
Carl T. Herakovich

A Concise 
Introduction to 
Elastic Solids
An Overview of the Mechanics of Elastic 
Materials and Structures



A Concise Introduction to Elastic Solids



Elastic band before stretching

Stretched elastic band

Elastic Response



Carl T. Herakovich

A Concise Introduction
to Elastic Solids
An Overview of the Mechanics of Elastic
Materials and Structures

123



Carl T. Herakovich
University of Virginia
Charlottesville, VA
USA

ISBN 978-3-319-45601-0 ISBN 978-3-319-45602-7 (eBook)
DOI 10.1007/978-3-319-45602-7

Library of Congress Control Number: 2016949614

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Dedicated to my parents:
Julia Marie (nee Buckley) Herakovich
John Bernard Herakovich
for setting an outstanding example



Preface

This treatise provides a broad overview of the definitions of fundamental quantities
and the methods of analysis employed when solid materials that behave in an elastic
manner are used in structural components. The presentation is limited to the linear
elastic range of material behavior where there is a one-to-one relationship between
load and displacement. Fundamental methods of analysis and typical results for
structures made of elastic solid materials subjected to axial, bending, torsion,
thermal, and internal pressure loading are presented. Stability of rods, analysis of
plates, concepts of the finite element method, and mechanics of fibrous composite
materials also are reviewed.

The presentation is at an introductory level suitable for advanced students in
STEM (Science, Technology, Engineering, and Mathematics); it also can serve as
an introduction or review for students and professionals in science and engineering.
The treatise can be an introduction for specialists in fields such as aerospace
engineering, mechanical engineering, materials science, and civil engineering. It is
also intended to serve as an overview and possibly the only formal study of the
subject for specialists in other fields of engineering and science. For a course of
study at the college or university level, it is expected that it would, at most, be
equivalent to a one-hour semester course. Finally, it is intended as an introductory
overview for those in secondary science education and those teaching at the sec-
ondary level, as well as an introductory course for those studying in the arts and
sciences at universities. As the emphasis on STEM education in the USA has
increased in recent years, this treatise is a contribution to that effort. The treatise is
written from the perspective of an engineer, one with more than fifty years of
experience as an engineering professor. Introductory level exercises and their
solutions are included.

This book is an expanded and improved version of a book entitled, Elastic
Solids, previously self-published and no longer available.

Charlottesville, VA, USA Carl T. Herakovich
July 2016
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Chapter 1
Mechanics of Solids

1.1 Fundamentals

Mechanics of solids is concerned with understanding the response of solid materials
(as opposed to fluids) when subjected to external forces and changes in environ-
mental conditions such as temperature. The goal of research in the field over several
centuries has been to develop uniformly agreed upon definitions of the fundamental
physical quantities of interest and to express the interaction between these quantities
as mathematical relationships. This treatise is concerned with solids whose prop-
erties are considered continuous over the region of interest. Thus, the term con-
tinuum mechanics has been coined to define the field of study. The properties may
be uniform over the region of interest or vary in a predefined, continuous manner.
Heterogeneous materials such as fibrous composite materials fall into the latter
category.

A detailed history of solids mechanics for the years prior to 1952 was provided
by Timoshenko (1953). There have been significant advancements in the field since
the publication of Timoshenko’s history book. In particular, the advent of fibrous
composite materials and the development of modern computational methods have
resulted in major advances in the field of solid and structural mechanics during the
latter half of the twentieth century and the early twenty-first century. A recent book
by Herakovich (2016) provides a survey of contributions in mechanics from
antiquity to the present time (Fig. 1.1).

For the period of time covered by Timoshenko’s history book, the solids of
interest were primarily isotropic, that is, their properties were the same in every
direction. Exceptions to this were wood and some crystal formations which exhibit
anisotropic properties, (i.e., properties that vary with direction). More recently,
solid mechanics is being applied to materials that exhibit anisotropic properties. The
extensive use of fibrous composite materials in structures and studies in biome-
chanics has resulted in the necessity to routinely consider solids with anisotropic
properties.

© Springer International Publishing Switzerland 2017
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Another major shift since Timoshenko wrote his history book are the develop-
ments in computational methods such as the finite element method (Oden 2011).
These methods were developed primarily by researchers working in solid
mechanics and are now being used extensively in many areas of science and
engineering.

1.2 Early History

The use of solid materials for structural applications dates to antiquity. The earliest
uses of fabricated solids were for the implements and weapons fashioned during the
stone, bronze, and iron ages. These devices were made through trial and error as
opposed to mathematical representation of the physical object under consideration.
The people who made these objects were artisans as opposed to mechanicians. The
first application of mathematics to a structure may have been that by Archimedes
(287–212 BC). He provided the mathematical bases for equilibrium of specific
conditions of solid bodies under load.

It was not until Leonardo da Vinci (1452–1519) that mathematics was used in a
more general manner to provide formalism to the study of mechanics of solids.

Fig. 1.1 Stephen
Timoshenko
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While da Vinci is best known for his painting Mona Lisa, he also used mathematics
to study fundamental problems in solid mechanics. His Proportions of Man
(Fig. 1.3) is widely used today in many illustrations. In one of his notes, da Vinci
made the statement, “Mechanics is the paradise of mathematical science because
here we come to the fruits of mathematics.” (see Timoshenko (1953)) (Fig. 1.2).

Fig. 1.2 Leonardo da Vinci

Fig. 1.3 da Vinci’s proportions of man
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After da Vinci, the next major step forward in the application of mathematics to
solid mechanics is attributed to Galileo Galilei. While Galileo may be most famous
for his work in astronomy, his book, Two New Sciences (1638), summarizes his
work in mechanics and includes a section concerned with the mechanical properties
of structural materials. Timoshenko considered this publication to be the birth of
study in mechanics of solids.

Robert Hooke (1635–1703) is credited with proposing the linear relationship
between force and deformation, a proposal based upon his own experiments. This
linear relationship for the response of elastic materials is now referred to as
Hooke’s law. It is valid for responses which exhibit a one-to-one relationship
between the applied force and the deformation, and where there is no permanent
deformation upon unloading. Modern usage of this law is stated in terms of stress
(force per unit area) and strain (deformation per unit length) (Fig. 1.4).

The study of the elastic response of solids is now referred to as the mathematical
theory of elasticity. The theory was developed primarily during the nineteenth
century by French mathematicians at l’École Polytechnique in Paris. The prime
movers in the development of this theory were as follows: Navier (1785–1836),
Cauchy (1789–1857), Poisson (1781–1840), and Saint Venant (1797–1886). The
mathematical theory of elasticity provides the equations necessary to determine the
stresses and strains in a body made of elastic solids when subjected to external
forces or changes in environmental conditions.

Fig. 1.4 Galileo Galilei
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The rudiments of this theory are described in the following chapters through
application to very specific problems of one-dimensional, two-dimensional, or
three-dimensional configurations. All displacements are considered to be small and
the solid bodies are in a state of static equilibrium. The presentation of fundamental
problems is given for isotropic materials. However, the basic equations for lami-
nated anisotropic materials and the complexities that they introduce also are pro-
vided and discussed. The presentation includes an introduction to modern methods
of computational mechanics, namely the finite element method, for analysis of
complex structural and material configurations (Figs. 1.5, 1.6, and 1.7).

Fig. 1.5 Augustin-Louis
Cauchy
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Fig. 1.6 Siméon Denis
Poisson

Fig. 1.7 Barré de
Saint-Venant
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Chapter 2
Stress

2.1 Cauchy Stress

The concept of stress was conceptualized best by Cauchy (1789) and put in final
form by Saint-Venant (1797). Consider an infinitesimal cubical element (Fig. 2.1)
that is in a state of static equilibrium. The forces per unit area on each face of the
element are the stresses on that face. There are two types of stresses; normal
stresses are perpendicular to the face of the element and shear stresses are parallel to
the element face. Different notations have been used to denote stresses. In this
treatise, r will be used to denote normal stresses, and either r or s will be used to
denote shear stress. The notation is further augmented with subscripts indicating the
face upon which the stress is acting and the direction of the stress. Thus, rxx is the
normal stress in the x-direction acting upon a face whose normal is in the
x-direction. The shear stresses on the x-face are denoted sxy and sxz for shear
stresses acting in the y- and z-directions, respectively.

Normal stresses are considered positive when tensile, and shear stresses are
considered positive when the force vector is in the positive direction of the cor-
responding axis. All stresses shown in Fig. 2.1 are positive. It is noted that the
stresses on a face correspond to the three components of an arbitrary force vector
(per unit area) acting on the face. Further, the normal and shear stresses on opposite
faces (not shown in Fig. 2.1) must be in opposite directions in order to maintain
force and moment equilibrium. There are nine unique components of stress at a
point.

© Springer International Publishing Switzerland 2017
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2.2 Plane Stress

A complete representation of the two-dimensional state of stress (plane stress with
all z-components of stress = 0) at a point is depicted in Fig. 2.2. Note that the shear
stresses on the three sets of opposite faces must be equivalent to couples that are in
moment equilibrium. This establishes the condition that the shear stresses at a point
are of equal magnitude, namely:

sxy ¼ syx ð2:1Þ

For the conditions of plane stress to exist in an x–y plane, it is understood that
the z-components of stress are zero, i.e., rzz ¼ szx ¼ szy ¼ 0.

Fig. 2.1 Stress components

Fig. 2.2 Plane stress at a
point
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2.3 Stress Transformation

The plane state of stress at any point is a function of the plane of interest through
that point. Ideally, it is desired to express the state of stress on any arbitrary plane
passing through the point. This can be accomplished through consideration of the
equilibrium equations for an arbitrary section passing through the element in
Fig. 2.2. The resulting equations are called stress transformation equations.

Consider the free body diagram of a section of an element as shown in Fig. 2.3.
Force equilibrium in the x′- and y′-directions results in the following plane stress

transformation equations.

rx0x0 ¼ rxx cos2hþ ryy sin2hþ 2sxy sin h cos h ð2:2Þ

sx0y0 ¼ � rxx � ryy
� �

sin h cos hþ sxy cos2h� sin2h
� � ð2:3Þ

Following along similar lines for equilibrium, the normal stress ry0y0 is:

ry0yi ¼ rxx sin2hþ ryy cos2h� 2sxy sin h cos h ð2:4Þ

These stress transformation equations can be expressed in a more convenient
form through the use of trigonometric identities (see Appendix) with the results:

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos 2hþ sxy sin 2h ð2:5Þ

ry0y0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos 2h� sxy sin 2h ð2:6Þ

Fig. 2.3 Arbitrary section of
plane stress element
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sx0y0 ¼ � rxx � ryy
2

� �
sin 2hþ sxy cos 2h ð2:7Þ

Defining m ¼ cos h and n ¼ sin h, the transformation equations (2.2–2.4) can be
written in matrix form as:

rx0x0
ry0y0
sx0y0

8<
:

9=
; ¼

m2 n2 2mn
n2 m2 �mn

�mn mn m2 � n2

2
4

3
5 rxx

ryy
sxy

8<
:

9=
; ð2:8Þ

2.4 Principal Stresses

The normal stresses at a point vary with the orientation of the plane passing through
the point as determined from equilibrium. The maximum and minimum values of the
normal stresses are called the principal stresses. Taking the derivative of the normal
stress equilibrium equation (2.4) with respect to the angle θ and equating to zero
gives the angles, hP, corresponding to the principal planes. The resulting equation is:

tan 2hPð Þ ¼ 2sxy
rxx � ryy

ð2:9Þ

The two angles hP from this equation differ by 90°. The planes defined by these
angles are called the principal planes. One of the planes corresponds to the max-
imum normal stress and the other corresponds to the minimum normal stress.
Combining these results (2.4 and 2.6) gives the expression for the principal stresses:

rP11;22 ¼
rxx þ ryy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � ryy

2

� �2
þ s2xy

r
ð2:10Þ

Using the (+) sign in this equation gives the maximum normal stress, rmax
11 , and

the (–) sign gives the minimum normal stress, rmin
22 .

The maximum shear stress at a point may also be of interest. Setting the
derivative with respect to θ of the shear stress equation (2.5) equal to zero gives

tan 2hsð Þ ¼ � rxx � ryy
2sxy

� �
ð2:11Þ

The two solutions for hS correspond to the planes of maximum and minimum
shear stress. They are equal in magnitude with the maximum shear stress being
positive and the minimum shear stress being negative. The magnitude of the
maximum shear stress is determined by combining the above equations with the
result:
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smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � ryy

2

� �2
þ s2xy

r
ð2:12Þ

It can also be shown that the maximum shear stress can be expressed in terms of
the principal stresses as:

smax ¼ r11 � r22
2

ð2:13Þ

2.5 Pure Shear Stress

The condition of pure shear is a most interesting state of stress. As shown in
Fig. 2.4, pure shear in an x–y plane is equivalent to positive and negative, pure,
normal stresses, of the same magnitude as the shear stress, on the planes at angles
45° to the x–y axes. This explains why a brittle material such as a piece of chalk
fails along a 45° plane when subjected to pure torsion (Chap. 7). The brittle material
is relatively weak in tension and thus it fails along the plane that has the highest
level of tensile, normal stresses.

Fig. 2.4 Pure shear stress
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2.6 Stress Tensor

The nine components of stress can be represented as a tensor quantity that obeys
tensor transformation laws as described in the Appendix. The standard notation for
the stress tensor is:

rij ¼
r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5 ð2:14Þ

In (2.14), the indices 1, 2, 3 represent x, y, z in the rectangular Cartesian
coordinate system. Further, we note that equilibrium requires that the stress tensor is
symmetric with:

rij ¼ rji ð2:15Þ

2.7 Units of Stress

Stress is the force per unit area. Thus, stress can be expressed as pounds per square
inch (psi) or Pascals [Pa, which is defined as newtons per square meter in the
International (SI) System of units]. The units on force are derived from Newton’s
second law of motion which states that F = m ∙ a. One newton (N) is the force
required to accelerate one kilogram (kg) of mass (m) at the rate (a) of one meter per
second squared (m/s2). Thus 1 N = 1 kg ∙ 1 m/s2. The unit of mass in the Imperial
and United States customary systems is called a slug. It is the mass that accelerates
at one ft/s2 when a force of one pound (lb) is exerted on it. Thus, a slug has the units

1 slug ¼ 1 lb�s
2

ft .

For many applications, stresses are often expressed as ksi [kips (103 lb) per
square inch] or MPa (mega pascals, where mega = 106). These notations are
employed simply to reduce the number of zeros (or digits) required to express the
value of large numbers. Note that 1.0 MPa = 145.0 psi = 0.145 ksi.

2.8 Exercises

2:8:1 Confirm equation 2.2.
2:8:2 Confirm equation 2.5.
2:8:3 Confirm equation 2.7.
2:8:4 Confirm equation 2.9.
2:8:5 Plot the variation of normal stress on planes passing through a point if it is

known that the state of stress is planar with rxx ¼ 40; ryy ¼ �20; sxy ¼ 10.
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Appendix: Solutions

2:8:1 Confirm equation 2.2.

Solution
Equation (2.2) )

rx0x0 ¼ rxx cos2hþ ryy sin2hþ 2sxy sin h cos h

Summation of forces in the x0 � x0-direction gives:

X
Fx0x0 ¼ 0

rx0x0A ¼ rxx cos hAcos hþ ryy sin hAsin hþ sxy cos hAsin hþ sxyA cos h sin h

rx0x0 ¼ rxx cos2hþ ryy sin2hþ 2sxy coshAsinh

2:8:2 Confirm equation 2.5.

Equation (2.5) )

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos 2hþ sxy sin 2h
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Solution
Using the trigonometric identities in (2.2):

sin2h ¼ 2sinhcosh

sin2h ¼ 1� cos2h
2

cos2h ¼ 1þ cos2h
2

)

rx0x0 ¼ rxx
1þ cos2h

2
þ ryy

1� cos2h
2

þ sxysin2h

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos2hþ sxysin2h

2:8:3 Confirm equation 2.7.

Equation (2.7) )

sx0y0 ¼ � rxx � ryy
2

� �
sin 2hþ sxy cos 2h

Solution
Summation of forces in the y

0 � y
0
-direction and using trigonometric identities

gives:

X
Fy0y0 ¼ 0 )

sx0y0A ¼ A cos h rxx sin h� sxy cos h
� �þA sin h ðsxy sin h� ryy cos hÞ

sx0y0 ¼ ðrxx � ryyÞ sin h cos hþ sxy sin2h� cos2h
� �

sx0y0 ¼ ðrxx � ryyÞ sin 2h2
þ sxy cos 2h

2:8:4 Confirm equation 2.9.

Equation (2.9) )

tan 2hPð Þ ¼ 2sxy
rxx � ryy

16 2 Stress



Solution
Normal stress on arbitrary plane is from (2.5) )

rx0x0 ¼ rxx þ ryy
2

þ rxx � ryy
2

cos 2hþ sxy sin 2h

Setting derivative with respect to h ¼ 0 for maximum and minimum )

drx0x0

dh
¼ 0 ¼ �2rxx sin h cos hþ 2ryy sin h cos hþ 2sxy cos2h� sin2h

� �

0 ¼ �rxx sin 2h
2

þ ryy sin 2h
2

þ sxy
1þ cos 2h

2
� 1� cos 2h

2

� �

0 ¼ sin 2h
2

ryy � rxx
� �þ sxy cos 2h

tan 2h ¼ 2sxy
rxx � ryy

2:8:5 Plot the variation of normal stress on planes passing through a point if it is
known that the state of stress is planar with rxx ¼ 40; ryy ¼ �20; sxy ¼ 10

Solution
Plotting Eq. (2.2) )
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Chapter 3
Strain

3.1 Normal Strain

Normal strain, e, is the change in length, u, per unit length when a body, length L, is
subjected to normal stress. For loading P in the x-direction (Fig. 3.1), we define the
axial (normal) strain as:

exx ¼ u
L

ð3:1Þ

For a three-dimensional cube, the normal strains are: exx; eyy, and ezz. Positive
normal stains are depicted in Fig. 3.2 which shows the original (solid) and
deformed (dashed) shape of a cube. Since strain is defined as a length, u, divided by
a length, L, it is a dimensionless quantity. However, it is often written as in/in, m/m,
or %. strain.

3.2 Engineering Shear Strain

Engineering shear strain corresponds to the change in orientation of an element that
is subjected to shear stress. More specifically, it is the total change in angle (ex-
pressed in radians) of an original right angle due to shear stress. Figure 3.3 depicts
the (engineering) shear strain cxy.

© Springer International Publishing Switzerland 2017
C.T. Herakovich, A Concise Introduction to Elastic Solids,
DOI 10.1007/978-3-319-45602-7_3
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Fig. 3.2 Three-dimensional
normal strain deformations

Fig. 3.1 Axial strains

Fig. 3.3 Shear strains
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3.3 Strain–Displacement Relationships

Normal strain and shear strain are defined in the preceding sections for specific
cases of deformation. More generally, we can write strain–displacement relation-
ships in terms of displacements u; v; and w in the x-, y-, and z-directions, respec-
tively, at a point in a solid. Normal strains are the rate of change of displacement in
a specific direction. They can be expressed as partial derivatives (see Appendix for
partial derivatives). The following strain–displacement equations are valid if the
displacements are small and the first derivatives so small that squares and products
of their partial derivatives are negligible.

For the three normal components of strain, we have:

exx ¼ @u
@x

eyy ¼ @v
@y

ezz ¼ @w
@z

ð3:2Þ

The engineering shear strains correspond to the change of right angle in a plane
and can be expressed in partial derivative form as:

cxy ¼
@u
@y

þ @v
@x

� �

cxz ¼
@u
@z

þ @w
@x

� �

cyz ¼
@v
@z

þ @w
@y

� �
ð3:3Þ

3.4 Tensor Shear Strain

For transformation of shear strain, it is necessary to express the shear strain as a
tensor quantity. Note that the engineering shear strain cij is double the tensor shear
strain eij i 6¼ jð Þ. Thus, the tensor shear strains eij are:

eij ¼ 1
2
cij ¼

1
2

@uj
@xi

þ @ui
@xj

� �
i 6¼ jð Þ ð3:4Þ

Note that strain is a symmetric tensor, i.e., eij ¼ eji.
We can now write the general expression for all six components of the tensor

strain, eij:
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eij ¼ 1
2

@uj
@xi

þ @ui
@xj

� �
i; j ) x; y; z directionsð Þ ð3:5Þ

The tensor (3.5) is known as Cauchy’s infinitesimal strain tensor.

3.5 Strain Transformation

It is often desired to express strains in an arbitrary x
0
; y

0
coordinate system as was

done for stresses (Chap. 2, Eqs. 2.4 and 2.5). The strain transformation equations
for a rotation h about the z-axis are:

ex0 x0 ¼ exx cos2 hþ eyy sin2 hþ cxy sin h cos h

ey0 y0 ¼ exx sin2 hþ eyy cos2 h� cxy sin h cos h

cx0 y0 ¼ �2ðexx � eyyÞ sin h cos hþ cxyðcos2 h� sin2 hÞ
ð3:6Þ

Since strain is a second-order tensor quantity, using Appendix A.12, we can
write the general transformation equation for rotation about the z-axis, with i, j = 1,
2, as:

e
0
ij ¼ a1ia1je11 þ a1ia2je12 þ a2ia1je21 þ a2ia2je22 ð3:7Þ

where

aij ¼ cos h � sin h
sin h cos h

� �
ð3:8Þ

Similar to the stress transformation equation (2.8), strain transformation can be
written as:

ex0 x0
ey0 y0
cx0 y0

0
@

1
A ¼

m2 n2 mn
n2 m2 �mn

�2mn 2mn m2 � n2

2
4

3
5 exx

eyy
cxy

8<
:

9=
; ð3:9Þ

3.6 Poisson’s Ratio

As indicated in Fig. 3.1, unrestrained materials generally exhibit a lateral dis-
placement, v, when subjected to axial strain exx. Most materials exhibit a reduction
in thickness when subjected to tensile normal strain. Some composite materials, and
a few other materials, exhibit an increase in thickness (at least in some direction)
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when subjected to tensile strain. The negative ratio of the lateral strain eyy to axial
strain exx is defined as Poisson’s ratio m. Thus, for applied normal strain exx:

mxy ¼ � eyy
exx

ð3:10Þ

mxz ¼ � ezz
exx

ð3:11Þ

The minus sign in the definition ensures that Poisson’s ratio is positive for most
materials. Subscripts on Poisson’s ratio are used to clearly identify which Poisson’s
ratio is under consideration when the material is not isotropic. For an isotropic
material, Poisson’s ratio is independent of direction, i.e., mxy � mxz � m. There is a
range of Poisson’s ratio values for most materials; for glass 0.21–0.27, for metals
0.21–0.36, and for rubber 0.50 (see McClintock and Argon 1966). For laminated
fibrous composite materials, Poisson’s ratio exhibits a wide range of values
including values greater than 1.0 and negative values (See Chap. 16).

3.7 Plane Strain

Plane strain in an x–y plane is defined as the condition that all out-of-plane strains
are identically zero, i.e.,:

ezz � czx � czy � 0 ð3:12Þ

3.8 Exercises

3:8:1 What is the % strain if exx ¼ 0:001?
3:8:2 What is the shear strain if the corresponding change in a right angle is 1º.?
3:8:3 Use Eq. (3.5) to show that Eq. (3.4) is correct.
3:8:4 Show that the strain tensor is symmetric.
3:8:5 Determine an expression for the maximum shear strain cx0 y0 in terms of

given strains exx; eyy and cxy

3.6 Poisson’s Ratio 23
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Appendix: Solutions

3:8:1 What is the % strain if

exx ¼ 0:001

Solution

exx ¼ 0:001 � 100 ¼ 0:1%

3:8:2 What is the shear strain if the corresponding change in a right angle is 1º?

Solution

1� � p
180

¼ 0:0175
in
in

¼ 1:75%

3:8:3 Use (3.5) to show that (3.4) is correct.

Solution

Example, for i ¼ 1; j ¼ 2, Eq. (3.5) )

e12 ¼ 1
2

@u2
@x1

þ @u1
@x2

� �
¼ 1

2
c12

3:8:4 Show that the strain tensor is symmetric, i.e., show that e12 ¼ e21.

Solution

e12 ¼ 1
2

@u2
@x1

þ @u1
@x2

� �

e21 ¼ 1
2

@u1
@x2

þ @u2
@x1

� �

24 3 Strain



3:8:5 Determine an expression for the maximum shear strain cx0 y0 in terms of
given strains exx; eyy and cxy.
From Eq. (3.4)

cx0 y0 ¼ �2ðexx � eyyÞ sin h cos hþ cxyðcos2 h� sin2 hÞ

Solution
Setting the derivative with respect to h equal 0 and using trigonometric identities:

dcx0 y0

dh
¼ 2 exx � eyy

� � � sin2 hþ cos2 h
� 	þ cxy �4 sin h cos h½ � ¼ 0

dcx0 y0

dh
¼ exx � eyy

� � 1þ cos 2h
2

� 1� cos 2h
2

� �
� 2cxy sin h cos h ¼ 0

exx � eyy
� �

cos 2h½ � � cxy sin 2h ¼ 0

tan 2h ¼ exx � eyy
� �

cxy

Reference
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Chapter 4
Constitutive Equations

4.1 Normal Stress–Strain Response

Constitutive equations provide relationships between the stresses and the strains.
For linear elastic materials, they are the so-called Hooke’s law. In three-dimensional
space, and for isotropic materials, the total normal strain in a given direction is the
sum (superposition) of strains due to the three components of normal stress. Thus,
they are written in terms of the stresses and two engineering constants, modulus, E,
and Poisson’s ratio, ν, as: Equation Section (Next)

exx ¼ 1
E

rxx � mryy � mrzz
� �

eyy ¼ 1
E

ryy � mrxx � mrzz
� �

ezz ¼ 1
E

rzz � mrxx � mryy
� �

ð4:1Þ

In the above, E is the modulus of elasticity (also called Young’s modulus) and m
is Poisson’s ratio described in the strain chapter. For a tensile test with the only
nonzero applied stress rxx, the constitutive equation (4.1) reduces to E ¼ rxx

exx
. Thus,

the modulus of elasticity, E, is the slope of the stress versus strain diagram; it has
the units of stress as strain is a dimensionless quantity.

Many materials, including most metals, exhibit nonlinear stress–strain behavior
beyond the elastic range; nonlinear behavior is not depicted in Fig. 4.1. See Sect. 6.
5 for a brief discussion of nonlinear behavior. Within the linear elastic range, both
loading and unloading exhibit linear elastic behavior. Thus, total unloading from a
stress state in the linear range brings the state of stress and strain back to zero; there
is no permanent deformation. Such is not the case if the loading extends beyond the
linear range. As a result, linear elastic behavior is a much easier problem to solve.

© Springer International Publishing Switzerland 2017
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Most often, structures are designed to remain in the elastic range; exceptions are
applications for crash worthiness and resistance to dynamic loadings such as
explosions and earthquakes. In these cases, the desired outcome after loading is that
the structure be intact, even if severely deformed.

4.2 Shear Stress–Strain Response

For shear response of an isotropic material, the (engineering) shear strains are
written in terms of the shear modulus, G, (or equivalently in terms of E and ν) and
the shear stresses as:

cxy ¼
1
G
sxy ¼ 2 1þ mð Þ

E
sxy

cxz ¼
1
G
sxx ¼ 2 1þ mð Þ

E
sxy

cyz ¼
1
G
syz ¼ 2 1þ mð Þ

E
syz

ð4:2Þ

The tensor shear strains are:

eij ¼ 1
2
cij ¼

1
2G

sij ¼ 1þ mð Þ
E

sij ð4:3Þ

Fig. 4.1 Linear elastic
stress–strain diagram
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4.3 E, G, ν Relationship

From the above, it follows that:

G ¼ E
2 1þ mð Þ ð4:4Þ

This relationship between E, G, and m for isotropic materials can be arrived at
through energy considerations (see, Boresi and Schmidt 2003, Sect. 3.3.2) or
analysis of deformations in pure shear (see, Gere and Timoshenko 1997, Sect. 3.6).
It is an important relationship because it shows that there are only two independent
constants for an isotropic, linear elastic material. This means that the engineering
properties (constants) for an isotropic, linear elastic material can be determined
from one test in the laboratory. For a simple tension test with known applied axial
(normal) stress, measurement of the axial strain gives the Young’s modulus, E, and
measurement of the lateral strain provides Poisson’s ratio, m.

The modulus, E, and Poisson’s ratio, m, for three commonly used metals are
presented in Table 4.1 where the modulus values are given in terms of system
international units, gigapascal (GPa), and US customary units, megastress
(Msi) (note that 1.0 Msi = 6.8948 GPa). Clearly, steel is much stiffer than titanium
and aluminum as demonstrated in Table 4.1.

4.4 Exercises

4:4:1 Verify the shear modulus values in Table 4.1 for the given E and m.
4:4:2 Determine the normal strains exx if rxx ¼ ryy ¼ rzz ¼ r.
4:4:3 If the strains are very small, their products may be neglected. What then is

the change in volume of a cube subjected to the uniform normal stress r as
in Exercise 4.4.2?

4:4:4 For a plane state of stress in the x–y plane with known rxx ¼ ryy ¼ sxy ¼ r,
what is the z-components of normal strain ezz?

4:4:5 What are the shear strains cxz and cyz for the plane state of stress in 4.4.4?

Table 4.1 Modulus values
for metals

Materials Modulus E Poisson’s
ratio

Shear
modulus G

GPa Msi ν GPa Msi

Steel 200.0 29.0 0.32 132.0 19.1

Titanium 91.0 13.2 0.36 61.9 9.0

Aluminum 69.0 10.0 0.33 45.9 6.7
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Appendix: Solutions

4:4:1 Verify the shear modulus values in Table 4.1 for the given E and m.

Solution
Using Excel and the relationship between E, G, and m gives:

Materials E m G = E/2(1 + m)

Gpa Msi Gpa Msi

Steel 200.0 29.0 0.32 132.0 19.1

Titanium 91.0 13.2 0.36 61.9 9.0

Aluminum 69.0 10.0 0.33 45.9 6.7

4:4:2 Determine the normal strains exx if rxx ¼ ryy ¼ rzz ¼ r.

Solution

exx ¼ 1
E

rxx � mryy � mrzz
� �

exx ¼ r
E

1� 2mð Þ

Note: if m ¼ 1
2 ; exx ¼ 0.

4:4:3 If the strains are very small, their products may be neglected. What then is
the change in volume of a cube subjected to the uniform normal stress r as
in Exercise 4.4.2?

Solution

exx ¼ r
E

1� 2mð Þ ¼ eyy ¼ ezz � e

DV ¼ Lþ eð Þ3�L3

DV ¼ L3 þ 3L2eþ 3Le2 þ e3 � L3

DV ¼ 3L2eþ 3Le2 þ e3

Neglecting products of e; DV , approaches 3L2e.

4:4:4 For a plane state of stress in the x–y plane with known rxx ¼ ryy ¼ sxy ¼ r,
What is the Z-components of normal strain ezz?
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Solution

ezz ¼ 1
E

rzz � mrxx � mryy
� �

ezz ¼ �2mr
E

4:4:5 What are the shear strains cxz and cyz for the plane state of stress in 4.4.4?

Solution

cxz ¼
1
G
sxz ¼ 2 1þ mð Þ

E
sxz

cyz ¼
1
G
syz ¼ 2 1þ mð Þ

E
syz

) cxz ¼ cyz ¼ 0
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Chapter 5
Equilibrium

5.1 Newton’s Second Law

Fundamental to the analysis of the response of solid materials is the application of
Newton’s second law (Newton 1687), namely that the summation of all external
forces

P
F is related to the mass, m, of the body and its acceleration, a, by:

X
F ¼ ma ð5:1Þ

For bodies at rest (acceleration a = 0), this equation may be written in terms of
the three components of force in the orthogonal x-, y-, and z-directions:

P
Fx ¼ 0

P
Fy ¼ 0

P
Fz ¼ 0

ð5:2Þ

Likewise, the equilibrium equations (zero angular acceleration) for moments
about the three orthogonal axes are:

P
Mx ¼ 0P
My ¼ 0P
Mz ¼ 0

ð5:3Þ

Application of Newton’s second law for equilibrium in terms of the stresses at a
point (Fig. 2.1), with body forces assumed negligible in comparison with other
forces, gives the results as partial differential equations (see Appendix):
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@rx
@x þ @sxy

@y þ @sxz
@z ¼ 0

@ry
@y þ @sxy

@x þ @syz
@z ¼ 0

@rz
@z þ @sxz

@x þ @syz
@y ¼ 0

ð5:4Þ

These equilibrium equations are fundamental and are used extensively for the
analysis of bodies at rest.

5.2 Exercises

5:2:1 Determine the reactions at A and B for the simply supported beam loaded as
shown.

5:2:2 Determine the moment at the center of the beam in Exercise 5.2.1.
5:2:3 Determine the force reaction at A for the cantilevered beam shown below.
5:2:4 Determine the moment reaction at A for the cantilevered beam below.

Appendix: Solutions

5:2:1 Determine the reactions at A and B for the simply supported beam loaded as
shown.

Solution
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X
MA ¼ 0 ¼ P

L
2
� LRB ) RB ¼ P

2X
Fy ¼ 0 ¼ RA � PþRB ) RA ¼ P� RB

RA ¼ P
2

5:2:2 Determine the moment at the center of the beam in Exercise 5.2.1.

Solution

Mx¼L
2
¼ L

2
RA ¼ L

2
P
2
¼ PL

4

5:2:3 Determine the force reaction at A for the cantilevered beam below.

Solution

X
Fy ¼ 0 ) RA ¼ P

5:2:4 Determine the moment reaction at A for the cantilevered beam below.

Solution

X
MA ¼ 0 ) MA ¼ PL

Reference

Newton, I. (1729). Mathematical principles of natural philosophy, 1687 (A. Motte, Trans).
Benjamin Motte.
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Chapter 6
Axial Loading

6.1 Axial Stress

For axial stress loading, such as a tension test (see Fig. 3.1 repeated below as Fig.
6.1), of an isotropic, linear elastic material, the constitutive equation reduces to:

rxx ¼ Eexx ð6:1Þ

where E is the elastic modulus of the material.
For an axial load, P, and a cross-sectional area, A, the axial normal stress, rxx, is:

rxx ¼ P
A

ð6:2Þ

6.2 Axial Strain

For a bar of original length, L, and a change in length, u, the axial strain, exx, is:

exx ¼ u
L

ð6:3Þ

6.3 Change in Length

Combining the equations for stress and strain (6.1–6.3) and integrating (adding up)
the displacements over the length, L, give the total change in length, d, of a rod
subjected to axial loading:
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d ¼ PL
AE

ð6:4Þ

This equation is fundamental for the design of a bar subjected to axial loading.

6.4 Stress–Strain Diagram

A plot of stress versus strain for the linear elastic range of a tension test is a straight
line (Fig. 6.2). The slope of the stress–strain diagram is the elastic modulus E;
modulus is also referred to as the stiffness of the material.

6.5 Nonlinear Response

Very few materials exhibit linear elastic stress–strain response up to failure. More
typically, there is elastic response followed by nonlinear response as shown in
Fig. 6.3. The demarcation between elastic and nonlinear response is defined as the
elastic limit or proportional limit.

The modulus, E, and Poisson’s ratio, m, for three commonly used metals are
presented in Table 4.1 (repeated here as Table 6.1) where the modulus values are
given in terms of system international units, gigapascal (GPa), and US customary
units, megastress (Msi) (note that 1.0 Msi = 6.8948 GPa). Clearly, steel is much
stiffer than titanium and aluminum as demonstrated in Table 6.1 and Fig. 6.4.

Fig. 6.1 Tensile loading of a
bar

Fig. 6.2 Linear stress–strain
response
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6.6 Exercises

6:6:1 A 0.5″-diameter steel rod is subjected to an axial load of 500 lbs. What is
the stress in the rod?

6:6:2 If the rod in Exercise 6.6.1 is 5 ft. long, what is the change in length due to
the 500-lb load?

6:6:3 What is the change in diameter of the rod in Exercise 6.6.2?
6:6:4 What is the stress in the rod in pascals?
6:6:5 What is the change in length in meters?

Fig. 6.3 Nonlinear stress–
strain response

Table 6.1 Modulus values
for metals

Material Modulus E Poisson’s
ratio

Shear
modulus G

GPa Msi ν GPa Msi

Steel 200.0 29.0 0.32 132.0 19.1

Titanium 91.0 13.2 0.36 61.9 9.0

Aluminum 69.0 10.0 0.33 45.9 6.7

0

50

100

150

200

250

Steel Titanium Aluminum

Modulus Comparisons

Modulus E (GPa) Modulus E (Msi)

Fig. 6.4 Modulus
comparisons
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Appendix: Solutions

6:6:1 A 0.5″-diameter steel rod is subjected to an axial load of 500 lbs. What is
the stress in the rod?

Solution

rxx ¼ P
A
¼ 500

pd2=4
¼ 2000

p 0:5ð Þ2 ¼ 2;546:5 psi ¼ 2:546 ksi

6:6:2 If the rod in Exercise 6.6.1 is 5 ft. long, what is the change in length due to
the 500-lb load?

Solution

d ¼ PL
AE

¼ 500 5 � 12ð Þ
p 0:5ð Þ2 29 � 106ð Þ ¼ 1317:1 � 10�6 ¼ 0:0013171 in:

6:6:3 What is the change in diameter of the rod in Exercise 6.6.2?

Solution

Dd ¼ errd1 ¼ mexxd1 ¼ ð0:5Þð0:32 � 0:0013171=60Þ ¼ 3:5123 � 10�6

Dd ¼ 0:0000035123 in:

6:6:4 What is the stress in the rod in pascals?

Solution

2; 546:5 psi � 1MPa
145 psi

¼ 17:562MPa ¼ 17:562 � 106 Pa

6:6:5 What is the change in length in meters?

Solution

d in: � 1:0m
39:7 in:

¼ 0:0013171
39:7

¼ 33:176 � 10�6 m ¼ 33:176 � 10�4 cm

¼ 0:033176mm
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Chapter 7
Torsion of Cylindrical Bars

Experimental evidence shows that when a solid, or hollow, cylindrical bar is
subjected to equilibrated twisting moments (torque, T, applied at the opposite ends
of the bar) (Fig. 7.1), the cross-sectional planes rotate through an angle of twist, θ,
about the axis of the bar. The cross-sectional planes remain planar—they do not
warp—and the radius of the bar does not change length. The angle of twist, θ, is
proportional to the length, L, and the torque, T.

7.1 Shear Strain

The torque is the result of the shearing action applied at the ends of the bar. The
shear strains associated with such torques can be determined by considering the
displacements depicted in Fig. 7.2 where we consider a bar fixed at one end (or
one-half of the bar shown in Fig. 7.1). For small deformations, the arc length B–B′
in the figure can be approximated from two triangles, one formed by the angle γ
along the length of the bar and the other formed by the angle θ in the cross section.
Thus,

c ¼ rh
L

ð7:1Þ

The angle γ is the change in an original right angle and is the shear strain. From
this equation, it is apparent that the shear strain at a given position, z = L, varies
linearly with the radius, r, over the cross section of the bar.
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7.2 Torque

When the bar is subjected to torque, shear stresses develop over the transverse
cross-sectional area, A. The distribution of shear stresses (and shear strains) over
the cross-sectional plane varies linearly with radial position, r, as shown in Fig. 7.3.
The torque, T, about the z-axis, is the moment of the forces associated with the
shear stresses szh, integrated over the cross-sectional area:

T ¼
Z
A
rszhdA ð7:2Þ

7.3 Angle of Twist

From the constitutive equation for pure shear loading and the two above equations,
the torque, T, is:

Fig. 7.1 Circular bar in
torsion

Fig. 7.2 Torsional
displacements
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T ¼ Gh
L

Z
A
r2dA ¼ GhJ

L
ð7:3Þ

where J is the polar moment of inertia of the cross-sectional area, A. Thus, for an
applied torque T, the angle of twist is:

h ¼ TL
JG

ð7:4Þ

This equation is fundamental for design of circular bars subjected to torsion.

7.4 Maximum Shear Stress

The maximum shear stress in a circular cylinder under torsion is a fundamental
design consideration. For a cylinder of radius, R, the maximum shear stress is
determined by combining the constitutive equation, the strain equation, and the
angle of twist equation with the result:

smax
zh ¼ Gcmax ¼ GRh

L
¼ TR

J
ð7:5Þ

Fig. 7.3 Shear stress
distribution in a circular bar
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From the preceding development, it is evident that the analysis holds for both
solid and hollow circular cylinders subjected to torsional loading.

7.5 Non-circular, Prismatic Bars

Methods are available for analyzing torsion of non-circular bars. The most general
methods fall into the category of computational methods such as the finite element
to be discussed in Chap. 15.

7.6 Exercises

7:6:1 Determine the polar moment of inertia of a circular bar radius R.
7:6:2 What torque is required to twist an aluminum bar through an angle of 10° if

the bar is 2 cm in diameter and 1.5 m long?
7:6:3 What is the maximum shear stress in Pa for the bar in Exercise 7.6.2?
7:6:4 What is the midlength shear strain at a radius r = 0.5 cm for the bar in

Exercise 7.6.2?
7:6:5 Compare the maximum stress in steel, titanium, and aluminum bars for the

parameters of Exercise 7.6.2.

Appendix: Solutions

7:6:1 Determine the polar moment of inertia of a circular bar radius R

Solution

J ¼
Z2p

0

ZR

0

r2rdrdh ¼ 2p
ZR

0

r3dr ¼ 2pR
4

4

¼ pR4

2

7:6:2 What torque is required to twist an aluminum bar through an angle of 10° if
the bar is 2 cm in diameter and 1.5 m long?
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Solution

h ¼ TL
JG

)

T ¼ hJG
L

¼ 10 � p=180ð Þ pR4=2ð Þ 45:9 � 106 N=m2
� �

1:5m

T ¼
10 � ðpÞ p 1 cm � 1m=100 cmð Þ4

� �
45:9 � 106 N� �

180 � 2 � 1:5m3

T ¼ 10 � ðpÞ p 1 � 1m4ð Þð Þ 45:9 � 106 N� �
180 � 2 � 1:5m3 � 1004 ¼ 10 � p2 � 45:9 � 106

180 � 2 � 1:5 � 106 N�m

T ¼ p2 � 459:0
180 � 3 ¼ 2:097N�m

7:6:3 What is the maximum shear stress in Pa for the bar in Exercise 7.6.2?

Solution

smax ¼ TR
J

¼ 2:097 � R
pR4=2

¼ 4:195
pR3 ¼ 4:195

p 1 � 10�2ð Þ3 ¼ 1:3352 � 106 Pa ¼ 1:3352 MPa

7:6:4 What is the midlength shear strain at a radius r = 0.5 cm for the bar in
Exercise 7.6.2?

Solution

c ¼ rh
L

and h ¼ TL
JG

) c ¼ r
L
h ¼ r

L
10 � p

180
¼ 0:5

18 � 100 � 0:75 ¼ 0:0004

7:6:5 Compare the maximum stress in steel, titanium, and aluminum bars for the
parameters of Exercise 7.6.2

Solution

smax ¼ TR
J

and T ¼ hJG
L

) smax ¼ hJG
L

R
J
¼ hR

L
G
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Now, hR
L is the same for all three bars. Thus,

smax
Al ¼ hR

L
GAl smax

St ¼ hR
L
GSt smax

Ti ¼ hR
L
GTi
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Chapter 8
Beam Bending

A beam is a structural member that is subjected to force and/or moment loading
transverse to its length. The length of a beam is usually greater than both its width
and its depth. An example of a beam under concentrated force loading is the diving
board shown in Fig. 8.1. The diving board is a cantilevered beam subjected to a
concentrated load (the diver) at its end. As shown in the figure, the beam bends
under this loading.

8.1 Pure Bending

Pure bending of a beam refers to a beam, or a portion of a beam, where the loading
corresponds to external moments only. There are no external normal or shear forces
on this section of the beam. Figure 8.2 shows an example of pure bending in the
section B–C of a simply supported beam subjected to concentrated force loading.
From moment equilibrium

P
M ¼ 0, we know that the bending moment diagram

for this loading is shown in Fig. 8.2c. (The weight of the beam is neglected when it
is small in comparison with other forces.)

8.2 Bending Moments

The distribution of stresses over the cross section of the beam in the section B–C
must be equivalent to a moment about an axis that is perpendicular to the beam (the
z-axis in Fig. 8.3). We consider a prismatic beam with a cross section that has a
plane of symmetry (the x–y plane) with coordinate axes as defined in Fig. 8.3.
Further, we take the x-axis to pass through the centroid of the cross section.

The magnitude of the moment of the normal stresses, rxx, about the z-axis must
be equivalent to the external moment M. It is convention to define the moment such
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that tensile normal stress on the lower portion of the cross section results in a
positive moment. Thus,

M ¼ �
Z
A

yrxxdA ð8:1Þ

Fig. 8.1 Diving board

Fig. 8.2 Pure bending in a
beam subjected to
concentrated loads
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The distribution of the stresses over the cross section of the beam is related to the
distribution of strains through Hooke’s law. The strains are determined through the
consideration of the curvature that develops in the beam as a result of the applied
bending moment. The following section discusses the relationship between the
strains and the beam curvature.

8.3 Beam Curvature and Strains

Figure 8.4 shows the deformation of a centroidal line passed through the plane of
symmetry of a beam in pure bending. The originally straight lines along the length
of the beam deform into circular arcs when subjected to equilibrated bending
moments applied to the ends of the beam. Designating the radius of curvature of the
line of zero strain (the neutral axis) as q, it can be shown (Gere and Timoshenko,
Sect. 5.4) that the axial strain, exx, at a position y above the neutral axis, is:

exx ¼ � y
q

ð8:2Þ

Planes normal to the neutral axis prior to deformation remain plane and normal
to the neutral axis after deformation as indicated in Fig. 8.5. It is evident from this
figure that lines such as a� a0 above the neutral axis are compressed (negative
strain) and lines such as b� b0 below the neutral axis are elongated (positive strain)
for the positive bending moment shown. Thus, for the positive curvature shown in
Figs. 8.4 and 8.5, strains above the neutral axis (positive y) are negative (com-
pressive) and strains below the neutral axis (negative y) are positive (tensile).

Fig. 8.3 Cross section of
symmetric, prismatic beam
with normal stress
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8.4 Stresses Due to Beam Bending

The stresses rxx associated with the axial strains are determined from Hooke’s law
(with all other components of stress being zero) as:

rxx ¼ Eexx ð8:3Þ

Combining the above two equations gives the stresses as a function of the
location, y, the material’s elastic modulus, E, and the beam curvature, q, as:

rxx ¼ �E
q
y ð8:4Þ

We note here that it has been shown from the theory of elasticity, combined with
experimental observations on the deformations in slender members subjected to

Fig. 8.5 Generic section of a
beam in pure bending

Fig. 8.4 Beam deflection
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small deformations, that the remaining five components of stress are zero for pure
bending.

From the preceding equations, we see that the axial strain and stress are zero on
the neutral axis (y = 0) and vary linearly with the distance y from the neutral axis.
For a complete solution to the problem, it remains to determine the location of the
neutral axis. The location can be determined as follows: For pure bending, the axis
force is zero. The definition of axial force gives:

Z
A
rxxdA ¼

Z
A

�E
q

� �
ydA ¼ �E

q

Z
A
ydA ¼ �E

q
yA ¼ 0 ð8:5Þ

From the above, we see that the centroidal distance y ¼ 0 and the neutral axis
passes through the centroid of the cross section.

For an explicit expression for the stresses in terms of the applied moment M, we
consider the definition of moment:

M ¼ �
Z
A
yrxxdA ¼ E

q

Z
A
y2dA ¼ E

q
I ð8:6Þ

The minus sign is introduced in the above so that tensile stress below the axis
gives rise to positive bending moment as per our definition. In the above equation, I
is the moment of inertia of the cross section with respect to the z-axis.

From Eq. (8.6), we can write an expression for the curvature, qðxÞ, as a function
of the bending moment, MðxÞ.

qðxÞ ¼ EI
MðxÞ ð8:7Þ

Combining the stress and moment equations gives the stresses in terms of the
applied moment, M, the moment of inertia, I, and the distance, y, from the neutral
axis:

rxx ¼ �M
I
y ð8:8Þ

This equation is the fundamental equation for the axial stresses in a beam
subjected to pure bending. It is evident that the maximum stress in a beam in pure
bending occurs at the furthest point y ¼ ymaxð Þ from the neutral axis. For positive
bending moment, the maximum stress is compressive if it is above the neutral axis
and it is tensile if it is below the neutral axis.
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8.5 Exercises

8:5:1 Plot the variation of bending moment for the simply supported beam loaded
as shown below.

8:5:2 Plot the bending moment for the cantilevered beam loaded as shown below.

8:5:3 What is the curvature in an aluminum, 2″ square bar subjected to a bending
moment M = 150 ft-lbs?

8:5:4 What is the maximum stress in the bar of Exercise 8.5.3?
8:5:5 What is the minimum stress in the bar of Exercise 8.5.3?

Appendix: Solutions

8:5:1 Plot the variation of bending moment for the simply supported beam loaded
as shown.

Solution
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8:5:2 Plot the bending moment for the cantilevered beam loaded as shown.

Solution

8:5:3 What is the curvature in an aluminum, 2″ square bar subjected to a bending
moment M = 150 ft-lbs?

Solution
Recall Eq. (8.7):

qðxÞ ¼ EI
MðxÞ

q ¼
10 � 106� �

2�23
12

� �
150 � 12 ¼ 10 � 106� �

16
12

� �
150 � 12 ¼ 16 � 106

15 � 12 � 12 ¼ 0:0074 � 106

¼ 7; 400 in: ¼ 616:67 ft:

8:5:4 What is the maximum stress in the bar of Exercise 8.5.3?

Solution

rxx ¼ �M
I
y

For a positive moment, the maximum tensile stress is at the bottom of the beam:

rmax
xx ¼ � 150 � 12

2�23ð Þ
12

�1ð Þ ¼ 150 � 144
16

¼ 1; 350 psi
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8:5:5 What is the minimum stress in the bar of Exercise 8.5.3?

Solution
The stress at the top of the bar is compressive (i.e., negative) and has the same
magnitude as the stress at the bottom of the bar. Thus, rMin

xx ¼ �1; 350 psi
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Chapter 9
Beam Subjected to Transverse Loading

9.1 Equilibrium

Consider a statically determinate (all forces and moments can be determined
directly from the equations of equilibrium) beam of prismatic cross section with a
plane of symmetry passing through the centroid of the section (recall Fig. 8.3) and
the lines of action of all external loads in this plane of symmetry. Figure 9.1 shows
a simply supported beam subjected to a combination of transverse concentrated
loads, Pi, and distributed loading, q(x).

Force and moment equilibrium equations can be applied to a free body diagram
of the entire beam to determine the reactions at the supports. With the support
reactions known, equilibrium of a free body diagram of a generic section of the
beam, such as in Fig. 9.2, may be used to determine the transverse shear force, V
(x), and bending moment, M(x), at any position x along the beam. We continue
with the convention that positive moment gives tensile stresses below the neutral
axis. For the shear force, V(x), convention is to define V as positive when the shear
force is directed downward on a right-hand face as shown.

The variation of M(x) and V(x) along the length of the beam can be very helpful
when assessing the entire beam for forces, moments, stresses, and deflections. As a
first step, consider the forces and moments on an elemental beam section of length
dx subjected to the distributed loading q(x) (Fig. 9.3).

Force equilibrium in the vertical direction gives the rate of change of the shear
force as a function of the distributed load:

dVðxÞ
dx

¼ �qðxÞ ð9:1Þ

Moment equilibrium of the elemental section gives the rate of change of moment
as a function of the shear force:
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dMðxÞ
dx

¼ VðxÞ ð9:2Þ

These two equations must be modified in the cases of concentrated forces or
concentrated moments acting at specific positions along the length of the beam (see
Gere and Timoshenko, page 282 for details).

9.2 Stresses in Beams Under Transverse Loading

9.2.1 Normal Stress

The presence of moment M(x) and shear force V(x) at a generic cross section of a
beam indicates that there must be normal stresses rxx and shear stresses sxy acting
over the cross section (Fig. 9.4). The normal stresses are not affected by the
presence of the shear stresses, and thus, they are defined in terms of the moment M
(x) that is a function of position along the beam. From Eq. (8.7),

rxx ¼ �MðxÞ
I

y ð9:3Þ

Fig. 9.1 Beam under
transverse loads

Fig. 9.2 Free body diagram
of beam section

Fig. 9.3 Elemental beam
section
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9.2.2 Shear Stress

The magnitude of the shear stresses must vary, as a function of the y location, over
the transverse cross section. This is evident from the fact that the shear stress sxy
must be nonzero over some portion of the cross section in order to provide the
transverse shear force V; however, it must be zero on the top and bottom surfaces to
satisfy the boundary condition of zero shear stress on these stress-free surfaces.
Thus, the question is: How does sxy vary with y?

From the discussion of stress in Sect. 2.2, we know that if shear stresses are
present on one face of a material element, they must also be present on other faces
such that the stresses are equivalent to couples that render the element in equilib-
rium. Figure 2.2 shows the equilibrated shear stresses for plane stress. The answer
to the above question is determined by considering a free body diagram of a
transverse section of the beam of length dx and width b at y ¼ y1 (Fig. 9.5).

Equilibrium of forces in the axial (x) direction provides an expression for the
shear stress at y ¼ y1.

Z
A1

rxxdAþ
Z
A2

sxybdx�
Z
A3

rxxdA ¼ 0 ð9:4Þ

In the above equation, A1 and A3 are the (equal) areas of the transverse sections
above the line y ¼ y1 and A2 is the area (‘b) of the (horizontal) section at y ¼ y1,
upon which the shear stress is acting. Introducing the equation for normal stress in
terms of bending moment (9.3), the (algebraic) sum of integrals over A1 and A3

reduces to:

Fig. 9.4 Normal and shear
stresses on a beam cross
section

Fig. 9.5 Stresses in a section
of a beam under transverse
loading
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Z
A1

� ydM
I

dA � � dM
I

Z
A1

ydA ð9:5Þ

Now, the shear stress, sxy, is a specific value at y ¼ y1, and hence, combining
(9.4) and (9.5) gives the shear stress as:

sxy ¼ 1
Ib

dM
dx

� �Z
A1

ydA ð9:6Þ

Using dM
dx ¼ V xð Þ from (9.2), and defining the integral over the area A1 above

y ¼ y1 as Q � R
A1
ydA, the shear stress at location y ¼ y1 is given by:

sxy
��
y¼y1

¼ VðxÞQðy1Þ
Ib

ð9:7Þ

We note that this equation satisfies the boundary conditions sxy ¼ 0 on the top
and bottom surfaces because Qðy1Þ ¼ 0 for these y values. This equation also
indicates that the shear stress is a maximum along the beam at the x location
corresponding to the maximum VðxÞ.

This Eq. (9.7) is fundamental for predicting the shear stress in a beam subjected
to transverse loading.

9.3 Exercises

9:3:1 Plot the variation of shear force V along a beam loaded as shown below.

9:3:2 Plot the variation of moment M along the beam in Exercise 9.3.1.
9:3:3 Determine an expression for the maximum, tensile bending stress for a

beam loaded as in 9.3.1 if the cross section of the beam is a rectangle,
2h height by 1h width.

9:3:4 Determine an expression for the maximum shear stress for the beam in
Exercise 9.3.3.

9:3:5 What is the maximum compressive normal stress for the beam in Exercise
9.3.3, and where is it located?
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Appendix: Solutions

9:3:1 Plot the variation of shear force V along a beam loaded as shown below.

Solution

9:3:2 Plot the variation of moment M along the beam in Exercise 9.3.1.

Solution

9:3:3 Determine an expression for the maximum, tensile bending stress for a
beam loaded as in 9.3.1 if the cross section of the beam is a rectangle,
2h height by 1h width.
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Solution

rmax
xx ¼ �Mmaxymax

I
¼ �4PL �hð Þ

1�h�h3
12

¼ 48PL
h3

9:3:4 Determine an expression for the maximum shear stress for the beam in
Exercise 9.3.3

Solution

sxy
��
y¼0¼

VðxÞQðy1Þ
Ib

¼ 2PQðy ¼ oÞ
1 * h * h3 * h

12

¼ 24P h
2 * h * h
� �

h5
¼ 24P

h2

9:3:5 What is the maximum compressive normal stress for the beam in Exercise
9.3.3 and where is it located?

Solution

Same magnitude as max tensile, but on top of the beam.

rmax
xx ¼ �Mmaxymax

I
¼ �4PLh

1 * h * h3
12

¼ �48PL
h3
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Chapter 10
Beam Deflections

10.1 General Considerations

Beams that are subjected to loads deform with curvature as discussed in Chap. 8.
The curvature is accompanied by displacements (deflections). For the coordinate
system and loadings considered thus far, these deflections (designated, v), are in the
vertical y-direction. Such deflections may be important for design. In the following
we consider prismatic beams of isotropic, linear elastic materials under statically
determinate bending moments and transverse loads such that the deflections are
small and in the x–y plane of the beam. The x–y plane is a plane of symmetry. The
problem is to determine vðxÞ, the variation of the vertical displacement, v, with
location x along the beam. Since the beam is statically determinate, the support
reactions can be determined from the static force and moments equilibrium
equations.

Following Gere and Timoshenko (1997), the problem can be assessed by con-
sidering a cantilevered beam subjected to a concentrated load at the, otherwise, free
end. Figure 10.1 shows the loaded beam and the deflection curve vðxÞ.

10.2 Deflection Equations

From Fig. 8.5, it is evident that the radius of curvature is related to an increment of
arc length along the deflected curve by:

qdh ¼ ds ð10:1Þ

In most situations, the beam deflections (v) and rotations (θ) are very small and
we can use the approximation ds � dx. Thus:
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1
q
¼ dh

dx
ð10:2Þ

Further, for very small angles

dv
dx

¼ tan h � h ð10:3Þ

And thus, taking the derivative of θ in (10.3):

dh
dx

¼ d2v
dx2

ð10:4Þ

Combining (10.2 and 10.4) gives a relationship between the radius of curvature
and the vertical deflection:

1
q
¼ d2v

dx2
ð10:5Þ

Combining (10.5) with the moment curvature relationship (8.6) gives the fun-
damental second-order differential relationship between deflection, v, moment, M,
modulus, E, and moment of inertia, I.

EIv00 ¼ MðxÞ ð10:6Þ

The primes (′) in (10.6) are used to denote differentiation with respect to x (e.g.,
v00 ¼ d2v

dx2).
This derivative notation will be employed as we move forward to simplify the

writing of equations.
Combining (10.5) and (10.6) gives the relationship between curvature and

bending moment:

Fig. 10.1 Cantilevered beam
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1
qðxÞ ¼

MðxÞ
EI

ð10:7Þ

Taking additional derivatives of (10.6) results in expressions in terms of the
shear force, VðxÞ, and transverse loading, qðxÞ, where the results (9.1 and 9.2) have
been employed:

EIv000 ¼ VðxÞ ð10:8Þ

EIv0000 ¼ �qðxÞ ð10:9Þ

This development assumes that all loading quantities are given function of the
distance x along the beam. Integration of these differential equations introduces
unknown constants which must be determined from known boundary conditions
such as: deflection, v, slope, dv=dx v0ð Þ, shear force, V, or moment, M, at specified
positions along the beam. Integrating the moment Eq. (10.6) gives:

EIv0 ¼
Z
x

MðxÞdxþC1 ð10:10Þ

and a second integration gives:

EIv ¼
ZZ

x
ðMðxÞdxÞdxþ

Z
x

C1dxþC2 ð10:11Þ

where two constants of integration, C1 and C2 have been introduced.
From the two Eqs. (10.9 and 10.10), it is clear that M(x) must be a known

function of x in order to perform the integrations. For statically determinate beams,
M(x) can be determined from the equations of equilibrium. If the loading is not
continuous over the length of the beam (such as introduction of concentrated loads
at specific locations along the beam), the integration must be conducted over sec-
tions of the beam in which the loading is continuous. The complete solution for the
beam deflection along the entire length of the beam is then obtained by matching
slopes and deflections at the points of discontinuous loading.

Determination of the unknown constants follows directly from known boundary
and continuity conditions. A simple support corresponds to v ¼ 0, a fixed support
corresponds to v0 ¼ 0; continuity conditions at points along the beam correspond to
v1 ¼ v2 and v01 ¼ v02 where the subscripts 1 and 2 correspond to locations on either
side of a point, where the loading is discontinuous, such as where a concentrated
load is applied.
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10.3 Statically Indeterminate Beams

It is often the case that the force and moment reactions at the supports cannot be
determined directly from statics. Such beams are called statically indeterminate.
The set of equations used to determine all unknowns must then include all boundary
conditions and continuity conditions, in addition to the force and moment equi-
librium equations. An example of a statically indeterminate beam is shown in
Fig. 10.2, where a uniformly loaded beam is fixed at both ends.

There are six unknowns for such a loaded beam: force reactions at A and B,
moment reactions at A and B, and two constants of integration C1 and C2. There are
also six equations available to solve for the six unknowns: v ¼ 0 at A and B, v0 ¼ 0
at A and B, overall force equilibrium

P
Fy ¼ 0

P
Fy ¼ 0, and overall moment

equilibrium
P

Mz ¼ 0.

10.4 Exercises

10:4:1 Determine the bending moment, M, at A x ¼ 0ð Þ for a cantilever beam,
that is loaded as shown.

10:4:2 What are four boundary conditions for the beam in 10.4.1?
10:4:3 Determine the slope of the beam in exercise 10.4.1 at the end x = L.
10:4:4 Determine the displacement v Lð Þ at the end of the cantilevered beam

loaded as shown above.
10:4:5 Determine the radius of curvature at x ¼ L for the beam in exercise 10.4.1.

Appendix: Solutions

10:4:1 Determine the bending moment, M, at A x ¼ 0ð Þ for a cantilever beam
loaded uniformly.

Fig. 10.2 Statically
indeterminate beam
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Solution

From moment equilibrium:

MA ¼
ZL

0

x wdxð Þ ¼ �wL2

2

10:4:2 What are four boundary conditions for the cantilever beam in 10.4.1?

Solution

vð0Þ ¼ 0; v
0 ð0Þ ¼ 0 : MðLÞ ¼ 0; VðLÞ ¼ 0

10:4:3 Determine the slope of the cantilever beam in exercise 10.4.1 at the end
x = L.

Solution

From Eq. (10.10):

EIv
0 ðxÞ ¼

Zx

0

MðxÞdxþC1 ¼
Zx

0

w
ðL� xÞ2

2
dxþC1

EIv
0 ðxÞ ¼ w

2
L� xð Þ3

3
þC1 ¼ w

6
L3 � 3xL2 þ 3x2L� x3
� �þC1

EIv
0 ð0Þ ¼ 0 ¼ w

6
L3 þC1 ) C1 ¼ �wL3

6

EIv
0 ðLÞ ¼ w

6
L3 � 3L3 þ 3L3 � L3
� �� wL3

6

v
0 ðLÞ ¼ �wL3

6EI
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10:4:4 Determine the displacement v Lð Þ at the end of the cantilevered beam
loaded as shown above.

Solution

Using the result from solution 10.4.3:

EIv
0 ðxÞ ¼ w

2
L� xð Þ
3

3

� wL3

6

Integrating )

EIvðxÞ ¼ �w
6

L� xð Þ4
4

� w
6
L3xþC2

vð0Þ ¼ 0 ) 0 ¼ � w
24

L4 þC2

) C2 ¼ wL4

24

vðLÞ ¼ �wL4

6EI
þ wL4

24EI
¼ wL4

EI
� 4
24

þ 1
24

� �
¼ � 3wL4

24EI

vðLÞ ¼ �wL4

8EI

10:4:5 Determine the radius of curvature at x ¼ L for the beam in exercise 10.4.1.

Solution

Recall Eq. (10.5)

1
qðxÞ ¼

MðxÞ
EI

At x ¼ L, the moment M(L) is zero. Thus q ¼ 1, the beam is straight at the end
x = L.

Reference

Gere, J. M., & Timoshenko, S. P. (1997). Mechanics of materials (4th ed.). PWS Publishing Co.
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Chapter 11
Thermal Effects

11.1 Thermal Strains

Most materials experience extensional strains (change in size) when subjected to a
temperature change. For unrestrained, isotropic materials, the extensional thermal
strains, eT , are the same in all directions and can be expressed in terms of a
coefficient of thermal expansion, a, and the temperature change, DT , as:

eTxx ¼ eTyy ¼ eTzz ¼ a � DT ð11:1Þ

Isotropic materials do not exhibit shear strain when subjected to a temperature
change. The thermal strains are often referred to as free thermal strains.

For a linear elastic material subjected to both mechanical strains (i.e.,
stress-related) and free thermal strains, the total strains, e, are the sums of the
mechanical strains, er, and the thermal strains, eT . Thus, the total x-direction strains
are:

exx ¼ erxx þ eTxx ð11:2Þ

11.2 Thermal Stresses

Substituting for the mechanical strains in terms of stresses (e.g., Eq. 6.1) and
thermal strains in terms of aDT , we obtain the thermal stresses in terms of the total
strains, exx, the thermal strains, aDT , and the elastic modulus, E. For a
one-dimensional state of stress rxx, the result is:
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rxx ¼ Eðexx � aDTÞ ð11:3Þ

As an example, consider a bar constrained between two smooth, frictionless
walls (Fig. 11.1) and subjected to a temperature change DT , the total axial strain
exx ¼ 0 and thus the axial stresses in the bar are compressive and given by:

rxx ¼ �EaDT ð11:4Þ

It is assumed here that the bar is free to expand in the lateral directions because
of the smooth, frictionless walls.

11.3 Exercises

11:3:1 Determine the change in volume of a cube, of length, h, that is subjected to
a uniform temperature change DT if the cube is free to expand in all
directions.

11:3:2 Determine the total change in length, d, for an axial rod of length L that is
subjected to a temperature change, DT , and an axial load, P, if the rod has
modulus, E, coefficient of thermal expansion, a, Poisson’s ratio, m, and a
cross-sectional area A.

11:3:3 What is the lateral strain eyy for the rod in Exercise 11.3.2?
11:3:4 What is the axial stress in a rod fixed at its ends between frictionless walls

if it is subjected to a temperature change DT?

Appendix: Solutions

11:3:1 Determine the change in volume of a cube, of length, h, on a side that is
subjected to a uniform temperature change DT if the cube is free to expand
in all directions.

Solution

From Eq. (11.2)

exx ¼ erxx þ eTxx

Fig. 11.1 Bar constrained
between smooth walls
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Likewise:

eyy ¼ eryy þ eTyy

ezz ¼ erzz þ eTzz

With all stresses being zero, the strains are the free thermal strains.

exx ¼ eyy ¼ ezz ¼ aDT

The expanded lengths are:

DV ¼ h 1þ aDTð Þ½ �3�h3

DV ¼ h3 1þ aDTð Þ3�h3

DV ¼ h3 1þ 3aDT þ 3a2DT2 þ a3DT3� �� h3

DV ¼ h3 3aDT þ 3a2DT2 þ a3DT3� �

11:3:2 Determine the total change in length, d, for an axial rod of length, L, that is
subjected to a temperature change, DT , and an axial load, P, if the rod has
modulus, E, coefficient of thermal expansion, a, Poisson’s ratio, m, and a
cross-sectional area A.

Solution

d ¼ PL
AE

þ LaDT

11:3:3 What is the lateral strain eyy for the rod in Exercise 11.3.2?

Solution

eyy ¼ 1
E

ryy � mrxx � mrzz
� �þ aDT

eyy ¼ 1
E

0� m
P
A
� 0

� �
þ aDT

eyy ¼ � mP
AE

þ aDT
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11:3:4 What is the axial stress in a rod fixed at its ends between frictionless walls
if it is subjected to a temperature change DT?

Solution

exx ¼ 1
E

rxx � mryy � mrzz
� �þ aDT

exx ¼ 1
E

rxx � 0� 0ð Þþ aDT ¼ 0

rxx ¼ �EaDT
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Chapter 12
Stability

Most large structures erected in earlier time, including the large cathedrals, temples,
mosques, and synagogues, were erected as structures that were primarily under
compression loading. When structural members are loaded in compression, there is
a limiting value of the load for which the structure remains stable. A simple
example of this structural response is a string; under tensile loading, the string is
stable, but under compressive loading, the string is unstable, i.e., the string buckles.

As demonstrated in the following, the load at which a structural member buckles
is a function of the material properties and geometry of the member. The load at
which a structure buckles is called the critical load. If the structure is loaded below
the critical load, it will return to stable equilibrium if displaced very slightly from
the equilibrium position; however, if the structure is loaded slightly above the
critical load, it will buckle when disturbed the smallest amount. The first successful
analysis of a buckling problem was that by Euler (1744) for the case of a slender
rod subjected to axial compressive load. In-depth studies of the stability of struc-
tures are given by Timoshenko and Gere (1961) and Bažant and Cedolin (1991).

12.1 Euler Buckling

Consider a long, slender column with pinned ends (i.e., free to rotate) under axial
load, P, as shown in Fig. 12.1 (as in Gere and Timoshenko 1997). The load is
applied through the centroid of the column cross section; the column is made of a
linearly elastic material, is perfectly straight, of length, L, cross-sectional moment
of inertia, I, and is assumed to have no imperfections. This problem is referred to as
Euler buckling.

From the free body diagram in Fig. 12.1c, the bending moment Eq. (10.6) for
the buckled column is:
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EIv00 ¼ �Pv ð12:1Þ

It is convenient when solving (12.1) to combine terms and define:

k2 ¼ P
EI

ð12:2Þ

Combining the above two equations gives the bending moment equation in the
form:

v00 þ k2v ¼ 0 ð12:3Þ

The solution to this second-order differential equation is:

v ¼ C1 sin kxþC2 cos kx ð12:4Þ

where C1 and C2 are constants of integration determined by the boundary condi-
tions of the problem. For the pinned-end column of Fig. 12.1, the boundary con-
ditions are as follows: The displacements are zero at the ends:

vð0Þ ¼ 0

vðLÞ ¼ 0
ð12:5Þ

From (12.4), the boundary condition at x ¼ 0 requires that C2 ¼ 0. Thus, the
shape of the deflection curve for the pinned-end rod is:

Fig. 12.1 Pinned-end column under axial compression. a Axially loaded pinned-end column.
b Buckled column. c Internal reactions: buckled column
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vðxÞ ¼ C1 sin kx ð12:6Þ

The boundary condition at x ¼ L requires that C1 sin kL ¼ 0. If C1 and C2 are
both zero, the problem is trivial in that the deflection is zero. The non-trivial
solution corresponds to sin kL ¼ 0. Thus, for a non-trivial solution, it must be that:

kL ¼ np n ¼ 0; 1; 2; 3; . . . ð12:7Þ

The case n ¼ 0 corresponds to vðxÞ � 0 and is of no interest as a buckling
problem. Combining (12.2) and (12.7) gives the critical buckling load, Pcr, as:

Pcr ¼ n2p2EI
L2

ð12:8Þ

The smallest load P that satisfies the deflection equation is the case n ¼ 1, and
thus,

Pcr ¼ p2EI
L2

ð12:9Þ

This equation is Euler’s buckling equation for a pinned-end column. It shows
that the critical load is inversely proportional to the length (L)-squared and pro-
portional to the elastic modulus, E, and cross-sectional moment of inertia, I. Thus,
long slender columns have low critical loads, and short, stout columns have high
critical loads. The shape of the deflected column for the case n = 1 is a simple sine
wave (Fig. 12.1b) with C1 corresponding to the deflection at L/2. Higher values of
n correspond to higher critical loads and higher buckling mode shapes.

The critical buckling load and the buckled shape of a column are influenced by
the support conditions. Figure 12.2 shows a comparison of buckled columns for
three types of supports, pinned–pinned, fixed–pinned, and fixed–fixed. Clearly, the
fixed–fixed support condition results in the highest critical buckling load.

Fig. 12.2 Column support
condition buckling modes.
a Pinned–pinned. b Fixed–
pinned. c Fixed–fixed
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12.2 Exercises

12:2:1 Show that Eq. 12.4 is a solution to the second-order differential Eq. 12.3.
12:2:2 Compare the critical buckling loads for a pinned-end yardstick and a

pinned-end, foot-long ruler of the same material and cross-sectional area.

Appendix: Solutions

12:2:1 Show that Eq. 12.4 is a solution to the second-order differential Eq. 12.3.

Solution

v00 þ k2v ¼ 0

v ¼ C1 sin kxþC2 cos kx

v0ðxÞ ¼ C1k cos kx� C2k sin kx

v00ðxÞ ¼ �C1k
2 sin kx� C2k

2 cos kx ¼ k2 �C1 sin kx� C2 cos kxð Þ
) v00 þ k2v ¼ �k2 C1 sin kxþC2 cos kxð Þþ k2 C1 sin kxþC2 cos kxð Þ ¼ 0

12:2:2 Compare the critical buckling loads for a pinned-end yardstick and a
pinned-end, foot-long ruler of the same material and cross-sectional area.

Solution

Pcr ¼ p2EI
L2

PYS
cr ¼ p2EI

32
¼ p2EI

9

PR
cr ¼

p2EI
12

¼ p2EI

The critical buckling load of the ruler is 9 times that of the yardstick.
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Chapter 13
Thin-Walled Pressure Vessels

Many structures in use in everyday life are thin-walled vessels. As indicated in
Fig. 13.1, thin-walled pressure vessels include a wide variety of configurations and
uses. Examples include balloons and balls, hoses and pipes, small and large tanks,
and portions of planes and space vehicles. A pressure vessel is considered
thin-walled when the ratio of radius, r, to wall thickness, t, is 10.0 or greater. In the
following, the stresses in thin-walled spheres and thin-walled cylinders subjected to
uniform, internal pressure are studied.

13.1 Spherical Pressure Vessel

Consider a spherical thin-walled vessel made of linearly elastic material with
modulus, E, and wall thickness, t. The inner radius of the sphere is r, and the sphere
is under internal pressure, p. Since the wall thickness is small, we assume that the
normal stresses throughout the wall thickness do not vary with position. Likewise,
as the internal normal pressure is p, and the external normal pressure is zero, the
through-the-thickness stresses are small in comparison with the normal stresses in
the membrane.

The symmetry of the structure results in a uniform field of normal stresses acting
at all points within the sphere walls. The shear stresses are zero throughout the
sphere. For convenience, we designate this normal stress as r1 and refer to it as the
membrane stress. Equilibrium of the free body diagram, in Fig. 13.2, then provides
the fundamental relationship between the membrane stress, r1, the internal pres-
sure, p, the sphere inner radius, r, and the wall thickness, t. It is noted that for thin
spheres, the difference between the inner radius and the radius to the center of the
wall is insignificant and can be ignored.

The summation of forces indicated in Fig. 13.2 equates the force associated with
r1 acting around the circumference of the half sphere with the force associated with
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the pressure p acting over the flat circle of a slice through the center of the sphere.
With the stresses known, the strains are determined from the constitutive equation.

r1 ¼ pr
2t

ð13:1Þ

13.2 Cylindrical Pressure Vessel

In the case of a cylindrical, thin-walled pressure vessel such as a pipe, we designate
two normal stresses, r1, acting tangentially around the circumference of the
cylinder and, r2, acting along the length of the cylinder (Fig. 13.3a). Equilibrium of
the free body diagrams in Fig. 13.3 provides the relationships between the internal

Fig. 13.1 Thin-walled pressure vessels

Fig. 13.2 Free body diagram
of half sphere
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pressure, p, the axial stresses, r2, and the tangential stresses, r1. Equilibrium in the
axial direction assumes that the ends of the cylinder are closed.

r1 ¼ pr
t

ð13:2Þ

r2 ¼ pr
2t

ð13:3Þ

Thus, for a cylinder under internal pressure, the tangential (or hoop) stress, r1, is
double that of the axial stress, r2.

13.3 Exercises

13:3:1 Show that Eq. (13.1) is correct.
13:3:2 Determine the strains in a thin-walled sphere under internal pressure p in

terms of the other sphere properties.
13:3:3 Show that Eq. (13.2) is correct.
13:3:4 Show that Eq. (13.3) is correct.
13:3:5 Basketballs used by men are generally larger in diameter than those used

by women. If the balls are made of the same material and have the same
internal pressure, what is the ratio of the thickness of a men’s ball to that of
the women’s ball?

Appendix: Solutions

13:3:1 Show that Eq. (13.1) is correct.

Fig. 13.3 Free body
diagrams for a pressurized
cylinder. a Pressurized. b Half
cylinder: free body diagram
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Solution

13:3:2 Determine the strains in a thin-walled sphere under internal pressure p in
terms of the other sphere properties.

Solution

r1 ¼ r2 ¼ pr
2t

e1 ¼ 1
E

r1 � mr2ð Þ ¼ 1
E
pr
2t

1� mð Þ
e2 ¼ e1

13:3:3 Show that Eq. (13.2) is correct

Solution

13:3:4 Show that Eq. (13.3) is correct

See the above-mentioned summation of forces.
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13:3:5 Basketballs used by men are generally larger in diameter than those used
by women. If the balls are made of the same material and have the same
internal pressure, what is the ratio of the thickness of a men’s ball to that of
the women’s ball if the stress is to be the same in both balls?

Solution

r1 ¼ r2 ¼ pr
2t

) p
2r

¼ tM
rM

¼ tW
rW

) tM
tW

¼ rM
rW
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Chapter 14
Plates and Shells

14.1 Plates

A structural member that is in common usage is a flat plate. Floors, decks, manhole
covers, and retaining walls are examples of flat plates. In general, a plate has a large
plane area and a thickness that is much smaller than any dimension of the plane
area. Plates can be subjected to a wide variety of loading and boundary conditions.
Common examples of boundary conditions include simply supported, fixed, and
free. Flat plates covering large areas are typically supported by equally spaced
beams called “stringers.” As a result of the variable loading and boundary condi-
tions over the area of the plate, analysis of plates is more complicated than that of
the idealized rods, beams, and thin-walled structural members analyzed previously
in this treatise. An additional consideration for analysis of plates is the extent to
which the deformations can be considered small. This is a valid assumption pro-
vided that the deformations are small in comparison with the plate thickness which
is small in comparison with the lateral dimensions of the plate.

Analytical and approximate analytical solutions for a limited variety of
plate geometries and loading conditions are discussed in Timoshenko and
Woinowsky-Krieger (1959). For analysis of more complicated geometries, load-
ings, and support conditions, finite element methods or other approximate methods
are used (see, e.g., Shames and Dym 1985).

A rectangular plate with associated bending moments, M, and shear forces, Q,
(defined as moment and force intensities per unit length), is depicted in Fig. 14.1.
Solutions to plate problems can be formulated in terms of these force and moment
intensities, and the displacements, wðx; yÞ, of the plate midplane. We consider
loading, qðx; yÞ, that is perpendicular to and variable over the surface of the plate.
The moment Mxy is a twisting moment associated with the shear stresses in the
plane of the plate. The shear forces Qx and Qy are associated with the transverse
shear stresses sxz and syz.
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The moment and shear intensities in Fig. 14.1 are defined in terms of stresses as
follows:

Mx ¼
Zh=2

�h=2

rxxzdz

My ¼
Zh=2

�h=2

ryyzdz

Mxy ¼
Zh=2

�h=2

sxyzdz

Qx ¼
Zh=2

�h=2

sxzdz

Qy ¼
Zh=2

�h=2

syzdz

ð14:1Þ

The vertical displacement of the plate midplane, wðx; yÞ, associated with bend-
ing, is depicted in Fig. 14.2 for the plate curvature in the x–z plane. A similar figure
can be visualized for the y–z plane. It is assumed here, as was the case for bending

Fig. 14.1 Rectangular plate
and intensities. a Plate
bending moments per unit
length. b Plate geometry and
shear forces per unit length
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of a beam, that lines perpendicular to the undeformed middle surface remain per-
pendicular to the deformed middle surface and do not change length. As indicated
in the figure, the deformations uðx; y; zÞ and vðx; y; zÞ for the bending problem are
given by:

uðx; y; zÞ ¼ �z
@wðx; yÞ

@x

vðx; y; zÞ ¼ �z
@wðx; yÞ

@y

ð14:2Þ

Using the above deformations (14.2) with the strain-displacement (3.2 and 3.3)
and constitutive (4.1 and 4.2) equations for a homogeneous, linear elastic material,
the fundamental equations describing the plate bending problem can be summarized
as follows:

Mx ¼ �D
@2w
@x2

þ m
@2w
@y2

� �

My ¼ �D
@2w
@y2

þ m
@2w
@x2

� �

Mxy ¼ � 1� mð ÞD @2w
@x@y

� �
ð14:3Þ

where D is the bending rigidity defined in terms of known parameters of the plate:

D ¼ Eh3

12 1� m2ð Þ ð14:4Þ

Equilibrium of an infinitesimal element such as that in Fig. 14.3 leads to the
results:

@Qx

@x
þ @Qy

@y
þ qðx; yÞ ¼ 0 ð14:5Þ

Fig. 14.2 Plate deformations associated with bending
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and

@2Mx

@x2
þ 2

@2Mxy

@x@y
þ @2My

@y2
þ qðx; yÞ ¼ 0 ð14:6Þ

Equation (14.6) can be expressed in terms of the vertical displacement wðx; yÞ
using (14.3) with the result (14.7). The operator r4 is known as the biharmonic
operator (see Appendix):

r4wðx; yÞ � @4w
@x4

þ 2
@2w
@x2

@2w
@y2

þ @4w
@y4

¼ qðx; yÞ
D

ð14:7Þ

The above is the governing equation for classical plate theory. It was first
presented in various incomplete forms by Sophie Germain during the period 1811–
1816. Navier provided the complete form in an 1823 presentation to the French
Academy. Finally, Kirchhoff published a paper (1850) where he clearly stated the
assumptions used in developing the equations for small deformations of plates and
beams. Specification of the boundary conditions and variation of load qðx; yÞ must
be known to solve the equation. Analytic solutions are available for only a limited
number of cases.

14.2 Plate in Cylindrical Bending

One class of plate problems for which there is an analytical solution is a plate in
cylindrical bending. Consider a plate (Fig. 14.4), that is long in the y-direction,
simply supported along its edges and uniformly loaded qðx; yÞ ¼ q� over the plate
surface. The problem is then one-dimensional in x; the plate deforms in a cylin-
drical shape in the x–z plane. The boundary conditions for this problem are:

wð0Þ ¼ wðaÞ ¼ 0

Mð0Þ ¼ MðaÞ ¼ 0
ð14:8Þ

Fig. 14.3 Moments and
shear forces on infinitesimal
element
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These four boundary conditions provide the necessary equations for determi-
nation of the four unknown constants introduced upon integration of the
fourth-order partial differential equation (14.7) (with partial derivatives with respect
to y = 0). The general solution for displacement w(x) for the plate in cylindrical
bending is:

wðxÞ ¼ q�x4

24D
þ C1x3

6
þ C2x2

2
þC3xþC4 ð14:9Þ

The four boundary conditions result in the four constants:

C1 ¼ � q�a
2D

C2 ¼ 0

C3 ¼ q�a3

24D
C4 ¼ 0

ð14:10Þ

Note that if the plate was fixed along its edges, the problem now would be
solved using the boundary conditions:

wð0Þ ¼ wðaÞ ¼ 0

@w 0ð Þ
@x

¼ @w að Þ
@x

¼ 0
ð14:11Þ

Representative deformation shapes for these two cases of boundary conditions
are shown in Fig. 14.5.

14.3 Circular Plate Under Symmetrical Loading

A circular plate subjected to symmetrical loading, such as a distributed load qðrÞ
can be analyzed as a function of the radial coordinate r. Consider a thin, circular
plate under loading q rð Þ and uniformly supported at the edge r ¼ a (Fig. 14.6).

Fig. 14.4 Uniformly loaded
long plate
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The differential equation for this problem (see Timoshenko and
Woinowsky-Krieger 1959 for details) is:

1
r
d
dr

fr d
dr

½1
r
d
dr

ðr dw
dr

Þ�g ¼ qðrÞ
D

ð14:12Þ

For a uniform loaded qðrÞ ¼ q, integration gives:

wðrÞ ¼ qr4

64D
þC1

r2

4
þC2 log

r
a
þC3 ð14:13Þ

The constants of integration C1;C2 andC3 must be determined from the
boundary conditions.

14.4 Circular Plate with Clamped Edge

The boundary conditions for this case are:

Fig. 14.5 Deformations in cylindrical bending. a Simply supported plate. b Fixed-end plate

Fig. 14.6 Circular plate
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dw
dr

¼ 0 at r ¼ 0 & r ¼ a

w ¼ 0 at r ¼ a
ð14:14Þ

Solving for the unknown constants gives:

C1 ¼ � qa2

8D
C2 ¼ 0

C3 ¼ qa4

64D

ð14:15Þ

The final solution is then:

wðrÞ ¼ q
64D

a2 � r2
� �2 ð14:16Þ

14.5 Circular Plate with Simply Supported Edge

The boundary conditions for this case are:

dw
dr

¼ 0 at r ¼ 0

w ¼ 0 at r ¼ a

Mr r ¼ að Þ ¼ 0

ð14:17Þ

The final solution is then:

w rð Þ ¼ q a2 � r2ð Þ
64D

5þ m
1þ m

� �
a2 � r2
� �� �

ð14:18Þ

14.6 Shells

Shells may be thought of as curved plates with the thickness being much smaller
than the dimensions of the surface. Shell structures include naturally occurring egg
shells and man-made canoes (Fig. 14.7). One example of a rather exotic shell
structure is the Sydney Opera House (Fig. 14.8). It was designated a UNESCO
World Heritage site in 2007. Basic elements of shell theory are presented in
Timoshenko and Woinowsky-Krieger (1959). As is the case for plates, analytical
solutions exist for a very limited number of idealized cases including the
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thin-walled sphere and cylinder discussed in Chap. 13. Finite element and other
approximate computational mechanics methods typically are used to analyze more
complex shell structures.

In view of the additional complexity of shell structures, no attempt will be made
here to analyze them more than was done in Chap. 13. For advanced treatment of
shells, the reader is referred to the book by Libai and Simmonds (1998).

14.7 Exercises

14:7:1 Show that Eq. (14.7) is correct.
14:7:2 Show that Eq. (14.10) gives the unknown constants for a uniformly loaded

plate in cylindrical bending.

Fig. 14.7 Shell structures

Fig. 14.8 Sydney Opera House

90 14 Plates and Shells

http://dx.doi.org/10.1007/978-3-319-45602-7_13
http://dx.doi.org/10.1007/978-3-319-45602-7_13


14:7:3 Show that Eq. (14.13) is a solution of Eq. (14.12).
14:7:4 What is the maximum vertical deflection of the uniformly loaded plate in

Fig. 14.4?

Appendix: Solutions

14:7:1 Show that Eq. (14.7) is correct.

r4wðx; yÞ � @4w
@x4

þ 2
@2w
@x2

@2w
@y2

þ @4w
@y4

¼ qðx; yÞ
D

Solution

Substituting Eq. (14.3):

Mx ¼ �D
@2w
@x2

þ m
@2w
@y2

� �

My ¼ �D
@2w
@y2

þ m
@2w
@x2

� �

Mxy ¼ � 1� mð ÞD @2w
@x@y

� �

into (14.6)

@2Mx

@x2
þ 2

@2Mxy

@x@y
þ @2My

@y2
þ qðx; yÞ ¼ 0

gives:

@2 @2w
@x2 þ m @2w

@y2

� 	
@x2

þ 2
@2 1� mð Þ @2w

@x@y

� 	
@x@y

þ
@2 @2w

@y2 þ m @2w
@x2

� 	
@y2

¼ qðx; yÞ
D

@4w
@x4

þ m
@4w

@x2@y2
þ 2 1� mð Þ @4w

@x2@y2
þ @4w

@y4
þ m

@4w
@x2@y2

¼ qðx; yÞ
D

@4w
@x4

þ 2
@4w

@x2@y2
þ @4w

@y4
¼ qðx; yÞ

D
� r4w

14:7:2 Show that Eq. (14.10) gives the unknown constants for a uniformly loaded
plate in cylindrical bending.
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C1 ¼ � q�a
2D

C2 ¼ 0

C3 ¼ q�a3

24D
C4 ¼ 0

Solution

From Eq. (14.9), the general solution is:

wðxÞ ¼ q�x4

24D
þ C1x3

6
þ C2x2

2
þC3xþC4

From Eq. (14.8), the boundary conditions are:

wð0Þ ¼ wðaÞ ¼ 0

Mxð0Þ ¼ MxðaÞ ¼ 0

Substitutions give:

wð0Þ ¼ 0 ) C4 ¼ 0

Mxð0Þ ¼ 0 ) �D
@2w
@x2

� �
¼ 0 ) C2 ¼ 0

Mx að Þ ¼ 0 ) q�a2ð Þ
2D

þC1a ¼ 0 ) C1 ¼ � q�a
2D

wðaÞ ¼ 0 ) q�a4

24D
þ � q�a

2D

� 	 a3

6
þC3a ¼ 0 ) C3 ¼ q�a3

24D

14:7:3 Show that Eq. (14.13) is a solution of Eq. (14.12) for a circular plate under
uniform loading.

Recall Eq. (14.12):

1
r
d
dr

fr d
dr

½1
r
d
dr

ðr dw
dr

Þ�g ¼ qðrÞ
D

and (14.13):

wðrÞ ¼ qr4

64D
þC1

r2

4
þC2 log

r
a
þC3
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Solution

Substitution using the known values of the constants C2 ¼ C4 ¼ 0;

C1 ¼ �q�a
2D ; C3 ¼ q�a2

24D

dw
dr

¼ q�r3

16D
þ C1r

2

1
r

d r q�r3
16D þ C1r

2

� 	� 	
dr

¼ 1
r

d q�r4
16D þ C1r2

2

� 	� 	
dr

¼ 1
r

q�r3

4D
þC1r

� �� �

r
d 1

r
q�r3
4D þC1r

� 	h i
dr

¼ r
d q�r2

4D þC1

� 	� 	
dr

¼ q�r2

2D

� �

1
r

d q�r2
2D

� 	
dr

¼ 1
r
q�r
D

¼ q�
D

14:7:4 What is the maximum vertical deflection of the uniformly loaded plate in
cylindrical bending (Fig. 14.4)?

Solution

From symmetry, the maximum deflection is at the center x ¼ a
2. The plate deflection

equation with known constants is:

wðxÞ ¼ q�x4

24D
� q�ax3

12D
þ q�a3

24D
x

At x ¼ a
2:

wða
2
Þ ¼ q� a

2

� �4
24D

� q�a a
2

� �3
12D

þ q�a3

24D
a
2

wða
2
Þ ¼ q�a4

12D
1
32

� 4
32

þ 8
32

� �
¼ q�a4

12D
5
32

� �
¼ 5q�a4

384D

Note that for negative q�, the deflection is negative.
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Chapter 15
Computational Mechanics

There are a variety of approximate methods available for solving problems in solid
mechanics; they include, but are not limited to, approximate analytical, variational,
finite difference, and finite element methods. All of these methods can be catego-
rized under the general heading of “computational mechanics.” Finite element
methods are the most common and most robust; they will be introduced in the
following.

15.1 Finite Element Methods

Analysis of complicated structural configurations can be accomplished through the
use of finite elements. The fundamental idea is to approximate the structure by a
series of small elemental configurations over which some feature, such as the
displacement field, has a predefined variation. A simple example is to represent the
structure by a series of triangular elements over which the displacements are
assumed to vary linearly. Linear variation of the displacements results in strains that
are constant over the element. For linear elastic, homogeneous materials, the
stresses are also constant over the elements. As the number of elements increases,
the approximation to the actual stress and strain distribution over the structure
becomes more accurate.

The development of finite element methods grew out of the work of Courant
(1943), Turner et al. (1956), Clough (1960) and Argyris and Kelsey (1960). All of
these early applications were on problems in solid mechanics. Clough (1960)
apparently was the first to use the term “finite element.” The field has grown
exponentially since that time and is now the preferred method of analysis for most
structural problems as well as problems in other fields including, but certainly not
limited to, fluid mechanics, heat transfer, and biomechanics. Methods are available
for one-dimensional, two-dimensional, and three-dimensional linear and nonlinear
problems, for both static and dynamic analyses. The method has proven to be

© Springer International Publishing Switzerland 2017
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computationally efficient and robust; it can be applied to a wide variety of problems.
There can be no question that the availability or powerful computers has enhanced
the use of finite element methods. For an introduction to the finite element method,
see Huebner (1975) or Reddy (1984).

15.2 The Value of π

One of the simplest examples of the use of finite elements is the determination of the
value of π knowing that the area of a circle, A, is proportional to the square of the
radius, R. While this is not an application in solid mechanics, it does demonstrate the
fundamental idea behind the use of finite elements. Figure 15.1 shows an increasing
number of triangular elements (N) for approximating the area of a circle, as N
increases from 4 to 16. As the number of elements is increased, the error in approx-
imating the area of the circle decreases and thus the approximate value of π becomes
more accurate.Additional approximate values are shown in thefigure forN = 180 and
N = 360. For N = 360, the approximate value of π is 3.1414. It should be obvious
from the figures that symmetry can be invoked to reduce the number of elements
required for the calculation. Symmetry is used as much as possible in analyzing
engineering structures in order to minimize the computational resources required.

Fig. 15.1 Circle approximated by triangular finite elements

Fig. 15.2 Square bar in
torsion
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A ¼ pR2 ð15:1Þ

15.3 Torsion of a Square Bar by Finite Elements

Exact solutions for torsion of non-circular bars exist only for a limited number of
cross-sectional shapes (see Timoshenko and Goodier 1934, Chap. 10). When the
cross section is non-circular, approximate methods generally are used. The appli-
cation of finite elements to the problem of torsion of non-circular bars demonstrates
both the simplicity and the power of the method.

Consider a bar with a square cross section as shown in Fig. 15.2. Since the cross
section is constant along the length of the bar, it is only necessary to investigate the
distribution of stresses over a generic cross section. Boundary conditions require the
shear stresses be zero at the corners. A gradation in the size of the elements is used
to capture this variation in stresses as the corners is approached (Fig. 15.3).

Prandtl (1903) has shown that the nonzero shear stresses in a solid, non-circular
bar subjected to torsion can be represented in terms of an unknown stress function
uðx; yÞ such that:

szx ¼ @u
@y

and szy ¼ @u
@x

ð15:2Þ

The solution is then the function uðx; yÞ that satisfies:

@2u
@x2

þ @2u
@y2

þ 2Gh ¼ 0 ð15:3Þ

with u ¼ 0 on the boundary. In the above, G is the shear modulus of the material
and h is the angle of twist per unit length of bar.

For the finite element formulation, the cross section is represented by a system of
triangular finite elements as shown in Fig. 15.3, where symmetry has been invoked
to reduce the analysis to one-eighth of the cross section. The finite element solution

Fig. 15.3 Finite element
representation of a square
cross section
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method assigns unknown nodal values ui to each node (see figure) in the finite
element representation. The method then consists in establishing a system of
simultaneous algebraic equations to determine the unknown ui values.

There are, in general, two approaches for determining the system of simulta-
neous equations. One method is referred to as the direct method and the other is a
variational method. The variational method is more general. It is based upon
minimization of a functional, such as the potential or complementary energy (see
Fung (1965), Sects. 10.7 and 10.9), defined over the region of interest. Partial
derivatives of this functional, with respect to the unknown nodal values, are set to
zero to provide a system of simultaneous equations for determination of the nodal
values. The number of equations is equal to the number of unknowns. With the
nodal values determined and the specified linear variation of φ over the elements,
the shear stresses are constant over each element. Thus, the problem is solved.

15.4 Exercises

15:4:1 Show that the value for p in Fig. 5.1 for 180 triangular elements is correct.
15:4:2 Show that the value for p in Fig. 5.1 for 360 triangular elements is correct.
15:4:3 Estimate the value of p using a circumscribed square.
15:4:4 Estimate the value of p using a circle circumscribed about a square.
15:4:5 Show that if it assumed the stress function / varies linearly over each

triangular element in a finite element representation of the torsion problem,
this is equivalent to assuming that the shear stresses are constant over each
element.

Appendix: Solutions

15:4:1 Show that the value for p in Fig. 15.1 for 180 triangular elements is
correct.

Solution
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b ¼ R sin
h
2

� �
h ¼ R cos

h
2

� �

A ¼ 1
2
R2 sin

h
2

� �
cos

h
2

� �

See table below.

15:4:2 Show that the value for p in Fig. 5.1 for 360 triangular elements is correct.

Solution

The results below are from an Excel file.

N theta rads rads/2 sin(t/2) cos(t/2) 1/2(s t/2 c t/2) pi

4.00 90.00 1.570796 0.785398 0.707107 0.707107 0.500000 2.000000

8.00 45.00 0.785398 0.392699 0.382683 0.923880 0.353553 2.828427

16.00 22.50 0.392699 0.196350 0.195090 0.980785 0.191342 3.061467

180.00 2.00 0.034907 0.017453 0.017452 0.999848 0.017450 3.140955

360.00 1.00 0.017453 0.008727 0.008727 0.999962 0.008726 3.141433

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

0 50 100 150 200 250 300 350 400

pi as a function of N

15:4:3 Estimate the value of p using a circumscribed square.

Ared ¼ 2Rð Þ 2Rð Þ ¼ 4R2 ) p ¼ 4

15:4:4 Estimate the value of p using a circle circumscribed about a square.
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Solution

Agreen ¼ 2R sin 45ð Þ½ �2¼ 4R2 1ffiffiffi
2

p
� �2

¼ 2R2 p ¼ 2

15:4:5 Show that if it assumed the stress function u varies linearly over each
triangular element in a finite element representation of the torsion problem,
this is equivalent to assuming that the shear stresses are constant over each
element.

Solution

From (15.2):

szx ¼ @u
@y

and szy ¼ @u
@x

For linear variation of /:

/ ¼ AxþBy

@/
@x

¼ A
@/
@y

¼ B

Thus, the shear stresses are constant over each finite element.
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Chapter 16
Fibrous Composite Materials

The use of fibrous composite materials for structural applications became quite
common as the twentieth century came to a close. The confidence in and ability to
design and manufacture with these materials was exemplified by the
twenty-first-century application of carbon fiber composite as the primary
load-bearing structural material in the Boeing 787 commercial aircraft (Fig. 16.1).
Glass fiber composites are also in extensive use. The advantages of fibrous com-
posites include high stiffness, high strength, light weight, non-corrosive, zero or
near-zero thermal expansion, exceptional fatigue life, high impact resistance,
reduced manufacturing costs due to reduced parts count and reduced maintenance
costs.

Table 16.1 (from Herakovich 1998) presents material properties for a variety of
metals, unidirectional fibers, and matrix materials. Potential weight savings with
composites are demonstrated through the ratios of the specific stiffness and specific
strength to those of aluminum. The actual properties of composites will not be as
high as those for fibers alone because the composite is a combination of fiber and
matrix, and off-axis layers reduce many of the properties.

The properties of fibrous composite materials vary with direction. This results in
more complex constitutive equations and analysis methods. Materials whose
properties vary with direction are called anisotropic materials. While analysis and
design with composites are more involved with isotropic materials, the availability
of modern computers renders the problem very manageable.

A historical review of the developments in mechanics of composites is given by
Herakovich (2012).
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Fig. 16.1 Boeing 787

Table 16.1 Properties of engineering materials, fibers, and matrix

Material Density q Modulus
EL

Poisson’s
ratio mL

Strength
ruL

Specific
stiffness
(E/q)/
(E/q)Al

Specific
strength
(ru/q)/
(ru/q)Al

Thermal
expansion
coefficient
aL

g/cm3

(lb/in3)
GPa (Msi) MPa (ksi) l/°C (l/°

F)

Metals

Steel 7.8 (0.284) 200 (29) 0.32 1724 (250) 1.0 1.2 12.8 (7.1)

Aluminum 2.7 (0.097) 69 (10) 0.33 483 (70) 1.0 1.0 23.4 (13.0)

Titanium 4.5 (0.163) 91 (13.2) 0.36 758 (110) 0.95 1.2 8.8 (4.9)

Fibers (axial properties)

AS4 1.80 (0.065) 235 (34)) 0.20 3599 (522) 5.1 11.1 −0.8
(−0.44)

T300 1.76 (0.064) 231 (33) 0.20 3654 (530) 5.1 11.5 −0.5
(−0.3)

P100S 2.15 (0.078) 724 (105) 0.20 2199 (319) 13.2 5.5 −1.4
(−0.78)

IM8 1.8 (0.065) 310 (45) 0.20 5171 (750) 6.7 16.1 –

Boron 2.6 (0.094) 385 (55.8) 0.21 3799 (551) 5.8 8.3 8.3 (4.6)

Kevlar 49 1.44 (0.052) 124 (18) 0.34 3620 (525) 3.6 13.9 −2.0
(−1.1)

SCS-6 3.3 (0.119) 400 (58.0) 0.25 3496 (507) 5.1 6.1 5.0 (2.77)

Alumina 3.95 (0.143) 379 (55) 0.25 1585 (230) 3.7 1.9 7.5 (4.2)

S-2 Glass 2.46 (0.090) 86.8 (12.6) 0.23 4585 (665) 1.4 10.4 1.6 (0.9))

E-Glass 2.58 (0.093) 69 (10.0) 0.22 3450 (550) 1.05 7.5 5.4 (3.0)

Matrix materials

Epoxy 1.38 (0.050) 4.6 (0.67) 0.36 58.6 (8.5) 0.08 0.4 63 (35)

Polyimide 1.46 (0.053) 3.5 (0.5) 0.35 103 (15) 0.03 0.4 36 (20)

Copper 8.9 (0.32) 117 (17) 0.33 400 (58) 0.5 0.3 17 (9.4)

Silicon
carbide

3.2 (0.116) 400 (58) 0.25 310 (45) 4.9 0.5 4.8 (2.67)
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16.1 Laminated Composites

Assemblages of layers (Fig. 16.2) of fibrous composite materials, which can be
tailored to provide a wide range of engineering properties, including inplane
stiffness, bending stiffness, strength, and coefficients of thermal expansion, are
called composite laminates.

The individual layers consist of high-modulus, high-strength fibers embedded in
a polymeric, metallic, or ceramic matrix material. Fibers currently in use include
carbon, glass, aramid, boron, and silicon carbide. Matrix materials that are in use
include thermoplastic and thermoset resins, ceramic, and metallic (see Table 16.1).

Layers of different materials may be used, resulting in a hybrid laminate. The
individual layers of a laminate generally are orthotropic (principal properties in
orthogonal directions) or transversely isotropic (isotropic properties in a transverse
plane of the layer). Laminates may exhibit anisotropic (variable direction of prin-
cipal properties), orthotropic, or quasi-isotropic properties. Quasi-isotropic lami-
nates exhibit isotropic (independent of direction) inplane response, but do not
exhibit isotropic out-of-plane (bending) response. Depending upon the stacking
sequence of the individual layers, the laminate may exhibit coupling between
inplane and out-of-plane responses. An example of bending–stretching coupling is
the presence of curvature developing as a result of inplane loading. Likewise,
inplane strains may develop as a result of pure moment loading for an unsymmetric
laminate.

Fig. 16.2 Laminated
composite
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16.2 Plane Stress of Orthotropic Material

A layer of a unidirectional, fibrous composite can be represented as a homogeneous,
orthotropic material with effective properties in the 1, 2, and 3 directions. For plane
stress in the 1–2 plane, and using the reduced notation of composites, the consti-
tutive equations can be written:

e1 ¼ r1
E1

� m21
r2
E2

e2 ¼ �m12
r1
E1

þ r2
E2

c12 ¼
s12
G12

ð16:1Þ

This constitutive equation can be written in matrix form as:

e1
e2
c12

8<
:

9=
; ¼

1
E1

� m21
E2

0
� m12

E1

1
E2

0
0 0 1

G12

2
64

3
75

r1
r2
s12

8<
:

9=
; ð16:2Þ

In (16.2) E1 is the modulus in the 1 (fiber) direction, E2 is the modulus in the 2
(transverse) direction, G12 is the shear modulus in the 1–2 plane, m12 is the
Poisson’s ratio for loading in the 1-direction, and m21 is the Poisson’s ratio for
loading in the 2-direction.

The 3 � 3 matrix in brackets in Eq. (16.2) is the stiffness matrix ½Q� for a
unidirectional layer. It can be transformed to other orientations where it is identified
as �Q½ �.

16.3 Classical Lamination Theory

Lamination theory describes the response of a composite laminate subjected to
inplane and bending loads. The following presentation closely follows that of
Herakovich (1998). The laminate in Fig. 16.2 employs a global x–y–z coordinate
system with z perpendicular to the plane of the laminate and positive downward.
The origin of the coordinate system is located on the laminate midplane. The
laminate has N layers, numbered from top to bottom. Each layer has a distinct fiber
orientation hk . The z coordinate to the bottom of the kth layer is designated zk with
the top of the layer being at zk�1. The thickness, tk, of any layer is then
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tk ¼ zk � zk�1. The top surface of the laminate is denoted z0 and the total thickness
is 2H.

It is assumed that each layer can be represented as a homogeneous material with
known effective properties which may be isotropic, orthotropic, or transversely
isotropic and that there is perfect bonding between layers. Further, it is assumed that
each layer is in a state of plane stress and the laminate deforms according to the
Kirchhoff (1850) assumptions for bending and stretching of thin plates. According
to this theory, planes normal to the midplane prior to bending remain straight and
normal to the deformed midplane after bending, and lines normal to the midplane
do not change length.

Prior to delving into the details of stress analysis for laminated composite
materials, we note that it is common practice to employ a reduced notation for most
quantities of interest. Most notably, single subscripts are used rather than double
subscripts when it is obvious as to intent. For example, we define rxx � rx and
exx � ex. We also use matrix or tensor notation to simplify the writing of otherwise
complex quantities. For example:

frg �
rx
ry
sxy

8<
:

9=
; ð16:3Þ

feg �
ex
ey
cxy

8<
:

9=
; ð16:4Þ

The Kirchhoff assumptions require that the out-of-plane strains ez, czy and czx be

identically zero. The inplane strains, ef g ¼
ex
ey
cxy

8<
:

9=
;, at any z location, can be

expressed in terms of the midplane strains, e�f g:

e�f g ¼
e�x
e�y
c�xy

8<
:

9=
; ð16:5Þ

and the curvatures, fjg

fjg ¼
jx
jy
jxy

8<
:

9=
; ð16:6Þ
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as:

feg ¼ e�f gþ zfjg ð16:7Þ

The stresses, rf gk, at any z location in the kth layer are determined from these
strains and the layer constitutive equation expressed in terms of the stiffness matrix
�Q½ �k of the kth layer. The resulting constitutive equation can be written as:

rf gk¼ �Q½ �k e�f gþ z jf gð Þ ð16:8Þ

The stiffness matrix �Q½ � is a function of the engineering properties (modulii,
Poisson ratios, and shear moduli) of the layer and the orientation of the layer. (See
Herakovich (1998) for details.) The stiffness matrix is symmetric and has the
general form:

�Q½ � ¼
�Q11 �Q12 �Q16
�Q12 �Q22 �Q26
�Q16 �Q26 �Q66

2
4

3
5 ð16:9Þ

In the absence of curvature (j ¼ 0), the expanded plane stress constitutive
equation for the kth layer has the form:

rx
ry
sxy

8<
:

9=
;

k

¼
�Q11 �Q12 �Q16
�Q12 �Q22 �Q26
�Q16 �Q26 �Q66

2
4

3
5
k e

�
x

e
�
y

c
�
xy

8<
:

9=
; ð16:10Þ

We note that the 16 and 26 subscript notation (as opposed to 13 and 23) is used
in composite laminates to identify shear-related terms from the overall 6 � 6 matrix
that is required for a fully anisotropic material.

The inplane forces per unit length fNg (Fig. 16.3) are defined as the
through-the-thickness integrals of the planar stresses in the laminate.

fNg ¼
ZH

�H

frgdz ð16:11Þ

Combining (16.8) with (16.9) and integrating give the general form of the
relationship for inplane forces in terms of midplane strains, curvatures, and laminate
parameters ½A� ½B� defined below:

fNg ¼ ½A� e�f gþ ½B�fjg ð16:12Þ
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The [A] and [B] are coefficient matrices that are functions of the layer material
properties and laminate stacking sequence. The [A] matrix represents the inplane
stiffness, and the [B] matrix defines the bending–stretching coupling. [A] is a
function of the layer thicknesses but is independent of the stacking sequence of the
layers. In contrast, [B] is dependent on both the layer thicknesses and the stacking
sequence of the individual layers. For a laminate whose stacking sequence is
symmetric about the laminate midplane, B½ � � 0, and there is no bending–stretching
coupling. The material properties, stiffnesses �Q½ �, are constant in each layer. Thus,
the integration can be replaced as a summation over all the layers. The explicit
expressions for [A] and [B] are:

A½ � ¼
XN
k¼1

�Q½ �k zk � zk�1ð Þ

B½ � ¼ 1
2

XN
k¼1

�Q½ �k z2k � z2k�1

� � ð16:13Þ

The moments per unit length, {M} (Fig. 16.4), are defined as the integrals of the
differential moments, rf gzdz integrated over the laminate thickness

fMg ¼
ZH

�H

frgzdz ð16:14Þ

Fig. 16.3 Inplane forces
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Introducing Eq. (16.8) for stresses in (16.14) and integrating give the moment
equations in the form

fMg ¼ ½B� e�f gþ ½D�fjg ð16:15Þ

Here, the bending stiffness matrix, [D], is a coefficient matrix similar to [A] and
[B]. It is stacking sequence dependent and not identically zero for a symmetric
laminate. The explicit expression for [D] is:

½D� ¼ 1
3

XN
k¼1

�Q½ �k z3k � z3k�1

� � ð16:16Þ

Combining the force and moment equations into a single matrix form gives the
fundamental equation of lamination theory.

N
M

� �
¼ A B

B D

� �
e�

j

� �
ð16:17Þ

This equation exhibits coupling between the bending and stretching responses of
a laminate through the [B] matrix. If ½B� � 0, the inplane (normal and shear)
response is decoupled from the bending response. Indeed, there is no bending–
stretching coupling for laminates which are symmetric about their midplane since,
as indicated previously, ½B� � 0 for symmetric laminates. Thus, for symmetric
laminates:

fNg ¼ ½A� eof g ð16:18Þ

fMg ¼ ½D�fjg ð16:19Þ

Fig. 16.4 Bending moments
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16.4 Effective Laminate Properties

Prediction of the effective, inplane, engineering properties of symmetric, composite
laminates can be determined from thought experiments by starting with the force–
midplane strain Eq. (16.18). For effective properties of the laminate, we want to
work with average stress over the laminate thickness. Thus, we note that the
laminate average stress �rf g is given by:

�rf g � fNg
2H

ð16:20Þ

Combining (16.18) and (16.20) gives an expression for the midplane strains in
terms of the laminate averages stress:

eof g ¼ 2H½A��1 �rf g ð16:21Þ

In (16.21), ½A��1 is the inverse of ½A�. For convenience, we define

2H½A��1 � a�½ � ð16:22Þ

a�½ � is called the laminate compliance. We can now write the fundamental
effective stress–strain relationship for symmetric, composite laminates in terms of
the compliance:

e�f g ¼ a�½ � �rf g ð16:23Þ

Equation (16.23) is the fundamental effective stress–strain relationship for a
symmetric, composite laminate. We can use this equation for thought experiments,
for specified states of stress, to predict the resulting strain and, thereby, the effective
laminate properties, i.e., the engineering constants.

The compliance matrix a�½ � is generally a fully populated, symmetric matrix of
the form:

a�½ � ¼
a�11 a�12 a�16
a�12 a�22 a�26
a�16 a�26 a�66

2
4

3
5 ð16:24Þ

The fundamental stress–strain relationship (16.23) can now be expressed in
expanded form as:

e�x
e�y
c�xy

8<
:

9=
; ¼

a�11 a�12 a�16
a�12 a�22 a�26
a�16 a�26 a�66

2
4

3
5 �rx

�ry
�sxy

8<
:

9=
; ð16:25Þ
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Examples demonstrating the variability of the effective engineering constants as
a function of fiber orientations and laminate stacking sequence for unidirectional,
off-axis and symmetric, angle-ply laminates are presented in the following for a
specific carbon/epoxy composite. A unidirectional laminate consists of layers all
having the same fiber orientation and material properties (Fig. 16.5a). A symmetric,
angle-ply laminate has an equal number of layers at +h and −h fiber orientations
located symmetrically about the laminate midplane (Fig. 16.5b).

The results in Figs. 16.6, 16.7, 16.8, and 16.9 demonstrate one of the major
advantages of fibrous composite materials, namely the ability to tailor the material
properties through the choice of fiber orientations, layer thicknesses, stacking

Fig. 16.5 Unidirectional and angle-ply laminates. a Unidirectional [h]4. b Symmetric angle-ply
[h/−h]4

Fig. 16.6 Effective axial
modulus
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Fig. 16.7 Effective Poisson’s
ratio

Fig. 16.8 Effective shear
modulus
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sequence, and material properties of the individual layers. The results presented
here are for T300/5208 carbon/epoxy composite. This composite consists of T300
carbon fibers in an epoxy matrix (5208). The theoretical predictions have been
verified by experimental results.

16.5 Effective Axial Modulus

For a uniaxial tension test, the applied state of stress is:

�rx [ 0

�ry ¼ 0

�sxy ¼ 0

ð16:26Þ

Combining (16.25) and (16.26), the strains are:

e�x ¼ a�11�rx
e�y ¼ a�12�rx

c�xy ¼ a�16�rx

ð16:27Þ

Fig. 16.9 Effective
coefficient of thermal
expansion
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By definition, we then have the effective axial modulus Ex:

Ex ¼ �rx
e�x

¼ 1
a�11

ð16:28Þ

Predictions for the effective axial modulus, Ex, of unidirectional and angle-ply
laminates are presented in Fig. 16.6. The angle-ply laminate exhibits higher stiff-
ness than the off-axis lamina for fiber angles ranging from 0° to approximately 60°.
The higher axial stiffness for the angle-ply laminate is a result of the constraining
effect (and resulting multiaxial state of stress) that the adjacent layers of the lam-
inate have on each other.

16.6 Effective Inplane Poisson’s Ratio

The effective Poisson’s ratio mxy is defined:

mxy ¼ � e�y
e�x

¼ � a�12
a�11

ð16:29Þ

The comparison of Poisson’s ratios (Fig. 16.7) is one of the most interesting and
surprising results for laminated fibrous composites. There is a very large increase in
Poisson’s ratio when an off-axis ply is laminated with another off-axis ply of
opposite sign. This is the case for a wide range of fiber orientations. The angle-ply
laminate exhibits a maximum Poisson’s ratio in excess of 1.25 (for this particular
carbon/epoxy) at an angle of approximately 27°. That the Poisson’s ratio can be in
excess of 1.0 is very surprising to those accustomed to working with metals, where
the maximum Poisson’s ratio is 0.5.

16.7 Effective Shear Modulus

Shear modulus is a measure of the materials resistance (stiffness) to shear loading
Nxy (Fig. 16.3). For a symmetric laminate subjected to pure shear stress �sxy, the
shear strain is determined from (16.25) as:

c�xy ¼ a�66�sxy ð16:30Þ
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By definition, the effective shear modulus, Gxy, is:

Gxy ¼ �sxy
c�xy

¼ 1
a�66

ð16:31Þ

The angle-ply laminate is much stiffer than the unidirectional lamina (Fig. 16.8)
for essentially all fiber orientations. At h = 45°, where the shear stiffness of both the
lamina and the laminate are largest, the stiffness of the laminate is more than 3.5
times that of the lamina for the carbon/epoxy under consideration. The results
clearly indicate that ±45° fiber orientations are desired in structures requiring high
shear stiffness.

16.8 Effective Coefficient of Thermal Expansion

The fundamentals of thermal expansion for isotropic materials were discussed in
Chap. 11. If a material is isotropic, there is a single coefficient of thermal expan-
sion, a, that influences the thermal behavior. Most materials have positive coeffi-
cients of expansion (CTE) and thus expand when heated and contract when cooled.
Fibrous composite materials are not isotropic and, hence, the coefficient of thermal
expansion is direction dependent.

A unidirectional fibrous composite is an orthotropic material with three distinct
coefficients of thermal expansion, one in each of the three principal material
directions. For the composite, we express the coefficients as a matrix, fag, where:

fag �
a1
a2
a3

8<
:

9=
; ð16:32Þ

When unidirectional plies are combined to form a laminate, the effective coef-
ficients of thermal expansion are a function of the laminate configuration (i.e., the
ply thicknesses and ply orientations) and the direction of interest. For laminates, we
are interested primarily in the effective, inplane coefficients of thermal expansion
expressed as:

fag ¼
ax
ay
axy

8<
:

9=
; ð16:33Þ

Note that shear strain may be present for all directions.
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The axial (fiber direction) coefficient of thermal expansion, a1, of a unidirec-
tional composite can be positive, negative, or zero. As will be shown, this has a
profound impact on the possible effective, inplane coefficients of thermal expansion
of laminates; indeed, they may be very small and they may be negative. Laminates
with low or zero coefficient of thermal expansion are particularly important because
they do not expand or contract when exposed to a temperature change. This can be
a very important design consideration for applications where there are variations in
temperature over time or where the temperature varies over the regions of the
structure.

We note that when unidirectional layers are combined to form a laminate,
thermal expansion is no longer “free thermal expansion.” The layers of the laminate
are (assumed) to be perfectly bonded. Layers at different fiber orientations constrain
the adjacent layers and an internal state of stress is initiated.

Effective coefficients of thermal expansion (CTE), �af g for laminates can be
predicted starting from the expression for the total thermal–mechanical strains,
ef g, written as a superposition of the strains associated with stress erf g and the

“free” thermal strains eTf g:

feg ¼ e�f gþ zfjg ¼ erf gþ eT
� 	 ð16:34Þ

The layer constitutive equation gives the stress in terms of the “stress-related”
strain as:

frg ¼ �Q½ � erf g ð16:35Þ

Combining (16.34 and 16.35) gives the fundamental equation for the stresses in
a layer of a laminate that is subjected to thermal loading:

frg ¼ �Q½ � e�f gþ zfjg � eT
� 	� � ð16:36Þ

For a symmetric laminate, the curvature fjg = 0 and the total strain in each layer
is the midplane strain e�f g. We now define the laminate, effective coefficient of
thermal expansion �af g as:

�af g ¼ e�f g
DT

ð16:37Þ

The problem has now been shown to be equivalent to determination of the
midplane strain e�f g for a symmetric laminate that is subjected a change in tem-
perature—and no other external loads.
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For a symmetric laminate with no external applied moments, the curvature and
external force fNg are zero. The external force is the integral of stresses over the
laminate thickness. Thus, using (16.36) with fjg ¼ 0, we have:

fNg ¼ 0 ¼
ZH

�H

�Q½ �k e�f g � fagkDT

 �

dz ð16:38Þ

With e�f g a constant and using the definition of ½A�, (16.38) reduces to:

½A� e�f g ¼ DT
ZH

�H

�Q½ �kfagkdz ð16:39Þ

Solving for the midplane strain and using the definition (16.37) for the laminate
coefficient of thermal expansion, we have:

�af g ¼ ½A��1
ZH

�H

�Q½ �kfagkdz ð16:40Þ

Further, since all quantities are constant within each layer, we can write:

�af g ¼ ½A��1
XN
k¼1

�Q½ �kfagktk ð16:41Þ

While this expression may seem involved at first glance, the use of modern-day
computers renders the solution to a straight forward procedure.

Axial CTE predictions for unidirectional and angle-ply laminates of T300/5208,
as a function of fiber orientation, are presented in Fig. 16.9. As indicated in the
figure, the CTE for the unidirectional lamina is a small negative value at h ¼ 0

�
,

passes through zero at approximately 10
�
and attains a maximum positive value at

90
�
. More interesting are the results for angle-ply laminates. The CTE of the

laminate decreases further from the small negative value at h ¼ 0
�
. As the fiber

orientation increases, the CTE attains its largest negative value at approximately
30

�
, passes through zero at approximately 42

�
, and ends at the high positive value

for h ¼ 90
�
.
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16.9 Effective Coefficient of Mutual Influence

In order to complete the set of effective material properties for laminated com-
posites, we define a new material property, the coefficient of mutual influence, gxy;x;
it is the ratio of the (possible) shear strain associated with axial strain:

gxy;x ¼
c�xy
e�x

¼ a�16
a�11

ð16:42Þ

16.10 Exercises

16:10:1 Confirm Eq. (16.10).
16:10:2 Confirm the expression for the inplane stiffness ½A� in Eq. (16.13).
16:10:3 Confirm the expression for the bending–stretching coupling ½B� in

Eq. (16.13).
16:10:4 Confirm the expression for the bending stiffness ½D� in Eq. (16.16).

Appendix: Solutions

16:10:1 Confirm Eq. (16.10)

Solution
The constitutive Eq. (16.8) is:

frgk ¼ �Q½ �k e�f gþ zfjgð Þ

For zero curvature with expanded form, this becomes:

rx
ry
sxy

8<
:

9=
;

k

¼
�Q11 �Q12 �Q16
�Q12 �Q22 �Q26
�Q16 �Q26 �Q66

2
4

3
5
k e

�
x

e
�
y

c
�
xy

8<
:

9=
;
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16:10:2 Confirm expression (16.13) for the laminate inplane stiffness ½A�.
Recall:

frgk ¼ �Q½ �k e�f gþ zfjgð Þ

fNg ¼
Zh

�h

frgkdz

Therefore,

½A� �
Zh

�h

�Q½ � e�f gdz

½A� � e�f g
Zh

�h

�Q½ �dz ¼ e�f g
XN
k¼1

�Q½ �k zk � zk�1ð Þ

The integral is replaced by a summation because �Q½ �k is constant in each layer.

16:10:3 Confirm the expression for the bending–stretching coupling ½B� in
Eq. (16.13).

Solution

½B� �
Zh

�h

�Q½ �zdz

½B� ¼
XN
k¼1

�Q½ �k z2k � z2k�1

� �
2

¼ 1
2

XN
k¼1

�Q½ �k z2k � z2k�1

� �
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16:10:4 Confirm the expression for the bending stiffness ½D� in Eq. (16.16).

frgk ¼ �Q½ �k e�f gþ zfjgð Þ

fMg ¼
Zh

�h

frgkzdz

½D� ¼
Zh

�h

�Q½ �z2dz ¼ 1
3

XN
k¼1

�Q½ �k z3k � z3k�1

� �
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Appendix

A.1 Trigonometric Identities

sin2 hþ cos2 h ¼ 1

sin 2h ¼ 2 sin h cos h

cos 2h ¼ cos2 h� sin2 h

sin2 h ¼ 1� cos 2h
2

cos2 h ¼ 1þ cos 2h
2

A.2 Derivatives of Trigonometric Functions

d
dh

sin h ¼ cos h

d
dh

cos h ¼ � sin h

d
dh

sin2 h ¼ 2 sin h cos h ¼ sin 2h

© Springer International Publishing Switzerland 2017
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A.3 Moment of Inertia

Ix ¼
Z
A

y2dA

Iy ¼
Z
A

x2dA

J ¼
Z
A

r2dA

A.4 Partial Derivatives

For a function, f, of two variables, say x and y, we write f ¼ f ðx; yÞ. The total
differential df is then:

df ðx; yÞ ¼ @f ðx; yÞ
@x

dxþ @f ðx; yÞ
@y

dy

@f
@x and

@f
@y are the partial derivatives of f ¼ f ðx; yÞ. The partial derivative with

respect to one variable represents the change due to that variable while holding the
other variable constant.

A.5 Biharmonic Operator r4

The two-dimensional biharmonic operator in the x–y plane is defined as:

r4 � @4

@x4
þ @4

@y4
þ 2

@4

@x2@y2

A.6 Matrix Notation

Matrix notation is a shorthand way for expressing more expansive quantities.
Examples follow.

One-dimensional array (also called a vector) in three-dimensional space (i = 1,
2, 3). A1;A2 and A3 are the components of the vector:
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Af g � Ai �
A1

A2

A3

8<
:

9=
;

Two-dimensional array (i, j = 1, 2, 3):

A½ � � Aij �
A11 A12 A13

A21 A22 A23

A31 A32 A33

2
4

3
5

The transpose AT
ij of a matrix aij is obtained by interchanging the rows and

columns of Aij. Thus,

AT
ij � Aji

A.7 Matrix Determinate

The determinate D of a second-order matrix is defined as:

D � A11 A12

A21 A22

����
���� ¼ A11A22 � A12A21

The determinate D of a third-order matrix is defined as:

D �
A11 A12 A13

A21 A22 A23

A31 A32 A33

�������

�������
¼A11A22A33 þA12A23A31 þA13A21A32 � A13A22A31 � A11A23A32 � A12A21A33

A.8 Matrix Inverse

Matrix inverse A½ ��1 of a matrix A½ � is defined as:

A½ ��1¼ 1
Dj j

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5
T

¼ 1
Dj j

a11 a21 a31
a12 a22 a32
a13 a23 a33

2
4

3
5
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where the aij are the cofactors of A½ � determined by suppressing ith row and jth
column from A½ � and forming the determinate of the remaining matrix (called the
minor of Aij) and then multiplying the minor by �1ð Þiþ j.

With the result for a third-order matrix,

A½ ��1¼ 1
Dj j

A22A33 � A23A32ð Þ � A12A33 � A13A32ð Þ A12A23 � A13A22ð Þ
� A21A33 � A23A31ð Þ A11A33 � A13A31ð Þ � A11A23 � A13A21ð Þ
A21A32 � A22A31ð Þ � A11A32 � A12A31ð Þ A11A22 � A12A21ð Þ

2
4

3
5

Kronecker delta d½ � is defined as:

d½ � �
1 0 0
0 1 0
0 0 1

2
4

3
5

Thus,

A½ � A½ ��1¼ d½ �

A.9 Tensors

Tensors are mathematical representations of physical quantities. A very important
property of tensors is that they obey certain laws of transformation between
coordinate systems. Tensors are written in index notation; the index notation can be
interpreted much like matrix notation. A tensor quantity fi is said to have one live
subscript, i. If an index i is repeated, e.g., fii, the index is called a dummy index and
summation is implied. Thus, in three-dimensional space i ¼ 1; 2; 3:

fii ¼ f11 þ f22 þ f33

Different levels of tensors are defined as follows:
Scalar—0 live index—f or fii (density is an example of a scalar; it is indepen-

dent of direction).
Vector—1 live index—fi (three components: force is an example; it may have

components in thee directions).

Fi ¼
F1

F2

F3

2
4

3
5

For F3 ¼ 0, graphical representation of the force and its components in the x1–x2
plane is as shown below.
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Second-Order Tensor—2 live index rij (stress and strain are examples)

rij ¼
r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5

A.10 Tensor Transformations

It is often desired to determine the planes of maximum and/or minimum values of a
physical quantity. The tensor transformation equations are ideal for determining
quantities as a function of the orientation of the coordinate system. Stress and strain
are good examples of tensor quantities that obey the tensor transformation rela-
tionships described below.

Tensors have components that change from one coordinate system to another
(e.g., unprimed coordinates to primed coordinates as in the figure below) according
to the so-called transformation equations. We will be concerned only with rect-
angular Cartesian coordinates and hence Cartesian tensors. Tensors usually are
written using index notation, with the order of a tensor indicated by the number of
live (non-repeated) subscripts. If a subscript is repeated, summation over the range
of that subscript is implied, unless otherwise indicated. For rectangular Cartesian
coordinates, the subscripts have a range of 1, 2, and 3 in three-dimensional space
and a range of 1 and 2 in two-dimensional space.

The equations for transforming a tensor quantity from one rectangular coordinate
system to another are written in terms of the direction cosines, aij, (i, j = 1, 2, 3) of
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the angles measured from the unprimed axes, xi, to the primed axes, x'i,
(e.g., a12 = cos θ12 in the figure). In this book, we shall use the convention that the
first subscript (i) of aij corresponds to the initial unprimed axes and the second
subscript (j) corresponds to the final primed axes. (The reader is forewarned that
some authors use the opposite convention for aij, i.e., the first subscript corresponds
to the final, primed axes.)

Using trigonometry, we summarize the direction cosines for rotation h about the
3-axis as:

a11 ¼ cos h11 ¼ cos h a12 ¼ cos h12 ¼ � sin h a13 ¼ cos 90 ¼ 0

a21 ¼ cos h21 ¼ sin h a22 ¼ cos h22 ¼ cos h a23 ¼ cos 90 ¼ 0

a31 ¼ cos 90 ¼ 0 a32 ¼ cos 90 ¼ 0 a33 ¼ cos 0 ¼ 1

In matrix form, the transformation coefficients aij are:

aij ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 ¼

cos h � sin h 0
sin h cos h 0
0 0 1

2
4

3
5

In a continuing effort to simplify the writing of equations, it is common to define
m � cos h and n � sin h with the transformation coefficients for rotation about the
3-axis then being:

aij ¼
m �n 0
n m 0
0 0 1

2
4

3
5

A.11 Vector Transformation

The transformation equations for a first-order tensor Fi in three-dimensional space
are:

F0
i ¼ ajiFj

F0
i ¼ a1iF1 þ a2iF2 þ a3iF3

And, the individual components are:

F0
1 ¼ a11F1 þ a21F2 þ a31F3

F0
2 ¼ a12F1 þ a22F2 þ a32F3

F0
3 ¼ a13F1 þ a23F2 þ a33F3
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A.12 Second-Order Tensor Transformation

The transformation equations for a second-order tensor rij are:

r
0
ij ¼ akialjrkl

In two-dimensional space ði; j ¼ 1; 2Þ, this becomes:

r
0
ij ¼ a1ia1jr11 þ a1ia2jr12 þ a2ia1jr21 þ a2ia2jr22

And, in three-dimensional space with ði; j ¼ 1; 2; 3Þ, the transformation equa-
tions are:

r0ij ¼ a1ia1jr11 þ a1ia2jr12 þ alia3jr13 þ a2ia1jr21 þ a2ia2jr22

þ a2ia3jr23 þ a3ia1jr31 þ a3ia2jr32 þ a3ia3jr33
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