td>Indri</td>
</tr>
<!l-- etc. -->
</table>

Associating Cells to Headers

Doing things the other way around from scope, the headers attribute can be used
within a td or th tag to specify which cell or cells should be regarded as headers for
it. The value can be a single ID name or a list of IDs separated by spaces.

<table>
<tr>
<th colspan="2" id="carnivores">Carnivores</th>
<th id="primates">Primates</th>
</tr>

166 | CHAPTER 8: TABLES

<tr>
<th id="cats" headers="carnivores">Cats</th>
<th id="dogs" headers="carnivores">Dogs</th>
<th id="lemurs" headers="primates">Lemurs</th>
</tr>
<tr>
<td headers="carnivores cats">Tiger</td>
<td headers="carnivores dogs">Grey Wolf</td>
<td headers="primates lemurs">Indri</td>
</tr>
<l-- etc. -—>
</table>

By doing this, when reading out the table data, a screen-reader should first read out
the data in the related header cell. For example, when it comes to the first td ele-
ment in the example above, it should read out “Carnivores: Cats: Tiger.”

You may not want long headers to be repeated every time a data cell for that header
is read out and you can avoid this happening by supplying a shortened version of
the header with the abbr (abbreviation) attribute:

<table>
<tr>
<th id="cats" abbr="Cats">Felidae - the cats</th>
<th id="dogs" abbr="Dogs">Canidae - the dogs</th>
<th id="lemurs" abbr="Lemurs">Lemuridae - the lemurs</th>
</tr>
<tr>
<td headers="cats">Tiger</td>

<l-- etc. -->

</tr>

<tr>
<td headers="cats">Cheetah</td>
<l-- etc. -—>

</tr>

<l-- etc. -—>
</table>

PRESENTING TABLES | 167

On the first encounter with a data cell linked to a header, the whole header will be
read out, such as “Felidae—the cats: Tiger” but on every subsequent pass, only the
abbreviated form of the header will be read, such as “Cats: Cheetah.”

Presenting Tables

Table cells can be styled just like any other content. Colors, backgrounds, font-size,
text-align can all be applied, for example (see Chapter 2, “Text”), as can widths and
padding (see Chapter 5). You can target the table, row, row group, column (although
remember the limitations, as noted), or cells. For example:

td {
text-align: center;
vertical-align: middle;
padding: 0.lem lem;

}

col.alternative {
background-color: #ddf;

}
TICKET BOOKING
TYPE HUMBER
Standard 320 FIGURE 8.4 The tables in Event Wax use
O o background images in each cell for the
e e shadow effect, a hint of border, and a
S zam soupcon of vertical-align

There are also some table-specific CSS properties, though, that deal with table and
cell borders, layout style, and what happens with empty cells.

Border Collapsing

Borders in tables are a little more complicated than your average box (see Chapter 5).
Applying the border property to a table element will simply draw a four-sided bor-
der around the table’s edge, rather than around the cells. To have a grid-like border

168 | CHAPTER 8: TABLES

throughout the table and surrounding the cells you need to apply the border property
to the cells themselves:

td { border: 1px solid black }

The results of this may not be exactly what you want, however, since each td ele-
ment becomes a clearly defined individual box, rather than a cell within a grid. This
is because the browser is using the “separated borders model,” which completely
separates cells, spacing them out from one another. You can change the border
model, however, with the border-collapse property, which can be used to achieve
an often-preferable alternative:

table { border-collapse: collapse }

This will invoke the “collapsing borders model,” whereby cells share adjacent bor-
ders. All of the cells are pushed together and, quite cleverly, instead of pushing the
borders up against each other, they “collapse” (much like margin collapsing—see
Chapter 5), leaving only the wider of the two adjacent borders visible.

=3 www.htmldog.com/examples/bordercollapsel.html

In the separated-borders model, theoretically you should be able to adjust the spac-
ing between cells using the border-spacing property with the table element (such
as table { border-spacing: 1px; }). Why theoretically? You guessed it: It isn’t
supported by Internet Explorer.

Collapsing will also occur when a table border comes into contact with cell borders.

If the table border is narrower than the adjacent cell borders, then the table border
should collapse, with the cell borders taking precedence. In Internet Explorer, though,
the cell borders will always collapse, even if they are wider than the table border.

For example, if you had:

table {
border-collapse: collapse;
border: 1px solid black;

}

td {
border: 10px solid #ccc;

www.htmldog.com/examples/bordercollapse1.html

PRESENTING TABLES | 169

You shouldn’t be able to see the black table border because it should collapse. In
IE, though, the 1px table border remains, and the adjacent cells have no adjacent
borders (compare www.htmldog.com/examples/bordercollapse2.html in Firefox and
IE, for example).

TICKET BOOKING
TYPE HUMBER
FIGURE 8.5 Without border-collapse to
Standard 20 annihilate the spacing between cells and
the limited support of border-spacing, the
Standard 4 desired style would come up against a few

problems.

Speedier Tables: the Fixed Layout Algorithm

Tables aren’t the easiest of things for a browser to render. Your average table needs
quite a few calculations—the browser must first go through the table, assessing
the widths of every cell so that it can calculate the widths of columns and the table
itself. Only after that will the table be drawn, with column widths optimized so that
those with longer content on average will be wider.

The theory goes that for large, or numerous, tables, this automatic table layout algo-
rithm can take a long time. In practice, with the cheetah speed of modern browsers,
you're rarely going to come across a table where this is noticeable. You can, how-
ever, use the table-layout property to force the browser to use the “fixed layout
algorithm” to speed things up.

Rather than going through the whole table and analyzing the content of all of the
cells, this just takes a quick peek to see if there are any explicit widths applied to
col elements or cells in the first row and then gets on with drawing the table.

Because this algorithm can’t work out the width of the table, this should be explicitly
specified also. Otherwise some browsers will ignore the table-layout declaration
completely and use the automatic table layout algorithm to determine the width of the
table. Interestingly, Internet Explorer will apply a width of 100% if none is specified.

The widths of columns are determined by the explicit width of col elements or,
if none is specified, the explicit width of td (or th) elements in the first row. Cell
widths in subsequent rows will be ignored.

www.htmldog.com/examples/bordercollapse2.html

170 | CHAPTER 8: TABLES

Those columns that don’t have an explicit width specified this way will share the
rest of the width of the table equally. So if no widths are defined at all, all columns
in the table will be an equal width.

table-layout isn’'t supported by IE 5.0, but that doesn’t really matter because
where this isn’t supported, the table will still be rendered, it will just take longer.

table {
table-layout: fixed;
width: 100%;

}

3 www.htmldog.com/examples/tablelayoutl.html
=3 www.htmldog.com/examples/tablelayout2.html

Empty Cells

Empty cells (such as <td></td>, with no content in between the opening and clos-
ing tags) are an odd thing. In the collapsing borders model all is fixed and predict-
able: The cell is shown, it just won’t have anything in it. With the separated borders
model, however, the cells can either remain visible or can be hidden. By default,
Internet Explorer hides empty cells (although it oddly decides to retain any applied
backgrounds). By contrast, other browsers will show the empty cells by default, but
you can opt to hide them with the empty-cells: hide declaration (which will hide
everything, including any backgrounds).

empty-cells: show does the opposite, but IE won't take any notice so you're stuck
with empty cells being hidden. You can get around this by putting any content in the
cells, such as a non-breaking space (<td> </td>), which effectively makes it a
no-longer-empty cell and so it will be shown in its full glory.

3 www.htmldog.com/examples/emptycells.html

So, in conclusion, if you want to hide empty cells, just apply empty-cells: hidden
to take care of browsers other than IE (which hides them anyway). If you want to
show empty cells, simply drop an character in each of them.

www.htmldog.com/examples/tablelayout1.html
www.htmldog.com/examples/tablelayout2.html
www.htmldog.com/examples/emptycells.html

chapter 9

Forms

IF MONEY MAKES the world go around, then forms make the web go
around. They are key to most commercial websites, which rely on taking
personal information and credit card details. But they’re handy for less
capitalistic purposes too. A basic form can also be used to allow a user to
submit a comment or question via a web page, or for gathering countless
other types of useful information.

Forms are sometimes used in conjunction with client-side scripts for
web application functionality (such as devising a simple calculator, for
example), but are most commonly used as they were intended—to send
data across the Internet.

What goes on after a form is submitted is a world beyond HTML and
CSS, involving such alien server-side programming languages as PHP,
ASP, or Perl that take the form data and do whatever needs to be done
with it.

On the HTML and CSS side, all we have to do is make sure that the form
itself is designed properly so that the necessary data is sent where it
needs to go.

The basics are simple enough: You have a form element and within it you
have a whole bunch of form fields and a submit button. The user fills in
the fields, hits the button, and the data is sent.

172 | CHAPTER 9: FORMS

?cork'd

r MEnY The simple wag

Cork'd s making life easser for wine ahoonados
and &5 completoly fron, Bacoma & mamber taday
and L

*2 Create an Account

o review and share wine

t & Catalog, rate B
. -::
& D
Catalog sl your media b
scanning barcodes with your Mac's Recantly Raviswed a2
iSight
ik
b ¥
X 'L}
- L
The Magazing of
Brave New Pholography g RCARY
How about some phetos with your =
wine? Summee Sale on ne
Mpst Popular Wines (n]
REDT TE
04 1 Sauvignon A
shaw off rour love e b
of wine and web
with the ultimats A Chatean u Beauralllon AR
t-ghirt for wins | Dord: mint-£ §53%
sficionadas,
A ol gl whEE
- §555

Terme of Use [Privacy Policy | Cork'd Blog

WY Copyrght © 2006 Tundro

FIGURE 9.1 The illustrations in this chapter are taken from the Cork’d website (corkd.com).

FORM ELEMENTS | 173

form Elements

Guess what a form element does. That’s right! It defines a form. It is between the
opening and closing form tags that all of the form fields, buttons, and other bits and
bobs go.

<form action="processor.php" method="post">
<!-- a whole load of form fields -->
</form>

The opening form tag has two main attributes: action and method.

The value of the required action attribute tells the browser where to send the form
data when it is submitted. This can be any URI, naming the location of the script
(or page containing the script) that will process the form data.

The value of the method attribute tells the browser how to send the form data. You
have two options here: get or post.

The get setting bolts the values of the form fields on to the URI supplied by the
action attribute. So effectively, when the form is submitted, the user is taken to a
very specific URI, which would look something like this:

http://www.whatever.com/processor.php?book=nineteen-eighty four&author=
george orwell&datepublished=1949

The specific purpose of get is to read something—to retrieve data from somewhere,
dependent on the data sent. An advantage of this method is that such a URI can be
bookmarked or added to your browser’s “favorites” list or shared with others (such
as sent via email or instant messaging) because linking to a URI such as that above
will have the same effect as inputting the data into the form and submitting it.

A disadvantage is that it isn't very secure. All the form values are there for every-
one to see and it is also open to direct manipulation by the user. So whereas this
method might be useful for locating a book in a catalog (hence retrieving data),
for example, it wouldn’t be suitable for sending credit card details or personal
information.

Because method="get" is the default setting, you don’t need to specify this attribute
if this is the method you choose. So in fact, you'll probably only ever want to use it
in the form of method="post".

http://www.whatever.com/processor.php?book=nineteen-eightyfour&author=georgeorwell&datepublished=1949
http://www.whatever.com/processor.php?book=nineteen-eightyfour&author=georgeorwell&datepublished=1949

174 | CHAPTER 9: FORMS

Instead of making the values part of a URI, the post method will send the form
data as HTTP headers—pieces of information that are sent along with the URI,
hidden away in the ether where they are invisible to all but the form-processing
script.

Whereas get is used for reading something, post has the specific purpose of writ-
ing something (to a database, for example). The advantages and disadvantages
are basically the opposite of the get method: Because the form data is not part of
the URI, the form-results page cannot be bookmarked or shared with others. But
because of this, it is also slightly more secure, and non-tinkerable, than the get
method.

Form Fields and Buttons: input, textarea,
and select

The form fields, where the user inputs data, come in a multitude of guises—text
boxes, radio buttons, drop-down lists, to name a few—but they comprise just three
elements: input, textarea, and select.

The input element is the 10-headed hydra of the trio, creating a different form
control depending on the value of its type attribute. The other two, textarea and
select, create just one control type each. These elements will be looked at in inde-
pendent detail in a minute, but there are a few characteristics common to all three
that we need to think about first.

The name Attribute

If all the inputted data in a form was sent without anything to identify each piece
of data, a form-processing script wouldn’t know what piece of data is what. “Things
Fall Apart” or “Chinua Achebe” aren’t helpful on their own, for example. What is
needed is name/value pairs such as “book=Things Fall Apart” and “author=Chinua
Achebe”. The name attribute supplies this necessary identifier (such as <input
name="book" />) and, in fact, the data in any input, textarea, or select form
field won't be sent at all if there isn’t a name attribute present.

FORM FIELDS AND BUTTONS: INPUT, TEXTAREA, AND SELECT | 175

DISABLED AND READ-ONLY FIELDS

You can choose to disable an input, textarea, 0r select element with the dis-
abled attribute (used in the format disabled="disabled"). When form fields are
disabled in this fashion, the user won't be able to change them, and their values
won't be sent when the form is submitted. This is a rarely used technique, but is
sometimes used with JavaScript to disable/enable parts of a form depending on
what options the user has selected elsewhere in the form.

Another attribute at your disposal is readonly (similarly used in the format
readonly="readonly"), which is relevant to text type input elements and
textarea elements. This simply won't let the user edit the text in the form field,
s0 any initial value will remain. Like the disabled attribute, this is used only
rarely, in conjunction with client-side scripts. The difference to the disabled
attribute is that the value of an element set to readonly="readonly" will be
sent when the form is submitted.

Putting Controls in Blocks

Before jumping in and adding form field elements to the form, keep in mind that
the only valid direct content of a form element (when we're talking about the think-
ing person’s choice, XHTML Strict—see Chapter 1, “Getting Started”) are block-
level elements and so input, textarea, and select, being inline, must sit inside
one or more block-level element, such as a div (see Chapter 1) or a fieldset (see
later in this chapter).

input

The input element is a gargantuan beast with many heads. With just this single
element you can create text boxes, checkboxes, radio buttons, and more. You can
specify which type of input control you want with the type attribute. For example,
type="text" turns the element into a text box, type="checkbox" turns it into a

176 | CHAPTER 9: FORMS

checkbox, and so on. There are 10 possible values for this attribute, and each type
has its own peculiarities:

o text—for single-line text

e password—for obfuscated text

e checkbox—for a simple on or off

e radio—for selecting one of a number of options

e submit—for initiating the sending of the form data

e reset—for returning the form fields to their original values

e hidden—for data not seen, or edited by, the user

e image—for sending coordinates of where an image is clicked on
e file—for uploading files

e button—for shirts, pants, jackets, no... wait...

text

An input element with the attribute type="text" is a single-line text box—probably
the most common form field, used for short pieces of textual information such as
someone’s name, email address, or credit card number. text is the default value for
the type attribute (so you don’t need to explicitly use the type attribute, if a text
box is what you're after).

With text type input elements, you can also use the maxlength attribute, which
limits the number of characters that can be typed into the text box. So the following
example would create a text box into which the user can only type a maximum of
four characters:

<input name="yearpublished" maxlength="4" />

The initial text contained within the text box can also be set with the value attri-
bute. This is particularly handy either to give a pointer as to what the user should
type in that text box (such as “Your name”) or if values have been passed to the
form, such as with “Remember me” functionality (whereby, with some clever script-
ing, a site can remember a user and fill in certain details automatically).

FORM FIELDS AND BUTTONS: INPUT, TEXTAREA, AND SELECT | 177

Create a Cork'd Account

Just fill out this form and we'll create your free account, Once you're done, you'll
be able to start building wine lists, reviewing and rating wines, and finding
drinking buddies.

Screen name: |PogoGogo |

“rour nicknarme here at Cork'd, One word,
Letters and numbers anly, Mo spaces or special characters,

Email address: |p0g0gag0@htmldog.com |

It's also your sign-in name, and has to be legit,

First name: |PUE|0 |

What morm calls you,

Lastname: |Gogo |

What your army buddies call yau.

| |

Password:

samething you'll remember, but hard to guess,

Passwaord |"""""‘h |
confirmation:

Type it again, Think of it as a test,

FIGURE 9.2 Text input types and their closest relative, the password input.

password

The password type works like the text type, apart from one characteristic: As the
user types, instead of the characters appearing in the text box, placeholder char-
acters (usually asterisks or circular bullets, depending on the browser) will appear
in their place. The idea behind this is that anyone peering over the user’s shoulder
won't be able to see what is being typed in.

<input type="password" name="pword" maxlength="20" />

0 www.htmldog.com/examples/inputtextboxes.html

checkbox

The checkbox type creates a simple checkbox, used to supply a yes/no, set/unset,
or on/off option. By default, a browser will style this as a small empty square box,
which, when selected, will display a “tick” inside the box.

www.htmldog.com/examples/inputtextboxes.html

178 | CHAPTER 9: FORMS

Privacy: Show my real name
If unchecked, people will only see your screen name.
Shaow my location
If unchecked, people will never see the city you live in.
[send me stuff

If checked, we may periodically send yvou Cork’d news, events
or special announcements,

FIGURE 9.3 Checkboxes are used when more than one option can be selected.

You can also specify that the initial state of a checkbox should be selected (“checked”
or “ticked”) by adding the attribute and value combination checked="checked". (In the
past, simply checked would have been enough, but with XHTML, all attributes must
have values.)

<input type="checkbox" name="modern" checked="checked" />

If a checkbox is not selected when the form data is submitted, no value will be sent.
When the checkbox is selected, “on” will be sent as the value for the corresponding
name unless the tag has a value attribute, in which case the value of that will be sent
for the name instead.

3 www.htmldog.com/examples/inputcheckboxes.html

radio

Radio buttons, defined by the radio type, are similar to checkboxes, but the idea is
that you can only select one option in a group at a time. You give a group of radio
input elements the same name, and then when one of the radio buttons in that
group is selected, any other radio buttons that were selected will be turned off.

<input type="radio" name="color" value="red" checked="checked" />
<input type="radio" name="color" value="orange" />
<input type="radio" name="color" value="blue" />

You really need to use the value attributes here. If you don’t, the whole group will
act the same as the checkbox—that is, if nothing is selected, nothing will be sent,
but “on” (such as color=on) will be sent if any of the radio buttons in a group is
selected, which isn’t much help in discerning which of the options is selected. By
supplying value attributes in each input element, the value of that attribute in the
selected element will be sent, such as color=orange.

www.htmldog.com/examples/inputcheckboxes.html

FORM FIELDS AND BUTTONS: INPUT, TEXTAREA, AND SELECT | 179

Add a New Wine to Cork'd

Tell the world about a new bottle that you've reviewed or keep track of a wine
yOu Dwh OF want to buy,

FIEST, TELL US WHERE TO PUT THE WINE.

O you've tried this wine (we'll add to your Wine Journal),
@ You own this wine (we'll add to your Wine Cellar),

C You want to buy this wine (we'll add ta your Shopping List),

FIGURE 9.4 Radio buttons are similar to checkboxes, but better when
you want to allow only one option to be selected from a group.

As you can see from this example, once more you can also use checked="checked"
to determine which radio button should initially be on.

submit and reset

There are other ways of submitting form data (namely with a bit of JavaScript), but
the most common and easiest way is by hitting a submit button. The submit input
type takes the form of a button and when this button is pressed, the form data will
be sent to the value of the action attribute in the opening form tag.

By default, the text on the button will read something similar to “Submit Query”
(depending on the browser), but this can be changed with the value attribute.

<input type="submit" value="Search" />

The reset input type creates a reset button, which, when clicked (or otherwise
selected), will reset the form, with form fields returning to the values that they had
when the page was first loaded.

Like submit, the text on the reset button (“Reset,” by default) can be changed with
the value attribute.

<input type="reset" value="Start again" />

With both submit and reset buttons, the name attribute isn’t particularly necessary.

180 | CHAPTER 9: FORMS

hidden
The hidden input type doesn’t show up in the form and has nothing that the user
can directly interact with. Sounds pretty useless on the face of it, doesn't it?

One use for hidden input elements is in passing data between form actions. If a
user fills out one form and then needs to fill out a second form, a form-processing
script can dynamically construct the second form and include in it data from the
first form, or even data that it has calculated after the submission of the first form,
such as a customer ID.

<input type="hidden" name="page" value="bobsbooks4.html" />
<input type="hidden" name="customerid" value="sk49fjp923j9fj9393" />

Another use is in setting variables for generic form-processing scripts. With some
form-to-email scripts, for example, rather than expecting authors to mess about
with the script itself (which can be daunting for those unfamiliar with the scripting
language in question), they just need to specify things such as the email address
that the form should be submitted to and the location of a “Thank you” page that
the user will be directed to after submitting the form in the HTML via hidden input
elements, such as:

<input type="hidden" name="recipient" value="whoever@wherever.com" />
<input type="hidden" name="thankyou" value="thankyou.html" />

image

The image type is like a cross between a submit type input element and an img ele-
ment. Like an img element (See Chapter 4, “Images”), you can specify the file loca-
tion of the image that will be used for the form field with the src attribute and a
text alternative for the image with the alt attribute. Like the submit type, when the
image is clicked on the form data will be sent.

On the rare occasions that image input types are used, they are most commonly
used to provide graphical alternatives to a submit button. This degree of control over
the appearance of the submit button may seem like a good thing, but it’s not, really.

Firstly, it's purely presentational and takes away certain advantages of separating
structure and presentation discussed throughout this book.

FORM FIELDS AND BUTTONS: INPUT, TEXTAREA, AND SELECT | 181

Secondly, as explained later in the “Presenting Forms” section, a standard submit
button is pretty much instantly recognized by most users and messing with that
familiarity makes the form more difficult to use.

Not only will the form be submitted when an image input element is selected, the
pixel-coordinates where the user clicked on the image will also be sent. So, two val-
ues will be sent, such as:

imagel.x=498

and
imagel.y=128

and if the value attribute is used, a third value will be sent:
imagel=valueofattribute

So image buttons can also serve as a server-side image map, whereby those coor-

dinates can be processed and different actions can be taken depending on where

the user clicked on the image. If the image was a map of the world, for example, a
processing script could send users to a different page depending on which country
they clicked.

Sounds nifty. Once again, it's not. Server-side image maps are rarely used, not only
because of their specific nature and the complexity of the server-side programming

required to fully exploit them, but because of their inaccessible nature: Not only do

they rely on purely visual cues (such as country boundaries on a map), but they also
rely on the user being able to click.

file

The file type allows users to select a file from their own computers, in order to
upload that file. When the form is submitted, the selected file will be sent with the
rest of the form data.

It should be remembered that when type="file" input elements are used, an
additional enctype attribute must be added to the opening form tag with the value
“multipart/form-data”, so that when it is sent the server knows that it is getting
more than textual data. The method attribute must also be set to post.

182 | CHAPTER 9: FORMS

<form action="wherever.php" method="post" enctype="multipart/
form-data">
<div>
<input type="file" name="uploadfile" id="uploadfile" />
</div>
</form>

3 www.htmldog.com/examples/inputfile.ntml

button

button input elements do absolutely nothing. Well, when it comes directly to form
data, anyway. They are used to invoke client-side scripts (namely JavaScript—see
Chapter 7, “Scripts & Objects”) when the button is pressed. So whereas they play
no part in submitted form data, they can be used to make other things in the form
change, such as performing calculations and dynamically altering the value of a text
box, for example.

textarea

A welcome break after the mad multitude of input element options, the textarea
element is straightforward, having just one simple state. It works something like a
big text-type input element, but is used for bigger chunks of textual data, usually
with multiple lines, such as an address or a comment on a feedback form.

0 www.htmldog.com/examples/textarea.html
Unlike the input element, textarea has an opening and closing tag. Any text in
between the opening and closing tag makes up the initial value of the element.

<textarea name="whatever" rows="10" cols="20">Type something here
</textarea>

In the above example, the text box will appear with “Type something here” inside
the box.

Like using the value attribute in a type="text" input element, having initial text
appear in this way can be useful in supplying extra information or instructions about

www.htmldog.com/examples/inputfile.html
www.htmldog.com/examples/textarea.html

FORM FIELDS AND BUTTONS: INPUT, TEXTAREA, AND SELECT | 183

the kind of thing the user should type in the text area, and it can help with acces-

sibility (see the “Accessible Forms” section later in this chapter). The disadvantage
of doing this is that it requires more work on the users’ part—selecting the text and
deleting it before entering their own. For that reason, textarea is often used in the
following way, with no content at all:

<textarea name="whatever" rows="10" cols="20"></textarea>

There is a peculiar XHTML anomaly that spoils the structure and presentation sepa-
ration party. Inside the opening textarea tag, the attributes rows and cols, which
determine the size of the text area, are not only valid but required. This will initially
alter the width and height of the text area but you shouldn’t be concerned by this
since you can easily control the width and height with CSS.

select

select form fields present the user with a list (which is usually displayed as a drop-
down menu), from which one or more options can be selected.

Key to their operation, another element is needed—the option element, which
defines each option in the list.

<select name="book">
<option>The Trial</option>
<option>The Outsider</option>
<option>Things Fall Apart</option>
<option>Animal Farm</option>
</select>

3 www.htmldog.com/examples/select].html

In cases such as the example above, when the user submits the form data, the
value sent for the select element is the content of the selected option element (for
example, if the third option was selected above, then “Things Fall Apart” would be
sent as the value for “book”). You can supply different values for each option ele-
ment by using the value attribute inside the opening option tag. When the value
attribute is present, its value will be sent instead of the option element’s content.

. www.htmldog.com/examples/select1.html

184 | CHAPTER 9: FORMS

NEXT, TELL US ABOUT THE BOTTLE.

Name: 1787 Lafite

The name on the label (e.g. Mirassou 2004 Finot Noir)
@ Ne=d help finding label information?

Country: | France v |

Region: | Bordeaux v |

Category: | Red \i|
Blush. Rosé

Diessert, Fortified, Fruit

Sparkling
White

FIGURE 9.5 An alternative to checkboxes or radio buttons, select
elements allow one or more selections from a list.

You can set one option element to be initially selected by using the selected attri-
bute (in the form of selected="selected").

In longer lists with obvious groupings, you can use optgroup elements, which sup-
ply a heading within the list (using the label attribute). Each option group can also

be styled individually, so, if you choose, you can color some groups differently, for
example.

<select name="book">
<optgroup label="Camus">
<option>The Outsider</option>
<option>The Rebel</option>
<option>The Plague</option>
</optgroup>
<optgroup label="Orwell">
<option>Animal Farm</option>
<option>Nineteen Eighty-Four</option>
<option>Down and Out in Paris and London</option>
</optgroup>
</select>

=3 www.htmldog.com/examples/select2.html

www.htmldog.com/examples/select2.html

FIELDSETS | 185

By default, select elements will show one option at a time (and visually “drop
down” the list of options when the element is clicked). You can choose to show
more than one option at a time by setting the size attribute to the number of
options you want. Instead of a drop-down list, browsers will display a sized select
element as a fixed-height box containing the options, which, if all of the options do
not fit in that box, will have a scrollbar to the right.

Also by default, the user can select only one option out of a select list. You can allow
multiple selections by using the multiple attribute (in the form multiple="multiple").
When this is used, the user can select more than one option (usually by holding down
a key, such as Ctrl, with every selection).

<select name="book" size="5" multiple="multiple">
<l-- etc -—>
</select>

0 www.htmldog.com/examples/select3.html

Fieldsets

Imagine you have a long form with a multitude of form fields. Actually, it doesn’t
even need to be that long. Using fieldsets to group together common fields can help
the user straight away by splitting up the form into chunks and making it more man-
ageable. This can be done with the fieldset tag.

Fieldsets can additionally be given a caption/heading with a legend element, which
must directly follow the opening fieldset tag.

<form action="whatever.php">
<fieldset>
<legend>Book Details</legend>
<!-- lots of form fields --> </fieldset>
<fieldset>
<legend>Some Other Details</legend>
<!-- lots of form fields --> </fieldset>
</form>

www.htmldog.com/examples/select3.html

186 | CHAPTER 9: FORMS

By default, a browser will render a fieldset with a border around it and a legend as a
heading breaking the top border. You can choose to turn off the border (border: 0),
but you won’t have much success in styling it any other way—a legend will always
insist on sitting on top of a fieldset border.

Note that all of the bare-bone examples mentioned so far in this chapter contain
fieldsets and legends.

Accessible Forms

The first step towards accessible forms is to have a sensible design: well spaced-
out form fields with labels that are clearly associated with them are going to make
things much easier to use for anyone—and especially someone with any level of
visual impairment.

Grouping items with elements such as optgroup and fieldset will also help in split-
ting up the form and visualizing distinct areas as well as aiding assistive technology.

There are also steps that can be taken that are similar to the accessibility issues
regarding links. Using tabindex and accesskey attributes in the input, textarea,
and select tags, to aid navigation for those who do not use pointing devices such as
a mouse, will achieve the same benefits and drawbacks as discussed in Chapter 3,
“Links”.

As with any element on a page, title attributes can also be used to provide more
information, in this case possibly to explain with greater detail than a label what the
user should enter in a field.

Labels

Every form field element should be accompanied by a label element. It's not partic-
ularly difficult; in fact, every form field should have a textual label explaining what a
form field is for anyway—the label element just formalizes the matter. A label ele-
ment links a label with a form field element, providing an explicit link between the
two rather than relying on visual proximity or adjacency within the HTML code.

STYLING FORM FIELDS | 187

The value of the for attribute associates the label with the form field whose id has
a corresponding value, such as:

<label for="rasputin">Rasputin:</label>
<input name="whatever" id="rasputin" />

No, this isn't a particularly practical example. In most cases, you will probably find
the form field having the same values for both the name and id attributes:

<label for="yourname">Your name:</label>

<input name="yourname" id="yourname" />

<label for="youraddress">Your address:</label>
<textarea name="youraddress" id="youraddress" />

The added benefit of 1abel elements is one of usability, particularly with check-
boxes and radio buttons. When the label is clicked, the focus will be placed on the
associated form field element. In the case of checkboxes and radio buttons, this
means that not only can you check or uncheck the element via the small area of the
element itself, you can also do so by clicking on the label, providing a much larger
(and easier) area to click.

The web pages behind the figures on this page all employ labels. Look at www
.htmldog.com/examples/inputcheckboxes.html, for example, to see them at work.

Styling Form Fields

There's something slightly special about form fields—a browser will actually pull in a
widget that is part of the operating system to make a form field element. The impli-
cations of this are that it’s nigh on impossible to achieve a uniform style across all
browsers (and different OSs) and you are limited as to the extent to which you can
style certain aspects of these form fields.

Because form items come not only from the browser but also from the operating sys-
tem, web pages aren’t the only place that computer users come across radio buttons
and text boxes, etc. They are a familiar element of OS settings and of software pro-
grams that run on them. The borders of form fields are purposefully made to make
the element look three dimensional—text boxes, for example, appearing lowered and
buttons appearing raised, to make them “feel” more tactile—suggesting a user can
interact with them.

www.htmldog.com/examples/inputcheckboxes.html
www.htmldog.com/examples/inputcheckboxes.html

188 | CHAPTER 9: FORMS

And for a similar reason that it is a common suggestion to keep text links blue and
underlined (see Chapter 3) due to users’ familiarity with what that style signifies, it
is also a common suggestion to leave forms in their default style.

At the possible compromise of usability, many do opt to alter the style of form
fields, but there are some limitations.

One example is buttons. Browsers such as Opera and Safari have their own style of
buttons. These browsers actually go as far as ignoring any decoration, such as bor-
ders or colors, that you attempt to apply to them (whereas other browsers, such as
Internet Explorer, will give you free rein).

There are some safe changes that can be made to many form fields. You'll probably
want control over dimensions, rather than relying on the default rendering of those ele-
ments. As with any other box, you can simply use the properties height (particularly
useful for text areas) and width. Changing dimensions is absolutely fine and pretty
much hassle-free because users are quite used to seeing form fields of various sizes.

There are a few other properties you can play with when it comes to forms. There
are no CSS properties specific to forms, but you can apply colors, padding, borders,
and margins to most form elements, just like any other visible element. As you will
see, however, it's not all smooth sailing.

Borders

A quick, easy, and common way to radically change the appearance of form fields
such as text boxes is to take control of their borders, using the border property (see
Chapter 5, “Layout”).

input, textarea { border: 1px solid #ccc }

Some might argue that this thin border is more visually appealing, but it should be
kept in mind that this may be at the detriment of usability. A compromise might be
something like this:

input, textarea {
border: 1px solid;
border-color: #666 #ccc #ccc #666;

STYLING FORM FIELDS | 189

This will apply a 1-px border, overriding the thicker default border, but will keep the
three-dimensional effect users are used to, by applying different shades to the top/
left and bottom/right borders.

When it comes to select menus, you're stuffed as far as customized borders go.
Most browsers won't apply CSS borders to select elements at all. So if your form
includes these stubborn little blighters, you're probably better off leaving the bor-
ders of all of the form field elements well alone, and settling for the default, for the
sake of consistency.

A similar problem arises when it comes to checkboxes and radio buttons. The gray
borders that make up the actual square or circle are also stuck in their ways and
refuse to change.

Fonts

You can specify the font details of text that will appear in text boxes and text areas
just as you can for text in other elements on the web page. The input, textarea,
and select elements will not inherit any font properties, however, and they all have
different initial properties by default—textarea has a Courier font and input has
a sans-serif font, for example. To set things such as color, font-family, and font-
size, then, you need to be explicit.

input, textarea { font: lem arial, Helvetica, sans-serif }

Backgrounds

As with borders, it is questionable whether the backgrounds of form fields and but-
tons should be anything other than the default—white for text boxes and text areas
and gray for buttons. You do have the option of specifying either background colors
or background images for your controls, although many browsers will ignore any
background settings for checkboxes and radio buttons, leaving them white.

A clever technique that could quite possibly aid usability is to change the background
color of form fields such as text boxes and text areas when they are in focus, mak-
ing that field stand out from the others and make it clearer where the user is on the
page. This can be achieved with the dynamic pseudo-class :focus.

input:focus, textarea:focus { background: #eee }

190 | CHAPTER 9: FORMS

This could, of course, be used to change any property of a form field when it has
focus, such as the border.

As explained in Chapter 7, Internet Explorer 6 (and earlier) doesn’t support this, but
can this can easily be fixed with a little Suckerfish JavaScript. See the article at
www.htmldog.com/articles/suckerfish/focus or just see it in action at www.htmldog.
com/articles/suckerfish/focus/example.

www.htmldog.com/articles/suckerfish/focus
www.htmldog.com/articles/suckerfish/focus/example
www.htmldog.com/articles/suckerfish/focus/example

chapter 1 O

Multiple Media

CONJURE AN IMAGE in your mind of someone looking at a web page. Go
on, just do it. Humor me.

Chances are you will be thinking of someone sitting at a desk with a
desktop or laptop computer displaying the web page in all its lavish glory
on a 15- to 30-inch color screen. In all likelihood, the majority of people
looking at your web pages will be in this situation, but there will also be
those who can't use a screen at all, an increasing number of people who
are using all sorts of mobile devices to access the web, and even just
those who simply want to print out a web page.

Web pages can be accessed and consumed in many ways.

The good news is that if you've been building your pages following web
standards then you’ll already be accommodating multiple media and
devices to a much greater degree than if you hadn’t. And with a few little
tricks you can further optimize for different devices.

The purpose of this chapter is to look outside the usual web surfing as
a computer-and-monitor-on-a-desk experience and explore web pages
being consumed in different ways—namely through screen-readers,
mobile devices, and, in particular, print. It is an epilogue, if you will,
demonstrating one of the great benefits of best-practice web standard
XHTML and CSS.

192 | CHAPTER 10: MULTIPLE MEDIA

Screen-Readers

This book has touched on the subject of accessibility a number of times, including
the accommodation of assistive devices, such as screen-readers, that web users
with physical impairments might use.

A screen-reader aids those who cannot see a monitor adequately by reading out
the content and other elements that might otherwise appear on a computer screen,
including web pages.

How do we accommodate screen-readers? Well, we should already be doing it by
using semantic HTML.

If the content in a web page is arranged in a sensible, logical order (rather than
spread all over the place in a multitude of table cells, for example), and paragraphs
are found in ps, unordered lists are found in uls, and tables really are tables, then
it’s all gravy, baby.

These pieces of software are immense, clever things that attempt to decipher the
crappiest of code. With currently supported technologies, there is nothing we can do
to directly target screen-readers, but just by coding in the clearest, proper manner,
our web pages are more likely to be understood as they are meant to be.

Mobile Devices

OK, so mobile devices do have monitors, but they’re itsy-bitsy ones, hardly worthy of
the mighty mantle of a true monitor.

| shouldn’t need to spell out the major differences in mobile screens and your
standard hulk of a desktop monitor, but I will: S.M.A.L.L. S.C.R.E.E.N. Apart from
the screen-size difference, there are also issues with fiddly input (there’s no full-on
QWERTY keyboard here), a greater potential for slower access times than with stan-
dard Internet connections, and a whole plethora of browser compatibility differences
between devices.

So we can, in theory, simply restyle our existing content so that it's more suitable
for the mobile Web. There are two opposing camps, though, who sing and dance
about it in a faux-aggressive manner just like the gangs in Michael Jackson videos

from the 1980s. One camp, weighed down by superfluous buckles, dances for the
honor of restyled universal, multimedia content which, you know, is a lovely theory,
but the other camp, brandishing plastic knives while balancing on roller skates,
sings “You really need to re-purpose your content to better suit the medium.”

Under most circumstances (those websites with anything other than the most mini-
mal content), | think I'd side with the latter camp (although I'd object if they asked
me to wear roller skates). Although the universality side of web standards is just
peachy, reams of content that might be fine on a single standard web page usually
need to be broken down into more bite-sized chunks (or even replaced with more
concentrated content) for smaller-screen devices on which information is consumed
so differently. Having said that, most of us aren’t in the position, or even inclined,
to make the effort to produce separate mobile-friendly content. But we can at least
take the easy step of making things look a little tidier on small-screen devices.

We will look at how to do this later in the chapter, but as for what we might do,
we're going to want to think vertically and forget about multiple columns, tone down
heavy, detailed presentational imagery. It might even be a good idea to hide nones-
sential components (such as repeated navigation).

It's worth keeping in mind that, particularly when it comes to CSS, if you think you've
got problems with cross-browser compatibility between Firefox and IE, it's a whole
new league of diversity in the mobile world, with a multitude of different devices, dif-
ferent operating systems, and different browsers. What looks like Marilyn Monroe on
one phone (with good support) might look like Marilyn Manson on another (with poor
support). So wield your power wisely—consider basic styling, or maybe even simply
relying on the browser style sheet. If your HTML is good (which, now you're on the
final chapter, it can't fail to be, surely), then your web pages should work better on
mobile devices than most other websites out there.

Print

So we've gathered that good HTML is important for accommodating different
devices and media. That’s grand. CSS hasn’t quite had a look-in as yet, thanks to

the aural nature of screen-readers, and the compatibility issues with mobile devices.

PRINT | 193

194 | CHAPTER 10: MULTIPLE MEDIA

When it comes to printing out web pages, there are a number of style changes we
can make to increase suitability to the medium:

Font type: While sans-serif fonts such as Arial, Helvetica, or Verdana are
easier to read onscreen, serif fonts, such as Times New Roman, are easier to
read in print.

Font size: Unlike screen, print is an absolute medium, so we might as well go
with a traditionally print-related unit: points.

Useless components: The likes of navigation bars and forms—anything that
requires user interaction on a functional web page—are pretty useless when
printed out, so there’s no use printing them out at all. This is another rea-
son why “click here” and its kin are so loathsome: When such phrases are
printed out, no matter how hard you try to click, unless it's magic paper and
you're using Harry Potter's mouse, very little is going to happen.

Page width: Ensuring that the content you're printing is liquid, you can
ensure that it will make the best use of space on a page (if it was originally a
thin column on screen, for example), and also make sure it will all fit on one
page (if it was a wide column, which might be too wide for a piece of paper).
There are many arguments here about fixed versus liquid layouts—we're all
used to standard paper sizes (which, it might be worth noting if you were
considering messing with fixed widths, are different in different countries
around the world).

Colors: Detailed and colorful as a flock of macaws though your web page
might be, be prepared to think “magpie” when it comes to print. Black

and white printers are still common (as is the choice to print in black and
white), so it wouldn’t be a good idea to rely on color. It's worth remembering,
though, that white-on-black can also be ink-guzzling and messy.

Background images: By default, most browsers will not print out background
images (and it takes some digging to switch the option on), so, like colors,
don’t rely on them.

APPLYING MEDIA-SPECIFIC CSS | 195

A Sample Print Stylesheet

To take these different approaches into account, a print-specific CSS might look
something like this:

body {
font: 12pt "Times New Roman", Times, serif;
color: black;
background: white;

}

#navigation, form {
display: none;

1

a{
color: black;
text-decoration: none;

}

#content {
margin: 0;
width: 100%;

}

This essentially covers the list of points made previously. The body rule sets the font
to a sensible size in points, and to a serif font. The navigation area and all forms are
completely pulled out of the picture. Links are made to look like surrounding text
(because there’s nothing particularly special about them when printed out). Assuming
we were putting this on top of a fixed layout, the content area is made to fit the full
width, and the margin, which might have been used to accommodate the navigation
area (see Chapter 5, “Layout”), is zeroed.

Applying Media-Specific CSS

Does accommodating all of these media-specific styles mean we have to serve up
two versions of the same website? Not at all (although, as mentioned, we might
choose to when it comes to pages for mobile devices, for example). What we can
do is target certain styles for certain media, leaving the HTML well alone (it should
simply be, after all, meaningful content, and presentation-free).

196 | CHAPTER 10: MULTIPLE MEDIA

“PRINTER FRIENDLY” ALREADY, THANKS

“Click here for a printer-friendly version” is not an uncommon phrase found on
the Web. But you don’t really want to construct two versions of every page, and
you don’t have to. Thanks to the separation of content and presentation, your
existing web pages can be printer friendly as they are.

The media Attribute

If you remember from Chapter 1, “Getting Started,” to apply CSS to our HTML we
can use either the 1ink element:

<link rel="stylesheet" type="text/css" href="core.css" />
Or we can use the style element / @import rule combo:
<style type="text/css">@import url("core.css");</style>

To cut to the chase, we can simply use the media attribute to apply a style sheet to
our HTML when it’s being read by a particular device or intended for a particular
medium. So, if we want one style sheet for the standard desktop scenario, and one
for when the web pages are printed out, we could do:

<link rel="stylesheet" type="text/css" media="screen" href="screen.
css" />

<link rel="stylesheet" type="text/css" media="print" href="print.
css" />

Or:

<style type="text/css" media="screen">@import url("screen.css");
</style>

<style type="text/css" media="print">@import url("print.css");
</style>

And it's as simple as that.

APPLYING MEDIA-SPECIFIC CSS | 197

Note that the values for the media attribute used here are screen and print, but
you can also use handheld (for mobile devices, although not all of them recognize
this, hence one of the compatibility problems). Other options, which aren’t widely
supported, are projection, braille, and speech.

The web professional's online magazine of choice

DIGITAL WEB

nagabo

& the staff
& the contributors
= the site

& advertising

& zearch

wblue flavor

WEE. MOBILE. Ex<F ERIENCE

Advedise with us

Photos provided courtesy of
iStockPhoto.com

Publication managed with the
help of Basecamp

Mewsletter powered by
Campaign Monitor

home | contribute ‘ sUbzctibe | contact about

About Digital Web Magazine

Summary

Digital Web Magazine is an online magazine intended for professional web
designers, web developers and information architects. The magazine consists
prirnarily of work contributed by web authors, as well as by athers who
occasionally delve into the web realm. We put ermphasis on and provide
recognition for contributed work. The Magazine is recognized by nearly all of the
major web design agencies in the industry

Qur Mission

Digital Web Magazine is a non-profit publication created by a world-wide netwark
of volunteers dedicated to producing guality educational and informative material
free-of-charge, to foster the development of the web far the benefit of all

The Process

All of our work goes through a thorough review process, where, once submitted, it
is reviewed by the editorial board. Any significant changes will occur at this point.
Once approved by the editorial board, the article is posted for review by the
contributors and sponsors. Once reviewed, the completed work is then published
on the live site. This typically happens in the middle to end of the work week

The Goal

Through the magazine's contributors and resources, a professional attitude is
corveyed. This includes reallife experiences as well a5 motivational and
inspirational articles and columns. The idea is to encourage designers to be
creative, developers to innovative, 1As to strategize, and overall be well versed in
the web ervironment. It's important that the vision of the magazine carries through
in all of the cantributed wark, and that everyone who contributes shares the same
vision that we (the editorial board) do.

@ iStockphoto™ 24

y

Advertize with us

Copyright & 1994-2006 Digital Wbk Magazine. All Rights Reserved

FIGURE 10.1 www.dlgital-web.com on screen...

www.digital-web.com

198 | CHAPTER 10: MULTIPLE MEDIA

D DIGITRLWES

About Digital Web Magazine

Summary

Digital Web Magazine is an online magazine intended for professional web designers, web
developers and information architects. The magazine consists primarily of work contributed
by web authors, as well as by others who occasionally delve into the web realm We put
emphasis on and provide recognition for contributed worle. The Magazine 15 recognized by
nearly all of the major web design agencies in the industry.

Our Mission

Digital Web Magazine is a non-profit publication created by a world-wide network of
volunteers dedicated to producing quality educational and informative material
free-of-charge, to foster the development of the web for the benefit of all

The Process

Al of our work goes through a thorough review process, where, once submmtted
Feontributefwritel] | it 15 reviewed by the editonal board Jabout/siaffl] . Any sigmficant
changes will occur at this pomt. Once approved by the editonal board, the article 15 posted
for rewiew by the contnbutors and sponsors. Once reviewed, the completed worlt 15 then
published on the live site. This typically happens m the middle to end of the work weels.

The Goal

Through the magazine's contributors fabouticontributors/] and resources, a professional
athtude iz conveyed. This includes real-ife experiences as well as motivational and
inspirational articles and columns. The idea is to encourage designers to be creative,
developers to innovative, LAs to strategize, and overall be well versed in the web
etvironment. It's important that the wision of the magazine carries through in all of the
contributed work, and that everyone who contributes shares the same wsion that we (the
editorial board) do.

Copyright @ 19942006 Digital Web Magazine All Rights Reserved

FIGURE 10.2 ...www.digital-web.com in print,

www.digital-web.com

1985 Chiteau Margaux

roviewe | 4 add to cellar

Average Raling: seees ()
Winery: Ch. Margaus
vintage: 1965

Varietal: |

3w
Country: Eran
Reglon: Bordoaus
Price! §344 200 USD - =
Created by;

Tasting Tags:

Delicious Library
OO A
Catalog sl your media by
scanning barcodes with your Mac's
isaght.

wina. | hava

(i, o A beautdul frud, Last tasted in 2003
Galifornia
WIRE CIUR
h] d

Ha 3

A LIST APART

For people wha make websies

teal
ahzorades

I yau like this wine, yau might alse
Bordna

; Frando:

Geov * “Lapis™ Late Harve

fitd Reserve Tokaji Furmint Cherin Blanc
#* Moresu Blanc (Table . Chiite su Margsus Pasd

wina)

Sauvighes

About Coric'd | Contast Us | Terms of Use | Privacy F

M i

04 Tundra

+ aild to

1985
=
(103 days aga)
had & 3 times, and each tme

ioyously gargacus charry nase, and has

(101 days aga)

& bibliotezaris

FIGURE 10.3 corkd.com on screen...

APPLYING MEDIA-SPECIFIC CSS | 199

200 | CHAPTER 10: MULTIPLE MEDIA

TR |
1985 Chiteau Margaux

1985

+ Average Rating: ####® (2 Reviews)
+ Winery: Ch. Margaux

+ Vintage: 1985

+ Varietal: Unknown

+ Country: France

+ Region: Bordeaux

+ Price: $$5% 200 USD - Buy this wine

+ Created by: Bill ODonnell

+ Tasting Tags: cherry harmonious

Tasting Notes from Cork’d Members

1985 Chiteau Margaux

(103 days ago)E illo rdrdrird

This is my favorite wine, T have had it 3 times,
and sach time was incredible, Tt has a joyously
gorgeous cherry nose, and has beautiful fruit, Last
tasted In 2003,

Tasting Tags:

1985 Chiteau Margaux

(101 days ago)E jbl i

The best bottle of wine on the planet. None
better. Smooth, loaded with character, a stellar
ehnancement to a fine meal that does not
overpower the evening.

Tasting Tags: cherry harmonious

Related Wines

FIGURE 10.4A ...corkd.com in print.

APPLYING MEDIA-SPECIFIC CSS | 201

If vou like this wine, you might also like these highly rated
blend wines from Bordeaux, France:

+ *#& . Chateau la Fleur Haut Brisson 2000
b=

Visit SUB-ZERO's new wine blog: SUB-ZERO: friends of
wine,

Recently Reviewed

+ Montes Alpha - Apaltha Yineyard

+ Wattle Creek 2002 Alexander Valley Shiraz
+ Oak Grove Petite Sirah 2004 Reserve

+ Moreau Blanc (Table Wine)

Top Rated Wines

+ Dry Comal Creek 2003 Unoaked Cabernet Sauvignon
Reserve

+ "La Mebbia" Mebbiolo

+ "Lapis" Late Harvest Tokaji Furmint

+ 1985 Chateau Margaux

Just Recommended

+ Bonny Doon 2004 Cardinal Zin (Screw Cap)

+ Lyeth Meritage 2003
+ Dry Creek Vineyard 2005 Dry Chenin Blanc
+ Geyser Peak 2003 Cabernet Sauvignon

Active Members

+ rballou

+ seancribbs

+ brandlynloibl
+ bibliotecaria

Copyright €& 2006 Tundro

FIGURE 10.4B ...corkd.com in print.

202 | CHAPTER 10: MULTIPLE MEDIA

)

The Best Practice Guide
To ®HTML and CS5

Tutorials
HTML Beginner
C55 Beginner
HTML Intermediate
C55 Intermediate
HTML &dvanced
C55 Advanced

References
HTML Tags
CSS Properties

Articles
Examples
The Book

€SS Training

Horme

About HTML Dog
Link To HTML Dog
Contact HTML Dog
External Links
Site Map

Home References HTML Tags ‘Q Search

HTML Tag: link

Defines a link to an external resource, It is most commonly used to link a €SS file to an
HTML document.

Link must appear within the head element.

= Mone.

hret can be used to specify the target of a link.

® charset can be used to specify the character set of the target of a link.

hreflang can be used to specify the language (in the form of a language code) of
the target of a link. It should only be used when href is also used.

= type can be used to specify the MIME type of the target of a link,
rel can be used to specify the relationship of the target of the link to the current

page.

® rev can be used to specify the relationship of the current page to the target of
the link.

= nedia can be used to specify which media the link is associated to. A walue such
35 screen, print, projection, braille, speech Or all can be used or a
combination in a comma-separated list.

= Common attributes

“ink rel="stylesheet" type="text/css" href="default.css" f>

a abbr acronym address area b base bdo big blockguote
body br button caption cite code col colgroup dd o del dfn div
dl DOCTYPE dt em fieldset form hil, h2, h3, h4, hS, and hé head
html hr i img input ins kbd label legend i link map meta
noscript ohject ol optgroup option p param pre g samp soript
select small span strong style sub sup table thody td
textarea tfoot th thead fitle tr £ ol war

= Applving ©55 (255 Beginner Tutorial)

© Patrick Griffith

2003-2008

FIGURE 10.5 www.htmldog.com on screen...

www.htmldog.com

APPLYING MEDIA-SPECIFIC CSS | 203

<2 LML Tag: link

The Best Practice Guide
To HHTML and 5%

Defines a link to an external resource. It 1s most commonly used to Ink a CS3 file to an HTIML
document.

link must appear within the head element.

equired Attribut

= None.

onal Attributes
® href canbe used to specify the target of a link
B charset can be used to specify the character set of the target of a link.
B hreflangcan be used to specifiy the language {in the form of a language code) of the target of a
Inke. It should only be used when nref 1z also used
type can be used to specify the MIME type of the target of a link.
rel can be used to specify the relatonship of the target of the link to the current page.
rev can be used to specify the relationship of the current page to the target of the lnk.
media can be used to specify which media the link is associated to. A value such as screen, princ,
projection. braille, speechotr all canbe used or a combination in a comma-separated list
Common attributes

Example

<link rel="stylesheet" type="text/oss" href="default.css" />

© Patrick Griffiths, 2003-2006,

FIGURE 10.6 ...www.htmldog.com in print.

www.htmldog.com

204 | CHAPTER 10: MULTIPLE MEDIA

Separate or Cascading

There are two approaches to consider when applying multiple style sheets. You can
have an individual, stand-alone style sheet for each situation (such as one for screen
and one for print), or you can have a central, core style sheet, on top of which another
style sheet, for a certain situation (such as one for everything, and one only for print).
The former is a separated approach; the latter is a cascading approach. While the
examples above show a separated approach, a cascading approach would look some-
thing like this:

<link rel="stylesheet" type="text/css" href="screen.css" />
<link rel="stylesheet" type="text/css" media="print" href="print.
css" />

Because the first 1ink element doesn’t have a media attribute, it will apply that CSS
file to everything. When it comes to print, however, the second link element will
additionally add the print.css file.

Each approach has advantages and disadvantages. Separate may require more origi-
nal rules (such as setting colors or font sizes), whereas cascading might require more
overriding rules (such as making borders or backgrounds invisible).

PAPER-FREE PRINT

Because most modern browsers have a Print preview option (under the File
menu), it is easy to try different things and test-print style sheets without feeling
responsible for mass deforestation (just for the pollution, waste, and depletion of
natural resources necessary to power your computer).

@media
Oh, and before | go | should mention @media.

@media isn't only the name of the greatest web design conference this side of
Wonderland, it's a special CSS selector that enables you to plonk media-specific

IN CONCLUSION | 205

styles directly into an existing style sheet, effectively creating a cascading approach,
but within one file, and placing the media selection in the hands of CSS rather than
via the media attribute in HTML:

@media print {
body {
font: 12pt "Times New Roman", Times, serif;

1
#navigation {
display: none;
1
/* etc. */
1

The media type following “@media” can be a single media type, or a comma-sepa-
rated list. So you could have:

@media print, handheld { /* specific rules here */ }

for example.

In Conclusion
Well, kids, there you have it: Best-practice (X)HTML and CSS in one handy volume.

The next step? Practice. Experiment. Play around. Read more web design and devel-
opment books and weblogs for inspiration. HTML Dog has explained how to use
your tools, but there’s no substitute for working with them and getting a feel for how
they work in practice. The more you use them, the better a web craftsman you will
become.

This page intentionally left blank

appendix A

XHTML Reference

THIS HTML REFERENCE covers the common attributes and tags of XHTML
1.0 Strict.

If it’s not here then there’s a good reason for not using it. A brief overview
of some of the more common “Bad Tags & Rotten Attributes” can be
found at the end of this appendix.

More details of tag and attribute usage can be found in the indicated chap-
ters and the syntax and application of HTML can be found in Chapter 1,
“Getting Started.”

Tags

The possible attributes that can be used in a tag will take one of these formats
(see Chapter 1, “Getting Started,” for more):

e attributename—An optional attribute, such as href in <a href="alaska.

html”>.
e attributename (required)—An attribute that must be used.

e [Core attributes]— A collection of general attributes that can be applied
to most tags—class, id, title, and style.

m class—Used to reference elements. More than one element can
have the same class name. Can be used by CSS to target elements.

= id—Identifies a unique element; that is, only one element on a
page can have any given (case sensitive) id attribute value. Can be
used by CSS to target elements.

208 | APPENDIX A: XHTML REFERENCE

m title—Adds a title to an element.
m style—Used to apply inline styles. Should be avoided if possible.
e [|18n attributes]—Internationlization—dir, lang, and xml:lang.

m dir—The direction of content. Values can be 1tr (left to right, for
languages such as English) or rtl (right to left, for languages such as
Arabic).

= lang and xml:lang—The language of the content of an element, such as
en for English, or de for German.

e [Event attributes]—onclick, ondblclick, onmousedown, onmouseup, onmouseover,
onmousemove, onmouseout, onkeypress, onkeydown, onkeyup. You can read more
about event attributes, and why you should try to avoid using them, in
Chapter 7, “Scripts & Objects.”

e [Common attributes]—The core, 118n, and event attributes combined.

Content describes the valid content of an element—the content that can appear
between the opening and closing tags. For the purposes of this reference, the fol-
lowing terms apply to content:

e Empty—The tag closes itself (such as <tag />).
e None—Doesn’t contain anything (such as <tag></tag>).

e Text—Processed character data (which is text and processed characters such
as <tag>this & that</tag>).

® |nline—a, abbr, acronym, bdo, br, button, cite, code, del, dfn, em, img, input, ins,

kbd, label, map, object, q, samp, select, span, strong, textarea, and var elements.

e Block—address, blockquote, div, dl, form, hl, h2, h3, h4, h5, h6, noscript, ol, p, pre,
script, table, and ul elements.

For example, if the content is described as “Text, inline, or none,” <tag>this</tag>
(text) is valid, <tag>this</tag> (an inline element) is valid, <tag></tag>
(none) is valid but <tag><p>this</p></tag> is not (because p is a block-level ele-
ment). If the content is described as “One or more block,” <tag>this</tag> is

not valid (because it's just text inside), <tag>this</tag> is not valid

(because there’s just an inline element inside), <tag></tag> is not valid (because
there’s nothing inside) but <tag><p>this</p></tag> is (because there's a block-level
element inside).

<ax
Anchor. Primarily used as a hypertext link.

See Chapter 3, “Links.”

Attributes
e [Common attributes]

e href—The target of the link. The value of the href attribute can be any URI,
such as a web page, a directory, a file, or a page anchor.

e charset—The character set of the target of the link.
e type—The MIME type of the target of the link.

e hreflang—The language (in the form of a language code, such as “en” or “fr”)
of the target of the link. It should only be used when href is also used.

e rel—The relationship of the target of the link to the current page.
e rev—The relationship of the current page to the target of the link.
e accesskey—Associates a keyboard shortcut to the element.

e tabindex—Where the element appears in the tab order of the page.

Content
Text, inline (not including a), or none.

Example
<p>Link to a URI</p>
<p>Link to a page anchor</p>

TAGS | 209

210 | APPENDIX A: XHTML REFERENCE

Related Tags
base

<abbr></abbr>

Abbreviation—a shortened form of a word or phrase. HTML is an abbreviation, as is
CSS, for example. Not recognized by IE.

See Chapter 2, “Text.”

Attributes
e [Common attributes]—Note the title attribute is generally used to specify the
whole word or phrase that the abbreviation is referring to.

Content
Text, inline, or none.

Example

<p>Jiminy Locust was trying to learn <abbr title="HyperText Markup
Language">HTML</abbr> but unfortunately he was a <abbr title="Dumb
insect who couldn't comprehend what a computer was, let alone use
one">DIWCCWACWLAUO</abbr>.</p>

Related Tags
acronym

<acronym></acronym>

Acronym—a pronounceable abbreviation that is made up of the initial letters or
parts of words of that phrase. NATO is an example of an acronym, as is UNICEF.

See Chapter 2, “Text.”

TAGS | 21

Attributes
e [Common attributes]—Note the title attribute is generally used to specify the
whole word or phrase that the acronym is referring to.

Content
Text, inline, or none.

Example
<p>Jiminy was launched into space in a <acronym title="National
Aeronautics and Space Administration">NASA</acronym> rocket.</p>

Related Tags
abbr

<addressy></address>

Very specifically intended to mark up the contact details, such as a street address,
for a page, or major part of a page (such as a contact form).

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example

<address>HMTL Dog House
HTML Street
Dogsville
HT16
3ML</address>

Related Tags
[none]

212 | APPENDIX A: XHTML REFERENCE

<area />

A region of a client-side image map. Used in conjunction with map to map links to
certain regions of an image.

Attributes

[Common attributes]

alt (required)—The alternative text of the area, which should be a short
description.

shape—The shape of the area; the value can be rect (rectangular), circle (circu-
lar), poly (polygonal), or default.

coords—The pixel coordinates of the area. For rectangular shapes, this is a
comma-separated list of four values for left, top, right, and bottom (e.g.,
coords="0,0,50,50"). For circular shapes this is a comma-separated list of three
values for left, top, and radius (e.g., coords="50,50,25"). For polygonal shapes,
this is a comma-separated list containing an even number of values, specify-
ing the left and top of each point of the shape (e.g., coords="0,0,25,25,50,25,5
0,100").

href—The target of the area link.

nohref—Used to specify that the area is not a link. It must be used in the for-
mat nohref="nohref”.

accesskey—Associates a keyboard shortcut to the area.

tabindex—Where the area appears in the tab order of the page.

Content
Empty.

Example
<map id ="atlas">

<area shape ="rect" coords ="0,0,115,90" href ="northamerica.

html" alt="North America" />

<area shape ="poly" coords ="113,39,187,21,180,72,141,77,117,86"
href ="europe.hmtl" alt="Europe" />

<area shape ="poly" coords ="119,80,162,82,175,102,183,102,175,1
48,122,146" href ="africa.html" alt="Africa" />
</map>

Related Tags
map

<base />

The base location from which files should be accessed. Relative links within a docu-
ment (such as <a href="someplace.html"... or <img src="someimage.jpg"...) will
become relative to the path specified by the base element.

The base element must go inside the head element.

See Chapter 1, “Getting Started.”

Attributes
e href (required)—The location of the base URI.

Content
Empty.

Example
<base href="/images/tootlepops/" />

If the above example is applied then every file reference in the page will be

in relation to “/images/tootlepops/”. So, for example, <img src="banana.jpg"
alt="banana" /> will actually point to “/images/tootlepops/banana.jpg” and Cucumber will actually point to “/images/
tootlepops/morefruit/cucumber.html”.

Related Tags
a, img

TAGS | 213

214 | APPENDIX A: XHTML REFERENCE

<bdo></bdo>

Bi-directional text. Used to define different directional content to the rest of the
content on a page, such as languages that are read in a different direction from the
default language (Hebrew in an English document, for example).

See Chapter 2, “Text.”

Attributes
e [Core attributes]

e dir (required)—The direction of the text; can be set to Itr (left-to-right) or rtl
(right-to-left).

e xml:lang—The language of the text.

Content
Text, inline, or none.

Example
<bdo dir="rtl">smug desserts</bdo>

Related Tags
[none]

<blockquote></blockquote>
A large, usually standalone, block-level quotation.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

e cite—The location (in the form of a URI) where the quote has come from.

Content
One or more blocks. The content of a blockquote element must be made up of
other block-level elements, which in practice would usually be p elements.

Example

<blockquote title="From HTML Dog, Chapter 2"><p>blockquote is
designed to be for large, stand-alone quotations, whereas q (quote)
is used for smaller inline quotes.</p></blockquote>

Related Tags
q, cite

<body></body>

The main body of an HTML document where all of the content is placed. This is
the stuff that people will see, hear, or otherwise experience when they visit the web
page. Required, funnily enough, and should be used just once. It must start imme-
diately after the closing head tag and end directly before the closing html tag.

See Chapter 1, “Getting Started.”

Attributes
e [Common attributes]

Content
Block or none.

Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>

<title>Uncle Jack's Sea Cow Farm</title>
</head>
<body>

TAGS | 215

216 | APPENDIX A: XHTML REFERENCE

<!-- A whole load of content -->
</body>
</html>

Related Tags
head, html

Line break.

See Chapter 2, “Text.”

Attributes
e [Core attributes]

Content
Empty.

Example
<p>Greetings one and all.
Welcome to the world of line

breaks.</p>

Related Tags
p

<button»</button>

Defines a form button that has content within it.

See Chapter 9, “Forms.”

Attributes
e [Common attributes]

e accesskey—Associates a particular keyboard shortcut to the element.

e tabindex—Where the element appears in the tab order of the page.

e disabled—Disables the button. It must be used in the format
disabled="disabled”.

e name—Associates a name to the button so that it can be processed by a
form-handling script.

e type—The button type. Values can be button (doesn’t do anything), submit
(default; submits the form when the button is selected), or reset (resets the
form).

e value—An initial value that will appear as the button’s label.

Content
Text, block (not including form or fieldset), inline (not including input, select,
textarea, label, or button), or none.

Example
<button>Push my button baby</button>

Related Tags

input, form

<caption></caption>

A caption for a table. This should be placed directly after the opening table tag and
will be displayed above the table by default.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

TAGS | 217

218 | APPENDIX A: XHTML REFERENCE

Example

<table>
<caption>Animal groups</caption>
<!-- etc. -->

</table>

Related Tags
table

<citex</cite>
In-line citation or reference to another source.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example

<p>So I asked <cite>Bob</cite> about quotations and he said <g>I
know as much about quotations as I do about pigeon fancying</g>.
Luckily, I found 'HTML Dog' and it said..</p>

Related Tags
g, blockquote

<code></code>
Code, such as computer code.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<code>norahjonesisbland=true;</code>

Related Tags
samp, var, pre

<col />

Table column. Allows attributes to be applied to a table column. Must be used
within a colgroup element.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

e span—The number of columns the element applies to.

Note: There are other valid attributes (align, valign, char, charoff) but they are
presentational and so CSS should be used instead.

Content
Empty.

Example
<table>
<colgroup>
<col />
<col class="alternative" />

TAGS | 219

220 | APPENDIX A: XHTML REFERENCE

<col />
</colgroup>
<tr>
<th>Cats</th>
<th>Dogs</th>
<th>Lemurs</th>
</tr>
<l-- etc. -—>
</table>

Here, the styles of the class “alternative” will be applied to the second column,
i.e., the second cell in every row.

Related Tags
colgroup, tr

<colgroup></colgroup>

Table column group. Allows attributes to be applied to a set of table columns.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

e span—The number of columns the element applies to.

Note: There are other valid attributes (align, valign, char, charoff) but they are
presentational and so CSS should be used instead.

Content
col elements or none

Example
<table>
<colgroup span="2" class="alternative"></colgroup>

TAGS | 221

<tr>
<th>Cats</th>
<th>Dogs</th>
<th>Lemurs</th>
</tr>
<l-- etc. -->
</table>
Related Tags
col, tr
<dd></dd>

A definition description that is paired with one or more definition terms within a
definition list.

See Chapter 6, “Lists.”

Attributes
e [Common attributes]

Content
Text, block, inline, or none.

Example
<dl>

<dt>Dog</dt>

<dd>A carnivorous mammal of the family Canidae.</dd>
</d1l>

Related Tags
di, dt

222 | APPENDIX A: XHTML REFERENCE

An editorial deletion. Used in conjunction with ins when you want to track changes
in a document.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

e cite—The location (as a URI) of an explanation of why the insertion was
made.

e datetime—When the deletion was made (in the format of YYYYMMDD).

Content
Text, block, inline, or none.

Example

<p>Patrick was walking down the road when he saw a <del datetime="2
0040329">fluffy kitten<ins cite="http://www.htmldog.com">giant
rabid snarling mutant saber-toothed goat</ins>.</p>

Related Tags

1ins

<dfny></dfn>

Definition term.

See Chapter 2, “Text.”

Attributes
e [Common attributes]—Note the title attribute is often used to describe the
definition.

Content
Text, inline, or none.

Example
<p><dfn title="Microsoft web browser">Internet Explorer</dfn> is the
most popular browser used underwater.</p>

Related Tags
abbr

<divy</divy

Division. A block-level element that groups together a multiple HTML elements.
Commonly used to apply CSS to a chunk of a page.

See Chapter 1, “Getting Started,” and Chapter 5, “Layout.”

Attributes
e [Common attributes]

Content
Text, block, inline, or none.

Example
<div id="content">

<hl>How to make a falafel</hl>

<p>Buy a falafel seed and plant it in your garden.</p>
</div>

Related Tags
span

TAGS | 223

224 | APPENDIX A: XHTML REFERENCE

<dl»</dl>

Definition list, which contains terms and descriptions.

See Chapter 6, “Lists.”

Attributes
e [Common attributes]

Content
One or more dt or dd.

Example
<dl>
<dt>Cat</dt>
<dd>A little furry thing that purrs.</dd>
<dt>Dog</dt>
<dd>A big shaggy thing that barks.</dd>
</d1l>

Related Tags
dt, dd, ul

<dt></dt>

A definition term that is paired with one or more definition descriptions within a
definition list.

See Chapter 6, “Lists.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

TAGS | 225

Example
<dl>
<dt>Dog</dt>

<dd>A carnivorous mammal of the family Canidae.</dd>
</dl>

Related Tags
di, dd

<emy>

Emphasis.

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<p>You lookin' at me?</p>

Related Tags
strong

<fieldset></fieldset>
A group of related form items.

See Chapter 9, “Forms.”

Attributes
e [Common attributes]

Content
Text, legend, block, inline, or none.

226 | APPENDIX A: XHTML REFERENCE

Example
<form action="whatever.php">
<fieldset>
<!-- lots of form fields -->
</fieldset>
<fieldset>
<!-- lots of form fields -->
</fieldset>
</form>

Related Tags
form, legend

<formy></form>
A form, allowing the sending of user-input data.

See Chapter 9, “Forms.”

Attributes
e [Common attributes]

e action (required)—Tells the browser where to send the form data when it is
submitted. This can be any URI, the destination of which will be a script
where the form data is initially processed.

e method—Tells the browser how to send the form data. You have two options
here: get or post.

e enctype—The MIME type used to encode the form data. The default value is
application/x-www-form-urlencoded, but this should be multipart/form-data when the
form contains a file input element.

e accept—Which file-types (selected from a file input element) should be
accepted. This is a comma-separated list of MIME types.

e accept-charset—Which character sets should be accepted. This is a comma-
separated list.

Content
One or more block (not including form) or fieldset.

Example

<form action="processor.php" method="post">
<!-- a whole load of form fields -->

</form>

Related Tags
input, fieldset, label

<h1></h1y, <h2></h25, <h3></h3>, <hg></hg>, <h5></hs5>, <h6></h6>

Heading 1 (highest level heading) to Heading 6 (lowest level subheading). Headings
should be used in order and hl used just once.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example

<h1>Headings</h1>

<p>This is all about headings.</p>

<h2>The First Subheading</h2>

<p>The first subheading was called Bob. Bob was a figurine cleaner
in a past life.</p>

<h2>The Second Subheading</h2>

<p>The second subheading was called Labella. She used to be a
chimney sweep.</p>

<h3>Labella's Chimney Sweeping</h3>

<p>Labella can still be persuaded to sweep chimneys for five beans a
chimney.</p>

TAGS | 227

228 | APPENDIX A: XHTML REFERENCE

<h2>The Third Subheading</h2>
<p>The third subheading was called John. He wasn't particularly
interesting.</p>

Related Tags
p

<head></head>

The header of an HTML document where information about the document (rather
than page content) is placed.

You must use this element and it should be used just once. It must start immedi-
ately after the opening html tag and end directly before the opening body tag.

See Chapter 1, “Getting Started.”

Attributes
e [|18n attributesl]

e profile—The location of information about the document. The value can be a
URI or a number of URIs separated by spaces.

Content
Must include single title. Can include base, link, meta, script, and style.

Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>Uncle Jack's Sea Cow Farm</title>
</head>
<body>
<!-- A whole load of content -->
</body>
</html>

Related Tags
body, html, title

<html></html>

The root element that specifies that the content of the document is HTML. It
contains all of the remainder of the page information after the document type
declaration.

See Chapter 1, “Getting Started.”

Attributes
e [|18n attributes]

e xmins (required)—The XML namespace. The value must be http://www.
w3.0rg/1999/xhtml.

Content
One head and one body.

Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:1lang="en">
<head>
<title>Uncle Jack's Sea Cow Farm</title>
</head>
<body>
<!-- A whole load of content -->
</body>
</html>

Related Tags
head, body

TAGS | 229

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

230 | APPENDIX A: XHTML REFERENCE

An image.

See Chapter 4, “Images.”

Attributes

[Common attributes]
src (required)—The location of the image file.

alt (required)—The alternative text of the image. This provides placeholder
text while the image is downloading. It also serves an important accessibility
task: It provides an “alternative” to the image for those who cannot see the
image itself.

longdesc—The location (in the form of a URI) of a description of the image.
An accessibility consideration, used for detailed images containing important
content (such as a map or a chart).

height—The height of the image (in pixels).

width—The width of the image (in pixels).

Note: border can also be used, although using CSS is preferable.

Content
Empty.

Example

Related Tags
[none]

<input />

A form field that can be represented as a text box, password text box, checkbox,
radio button, submit button, reset button, hidden field, image, file selection box, or
general button.

See Chapter 9, “Forms.”

Attributes

[Common attributes]
name—~Provides an identifier for the element’s data.

type—The type of input. Values can be text (default), password, checkbox, radio,

submit, reset, hidden, image, file, Or button.

value—The initial value. It is required when type is set to checkbox or radio. It
should not be used when type is set to file.

checked—For type="checkbox” or type="radio”, sets the initial state to selected.
Used in the format checked="checked”.

maxlength—Sets a limit on the number of characters allowed in a text box.
src—For type="image”, specifies the location of the image file.
alt—For type="image”, specifies the alternative text of the image.

accept—For type="file”, specifies which file types should be accepted. This is
a comma-separated list of MIME types.

disabled—Disables an element. Used in the format disabled="disabled”.

readonly—Specifies that the value of the element cannot be changed. Used in
the format readonly="readonly”.

accesskey—Associates a keyboard shortcut to the element.

tabindex—Specifies where the element appears in the tab order of the page.

Content
Empty.

TAGS | 231

232 | APPENDIX A: XHTML REFERENCE

Example
<form action="somescript.php" />
<p>Do you like pie?</p>
<div>yes <input type="radio" name="pie" value="yes"
checked="checked" /></div>
<div>no <input type="radio" name="pie" value="no" /></div>
<div>Your name: <input type="text" name="yourname" /></div>
<div><input type="image" name="submitimage" src="someimage.gif"
/></div>
</form>

Related Tags
form, textarea, select, label

<ins></ins>

An editorial insertion. Used in conjunction with del when you want to track changes
in a document.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

e cite—The location (as a URI) of an explanation of why the insertion was
made.

e datetime—When the insertion was made (in the format of YYYYMMDD).

Content
Text, block, inline, or none.

Example

<p>Patrick was walking down the road when he saw a <del datetime="2
0040329">fluffy kitten<ins cite="http://www.htmldog.com">giant
rabid snarling mutant saber-toothed goat</ins>.</p>

TAGS | 233

Related Tags
del

<kbd></kbd>

Keyboard. Used to specifically suggest text that should be entered by the user.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<p>Now type <kbd>banana</kbd>.</p>

Related Tags
code

<label></label>
Label for a form element (input, textarea, or select).

See Chapter 9, “Forms.”

Attributes
e [Common attributes]

e for—Associates the label to a form element when the value of for matches the
value of an element’s id attribute.

e accesskey—Associates a keyboard shortcut to the element.

234 | APPENDIX A: XHTML REFERENCE

Content
Text, inline (not including label), or none.

Example
<label for="email">Email address</label><input type="text"
name="email" id="email" />

Related Tags
input, textarea, select

<legend></legend>

Defines a caption for a fieldset. The element must appear directly after the open-
ing fieldset tag.

Attributes
e [Common attributes]

e accesskey—Associates a keyboard shortcut to the element.

Content
One or more text or inline.

Example
<fieldset>
<legend>Book Details</legend>
<!-- lots of form fields -->
</fieldset>

Related Tags
fieldset

<lir</1i>
List item. An item in any ul or ol element.

See Chapter 6, “Lists.”

TAGS | 235

Attributes
e [Common attributes]

Content
Text, block, inline, or none.

Example

This</1i>
That</1i>
The other</1i>

Related Tags
ul, ol

<link />

Defines a link to an external resource such as a CSS file, a shortcut icon, or cus-
tomized navigation.

See Chapter 1, “Getting Started.”

Attributes
e [Common attributes]

e href—The target of the link.

e charset—The character set of the target of the link.
e hreflang—The language of the target of the link.

e type—The MIME type of the target of the link.

e rel—The relationship of the target of the link to the current page. Some uni-
versally understood values are shortcut icon and stylesheet.

e rev—The relationship of the current page to the target of the link.

236 | APPENDIX A: XHTML REFERENCE

e media—Which media the link is associated to. A value such as screen, print,
projection, braille, speech, or all can be used or a combination in a comma-sepa-
rated list.

Content
Empty.

Example

<link rel="stylesheet" type="text/css" title="Some title" href="/
somefile.css" />

<link rel="alternate stylesheet" type="text/css" title="Some
alternative title" href="/someotherfile.css" />

<link rel="shortcut icon" href="/favicon.ico" /><link rel="next"
title="Next page" href="nextpage.html" />

Related Tags
head

<map></map>

A client-side image map. Used in conjunction with area to map links to certain
regions of an image.

Attributes
e [118n attributes]

e [Events attributes]
e id (required)—Uniquely identifies the element.
e class—Used to reference the element with CSS.

e title—A title for the element.

Content
One or more blocks or areas.

TAGS | 237

Example
<map id="atlas">

<area shape ="rect" coords ="0,0,115,90" href ="northamerica.
html" alt="North America" />

<area shape ="poly" coords ="113,39,187,21,180,72,141,77,117,86"
href="europe.hmtl" alt="Europe" />

<area shape ="poly" coords ="119,80,162,82,175,102,183,102,175,1
48,122,146" href ="africa.html" alt="Africa" />
</map>

Related Tags

area

<meta />
Meta information. Used to provide information about the HTML page.

See Chapter 1, “Getting Started.”

Attributes
e [118n attributes]

e content (required)—The meta information itself.

e name—The name given to the meta information. Frequently used values of the
name attribute are “keywords” and “description,” but they can be absolutely
anything.

e http-equiv—Used to define an “equivalent” HTTP header for the document
when name is not used.

e scheme—Specifies how the value of content should be interpreted.

Content
Empty.

238 | APPENDIX A: XHTML REFERENCE

Example

<meta name="keywords" content="fruit, banana, orange, apple,
kumquat, cucumber" />

<meta name="description" content="News, reviews and opinion on all
things fruity." />

<meta name="author" content="The Fruit Farmers Association of
Bujumburra" />

<meta name="date" scheme="Day-Month-Year" content="12-01-99" />

Related Tags
head

<noscript></noscript>

Content to be used when scripts cannot be executed, through browser inadequacies
or user choice.

See Chapter 7, “Scripts & Objects.”

Attributes
e [Common attributes]

Content
Block.

Example

<noscript>

<p>What? No JavaScript? Well what am I supposed to do now? Can't you
get a new browser or something?</p>

</noscript>

Related Tags
script

<object></object>

An embedded multimedia object such as a movie or a sound file.

See Chapter 7, “Scripts & Objects.”

Attributes

[Common attributes]
data—The location of the data for the object in the form of a URL.

type—The content type of the data specified by the data attribute. This basi-
cally lets the browser know what kind of file to expect.

declare—Specifies that the object is a declaration only. Must be used in the
format declare="declare”.

classid—The location of the object in the form of a URL or Windows Registry
location.

codebase—The base location from which relative URLs specified in the classid,
data, and archive attributes should be taken.

codetype—The content type of the object.

archive—Resources relevant to the object. The value should be a URL or a
number of URLs separated by spaces.

standby—Text that will be displayed while the object is loading.

height—The height of the object (in pixels), just like in an img element.
width—The width of the object (in pixels), again, just like in an img element.
name—A name by which the object can be referenced.

tabindex—Where the element appears in the tab order of the page.

Content
Text, block, inline, param, or none.

TAGS | 239

240 | APPENDIX A: XHTML REFERENCE

Example
<object type="blueberry/kumquat" data="whatever.kmq">
<param name="tangy" value="true" />
<param name="segments" value="9" />
<p>You don't have the Kumquat plugin, so you won't get any
juice.</p>
</object>

Related Tags

param

Ordered list, suggesting that each item is in some way lower or higher than the item
before or after it.

See Chapter 6, “Lists.”

Attributes
e [Common attributes]

Content
One or more Ti.

Example

The first thing</1li>
The second thing</1i>
<1i>The third thing</1i>

Related Tags
11, ul, d1

<optgroup></optgroup>

Option group. Defines a group of option elements in a select form field.

See Chapter 9, “Forms.”

Attributes
e [Common attributes]

e Jabel (required)—Assigns a label to the option group.

e disabled—Disables an element. It must be used in the format
disabled="disabled".

Content
One or more option.

Example
<select name="book">
<optgroup label="Camus">
<option>The Outsider</option>
<option>The Rebel</option>
<option>The Plague</option>
</optgroup>
<optgroup label="Orwell">
<option>Animal Farm</option>
<option>Nineteen Eighty-Four</option>
<option>Down and Out in Paris and London</option>
</optgroup>
</select>

Related Tags
option, select

<option></option>
Defines an option of a select form field.

See Chapter 9, “Forms.”

TAGS | 241

242 | APPENDIX A: XHTML REFERENCE

Attributes
e [Common attributes]

e value—A value for the option. If value is not used, the value of the option ele-
ment is set to its contents by default.

e selected—Used to specify that the option is initially selected. It must be used
in the format selected="selected”.

Content
Text

Example

<select name="dogs">
<option>Domestic Dog</option>
<option>Arctic Fox</option>
<option>Maned Wolf</option>
<option>Grey Wolf</option>
<option>Red Fox</option>
<option>Fennec</option>

</select>

Related Tags
select, optgroup

('p)(/'p)
Paragraph.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<p>Greetings, one and all. Welcome to the world of paragraphs.</p>
<p>This will be the second paragraph then..</p>

Related Tags
hl to h6, em, strong

<param />

Parameter of an object. It is often the case that you will want, or need, to pass cer-
tain parameters to the object.

See Chapter 7, “Scripts & Objects.”

Attributes

name (required)—Used so that the element can be referenced and processed
by the object.

value—The value of the parameter. The values of the name and value
attributes are completely dependent on the object. All that param elements do
is tell the object “I want to set this [name] to this [valuel].”

id—Uniquely identifies the element.
type—The content type.

valuetype—The content type of the value attribute. Values can be data, ref, or

object.

Content
Empty.

Example

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=6,0,0,0" width="200" height="300" id="penguin">

<param name="movie" value="flash/penguin.swf" />

TAGS | 243

244 | APPENDIX A: XHTML REFERENCE

<param name="quality" value="high" />
<img src="images/penguin.jpg" width="200" height="300"

alt="Penguin" />
</object>

Related Tags
object

<prex</pres

Preformatted text. Text where the white space (which is normally discarded by other
elements) is as much a part of the content as the rest of the text.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<pre>
<div id="intro"& gt;
&1t;hl>Some heading</hl>
&1t;p>Some paragraph paragraph thing thing thingy.&1lt;/pé>

</div>
</pre>

Related Tags
code

<q></q>
In-line quote. Used for small quotations.

See Chapter 2, “Text.”

TAGS | 245

Attributes
e [Common attributes]

e cite—The location (in the form of a URI) where the quote has come from.

Content
Text, inline, or none.

Example

<p>So I asked Bob about quotations and he said <g>I know as much about
quotations as I do about pigeon fancying</q>. Luckily, I found 'HTML
Dog: The Best-Practice Guide to XHTML and CSS' and it said...</p>

Related Tags
blockquote, cite

<samp></samp>
Sample. Defines sample output, from a computer program, for example.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<p>The result will either be <samp>Kid</samp> or <samp>Koala</
samp>.</p>

Related Tags
code

246 | APPENDIX A: XHTML REFERENCE

<script></script>

Defines a block of script. The tool of choice for inserting or loading a chunk of
JavaScript into an HTML page.

See Chapter 7, “Scripts & Objects.”

Attributes

type (required)—The MIME type of the scripting language is used, such as

text/javascript.
src—An external source (URI) of a script file.
charset—The character set of the element.

defer—Used to specify that the script does not generate any document con-
tent so that the browser doesn’t have to worry about it while the page loads.
Must be used in the format defer="defer”.

Content
Text (script) or none.

Example
The script itself can be placed between the opening and closing script tags,
like so:

<script type="text/javascript">

function satsuma() {

}

alert("SAAAATSUUUUMAAAA! I T™);

</script>

Alternatively, a script can be kept in a separate file and applied like so:

<script type="text/javascript" src="kumquat.js"></script>

Related Tags
noscript

¢selecty></select>

A drop-down list form element; option elements within the select element define
each list item.

See Chapter 9, “Forms.”

Attributes
e [Common attributes]

e name—Used so the value of the element can be processed.

e size—How many items of the list are displayed at any time. The default is 1.

e multiple—Used to specify that more than one item from the list can be
selected. This must be used in the format multiple="multiple”.

e disabled—Disables an element. It must be used in the format
disabled="disabled".

e tabindex— Where the element appears in the tab order of the page.

Content
One or more optgroup or option.

Example

<select name="book">
<option>The Trial</option>
<option>The Outsider</option>
<option>Things Fall Apart</option>
<option>Animal Farm</option>

</select>

Related Tags
option, form, input

TAGS | 247

248 | APPENDIX A: XHTML REFERENCE

An inline element that groups together a chunk of inline HTML, such as single words
or short phrases. Commonly used to apply CSS to a small group of inline HTML
elements.

See Chapter 1, “Getting Started.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<h1>How to make a falafel</h1l>

Related Tags
div

Strong emphasis.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<p>You lookin' at me? You lookin' at me?
</p>

Related Tags
em

<style></style>

Used to define CSS at a page level. This sits inside the head element and its con-
tents are simply a big ol’ list of CSS rules.

See Chapter 1, “Getting Started.”

Attributes
e [118n attributes]

e type (required)—The content type, which is generally text/css.

e media—Which media the styles are associated to. The value can be aural,

braille, embossed, handheld, print, projection, screen, tty (teletype), or tv (television).

You could also have media="all”, but that’s the same as not having any media
attribute at all.

e title—Assigns a title to the styles within the element. This can then be ref-
erenced by browsers or scripting languages to either disable the styles or
switch between alternate style sheets.

Content
Text (CSS).

Example
<head>
<title>Bujumburra</title>
<style type="text/css">
body {
font-family: arial, Helvetica, sans-serif;
color: black
}
/* etc. etc. */
</style>
</head>

TAGS | 249

250 | APPENDIX A: XHTML REFERENCE

Related Tags
head, link

<tabley</table>
A table, used for tabular data.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

e summary—A summary of the data represented in the table.

Note: There are other valid attributes (border, cellpadding, cellspacing, frame,
rules, width) but they are presentational and so CSS should be used instead.

Content

Must have one or more tr or [single thead, single tfoot, or one or more tbody].
Can also have col or colgroup elements and a single caption.

Example
<table summary="The results of an inane quiz">
<tr>
<th>Question</th>
<th>Answer</th>
<th>Correct?</th>
</tr>
<tr>
<td>What is the capital of Burundi?</td>
<td>Bujumburra</td>
<td>Yes</td>
</tr>
<tr>
<td>Which came first, the chicken or the egg?</td>
<td>The chicken</td>
<td>No</td>

</tr>
<l-- etc. -—>
</table>

Related Tags
tr, td

<tbody></tbody>

Table body row group. Can be used more than once, and must be used if thead or
tfoot are used. It must be used within a table element and must follow both thead
and tfoot elements when used.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

Note: There are other valid attributes (align, valign, char, charoff) but they are
presentational and so CSS should be used instead.

Content
One or more tr.

Example
<table>
<thead>
<tr>
<th>Header 1</th>
<th>Header 2</th>
<th>Header 3</th>
</tr>
</thead>
<tfoot>
<tr>
<td>Footer 1</td>
<td>Footer 2</td>

TAGS | 251

252 | APPENDIX A: XHTML REFERENCE

<td>Footer 3</td>
</tr>
</tfoot>
<tbody>
<tr>
<td>Cell data 1</td>
<td>Cell data 2</td>
<td>Cell data 3</td>
</tr>
<tr>
<td>Cell data 4</td>
<td>Cell data 5</td>
<td>Cell data 6</td>
</tr>
<tr>
<td>Cell data 7</td>
<td>Cell data 8</td>
<td>Cell data 9</td>
</tr>
</tbody>
</table>

Related Tags
tfoot, thead, table

<tdy></td>

Table data cell. Must appear within a tr element.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

e colspan—Specifies across how many columns the cell should spread. The
default value is 1.

e rowspan—Specifies across how many rows the cell should spread. The default
value is 1.

e abbr—An abbreviated version of the content of the cell.

e headers—Explicitly specifies which header cells are associated to the cell. The
value is a single or comma-separated list of table cell id values.

e scope—Explicitly specifies that the cell contains header information for the
rest of the row (value row), column (value col), row group (value rowgroup), or
column group (value colgroup) that contains it.

e axis—A category that forms a conceptual axis in n-dimensional space for hier-
archical structuring. The value can be a single name or a comma-separated
list of names.

Note: There are other valid attributes (align, valign, char, charoff) but they are
presentational and so CSS should be used instead.

Content
Text, block, inline, or none.

Example
<table>
<tr>
<td>Cats</td>
<td>Dogs</td>
<td>Lemurs</td>
</tr>
<tr>
<td>Tiger</td>
<td>Grey wolf</td>
<td>Indri</td>
</tr>
<tr>
<td>Cheetah</td>
<td>Cape hunting dog</td>
<td>Sifaka</td>
</tr>
</table>

TAGS | 253

254 | APPENDIX A: XHTML REFERENCE

This example shows a table with three rows with three cells in each row, making it a
3x3 table.

Related Tags
tr, th, table

<textareay</textareas

Creates a multiline text area form field. The initial value of the text area can be
placed in between the opening and closing tags.

See Chapter 9, “Forms.”

Attributes
e [Common attributes]

e rows (required)—The number of viewable rows.
e cols (required)—The number of viewable columns.
e name—Used so that the value of the element can be processed.

e disabled—Disables an element. It must be used in the format
disabled="disabled".

e readonly—Used to specify that the value of the element cannot be changed. It
must be used in the format readonly="readonly”.

e accesskey—Associates a keyboard shortcut to the element.

e tabindex—Where the element appears in the tab order of the page.

Content
Text.

Example
<form action="somescript.php" />
<p>Your address</p>

<div><textarea name="address" cols="30" rows="4"></textarea></
div>

<div><input type="submit" /></div>
</form>

Related Tags
input, form

<tfoot></tfoot>

Table footer row group. Along with thead and tbody, tfoot can be used to group
a series of rows. tfoot can be used just once within a table element and must
appear before a tbody element.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

Note: There are other valid attributes (align, valign, char, charoff) but they are
presentational and so CSS should be used instead.

Content
One or more tr.

Example
<table>
<thead>
<tr>
<th>Header 1</th>
<th>Header 2</th>
<th>Header 3</th>
</tr>
</thead>
<tfoot>
<tr>

TAGS | 255

256 | APPENDIX A: XHTML REFERENCE

<td>Footer 1</td>
<td>Footer 2</td>
<td>Footer 3</td>
</tr>
</tfoot>
<tbody>
<tr>
<td>Cell data 1</td>
<td>Cell data 2</td>
<td>Cell data 3</td>
</tr>
<tr>
<td>Cell data 4</td>
<td>Cell data 5</td>
<td>Cell data 6</td>
</tr>
<tr>
<td>Cell data 7</td>
<td>Cell data 8</td>
<td>Cell data 9</td>
</tr>
</tbody>
</table>

Related Tags
thead, tbody, table

<th></th>
Table header cell. Must appear within a tr element.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

e colspan—Specifies across how many columns the cell should spread. The
default value is 1.

e rowspan—Specifies across how many rows the cell should spread. The default
value is 1.

e abbr—An abbreviated version of the content of the cell.

e headers—Explicitly specifies which header cells are associated to the cell. The
value is a single or comma-separated list of table cell id values.

e scope—Explicitly specifies that the cell contains header information for the
rest of the row (value row), column (value col), row group (value rowgroup), or
column group (value colgroup) that contains it.

e axis—A category that forms a conceptual axis in n-dimensional space for hier-
archical structuring. The value can be a single name or a comma-separated
list of names.

Note: There are other valid attributes (align, valign, char, charoff) but they are
presentational and so CSS should be used instead.

Content
Text, block, inline, or none.

Example

<tr>
<th>Cats</th>
<th>Dogs</th>
<th>Lemurs</th>

</tr>

Table header cells can also be used as headers for rows, for example if you had
your table structured like this:

<table>
<tr>
<th>Cats</th>
<td>Tiger</td>
<td>Cheetah</td>
</tr>
<tr>

TAGS | 257

258 | APPENDIX A: XHTML REFERENCE

<th>Dogs</th>
<td>Grey wolf</td>
<td>Cape hunting dog</td>

</tr>

<tr>
<th>Lemurs</th>
<td>Indri</td>
<td>Sifaka</td>

</tr>

</table>

Related Tags
td, tr, table

<theads</thead>

Table header row group. Along with tfoot and tbody, thead can be used to group
a series of rows. thead can be used just once within a table element and should
appear before a tfoot and tbody element.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

Note: There are other valid attributes (align, valign, char, charoff) but they are
presentational and so CSS should be used instead.

Content
One or more tr.

Example
<table>
<thead>
<tr>
<td>Header 1</td>

<td>Header 2</td>
<td>Header 3</td>

</tr>
</thead>
<tfoot>
<tr>

<td>Footer 1</td>
<td>Footer 2</td>
<td>Footer 3</td>

</tr>
</tfoot>
<tbody>
<tr>

<td>Cell 1</td>
<td>Cell 2</td>
<td>Cell 3</td>

</tr>

<l-- etc. -—>
</tbody>
</table>

Related Tags
tfoot, tbody, table

<titley></title>

This simply gives a title to the HTML document. It will appear as the title of the
browser window, and is also used for bookmarks. It is required and must be placed

within the head element.

See Chapter 1, “Getting Started.”

Attributes
e [118n attributes]

TAGS | 259

260 | APPENDIX A: XHTML REFERENCE

Content
Text.

Example
<head>

<title>Uncle Jack's Sea Cow Farm</title>
</head>

Related Tags
head

<tr</tr>
Table row. Must appear within a table element.

See Chapter 8, “Tables.”

Attributes
e [Common attributes]

Note: There are other valid attributes (align, valign, char, charoff) but they are
presentational and so CSS should be used instead.

Content
One or more td or th.

Example
<table>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Correct?</th>
</tr>
<tr>

<td>What is the capital of Burundi?</td>

<td>Bujumburra</td>
<td>Yes</td>
</tr>

<tr>

<td>Which came first, the chicken or the egg?</td>

<td>The chicken</td>
<td>No</td>
</tr>
<l-- etc. -->
</table>

Related Tags
td, table

Unordered list. As its name implies, an unordered list is for non-ordinal items, in
which any item could feel just as at home at one point in the list as any other.

See Chapter 6, “Lists.”

Attributes
e [Common attributes]

Content
One or more T1i.

Example

This</1i>
That</1i>
The Other</1i>

Related Tags
1i, ol, dl1

TAGS | 261

262 | APPENDIX A: XHTML REFERENCE

<vary</var>

A variable in computer code.

See Chapter 2, “Text.”

Attributes
e [Common attributes]

Content
Text, inline, or none.

Example
<code><var>norahjonesisbland</var>=true;</code>

Related Tags
code

Bad Tags

In ancient texts you may read of the twisted mythology of tags that that have no
place in the real world. Bad Tags usually come down to tags that are presentational,
which is the realm of CSS, or simply not valid, leading to unreliable code that can’t
be guaranteed to work on different or future browsers. See this book’s Introduction
for more on why such tags should be avoided.

You can also read a more detailed explanation of why the following are Bad Tags at
www.htmldog.com/guides/htmlintermediate/badtags.

e applet—Embed a Java applet. Not valid. Use object tag.

e bh—Bold. A valid tag, but purely presentational. Use CSS font-weight for bold
or HTML em or strong tags for emphasis.

e bhig—Big text. A valid tag, but purely presentational. Use CSS font-size.

www.htmldog.com/guides/htmlintermediate/badtags

BAD TAGS | 263

blink—Blinking text. Not valid. Use JavaScript or CSS text-decoration: blink if
you really insist on inflicting this.

center—Center. Not valid. Use CSS margin: 0 auto or text-align: center.
embed—Embed a multimedia object. Use object tag.

font—Font name and size. Not valid. Use CSS font, font-family, and

font-size.

frame, frameset, iframe—Frames. Not valid. Framesets can be established
with a different XHTML Doctype (see Chapter 1, “Getting Started”). Future
standards (Xframes) dictate that frames should be completely separate from
HTML, reducing usability and accessibility problems. CSS position: fixed can
replicate some features of frames. JavaScript could also be used.

hr—Horizontal rule. A valid tag, but presentational. Perhaps the most con-
troversial of these Bad Tags, many argue that this has a genuine role as a
divider of content. As it belongs to the XHTML Presentation Module and as
its name implies, however, to truly separate structure and presentation, hr
should be avoided. CSS borders can replicate horizontal rules, as can back-
ground images.

i—Italic. A valid tag, but purely presentational. Use CSS font-style for italics
or HTML em or strong tags for emphasis.

layer—Layer. Not valid. Use HTML div and CSS position.
marquee—Scrolling text. Not valid. Use JavaScript, Flash, or other plugin.
small—Small text. A valid tag, but purely presentational. Use CSS font-size.

sub—Subscript. A valid tag, but purely presentational. Use CSS vertical-align or

position.

sup—Superscript. A valid tag, but purely presentational. Use CSS vertical-align
Or position.

tt—Teletype. A valid tag, but purely presentational. Use CSS font courier or
similar for appearance or HTML code tag for computer code.

u—Underline. Not valid. Use CSS text-decoration.

264 | APPENDIX A: XHTML REFERENCE

Rotten Attributes

Rotten attributes are the evil little disciples of the Bad Tags. Like the Bad Tags,
their crime is usually one of presentation or downright invalidity.

e align—Aligns content. Not valid. As with the center tag, CSS text-align should
be used.

e background—Background image. Not valid. Use CSS background-image.

® link, alink, and vlink—Non-visited, active, and visited link colors. Not valid. Use
CSS :link, :active, and :visited pseudo-classes.

® marginwidth, marginheight, topmargin, and leftmargin—Page margins (used in the
opening body tag). Not valid. Use CSS margin or padding.

e name—Used to assign an identifying name to an element. Invalid for all ele-
ments apart from button, input, select, textarea, meta, param, and object. Use the
id attribute.

e target—Specifies where a link should open (such as in a new window). Not
valid. JavaScript is a possible alternative, but the use of this should be ques-
tioned due to the adverse effect it has on usability and accessibility.

e text and bgcolor—Text color and background color. Not valid. Use CSS color
and background-color.

appendix B

CSS Reference

THIS CSS REFERENCE covers the pseudo-classes, pseudo-elements,
at-rules, and properties of CSS 2 revision 1 (with the exception of aural
CSS).

Specific chapters are highlighted for cross-referencing when there is relevant
extended information (which there will be for all but the less-practical aspects,
such as those that are not widely supported). Browser support issues are also
noted where relevant. “Not supported by IE” (Internet Explorer) comes up a
fair bit, and relates to Internet Explorer versions 6 and earlier (IE 7 has fixed
many of its predecessors’ shortcomings).

More on the syntax and application of CSS can be found in Chapter 1,
“Getting Started.”

Pseudo-classes

:active

Applies declarations to a box that is being activated by the user (such as while
the mouse button is pressed). IE 6 and below will only apply :active to a
elements.

See Chapter 3, “Links.”

Example
a:active { color: red; }

266 | APPENDIX B: CSS REFERENCE

See Also
:link, :visited, :hover, :focus

first

Applies declarations to the first page in paged media.

Example
@page:first { margin-top: 1@cm; }

See Also
‘left, :right

:first-child

Applies declarations to the box of the first instance of an element inside another
element. Not supported by IE 6 or below.

Example
p em:first-child { font-weight: bold; }

See Also
[nonel]

:focus

Applies declarations to a box that receives focus. Not supported by IE.

See Chapter 3, “Links,” and Chapter 9, “Forms.”

Example
input:focus { background-color: yellow; }

PSEUDO-CLASSES | 267

See Also
:link, :visted, :hover, :active

:hover

Applies declarations when a box that is hovered over by the cursor. IE 6 and below
will only apply :hover to a elements.

See Chapter 3, “Links.”

Example
a:hover { text-decoration: none; }

See Also
:link, :visited, :active, :focus

:lang

Applies declarations to the boxes of elements of a specific language, which is speci-
fied in brackets following the selector. Not supported by any major browser.

Example
html:lang(fr) { color: green; }

See Also
[nonel]

:left

Applies declarations to left pages in paged media.

Example
@page:left { margin-left: 5cm; }

268 | APPENDIX B: CSS REFERENCE

See Also
:right, :first

:link

Applies declarations to the box of a link, the destination of which has not been
visited.

See Chapter 3, “Links.”

Example
a:link { color: #009; }

See Also

:visited, :hover, :active, :focus

:right

Applies declarations to right pages in print media.

Example
@page:right { margin-right: 5cm; }

See Also
:left, :first

:visited
Applies declarations to the box of a link, the destination of which has been visited.

See Chapter 3, “Links.”

Example
a:visited { color: #999 }

PSEUDO-ELEMENTS | 269

See Also
:link, :hover, :active, :focus

Pseudo-elements

:after

Inserts generated content after the displayed content of a box. Not supported by IE.

Example
p:after { content: url(pieface.jpg); }

See Also
:before

:before

Inserts generated content before the displayed content of a box. Not supported by IE.

Example
h2:before { content: "Chapter: "; }

See Also
:after

:first-letter

Applies declarations to the first character of text in a box. Not supported by IE/Win 5.0.

Example
p:first-letter { font-size: 2em; }

270 | APPENDIX B: CSS REFERENCE

See Also
:first-line

:first-line

Applies the declarations to the first visible line of text in a box. Not supported by
IE/Win 5.0.

Example
p:first-line { font-weight: bold; }

See Also
:first-letter

At-rules

@import
Imports rules from another style sheet into the current one.

The value can be a string or a string wrapped by url() and can be followed by a
comma-separated list of the media types that the import should apply to. If no
media types are stated, the rule will apply to all.

See Chapter 1, “Getting Started.”

Example
@import url("poodle.css") print;

@media
Applies rules to a particular medium.

See Chapter 10, “Multiple Media.”

PROPERTIES | 271

Example

@media print {

body { font: 1@pt "times new roman), times, serif; }
#navigation { display: none; }

@page

Applies declarations to paged media.

Example
@page { margin: 3cm; }

Properties

The possible values for a property will be take one of these formats (see Chapter 1,
“Getting Started”):

valuename—A straightforward keyword, such as block in display: block.

valuename (default)—When a value is marked as “default” it means that this
is the value that all XHTML elements will initially have.

[length]—Such as 10em, 300px, 12pt, 3cm, etc.
[percentage]—Such as 40%.

[colorl—A hex value (such as #f00, or #ff0000), an RGB value (such as
rgb(255, 0, 0)) or a color name (aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, orange, purple, red, silver, teal, white, and yellow. You can also use the
value transparent.

[URIT—File location such as url(thingy.jpg) or url(http://www.whatever.com/whatever/

whatever.gif).

[number]—Such as 3 or 235 (no unit).

http://www.whatever.com/whatever/whatever.gif
http://www.whatever.com/whatever/whatever.gif

272 | APPENDIX B: CSS REFERENCE

The ever-prolific but seldom used inherit value explicitly sets the same computed
value as that of its parent element. Many properties inherit values by default (the
ones you would normally want to be inherited), meaning the use of inherit is rarely
necessary.

background

A “shorthand” property that combines background-color, background-image,
background-repeat, background-attachment, and background-position in one
handy property.

See Chapter 4, “Images.”

Possible values
[A combination of some or all of the values for background-color, background-
image, background-repeat, background-attachment, and background-position.]

Example
body {
background: #0084c7 url(images/sifakabg.gif) top left fixed no-repeat;

Related Properties
background-color, background-image

background-attachment
Determines whether the background image should scroll with the content of a box.

See Chapter 4, “Images.”

Possible values

® inherit

PROPERTIES | 273

e scroll (default)—The background image will scroll when the rest of the content
is scrolled.

e fixed—The background image will remain stationary when the rest of the con-
tent is scrolled.

Example

body {
background-image: url(images/sifakabg.gif);
background-attachment: fixed;

}

This example will plaster the “sifakabg.gif” image across the page and rather
than the pattern scrolling, as it would do on a long page with lots of content in
it, it will stick right where it is, with the rest of the page scrolling over the top.

Related Properties
background, background-image

background-color
Background color.

See Chapter 2, “Text,” and Chapter 4, “Images.”

Possible values

® inherit
e iransparent (default)

e [color]

Example

body {
font—family: "Times New Roman) Times, serif;
color: white;

274 | APPENDIX B: CSS REFERENCE

background-color: black;

}
blockquote {
background-color: #efe;

Related Properties
color, background

background-image

The background image of a box. The background-image property can be used to
specify an image to be used as a background for just about any element box—from
the page body to a paragraph to a link. Use it on its own, and the image will magi-
cally tile itself across the background of the element starting from the top left cor-
ner and repeating horizontally and vertically, filling the box.

See Chapter 4, “Images.”

Possible values

® inherit
e none (default)

e [URI]

Example
body {
background-image: url(images/sifakabg.gif);

Related Properties
color, background

background-position

PROPERTIES | 275

The position of a background image within its box. Background images will start
at the top left corner of a box by default, but you can change this with the back-

ground-position property, which is particularly useful when background-repeat is

set to no-repeat, for example.

Possible values

inherit

top

right

bottom

left
[percentagel
[lengthl]

[combination]—Such as background-position: top left;

Example
body {

background-image: url(images/sifakabg.gif);
background-repeat: no-repeat;
background-position: center;

Related Properties
background-image, background

background-repeat

How a background image will repeat itself. You don’t have to have the background
image tiled (repeated over and over, horizontally and vertically as space allows)—you

276 | APPENDIX B: CSS REFERENCE

can decide whether you want it to repeat just horizontally, just vertically, or not at all
by using the background-repeat property. Those areas of the element that are not
taken up by the background image will be transparent, unless coupled with a back-
ground color, which would paint the rest of the area that color.

See Chapter 4, “Images.”

Possible values

® inherit.

e repeat (default)—Tiled, repeating the image both horizontally and vertically.
e repeat-x—Repeating the image horizontally only.

e repeat-y—Repeating the image vertically only.

e no-repeat—Not repeating the image at all, showing just one instance.

Example

body {
background-image: url(images/sifakabg.gif);
background-repeat: no-repeat;

Related Properties
background, background-image

border, border-top, border-right, border-bottom, border-left
The width, style, and color of a box’s border.

See Chapter 5, “Layout.”

Possible values
[Combination of border-width, border-style, border-color]

PROPERTIES | 277

Example
.this {
border-top: 1px solid black;
}
.that {
border: lem dotted #fcO;
}

Related Properties
border-width, border-style, border-color, padding, margin

border-collapse

Specifies which border model should be used in a table.

See Chapter 8, “Tables.”

Possible values

® inherit
e separate (default)—"“Separated borders” model: Cells have their own borders.

e collapse—"“Collapsing borders” model: Cells share adjacent borders. This
pushes all of the cells together, leaving only the wider of the two adjacent
borders visible.

Example
table {
border-collapse: collapse;
}
td {
border: 1px solid #ccc;
}

Related Properties
border-spacing

278 | APPENDIX B: CSS REFERENCE

border-color, border-top-color, border-right-color, border-
bottom-color, border-left-color

The color of a box’s border.

See Chapter 5, “Layout.”

Possible values

® inherit
® transparent
e [color]

The value for border-color can comprise one value (uniform border color), two
values ([top/bottom][left/right]), three values ([top][left/rightl[bottom]), or four
values ([topl[right][bottom][left]).

Example
.flamingo {
border-right-color: red;
}
#peach {
border-color: #cc3421;
}
#tree {
border-color: #fc@ blue #cf0;

Related Properties
border

border-spacing

Specifies the spacing between the borders of adjacent table cells in the “separated
borders” model. Not supported by IE.

PROPERTIES | 279

Possible values

® inherit
e [length]

border-spacing can have one value such as 5px to specify spacing on all sides
or two values such as 5px 1@px to specify the horizontal (first value) and vertical
(second value) spacing.

Example

table {
border-collapse: separate;
border-spacing: 0.25em @.5em;

1
td {
border: 1px solid #ccc;

Related properties

border-collapse

border-style, border-top-style, border-right-style, border-
bottom-style, border-left-style

The style of a box’s border.

See Chapter 5, “Layout.”

Possible values

® inherit

e none—No border.

280 | APPENDIX B: CSS REFERENCE

e dotted—A series of dots (IE 6 and below will display this as dashes if the bor-
der width is one pixel).

e dashed—A series of dashes.
e solid—A solid line.
e double—Two solid lines.

e groove—Patterned border that is supposed to represent a carved groove
(opposite of ridge). Renders differently in different browsers.

e ridge—Patterned border that is supposed to represent an embossed ridge
(opposite of groove). Renders differently in different browsers.

e inset—Patterned border that is supposed to represent an inset depression
(opposite of outset). Renders differently in different browsers.

e outset—Patterned border that is supposed to represent an outset extrusion
(opposite of inset). Renders differently in different browsers.

e hidden—Used with tables. Same as none, except where there are conflicting
borders. Not supported by IE.

The value for border-style can comprise one value (uniform border style), two
values ([top/bottom][left/right]), three values ([topl[left/rightl[bottom]), or
four values ([topllrightl[bottom][left]).

Example
.curtains {
border-right-style: solid;
}
.blinds {
border-style: dotted dashed;

Related properties
border

PROPERTIES | 281

border-width, border-top-width, border-right-width, border-
bottom-width, border-left-width

The width of a box’s border.

See Chapter 5, “Layout.”

Possible values

® inherit

® thin

® medium
® thick

e [length]

Value for border-width can comprise one value (uniform border width), two values
([top/bottom][left/right]), three values ([topl[left/rightl[bottom]), or four values ([top]l
right][bottom][left]).

Example
#bender {
border-left-width: 2px;
}
#fry {
border-width: 1px 4px 1px 100px;

Related properties
border

bottom

For absolutely positioned boxes, specifies how far from the bottom of the containing
positioned box (or, if there isn't one, the page) the box should be.

282 | APPENDIX B: CSS REFERENCE

For relatively positioned boxes, specifies how far from the bottom a box should be
shifted.

See Chapter 5, “Layout.”

Possible values

® inherit
e auto (default)
e [percentage]

e [length]

Example

#justaveit {
position: absolute;
bottom: 2em;

Related properties
top, right, left, position

caption-side

Specifies on which side of the table a table-caption box (such as the default style of
the HTML caption element) will be placed. Not supported by IE.

See Chapter 8, “Tables.”

Possible values

® inherit

e top (default)
® right

® bottom

® |eft

PROPERTIES | 283

Example
caption {
caption-side: right;

Related properties
[none]

clear
Specifies how a box is placed after a floated box.

See Chapter 5, “Layout.”

Possible values

® inherit

e none (default)—Floated boxes are not cleared; content will flow around them.
e left—Clears all left-floated boxes and places the box underneath.

e right—~Clears all right-floated boxes and places the box underneath.

e hoth—~Clears all floated boxes and places the box underneath.

Example
#canoe { float: left; }
#fish { clear: left; }

Related properties
float

clip
Specifies the area of an absolutely positioned box that should be visible.

See Chapter b, “Layout.”

284 | APPENDIX B: CSS REFERENCE

Possible values

® inherit.
e auto (default)—No clipping.

e rect([top] [right] [bottom] [left])—Clips to the shape of a rectangle defined by
the four coordinates (offset from the top left corner).

Example
#spod {
position: absolute;
clip: rect(1@px 50px 30px 10px);

Related properties
overflow

color

Foreground color. This applies most commonly to text, but also to borders.

See Chapter 1, “Getting Started.”

Possible values

® inherit

e [color]

Example
body {
font—family: "Times New Roman) Times, serif;
color: white;
background-color: black;
}
code {
color: #900;

PROPERTIES | 285

Related properties
background-color

content

Generated content that can be displayed before or after a box. Used in conjunction
with the :before and :after pseudo-elements. Not widely supported.

Possible values

® inherit

e normal—No generated content.

® open-quote—The content defined by the quotes property (* “ * by default).

e close-quote—The content also defined by the quotes property (* “ * by default).

e no-open-quote—NoO opening quote is applied, but the nesting order is
maintained.

e no-close-quote—No closing quote is applied, but the nesting order is
maintained.

o attr([attribute namel)—The value of attribute [attribute name] in the HTML
tag that is the subject of the selector.

e counter(fnamel, [stylel)—The current value of counter [name]. The optional
[style] is a value equivalent to that of list-style-type.

e counters([name], [string], [style])—The current values of all counters called
[namel, separated by [string]. The optional [style] is a value equivalent to that
of list-style-type.

e [URI]

e [string]

286 | APPENDIX B: CSS REFERENCE

Example
p:before { content: url(images/quote.gif); }
p:after { content: close-quote; }

li:before { content: ">>"; }

Related properties
:before and :after pseudo-elements, quotes

counter-increment

Increments a named counter. Not widely supported.

Possible values

® inherit
e none (default)

e [name] [number]—The name of the counter optionally followed by the number
that the counter should be increased by (default is 1). This can be a chain of
names and numbers such as chapter section 2, which will increase chapter
by 1 and section by 2.

Example

h3:before {
content: counter(section);
counter-increment: section;

Related properties
counter-reset, content

counter-reset

Resets a named counter. Not widely supported.

PROPERTIES | 287

Possible values

® inherit
e none (default)

e [name] [number]—The name of the counter optionally followed by the number
that the counter resets to (default is 0). This can be a chain of names and
numbers such as chapter 2 section 1 subsection, which will reset chapter to
2, section to 1, and subsection to O.

Example

h2:before {
content: counter(chapter);
counter-increment: chapter;
counter-reset: section;

Related properties
counter-increment, content

cursor

The appearance of the cursor when it passes over a box.

Possible values

® inherit

e auto (default)—Changes depending on the situation (a pointer when the cur-
sor is over a link; an I-beam when it is over text, etc.).

e crosshair—A thin plus-sign-like cross.
e default—The platform’s default cursor; usually an arrow.

e help—Used to indicate that there is help for the element that is being hov-
ered over; usually a question mark.

288 | APPENDIX B: CSS REFERENCE

e move—Used to indicate something that should be moved; usually a four-way
arrow.

e n-resize—Used to indicate something that should be scaled upwards; usually
an up/down arrow.

e ne-resize—Used to indicate something that should be scaled upwards and to
the right; usually a diagonal arrow.

e c-resize—Used to indicate something that should be moved to the right; usu-
ally a left/right arrow.

e se-resize—Used to indicate something that should be moved downwards and
to the right; usually a diagonal arrow.

e sresize—Used to indicate something that should be moved downwards; usu-
ally an up/down arrow.

e sw-resize—Used to indicate something that should be moved downwards and
to the left; usually a diagonal arrow.

e w-resize—Used to indicate something that should be moved to the left; usu-
ally a left/right arrow.

e nw-resize—Used to indicate something that should be moved upwards and to
the left; usually a diagonal arrow.

e text—Used to indicate text; usually an I-beam.
e pointer—Used to indicate a link; usually a pointing hand.

e progress—Used to indicate that the program is processing something, but that
it can still be interacted with; usually an arrow coupled with a timer.

e wait—Used to indicate that the user should wait while a program is busy;
usually a timer.

e [URI]—A custom-made image.

Example

acronym { cursor: help; }

PROPERTIES | 289

Related properties
:hover pseudo class

direction

The writing direction and the direction of embeddings and overrides (used in con-
junction with unicode-bidi).

Possible values

® inherit
e |ir (default)—Left to right

e rt|—Right to left

Example
p { direction: rtl; }

Related properties
unicode-bidi

display
The display type of a box.

See Chapter 5, “Layout.”

Possible values

® inherit
e none—No display at all
® inline—An inline box

e block—A block box

290 | APPENDIX B: CSS REFERENCE

e inline-block—Effectively a block box inside an inline box. IE will only apply
inline-block to elements that are traditionally inline such as span or a but not
p or div. Loopy.

e run-in—Either an inline or block box, depending on the context. If a block
box follows the run-in box, the run-in box becomes the first inline box of that
block box; otherwise, it becomes a block box itself. Crazy. Not widely sup-
ported.

e |ist-item—The equivalent of the default styling of the HTML Ii element.

e table—A block-level table; the equivalent of the default styling of the HTML
table element. Not supported by IE.

e inline-table—An inline-level table. Not supported by IE.

e table-row-group—T he equivalent of the default styling of the HTML tbody ele-
ment. Not supported by IE.

e table-header-group—The equivalent of the default styling of the HTML thead ele-
ment. Not supported by IE.

e table-footer-group—The equivalent of the default styling of the HTML tfoot ele-
ment. Not supported by IE.

e table-ron—The equivalent of the default styling of the HTML tr element. Not
supported by IE.

e table-column-group—The equivalent of the default styling of the HTML colgroup
element. Not supported by IE.

e table-column—The equivalent of the default styling of the HTML col element.
Not supported by IE.

e table-cell—The equivalent of the default styling of the HTML td or th elements.
Not supported by IE.

e table-caption—The equivalent of the default styling of the HTML caption ele-
ment. Not supported by IE.

PROPERTIES | 291

Example

.darwin { display: block; }
.lamarck { display: none; }
.linnaeus { display: table; }

Related properties
visibility

empty-cells
Whether empty table cells should be shown or not.

See Chapter 8, “Tables.”

Possible values

® inherit
e show (default)

® hide

Example
table { empty-cells: hide }

Related properties
[none]

float

Specifies whether a fixed-width box should float, shifting it to the right or left with
surrounding content flowing around it.

See Chapter 5, “Layout.”

Possible values

® inherit

292 | APPENDIX B: CSS REFERENCE

e |eft—Floats the box to the left with surrounding content flowing to the right.
e right—Floats the box to the right with surrounding content flowing to the left.

® none (default).

Example

#boondoggle {
width: 20em;
float: left;

Related properties
clear, position

font

Font characteristics combining italics, small-caps, boldness, size, line-height, and
font name in one property.

See Chapter 2, “Text.”

Possible values

[Combination of font-style, font-variant, font-weight, font-size, line-
height, and font-family] Taking the format of font: font-style font-variant font-
weight font-size/line-height font-family

Only the font-size and font-family parts are required.

Example
p{

font: itdlic small-caps bold 0.8em/1.5 aridl, Helvetica, sans-serif;
}
booba {

font: bold 3.5em aridl, helvetica, sans-serif;

PROPERTIES | 293

Related properties
font-style, font-variant, font-weight, font-size, line-height, font-family

font-family

Which font you want your text to appear in.

See Chapter 2, “Text.”

Possible values

® inherit

e [Font name]l—Note that if a font name consists of more than one word it
should be stated in quotation marks.

e [multiple font names separated by commas]—You can specify more than one
font by separating them with commas. By doing this, if a browser cannot find
the first choice font, it will move on to the next in the list.

Example
body { font-family: "Times New Roman"; }
h2 { font-family: arial, helvetica, sans-serif; }

Related properties
font, font-size

font-size
The size of the font.

See Chapter 2, “Text.”

Possible values

® inherit

® larger

294 | APPENDIX B: CSS REFERENCE

® smaller

® xx-small

® x-small

® small

e medium (default)
® Jarge

® x-large

® xx-large

e [percentage]

e [length]

Example
body { font-size: 80%; }
hl { font-size: 2em; }

Related properties
font, font-family

font-style
[talic and oblique characteristics of a font.

See Chapter 2, “Text.”

Possible values

® inherit
® normal
® jtalic

® oblique

PROPERTIES | 295

Example
hl, h2 { font-style: itdlic }

Related properties
font, font-weight

font-variant
Used to convert lowercase letters to small uppercase letters.

See Chapter 2, “Text.”

Possible values

® inherit
e normal (default)

® small-caps

Example

p { font-variant: small-caps; }

Related properties
font, text-transform

font-weight

The boldness of a font. Values 100 to 900 are supposed to be different scales of
boldness, but in practice browsers tend not to reliably differentiate between nine
separate levels, which is why the value of font-weight tends to be simply either
normal or bold.

See Chapter 2, “Text.”

Possible values

® inherit

296 | APPENDIX B: CSS REFERENCE

® 100, 200, 300, 400, 500, 600, 700, 800, or 900
e normal—Equivalent of 400

® bolder

e hold—Equivalent of 700

® Jighter

Example
.chubbybaby { font-weight: bold }

Related properties
font, font-style

height

Specifies the height of the content area of a block box (not including padding, bor-
der, or margin).

See Chapter 5, “Layout.”

Possible values

® inherit

auto (default)

[percentagel]

[length]

Example

#monstermunch {
padding: 1lem;
height: 3em;

PROPERTIES | 297

Related properties
width, min-height, max-height

left

For absolutely positioned boxes, specifies how far from the left of the containing
positioned box (or the page, if there isn’t one) the box should be.

For relatively positioned boxes, specifies how far from the left a box should be
shifted.

See Chapter 5, “Layout.”

Possible values

® inherit
e auto (default)
e [percentage]

e [length]

Example

#sold {
position: absolute;
left: 150px;

Related properties
right, top, bottom, position

letter-spacing
The spacing between letters.

See Chapter 2, “Text.”

298 | APPENDIX B: CSS REFERENCE

Possible values

® inherit
e normal (default)

e [Length]

Example
p { letter-spacing: 0.3em }

Related properties

word-spacing

line-height
The height of a line of text.

See Chapter 2, “Text.”

Possible values

® inherit
e normal—Usually about 1.2 times the height of the font.

e [number]—A multiple of the font size (so, in effect, the same as a value
specified in ems).

e [percentage]—A percentage of the font size.

e [length]

Example
p { line-height: 1.5 }

Related properties
font, font-size

PROPERTIES | 299

list-style
A shorthand property used to specify the styles of a list item marker.

See Chapter 6, “Lists.”

Possible values
[combination of list-style-type, list-style-position, and list-style-imagel

Example

ul { list-style: none url(images/arrow.gif) inside; }
ul ul { list-style: disc outside; }

#nav ul { list-style: none; }

Related properties
list-style-type, list-style-position, list-style-image

list-style-image
Specifies an image to be used as the list marker for a list item.

See Chapter 6, “Lists.”

Possible values

® inherit
e none (default)

e [URI]

Example
ul { list-style-image: url(images/arrow.gif); }

Related properties
list-style, list-style-type

300 | APPENDIX B: CSS REFERENCE

list-style-position

Specifies whether the list marker for a list item should appear inside or outside the
list-item box. By default, lists will place the marker of each list item outside the
content box, which means that when it comes to styling list items with backgrounds
or borders, for example, the bullet will aloofly hang about outside. You can pull the
marker inside the content box to deal with such circumstances by setting the Tlist-
style-position property to inside.

See Chapter 6, “Lists.”

Possible values

® inherit
e outside (default)

® inside

Example
ul { list-style-position: inside; }

Related properties
list-style

list-style-type

The type of the list marker bullet or numbering system within a list. These can be
applied to any (non-definition) lists regardless of whether they are ordered or unordered.

See Chapter 6, “Lists.”

Possible values

® inherit

e none—No list marker. This can be handy when you want to present lists that
don’t appear in main content and don’t need to stand out from the crowd
with markers—as in navigation bars, for example.

PROPERTIES | 301

e disc—Solid circle

e circle—Hollow circle

e square—Solid square

e decimal (default for ol elements)—1, 2, 3, 4, etc.

e decimal-leading-zero—01, 02, 03 ... 10, 11, etc. Not supported by IE.
® ower-roman—i, ii, iii, iv, etc.

e upper-roman—I, II, III, 1V, etc.

e Jower-greek—QGreek characters. Not supported by IE.

e |ower-latin—a, b, ¢, d, etc. Not supported by IE.

e upper-latin—A, B, C, D, etc. Not supported by IE.

e armenian—Armenian characters. Not widely supported.

e georgian—G@Georgian characters. Not widely supported.

Example

ol { list-style-type: lower-roman; }
ul { list-style-type: square; }

ul ul { list-style-type: circle; }

This example applies lower-roman numerals to ordered lists, square bullets to
top-level unordered lists, and circular bullets to all unordered lists nested within
unordered lists.

Related properties
list-style, list-style-image

margin, margin-top, margin-right, margin-bottom, margin-left
The margin of a box.

See Chapter 5, “Layout.”

302 | APPENDIX B: CSS REFERENCE

Possible values

® inherit
e [percentage]
e [length]

e The value for margin can comprise one value (uniform margin), two values
([top/bottom][left/right]), three values ([top][left/right][bottom]), or four values
([top]lrightl[bottom][left]).

Example
#badger {
margin-top: 3em;
}
#wolverine {
margin: lem 100px;
1
#pineapple {
margin: lem 3em 1@px O.5em;

Related properties
padding, border

max-height
The maximum height of a box. Not supported by IE 6 or below.

Possible values

® inherit
® none
e [percentage]

e [length]

PROPERTIES | 303

Example
#bing { max-height: 300px; }

Related properties
min-height, height, max-width, min-width

max-width

The maximum width of a box. Not supported by IE 6 or below.

Possible values

® inherit
® none
e [percentage]

e [length]

Example
#bong { max-width: 780px; }

Related properties
min-width, width, max-height, min-height

min-height

The minimum height of a box. Not supported by IE 6 or below (where height acts
the same).

Possible values

® inherit
® none
e [percentage]

e [length]

304 | APPENDIX B: CSS REFERENCE

Example
#beng { min-height: 5em; }

Related properties
max-height, height, min-width, max-width

min-width

The minimum width of a box. Not supported by IE 6 or below.

Possible values
e inherit

* none
e [percentage]

e [length]

Example
#bung { min-width: 300px; }

Related properties
max-width, width, min-height, max-height

orphans

Used in paged media. The minimum number of lines in an element that must be
left at the bottom of a page. Not widely supported.

Possible values

® inherit

e [number]—(default is 2)

PROPERTIES | 305

Example
p { orphans: 3; }

Related properties

widows

outline

Specifies an outline for a box. Rendered around the outside of the border and on
top of the box, so it does not affect its size or position. The value can combine out-
line-color, outline-style, and outline-width. Not supported by IE/Win or Mozilla
at the time of writing.

Possible values
[Combines outline-color, outline-style, and outline-width]

Example
.ferrari { outline: 3px solid red; }

Related properties
outline-color, outline-style, outline-width, border

outline-color

The color of an outline. Not supported by IE/Win or Mozilla at the time of writing.

Possible values
® invert

e [color]

Example
.redbull { outline-color: blue; }

306 | APPENDIX B: CSS REFERENCE

Related properties
outline, border-color

outline-style

The style of an outline. Not supported by IE/Win or Mozilla at the time of writing.

Possible values
e none—No border.

® dotted—A series of dots.

e dashed—A series of dashes.
e solid—A solid line.

e double—Two solid lines.

e groove—Patterned border that is supposed to represent a carved groove
(opposite of ridge).

e ridge—Patterned border that is supposed to represent an embossed ridge
(opposite of groove).

e inset—Patterned border that is supposed to represent an inset depression
(opposite of outset).

e outset—Patterned border that is supposed to represent an outset extrusion
(opposite of inset).

e hidden—Used with tables. Same as none, except where there are conflicting
borders.

Example
.honda { outline-style: solid; }

Related properties
outline, border-style

PROPERTIES | 307

outline-width

The width of an outline. Not supported by IE/Win or Mozilla at the time of writing.

Possible values
® thin

® medium
® thick

e [length]

Example
.williams { outline-width: 0.5em; }

Related properties
outline, border-width

overflow

Specifies what should happen to the overflow—the portions of content that do not
fit inside the box.

See Chapter b5, “Layout.”

Possible values

® inherit
e yisible (default)—Overflow spills over the box.

e hidden—Any content that doesn't fit in the box will be “clipped”—cut off at
the edge of the box.

e scroll—Scrollbars appear, allowing the user to scroll the box to see the overflow.

e auto—Scrollbars will only be displayed if they are necessary (whereas overflow:
scroll will show them even if the content of the box fits without any overflow).

308 | APPENDIX B: CSS REFERENCE

Example

#content {
width: 500px;
height: 4em;
overflow: hidden;

Related properties
clip, height, width

padding, padding-top, padding-right, padding-bottom,
padding-left

The padding of a box.

See Chapter 5, “Layout.”

Possible values

® inherit
e [percentage]
e [length]

Value for padding can comprise one value (uniform padding), two values
([top/bottom][left/right]), three values ([topllleft/rightl[bottom]), or four values
([top]lrightl[bottom][left]).

Example
#flump { padding: 1@em 2em; }

Related properties
border, margin

PROPERTIES | 309

page-break-after

Used in paged media. How a page break should be applied after a block box, forc-
ing a new page box. Not widely supported.

Possible values

® inherit

e auto (default)—Does not force or forbid a page break.
e always—Always forces a page break.

e avid—Forbids a page break.

e |eft—Forces either one or two page breaks so that the next page is a
left page.

e right—Forces either one or two page breaks so that the next page is a
right page.

Example
#europe { page-break-after: left; }

Related properties
page-break-before, page-break-inside

page-break-before

Used in paged media. How a page break should be applied before a block box, forc-
ing a new page box. Not widely supported.

Possible values

® inherit
e auto (default)—Does not force or forbid a page break.

e always—Always forces a page break.

310 | APPENDIX B: CSS REFERENCE

e avoid—Forbids a page break.
e |eft—Forces either one or two page breaks so that the next page is a left page.

e right—Forces either one or two page breaks so that the next page is a
right page.

Example
#antarctica { page-break-before: dalways; }

Related properties
page-break-after, page-break-inside

page-break-inside

Used in paged media. How a page break should be applied inside a block box, forc-
ing a new page box. Not widely supported.

Possible values

® inherit
e auto (default)—Does not force or forbid a page break.

e avoid—Forbids a page break.

Example
#africa { page-break-inside: avoid; }

Related properties

page-break-after, page-break-before

position
How a box should be positioned.

See Chapter 5, “Layout.”

PROPERTIES | 311

Possible values

® inherit
e static (default)—Follows the normal flow.

e relative—Relative position that is offset from the initial normal position in the
flow.

e absolute—Taken out of the flow and offset according to the containing block.

e fixed—The same as absolute only the fixed box will remain fixed in the view-
port and not scroll (or will appear on every printed page). Not supported by
IE 6 or below.

Example
#oogabooga {
position: relative;

left: lem;
top: lem;

}

Related properties

float, top, bottom, left, right

quotes

What form the quotes of the open-quote and close-quote values of the content
property should take. Not supported by IE.

Possible values

® inherit
® none

e [string] [string]—The first string is that used for the open-quote value and sec-
ond string for the close-quote value.

312 | APPENDIX B: CSS REFERENCE

e [string] pairs can be repeated, whereby each consecutive pair will represent
the quotes for the next level of embedding. For example, ““* ““* “* “4 will
specify that quotes within a quoted element will be surrounded by * charac-

ters. Not widely supported.

Example
q { quotes: """ ™' }
Related properties
content

right

For absolutely positioned boxes, specifies how far from the right of the containing
positioned box (or the page, if there isn’'t one) the box should be.

For relatively positioned boxes, specifies how far from the right a box should be
shifted.

See Chapter b, “Layout.”

Possible values

® inherit
e auto (default)
e [percentage]

e [length]

Example

#tolet {
position: relative;
right: 2em;

PROPERTIES | 313

Related properties
left, top, bottom, position

table-layout

Used to specify the algorithm that should be used to render a fixed-width table. Not
supported by early versions of IE.

See Chapter 8, “Tables.”

Possible values

® inherit
e auto (default)—Column widths are determined by the cells in all rows.

e fixed—Column widths are determined by the cells in the first row only. Table
renders faster.

Example

table {
table-layout: fixed;
width: 100%;

Related properties
width

text-align
Horizontally aligns text within a block box, such as a default paragraph.

See Chapter 2, “Text.”

Possible values

® inherit

® |eft

314 | APPENDIX B: CSS REFERENCE

® right
® center

® justify

Example
p { text-align: right; }

Related properties
[none]

text-decoration
Underline, over-line, or strikethrough.

See Chapter 2, “Text.”

Possible values

® inherit

® none

e underline—Line underneath text.

e overline—Line above text.

e line-through—Line through the middle of text.

e blink—Not supported by IE, or used by sensible people.

Example
ins { text-decoration: none }

Related properties

border

PROPERTIES | 315

text-indent

The indentation of the first line of text in a block box.

See Chapter 2, “Text.”

Possible values

® inherit
e [Percentage]

e [Length]

Example
p { text-indent: lem }

Related properties
[none]

text-transform
Converts the case of letters.

See Chapter 2, “Text.”

Possible values

® inherit

e none (default)

e capitalize—Capitalizes the first letter of every word.
e uppercase—Forces every letter into uppercase.

e |owercase—Forces every letter into lowercase.

Example
hl, h2 { text-transform: uppercase }

316 | APPENDIX B: CSS REFERENCE

Related properties
font-variant

top

For absolutely positioned boxes, specifies how far from the top of the containing
positioned box (or the page, if there isn’t one) the box should be.

For relatively positioned boxes, specifies how far from the top a box should be
shifted.

See Chapter 5, “Layout.”

Possible values

® inherit

auto (default)

[percentagel]

[length]

Example

#forsale {
position: absolute;
top: 25%;

Related properties
bottom, left, right, position

unicode-bidi

Used in conjunction with direction, specifies how text is mapped to the Unicode
algorithm, determining its directionality.

PROPERTIES | 317

Possible values

® inherit

e normal (default)—No additional embedding. Applies the implicit Unicode char-
acter order.

e embed—OQOpens an additional level of embedding within the algorithm whilst
maintaining the implicit Unicode character order.

e bidi-override—Opens an additional level of embedding and overrides the
Unicode character ordering, reordering the sequence to the value of the direc-
tion property.

Example
.hebrew {
direction: rtl;

unicode-bidi: bidi-override;

Related properties
direction

vertical-align

The vertical position of an inline box, or content within a table cell. Values such as
top, middle, bottom, text-top and text-bottom rely on the styled box being smaller
than some or all of the text in the rest of the line (otherwise it will already be at all
of those positions).

See Chapter 2, “Text”.

Possible values

® inherit

e [length]—Raises (positive value) or lowers (negative value) the box; O is equal
to the baseline.

318 | APPENDIX B: CSS REFERENCE

e [percentage]—Raises (positive value) or lowers (negative value) the box with
regard the value of line-height; 0% is equal to the baseline, 100% is one
times the line-height, etc.

e baseline (default)—Aligns the baseline of a box with the baseline of its parent
box.

e sub—Lowers the baseline to subscript level.

e super—Raises the baseline to superscript level.

e top—Aligns to the top of the line.

e text-top—Aligns to the top of the font of the parent box.

e middle—Aligns to the middle of the font of the parent box.
e bottom—Aligns to the bottom of the line.

e text-bottom—Aligns to the bottom of the font of the parent box.

Example

.power {
font-size: 80%;
vertical-align: super;

Related properties
line-height

visibility
Makes a box is visible or invisible.

See Chapter 5, “Layout.”

Possible values

® inherit

e vyisible (default)

PROPERTIES | 319

e hidden—Nothing will be visible, but unlike display: none, the box and its dimen-
sions will still affect layout.

e collapse—Same as hidden except when applied to rows, row groups, columns,
or column group boxes, when it should have the same visual representation
of display: none whilst maintaining the cell heights or widths that will affect
row heights and column widths. At the time of writing, those browsers that
“support” this value (IE does not) actually render collapse the same as hidden
no matter what the situation.

Example
p.flummox { visibility: hidden; }

Related properties
display

white-space

How the white space (such as new lines or a sequence of spaces) inside a box
should be handled.

See Chapter 2, “Text.”

Possible values

® inherit
e normal—White space is collapsed and lines are broken to fit.

e pre—White space is maintained and lines are not broken. The equivalent of
the default styling of the HTML pre element.

e nowrap—White space is collapsed but lines are not broken.

e pre-wrap—White space is maintained but lines are broken. Not recognized by
IE.

e pre-line—White space is collapsed except for new lines, which are not. Lines
are also broken to fit. Not recognized by IE.

320 | APPENDIX B: CSS REFERENCE

Example
pre { white-space: normal; }
#pow { white-space: pre; }

Related properties
[none]

widows

Used in paged media. The minimum number of lines in a box that must be left at
the top of a page. Not widely supported.

Possible values

® inherit

e [number]—(default is 2)

Example
p { widows: 4; }

Related properties
orphans

width

The width of the content area of a block box (not including padding, border, or
margin).

See Chapter 5, “Layout.”

Possible values

® inherit

e auto (default)

PROPERTIES | 321

e [percentage]

e [length]

Example
#jelly { width: 212px; }

Related properties
height, min-width, max-width

word-spacing
The spacing between words.

See Chapter 2, “Text.”

Possible values

® inherit
e normal (default)

e [Length]

Example
p{

letter-spacing: 0.3em;
word-spacing: lem;

Related properties
letter-spacing

322 | APPENDIX B: CSS REFERENCE

z-index

The order of positioned boxes in the z-axis. The higher the number, the higher that
box will be in the stack (so if, for example, one box overlaps another, the box with
the higher z-index will be on top of the other box).

See Chapter 5, “Layout.”

Possible values

® inherit
e auto (default)

e [number]

Example

div { position: absolute; }
#kidkoala { z-index: 2 }
#mrscruff { z-index: 1 }

Related properties
position

A
<a> tag, 62-63, 209-210
<abbr></abbr> tag, 210
abbreviations, structuring text, 43-44
absolute positioning, 108-109
absolute units, 26
layout, 113-114
styling text, 51-52
access keys
link accessibility, 68
major problems, 68-70
accessibility
forms, 186-187
links
access keys, 68-70
adjacent links, 71-72
pop-ups, 71
skipping navigation, 72-74
tabbing, 67-68
titles, 70-71
tables

cell to header association, 165-167

header to cell association, 165
summaries, 164
<acronym></acronym> tag, 210-211
acronyms, structuring text, 43-44
:active pseudo-class, 265-266
active states, 67
<address></address> tag, 47, 211
addresses, structuring text, 47
adjacent links, accessibility, 71-72
adjacent sibling selectors, 24
:after pseudo-elements, 269
algorithms, fixed layout, 169-170
alignment, text styling
horizontal, 58
vertical, 59

ancestors, 3

anchor elements, links, 62-64

<area /> tag, 212-213

at-rules
@import, 270
@media, 270-271
@page, 271
selectors, 23

attributes
<a> tag, 209-210
<abbr></abbr> tag, 210
<acronym></acronym> tag, 211
<address /></address/> tag, 211
<area /> tag, 212
bad, 264
<base /> tag, 213
<bdo></bdo> tag, 214
<blockquote></blockquote> tag, 214-215
<body></body> tag, 215

 tag, 216
<button></button> tag, 216-217
<caption></caption> tag, 217
<cite></cite> tag, 218
<code></code> tag, 218-219
<col /> tag, 219-220
<colgroup></colgroup> tag, 220
<dd></dd> tag, 221
 tag, 222
<dfn></dfn> tag, 222-223
<div></div> tag, 223
<dl></dl> tag, 224
<dt></dt> tag, 224-225
 tag, 225
<fieldset></fieldset> tag, 225-226
<form></form> tag, 226
formats, 207-208
<hl></h1> tag, 227-228

324 | INDEX

attributes (continued)

<h2></h2> tag, 227-228
<h3></h3> tag, 227-228
<h4></h4> tag, 227-228
<h5></h5> tag, 227-228
<h6></h6> tag, 227-228
<head></head> tag, 228
HTML, 2-4

core, 4-7

i18n, 7
<html></html> tag, 229
 tag, 230
<input /> tag, 231-232
<ins></ins> tag, 232-233
<kbd></kbd> tag, 233
<label></label> tag, 233-234
<legend></1legend> tag, 234
</1i> tag, 234-235
<link> tag, 235-236
<map></map> tag, 236
<meta /> tag, 237
<noscript></noscript> tag, 238
<object></object> tag, 239-240
 tag, 240
<optgroup></optgroup> tag, 241
<option></option> tag, 241-242
<p></p> tag, 242-243
<param /> tag, 243-244
<pre></pre> tag, 244
<q></qg> tag, 244-245
<samp></samp> tag, 245
<script></script> tag, 246
<select></select> tag, 247
selectors, 24
 tag, 248
 tag, 248-249
<style></style> tag, 249-250
<table></table> tag, 250-251
<tbody></tbody> tag, 251-252
<td></td> tag, 252-254

<textarea></textarea> tag, 254-255

<tfoot></tfoot> tag, 255-256
<th></th> tag, 256-258
<thead></thead> tag, 258-259
<title></title> tag, 259-260
<tr></tr> tag, 260-261

 tag, 261-262
author style sheets, 28

B
 tag, 40
background-attachment property, 83, 272-273
background-color property, 50, 85, 273-274
background-image property, 82-87, 274
background images, 82-88
background-position property, 83, 275
background property, 272
background-repeat property, 83, 275-276
backgrounds, styling form fields, 189-190
bad tags, 262-264
<base /> tag, 14-15, 213
base text colors, 50
<bdo></bdo> tag, 47, 214
:before pseudo-element, 269
bidirectional text, structuring text, 47
block elements, 4, 175-182, 208
block value, 105
<blockquote></blockquote> tag, 42, 214-215
<body></body> tag, 215-216
body element, 8, 12-16
bold, styling text, 54-55
border-bottom-color property, 278
border-bottom property, 276-277
border-bottom-style property, 279-280
border-bottom-width property, 281
border-collapse property, 277
border-color property, 278
border-left-color property, 278
border-left property, 276-277
border-left-style property, 279-280
border-left-width property, 281
border property, 167-169, 188-189, 276-
277
border-right-color property, 278
border-right property, 276-277
border-right-style property, 279-280
border-right-width property, 281
border-spacing property, 278-279
border-style property, 279-280
border-top-color property, 278
border-top property, 276-277
border-top-style property, 279-280

border-top-width property, 281
border-width property, 281
borders
box model layout, 98-100
collapsing tables, 167-169
images, img element, 77
styling form fields, 188-189
bottom property, 281-282
Box Model Hack, 102-103
box model layout, 94
borders, 98-100
Box Model Hack, 102-103
margins, 100-103
padding, 97-98
width and height, 95-97

 tag, 216
browsers
displaying fonts, 49
style sheets, 28-29
bullets, lists, 142-144
button attribute, input element, 182
<button></button> tag, 216-217

C

<caption></caption> tag, 217-218
caption-side property, 161, 282-283
captions, tables, 160-161
Cascading Style Sheets. See CSS
cells, tables
cell to header association, 165-167
empty, 170
header to cell association, 165
merging, 158-160
checkbox attribute, input element, 177-178
child
nested elements, 3
selectors, 24
cite attribute, structuring text, 42
<cite></cite> tag, 218
structuring text, 42
class attribute, 4-7, 19
tag application, 207
class selectors, 18-20
classid attribute, 152
clear property, 283
client-side image maps, 82

clip

INDEX | 325

property, 97, 283-284

<code></code> tag, 44-46, 218-219
codebase attribute, 152

<col

/> tag, 219-220

<colgroup></colgroup> tag, 220-221

colla
color

psing margins, 100-102

styling text, 50
values, 27-28

color property, 50, 284-285
colspan attribute, 158-160
columns

page layouts, 120-122
floating, 123
multiple, 124-126
solid navigation, 122-123
tables, targeting, 162-164

comments

CSS, 33
HTML, 13

computer code, structuring text, 44-46
content

<a> tag, 209-210
<abbr></abbr> tag, 210
<acronym></acronym> tag, 211
<address></address> tag, 211
<area /> tag, 212

<base /> tag, 213

<bdo></bdo> tag, 214
<blockquote></blockquote> tag, 214-215
<body></body> tag, 215

 tag, 216
<button></button> tag, 217
<caption></caption> tag, 217-218
<cite></cite> tag, 218
<code></code> tag, 218-219
<col /> tag, 219-220
<colgroup></colgroup> tag, 220
<dd></dd> tag, 221

 tag, 222
<dfn></dfn> tag, 222-223
<div></div> tag, 223

<dl></dl> tag, 224

<dt></dt> tag, 224-225
elements, 208

 tag, 225

326 | INDEX

content (continued)
<fieldset></fieldset> tag, 225-226
<form></form> tag, 227
<hl></h1> tag, 227-228
<h2></h2> tag, 227-228
<h3></h3> tag, 227-228
<h4></h4> tag, 227-228
<h5></h5> tag, 227-228
<h6></h6> tag, 227-228
<head></head> tag, 228
HTML, xix—xxiii
<html></html> tag, 229
 tag, 230
<input /> tag, 231-232
<ins></ins> tag, 232-233
<kbd></kbd> tag, 233
<label></label> tag, 233-234
<legend></legend> tag, 234
</1i> tag, 234-235
<link> tag, 235-236
<map></map> tag, 236
<meta /> tag, 237
<noscript></noscript> tag, 238
<object></object> tag, 239-240
</0l> tag, 240
<optgroup></optgroup> tag, 241
<option></option> tag, 241-242
<p></p> tag, 242-243
<param /> tag, 243-244
<pre></pre> tag, 244
<g></q> tag, 244-245
<samp></samp> tag, 245
<script></script> tag, 246
<select></select> tag, 247
 tag, 248
 tag, 248-249
<style></style> tag, 249-250
<table></table> tag, 250-251
<tbody></tbody> tag, 251-252
<td></td> tag, 252-254
<textarea></textarea> tag, 254-255
<tfoot></tfoot> tag, 255-256
<th></th> tag, 256-258
<thead></thead> tag, 258-259
<title></title> tag, 259-260
<tr></tr> tag, 260-261

types
HTML document declaration, 11-12
server-side scripting language, 12
 tag, 261-262
content property, 285-286
core attributes, 4-7, 207-208
Cork’d website, 172
counter-increment property, 286
counter-reset property, 286-287
CSS (Cascading Style Sheets), xix—xxiii, xvii.
See also style sheets
applying to HTML
embedded CSS, 32-33
external CSS, 34
inline CSS, 32
at-rules, 23, 270-271. See also at-rules
comments, 33
images
background, 82-87
decorative effects, 86-87
text graphical alternatives, 88-92
multiple media specific styles, 195-196
media attribute, 196-203
style sheet application, 204-205
page layouts, 119-120
creating columns, 120-126
footers, 127-130
headers, 126-127
properties, 23-25, 271-322. See also
properties
pseudo-classes, 20, 265-269. See also
pseudo-classes
pseudo-elements, 20, 269-270. See also
pseudo-elements
rules, 17
selectors, 18-23
values, 25-31
CSS Zen Garden website, 89, 118
cursor property, 287-288

D

datetime attribute, 46

<dd></dd> tag, 221

declarations, HTML document structure, 8-12
definition lists, 138-139

 tag, 46, 222

deletions, structuring text, 46-47

descendants, 3

<dfn></dfn> tag, 222-223

Digital Web Magazine website, 135

dir attribute, 47

direction property, 289

display property, 104-107, 289-291

<div></div> tag, 16-17, 223

<dl></dl> tag, 138-139, 224

DOCTYPE statements, 9

Document Object Model (DOM), JavaScript
event attributes, 148-149
manipulating, 149-150
script element, 147-148

document structures, HTML declarations, 8-12

document types, HTML structure, 9

DOM (Document Object Model), JavaScript
event attributes, 148-149
manipulating, 149-150
script element, 147-148

DOM Scripting, 150

<dt></dt> tag, 224-225

E
editing HTML
default styles, 47
insertions and deletions, 46-47
elastic layouts, 117-119
element attribute, 173-174
elements
content, 208
forms, 173-174
HTML, 2-4
 tag, 225
embedded CSS, applying CSS to HTML, 32-33
empbhasis, structuring text, 39-40
empty cells, styling tables, 170
empty-cells property, 170, 291
event attributes, 8
general tag application, 208
JavaScript, 148-149
eXtensible HTML (XHTML), xvii. See also
HTML
external CSS, applying CSS to HTML, 34

INDEX | 327

F

Fahrner Image Replacement (FIR), 90
family connections, nested elements, 3
<fieldset></fieldset> tag, 185-186, 225-
226
fieldsets, forms, 185-186
file attribute, input element, 181-182
FIR (Fahrner Image Replacement), 90
:first-child pseudo-class, 266
:first-letter pseudo-element, 269-270
:first-line pseudo-element, 270
:first pseudo-class, 266
fixed layout algorithms, styling tables, 169-
170
fixed layouts, 113-114
fixed positioning, 110
Flash Satay, 152
float property, 110-113, 291-292
floating columns, 123
:focus pseudo-class, 266-267
focus states, 66-67
font-family property, 48-49, 293
font property, 292-293
font-size property, 293-294
font-style property, 55, 294-295
font-variant property, 295
font-weight property, 55, 295-296
fonts
browser display, 49
shorthand properties, 55-56
styling form fields, 189
styling text, 48-49
footers, page layouts, 127-130
<form></form> tag, 226-227
formats
attributes, 207-208
images, 81
forms, 171-172
accessibility, 186-187
elements, 173-174
fields
input element, 174-182
select element, 183-185
textarea element, 182-183
fieldsets, 185-186

328 | INDEX

forms (continued) comments, 13
styling fields, 187-188 content. See content
backgrounds, 189-190 document structure
borders, 188-189 body element, 12-16
fonts, 189 declarations, 8-12
div tag, 16-17
G head element, 12-16
GIF, image formats, 81 JavaScript. See JavaScript
graphics. See also images span tag, 16-17
images text replacement, 88-92 elements, 2-4
grouped selectors, 20 event attributes, 8
selectors, 18
H tags, 2-4
<hl></hl> tag, 40-41, 227-228 HTML Dog, 5, xv—xvi
<h2></h2> tag, 40-41, 227-228 html element, 8
<h3></h3> tag, 40-41, 227-228 <html></html> tag, 229
<h4></h4> tag, 40-41, 227-228 HTTP headers
<hS></hS> tag, 40-41, 227-228 content types, 11-12 .
<h6></h6> tag, 40-41, 227-228 HTML document]anguage declaration, 11
head element, 8, 12-16 hypertext references, links, 62-64
<head></head> tag, 228-229
headers |
page layouts, 126-127 <i> tag, 40
tables id attribute, 4-7, 19, 207
cell to header association, 165-167 id selectors, 18
header to cell association, 165 il8n attribute, 7, 208
headings, structuring text, 40-41 image attribute, input element, 180-181
height attribute, img element, 80 images, 75
height property, 95-97, 296-297 background, 82-87
hex values, 27-28 decorative effects, 86-88
Hicks, John, blog, 114 file formats, 81
hidden attribute, input element, 180 img element, 77-79
horizontal alignment, styling text, 58 lists, 142-144
horizontal lists, 146 maps, 81-82
:hover pseudo-class, 267 text graphical alternatives, 88-92
hover states, 66 tag, 230
href attribute, links, 62-63 img element, 77-80
HTML, 1 @import at-rule, 270
applying CSS to indenting, styling text, 58
embedded CSS, 32-33 inheritance, properties, 25
external CSS, 34 inline CSS, applying CSS to HTML, 32
inline CSS, 32 inline elements, 4, 208
attributes, 2-4 inline value, 105
core, 4-7 <input /> tag, 231-232
i18n, 7 input element, 175-176

button attribute, 182

checkbox attribute, 177-178

file attribute, 181-182

form fields
block elements, 175-182
name attribute, 174-175
select element, 183-184

textarea element, 182-183

hidden attribute, 180

image attribute, 180-181

password attribute, 177

radio attribute, 178-179

reset attribute, 179

submit attribute, 179

text attribute, 176-177
<ins></ins> tag, 46, 232-233
insertions, structuring text, 46-47
Internet Explorer

box model layout, Box Model Hack,

102-103
unwanted lists spaces, 145
italics, styling text, 54-55

J

JavaScript
event attributes, 148-149

manipulating DOM (Document Object

Model), 149-150
script element, 147-148
JPEG, image formats, 81

K

<kbd></kbd> tag, 233
Keith, Jeremy, DOM Scripting, 150

L

label element, 186-187
<label></label> tag, 233-234
:lang pseudo-class, 267

languages, HTML document declaration, 11

layouts, 93
application, 130-133
box model, 94

borders, 98-100
Box Model Hack, 102-103
margins, 100-103

INDEX | 329

padding, 97-98
width and height, 95-97
display property, 104-107
elastic, 117-119
fixed, 113-114
float property, 110-113
liquid, 115-116
positioning
absolute, 108-109
fixed, 110
relative, 108
static, 107
sample pages, 119-120
creating columns, 120-126
footers, 127-130
headers, 126-127
left property, 297
:left pseudo-class, 267-268
<legend></legend> tag, 234
lengths, CSS units, 25
letter-spacing property, 57, 297-298
</1i> tag, 234-235
line breaks, structuring text, 39-40
line height property, styling text, 53-54
line-height property, 298
line heights, styling text, 53
<link> tag, 14-15, 235-236
links, 62-63
accessibility
access keys, 68-70
adjacent links, 71-72
pop-ups, 71
skipping navigation, 72-74
tabbing, 67-68
titles, 70-71
anchor elements, 62-64
hypertext references, 62-64
img element, 77
states, 65-67
URLs (Universal Resource Locator), 62
liquid layouts, 115-116
list-style-image property, 299
list-style-position property, 300
list-style property, 299
list-style-type property, 300-301

330 | INDEX

lists, 135
Internet Explorer unwanted spaces, 145
margins, 144
padding, 144
presentation structure
horizontal lists, 146
markers, 142-144
structuring
definition, 138-139
navigation, 140-142
ordered, 136-138
unordered, 136-138
longdesc attribute, img element, 77
lower case text, styling, 55

M

map element, 82
<map></map> tag, 236-237
margin-bottom property, 100, 301-302
margin-left property, 100, 301-302
margin property, 100, 301-302
margin-right property, 100, 301-302
margin-top property, 100, 301-302
margins

box model layout, 100-103

lists, 144
markers, lists, 142-144
max-height property, 96, 302-303
max-width property, 96, 303
media, 191

CSS specific styles, 195-196

media attribute, 196-203
style sheet application, 204-205

mobile devices, 192-193

printing, 193-195

screen readers, 192
@media 2006 website, 38
@media at-rule, 270-271
media attribute

CSS specific styles, 196-203

multiple media application, 204-205
merging cells, tables, 1568-160
<meta /> tag, 12, 14-16, 237-238
min-height property, 96, 303-304
min-width property, 96, 304
mobile devices, multiple media, 192-193

multilanguage text, structuring text, 47
multiple columns, page layouts, 124-126
multiple media, 191
CSS specific styles, 195-196
media attribute, 196-203
style sheet application, 204-205
mobile devices, 192-193
printing, 193-195
screen readers, 192
multiple style sheets, 35

N
name attribute, 82, 174-175
navigation

link accessibility, 72-74

structuring lists, 140-142
nesting

elements, 3

lists, 137-138

selectors, 20-21
Nguyen, Michael, 138
<noscript></noscript> tag, 238
numbers

CSS units, 25

lists, 142-144

o
object element, embedding objects, 150-151
<object></object> tag, 150-151, 239-240
objects
embedding
object element, 150-151
Web standards, 151-153
JavaScript
event attributes, 148-149
manipulating, 149-150
script element, 147-148
 tag, 240
onclick attribute, 8
ondblclick attribute, 8
onkeydown attribute, 8
onkeypress attribute, 8
onkeyup attribute, 8
onmousedown attribute, 8
onmousemove attribute, 8
onmouseout attribute, 8

onmouseover attribute, 8
onmouseup attribute, 8
<optgroup></optgroup> tag, 241
<option></option> tag, 241-242
ordered lists, 136-138

orphans property, 304-305
outline-color property, 305-306
outline property, 305
outline-style property, 306
outline-width property, 307
overflow, box model layout, 96-97
overflow property, 96-97, 307-308

P
<p></p> tag, 242-243
padding
box model layout, 97-98
lists, 144
shorthand values, 98
padding-bottom property, 97, 308
padding-left property, 97, 308
padding property, 308
padding-right property, 97, 308
padding-top property, 97, 308
page anchors, 63-64
@page at-rule, 271
page-break-after property, 309
page-break-before property, 309-310
page-break-inside property, 310-311
page layouts, 119-120
creating columns, 120-122
floating, 123
multiple, 124-126
solid navigation, 122-123
footers, 127-130
headers, 126-127
paragraphs, structuring text, 39-40
<param /> tag, 243-244
parent, nested elements, 3
password attribute, input element, 177
percentages, CSS units, 25
PNG, image formats, 81
pop-ups, link accessibility, 71
positioning, layout
absolute, 108-109
fixed, 110

INDEX | 331

relative, 108
static, 107

pre element, structuring text, 45-46

<pre></pre> tag, 244

preformatted text, structuring text, 44-46

printing
media attribute, 196-203
multiple media, 193-195
printer friend versions, 196

properties
background, 272
background-attachment, 272-273
background-color, 273-274
background-image, 274
background-position, 275
background-repeat, 275-276
border, 276-277
border-bottom, 276-277
border-bottom-color, 278
border-bottom-style, 279-280
border-bottom-width, 281
border-collapse, 277
border-color, 278
border-left, 276-277
border-left-color, 278
border-left-style, 279-280
border-left-width, 281
border-right, 276-277
border-right-color, 278
border-right-style, 279-280
border-right-width, 281
border-spacing, 278-279
border-style, 279-280
border-top, 276-277
border-top-color, 278
border-top-style, 279-280
border-top-width, 281
border-width, 281
bottom, 281-282
caption-side, 282-283
clear, 283
clip, 283-284
color, 284-285
content, 285-286
counter-increment, 286
counter-reset, 286-287

332 | INDEX

properties (continued) right, 312-313
CSS, 23-25 table-layout, 313
cursor, 287-288 text-align, 313-314
direction, 289 text-decoration, 314
display, 289-291 text-indent, 315
empty-cells, 291 text-transform, 315-316
float, 291-292 top, 316
font, 292-293 unicode-bidi, 316-317
font-family, 293 vertical-align, 317-318
font-size, 293-294 visibility, 318-319
font-style, 294-295 white-space, 319-320
font-variant, 295 widows, 320
font-weight, 295-296 width, 95-97, 320-321
height, 296-297 word-spacing, 321
inheritance, 25 z-index, 322
left, 297 pseudo-classes
letter-spacing, 297-298 :active, 265-266
line-height, 298 :first, 266
list-style, 299 :first-child, 266
list-style-image, 299 :focus, 266-267
list-style-position, 300 :hover, 267
list-style-type, 300-301 :lang, 267
margin, 301-302 :left, 267-268
margin-bottom, 301-302 :right, 268
margin-left, 301-302 selectors, 20
margin-right, 301-302 :visited, 268-269
margin-top, 301-302 pseudo-elements
max-height, 302-303 :after, 269
max-width, 303 :before, 269
min-height, 303-304 :first-letter, 269-270
min-width, 304 :first-line, 270
orphans, 304-305 selectors, 20
outline, 305
outline-color, 305-306 Q
outline-style, 306 <q></q> tag, 244-245
outline-width, 307 quotations
overflow, 307-308 attribute values, 3
padding, 308 structuring text, 42-43
padding-bottom, 308 quotes property, 311-312
padding-left, 308
padding-right, 308 R

padding-top, 308 radio attribute, input element, 178-179

page-break-after, 309 relative positioning, 108
page-break-before, 309-310 relative units, 26

page-break-inside, 310-311 layout, 113-114
quotes, 311-312 styling text, 51-52

reset attribute, input element, 179
RGB values, 27-28

right property, 312-313

:right pseudo-class, 268

rounded corners, background images, 86-88

row grouping, tables, 161-162
rowspan attribute, 158-160
rules, CSS, 17

S
<samp></samp> tag, 44-46, 245
sample page layouts, 119-120
creating columns, 120-122
floating, 123
multiple, 124-126
solid navigation, 122-123
footers, 127-130
headers, 126-127
screen readers, multiple media, 192

script element, JavaScript, 147-148

<script></script> tag, 246
scripting languages, JavaScript
event attributes, 148-149

manipulating DOM (Document Object

Model), 149-150
script element, 147-148
scripts, JavaScript
event attributes, 148-149

manipulating DOM (Document Object

Model), 149-150
script element, 147-148

select element, form fields, 183-185

<select></select> tag, 247
selectors
CSS, 18-23
specificity, 22-23
versatility, 24
separated-borders model, 168
server-side image maps, 82
server-side scripting languages,
content types, 12
shorthand properties, fonts, 55-56
siblings, 3
sizes, styling text, 50
Skip navigation links, 72-74

INDEX | 333

solid navigation columns, 122-123
spacing
Internet Explorer lists, 145
styling text, 57
span element, image text graphical alternatives,
88-92
 tag, 16-17, 248
specificity, selectors, 22-23
src attribute, img element, 77
static footers, 129
static positioning, 107
strikethroughs, styling text, 56-57
 tag, 248-249
structuring lists
definition, 138-139
navigation, 140-142
ordered, 136-138
unordered, 136-138
structuring text, 37-39
abbreviations, 43-44
acronyms, 43-44
addresses, 47
bidirectional text, 47
editorial insertions and deletions, 46-47
emphasis, 39-40
headings, 40-41
line breaks, 39-40
multilanguage text, 47
paragraphs, 39-40
preformatted text, 44-46
quotations, 42-43
style attribute, 4-7, 207-208
style sheets. See also CSS
multiple, 35
multiple media application, 204-205
types, 28-31
<style></style> tag, 249-250
styling
form fields, 187-188
backgrounds, 189-190
borders, 188-189
fonts, 189
tables
border collapsing, 167-169
empty cells, 170
fixed layout algorithm, 169-170

334 | INDEX

styling (continued) <area />, 212-213
text attribute formats, 207-208
bold, 54-55 bad, 262-264
color, 50 <base />, 213
fonts, 48-49 <bdo></bdo>, 214
horizontal alignment, 58 <blockquote></blockquote>, 214-215
indenting, 58 <body></body>, 215-216
italics, 54-55
, 216
line height, 53-54 <button></button>, 216-217
shorthand properties, 55-56 <caption></caption>, 217-218
size, 50 <cite></cite>, 218
spacing, 57 <code></code>, 218-219
strikethroughs, 56-57 <col />, 219-220
techniques, 60 <colgroup></colgroup>, 220-221
underlines, 56-57 <dd></dd>, 221
upper and lower case, 55 , 222
vertical alignment, 59 <dfn></dfn>, 222-223
submit attribute, input element, 179 <div></div>, 223
summaries, table accessibility, 164 <dl></dl>, 138-139, 224
summary attribute, 164 <dt></dt>, 224-225
, 225
T <fieldset></fieldset>, 225-226
table element, 156-158 <form></form>, 226-227
table-layout property, 313 <h1l></h1>, 227-228
<table></table> tag, 250-251 <h2></h2>, 227-228
tables, 155-156 <h3></h3>, 227-228
accessibility <h4></h4>, 227-228
cell to header association, 165-167 <h5></h5>, 227-228
header to cell association, 165 <h6></h6>, 227-228
summaries, 164 <head></head>, 228-229
captions, 160-161 HTML, 2-4
creating basics, 156-158 <html></html>, 229
grouping rows, 161-162 , 230
merging cells, 158-160 <input />, 231-232
styling <ins></ins>, 232-233
border collapsing, 167-169 <kbd></kbd>, 233
empty cells, 170 <label></1label>, 233-234
fixed layout algorithm, 169-170 <legend></legend>, 234
targeting columns, 162-164 </1i>, 234-235
tabs <link>, 235-236
horizontal lists, 146 <map></map>, 236-237
link accessibility, 67-68 <meta />, 237-238
tags <noscript></noscript>, 238
<a>, 209-210 <object></object>, 150-151, 239-240
<abbr></abbr>, 210 , 240
<acronym></acronym>, 210-211 <optgroup></optgroup>, 241

<address></address>, 47, 211 <option></option>, 241-242

<param />, 243-244
<pre></pre>, 244
<q></qg>, 244-245
<samp></samp>, 44-46, 245
<script></script>, 246
<select></select>, 247
, 16-17, 248
, 248-249
<style></style>, 249-250
<table></table>, 250-251
<tbody></tbody>, 251-252
<td></td>, 252-254
<textarea></textarea>, 254-255
<tfoot></tfoot>, 255-256
<th></th>, 256-258
<thead></thead>, 258-259
<title></title>, 259-260
<tr></tr>, 260-261
, 136-138, 261-262
<tbody></tbody> tag, 251-252
<td></td> tag, 252-254
text
images replacement, 88-92
structuring, 37-39
abbreviations, 43-44
acronyms, 43-44
addresses, 47
bidirectional text, 47

editorial insertions and deletions,

46-47
emphasis, 39-40
headings, 40-41
line breaks, 39-40
multilanguage text, 47
paragraphs, 39-40
preformatted text, 44-46
quotations, 42-43

styling

bold, 54-55
color, 50
fonts, 48-49
horizontal alignment, 58
indenting, 58
italics, 54-55
line height, 53-54
shorthand properties, 55-56
size, 50

INDEX | 335

spacing, 57

strikethroughs, 56-57

techniques, 60

underlines, 56-57

upper and lower case, 55

vertical alignment, 59
text-align property, 58, 313-314
text attribute, input element, 176-177
text-decoration property, 56-57, 314
text-indent property, 315
text-transform property, 315-316
textarea element, form fields, 182-183
<textarea></textarea> tag, 254-255
<tfoot></tfoot> tag, 255-256
<th></th> tag, 256-258
<thead></thead> tag, 258-259
title attribute, 4-7, 70-71

structuring text, 42
tag application, 207-208

title element, 8
<title></title> tag, 14-15, 259-260
titles, links, 70-71
top property, 316
<tr></tr> tag, 156-158, 260-261
transitions, XHTML, 10

U

 tag, 136-138, 261-262
underlines, styling text, 56-57
unicode-bidi property, 316-317
units, CSS values, 25-27

Universal Resource Locator (URLs), links, 62

universal selectors, 24
unordered lists, 136-138
upper case text, styling, 55

URLs (Universal Resource Locator), links, 62

usemap attribute, 82
user style sheets, 28-31

\V4
values
absolute, 51-52
CSS, 25-31
padding, 98
relative, 51-52
vertical-align property, 59, 317-318
vertical alignment, styling text, 59

336 | INDEX

visibility property, 318-319
:visited pseudo-class, 268-269
visited states, 66

Vivabit website, 76

w
W3C website, xviii
Web standards, xviii—xix, xxiii—xxix
Webb, Dan, 116
webpages
CSS. See also CSS
applying to HTML, 32-34
properties, 23-25
rules, 17
selectors, 18-23
values, 25-31
HTML, 1. See also HTML
attributes, 2-4
basic document structure, 8-16
core attributes, 4-7
elements, 2-4
event attributes, 8
i18n attribute, 7
tags, 2-4

websites
Cork'd, 172
CSS Zen Garden, 89, 118
Digital Web Magazine, 135
HTML Dog, 5
@media 2006, 38
Vivabit, 76
W3C, xviii
white-space property, 319-320
widows property, 320
width attribute, img element, 80
width property, 95-97, 320-321
word-spacing property, 57, 321

X

XHTML (eXtensible HTML), xvii. See also HTML
comments, 13
tags, 2

XHTML Transitional, 10

xml:1long attribute, HTML document language
declaration, 11

Z
z-index property, 110, 322

	HTML Dog: The Best-Practice Guide to XHTML and CSS
	Contents
	Introduction
	Chapter 1: Getting Started
	HTML Syntax
	Elements, Tags, and Attributes
	Common Attributes
	The Basic Structure of an HTML Document
	The Generalist Tags—Div and Span

	CSS Syntax
	Rules
	Selectors
	Properties
	Values
	Applying CSS to HTML

	Chapter 2: Text
	Structuring Text
	Basic Text Elements: Paragraphs, Line Breaks, and Emphasis
	Headings
	Quotations
	Abbreviations and Acronyms
	Preformatted Text and Computer Code
	Editorial Insertions and Deletions
	Multilanguage and Bidirectional Text
	Addresses

	Styling Text
	Fonts
	Color
	Size
	Line Height
	Bold and Italics
	Upper and Lower Case
	The Font Shorthand Property
	Underline and Strikethrough
	Letter and Word Spacing
	Indenting
	Horizontal Alignment
	Vertical Alignment
	More Text Styling Techniques

	Chapter 3: Links
	Anchor Elements and Hypertext References
	Page Anchors

	Link States: Link, Visited, Hover, Focus, and Active
	Accessible Links
	Tabbing
	Access Keys
	Link Titles
	Pop-ups
	Adjacent Links
	Skipping Navigation

	Chapter 4: Images
	The img Element
	Image Maps

	Background Images
	Image Replacement: Providing Graphical Alternatives for Text

	Chapter 5: Layout
	The Box Model
	Width and Height
	Padding
	Borders
	Margin

	The display Property
	Positioning
	Static
	Relative
	Absolute
	Fixed

	Floating
	Sample Page Layouts
	Creating Columns
	Adding a Page Header
	Adding a Footer

	Putting It All Together

	Chapter 6: Lists
	Structuring Lists
	Unordered and Ordered Lists
	Definition Lists
	Lists as Navigation

	Presenting Lists
	List Markers—Bullets, Numbers, and Images
	Horizontal Lists

	Chapter 7: Scripts & Objects
	JavaScript and the DOM
	The script Element
	Event Attributes
	Manipulating the DOM

	Objects

	Chapter 8: Tables
	Basic Tables
	Merging Cells
	Captions
	Grouping Rows
	Targeting Columns
	Accessibility Considerations with Tables
	Summaries
	Associating Headers to Cells
	Associating Cells to Headers

	Presenting Tables
	Border Collapsing
	Speedier Tables: the Fixed Layout Algorithm
	Empty Cells

	Chapter 9: Forms
	Form Elements
	Form Fields and Buttons: input, textarea, and select
	The name Attribute
	Putting Controls in Blocks
	input
	textarea
	select

	Fieldsets
	Accessible Forms
	Labels

	Styling Form Fields
	Borders
	Fonts
	Backgrounds

	Chapter 10: Multiple Media
	Screen-Readers
	Mobile Devices
	Print
	A Sample Print Stylesheet

	Applying Media-Specific CSS
	The media Attribute
	Separate or Cascading
	@media

	In Conclusion

	Appendix A: XHTML Reference
	Tags
	<a>
	<abbr></abbr>
	<acronym></acronym>
	<address></address>
	<area />
	<base />
	<bdo></bdo>
	<blockquote></blockquote>
	<body></body>
	

	<button></button>
	<caption></caption>
	<cite></cite>
	<code></code>
	<col />
	<colgroup></colgroup>
	<dd></dd>
	
	<dfn></dfn>
	<div></div>
	<dl></dl>
	<dt></dt>
	
	<fieldset></fieldset>
	<form></form>
	<h1></h1>, <h2></h2>, <h3></h3>, <h4></h4>, <h5></h5>, <h6></h6>
	<head></head>
	<html></html>
	
	<input />
	<ins></ins>
	<kbd></kbd>
	<label></label>
	<legend></legend>
	
	<link />
	<map></map>
	<meta />
	<noscript></noscript>
	<object></object>
	
	<optgroup></optgroup>
	<option></option>
	<p></p>
	<param />
	<pre></pre>
	<q></q>
	<samp></samp>
	<script></script>
	<select></select>
	
	
	<style></style>
	<table></table>
	<tbody></tbody>
	<td></td>
	<textarea></textarea>
	<tfoot></tfoot>
	<th></th>
	<thead></thead>
	<title></title>
	<tr></tr>
	
	<var></var>

	Bad Tags
	Rotten Attributes

	Appendix B: CSS Reference
	Pseudo-classes
	:active
	:first
	:first-child
	:focus
	:hover
	:lang
	:left
	:link
	:right
	:visited

	Pseudo-elements
	:after
	:before
	:first-letter
	:first-line

	At-rules
	@import
	@media
	@page

	Properties
	background
	background-attachment
	background-color
	background-image
	background-position
	background-repeat
	border, border-top, border-right, border-bottom, border-left
	border-collapse
	border-color, border-top-color, border-right-color, border-bottom-color, border-left-color
	border-spacing
	border-style, border-top-style, border-right-style, border-bottom-style, border-left-style
	border-width, border-top-width, border-right-width, border-bottom-width, border-left-width
	bottom
	caption-side
	clear
	clip
	color
	content
	counter-increment
	counter-reset
	cursor
	direction
	display
	empty-cells
	float
	font
	font-family
	font-size
	font-style
	font-variant
	font-weight
	height
	left
	letter-spacing
	line-height
	list-style
	list-style-image
	list-style-position
	list-style-type
	margin, margin-top, margin-right, margin-bottom, margin-left
	max-height
	max-width
	min-height
	min-width
	orphans
	outline
	outline-color
	outline-style
	outline-width
	overflow
	padding, padding-top, padding-right, padding-bottom, padding-left
	page-break-after
	page-break-before
	page-break-inside
	position
	quotes
	right
	table-layout
	text-align
	text-decoration
	text-indent
	text-transform
	top
	unicode-bidi
	vertical-align
	visibility
	white-space
	widows
	width
	word-spacing
	z-index

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Button1:

