
Patrick Griffiths

The Best-Practice Guide to

xHTML&CSS

HTML Dog

Patrick Griffiths

New Riders

1249 Eighth Street

Berkeley, CA 94710

510/524-2178

800/283-9444

510/524-2221 (fax)

Find us on the Web at: www.newriders.com
To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2007 by Patrick Griffiths

Editor: Doug Adrianson

Production Coordinator: Andrei Pasternak

Tech Editor: Joe Marini

Copyeditor: Hope Frazier

Compositor: Maureen Forys, Happenstance Type-O-Rama

Indexer: Julie Bess

Cover Design: Aren Howell

Cover Photo: Veer/Brian Summers

Interior Design: Maureen Forys Happenstance Type-O-Rama

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For infor-
mation on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions
contained in this book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations
appear as requested by the owner of the trademark. All other product names and services identified throughout
this book are used in editorial fashion only and for the benefit of such companies with no intention of infringement
of the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affilia-
tion with this book.

ISBN 0-321-31139-6

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com

Acknowledgements
A good website follows conventions to keep users happy and responsive. I can only

assume that a good web design book should do the same. So here are some people

“without whom this would not have been possible.” Or something like that...

To my mother, for her share of my genetic material and all of the environmental

stuff, for buying me my first computer, for putting up with my Kevin & Perry teen-

age crap, and, most of all, for forbidding me to get a Michael Jackson perm at the

age of 10, ta, Ma.

Even though her grasp of language is somewhat limited, for frequently walking

across my keyboard Nutmeg, the feline member of the family, should probably have

a co-author credit. At least blame any typos on her.

I am proud to be a member of such an open, intelligent, friendly professional

community. Andy Budd, Andy Clarke, Jon Hicks, Jeremy Keith, Drew McLellan,

Rich Rutter, Mike Stenhouse, and the rest of the Britpack (and the mighty Pub

Standards, for that matter) have been an invaluable source of discussion, ideas,

and constructive criticism, and have become good friends to boot. And there’s a

plethora of luminaries further from home who have influenced me, and this book,

in one way or another: Doug Bowman, Dan Cederholm, Joe Clark, Charles Darwin,

Molly Holzschlag, Steve Krug, Jakob Nielsen, Valentino Rossi, and Jeffrey Zeldman

in particular. Through raising awareness, it’s due to many of these people (and many

more), and organizations like the Web Standards Project (webstandards.org) that

the quality web design landscape is a much lusher one now than it was even a few

years ago, so thanks are due not only for their influence, but for making books like

this, and interest in them, possible.

Dan Webb (danwebb.net) has been the single most influential person when it comes

to HTML Dog (site, book, and philosophy). From working together on numerous

projects across the years to idle pub banter (across even more years), Dan is the

first person I talked with about web standards, long before the emergence of that

hat-wearing dude’s little orange book, the person I have discussed around 43,082.6

aspects of web design with, from liquid layouts to accessibility to Microformats

to the absurdity of the term Web 2.0, and the person who has proofread, edited,

tested, and critiqued pretty much every single article and website that I have ever

been involved in. Cheers, Dan.

I’ve had a little something to do with a bash called @media (vivabit.com/atmedia)

for almost as long as the HTML Dog book project. Thanks to everyone who has

made that possible, including all of those who have attended it. It has been a great

example of a genuine appetite for pushing best-practice web design and develop-

ment to their limits, and it has kept my enthusiasm and passion for the subject

fresh. @media and HTML Dog are my babies, so they must be related.

I have always regarded New Riders as by far the best, most discerning, and most

respectable publisher of Web-related books. It has been a roller-coaster ride, but I

am very proud to finally be a published New Riders author alongside so many great

Web heavyweights. So, to the publisher, and extended family and friends, thanks to

David Fugate, Linda Bump Harrison, Darcy DiNucci, Marjorie Baer, Nancy Davis, Joe

Marini, Doug Adrianson, and everyone else involved in building this quality culturally

infused slab of ink-sprinkled reconstituted plant fibers.

—Patrick Griffiths

October 2006

iv   |  Acknowledgements

Contents

Introduction. . xv

Chapter 1:	 Getting Started . . 1

HTML Syntax. . 1

Elements, Tags, and Attributes. . 2

Common Attributes. . 4

The Basic Structure of an HTML Document. . 8

The Generalist Tags—Div and Span. . 16

CSS Syntax. . 17

Rules. . 17

Selectors. . 18

Properties . . 23

Values. . 25

Applying CSS to HTML. . 32

Chapter 2:	 Text . . 37

Structuring Text . . 37

Basic Text Elements: Paragraphs, Line Breaks, and Emphasis. 39

Headings. . 40

Quotations. . 42

Abbreviations and Acronyms. . 43

Preformatted Text and Computer Code . . 44

Editorial Insertions and Deletions. . 46

Multilanguage and Bidirectional Text . . 47

Addresses . . 47

vi   |  Contents

Styling Text. . 48

Fonts. . 48

Color . . 50

Size. . 50

Line Height . . 53

Bold and Italics. . 54

Upper and Lower Case. . 55

The Font Shorthand Property. . 55

Underline and Strikethrough. . 56

Letter and Word Spacing. . 57

Indenting. . 58

Horizontal Alignment. . 58

Vertical Alignment. . 59

More Text Styling Techniques. . 60

Chapter 3: 	 Links . . 61

Anchor Elements and Hypertext References. . 62

Page Anchors. . 63

Link States: Link, Visited, Hover, Focus, and Active. . 65

Accessible Links. . 67

Tabbing. . 67

Access Keys. . 68

Link Titles . . 70

Pop-ups. . 71

Adjacent Links. . 71

Skipping Navigation . . 72

Chapter 4: 	 Images. . 75

The img Element . . 77

Image Maps. . 81

Background Images. . 82

Image Replacement: Providing Graphical Alternatives for Text 88

Contents  |  vii

Chapter 5: 	 Layout . . 93

The Box Model . . 94

Width and Height. . 95

Padding. . 97

Borders . . 98

Margin. . 100

The display Property . . 104

Positioning. . 107

Static. . 107

Relative. . 108

Absolute. . 108

Fixed . . 110

Floating . . 110

Sample Page Layouts. . 119

Creating Columns. . 120

Adding a Page Header. . 126

Adding a Footer. . 127

Putting It All Together. 130

Chapter 6: 	 Lists. . 135

Structuring Lists . . 136

Unordered and Ordered Lists. . 136

Definition Lists . . 138

Lists as Navigation. . 140

Presenting Lists. . 142

List Markers—Bullets, Numbers, and Images 142

Horizontal Lists. . 146

Chapter 7: 	 Scripts & Objects . . 147

JavaScript and the DOM. . 147

The script Element. . 147

viii   |  Contents

Event Attributes. . 148

Manipulating the DOM. . 149

Objects. . 150

Chapter 8: 	 Tables . . 155

Basic Tables. . 156

Merging Cells. . 158

Captions. . 160

Grouping Rows. . 161

Targeting Columns. . 162

Accessibility Considerations with Tables. . 164

Summaries . . 164

Associating Headers to Cells. . 165

Associating Cells to Headers . . 165

Presenting Tables. . 167

Border Collapsing . . 167

Speedier Tables: the Fixed Layout Algorithm. . 169

Empty Cells. . 170

Chapter 9: 	 Forms. . 171

Form Elements. . 173

Form Fields and Buttons: input, textarea, and select 174

The name Attribute. 174

Putting Controls in Blocks. . 175

input . . 175

textarea . . 182

select . . 183

Fieldsets. . 185

Accessible Forms. . 186

Labels. . 186

Contents  |  ix

Styling Form Fields. . 187

Borders . . 188

Fonts. . 189

Backgrounds. . 189

Chapter 10: 	 Multiple Media. . 191

Screen-Readers . . 192

Mobile Devices. . 192

Print. . 193

A Sample Print Stylesheet. . 195

Applying Media-Specific CSS. . 195

The media Attribute. 196

Separate or Cascading . . 204

@media . . 204

In Conclusion. . 205

Appendix A: 	 XHTML Reference. . 207

Tags. . 207

<a> . . 209

<abbr></abbr>. . 210

<acronym></acronym>. . 210

<address></address>. . 211

<area />. . 212

<base />. . 213

<bdo></bdo>. 214

<blockquote></blockquote>. . 214

<body></body>. . 215

. . 216

<button></button>. . 216

<caption></caption>. 217

<cite></cite>. 218

�   |  Contents

<code></code>. . 218

<col />. . 219

<colgroup></colgroup>. . 220

<dd></dd>. . 221

. 222

<dfn></dfn>. . 222

<div></div>. 223

<dl></dl> . . 224

<dt></dt>. . 224

. 225

<fieldset></fieldset>. 225

<form></form>. . 226

<h1></h1>, <h2></h2>, <h3></h3>, <h4></h4>, .
 <h5></h5>, <h6></h6>. . 227

<head></head>. 228

<html></html>. . 229

 . . 230

<input /> . . 231

<ins></ins>. 232

<kbd></kbd>. 233

<label></label>. 233

<legend></legend>. . 234

 . . 234

<link />. . 235

<map></map>. . 236

<meta /> . . 237

<noscript></noscript>. 238

<object></object>. . 239

. 240

<optgroup></optgroup>. . 241

<option></option>. 241

Contents  |  xi

<p></p>. . 242

<param /> . . 243

<pre></pre> . . 244

<q></q> . . 244

<samp></samp>. 245

<script></script> . . 246

<select></select>. . 247

. 248

. . 248

<style></style>. . 249

<table></table> . . 250

<tbody></tbody>. . 251

<td></td>. . 252

<textarea></textarea>. 254

<tfoot></tfoot>. . 255

<th></th>. . 256

<thead></thead>. . 258

<title></title>. . 259

<tr></tr>. . 260

 . . 261

<var></var> . . 262

Bad Tags . . 262

Rotten Attributes. . 264

Appendix B: 	 CSS Reference. . 265

Pseudo-classes . . 265

:active. . 265

:first. . 266

:first-child. . 266

:focus. . 266

:hover. . 267

xii   |  Contents

:lang . . 267

:left. . 267

:link. . 268

:right. . 268

:visited. . 268

Pseudo-elements. . 269

:after. . 269

:before. . 269

:first-letter. . 269

:first-line. . 270

At-rules . . 270

@import . . 270

@media. . 270

@page. . 271

Properties. . 271

background. . 272

background-attachment. . 272

background-color. . 273

background-image . . 274

background-position. . 275

background-repeat . . 275

border, border-top, border-right, border-bottom, border-left. 276

border-collapse. . 277

border-color, border-top-color, border-right-color, .
 border-bottom-color, border-left-color. . 278

border-spacing . . 278

border-style, border-top-style, border-right-style, .
 border-bottom-style, border-left-style. . 279

border-width, border-top-width, border-right-width, .
 border-bottom-width, border-left-width . . 281

bottom. . 281

Contents  |  xiii

caption-side . . 282

clear . . 283

clip . . 283

color. . 284

content . . 285

counter-increment. . 286

counter-reset. . 286

cursor . . 287

direction . . 289

display. . 289

empty-cells. . 291

float. . 291

font. . 292

font-family. . 293

font-size . . 293

font-style. . 294

font-variant. . 295

font-weight. . 295

height . . 296

left. . 297

letter-spacing . . 297

line-height. . 298

list-style . . 299

list-style-image. . 299

list-style-position . . 300

list-style-type . . 300

margin, margin-top, margin-right, margin-bottom, margin-left. 301

max-height . . 302

max-width. . 303

min-height. . 303

min-width. . 304

xiv   |  Contents

orphans. . 304

outline. . 305

outline-color . . 305

outline-style. . 306

outline-width . . 307

overflow. . 307

padding, padding-top, padding-right, padding-bottom, padding-left. . . . 308

page-break-after. . 309

page-break-before . . 309

page-break-inside. . 310

position. . 310

quotes. . 311

right. . 312

table-layout. . 313

text-align. . 313

text-decoration . . 314

text-indent. . 315

text-transform. . 315

top. . 316

unicode-bidi . . 316

vertical-align. . 317

visibility. . 318

white-space. . 319

widows. . 320

width. . 320

word-spacing. . 321

z-index. . 322

Index. . 323

Introduction

T h e b e s t way to build web pages is with web-standards-compliant

HTML and CSS. HTML lays the foundation by structuring the content,

and then CSS dolls it up and presents the page.

Using them in the right way—with web standards—leads to web pages

that are faster, more manageable, more cross-compatible, and more

accessible than web pages built any other “old-school” way.

This book is designed to take you through these symbiotic languages,

explaining how to use them the web-standard way, comprehensively cov-

ering the components that make up a web page and the technical details

involved in making those components.

HTML Dog?
The HTML Dog (www.htmldog.com) first popped into the world in 2003. Its

mission was to provide short and easy-to-follow guides in (X)HTML and CSS,

following best practices from the ground up (rather than teaching old-school

methods first and then moving on to the right way of doing things), which no

other resource did, and few do even now. Since then the website has grown

both in size and popularity, and is now one of the web’s most-used resources

for web designers.

i

www.htmldog.com

xvi   |  Introduction

Figure 0.1  This book expands on the popular HTML Dog website: http://www.htmldog.com.

http://www.htmldog.com

Introduction  |  xvii

So What Are XHTML and CSS?
XHTML (eXtensible HTML) is the latest, Sly-Stone-funkiest version of HyperText

Markup Language. HTML is a simple language used to structure hyperlinking con-

tent that is at the core of most web pages. The whole idea behind HTML since

Day One has simply been to apply meaning to chunks of content and link them all

together, regardless of platform.

In technical terms, XHTML is “HTML reformed as XML,” but to most people, and for

the purpose of this book, it simply means a more modern version of HTML (which is

why “HTML” is usually referred to throughout the book rather than “XHTML”) with an

ever so slightly stricter syntax (explained in Chapter 1, “Getting Started”). Although

there are lesser, “transitional” versions of XHTML, this book jumps in at the deep

end and follows XHTML Strict—the purest form of XHTML, which harnesses all of

its intended benefits. If this sounds daunting to you, don’t worry—it’s really not more

difficult to use than other versions, but it is the best one to opt for if you have the

ability to do so.

CSS (Cascading Style Sheets) is a language used to present a web page that was

introduced to remedy the increasing introduction (by browser manufacturers) and

use of presentational HTML elements. Not only does it lend even greater control

over the appearance of a web page, it removes the need for presentational elements

in the HTML document itself. It has taken a while for browsers to cotton on, but

most CSS is now supported by a vast majority of browsers. Its use is not only a

genuine option, but also the best option for presenting web pages. As you will see

later in this Introduction, this ability to separate content (HTML) and presentation

(CSS) leads to great benefits. What are style sheets and how do they cascade? See

Chapter 1.

As with HTML, there are various versions of CSS. This book largely follows CSS 2.1,

the complete and widely supported revised version of CSS 2. This provides control

not only over basic font decorations, but powerful positioning capabilities (goodbye,

table layouts!) and the handling of different media types.

xviii   |  Introduction

What Are Web Standards?
Web standards are universal rules that dictate how something should be used, inde-

pendent of any single thing (such as one particular browser). By utilizing web stan-

dards you are helping to ensure universal compatibility and flexibility. Because they

are based on logical reasoning with no commercial pressure (well, that’s the idea

anyway!), following them also tends to lead to greatly optimized solutions.

These standards are the creation of the W3C (World Wide Web Consortium, www.w3.

org), an independent body that counts Google, Intel, AOL, Apple, various universities,

the BBC, Sony, Microsoft, and many more amongst its members and is contributed to

by hundreds in the web community. The standards are wide-ranging, encompassing a

large number of web technologies and initiatives, including HTML and CSS.

Figure 0.2  The W3C’s site (www.w3.org), although a little difficult to penetrate, is a great
source of information.

This image is way
to big to print.
Crop ok since it
show a lot of the
W3C page? MF

www.w3.org
www.w3.org
www.w3.org

Introduction  |  xix

HTML standards are based on semantics. This is the process of using tags to apply

meaning, such as “this piece of text is a paragraph” or “the HTML in this element

makes a table.” It may not sound that important, but it’s at the heart of the first

step toward web standards success: separating structure and presentation.

Structure and Presentation
This page, and in particular the big fat statement below, is more important than the

rest of this book put together.

HTML = CONTENT
CSS = PRESENTATION
This is the magical key to unlocking better web pages. If you apply this rule when

building web pages then you’re already halfway toward achieving web standards and

the benefits that come with them.

A central philosophy of web standards is “separation of content and presentation.”

Variations include “separation of meaning and presentation” and “separation of

structure and presentation.” There are pedantic arguments why one of these is bet-

ter than another, but all of the phrases are perfectly valid and essentially imply the

same thing. If we were more precise (but less snappy), we might say “the separa-

tion of [content made meaningful by structure] and [presentation].” What it means

is that HTML is for one thing and CSS is for the other—HTML should be used solely

to construct content and CSS should be used solely to present it.

Amongst other things, this means that font tags are out and it means tables are

fine for tabular data, but not for layout (see Chapter 8, “Tables”). It also means that

when you have a heading it should be marked up as a heading, not just presented

to look like one, and it means that em tags should be used for emphasis, not just

CSS decoration.

xx   |  Introduction

Figure 0.3  The CSS Zen Garden—a great example of separating content and presentation.
Design by Didier Hilhorst.

Introduction  |  xxi

 
Figure 0.4  With exactly the same XHTML, different CSS can achieve radically different
designs. Design by Samuel Marin.

xxii   |  Introduction

Figure 0.5  The structured content, independent of presentation, is all in place as it should
be, and it can be presented however the designer chooses. Design by Mikhel Proulx.

If there’s anything you’re doing with HTML that even hints at presentation, stop—

CSS can do it better. That means everything from using it just to italicize text to

using tables for layout. And if there’s content that has genuine specific meaning

(such as emphasis), making it look different with CSS isn’t enough—HTML should

be used to apply that meaning through structure.

Example	S tructure or 	H TML or
	 Presentation?	 CSS?

A heading	 Structure	 XHTML

Size of a heading	 Presentation	 CSS

A paragraph	 Structure	 XHTML

Color of the text in a paragraph	 Presentation	 CSS

A table of figures	 Structure	 XHTML

A border around table cells	 Presentation	 CSS

An image, such as a portrait photo	 Structure	 XHTML

An image, such as a tessellating background	 Presentation	 CSS

A group of navigation links	 Structure	 XHTML

The placement of a group of navigation links on a page	 Presentation	 CSS

This isn’t just about whether valid tags are being used individually, because a page

where tables are used for layout, for example, or where b (for bold) tags are being

used can quite plausibly be a “valid” page. It’s about the bigger picture and good

Introduction  |  xxiii

practice through using HTML tags as they were intended—to mark up data and

apply meaning to it.

The majority of the practical benefits of using web standards stem from this philoso-

phy. It’s a good one. It works.

The Practicalities of Web Standards

Figure 0.6  Jeffrey Zeldman’s Designing With Web Standards set the scene by
explaining what web standards are all about and why we should be using them.

xxiv   |  Introduction

Web standards aren’t just some form of Jedi mind trick, and web standards evange-

lists tend not (too often) to be loony cult members. No one would seriously take any

notice of web standards, let alone use them, if there weren’t real, substantial, prac-

tical benefits. Here are some of the most important ones:

Cross-compatibility: What sets web standards apart from the old school

is that there’s nothing specific to one browser or another. A common web

design problem has been the “necessity” of developing one page for one

browser and one page for another. Even today, some sites are made to work

solely in Microsoft’s Internet Explorer (IE), excluding a small, but significant,

percentage of users. But barring a few minor discrepancies, following web

standards will ensure that pages will work everywhere. No alternative versions

needed, no “IE only (we’re too lazy),” no exclusion of users.

Forward compatibility: Thanks to the increased likelihood of cross-compatibility,

web pages will be more likely to work as desired on future browsers than they

would be if they depended on the nonstandard proprietary oddities of current

browsers.

Centralized control of presentation: As will be explained in Chapter 1, follow-

ing web standards and using CSS allows a single, or multiple, global file(s) to

apply presentation to all web pages across a site. Separating out the presen-

tation from the HTML in this way makes it much easier and quicker to make

site-wide presentational changes, resulting in a more consistent design than

a situation in which you have to change every web page individually.

Device independence: Think that everyone looking at a web page is staring

at a computer screen? Well, most of them are, but some might be printing

out web pages or using some form of mobile device (Chapter 10, “Multiple

Media”). You might think that to properly accommodate multiple devices

you would need multiple versions of web pages. But you don’t, not with web

standards. By separating structure and presentation, the same content can

be displayed differently depending on the device.

•

•

•

•

Introduction  |  xxv

Search engine optimization: Search engines love web standards. They used

to love metadata (data about the web page explicitly written into it by the

author) but this subjective tagging was easy to exploit and led to search

results that weren’t necessarily that relevant. Now search engines are much

more sophisticated and use more advanced techniques to rate the relevancy

of a page to a search query. They tend to analyze the content itself and take

special interest in things such as headings and even how close relevant con-

tent is to the top of the page. So if you’re using font tags to make text look

like headings instead of h1s and h2s (see Chapter 2, “Text”) or if you’ve got

all of that table mess surrounding more table mess surrounding the content,

then you’re not doing yourself any favors.

Lightweight pages: Perhaps the most immediately impressive advantage is

just how lightweight pages become. Lighter pages mean decreases in band-

width (reducing hosting costs) and web page loading time (increasing usabil-

ity). An equivalent “old-school” page made with tables for layout and font

tags for text decoration is a relatively fat load of markup. Without the need

for such bulky code or unnecessary graphics (such as transparent “spacer”

images and graphical text that could be replicated with CSS), it isn’t uncom-

mon to produce pages that are as much as 60 or 70 percent lighter.

Accessibility: Making it easier for users with disabilities to access web pages

satisfies a moral duty, opens up your website to a wider market, and helps it

to comply with antidiscrimination laws. A large proportion of web accessibility

issues are technical and are tackled by using good web-standard HTML and

CSS.

Employer and client expectations: If you’re not sold on web standards, plenty

of other people are. The ability to code to W3C (X)HTML, CSS, and acces-

sibility standards is fast becoming a must-have skill in a web designer. If you

are on the market for a web design job or if you design sites for others, hav-

ing web standards in your arsenal is massive plus.

•

•

•

•

xxvi   |  Introduction

Browser Compatibility Issues

A fundamental principle behind web standards is that they are browser-inde-
pendent. You shouldn’t have to create browser-specific code—the whole idea is
that if browser manufacturers fully supported the web standards laid out by the
W3C, then one page could suit all. But we live in the real world and no browser
is perfect. When you think of all the technical intricacies—their syntax and their
behavior—involved in HTML and CSS, it’s little surprise that not every rule is
applied 100 percent correctly, if applied at all, by every browser.

Does this mean web standards are useless in practical terms? No. The great
news is that all popular modern browsers support a vast majority of web
standards. It’s just a few little niggles that sometimes cause irritation. A little
scratch and they tend to go away.

By far the most popular browser out there is Internet Explorer for Windows. IE is
pretty much universally derided in the web standards community because it has
many shortcomings—either lack of support or incorrect interpretations of quite
a few web standard rules.

More modern browsers, such as Firefox and Safari, are technically superior
pieces of software (a statement that few could truthfully argue against—even
Microsoft), but unfortunately for the web designer (and to the ultimate detri-
ment of the user) there are only a handful of computer users who use anything
other than the pre-installed browser on their machine. This means predominantly
Windows and this means Internet Explorer.

But IE is not a complete idiot. It handles most areas of HTML and CSS W3C
standards very well. There are no gaping holes that prevent an author from
achieving a certain page structure or force him or her to compromise on a par-
ticular layout, for example. It’s only when it comes down to more specific details
that incompatibilities can get frustrating. The good news is that Microsoft has
finally gotten the message and has worked hard to fix many of these problems in
the latest, seventh incarnation of IE, which has now landed on Planet Web.

Introduction  |  xxvii

Browser shortcomings will be pointed out where applicable throughout this book,
but in general terms there is absolutely no practical reason not to adopt web
standards—all modern browsers are more than capable to deal with them.

We do have to work in a multibrowser world and even the best web makers
encounter discrepancies in their pages between browsers. They are usually easy
to iron out, and as long as you test your pages on multiple browsers to make
sure designs work, compatibility issues shouldn’t cause too many headaches.

Browser Hacks

It isn’t true that lots of “hacks” are needed for web standard design. In fact,
that’s a bit of a contradiction.

There is a large quantity of hacks out there (particularly for CSS) that allow
you to dish out different code to different browsers, but they are generally just
unnecessary quick fixes for something that wasn’t constructed properly in the
first place. In fact, in practical terms, there isn’t usually a need to use anything
other than one simple hack—the box model hack—that is necessary to accom-
modate a calculating error in IE 5.x (see Chapter 5, “Layout”).

The Dangers of Backwards Compatibility

Working on data collected from the Middle Ages, there are still those who bang
on about Netscape 4. “Does it work on Netscape 4? Because Netscape 4’s really
important. It has to work in Netscape 4.”

It’s the most infamous of the “backwards compatibility” arguments, but it’s also
the best example of taking backwards compatibility too far.

xxviii   |  Introduction

The first step on judging whether you should accommodate a browser is the
number of people who use it. The second step is judging to what extent you have
to compromise a web design to accommodate that browser.

Only a tiny fraction of a percentage of people now use Netscape 4. But even
though it could be accommodated (a tiny percentage is still a percentage, after
all), it’s not worth it.

A confused sage once said “The pinnacle of good web design is a web design
that works on all browsers.”

Piffle.

Yes, a web design should work on as many browsers as possible, but at what cost?

Bending over backwards to accommodate old browsers will be to the detriment
of those who use newer browsers. What you lose by accommodating old browsers
are the practical benefits of web standards, mentioned above. Wave goodbye to
flexibility, lighter pages, increased accessibility, heightened usability, and lower
maintenance. You are going to lose more visitors through lack of optimization
than you are going to gain through the accommodation of obscure antiques.

The content of a well-structured HTML document should still be completely
accessible on older browsers—those that do not understand CSS or those that
are tricked into ignoring it (see “Applying CSS” in Chapter 1) will simply render
the HTML in the browser’s default style. The design may be lost, but the func-
tionality won’t be.

Accessibility

Accessibility is all about how easy it is for someone, in whatever situation, to
gain access to something. Although this is quite a general area (and in rela-
tion to the Web it can include access to a site via “alternative” devices such as
mobiles, for example), it tends to focus on issues that arise concerning people

Introduction  |  xxix

with disabilities and how easy it is for them to access the information on a web
page or website.

The extent of accessibility considerations can fill a whole book (and they
do—see Joe Clark’s excellent Building Accessible Websites (New Riders) or Web
Accessibility: Web Standards and Regulatory Compliance (Friends of Ed), for
example—but we will explore them a bit here because HTML and CSS are the
tools ultimately used to tackle a majority of accessibility issues.

Figure 0.7  Although some years old, Constructing Accessible Websites by Joe Clark
is still the best, most comprehensive source for understanding web accessibility and
applying accessibility techniques in web design.

In many cases, very simple HTML and (to a lesser degree) CSS steps can greatly
improve accessibility, but there are a lot of those simple steps, particularly with
components of a page that require interaction—see Chapter 3, “Links,” and
Chapter 9, “Forms.” Although the issues surrounding various accessibility initia-
tives are not explicitly explored in this book (again, that is something for another
book), the techniques for achieving most of them are.

xxx   |  Introduction

Who Is This Book For?
This book is for those who want to get to grips with best-practice (X)HTML and

CSS, and for those who want a solid, reliable reference book.

Although the topic of web standards may appeal more to intermediate-to-advanced

web designers, the comprehensive nature of the book should suit beginners and

experts alike, both as a guide through how to author components of a web page

and as a reference to make sure you’re using the correct syntax.

I’ve written something that I myself would find useful now, but something I also

would have found very useful back when I was first getting to grips with HTML,

CSS, and web standards.

How This Book Works
The book comprehensively works through the various components of a web page

(except Chapter 10, which is slightly different), explaining how to structure them and

how to present them. Component by component, by the end of the book, all practical

web standards (XHTML 1.0 Strict and CSS 2.1) tools will have been covered.

Practical Web Standards
Due to the current state of browser compatibility, not every W3C detail is covered in

this book because even as we promote the philosophy of using web standards, we

must also be practical. There’s no point in banging on about a technique that is fine

in theory but doesn’t work in a majority of browsers. It would be a waste of paper

and a waste of your time. Be secure in the knowledge that most web standards

options are practical and are covered. It’s just a baby’s handful of pesky goblins that

try to spoil the fun.

Note that Appendixes A and B cover every valid (nonpresentational—see below)

HTML (XHTML 1.0 Strict) tag, CSS (2.1) property, and every valid attribute and

value. When browser incompatibilities crop up, a note to that effect will be attached.

In the name of good practice, presentational HTML tags such as b and i (that are

actually valid XHTML 1 tags) are also banished. We’re going with the separation of

Introduction  |  xxxi

structure and presentation here and the practical benefits it brings, so there’s no

room for these dated lingerers that are destined for the scrap heap anyway.

A brief look at some of the commonly used tags and attributes that don’t fit into

the philosophy of this book (mainly invalid tags, but also tags such as b and i) are

noted in the “Bad Tags” section of Appendix A.

www.htmldog.com
There should be enough in this book to make at least a small cluster of your brain

cells feel all warm and fuzzy, but part of its design is to work hand-in-hand with the

HTML Dog website to give you even more help with HTML and CSS. Throughout

the book, you will find references to articles, which might go into more detail about

certain techniques, for example, and you will also find numerous pointers to “bare-

bone” examples. These examples were designed to strip away all but the necessary

code to demonstrate a small part of HTML or CSS, such as headings, or forms,

background images, or vertical alignment. Simply view the page source (an option

which can be found under the “View” menu item of most browsers) to see what’s

going on.

When they pop up in the book, they’ll look a little something like this:

  www.htmldog.com/examples/verticalalign.html

A list of the gamut of 70-odd examples can be found at www.htmldog.com/examples/

The Chapters
Neatly nestled into 10 chapters you will find explanations of pretty much every com-

ponent of HTML and CSS you’ll need, along with a few fancy techniques to add a

little bit of pizzazz to your pages.

Chapter 1, “Getting Started”—sets the ball rolling by explaining the syntax of

HTML and CSS: what they look like, how they should be used, and how they

can be linked together.

Chapter 2, “Text”—covers all of the HTML tags used to structure various

types of text: paragraphs, headings, emphasis, abbreviations, and much

•

•

www.htmldog.com
www.htmldog.com/examples/verticalalign.html
www.htmldog.com/examples/

xxxii   |  Introduction

more. The chapter then looks at the CSS that can be used to apply things

such as fonts, sizes, italics, and character spacing.

Chapter 3, “Links”—looks at just one tag, but it’s such an important one that

it has been honored with its own chapter. From basic links and page anchors

through to making links more accessible and good practices in styling them.

Chapter 4, “Images”—covers how to add content with the img tag and how to

add striking presentation with the powerful CSS background image.

Chapter 5, “Layout”—explains how you can achieve various layouts using CSS.

Chapter 6, “Lists”—goes over ordered, unordered, and definition lists and

how they can be styled to make page components such as navigational tabs.

Chapter 7, “Scripts & Objects”—explains how JavaScript and objects such as

Flash movies can be incorporated into an HTML page.

Chapter 8, “Tables”—covers everything you need to know about how to mark

up tabular data (not how to use tables for layout!), including how to make

tables more accessible. There are also a few specific CSS techniques thrown

in that can be used to make their presentation all the prettier.

Chapter 9, “Forms”—covers how to structure and present forms and form

fields for user input, and explains the limitations of styling form elements.

Chapter 10, “Multiple Media”—looks at how web pages work in media other

than your standard desktop or laptop computer, and how you can optimize

the CSS of your web pages (without touching the HTML) so they are dis-

played more appropriately when printed out.

•

•

•

•

•

•

•

•

chapter

Getting Started

Ge tt ing s ta r t e d is often the most difficult thing to do. Sometimes it’s

easier not to start at the beginning, but rather just jump in halfway and

start messing about with images or forms, for example. That might get

you on the road to a more interesting-looking web page quicker, but your

car would probably be in better condition afterwards if you learned how

to drive properly first. It’s the same as with any other subject—there’s

always a whole load of theory to plow through, but getting through it will

make life easier and better in the long run.

This chapter will tell you pretty much everything you need to know about

putting together the basic components of a web page. It splits quite

neatly into two—how to use HTML and how to use CSS.

HTML Syntax
HTML has a very straightforward syntax: Content is structured into elements

using tags with extra information supplied by attributes. XHTML, which we’ll

be using, has a stricter syntax than older (non-X) HTML versions, but if you

follow the simple rules, you should reap the benefits.

1

�   |  chapter 1: Getting Started

Elements, Tags, and Attributes
All you are doing with HTML is taking content and defining what each piece of

it means by wrapping the pieces in tags. To define a few terms, in the following

example:

HTML Dog

“” is an opening tag, which defines the start

of an element.

“” is a closing tag, which defines the end of an element.

“href” is an attribute, which is a setting for an element. (In this example, “href” is

the destination of a link—see Chapter 3, “Links.”)

“http://www.htmldog.com/” is an attribute value, used to specify what the attribute

should be set to.

“HTML Dog” is content.

“HTML Dog” (the whole shebang) is an ele-

ment.

There are a few simple rules to follow when it comes to tags (besides using valid

tags and attributes, which the chapters will cover).

Firstly, XHTML requires that all tags and attributes must be lowercase. <p></p>

and <blockquote></blockquote> are valid, but <P></P> and <BLOCKQUOTE>

</BLOCKQUOTE> are not. (If you aren’t familiar with some of the tags in this

chapter, don’t worry; they are covered later in the book.)

Secondly, all tags must close. In the above example, the end of the element is

marked by . <h1> must be closed with an </h1>, <div> must be closed with

a </div>, and so on. There are special cases where an element has no content,

such as br or input. In these cases there is no explicit closing tag, but rather

the single tag closes itself with the “/” character at the end, as in
 or

<input />.

http://www.htmldog.com/

Thirdly, all attribute values must be in quotation marks (and all attributes must have

values). For example, HTML Dog is not valid—

it must be HTML Dog.

Fourthly, elements must be nested properly.

Nested elements are elements enclosed in other elements.

An example is:

<p>Why not try out HTML Dog?</p>

In this case, the a element (a link—see Chapter 3) is nested inside the p element (a

paragraph—see Chapter 2, “Text”).

You have to be careful when nesting elements—one must fit snugly inside another.

So, for example,

HTML Dog

is good, but

HTML Dog

is not. If the a element is to be inside the em element (emphasis—see Chapter 2)

then the closing tag for the a element must come before the closing em tag.

It’s a Family Affair

The relationship of one element to another can be defined in terms of family con-
nections. With nested elements, an element within another element can be called
a child of the containing element. In turn, the containing element is known as
the parent of that child.

So in <p>Lemon pie</p>, the p element is the parent of the em ele-
ment, which is the child of the p element.

You will also come across terms such as siblings, ancestors, and descendants.

HTML Syntax  |  �

�   |  chapter 1: Getting Started

Block and Inline Elements

All HTML elements are one of two types—block or inline.

Block elements collect together other block elements or inline elements, or even
plain old textual content, and are used to structure something that is greater
than a simple line of content. They include div (used to divide up code by split-
ting it into chunks—explained in detail later), p (paragraphs—see Chapter 2)
and table (Chapter 8, “Tables”).

Inline elements are just that—elements within a line. They include span (see later),
em (emphasis—see Chapter 2) and img (image—see Chapter 4, “Images”).

Keep in mind that you can’t have a block element inside an inline element (such
as <p>Ra ra</p>). See Appendix A for more details on what elements
can be nested within certain elements.

Common Attributes
Throughout this book you will come across many attributes that are specific to cer-

tain tags or collections of tags. There is, however, a group of “common attributes”

that can be used with most tags.

The common attributes consist of core, i18n, and event attributes.

Core attributes
The core attributes are class, id, title, and style.

Classes and ids apply an extra little label to an element, and are used for page

anchors (a position on a page to which a link can jump, as explained in Chapter 3),

manipulation of elements with JavaScript, and, most commonly, as a way of directly

targeting an element with CSS.

<div id=”content”>

 <p class=”chair”>Lorem ... ipsum ... etc.</p>

 <p>Lorem ... schmipsum ... etc.</p>

 <p class=”chair”>Etc. ... ipsum ... schmipsum.</p>

</div>

Figure 1.1  The illustrations in this chapter are taken from the HTML Dog website
(www.htmldog.com).

HTML Syntax  |  �

www.htmldog.com

�   |  chapter 1: Getting Started

Figure 1.2  A few examples of the components that are block elements: paragraphs, head-
ings, forms, and lists. The list items are also block elements.

ids are used when there is just one unique element that needs a CSS association

(or an anchor) and uniquely identifies a part of a document (such as “content” in

the above example). Only one element in an HTML document can have an id with a

certain value so for example, you can’t have:

<h2 id=”plant”>Tree</h2>

<h2 id=”plant”>Bush</h2>

Unlike ids, any number of elements in an HTML document can have a class with a

certain value. They are used when there is more than one element that needs the

same CSS association, so, for example, you could have:

<h2 class=”plant”>Tree</h2>

<h2 class=”plant”>Bush</h2>

Classes and ids will come up again in this chapter, when we look at class and id

CSS selectors.

title adds a title to an element. A handy little critter, title can be used to add a

bit more information. This is commonly used with elements such as abbr to define

the phrase that an abbreviation is representing (see Chapter 2); blockquote, to give

more information on where a quote has come from (again, see Chapter 2); or a, to

give more information on what to expect at the destination of a link (see Chapter 3).

The value of a title attribute can be read out by screen readers (increasing acces-

sibility), and browsers will commonly turn the value of the title attribute into a little

“tool tip,” popping it up by the cursor when it moves over the element. This can be

useful in providing more information about a certain element, such as what an acro-

nym stands for or where a link will take the user.

Figure 1.3  …And a few examples of inline elements: links, form fields, images, and empha-
sized text.

The style attribute, which is used to inject CSS directly into the HTML (with a

blunt, uncomfortable needle), will be explained later (as will the reference to the

blunt, uncomfortable needle) under the “Applying CSS to HTML” heading.

i18n attributes
The i18n attributes, so called because few people can be bothered to write the

18 characters in between i and n in internationalization, are dir and xml:lang.

dir specifies the direction of content. Values can be ltr (left to right—for languages

such as English) or rtl (right to left—for languages such as Arabic).

xml:lang specifies the language of the content of an element, such as en for

English, de for German or mg for Malagasy.

HTML Syntax  |  �

�   |  chapter 1: Getting Started

Event attributes
The onclick, ondblclick, onmousedown, onmouseup, onmouseover, onmousemove,

onmouseout, onkeypress, onkeydown, and onkeyup attributes invoke the JavaScript

value when the user takes certain actions. You can read more about event attri-

butes, and why you should avoid using them, in Chapter 7, “Scripts & Objects.”

The Basic Structure of an HTML Document
A number of basic structural elements are required to make a valid (X)HTML page.

Basically, everything should fit into a structure outline that looks something like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

 <title></title>

</head>

<body>

</body>

</html>

At the very top is a document-type declaration and following that is an html element.

Inside the html element there are two elements—head and body. The contents of the

head element (including the required title element) give general information about the

content of the HTML document. The content of the body element is where everything

else goes—the viewable (or audible, or otherwise experienced) web page content.

Declarations
There are a few things that need to be done to define a valid HTML document

before really getting stuck in to the HTML. A document-type declaration lets the

browser know what version of HTML you’re using, the primary language should also

be stated, and you also need to specify the file type and character set of the docu-

ment. This might sound a bit daunting, but all it involves is a few lines of standard

code at the top of your web page. Once the code’s there you don’t have to worry

about it.

Document Type  At the very top of your web pages, you need a document declara-

tion. That’s right, you need it.

Without specifying a doctype, your HTML just isn’t valid HTML and most browsers

displaying it will switch to “quirks mode,” which means they will assume that you,

the author, don’t have a clue what you’re doing and so they will make up their own

mind about what to do with your code.

At this moment in time, the best document declaration to use in most situations is

for XHTML 1.0 Strict. And it looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

The following is the document declaration for XHTML 1.1, which may seem prefer-

able, being the latest version of XHTML, but there are a few problems with browser

compatibility (because a lot of them don’t really know about it yet). To the web page

author, this has few differences from XHTML 1.0 Strict anyway.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

This line of code (which is usually broken in two, as above, just to make things a

little neater) tells the browser what version of HTML to expect and where the “docu-

ment type definition” can be found. It must be at the very top of the HTML docu-

ment, with no content preceding it, otherwise it will not take effect and the browser

will slip into quirks mode.

Note that the DOCTYPE statement doesn’t follow any of the syntax rules you just

learned for writing HTML tags. Don’t think of it as a part of the HTML as such, but

as its own animal. Type it exactly as shown, with “DOCTYPE” in uppercase, adorned

with an exclamation mark and unclosed, and you’ll be fine.

There is no real need to use a doctype other than those already mentioned, but

there are also doctypes for various versions of HTML, for an XHTML frameset, and

also for XHTML 1.0 Transitional.

HTML Syntax  |  �

10   |  chapter 1: Getting Started

Why Not XHTML Transitional?

XHTML Transitional is just that—a transition. It is designed to help developers
make the move from one technical standard—HTML 4—to another techni-
cal standard—XHTML (Strict). This is a great learning step if you’re stuck in
your HTML 4 ways, but it shouldn’t be seen as an ultimate goal. The difference
between the Transitional XHTML and Strict XHTML is nothing more than the for-
mer allowing more tags and attributes than the latter. This might sound prefera-
ble, but in the long run it’s not. XHTML Strict strips out most of the presentational
crap that we’re trying to get away from. By applying XHTML Strict we are helping
to ensure that there is as little presentational junk in the markup as possible.

One increasingly unjustifiable reason why developers might opt for Transitional
XHTML is if they have a need to accommodate older, rarely used browsers.
Presentational elements might result in better presentation in browsers such as
Netscape 4 but using such elements will be detrimental to the efficiency, and
possibly accessibility, of your web pages.

Another reason might be if you are working with other, less knowledgeable
people, or even completely handing over your code to someone (such as a client)
who wants to add/alter/mangle it as they please. But in these cases, there’s not
much point in having a doctype at all (because, remember, quirks mode is for
people who don’t know what they’re doing).

In fact, Transitional XHTML only makes sense when you don’t have complete
control over what you’re doing. If you’re not starting from scratch, or if you have
to accommodate certain foibles or the whims of naïve project managers, for
example, then you might not have much choice. And if you can use a doctype
(and validate to it), it’s better to use something than nothing at all.

But for the sake of argument, let’s assume that we’re not going to be handing
over our Da Vinci to a manic toddler with a pack of crayons. Let’s assume that
we do have complete control over what we’re doing (or at least striving to apply
the highest standards). And let’s assume that the best approach to web design
is to completely separate structure and presentation (because, well, it is). And so
let’s assume that Strict XHTML is the way to go.

Language  You should identify the primary language of a document either through

an HTTP header (“HyperText Transfer Protocol”—it’s a server thing—detail that is

sent to the browser along with the HTML) or with the xml:lang attribute inside the

opening html tag. Although this is not necessary to produce a valid HMTL docu-

ment, it is an accessibility consideration. The value is an abbreviation, such as “en”

(English), “fr” (French), “de” (German) or “mg” (Malagasy). Have a gander at www.

w3.org/International/articles/language-tags/ for more on the use of language codes.

The declaration for a document with primarily English content, for example, would

look like this:

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

After declaring a primary language, if you use languages other than that in your

content you should further use the xml:lang attribute inline (such as <span xml:

lang=”de”>HTML Hund).

Content Type  The media type and character set of an HTML document also need to

be specified, and this is done with an HTTP header:

Content-Type: text/html; charset=UTF-8

The first part (in this example, the text/html bit) is the MIME type (Multipurpose

Internet Mail Extension) of the file, and this lets the browser know what media type

a file is and therefore what to do with it. All files have some kind of MIME type. A

JPEG image is image/jpeg, a CSS file is text/css, and the type most commonly

used for HTML is text/html.

The second part of the HTTP header (in this example, the UTF-8) is the character set.

Character sets include “ISO-8859-1” for many Western, Latin-based languages,

“SHIFT_JIS” for Japanese, and “UTF-8,” a version of Unicode Transformation

Format, which provides a wide range of unique characters used in most languages.

Basically, you should use a character set that you know will be recognized by your

audience. So if the language is wholly English, for example, ISO-8859-1 is a code

that is widely recognized. If there is a mix of languages, or a language that is not

Latin based, the more general UTF-8 might be preferable. If the language is wholly

Japanese and your target audience is also Japanese, SHIFT-JIS is the one to go for.

You can read more about character sets at joelonsoftware.com/articles/Unicode.html.

HTML Syntax  |  11

www.w3.org/International/articles/language-tags/
www.w3.org/International/articles/language-tags/

12   |  chapter 1: Getting Started

Perhaps the easiest way to set an HTTP header (or mimic it) is to use an “HTTP-

equivalent” meta tag in the HTML, which would look something like this:

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />

All you need to do is pop that inside the head element (more on head and meta ele-

ments shortly), the browser will be able to work out the content type, and everything

will come up smelling of roses.

HTML, Head, and Body
Right. So those are the all-important declarations out of the way. Now we can get on

with applying those all-important HTML tags, using HTML to contain the two main

page parts: head and body.

Setting Content Types Server-Side

The HTTP-equivalent meta tag does the job of setting a page’s content type, but
if at all possible it is preferable to use a genuine HTTP header. With the meta
tag, the browser must receive the HTML file and then decipher the content type,
but by establishing the content type on the server side before the HTML file is
sent, the browser will be told what to expect beforehand.

One way of sending the content type is by using a server-side scripting language
such as PHP:

<? header(“Content-Type: text/html; charset= UTF-8”); ?>

If you don’t want to (or can’t) use a server-side scripting language, you might be
able to go straight to the server with an “.htaccess” file. Most servers (Apache
compatible) can have a small text file with the file name “.htaccess” that sits in
the root directory and with the following line in it, you can associate all files with
the extension “.html” with a MIME type and character set:

AddType text/html;charset=UTF-8 html

 A basic page structure is going to look something like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

 <title>Uncle Jack’s Sea Cow Farm</title>

</head>

<body>

<!-- A whole load of content -->

</body>

</html>

After the doctype declaration, we have html, which is the root element that specifies

that the content of the document is HTML. It contains the remainder of the page

information after the document-type declaration.

The first thing we find inside the html element is head. This is the header of an

HTML document where information about the document is placed.

The head element comes straight after the opening html tag and contains informa-

tion about the page that is not actually content. There are a few different elements

that can go inside the head element, but one is required: title (we’ll come to the

title element, and those few others, in just a moment).

Finally, after the head element comes the all-important body element. This is the

main body of an HTML document where all of the content is placed. This is the stuff

that people will see, hear, or otherwise experience when they visit the web page.

HTML Comments

You can place a comment anywhere in your XHTML like this:

<!-- Here’s a comment -->

Absolutely nothing will change in terms of the visible or audible content—it is
just a simple notice to anyone looking at the code of the web page.

HTML Syntax  |  13

14   |  chapter 1: Getting Started

Inside the Head…  This isn’t the place to go into much detail about the various tags

that can be used inside the body element—there are many, and there’s a lot to say

about them, so you’ll find more information about these in the rest of the book.

The head element is slightly different, however, with a much narrower scope of tags

that can be used. title, link, meta and base are the four lonesome, specific tags

described here. Other tags that can be used inside the head element are style,

which is used to define page-specific CSS, and is explained in detail later in this

chapter, and script, used to define page-specific scripts, such as JavaScript, which

is given the coverage it deserves in Chapter 7.

title simply gives a title to the document. It will appear as the title of the browser

window, as is also used for bookmarks.

<head>

 <title>Uncle Jack’s Sea Cow Farm</title>

</head>

The link element defines a link to an external resource such as a CSS file, a short-

cut icon, or customized navigation. There are a whole bunch of specific attributes

that can be used (see the tag reference appendix for the details), but the most com-

monly used are href, which specifies the target of the link (much like text links, as

will be explained in Chapter 2), and rel.

rel specifies the relationship of the target of the link to the current page. There

are some universally understood values for the rel attribute, such as “shortcut

icon” that browsers will recognize as the icon that should be used alongside the

web address (in a “favorites” menu, for example) and “stylesheet,” which browsers

will recognize as the CSS file that should be linked to the page (see below). Some

browsers will also allow the author to define customizable navigation elements with

the link tag, such as next page, previous page, home, contact, etc., that will appear

as options in the browser interface itself rather than the web page.

Here are a few examples of common uses of the link element:

<link rel=”stylesheet” type=”text/css” title=”Some title” href=”/

somefile.css” />

<link rel=”alternate stylesheet” type=”text/css” title=”Some

alternative title” href=”/someotherfile.css” />

<link rel=”shortcut icon” href=”/favicon.ico” />

<link rel=”next” title=”Next page” href=”nextpage.html” />

 

Figure 1.4  A “tool tip” will pop up
when the cursor hovers over an ele-
ment containing a title attribute.

The meta element specifies meta information, which is used to provide information

about the HTML page (meta information being information about information).

We have already come across one type of meta tag—the “HTTP Equivalent” (see

“Content type,” above), but the simplest and most common form is a simply named

meta tag, such as “keywords” or “author.”

The important attributes that slot inside the meta tag are content, which is the

meta information itself (and is therefore required), and name, which is, um, the

name given to that information. name can be anything that tickles your fancy, but

widely used examples are “keywords” and “description.”

So, if you use meta tags, you might have a whole bunch of ’em, like this:

<meta name=”keywords” content=”fruit, banana, orange, apple,

kumquat, cucumber” />

<meta name=”description” content=”News, reviews and opinion on all

things fruity.” />

<meta name=”author” content=”The Fruit Farmers Association of

Bujumburra” />

And then there’s base. base defines the base location for links on a page. It isn’t

used that often, but in the interests of comprehensiveness, here’s what it looks like:

<base href=”/images/tootlepops/“ />

If you were to slot this example into the head, what would happen is every file ref-

erence in the page would be in relation to “/images/tootlepops/”. So, for example,

 would actually point to “/images/tootle-

pops/banana.jpg” and Cucumber would

point to “/images/tootlepops/morefruit/cucumber.html”.

HTML Syntax  |  15

16   |  chapter 1: Getting Started

Meta Tags: What’s the Point?

The primary application of meta tags used to be in the optimization of a web page for
search engine rankings. Keywords and descriptions were used by the search engine
algorithms to judge how closely a web page matched a given phrase. Nowadays, how-
ever, few search engines take any notice of meta tags that specify page keywords due
to their misuse and tendency to lead to irrelevant material. Instead, search engines
tend to base their results on the page content itself. Google, for example, will only
use the meta tag “description” to accompany a search result, but ignores meta tags
altogether when it comes to judging a page’s rank. It bases its results primarily on
content, the page title, and also terms that are used to link to the page in question.

So is there any real point? Meta tags certainly aren’t the force they used to be
when it comes to search engines, but they can still be used to convey useful
information about the page. Even if an application doesn’t directly use a meta
tag, someone looking at the page source itself could still benefit from such
information. Another common value for the name attribute is “copyright,” which
won’t be directly used by anything (such as search engines or browsers), but can
be used to point out copyright information to a casual observer. On a large-scale
site with multiple developers, you could also use meta tags to convey information
about a page that means nothing to the outside world but can help internally.

The Generalist Tags—div and span
Throughout this book many tags will be mentioned, most of which have very specific

purposes and are used to mark up very specific elements (such as images, tables,

or quotes). There are two “generalists” that apply little meaning but are commonly

used to group together sections of HTML and apply CSS to those groupings.

div is a division. It’s a block-level element that groups together a chunk of HTML,

and might look something like this:

<div id=”content”>

 <h1>How to make a falafel</h1>	<p>Buy a falafel seed and plant

it in your garden.</p>

</div>

You will come across div more in Chapter 5, “Layout,” where it is used to define

navigation and content areas of a page, for example.

span is an inline element that groups together a chunk of inline HTML, such as

single words or short phrases.

<h1>How to make a falafel</h1>

span tags should be used sparingly because when a more meaningful tag can be

used as an alternative (such as em for emphasis—see Chapter 2), that is more ben-

eficial to the HTML structure. So, in the previous example, falafel would

be better if you were actually attempting to emphasize the word falafel.

CSS Syntax
Although intrinsically linked with HTML in the formation of a web page, CSS, the

language used for presentation of a page (see Introduction for more) has a com-

pletely different syntax, consisting of a collection of rules that are made up of selec-

tors, properties, and values.

Rules
A typical CSS rule might look something like this:

h1 { font-size: 2em; }

Where:

“h1” is a selector, which defines which part of the HTML to apply the CSS to.

“font-size” is a property, which defines what specific presentational aspect of the

targeted element you want to set.

“2em” is a value, which defines what the property should be set to.

“font-size: 2em;” is known as a statement.

And the whole lot, “h1 { font-size: 2em; }” is collectively known as a rule.

CSS Syntax  |  17

18   |  chapter 1: Getting Started

Selectors
Selectors specify which HTML elements the style declarations should be applied

to. There are three main kinds of selectors: HTML selectors, id selectors, and class

selectors.

HTML selectors simply specify an HTML element to which the declarations should

be applied, so

h2 { color: red; }

Will make all h2 HTML elements red.

id selectors attach styles to the HTML element with that corresponding id. So, if

you had something like this in your HTML:

<h2 id=”tree”>Tree</h2>

And you just wanted to apply styles to that element, you would do this (note the #

character at the start of the selector):

#tree { color: red; }

class selectors attach styles to HTML elements with a corresponding class. So, if

you had something like this in your HTML:

<h2 class=”plant”>Tree</h2>

And you wanted to apply styles to that element and every other element with

class=”plant”, you would do this (note the dot at the start of the selector):

.plant { color: red; }

You can attach a number of classes to an HTML element by separating them with

spaces, such as:

<h2 class=”plant leafy”>Tree</h2>

Which will apply both of these rules:

.plant { color: red; }

.leafy { font-style: italic; }

What Should Make a Class or ID Name?

When choosing names for id and class attributes you should remember the
structure and presentation separation. Once more, the values you choose should
not suggest presentation.

Having:

<p class=”redtext”>Beach bottom bikinis...</p>

with the CSS to style it:

.redtext { color: red; }

is kind of missing the point. In this example, although class=”redtext” doesn’t
actually do anything on its own, it is still not separating the suggestion of pre-
sentation from structure.

To put it in practical terms, what if you decided that you didn’t want those par-
ticular classes in red any more? It would be a bit daft to then have:

.redtext { color: blue; }

So your class and id names should also be semantic, just like tag names.

<p class=”bikinis”>Beach bottom bikinis...</p>

This example makes much more sense to the structured semantic document and
because it has nothing to do with presentation, you can apply any color or any-
thing else to it and it will remain completely sensible.

And it’s not just something as simple as colors or boldness, for example. Think
whether the class or id names are suggesting what the corresponding CSS rule
set is using and if they are they’re not good.

id=”largebox”, class=”hidden”, id=”float1” are all just as bad as class=
”redtext”.

Note that an id or class name cannot start with a number—it must begin with a
letter or an underscore.

CSS Syntax  |  19

20   |  chapter 1: Getting Started

You can also be more specific as to which elements a class applies to by putting the

class selector straight after another selector. If you only wanted to associate styles

to an h2 element with the class “plant,” for example, then you could use the selec-

tor h2.plant. You could then use the selector p.plant to apply specific styles to p

elements with the class “plant” and so on.

Pseudo-classes and Pseudo-elements
Pseudo-classes and pseudo-elements, which are bolted onto a selector with a colon,

increase the specificity of a selector by adding a further condition, such as the first

letter of an element (whatever:first-letter) or when the cursor moves over an ele-

ment (whatever:hover).

The most widely used is probably :hover, which is applied like this:

a:hover { text-decoration: none; }

(This would cause a link’s underline to disappear when it is hovered over by the cur-

sor—see Chapter 3, “Links.”)

There aren’t many of these and most are very specific in what they do. You can find

out more about what pseudo-classes and pseudo-elements do in Chapters 2, “Text,”

and Chapter 3.

Grouped Selectors
If there is a specific style you want to apply to more than one selector, there is no

need to do something like this:

h2 { color: red; }

#kumquat { color red; }

.panda { color: red; }

To apply the same declaration block to more than one selector, all you need to do is

separate selectors with commas, like this:

h2, #kumquat, .panda { color: red; }

Nested Selectors
You can directly target styles at nested HTML elements (elements within other ele-

ments) by specifying a space-separated list of parents before the desired element.

For example, if you wanted to apply a style to only those em elements that were

within p elements, then you would do something like this:

p em { font-weight: bold; }

or if you only wanted to style em elements that were within p elements within an ele-

ment with the id “content”:

#content p em { font-weight: bold; }

and you don’t have to specify every parent element. For example, if you wanted to

style every em element in that “content” element:

#content em { font-weight: bold; }

Nested selectors often remove the need to apply id and especially classes as CSS

hooks because you can target elements by their relationship to other elements. So,

for example, if you wanted the links in a navigation area to be a different color than

the links in the main content area, you could have something like this in your HTML:

This

That

The other

<!-- etc -->

And then use this CSS:

.prune { color: orange }

But it would be much more sensible if you had something like this as the HTML:

<div id=”navigation”>

This

That

The other

<!-- etc -->

</div>

And then this as the CSS:

#navigation a { color: orange }

Which allows you to really cut down on HTML code.

CSS Syntax  |  21

22   |  chapter 1: Getting Started

Specificity

If you have two (or more) conflicting CSS rules that point to the same element,
there are some basic rules that a browser follows to determine which one wins
out. If the selectors are the same, then the one that is specified last in the style
sheet will always take precedence. For example, if you had:

p { color: red; }

p { color: blue; }

p elements would be colored blue because that rule came last.

However, you won’t usually have identical selectors with conflicting declarations
on purpose (because there’s not much point). Conflicts quite legitimately come
up, however, when you have nested selectors. In the following example:

div p { color: red; }

p { color: blue; }

It might seem that p elements within a div element would be colored blue, see-
ing as a rule to color p elements blue comes last, but they would actually be col-
ored red due to the specificity of the first selector. Basically, the more specific a
selector, the more preference it will be given when it comes to conflicting styles.

The actual specificity of a selector takes some calculating, however, and isn’t as
straightforward as it might seem. There is a fixed way of calculating a selector’s
specificity and it goes like this:

You count the number of id attributes and call that number “a,” then you count
the number of other attributes (such as class selectors and pseudo-classes) and
call that number “b,” then you count the number of HTML selectors and call that
number “c.” Finally, you take a, b, and c, push them together and the number
“a,b,c” is the overall specificity. Confused? A few examples might clear things up:

p has a specificity of 0,0,1 (a=0, b=0, c=1).

div p has a specificity of 0,0,2 (a=0, b=0, c=2).

.tree has a specificity of 0,1,0 (a=0, b=1, c=0).

div p.tree has a specificity of 0,1,2 (a=0, b=1, c=2).

#baobab has a specificity of 1,0,0 (a=1, b=0, c=0).

So if all of these examples were used, div p.tree (with a specificity of 0,1,2)
would win out over div p (with a specificity of 0,0,2), and #baobab (with a
specificity of 1,0,0) would win out over all of the others in this example.

It helps to keep the commas (having 1,0,0 rather saying “100”) because it works
on an infinite-base system (rather than base-10, which we commonly use).
11 class selectors (“0,11,0” rather than “0110”), for (an unlikely, in practice)
example, is still less specific than one id selector (“1,0,0” rather than “100”).

At-rules
At-rules use special types of selector that don’t rear their heads all that often. CSS

2.1 has just three valid at-rules: @import, used to include one CSS file in another

one (explained in more detail below); @media, used to assign a block of CSS to a

specific media type such as screen or print (see Chapter 10, “Multiple Media”); and

@page, which is used for paged media to apply properties to specific printed-page

conditions.

Properties
So with the selectors you can associate styles to specific pieces of HTML. But what

about the styles themselves? Properties are the presentational parts of an element

that you can alter. There’s a great deal of them, ranging from colors and font sizes

to much more specific things such as white-space and border-collapse. The prop-

erties themselves will be covered in the relevant chapters.

CSS Syntax  |  23

24   |  chapter 1: Getting Started

Extending Selectors: >, +, *, and [x=y]

The CSS standard allows a great deal of versatility and specificity with selec-
tors. On top of grouping and nesting, in theory you can also have child selectors,
universal selectors, adjacent sibling selectors, and attribute selectors. In prac-
tice, though, only universal selectors are widely supported (as in, supported by
Internet Explorer 6).

Universal selectors (using the “*” symbol) match any and everything. So form * will
target every box within a form element. An example of their use is in a user style
sheet (see later in this chapter) to ensure that all text and backgrounds are a certain
color by using something like body * { color: black; background: white },
which states that all boxes within the body should have black-on-white text.

Child selectors (using the “>” symbol) allow you to target the immediate descen-
dant of an element, that is, the first nested element within a particular element.
body > p will target p elements that are directly nested within the body ele-
ment, but not p elements that are further nested in other elements, for example.

Adjacent sibling selectors (using the “+” symbol) allow you to apply a rule to an
element that directly follows another element. h1 + h2, for example, will only
apply an associated declaration block to h2 elements that directly follow an h1
element.

Attribute selectors will apply CSS to an HTML element with a specific attribute
or attribute value. The syntax is elementname[attributename=attributevalue]. So,
for example, abbr[title] will apply styles to abbr elements that have a title
attribute (regardless of their value) and abbr[title=Cascading Style Sheets]
will apply styles to abbr elements that have a title attribute with the value
“Cascading Style Sheets.” Instead of “=” you can also use “~=”, which will
match the selector to a word (of a space-separated list) within an attribute value
(such as abbr[title~=Cascading]) or “|=”, which will match the selector to
the first “word” of a hyphen-separated list (designed primarily for the xml:lang
attribute, where abbr[xml:lang|=en] will match both xml:lang=”en” and xml:
lang=”en-us”, for example).

Inheritance

When you apply a property to a box, it will often be inherited by all the boxes
contained within it as the descendants inherit styles from their ancestors. So, for
example, when you apply a font size to the body element, blocks within the body
(as in everything you see on the web page) will inherit that font size.

Not all properties are automatically inherited in this way. Dimensions, padding,
borders, and margins, for example (see Chapter 5, “Layout”), will apply those
elements to which they are explicitly applied. Although there is no general rule
as to which properties are inherited by default and which are not, it is generally
quite logical—it is likely that you will want colors and font sizes to be inherited
more often than not, but highly unlikely that you would want all elements to be
the same height as their parent element, for example.

Values
The values you can assign to different properties are often specific to each property

(and will be covered throughout the chapters). But there are also values that are

used by many different properties, namely units of measurement and color values.

Units
Units of measurement can be split into numbers, percentages, and lengths.

Unit		S uffix	E xample
Number		 [none]	 line-height: 1.5

Percentage		 %	 width: 80%

	 Em	 em	 font-size: 2em

	 Pixel	 px	 font-size: 16px

	 Point	 pt	 font-size: 12pt

Length	 Pica	 pc	 font-size: 10pc

	 Centimeter	 cm	 width: 10cm

	 Millimeter	 mm	 width: 100mm

	 Inch	 in	 width: 2in

CSS Syntax  |  25

26   |  chapter 1: Getting Started

Absolute and Relative Units

Absolute units are those that are irrevocably fixed no matter what the context—
they are not dependent on anything. Meters and yards are examples of absolute
units. In the case of CSS, cm (centimeters) and in (inches) are examples of
absolute units.

Relative units, on the other hand, result in actual sizes that are dependent on
(or relative to) something else. A percentage is relative, as is an em—the actual
computed size of an object measured in such units depends on the situation in
which they find themselves.

Whether pixels are absolute or relative is a contentious issue. Although they are
popularly thought of as absolute units, they are relative, due to the fact that they
can be different sizes depending on the size of monitor and screen resolution—.
a pixel could be 0.1 mm wide or it could be 10mm wide, for example. But in web
design it is more helpful to think of pixels as absolute units, and that is how they
will be treated throughout this book.

Sizes made up of relative units will have different computed sizes depending on
browser preferences, such as text-size setting (ems) or the width of the browser
window (%), but sizes made up of pixels remain fixed unless the user changes
screen resolution, in which case all elements—text, images, layout, etc.—shrink
or grow in real terms (as in their size in millimeters, for example) in the same
relation to one another.

So because users do change things such as text size or window size and tend not
to change their resolution (and even when they do, every relative size changes
with it), the distinction between relative units (minus pixels) and absolute units
(plus pixels) is much more helpful when it comes to understanding and manipu-
lating the effects between the two different approaches.

“Absolute vs. Relative values” is discussed in Chapter 2 (in relation to text sizes)
and in Chapter 5 (in relation to dimensions in layout).

An “em” represents the computed value of the font size. So if the text in a contain-

ing element is displayed at 16 pixels, then 1em will be the equivalent of 16 pixels

and 2em will be the equivalent of 32 pixels, etc.

Note that the units come straight after the number, with no spaces, such as “12px”

rather than “12 px.”

Color Values
Color values, which are used to color fonts, backgrounds, and borders, can be used

to specify one of more than 16 million colors.

They can take the form of a hex (hexadecimal) value, an RGB (red, green, blue)

value, or a color name.

Hex values use hexadecimal (once, and more accurately, known as “sexadecimal”)

values, based on the base-16 number system (as opposed to the more familiar base-10

number system of decimal values), using digits from 0 to f (0 to 9 and then a to f).

Hex values are made up of a hash character (“#”) followed by either three or six

hexadecimal characters. The three-digit version is essentially a compressed version

of the six-digit version, where #f00 is the same as #ff0000 and #c96 is the same as

#cc9966, for example. The three-digit version is easier to decipher (the first charac-

ter, like the first value in RGB, is red, the second green, and the third blue), but the

six-digit version gives you finer control over the exact color. For example, this CSS

rule specifies white text on a blue background:

p {

 color: #fff;

 background-color: #0000ff;

}

RGB values allow you to set decimal numeric values or percentages for the amount of

red, green, and blue that make up a specific color. The three values within the RGB value

can be from 0 to 255, 0 being the lowest level (for example, no red), 255 being the high-

est level (for example, full red). So, the previous example rule could also be written as:

p {

 color: rgb(255, 255, 255);

 background-color: rgb (0%, 0%, 100%);

}

CSS Syntax  |  27

28   |  chapter 1: Getting Started

There are 17 valid color names that can also be used. These are aqua, black, blue,

fuchsia, gray, green, lime, maroon, navy, olive, orange, purple, red, silver, teal,

white and yellow. You can also use the value transparent.

p {

 color: white;

 background-color: blue;

}

The Three Style Sheets

There are three types of style sheet that get involved in the styling of a page:
browser, author, and user.

The browser style sheet is that used by the browser to establish the default render-
ings of HTML elements. You should be able to rely on certain browser defaults such
as strong elements being bold, or links being underlined, which, thankfully, means
you don’t have to specify every presentational aspect of every element on a page.

Figure 1.5  A page’s title will appear in the top of the browser window, as well as in
bookmarks. Also note the use of the link element to specify an icon, which appears
next to the web address in the bookmarks and also in this browser’s tabs.

The author style sheet is where you, as the page author, come in. This is the CSS
that you apply to the HTML to make it look how you want. Rules in the author
style sheet are given greater preference than the browser style sheet, but less
preference than the user style sheet.

Figure 1.6  A so-called unstyled page is actually applying the browser style sheet,
which specifies things such as a serif font, underlining for links, and making head-
ing elements large and bold.

CSS Syntax  |  29

30   |  chapter 1: Getting Started

The user style sheet is a style sheet that an individual user can apply to any
or all web sites. Generally, this is for users with strong preferences or special
needs. A user with poor eyesight might set a browser to always show content
in a large type size, for example. Rules in the user style sheet are given greater
preference than both the author and the browser style sheets.

Figure 1.7  With the author style sheet sitting on top of the browser style sheet.

Figure 1.8  A user can also decide to lay his or her own style sheet on
top, which could be used to aid accessibility by reversing foreground
and background colors or making the text larger.

CSS Syntax  |  31

32   |  chapter 1: Getting Started

Applying CSS to HTML
So now you should have an idea of how CSS works, but it’s pretty useless on its own.

You need to attach it to the HTML—and there are a number of ways of doing this.

Inline CSS
Inline CSS is a “quick fix,” sometimes used in testing but generally discouraged as

a method of applying CSS.

It relies on the style attribute (which is actually deprecated, that is, outdated by

something newer, and destined to be made obsolete, in XHTML 1.1) and goes a

little something like this:

<p style=”color: red;”>Don’t eat the pomegranate!</p>

Although this utilizes the language of CSS, it loses many of the large benefits that

CSS is famous for—namely separating presentation from structure and the ability to

make global style changes from a single source.

Embedded CSS
As mentioned earlier in this chapter, style is another tag that you can use within

the head element, and it is used to apply page-specific, or embedded, CSS to an

HTML page.

This method is much better than inline CSS (because it pulls presentation out of

the body), but still doesn’t completely separate structure and presentation (because

there’s still presentation in the HTML page). It should only be used when there are

styles that will apply only to that single page.

The “bare bone” web page examples mentioned throughout this book largely use

embedded CSS, mainly so you can see what is going on with greater ease but also

because they are stand-alone single pages.

So, let’s dip our toe in the HTML pool for a moment.

The style element is used to define CSS at a page level. This sits inside the head

element, and its contents are simply a big ol’ list of CSS rules, kinda like this:

<head>

 <title>Bujumburra</title>

 <style type=”text/css”>

 body {

 font-family: arial, Helvetica, sans-serif;

 color: black;

 }

 /* etc. etc. */

 </style>

</head>

Notice that inside the opening style tag is the type attribute, which tells the

browser the content of the element. It’s required, and the value of it, for our pur-

poses, should be “text/css.”

You can also use the media attribute, which states what media are associated with

the styles. The value can be aural, braille, embossed, handheld, print, projec-

tion, screen, tty (teletype), or tv (television), but don’t expect wide support for

much more than screen and print. You could also have media=”all”, but that’s the

same as not having any media attribute at all.

CSS Comments

You can place a comment anywhere in your CSS like this:

/* Here’s a comment */

Like an HTML comment, it won’t add anything to the CSS rules, and is used just
to provide a note for those looking at the code.

CSS Syntax  |  33

34   |  chapter 1: Getting Started

External CSS
External CSS is the kipper’s knickers when it comes to applying CSS. It involves

having the CSS rules in a completely separate file (with an extension of “.css”), to

which HTML pages can link in a number of ways.

The first and most traditional way is by using the link tag, which needs to go inside

the head element (see above) and would look like this (if the CSS file was called

“somefile.css,” for example):

<link rel=”stylesheet” type=”text/css” href=”somefile.css” />

You can also manipulate an embedded style sheet to simply pull in an external style

sheet using the @import at-rule. Instead of placing the CSS rules between the open-

ing and closing style tags, you do something like this:

<style type=”text/css”>@import url(“somefile.css”);</style>

You should also be able to add a condition to the @import rule to target the style

sheet at a specific media type, such as print:

<style type=”text/css”>@import url(“somefile.css”) print;</style>

Internet Explorer doesn’t like this, but you can still have such a condition by apply-

ing a media attribute in the opening style tag, just like you can in a link tag:

<style type=”text/css” media=”print”>@import url(“somefile.css”);

</style>

This @import method is sometimes used in preference over the link method

because it hides the entire CSS file from browsers that don’t have a firm grasp of

CSS (such as Netscape 4.x) and could actually throw up an almighty mess. Such

browsers will then simply apply their browser style sheet by itself, which, if the

HTML is constructed properly, should be perfectly functional.

Multiple Style Sheets

Although on most occasions only one author style sheet is required and even
preferable (holding all of a site’s presentation in one file), it can be advanta-
geous to have more than one. In the case of large, multisection sites, there may
be a host of CSS rules that are only applicable to one section. If these rules are
substantially large, it would be unnecessary for the rest of the sections to have
to download them, or it could just be that it would be easier to manage this
way (particularly if you have different developers for different sections). In such
a case, you could have a CSS file specific to the section that is applied to the
pages along with a core set of styles for the site.

There are a number of ways to apply multiple style sheets (such as simply having
two link elements), but perhaps the easiest is to use the @import rule. An HTML
page can simply link to the section style sheet and, within that style sheet, the
core styles are brought in via @import. So, at the top of the section style sheet,
you can simply have:

@import url(“/css/core.css”);

Just like in the method described for applying External CSS to a page (above),
this will import another CSS file and essentially become a part of that one. There
is no limit to the number of times this can be done (a style sheet can import
another style sheet that imports two style sheets that each import another style
sheet, for example) and they will all “cascade” into one another (just as “The
Three Style Sheets” will) and live together as a happily intermarried family.

CSS Syntax  |  35

This page intentionally left blank

chapter

Text

Im a ge s , m u s ic , a nim at io n s , and even movies are splattered all over

the Web in mind-boggling abundance. Amongst the squillions of bytes

that make up the Web, though, the most common form of information is

plain old text.

Without text you can’t have hypertext, and without hypertext you can’t

have HyperText Markup Language. The T in HTML is fundamental to a

web page, so it seems like a pretty good place to get the ball rolling and

start putting something tangible on those pages.

In this chapter we’ll first look at how to properly structure text, applying

meaning with HTML, and then how that structured text can be manipu-

lated to look exactly how you want it to look with CSS.

Structuring Text
Marking up text is an area where a lot of web designers have fallen into some

bad practices. Before CSS came along, HTML had to be battered about to

gain some rudimentary presentation, resulting in bloated, inaccessible, inflex-

ible junk. Bad practices, which are still common, include the misuse of the br

(break) tag to visually separate out chunks of text when p (paragraph) should

be used, and bumping up the size and boldness of plain text so that it looks

like a heading when a heading tag (such as h1) should be used. Keep in mind

that although most browsers will render some elements in similar ways, it isn’t

what each tag makes the element look like that is important (or even signifi-

cant), but rather what meaning they apply.

2

38   |  chapter 2: Text

Figure 2.1  The illustrations in this chapter are taken from the @media
2006 website (www.vivabit.com/atmedia2006/).

www.vivabit.com/atmedia2006/

Although it may not seem necessary to mark up text elements such as quotations,

abbreviations, and computer code (especially if no particular style is desired), by the

same logic that the p tag should be used to mark up paragraphs, appropriate tags

should also be used for other elements.

Basic Text Elements: Paragraphs, Line Breaks, and Emphasis
Perhaps the most important, fundamental text-related element is the paragraph (p), if

only because it should usually make up the bulk of content in any text-rich web page.

<p>Greetings one and all. Welcome to the world of paragraphs.</p>

<p>This will be the second paragraph then...</p>

You’ve also got the br tag at your disposal, which can be used to insert a line break:

<p>Greetings one and all.
Welcome to the world of line

breaks.</p>

Figure 2.2  A very common, simple page structure containing paragraphs and headings.
Shown here naked, without the author style sheet, even the default browser style makes it
clear straight away—we have chunks of text, which are paragraphs, and big bold headings.
There’s even a bit of strong emphasis going on in there.

Structuring Text  |  39

40   |  chapter 2: Text

Two brs Do Not a p Make

It is important to remember that a line break is not the same as starting a new
paragraph, which has been a common misuse of the element—two line breaks
may give the appearance of starting a new paragraph, but when we’re talk-
ing about HTML, appearance doesn’t mean a thing. A line break should only be
used when there is a logical break in the flow of text, such as the new line of an
address or a new line in a poem. As you will see later in this chapter, the look of
paragraphs, including the spacing between them, can be manipulated, should be
manipulated, and is easier to manipulate with CSS.

To emphasize text inside a paragraph—or other places, such as a heading (see next

section) or in a table cell (see Chapter 8, “Tables”)—there are two tags fit for the

job: em (emphasis) and strong (strong emphasis):

<p>You lookin’ at me? You lookin’ at me?</p>

Not i and b!

em and strong are not replacements for the old presentational i (italic) and
b (bold) tags. Although most browsers will display them in italics or bold by
default, the important thing is that they apply meaning, whereas i and b apply
only presentation (CSS’s job). General emphasis is more than a visual thing—it
can also be vocalized, for example, whereas bold and italics mean absolutely
nothing to a blind person..

Headings
In most written documents, paragraphs make up the bulk of the content, but there’s

usually a need to break things up with headings and subheadings.

We’ve got six tags to play with here: h1 (which is the highest level heading), h2, h3,

h4, h5, and h6 (the lowest level subheading).

  www.htmldog.com/examples/headings1.html

The idea is to use the elements in order, with a single h1 element for the page

heading, then any number of h2 elements for subheadings, any number of h3 ele-

ments for sub-subheadings, and so on. They should be used in order, so, for exam-

ple, an h4 should be a subheading of an h3, which should be a subheading of an h2.

And remember, don’t worry if the default styling for a heading looks too big or too

small—you can just use CSS to make it the size you want.

<h1>Headings</h1>

<p>This is all about headings.</p>

<h2>The First Subheading</h2>

<p>The first subheading was called Bob. Bob was a figurine cleaner

in a past life.</p>

<h2>The Second Subheading</h2>

<p>The second subheading was called Labella. She used to be a

chimney sweep.</p>

<h3>Labella’s Chimney Sweeping</h3>

<p>Labella can still be persuaded to sweep chimneys for five beans a

chimney.</p>

<h2>The Third Subheading</h2>

<p>The third subheading was called John. He wasn’t particularly

interesting.</p>

  www.htmldog.com/examples/headings2.html

If It’s a Heading, Mark It Up as Such

If something is a genuine heading then you should use one of these tags rather
than styling a paragraph or other piece of text to simply look bigger, which has
been a common bad practice in the past.

You will find that, by default, browsers will display these headings in bold with vari-
ous sizes and spacing, but, as with paragraphs (and all other HTML elements), CSS
can control all of these things so you can make them appear however you choose.

Structuring Text  |  41

www.htmldog.com/examples/headings1.html
www.htmldog.com/examples/headings2.html

42   |  chapter 2: Text

Quotations
As this part of the chapter progresses, you will find less commonly used tags that

mark up very specific types of text as we go along. Just because they are used less

frequently than paragraphs, emphasis, or headings doesn’t mean that they’re not

important. Sticking with the ethos of applying meaning, you should always try to use

these specific tags if you come across a piece of content that could be made more

meaningful by using them. If you have a quotation or citation, for example, you

should mark it up as such, using blockquote, q, or cite.

blockquote is used for a large, usually stand-alone, block-level quotation. Its con-

tent must be made up of other block-level elements, which in practice would usually

be p elements.

If the source of the quote can be found online, you can supply a bit more informa-

tion about the blockquote by using the cite attribute.

<blockquote cite=”http://www.htmldog.com/guides/htmladvanced/text/“>

<p>blockquote is designed to be for large, stand-alone quotations,

whereas q (quote) is used for smaller inline quotes.</p>

</blockquote>

Quotation Sources

As mentioned in Chapter 1, the Common title attribute can be used, and com-
monly is used, to show where a quotation or citation has come from when the
cite attribute, the value of which should be a URI, is not appropriate.

q can also be used for smaller, inline quotes (and you can also use the cite attri-

bute in the same way as used with blockquote).

In a mildly confusing way, there is also a cite tag, which can be used to mark up

citations.

<p>So I asked <cite>Bob</cite> about quotations and he said <q>I

know as much about quotations as I do about pigeon fancying</q>.

Luckily, I found HTML Dog and it said...</p>

Figure 2.3  When it’s a quotation, it’s gotsta be marked up as a quotation. Underneath
these pretty little representations of quotes are blockquotes, with the name of the person
who made the quote marked up in a cite element.

Abbreviations and Acronyms
Again, we’re getting specific, but if you come across abbreviations, you should mark

them up as such.

abbr can be used for abbreviations—a shortened form of a word or phrase. HTML is

an abbreviation, as is CSS, for example.

You can also use acronym, but keep in mind that an acronym is much more

specific—it is a pronounceable abbreviation that is made up of the initial

Structuring Text  |  43

44   |  chapter 2: Text

letters or parts of words of that phrase. NATO is an example of an acronym, as is

UNICEF.

<p>Scientists at <acronym title=”National Aeronautics and Space

Administration”>NASA</acronym> were attempting to teach Jiminy

the locust <abbr title=”HyperText Markup Language”>HTML</abbr>.

They seemed to overlook the fact that he was a <abbr title=”Dumb

insect who couldn’t comprehend what a computer was, let alone use

one”>DIWCCWACWLAUO</abbr>, however.

Not All Abbreviations Are Acronyms!

An acronym is a form of abbreviation, but an abbreviation is not necessarily an
acronym. HTML and CSS are not acronyms because they are not (supposed to be)
pronounceable.

 

Figure 2.4  All hail the tool tip!
If an abbreviation has a title
attribute, its value can be used
to state the full phrase that the
abbreviation represents.

Preformatted Text and Computer Code
If you want to mark up code in your HTML, there’s a tag just for the job, and it’s code.

<code>nascaristhedullestofallmotorsports=true;</code>

There’s even a tag, var, for variables in computer code:

<code><var>nascaristhedullestofallmotorsports</var>=true;</code>

samp is another close relation of code, and defines sample output, from a computer

program, for example:

<p>The result will either be <samp>Kid</samp> or <samp>Koala

</samp>.</p>

Most elements don’t take too much notice of white space, that is, things such as

spaces, tabs, and carriage returns. In a p element, for example, if there are places in

the text where there are consecutive spaces, or if you start new lines, the end result

will actually be truncated—the browser doesn’t see much meaning in white space.

Figure 2.5  If it’s computer code, ladies and gentlemen, it belongs in a code
element. Simple.

The pre element is slightly different—spaces, tabs, and line breaks become as

important a part of the content as the letters, numbers, and other characters, and

the default browser rendering of displaying this white space (unlike the default ren-

dering of most elements) reflects this.

pre is most commonly used to mark up blocks of computer code (where indenta-

tions, etc., can be meaningful and important).

<pre><code>

<div id=”intro”& gt;

Structuring Text  |  45

46   |  chapter 2: Text

 <h1>Some heading</h1>

 <p>Some paragraph paragraph thing thing thingy.</

p></div>

</code></pre>

One last oddity is kbd, which is used to specifically suggest text

that should be entered by the user:

<p>Now type <kbd>kumquat</kbd>.</p>

Editorial Insertions and Deletions
Have you ever used “Track Changes” in Microsoft Word? It can be used to show

insertions and deletions, which can be helpful when more than one author is work-

ing on the same document. HTML documents are just that: documents, much like

Word documents. Although probably less useful than in word processing, HTML has

equivalents of “Track Changes” and they are ins (for insertions) and del (for, wait

for it… deletions).

You can use the datetime attribute, the value of which (in the format of

YYYYMMDD) would explain when the insertion or deletion was made. Like quotes,

you can also use the cite attribute, which, in this case, is intended to point to infor-

mation explaining why the given change was made.

<p>Patrick was walking down the road when he saw a <del datetime=”2

0040329”>fluffy kitten<ins cite=”http://www.htmldog.com”>giant

rabid snarling mutant saber-toothed goat</ins>.</p>

It’s worth noting that ins and del are peculiar in that they can be used as either

inline (such as in the previous example) or block elements (containing multiple para-

graphs, for example). However, you should note that when ins and del are being

used as inline elements, they cannot contain block-level elements. For example, the

following would not be legal:

<p>

<ins><div>giant rabid snarling mutant saber-toothed goat<div></ins>.

</p>

Remember (from Chapter 1, “Getting Started”) that you still can’t put block ele-

ments inside inline elements, so if you’re intending an ins element to be inline, for

example, then it can’t contain block elements.

Default Editorial Styles

Following the word-processing tradition, insertions are usually shown underlined
and deletions with a strikethrough. Of course, this default style can be changed
with CSS.

Multilanguage and Bidirectional Text
As explained in Chapter 1, the xml:lang attribute can be used in just about any

HTML tag to define the language of its content, but sometimes a language will also

need to be read in a different direction from its surrounding content.

The bdo tag can also be used to define bidirectional text, such as languages that are

read in a different direction from the default language (Hebrew in an English docu-

ment, for example).

The dir attribute, which is required, is used to define the direction of the text, and

its values can be ltr (left-to-right) or rtl (right-to-left).

<bdo dir=”rtl”>smug desserts</bdo>

Addresses
…and there’s even a tag to mark up your address.

address is very specifically intended to mark up the contact details, such as a street

address, for a page, or major part of a page (such as a contact form).

<address>

HTML Dog House

HTML Street

Dogsville

The Oligarchic Republic of Dogland

</address>

Structuring Text  |  47

48   |  chapter 2: Text

Styling Text
Excellent. So now you’re a master in the art of structuring text with HTML. If you

view these elements in a browser as they are, with their default visual rendering,

it’s quite probable that they’re not exactly how you would want them to look. The

browser can only go so far in establishing some basic styles; the rest is up to you

and your friend CSS. With the text styling properties outlined here you can take full

control of font types, sizes, colors, and spacing.

Fonts
Because a web page with lots of different fonts looks about as hot as a hippopota-

mus with a skin complaint, you probably won’t find yourself wanting to change the

font style—using font-family—that often. In most circumstances, you would apply

it to the body, setting the base font for the entire page, and then maybe sparingly

on some specific elements.

The value of font-family can be a single font name (which, if it is made up of more

than one word, should be written in quotation marks), or multiple font names, sepa-

rated by commas. By doing this, if a browser cannot find the first choice font, it will

move on to the next in the list. This is used to provide a backup for when preferred

fonts fail or for when similar fonts with different names appear on different operat-

ing systems. For example, traditionally you would find the Arial font on PCs but

Helvetica on Macs, so specifying these fonts would cover both adequately. Finally,

it is a good idea to back up the pack with a generic font keyword such as serif,

sans-serif or monospace in case all else fails.

body { font-family: “Times New Roman” }

h2 { font-family: arial, helvetica, sans-serif }

A Browser Can Only Display Fonts Installed on

the User’s Computer

You might have 3.2 billion fonts gathered from a stack of magazine cover discs
and downloaded from the Internet, but if those looking at your web pages don’t
have the same fonts installed on their computer then the computer simply won’t
be able to apply them. You need to be careful which fonts you specify. There are
certain “safe” fonts that most users will have on their computers—they will
probably have Arial or Helvetica but you’re probably pushing it if you count on
Slug Invader Hieroglyphics or Curly Gothic Roman Dings Bold Condensed 5.

If you really want to use a relatively obscure font, you can use the comma-
separated value to specify the very specific font on the off chance that a user
will have it but providing a backup by specifying safer fonts for the browser to
fall back on. It is probably a good idea to test the web pages in the backup fonts
in situations like this, though...

body { font-family: “Slug Invader Hieroglyphics”, arial, helvetica,

sans-serif }

Figure 2.6  There are a number of fallbacks going on here to achieve a semi-common
font. Most Windows PCs are armed with the Century Gothic font, and most Macs
have the similar Avant Garde installed. So with something along the lines of h1, h2
{ font-family: “Century Gothic”, “Avant Garde” }, the headings get a little bit of
special treatment compared to the rest of the text (which is set by body { font-
family: Verdana, Geneva, Arial, Helvetica, sans-serif }).

Styling Text  |  49

50   |  chapter 2: Text

Color
As already mentioned in Chapter 1, the color and background-color properties

can be used to specify the colors of just about anything on a web page. Although

background-color can be used on other elements as well as textual elements, the

color property, which means the foreground color, essentially applies only to text

(although it can also apply to borders—see Chapter 5, “Layout”).

body {

 font-family: “Times New Roman”, Times, serif;

 color: white;

 background-color: black;

}

code { color: #900; }

blockquote { background-color: #efe; }

Base Colors

Like font-family, it is common practice to apply a color to the body, which will
set the base text color of the page, being inherited by text throughout. Individual
elements can then, of course, be colored separately if needed.

Size
font-size sets the font size. Well, duh.

The most commonly used units for computer displays are px, em, %, and keywords

(such as small, medium, or large—see the CSS Property Appendix for the whole

lot), although things are done slightly differently when it comes to other types of

media (see “Styling for Print” in Chapter 10, “Multiple Media”).

body { font-size: 80%; }

h1 { font-size: 2em; }

Size Example

Figure 2.6 is also a good example of font sizes. The page kicks off with a font
size of 80 percent. h1s are then set to 4ems, h2s to 2ems, and h3s to 1.5ems

Absolute Vs. Relative Values I

So which unit should you use to size text on a computer screen—an absolute
unit such as pixels, or a relative unit such as ems?

Ems. It’s as simple as that. Pixels should not be used to size text.

Well, OK, it’s not as simple as that. Actually, any unit relative to the screen size
(so that’s not pixels, no matter who tries to tell you a pixel is a relative unit) is
OK—percentages and font-size keywords will do just as nicely.

The reason? Because these units allow text to be elastic—to expand or contract
depending on the user’s text-size settings. It accommodates a user’s preferences.

When CSS came along and opened up the control over a web page’s visuals,
many grabbed on the fact that for the first time they could use pixels to define a
font’s size. Such pixel-perfect control sounds like a good thing—as a designer
you have complete control over what the final thing will look like. It is more likely
that what you see on your computer screen is what users will see on theirs. But
that’s kind of missing the point of the Web, which is such a flexible beast.

Here’s the crux of the matter: Text sized using pixels is less accessible than
text sized using ems. Usability should be enough to convince—if users prefer
something a certain way (such as larger or even smaller text) then they are going
to respond better if their preference is accommodated. But it’s not just about
usability and preference. To many it is about necessity: If a user cannot com-
fortably read text, then he or she will benefit by being able to resize that text.
Accessibility isn’t only about blindness and screen readers—visual impairment

Styling Text  |  51

52   |  chapter 2: Text

is enough to warrant such attention. And visual impairment is something that we
will all encounter as we grow older.

A web page on a computer screen is not a printed piece of paper. Dimensions
can be changed and user preferences can be accommodated. It’s a great fea-
ture. Most acknowledge this, but even those who did continued to use pixels
because they felt that there was no alternative.

The problem lay in Internet Explorer. The first problem (for pixel-fan designers,
anyway) was that whereas browsers such as Mozilla offered a “text-zoom” func-
tion, which increased the size of even pixel-sized text, IE did not. To IE a pixel is
a pixel is a pixel. If the designer specifies pixels, the browser delivers pixels. So
when the user opts to change the text size setting, nothing happens to the pixel-
sized text.

So to accommodate Internet Explorer’s text-sizing accessibility feature, relative
units are the only option. But here comes the second problem...

When you specify fonts in ems, for example, the jumps between sizes in Internet
Explorer are so large that on the “smaller” setting text becomes unreadable. And
because “smaller” is a popular setting, you are hindering accessibility—even to
people with 20/20 vision, let alone anyone else.

But then percentages came to the rescue. By setting the initial font size of the
body in a percentage and then in ems thereafter, the jumps between IE’s text-
size settings become smaller, and everyone, from those who browse at “small-
est” to those who browse at “largest,” can be happy.

body { font-size: 80%; }

h1 { font-size: 2em; }

h2 { font-size: 1.5em; }

At the end of the day there are real benefits to sizing text using relative units
and there are no real reasons not to.

Figure 2.7  Because the font sizes are all set in ems (after an initial setting in per-
centages), users can bump up the size of the text, if they so choose, which is a
great accessibility benefit. If they were set in pixels, the majority of web surfers,
using IE, would not have this benefit.

You can read more about “Elastic Text” at www.htmldog.com/articles/elasticdesign/,
which also covers the pros and cons of using absolute and relative values in lay-
out—a technique that will be looked at in Chapter 5.

Line Height
You can adjust the height of the lines in text, such as a paragraph, without adjusting

the size of the font, just like line spacing in a word processor. line-height is handy

little critter—if used wisely, it can make your text much more readable.

p { line-height: 1.5 }

Styling Text  |  53

www.htmldog.com/articles/elasticdesign/

54   |  chapter 2: Text

Suffixless

Line-height is one of only two properties (z-index being the other—see Chapter
5) that do not require a suffix (although you can specify any length or percent-
age, if you want). line-height: 1.5 is the same as line-height: 1.5em.

Figure 2.8  The base line-height of the @media 2006 site is set at 1.7, as shown in
the rest of the figures in this chapter. If left at the default, the text is a bit more
squashed and a bit more difficult to read.

Bold and Italics
Don’t forget that we’re not using HTML for presentation anymore—not even b or i

tags are allowed. When we want to set the thickness or slant of text, there’s CSS

that does the job much better.

font-weight sets the boldness of a font. By far the most commonly used and prac-

tical values are bold or normal.

a { font-weight: bold }

h2 { font-weight: normal }

Text can be italicized (or de-italicized) using font-style, using italic (or normal) as

the value.

h1, h2 { font-style: italic }

Upper and Lower Case
If you really want to get hard core (and why not?) you shouldn’t even be writing

words all in capitals in your HTML just to achieve a certain look for a heading, or

emphasis, for example. Instead of <h1>THIS IS A DAMNED FINE HEADING</h1>, why

not try <h1>This is a damned fine heading</h1> and trying out font-variant or

text-transform?

font-variant: small-caps will convert lowercase letters to small uppercase letters,

but that’s probably not as useful as text-transform, which properly (no pussy-footing

around with “small caps” here) converts the case of letters. Values for text-trans-

form can be capitalize (which capitalizes the first letter of every word), uppercase

(every letter uppercase), or lowercase (every letter lowercase).

h1, h2 { text-transform: uppercase }

  www.htmldog.com/examples/case.html

The font Shorthand Property
We’re going to come across “shorthand” properties a few times throughout this book.

They’re great little shortcuts that enable us to define a number of styles (which can

otherwise be defined separately) in one property, so reducing code. They might be

more confusing to read than the separate, specific properties at first, but the more

you get used to them, the snappier your code will be.

font can be used to specify italics, small-caps, boldness, size, line-height, and font

name all in the one property. The value is, essentially, a combination of font-style,

Styling Text  |  55

www.htmldog.com/examples/case.html

56   |  chapter 2: Text

font-variant, font-weight, font-size, line-height, and font-family, and is used

in the format of font: font-style font-variant font-weight font-size/line-height font-

family. Only the font-size and font-family parts are required.

p { font: italic small-caps bold 0.8em/1.5 arial, Helvetica,

sans-serif }

.booba { font: bold 3.5em arial, helvetica, sans-serif }

font Will Reset Previous Styles

Before applying any values, font will reset any previous font-style, font-variant,
font-weight, font-size, line-height, or font-family values to their initial settings.
So for example...

.wooha {

	 font-weight: bold;

	 font-variant: small-caps;

	 font: 2em arial;

}

…will not apply bold or small-caps because font comes along after the font-
weight and font-variant declarations and unashamedly resets them.

Underline and Strikethrough
text-decoration can be used to underline, overline, strikethrough, or turn off any

existing decoration (such as on links) using the values underline, overline, line-

through, or none.

ins { text-decoration: none }

Underline with Caution

Underlined elements are commonly recognized as links (or insertions, if text is
in an editorial context), so you need to be careful about where you apply this
style. The practice of styling acronyms and abbreviations with dotted underlines
(using border-bottom: 1px dotted) has become a popular way of discerning them
from the crowd, but there is a possibility that even this will be confusing. See
Chapter 3, “Links,” for more, including how to make your own custom underlines
with borders and images.

Don’t Blink!

Even if it did work in IE, it would be an extremely bad idea to use text-decora-
tion: blink. Blinking text is notoriously disliked by users and is BAD from an
accessibility point of view—and not in a Michael Jackson way, either.

Letter and Word Spacing
OK… now there’s a danger of getting carried away with all of this power CSS is giv-

ing us. If used willy-nilly, things such as the self-descriptive letter-spacing and

word-spacing can make your page look a mess, but, as always, use it wisely (maybe

for something a little different than the norm in headings, for example), and the

results could be rewarding.

p {

 letter-spacing: 0.3em;

 word-spacing: 1em;

}

Styling Text  |  57

58   |  chapter 2: Text

Indenting
Another property rooted in traditional print styling that doesn’t translate quite

as well on a web page (because it’s not really a convention on the Web) is text-

indent, which indents the first line of text in a box by a length or percentage.

p { text-indent: 1em }

  www.htmldog.com/examples/textalign.html

Horizontal Alignment
text-align horizontally aligns text within a block box, such as a default paragraph,

to the left (which is usually the default), right, or center; or justify.

p { text-align: right; }

Another word of warning: Left-aligned text is easier to read on the Web than justi-

fied text, so use the justify setting sparingly.

Figure 2.9  Going crazy with letter-spacing, word-spacing, text-indent,
and text-align.

www.htmldog.com/examples/textalign.html

Vertical Alignment
vertical-align is not quite as exciting as it might at first sound (because I just

know you were getting excited there). It applies only to inline boxes (usually text),

and is not meant to align chunks of a page vertically. In many cases, as explained

later, there are better alternatives to using vertical-align.

Values top, middle, bottom, text-top, text-bottom, sub (subscript), and super

(superscript) rely on the styled box being smaller than some or all of the text in the

rest of the line (otherwise it will already be at all of those positions).

A length or percentage can also be used.

.power {

 font-size: 80%;

 vertical-align: super;

}

Figure 2.10  Using the vertical-align property can push parts of the text to any degree
up or down, but doing this will alter the height of the line such an effect sits on. See
www.htmldog.com/examples/verticalalign.html.

You can also achieve vertical alignment by using positioning (see Chapter 5 for

more), which is a tad more complicated, but gives you a smidgen more control.

Take a glance at the Superscript and Subscript article (www.htmldog.com/articles/

superscript/) and corresponding example (www.htmldog.com/examples/superscript.

html) on the HTML Dog website for more.

Styling Text  |  59

www.htmldog.com/examples/verticalalign.html
www.htmldog.com/articles/superscript/
www.htmldog.com/articles/superscript/
www.htmldog.com/examples/superscript.html
www.htmldog.com/examples/superscript.html

60   |  chapter 2: Text

More Text Styling Techniques
To achieve more specific traditionally print-related styles, you can expand your text-

styling options by playing around with other CSS properties (particularly those cov-

ered in Chapter 5).

You might have a penchant for drop caps, for example:

  www.htmldog.com/articles/dropcaps/

  www.htmldog.com/examples/dropcops1.html, dropcaps2.html, and dropcaps3.html

Or you might fall giddy with glee at the mere waft of a pull-quote or two:

  www.htmldog.com/articles/pullquotes/

  www.htmldog.com/examples/pullquotes1.html, pullquotes2.html, and pullquotes3.html

www.htmldog.com/articles/dropcaps/
www.htmldog.com/examples/dropcops1.html,dropcaps2.html,anddropcaps3.html
www.htmldog.com/articles/pullquotes/
www.htmldog.com/examples/pullquotes1.html,pullquotes2.html,andpullquotes3.html

chapter

Links

W e ’ v e j u s t co v e r e d the T in HTML, but it’s links that give it the HT—

HyperText is the method of moving between places by selecting links.

Figure 3.1  The illustrations in this chapter are taken from London’s
Natural History Museum website (www.nhm.ac.uk).

3

www.nhm.ac.uk

62   |  chapter 3: Links

It’s really not very difficult to create a hypertext link; in fact, we’re only talking

about one HTML tag here. There’s a lot to take into account with this indepen-

dent little fella, though, from the way links are created, to what they can link

to, to the countless options you have in styling them (whilst remembering that

some restraint is needed to keep them as user-friendly as possible), to the area

of accessibility, which has particular importance when it comes to links.

Anchor Elements and Hypertext References
So what tag do we use? link? Nope. That’s for something else (see Chapter 1,

“Getting Started”). Why, it’s the diminutive a tag, of course! That’s right: a for

anchor.

What?!

We’ll come to the reasoning behind this in a minute, but the most important part

of an a element is actually the href attribute (meaning “hypertext reference”). The

value of this attribute specifies the target of the link—where the browser should

navigate to when the link is selected.

A page

URLs

A Universal Resource Locator is the location you want to link to (in the case of
links, the value of the href attribute), be it a website, page, or any other file. The
form of the URL can be different, depending on where the target is located—on
the same page (such as “#something”—see “Page Anchors,” below); in the
same folder (such as “something.html”); the same site (such as “afolder/some-
thing.jpg” or “../alowerfolder/something.html”); or on a different server entirely
(such as “http://www.htmldog.com/guides/”).

http://www.htmldog.com/guides/

Figure 3.2 A whole bunch o’ links, a whole bunch o’ a elements.

Page Anchors
OK, so here’s the reason why we’re using a tag called “anchor.” In the olden days,

back when giant reptiles were plodding around and all mammals were the size of

shrews, “page anchors”—the points in a page that can be jumped to from selecting

a link—were defined with the a element.

Nowadays, such an explicit page anchor element isn’t needed because any element

with an id attribute (see Chapter 1) can act as an anchor.

Linking to a completely different page with something like href=”something.html”

is very straightforward, but jumping down (or up) a page to a page anchor is just

as simple. To refer to a page anchor, you simply put a number sign—#—before the

name of the id you want to jump to. The label that follows the # character is referred

to as the “fragment.” So in the following example, selecting the “nitty-gritty” link

Anchor Elements and Hypertext References  |  63

64   |  chapter 3: Links

(with the attribute href=”#nittygritty”) will cause the browser to jump down the

page to the “Nitty-Gritty” h2 element (with the attribute id=”nittygritty”):

<p>Jump straight to the nitty-gritty

<!--[A whole load of content]-->

<h2 id=”nittygritty”>Nitty-Gritty</h2>

  www.htmldog.com/examples/target.html

You can also jump to an anchor in another page by simply bolting on the “#what-

ever” to the end of the URL. So to jump to the above “Nitty-Gritty” element from

another page, you would use href=”whatever.html#nitty-gritty”.

Figure 3.3 FAQ pages commonly use page anchors—a link at the top of the page scrolls the
browser to a heading farther down the page.

www.htmldog.com/examples/target.html

Link States: Link, Visited, Hover, Focus, and Active
There are five link states that become particularly prevalent when using CSS:

	 1.	 One for when a link has not yet been visited

	 2.	 One for when a link has been visited

	 3.	 One for when a link is being hovered over

	 4.	 �One for when a link receives focus (for example, when it is tabbed to by

keyboard input)

	 5.	 One for when a link is being selected.

By default, browsers tend to render unvisited links in blue, visited links in purple (or

mushroom-soup-sick brown in IE) and active links in red, but you can style these,

as well as the hover and focus states, however you choose.

By using the selector a on its own, you can set properties that will apply to all of the

link states (such as a { color: blue }). This is a common practice, but one that

should be followed up with styles for the individual link states to take advantage of

the valuable cues they can provide to users. To change the properties of the link

states independently, you can use the pseudo-classes link (for the default, unvis-

ited state), visited, hover, focus, and active, as in the following example:

a:link { color: blue; }

a:visited { color: purple; }

a:hover { text-decoration: none; }

a:focus { background-color: yellow; }

a:active { color: red; }

Link State. A color that stands out from surrounding text is usually selected for a

link, but to recognize the needs of colorblind users you should not rely on color

alone. An underline text decoration is applied by default with the a element. If you

decide to have links without underlines, consider adding another visual cue, such as

displaying them in bold. Keep in mind, though, that underlines are still associated

with links and make them more instantly recognizable than any other visual cue,

particularly when they appear in the middle of content. (This is not as important

for links in a well-defined navigation area, for example.)

Link States: Link, Visited, Hover, Focus, and Active  |  65

66   |  chapter 3: Links

Visited State. The visited state is notoriously underused. By making use of the

visited pseudo-class to make links look slightly different (in a lighter color, for

example), you present a cue to let users know which pages they have already been

to, and which pages they haven’t—a distinction that has been shown in usability

tests to help users make sense of a site.

Hover State. The hover state, which comes into play when the cursor moves over a

link, has also been shown to be useful to users.

Possible and popular combinations include turning off the underline on links using

a:link { text-decoration: none; } and then having it appear when the link is

hovered over with a:hover { text-decoration: underline; }.

You can obviously change colors, too, but it isn’t usually wise to change the size,

font-weight, or font-style of a link when it is hovered over because it can push out

surrounding content (what with it taking up more room than it did in its pre-hover

state).

So a basic hover effect you would use might look something like this:

a {

 color: #900;

 font-weight: bold;

 text-decoration: none;

}

a:visited {

 color: #c00;

}

a:hover {

 color: #900;

 text-decoration: underline;

}

The initial, unvisited link will have no underline, but will be bold to make it stand

out from surrounding text. Visited links will be slightly lighter to differentiate them

from links that have not been selected. And when the link is hovered over, an under-

line will appear.

Focus State. The focus pseudo-class, which—although it could provide a good

visual indicator for people tabbing through links—is actually the least helpful of

these pseudo-classes because it isn’t supported by Internet Explorer (although its

effects can be mimicked with JavaScript—see www.htmldog.com/articles/suckerfish/

focus/).

Active State. Finally, the active pseudo-class can be used to style a link that is

being selected (as in, being clicked), for that extra bit of user feedback.

Figure 3.4 OK, so underlining links with text-decoration is quite common.
But you could be a bit fancier and apply borders or even background images
to achieve a more customized result. Take a read of the short article at
www.htmldog.com/articles/underlines/ or just jump in and take a look at the
bare-bones example:

  www.htmldog.com/examples/underlines.html

Accessible Links
Links are an essential tool of navigation—without them, the Web would be a very

difficult place to get around. For that reason, it’s important to pay special attention

to the accessibility of links to make sure everyone can use web pages effectively,

even if they don’t use pointing devices or if they rely on nonvisual browsers. This

section covers some techniques for addressing those considerations.

Tabbing
Those who do not or cannot use a pointing device such as a mouse will often

“tab” through links with a keyboard or other input device, whereby the user can

cycle through the links with every press of a key (such as the Tab key). One of

the benefits of building web pages according to web standards is that the content

tends to fall into a logical order, as do any links within it, so a good tab order is

usually automatic.

Accessible Links  |  67

www.htmldog.com/articles/suckerfish/focus/
www.htmldog.com/articles/suckerfish/focus/
www.htmldog.com/articles/underlines/
www.htmldog.com/examples/underlines.html

68   |  chapter 3: Links

To explicitly set the tab order of links on a page, you can use the tabindex attri-

bute. Numerical values dictate what links will come where in the order, 1 being first,

2 being second, etc.

Wherever

You may want to do this if you believe some links are of greater importance or inter-

est to the user than others and so want to make the process of focusing in on those

links quicker.

Access Keys
Links can also be accessed by keyboard shortcuts, which remove the need for tab-

bing through a large number of links before reaching the desired link. These short-

cuts can be applied using the accesskey attribute.

Whatever

When a user presses the access key, plus Ctrl or Alt (depending on the platform),

the browser will move focus to the link assigned to that access key.

It isn’t always necessary—or even realistically possible—to add access keys to all

links on a page, but it is suggested that they should be added to major links, such

as primary navigation.

The (Big) Problem(s) with Access Keys

There are two major problems with access keys.

The first is that although some screen-readers will read out access key values,
there is no good way of letting the user know visually what the access keys are.
As there is no universally accepted standard, websites tend to use different
access keys to accomplish different tasks in different ways.

Suggestions for conveying the access key information have included explicitly stat-
ing what the access key is (such as Blah
(B)) or using CSS to underline or in some other way highlight the letter of the
corresponding access key within the link text. The problem with this approach is
that you cannot expect a user to know what the hell these things indicate. Most
people won’t want to use access keys or even care what they are let alone know
what they are. Ideally, the browser would somehow convey access keys indepen-
dently of the web page view itself, but there’s nothing the web designer can do
about this.

Another method of conveying access key information is to have an accessibil-
ity statement web page that explicitly states what they are and what links they
are assigned to. The downside of this is that users have to navigate to another
page before reading the page they are really interested in. This is something that
users notoriously rarely do.

If you choose to use access keys despite this problem, there is a second problem
waiting in the shadows to spoil the fun. This problem is that access keys can
cause conflicts with browser shortcuts. A user may want to select the File menu
from the browser window menu by pressing Alt+F on the keyboard, but find that
something quite unexpected happens because F is assigned to a link on the web
page and steals the limelight.

It is extremely difficult to predict what, if any, keyboard shortcuts are safe to
use as access keys. You can work out what shortcuts apply to your browser, even
to a number of browsers, but what about browsers in different languages? The
trouble is that if you want your web page to appeal to an international audience
(this is the Internet we’re talking about, after all) then all of those browser menu
options you are used to will have different wording and with it different keyboard
shortcuts. This means that pretty much any letter assigned to an access key will
conflict with a browser shortcut somewhere, causing confusion, hindering usabil-
ity, and defeating the whole object of the access key.

Accessible Links  |  69

70   |  chapter 3: Links

So what to do? Firstly, due to the unfortunate problems, don’t worry too much
about them—they’re just not very practical. If you do choose to use them, how-
ever, try sticking to numeric access keys and go with that rarely visited acces-
sibility statement (such as the one in Figure 3.5).

Figure 3.5 Like many sites that have access keys, the NHM site has a page explain-
ing what they are and where they will take the user. Note that the site has also cho-
sen numeric access keys to minimize problems with browser shortcuts.

Link Titles
As with many tags, you can use the common attribute title within the opening a

tag to provide more information about a link, such as a description of where the link

will take the user.

Although the text making up a link should describe the target, if it doesn’t (if you

are forced to use “click here” or “more” as the link text, for example), then the title

can be used to provide more information. Don’t assume this fixes the problem of

crap link text, though—a user’s screen-reader isn’t necessarily going to be set up to

read link titles.

Pop-ups
Pop-ups are a serious accessibility no-no because they unexpectedly navigate the

user to a new window and break the “back button” functionality. If you find yourself

in the position of using them, however, there are a few steps you can take to make

their application more accessible.

Firstly, the link title should be used to state that the link will cause a new window to

pop up.

Secondly, the value of the href attribute should be the page used in the pop-up and

the JavaScript used to launch the pop-up should return false. This way, if a user

does not have JavaScript or has it disabled, the content of the pop-up will be navi-

gated to, just not in a pop-up.

<a href=”eviltroll.html” title=”Launch Evil Troll in a little

pop-up” onclick=”popup(this); return false;”>Evil Troll

Contrary to popular belief, you do not need to replicate the onclick event with the

onkeypress event, although this would seem to make sense in accommodating key-

board input as well as “clicking” input. This is because as well as being invoked by

clicking, onclick will also be invoked by key-pressing.

Adjacent Links
Another issue raised by the Web Accessibility Initiative (WAI) is that adjacent links

should be separated by more than just spaces so that they can be discerned by

screen-readers.

There is argument over the continued validity of this point due to advances in

screen-reader technology that allow links to be read more clearly, but a problem still

remains with adjacent links, and they should be avoided if at all possible.

Separating navigation links with spaces is rarely anything more than presentational,

and smacks of the bad practice of using a number of (nonbreaking space)

Accessible Links  |  71

72   |  chapter 3: Links

characters for quick-fix presentation. It is bad grammar to have a series of unbro-

ken, unrelated words (or abbreviations) in a paragraph.

This case usually calls for such items to be placed in a list (see Chapter 6, “Lists”),

but sometimes situations may arise where a paragraph is preferred.

For example, if you had a number of links claiming standards compliance, you might

want “XHTML CSS WAI,” but if this were placed in a paragraph it should be punc-

tuated with commas such as “XHTML, CSS, WAI” or at least with some separator,

such as “XHTML | CSS | WAI.”

It is not entirely uncommon (particularly in blogs) to find adjacent words in a phrase

linking to different places (such as <a>as <a>some <a>have <a>said</

a>). The trouble with this is that the link text rarely describes where it is taking the

user.

Skipping Navigation
When a sighted user is presented with a page, it doesn’t take that long to focus on

the content—he or she doesn’t need to read all of the navigation options. Those

who rely on screen-readers don’t necessarily have this luxury. A screen-reader will

read through the entire content of a web page in the order it appears in the HTML,

which often means large portions of navigational elements being read out on every

page before it gets to the intended informative content.

To take this situation into account, you can create a link that will give the user the

option to skip the navigation and jump straight into the content.

<p class=”accessaid”>Skip to content</p>

<!--[Big chunk of navigation]-->

<div id=”content”>

 <!--[The nitty gritty]-->

</div>

This code should look familiar—it is simply a basic link to a page anchor (defined by

the ID “content”). Not only would the browser jump down the page when the “Skip

to content” link is selected, the point at which a screen-reader continues to read

would also jump to that point, so bypassing the reading of the navigation.

Although there may be users (such as those with motor disabilities) who exploit visu-

als but do not use pointing devices to whom this skip-to-content technique would be

beneficial, it is still a good idea to hide this link from view using CSS to avoid con-

fusion (the link won’t seem to do anything to the vast majority of users, who won’t

need to use it):

.accessaid {

	 position: absolute;

	 height: 0;

	 overflow: hidden;

}

(This method of hiding, and the properties used in the example, are described in

Chapter 5, “Layout.”)

Figure 3.6 When the CSS is turned off, the Skip navigation links are revealed.

Accessible Links  |  73

74   |  chapter 3: Links

On the flip side of this, a page could be structured whereby the content comes

before the navigation options. In this case, you can just as easily add a “Skip to

navigation” option for users who might want to access the navigation without having

to read through all of the content.

chapter

Images

Im a ge s a r e p e r h a p s the most obvious way to add visual appeal to

a web page. If you want anything more than the most minimal of mini-

mal sites you’ll want to use images in one way or another, whether it’s

showing off your holiday photos or adding curved corners to your layout.

Images also used to be used all over the place to help lay out pages as

invisible “spacer GIFs,” but now that we’ve got CSS layout on our side

(see Chapter 5, “Layout”), we can do away with those crazy days.

You can split the use of images quite neatly into two camps: one for

content (such as those holiday photos) and one for presentation (that’ll

be those curved corners), and unless you’ve just opened the book for the

first time and landed on this page, you should know by now that HTML

should be used for the former and CSS for the latter.

4

76   |  chapter 4: Images

Figure 4.1 The illustrations in this chapter are taken from the Vivabit website (vivabit.com).

The img Element
The img element allows you to plonk an image straight into your HTML.

The required src attribute points to the location of the image file.

The alt attribute, which is also required, is for specifying alternative text. It serves

an important accessibility task: It provides an “alternative” to the image for those

who cannot see the image itself (such as those reliant on screen-readers). As an

added bonus, most browsers use this attribute to provide placeholder text while the

image is downloading. The value can give an idea of what the image represents,

but doesn’t have to—it can be anything that would adequately serve as alternative

content to the image.

  www.htmldog.com/examples/images1.html

You can also use the longdesc attribute, the value of which would be the location

(in the form of a URL) of a description of the image. The idea behind this is that

when there is a very detailed image (such as a map or a chart) that may need a

solid, long explanation, you don’t necessarily want to bog down the page with mas-

sive alt attributes (which should be short and sweet). longdesc gives the user an

option to navigate to a page that will explain what is going on.

Border Annihilation

Note that if you include an img element inside a link, browsers will tend to
apply a border to the image by default. You can easily annihilate the border with
CSS—img { border: 0; }. See Chapter 3 for more on links and Chapter 5 for
more on borders.

The Img Element  |  77

www.htmldog.com/examples/images1.html

78   |  chapter 4: Images

Figure 4.2 Even in a graphically rich web page, img elements tend to be few and far
between. Take a sub-page from this website, for example…

Figure 4.3 The only img elements in the HTML are the logo and the headshots.

The Img Element  |  79

80   |  chapter 4: Images

Width? Height? In HTML?

The width and height attributes can be quite useful. They let the browser know
how much space to reserve on a page even before the image itself starts to
download. Without this information, the browser will only know the image size
once the image starts to download, which can mean that it needs to redraw the
page, causing surrounding content to jump all over the place. For example, if
there is an img element without width and height settings in a page surrounded
by a whole load of text, the browser will render the text first, leaving a small
default area for the image. When it comes to download the image and realizes
that it is actually bigger than the space it left, it will need to readjust where the
text flows to accommodate the image.

<img src=”images/sifaka.jpg” alt=”Leaping sifaka” width=”500”

height=”129” />

But hold on a minute! Width and height are spatial concepts—completely pre-
sentational; shouldn’t this be something that is done with CSS? Well, ideally,
yes, with the width and height properties (width: 500px; height: 129px;
for example—see Chapter 5). But this approach isn’t always practical. If you
had a lot of different img elements on a page (or across a whole site, for that
matter) and they all had different dimensions (if it was some kind of online
photo album, for example), then you would need to create classes for every
image (see Chapter 1, “Getting Started”), which could lead to an unwieldy
amount of CSS. In such a case, although it messes with the whole structure/
presentation philosophy, the width and height attributes might be the most
practical route to take.

JPEG, GIF, or PNG?

This is a little outside the realms of HTML and CSS, but because it is so impor-
tant in the construction of a web page with images it is worth briefly noting the
different image file formats for any beginners out there.

JPEG, GIF, and PNG use compression algorithms to deliver lightweight images
for web pages. These algorithms work in different ways and each is suitable for
different situations. Most decent image manipulation software programs will give
you some control over the degree of compression, allowing you to strike a bal-
ance between quality and file size (the more compressed an image, the smaller
the file size and the lower the quality).

JPEGs should normally be used for detailed images such as photographs.

GIFs should be used for images with solid blocks of color. This format allows
up to 256 colors, including transparency. The fewer the colors in an image, the
smaller the file size.

PNGs achieve a similar result to GIFs but in a more sophisticated way. They allow
more colors and also “alpha” transparency, which means individual pixels can
be set to a certain degree of transparency (ranging from opaque to completely
transparent). Unfortunately, the alpha transparency in PNGs is not supported in
the commonly used Internet Explorer 6, although IE7 will be more well behaved.

Image Maps
Let’s keep this brief: Image maps, which allow a user to click on various parts within

an image, are not widely used (certainly not in a good way, anyway) and there are

usually better alternatives.

The Img Element  |  81

82   |  chapter 4: Images

There are two flavors: server-side image maps, which belong in Satan’s toolbox

and are discussed in Chapter 9, “Forms,” and client-side image maps, which are

cobbled together with the map and area elements.

<map name=”atlas” id=”atlas”>

 <area shape=”rect” coords=”0,0,115,90” href=”northamerica.html”

alt=”North America” />

 <area shape=”poly” coords=”113,39,187,21,180,72,141,77,117,86”

href=”europe.hmtl” alt=”Europe” />

 <area shape=”poly” coords=”119,80,162,82,175,102,183,102,175,148

,122,146” href=”africa.html” alt=”Africa” />

</map>

In this example, the img element is the image. The map element then links onto

that image via the usemap attribute in the img element matching the name attribute

in the map element. Each area element then defines an area on the image (with a

shape and coordinates) and provides a link. So if this were a map of the world, then

you could make each continent clickable.

Why aren’t these much use? Because there aren’t many valid applications for them

(geographical maps are the most obvious use), and even when you have a valid use

(splitting one big image into navigational links, a popular crime of the past, is not

a valid use) they’re not very user friendly because it’s not immediately obvious that

the image is a clickable map. They may seem clever, but they’re perhaps too clever

for their own good.

Background Images
Because images are so often used in a purely presentational capacity, rather than

as genuine content, CSS is usually preferable to HTML for dealing with them. img

elements used to be prolific—plastered any and everywhere to achieve even the

slightest presentational effect (and are still commonly used as such today). But now,

in the web standards era, the image niche is dominated by another, slicker animal—

the CSS background image.

The background-image property can be used to specify an image to be used as a

background for just about any element box—from the page body to a paragraph to a

link. Use it on its own, and the image will magically tile itself across the background

of the element starting from the top left corner and repeating horizontally and verti-

cally, filling the box.

body { background-image: url(images/sifakabg.gif); }

  www.htmldog.com/examples/images2.html

Figure 4.4 Spot the background images. They’re all over the place—15 in this screenshot
alone.

You can control aspects of the background image with the background-attachment,

background-repeat, and background-position CSS properties.

background-attachment determines whether the background image should scroll

with the content of a box. It can be used to specify whether the image should scroll

Background Images  |  83

www.htmldog.com/examples/images2.html

84   |  chapter 4: Images

with the rest of the page (which it normally would do) or whether it should be fixed

to the viewport (the viewing area of the browser window, rather than the page).

body {

 background-image: url(images/sifakabg.gif);

 background-attachment: fixed;

}

This example will plaster the “sifakabg.gif” image across the page, and, rather than

the pattern scrolling as it would do on a long page with lots of content, it will stick

right where it is, with the rest of the page scrolling over the top.

You don’t have to have the background image tiled (repeated over and over, horizon-

tally and vertically as space allows). By using the background-repeat property you

can decide whether you want it to repeat just horizontally (repeat-x), just vertically

(repeat-y), or not at all (no-repeat).

body {

 background-image: url(images/sifakabg.gif);

 background-repeat: no-repeat;

}

  www.htmldog.com/examples/images3.html

Those areas of the element that are not taken up by the background image will be

transparent, unless coupled with a background color (see Chapter 1), which would

paint the rest of the area that color.

Background images will start at the top left corner of a box by default, but you can

change this with the background-position property, which is particularly useful

when background-repeat is set to no-repeat, for example.

Values can be top, right, bottom, left, center, a length, a percentage, or a combi-

nation of these (such as top left).

body {

 background-image: url(images/sifakabg.gif);

 background-repeat: no-repeat;

 background-position: center;

}

www.htmldog.com/examples/images3.html

Figure 4.5 The leaf image is set to background-repeat: no-repeat to achieve just one
instance of it. The little spots that make up rest of the strip are one small tessellating
image set to repeat.

Another one of those funky shorthand properties is background, which can combine

some or all of background-color (which we came across in Chapter 2, “Text”),

background-image, background-repeat, background-attachment, and background-

position into one.

body { background: #0084c7 url(images/sifakabg.gif) top left fixed

no-repeat; }

Although all of the examples so far have been applying backgrounds to the body

element box, you can apply them to any visible element on the page, be it a para-

graph, a link, a table, or even a partially transparent img element, if you really

want to.

Background Images  |  85

86   |  chapter 4: Images

Technique: Rounded Corners

Background images aren’t just about the bigger picture—they are used for every
decorative effect. In Figure 4.6 two rounded corners are applied to a content
area. The first is applied to the area’s container and the last is applied to the
bottom paragraph, so there is no need for any extra markup.

Figure 4.6 Two rounded corners are applied to a content area.

As long as you have enough elements to latch CSS onto, you can apply more than
one background to a part of the page. For example, you could add one rounded
corner to a paragraph by applying a background image to the top left of a p
element, but if you had something like <p>whatever
</span</p> then you could apply a rounded corner to each of

the elements (p for the top left corner, p span for the top right corner, p span
span for the bottom left corner, and p span span span for the bottom right
corner) using something like this:

p {

 background: white url(images/sifakaptl.gif) top left no-

repeat;

}

p span {

 background: url(images/sifakaptr.gif) top right no-repeat;

}

p span span {

 background: url(images/sifakapbr.gif) bottom right no-repeat;

}

p span span span {

 background: url(images/sifakapbl.gif) bottom left no-repeat;

}

The p element applies one of the corner images (top left) and also sets the back-
ground color of the box. Each of the nested span elements then applies another
corner.

  www.htmldog.com/examples/images3_2.html

Figure 4.7 In this example, some extra HTML span tag
“scaffolding” is necessary so that there is something
to hook each corner onto.

Background Images  |  87

www.htmldog.com/examples/images3_2.html

88   |  chapter 4: Images

 

Figure 4.8 With four separate corners,
the box can accommodate different
widths and heights…

Figure 4.9 …and if the user bumps up the text size, there isn’t a problem.

Image Replacement: Providing Graphical
Alternatives for Text
Image replacement is the process of using CSS to replace functional text with a

graphical representation of that text. It has become an important part of web stan-

dards design, relegating img elements to a purely content-focused role in the same

way that CSS layout has relegated tables.

A meaningful heading (for example) is simply something like “Plastic Banana

Factory,” which is easily sorted, as it should be, with text in HTML. If you want that

heading presented with fancy yellow letters made up of bananas, for example, you

shouldn’t try and do that with HTML and an img tag because that carries no more

meaning. What do we use for presentation, boys and girls? “CSS!” I hear you har-

monize. Well done.

So the structured content is in place—simple, functional, accessible text in HTML.

But we don’t actually want to see that text—what we need to do is make it invisible

and replace it with an alternative visual representation in the form of a CSS back-

ground image.

By keeping the images controlled by the CSS, you can also change them as you

choose from one location. If you used it for a site-wide logo, for example, and the

logo changes, you can swap the images globally with one small change to the CSS

file. Rollovers too, where the image changes when the user moves the cursor over a

link, can be achieved simply, without the need for JavaScript.

The CSS Zen Garden (csszengarden.com) is an excellent example of image replace-

ment techniques, where the underlying HTML remains unchanged across all designs

and includes no images at all. The headings are often replaced with images using

CSS to achieve the desired look.

There are a number of ways to apply the technique. The basic idea is to hide the

functional text somehow and then slap a background image in the “empty” box.

 
Figure 4.10 Before: “Welcome” as func-
tional text (in a bold, Arial font)…

 

Figure 4.11 …and after: The “Welcome” text
is pushed out of sight and replaced by a
background image showing “Welcome” as
graphical text, using the Dax font type.

Image Replacement: Providing Graphical Alternatives for Text  |  89

90   |  chapter 4: Images

We could start with HTML like this:

<h1>Sifaka</h1>

and then apply…

h1 {

 background-image: url(images/sifakalogo.gif);

 width: 300px;

 height: 129px;

}

h1 span {

 display: none;

}

The above example applies a background image to the h1 element (which is made the

same size as the image) and then the span element within it is hidden, hiding the text.

This traditional method is known as the Fahrner Image Replacement (FIR) tech-

nique. Unfortunately, it has one rather serious flaw. One of the supposed benefits

of using image replacement techniques is that it aids accessibility. When display:

none is used, however, not only can you not see that element, but most screen-read-

ers will also ignore it; when a screen-reader comes across the FIR, it simply won’t

read anything at all.

The way around this isn’t too difficult—you just need to use another way of hiding

an element such as:

h1 span {

 display: block;

 height: 0;

 overflow: hidden;

}

(See Chapter 5 for more on these properties, in particular display: none

alternatives.)

For all intents and purposes the span element within the h1 is still displayed there—

whereas to the eye zero height equals invisibility, to something that cares nothing for

spatial parameters (such as a screen-reader) the element lives on in all its glory.

  www.htmldog.com/examples/images4.html

www.htmldog.com/examples/images4.html

Another image replacement method removes the need for the span tag scaffolding,

so with the following slimline HTML:

<h1>The Sifaka</h1>

We can apply this CSS:

h1 {

 background-image: url(images/sifakalogo.gif);

 width: 300px;

 height: 129px;

 font-size: 1px;

 text-indent: -999em;

}

This applies the background image as before but by using a large negative text-

indent the containing text is yanked out of view. The font-size is set to one pixel for

the sole reason that otherwise it could push out the height of the h1 element (any

height less than the height of the image would do).

  www.htmldog.com/examples/images5.html

The problem with these image replacement techniques is that they fail to show

anything at all when images are turned off but CSS is on—the image won’t load

and the text will be hidden. The issue isn’t only that it affects people who choose

to switch off images for faster page downloads, but it also means that there is no

placeholder text while the replacement image loads, so it doesn’t have an advantage

that the img alt text has.

Another image replacement technique gets around this CSS on/images off problem

by reintroducing the span tag scaffolding, but in a slightly different arrangement:

<h1>Sifaka</h1>

To this we can apply the following CSS:

h1 {

 position: relative;

 width: 300px;

 height: 129px;

Image Replacement: Providing Graphical Alternatives for Text  |  91

www.htmldog.com/examples/images5.html

92   |  chapter 4: Images

 font-size: 50px;

}

h1 span {

 position: absolute;

 top: 0;

 width: 300px;

 height: 129px;

 background-image: url(images/sifakalogo.gif);

}

This effectively lays the span element on top of the text in the h1 element. The only

restrictions are that the image background cannot be transparent (or else the under-

lying text will show through) and the text needs to be equal to or less than the size

of the image (otherwise it will spill out from under the image).

www.htmldog.com/examples/images6.html demonstrates this method and shows up

the problem of the necessity for a solid background: If the width of the browser is

too narrow, the blue background of the logo will overlap the background of the page.

For a good rundown of the different techniques, hop on over to mezzoblue.com/

tests/revised-image-replacement/

In theory, there are similar methods that can be used but do not require the span

tag scaffolding, including manipulating the :before pseudo-element or, even easier,

using the CSS3 content property (h1 { content: url(images/sifakalogo.gif); },

which replaces the content of an element, such as text, with something else, such

as an image). Unfortunately, at the moment very few browsers (and Internet Explorer

isn’t one of them) can handle such Space Age methods, so there isn’t much point in

going into them here.

www.htmldog.com/examples/images6.html

chapter

Layout

P r e tt y t e x t and fancy images are all well and nice, but in terms of real

layout—placing bits of a page exactly where you want them—things are

a bit linear so far in this book.

Before CSS 2 became widely supported, the only practical way of laying

out a page in anything other than a long single column was with HTML

tables, transparent “spacer.gif” images, and lots of non-breaking spaces:

nbsp; …

Now that CSS 2 is widely supported, you can manipulate the position

of every HTML element on a page with style sheets. Not only does this

approach dramatically reduce page weight and download time (those

multiple nested table elements and spacer images didn’t half fatten

things up), CSS layout also leads to more manageable, flexible, and

uniform page layouts throughout a whole website from a single file. And,

as a nice little bonus, it improves accessibility—thanks to the logical

order of the underlying HTML (which isn’t disturbed or compromised by

presentational markup).

There’s a fair bit to get through, but it’ll all be worth it in the end.

Starting with the basics of padding, borders, and margins of the box

model through to the display property and positioning, this chapter ends

with some practical examples to show how the theory can be brought

together to achieve solid CSS page layouts.

5

94   |  chapter 5: Layout

The Box Model
Grand multicolumn page layouts might be your ultimate goal, but before moving on

to see how that kind of thing can be achieved let’s start with the basics of laying

out elements: the box model. Every element on a web page is surrounded by a force

field—a simple multi-layered box that can be manipulated to create sophisticated

effects.

Figure 5.1  The mighty box model. At the center is the content itself. Surrounding that
is the padding. Surrounding that is the border and surrounding that is the margin.

Figure 5.2  The box model applies to all elements displayed on a web page. Paragraphs, for
example…

Figure 5.3  …images…

Figure 5.4  …or lists, not to mention links, tables, forms, strong elements, etc., etc., etc.

Width and Height
You can set the width and height of an element using the width and height CSS

properties.

These set the dimensions of the inner (content) box only, and do not take into

account the padding, border, or margin. So if you set width to 100px and have a

50-pixel border, 50-pixel padding, and 50-pixel margin, the total width of the box

will actually be 400 pixels (100px + 50px left border + 50px right border + 50px

left padding + 50px right padding + 50px left margin + 50px right margin).

The Box Model  |  95

96   |  chapter 5: Layout

Figure 5.5  The dimensions of a box set to width: 100px
(the width of the inner-most rectangle), height: 50px (the
height of the innermost rectangle), padding: 50px (the rect-
angle around the innermost rectangle), border: 50px solid
(the rectangle around that), and margin: 50px (the outer-
most rectangle).

The CSS standard also allows min-width, min-height, max-width, and max-height

properties to set minimum and maximum widths and heights, but since Internet

Explorer 6 doesn’t support these properties, unfortunately they aren’t a practical

option at this time (although the problem is remedied in IE 7).

Overflow
If content is too large to fit into a box with a specified height and width, then the

“overflow”—that portion of the content that doesn’t fit in the box—can be set to do

a number of things with the overflow property. This can be set to:

visible (which is the default), whereby the overflow spills over the box.

hidden, where any content that doesn’t fit in the box will be “clipped”—cut

off at the edge of the box.

•

•

scroll, which displays scrollbars, allowing the user to scroll the box to see

the overflow.

auto, which displays scrollbars only if they are necessary (whereas overflow:

scroll will show them even if the content of the box fits without any overflow).

Internet Explorer slips into a state of undignified discombobulation when it comes

to overflow:visible (which is the default behavior on all boxes). It will expand the

box’s height beyond that specified, effectively interpreting height as min-height

should be interpreted.

The clip property can also be used with absolutely positioned boxes (described later

in this chapter) to specify an area of a box that is visible.

clip: rect(10px 120px 120px 10px), for example, will clip a region starting at

10px in from the left and 10px in from the top and end at 120px in from the left

(the “right” part) and 120px from the top (the “bottom” part), leaving a 110px by

110px area.

Padding
Individual sides of the box can be padded by using the padding-top, padding-right,

padding-bottom, and padding-left properties (for example, padding-top: 2em).

If you want to set the padding on more than one side, though, you can use the pad-

ding property, with which you can apply different amounts of padding to each side

of a box if you so choose (see “Shorthand Values” sidebar).

#header {

 padding-bottom: 1em;

}

#content {

 padding: 1em 2em;

}

Backgrounds, be they images or colors, will fill the area of the content and the padding.

•

•

The Box Model  |  97

98   |  chapter 5: Layout

Shorthand Values

With padding, border-width, and margin you can provide a single value to
specify uniform padding/border width/margin in a box. To set different values for
different sides you could use properties like padding-top and padding-left or
border-right-width and border-bottom-width, for example, but you can also
apply different values to different sides of a box in one shorthand property. By
specifying two, three, or four values to padding, border-width, or margin, you can
target different sides as the following table indicates:

Values	E xample	A pplies to

	 1	 padding: 1em	 all sides

	 2	 margin: 10px 2em	 [top and bottom] [left and right]

	 3	 border-width: 1px 5px 2px	 [top] [right and left] [bottom]

	 4	 padding: 10px 10px 1em 1em	 [top] [right] [bottom] [left](clockwise)

Note that the values don’t all have to be the same—you can mix up pixels, ems,
and more if that floats your boat.

Borders
Borders have a bit more to them than padding because not only can you specify

their width, you can specify their style and color.

Border width works much in the same way padding does—you can specify measure-

ments for individual sides (using border-top-width, border-right-width, border-

bottom-width, and border-left-width) or you can specify multiple sides at once

using border-width with one, two, three, or four values.

Before border-width does anything, however, you need to specify what kind of bor-

der you want with border-style.

Some values for border-style, which are as mad as a particularly mad clown in a

mental asylum, include groove, ridge, inset, and outset. These render differently

in different browsers, look pretty nasty due to their generic “embossed” style any-

way, and, therefore, are almost as useful as a saucepan made out of cream cheese.

This property’s most commonly used values are the self-descriptive solid, dotted, or

dashed, which are a tad more useful. Whereas browsers will normally render dotted

borders as a series of equally separated dots, Internet Explorer 6 (and earlier versions),

in an interesting quirk, will render them as dashed lines if the border is 1 pixel wide.

You can specify different styles for different sides of the border using border-

top-style, border-right-style, border-bottom-style, and border-left-style or

specify more than one value with border-style (following the same principles as

the border-width shorthand—see sidebar). border-style: solid dotted dashed

solid, for example, will apply a solid border to the top, a dotted border to the right,

a dashed border to the bottom and a solid border to the left of the box.

border-color (and border-top-color, border-right-color, border-bottom-color,

and border-left-color) can be used to change the color of a border.

If a border color is not specified, it will assume the color of the color property of

the box.

You can further simplify things by combining border settings with the border short-

hand property, which allows you to set the border-width, border-style, and bor-

der-color styles in one handy property. border-top, border-right, border-bottom,

and border-left achieve the same things for individual sides of the border.

border: 1px solid black, for example, will set a one-pixel-wide solid black border

to a box. If you don’t want a uniform border, you can follow the border declaration

with separate specific declarations:

#orangutan {

 border: dotted red;

 border-width: 2px 10px;

}

#chimpanzee {

 border: 2px solid;

 border-color: black #333 #666 #999;

}

  www.htmldog.com/examples/border.html

The Box Model  |  99

www.htmldog.com/examples/border.html

100   |  chapter 5: Layout

Figure 5.6  Some examples of different border styles and property combinations. See www.
htmldog.com/examples/borders.html.

Margin
And so to margins—the transparent outer wrapping of the box. We return to the

simplicity of padding in terms of defining them—you simply specify the width. Once

more, you can set the sides individually with margin-top, margin-right, margin-

bottom, and margin-left, or use margin with one, two, three, or four values:

#bonobo {

 margin-top: 1em;

}

#human {

 margin: 3em 1em;

}

Margin Collapsing
If two or more vertical margins come into contact, a phenomenon known as mar-

gin collapsing will occur. The distance between two boxes will be the distance of

the greater of the two margins, rather than the sum of both. The smaller margin

will “collapse” and disappear—only the larger margin will remain to space out the

two boxes.

So if you had a number of paragraphs, one after the other, and their margin was set

to 1em, the margin between each paragraph would be 1em, not 2.

www.htmldog.com/examples/borders.html
www.htmldog.com/examples/borders.html

Figure 5.7  “Margin collapsing”: When two vertical margins come into
contact, only one will apply.

Margin collapsing happens not only to boxes that follow each other, but also within

boxes. So if you were to have a paragraph with a 1em margin inside a div with a

1em margin, the paragraph margins would disappear into the margin of the div.

This element-within-element collapsing only occurs when there is no other box level

between the margins. Using the last example, if the div has any padding or border

applied to it, then that will act as a boundary, and the paragraph margins will not

come into contact with the div margins, preventing them from collapsing.

  www.htmldog.com/examples/margincollapse.html

The Box Model  |  101

www.htmldog.com/examples/margincollapse.html

102   |  chapter 5: Layout

Figure 5.8  Both paragraphs and divs (dark background) have a margin
of 1em. The div in the second block has a 1px border, preventing the
margin collapse with the paragraphs.

The Box Model Hack

Internet Explorer 5.0 and 5.5 for Windows handle the box model incorrectly.

Instead of applying width and height properties to the inner content box, they
will be applied to the content box plus the padding plus the border.

 

Figure 5.9  How IE 5.x renders a box set
to width: 200px; padding: 20px;
border: 3px solid;.

So when you are applying padding and borders to an element, you need to
specify a different height and width for IE 5.x than you do for other browsers.
There is no “proper” way of doing this because CSS (and HTML, for that matter)
is supposed to be browser-independent. In the real world, however, practical
problems like this sometimes arise, and that’s when we resort to a hack to tackle

them. The Box Model Hack can take a number of forms, but the simplest goes
something like this:

#somebox {

 width: 200px

 wid\th: 154px;

 padding: 20px;

 border: 3px solid;

}

Basically, IE 5.x won’t recognize property names that are “escaped” in this way
in the middle. In this case it won’t recognize “wid\th” as “width,” whereas other
browsers will.

So by specifying the incorrect width first with width (that all browsers, including
IE 5.x, will understand) and then the correct width afterwards with wid\th (that
all browsers except IE 5.x will understand), IE 5.x will apply the first “incorrect”
width declaration (because it won’t understand the second) and all other well-
behaved browsers will apply the “correct” width (because they will understand
both declarations and give preference to the latest one).

In fact, you can use this hack with any property. As long as the “\” doesn’t come
before an a, b, c, d, e, or f (which conflicts with the hex codes used in colors), it
will work.

There are a number of hacks that will hide various things from various browsers
(dithered.com/css_filters is one source for a good, comprehensive outline) but
they should be avoided if at all possible. There is rarely a need to use them—
one of the beauties of web standards is that by using them you can feel safer in
cross-browser compatibility and reliability. The Box Model Hack, however, is the
most important and most widely used of hacks because it deals with such a big
fault in a commonly used technique in a commonly used browser.

The Box Model  |  103

104   |  chapter 5: Layout

The display Property
Boxes can be block or inline. These terms are derived from block and inline ele-

ments (see Chapter 1, “Getting Started”) whereby a block element (such as p or

div) is displayed with a line-break before and after it (a block box) by default and an

inline element (such as em or span) is displayed on the same line (an inline box) by

default. But these presentational aspects need not apply to specific elements—you

can take any element and display it any way you choose—either in a block box or

an inline box.

Block boxes, as well as starting on a new line and forcing anything following them to

start on a new line, will also stretch to fit the width of their containing box (unless

an explicit width is specified). The width of an inline box equates to the width of

the content.

  www.htmldog.com/examples/blockinline1.html

Control over the box type is an important aspect of gaining complete visual control

over your pages. You don’t want to compromise the markup, because you should apply

meaningful tags where appropriate, but you might not want to accept the default

rendering of the element. You might choose to have the links in a navigation bar dis-

played as block boxes or headings displayed inline, for example. Another example is

one of the methods for creating horizontal lists, as described in Chapter 6, “Lists,”

where list items have their display style changed so that they are side-by-side instead

of on different lines.

 

Figure 5.10  Block boxes will start on new lines
and stretch to fit the width of the containing box,
whereas inline boxes will remain on the same
line and only be as wide as the content (see www.
htmldog.com /examples/blockinline1.html).

Additionally, inline boxes handle vertical parameters differently than block boxes.

Vertical margins are not applied and padding and borders, rather than pushing out

content above or below, will spill over the line and lay on top of anything above and

www.htmldog.com/examples/blockinline1.html
www.htmldog.com/examples/blockinline1.html
www.htmldog.com/examples/blockinline1.html

below it. Note, however, that IE 5.0 does not apply padding, borders, or margins to

inline boxes at all.

  www.htmldog.com/examples/blockinline2.html

 

Figure 5.11  With padding, border, and mar-
gin applied, block boxes will behave as you
might expect (also note the margin collaps-
ing). Inline boxes, however, will ignore verti-
cal margins and the padding and border
will spill over the line (see www.htmldog.
com/examples/blockinline2.html).

You can set any element you want to be any type of box you choose using the

display property.

The most common values are block and inline, for your basic block and inline

boxes, but you can also use none (which doesn’t render the box at all, basically

pulling it out from the page).

The other, much less used (and supported), display types are variations on the block

and inline theme. list-item and the various table-related components such as table

and table-row can perhaps best be understood by looking at a browser’s default

rendering of the equivalent HTML elements (such as li, table, and tr elements—

see the display property in the CSS Appendix for more).

inline-block works like a block box wrapped in an inline box. These boxes have the

same characteristics as an inline box (staying on the same line and being the width

of the content) but the vertical padding, border, and margin work the same way as

a block box, pushing out that which surrounds it. Unfortunately, this display type is

not supported by Mozilla and is somewhat buggy in Internet Explorer (IE will only

apply it if the element in question is an inline element).

  www.htmldog.com/examples/blockinline3.html

The display property  |  105

www.htmldog.com/examples/blockinline2.html
www.htmldog.com/examples/blockinline2.html
www.htmldog.com/examples/blockinline2.html
www.htmldog.com/examples/blockinline3.html

106   |  chapter 5: Layout

The Problem with display: none

Sometimes you’ll have something in your HTML that you might not want in the
visual display of the page. It is sometimes an accessibility consideration (such
as the “skip navigation” link mentioned in Chapter 3, “Links”) or it could be that
you want to maintain a flexible document, leaving open different styling options
(such as not wanting certain elements displayed when printed—see Chapter 10,
“Multiple Media”). Both of these boil down to the idea that the HTML should work
as a structured, CSS-independent document with all of the meaningful pieces in
place, regardless if you want them seen or not.

display: none would seem an obvious candidate to remove elements from
sight—it does exactly what it says. The only trouble is that it does a bit more
too. Not only does display: none hide an element from sight, it also hides it
from screen-readers. It won’t be seen, but it won’t be heard, either. So if you’re
hiding some information that should actually remain accessible to screen-read-
ers, this isn’t much help.

What about visibility: hidden? It makes an element invisible (rather than
removing it completely as display: none does), but it has the same problem as
display: none, rendering the element invisible to screen-readers as well. It also
leaves behind a space where the element would normally be seen, which usually
isn’t desirable.

Since these obvious options are out, we need to try something less obvious. The
solution is to keep the element hypothetically visible, but with zero width and/or
height:

.accessaid {

 position: absolute;

 height: 0;

 overflow: hidden;

}

There are variations on this CSS, but the principle is the same. To the eye, zero
height or zero width equals invisibility, but to something that cares nothing for
spatial parameters (such as a screen-reader) the element lives on in all its glory.

When the element box itself is needed for CSS (such as with image replacement
techniques—See Chapter 4, “Images”), the content alone can be smacked out of
view with a negative text-indent:

h1 {

 text-indent: -999em;

}

Positioning
Boxes can be positioned on a page in various ways—statically, relatively, absolutely,

or fixed using the position property.

Static
By default, element boxes are static. Static boxes follow the normal flow of the

page, immediately following and preceding other static elements (the boxes in

Figures 5.10 and 5.11 are all static, for example).

  www.htmldog.com/examples/positioning1.html

Figure 5.12  A static box inside a static paragraph.

Positioning  |  107

www.htmldog.com/examples/positioning1.html

108   |  chapter 5: Layout

Relative
A relatively positioned box is one that can be moved to a position that is relative to

its initial position, leaving an empty space where it once was. When a box is made

relative, you can specify values for top, right, bottom, or left, from which the box

will be offset. The values tell a browser how far to offset the box from that position,

so position: relative; left: 10em, for example, will push the box 10 ems to the

right (10 ems from the left of the initial position). By the same token, position:

relative; right: 10em will push the box 10 ems to the left.

The position of any boxes that follow a relatively positioned box will be calculated

from the initial position of the offset box, not from the offset position. So the posi-

tion of a box (let’s call it Fred) that follows a relative box (which we’ll call Torquil)

will not be calculated from the actual position of Torquil’s box, but rather from the

original position, as if Torquil wasn’t offset.

Figure 5.13  A relatively positioned box (position:
relative; top: 2em; left: 2em;) inside a paragraph.

  www.htmldog.com/examples/positioning2.html

Absolute
Boxes can also be positioned absolutely. Unlike a relative box, an absolute box is off-

set from the position of its containing block, which will be the page itself unless the

box exists inside a relative or absolute block, in which case it will be offset from that.

www.htmldog.com/examples/positioning2.html

position: absolute makes a box absolute and, once more, top, right, bottom, and

left are used to position it.

  www.htmldog.com/examples/positioning3.html

Absolute boxes are pulled out of the normal flow of a page, existing independently

from the rest of the content. Whereas relative boxes leave behind the space where

the box once was, the position of a box that follows an absolute box (which we’ll

again call Torquil—he did such a great job) will be calculated from the start of

Torquil’s original position, as if Torquil didn’t even exist.

Figure 5.14  An absolutely positioned box
(position: absolute; top: 2em; left: 2em;)
inside the same static paragraph.

Figure 5.15  The same absolutely positioned box
inside a relatively positioned paragraph.

  www.htmldog.com/examples/positioning4.html

Positioning  |  109

www.htmldog.com/examples/positioning3.html
www.htmldog.com/examples/positioning4.html

110   |  chapter 5: Layout

Fixed
Fixed boxes (position: fixed) are similar to absolutely positioned boxes, apart from

the fact that they are fixed to the viewport. Like background images set to back-

ground-attachment: fixed (see Chapter 4), fixed boxes will not scroll when the

rest of the content does. Unlike fixed backgrounds, though, fixed boxes are not sup-

ported by Internet Explorer 6 (though they are supported in IE 7).

The Z-index

Because positioned boxes are pulled out of the normal flow and can sit on top of
one another, you may want to control which of these boxes appears where in this
stacking order. Suddenly we have three dimensions to think about—we have the
x-axis that governs where something is horizontally, the y-axis where something
is vertically, and now we have the z-axis, which governs depth. The x and y axes
are controlled by width, height, left, right, top, bottom, padding, margin,
and so on, but we don’t need anything so elaborate with the z-axis, we just need
to state the order in which things appear on top of each other.

Like Mighty Mouse, z-index is here to save the day.

This property is used to specify where in the stacking order a positioned box
should be. The higher the number, the higher the box is in the stack. z-index:
3 will be below z-index: 5 but above z-index: 1, for example.

Floating
Floating, using the float property, is another method that can be used to push

around boxes and manipulate how others respond to them.

A floated box will basically push the box to the far left (float: left) or right

(float: right) of its container and cause surrounding content to flow around it

rather than continue underneath it. A floated box will override any display type set-

ting and render the box as a block box.

  www.htmldog.com/examples/float1.html

  www.htmldog.com/examples/float2.html

Figure 5.16  A left-floated paragraph. See www.htmldog.com/examples/float1.html.

Figure 5.17  A left-floated paragraph and a right-floated paragraph. See www.htmldog.com/
examples/float2.html.

Floating  |  111

www.htmldog.com/examples/float1.html
www.htmldog.com/examples/float2.html
www.htmldog.com/examples/float1.html
www.htmldog.com/examples/float2.html
www.htmldog.com/examples/float2.html

112   |  chapter 5: Layout

If you want an element that follows a floating box to start underneath the floated

box, rather than flow around it, you can use the property clear.

clear: left will clear all left-floated boxes, clear: right will clear all right-floated

boxes, and clear: both will do something I’m sure you’d never expect.

  www.htmldog.com/examples/float3.html

Figure 5.18  The fourth paragraph is set to clear: left and so starts underneath the left-
floated paragraph rather than flowing around it. See www.htmldog.com/examples/float3.html.

Essentially, clearing works by increasing the top margin of the cleared box enough

so that it will start below the floated element. Because of this, the rules of margin

collapsing should be remembered: If the cleared box has a top margin explicitly

applied, it will only work if that margin is larger than the height of the floated box.

Then the margin will apply from the position of the box before it was cleared, rather

than from the bottom of the floated box.

For a few simple techniques involving floats, take a gander at www.htmldog.com/

articles/dropcaps/ and www.htmldog.com/articles/pullquotes/, which are accompa-

nied by a few bare-bone examples.

www.htmldog.com/examples/float3.html
www.htmldog.com/examples/float3.html
www.htmldog.com/articles/dropcaps/
www.htmldog.com/articles/dropcaps/
www.htmldog.com/articles/pullquotes/

Absolute vs. Relative Values II

In Chapter 2, “Text,” the pros and cons of using absolute units such as pixels
and relative units such as ems are looked at in relation to text. But the choice
is there for the dimensions of all boxes on a web page, and the choice between
absolute and relative values can lead to vastly different results.

There are three approaches to defining the sizes of boxes—fixed, liquid, and
elastic.

Fixed Layout

In fixed layouts, the widths of areas of the layout are explicitly specified in
lengths (rather than not specified at all or specified in percentages), which are
usually defined using pixels as units.

The advantage of fixed layouts is that the width of lines of text can be con-
strained to keep them easy to read—the line length will remain unchanged
no matter what size the user’s window. The relationship between text area
widths and image widths can also be maintained (if you have a 500px-.
wide image, for example, then a 500px-wide paragraph can be used to com-
plement it).

The main disadvantage of fixed layouts is that they don’t take advantage of the
full area of the screen, leaving wasted space and a greater likelihood that a user
will have to scroll to reach more content.

Floating  |  113

114   |  chapter 5: Layout

Figure 5.19  Jon Hicks’ blog (hicksdesign.co.uk/journal) utilizes a
900px fixed-width design.

Figure 5.20  In a wider window the content area remains the same width even if the
text-size changes.

Liquid Layout

In liquid, or fluid, layouts, the widths of some or all areas of the layout are
specified in percentages or not specified at all, so that the layout will stretch or
shrink, depending on the size of the browser window.

The advantage of liquid layouts is that they take full advantage of a user’s
computer display capabilities. Users who have large monitors can stretch their
browser windows to show more content “above the fold.” The flexible nature
means that not only do fluid layouts take advantage of larger screens, they also
have more chance of working on smaller screens, such as those on PDAs or the
latest generation of mobile phones (see Chapter 10, “Multiple Media”).

The disadvantage of a liquid layout is that longer lines, which can come about on
larger displays, can be more uncomfortable to read. From a graphic design point
of view, size-based relationships with fixed-width objects, such as images, are
also difficult.

Floating  |  115

116   |  chapter 5: Layout

Figure 5.21  Dan Webb’s site (danwebb.net) employs
a content area that has a liquid width.

Figure 5.22  The content area will stretch to fill the width of the window.

Elastic Layout

Elastic layout is a cousin of fixed and liquid layouts. It involves using relative
units such as ems, rather than absolute values such as pixels, to define widths,
so that the entire layout will expand and contract depending on the text-size
preferences of the user’s browser. This approach can use elements from fixed
and fluid layouts, whereby areas can either be fixed (where all widths are defined
in ems) or fluid (where only some widths, such as those of navigation columns,
are defined in ems).

Elastic layouts can aid accessibility by increasing proportions as well as text size,
making areas of text more comfortable to read for those who are visually impaired
and need to bump up the text size. By maintaining text-size to box-dimension
ratios constant, this approach can also prevent things such as unwanted line
wrapping, due to containing boxes increasing in size with their contents.

The downside is that a fixed-elastic layout can become too wide if the text size
is increased too much. A good rule of thumb is to check that it will display on an
800px-wide screen on Internet Explorer’s “largest” text-size setting.

Floating  |  117

118   |  chapter 5: Layout

Figure 5.23  The “Elastic Lawn” design on the CSS Zen Garden
(see csszengarden.com/?cssfile=063/063.css) at the “normal”
 text-size setting.

Figure 5.24  When the text size is changed, the dimensions of the layout will change
as well.

You can read more about elastic layouts at www.htmldog.com/articles/elasticdesign/.

“Which layout method is better?” is one of the biggest arguments in web design.
When it comes down to it, though, there is no one correct answer. Each of these
approaches has its advantages and disadvantages and whereas one may be
more appropriate for one website, a different approach may be more appropriate
for another site.

Sample Page Layouts
Swell. Now we’ve got the theory sussed, let’s put it to practice on a grand scale:

page layouts. All it takes is a combination of manipulating the box model, position-

ing, and floating.

The thought process behind laying out a page should go a little something like this:

“Right. I’ve got this chunk of content and I want it there. So I’ll just shove that

there. And I’ve got this chunk of content and I want that over there. Cool. I’ll just

shove that there and shift it along a bit. Excellent.” CSS layout is all about grabbing

chunks of HTML and placing them wherever you want on the page.

Sample Page Layouts  |  119

www.htmldog.com/articles/elasticdesign/

120   |  chapter 5: Layout

The initial examples that we’ll go through here—creating columns, headers, and

footers—are simple bare-bones layouts used to demonstrate the techniques without

any extra bells and whistles getting in the way and confusing things. With these

basic arrangements you can flesh things out and make your pages look as appealing

as your imagination will allow.

And although these examples are used in the context of page layouts, the same

techniques can be used with any part of a page—remember, we’re just talking about

chunks here. It doesn’t matter if they’re large or small.

Creating Columns

Figure 5.25  A basic two-column page.

Two columns are all we need to tie down the basics of page layout. By following

these simple principles, it isn’t difficult to take the next step and move all manner

of chunks around a page.

First we need to start with a well-structured document. There is a tag specifically

designed to divide up large chunks of content—div (see Chapter 1), and this is

usually the best choice for defining important chunks. We can then latch on to their

IDs with CSS and move them about.

<div id=”navigation”>

 <!--stuff-->

</div>

<div id=”content”>

 <!--stuff-->

</div>

For this example, we want the navigation to be a thin column in comparison to the

main content, so we need to explicitly set the width of it. Then, to move it to the

left we need to yank it out of the flow using absolute positioning:

#navigation {

 position: absolute;

 left: 0;

 width: 30em;

}

Figure 5.26  The navigation box now sits on top of the content.

  www.htmldog.com/examples/pagelayout1.html

Things are starting to take form (no, honestly, they are), but at the moment the navi-

gation is sitting on top of the content, which isn’t all too helpful. So how can

we shift all of the content into view? Well, there’s a number of ways, but the most

Sample Page Layouts  |  121

www.htmldog.com/examples/pagelayout1.html

122   |  chapter 5: Layout

obvious is to simply set the left margin of the content div to push the content past

the width of the navigation area:

#content {

 margin-left: 30em;

}

The result? Two separate areas, just like Figure 5.25.

  www.htmldog.com/examples/pagelayout2.html

A Solid Navigation Column
To visually separate the two parts of a page, you might want to specify a background

color for the navigation column, but sometimes the content area will be much longer

and the background color will of course end at the bottom of the navigation box (as

in Figure 5.25). Ideally, you would want the bottom of the navigation area to line up

with the bottom of the content area.

Figure 5.27  Using a colored border to shift along the content area and serve as a back-
ground for the navigation column.

margin seems like the obvious choice to shunt across the content div, as we have

used above, but you can use any part of the box model—you also have padding

and border at your disposal. By using border you can also color that area, which

www.htmldog.com/examples/pagelayout2.html

will give the impression of a solid navigation bar that runs as long as the content

area does.

#navigation {

 position: absolute;

 left: 0;

 width: 30em;

 background: #ccf;

}

#content {

 border-left: 30em #ccf solid;

}

  www.htmldog.com/examples/pagelayout3.html

Another way to get around the short navigation bar problem is to set the background

color of the containing block (such as the page) to the color you want for the navi-

gation area (yellow, for example) and then color the rest of the boxes (such as the

header and the content) to the main color you want for the page (such as white).

You can use the same technique with background images, too.

Floating Column
Alternatively to positioning, you can also float your page chunks.

#navigation {

 left: 0;

 width: 30em;

}

#content {

 float: right;

}

This should result in a layout that looks similar to Figure 5.25.

Sample Page Layouts  |  123

www.htmldog.com/examples/pagelayout3.html

124   |  chapter 5: Layout

Three or More Columns
Creating layouts with three columns—or more, for that matter—isn’t much different

than creating two-column layouts.

Figure 5.28  Three columns—content flanked by two navigation bars.

So, let’s assume our HTML chunks are structured like this:

<div id=”navigation1” class=”nav”>

 <!--stuff-->

</div>

<div id=”navigation2” class=”nav”>

 <!--stuff-->

</div>

<div id=”content”>

 <!--stuff-->

</div>

Taking it one step at a time, positioning the first navigation chunk is just the same

as in the two-column layout:

#navigation1 {

 position: absolute;

 left: 0;

 width: 200px;

}

And we can do almost the same thing with the second navigation chunk:

#navigation2 {

 position: absolute;

 right: 0;

 width: 150px;

}

Now, with the content area, all we need to do is squeeze it in on both sides, rather

than just the left:

#content {

 margin: 0 150px 0 200px;

}

  www.htmldog.com/examples/pagelayout4.html

If you don’t want the navigation bars to flank the content but to stand next to each

other instead, all you have to do is manipulate the various left, right, and margin

declarations, for example:

#navigation1 {

 position: absolute;

 left: 0;

 width: 200px;

}

#navigation2 {

 position: absolute;

 left: 200px;

 width: 150px;

}

#content {

 margin-left: 350px;

}

Another approach to placing columns side by side would be to float the columns in

exactly the same way as described for two columns.

Sample Page Layouts  |  125

www.htmldog.com/examples/pagelayout4.html

126   |  chapter 5: Layout

These approaches can be used for as many columns as you like, but just keep

in mind that there are still a lot of users out there whose screens are only 800

pixels wide.

Adding a Page Header

Figure 5.29  Popping a header on top of columns.

Adding a page header—space that might be used for branding and/or navigation—

is easy. All you need to do is make sure that any absolutely positioned boxes are

explicitly positioned below it. Continuing with the practice of separating specific

chunks of the document with divs, we can work with the following HTML:

<div id=”header”>

 <!--stuff-->

</div>

<div id=”navigation”>

 <!--stuff-->

</div>

<div id=”content”>

 <!--stuff-->

</div>

In this two-column example, all that needs to be positioned is the navigation bar,

because once this is taken out of the flow the content area will automatically sit

beneath the header, so you don’t really need to do much different in the CSS

(unless you want to):

#navigation {

 position: absolute;

 left: 0;

top: 100px;

 width: 150px;

}

#content {

 margin-left: 150px;

}

  www.htmldog.com/examples/pagelayout5.html

Adding a Footer
Footers are a bit trickier than headers due to the nature of absolutely positioned

boxes sitting on top of other non-positioned elements. Still, let’s see what we can do

by starting with the following HTML:

<div id=”header”>

 <!--stuff-->

</div>

<div id=”navigation”>

 <!--stuff-->

</div>

<div id=”content”>

 <!--stuff-->

</div>

<div id=”footer”>

 <!--stuff-->

</div>

If you can guarantee that the navigation area will be shorter than the content area

then you have no worries. Applying similar CSS as before, you don’t actually need to

do anything special with the footer box because it will sit directly below the content

automatically.

Sample Page Layouts  |  127

www.htmldog.com/examples/pagelayout5.html

128   |  chapter 5: Layout

Figure 5.30  Tucking in a footer.

More often than not, though, you can’t rely on the navigation bar being shorter than

the content area. As Figure 5.31 demonstrates, using the above method of incorpo-

rating a footer, if the navigation bar is longer than the content, because it is abso-

lutely positioned it will lie on top of the static footer.

Figure 5.31  A static footer will fall underneath the
navigation if the navigation is too long.

If you could rely on the navigation area always being longer than the content area, then

you could absolutely position the content area instead, and leave the navigation area as

the static box that the footer can sit under, but this is rarely a practical option.

  www.htmldog.com/examples/pagelayout6.html

Sample Page Layouts  |  129

www.htmldog.com/examples/pagelayout6.html

130   |  chapter 5: Layout

It is because of absolutely positioned boxes being pulled out of the normal flow of

the page that it is impossible to predict where they will end (where the bottom of

the box will be)—you can’t place something on a page in relation to an absolute

box. So, if you want a footer that works, a sensible option would be to go for floating

columns and simply clear the footer of the floats:

#navigation {

 width: 10em;

 background: lime;

 float: left;

}

#content {

 margin-left: 10em;

}

#footer {

 clear: both;

}

If the content is longer than the navigation, then nothing will happen—the footer

will happily just sit below it. If the navigation is longer, however, the footer will clear

the float and sit underneath that instead.

  www.htmldog.com/examples/pagelayout7.html

Putting It All Together
This example (shown in Figure 5.32) demonstrates most of the methods mentioned

in this chapter, incorporating different padding, border, and margin situations as

well as display types together with floated elements all inside a positioned layout.

The basic structure of the HTML looks something like this:

<div id=”container”>

<div id=”header”>

 <!--stuff-->

</div>

<div id=”navigation”>

 <!--stuff-->

</div>

www.htmldog.com/examples/pagelayout7.html

<div id=”content”>

 <!--stuff-->

</div>

</div>

The header has a fixed height and a background image, with the h1 element, which

is necessary for the structured document, removed from sight with the display:

none alternative.

#header {

 padding: 0.5em;

 background: url(images/charlesdarwin.gif);

}

Figure 5.32  Positioning, padding, borders, margins, and floating à go-go.

Putting it all together  |  131

132   |  chapter 5: Layout

The navigation area is positioned to the left, underneath the header, with padding

applied:

#navigation {

 position: absolute;

 top: 5em;

 left: 0;

 width: 7em;

 w\idth: 5em;

 background: #069;

 color: white;

 padding: 1em;

}

Note that because a width and padding are involved, the box model hack is needed

to take care of IE 5.

Inside the navigation area, the links, which sit inside unordered lists (as is appro-

priate—see Chapter 6) have their display type set to block (they are inline by

default) so that they will stretch to a uniform, “clickable” width.

There is also a “skip navigation” link (see Chapter 3) before this group of visible

links, which, like the h1 element, is removed from sight.

The content area itself provides the background color for the navigation bar with a

thick left border, and has its own contents padded.

#content {

 padding: 1em;

 border-left: 7em solid #069;

}

Inside the content div, images are set to float to the right, with margins to the left

and below to space them out from surrounding text. A 1px-wide border and padding

create the subtle but effective outline.

Finally, the page is made a fixed width and centered:

#container {

 width: 600px;

 border: solid #900;

 border-width: 0 1px;

 margin: auto;

}

And there you have it.

  www.htmldog.com/examples/darwin.html

The techniques explained in this chapter don’t have to involve building blocks as

specific as “headers” or “navigation bars.” They can be applied to elements large

and small, one after another or one inside another. The general principles are the

same—it’s all about shifting chunks around the page.

Putting it all together  |  133

www.htmldog.com/examples/darwin.html

This page intentionally left blank

chapter

Lists

L i s t s migh t no t seem like that big a deal. Now and then they may pop

up in your content, and you certainly need to take control of them, but

even if your content is primarily made up of paragraphs and pictures lists

should usually make their way onto a page because they are the best way

to structure navigation.

 
Figure 6.1 The illustrations in this chapter are taken from Digital Web Magazine
(digital-web.com).

6

136   |  chapter 6: Lists

Structuring Lists
You should find that pretty much any list will fit into one of the three types available

to you: an unordered list, an ordered list, or a definition list.

Figure 6.2 Straightforward unordered (top) and ordered (bottom) lists, with
their default bullet and numbered styling, within an article by Joshua Kaufman.

Unordered and Ordered Lists
Unordered and ordered lists are your bog-standard list lists. ul defines an unordered

list (for non-ordinal items, in which any item could feel just as at home at one point

in the list as any other); ol defines an ordered list (in which each item is in some

way lower or higher than the item before or after it); and in either list, list items are

defined with li. Easy!

 This

 That

 The other

 The first thing

 The second thing

 The third thing

  www.htmldog.com/examples/lists1.html

Nested Lists
You can use these same elements to create more complex, nested lists, as well—

simply plonk another ul or ol element inside an li element:

 This

 This type of this

 That type of this

 This type of that type of this

 That type of that type of this

 The other type of that type of this

 The other type of this

 That

 The other

  www.htmldog.com/examples/lists2.html

Structuring Lists  |  137

www.htmldog.com/examples/lists1.html
www.htmldog.com/examples/lists2.html

138   |  chapter 6: Lists

Figure 6.3 Nested lists and more: In this Digital Web article
by Michael Nguyen, the tail end of an ordered list sees
paragraphs and an unordered list within the list items.

Definition Lists
Definition lists do away with ul, ol, and li elements. They use a separate set of

elements to achieve a list that involves a combination of terms and descriptions

for each “item”: dl (the definition list), dt (a definition term), and dd (a definition

description of the term).

<dl>

 <dt>Cat</dt>

 <dd>A little furry thing that purrs.</dd>

 <dt>Dog</dt>

 <dd>A big shaggy thing that barks.</dd>

</dl>

dt and dd always need to go together, but it doesn’t matter which comes first and

it doesn’t matter how many you have for each item. You can have x terms followed

by y descriptions, or x descriptions followed by y terms (depending on how you want

your glossary to work, for example):

<dl>

 <dt>Cat</dt>

 <dd>Any member of the family Felidae.</dd>

 <dd>The domesticated species of that family, Felis silvestris.

</dd>

 <dd>A little furry thing that purrs.</dd>

 <dt>Dog</dt>

 <dt>Yo Momma</dt>

 <dd>A big shaggy thing that barks.</dd>

</dl>

  www.htmldog.com/examples/lists3.html

The extent to which definition lists should be used has raised a few arguments.

Whereas one school of thought believes you should only use them to define a list of

explicit terms and definitions (something that I happen to agree with—we are talking

about semantics, after all), there is another that claims it is just as valid to use them

for any list where each set of items is related. One example (made directly by the

W3C no less) is that of dialogue, in which the person speaking can be defined by the

dt element and what they are saying by the dd element. Another would be a list of

websites, whose names are marked up with dt and descriptions of them with dd.

Figure 6.4 Nested lists and more: In this Digital Web article by
Michael Nguyen, the tail end of an ordered list sees paragraphs
and an unordered list within the list items.

Structuring Lists  |  139

www.htmldog.com/examples/lists3.html

140   |  chapter 6: Lists

Lists as Navigation
Essentially, a navigation bar on a website is simply a list of links. So, accepting this,

the most obvious choice for marking up a navigation area is a list element of some

sort—usually an unordered list, or number of unordered lists.

This could take the form of a big nested list:

 Services

 Peanut farming

 Hamster sitting

 Car valet

 Products

 Peanuts

 Flat hamsters

 Cars

 Misc.

 About us

 Contact us

 Site map

Or it could take the form of a number of lists:

<h2>Services</h2>

 Peanut farming

 Hamster sitting

 Car valet

<h2>Products</h2>

 Peanuts

 Flat hamsters

 Cars

<h2>Misc.</h2>

 About us

 Contact us

 Site map

Then again, some might argue it could even take the form of a definition list:

<dl>

 <dt>Services</dt>

 <dd>Peanut farming</dd>

 <dd>Hamster sitting</dd>

 <dd>Car valet</dd>

 <dt>Products</dt>

 <dd>Peanuts</dd>

 <dd>Flat hamsters</dd>

 <dd>Cars</dd>

 <dt>Misc.</dt>

 <dd>About us</dd>

 <dd>Contact us</dd>

 <dd>Site map</dd>

</dl>

As Chapter 5, “Layout,” makes clear, lists in this situation will normally be surrounded

by div tags or have an id applied to the opening list tag so that they can be specifi-

cally targeted by CSS without affecting other ul, ol, or dl elements in the web page.

Structuring Lists  |  141

142   |  chapter 6: Lists

 

Figure 6.5 The secondary navigation in
Digital Web Magazine is a simple list
containing links and a form, shown here
in a browser’s default styles.

Figure 6.6 With the author CSS on top, the navigation is
transformed into something quite spiffingly eye-catching.

Presenting Lists
Once the list structure is in place, you can bend and stretch every presentational

aspect of it you like. Not only can you change the text, links, or images you might have

inside the list items with the techniques discussed in Chapters 2, 3, and 4, you can

also take the list by the scruff of the neck and alter list markers, margins, and even

change the top-to-bottom vertical nature of the list to a left-to-right horizontal list.

List Markers—Bullets, Numbers, and Images
List markers in unordered and ordered lists can vary. These defaults tend to be the

same from browser to browser, but you can change them to suit, choosing from

filled-circle, square, or empty-circle bullets or numbers or Roman numerals.

The color and the size of the list item marker in ul and ol elements is taken from

the color and font-size properties (see Chapter 2, “Text”) of the list item.

The list-style-type property can be used to set the type of the list marker bullet

or numbering system within a list. This can be applied to any (non-definition) list

regardless of whether it is ordered or unordered. These are some of the more practi-

cal values that can be used:

none—No list marker. This can be handy when you want to present lists that

don’t appear in main content and don’t need to stand out from the crowd

with markers—as in navigation bars, for example.

disc—solid circles

circle—hollow circles

square—solid squares

decimal (which is default for ol elements)—1, 2, 3, 4, etc.

lower-roman—i, ii, iii, iv, etc.

upper-roman—I, II, III, IV, etc.

ol { list-style-type: lower-roman; }

ul { list-style-type: square; }

ul ul { list-style-type: circle; }

This example applies lower-roman numerals to ordered lists, square bullets to top-

level unordered lists, and circular bullets to all unordered lists nested within unor-

dered lists.

  www.htmldog.com/examples/lists4.html

You can also provide something more customized by using list-style-image. This

specifies an image to be used as the list marker for a list item. It can be used if you

just don’t like any of the list-style-type options and replaces the list item markers

with your own custom-made wonders.

ul { list-style-image: url(images/arrow.gif); }

Note that another popular way of styling bullets is to apply small, non-repeating

background images (see Chapter 4, “Images”) and a bit of padding (see Chapter 5)

to the left of each list item.

By default, lists will place the marker of each list item outside the content box,

which means that when it comes to styling list items with backgrounds or borders,

for example, the bullet will aloofly hang about outside. You can pull the marker

•

•

•

•

•

•

•

Presenting Lists  |  143

www.htmldog.com/examples/lists4.html

144   |  chapter 6: Lists

inside the content box to deal with such circumstances by setting the list-style-

position property to inside.

ul { list-style-position: inside; }

 

Figure 6.7 The third list item is set to list-style-
position: inside; pulling the list marker inside the
content area of the li box. The dark solid border
shows the outline of the ul element and the light
dotted borders show the outline of the li elements.

  www.htmldog.com/examples/lists5.html

list-style is a shorthand property used to specify the style of a list item marker by

combining list-style-type, list-style-position, and list-style-image.

Like all shorthand properties, this simply involves specifying one or more values that

you would otherwise use in the longhand versions.

ul { list-style: none url(images/arrow.gif) inside; }

ul ul { list-style: disc outside; }

Doing Away with Unwanted Padding and Margins

Although padding and margins are discussed in detail in Chapter 5, they are
worth mentioning here because a browser will usually apply padding and mar-
gins to lists by default and it is quite possibly something that you will want to
manipulate or even get rid of (especially if you are using a list for navigation).

A margin above and below lists will probably come as no surprise, but ul and ol
elements will also have spacing to the left by default. IE will apply a margin and
other browsers will apply padding. So if you want to get rid of this, simply apply:

ul {

 padding: 0;

 margin: 0;

}

dd elements also have a left margin by default, which can be eradicated in the
same way if you so choose.

www.htmldog.com/examples/lists5.html

IE and Unwanted Spaces

When list items that contain other elements, such as links, are displayed inline,
you may find IE inexplicably putting spacing between the list items. This is actu-
ally a space character that comes about from the browser incorrectly handling
the white space within the code.

For example, if you have:

 This

 That

 The other

And you apply display: inline to the list items, you will find that there are
spaces after each item, which will often be unwanted, particularly if you want
very tight control over the styling of the list.

Unfortunately, the only way to get around this is to arrange the HTML so that the
list items are right next to one another, such as:

ThisThat</

li>The other

If you want to maintain your indentations so that the code is more readable, you
could try one of the following methods:

 This<

 li>That<

 li>The other<

/ul>

or:

 This<!--

 -->That<!--

 -->The other<!--

-->

Presenting Lists  |  145

146   |  chapter 6: Lists

Horizontal Lists

 

Figure 6.8 Digital Web’s site-wide primary
navigation and the years depicted at
the top of this page are unordered and
ordered lists, respectively. The primary
navigation (the tabs) is made up of list
items set to float left. The list of years
comprises list items set to display inline.

Chapter 5 explains how you can alter the way an element box behaves by using the

display property. It doesn’t take a great leap of imagination to figure out how to

break the default vertical style of a list and present list items side by side, which

you might want to do if you want a horizontal navigation bar. The default display

of a list item in an unordered or ordered list is list-item, which itself is block-line

in its rendering. Simply changing the display of li to inline will override this, and

voila!—the list items line up horizontally as opposed to vertically.

li { display: inline; }

Floating each list item is an alternative method of achieving horizontal lists (once again,

see Chapter 5 for more details on floating), and although it is slightly more complicated,

it is also more versatile than the display: inline method because you can maintain

block-level qualities such as manipulation of vertical padding and borders, etc. If you

want to apply more complex styles to horizontal list items, this may be preferable.

To contain the list items you can also float the list itself, enabling you to manipulate

its background/border properties, etc. As long as the element following the list is set

to clear the float, you should find yourself with the basics of a smooth horizontal list.

ul, li { float: left; }

#afteralist { clear: left; }

Technique: Tabs

Shimmy over to www.htmldog.com/articles/tabs/ for further insight, and a
plethora of examples, about horizontal lists, and techniques for achieving that
über-sexy way of presenting navigation—with tabs.

www.htmldog.com/articles/tabs/

chapter

Scripts & Objects

It j u s t s i t s t h e r e . It doesn’t do anything. Well, that’s kind of the

point of HTML and CSS—it’s just a way of structuring and presenting

largely textual content. The whiz-bang-pop is the job of other languages

and file types. Close to home you’ve got JavaScript, which allows you to

dynamically manipulate the parts of an HTML page and then you’ve got

your completely alien objects like videos and Flash files. They may not

be a part of HTML or CSS, but they still rely on HTML to get them to

work in a web page.

JavaScript and the DOM
JavaScript is a commonly used and widely supported scripting language that

can be used to add interactive behaviors such as rollovers, form validation,

and even switching between different style sheets. It can be applied to an

HTML document with the script element or “event attributes” in individual

tags. Through the Document Object Model (DOM), the W3C’s standardized

model for the structure of a web page, it is possible to manipulate any part of

a web page with JavaScript.

The script Element
script defines a block of script, and is the tool of choice for inserting a chunk

of JavaScript into an HTML page.

7

148   |  chapter 7: Scripts and Objects

The script itself can be placed between the opening and closing script tags,

like so:

<script type=”text/javascript”>

function satsuma() {

 alert(“SAAAATSUUUUMAAAA!!!”);}

</script>

Alternatively, a script can be kept in a separate file and applied like so:

<script type=”text/javascript” src=”kumquat.js”></script>

The type attribute is required, and will always have the value “text/javascript”

when using JavaScript, and just like in an img tag, the src attribute points to the

location of the external file.

To accommodate users who don’t have JavaScript-enabled browsers, or those who

choose to switch it off, you can provide alternative content by using a noscript ele-

ment anywhere inside the body element. The content of this element will only show

up when the browser can’t detect JavaScript.

<noscript>

<p>What? No JavaScript? Well what am I supposed to do now? Can’t you

get a new browser or something?</p>

</noscript>

Event Attributes
JavaScript code can be invoked when the user does something, such as clicking a

button, rolling over an element, or loading a page. You can apply event attributes to

just about any opening HTML tag (such as onclick in a submit button, onmouseover

in a link, or onload in the body tag) that will pick up on such actions and when they

take place, the value of the attribute, which would be a piece of JavaScript code,

will be executed:

DO IT!

While the value of the attribute could contain all of the required JavaScript (such

as that in the example above), it usually doesn’t. The values of event attributes

tend to make calls to functions defined in the script element (whether those

functions are actually in the page or in an external file). This cuts down on the

volume of inline code and makes common actions available in a central, reusable,

location:

DO IT!

Having said all that, similar to the point made in Chapter 1, “Getting Started,”

about the style attribute, if you’re taking JavaScript seriously it should be unobtru-

sive—HTML elements can be targeted through the DOM with JavaScript without the

need of event attributes, which is a much nicer, easier way to manage, and more

powerful way of doing things.

Manipulating the DOM
Put simply, the DOM is a standardized model of every part of a web page, including

the HTML and CSS code, that is commonly manipulated with JavaScript.

The powerful ability to manipulate any and every part of any and every element on

a page means that you can do away with event attributes altogether and separate

out another layer: behavior, which carries similar benefits to separating structure and

presentation. With the DOM you should be able to place all of your code inside a

script element (be that in the page itself or accessed in a .js file) and dynamically

remote-control the page.

This is the modern, cutting-edge way of using JavaScript. Like web-standard HTML

and CSS, using DOM JavaScript leads to lighter, more manageable code. The phi-

losophy and practice of DOM Scripting is a huge subject unto itself, and is some-

what outside the remit of this book. There are now many good quality books (see

Figure 7.1) and online resources that delve right into it (http://www.webstandards.

org/action/dstf/ is a good starting point).

JavaScript and the DOM  |  149

http://www.webstandards.org/action/dstf/
http://www.webstandards.org/action/dstf/

150   |  chapter 7: Scripts and Objects

Figure 7.1  If you want to get to grips with best-practice JavaScript, once
you’re confident with your HTML and CSS, there are many good books
out there, such as DOM Scripting by Jeremy Keith (Friends of Ed), which
will give you a great introduction.

Objects
If you have a snazzy little file like an MPEG video or a Flash movie that you want

to put it in your web page, you can “embed” such a foreign object with an object

element.

Objects usually depend on some form of “plug-in”—a special piece of software that

is added on to the browser (such as the Flash Player) so that the file can be deci-

phered and viewed (or heard).

The basic idea is quite a simple one: Inside the opening object tag, you use the

type attribute to let the browser know what kind of object it is (and which plug-in

to use), the data attribute to point the browser to the actual object file, and then

inside the object element you pass parameters to the object-playing plug-in using

param elements.

If the user does not have the plug-in required to execute the file in an object, you

can provide alternative content that will be applied in the object’s place. This can

be an error message, or replacement image (or any chunk of HTML you choose).

<object type=”blueberry/kumquat” data=”whatever.kmq”>

 <param name=”tangy” value=”true” />

 <param name=”segments” value=”9” />

 <p>You don’t have the Kumquat plugin, so you won’t get any

juice.</p>

</object>

So object defines the object, param passes parameters to the object, and the rest

of the HTML works as alternative content. Easy.

There is a host of other attributes that lend more control over the object (check out

Appendix A, “XHTML Reference,” to find out more), but perhaps the most important

thing to point out at this stage is that IT DOESN’T WORK.

Embedding Objects in a Web Standards Way

The most popular way of inserting a Flash movie in an HTML page is by using
a rather ugly block of code vomited up by someone at Macromedia many moons
ago. Not only is this notorious code ugly, it’s completely invalid because it
involves the use of the embed tag, which has never been a part of any standard.

The much simpler, more logical, valid, pleasing-to-the-eye, and ultimately correct
method looks something like this:

<object type=”application/x-shockwave-flash” data=”whatever.swf”>

</object>

Objects  |  151

152   |  chapter 7: Scripts and Objects

But unfortunately it’s not that easy. Using this sensible method, the nonsensi-
cal Internet Explorer will wait until the Flash movie has completely downloaded
before playing it. This may be fine with small Flash movies, but with longer ones
you’ll probably want to take advantage of Flash’s ability to stream the movie—to
play it while it is downloading.

Dammit.

There are two less-than-perfect methods for getting around this problem. The
first is known as “Flash Satay” (see alistapart.com/articles/flashsatay) and this
involves using similar code to that above, but twiddling the Flash movie itself so
that a small Flash movie is used to play the main, streaming movie.

The second method revolves around the fact that Internet Explorer requires infor-
mation given by the classid and codebase attributes in the opening object tag
to work properly. Unfortunately, by applying these to get Flash to work in IE, it
breaks down in other browsers where the movie won’t work. Hixie’s method (ln.
hixie.ch/?start=1081798064&count=1) utilizes the strange IE “feature” of con-
ditional comments, whereby Internet Explorer can be forced to ignore a chunk of
HTML that displays the movie in other browsers:

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”

codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/

swflash.cab#version=6,0,40,0”>

 <param name=”movie” value=”whatever.swf”>

 <!--[if !IE]> <-->

 <object type=”application/x-shockwave-flash” data=”whatever.

swf” ></object>

 <!--> <![endif]-->

</object>

There is no pretty way of embedding a Flash movie in HTML. The two methods
mentioned above are standards-compliant, but they still require hacks, which
should only be used when there’s no other option. In this case, unfortunately, it
seems there isn’t.

As another example, Quicktime videos have the same kind of problem as Flash
movies. You should be able to embed them in a page with this code:

<object type=”video/quicktime” data=”whatever.mov”>

 <p>You aint got Quicktime.</p>

</object>

But once again, this straightforward code doesn’t work in Internet Explorer and
once more the code suggested by Quicktime’s creator is daft embed tag nonsense.

To get it to work in IE you need something like this:

<object classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”

codebase=”http://www.apple.com/qtactivex/qtplugin.cab”>

 <param name=”src” value=”whatever.mov” />

</object>

But this won’t work anywhere else.

The solution? Well, as with Flash, you could serve up different code to different
browsers if you’ve got the server-side scripting skills or once more you could
use Hixie’s conditional comments. You can even use Flash Satay to display the
Quicktime movie through a Flash movie…

Objects truly are a cross-compatibility headache.

Objects  |  153

This page intentionally left blank

chapter

Tables

Ta b l e s a r e in fa m ou s in the web standards world. At the slightest

whisper of their name, web standards aficionados have been known to

experience involuntarily muscle spasms and bouts of uncontrollable curs-

ing. The table’s bad reputation comes from its prolific use as a means

for laying out web pages—just a short casual web browse will reveal that

most pages on the web have tables all over the place.

Figure 8.1  The illustrations in this chapter are taken from Event Wax
(www.eventwax.com).

8

www.eventwax.com

156   |  chapter 8: Tables

They’re not the best choice for layout—CSS is (see Chapter 5, “Layout”), but

they’re not entirely evil. A common mistake is believing that tables have no

place on Planet Web Standards, but they do, in a slightly more modest role

than page layout, but a much more sensible one for them: structuring and

presenting genuine tabular data.

This is the place where you’ll get to know how to do just that—from construct-

ing basic data tables through to accessibility considerations and specific

methods of styling them.

Basic Tables
Big, complex tables can get quite complicated to code, but they follow very logical

structural rules. To create a basic table, all you need to do is establish a table ele-

ment, then fill it with table rows (tr), and then fill them with cells of table data (td).

So let’s start with the rows at first. Here’s the beginnings of a table with three rows:

<table>

 <tr></tr>

 <tr></tr>

 <tr></tr>

</table>

You can’t have rows without columns, though—it would all be just too one-dimen-

sional. Although we don’t define the columns explicitly, we can define each cell in

the row, using td elements:

<table>

 <tr>

 <td>Cats</td>

 <td>Dogs</td>

 <td>Lemurs</td>

 </tr>

 <tr>

 <td>Tiger</td>

 <td>Grey wolf</td>

 <td>Indri</td>

 </tr>

 <tr>

 <td>Cheetah</td>

 <td>Cape hunting dog</td>

 <td>Sifaka</td>

 </tr>

</table>

So here we have a table with three rows with three cells in each row, making it a

3×3 table. Capisce?

  www.htmldog.com/examples/basictable.html

Now let’s make this example a little bit more meaningful. Because “Cats,” “Dogs,”

and “Lemurs” are actually headers of their respective columns, we can change them

from td elements into th elements. It’s still a cell, it still works pretty much the same,

but the essential difference is that rather than your bog-standard table data cell, it’s a

table header cell. So all we would need to do is change that first row to:

<tr>

 <th>Cats</th>

 <th>Dogs</th>

 <th>Lemurs</th>

</tr>

Table header cells can also be used as headers for rows. For example, the table

could be turned around the other way, and be structured like this:

<table>

 <tr>

 <th>Cats</th>

 <td>Tiger</td>

 <td>Cheetah</td>

 </tr>

 <tr>

 <th>Dogs</th>

 <td>Grey wolf</td>

 <td>Cape hunting dog</td>

Basic Tables  |  157

www.htmldog.com/examples/basictable.html

158   |  chapter 8: Tables

 </tr>

 <tr>

 <th>Lemurs</th>

 <td>Indri</td>

 <td>Sifaka</td>

 </tr>

</table>

  www.htmldog.com/examples/headercells.html

Figure 8.2  All dolled up with CSS, but below the surface is a straightforward table
structure, with table, tr, th, and td elements.

Merging Cells
Not every row has to have the same number of cells in it and neither does every col-

umn. By manipulating the rowspan and colspan attributes inside the opening td or

th tags, you can make those cells cover more than one row or column.

www.htmldog.com/examples/headercells.html

For example, if we wanted a higher classification than “Cats,” “Dogs,” and

“Lemurs,” we might have a slightly different top row:

<table>

 <tr>

 <th colspan=”2”>Carnivores</th>

 <th>Primates</th>

 </tr>

 <tr>

 <td>Tiger</td>

 <td>Grey Wolf</td>

 <td>Indri</td>

 </tr>

<!-- etc. -->

</table>

The first th element (with the content “Carnivores”) will span the first two columns,

leaving the third for the second th element (“Primates”). Because the three col-

umns are covered, there is no need for a third th element.

  www.htmldog.com/examples/colspan.html

Similarly, rowspan will cause a cell to spill over any number of rows:

<table>

 <tr>

 <th rowspan=”2”>Carnivores</th>

 <td>Tiger</td>

 <td>Cheetah</td>

 </tr>

 <tr>

 <td>Grey Wolf</td>

 <td>Cape hunting dog</td>

 </tr>

 <tr>

 <th>Primates</th>

 <td>Indri</td>

 <td>Sifaka</td>

Merging Cells  |  159

www.htmldog.com/examples/colspan.html

160   |  chapter 8: Tables

 </tr>

</table>

As the first th element in this example spans two rows, the second tr element

contains two rather than three td elements because the first column of that row is

already taken care of.

  www.htmldog.com/examples/rowspan.html

Figure 8.3  A bare-bones example, demonstrating the affects of rowspan and colspan.

Combinations of row- and column-spanned cells can lead to very complex tables and

the bigger the table gets, the more difficult it can be to keep track of what should

go where. It’s often handy to work out exactly how you want the table structured

beforehand (I have to admit to drawing such tables on a piece of paper first so that

I can more easily figure out which cell needs to do what, where).

Captions
You can slap a caption on a table by using a caption element. This should be placed

directly after the opening table tag and will be displayed above the table by default:

<table>

 <caption>Animal groups</caption>

 <!-- etc. -->

</table>

www.htmldog.com/examples/rowspan.html

Caption Positioning

You can position the caption with the caption-side CSS property. Applying this
to the table element (not the caption element) dictates on which side of the
table the caption should be placed. See www.htmldog.com/examples/colgroup.html
for an example, which also demonstrates, unfortunately, that caption-side isn’t
supported by Internet Explorer 6.

Values can be top (default), right, bottom, and left.

Grouping Rows
You can group together rows and split a table into a header, footer, and body by

organizing rows into thead, tfoot, and tbody elements.

When tables are in some way broken, this should allow table parts to be repeated.

When large tables are printed and take up more than one page, for example, the

header and footer should appear on every printed page. Unfortunately, this isn’t the

case with Internet Explorer (which will just print them at the top and the bottom of

the whole table), but is a nice feature with other, more compliant browsers.

Grouping rows can also provide a handy block to latch CSS on to (if you wanted to

change the background color of a block of rows in a table, for example), and can aid

accessibility, giving divisions of code for users to jump between.

These elements must be defined in the order thead > tfoot > tbody and not

thead > tbody > tfoot. Don’t worry—the final result will still have the tbody ele-

ment sandwiched in between the header and the footer.

You can, if you want, have more than one tbody element, but you can only have one

thead and tfoot.

<table>

<thead>

 <tr>

Grouping ROws  |  161

www.htmldog.com/examples/colgroup.html

162   |  chapter 8: Tables

 <td>Header 1</td>

 <td>Header 2</td>

 <td>Header 3</td>

 </tr>

</thead>

<tfoot>

 <tr>

 <td>Footer 1</td>

 <td>Footer 2</td>

 <td>Footer 3</td>

 </tr>

</tfoot>

<tbody>

 <tr>

 <td>Cell 1</td>

 <td>Cell 2</td>

 <td>Cell 3</td>

 </tr>

 <!-- etc. -->

</tbody>

</table>

Targeting Columns
Although tables are built row by row, you can target columns with the colgroup and

col elements, allowing you to apply attributes, such as a class, to all of the cells in

a column or groups of columns.

colgroup allows attributes to be applied to set of columns and can be used on its

own, along with the span attribute (in a similar way to using rowspan and colspan in

td and th tags), to group the first x columns.

<table>

 <colgroup span=”2” class=”alternative”></colgroup>

 <tr>

 <th>Cats</th>

 <th>Dogs</th>

 <th>Lemurs</th>

 </tr>

 <!-- etc. -->

</table>

This example will, essentially, apply the “alternative” class to the first two columns.

Alternatively, colgroup can be used with col elements to focus on individual

columns.

<table>

 <colgroup>

 <col />

 <col class=”alternative” />

 <col />

 </colgroup>

 <tr>

 <th>Cats</th>

 <th>Dogs</th>

 <th>Lemurs</th>

 </tr>

 <!-- etc. -->

</table>

Here, the styles of the class “alternative” will be applied to the second column, i.e.,

the second cell in every row.

  www.htmldog.com/examples/colgroup.html

You can also use the span attribute with col elements, and could, for example,

apply them like this:

<table>

 <colgroup>

 <col />

 <col span=”2” class=”alternative” />

 </colgroup>

 <!-- etc. -->

</table>

Targeting Columns  |  163

www.htmldog.com/examples/colgroup.html

164   |  chapter 8: Tables

Oh, but there had to be a catch, didn’t there? Here it is: The only styles you can

validly apply to columns are backgrounds (see Chapter 4, “Images”), borders, width,

and visibility (Chapter 5).

In a strange twist of fate, Internet Explorer appears to behave much better than

other browsers because it applies pretty much any CSS property to columns via col

and colgroup elements, but, as it turns out, this is only because it acts in a mad

wacky way. For a detailed explanation of this peculiar anomaly, go to this catchy

web address to let Ian Hixon explain: ln.hixie.ch/?start=1070385285&count=1.

Accessibility Considerations with Tables
If you follow the methods mentioned so far with content that is sensible tabular

data, you should be well on your way to creating accessible tables. The major prob-

lem in terms of accessibility, however, is the two-dimensional nature of tables: You

have rows and you have columns. Your eyes can see vertical and horizontal associa-

tions with little problem, but if you had to rely on your ears—if the table became

linearized and were read out to you cell by cell by a screen-reader—it could get very

confusing. Listening to a ream of numbers, completely out of context, for example,

would not be very helpful.

Summaries
A quick and easy accessibility consideration is to always apply a summary to the

table. This can be specified through the use of the summary attribute in the opening

table tag.

<table summary=”A brief overview of animals belonging to certain

taxonomic groups”>

 <caption>Animal groups</caption>

 <!-- etc. -->

</table>

The value of summary won’t be displayed, but it will be recognized—and read out—

by screen-readers. This brief description of what’s going on can make the gist of the

table content much easier and quicker to understand, or completely ignore if it isn’t

of interest.

Associating Headers to Cells
With a summary, the user can get an idea of what to expect. But this doesn’t solve

the problem of tables becoming linearized and cells being taken out of their context

when a screen-reader comes to tackle a table. Explicit associations between the

cells and their headers can aid this process, allowing the row or column heading to

be read out along with the data itself, giving the visually impaired user the context

that a visually able user has.

By using the scope attribute within a header cell you can explicitly define what the

header cell is a header for. The value of this attribute can be row, col, rowgroup

(for thead, tfoot, and tbody elements), or colgroup.

<table>

 <tr>

 <th scope=”col”>Cats</th>

 <th scope=”col”>Dogs</th>

 <th scope=”col”>Lemurs</th>

 </tr>

 <tr>

 <td>Tiger</td>

 <td>Grey Wolf</td>

 <td>Indri</td>

 </tr>

 <!-- etc. -->

</table>

Associating Cells to Headers
Doing things the other way around from scope, the headers attribute can be used

within a td or th tag to specify which cell or cells should be regarded as headers for

it. The value can be a single ID name or a list of IDs separated by spaces.

<table>

 <tr>

 <th colspan=”2” id=”carnivores”>Carnivores</th>

 <th id=”primates”>Primates</th>

 </tr>

Accessibility Considerations with Tables  |  165

166   |  chapter 8: Tables

 <tr>

 <th id=”cats” headers=”carnivores”>Cats</th>

 <th id=”dogs” headers=”carnivores”>Dogs</th>

 <th id=”lemurs” headers=”primates”>Lemurs</th>

 </tr>

 <tr>

 <td headers=”carnivores cats”>Tiger</td>

 <td headers=”carnivores dogs”>Grey Wolf</td>

 <td headers=”primates lemurs”>Indri</td>

 </tr>

 <!-- etc. -->

</table>

By doing this, when reading out the table data, a screen-reader should first read out

the data in the related header cell. For example, when it comes to the first td ele-

ment in the example above, it should read out “Carnivores: Cats: Tiger.”

You may not want long headers to be repeated every time a data cell for that header

is read out and you can avoid this happening by supplying a shortened version of

the header with the abbr (abbreviation) attribute:

<table>

 <tr>

 <th id=”cats” abbr=”Cats”>Felidae - the cats</th>

 <th id=”dogs” abbr=”Dogs”>Canidae - the dogs</th>

 <th id=”lemurs” abbr=”Lemurs”>Lemuridae - the lemurs</th>

 </tr>

 <tr>

 <td headers=”cats”>Tiger</td>

 <!-- etc. -->

 </tr>

 <tr>

 <td headers=”cats”>Cheetah</td>

 <!-- etc. -->

 </tr>

 <!-- etc. -->

</table>

On the first encounter with a data cell linked to a header, the whole header will be

read out, such as “Felidae—the cats: Tiger” but on every subsequent pass, only the

abbreviated form of the header will be read, such as “Cats: Cheetah.”

Presenting Tables
Table cells can be styled just like any other content. Colors, backgrounds, font-size,

text-align can all be applied, for example (see Chapter 2, “Text”), as can widths and

padding (see Chapter 5). You can target the table, row, row group, column (although

remember the limitations, as noted), or cells. For example:

td {

 text-align: center;

 vertical-align: middle;

 padding: 0.1em 1em;

}

col.alternative {

 background-color: #ddf;

}

 

Figure 8.4  The tables in Event Wax use
background images in each cell for the
shadow effect, a hint of border, and a
soupcon of vertical-align

There are also some table-specific CSS properties, though, that deal with table and

cell borders, layout style, and what happens with empty cells.

Border Collapsing
Borders in tables are a little more complicated than your average box (see Chapter 5).

Applying the border property to a table element will simply draw a four-sided bor-

der around the table’s edge, rather than around the cells. To have a grid-like border

Presenting Tables  |  167

168   |  chapter 8: Tables

throughout the table and surrounding the cells you need to apply the border property

to the cells themselves:

td { border: 1px solid black }

The results of this may not be exactly what you want, however, since each td ele-

ment becomes a clearly defined individual box, rather than a cell within a grid. This

is because the browser is using the “separated borders model,” which completely

separates cells, spacing them out from one another. You can change the border

model, however, with the border-collapse property, which can be used to achieve

an often-preferable alternative:

table { border-collapse: collapse }

This will invoke the “collapsing borders model,” whereby cells share adjacent bor-

ders. All of the cells are pushed together and, quite cleverly, instead of pushing the

borders up against each other, they “collapse” (much like margin collapsing—see

Chapter 5), leaving only the wider of the two adjacent borders visible.

  www.htmldog.com/examples/bordercollapse1.html

In the separated-borders model, theoretically you should be able to adjust the spac-

ing between cells using the border-spacing property with the table element (such

as table { border-spacing: 1px; }). Why theoretically? You guessed it: It isn’t

supported by Internet Explorer.

Collapsing will also occur when a table border comes into contact with cell borders.

If the table border is narrower than the adjacent cell borders, then the table border

should collapse, with the cell borders taking precedence. In Internet Explorer, though,

the cell borders will always collapse, even if they are wider than the table border.

For example, if you had:

table {

 border-collapse: collapse;

 border: 1px solid black;

}

td {

 border: 10px solid #ccc;

}

www.htmldog.com/examples/bordercollapse1.html

You shouldn’t be able to see the black table border because it should collapse. In

IE, though, the 1px table border remains, and the adjacent cells have no adjacent

borders (compare www.htmldog.com/examples/bordercollapse2.html in Firefox and

IE, for example).

 

Figure 8.5  Without border-collapse to
annihilate the spacing between cells and
the limited support of border-spacing, the
desired style would come up against a few
problems.

Speedier Tables: the Fixed Layout Algorithm
Tables aren’t the easiest of things for a browser to render. Your average table needs

quite a few calculations—the browser must first go through the table, assessing

the widths of every cell so that it can calculate the widths of columns and the table

itself. Only after that will the table be drawn, with column widths optimized so that

those with longer content on average will be wider.

The theory goes that for large, or numerous, tables, this automatic table layout algo-

rithm can take a long time. In practice, with the cheetah speed of modern browsers,

you’re rarely going to come across a table where this is noticeable. You can, how-

ever, use the table-layout property to force the browser to use the “fixed layout

algorithm” to speed things up.

Rather than going through the whole table and analyzing the content of all of the

cells, this just takes a quick peek to see if there are any explicit widths applied to

col elements or cells in the first row and then gets on with drawing the table.

Because this algorithm can’t work out the width of the table, this should be explicitly

specified also. Otherwise some browsers will ignore the table-layout declaration

completely and use the automatic table layout algorithm to determine the width of the

table. Interestingly, Internet Explorer will apply a width of 100% if none is specified.

The widths of columns are determined by the explicit width of col elements or,

if none is specified, the explicit width of td (or th) elements in the first row. Cell

widths in subsequent rows will be ignored.

Presenting Tables  |  169

www.htmldog.com/examples/bordercollapse2.html

170   |  chapter 8: Tables

Those columns that don’t have an explicit width specified this way will share the

rest of the width of the table equally. So if no widths are defined at all, all columns

in the table will be an equal width.

table-layout isn’t supported by IE 5.0, but that doesn’t really matter because

where this isn’t supported, the table will still be rendered, it will just take longer.

table {

 table-layout: fixed;

 width: 100%;

}

  www.htmldog.com/examples/tablelayout1.html

  www.htmldog.com/examples/tablelayout2.html

Empty Cells
Empty cells (such as <td></td>, with no content in between the opening and clos-

ing tags) are an odd thing. In the collapsing borders model all is fixed and predict-

able: The cell is shown, it just won’t have anything in it. With the separated borders

model, however, the cells can either remain visible or can be hidden. By default,

Internet Explorer hides empty cells (although it oddly decides to retain any applied

backgrounds). By contrast, other browsers will show the empty cells by default, but

you can opt to hide them with the empty-cells: hide declaration (which will hide

everything, including any backgrounds).

empty-cells: show does the opposite, but IE won’t take any notice so you’re stuck

with empty cells being hidden. You can get around this by putting any content in the

cells, such as a non-breaking space (<td> </td>), which effectively makes it a

no-longer-empty cell and so it will be shown in its full glory.

  www.htmldog.com/examples/emptycells.html

So, in conclusion, if you want to hide empty cells, just apply empty-cells: hidden

to take care of browsers other than IE (which hides them anyway). If you want to

show empty cells, simply drop an character in each of them.

www.htmldog.com/examples/tablelayout1.html
www.htmldog.com/examples/tablelayout2.html
www.htmldog.com/examples/emptycells.html

chapter

Forms

If m o n e y m a k e s the world go around, then forms make the web go

around. They are key to most commercial websites, which rely on taking

personal information and credit card details. But they’re handy for less

capitalistic purposes too. A basic form can also be used to allow a user to

submit a comment or question via a web page, or for gathering countless

other types of useful information.

Forms are sometimes used in conjunction with client-side scripts for

web application functionality (such as devising a simple calculator, for

example), but are most commonly used as they were intended—to send

data across the Internet.

What goes on after a form is submitted is a world beyond HTML and

CSS, involving such alien server-side programming languages as PHP,

ASP, or Perl that take the form data and do whatever needs to be done

with it.

On the HTML and CSS side, all we have to do is make sure that the form

itself is designed properly so that the necessary data is sent where it

needs to go.

The basics are simple enough: You have a form element and within it you

have a whole bunch of form fields and a submit button. The user fills in

the fields, hits the button, and the data is sent.

9

172   |  chapter 9: Forms

Figure 9.1  The illustrations in this chapter are taken from the Cork’d website (corkd.com).

form Elements
Guess what a form element does. That’s right! It defines a form. It is between the

opening and closing form tags that all of the form fields, buttons, and other bits and

bobs go.

<form action=”processor.php” method=”post”>

<!-- a whole load of form fields -->

</form>

The opening form tag has two main attributes: action and method.

The value of the required action attribute tells the browser where to send the form

data when it is submitted. This can be any URI, naming the location of the script

(or page containing the script) that will process the form data.

The value of the method attribute tells the browser how to send the form data. You

have two options here: get or post.

The get setting bolts the values of the form fields on to the URI supplied by the

action attribute. So effectively, when the form is submitted, the user is taken to a

very specific URI, which would look something like this:

http://www.whatever.com/processor.php?book=nineteen-eighty four&author=

george orwell&datepublished=1949

The specific purpose of get is to read something—to retrieve data from somewhere,

dependent on the data sent. An advantage of this method is that such a URI can be

bookmarked or added to your browser’s “favorites” list or shared with others (such

as sent via email or instant messaging) because linking to a URI such as that above

will have the same effect as inputting the data into the form and submitting it.

A disadvantage is that it isn’t very secure. All the form values are there for every-

one to see and it is also open to direct manipulation by the user. So whereas this

method might be useful for locating a book in a catalog (hence retrieving data),

for example, it wouldn’t be suitable for sending credit card details or personal

information.

Because method=”get” is the default setting, you don’t need to specify this attribute

if this is the method you choose. So in fact, you’ll probably only ever want to use it

in the form of method=”post”.

Form Elements  |  173

http://www.whatever.com/processor.php?book=nineteen-eightyfour&author=georgeorwell&datepublished=1949
http://www.whatever.com/processor.php?book=nineteen-eightyfour&author=georgeorwell&datepublished=1949

174   |  chapter 9: Forms

Instead of making the values part of a URI, the post method will send the form

data as HTTP headers—pieces of information that are sent along with the URI,

hidden away in the ether where they are invisible to all but the form-processing

script.

Whereas get is used for reading something, post has the specific purpose of writ-

ing something (to a database, for example). The advantages and disadvantages

are basically the opposite of the get method: Because the form data is not part of

the URI, the form-results page cannot be bookmarked or shared with others. But

because of this, it is also slightly more secure, and non-tinkerable, than the get

method.

Form Fields and Buttons: input, textarea,
and select
The form fields, where the user inputs data, come in a multitude of guises—text

boxes, radio buttons, drop-down lists, to name a few—but they comprise just three

elements: input, textarea, and select.

The input element is the 10-headed hydra of the trio, creating a different form

control depending on the value of its type attribute. The other two, textarea and

select, create just one control type each. These elements will be looked at in inde-

pendent detail in a minute, but there are a few characteristics common to all three

that we need to think about first.

The name Attribute
If all the inputted data in a form was sent without anything to identify each piece

of data, a form-processing script wouldn’t know what piece of data is what. “Things

Fall Apart” or “Chinua Achebe” aren’t helpful on their own, for example. What is

needed is name/value pairs such as “book=Things Fall Apart” and “author=Chinua

Achebe”. The name attribute supplies this necessary identifier (such as <input

name=”book” />) and, in fact, the data in any input, textarea, or select form

field won’t be sent at all if there isn’t a name attribute present.

Disabled and Read-Only Fields

You can choose to disable an input, textarea, or select element with the dis-
abled attribute (used in the format disabled=”disabled”). When form fields are
disabled in this fashion, the user won’t be able to change them, and their values
won’t be sent when the form is submitted. This is a rarely used technique, but is
sometimes used with JavaScript to disable/enable parts of a form depending on
what options the user has selected elsewhere in the form.

Another attribute at your disposal is readonly (similarly used in the format
readonly=”readonly”), which is relevant to text type input elements and
textarea elements. This simply won’t let the user edit the text in the form field,
so any initial value will remain. Like the disabled attribute, this is used only
rarely, in conjunction with client-side scripts. The difference to the disabled
attribute is that the value of an element set to readonly=”readonly” will be
sent when the form is submitted.

Putting Controls in Blocks
Before jumping in and adding form field elements to the form, keep in mind that

the only valid direct content of a form element (when we’re talking about the think-

ing person’s choice, XHTML Strict—see Chapter 1, “Getting Started”) are block-

level elements and so input, textarea, and select, being inline, must sit inside

one or more block-level element, such as a div (see Chapter 1) or a fieldset (see

later in this chapter).

input

The input element is a gargantuan beast with many heads. With just this single

element you can create text boxes, checkboxes, radio buttons, and more. You can

specify which type of input control you want with the type attribute. For example,

type=”text” turns the element into a text box, type=”checkbox” turns it into a

Form Fields and Buttons: input, textarea, and select  |  175

176   |  chapter 9: Forms

checkbox, and so on. There are 10 possible values for this attribute, and each type

has its own peculiarities:

 text—for single-line text

 password—for obfuscated text

 checkbox—for a simple on or off

 radio—for selecting one of a number of options

 submit—for initiating the sending of the form data

 reset—for returning the form fields to their original values

 hidden—for data not seen, or edited by, the user

 image—for sending coordinates of where an image is clicked on

 file—for uploading files

 button—for shirts, pants, jackets, no… wait…

text
An input element with the attribute type=”text” is a single-line text box—probably

the most common form field, used for short pieces of textual information such as

someone’s name, email address, or credit card number. text is the default value for

the type attribute (so you don’t need to explicitly use the type attribute, if a text

box is what you’re after).

With text type input elements, you can also use the maxlength attribute, which

limits the number of characters that can be typed into the text box. So the following

example would create a text box into which the user can only type a maximum of

four characters:

<input name=”yearpublished” maxlength=”4” />

The initial text contained within the text box can also be set with the value attri-

bute. This is particularly handy either to give a pointer as to what the user should

type in that text box (such as “Your name”) or if values have been passed to the

form, such as with “Remember me” functionality (whereby, with some clever script-

ing, a site can remember a user and fill in certain details automatically).

•

•

•

•

•

•

•

•

•

•

Figure 9.2  Text input types and their closest relative, the password input.

password
The password type works like the text type, apart from one characteristic: As the

user types, instead of the characters appearing in the text box, placeholder char-

acters (usually asterisks or circular bullets, depending on the browser) will appear

in their place. The idea behind this is that anyone peering over the user’s shoulder

won’t be able to see what is being typed in.

<input type=”password” name=”pword” maxlength=”20” />

  www.htmldog.com/examples/inputtextboxes.html

checkbox
The checkbox type creates a simple checkbox, used to supply a yes/no, set/unset,

or on/off option. By default, a browser will style this as a small empty square box,

which, when selected, will display a “tick” inside the box.

Form Fields and Buttons: input, textarea, and select  |  177

www.htmldog.com/examples/inputtextboxes.html

178   |  chapter 9: Forms

Figure 9.3  Checkboxes are used when more than one option can be selected.

You can also specify that the initial state of a checkbox should be selected (“checked”

or “ticked”) by adding the attribute and value combination checked=”checked”. (In the

past, simply checked would have been enough, but with XHTML, all attributes must

have values.)

<input type=”checkbox” name=”modern” checked=”checked” />

If a checkbox is not selected when the form data is submitted, no value will be sent.

When the checkbox is selected, “on” will be sent as the value for the corresponding

name unless the tag has a value attribute, in which case the value of that will be sent

for the name instead.

  www.htmldog.com/examples/inputcheckboxes.html

radio
Radio buttons, defined by the radio type, are similar to checkboxes, but the idea is

that you can only select one option in a group at a time. You give a group of radio

input elements the same name, and then when one of the radio buttons in that

group is selected, any other radio buttons that were selected will be turned off.

<input type=”radio” name=”color” value=”red” checked=”checked” />

<input type=”radio” name=”color” value=”orange” />

<input type=”radio” name=”color” value=”blue” />

You really need to use the value attributes here. If you don’t, the whole group will

act the same as the checkbox—that is, if nothing is selected, nothing will be sent,

but “on” (such as color=on) will be sent if any of the radio buttons in a group is

selected, which isn’t much help in discerning which of the options is selected. By

supplying value attributes in each input element, the value of that attribute in the

selected element will be sent, such as color=orange.

www.htmldog.com/examples/inputcheckboxes.html

Figure 9.4  Radio buttons are similar to checkboxes, but better when
you want to allow only one option to be selected from a group.

As you can see from this example, once more you can also use checked=”checked”

to determine which radio button should initially be on.

submit and reset
There are other ways of submitting form data (namely with a bit of JavaScript), but

the most common and easiest way is by hitting a submit button. The submit input

type takes the form of a button and when this button is pressed, the form data will

be sent to the value of the action attribute in the opening form tag.

By default, the text on the button will read something similar to “Submit Query”

(depending on the browser), but this can be changed with the value attribute.

<input type=”submit” value=”Search” />

The reset input type creates a reset button, which, when clicked (or otherwise

selected), will reset the form, with form fields returning to the values that they had

when the page was first loaded.

Like submit, the text on the reset button (“Reset,” by default) can be changed with

the value attribute.

<input type=”reset” value=”Start again” />

With both submit and reset buttons, the name attribute isn’t particularly necessary.

Form Fields and Buttons: input, textarea, and select  |  179

180   |  chapter 9: Forms

hidden
The hidden input type doesn’t show up in the form and has nothing that the user

can directly interact with. Sounds pretty useless on the face of it, doesn’t it?

One use for hidden input elements is in passing data between form actions. If a

user fills out one form and then needs to fill out a second form, a form-processing

script can dynamically construct the second form and include in it data from the

first form, or even data that it has calculated after the submission of the first form,

such as a customer ID.

<input type=”hidden” name=”page” value=”bobsbooks4.html” />

<input type=”hidden” name=”customerid” value=”sk49fjp923j9fj9393” />

Another use is in setting variables for generic form-processing scripts. With some

form-to-email scripts, for example, rather than expecting authors to mess about

with the script itself (which can be daunting for those unfamiliar with the scripting

language in question), they just need to specify things such as the email address

that the form should be submitted to and the location of a “Thank you” page that

the user will be directed to after submitting the form in the HTML via hidden input

elements, such as:

<input type=”hidden” name=”recipient” value=”whoever@wherever.com” />

<input type=”hidden” name=”thankyou” value=”thankyou.html” />

image
The image type is like a cross between a submit type input element and an img ele-

ment. Like an img element (See Chapter 4, “Images”), you can specify the file loca-

tion of the image that will be used for the form field with the src attribute and a

text alternative for the image with the alt attribute. Like the submit type, when the

image is clicked on the form data will be sent.

On the rare occasions that image input types are used, they are most commonly

used to provide graphical alternatives to a submit button. This degree of control over

the appearance of the submit button may seem like a good thing, but it’s not, really.

Firstly, it’s purely presentational and takes away certain advantages of separating

structure and presentation discussed throughout this book.

Secondly, as explained later in the “Presenting Forms” section, a standard submit

button is pretty much instantly recognized by most users and messing with that

familiarity makes the form more difficult to use.

Not only will the form be submitted when an image input element is selected, the

pixel-coordinates where the user clicked on the image will also be sent. So, two val-

ues will be sent, such as:

image1.x=498

and

image1.y=128

and if the value attribute is used, a third value will be sent:

image1=valueofattribute

So image buttons can also serve as a server-side image map, whereby those coor-

dinates can be processed and different actions can be taken depending on where

the user clicked on the image. If the image was a map of the world, for example, a

processing script could send users to a different page depending on which country

they clicked.

Sounds nifty. Once again, it’s not. Server-side image maps are rarely used, not only

because of their specific nature and the complexity of the server-side programming

required to fully exploit them, but because of their inaccessible nature: Not only do

they rely on purely visual cues (such as country boundaries on a map), but they also

rely on the user being able to click.

file
The file type allows users to select a file from their own computers, in order to

upload that file. When the form is submitted, the selected file will be sent with the

rest of the form data.

It should be remembered that when type=”file” input elements are used, an

additional enctype attribute must be added to the opening form tag with the value

“multipart/form-data”, so that when it is sent the server knows that it is getting

more than textual data. The method attribute must also be set to post.

Form Fields and Buttons: input, textarea, and select  |  181

182   |  chapter 9: Forms

<form action=”wherever.php” method=”post” enctype=”multipart/

form-data”>

 <div>

 <input type=”file” name=”uploadfile” id=”uploadfile” />

 </div>

</form>

  www.htmldog.com/examples/inputfile.html

button
button input elements do absolutely nothing. Well, when it comes directly to form

data, anyway. They are used to invoke client-side scripts (namely JavaScript—see

Chapter 7, “Scripts & Objects”) when the button is pressed. So whereas they play

no part in submitted form data, they can be used to make other things in the form

change, such as performing calculations and dynamically altering the value of a text

box, for example.

textarea

A welcome break after the mad multitude of input element options, the textarea

element is straightforward, having just one simple state. It works something like a

big text-type input element, but is used for bigger chunks of textual data, usually

with multiple lines, such as an address or a comment on a feedback form.

  www.htmldog.com/examples/textarea.html

Unlike the input element, textarea has an opening and closing tag. Any text in

between the opening and closing tag makes up the initial value of the element.

<textarea name=”whatever” rows=”10” cols=”20”>Type something here

</textarea>

In the above example, the text box will appear with “Type something here” inside

the box.

Like using the value attribute in a type=”text” input element, having initial text

appear in this way can be useful in supplying extra information or instructions about

www.htmldog.com/examples/inputfile.html
www.htmldog.com/examples/textarea.html

the kind of thing the user should type in the text area, and it can help with acces-

sibility (see the “Accessible Forms” section later in this chapter). The disadvantage

of doing this is that it requires more work on the users’ part—selecting the text and

deleting it before entering their own. For that reason, textarea is often used in the

following way, with no content at all:

<textarea name=”whatever” rows=”10” cols=”20”></textarea>

There is a peculiar XHTML anomaly that spoils the structure and presentation sepa-

ration party. Inside the opening textarea tag, the attributes rows and cols, which

determine the size of the text area, are not only valid but required. This will initially

alter the width and height of the text area but you shouldn’t be concerned by this

since you can easily control the width and height with CSS.

select

select form fields present the user with a list (which is usually displayed as a drop-

down menu), from which one or more options can be selected.

Key to their operation, another element is needed—the option element, which

defines each option in the list.

<select name=”book”>

 <option>The Trial</option>

 <option>The Outsider</option>

 <option>Things Fall Apart</option>

 <option>Animal Farm</option>

</select>

  www.htmldog.com/examples/select1.html

In cases such as the example above, when the user submits the form data, the

value sent for the select element is the content of the selected option element (for

example, if the third option was selected above, then “Things Fall Apart” would be

sent as the value for “book”). You can supply different values for each option ele-

ment by using the value attribute inside the opening option tag. When the value

attribute is present, its value will be sent instead of the option element’s content.

Form Fields and Buttons: input, textarea, and select  |  183

. www.htmldog.com/examples/select1.html

184   |  chapter 9: Forms

Figure 9.5  An alternative to checkboxes or radio buttons, select
elements allow one or more selections from a list.

You can set one option element to be initially selected by using the selected attri-

bute (in the form of selected=”selected”).

In longer lists with obvious groupings, you can use optgroup elements, which sup-

ply a heading within the list (using the label attribute). Each option group can also

be styled individually, so, if you choose, you can color some groups differently, for

example.

<select name=”book”>

 <optgroup label=”Camus”>

 <option>The Outsider</option>

 <option>The Rebel</option>

 <option>The Plague</option>

 </optgroup>

 <optgroup label=”Orwell”>

 <option>Animal Farm</option>

 <option>Nineteen Eighty-Four</option>

 <option>Down and Out in Paris and London</option>

 </optgroup>

</select>

  www.htmldog.com/examples/select2.html

www.htmldog.com/examples/select2.html

By default, select elements will show one option at a time (and visually “drop

down” the list of options when the element is clicked). You can choose to show

more than one option at a time by setting the size attribute to the number of

options you want. Instead of a drop-down list, browsers will display a sized select

element as a fixed-height box containing the options, which, if all of the options do

not fit in that box, will have a scrollbar to the right.

Also by default, the user can select only one option out of a select list. You can allow

multiple selections by using the multiple attribute (in the form multiple=”multiple”).

When this is used, the user can select more than one option (usually by holding down

a key, such as Ctrl, with every selection).

<select name=”book” size=”5” multiple=”multiple”>

<!-- etc -->

</select>

  www.htmldog.com/examples/select3.html

Fieldsets
Imagine you have a long form with a multitude of form fields. Actually, it doesn’t

even need to be that long. Using fieldsets to group together common fields can help

the user straight away by splitting up the form into chunks and making it more man-

ageable. This can be done with the fieldset tag.

Fieldsets can additionally be given a caption/heading with a legend element, which

must directly follow the opening fieldset tag.

<form action=”whatever.php”>

 <fieldset>

 <legend>Book Details</legend>

 <!-- lots of form fields --> </fieldset>

 <fieldset>

 <legend>Some Other Details</legend>

 <!-- lots of form fields --> </fieldset>

</form>

Fieldsets  |  185

www.htmldog.com/examples/select3.html

186   |  chapter 9: Forms

By default, a browser will render a fieldset with a border around it and a legend as a

heading breaking the top border. You can choose to turn off the border (border: 0),

but you won’t have much success in styling it any other way—a legend will always

insist on sitting on top of a fieldset border.

Note that all of the bare-bone examples mentioned so far in this chapter contain

fieldsets and legends.

Accessible Forms
The first step towards accessible forms is to have a sensible design: well spaced-

out form fields with labels that are clearly associated with them are going to make

things much easier to use for anyone—and especially someone with any level of

visual impairment.

Grouping items with elements such as optgroup and fieldset will also help in split-

ting up the form and visualizing distinct areas as well as aiding assistive technology.

There are also steps that can be taken that are similar to the accessibility issues

regarding links. Using tabindex and accesskey attributes in the input, textarea,

and select tags, to aid navigation for those who do not use pointing devices such as

a mouse, will achieve the same benefits and drawbacks as discussed in Chapter 3,

“Links”.

As with any element on a page, title attributes can also be used to provide more

information, in this case possibly to explain with greater detail than a label what the

user should enter in a field.

Labels
Every form field element should be accompanied by a label element. It’s not partic-

ularly difficult; in fact, every form field should have a textual label explaining what a

form field is for anyway—the label element just formalizes the matter. A label ele-

ment links a label with a form field element, providing an explicit link between the

two rather than relying on visual proximity or adjacency within the HTML code.

The value of the for attribute associates the label with the form field whose id has

a corresponding value, such as:

<label for=”rasputin”>Rasputin:</label>

<input name=”whatever” id=”rasputin” />

No, this isn’t a particularly practical example. In most cases, you will probably find

the form field having the same values for both the name and id attributes:

<label for=”yourname”>Your name:</label>

<input name=”yourname” id=”yourname” />

<label for=”youraddress”>Your address:</label>

<textarea name=”youraddress” id=”youraddress” />

The added benefit of label elements is one of usability, particularly with check-

boxes and radio buttons. When the label is clicked, the focus will be placed on the

associated form field element. In the case of checkboxes and radio buttons, this

means that not only can you check or uncheck the element via the small area of the

element itself, you can also do so by clicking on the label, providing a much larger

(and easier) area to click.

The web pages behind the figures on this page all employ labels. Look at www

.htmldog.com/examples/inputcheckboxes.html, for example, to see them at work.

Styling Form Fields
There’s something slightly special about form fields—a browser will actually pull in a

widget that is part of the operating system to make a form field element. The impli-

cations of this are that it’s nigh on impossible to achieve a uniform style across all

browsers (and different OSs) and you are limited as to the extent to which you can

style certain aspects of these form fields.

Because form items come not only from the browser but also from the operating sys-

tem, web pages aren’t the only place that computer users come across radio buttons

and text boxes, etc. They are a familiar element of OS settings and of software pro-

grams that run on them. The borders of form fields are purposefully made to make

the element look three dimensional—text boxes, for example, appearing lowered and

buttons appearing raised, to make them “feel” more tactile—suggesting a user can

interact with them.

Styling Form Fields  |  187

www.htmldog.com/examples/inputcheckboxes.html
www.htmldog.com/examples/inputcheckboxes.html

188   |  chapter 9: Forms

And for a similar reason that it is a common suggestion to keep text links blue and

underlined (see Chapter 3) due to users’ familiarity with what that style signifies, it

is also a common suggestion to leave forms in their default style.

At the possible compromise of usability, many do opt to alter the style of form

fields, but there are some limitations.

One example is buttons. Browsers such as Opera and Safari have their own style of

buttons. These browsers actually go as far as ignoring any decoration, such as bor-

ders or colors, that you attempt to apply to them (whereas other browsers, such as

Internet Explorer, will give you free rein).

There are some safe changes that can be made to many form fields. You’ll probably

want control over dimensions, rather than relying on the default rendering of those ele-

ments. As with any other box, you can simply use the properties height (particularly

useful for text areas) and width. Changing dimensions is absolutely fine and pretty

much hassle-free because users are quite used to seeing form fields of various sizes.

There are a few other properties you can play with when it comes to forms. There

are no CSS properties specific to forms, but you can apply colors, padding, borders,

and margins to most form elements, just like any other visible element. As you will

see, however, it’s not all smooth sailing.

Borders
A quick, easy, and common way to radically change the appearance of form fields

such as text boxes is to take control of their borders, using the border property (see

Chapter 5, “Layout”).

input, textarea { border: 1px solid #ccc }

Some might argue that this thin border is more visually appealing, but it should be

kept in mind that this may be at the detriment of usability. A compromise might be

something like this:

input, textarea {

 border: 1px solid;

 border-color: #666 #ccc #ccc #666;

}

This will apply a 1-px border, overriding the thicker default border, but will keep the

three-dimensional effect users are used to, by applying different shades to the top/

left and bottom/right borders.

When it comes to select menus, you’re stuffed as far as customized borders go.

Most browsers won’t apply CSS borders to select elements at all. So if your form

includes these stubborn little blighters, you’re probably better off leaving the bor-

ders of all of the form field elements well alone, and settling for the default, for the

sake of consistency.

A similar problem arises when it comes to checkboxes and radio buttons. The gray

borders that make up the actual square or circle are also stuck in their ways and

refuse to change.

Fonts
You can specify the font details of text that will appear in text boxes and text areas

just as you can for text in other elements on the web page. The input, textarea,

and select elements will not inherit any font properties, however, and they all have

different initial properties by default—textarea has a Courier font and input has

a sans-serif font, for example. To set things such as color, font-family, and font-

size, then, you need to be explicit.

input, textarea { font: 1em arial, Helvetica, sans-serif }

Backgrounds
As with borders, it is questionable whether the backgrounds of form fields and but-

tons should be anything other than the default—white for text boxes and text areas

and gray for buttons. You do have the option of specifying either background colors

or background images for your controls, although many browsers will ignore any

background settings for checkboxes and radio buttons, leaving them white.

A clever technique that could quite possibly aid usability is to change the background

color of form fields such as text boxes and text areas when they are in focus, mak-

ing that field stand out from the others and make it clearer where the user is on the

page. This can be achieved with the dynamic pseudo-class :focus.

input:focus, textarea:focus { background: #eee }

Styling Form Fields  |  189

190   |  chapter 9: Forms

This could, of course, be used to change any property of a form field when it has

focus, such as the border.

As explained in Chapter 7, Internet Explorer 6 (and earlier) doesn’t support this, but

can this can easily be fixed with a little Suckerfish JavaScript. See the article at

www.htmldog.com/articles/suckerfish/focus or just see it in action at www.htmldog.

com/articles/suckerfish/focus/example.

www.htmldog.com/articles/suckerfish/focus
www.htmldog.com/articles/suckerfish/focus/example
www.htmldog.com/articles/suckerfish/focus/example

chapter

Multiple Media

Co n j u r e a n im a ge in your mind of someone looking at a web page. Go

on, just do it. Humor me.

Chances are you will be thinking of someone sitting at a desk with a

desktop or laptop computer displaying the web page in all its lavish glory

on a 15- to 30-inch color screen. In all likelihood, the majority of people

looking at your web pages will be in this situation, but there will also be

those who can’t use a screen at all, an increasing number of people who

are using all sorts of mobile devices to access the web, and even just

those who simply want to print out a web page.

Web pages can be accessed and consumed in many ways.

The good news is that if you’ve been building your pages following web

standards then you’ll already be accommodating multiple media and

devices to a much greater degree than if you hadn’t. And with a few little

tricks you can further optimize for different devices.

The purpose of this chapter is to look outside the usual web surfing as

a computer-and-monitor-on-a-desk experience and explore web pages

being consumed in different ways—namely through screen-readers,

mobile devices, and, in particular, print. It is an epilogue, if you will,

demonstrating one of the great benefits of best-practice web standard

XHTML and CSS.

10

192   |  chapter 10: Multiple Media

Screen-Readers
This book has touched on the subject of accessibility a number of times, including

the accommodation of assistive devices, such as screen-readers, that web users

with physical impairments might use.

A screen-reader aids those who cannot see a monitor adequately by reading out

the content and other elements that might otherwise appear on a computer screen,

including web pages.

How do we accommodate screen-readers? Well, we should already be doing it by

using semantic HTML.

If the content in a web page is arranged in a sensible, logical order (rather than

spread all over the place in a multitude of table cells, for example), and paragraphs

are found in ps, unordered lists are found in uls, and tables really are tables, then

it’s all gravy, baby.

These pieces of software are immense, clever things that attempt to decipher the

crappiest of code. With currently supported technologies, there is nothing we can do

to directly target screen-readers, but just by coding in the clearest, proper manner,

our web pages are more likely to be understood as they are meant to be.

Mobile Devices
OK, so mobile devices do have monitors, but they’re itsy-bitsy ones, hardly worthy of

the mighty mantle of a true monitor.

I shouldn’t need to spell out the major differences in mobile screens and your

standard hulk of a desktop monitor, but I will: S.M.A.L.L. S.C.R.E.E.N. Apart from

the screen-size difference, there are also issues with fiddly input (there’s no full-on

QWERTY keyboard here), a greater potential for slower access times than with stan-

dard Internet connections, and a whole plethora of browser compatibility differences

between devices.

So we can, in theory, simply restyle our existing content so that it’s more suitable

for the mobile Web. There are two opposing camps, though, who sing and dance

about it in a faux-aggressive manner just like the gangs in Michael Jackson videos

from the 1980s. One camp, weighed down by superfluous buckles, dances for the

honor of restyled universal, multimedia content which, you know, is a lovely theory,

but the other camp, brandishing plastic knives while balancing on roller skates,

sings “You really need to re-purpose your content to better suit the medium.”

Under most circumstances (those websites with anything other than the most mini-

mal content), I think I’d side with the latter camp (although I’d object if they asked

me to wear roller skates). Although the universality side of web standards is just

peachy, reams of content that might be fine on a single standard web page usually

need to be broken down into more bite-sized chunks (or even replaced with more

concentrated content) for smaller-screen devices on which information is consumed

so differently. Having said that, most of us aren’t in the position, or even inclined,

to make the effort to produce separate mobile-friendly content. But we can at least

take the easy step of making things look a little tidier on small-screen devices.

We will look at how to do this later in the chapter, but as for what we might do,

we’re going to want to think vertically and forget about multiple columns, tone down

heavy, detailed presentational imagery. It might even be a good idea to hide nones-

sential components (such as repeated navigation).

It’s worth keeping in mind that, particularly when it comes to CSS, if you think you’ve

got problems with cross-browser compatibility between Firefox and IE, it’s a whole

new league of diversity in the mobile world, with a multitude of different devices, dif-

ferent operating systems, and different browsers. What looks like Marilyn Monroe on

one phone (with good support) might look like Marilyn Manson on another (with poor

support). So wield your power wisely—consider basic styling, or maybe even simply

relying on the browser style sheet. If your HTML is good (which, now you’re on the

final chapter, it can’t fail to be, surely), then your web pages should work better on

mobile devices than most other websites out there.

Print
So we’ve gathered that good HTML is important for accommodating different

devices and media. That’s grand. CSS hasn’t quite had a look-in as yet, thanks to

the aural nature of screen-readers, and the compatibility issues with mobile devices.

Print  |  193

194   |  chapter 10: Multiple Media

When it comes to printing out web pages, there are a number of style changes we

can make to increase suitability to the medium:

Font type: While sans-serif fonts such as Arial, Helvetica, or Verdana are

easier to read onscreen, serif fonts, such as Times New Roman, are easier to

read in print.

Font size: Unlike screen, print is an absolute medium, so we might as well go

with a traditionally print-related unit: points.

Useless components: The likes of navigation bars and forms—anything that

requires user interaction on a functional web page—are pretty useless when

printed out, so there’s no use printing them out at all. This is another rea-

son why “click here” and its kin are so loathsome: When such phrases are

printed out, no matter how hard you try to click, unless it’s magic paper and

you’re using Harry Potter’s mouse, very little is going to happen.

Page width: Ensuring that the content you’re printing is liquid, you can

ensure that it will make the best use of space on a page (if it was originally a

thin column on screen, for example), and also make sure it will all fit on one

page (if it was a wide column, which might be too wide for a piece of paper).

There are many arguments here about fixed versus liquid layouts—we’re all

used to standard paper sizes (which, it might be worth noting if you were

considering messing with fixed widths, are different in different countries

around the world).

Colors: Detailed and colorful as a flock of macaws though your web page

might be, be prepared to think “magpie” when it comes to print. Black

and white printers are still common (as is the choice to print in black and

white), so it wouldn’t be a good idea to rely on color. It’s worth remembering,

though, that white-on-black can also be ink-guzzling and messy.

Background images: By default, most browsers will not print out background

images (and it takes some digging to switch the option on), so, like colors,

don’t rely on them.

•

•

•

•

•

•

A Sample Print Stylesheet
To take these different approaches into account, a print-specific CSS might look

something like this:

body {

 font: 12pt “Times New Roman”, Times, serif;

 color: black;

 background: white;

}

#navigation, form {

 display: none;

}

a {

 color: black;

 text-decoration: none;

}

#content {

 margin: 0;

 width: 100%;

}

This essentially covers the list of points made previously. The body rule sets the font

to a sensible size in points, and to a serif font. The navigation area and all forms are

completely pulled out of the picture. Links are made to look like surrounding text

(because there’s nothing particularly special about them when printed out). Assuming

we were putting this on top of a fixed layout, the content area is made to fit the full

width, and the margin, which might have been used to accommodate the navigation

area (see Chapter 5, “Layout”), is zeroed.

Applying Media-Specific CSS
Does accommodating all of these media-specific styles mean we have to serve up

two versions of the same website? Not at all (although, as mentioned, we might

choose to when it comes to pages for mobile devices, for example). What we can

do is target certain styles for certain media, leaving the HTML well alone (it should

simply be, after all, meaningful content, and presentation-free).

Applying Media-Specific CSS  |  195

196   |  chapter 10: Multiple Media

“Printer Friendly” Already, Thanks

“Click here for a printer-friendly version” is not an uncommon phrase found on
the Web. But you don’t really want to construct two versions of every page, and
you don’t have to. Thanks to the separation of content and presentation, your
existing web pages can be printer friendly as they are.

The media Attribute
If you remember from Chapter 1, “Getting Started,” to apply CSS to our HTML we

can use either the link element:

<link rel=”stylesheet” type=”text/css” href=”core.css” />

Or we can use the style element / @import rule combo:

<style type=”text/css”>@import url(“core.css”);</style>

To cut to the chase, we can simply use the media attribute to apply a style sheet to

our HTML when it’s being read by a particular device or intended for a particular

medium. So, if we want one style sheet for the standard desktop scenario, and one

for when the web pages are printed out, we could do:

<link rel=”stylesheet” type=”text/css” media=”screen” href=”screen.

css” />

<link rel=”stylesheet” type=”text/css” media=”print” href=”print.

css” />

Or:

<style type=”text/css” media=”screen”>@import url(“screen.css”);

</style>

<style type=”text/css” media=”print”>@import url(“print.css”);

</style>

And it’s as simple as that.

Note that the values for the media attribute used here are screen and print, but

you can also use handheld (for mobile devices, although not all of them recognize

this, hence one of the compatibility problems). Other options, which aren’t widely

supported, are projection, braille, and speech.

Figure 10.1  www.digital-web.com on screen…

Applying Media-Specific CSS  |  197

www.digital-web.com

198   |  chapter 10: Multiple Media

Figure 10.2  …www.digital-web.com in print,

www.digital-web.com

Figure 10.3  corkd.com on screen…

Applying Media-Specific CSS  |  199

200   |  chapter 10: Multiple Media

Figure 10.4A  …corkd.com in print.

Figure 10.4b  …corkd.com in print.

Applying Media-Specific CSS  |  201

202   |  chapter 10: Multiple Media

Figure 10.5  www.htmldog.com on screen…

www.htmldog.com

Figure 10.6  …www.htmldog.com in print.

Applying Media-Specific CSS  |  203

www.htmldog.com

204   |  chapter 10: Multiple Media

Separate or Cascading
There are two approaches to consider when applying multiple style sheets. You can

have an individual, stand-alone style sheet for each situation (such as one for screen

and one for print), or you can have a central, core style sheet, on top of which another

style sheet, for a certain situation (such as one for everything, and one only for print).

The former is a separated approach; the latter is a cascading approach. While the

examples above show a separated approach, a cascading approach would look some-

thing like this:

<link rel=”stylesheet” type=”text/css” href=”screen.css” />

<link rel=”stylesheet” type=”text/css” media=”print” href=”print.

css” />

Because the first link element doesn’t have a media attribute, it will apply that CSS

file to everything. When it comes to print, however, the second link element will

additionally add the print.css file.

Each approach has advantages and disadvantages. Separate may require more origi-

nal rules (such as setting colors or font sizes), whereas cascading might require more

overriding rules (such as making borders or backgrounds invisible).

Paper-free Print

Because most modern browsers have a Print preview option (under the File
menu), it is easy to try different things and test-print style sheets without feeling
responsible for mass deforestation (just for the pollution, waste, and depletion of
natural resources necessary to power your computer).

@media

Oh, and before I go I should mention @media.

@media isn’t only the name of the greatest web design conference this side of

Wonderland, it’s a special CSS selector that enables you to plonk media-specific

styles directly into an existing style sheet, effectively creating a cascading approach,

but within one file, and placing the media selection in the hands of CSS rather than

via the media attribute in HTML:

@media print {

 body {

 font: 12pt “Times New Roman”, Times, serif;

 }

 #navigation {

 display: none;

 }

 /* etc. */

}

The media type following “@media” can be a single media type, or a comma-sepa-

rated list. So you could have:

@media print, handheld { /* specific rules here */ }

for example.

In Conclusion
Well, kids, there you have it: Best-practice (X)HTML and CSS in one handy volume.

The next step? Practice. Experiment. Play around. Read more web design and devel-

opment books and weblogs for inspiration. HTML Dog has explained how to use

your tools, but there’s no substitute for working with them and getting a feel for how

they work in practice. The more you use them, the better a web craftsman you will

become.

In Conclusion  |  205

This page intentionally left blank

XHTML Reference

T his H T ML Reference covers the common attributes and tags of XHTML

1.0 Strict.

If it’s not here then there’s a good reason for not using it. A brief overview

of some of the more common “Bad Tags & Rotten Attributes” can be

found at the end of this appendix.

More details of tag and attribute usage can be found in the indicated chap-

ters and the syntax and application of HTML can be found in Chapter 1,

“Getting Started.”

Tags
The possible attributes that can be used in a tag will take one of these formats

(see Chapter 1, “Getting Started,” for more):

attributename—An optional attribute, such as href in <a href=”alaska.

html”>.

attributename (required)—An attribute that must be used.

[Core attributes]— A collection of general attributes that can be applied

to most tags—class, id, title, and style.

class—Used to reference elements. More than one element can

have the same class name. Can be used by CSS to target elements.

id—Identifies a unique element; that is, only one element on a

page can have any given (case sensitive) id attribute value. Can be

used by CSS to target elements.

•

•

•

■

■

appendix a

208   |  Appendix A: XHTML Reference

title—Adds a title to an element.

style—Used to apply inline styles. Should be avoided if possible.

[I18n attributes]—Internationlization—dir, lang, and xml:lang.

dir—The direction of content. Values can be ltr (left to right, for

languages such as English) or rtl (right to left, for languages such as

Arabic).

lang and xml:lang—The language of the content of an element, such as

en for English, or de for German.

[Event attributes]—onclick, ondblclick, onmousedown, onmouseup, onmouseover,

onmousemove, onmouseout, onkeypress, onkeydown, onkeyup. You can read more

about event attributes, and why you should try to avoid using them, in

Chapter 7, “Scripts & Objects.”

[Common attributes]—The core, I18n, and event attributes combined.

Content describes the valid content of an element—the content that can appear

between the opening and closing tags. For the purposes of this reference, the fol-

lowing terms apply to content:

Empty—The tag closes itself (such as <tag />).

None—Doesn’t contain anything (such as <tag></tag>).

Text—Processed character data (which is text and processed characters such

as <tag>this & that</tag>).

Inline—a, abbr, acronym, bdo, br, button, cite, code, del, dfn, em, img, input, ins,

kbd, label, map, object, q, samp, select, span, strong, textarea, and var elements.

Block—address, blockquote, div, dl, form, h1, h2, h3, h4, h5, h6, noscript, ol, p, pre,

script, table, and ul elements.

For example, if the content is described as “Text, inline, or none,” <tag>this</tag>

(text) is valid, <tag>this</tag> (an inline element) is valid, <tag></tag>

(none) is valid but <tag><p>this</p></tag> is not (because p is a block-level ele-

ment). If the content is described as “One or more block,” <tag>this</tag> is

not valid (because it’s just text inside), <tag>this</tag> is not valid

■

■

•

■

■

•

•

•

•

•

•

•

Tags  |  209

(because there’s just an inline element inside), <tag></tag> is not valid (because

there’s nothing inside) but <tag><p>this</p></tag> is (because there’s a block-level

element inside).

<a>
Anchor. Primarily used as a hypertext link.

See Chapter 3, “Links.”

Attributes
[Common attributes]

 href—The target of the link. The value of the href attribute can be any URI,

such as a web page, a directory, a file, or a page anchor.

 charset—The character set of the target of the link.

 type—The MIME type of the target of the link.

 hreflang—The language (in the form of a language code, such as “en” or “fr”)

of the target of the link. It should only be used when href is also used.

 rel—The relationship of the target of the link to the current page.

 rev—The relationship of the current page to the target of the link.

 accesskey—Associates a keyboard shortcut to the element.

 tabindex—Where the element appears in the tab order of the page.

Content
Text, inline (not including a), or none.

Example
<p>Link to a URI</p>

<p>Link to a page anchor</p>

•

•

•

•

•

•

•

•

•

210   |  Appendix A: XHTML Reference

Related Tags
base

<abbr></abbr>
Abbreviation—a shortened form of a word or phrase. HTML is an abbreviation, as is

CSS, for example. Not recognized by IE.

See Chapter 2, “Text.”

Attributes
[Common attributes]—Note the title attribute is generally used to specify the

whole word or phrase that the abbreviation is referring to.

Content
Text, inline, or none.

Example
<p>Jiminy Locust was trying to learn <abbr title=”HyperText Markup

Language”>HTML</abbr> but unfortunately he was a <abbr title=”Dumb

insect who couldn’t comprehend what a computer was, let alone use

one”>DIWCCWACWLAUO</abbr>.</p>

Related Tags
acronym

<acronym></acronym>
Acronym—a pronounceable abbreviation that is made up of the initial letters or

parts of words of that phrase. NATO is an example of an acronym, as is UNICEF.

See Chapter 2, “Text.”

•

Tags  |  211

Attributes
[Common attributes]—Note the title attribute is generally used to specify the

whole word or phrase that the acronym is referring to.

Content
Text, inline, or none.

Example
<p>Jiminy was launched into space in a <acronym title=”National

Aeronautics and Space Administration”>NASA</acronym> rocket.</p>

Related Tags
abbr

<address></address>
Very specifically intended to mark up the contact details, such as a street address,

for a page, or major part of a page (such as a contact form).

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<address>HMTL Dog House
HTML Street
Dogsville
HT16

3ML</address>

Related Tags
[none]

•

•

212   |  Appendix A: XHTML Reference

<area />
A region of a client-side image map. Used in conjunction with map to map links to

certain regions of an image.

Attributes
[Common attributes]

 alt (required)—The alternative text of the area, which should be a short

description.

 shape—The shape of the area; the value can be rect (rectangular), circle (circu-

lar), poly (polygonal), or default.

 coords—The pixel coordinates of the area. For rectangular shapes, this is a

comma-separated list of four values for left, top, right, and bottom (e.g.,

coords=”0,0,50,50”). For circular shapes this is a comma-separated list of three

values for left, top, and radius (e.g., coords=”50,50,25”). For polygonal shapes,

this is a comma-separated list containing an even number of values, specify-

ing the left and top of each point of the shape (e.g., coords=”0,0,25,25,50,25,5

0,100”).

 href—The target of the area link.

 nohref—Used to specify that the area is not a link. It must be used in the for-

mat nohref=”nohref”.

 accesskey—Associates a keyboard shortcut to the area.

 tabindex—Where the area appears in the tab order of the page.

Content
Empty.

Example
<map id =”atlas”>

 <area shape =”rect” coords =”0,0,115,90” href =”northamerica.

html” alt=”North America” />

•

•

•

•

•

•

•

•

Tags  |  213

 <area shape =”poly” coords =”113,39,187,21,180,72,141,77,117,86”

href =”europe.hmtl” alt=”Europe” />

 <area shape =”poly” coords =”119,80,162,82,175,102,183,102,175,1

48,122,146” href =”africa.html” alt=”Africa” />

</map>

Related Tags
map

<base />
The base location from which files should be accessed. Relative links within a docu-

ment (such as <a href=”someplace.html”… or <img src=”someimage.jpg”…) will

become relative to the path specified by the base element.

The base element must go inside the head element.

See Chapter 1, “Getting Started.”

Attributes
href (required)—The location of the base URI.

Content
Empty.

Example
<base href=”/images/tootlepops/“ />

If the above example is applied then every file reference in the page will be

in relation to “/images/tootlepops/”. So, for example, <img src=”banana.jpg”

alt=”banana” /> will actually point to “/images/tootlepops/banana.jpg” and Cucumber will actually point to “/images/

tootlepops/morefruit/cucumber.html”.

Related Tags
a, img

•

214   |  Appendix A: XHTML Reference

<bdo></bdo>
Bi-directional text. Used to define different directional content to the rest of the

content on a page, such as languages that are read in a different direction from the

default language (Hebrew in an English document, for example).

See Chapter 2, “Text.”

Attributes
[Core attributes]

 dir (required)—The direction of the text; can be set to ltr (left-to-right) or rtl

(right-to-left).

 xml:lang—The language of the text.

Content
Text, inline, or none.

Example
<bdo dir=”rtl”>smug desserts</bdo>

Related Tags
[none]

<blockquote></blockquote>
A large, usually standalone, block-level quotation.

See Chapter 2, “Text.”

Attributes
[Common attributes]

 cite—The location (in the form of a URI) where the quote has come from.

•

•

•

•

•

Tags  |  215

Content
One or more blocks. The content of a blockquote element must be made up of

other block-level elements, which in practice would usually be p elements.

Example
<blockquote title=”From HTML Dog, Chapter 2”><p>blockquote is

designed to be for large, stand-alone quotations, whereas q (quote)

is used for smaller inline quotes.</p></blockquote>

Related Tags
q, cite

<body></body>
The main body of an HTML document where all of the content is placed. This is

the stuff that people will see, hear, or otherwise experience when they visit the web

page. Required, funnily enough, and should be used just once. It must start imme-

diately after the closing head tag and end directly before the closing html tag.

See Chapter 1, “Getting Started.”

Attributes
[Common attributes]

Content
Block or none.

Example
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

 <title>Uncle Jack’s Sea Cow Farm</title>

</head>

<body>

•

216   |  Appendix A: XHTML Reference

<!-- A whole load of content -->

</body>

</html>

Related Tags
head, html

Line break.

See Chapter 2, “Text.”

Attributes
[Core attributes]

Content
Empty.

Example
<p>Greetings one and all.
Welcome to the world of line

breaks.</p>

Related Tags
p

<button></button>
Defines a form button that has content within it.

See Chapter 9, “Forms.”

Attributes
[Common attributes]

 accesskey—Associates a particular keyboard shortcut to the element.

•

•

•

Tags  |  217

 tabindex—Where the element appears in the tab order of the page.

 disabled—Disables the button. It must be used in the format

disabled=”disabled”.

 name—Associates a name to the button so that it can be processed by a

form-handling script.

 type—The button type. Values can be button (doesn’t do anything), submit

(default; submits the form when the button is selected), or reset (resets the

form).

 value—An initial value that will appear as the button’s label.

Content
Text, block (not including form or fieldset), inline (not including input, select,

textarea, label, or button), or none.

Example
<button>Push my button baby</button>

Related Tags
input, form

<caption></caption>
A caption for a table. This should be placed directly after the opening table tag and

will be displayed above the table by default.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

Content
Text, inline, or none.

•

•

•

•

•

•

218   |  Appendix A: XHTML Reference

Example
<table>

 <caption>Animal groups</caption>

 <!-- etc. -->

</table>

Related Tags
table

<cite></cite>
In-line citation or reference to another source.

See Chapter 2, “Text.”

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<p>So I asked <cite>Bob</cite> about quotations and he said <q>I

know as much about quotations as I do about pigeon fancying</q>.

Luckily, I found ‘HTML Dog’ and it said…</p>

Related Tags
q, blockquote

<code></code>
Code, such as computer code.

See Chapter 2, “Text.”

•

Tags  |  219

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<code>norahjonesisbland=true;</code>

Related Tags
samp, var, pre

<col />
Table column. Allows attributes to be applied to a table column. Must be used

within a colgroup element.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

 span—The number of columns the element applies to.

Note: There are other valid attributes (align, valign, char, charoff) but they are

presentational and so CSS should be used instead.

Content
Empty.

Example
<table>

 <colgroup>

 <col />

 <col class=”alternative” />

•

•

•

220   |  Appendix A: XHTML Reference

 <col />

 </colgroup>

 <tr>

 <th>Cats</th>

 <th>Dogs</th>

 <th>Lemurs</th>

 </tr>

 <!-- etc. -->

</table>

Here, the styles of the class “alternative” will be applied to the second column,

i.e., the second cell in every row.

Related Tags
colgroup, tr

<colgroup></colgroup>
Table column group. Allows attributes to be applied to a set of table columns.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

 span—The number of columns the element applies to.

Note: There are other valid attributes (align, valign, char, charoff) but they are

presentational and so CSS should be used instead.

Content
col elements or none

Example
<table>

 <colgroup span=”2” class=”alternative”></colgroup>

•

•

Tags  |  221

 <tr>

 <th>Cats</th>

 <th>Dogs</th>

 <th>Lemurs</th>

 </tr>

 <!-- etc. -->

</table>

Related Tags
col, tr

<dd></dd>
A definition description that is paired with one or more definition terms within a

definition list.

See Chapter 6, “Lists.”

Attributes
[Common attributes]

Content
Text, block, inline, or none.

Example
<dl>

 <dt>Dog</dt>

 <dd>A carnivorous mammal of the family Canidae.</dd>

</dl>

Related Tags
dl, dt

•

222   |  Appendix A: XHTML Reference

An editorial deletion. Used in conjunction with ins when you want to track changes

in a document.

See Chapter 2, “Text.”

Attributes
[Common attributes]

 cite—The location (as a URI) of an explanation of why the insertion was

made.

 datetime—When the deletion was made (in the format of YYYYMMDD).

Content
Text, block, inline, or none.

Example
<p>Patrick was walking down the road when he saw a <del datetime=”2

0040329”>fluffy kitten<ins cite=”http://www.htmldog.com”>giant

rabid snarling mutant saber-toothed goat</ins>.</p>

Related Tags
ins

<dfn></dfn>
Definition term.

See Chapter 2, “Text.”

Attributes
[Common attributes]—Note the title attribute is often used to describe the

definition.

•

•

•

•

Tags  |  223

Content
Text, inline, or none.

Example
<p><dfn title=”Microsoft web browser”>Internet Explorer</dfn> is the

most popular browser used underwater.</p>

Related Tags
abbr

<div></div>
Division. A block-level element that groups together a multiple HTML elements.

Commonly used to apply CSS to a chunk of a page.

See Chapter 1, “Getting Started,” and Chapter 5, “Layout.”

Attributes
[Common attributes]

Content
Text, block, inline, or none.

Example
<div id=”content”>

 <h1>How to make a falafel</h1>

 <p>Buy a falafel seed and plant it in your garden.</p>

</div>

Related Tags
span

•

224   |  Appendix A: XHTML Reference

<dl></dl>
Definition list, which contains terms and descriptions.

See Chapter 6, “Lists.”

Attributes
[Common attributes]

Content
One or more dt or dd.

Example
<dl>

 <dt>Cat</dt>

 <dd>A little furry thing that purrs.</dd>

 <dt>Dog</dt>

 <dd>A big shaggy thing that barks.</dd>

</dl>

Related Tags
dt, dd, ul

<dt></dt>
A definition term that is paired with one or more definition descriptions within a

definition list.

See Chapter 6, “Lists.”

Attributes
[Common attributes]

Content
Text, inline, or none.

•

•

Tags  |  225

Example
<dl>

 <dt>Dog</dt>

 <dd>A carnivorous mammal of the family Canidae.</dd>

</dl>

Related Tags
dl, dd

Emphasis.

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<p>You lookin’ at me?</p>

Related Tags
strong

<fieldset></fieldset>
A group of related form items.

See Chapter 9, “Forms.”

Attributes
[Common attributes]

Content
Text, legend, block, inline, or none.

•

•

226   |  Appendix A: XHTML Reference

Example
<form action=”whatever.php”>

 <fieldset>

 <!-- lots of form fields -->

 </fieldset>

 <fieldset>

 <!-- lots of form fields -->

 </fieldset>

</form>

Related Tags
form, legend

<form></form>
A form, allowing the sending of user-input data.

See Chapter 9, “Forms.”

Attributes
[Common attributes]

 action (required)—Tells the browser where to send the form data when it is

submitted. This can be any URI, the destination of which will be a script

where the form data is initially processed.

 method—Tells the browser how to send the form data. You have two options

here: get or post.

 enctype—The MIME type used to encode the form data. The default value is

application/x-www-form-urlencoded, but this should be multipart/form-data when the

form contains a file input element.

 accept—Which file-types (selected from a file input element) should be

accepted. This is a comma-separated list of MIME types.

 accept-charset—Which character sets should be accepted. This is a comma-

separated list.

•

•

•

•

•

•

Tags  |  227

Content
One or more block (not including form) or fieldset.

Example
<form action=”processor.php” method=”post”>

 <!-- a whole load of form fields -->

</form>

Related Tags
input, fieldset, label

<h1></h1>, <h2></h2>, <h3></h3>, <h4></h4>, <h5></h5>, <h6></h6>
Heading 1 (highest level heading) to Heading 6 (lowest level subheading). Headings

should be used in order and h1 used just once.

See Chapter 2, “Text.”

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<h1>Headings</h1>

<p>This is all about headings.</p>

<h2>The First Subheading</h2>

<p>The first subheading was called Bob. Bob was a figurine cleaner

in a past life.</p>

<h2>The Second Subheading</h2>

<p>The second subheading was called Labella. She used to be a

chimney sweep.</p>

<h3>Labella’s Chimney Sweeping</h3>

<p>Labella can still be persuaded to sweep chimneys for five beans a

chimney.</p>

•

228   |  Appendix A: XHTML Reference

<h2>The Third Subheading</h2>

<p>The third subheading was called John. He wasn’t particularly

interesting.</p>

Related Tags
p

<head></head>
The header of an HTML document where information about the document (rather

than page content) is placed.

You must use this element and it should be used just once. It must start immedi-

ately after the opening html tag and end directly before the opening body tag.

See Chapter 1, “Getting Started.”

Attributes
[I18n attributes]

 profile—The location of information about the document. The value can be a

URI or a number of URIs separated by spaces.

Content
Must include single title. Can include base, link, meta, script, and style.

Example
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

 <title>Uncle Jack’s Sea Cow Farm</title>

</head>

<body>

<!-- A whole load of content -->

</body>

</html>

•

•

Tags  |  229

Related Tags
body, html, title

<html></html>
The root element that specifies that the content of the document is HTML. It

contains all of the remainder of the page information after the document type

declaration.

See Chapter 1, “Getting Started.”

Attributes
 [I18n attributes]

xmlns (required)—The XML namespace. The value must be http://www.

w3.org/1999/xhtml.

Content
One head and one body.

Example
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

 <title>Uncle Jack’s Sea Cow Farm</title>

</head>

<body>

<!-- A whole load of content -->

</body>

</html>

Related Tags
head, body

•

•

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

230   |  Appendix A: XHTML Reference

An image.

See Chapter 4, “Images.”

Attributes
[Common attributes]

 src (required)—The location of the image file.

 alt (required)—The alternative text of the image. This provides placeholder

text while the image is downloading. It also serves an important accessibility

task: It provides an “alternative” to the image for those who cannot see the

image itself.

 longdesc—The location (in the form of a URI) of a description of the image.

An accessibility consideration, used for detailed images containing important

content (such as a map or a chart).

 height—The height of the image (in pixels).

 width—The width of the image (in pixels).

Note: border can also be used, although using CSS is preferable.

Content
Empty.

Example

Related Tags
[none]

•

•

•

•

•

•

Tags  |  231

<input />
A form field that can be represented as a text box, password text box, checkbox,

radio button, submit button, reset button, hidden field, image, file selection box, or

general button.

See Chapter 9, “Forms.”

Attributes
[Common attributes]

 name—Provides an identifier for the element’s data.

 type—The type of input. Values can be text (default), password, checkbox, radio,

submit, reset, hidden, image, file, or button.

 value—The initial value. It is required when type is set to checkbox or radio. It

should not be used when type is set to file.

 checked—For type=”checkbox” or type=”radio”, sets the initial state to selected.

Used in the format checked=”checked”.

 maxlength—Sets a limit on the number of characters allowed in a text box.

 src—For type=”image”, specifies the location of the image file.

 alt—For type=”image”, specifies the alternative text of the image.

 accept—For type=”file”, specifies which file types should be accepted. This is

a comma-separated list of MIME types.

 disabled—Disables an element. Used in the format disabled=”disabled”.

 readonly—Specifies that the value of the element cannot be changed. Used in

the format readonly=”readonly”.

 accesskey—Associates a keyboard shortcut to the element.

 tabindex—Specifies where the element appears in the tab order of the page.

Content
Empty.

•

•

•

•

•

•

•

•

•

•

•

•

•

232   |  Appendix A: XHTML Reference

Example
<form action=”somescript.php” />

 <p>Do you like pie?</p>

 <div>yes <input type=”radio” name=”pie” value=”yes”

checked=”checked” /></div>

 <div>no <input type=”radio” name=”pie” value=”no” /></div>

 <div>Your name: <input type=”text” name=”yourname” /></div>

 <div><input type=”image” name=”submitimage” src=”someimage.gif”

/></div>

</form>

Related Tags
form, textarea, select, label

<ins></ins>
An editorial insertion. Used in conjunction with del when you want to track changes

in a document.

See Chapter 2, “Text.”

Attributes
[Common attributes]

cite—The location (as a URI) of an explanation of why the insertion was

made.

datetime—When the insertion was made (in the format of YYYYMMDD).

Content
Text, block, inline, or none.

Example
<p>Patrick was walking down the road when he saw a <del datetime=”2

0040329”>fluffy kitten<ins cite=”http://www.htmldog.com”>giant

rabid snarling mutant saber-toothed goat</ins>.</p>

•

•

•

Tags  |  233

Related Tags
del

<kbd></kbd>
Keyboard. Used to specifically suggest text that should be entered by the user.

See Chapter 2, “Text.”

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<p>Now type <kbd>banana</kbd>.</p>

Related Tags
code

<label></label>
Label for a form element (input, textarea, or select).

See Chapter 9, “Forms.”

Attributes
[Common attributes]

 for—Associates the label to a form element when the value of for matches the

value of an element’s id attribute.

 accesskey—Associates a keyboard shortcut to the element.

•

•

•

•

234   |  Appendix A: XHTML Reference

Content
Text, inline (not including label), or none.

Example
<label for=”email”>Email address</label><input type=”text”

name=”email” id=”email” />

Related Tags
input, textarea, select

<legend></legend>
Defines a caption for a fieldset. The element must appear directly after the open-

ing fieldset tag.

Attributes
[Common attributes]

 accesskey—Associates a keyboard shortcut to the element.

Content
One or more text or inline.

Example
<fieldset>

 <legend>Book Details</legend>

 <!-- lots of form fields -->

</fieldset>

Related Tags
fieldset

List item. An item in any ul or ol element.

See Chapter 6, “Lists.”

•

•

Tags  |  235

Attributes
[Common attributes]

Content
Text, block, inline, or none.

Example

 This

 That

 The other

Related Tags
ul, ol

<link />
Defines a link to an external resource such as a CSS file, a shortcut icon, or cus-

tomized navigation.

See Chapter 1, “Getting Started.”

Attributes
[Common attributes]

 href—The target of the link.

 charset—The character set of the target of the link.

 hreflang—The language of the target of the link.

 type—The MIME type of the target of the link.

 rel—The relationship of the target of the link to the current page. Some uni-

versally understood values are shortcut icon and stylesheet.

 rev—The relationship of the current page to the target of the link.

•

•

•

•

•

•

•

•

236   |  Appendix A: XHTML Reference

 media—Which media the link is associated to. A value such as screen, print,

projection, braille, speech, or all can be used or a combination in a comma-sepa-

rated list.

Content
Empty.

Example
<link rel=”stylesheet” type=”text/css” title=”Some title” href=”/

somefile.css” />

<link rel=”alternate stylesheet” type=”text/css” title=”Some

alternative title” href=”/someotherfile.css” />

<link rel=”shortcut icon” href=”/favicon.ico” /><link rel=”next”

title=”Next page” href=”nextpage.html” />

Related Tags
head

<map></map>
A client-side image map. Used in conjunction with area to map links to certain

regions of an image.

Attributes
[I18n attributes]

[Events attributes]

 id (required)—Uniquely identifies the element.

 class—Used to reference the element with CSS.

 title—A title for the element.

Content
One or more blocks or areas.

•

•

•

•

•

•

Tags  |  237

Example
<map id=”atlas”>

 <area shape =”rect” coords =”0,0,115,90” href =”northamerica.

html” alt=”North America” />

 <area shape =”poly” coords =”113,39,187,21,180,72,141,77,117,86”

href=”europe.hmtl” alt=”Europe” />

 <area shape =”poly” coords =”119,80,162,82,175,102,183,102,175,1

48,122,146” href =”africa.html” alt=”Africa” />

</map>

Related Tags
area

<meta />
Meta information. Used to provide information about the HTML page.

See Chapter 1, “Getting Started.”

Attributes
[I18n attributes]

 content (required)—The meta information itself.

 name—The name given to the meta information. Frequently used values of the

name attribute are “keywords” and “description,” but they can be absolutely

anything.

 http-equiv—Used to define an “equivalent” HTTP header for the document

when name is not used.

 scheme—Specifies how the value of content should be interpreted.

Content
Empty.

•

•

•

•

•

238   |  Appendix A: XHTML Reference

Example
<meta name=”keywords” content=”fruit, banana, orange, apple,

kumquat, cucumber” />

<meta name=”description” content=”News, reviews and opinion on all

things fruity.” />

<meta name=”author” content=”The Fruit Farmers Association of

Bujumburra” />

<meta name=”date” scheme=”Day-Month-Year” content=”12-01-99” />

Related Tags
head

<noscript></noscript>
Content to be used when scripts cannot be executed, through browser inadequacies

or user choice.

See Chapter 7, “Scripts & Objects.”

Attributes
[Common attributes]

Content
Block.

Example
<noscript>

<p>What? No JavaScript? Well what am I supposed to do now? Can’t you

get a new browser or something?</p>

</noscript>

Related Tags
script

•

Tags  |  239

<object></object>
An embedded multimedia object such as a movie or a sound file.

See Chapter 7, “Scripts & Objects.”

Attributes
[Common attributes]

 data—The location of the data for the object in the form of a URL.

 type—The content type of the data specified by the data attribute. This basi-

cally lets the browser know what kind of file to expect.

 declare—Specifies that the object is a declaration only. Must be used in the

format declare=”declare”.

 classid—The location of the object in the form of a URL or Windows Registry

location.

 codebase—The base location from which relative URLs specified in the classid,

data, and archive attributes should be taken.

 codetype—The content type of the object.

 archive—Resources relevant to the object. The value should be a URL or a

number of URLs separated by spaces.

 standby—Text that will be displayed while the object is loading.

 height—The height of the object (in pixels), just like in an img element.

 width—The width of the object (in pixels), again, just like in an img element.

 name—A name by which the object can be referenced.

 tabindex—Where the element appears in the tab order of the page.

Content
Text, block, inline, param, or none.

•

•

•

•

•

•

•

•

•

•

•

•

•

240   |  Appendix A: XHTML Reference

Example
<object type=”blueberry/kumquat” data=”whatever.kmq”>

 <param name=”tangy” value=”true” />

 <param name=”segments” value=”9” />

 <p>You don’t have the Kumquat plugin, so you won’t get any

juice.</p>

</object>

Related Tags
param

Ordered list, suggesting that each item is in some way lower or higher than the item

before or after it.

See Chapter 6, “Lists.”

Attributes
[Common attributes]

Content
One or more li.

Example

 The first thing

 The second thing

 The third thing

Related Tags
li, ul, dl

•

Tags  |  241

<optgroup></optgroup>
Option group. Defines a group of option elements in a select form field.

See Chapter 9, “Forms.”

Attributes
[Common attributes]

label (required)—Assigns a label to the option group.

disabled—Disables an element. It must be used in the format

disabled=”disabled”.

Content
One or more option.

Example
<select name=”book”>

 <optgroup label=”Camus”>

 <option>The Outsider</option>

 <option>The Rebel</option>

 <option>The Plague</option>

 </optgroup>

 <optgroup label=”Orwell”>

 <option>Animal Farm</option>

 <option>Nineteen Eighty-Four</option>

 <option>Down and Out in Paris and London</option>

 </optgroup>

</select>

Related Tags
option, select

<option></option>
Defines an option of a select form field.

See Chapter 9, “Forms.”

•

•

•

242   |  Appendix A: XHTML Reference

Attributes
[Common attributes]

 value—A value for the option. If value is not used, the value of the option ele-

ment is set to its contents by default.

 selected—Used to specify that the option is initially selected. It must be used

in the format selected=”selected”.

Content
Text

Example
<select name=”dogs”>

 <option>Domestic Dog</option>

 <option>Arctic Fox</option>

 <option>Maned Wolf</option>

 <option>Grey Wolf</option>

 <option>Red Fox</option>

 <option>Fennec</option>

</select>

Related Tags
select, optgroup

<p></p>
Paragraph.

See Chapter 2, “Text.”

Attributes
[Common attributes]

Content
Text, inline, or none.

•

•

•

•

Tags  |  243

Example
<p>Greetings, one and all. Welcome to the world of paragraphs.</p>

<p>This will be the second paragraph then…</p>

Related Tags
h1 to h6, em, strong

<param />
Parameter of an object. It is often the case that you will want, or need, to pass cer-

tain parameters to the object.

See Chapter 7, “Scripts & Objects.”

Attributes
 name (required)—Used so that the element can be referenced and processed

by the object.

 value—The value of the parameter. The values of the name and value

attributes are completely dependent on the object. All that param elements do

is tell the object “I want to set this [name] to this [value].”

 id—Uniquely identifies the element.

 type—The content type.

 valuetype—The content type of the value attribute. Values can be data, ref, or

object.

Content
Empty.

Example
<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”

codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/

swflash.cab#version=6,0,0,0” width=”200” height=”300” id=”penguin”>

 <param name=”movie” value=”flash/penguin.swf” />

•

•

•

•

•

244   |  Appendix A: XHTML Reference

 <param name=”quality” value=”high” />

 <img src=”images/penguin.jpg” width=”200” height=”300”

alt=”Penguin” />

</object>

Related Tags
object

<pre></pre>
Preformatted text. Text where the white space (which is normally discarded by other

elements) is as much a part of the content as the rest of the text.

See Chapter 2, “Text.”

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<pre>

<div id=”intro”& gt;

 <h1>Some heading</h1>

 <p>Some paragraph paragraph thing thing thingy.</p>

</div>

</pre>

Related Tags
code

<q></q>
In-line quote. Used for small quotations.

See Chapter 2, “Text.”

•

Tags  |  245

Attributes
[Common attributes]

 cite—The location (in the form of a URI) where the quote has come from.

Content
Text, inline, or none.

Example
<p>So I asked Bob about quotations and he said <q>I know as much about

quotations as I do about pigeon fancying</q>. Luckily, I found ‘HTML

Dog: The Best-Practice Guide to XHTML and CSS’ and it said...</p>

Related Tags
blockquote, cite

<samp></samp>
Sample. Defines sample output, from a computer program, for example.

See Chapter 2, “Text.”

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<p>The result will either be <samp>Kid</samp> or <samp>Koala</

samp>.</p>

Related Tags
code

•

•

•

246   |  Appendix A: XHTML Reference

<script></script>
Defines a block of script. The tool of choice for inserting or loading a chunk of

JavaScript into an HTML page.

See Chapter 7, “Scripts & Objects.”

Attributes
 type (required)—The MIME type of the scripting language is used, such as

text/javascript.

 src—An external source (URI) of a script file.

 charset—The character set of the element.

 defer—Used to specify that the script does not generate any document con-

tent so that the browser doesn’t have to worry about it while the page loads.

Must be used in the format defer=”defer”.

Content
Text (script) or none.

Example
The script itself can be placed between the opening and closing script tags,

like so:

<script type=”text/javascript”>

function satsuma() {

 alert(“SAAAATSUUUUMAAAA!!!”);

}

</script>

Alternatively, a script can be kept in a separate file and applied like so:

<script type=”text/javascript” src=”kumquat.js”></script>

Related Tags
noscript

•

•

•

•

Tags  |  247

<select></select>
A drop-down list form element; option elements within the select element define

each list item.

See Chapter 9, “Forms.”

Attributes
[Common attributes]

 name—Used so the value of the element can be processed.

 size—How many items of the list are displayed at any time. The default is 1.

 multiple—Used to specify that more than one item from the list can be

selected. This must be used in the format multiple=”multiple”.

 disabled—Disables an element. It must be used in the format

disabled=”disabled”.

 tabindex— Where the element appears in the tab order of the page.

Content
One or more optgroup or option.

Example
<select name=”book”>

 <option>The Trial</option>

 <option>The Outsider</option>

 <option>Things Fall Apart</option>

 <option>Animal Farm</option>

</select>

Related Tags
option, form, input

•

•

•

•

•

•

248   |  Appendix A: XHTML Reference

An inline element that groups together a chunk of inline HTML, such as single words

or short phrases. Commonly used to apply CSS to a small group of inline HTML

elements.

See Chapter 1, “Getting Started.”

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<h1>How to make a falafel</h1>

Related Tags
div

Strong emphasis.

See Chapter 2, “Text.”

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<p>You lookin’ at me? You lookin’ at me?

</p>

•

•

Tags  |  249

Related Tags
em

<style></style>
Used to define CSS at a page level. This sits inside the head element and its con-

tents are simply a big ol’ list of CSS rules.

See Chapter 1, “Getting Started.”

Attributes
[I18n attributes]

 type (required)—The content type, which is generally text/css.

 media—Which media the styles are associated to. The value can be aural,

braille, embossed, handheld, print, projection, screen, tty (teletype), or tv (television).

You could also have media=”all”, but that’s the same as not having any media

attribute at all.

 title—Assigns a title to the styles within the element. This can then be ref-

erenced by browsers or scripting languages to either disable the styles or

switch between alternate style sheets.

Content
Text (CSS).

Example
<head>

 <title>Bujumburra</title>

 <style type=”text/css”>

 body {

 font-family: arial, Helvetica, sans-serif;

 color: black

 }

 /* etc. etc. */

 </style>

</head>

•

•

•

•

250   |  Appendix A: XHTML Reference

Related Tags
head, link

<table></table>
A table, used for tabular data.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

 summary—A summary of the data represented in the table.

Note: There are other valid attributes (border, cellpadding, cellspacing, frame,

rules, width) but they are presentational and so CSS should be used instead.

Content
Must have one or more tr or [single thead, single tfoot, or one or more tbody].

Can also have col or colgroup elements and a single caption.

Example
<table summary=”The results of an inane quiz”>

 <tr>

 <th>Question</th>

 <th>Answer</th>

 <th>Correct?</th>

 </tr>

 <tr>

 <td>What is the capital of Burundi?</td>

 <td>Bujumburra</td>

 <td>Yes</td>

 </tr>

 <tr>

 <td>Which came first, the chicken or the egg?</td>

 <td>The chicken</td>

 <td>No</td>

•

•

Tags  |  251

 </tr>

 <!-- etc. -->

</table>

Related Tags
tr, td

<tbody></tbody>
Table body row group. Can be used more than once, and must be used if thead or

tfoot are used. It must be used within a table element and must follow both thead

and tfoot elements when used.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

Note: There are other valid attributes (align, valign, char, charoff) but they are

presentational and so CSS should be used instead.

Content
One or more tr.

Example
<table>

<thead>

 <tr>

 <th>Header 1</th>

 <th>Header 2</th>

 <th>Header 3</th>

 </tr>

</thead>

<tfoot>

 <tr>

 <td>Footer 1</td>

 <td>Footer 2</td>

•

252   |  Appendix A: XHTML Reference

 <td>Footer 3</td>

 </tr>

</tfoot>

<tbody>

 <tr>

 <td>Cell data 1</td>

 <td>Cell data 2</td>

 <td>Cell data 3</td>

 </tr>

 <tr>

 <td>Cell data 4</td>

 <td>Cell data 5</td>

 <td>Cell data 6</td>

 </tr>

 <tr>

 <td>Cell data 7</td>

 <td>Cell data 8</td>

 <td>Cell data 9</td>

 </tr>

</tbody>

</table>

Related Tags
tfoot, thead, table

<td></td>
Table data cell. Must appear within a tr element.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

 colspan—Specifies across how many columns the cell should spread. The

default value is 1.

 rowspan—Specifies across how many rows the cell should spread. The default

value is 1.

•

•

•

Tags  |  253

 abbr—An abbreviated version of the content of the cell.

 headers—Explicitly specifies which header cells are associated to the cell. The

value is a single or comma-separated list of table cell id values.

 scope—Explicitly specifies that the cell contains header information for the

rest of the row (value row), column (value col), row group (value rowgroup), or

column group (value colgroup) that contains it.

 axis—A category that forms a conceptual axis in n-dimensional space for hier-

archical structuring. The value can be a single name or a comma-separated

list of names.

Note: There are other valid attributes (align, valign, char, charoff) but they are

presentational and so CSS should be used instead.

Content
Text, block, inline, or none.

Example
<table>

 <tr>

 <td>Cats</td>

 <td>Dogs</td>

 <td>Lemurs</td>

 </tr>

 <tr>

 <td>Tiger</td>

 <td>Grey wolf</td>

 <td>Indri</td>

 </tr>

 <tr>

 <td>Cheetah</td>

 <td>Cape hunting dog</td>

 <td>Sifaka</td>

 </tr>

</table>

•

•

•

•

254   |  Appendix A: XHTML Reference

This example shows a table with three rows with three cells in each row, making it a

3x3 table.

Related Tags
tr, th, table

<textarea></textarea>
Creates a multiline text area form field. The initial value of the text area can be

placed in between the opening and closing tags.

See Chapter 9, “Forms.”

Attributes
[Common attributes]

 rows (required)—The number of viewable rows.

 cols (required)—The number of viewable columns.

 name—Used so that the value of the element can be processed.

 disabled—Disables an element. It must be used in the format

disabled=”disabled”.

 readonly—Used to specify that the value of the element cannot be changed. It

must be used in the format readonly=”readonly”.

 accesskey—Associates a keyboard shortcut to the element.

 tabindex—Where the element appears in the tab order of the page.

Content
Text.

Example
<form action=”somescript.php” />

 <p>Your address</p>

•

•

•

•

•

•

•

•

Tags  |  255

 <div><textarea name=”address” cols=”30” rows=”4”></textarea></

div>

 <div><input type=”submit” /></div>

</form>

Related Tags
input, form

<tfoot></tfoot>
Table footer row group. Along with thead and tbody, tfoot can be used to group

a series of rows. tfoot can be used just once within a table element and must

appear before a tbody element.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

Note: There are other valid attributes (align, valign, char, charoff) but they are

presentational and so CSS should be used instead.

Content
One or more tr.

Example
<table>

<thead>

 <tr>

 <th>Header 1</th>

 <th>Header 2</th>

 <th>Header 3</th>

 </tr>

</thead>

<tfoot>

 <tr>

•

256   |  Appendix A: XHTML Reference

 <td>Footer 1</td>

 <td>Footer 2</td>

 <td>Footer 3</td>

 </tr>

</tfoot>

<tbody>

 <tr>

 <td>Cell data 1</td>

 <td>Cell data 2</td>

 <td>Cell data 3</td>

 </tr>

 <tr>

 <td>Cell data 4</td>

 <td>Cell data 5</td>

 <td>Cell data 6</td>

 </tr>

 <tr>

 <td>Cell data 7</td>

 <td>Cell data 8</td>

 <td>Cell data 9</td>

 </tr>

</tbody>

</table>

Related Tags
thead, tbody, table

<th></th>
Table header cell. Must appear within a tr element.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

 colspan—Specifies across how many columns the cell should spread. The

default value is 1.

•

•

Tags  |  257

 rowspan—Specifies across how many rows the cell should spread. The default

value is 1.

 abbr—An abbreviated version of the content of the cell.

 headers—Explicitly specifies which header cells are associated to the cell. The

value is a single or comma-separated list of table cell id values.

 scope—Explicitly specifies that the cell contains header information for the

rest of the row (value row), column (value col), row group (value rowgroup), or

column group (value colgroup) that contains it.

 axis—A category that forms a conceptual axis in n-dimensional space for hier-

archical structuring. The value can be a single name or a comma-separated

list of names.

Note: There are other valid attributes (align, valign, char, charoff) but they are

presentational and so CSS should be used instead.

Content
Text, block, inline, or none.

Example
<tr>

 <th>Cats</th>

 <th>Dogs</th>

 <th>Lemurs</th>

</tr>

Table header cells can also be used as headers for rows, for example if you had

your table structured like this:

<table>

 <tr>

 <th>Cats</th>

 <td>Tiger</td>

 <td>Cheetah</td>

 </tr>

 <tr>

•

•

•

•

•

258   |  Appendix A: XHTML Reference

 <th>Dogs</th>

 <td>Grey wolf</td>

 <td>Cape hunting dog</td>

 </tr>

 <tr>

 <th>Lemurs</th>

 <td>Indri</td>

 <td>Sifaka</td>

 </tr>

</table>

Related Tags
td, tr, table

<thead></thead>
Table header row group. Along with tfoot and tbody, thead can be used to group

a series of rows. thead can be used just once within a table element and should

appear before a tfoot and tbody element.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

Note: There are other valid attributes (align, valign, char, charoff) but they are

presentational and so CSS should be used instead.

Content
One or more tr.

Example
<table>

<thead>

<tr>

 <td>Header 1</td>

•

Tags  |  259

 <td>Header 2</td>

 <td>Header 3</td>

</tr>

</thead>

<tfoot>

<tr>

 <td>Footer 1</td>

 <td>Footer 2</td>

 <td>Footer 3</td>

</tr>

</tfoot>

<tbody>

<tr>

 <td>Cell 1</td>

 <td>Cell 2</td>

 <td>Cell 3</td>

</tr>

<!-- etc. -->

</tbody>

</table>

Related Tags
tfoot, tbody, table

<title></title>
This simply gives a title to the HTML document. It will appear as the title of the

browser window, and is also used for bookmarks. It is required and must be placed

within the head element.

See Chapter 1, “Getting Started.”

Attributes
[I18n attributes]•

260   |  Appendix A: XHTML Reference

Content
Text.

Example
<head>

 <title>Uncle Jack’s Sea Cow Farm</title>

</head>

Related Tags
head

<tr></tr>
Table row. Must appear within a table element.

See Chapter 8, “Tables.”

Attributes
[Common attributes]

Note: There are other valid attributes (align, valign, char, charoff) but they are

presentational and so CSS should be used instead.

Content
One or more td or th.

Example
<table>

 <tr>

 <th>Question</th>

 <th>Answer</th>

 <th>Correct?</th>

 </tr>

 <tr>

 <td>What is the capital of Burundi?</td>

•

Tags  |  261

 <td>Bujumburra</td>

 <td>Yes</td>

 </tr>

 <tr>

 <td>Which came first, the chicken or the egg?</td>

 <td>The chicken</td>

 <td>No</td>

 </tr>

 <!-- etc. -->

</table>

Related Tags
td, table

Unordered list. As its name implies, an unordered list is for non-ordinal items, in

which any item could feel just as at home at one point in the list as any other.

See Chapter 6, “Lists.”

Attributes
[Common attributes]

Content
One or more li.

Example

 This

 That

 The Other

Related Tags
li, ol, dl

•

262   |  Appendix A: XHTML Reference

<var></var>
A variable in computer code.

See Chapter 2, “Text.”

Attributes
[Common attributes]

Content
Text, inline, or none.

Example
<code><var>norahjonesisbland</var>=true;</code>

Related Tags
code

Bad Tags
In ancient texts you may read of the twisted mythology of tags that that have no

place in the real world. Bad Tags usually come down to tags that are presentational,

which is the realm of CSS, or simply not valid, leading to unreliable code that can’t

be guaranteed to work on different or future browsers. See this book’s Introduction

for more on why such tags should be avoided.

You can also read a more detailed explanation of why the following are Bad Tags at

www.htmldog.com/guides/htmlintermediate/badtags.

 applet—Embed a Java applet. Not valid. Use object tag.

 b—Bold. A valid tag, but purely presentational. Use CSS font-weight for bold

or HTML em or strong tags for emphasis.

 big—Big text. A valid tag, but purely presentational. Use CSS font-size.

•

•

•

•

www.htmldog.com/guides/htmlintermediate/badtags

 blink—Blinking text. Not valid. Use JavaScript or CSS text-decoration: blink if

you really insist on inflicting this.

 center—Center. Not valid. Use CSS margin: 0 auto or text-align: center.

 embed—Embed a multimedia object. Use object tag.

 font—Font name and size. Not valid. Use CSS font, font-family, and

font-size.

 frame, frameset, iframe—Frames. Not valid. Framesets can be established

with a different XHTML Doctype (see Chapter 1, “Getting Started”). Future

standards (Xframes) dictate that frames should be completely separate from

HTML, reducing usability and accessibility problems. CSS position: fixed can

replicate some features of frames. JavaScript could also be used.

 hr—Horizontal rule. A valid tag, but presentational. Perhaps the most con-

troversial of these Bad Tags, many argue that this has a genuine role as a

divider of content. As it belongs to the XHTML Presentation Module and as

its name implies, however, to truly separate structure and presentation, hr

should be avoided. CSS borders can replicate horizontal rules, as can back-

ground images.

 i—Italic. A valid tag, but purely presentational. Use CSS font-style for italics

or HTML em or strong tags for emphasis.

 layer—Layer. Not valid. Use HTML div and CSS position.

 marquee—Scrolling text. Not valid. Use JavaScript, Flash, or other plugin.

 small—Small text. A valid tag, but purely presentational. Use CSS font-size.

 sub—Subscript. A valid tag, but purely presentational. Use CSS vertical-align or

position.

 sup—Superscript. A valid tag, but purely presentational. Use CSS vertical-align

or position.

 tt—Teletype. A valid tag, but purely presentational. Use CSS font courier or

similar for appearance or HTML code tag for computer code.

 u—Underline. Not valid. Use CSS text-decoration.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Bad Tags  |  263

264   |  Appendix A: XHTML Reference

Rotten Attributes
Rotten attributes are the evil little disciples of the Bad Tags. Like the Bad Tags,

their crime is usually one of presentation or downright invalidity.

 align—Aligns content. Not valid. As with the center tag, CSS text-align should

be used.

 background—Background image. Not valid. Use CSS background-image.

 link, alink, and vlink—Non-visited, active, and visited link colors. Not valid. Use

CSS :link, :active, and :visited pseudo-classes.

 marginwidth, marginheight, topmargin, and leftmargin—Page margins (used in the

opening body tag). Not valid. Use CSS margin or padding.

 name—Used to assign an identifying name to an element. Invalid for all ele-

ments apart from button, input, select, textarea, meta, param, and object. Use the

id attribute.

 target—Specifies where a link should open (such as in a new window). Not

valid. JavaScript is a possible alternative, but the use of this should be ques-

tioned due to the adverse effect it has on usability and accessibility.

 text and bgcolor—Text color and background color. Not valid. Use CSS color

and background-color.

•

•

•

•

•

•

•

CSS Reference

T hi s C SS R e f e r e n ce covers the pseudo-classes, pseudo-elements,

at-rules, and properties of CSS 2 revision 1 (with the exception of aural

CSS).

Specific chapters are highlighted for cross-referencing when there is relevant

extended information (which there will be for all but the less-practical aspects,

such as those that are not widely supported). Browser support issues are also

noted where relevant. “Not supported by IE” (Internet Explorer) comes up a

fair bit, and relates to Internet Explorer versions 6 and earlier (IE 7 has fixed

many of its predecessors’ shortcomings).

More on the syntax and application of CSS can be found in Chapter 1,

“Getting Started.”

Pseudo-classes

:active
Applies declarations to a box that is being activated by the user (such as while

the mouse button is pressed). IE 6 and below will only apply :active to a

elements.

See Chapter 3, “Links.”

Example
a:active { color: red; }

appendix B

266   |  Appendix B: Css Reference

See Also
:link, :visited, :hover, :focus

:first
Applies declarations to the first page in paged media.

Example
@page:first { margin-top: 10cm; }

See Also
:left, :right

:first-child
Applies declarations to the box of the first instance of an element inside another

element. Not supported by IE 6 or below.

Example
p em:first-child { font-weight: bold; }

See Also
[none]

:focus
Applies declarations to a box that receives focus. Not supported by IE.

See Chapter 3, “Links,” and Chapter 9, “Forms.”

Example
input:focus { background-color: yellow; }

See Also
:link, :visted, :hover, :active

:hover
Applies declarations when a box that is hovered over by the cursor. IE 6 and below

will only apply :hover to a elements.

See Chapter 3, “Links.”

Example
a:hover { text-decoration: none; }

See Also
:link, :visited, :active, :focus

:lang
Applies declarations to the boxes of elements of a specific language, which is speci-

fied in brackets following the selector. Not supported by any major browser.

Example
html:lang(fr) { color: green; }

See Also
[none]

:left
Applies declarations to left pages in paged media.

Example
@page:left { margin-left: 5cm; }

Pseudo-Classes  |  267

268   |  Appendix B: Css Reference

See Also
:right, :first

:link
Applies declarations to the box of a link, the destination of which has not been

visited.

See Chapter 3, “Links.”

Example
a:link { color: #009; }

See Also
:visited, :hover, :active, :focus

:right
Applies declarations to right pages in print media.

Example
@page:right { margin-right: 5cm; }

See Also
:left, :first

:visited
Applies declarations to the box of a link, the destination of which has been visited.

See Chapter 3, “Links.”

Example
a:visited { color: #999 }

See Also
:link, :hover, :active, :focus

Pseudo-elements

:after
Inserts generated content after the displayed content of a box. Not supported by IE.

Example
p:after { content: url(pieface.jpg); }

See Also
:before

:before
Inserts generated content before the displayed content of a box. Not supported by IE.

Example
h2:before { content: “Chapter: “; }

See Also
:after

:first-letter
Applies declarations to the first character of text in a box. Not supported by IE/Win 5.0.

Example
p:first-letter { font-size: 2em; }

Pseudo-elements  |  269

270   |  Appendix B: Css Reference

See Also
:first-line

:first-line
Applies the declarations to the first visible line of text in a box. Not supported by

IE/Win 5.0.

Example
p:first-line { font-weight: bold; }

See Also
:first-letter

At-rules

@import
Imports rules from another style sheet into the current one.

The value can be a string or a string wrapped by url() and can be followed by a

comma-separated list of the media types that the import should apply to. If no

media types are stated, the rule will apply to all.

See Chapter 1, “Getting Started.”

Example
@import url(“poodle.css”) print;

@media
Applies rules to a particular medium.

See Chapter 10, “Multiple Media.”

Example
@media print {

 body { font: 10pt “times new roman”, times, serif; }

 #navigation { display: none; }

}

@page
Applies declarations to paged media.

Example
@page { margin: 3cm; }

Properties
The possible values for a property will be take one of these formats (see Chapter 1,

“Getting Started”):

valuename—A straightforward keyword, such as block in display: block.

valuename (default)—When a value is marked as “default” it means that this

is the value that all XHTML elements will initially have.

[length]—Such as 10em, 300px, 12pt, 3cm, etc.

[percentage]—Such as 40%.

[color]—A hex value (such as #f00, or #ff0000), an RGB value (such as

rgb(255, 0, 0)) or a color name (aqua, black, blue, fuchsia, gray, green, lime, maroon,

navy, olive, orange, purple, red, silver, teal, white, and yellow. You can also use the

value transparent.

[URI]—File location such as url(thingy.jpg) or url(http://www.whatever.com/whatever/

whatever.gif).

[number]—Such as 3 or 235 (no unit).

•

•

•

•

•

•

•

Properties  |  271

http://www.whatever.com/whatever/whatever.gif
http://www.whatever.com/whatever/whatever.gif

272   |  Appendix B: Css Reference

The ever-prolific but seldom used inherit value explicitly sets the same computed

value as that of its parent element. Many properties inherit values by default (the

ones you would normally want to be inherited), meaning the use of inherit is rarely

necessary.

background
A “shorthand” property that combines background-color, background-image,

background-repeat, background-attachment, and background-position in one

handy property.

See Chapter 4, “Images.”

Possible values
[A combination of some or all of the values for background-color, background-

image, background-repeat, background-attachment, and background-position.]

Example
body {

 background: #0084c7 url(images/sifakabg.gif) top left fixed no-repeat;

}

Related Properties
background-color, background-image

background-attachment
Determines whether the background image should scroll with the content of a box.

See Chapter 4, “Images.”

Possible values
 inherit•

Properties  |  273

 scroll (default)—The background image will scroll when the rest of the content

is scrolled.

 fixed—The background image will remain stationary when the rest of the con-

tent is scrolled.

Example
body {

 background-image: url(images/sifakabg.gif);

 background-attachment: fixed;

}

This example will plaster the “sifakabg.gif” image across the page and rather

than the pattern scrolling, as it would do on a long page with lots of content in

it, it will stick right where it is, with the rest of the page scrolling over the top.

Related Properties
background, background-image

background-color
Background color.

See Chapter 2, “Text,” and Chapter 4, “Images.”

Possible values
 inherit

 transparent (default)

[color]

Example
body {

 font—family: “Times New Roman”, Times, serif;

 color: white;

•

•

•

•

•

274   |  Appendix B: Css Reference

 background—color: black;

}

blockquote {

 background—color: #efe;

}

Related Properties
color, background

background-image
The background image of a box. The background-image property can be used to

specify an image to be used as a background for just about any element box—from

the page body to a paragraph to a link. Use it on its own, and the image will magi-

cally tile itself across the background of the element starting from the top left cor-

ner and repeating horizontally and vertically, filling the box.

See Chapter 4, “Images.”

Possible values
 inherit

 none (default)

[URI]

Example
body {

 background-image: url(images/sifakabg.gif);

}

Related Properties
color, background

•

•

•

Properties  |  275

background-position
The position of a background image within its box. Background images will start

at the top left corner of a box by default, but you can change this with the back-

ground-position property, which is particularly useful when background-repeat is

set to no-repeat, for example.

Possible values
 inherit

 top

 right

 bottom

 left

[percentage]

[length]

[combination]—Such as background-position: top left;

Example
body {

 background-image: url(images/sifakabg.gif);

 background-repeat: no-repeat;

 background-position: center;

}

Related Properties
background-image, background

background-repeat
How a background image will repeat itself. You don’t have to have the background

image tiled (repeated over and over, horizontally and vertically as space allows)—you

•

•

•

•

•

•

•

•

276   |  Appendix B: Css Reference

can decide whether you want it to repeat just horizontally, just vertically, or not at all

by using the background-repeat property. Those areas of the element that are not

taken up by the background image will be transparent, unless coupled with a back-

ground color, which would paint the rest of the area that color.

See Chapter 4, “Images.”

Possible values
 inherit.

 repeat (default)—Tiled, repeating the image both horizontally and vertically.

 repeat-x—Repeating the image horizontally only.

 repeat-y—Repeating the image vertically only.

 no-repeat—Not repeating the image at all, showing just one instance.

Example
body {

 background-image: url(images/sifakabg.gif);

 background-repeat: no-repeat;

}

Related Properties
background, background-image

border, border-top, border-right, border-bottom, border-left
The width, style, and color of a box’s border.

See Chapter 5, “Layout.”

Possible values
[Combination of border-width, border-style, border-color]

•

•

•

•

•

Properties  |  277

Example
.this {

 border-top: 1px solid black;

}

.that {

 border: 1em dotted #fc0;

}

Related Properties
border-width, border-style, border-color, padding, margin

border-collapse
Specifies which border model should be used in a table.

See Chapter 8, “Tables.”

Possible values
 inherit

 separate (default)—“Separated borders” model: Cells have their own borders.

 collapse—“Collapsing borders” model: Cells share adjacent borders. This

pushes all of the cells together, leaving only the wider of the two adjacent

borders visible.

Example
table {

 border-collapse: collapse;

}

td {

 border: 1px solid #ccc;

}

Related Properties
border-spacing

•

•

•

278   |  Appendix B: Css Reference

border-color, border-top-color, border-right-color, border-
bottom-color, border-left-color
The color of a box’s border.

See Chapter 5, “Layout.”

Possible values
 inherit

 transparent

[color]

The value for border-color can comprise one value (uniform border color), two

values ([top/bottom][left/right]), three values ([top][left/right][bottom]), or four

values ([top][right][bottom][left]).

Example
.flamingo {

 border-right-color: red;

}

#peach {

 border-color: #cc3421;

}

#tree {

 border-color: #fc0 blue #cf0;

}

Related Properties
border

border-spacing
Specifies the spacing between the borders of adjacent table cells in the “separated

borders” model. Not supported by IE.

•

•

•

Properties  |  279

Possible values
 inherit

[length]

border-spacing can have one value such as 5px to specify spacing on all sides

or two values such as 5px 10px to specify the horizontal (first value) and vertical

(second value) spacing.

Example
table {

 border-collapse: separate;

 border-spacing: 0.25em 0.5em;

}

td {

 border: 1px solid #ccc;

}

Related properties
border-collapse

border-style, border-top-style, border-right-style, border-
bottom-style, border-left-style
The style of a box’s border.

See Chapter 5, “Layout.”

Possible values
 inherit

 none—No border.

•

•

•

•

280   |  Appendix B: Css Reference

 dotted—A series of dots (IE 6 and below will display this as dashes if the bor-

der width is one pixel).

 dashed—A series of dashes.

 solid—A solid line.

 double—Two solid lines.

 groove—Patterned border that is supposed to represent a carved groove

(opposite of ridge). Renders differently in different browsers.

 ridge—Patterned border that is supposed to represent an embossed ridge

(opposite of groove). Renders differently in different browsers.

 inset—Patterned border that is supposed to represent an inset depression

(opposite of outset). Renders differently in different browsers.

 outset—Patterned border that is supposed to represent an outset extrusion

(opposite of inset). Renders differently in different browsers.

 hidden—Used with tables. Same as none, except where there are conflicting

borders. Not supported by IE.

The value for border-style can comprise one value (uniform border style), two

values ([top/bottom][left/right]), three values ([top][left/right][bottom]), or

four values ([top][right][bottom][left]).

Example
.curtains {

 border-right-style: solid;

}

.blinds {

 border-style: dotted dashed;

}

Related properties
border

•

•

•

•

•

•

•

•

•

Properties  |  281

border-width, border-top-width, border-right-width, border-
bottom-width, border-left-width
The width of a box’s border.

See Chapter 5, “Layout.”

Possible values
 inherit

 thin

 medium

 thick

[length]

Value for border-width can comprise one value (uniform border width), two values

([top/bottom][left/right]), three values ([top][left/right][bottom]), or four values ([top][

right][bottom][left]).

Example
#bender {

 border-left-width: 2px;

}

#fry {

 border-width: 1px 4px 1px 100px;

}

Related properties
border

bottom
For absolutely positioned boxes, specifies how far from the bottom of the containing

positioned box (or, if there isn’t one, the page) the box should be.

•

•

•

•

•

282   |  Appendix B: Css Reference

For relatively positioned boxes, specifies how far from the bottom a box should be

shifted.

See Chapter 5, “Layout.”

Possible values
 inherit

 auto (default)

[percentage]

[length]

Example
#justaveit {

 position: absolute;

 bottom: 2em;

}

Related properties
top, right, left, position

caption-side
Specifies on which side of the table a table-caption box (such as the default style of

the HTML caption element) will be placed. Not supported by IE.

See Chapter 8, “Tables.”

Possible values
 inherit

 top (default)

 right

 bottom

 left

•

•

•

•

•

•

•

•

•

Properties  |  283

Example
caption {

 caption-side: right;

}

Related properties
[none]

clear
Specifies how a box is placed after a floated box.

See Chapter 5, “Layout.”

Possible values
 inherit

 none (default)—Floated boxes are not cleared; content will flow around them.

 left—Clears all left-floated boxes and places the box underneath.

 right—Clears all right-floated boxes and places the box underneath.

 both—Clears all floated boxes and places the box underneath.

Example
#canoe { float: left; }

#fish { clear: left; }

Related properties
float

clip
Specifies the area of an absolutely positioned box that should be visible.

See Chapter 5, “Layout.”

•

•

•

•

•

284   |  Appendix B: Css Reference

Possible values
 inherit.

 auto (default)—No clipping.

 rect([top] [right] [bottom] [left])—Clips to the shape of a rectangle defined by

the four coordinates (offset from the top left corner).

Example
#spod {

 position: absolute;

 clip: rect(10px 50px 30px 10px);

}

Related properties
overflow

color
Foreground color. This applies most commonly to text, but also to borders.

See Chapter 1, “Getting Started.”

Possible values
 inherit

[color]

Example
body {

 font—family: “Times New Roman”, Times, serif;

 color: white;

 background—color: black;

}

code {

 color: #900;

}

•

•

•

•

•

Properties  |  285

Related properties
background-color

content
Generated content that can be displayed before or after a box. Used in conjunction

with the :before and :after pseudo-elements. Not widely supported.

Possible values
 inherit

 normal—No generated content.

 open-quote—The content defined by the quotes property (‘ “ ‘ by default).

 close-quote—The content also defined by the quotes property (‘ “ ‘ by default).

 no-open-quote—No opening quote is applied, but the nesting order is

maintained.

 no-close-quote—No closing quote is applied, but the nesting order is

maintained.

 attr([attribute name])—The value of attribute [attribute name] in the HTML

tag that is the subject of the selector.

 counter([name], [style])—The current value of counter [name]. The optional

[style] is a value equivalent to that of list-style-type.

 counters([name], [string], [style])—The current values of all counters called

[name], separated by [string]. The optional [style] is a value equivalent to that

of list-style-type.

[URI]

[string]

•

•

•

•

•

•

•

•

•

•

•

286   |  Appendix B: Css Reference

Example
p:before { content: url(images/quote.gif); }

p:after { content: close-quote; }

li:before { content: “>>”; }

Related properties
:before and :after pseudo-elements, quotes

counter-increment
Increments a named counter. Not widely supported.

Possible values
 inherit

 none (default)

[name] [number]—The name of the counter optionally followed by the number

that the counter should be increased by (default is 1). This can be a chain of

names and numbers such as chapter section 2, which will increase chapter

by 1 and section by 2.

Example
h3:before {

 content: counter(section);

 counter-increment: section;

}

Related properties
counter-reset, content

counter-reset
Resets a named counter. Not widely supported.

•

•

•

Properties  |  287

Possible values
 inherit

 none (default)

[name] [number]—The name of the counter optionally followed by the number

that the counter resets to (default is 0). This can be a chain of names and

numbers such as chapter 2 section 1 subsection, which will reset chapter to

2, section to 1, and subsection to 0.

Example
h2:before {

 content: counter(chapter);

 counter-increment: chapter;

 counter-reset: section;

}

Related properties
counter-increment, content

cursor
The appearance of the cursor when it passes over a box.

Possible values
 inherit

 auto (default)—Changes depending on the situation (a pointer when the cur-

sor is over a link; an I-beam when it is over text, etc.).

 crosshair—A thin plus-sign-like cross.

 default—The platform’s default cursor; usually an arrow.

 help—Used to indicate that there is help for the element that is being hov-

ered over; usually a question mark.

•

•

•

•

•

•

•

•

288   |  Appendix B: Css Reference

 move—Used to indicate something that should be moved; usually a four-way

arrow.

 n-resize—Used to indicate something that should be scaled upwards; usually

an up/down arrow.

 ne-resize—Used to indicate something that should be scaled upwards and to

the right; usually a diagonal arrow.

 e-resize—Used to indicate something that should be moved to the right; usu-

ally a left/right arrow.

 se-resize—Used to indicate something that should be moved downwards and

to the right; usually a diagonal arrow.

 s-resize—Used to indicate something that should be moved downwards; usu-

ally an up/down arrow.

 sw-resize—Used to indicate something that should be moved downwards and

to the left; usually a diagonal arrow.

 w-resize—Used to indicate something that should be moved to the left; usu-

ally a left/right arrow.

 nw-resize—Used to indicate something that should be moved upwards and to

the left; usually a diagonal arrow.

 text—Used to indicate text; usually an I-beam.

 pointer—Used to indicate a link; usually a pointing hand.

 progress—Used to indicate that the program is processing something, but that

it can still be interacted with; usually an arrow coupled with a timer.

 wait—Used to indicate that the user should wait while a program is busy;

usually a timer.

[URI]—A custom-made image.

Example
acronym { cursor: help; }

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Properties  |  289

Related properties
:hover pseudo class

direction
The writing direction and the direction of embeddings and overrides (used in con-

junction with unicode-bidi).

Possible values
 inherit

 ltr (default)—Left to right

 rtl—Right to left

Example
p { direction: rtl; }

Related properties
unicode-bidi

display
The display type of a box.

See Chapter 5, “Layout.”

Possible values
 inherit

 none—No display at all

 inline—An inline box

 block—A block box

•

•

•

•

•

•

•

290   |  Appendix B: Css Reference

 inline-block—Effectively a block box inside an inline box. IE will only apply

inline-block to elements that are traditionally inline such as span or a but not

p or div. Loopy.

 run-in—Either an inline or block box, depending on the context. If a block

box follows the run-in box, the run-in box becomes the first inline box of that

block box; otherwise, it becomes a block box itself. Crazy. Not widely sup-

ported.

 list-item—The equivalent of the default styling of the HTML li element.

 table—A block-level table; the equivalent of the default styling of the HTML

table element. Not supported by IE.

 inline-table—An inline-level table. Not supported by IE.

 table-row-group—The equivalent of the default styling of the HTML tbody ele-

ment. Not supported by IE.

 table-header-group—The equivalent of the default styling of the HTML thead ele-

ment. Not supported by IE.

 table-footer-group—The equivalent of the default styling of the HTML tfoot ele-

ment. Not supported by IE.

 table-row—The equivalent of the default styling of the HTML tr element. Not

supported by IE.

 table-column-group—The equivalent of the default styling of the HTML colgroup

element. Not supported by IE.

 table-column—The equivalent of the default styling of the HTML col element.

Not supported by IE.

 table-cell—The equivalent of the default styling of the HTML td or th elements.

Not supported by IE.

 table-caption—The equivalent of the default styling of the HTML caption ele-

ment. Not supported by IE.

•

•

•

•

•

•

•

•

•

•

•

•

•

Properties  |  291

Example
.darwin { display: block; }

.lamarck { display: none; }

.linnaeus { display: table; }

Related properties
visibility

empty-cells
Whether empty table cells should be shown or not.

See Chapter 8, “Tables.”

Possible values
 inherit

 show (default)

 hide

Example
table { empty-cells: hide }

Related properties
[none]

float
Specifies whether a fixed-width box should float, shifting it to the right or left with

surrounding content flowing around it.

See Chapter 5, “Layout.”

Possible values
 inherit

•

•

•

•

292   |  Appendix B: Css Reference

 left—Floats the box to the left with surrounding content flowing to the right.

 right—Floats the box to the right with surrounding content flowing to the left.

 none (default).

Example
#boondoggle {

 width: 20em;

 float: left;

}

Related properties
clear, position

font
Font characteristics combining italics, small-caps, boldness, size, line-height, and

font name in one property.

See Chapter 2, “Text.”

Possible values
[Combination of font-style, font-variant, font-weight, font-size, line-

height, and font-family] Taking the format of font: font-style font-variant font-

weight font-size/line-height font-family

Only the font-size and font-family parts are required.

Example
p {

 font: italic small-caps bold 0.8em/1.5 arial, Helvetica, sans-serif;

}

booba {

 font: bold 3.5em arial, helvetica, sans-serif;

}

•

•

•

Properties  |  293

Related properties
font-style, font-variant, font-weight, font-size, line-height, font-family

font-family
Which font you want your text to appear in.

See Chapter 2, “Text.”

Possible values
 inherit

[Font name]—Note that if a font name consists of more than one word it

should be stated in quotation marks.

[multiple font names separated by commas]—You can specify more than one

font by separating them with commas. By doing this, if a browser cannot find

the first choice font, it will move on to the next in the list.

Example
body { font—family: “Times New Roman”; }

h2 { font—family: arial, helvetica, sans—serif; }

Related properties
font, font-size

font-size
The size of the font.

See Chapter 2, “Text.”

Possible values
 inherit

 larger

•

•

•

•

•

294   |  Appendix B: Css Reference

 smaller

 xx-small

 x-small

 small

 medium (default)

 large

 x-large

 xx-large

[percentage]

[length]

Example
body { font—size: 80%; }

h1 { font—size: 2em; }

Related properties
font, font-family

font-style
Italic and oblique characteristics of a font.

See Chapter 2, “Text.”

Possible values
 inherit

 normal

 italic

 oblique

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Properties  |  295

Example
h1, h2 { font-style: italic }

Related properties
font, font-weight

font-variant
Used to convert lowercase letters to small uppercase letters.

See Chapter 2, “Text.”

Possible values
 inherit

 normal (default)

 small-caps

Example
p { font-variant: small-caps; }

Related properties
font, text-transform

font-weight
The boldness of a font. Values 100 to 900 are supposed to be different scales of

boldness, but in practice browsers tend not to reliably differentiate between nine

separate levels, which is why the value of font-weight tends to be simply either

normal or bold.

See Chapter 2, “Text.”

Possible values
 inherit

•

•

•

•

296   |  Appendix B: Css Reference

 100, 200, 300, 400, 500, 600, 700, 800, or 900

 normal—Equivalent of 400

bolder

 bold—Equivalent of 700

 lighter

Example
.chubbybaby { font-weight: bold }

Related properties
font, font-style

height
Specifies the height of the content area of a block box (not including padding, bor-

der, or margin).

See Chapter 5, “Layout.”

Possible values
 inherit

 auto (default)

[percentage]

[length]

Example
#monstermunch {

 padding: 1em;

 height: 3em;

}

•

•

•

•

•

•

•

•

•

Properties  |  297

Related properties
width, min-height, max-height

left
For absolutely positioned boxes, specifies how far from the left of the containing

positioned box (or the page, if there isn’t one) the box should be.

For relatively positioned boxes, specifies how far from the left a box should be

shifted.

See Chapter 5, “Layout.”

Possible values
 inherit

 auto (default)

[percentage]

[length]

Example
#sold {

 position: absolute;

 left: 150px;

}

Related properties
right, top, bottom, position

letter-spacing
The spacing between letters.

See Chapter 2, “Text.”

•

•

•

•

298   |  Appendix B: Css Reference

Possible values
 inherit

 normal (default)

[Length]

Example
p { letter-spacing: 0.3em }

Related properties
word-spacing

line-height
The height of a line of text.

See Chapter 2, “Text.”

Possible values
 inherit

 normal—Usually about 1.2 times the height of the font.

[number]—A multiple of the font size (so, in effect, the same as a value

specified in ems).

[percentage]—A percentage of the font size.

[length]

Example
p { line-height: 1.5 }

Related properties
font, font-size

•

•

•

•

•

•

•

•

Properties  |  299

list-style
A shorthand property used to specify the styles of a list item marker.

See Chapter 6, “Lists.”

Possible values
[combination of list-style-type, list-style-position, and list-style-image]

Example
ul { list-style: none url(images/arrow.gif) inside; }

ul ul { list-style: disc outside; }

#nav ul { list-style: none; }

Related properties
list-style-type, list-style-position, list-style-image

list-style-image
Specifies an image to be used as the list marker for a list item.

See Chapter 6, “Lists.”

Possible values
 inherit

 none (default)

[URI]

Example
ul { list-style-image: url(images/arrow.gif); }

Related properties
list-style, list-style-type

•

•

•

300   |  Appendix B: Css Reference

list-style-position
Specifies whether the list marker for a list item should appear inside or outside the

list-item box. By default, lists will place the marker of each list item outside the

content box, which means that when it comes to styling list items with backgrounds

or borders, for example, the bullet will aloofly hang about outside. You can pull the

marker inside the content box to deal with such circumstances by setting the list-

style-position property to inside.

See Chapter 6, “Lists.”

Possible values
 inherit

 outside (default)

 inside

Example
ul { list-style-position: inside; }

Related properties
list-style

list-style-type
The type of the list marker bullet or numbering system within a list. These can be

applied to any (non-definition) lists regardless of whether they are ordered or unordered.

See Chapter 6, “Lists.”

Possible values
 inherit

 none—No list marker. This can be handy when you want to present lists that

don’t appear in main content and don’t need to stand out from the crowd

with markers—as in navigation bars, for example.

•

•

•

•

•

Properties  |  301

 disc—Solid circle

 circle—Hollow circle

 square—Solid square

 decimal (default for ol elements)—1, 2, 3, 4, etc.

 decimal-leading-zero—01, 02, 03 ... 10, 11, etc. Not supported by IE.

 lower-roman—i, ii, iii, iv, etc.

 upper-roman—I, II, III, IV, etc.

 lower-greek—Greek characters. Not supported by IE.

 lower-latin—a, b, c, d, etc. Not supported by IE.

 upper-latin—A, B, C, D, etc. Not supported by IE.

 armenian—Armenian characters. Not widely supported.

 georgian—Georgian characters. Not widely supported.

Example
ol { list-style-type: lower-roman; }

ul { list-style-type: square; }

ul ul { list-style-type: circle; }

This example applies lower-roman numerals to ordered lists, square bullets to

top-level unordered lists, and circular bullets to all unordered lists nested within

unordered lists.

Related properties
list-style, list-style-image

margin, margin-top, margin-right, margin-bottom, margin-left
The margin of a box.

See Chapter 5, “Layout.”

•

•

•

•

•

•

•

•

•

•

•

•

302   |  Appendix B: Css Reference

Possible values
 inherit

[percentage]

[length]

The value for margin can comprise one value (uniform margin), two values

([top/bottom][left/right]), three values ([top][left/right][bottom]), or four values

([top][right][bottom][left]).

Example
#badger {

 margin-top: 3em;

}

#wolverine {

 margin: 1em 100px;

}

#pineapple {

 margin: 1em 3em 10px 0.5em;

}

Related properties
padding, border

max-height
The maximum height of a box. Not supported by IE 6 or below.

Possible values
 inherit

 none

[percentage]

[length]

•

•

•

•

•

•

•

•

Properties  |  303

Example
#bing { max-height: 300px; }

Related properties
min-height, height, max-width, min-width

max-width
The maximum width of a box. Not supported by IE 6 or below.

Possible values
 inherit

 none

[percentage]

[length]

Example
#bong { max-width: 780px; }

Related properties
min-width, width, max-height, min-height

min-height
The minimum height of a box. Not supported by IE 6 or below (where height acts

the same).

Possible values
 inherit

 none

[percentage]

[length]

•

•

•

•

•

•

•

•

304   |  Appendix B: Css Reference

Example
#beng { min-height: 5em; }

Related properties
max-height, height, min-width, max-width

min-width
The minimum width of a box. Not supported by IE 6 or below.

Possible values
inherit

none

[percentage]

[length]

Example
#bung { min-width: 300px; }

Related properties
max-width, width, min-height, max-height

orphans
Used in paged media. The minimum number of lines in an element that must be

left at the bottom of a page. Not widely supported.

Possible values
 inherit

[number]—(default is 2)

•

•

•

•

•

•

Properties  |  305

Example
p { orphans: 3; }

Related properties
widows

outline
Specifies an outline for a box. Rendered around the outside of the border and on

top of the box, so it does not affect its size or position. The value can combine out-

line-color, outline-style, and outline-width. Not supported by IE/Win or Mozilla

at the time of writing.

Possible values
[Combines outline-color, outline-style, and outline-width]

Example
.ferrari { outline: 3px solid red; }

Related properties
outline-color, outline-style, outline-width, border

outline-color
The color of an outline. Not supported by IE/Win or Mozilla at the time of writing.

Possible values
invert

[color]

Example
.redbull { outline-color: blue; }

•

•

306   |  Appendix B: Css Reference

Related properties
outline, border-color

outline-style
The style of an outline. Not supported by IE/Win or Mozilla at the time of writing.

Possible values
 none—No border.

 dotted—A series of dots.

 dashed—A series of dashes.

 solid—A solid line.

 double—Two solid lines.

 groove—Patterned border that is supposed to represent a carved groove

(opposite of ridge).

 ridge—Patterned border that is supposed to represent an embossed ridge

(opposite of groove).

 inset—Patterned border that is supposed to represent an inset depression

(opposite of outset).

 outset—Patterned border that is supposed to represent an outset extrusion

(opposite of inset).

 hidden—Used with tables. Same as none, except where there are conflicting

borders.

Example
.honda { outline-style: solid; }

Related properties
outline, border-style

•

•

•

•

•

•

•

•

•

•

Properties  |  307

outline-width
The width of an outline. Not supported by IE/Win or Mozilla at the time of writing.

Possible values
 thin

 medium

 thick

[length]

Example
.williams { outline-width: 0.5em; }

Related properties
outline, border-width

overflow
Specifies what should happen to the overflow—the portions of content that do not

fit inside the box.

See Chapter 5, “Layout.”

Possible values
 inherit

 visible (default)—Overflow spills over the box.

 hidden—Any content that doesn’t fit in the box will be “clipped”—cut off at

the edge of the box.

 scroll—Scrollbars appear, allowing the user to scroll the box to see the overflow.

 auto—Scrollbars will only be displayed if they are necessary (whereas overflow:

scroll will show them even if the content of the box fits without any overflow).

•

•

•

•

•

•

•

•

•

308   |  Appendix B: Css Reference

Example
#content {

 width: 500px;

 height: 4em;

 overflow: hidden;

}

Related properties
clip, height, width

padding, padding-top, padding-right, padding-bottom,
padding-left
The padding of a box.

See Chapter 5, “Layout.”

Possible values
 inherit

[percentage]

[length]

Value for padding can comprise one value (uniform padding), two values

([top/bottom][left/right]), three values ([top][left/right][bottom]), or four values

([top][right][bottom][left]).

Example
#flump { padding: 10em 2em; }

Related properties
border, margin

•

•

•

Properties  |  309

page-break-after
Used in paged media. How a page break should be applied after a block box, forc-

ing a new page box. Not widely supported.

Possible values
 inherit

 auto (default)—Does not force or forbid a page break.

 always—Always forces a page break.

 avoid—Forbids a page break.

 left—Forces either one or two page breaks so that the next page is a

left page.

 right—Forces either one or two page breaks so that the next page is a

right page.

Example
#europe { page-break-after: left; }

Related properties
page-break-before, page-break-inside

page-break-before
Used in paged media. How a page break should be applied before a block box, forc-

ing a new page box. Not widely supported.

Possible values
 inherit

 auto (default)—Does not force or forbid a page break.

 always—Always forces a page break.

•

•

•

•

•

•

•

•

•

310   |  Appendix B: Css Reference

 avoid—Forbids a page break.

 left—Forces either one or two page breaks so that the next page is a left page.

 right—Forces either one or two page breaks so that the next page is a

right page.

Example
#antarctica { page-break-before: always; }

Related properties
page-break-after, page-break-inside

page-break-inside
Used in paged media. How a page break should be applied inside a block box, forc-

ing a new page box. Not widely supported.

Possible values
 inherit

 auto (default)—Does not force or forbid a page break.

 avoid—Forbids a page break.

Example
#africa { page-break-inside: avoid; }

Related properties
page-break-after, page-break-before

position
How a box should be positioned.

See Chapter 5, “Layout.”

•

•

•

•

•

•

Properties  |  311

Possible values
 inherit

 static (default)—Follows the normal flow.

 relative—Relative position that is offset from the initial normal position in the

flow.

 absolute—Taken out of the flow and offset according to the containing block.

 fixed—The same as absolute only the fixed box will remain fixed in the view-

port and not scroll (or will appear on every printed page). Not supported by

IE 6 or below.

Example
#oogabooga {

 position: relative;

 left: 1em;

 top: 1em;

}

Related properties
float, top, bottom, left, right

quotes
What form the quotes of the open-quote and close-quote values of the content

property should take. Not supported by IE.

Possible values
 inherit

 none

[string] [string]—The first string is that used for the open-quote value and sec-

ond string for the close-quote value.

•

•

•

•

•

•

•

•

312   |  Appendix B: Css Reference

[string] pairs can be repeated, whereby each consecutive pair will represent

the quotes for the next level of embedding. For example, ‘“‘ ‘“‘ “‘“ “‘“ will

specify that quotes within a quoted element will be surrounded by ‘ charac-

ters. Not widely supported.

Example
q { quotes: ‘“‘ ‘“‘ }

Related properties
content

right
For absolutely positioned boxes, specifies how far from the right of the containing

positioned box (or the page, if there isn’t one) the box should be.

For relatively positioned boxes, specifies how far from the right a box should be

shifted.

See Chapter 5, “Layout.”

Possible values
 inherit

 auto (default)

[percentage]

[length]

Example
#tolet {

 position: relative;

 right: 2em;

}

•

•

•

•

•

Properties  |  313

Related properties
left, top, bottom, position

table-layout
Used to specify the algorithm that should be used to render a fixed-width table. Not

supported by early versions of IE.

See Chapter 8, “Tables.”

Possible values
 inherit

 auto (default)—Column widths are determined by the cells in all rows.

 fixed—Column widths are determined by the cells in the first row only. Table

renders faster.

Example
table {

 table-layout: fixed;

 width: 100%;

}

Related properties
width

text-align
Horizontally aligns text within a block box, such as a default paragraph.

See Chapter 2, “Text.”

Possible values
 inherit

 left

•

•

•

•

•

314   |  Appendix B: Css Reference

 right

 center

 justify

Example
p { text-align: right; }

Related properties
[none]

text-decoration
Underline, over-line, or strikethrough.

See Chapter 2, “Text.”

Possible values
 inherit

 none

 underline—Line underneath text.

 overline—Line above text.

 line-through—Line through the middle of text.

 blink—Not supported by IE, or used by sensible people.

Example
ins { text-decoration: none }

Related properties
border

•

•

•

•

•

•

•

•

•

Properties  |  315

text-indent
The indentation of the first line of text in a block box.

See Chapter 2, “Text.”

Possible values
 inherit

[Percentage]

[Length]

Example
p { text-indent: 1em }

Related properties
[none]

text-transform
Converts the case of letters.

See Chapter 2, “Text.”

Possible values
 inherit

 none (default)

 capitalize—Capitalizes the first letter of every word.

 uppercase—Forces every letter into uppercase.

 lowercase—Forces every letter into lowercase.

Example
h1, h2 { text-transform: uppercase }

•

•

•

•

•

•

•

•

316   |  Appendix B: Css Reference

Related properties
font-variant

top
For absolutely positioned boxes, specifies how far from the top of the containing

positioned box (or the page, if there isn’t one) the box should be.

For relatively positioned boxes, specifies how far from the top a box should be

shifted.

See Chapter 5, “Layout.”

Possible values
 inherit

 auto (default)

[percentage]

[length]

Example
#forsale {

 position: absolute;

 top: 25%;

}

Related properties
bottom, left, right, position

unicode-bidi
Used in conjunction with direction, specifies how text is mapped to the Unicode

algorithm, determining its directionality.

•

•

•

•

Properties  |  317

Possible values
 inherit

 normal (default)—No additional embedding. Applies the implicit Unicode char-

acter order.

 embed—Opens an additional level of embedding within the algorithm whilst

maintaining the implicit Unicode character order.

 bidi-override—Opens an additional level of embedding and overrides the

Unicode character ordering, reordering the sequence to the value of the direc-

tion property.

Example
.hebrew {

 direction: rtl;

 unicode-bidi: bidi-override;

}

Related properties
direction

vertical-align
The vertical position of an inline box, or content within a table cell. Values such as

top, middle, bottom, text-top and text-bottom rely on the styled box being smaller

than some or all of the text in the rest of the line (otherwise it will already be at all

of those positions).

See Chapter 2, “Text”.

Possible values
 inherit

[length]—Raises (positive value) or lowers (negative value) the box; 0 is equal

to the baseline.

•

•

•

•

•

•

318   |  Appendix B: Css Reference

[percentage]—Raises (positive value) or lowers (negative value) the box with

regard the value of line-height; 0% is equal to the baseline, 100% is one

times the line-height, etc.

 baseline (default)—Aligns the baseline of a box with the baseline of its parent

box.

 sub—Lowers the baseline to subscript level.

 super—Raises the baseline to superscript level.

 top—Aligns to the top of the line.

 text-top—Aligns to the top of the font of the parent box.

 middle—Aligns to the middle of the font of the parent box.

 bottom—Aligns to the bottom of the line.

 text-bottom—Aligns to the bottom of the font of the parent box.

Example
.power {

 font-size: 80%;

 vertical-align: super;

}

Related properties
line-height

visibility
Makes a box is visible or invisible.

See Chapter 5, “Layout.”

Possible values
 inherit

 visible (default)

•

•

•

•

•

•

•

•

•

•

•

Properties  |  319

 hidden—Nothing will be visible, but unlike display: none, the box and its dimen-

sions will still affect layout.

 collapse—Same as hidden except when applied to rows, row groups, columns,

or column group boxes, when it should have the same visual representation

of display: none whilst maintaining the cell heights or widths that will affect

row heights and column widths. At the time of writing, those browsers that

“support” this value (IE does not) actually render collapse the same as hidden

no matter what the situation.

Example
p.flummox { visibility: hidden; }

Related properties
display

white-space
How the white space (such as new lines or a sequence of spaces) inside a box

should be handled.

See Chapter 2, “Text.”

Possible values
 inherit

 normal—White space is collapsed and lines are broken to fit.

 pre—White space is maintained and lines are not broken. The equivalent of

the default styling of the HTML pre element.

 nowrap—White space is collapsed but lines are not broken.

 pre-wrap—White space is maintained but lines are broken. Not recognized by

IE.

 pre-line—White space is collapsed except for new lines, which are not. Lines

are also broken to fit. Not recognized by IE.

•

•

•

•

•

•

•

•

320   |  Appendix B: Css Reference

Example
pre { white-space: normal; }

#pow { white-space: pre; }

Related properties
[none]

widows
Used in paged media. The minimum number of lines in a box that must be left at

the top of a page. Not widely supported.

Possible values
 inherit

[number]—(default is 2)

Example
p { widows: 4; }

Related properties
orphans

width
The width of the content area of a block box (not including padding, border, or

margin).

See Chapter 5, “Layout.”

Possible values
 inherit

 auto (default)

•

•

•

•

Properties  |  321

[percentage]

[length]

Example
#jelly { width: 212px; }

Related properties
height, min-width, max-width

word-spacing
The spacing between words.

See Chapter 2, “Text.”

Possible values
 inherit

 normal (default)

[Length]

Example
p {

 letter-spacing: 0.3em;

 word-spacing: 1em;

}

Related properties
letter-spacing

•

•

•

•

•

322   |  Appendix B: Css Reference

z-index
The order of positioned boxes in the z-axis. The higher the number, the higher that

box will be in the stack (so if, for example, one box overlaps another, the box with

the higher z-index will be on top of the other box).

See Chapter 5, “Layout.”

Possible values
 inherit

 auto (default)

[number]

Example
div { position: absolute; }

#kidkoala { z-index: 2 }

#mrscruff { z-index: 1 }

Related properties
position

•

•

•

Index

a
<a> tag, 62–63, 209–210
<abbr></abbr> tag, 210
abbreviations, structuring text, 43–44
absolute positioning, 108–109
absolute units, 26

layout, 113–114
styling text, 51–52

access keys
link accessibility, 68
major problems, 68–70

accessibility
forms, 186–187
links

access keys, 68–70
adjacent links, 71–72
pop-ups, 71
skipping navigation, 72–74
tabbing, 67–68
titles, 70–71

tables
cell to header association, 165–167
header to cell association, 165
summaries, 164

<acronym></acronym> tag, 210–211
acronyms, structuring text, 43–44
:active pseudo-class, 265–266
active states, 67
<address></address> tag, 47, 211
addresses, structuring text, 47
adjacent links, accessibility, 71–72
adjacent sibling selectors, 24
:after pseudo-elements, 269
algorithms, fixed layout, 169–170
alignment, text styling

horizontal, 58
vertical, 59

ancestors, 3
anchor elements, links, 62–64
<area /> tag, 212–213
at-rules

@import, 270
@media, 270–271
@page, 271
selectors, 23

attributes
<a> tag, 209–210
<abbr></abbr> tag, 210
<acronym></acronym> tag, 211
<address /></address/> tag, 211
<area /> tag, 212
bad, 264
<base /> tag, 213
<bdo></bdo> tag, 214
<blockquote></blockquote> tag, 214–215
<body></body> tag, 215

 tag, 216
<button></button> tag, 216–217
<caption></caption> tag, 217
<cite></cite> tag, 218
<code></code> tag, 218–219
<col /> tag, 219–220
<colgroup></colgroup> tag, 220
<dd></dd> tag, 221
 tag, 222
<dfn></dfn> tag, 222–223
<div></div> tag, 223
<dl></dl> tag, 224
<dt></dt> tag, 224–225
 tag, 225
<fieldset></fieldset> tag, 225–226
<form></form> tag, 226
formats, 207–208
<h1></h1> tag, 227–228

���   |  Index

attributes (continued)
<h2></h2> tag, 227–228
<h3></h3> tag, 227–228
<h4></h4> tag, 227–228
<h5></h5> tag, 227–228
<h6></h6> tag, 227–228
<head></head> tag, 228
HTML, 2–4

core, 4–7
il8n, 7

<html></html> tag, 229
 tag, 230
<input /> tag, 231–232
<ins></ins> tag, 232–233
<kbd></kbd> tag, 233
<label></label> tag, 233–234
<legend></legend> tag, 234
 tag, 234–235
<link> tag, 235–236
<map></map> tag, 236
<meta /> tag, 237
<noscript></noscript> tag, 238
<object></object> tag, 239–240
 tag, 240
<optgroup></optgroup> tag, 241
<option></option> tag, 241–242
<p></p> tag, 242–243
<param /> tag, 243–244
<pre></pre> tag, 244
<q></q> tag, 244–245
<samp></samp> tag, 245
<script></script> tag, 246
<select></select> tag, 247
selectors, 24
 tag, 248
 tag, 248–249
<style></style> tag, 249–250
<table></table> tag, 250–251
<tbody></tbody> tag, 251–252
<td></td> tag, 252–254
<textarea></textarea> tag, 254–255
<tfoot></tfoot> tag, 255–256
<th></th> tag, 256–258
<thead></thead> tag, 258–259
<title></title> tag, 259–260
<tr></tr> tag, 260–261

 tag, 261–262
author style sheets, 28

B
 tag, 40
background-attachment property, 83, 272–273
background-color property, 50, 85, 273–274
background-image property, 82–87, 274
background images, 82–88
background-position property, 83, 275
background property, 272
background-repeat property, 83, 275–276
backgrounds, styling form fields, 189–190
bad tags, 262–264
<base /> tag, 14–15, 213
base text colors, 50
<bdo></bdo> tag, 47, 214
:before pseudo-element, 269
bidirectional text, structuring text, 47
block elements, 4, 175–182, 208
block value, 105
<blockquote></blockquote> tag, 42, 214–215
<body></body> tag, 215–216
body element, 8, 12–16
bold, styling text, 54–55
border-bottom-color property, 278
border-bottom property, 276–277
border-bottom-style property, 279–280
border-bottom-width property, 281
border-collapse property, 277
border-color property, 278
border-left-color property, 278
border-left property, 276–277
border-left-style property, 279–280
border-left-width property, 281
border property, 167–169, 188–189, 276–

277
border-right-color property, 278
border-right property, 276–277
border-right-style property, 279–280
border-right-width property, 281
border-spacing property, 278–279
border-style property, 279–280
border-top-color property, 278
border-top property, 276–277
border-top-style property, 279–280

Index  |  ���

border-top-width property, 281
border-width property, 281
borders

box model layout, 98–100
collapsing tables, 167–169
images, img element, 77
styling form fields, 188–189

bottom property, 281–282
Box Model Hack, 102–103
box model layout, 94

borders, 98–100
Box Model Hack, 102–103
margins, 100–103
padding, 97–98
width and height, 95–97

 tag, 216
browsers

displaying fonts, 49
style sheets, 28–29

bullets, lists, 142–144
button attribute, input element, 182
<button></button> tag, 216–217

C
<caption></caption> tag, 217–218
caption-side property, 161, 282–283
captions, tables, 160–161
Cascading Style Sheets. See CSS
cells, tables

cell to header association, 165–167
empty, 170
header to cell association, 165
merging, 158–160

checkbox attribute, input element, 177–178
child

nested elements, 3
selectors, 24

cite attribute, structuring text, 42
<cite></cite> tag, 218

structuring text, 42
class attribute, 4–7, 19

tag application, 207
class selectors, 18–20
classid attribute, 152
clear property, 283
client-side image maps, 82

clip property, 97, 283–284
<code></code> tag, 44–46, 218–219
codebase attribute, 152
<col /> tag, 219–220
<colgroup></colgroup> tag, 220–221
collapsing margins, 100–102
color

styling text, 50
values, 27–28

color property, 50, 284–285
colspan attribute, 158–160
columns

page layouts, 120–122
floating, 123
multiple, 124–126
solid navigation, 122–123

tables, targeting, 162–164
comments

CSS, 33
HTML, 13

computer code, structuring text, 44–46
content

<a> tag, 209–210
<abbr></abbr> tag, 210
<acronym></acronym> tag, 211
<address></address> tag, 211
<area /> tag, 212
<base /> tag, 213
<bdo></bdo> tag, 214
<blockquote></blockquote> tag, 214–215
<body></body> tag, 215

 tag, 216
<button></button> tag, 217
<caption></caption> tag, 217–218
<cite></cite> tag, 218
<code></code> tag, 218–219
<col /> tag, 219–220
<colgroup></colgroup> tag, 220
<dd></dd> tag, 221
 tag, 222
<dfn></dfn> tag, 222–223
<div></div> tag, 223
<dl></dl> tag, 224
<dt></dt> tag, 224–225
elements, 208
 tag, 225

���   |  Index

content (continued)
<fieldset></fieldset> tag, 225–226
<form></form> tag, 227
<h1></h1> tag, 227–228
<h2></h2> tag, 227–228
<h3></h3> tag, 227–228
<h4></h4> tag, 227–228
<h5></h5> tag, 227–228
<h6></h6> tag, 227–228
<head></head> tag, 228
HTML, xix–xxiii
<html></html> tag, 229
 tag, 230
<input /> tag, 231–232
<ins></ins> tag, 232–233
<kbd></kbd> tag, 233
<label></label> tag, 233–234
<legend></legend> tag, 234
 tag, 234–235
<link> tag, 235–236
<map></map> tag, 236
<meta /> tag, 237
<noscript></noscript> tag, 238
<object></object> tag, 239–240
 tag, 240
<optgroup></optgroup> tag, 241
<option></option> tag, 241–242
<p></p> tag, 242–243
<param /> tag, 243–244
<pre></pre> tag, 244
<q></q> tag, 244–245
<samp></samp> tag, 245
<script></script> tag, 246
<select></select> tag, 247
 tag, 248
 tag, 248–249
<style></style> tag, 249–250
<table></table> tag, 250–251
<tbody></tbody> tag, 251–252
<td></td> tag, 252–254
<textarea></textarea> tag, 254–255
<tfoot></tfoot> tag, 255–256
<th></th> tag, 256–258
<thead></thead> tag, 258–259
<title></title> tag, 259–260
<tr></tr> tag, 260–261

types
HTML document declaration, 11–12
server-side scripting language, 12

 tag, 261–262
content property, 285–286
core attributes, 4–7, 207–208
Cork’d website, 172
counter-increment property, 286
counter-reset property, 286–287
CSS (Cascading Style Sheets), xix–xxiii, xvii.

See also style sheets
applying to HTML

embedded CSS, 32–33
external CSS, 34
inline CSS, 32

at-rules, 23, 270–271. See also at-rules
comments, 33
images

background, 82–87
decorative effects, 86–87
text graphical alternatives, 88–92

multiple media specific styles, 195–196
media attribute, 196–203
style sheet application, 204–205

page layouts, 119–120
creating columns, 120–126
footers, 127–130
headers, 126–127

properties, 23–25, 271–322. See also
properties

pseudo-classes, 20, 265–269. See also
pseudo-classes

pseudo-elements, 20, 269–270. See also
pseudo-elements

rules, 17
selectors, 18–23
values, 25–31

CSS Zen Garden website, 89, 118
cursor property, 287–288

D
datetime attribute, 46
<dd></dd> tag, 221
declarations, HTML document structure, 8–12
definition lists, 138–139
 tag, 46, 222

Index  |  ���

deletions, structuring text, 46–47
descendants, 3
<dfn></dfn> tag, 222–223
Digital Web Magazine website, 135
dir attribute, 47
direction property, 289
display property, 104–107, 289–291
<div></div> tag, 16–17, 223
<dl></dl> tag, 138–139, 224
DOCTYPE statements, 9
Document Object Model (DOM), JavaScript

event attributes, 148–149
manipulating, 149–150
script element, 147–148

document structures, HTML declarations, 8–12
document types, HTML structure, 9
DOM (Document Object Model), JavaScript

event attributes, 148–149
manipulating, 149–150
script element, 147–148

DOM Scripting, 150
<dt></dt> tag, 224–225

e
editing HTML

default styles, 47
insertions and deletions, 46–47

elastic layouts, 117–119
element attribute, 173–174
elements

content, 208
forms, 173–174
HTML, 2–4

 tag, 225
embedded CSS, applying CSS to HTML, 32–33
emphasis, structuring text, 39–40
empty cells, styling tables, 170
empty-cells property, 170, 291
event attributes, 8

general tag application, 208
JavaScript, 148–149

eXtensible HTML (XHTML), xvii. See also
HTML

external CSS, applying CSS to HTML, 34

f
Fahrner Image Replacement (FIR), 90
family connections, nested elements, 3
<fieldset></fieldset> tag, 185–186, 225–

226
fieldsets, forms, 185–186
file attribute, input element, 181–182
FIR (Fahrner Image Replacement), 90
:first-child pseudo-class, 266
:first-letter pseudo-element, 269–270
:first-line pseudo-element, 270
:first pseudo-class, 266
fixed layout algorithms, styling tables, 169–

170
fixed layouts, 113–114
fixed positioning, 110
Flash Satay, 152
float property, 110–113, 291–292
floating columns, 123
:focus pseudo-class, 266–267
focus states, 66–67
font-family property, 48–49, 293
font property, 292–293
font-size property, 293–294
font-style property, 55, 294–295
font-variant property, 295
font-weight property, 55, 295–296
fonts

browser display, 49
shorthand properties, 55–56
styling form fields, 189
styling text, 48–49

footers, page layouts, 127–130
<form></form> tag, 226–227
formats

attributes, 207–208
images, 81

forms, 171–172
accessibility, 186–187
elements, 173–174
fields

input element, 174–182
select element, 183–185
textarea element, 182–183

fieldsets, 185–186

���   |  Index

forms (continued)
styling fields, 187–188

backgrounds, 189–190
borders, 188–189
fonts, 189

g
GIF, image formats, 81
graphics. See also images

images text replacement, 88–92
grouped selectors, 20

H
<h1></h1> tag, 40–41, 227–228
<h2></h2> tag, 40–41, 227–228
<h3></h3> tag, 40–41, 227–228
<h4></h4> tag, 40–41, 227–228
<h5></h5> tag, 40–41, 227–228
<h6></h6> tag, 40–41, 227–228
head element, 8, 12–16
<head></head> tag, 228–229
headers

page layouts, 126–127
tables

cell to header association, 165–167
header to cell association, 165

headings, structuring text, 40–41
height attribute, img element, 80
height property, 95–97, 296–297
hex values, 27–28
Hicks, John, blog, 114
hidden attribute, input element, 180
horizontal alignment, styling text, 58
horizontal lists, 146
:hover pseudo-class, 267
hover states, 66
href attribute, links, 62–63
HTML, 1

applying CSS to
embedded CSS, 32–33
external CSS, 34
inline CSS, 32

attributes, 2–4
core, 4–7
il8n, 7

comments, 13
content. See content
document structure

body element, 12–16
declarations, 8–12
div tag, 16–17
head element, 12–16
JavaScript. See JavaScript
span tag, 16–17

elements, 2–4
event attributes, 8
selectors, 18
tags, 2–4

HTML Dog, 5, xv–xvi
html element, 8
<html></html> tag, 229
HTTP headers

content types, 11–12
HTML document language declaration, 11

hypertext references, links, 62–64

i
<i> tag, 40
id attribute, 4–7, 19, 207
id selectors, 18
il8n attribute, 7, 208
image attribute, input element, 180–181
images, 75

background, 82–87
decorative effects, 86–88
file formats, 81
img element, 77–79
lists, 142–144
maps, 81–82
text graphical alternatives, 88–92

 tag, 230
img element, 77–80
@import at-rule, 270
indenting, styling text, 58
inheritance, properties, 25
inline CSS, applying CSS to HTML, 32
inline elements, 4, 208
inline value, 105
<input /> tag, 231–232
input element, 175–176

button attribute, 182

Index  |  ���

checkbox attribute, 177–178
file attribute, 181–182
form fields

block elements, 175–182
name attribute, 174–175
select element, 183–184
textarea element, 182–183

hidden attribute, 180
image attribute, 180–181
password attribute, 177
radio attribute, 178–179
reset attribute, 179
submit attribute, 179
text attribute, 176–177

<ins></ins> tag, 46, 232–233
insertions, structuring text, 46–47
Internet Explorer

box model layout, Box Model Hack,
102–103

unwanted lists spaces, 145
italics, styling text, 54–55

J
JavaScript

event attributes, 148–149
manipulating DOM (Document Object

Model), 149–150
script element, 147–148

JPEG, image formats, 81

k
<kbd></kbd> tag, 233
Keith, Jeremy, DOM Scripting, 150

l
label element, 186–187
<label></label> tag, 233–234
:lang pseudo-class, 267
languages, HTML document declaration, 11
layouts, 93

application, 130–133
box model, 94

borders, 98–100
Box Model Hack, 102–103
margins, 100–103

padding, 97–98
width and height, 95–97

display property, 104–107
elastic, 117–119
fixed, 113–114
float property, 110–113
liquid, 115–116
positioning

absolute, 108–109
fixed, 110
relative, 108
static, 107

sample pages, 119–120
creating columns, 120–126
footers, 127–130
headers, 126–127

left property, 297
:left pseudo-class, 267–268
<legend></legend> tag, 234
lengths, CSS units, 25
letter-spacing property, 57, 297–298
 tag, 234–235
line breaks, structuring text, 39–40
line height property, styling text, 53–54
line-height property, 298
line heights, styling text, 53
<link> tag, 14–15, 235–236
links, 62–63

accessibility
access keys, 68–70
adjacent links, 71–72
pop-ups, 71
skipping navigation, 72–74
tabbing, 67–68
titles, 70–71

anchor elements, 62–64
hypertext references, 62–64
img element, 77
states, 65–67
URLs (Universal Resource Locator), 62

liquid layouts, 115–116
list-style-image property, 299
list-style-position property, 300
list-style property, 299
list-style-type property, 300–301

��0   |  Index

lists, 135
Internet Explorer unwanted spaces, 145
margins, 144
padding, 144
presentation structure

horizontal lists, 146
markers, 142–144

structuring
definition, 138–139
navigation, 140–142
ordered, 136–138
unordered, 136–138

longdesc attribute, img element, 77
lower case text, styling, 55

m
map element, 82
<map></map> tag, 236–237
margin-bottom property, 100, 301–302
margin-left property, 100, 301–302
margin property, 100, 301–302
margin-right property, 100, 301–302
margin-top property, 100, 301–302
margins

box model layout, 100–103
lists, 144

markers, lists, 142–144
max-height property, 96, 302–303
max-width property, 96, 303
media, 191

CSS specific styles, 195–196
media attribute, 196–203
style sheet application, 204–205

mobile devices, 192–193
printing, 193–195
screen readers, 192

@media 2006 website, 38
@media at-rule, 270–271
media attribute

CSS specific styles, 196–203
multiple media application, 204–205

merging cells, tables, 158–160
<meta /> tag, 12, 14–16, 237–238
min-height property, 96, 303–304
min-width property, 96, 304
mobile devices, multiple media, 192–193

multilanguage text, structuring text, 47
multiple columns, page layouts, 124–126
multiple media, 191

CSS specific styles, 195–196
media attribute, 196–203
style sheet application, 204–205

mobile devices, 192–193
printing, 193–195
screen readers, 192

multiple style sheets, 35

n
name attribute, 82, 174–175
navigation

link accessibility, 72–74
structuring lists, 140–142

nesting
elements, 3
lists, 137–138
selectors, 20–21

Nguyen, Michael, 138
<noscript></noscript> tag, 238
numbers

CSS units, 25
lists, 142–144

o
object element, embedding objects, 150–151
<object></object> tag, 150–151, 239–240
objects

embedding
object element, 150–151
Web standards, 151–153

JavaScript
event attributes, 148–149
manipulating, 149–150
script element, 147–148

 tag, 240
onclick attribute, 8
ondblclick attribute, 8
onkeydown attribute, 8
onkeypress attribute, 8
onkeyup attribute, 8
onmousedown attribute, 8
onmousemove attribute, 8
onmouseout attribute, 8

Index  |  ��1

onmouseover attribute, 8
onmouseup attribute, 8
<optgroup></optgroup> tag, 241
<option></option> tag, 241–242
ordered lists, 136–138
orphans property, 304–305
outline-color property, 305–306
outline property, 305
outline-style property, 306
outline-width property, 307
overflow, box model layout, 96–97
overflow property, 96–97, 307–308

p
<p></p> tag, 242–243
padding

box model layout, 97–98
lists, 144
shorthand values, 98

padding-bottom property, 97, 308
padding-left property, 97, 308
padding property, 308
padding-right property, 97, 308
padding-top property, 97, 308
page anchors, 63–64
@page at-rule, 271
page-break-after property, 309
page-break-before property, 309–310
page-break-inside property, 310–311
page layouts, 119–120

creating columns, 120–122
floating, 123
multiple, 124–126
solid navigation, 122–123

footers, 127–130
headers, 126–127

paragraphs, structuring text, 39–40
<param /> tag, 243–244
parent, nested elements, 3
password attribute, input element, 177
percentages, CSS units, 25
PNG, image formats, 81
pop-ups, link accessibility, 71
positioning, layout

absolute, 108–109
fixed, 110

relative, 108
static, 107

pre element, structuring text, 45–46
<pre></pre> tag, 244
preformatted text, structuring text, 44–46
printing

media attribute, 196–203
multiple media, 193–195
printer friend versions, 196

properties
background, 272
background-attachment, 272–273
background-color, 273–274
background-image, 274
background-position, 275
background-repeat, 275–276
border, 276–277
border-bottom, 276–277
border-bottom-color, 278
border-bottom-style, 279–280
border-bottom-width, 281
border-collapse, 277
border-color, 278
border-left, 276–277
border-left-color, 278
border-left-style, 279–280
border-left-width, 281
border-right, 276–277
border-right-color, 278
border-right-style, 279–280
border-right-width, 281
border-spacing, 278–279
border-style, 279–280
border-top, 276–277
border-top-color, 278
border-top-style, 279–280
border-top-width, 281
border-width, 281
bottom, 281–282
caption-side, 282–283
clear, 283
clip, 283–284
color, 284–285
content, 285–286
counter-increment, 286
counter-reset, 286–287

���   |  Index

properties (continued)
CSS, 23–25
cursor, 287–288
direction, 289
display, 289–291
empty-cells, 291
float, 291–292
font, 292–293
font-family, 293
font-size, 293–294
font-style, 294–295
font-variant, 295
font-weight, 295–296
height, 296–297
inheritance, 25
left, 297
letter-spacing, 297–298
line-height, 298
list-style, 299
list-style-image, 299
list-style-position, 300
list-style-type, 300–301
margin, 301–302
margin-bottom, 301–302
margin-left, 301–302
margin-right, 301–302
margin-top, 301–302
max-height, 302–303
max-width, 303
min-height, 303–304
min-width, 304
orphans, 304–305
outline, 305
outline-color, 305–306
outline-style, 306
outline-width, 307
overflow, 307–308
padding, 308
padding-bottom, 308
padding-left, 308
padding-right, 308
padding-top, 308
page-break-after, 309
page-break-before, 309–310
page-break-inside, 310–311
quotes, 311–312

right, 312–313
table-layout, 313
text-align, 313–314
text-decoration, 314
text-indent, 315
text-transform, 315–316
top, 316
unicode-bidi, 316–317
vertical-align, 317–318
visibility, 318–319
white-space, 319–320
widows, 320
width, 95–97, 320–321
word-spacing, 321
z-index, 322

pseudo-classes
:active, 265–266
:first, 266
:first-child, 266
:focus, 266–267
:hover, 267
:lang, 267
:left, 267–268
:right, 268
selectors, 20
:visited, 268–269

pseudo-elements
:after, 269
:before, 269
:first-letter, 269–270
:first-line, 270
selectors, 20

Q
<q></q> tag, 244–245
quotations

attribute values, 3
structuring text, 42–43

quotes property, 311–312

r
radio attribute, input element, 178–179
relative positioning, 108
relative units, 26

layout, 113–114
styling text, 51–52

Index  |  ���

reset attribute, input element, 179
RGB values, 27–28
right property, 312–313
:right pseudo-class, 268
rounded corners, background images, 86–88
row grouping, tables, 161–162
rowspan attribute, 158–160
rules, CSS, 17

s
<samp></samp> tag, 44–46, 245
sample page layouts, 119–120

creating columns, 120–122
floating, 123
multiple, 124–126
solid navigation, 122–123

footers, 127–130
headers, 126–127

screen readers, multiple media, 192
script element, JavaScript, 147–148
<script></script> tag, 246
scripting languages, JavaScript

event attributes, 148–149
manipulating DOM (Document Object

Model), 149–150
script element, 147–148

scripts, JavaScript
event attributes, 148–149
manipulating DOM (Document Object

Model), 149–150
script element, 147–148

select element, form fields, 183–185
<select></select> tag, 247
selectors

CSS, 18–23
specificity, 22–23
versatility, 24

separated-borders model, 168
server-side image maps, 82
server-side scripting languages,

content types, 12
shorthand properties, fonts, 55–56
siblings, 3
sizes, styling text, 50
Skip navigation links, 72–74

solid navigation columns, 122–123
spacing

Internet Explorer lists, 145
styling text, 57

span element, image text graphical alternatives,
88–92

 tag, 16–17, 248
specificity, selectors, 22–23
src attribute, img element, 77
static footers, 129
static positioning, 107
strikethroughs, styling text, 56–57
 tag, 248–249
structuring lists

definition, 138–139
navigation, 140–142
ordered, 136–138
unordered, 136–138

structuring text, 37–39
abbreviations, 43–44
acronyms, 43–44
addresses, 47
bidirectional text, 47
editorial insertions and deletions, 46–47
emphasis, 39–40
headings, 40–41
line breaks, 39–40
multilanguage text, 47
paragraphs, 39–40
preformatted text, 44–46
quotations, 42–43

style attribute, 4–7, 207–208
style sheets. See also CSS

multiple, 35
multiple media application, 204–205
types, 28–31

<style></style> tag, 249–250
styling

form fields, 187–188
backgrounds, 189–190
borders, 188–189
fonts, 189

tables
border collapsing, 167–169
empty cells, 170
fixed layout algorithm, 169–170

���   |  Index

styling (continued)
text

bold, 54–55
color, 50
fonts, 48–49
horizontal alignment, 58
indenting, 58
italics, 54–55
line height, 53–54
shorthand properties, 55–56
size, 50
spacing, 57
strikethroughs, 56–57
techniques, 60
underlines, 56–57
upper and lower case, 55
vertical alignment, 59

submit attribute, input element, 179
summaries, table accessibility, 164
summary attribute, 164

t
table element, 156–158
table-layout property, 313
<table></table> tag, 250–251
tables, 155–156

accessibility
cell to header association, 165–167
header to cell association, 165
summaries, 164

captions, 160–161
creating basics, 156–158
grouping rows, 161–162
merging cells, 158–160
styling

border collapsing, 167–169
empty cells, 170
fixed layout algorithm, 169–170

targeting columns, 162–164
tabs

horizontal lists, 146
link accessibility, 67–68

tags
<a>, 209–210
<abbr></abbr>, 210
<acronym></acronym>, 210–211
<address></address>, 47, 211

<area />, 212–213
attribute formats, 207–208
bad, 262–264
<base />, 213
<bdo></bdo>, 214
<blockquote></blockquote>, 214–215
<body></body>, 215–216

, 216
<button></button>, 216–217
<caption></caption>, 217–218
<cite></cite>, 218
<code></code>, 218–219
<col />, 219–220
<colgroup></colgroup>, 220–221
<dd></dd>, 221
, 222
<dfn></dfn>, 222–223
<div></div>, 223
<dl></dl>, 138–139, 224
<dt></dt>, 224–225
, 225
<fieldset></fieldset>, 225–226
<form></form>, 226–227
<h1></h1>, 227–228
<h2></h2>, 227–228
<h3></h3>, 227–228
<h4></h4>, 227–228
<h5></h5>, 227–228
<h6></h6>, 227–228
<head></head>, 228–229
HTML, 2–4
<html></html>, 229
, 230
<input />, 231–232
<ins></ins>, 232–233
<kbd></kbd>, 233
<label></label>, 233–234
<legend></legend>, 234
, 234–235
<link>, 235–236
<map></map>, 236–237
<meta />, 237–238
<noscript></noscript>, 238
<object></object>, 150–151, 239–240
, 240
<optgroup></optgroup>, 241
<option></option>, 241–242

Index  |  ���

<param />, 243–244
<pre></pre>, 244
<q></q>, 244–245
<samp></samp>, 44–46, 245
<script></script>, 246
<select></select>, 247
, 16–17, 248
, 248–249
<style></style>, 249–250
<table></table>, 250–251
<tbody></tbody>, 251–252
<td></td>, 252–254
<textarea></textarea>, 254–255
<tfoot></tfoot>, 255–256
<th></th>, 256–258
<thead></thead>, 258–259
<title></title>, 259–260
<tr></tr>, 260–261
, 136–138, 261–262

<tbody></tbody> tag, 251–252
<td></td> tag, 252–254
text

images replacement, 88–92
structuring, 37–39

abbreviations, 43–44
acronyms, 43–44
addresses, 47
bidirectional text, 47
editorial insertions and deletions,

46–47
emphasis, 39–40
headings, 40–41
line breaks, 39–40
multilanguage text, 47
paragraphs, 39–40
preformatted text, 44–46
quotations, 42–43

styling
bold, 54–55
color, 50
fonts, 48–49
horizontal alignment, 58
indenting, 58
italics, 54–55
line height, 53–54
shorthand properties, 55–56
size, 50

spacing, 57
strikethroughs, 56–57
techniques, 60
underlines, 56–57
upper and lower case, 55
vertical alignment, 59

text-align property, 58, 313–314
text attribute, input element, 176–177
text-decoration property, 56–57, 314
text-indent property, 315
text-transform property, 315–316
textarea element, form fields, 182–183
<textarea></textarea> tag, 254–255
<tfoot></tfoot> tag, 255–256
<th></th> tag, 256–258
<thead></thead> tag, 258–259
title attribute, 4–7, 70–71

structuring text, 42
tag application, 207–208

title element, 8
<title></title> tag, 14–15, 259–260
titles, links, 70–71
top property, 316
<tr></tr> tag, 156–158, 260–261
transitions, XHTML, 10

u
 tag, 136–138, 261–262
underlines, styling text, 56–57
unicode-bidi property, 316–317
units, CSS values, 25–27
Universal Resource Locator (URLs), links, 62
universal selectors, 24
unordered lists, 136–138
upper case text, styling, 55
URLs (Universal Resource Locator), links, 62
usemap attribute, 82
user style sheets, 28–31

v
values

absolute, 51–52
CSS, 25–31
padding, 98
relative, 51–52

vertical-align property, 59, 317–318
vertical alignment, styling text, 59

���   |  Index

visibility property, 318–319
:visited pseudo-class, 268–269
visited states, 66
Vivabit website, 76

w
W3C website, xviii
Web standards, xviii–xix, xxiii–xxix
Webb, Dan, 116
webpages

CSS. See also CSS
applying to HTML, 32–34
properties, 23–25
rules, 17
selectors, 18–23
values, 25–31

HTML, 1. See also HTML
attributes, 2–4
basic document structure, 8–16
core attributes, 4–7
elements, 2–4
event attributes, 8
il8n attribute, 7
tags, 2–4

websites
Cork’d, 172
CSS Zen Garden, 89, 118
Digital Web Magazine, 135
HTML Dog, 5
@media 2006, 38
Vivabit, 76
W3C, xviii

white-space property, 319–320
widows property, 320
width attribute, img element, 80
width property, 95–97, 320–321
word-spacing property, 57, 321

X
XHTML (eXtensible HTML), xvii. See also HTML

comments, 13
tags, 2

XHTML Transitional, 10
xml:long attribute, HTML document language

declaration, 11

z
z-index property, 110, 322

	HTML Dog: The Best-Practice Guide to XHTML and CSS
	Contents
	Introduction
	Chapter 1: Getting Started
	HTML Syntax
	Elements, Tags, and Attributes
	Common Attributes
	The Basic Structure of an HTML Document
	The Generalist Tags—Div and Span

	CSS Syntax
	Rules
	Selectors
	Properties
	Values
	Applying CSS to HTML

	Chapter 2: Text
	Structuring Text
	Basic Text Elements: Paragraphs, Line Breaks, and Emphasis
	Headings
	Quotations
	Abbreviations and Acronyms
	Preformatted Text and Computer Code
	Editorial Insertions and Deletions
	Multilanguage and Bidirectional Text
	Addresses

	Styling Text
	Fonts
	Color
	Size
	Line Height
	Bold and Italics
	Upper and Lower Case
	The Font Shorthand Property
	Underline and Strikethrough
	Letter and Word Spacing
	Indenting
	Horizontal Alignment
	Vertical Alignment
	More Text Styling Techniques

	Chapter 3: Links
	Anchor Elements and Hypertext References
	Page Anchors

	Link States: Link, Visited, Hover, Focus, and Active
	Accessible Links
	Tabbing
	Access Keys
	Link Titles
	Pop-ups
	Adjacent Links
	Skipping Navigation

	Chapter 4: Images
	The img Element
	Image Maps

	Background Images
	Image Replacement: Providing Graphical Alternatives for Text

	Chapter 5: Layout
	The Box Model
	Width and Height
	Padding
	Borders
	Margin

	The display Property
	Positioning
	Static
	Relative
	Absolute
	Fixed

	Floating
	Sample Page Layouts
	Creating Columns
	Adding a Page Header
	Adding a Footer

	Putting It All Together

	Chapter 6: Lists
	Structuring Lists
	Unordered and Ordered Lists
	Definition Lists
	Lists as Navigation

	Presenting Lists
	List Markers—Bullets, Numbers, and Images
	Horizontal Lists

	Chapter 7: Scripts & Objects
	JavaScript and the DOM
	The script Element
	Event Attributes
	Manipulating the DOM

	Objects

	Chapter 8: Tables
	Basic Tables
	Merging Cells
	Captions
	Grouping Rows
	Targeting Columns
	Accessibility Considerations with Tables
	Summaries
	Associating Headers to Cells
	Associating Cells to Headers

	Presenting Tables
	Border Collapsing
	Speedier Tables: the Fixed Layout Algorithm
	Empty Cells

	Chapter 9: Forms
	Form Elements
	Form Fields and Buttons: input, textarea, and select
	The name Attribute
	Putting Controls in Blocks
	input
	textarea
	select

	Fieldsets
	Accessible Forms
	Labels

	Styling Form Fields
	Borders
	Fonts
	Backgrounds

	Chapter 10: Multiple Media
	Screen-Readers
	Mobile Devices
	Print
	A Sample Print Stylesheet

	Applying Media-Specific CSS
	The media Attribute
	Separate or Cascading
	@media

	In Conclusion

	Appendix A: XHTML Reference
	Tags
	<a>
	<abbr></abbr>
	<acronym></acronym>
	<address></address>
	<area />
	<base />
	<bdo></bdo>
	<blockquote></blockquote>
	<body></body>
	

	<button></button>
	<caption></caption>
	<cite></cite>
	<code></code>
	<col />
	<colgroup></colgroup>
	<dd></dd>
	
	<dfn></dfn>
	<div></div>
	<dl></dl>
	<dt></dt>
	
	<fieldset></fieldset>
	<form></form>
	<h1></h1>, <h2></h2>, <h3></h3>, <h4></h4>, <h5></h5>, <h6></h6>
	<head></head>
	<html></html>
	
	<input />
	<ins></ins>
	<kbd></kbd>
	<label></label>
	<legend></legend>
	
	<link />
	<map></map>
	<meta />
	<noscript></noscript>
	<object></object>
	
	<optgroup></optgroup>
	<option></option>
	<p></p>
	<param />
	<pre></pre>
	<q></q>
	<samp></samp>
	<script></script>
	<select></select>
	
	
	<style></style>
	<table></table>
	<tbody></tbody>
	<td></td>
	<textarea></textarea>
	<tfoot></tfoot>
	<th></th>
	<thead></thead>
	<title></title>
	<tr></tr>
	
	<var></var>

	Bad Tags
	Rotten Attributes

	Appendix B: CSS Reference
	Pseudo-classes
	:active
	:first
	:first-child
	:focus
	:hover
	:lang
	:left
	:link
	:right
	:visited

	Pseudo-elements
	:after
	:before
	:first-letter
	:first-line

	At-rules
	@import
	@media
	@page

	Properties
	background
	background-attachment
	background-color
	background-image
	background-position
	background-repeat
	border, border-top, border-right, border-bottom, border-left
	border-collapse
	border-color, border-top-color, border-right-color, border-bottom-color, border-left-color
	border-spacing
	border-style, border-top-style, border-right-style, border-bottom-style, border-left-style
	border-width, border-top-width, border-right-width, border-bottom-width, border-left-width
	bottom
	caption-side
	clear
	clip
	color
	content
	counter-increment
	counter-reset
	cursor
	direction
	display
	empty-cells
	float
	font
	font-family
	font-size
	font-style
	font-variant
	font-weight
	height
	left
	letter-spacing
	line-height
	list-style
	list-style-image
	list-style-position
	list-style-type
	margin, margin-top, margin-right, margin-bottom, margin-left
	max-height
	max-width
	min-height
	min-width
	orphans
	outline
	outline-color
	outline-style
	outline-width
	overflow
	padding, padding-top, padding-right, padding-bottom, padding-left
	page-break-after
	page-break-before
	page-break-inside
	position
	quotes
	right
	table-layout
	text-align
	text-decoration
	text-indent
	text-transform
	top
	unicode-bidi
	vertical-align
	visibility
	white-space
	widows
	width
	word-spacing
	z-index

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Button1:

