
ERGODIC CONTROL OF DIFFUSION PROCESSES

This comprehensive volume on ergodic control of diffusions highlights intuition
alongside technical arguments. A concise account of Markov process theory is
followed by a complete development of the fundamental issues and formalisms in
control of diffusions. This then leads to a comprehensive treatment of ergodic
control, a problem that straddles stochastic control and the ergodic theory of
Markov processes.
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problem, notably the asymptotics of empirical measures on one hand, and the
analytic aspects leading to a characterization of optimality via the associated
Hamilton–Jacobi–Bellman equation on the other, is clearly revealed. The more
abstract controlled martingale problem is also presented, in addition to many other
related issues and models.

Assuming only graduate-level probability and analysis, the authors develop the
theory in a manner that makes it accessible to users in applied mathematics,
engineering, finance and operations research.
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Preface

Ergodic is a term appropriated from physics that derives from the Greek words έργoν
and oδóς, meaning “work” and “path.” In the context of controlled Markov pro-
cesses it refers to the problem of minimizing a time averaged penalty, or cost, over
an infinite time horizon. It is of interest in situations when transients are fast and
therefore relatively unimportant, and one is essentially comparing various possible
equilibrium behaviors. One typical situation is in communication networks, where
continuous time and space models arise as scaled limits of the underlying discrete
state and/or time phenomena.

Ergodic cost differs from the simpler “integral” costs such as finite horizon or
infinite horizon discounted costs in several crucial ways. Most importantly, one is
looking at a cost averaged over infinite time, whence any finite initial segment is
irrelevant as it does not affect the cost. This counterintuitive situation is also the rea-
son for the fundamental difficulty in handling this problem analytically – one cannot
use for this problem the naive dynamic programming heuristic because it is perforce
based on splitting the time horizon into an initial segment and the rest. One is thus
obliged to devise altogether different techniques to handle the ergodic cost. One of
them, the more familiar one, is to treat it as a limiting case of the infinite horizon
discounted cost control problem as the discount factor tends to zero. This “vanish-
ing discount” approach leads to the correct dynamic programming, or “Hamilton–
Jacobi–Bellman” (HJB) equation for the problem, allowing one to characterize op-
timal control policies at least in the “nicer” situations when convenient technical
hypotheses hold. It also forms the basis of the approach one takes in order to do
what one can in cases when these hypotheses do not hold. Dynamic programming,
though the most popular “classical” approach to control problems, is not the only
one. An alternative approach that is gaining currency, particularly as it allows one
to handle some nonclassical variants and because of the numerical schemes it facil-
itates, is that based on casting the control as an infinite dimensional convex (in fact,
linear) program. Our treatment of ergodic control straddles both lines of thought,
often combining them to advantage.

Historically, the theory of ergodic control was first developed for discrete time
and discrete state space Markov chains (see Arapostathis et al. [6] for an extensive
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survey and historical account). The results therein, as always, are suggestive of what
one might expect in the continuous time continuous state space situation. That in it-
self, however, is of little help, as the technical difficulties in carrying out the program
are highly nontrivial. Not surprisingly, the theory in the latter case has been slow
to follow, some of it being of a fairly recent vintage. This book gives a comprehen-
sive, integrated treatment of these developments. It begins with the better understood
“nondegenerate, complete observations” case, and leads to the more difficult issues
that arise when either the nondegeneracy assumption or the assumption of complete
observations fail.

Our focus is primarily on controlled diffusion processes, a special class of Markov
processes in continuous time and space. We build the basic theory of such processes
in Chapter 2, following a quick review of the relevant aspects of ergodic theory of
Markov processes in Chapter 1. This itself will serve as a comprehensive account of
the probabilistic theory of controlled diffusions. It is an update on an earlier mono-
graph [28], and appears in one place at this level of generality and extent for the
first time. It forms the backdrop for the developments in the rest of this monograph
and will also serve as useful source material for stochastic control researchers work-
ing on other problems. Chapter 3 gives a complete account of the relatively better
understood case of controlled diffusions when the state is observed and the diffu-
sion matrix is nondegenerate. The latter intuitively means that the noise enters all
components of the state space evenly. The smoothing properties of the noise then
yield sufficient regularity of various averages of interest. This permits us to use to
our advantage the theory of nondegenerate second order elliptic partial differential
equations. Our pursuits here are typical of all control theory: existence of optimal
controls and necessary and sufficient conditions for optimality. We employ the in-
finite dimensional convex (in fact, linear) programming perspective for the former
and the vanishing discount paradigm for the latter. The theory here is rich enough
that it allows us to be a bit more ambitious and handle some nonclassical classes of
problems as well with some additional work. One of these, that of switching diffu-
sions, is treated in Chapter 5. This incorporates “regime-switching” phenomena and
involves some nontrivial extensions of the theory of elliptic PDEs used in Chapter 3,
to systems of elliptic PDEs. Chapter 4, in turn, studies several other spin-offs: the
first is constrained and multi-objective problems and is followed by singularly per-
turbed ergodic control problems involving two time-scales, the aim being to justify a
lower dimensional approximation obtained by averaging the slow dynamics over the
equilibrium behavior of the fast components. It also studies diffusions in a bounded
domain, and works out an example in detail.

With Chapter 6, we enter the vastly more difficult terrain of degeneracy. This chap-
ter in particular is devoted to developing the abstract framework of ergodic control
of martingale problems that will form the backdrop of subsequent chapters. A key
development in this chapter is an important generalization of Echeverria’s celebrated
criterion for stationary distributions to controlled martingale problems on a Polish
space. The rest of the chapter is devoted to characterizing extremal solutions, the
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abstract linear programming formulation, and the existence theorems for optimal
solutions in various classes of interest. These results are specialized in Chapter 7
to controlled diffusions with degeneracy, where they lead to existence theorems for
optimal controls with little extra effort. For two special cases, viz., the so-called
“asymptotically flat” diffusions and “partially degenerate” diffusions, we also derive
dynamic programming principles. This takes the form of an HJB equation, albeit in-
terpreted in the viscosity sense. Chapter 8 considers nondegenerate diffusions under
partial observations. The standard approach, summarized in this chapter, is to reduce
the problem to a completely observed case by moving over to the “sufficient statis-
tics” such as the regular conditional law of the state given observed quantities till the
time instant in question. The evolution of this law is given by the stochastic PDE de-
scribing the associated measure-valued nonlinear filter, thus making it a completely
observed but infinite dimensional and in a certain sense, degenerate problem. This
formulation, however, does allow us to apply the theory of Chapter 6 and develop
the existence theory for optimal controls, as well as to derive a martingale dynamic
programming principle under suitable hypotheses.

The epilogue in Chapter 9, an important component of this work, sketches several
open issues. This being a difficult problem area has its advantages as well – there is
still much work left to be done, some of it crying out for novel approaches and proof
techniques. We hope that this book will spur other researchers to take up some of
these issues and see successful resolution of at least some of them in the near future.

We extend our heartfelt thanks to our numerous friends, colleagues and students,
far too numerous to list, who have helped in this project in a variety of ways. Spe-
cial thanks are due to Professor S.R.S. Varadhan, who, in addition to his pervasive
influence on the field as a whole, also made specific technical recommendations in
the early stages of our work in this area, which had a critical impact on the way it
developed.

This project would not have been possible without the support of the Office of
Naval Research under the Electric Ship Research and Development Consortium, and
the kind hospitality of the Tata Institute of Fundamental Research in Mumbai. Vivek
Borkar also thanks the Department of Science and Technology, Govt. of India, for
their support through a J. C. Bose Fellowship during the course of this work.

It has been both a challenge and a pleasure for us to write this book. We particu-
larly cherish the time we spent together in Mumbai working on it together, the hectic
schedule punctuated by the culinary delights of south Mumbai restaurants and cafes.





Frequently Used Notation

The sets of real numbers, integers and natural numbers are denoted by R, Z and N
respectively. Also, R+ (Z+) denotes the set of nonnegative real numbers (nonneg-
ative integers). We use “:=” to mean “is defined as,” and “≡” to mean “identically
equal to.” If f and g are real-valued functions (or real numbers), we define

f ∧ g := min { f , g} , f ∨ g := max { f , g} ,

f + := f ∨ 0 , f − := (− f ) ∨ 0 .

For a subset A of a topological space, ∂A denotes its boundary, Ac its complement
and Ā its closure. The indicator function of A is denoted by IA. In the interest of
readability for a set that is explicitly defined by an expression { · } we denote its
indicator function as I{ · }.

The Borel σ-field of a topological space E is denoted by B(E). Metric spaces are
in general viewed as equipped with their Borel σ-field, and therefore the notation
P(E) for the set of probability measures on B(E) of a metric space E is unambigu-
ous. The set of bounded real-valued measurable functions on a metric space E is
denoted by B(E). The symbol E always denotes the expectation operator, and P the
probability.

The standard Euclidean norm is denoted as | · |. The term domain in Rd refers to
a non-empty open connected subset of the Euclidean space Rd. If D and D′ are do-
mains in Rd, we use the notation D � D′ to indicate that D̄ ⊂ D′. Also |D| stands
for the Lebesgue measure of a bounded domain D. We introduce the following no-
tation for spaces of real-valued functions on a domain D ⊂ Rd. The space Lp(D),
for p ∈ [1,∞), stands for the Banach space of (equivalence classes) of measurable
functions f satisfying

∫
D
| f (x)|p dx < ∞, and L∞(D) is the Banach space of functions

that are essentially bounded in D. The space Ck(D) (C∞(D)) refers to the class of all
functions whose partial derivatives up to order k (of any order) exist and are con-
tinuous, Ck

c(D) is the space of functions in Ck(D) with compact support, and Ck
0(Rd)

(Ck
b(Rd)) is the subspace of Ck(Rd) consisting of those functions whose derivatives

from order 0 to k vanish at infinity (are bounded). Also, the space Ck,r(D) is the class
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of all functions whose partial derivatives up to order k are Hölder continuous of order
r. Therefore C0,1(D) is precisely the space of Lipschitz continuous functions on D.

We adopt the notation ∂i := ∂
∂xi

, ∂i j := ∂2

∂xi∂x j
, and ∂t := ∂

∂t . Also we adopt the stan-
dard summation rule for repeated indices, i.e., repeated subscripts and superscripts
are summed from 1 through d. For example,

ai j∂i jϕ + bi∂iϕ :=
d∑

i, j=1

ai j ∂2ϕ

∂xi∂x j
+

d∑
i=1

bi ∂ϕ

∂xi
.

The standard Sobolev space of functions on D whose generalized derivatives up to
order k are in Lp(D), equipped with its natural norm, is denoted by W k,p(D), k ≥ 0,
p ≥ 1. The closure of C∞c (D) in W k,p(D) is denoted by W k,p

0 (D). If B is an open ball,

then W k,p
0 (B) consists of all functions in W k,p(B) which, when extended by zero

outside B, belong to W k,p(Rd).
In general if X is a space of real-valued functions on D, Xloc consists of all func-

tions f such that ϕ f ∈ X for every ϕ ∈ C∞c (D). In this manner we obtain the spaces
Lp

loc(D) and W 2,p
loc (D).



1

Markov Processes and Ergodic Properties

1.1 Introduction

This book, as the title indicates, is about ergodic control of diffusion processes. The
operative words here are ergodic, control and diffusion processes. We introduce two
of these, diffusion processes and ergodic theory, in this chapter. It is a bird’s eye
view, sparse on detail and touching only the highlights that are relevant to this work.
Further details can be found in many excellent texts and monographs available, some
of which are listed in the bibliographical note at the end. The next level issue of
control is broached in the next chapter.

We begin with diffusion processes, which is a special and important subclass of
Markov processes. But before we introduce Markov processes, it is convenient to
recall some of the framework of the general theory of stochastic processes which
provides the backdrop for it.

Let (Ω,F,P) be a complete probability space, or in other words, Ω is a set called
the sample space, F is a σ-field of subsets of Ω (whence (Ω,F) is a measurable
space), and P is a probability measure on (Ω,F). Completeness is a technicality that
requires that any subset of a set having zero probability be included in F. A random
process {Xt} defined on (Ω,F,P) is a family of random variables indexed by a time
index t which can be discrete (e.g., t = 0, 1, 2, . . . ) or continuous (e.g., t ≥ 0). We
shall mostly be interested in the continuous time case. For notational ease, we denote
by X the entire process. For each t ∈ R+, Xt takes values in a Polish space S , i.e.,
a separable Hausdorff space whose topology is metrizable with a complete metric.
This is a convenient level of generality to operate with, because an amazingly large
body of basic results in probability carry over to Polish spaces and most of the spaces
one encounters in the study of random processes are indeed Polish. Let d( · , · ) be
a complete metric on S . For any Polish space S , P(S ) denotes the Polish space of
probability measures on S under the Prohorov topology [32, chapter 2]. Recall that
if S is a metric space, then a collection M ⊂P(S ) is called tight if for every ε > 0,
there exists a compact set Kε ⊂ S , such that µ(Kε) ≥ 1 − ε for all µ ∈ M. The
celebrated criterion for compactness in P(S ), known as Prohorov’s theorem, states
that for a metric space S if M ⊂ P(S ) is tight, then it is relatively compact and,

                                                                                            
                                              

                                                            



2 Markov Processes and Ergodic Properties

provided S is complete and separable, the converse also holds [24, theorems 6.1 and
6.2, p. 37], [55, p. 104].

We shall usually have in the background a filtration, i.e., an increasing family
{Ft} of sub-σ-fields of F indexed by t again. Intuitively, Ft corresponds to informa-
tion available at time t. Again, for technical reasons we assume that it is complete
(i.e., contains all sets of zero probability and their subsets) and right-continuous (i.e.,
Ft = ∩s>tFs). We say that X is adapted to the filtration {Ft} if for each t, Xt is
Ft-measurable. A special case of a filtration is the so-called natural filtration of X,
denoted by FX

t and defined as the completion of ∩t′>tσ(Xs : s ≤ t′). Clearly X is
adapted to its own natural filtration. An important notion related to a filtration is that
of a stopping time. A [0,∞]-valued random variable τ is said to be a stopping time
w.r.t. the filtration {Ft} (the filtration is usually implicit) if for all t ≥ 0, {τ ≤ t} ⊂ Ft.
Intuitively, what this says is that at time t, one knows whether τ has occurred already
or not. For example, the first time the process hits a prescribed closed set is a stop-
ping time with respect to its natural filtration, but the last time it does so need not be.
We associate with τ the σ-field Fτ defined by

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ∈ [0,∞)} .

Intuitively, Fτ are the events prior to τ.
So far we have viewed X only as a collection of random variables indexed by t.

But for a fixed sample point in Ω, it is also a function of t. The least we shall assume
is that it is a measurable function. A stronger notion is progressive measurability,
which requites that for each T > 0, the function (t, ω) → Xt(ω), (t, ω) ∈ [0,T ] × Ω,
be measurable with respect toBT ×FT , whereBT denotes the Borel σ-field on [0,T ].
The sub-σ-field of [0,∞) × Ω generated by the progressively measurable processes
is known as the progressively measurable σ-field. If a process is adapted to Ft and
has right or left-continuous paths, then it is progressively measurable [47, p. 89].

There is one serious technicality which has been glossed over here. Two random
processes X, X′ are said to be versions or modifications of each other if Xt = X′t a.s.
for all t. This defines an equivalence relation and it is convenient to work with such
equivalence classes. That is, when one says that X has measurable sample paths,
it is implied that it has a version which is so. The stronger equivalence notion of
P
(
Xt = X′t for all t ≥ 0

)
= 1 is not as useful. We shall not dwell on these technicali-

ties too much. See Borkar [32, chapter 6], for details.
We briefly mention the issue of the actual construction of a random process. In

practice, a random process is typically described by its finite dimensional marginals,
i.e., the laws of (Xt1 , . . . , Xtn ) for all finite collections of time instants t1 < · · · < tn,
n ≥ 1. In particular, all versions of a process have the same finite dimensional distri-
butions. These are perforce consistent, i.e., if B ⊂ A are two such collections, then the
law for B is the induced law from the law for A under the appropriate projection. The
celebrated Kolmogorov extension theorem gives us the converse statement: Given a
consistent family of such finite dimensional laws, there is a unique probability mea-
sure on S [0,∞) consistent with it. Thus we can let Ω = S [0,∞), F the product σ-field,
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P denote this unique law, and set Xt(ω) = ω(t), where ω = {ω(t) : t ≥ 0} denotes a
sample point in Ω. This is called the canonical construction of the random process
X. While it appears appealingly simple and elegant, it has its limitations. The most
significant limitation is that F contains only “countably described sets,” i.e., any set
in F must be describable in terms of countably many time instants. (It is an inter-
esting exercise to prove this.) This eliminates many sets of interest. Thus it becomes
essential to “lift” this construction to a more convenient space, such as the space
C([0,∞); S ) of continuous functions [0,∞) �→ S or the space D([0,∞); S ) of func-
tions [0,∞) �→ S that are continuous from the right and have limits from the left at
each t (r.c.l.l.). We briefly sketch how to do the former, as that’s what we shall need
for diffusion processes.

The key result here is that if X is stochastically continuous, in other words if

P (d(Xs, Xt) > ε)→ 0 (1.1.1)

for any ε > 0 as s→ t, and for each T > 0, the modulus of continuity

wT (X, δ) := sup
{
d(Xs, Xt) : 0 ≤ s ≤ t ≤ T, |t − s| < δ

}→ 0 a.s., (1.1.2)

as δ→ 0, then X has a continuous version. The proof is simple: restrict X to rationals,
extend it uniquely to a continuous function on [0,∞) (which is possible because
(1.1.2) guarantees uniform continuity on rationals when restricted to any [0,T ], for
T > 0), and argue using stochastic continuity that this indeed yields a version of X.
A convenient test for (1.1.1) – (1.1.2) to hold is the Kolmogorov continuity criterion
(see Wong and Hajek [122, pp. 57]), that for each T > 0 there exist positive scalars
a, b, and c satisfying

E
[
d(Xt, Xs)

a] ≤ b|t − s|1+c ∀ t, s ∈ [0,T ] .

Note that the above procedure a.s. defines a map that maps an element of Ω to
the continuous extension of its restriction to the rationals. Defining the map to be
the function that is identically zero on the zero probability subset of Ω that is left
out, we have a measurable map Ω �→ C([0,∞); S ). The image µ of P under this map
defines a probability measure on C([0,∞); S ). We may thus realize the continuous
version as a canonically defined random process X′ on the new probability space
(C([0,∞); S ),G, µ), whereG is the Borel σ-field of C([0,∞); S ), as X′t (ω) = ω(t) for
ω ∈ C([0,∞); S ). An analogous development is possible for the space D([0,∞); S )
of paths [0,∞) → S that are right-continuous and have left limits. This space is
Polish: it is separable and metrizable with a complete metric ds (due to Skoro-
hod) defined as follows [55, p. 117]. Let Λ denote the space of strictly increasing
Lipschitz continuous surjective maps λ from R+ to itself such that

γ(λ) := ess sup
t≥0

|log λ′(t)| < ∞ .
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With ρ a complete metric on S , define

dT (x, y, λ) := sup
t≥0

[
1 ∧ ρ

(
x(t ∧ T ), y(λ(t) ∧ T )

)]
, T > 0 ,

ds(x, y) := inf
λ∈Λ

[
γ(λ) ∨

∫ ∞

0
e−sds(x, y, λ) ds

]
.

Convergence with respect to ds has the following simple interpretation: xn → x in
D([0,∞); S ) if there exists a sequence {λn ∈ Λ : n ∈ N} such that λn(t)→ t uniformly
on compacta, and sup[0,T ] ρ(xn ◦ λn, x)→ 0 for all T > 0. This topology is known as
the Skorohod topology.

A useful criterion due to Chentsov for the existence of a r.c.l.l. version that ex-
tends the Kolmogorov continuity criterion is that for any T > 0 there exist positive
constants a, b, c and C satisfying [66, pp. 159–164]

E
[
|Xt − Xr |a|Xr − Xs|b

]
≤ C|t − s|1+c , ∀s < r < t .

1.2 Markov processes

Before defining Markov processes, it is instructive to step back and recall what a de-
terministic dynamical system is. A deterministic dynamical system has as its back-
drop a set Σ called the state space in which it evolves. Its evolution is given by a time
t map Φt, t ∈ R, with the interpretation that for x ∈ Σ, x(t) := Φt(x) is the position of
the system at time t if it starts at x at time 0. The idea is that once at x, the trajectory
{x(t) : t ≥ 0} is completely specified, likewise for t ≤ 0. This in fact is what qualifies
x(t) as the state at time t in the sense of physics: x(t) is all you need to know at time
t to be able to determine the future trajectory {x(s) : s ≥ t}. Thus Φ0(x) = x, and
Φt ◦ Φs = Φs ◦ Φt = Φs+t, i.e., {Φt : t ∈ R} is a group.

A two-parameter version is possible for time-dependent dynamics, i.e., when the
future (or past) trajectory depends on the position x as well as the precise time t0
at which the trajectory is at x. Thus we need a two-parameter group Φs,t, satisfying
Φt,t(x) = x, and Φs,t ◦ Φu,s = Φu,t for all u, s, and t.

Clearly for stochastic dynamical systems, it does not make sense to demand that
the complete future trajectory be determined by the present position. Nevertheless
there is a natural generalization of the notions of a state and a dynamical system.
We require that the (regular) conditional law of {Xs : s ≥ t}, given {Xu : u ≤ t},
should be the same as its conditional law given Xt alone. In other words, knowing
how one arrived at Xt tells us nothing more about the future than what is already
known by knowing Xt. From an equivalent definition of conditional independence
[32, p. 42], this is equivalent to the statement that {Xs : s > t} and {Xs : s < t} are
conditionally independent given Xt for each t. This definition is symmetric in time.
Thus, for example, it is also equivalent to: for each t, the regular conditional law of
{Xs : s < t}, given {Xs : s ≥ t}, is the same as its regular conditional law given Xt.
In fact, a more general statement is true: for any t1 < t2, {Xs : s < t1 or s > t2} and
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{X(s) : t1 < s < t2} are conditionally independent given {Xt1 , Xt2 }. This also serves
as an equivalent definition. Though not very useful in the present context, this is the
definition that extends well to indices more general than time, such as t ∈ R2. These
are the so-called Markov random fields.

Since finite dimensional marginals completely specify the law of a stochastic
process, an economical statement of the Markov property is: For every collection
of times 0 ≤ t ≤ t1 < · · · < tk < ∞, and Borel subsets A1, . . . , Ak ⊂ S , it holds that

P
(
Xti ∈ Ai, i = 1, . . . , k | FX

t

)
= P

(
Xti ∈ Ai, i = 1, . . . , k | Xt

)
.

A stronger notion is that of the strong Markov property, which requires that

P
(
Xτ+ti ∈ Ai, i = 1, . . . , k | FX

τ

)
= P

(
Xτ+ti ∈ Ai, i = 1, . . . , k | Xτ

)
a.s. on {τ < ∞}, for every

(
FX

t
)
-stopping time τ. If X has the Markov, or strong

Markov property, then it said to be a Markov, or a strong Markov process, respec-
tively.

For t > s and x ∈ S , let P(s, x, t, dy) denote the regular conditional law of Xt

given Xs = x. This is called the transition probability (kernel) of X. In particular,
P : (s, x, t) �→ P(s, x, t, S ) is measurable. By the filtering property of conditional
expectations:

E
[
E
[
f (Xt) | FX

r

] ∣∣∣ FX
s

]
= E

[
f (Xt) | FX

s

]
, s ≤ r ≤ t ,

which, coupled with the Markov property, yields

P(s, x, t, dy) =
∫

S
P(s, x, r, dz) P(r, z, t, dy) , s ≤ r ≤ t .

These are called the Chapman–Kolmogorov equations. While the transition proba-
bility kernels of Markov processes must satisfy these, the converse is not true [57].

Let B(S ) denote the space of bounded measurable functions S �→ R. Define

Ts,t f (x) :=
∫

P(s, x, t, dy) f (y) , t ≥ s ≥ 0 , f ∈ B(S ) .

Then by the Chapman–Kolmogorov equations, {Ts,t : 0 ≤ s ≤ t} is a two-parameter
semigroup of operators, i.e., it satisfies

Tt,t = I , Tr,t ◦ Ts,r = Ts,t , 0 ≤ s ≤ r ≤ t ,

where I is the identity operator. This is weaker than the group property for deter-
ministic flows. However, this is inevitable because of the irreversibility of stochastic
processes.

Let Cb(S ) denote the space of bounded continuous real-valued functions on S .
The process X above is said to be Feller if {Ts,t : 0 ≤ s ≤ t} maps Cb(S ) into
Cb(S ), and strong Feller if it maps B(S ) into Cb(S ). The former case is obtained if
the transition probability kernel P(s, x, t, dy) is continuous in the initial state x. The
latter requires more – the kernel should have some additional smoothing properties.
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For example, when S = R, the Gaussian kernel

P(s, x, t, dy) =
1
√

2πt
e−

(x−y)2

2(t−s) dy

does have this property. More generally, if the transition kernel is of the form

P(s, x, t, dy) = p(s, x, t, y)λ(dy)

for a positive measure λ and the density p is continuous in the x variable, then the
strong Feller property follows by the dominated convergence theorem.

An important consequence of the Feller property is that it implies the strong
Markov property for Markov processes with right-continuous paths. To see this,
one first verifies the strong Markov property for stopping times taking values in{

k
2n : k ≥ 0

}
for n ∈ N fixed. This follows by a straightforward verification [55,

p. 159] which does not require the Feller property. Given a general a.s.-finite stopping
time τ, the property then holds for τ(n) := �2

nτ�+1
2n which is also seen to be a stopping

time for all n ≥ 1. As n ↑ ∞, τ(n) ↓ τ. Using the right-continuity of paths along
with the Feller property and the a.s. convergence property of reverse martingales, the
strong Markov property for τ can be inferred from that for τ(n).

In the case of Feller processes, we may restrict {Ts,t} to a semigroup on Cb(S ). Of
special interest is the case when the transition probability kernel P(s, x, t, dy) depends
only on the difference r = t − s. By abuse of terminology, we then write P(r, x, dy)
and also Tr = Ts,s+r. Then Tt, t ≥ 0 defines a one-parameter semigroup of operators.
A very rich theory of such semigroups is available, with which we deal in the next
section. It is worth noting here that this is a special case of the general theory of
operator semigroups. These are the so-called Markov semigroups, characterized by
the additional properties:

(a) Tt(α f + βg) = αTt f + βTtg for all α, β ∈ R and f , g ∈ Cb(S );

(b) f ≥ 0 =⇒ Tt f ≥ 0;

(c) ‖Tt f ‖ ≤ ‖ f ‖, where ‖ f ‖ := sups∈S | f (s)|;
(d) Tt1 = 1, where 1 is the constant function ≡ 1.

We now give some important examples of Markov processes.

Example 1.2.1 (i) Poisson process: Let λ > 0. A Z+-valued stochastic process
N = {Nt : t ≥ 0} is called a Poisson process with parameter λ if

(a) N0 = 0;

(b) for any 0 ≤ t0 < t1 < · · · < tn,

Nt1 − Nt0 , Nt2 − Nt1 , . . . , Ntn − Ntn−1

are independent, i.e., N has independent increments;

(c) t �→ Nt is a.s. right-continuous;
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(d) for t ≥ s ≥ 0, Nt − Ns has the Poisson distribution with parameter λ, i.e.,

P (Nt − Ns = n) =
λn(t − s)ne−λ(t−s)

n!
, n = 0, 1, . . .

It can be verified that N is a Markov process with transition function

P(t,m, {n}) = (λt)n−me−λt

(n − m)!
, n ≥ m .

(ii) One-dimensional Brownian motion: A real-valued process B = {Bt : t ≥ 0} is
called a one-dimensional Brownian motion (or Wiener process) if

(a) B0 = 0;
(b) t �→ Bt is a.s. continuous;
(c) for t > s ≥ 0, Bt−Bs has the Normal distribution with mean 0 and variance

t − s;
(d) for any 0 ≤ t0 < t1 < · · · < tn,

Bt1 − Bt0 , Bt2 − Bt1 , . . . , Btn − Btn−1

are independent.

Then B is a Markov process with transition function

P(t, x, A) =
1
√

2πt

∫
A

e−
(y−x)2

2t dy .

(iii) In general, any stochastic process with independent increments is a Markov
process.

(iv) d-dimensional Brownian motion: An Rd-valued process W = {Wt : t ≥ 0},
where Wt = (W1

t , . . . ,W
d
t ), is called a d-dimensional Brownian motion if

(a) for each i, Wi = {Wi
t : t ≥ 0} is a one-dimensional Brownian motion;

(b) for i � j, the processes Wi and W j are independent.

Then W is a Markov process with transition function

P(t, x, A) =
1

(2πt)d/2

∫
A

e−
|y−x|2

2t dy .

There are several ways of constructing Markov processes. We list the common
ones below.

(1) Via the theorem of Ionescu–Tulcea: Once an initial law λ at t0 and the transi-
tion probability kernel are prescribed, one can write down the finite dimensional
marginals of the process:

P
(
Xtk ∈ Ak, 0 ≤ k ≤ n

)
=

∫
A0

λ(dy0)
∫

A1

P(t0, y0, t1, dy1)

· · ·
∫

An

P(tn−1, yn−1, tn, dyn) .
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These are easily seen to form a consistent family and thus define a unique law
for X, by the theorem of Ionescu–Tulcea [93, p. 162]. This may be lifted to a suit-
able function space such as C([0,∞); S ) by techniques described in Section 1.1.

(2) Via dynamics driven by an independent increment process: A typical instance of
this is the equation

Xt = X0 +

∫ t

0
h(Xs) ds +Wt , t ≥ 0 ,

where W is a Brownian motion. Suppose that for a given trajectory of W, this
equation has an a.s. unique solution X (this requires suitable hypotheses on h).
Then for t > s,

Xt = Xs +

∫ t

s
h(Xr) dr +Wt −Ws , t ≥ 0 ,

and therefore Xt is a.s. specified as a functional of Xs and the independent in-
crements {Wu − Ws : s ≤ u ≤ t}. The Markov property follows easily from
this. Later on we shall see that the a.s. uniqueness property used above holds for
a very general class of equations. One can also consider situations where W is
replaced by other independent increment processes.

(3) Via change of measure: Suppose X is a Markov process constructed canoni-
cally on its path space, say C([0,∞); S ). That is, we take Ω = C([0,∞); S ), F its
Borel σ-field, and P the law of X. Then Xt(ω) = ω(t) for t ≥ 0 and ω ∈ Ω. Let
X[s,t] denote the trajectory segment {Xr : s ≤ r ≤ t}. Let FX

s,t be the right-
continuous completion of σ{Xr : s ≤ r ≤ t}. A family {Λs,t : s < t} of
FX

s,t-measurable random variables is said to be a multiplicative functional if
Λr,sΛs,t = Λr,t for all r < s < t. If in addition {Λ0,t : t ≥ 0} is a nonnegative
martingale with mean equal to one, we can define a new probability measure P̂
on (Ω,F) as follows: If Pt and P̂t denote the restrictions of P and P̂, respectively,
to FX

t for t ≥ 0, then

dP̂t

dPt
= Λ0,t , t ≥ 0 . (1.2.1)

Since F =
∨

t≥0 F
X
t , it follows by the martingale property of {Λ0,t : t ≥ 0} that

(1.2.1) consistently defines a probability measure on (Ω,F). Let E and Ê denote
the expectations under P and P̂, respectively. For any f ∈ B(S ) and s < t, one
has the well-known Bayes formula

Ê
[
f (Xt) | FX

s

]
=
E
[
f (Xt)Λ0,t | FX

s

]
E
[
Λ0,t | FX

s
] =

E
[
f (Xt)Λ0,t | FX

s

]
Λ0,s

.

From the multiplicative property, the right-hand side is simply

E
[
f (Xt)Λs,t | FX

s

]
= E

[
f (Xt)Λs,t | Xs

]
,

in other words, a function of Xs alone. Thus X remains a Markov process un-
der P̂. We shall later see an important instance of this construction when we
construct the so-called weak solutions to stochastic differential equations.
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(4) Via approximation: Many Markov processes are obtained as limits of simpler
Markov (or even non-Markov) processes. In the next section, we discuss the
semigroup and martingale approaches to Markov processes. These provide the
two most common approximation arguments in use. In the semigroup approach,
one works with the semigroup {Tt} described above. This specifies the transition
probability kernel via∫

P(t, x, dy) f (y) = Tt f (x) , f ∈ Cb(S ) ,

and therefore also determines the law of X once the initial distribution is given.
One often constructs Markov semigroups {Tt} as limits (in an appropriate sense)
of a sequence of known Markov semigroups {T n

t : n ≥ 1} as n ↑ ∞. See Ethier
and Kurtz [55] for details and examples. The martingale approach, on the other
hand, uses the martingale characterization, which characterizes the Markov pro-
cess X by the property that for a sufficiently rich class of f ∈ Cb(S ) and an oper-
ator L defined on this class, f (Xt) −

∫ t

0
L f (Xs) ds, t ≥ 0, is an

(
FX

t
)
-martingale.

As the martingale property is preserved under weak (Prohorov) convergence of
probability measures, this allows us to construct Markov processes as limits in
law of other Markov or sometimes non-Markov processes. The celebrated dif-
fusion limit in queuing theory is a well-known example of this scheme, as are
many systems of infinite interacting particles.

We conclude this section by introducing the notion of a Markov family. This is a
family of probability measures {Px : x ∈ S } on (Ω,F) along with a stochastic process
X defined on it such that the law of X under Px for each x is that of a Markov pro-
cess corresponding to a common transition probability kernel (i.e., with a common
functional dependence on x), with initial condition X0 = x. This allows us to study
the Markov process under multiple initial conditions at the same time. We denote a
Markov family by

(
X, (Ω,F), {Px}x∈S

)
.

1.3 Semigroups associated with Markov processes

Let E be a Polish space, and
(
X, (Ω,F), {Ft}t∈R+ , {Px}x∈E

)
a Markov family. We define

a one-parameter family of operators Tt : B(E)→ B(E), t ∈ R+, as follows:

Tt f (x) := Ex
[
f (Xt)

]
=

∫
E

P(t, x, dy) f (y) , f ∈ B(E) . (1.3.1)

The following properties are evident

(i) for each t, Tt is a linear operator;
(ii) ‖Tt f ‖∞ ≤ ‖ f ‖∞, where ‖ · ‖∞ is the L∞-norm;

(iii) Tt is a positive operator, i.e., Tt f ≥ 0 if f ≥ 0;
(iv) Tt1 = 1, where 1 denotes the function identically equal to 1;
(v) T0 = I, where I denotes the identity operator;

(vi) Tt+s = TtTs.
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Thus {Tt : t ≥ 0} is a contractive semigroup of positive operators on B(E). We
next define another semigroup, which is in a sense dual to {Tt : t ≥ 0}.

LetMs(E) denote the space of all finite signed measures on (E,B(E)), under the
topology of total variation norm. For t ∈ R+, we define S t : Ms(E)→ Ms(E) by(

S t µ
)
(A) :=

∫
E

P(t, x, A) µ(dx) .

Then properties (i)–(vi) hold for {S t}, under the modification ‖S t µ‖TV ≤ ‖µ‖TV for
property (ii) and S t µ(E) = µ(E) for property (iv).

Let f ∈ B(E). We define an operatorA on B(E) by

A f = lim
t↓0

Tt f − f
t

in L∞-norm, provided the limit exists. We refer to the set of all such functions f as
the domain of A and denote it by D(A). The operator A is called the infinitesimal
generator of the semigroup {Tt}. Let

B0 :=
{
f ∈ B(E) : ‖Tt f − f ‖ → 0, as t ↓ 0

}
.

It is easy to verify that B0 is a closed subspace of B(E) and that Tt f is uniformly
continuous in t for each f ∈ B0. Also Tt(B0) ⊂ B0 for all t ∈ R+ and D(A) ⊂ B0.
Thus {Tt} is a strongly continuous semigroup on B0. For Feller processes we have
Tt : Cb(E)→ Cb(E) and the previous discussion applies with Cb(E) replacing B(E).

The following result is standard in semigroup theory.

Proposition 1.3.1 For a strongly continuous semigroup {Tt} on a Banach space X
with generatorA, the following properties hold:

(i) if f ∈ X, then
∫ t

0
Ts f ds ∈ D(A) for all t ∈ R+, and

Tt f − f = A
∫ t

0
Ts f ds ;

(ii) if f ∈ D(A), then Tt f ∈ D(A) for all t ∈ R+, and

d
dt

Tt f = ATt f = TtA f ,

or equivalently,

Tt f − f =
∫ t

0
ATs f ds =

∫ t

0
TsA f ds , t ∈ R+ .

We describe briefly the construction of a semigroup from its infinitesimal genera-
torA. For this purpose we introduce the notion of the resolvent of a semigroup {Tt}.
This is a family of operators {Rλ}λ>0 on B(E) defined by

Rλ f (x) =
∫ ∞

0
e−λtTt f (x) dt = Ex

[∫ ∞

0
e−λt f (Xt) dt

]
, x ∈ E .
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By Laplace inversion, {Rλ f : λ > 0} determines Tt f for almost every t. Hence, if
the map t �→ Tt f is continuous, then Tt f is determined uniquely. Thus the resolvent
determines the semigroup {Tt} on B0. In addition, if B0 separates the elements of
Ms(E), i.e., if, for µ ∈ Ms(E),∫

E
f dµ = 0 ∀ f ∈ B0

implies µ = 0, then the resolvent determines the semigroup uniquely, which in turn
determines the Markov family via (1.3.1).

The properties of {Tt} are reflected in {Rλ}. In particular, ‖Tt‖ ≤ 1 corresponds to

‖Rλ‖ ≤ λ−1 , (1.3.2)

the positivity of Tt implies that ofRλ, and the semigroup property of {Tt} corresponds
to

RµRλ f = (µ − λ)−1(Rλ f − Rµ f ) , µ � λ . (1.3.3)

The property in (1.3.3) is known as the resolvent equation. From (1.3.3) it follows
that Rλ(B(E)) = Rµ(B(E)) for all λ, µ > 0, and that for f ∈ B(E)

Rλ f = Rµ
(
f + (µ − λ)Rλ f

)
.

Also Rλ(B(E)) ⊂ B0, and

‖ f − λRλ f ‖ −−−−→
λ→∞

0 ∀ f ∈ B0 . (1.3.4)

Equation (1.3.4) corresponds to the property T0 = I.
The restriction of Rλ on B0 is the inverse of (λI −A) defined on D(A). Indeed, it

holds that:

(i) if f ∈ B0, then Rλ f ∈ D(A) and

(λI −A)Rλ f = f ; (1.3.5)

(ii) if f ∈ D(A), then

Rλ(λI −A) f = f . (1.3.6)

It follows by properties (1.3.5) – (1.3.6) that the operator A determines the semi-
group uniquely on B0. Indeed, for λ > 0, we obtain Rλ f via (1.3.5), which in turn
determines Tt f via Laplace inversion. Also since B0 is closed and D(A) = Rλ(B0)
by (1.3.5) – (1.3.6), it follows from (1.3.4) that D(A) is dense in B0. It is straightfor-
ward to show that the operatorA is closed.

The celebrated theorem of Hille–Yosida provides the necessary and sufficient con-
ditions for an operator on a Banach space to be the infinitesimal generator of a
strongly continuous contraction semigroup.

Theorem 1.3.2 (Hille–Yosida) Let X be a Banach space and L a linear operator
on X. Then L is the infinitesimal generator of a strongly continuous contraction
semigroup on X if and only if
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(i) D(L) is dense in X;
(ii) L is dissipative, i.e., ‖λ f − L f ‖ ≥ λ‖ f ‖, for every f ∈ D(L);

(iii) R(λI − L) = X for some λ > 0.

An equivalent statement of the Hille–Yosida theorem in Rogers and Williams
[102] uses the resolvent {Rλ : λ > 0} as the starting point. Specifically, a contrac-
tion resolvent {Rλ : λ > 0} is defined as a family of bounded linear operators on
X satisfying (1.3.2) and (1.3.3). It is said to be strongly continuous if (1.3.4) holds.
The alternative version of the Hille–Yosida theorem from [102, p. 237] states that
such a family corresponds to a unique strongly continuous contraction semigroup
{Tt : t ≥ 0} such that

Rλ f =
∫ ∞

0
e−λtTt f dt ∀t > 0 , f ∈ B(E) ,

and

Tt f = lim
λ↑∞

e−λt
∞∑

n=0

(λt)n(λRλ f )n

n!
. (1.3.7)

The generatorA is in turn given by

A f = lim
λ↑∞

λ(λRλ f − f ) (1.3.8)

whenever the limit exists, with D(A) being precisely the set of those f for which it
does.

The two versions of the Hille–Yosida theorem are related in the spirit of Tauberian
theorems. The advantage of the resolvent based viewpoint is that (1.3.7) – (1.3.8) of-
ten lead to useful approximation procedures; the developments of Section 6.3 are
of this kind. The original statement of the Hille–Yosida theorem given above, how-
ever, is more fundamental from a dynamic point of view. In dynamical systems (and
Markov processes after all are stochastic dynamical systems), one wants a character-
ization of the dynamics in terms of an “instantaneous” prescription that leads to the
global dynamic behavior through an appropriate integration procedure. The genera-
tor provides precisely such a prescription. It renders precise the intuition Tt = etA,
which is straightforward for bounded A, but highly nontrivial otherwise. Unfortu-
nately the latter is the case for all but the simplest Markov processes (see the exam-
ples below).

Example 1.3.3 (i) Let E = Z+ and N = {Nt : t ≥ 0} be a Poisson process with
parameter λ and N0 = 0. Then for f ∈ B(Z+) the infinitesimal generator A is
given by

A f (x) = λ
(
f (x + 1) − f (x)

)
, x ∈ Z+ . (1.3.9)

Conversely, ifA is defined by (1.3.9), then sinceA is a bounded linear operator
on B(Z+) the corresponding semigroup {Tt} is given by

Tt f (x) = etA f (x) =
∞∑

n=0

(λt)ne−λt

n!
f (x + n) , x ∈ Z+ ,
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and the transition function takes the form

P(t, x, {y}) = (λt)y−xe−λt

(y − x)!
, y ≥ x .

(ii) Let E = {1, . . . , N} and X = {Xt : t ≥ 0} be a time-homogeneous Markov chain
with transition probabilities

Pi j(t) = P (Xt+s = j | Xs = i) , t ≥ 0 .

We assume that

lim
t↓0

Pi j(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 if i = j ,

0 if i � j .

If P(t) = [Pi j(t)] denotes the transition matrix as a function of time, then

P(t + s) = P(t)P(s) , t, s ≥ 0 ,

and it follows that P is continuous in t. Moreover, P is differentiable, i.e.,

lim
t↓0

Pi j(t)

t
= λi j , i � j ,

lim
t↓0

Pii(t) − 1
t

= λii .

for some λi j ∈ [0,∞), i � j, and λii = −
∑

j�i λi j.
An alternate description of the Markov chain can be provided via

P (Xt+h = j | Xt = i) = λi jh + o(h) , i � j ,

P (Xt+h = i | Xt = i) = 1 + λiih + o(h) ,

which yields a characterization of the chain in terms of the sojourn times, which
are defined as the random intervals that the chain spends in any given state. If
the chain starts at X0 = i, then the sojourn time in the state i is exponentially
distributed with parameter −λii. The chain then jumps to a state j � i with
probability − λi j

λii
. The sequence of states visited by X, denoted by {Y0,Y1, . . . }, is

itself a discrete Markov chain, called the embedded chain. Conditioned on the
states {Y0,Y1, . . . }, the successive sojourn times τ0, τ1, . . . are independent and
exponentially distributed random variables with parameters −λY0Y0 , −λY1Y1 , . . . ,
respectively.

Define the N × N matrix Λ = [λi j]. Then

Λ = lim
t↓0

P(t) − I
t

.

Hence, Λ is the infinitesimal generator of the Markov chain X. Conversely, if
Λ = [λi j] is an N × N matrix with λi j ≥ 0 for i � j, and

∑
j λi j = 0, then we can

construct a Markov chain X = {Xt} taking values in E having transition matrix
P(t) = etΛ.
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(iii) Let W = {Wt : t ≥ 0} be a standard d-dimensional Wiener process. Then
the domain of the infinitesimal generatorA contains the space C2

c(Rd) of twice-
continuously differentiable functions with compact support, and for f ∈ C2

c(Rd),
A takes the form

A f (x) = 1
2∆ f (x) ,

where ∆ denotes the Laplace operator.

1.4 The martingale approach

Consider an E-valued Feller process X and the associated semigroup {Tt} on Cb(E).
Integrating the semigroup equation

d
dt

Tt f = TtA f , f ∈ D(A) ,

we obtain

Tt f (x) = f (x) +
∫ t

0
TsA f (x) ds .

That is,

E

[
f (Xt) − f (x) −

∫ t

0
A f (Xs) ds

∣∣∣∣∣ X0 = x

]
= 0 .

More generally,

E

[
f (Xt) − f (Xs) −

∫ t

s
A f (Xr) dr

∣∣∣∣∣ FX
s

]

= E

[
f (Xt) − f (Xs) −

∫ t

s
A f (Xr) dr

∣∣∣∣∣ Xs

]
= 0 ,

where the first equality follows from the Markov property. In other words

f (Xt) −
∫ t

0
A f (Xs) ds , t ≥ 0 , (1.4.1)

is an
(
FX

t
)
-martingale.

The martingale approach to Markov processes pioneered by Stroock and Varadhan
uses this property to characterize Markov processes, essentially providing a converse
to the above statement. The operatorA is then said to be an extended generator of the
process and the functions f for which (1.4.1) holds form the domain of the extended
generator, denoted by D̃(A) [55].

Some advantages of this approach are

(1) Whereas D(A) in Section 1.3 is sometimes difficult to pin down, D̃(A) can often
be chosen in a more convenient manner. This is demonstrated in Section 1.6.
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(2) It allows us to use the machinery of martingale theory for analyzing Markov
processes. For example:

(2a) Continuous time martingales have versions that are r.c.l.l., a standard con-
sequence of the forward and reverse martingale convergence theorems. The
martingale approach then allows one to deduce the r.c.l.l. property for the
Markov process in question [55, Theorem 3.6, p. 178].

(2b) Often limit theorems such as the central limit theorem for functions of a
Markov process can be deduced from the corresponding limit theorem for
the associated martingale [55, Chapter 7].

(2c) There are also simple and elegant tests for tightness and convergence in the
martingale approach for Markov processes [55, Section 3.9].

Given A : D̃(A) → Cb(E) and ν ∈ P(E), we say that a process X (or rather its
law) solves the martingale problem for (A ,ν) if L (X0) = ν and for all f ∈ D̃(A),
(1.4.1) holds. It is said to be the unique solution thereof if this X is unique in law.
In that case X can be shown to be Markov [55, p. 184]. More generally, a family
{Px}x∈E ⊂ P (D[0,∞); E), solves the martingale problem for A if for each x, Px

solves the martingale problem for (A , δx). The martingale problem is well-posed if
for each x, the solution Px is unique. In this case {Px} is a Markov family.

A key result in this development is the following [55, theorem 4.1, p. 182].

Theorem 1.4.1 SupposeA is linear, dissipative and for some λ > 0, the closure of
the range of λI − A separates points of E. Then the martingale problem for (A ,ν),
ν ∈P(E), has a unique solution, which moreover is a Markov process.

1.5 Ergodic theory of Markov processes

In this section we first present a self-contained treatment of the ergodic properties of
a measure preserving transformation and related issues. Then we study the ergodic
behavior of a stationary process, and conclude by addressing the ergodic properties
of a Markov process.

1.5.1 Ergodic theory

Ergodic theory originated in the attempts to render rigorous the statistical mechanical
notion that “time averages equal ensemble averages.” It was put on a firm mathemat-
ical footing by Birkhoff, von Neumann and others. Their original formulations were
in the framework of measure preserving transformations, a natural formulation of
time invariant phenomena if we consider time shifts as measure preserving. Special-
ized to stochastic processes, and even more so, to Markov processes, the theory has
a much richer structure that subsumes, among other things, the classical law of large
numbers. We outline here the general framework of ergodic theory and specialize
later to stationary processes and Markov processes.

We begin with some basic concepts.
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Definition 1.5.1 Let (E,E, µ) be a probability space. An E-measurable transforma-
tion T : E → E is said to be measure preserving if

µ(T−1(A)) = µ(A) ∀A ∈ E . (1.5.1)

If a transformation T preserves a measure µ in the sense of (1.5.1), then µ is often
referred to as an invariant (probability) measure of T . Let

MT (E) :=
{
µ ∈P(E) : µ ◦ T−1 = µ

}
, (1.5.2)

i.e., MT (E) is the set of all invariant probability measures of T . If E is a compact
metric space and T : E → E is continuous, then µ �→ µ ◦ T−1 is a continuous affine
map from a convex compact subset of C(E)∗ to itself. Thus by the Schauder fixed
point theorem [51, p. 456], µ �→ µ ◦ T−1 has a fixed point, and it follows thatMT (E)
is non-empty. Alternatively, let ν ∈P(E), and define

µn :=
1
n

n−1∑
k=0

ν ◦ T−k .

Since E is compact, {µn} is tight. It is easy to show that any limit point of {µn}
in P(E) belongs to MT (E) (Krylov–Bogolioubov theorem [119, corollary 6.9.1,
p. 152]).

Let T be a measure preserving transformation on a probability space (E,E, µ). A
set A ∈ E is called T -invariant if T−1A = A. In such a case the study of T can be split
into the study of the transformations T |A and T |Ac .

Definition 1.5.2 Let (E,E, µ) be a probability space. A measure preserving trans-
formation T : E → E is called ergodic if for any T -invariant set A ∈ E, µ(A) = 0 or
µ(A) = 1.

From the perspective of invariant measures, a T -invariant probability measure µ

is called ergodic if for any T -invariant set A ∈ E, µ(A) = 0 or µ(A) = 1. Ergodicity
can also be expressed in a functional language: a µ-preserving transformation T is
ergodic if and only if every T -invariant real-valued function f (i.e., f ◦ T = f ) is
constant a.s. with respect to µ.

Theorem 1.5.3 (Birkhoff ergodic theorem) Let T be a measure preserving trans-
formation on a probability space (E,E, µ) and f ∈ L1(µ). Then

lim
n→∞

1
n

n−1∑
k=0

f (T k(x)) = E
[
f | I] µ-a.s. ,

where I is the µ-completion of the σ-field {A ∈ E : T−1A = A}.

The proof can be found in several texts, e.g., [119].

Corollary 1.5.4 If T defined on (E,E, µ) is ergodic, and f ∈ L1(µ), then

lim
n→∞

1
n

n−1∑
k=0

f (T k(x)) =
∫

E
f dµ µ-a.s.
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Useful properties of the set of invariant probability measures MT (E) defined in
(1.5.2) are provided by the following theorem.

Theorem 1.5.5 Let E be compact and T : E → E continuous. Then

(i) MT (E) is a convex and compact subset of P(E);
(ii) µ is an extreme point ofMT (E) if and only if µ is ergodic, i.e., if T is an ergodic

measure preserving transformation on (E,E, µ);
(iii) if µ, ν ∈ MT (E) are both ergodic and µ � ν, then µ and ν are mutually singu-

lar.

Proof (i) The convexity of MT (E) is obvious. Also, it is easy to show that it is
closed, and hence compact by Prohorov’s theorem.

(ii) If µ ∈ MT (E) is not ergodic, then there exists A ∈ E such that T−1A = A and
0 < µ(A) < 1. Define µ1 and µ2 in P(E) by

µ1(B) =
µ(B ∩ A)
µ(A)

, µ2(B) =
µ(B ∩ Ac)
µ(Ac)

, B ∈ E .

It is straightforward to verify that µ1 and µ2 belong toMT (E), and since

µ = µ(A)µ1 + (1 − µ(A))µ2 ,

µ is not an extreme point ofMT (E). Conversely, suppose µ ∈ MT (E) is ergodic and
µ = aµ1 + (1 − a)µ2 for some µ1, µ2 ∈ MT (E), and a ∈ (0, 1). Clearly µ1 � µ. Let

A =
{
x ∈ E : dµ1

dµ (x) < 1
}
.

Then ∫
A∩T−1A

dµ1

dµ
dµ +

∫
A\T−1A

dµ1

dµ
dµ = µ1(A)

= µ1(T−1A)

=

∫
A∩T−1A

dµ1

dµ
dµ +

∫
T−1A\A

dµ1

dµ
dµ ,

which implies ∫
A\T−1A

dµ1

dµ
dµ =

∫
T−1A\A

dµ1

dµ
dµ .

Since dµ1

dµ < 1 on A \ T−1A, dµ1

dµ ≥ 1 on T−1A \ A, and

µ(A \ T−1A) = µ(A) − µ(A ∩ T−1A)

= µ(T−1A) − µ(A ∩ T−1A)

= µ(T−1A \ A) ,

it follows that

µ(A \ T−1A) = µ(T−1A \ A) = 0 .
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If µ(A) = 1, then

µ1(E) =
∫

A

dµ1

dµ dµ < µ(A) = 1 ,

a contradiction. Thus µ(A) = 0. Similarly, if B =
{
x ∈ E : dµ1

dµ (x) > 1
}
, following the

same arguments we show that µ(B) = 0. Therefore µ1 = µ, which in turn implies
µ1 = µ2, and thus µ is an extreme point.

(iii) Using the Lebesgue decomposition theorem, we can find a unique a ∈ [0, 1]
and a unique pair µ1, µ2 ∈ P(E) such that µ = aµ1 + (1 − a)µ2, where µ1 � ν and
µ2 is singular with respect to ν. However,

µ = µ ◦ T−1 = aµ1 ◦ T−1 + (1 − a)µ2 ◦ T−1 ,

and since µ1◦T−1 � ν◦T−1 = ν and µ2◦T−1 is singular with respect to ν◦T−1 = ν,
the uniqueness of the decomposition implies that µ1, µ2 ∈ MT (E). Since µ is an
extreme point ofMT (E), we have a ∈ {0, 1}. If a = 0, then µ = µ2 and µ is singular
with respect to ν. If a = 1, then µ � ν, and we can argue as in (ii) to conclude that
µ = ν, a contradiction. �

LetMe
T (E) denote the set of extreme points ofMT (E).

Definition 1.5.6 Let X be a Hausdorff, locally convex, topological vector space
and C ⊂ X a convex, compact, metrizable subset. An element x ∈ C is called the
barycenter of a measure µ ∈P(C) if

f (x) =
∫

C
f dµ

for all continuous affine f : C → R.

We state without proof a theorem of Choquet [95].

Theorem 1.5.7 (Choquet) Let C be a convex, compact, metrizable subset of a lo-
cally convex topological vector space. Then each x ∈ C is the barycenter of some
µ ∈P(C) supported on the set of extreme points of C.

The metrizability of C ensures that the set of its extreme points is Gδ in C and
hence measurable, whereas the compactness of C ensures that it is non-empty [44,
p. 138].

Lemma 1.5.8 For each µ ∈ MT (E), there exists a unique ξ ∈ P
(MT (E)

)
, with

ξ
(Me

T (E)
)
= 1, such that∫

E
f (x) µ(dx) =

∫
Me

T (E)

(∫
E

f (x) ν(dx)

)
ξ(dν) ∀ f ∈ C(E) .

Proof SinceMT (E) is convex and compact, the existence of such a ξ follows from
Choquet’s theorem.

To show uniqueness, note that if µ1 and µ2 are T -invariant, so is µ1−µ2, hence also
(µ1−µ2)+ and (µ1−µ2)−. It follows that the measures |µ1−µ2| = (µ1−µ2)++(µ1−µ2)−,
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µ1 ∨ µ2 =
1
2 (µ1 + µ2 + |µ1 − µ2|) and µ1 ∧ µ2 =

1
2 (µ1 + µ2 − |µ1 − µ2|) are also T -

invariant. ThereforeMT (E) is a Choquet simplex [44, p. 160], and by a theorem of
Choquet and Meyer [44, p. 163], ξ is unique. �

We write

µ(A) =
∫
Me

T (E)
ν(A) ξ(dν) , A ∈ E ,

and call this the ergodic decomposition of µ.
We have thus far treated ergodicity for a single measure preserving transformation.

Next we extend the study to a semigroup of measure preserving transformations.
Let (E,E, µ) be a probability space and {Tt : t ≥ 0} a semigroup of measure

preserving transformations on E. Note then that∫
E

f (Tt(x)) µ(dx) =
∫

E
f (x) µ(dx) ∀ f ∈ L1(µ) .

Assume that (t, x) �→ Tt(x) is measurable with respect to B(R+) × E. We have the
following extension of Birkhoff’s ergodic theorem for {Tt}.

Theorem 1.5.9 Let {Tt : t ≥ 0} be a semigroup of measure preserving transforma-
tions on a probability space (E,E, µ). Define the operator St by

St f (x) :=
1
t

∫ t

0
f
(
Ts(x)

)
ds .

Then for every f ∈ L1(µ) there exists f ∗ ∈ L1(µ) such that

lim
t→∞
St f = f ∗ µ-a.s., (1.5.3)

and f ∗ = E
[
f | I], where I is the µ-completion of the σ-field

{A ∈ E : T−1
t A = A , ∀t ∈ R+} .

In particular, E
[
f ◦ Tt | I

]
= E

[
f | I] for all t ∈ R+. Moreover, if f ∈ Lp(µ), with

p ∈ [1,∞), then ∥∥∥St f − f ∗
∥∥∥

Lp(µ)
−−−→
t→∞

0 . (1.5.4)

Proof Without loss of generality assume that f ≥ 0. Define f1(x) :=
∫ 1

0
f (Ts(x)) ds

for x ∈ E. Then ∫
E

f1(x) µ(dx) =
∫

E

[∫ 1

0
f (Ts(x)) ds

]
µ(dx)

=

∫ 1

0

[∫
E

f (Ts(x)) µ(dx)

]
ds

=

∫
E

f (x) µ(dx) .
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Therefore f1 ∈ L1(µ). Since T1 is measure preserving, and T n
1 = Tn for any n ∈ N,

we have
n−1∑
k=0

f1
(
T k

1(x)
)
=

n−1∑
k=0

∫ 1

0
f
(
Tk+s(x)

)
ds =

∫ n

0
f1
(
Ts(x)

)
ds .

Hence, by Theorem 1.5.3,

f ∗(x) := lim
n→∞

1
n

∫ n

0
f
(
Ts(x)

)
ds exists µ-a.s. (1.5.5)

For t ≥ 1, let �t� denote the integer part of t, i.e., �t� ≤ t < �t� + 1. We have

1
�t� + 1

∫ �t�

0
f
(
Ts(x)

)
ds ≤ 1

t

∫ t

0
f
(
Ts(x)

)
ds ≤ 1

�t�

∫ �t�+1

0
f
(
Ts(x)

)
ds . (1.5.6)

Since �t�
�t�+1 → 1, it follows from (1.5.5) – (1.5.6) that the limit in (1.5.3) exists µ-a.s.

on E. Also, since ∫
A

f dµ =
∫

A
f ◦ Tt dµ ∀A ∈ I ,

we have, for every bounded f ,∫
A

f ∗ dµ =
∫

A

[
lim
t→∞

1
t

∫ t

0
f ◦ Ts ds

]
dµ

= lim
t→∞

1
t

∫ t

0

[∫
A

f ◦ Ts dµ

]
ds

=

∫
A

f dµ .

Thus f ∗ = E
[
f | I].

Since ‖St f ‖Lp(µ) ≤ ‖ f ‖Lp(µ), St is a bounded linear operator on Lp(µ), p ∈ [1,∞).
If f is bounded, then (1.5.4) holds by dominated convergence. If f ∈ Lp(µ) for some
p ∈ [1,∞), then for every ε > 0 there exists a bounded function fε on E such that
‖ f − fε‖Lp(µ) ≤ ε

3 . Also since St fε is Cauchy in Lp(µ), there exists T = T (ε, fε) such
that ‖St fε − St′ fε‖Lp(µ) ≤ ε

3 , for all t, t′ > T . Thus, we have∥∥∥St f − St′ f
∥∥∥

Lp(µ)
≤

∥∥∥St( f − fε)
∥∥∥

Lp(µ)
+

∥∥∥St fε − St′ fε
∥∥∥

Lp(µ)
+

∥∥∥St′ ( f − fε)
∥∥∥

Lp(µ)

≤ ε , ∀t, t′ > T (ε, fε) .

Therefore St f is Cauchy in Lp(µ) and hence it converges. It is evident that the limit
is f ∗. �

Theorem 1.5.9 admits a more general form as follows [108, p. 2].

Theorem 1.5.10 Let {Tt : t ≥ 0} be a semigroup of measure preserving transfor-
mations on a σ-finite measurable space (E,E, µ), and f , g ∈ L1(µ), g > 0. Suppose
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0
g(Ts(x)) ds→ ∞ as t → ∞, µ-a.s. Then there exists f ∗g ∈ L1(µ) such that

lim
t→∞

∫ t

0
f (Ts(x)) ds∫ t

0
g(Ts(x)) ds

= f ∗g (x) µ-a.s.

Moreover, f ∗g (x) = f ∗g
(
Tt(x)

)
µ-a.s. for all t > 0, and∫

E
f ∗g (x)g(x) µ(dx) =

∫
E

f (x) µ(dx) .

Definition 1.5.11 A semigroup {Tt : t ≥ 0} of measure preserving transformations
on a probability space (E,E, µ) is called ergodic if µ(A) ∈ {0, 1} for all A ∈ I.

If {Tt} is ergodic, then µ is often referred to as an ergodic invariant probability mea-
sure for the semigroup {Tt}. Also note that if {Tt} is ergodic, then any I-measurable
function is constant µ-a.s.

Remark 1.5.12 (i) If {Tt} is ergodic and f ∈ L1(µ), then

lim
t→∞

1
t

∫ t

0
f
(
Ts(x)

)
ds =

∫
E

f (x) µ(dx) .

(ii) The analogue of Theorem 1.5.5 holds for a semigroup {Tt} of measure preserving
transformations.

1.5.2 Ergodic theory of random processes

Recall that a random process is called stationary if its law is invariant under time
shifts. We now consider the implications of ergodic theory for stationary stochastic
r.c.l.l. processes with state space S . The space of sample paths E = D(R; S ) with
the Skorohod topology is itself a Polish space. It is well known that any Polish space
E can be homeomorphically embedded into a Gδ subset of [0, 1]∞ [32, p. 2]. The
closure of its image can then be viewed as a compactification Ē of E, i.e., E is
densely continuously embedded in the compact Polish space Ē. ThenM :=P(Ē) is
compact by Prohorov’s theorem. LetM0

s denote the subset ofM, corresponding to
stationary probability measures on E, andMs denote its closure inM. The setsMs

andM0
s are convex andMs is compact. LetMe,M0

e denote the set of extreme points
of Ms, M0

s , respectively. That Me is non-empty follows from compactness of M.
By Choquet’s theorem [44, p. 140] (see also Theorem 1.5.7, p. 18), every µ ∈ Ms is
the barycenter of a probability measure ξµ onMe, i.e., it satisfies∫

Ē
f (z) µ(dz) =

∫
Me

(∫
Ē

f (z) ν(dz)

)
ξµ(dν) ∀ f ∈ Cb

(
Ē
)
.

By Theorem 1.5.5 (iii), the elements ofMe are mutually singular. Consequently, as
in Lemma 1.5.8, ξµ is uniquely determined by µ.

Lemma 1.5.13 If µ ∈ M0
s , then ξµ

(
Me \M0

e

)
= 0.
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Proof If ξµ
({

ν ∈ Me : ν
(
Ē \E

)
> 0

})
> 0, then µ

(
Ē \E

)
> 0, a contradiction. Thus,

ξµ
(
(M0

e)c
)
= 0. In particularM0

e � ∅. �

We now turn to Markov processes. Let P(t, x, dy) be a transition kernel on a Polish
space S , and X denote a Markov process governed by this kernel.

Definition 1.5.14 µ ∈ P(S ) is said to be an invariant probability measure (or
stationary distribution) for the kernel P if∫

S
µ(dx)P(t, x, dy) = µ(dy) .

We let H denote the set of all such µ, and I denote the set of stationary laws of X
corresponding to L (X0) ∈H .

Assuming P is Feller, the following are some immediate consequences of this
definition:

(i) if, for some t ∈ R, the law of Xt is µ, then it is so for all t ∈ R, and X is a
stationary process;

(ii) the sets H and I , if non-empty, are closed and convex.

The existence of an invariant probability measure can be characterized as follows.

Theorem 1.5.15 Let S be a Polish space, and P : R+ × S → P(S ) a transition
probability. Then there exists an invariant probability measure for P, only if for some
x0 ∈ S the following holds: for every ε > 0 there exists a compact set Kε ⊂ S such
that

lim inf
t→∞

1
t

∫ t

0
P(s, x0, Kc

ε) ds < ε . (1.5.7)

Provided P has the Feller property, this condition is also sufficient for the existence
of an invariant probability measure.

Proof Suppose that µ ∈ P(S ) is invariant. Since S is Polish, µ is tight. Let Kn be
a sequence of compact sets such that µ(Kc

n) → 0 as n → ∞. Fix a sequence tk ↑ ∞,
and define

ϕn(x) := lim inf
k→∞

1
tk

∫ tk

0
P(s, x, Kc

n) ds .

Then, since

µ(Kc
n) =

∫
S
µ(dx)

[
1
tk

∫ tk

0
P(s, x, Kc

n) ds

]
, k ≥ 0 ,

taking limits we obtain

µ(Kc
n) ≥

∫
S
ϕn(x) µ(dx) ,

which implies that along some subsequence ϕn converges to 0 µ-a.s. Thus for n large
enough (1.5.7) holds. This completes the proof of necessity. To show sufficiency, it
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follows from (1.5.7) that there exists a sequence tk ↑ ∞ and an increasing sequence
of compact sets Kn such that

sup
k≥0

1
tk

∫ tk

0
P(s, x0, Kc

n) ds −−−−→
n→∞

0 .

Consequently the sequence of measures

µk(A) :=
1
tk

∫ tk

0
P(s, x0, A) ds , A ∈ B(S ) ,

is tight, and hence it converges along some subsequence, also denoted by {tk}, to
some µ ∈P(S ). By Feller continuity, for f ∈ Cb(S ),∫

S
µ(dx)Tt f (x) = lim

k→∞

1
tk

∫ tk

0
ds

∫
S

P(s, x0, dx)Tt f (x)

= lim
k→∞

1
tk

∫ tk

0
Ts+t f (x0) ds . (1.5.8)

The right-hand side of (1.5.8) can be decomposed as

lim
k→∞

1
tk

∫ tk

0
Ts+t f (x0) ds = lim

k→∞

1
tk

[∫ tk

0
Tr f (x0) dr −

∫ t

0
Tr f (x0) dr

+

∫ tk+t

tk

Tr f (x0) dr

]
=

∫
S

f (x) µ(dx) , (1.5.9)

and it follows by (1.5.8) – (1.5.9) that µ is an invariant probability measure. �

Note that although we are addressing Markov processes on [0,∞), in what fol-
lows we work with the bi-infinite path spaceD (R; S ) instead ofD([0,∞); S ). Given
a stationary probability distribution on the latter, its image under the shift operator
θ−t defines a stationary distribution on D ([−t,∞); S ) for each t ≥ 0. These distribu-
tions are mutually consistent due to stationarity. Thus they define a unique stationary
probability measure on D (R; S ). Conversely, a stationary probability measure on
D(R; S ) uniquely specifies a stationary probability measure onD([0,∞); S ) through
its image under the map that restricts functions in D(R; S ) to D([0,∞); S ). Thus
there exists a one-to-one correspondence between the two. Also note that extremal-
ity, ergodicity and other relevant properties needed here translate accordingly.

Given a transition kernel P on S of a Markov process, we extend it to S̄ by defining
P(t, x, dy) = δx(dy) for x ∈ S̄ \ S . Then Theorem 1.5.7 yields the following lemma.

Lemma 1.5.16 The law of a stationary Markov process with transition kernel P is
the barycenter of a probability measure on Ie, the set of extreme points of I .

We refer to Ie as the set of extremal stationary laws.

Theorem 1.5.17 Every extremal stationary law is ergodic.
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Proof Suppose not. Then for some ξ ∈ Ie, there exist mutually singular ξ1 and ξ2

inM0
s and a ∈ (0, 1) such that ξ = a ξ1 + (1 − a) ξ2. Let µ, µ1 and µ2 in P(S ) denote

the marginals of ξ, ξ1 and ξ2, respectively, on S . Then µ = aµ1 + (1 − a)µ2. Let A
be a measurable subset of D(R; S ) such that ξ1(A) = 1 = ξ2(Ac), which is possible
because ξ1 ⊥ ξ2. Clearly ξ1, ξ2 � ξ and

Λ1 :=
dξ1

dξ
=
IA

a
, Λ2 :=

dξ2

dξ
=
IAc

1 − a
,

where IA denotes the indicator function of the set A. Let {Ft} denote the canonical
filtration of Borel subsets of D((−∞, t]; S ), completed with respect to ξ. Let ξt, ξ1

t

and ξ2
t denote the restrictions of ξ, ξ1 and ξ2, respectively, to (D(R; S ),Ft), t ∈ R.

Then

Λi
t :=

dξi
t

dξt
= E[Λi | Ft] ξ-a.s. , i = 1, 2 ,

where the expectation is with respect to ξ. By the martingale convergence theorem,
Λi

t → Λi, a.s., i = 1, 2. Since Λi
t, t ∈ R, is stationary, we have

Λ1
t =
IA

a
, Λ2

t =
IAc

1 − a
, t ∈ R .

In particular, on A,

Λ1
t+s

Λ1
t

= 1 ξ-a.s. , ∀t, s ∈ R . (1.5.10)

Let νt,s = νt,s( · | ω) and νi
t,s = νi

t,s( · | ω) denote the regular conditional law of
{Xt+r : 0 ≤ r ≤ s} given Ft, under ξ and ξi, respectively, i = 1, 2. Write ξt+s and ξi

t+s

as

ξt+s(dω
′, dω′′) = ξt(dω

′) νt,s(dω
′′ | ω′) ,

ξi
t+s(dω

′, dω′′) = ξi
t(dω

′) νi
t,s(dω

′′ | ω′) , i = 1, 2 ,

for ω′ ∈ D((−∞, t]; S ) and ω′′ ∈ D((t, t + s]; S ). Since ξi
t � ξt for all t ∈ R, we have

νi
t,s � νt,s, ξi

t-a.s. Therefore

dξi
t+s

dξt+s
(ω′, ω′′) =

dξi
t

dξt
(ω′)

dνi
t,s

dνt,s
(ω′, ω′′) ξi

t-a.s. , i = 1, 2 ,

i.e.,

Λi
t+s(ω

′, ω′′) = Λi
t(ω
′)

dνi
t,s

dνt,s
(ω′, ω′′) ξi

t-a.s. , i = 1, 2 .

By (1.5.10), Λi
t+s = Λ

i
t, ξ

i-a.s., and hence
dνi

t,s

dνt,s
= 1, ξi

t-a.s. for i = 1, 2. Therefore,

νi
t,s = νt,s, ξi

t-a.s. for i = 1, 2, and it follows that the regular conditional law of Xt+s

given Xt is P(s, Xt, dy), ξi-a.s., i = 1, 2. Thus ξi ∈ I , i = 1, 2. Since ξ1 � ξ2 this
contradicts the fact that ξ is an extreme point. Thus ξ must be ergodic. �
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The proof of Theorem 1.5.17 depends crucially on working with D(R; S ) instead
of D([0,∞); S ). From now on, however, we revert to D([0,∞); S ), keeping in mind
that the foregoing continues to hold in view of the correspondence between stationary
measures on the two spaces, as noted earlier.

Let I denote the sub-σ-field of B (D([0,∞); S )) consisting of those sets that are
invariant under the shift operator θt, t ∈ [0,∞), completed with respect to ξ ∈ I ,
i.e.,

I :=
{
A ∈ B (D([0,∞); S )) : ξ

(
A� θ−1

t (A)
)
= 0 , ∀t ∈ [0,∞)

}
.

The following is immediate from Theorem 1.5.9.

Theorem 1.5.18 For ξ ∈ I and f ∈ L1(ξ),

1
T

∫ T

0
f (X ◦ θt) dt

a.s.−−−−→
T→∞

Eξ
[
f (X) | I] ,

and for ξ ∈ Ie and f ∈ L1(ξ),

1
T

∫ T

0
f (X ◦ θt) dt

a.s.−−−−→
T→∞

∫
D(R;S )

f dξ .

Moreover, if f ∈ Lp(ξ), p ≥ 1, then convergence in Lp(ξ) also holds.

Remark 1.5.19 We are primarily interested in functions f (X) = g(X0) for some
g ∈ L1(µ), µ ∈H . Thus f (X ◦ θt) = g(Xt) and

∫
f dξ =

∫
g dµ.

We now state an important characterization of I.

Lemma 1.5.20 Define the tail σ-field F∞ as the completion with respect to ξ of⋂
t≥0 σ(Xs : s ≥ t). Then I ⊂ F∞.

Proof Let F∞t denote the ξ-completion of σ(Xs : s ≥ t). If A ∈ I ⊂ F∞0 , then
θt-invariance implies A ∈ F∞t for all t, and therefore A ∈ F∞. �

Lemma 1.5.21 Let Y be a I-measurable, bounded random variable. Then

(a) f (x) = Ex[Y] := E [Y | X0 = x] satisfies Tt f = f , µ-a.s.;

(b) Mt := f (Xt) is an (FX
t )-martingale on (Ω,F, ξ);

(c) Y = limt→∞ Mt, ξ-a.s., and in L1(µ).
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Proof Since Y is I-measurable, ξ(Y � Y ◦ θt) = 0 for all t ≥ 0. Thus

0 = Eµ |Y − Y ◦ θt |

=

∫
S
Ex|Y − Y ◦ θt | µ(dx)

≥
∫

S

∣∣∣Ex [Y] − Ex [Y ◦ θt]
∣∣∣ µ(dx)

=

∫
S

∣∣∣Ex [Y] − Ex

[
E
[
Y ◦ θt | FX

t

]]∣∣∣ µ(dx)

=

∫
S

∣∣∣Ex [Y] − Ex
[
EXt [Y]

]∣∣∣ µ(dx)

=

∫
S

∣∣∣ f (x) − Tt f (x)
∣∣∣ µ(dx) , (1.5.11)

which establishes (a). The fourth equality in (1.5.11) follows by the Markov prop-
erty and the fact that Y is I-measurable and therefore F-measurable. It also fol-
lows that, µ-a.s., f (Xt) = Ex

[
Y | FX

t

]
. Thus

(
Mt,F

X
t
)

is a regular martingale. Part (c)
then follows by the convergence theorem for regular martingales [32, theorem 3.3.2,
p. 50]. �

Definition 1.5.22 A set A ∈ B(S ) is said to be µ-invariant under the Markov family
if P(t, x, A) = 1 for µ-a.s x ∈ A, and t ≥ 0. Let Iµ denote the set of all µ-invariant
sets in B(S ).

Lemma 1.5.23 The class of µ-invariant sets Iµ is a σ-field. If A is a µ-invariant
set, then IA(X0) is Iµ-measurable. Moreover, if C ∈ I, then there exists B ∈ Iµ such
that ξ

(
IC � IB(X0)

)
= 0.

Proof Let A ∈ B(S ) be µ-invariant. Then

µ(A) =
∫

S
µ(dx)P(t, x, A)

=

∫
A
µ(dx)P(t, x, A) +

∫
Ac
µ(dx)P(t, x, A)

= µ(A) +
∫

Ac
µ(dx)P(t, x, A) ,

which shows that P(t, x, Ac) = 1, µ-a.e. on Ac. Thus Iµ is closed under complemen-
tation. That it is closed under countable unions is easy to prove. It clearly includes
the empty set and the whole space. It follows that Iµ is a σ-field. Also

ξ
(
IA(X0) � IA(Xt)

)
=

∫
A
µ(dx)P(t, x, Ac) +

∫
Ac
µ(dx)P(t, x, A) = 0 ,

which implies that IA(X0) ◦ θt = IA(Xt) = IA(X0), ξ-a.s. It follows that IA(X0) is
Iµ-measurable. Next, let C ∈ I and set f (x) = Px(C). Then by Lemma 1.5.21

IC = lim
t→∞

f (Xt) ξ-a.s.
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Choose 0 < a < b < 1, and define

Aa
b = {x ∈ S : a ≤ f (x) ≤ b} .

Then, since IAa
b
(Xt) → 0, ξ-a.s. as t → ∞, and X is stationary, it follows that

Eµ

[
IAa

b
(Xt)

]
= 0, which in turn implies that P(t, x, Aa

b) = 0, µ-a.s. Therefore

µ(Aa
b) =

∫
S
µ(dx)P(t, x, Aa

b) = 0 ,

and since a and b are arbitrary, we have

µ
({x ∈ S : 0 < f (x) < 1}) = 0 .

This shows that µ is supported on the union of the sets

B = {x ∈ S : f (x) = 1} and B′ = {x ∈ S : f (x) = 0} .

Since f (x) = IB(x) µ-a.s., invoking once more Lemma 1.5.21, we obtain

f (x) = Ex
[
f (Xt)

]
= Ex [IB(Xt)] = P(t, x, B)

for µ-almost all x. Thus B is a µ-invariant set and the result follows. �

Corollary 1.5.24 The probability measure ξ is trivial on I if and only if the invari-
ant probability measure µ is trivial on Iµ.

This shows that the ergodic decomposition for a Markov process translates into a
decomposition of its state space. The latter is known as the Doeblin decomposition.

1.6 Diffusion processes

The study of diffusion processes was motivated among other things by the diffusive
behavior of particles in a fluid in physics. (Historically, an early motivation came
from finance – see Bachelier [10].) The most famous example is of course the ob-
servation by Brown of the random motion of pollen in a liquid, which led to the
discovery of the most famous diffusion of them all, the Brownian motion.

Physically, a diffusion process is an Rd-valued process X defined by the require-
ments: for ε > 0, t ≥ 0 and h > 0,

E
[(

Xt+h − Xt
)
I
{|Xt+h − Xt | ≤ ε

} ∣∣∣ FX
t

]
= m(Xt)h + o(h) ,

E
[
(Xt+h − Xt)(Xt+h − Xt)

T I
{|Xt+h − Xt | ≤ ε

} ∣∣∣ FX
t

]
= a(Xt)h + o(h) .

(1.6.1)

The functions m : Rd �→ Rd and a : Rd �→ Rd×d are called the drift vector and the
diffusion matrix, respectively. The latter is seen to be nonnegative definite by virtue
of being a conditional covariance. Physically, the drift gives the local (conditional)
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mean velocity of the particle and the diffusion matrix the local (conditional) covari-
ance of the fluctuations. Assuming (1.6.1) and the additional technical conditions,
that for ε > 0, t ≥ 0 and h > 0, we have

P
(
|Xt+h − Xt | > ε

∣∣∣ FX
t

)
= o(h) ,

E
[
|Xt+h − Xt |3 I

{|Xt+h − Xt | ≤ ε
} ∣∣∣ FX

t

]
= o(h) ,

one can formally derive the partial differential equations satisfied by the transition
probability density p(t, x, y) (i.e., the density w.r.t. the Lebesgue measure of the tran-
sition probability kernel) of this process. These are the Kolmogorov forward and
backward equations:

∂p
∂t
− L∗p = 0 , t ∈ [0,T ] , lim

t↓0
p(t, x, y) = δx(y) ,

∂p
∂t
+Lp = 0 , t ∈ [0,T ] , lim

t↑T
p(t, x, y) = δy(x) ,

where L is the second order elliptic operator

L f := 〈m,∇ f 〉 + 1
2

tr
(
a∇2 f

)
, (1.6.2)

and L∗ is its formal adjoint. The forward equation is also known as the Fokker–
Planck equation. See Wong and Hajek [122, pp. 169–173] for a derivation.

This derivation is, of course, purely formal and one requires to fall back upon the
theory of parabolic partial differential equations to study the well-posedness of these
equations. For example, if m and a are bounded Lipschitz and the least eigenvalue of
a is bounded away from zero, then a unique solution exists in the class of functions
once continuously differentiable in t and twice continuously differentiable in (x, y),
with growth in the latter variables slower than eα(|x|2+|y|2) for any α > 0 [83]. See Bo-
gachev et al. [26] for regularity of transition probabilities under weaker assumptions
on the coefficients.

While this was a major development in its time, it put diffusion theory in the
straightjacket of the available theory of parabolic PDEs, which in particular meant
restrictions on m and a along the above lines. The semigroup theory developed by
Feller and Dynkin and described in the preceding section was a major extension,
which allowed for more general situations. The operator L above appeared as the in-
finitesimal generator of the associated Markov semigroup when C2(Rd) was included
in the domain of the generator. The latter, however, was not always true, e.g., in the
important case of merely measurable m, a common situation in stochastic control
as we shall see later. The crowning achievement in Markov process theory was the
Stroock–Varadhan martingale formulation we described in the last section, which
broadened the scope even further. Here L appeared as the extended generator.

The modern definition of a diffusion is as a Feller process with continuous sample
paths. From this, it can be shown that its extended generator is of the above form
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(1.6.2). This follows from a theorem due to Dynkin which we quote here without
proof [102, pp. 258–259].

Theorem 1.6.1 Let {Tt : t ≥ 0} be a strongly continuous Markov semigroup of
linear operators Tt : C0(Rd) → C0(Rd). Suppose that the domain of its generator A
contains C∞c (Rd), the space of smooth functions of compact support. Then the restric-
tion L of A to C∞c (Rd) takes the form (1.6.2). Moreover, the functions m : Rd → Rd

and a : Rd → Rd×d are continuous and the matrix {ai j(x)} is nonnegative definite
symmetric for each x ∈ Rd.

A parallel development, of great importance to this book, is Itô’s formulation of
diffusions as solutions of stochastic differential equations. (The scalar case was ear-
lier handled by Doeblin, a fact that remained unknown for many years due to some
unfortunate historical circumstances. This is explained in the historical summary by
M. Davis and A. Etheridge [10].) This viewpoint begins with the stochastic differen-
tial equation

dXt = m(Xt) dt + σ(Xt) dWt , t ≥ 0 ,

where σ is any nonnegative definite square-root of a and W is a standard Brownian
motion in Rd. This is to be interpreted as the integral equation

Xt = X0 +

∫ t

0
m(Xs) ds +

∫ t

0
σ(Xs) dWs , t ≥ 0 .

The second term on the right is the Itô stochastic integral, which Itô introduced for
this purpose. We study the solution concepts for such equations and the associated
well-posedness issues in Chapter 2. We close here with the comments that while this
approach departs from the purely distributional specifications (such as the semigroup
or martingale approaches) in so far as it hypothesizes a “system driven by noise” on
some probability space in the background, it leaves at our disposal the powerful
machinery of Itô calculus with which one can work wonders. More of that later.

1.7 Bibliographical note

Section 1.1. For a brief account of the general theory of random processes see [32,
chapter 6]. For more extensive accounts, see [47] and [66].

Sections 1.2–1.6. For the general theory of Markov processes, [45], [55], and [102,
103] are comprehensive texts, and the latter two have extensive accounts of the semi-
group and martingale approaches sketched in Sections 1.3 and 1.4. An early source
for the ergodic theory of Markov processes is [125]. For diffusions, the classic text
by Stroock and Varadhan [115] is a must. An excellent treatment of the topic also
appears in [79].
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Controlled Diffusions

2.1 Introduction

With this chapter, we begin our exposition of ergodic control of diffusion processes,
which are continuous time, continuous path Markov processes. We have to assume
a certain amount of mathematical sophistication on the part of the reader. We shall
limit it to a familiarity with Brownian motion, stochastic calculus and (uncontrolled)
diffusions at the level of Karatzas and Shreve [76]. The few occasions we might reach
beyond this, we shall provide pointers to the relevant literature.

With this introduction, we start in this chapter with basic concepts pertaining to
controlled diffusions and their immediate consequences.

2.2 Solution concepts

The prototypical controlled diffusion model we consider is the Rd-valued process
X = {Xt : t ≥ 0} described by the stochastic differential equation

dXt = b(Xt,Ut) dt + σ(Xt) dWt . (2.2.1)

All random processes in (2.2.1) live in a complete probability space (Ω,F,P), and
satisfy:

(i) W is a d-dimensional standard Wiener process.

(ii) The initial condition X0 is an Rd-valued random variable with a prescribed law
ν0, and is independent of W.

(iii) The process U takes values in a compact, metrizable set U, and Ut(ω), t ≥ 0,
ω ∈ Ω is jointly measurable in (t, ω) (in particular it has measurable sample
paths). In addition, it is non-anticipative: For s < t, Wt −Ws is independent of

Fs := the completion of σ(X0,Ur,Wr : r ≤ s) relative to (F,P) . (2.2.2)

(iv) The functions b = [b1, . . . , bd]T : Rd × U �→ Rd and σ =
[
σi j] : Rd �→ Rd×d are

locally Lipschitz in x, with a Lipschitz constant KR > 0 depending on R > 0,
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i.e., for all x, y ∈ Rd such that max {|x| , |y|} ≤ R, and u ∈ U,

|b(x, u) − b(y, u)| + ‖σ(x) − σ(y)‖ ≤ KR|x − y| , (2.2.3)

where ‖σ‖2 := tr
(
σσT

)
. Also, b is continuous in (x, u). Moreover, b and σ satisfy

a global linear growth condition of the form

|b(x, u)|2 + ‖σ(x)‖2 ≤ K1
(
1 + |x|2) ∀(x, u) ∈ Rd × U . (2.2.4)

Remark 2.2.1 Let (Ω,F,P) be a complete probability space, and let {Ft} be a filtra-
tion on (Ω,F) such that each Ft is complete relative to F. Recall that a d-dimensional
Wiener process (Wt,Ft), or (Ft)-Wiener process, is an Ft-adapted Wiener process
such that Wt − Ws and Fs are independent for all t > s ≥ 0. An equivalent defini-
tion of the model for (2.2.1) starts with a d-dimensional Wiener process (Wt,Ft) and
requires that the control process U be Ft-adapted. Note then that U is necessarily
non-anticipative.

A process U satisfying (iii) is called an admissible control and represents the
largest class of controls we shall admit. This class is denoted by U. Intuitively, these
are the controls that do not use any information about future increments of the driving
“noise” W, a physically reasonable assumption.

A few remarks are in order here. To start with, the above assumptions represent a
comfortable level of generality, not the greatest possible generality. We have chosen
to do so in order to contain the technical overheads not central to the issues we are
interested in. Secondly, the control process U enters the drift vector b, but not the
diffusion matrix σ. We comment on this restriction later in this chapter. Finally, it
may seem restrictive to impose the condition that σ is a square matrix. Nevertheless,
there’s no loss of generality in assuming that it is, as we argue later.

In integral form, (2.2.1) is written as

Xt = X0 +

∫ t

0
b(Xs,Us) ds +

∫ t

0
σ(Xs) dWs . (2.2.5)

We say that a process X = {Xt(ω)} is a solution of (2.2.1), if it is Ft-adapted, contin-
uous in t, defined for all ω ∈ Ω and t ∈ [0,∞) and satisfies (2.2.5) for all t ∈ [0,∞)
at once a.s.

The second term on the right-hand side of (2.2.5) is an Itô stochastic integral. We
recall here its basic properties. In general, if σt is an Ft-adapted process taking values
in Rm×d, and ∫ t

0
‖σs‖2 ds < ∞ ∀t ≥ 0 , (2.2.6)

then

ξt :=
∫ t

0
σs dWs (2.2.7)
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is a local martingale relative to {Ft}. If

E

[∫ t

0
‖σs‖2 ds

]
< ∞ ∀t ≥ 0 ,

then (ξt,Ft) is a square-integrable martingale with quadratic covariation matrix

〈ξ, ξ〉t =
∫ t

0
σsσ

T
s ds .

For T > 0 and an Rd-valued process {Yt : t ∈ [0,T ]} on (Ω,F,P) with continuous
paths define

‖Y‖∞,T := sup
0≤t≤T

|Yt | .

It is well known that if (X, ‖ · ‖X) is a Banach space, then

‖Z‖Lp(X) :=
(
E ‖Z‖pX

)1/p

, 1 < p < ∞ ,

is a complete norm on the space of (equivalence classes) of X-valued random vari-
ables Z defined on a complete probability space (Ω,F,P), that satisfy E ‖Z‖pX < ∞.
Let H p

T denote the subspace of processes Y defined for t ∈ [0,T ], which have con-
tinuous sample paths, i.e., take values in C([0,T ];Rd), and satisfy E ‖Y‖p∞,T < ∞. It
follows thatH p

T is a Banach space under the norm

‖Y‖H p
T

:=
(
E ‖Y‖p∞,T

)1/p

, 1 < p < ∞ .

We also letH p denote the set of Rd-valued random variables whose law has a finite
pth moment.

Perhaps the most important inequality in martingale theory is Doob’s inequality,
which asserts that if (Mt,Ft) is a right-continuous martingale, and

A(T, ε) :=

{
sup

0≤t≤T
|Mt | ≥ ε

}
, ε > 0 ,

then

P
(
A(T, ε)

) ≤ ε−1 E
[
MT IA(T,ε)

]
. (2.2.8)

Provided M is nonnegative, (2.2.8) yields

‖M‖H p
T
≤ p

p − 1
(
E [MT ]p)1/p

, p > 1 . (2.2.9)

For ξ as in (2.2.7), suppose (2.2.6) holds and define

〈ξ〉t =
∫ t

0
‖σs‖2 ds .

If τ is a Ft-Markov time, then

E
[〈ξ〉τ] ≤ E [

sup
s<∞
|ξs∧τ|2

]
≤ 4E

[〈ξ〉τ] . (2.2.10)
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Moreover, for any positive numbers ε and δ,

P

(
sup
s<∞
|ξs∧τ|2 ≥ ε

)
≤ δ

ε
+ P

(〈ξ〉τ ≥ δ
)
.

Also, if E
[〈ξ〉τ] < ∞, then (ξs∧τ,Ft) is a square-integrable martingale for s ≥ 0,

lims→∞ ξs∧τ = ξτ a.s. on the set {τ < ∞}, and E
[〈ξ〉τ] = E [|ξτ|2]. For a proof of these

results see Krylov [79, pp. 104–105].
Moreover, the Burkholder–Davis–Gundy inequalities assert that for any p ∈ (0,∞)

there exists a positive constant Cp such that for any Markov time τ

1
Cp
E

[
sup
s<∞
|ξs∧τ|p

]
≤ E

[
〈ξ〉p/2

τ

]
≤ Cp E

[
sup
s<∞
|ξs∧τ|p

]
. (2.2.11)

For p = 1, (2.2.11) holds with Cp = 3 [79, pp. 160–163].
Of fundamental importance in the study of functionals of X is Itô’s formula in

(2.2.13) below. For f ∈ C2(Rd) define the operator L : C2(Rd) �→ C(Rd × U) by

L f (x, u) =
∑
i, j

ai j(x)
∂2 f

∂xi∂x j
(x) +

∑
i

bi(x, u)
∂ f
∂xi

(x) , (2.2.12)

where

a :=
1
2
σσT .

Then for f ∈ C2(Rd),

f (Xt) = f (X0) +
∫ t

0
L f (Xs,Us) ds + Mt a.s., (2.2.13)

where

Mt :=
∫ t

0

〈∇ f (Xs),σ(Xs) dWs
〉

(2.2.14)

is a local martingale.

2.2.1 Existence and uniqueness of solutions

We distinguish between the nondegenerate case when the least eigenvalue of σσT is
bounded away from zero on every compact subset of Rd, and the degenerate case
when it is not. More precisely, if G is a bounded open set in Rd, we say that the
controlled diffusion in (2.2.1) is nondegenerate in G if L is uniformly elliptic in G,
i.e., if it satisfies

d∑
i, j=1

ai j(x)ξiξ j ≥ K|ξ|2 ∀ξ ∈ Rd , ∀x ∈ G ,

for some constant K > 0. We also say that the controlled diffusion is nondegenerate
(in Rd) if it is nondegenerate on every open ball BR. Hence if the controlled diffusion
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is nondegenerate, using without loss of generality the parameterization in (2.2.3), it
may be assumed to satisfy

d∑
i, j=1

ai j(x)ξiξ j ≥ K−1
R |ξ|2 ∀ξ ∈ Rd , ∀x ∈ BR , ∀R > 0 . (2.2.15)

In either case, if W, U and X0 are defined on a complete probability space (Ω,F,P)
satisfying (i)–(iv), an a.s. unique solution X to (2.2.1) is guaranteed by Theorem 2.2.4
below. Theorem 2.2.2 paves the way.

Theorem 2.2.2 Let W, U and X0, satisfying (i)–(iii), be defined on a complete prob-
ability space (Ω,F,P), and let X be a solution of (2.2.1). Under condition (2.2.4), if

‖X0‖H2m =
(
E |X0|2m

)1/2m

< ∞ with m ∈ N, then for all t > 0,

E
[
|Xt |2m

]1/2m

≤ Nm,t(X0) , (2.2.16a)∥∥∥X − X0

∥∥∥H2m
t
≤ 4 (C2m + tm)

1/2m Nm,t(X0)
√

K1t , (2.2.16b)

where C2m is the constant in (2.2.11) and Nm,t is given by

Nm,t(X0) :=
(
1 +

∥∥∥X0

∥∥∥H2m

)
e4mK1t .

Moreover, if τn := inf{t > 0 : |Xt | > n}, then τn ↑ ∞ P-a.s. as n→ ∞.

Proof Note that {τn} is a localizing sequence for the local martingale M in (2.2.14).
Consequently under (2.2.4), we obtain by Dynkin’s formula

E
[
1 + 2 |Xt∧τn |2m

]
≤ 1 + 2E |X0|2m + 2E

[∫ t∧τn

0

(
2m 〈Xs, b(Xs,Us)〉

+ m(2m − 1)‖σ(Xs)‖2
)
|Xs|2m−2 ds

]

≤ 1 + 2E |X0|2m + 8m2K1 E

[∫ t∧τn

0

(
1 + |Xs|2

)
|Xs|2m−2 ds

]

≤ 1 + 2E |X0|2m + 8m2K1

∫ t

0
E
[
1 + 2 |Xs∧τn |2m

]
ds . (2.2.17)

Using the Gronwall inequality, (2.2.17) yields

E
[
1 + 2 |Xt∧τn |2m

]
≤

(
1 + 2E |X0|2m

)
e8m2K1t . (2.2.18)

Therefore (2.2.16a) follows by taking limits as n→ ∞ in (2.2.18).
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Next, by (2.2.5), employing the Burkholder–Davis–Gundy and Hölder inequali-
ties, together with (2.2.18), we obtain after a few calculations,

E

[
sup

0≤s≤t
|Xs − X0|2m

]
≤ 22m−1

⎛⎜⎜⎜⎜⎜⎝E [∫ t

0
|b(Xs,Us)| ds

]2m

+C2m E

[∫ t

0
‖σ(Xs)‖2 ds

]m⎞⎟⎟⎟⎟⎟⎠
≤ 22m−1t2m−1 E

[∫ t

0
|b(Xs,Us)|2m ds

]

+ 22m−1C2mtm−1 E

[∫ t

0
‖σ(Xs)‖2m ds

]

≤ 22m−1tm−1 (tm +C2m)
∫ t

0
E
[
Km

1

(
1 + |Xs|2

)m]
ds

≤ 22m−1tm−1 (tm +C2m)
∫ t

0
2m−1Km

1 E
[
1 + |Xs|2m

]
ds

≤ 42mKm
1 tm (tm +C2m) e8m2K1t

(
1 + E |X0|2m

)
,

thus proving (2.2.16b). By (2.2.16b), for any t > 0 and m ∈ N, there exists a constant
C̃m(t, K1) such that

‖X‖H2m
t
≤ C̃m(t, K1) (1 + ‖X0‖H2m ) . (2.2.19)

Hence, for any t > 0,

P (τn ≤ t) = P

(
sup
s≤t
|Xs| ≥ n

)

≤ C̃1(t, K1) (1 + ‖X0‖H2 )
n

−−−−→
n→∞

0 , (2.2.20)

which shows that τn ↑ ∞ P-a.s. �

Note that in proving (2.2.16a), we have used only the Itô formula and not (2.2.5).
We summarize the implications of this as a corollary, which we use later on.

Corollary 2.2.3 Let U be given on a complete probability space (Ω,F,P), and
suppose b and σ satisfy (2.2.4). If

f (Xt) −
∫ t

0
L f (Xs,Us) ds

is a local martingale for all f ∈ C2(Rd), with X0 = x0 ∈ Rd P-a.s., then (2.2.16a)
holds.

Theorem 2.2.4 Let W, U and X0, satisfying (i)–(iii), be defined on a complete
probability space (Ω,F,P), and suppose (2.2.3) and (2.2.4) hold. Then, provided
E |X0|2 < ∞, there exists a pathwise unique solution to (2.2.1) in (Ω,F,P).
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Proof Suppose first that b and σ are bounded, and that they satisfy (2.2.3) with
some constant K. Select T > 0 such that K(T + 2

√
T ) ≤ 1

2 , and let X denote the
subspace of H2

T of processes X which are adapted to the filtration {Ft} defined in
(2.2.2). Define the map G : X → X by

G(X)(t) := X0 +

∫ t

0
b(Xs,Us) ds +

∫ t

0
σ(Xs) dWs , t ∈ [0,T ] .

Then, for X, X′ ∈ X, using (2.2.3),∥∥∥∥∥∫ ·
0

(
b(Xs,Us) − b(X′s,Us)

)
ds

∥∥∥∥∥
H2

T

≤ KT‖X − X′‖H2
T
. (2.2.21)

Similarly, by (2.2.9) and the Cauchy–Schwarz inequality

∥∥∥∥∥∫ ·
0

[
σ(Xs) − σ(X′s)

]
dWs

∥∥∥∥∥
H2

T

≤ 2

(∫ T

0
E
∥∥∥σ(Xs) − σ

(
X′s

)∥∥∥2
ds

)1/2

≤ 2K
√

T ‖X − X′‖H2
T
. (2.2.22)

Combining (2.2.21) and (2.2.22), we obtain

‖G(X) −G(X′)‖H2
T
≤ 1

2 ‖X − X′‖H2
T
.

Thus the map G is a contraction and since X is closed, it must have a unique fixed
point in X. Therefore, (2.2.1) has a unique solution in X. On the other hand, given
a solution X on [0,T ] of (2.2.1), with E |X0|2 < ∞, i.e., X0 ∈ H2, it follows by
(2.2.16b) that ‖X‖H2

T
< ∞. Thus X ∈ X and therefore coincides with the unique fixed

point. Repeating this argument on [T, 2T ], [2T, 3T ], . . . , completes the proof.
For b and σ not bounded, let bn and σn be continuous bounded functions, which

agree with b and σ on Bn, the ball of radius n centered at the origin, and satisfy (2.2.3)
and (2.2.4) for each n ∈ N. Let Xn denote the unique solution of (2.2.1), obtained
above, with parameters (bn,σn) and satisfying Xn

0 = X0. Without loss of generality
suppose X0 = x ∈ Rd. Define

τ̃n := inf
{
t > 0 : |Xn

t | ≥ n
}
.

We claim that

P

(
sup

t<τ̃n∧τ̃m

|Xn
t − Xm

t | = 0

)
= 1 ∀n,m ∈ N .

Indeed, using (2.2.3), (2.2.5) and (2.2.10) to estimate

f (t) := E

[
sup

s≤t∧τ̃n∧τ̃m

|Xn
s − Xm

s |2
]
,
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we obtain, with τ̄ := τ̃n ∧ τ̃m,

f (t) ≤ 2E

[∫ t∧τ̄

0

∣∣∣b(Xn
s ,Us) − b(Xm

s ,Us)
∣∣∣ ds

]2

+ 2E

⎡⎢⎢⎢⎢⎢⎣sup
s≤t

(∫ s∧τ̄

0

(
σ(Xn

s′) − σ(Xm
s′ )

)
dWs′

)2⎤⎥⎥⎥⎥⎥⎦
≤ 2t

∫ t

0
E
∣∣∣b(Xn

s∧τ̄,Us∧τ̄) − b(Xm
s∧τ̄,Us∧τ̄)

∣∣∣2 ds

+ 8
∫ t

0
E
∥∥∥σ(Xn

s∧τ̄) − σ(Xm
s∧τ̄)

∥∥∥2
ds

≤ 2(4 + t)K2
n∧m

∫ t

0
f (s) ds . (2.2.23)

By (2.2.23) and the Gronwall inequality, f (t) = 0. By Theorem 2.2.2, E |Xn
t |2 is

bounded on t ∈ [0,T ] uniformly over n ∈ N, and it follows as in (2.2.20) that τ̃n ↑ ∞,
P-a.s. By Theorem 2.2.2, for n′ > n,

P

(
sup
n′>n

sup
0≤t≤T

∣∣∣Xn
t − Xn′

t

∣∣∣ > 0

)
≤ P(τ̃n > T ) −−−−→

n→∞
0 .

It follows that Xn converges w.p. 1 uniformly on [0,T ] to some limit X. Taking limits
in

Xn
t = Xn

0 +

∫ t

0
bn(Xn

s ,Us) ds +
∫ t

0
σn(Xn

s ) dWs , t ∈ [0,T ] ,

we verify that X satisfies (2.2.5) on [0,T ], for any T > 0.
Lastly, we show uniqueness. Let X and X̂ be two solutions, and let τn and τ̂n

denote their exit times from the ball Bn, respectively. Using (2.2.3) and the Gronwall
inequality, we can show as before that

E

[
sup

0≤t≤T
|Xt − X̂t |2 I {t ≤ T ∧ τn ∧ τ̂n}

]
= 0 .

Thus

P

(
sup

0≤t≤T
|Xt − X̂t | > 0

)
≤ P (τn < T ) + P (τ̂n < T ) ,

and since the probabilities on the right-hand side tend to 0 as n→ ∞, we obtain

P

(
sup

0≤t≤T
|Xt − X̂t | = 0

)
= 1 ∀T > 0 ,

from which pathwise uniqueness follows. �

It is evident thatH2
T is a natural solution space for (2.2.1). Therefore we are going

to assume by default that the initial data X0 lies inH2, i.e., E |X0|2 < ∞.

Lemma 2.2.5 Assume (2.2.3) – (2.2.4). Let {Xn} be a sequence of solutions of (2.2.1)
under the same control U ∈ U with initial conditions

{
Xn

0

}
such that Xn

0 converges in
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H2 as n → ∞ to some X0. Then, if X is the unique solution of (2.2.1) under U and
initial condition X0, we have

‖Xn − X‖H2
T
−−−−→
n→∞

0 , ∀T > 0 .

Proof Fix n ∈ N, and for i ∈ {n,∞}, with X∞ ≡ X, define

Xi,R
t := Xi

t I
{|Xn

0 | ∨ |X
∞
0 | ≤ R3/8} , t ≥ 0 ,

τi
R := inf

{
t > 0 :

∣∣∣Xi,R
t

∣∣∣ > R
}
,

and X̂i,R := Xi − Xi,R. We write∥∥∥Xn − X∞
∥∥∥H2

T
≤

∥∥∥Xn,R − X∞,R
∥∥∥H2

T
+

∥∥∥X̂n,R
∥∥∥H2

T
+

∥∥∥X̂∞,R
∥∥∥H2

T
. (2.2.24)

Let

An
R :=

{
|Xn

0 | > R
}
∪

{
|X∞0 | > R

}
. (2.2.25)

Using (2.2.19) and conditioning, we obtain∥∥∥X̂n,R
∥∥∥2

H2
T
≤ E

[
I
{|Xn

0 | > R
}
E
[
‖Xn‖2∞,T

∣∣∣ Xn
0

]]
≤ E

[
IAn

R
E
[
‖Xn‖2∞,T

∣∣∣ Xn
0

]]
≤ 2C̃2

1 E
[(

1 + |Xn
0 |

2) IAn
R

]
= 2C̃2

1

(
P(An

R) +
∥∥∥Xn

0 IAn
R

∥∥∥2

H2

)
−−−−→
R→∞

0 . (2.2.26)

The analogous estimate applies for
∥∥∥X̂∞,R

∥∥∥H2
T
. Since

{|Xn
0 |

2} are uniformly integrable,

the convergence in (2.2.26) is uniform in n ∈ N. Let

f (t) := E

⎡⎢⎢⎢⎢⎢⎣ sup
s≤t∧τn

R∧τ∞R

∣∣∣Xn,R
s − X∞,R

s

∣∣∣2⎤⎥⎥⎥⎥⎥⎦ .
As in (2.2.23), we obtain

f (t) ≤ 3
∥∥∥Xn,R

0 − X∞,R
0

∥∥∥2

H2 + 3(4 + t)KR

∫ t

0
f (s) ds . (2.2.27)

A triangle inequality yields

∥∥∥Xn,R − X∞,R
∥∥∥H2

T
≤

√
f (T ) +

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
i=n,∞
E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
τi

R<s≤T

∣∣∣Xn,R
s − X∞,R

s

∣∣∣2⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠

1/2

. (2.2.28)

Using the Cauchy–Schwartz and Markov inequalities, we obtain the estimate, with
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i, j ∈ {n,∞},

E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
τi

R<s≤T

|X j
s |2

⎤⎥⎥⎥⎥⎥⎥⎦ = E [
sup
s≤T
|X j

s |2 I
{
s > τi

R

}]

≤

√
P

(
sup
s≤T
|Xi

s| > R

)
E

[
sup
s≤T
|X j

s |4
]

≤ 1
R2
‖Xi‖2H4

T
‖X j‖2H4

T
. (2.2.29)

For any Rd-valued random variable Y with finite second moment it holds that

E
[
|Y |4 I

{
|Y | ≤ R3/8

}]
≤ E

[
|Y |4 I

{
|Y | ≤ R1/4

}]
+ R3/2 P

(
|Y | > R1/4

)
≤ R

(
1 + ‖Y‖2H2

)
.

By (2.2.19) and (2.2.29), there exists a constant Č = Č(T, K1), such that, for all
R > 1,⎛⎜⎜⎜⎜⎜⎜⎝ ∑

i=n,∞
E

⎡⎢⎢⎢⎢⎢⎢⎣ sup
τi

R<s≤T

∣∣∣Xn,R
s − X∞,R

s

∣∣∣2⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠

1/2

≤ Č
√

R

(
1 +

∥∥∥Xn
0

∥∥∥H2 +
∥∥∥X∞0

∥∥∥H2

)
. (2.2.30)

Combining (2.2.24), (2.2.25), (2.2.28), (2.2.30), and the Gronwall estimate from
(2.2.27), we obtain∥∥∥Xn − X∞

∥∥∥H2
T
≤ 2e(6+T )T KR

∥∥∥Xn
0 − X∞0

∥∥∥H2 +
Č
√

R

(
1 +

∥∥∥Xn
0

∥∥∥H2 +
∥∥∥X∞0

∥∥∥H2

)
+ 2C̃1

(
2
√
P(An

R) +
∥∥∥Xn

0 IAn
R

∥∥∥H2 +
∥∥∥X∞0 IAn

R

∥∥∥H2

)
. (2.2.31)

Given ε > 0, we first choose R > 0 such that the second and third term on the right-
hand side of (2.2.31) are each less than ε/3, and then choose N ∈ N, such that the first
term is also less than ε/3 for all n > N. This proves the lemma. �

Remark 2.2.6 It is evident from the proof of Lemma 2.2.5 that the estimates de-
pend only the local Lipschitz constants KR and the compact subset of H2 that

{
Xn

0

}
lie in and is otherwise independent of the control U or other parameters in (2.2.1).
Therefore the following statement is true: for every compact set H ⊂ H2 and T > 0,
there exists a function GT : R+ → R+ satisfying GT (z) → 0 as z ↓ 0, such that for
any two solutions X and X′ of (2.2.1) under the same control and with corresponding
initial conditions X0 and X′0 in H, we have

‖X − X′‖H2
T
≤ GT

(
‖X0 − X′0‖H2

)
.

Note also that if KR is a constant K independent of R, then by (2.2.27) we have the
stronger statement that

‖X − X′‖H2
T
≤ 2e(6+T )T K

∥∥∥X0 − X′0
∥∥∥H2 , ∀X0 , X′0 ∈ H

2 .
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Remark 2.2.7 The linear growth assumption (2.2.4) guarantees that trajectories do
not suffer an explosion in finite time. This assumption is quite standard but may be
restrictive for some applications. Existence of solutions to (2.2.1) can be established
under the weaker assumptions

〈x − y, b(x, u) − b(y, u)〉 + ‖σ(x) − σ(y)‖ ≤ K|x|∨|y| |x − y|

and

〈x, b(x, u)〉 + ‖σ(x)‖2 ≤ K1
(
1 + |x|2) (2.2.32)

for all x, y ∈ Rd and u ∈ U [79]. Note that (2.2.17) used in the derivation of (2.2.16a)
continues to hold for m = 1 if (2.2.4) is replaced by (2.2.32) and so does Corol-
lary 2.2.3.

For U ∈ U, we use the notation PU
x when we need to indicate explicitly that the

process X is governed by U and starts at X0 = x. The associated expectation operator
is EU

x .

2.2.2 Feedback controls

An admissible control U is called a feedback control if it is progressively measurable
with respect to the natural filtration

{
FX

t
}

of X. This is tantamount to saying that there
exists a measurable map

v : [0,∞) × C([0,∞);Rd)→ U

such that for each t ≥ 0, Ut = vt(X) a.s., and is measurable with respect to FX
t . In

view of the latter fact, we may write vt(X[0,t]) in place of vt(X) by abuse of notation.
It is evident that U cannot be specified a priori as in Theorem 2.2.4. Instead, one has
to make sense of (2.2.1) with Ut replaced by vt(X[0,t]). This is not always possible
and even when it is, an enlargement of the solution concept might be necessary.

In Theorem 2.2.4, we prescribed X0, W and U on a probability space and con-
structed a solution X on the same space. We call this the strong formulation. Corre-
spondingly, the equation

Xt = x0 +

∫ t

0
b
(
Xs, vs(X[0,s])

)
ds +

∫ t

0
σ(Xs) dWs (2.2.33)

is said to have a strong solution if given a Wiener process (Wt,Ft) on a complete
probability space (Ω,F,P), we can construct a process X on (Ω,F,P), with initial
value X0 = x0 ∈ Rd, which is continuous, Ft-adapted, and satisfies (2.2.33) for all
t at once a.s. A strong solution is called unique if any two such solutions X and X′

agree P-a.s. when viewed as elements of C([0,∞);Rd).
Let

{
FW

t

}
be the filtration generated by W. It is evident that if Xt is FW

t -adapted,
then such a solution X is a strong solution. We say that (2.2.33) has a weak solution
if we can find processes X and W on some probability space (Ω̃, F̃, P̃) such that
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X0 has the prescribed law ν0, W is a standard Wiener process independent of X0,
and (2.2.33) holds with Wt − Ws independent of

{
Xs′ ,Ws′ : s′ ≤ s

}
for all s ≤ t.

The weak solution is unique if any two weak solutions X and X′, possibly defined
on different probability spaces, agree in law when viewed as C([0,∞);Rd)-valued
random variables, i.e., L (X) = L (X′).

Intuitively, a strong solution corresponds to an engineer’s viewpoint, wherein one
has X0, U which, along with the noise W, are fed to a black box represented by (2.2.1)
as inputs, with X the resultant output. In contrast, the weak solution corresponds to
a statistician’s (to be precise, a time series analyst’s) viewpoint according to which
one has a pair X, U to which (2.2.33) is “fitted” to extract whatever structure there is
to it, with W the “residual error.”

Note that with u ∈ U treated as a parameter, (2.2.12) also gives rise to an operator
Lu : C2(Rd)→ C(Rd), defined by Lu f (x) = L f (x, u).

Weak solutions can be given a martingale characterization. We work in the canon-
ical space Ω = C([0,∞);Rd), with Xt(ω) = ω(t).

Definition 2.2.8 Let the feedback control vt be fixed. A probability measure Px0 in
P

(C([0,∞);Rd)
)

is a solution to the martingale problem for Lvt started at x0 ∈ Rd,
if Px0 (X0 = x0) = 1 and

Mt := f (Xt) −
∫ t

0
Lvs(X[0,s]) f (Xs) ds , t ≥ 0 , (2.2.34)

is a local martingale under Px0 for all f ∈ C2(Rd), or equivalently, if it is a square-
integrable martingale under Px0 for all f ∈ C2

c(Rd).

We note here that (2.2.34) is a martingale if and only if for all g ∈ Cb
(C([0, s];Rd)

)
,

f ∈ C2
c(Rd) and t ≥ s, it holds that

E

[(
f (Xt) − f (Xs) −

∫ t

s
Lvr(X[0,r]) f (Xr) dr

)
g
(
X[0,s]

)]
= 0 . (2.2.35)

This can be demonstrated via a standard monotone class argument.

Theorem 2.2.9 Let condition (2.2.4) hold. Then there exists a weak solution to
(2.2.33) if and only if there exists a solution to the martingale problem forLvt started
at x0. Moreover, a solution to (2.2.33) is unique, if and only if the solution of the
martingale problem for Lvt started at x0 is unique.

Proof Necessity follows by (2.2.13). To prove sufficiency, let Px0 be a solution
to the martingale problem. Since Ex0 |Xt |2 < ∞ by Corollary 2.2.3, then condition
(2.2.4) implies that the process Mt defined in (2.2.34) corresponding to f (x) = |x|2 is
a martingale. Hence, with f (x) = xi, it follows that the ith coordinate of M defined
by

Mt := Xt −
∫ t

0
b
(
Xs, vs(X[0,s])

)
ds ,
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is a square-integrable martingale. Next, let f (x) = xix j. Computing via (2.2.34) it
follows that

Mi
t M

j
t −

∫ t

0
ai j(Xs) ds

is a local martingale, and therefore a martingale since both M and X are square-
integrable, and condition (2.2.4) is in effect. By the representation theorem of [121],
it then follows that M is of the form

Mt =

∫ t

0
σ(Xs) dWs

for a suitable Wiener process W, defined on a possibly augmented probability space.
If Px0 and P′x0

are two solutions of the martingale problem, the laws of X under Px0

and P′x0
must agree, by the weak uniqueness hypothesis. Thus Px0 = P

′
x0

as elements
of P

(C([0,∞);Rd)
)
. The converse also follows in a standard fashion. �

In view of Theorem 2.2.9, we call Lu the controlled extended generator for X.

Remark 2.2.10 Recall our earlier comment on the restriction that σ be square.
The later half of the proof of Theorem 2.2.9 shows that as long as we work with
weak solutions (as we indeed shall), σ could be replaced by the nonnegative definite
square-root of σσT and thus can be taken to be square without any loss of generality.
Note that the Lipschitz assumption on σ is not in general equivalent to a Lipschitz
property of a. However, if the eigenvalues of σ(x) are bounded away from zero uni-
formly over x ∈ Rd and it is Lipschitz continuous, then

√
σσT can be chosen to be

Lipschitz [115, p. 131, theorem 5.2.2]. The same is true in the degenerate case under
the assumption that σ is in C2(Rd) and its second partials are uniformly bounded in
Rd [115, p. 132, theorem 5.2.3].

As mentioned in Remark 2.2.10, we shall mostly work with weak solutions. One
reason is of course that it is a more natural solution concept in most situations. Fur-
ther, it permits us to consider more general cases of (2.2.33). This is because ex-
istence or uniqueness of a strong solution to (2.2.33) always implies that of a weak
solution, but not vice versa. See, e.g., the celebrated counterexample due to Tsirelsen
in Liptser and Shiryayev [87, pp. 150–151].

The reader may still feel some apprehension in restricting the set of controls from
admissible to feedback in the passage from (2.2.5) to (2.2.33), but this also causes
no loss of generality as we argue later (see Theorem 2.3.4 below).

Theorem 2.2.11 Assume (2.2.3), (2.2.4) and (2.2.15). Then equation (2.2.33) has
a unique weak solution under any feedback control.

Proof We first consider the case where b and σ are bounded and the diffusion is
uniformly nondegenerate, or in other words, when the constant KR in (2.2.15) satis-
fies supR>0 KR < ∞. By Theorem 2.2.4, for W is a d-dimensional standard Wiener
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process independent of X0, the equation

X′t = X0 +

∫ t

0
σ(X′s) dW s (2.2.36)

has a unique strong solution. Let Ω = C([0,∞);Rd) with F denoting its Borel σ-
field, completed with respect to P = L (X′). Then the canonical process X defined
by Xt(ω) = ω(t) for ω ∈ Ω, agrees in law with X′. Let

{
FX

t
}

denote the natural
filtration of X and Pt the restriction of P to (Ω,FX

t ) for t ≥ 0. Define a new measure
P̄ on (Ω,F) as follows: For t ≥ 0, the restriction of P̄ to (Ω,FX

t ), denoted by P̄t, is
absolutely continuous with respect to Pt with Radon–Nikodym derivative

Λt :=
dP̄t

dPt
= exp

(
Mt(X,W; b) − 1

2
〈M〉t(X; b)

)
,

where

Mt(X,W; b) :=
∫ t

0

〈
σ−1(Xs) b

(
Xs, vs(X[0,s])

)
, dW s

〉
,

〈M〉t(X; b) :=
∫ t

0

∣∣∣σ−1(Xs) b
(
Xs, vs(X[0,s])

)∣∣∣2 ds .

Since b and σ are bounded, one can apply Novikov’s criterion [74, pp. 142–144], to
conclude that

(
Λt,F

X
t
)

is a positive martingale with E [Λt] = 1 for all t. This ensures
that the above procedure consistently defines {P̄t}, and P̄. By the Cameron–Martin–
Girsanov theorem [87, p. 225], it follows that under P̄,

Wt := Wt −
∫ t

0
σ−1(Xs) b

(
Xs, vs(X[0,s])

)
ds , t ≥ 0 ,

is a standard Wiener process and therefore X satisfies (2.2.33) with W. This estab-
lishes the existence of a weak solution.

To prove uniqueness, let X be a solution to (2.2.33) on some probability space
(Ω̃, F̃, P̃). Without any loss of generality, we can take (Ω̃, F̃, P̃) as before, with X the
canonical process. With {F̃X

t } denoting the natural filtration of X, we introduce a new
probability measure P̃ on (Ω̃, F̃) exactly as above, but with Λ replaced by

Λ̃t :=
dP̃t

dPt
= exp

(
−Mt(X,W; b) − 1

2
〈M〉t(X; b)

)
, t ≥ 0 ,

with P̃t being the restriction of P̃ to (Ω̃, F̃X
t ). Using the Cameron–Martin–Girsanov

theorem as above, it follows that X satisfies (2.2.36) under P̃, with W replaced by
an appropriately defined P̃-Wiener process W̃. Thus, under P̃, X agrees in law with
X′ of (2.2.36). In other words, the law of X under P and that of X′ of (2.2.36) are
interconvertible through a prescribed absolutely continuous change of measure. The
uniqueness of L (X), i.e., of the weak solution to (2.2.33), now follows from the
known uniqueness of the strong, therefore weak, solution to (2.2.36).
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For the general case of unbounded b and σ with linear growth and σ satisfying
(2.2.15), the verification of E [Λt] = 1 and E

[
Λ̃t

]
= 1 takes additional effort. For

n ∈ N, let

bn(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩b(x) if |x| ≤ n ,

0 if |x| > n .

For each n ∈ N, σ−1bn is a bounded function and hence

P̄
n(A) := E

[
IA(X[0,t]) exp

(
Mt(X,W; bn) − 1

2
〈M〉t(X; bn)

)]
,

where A is a Borel subset of C([0, t];Rd) for t > 0, is the probability measure associ-
ated with the unique weak solution of

Xn
t = x0 +

∫ t

0
bn(Xn

s , vs(X
n
[0,s])

)
ds +

∫ t

0
σ(Xn

s ) dWs .

Let τ̃n = inf {t > 0 : |Xn
t | > n}. Then Xn

t∧τ̃n
is a solution of

Xn
t∧τ̃n
= x0 +

∫ t∧τ̃n

0
b
(
Xn

s , vs(X
n
[0,s])

)
ds +

∫ t∧τ̃n

0
σ(Xn

s ) dWs .

Let

GR,T :=

{
ξ ∈ C([0,∞);Rd) : sup

0≤t≤T
|ξ(t)| ≤ R

}
.

Then P̄n(A ∩ GR,t) = P̄
n′(A ∩ GR,t) for all Borel A, n ∧ n′ > R and t > 0. Hence the

limit P̄∗(GR,t) = limn→∞ P̄
n(GR,t) exists for all R > 0, and satisfies

P̄
∗(GR,t) := E

[
IGR,t (X[0,t]) exp

(
Mt(X,W; b) − 1

2
〈M〉t(X; b)

)]
.

By (2.2.16b), there exists a constant Č0 = Č0(K1, t) such that

Ē
n
[
sup
s≤t
|Xt |2

]
≤ Č0(K1, t)

(
1 +

∥∥∥X0

∥∥∥2

H2

)
, ∀n ∈ N ,

which implies that limR→∞ P̄
n(GR,t) = 1, uniformly in n ∈ N. Therefore

lim
R→∞

lim inf
n→∞

P̄
n(GR,t) = 1 .

Thus E [Λt] ≥ 1, and since by the supermartingale property the converse inequality is
true, equality must hold. Uniqueness also follows as in the preceding paragraph. �

We mention here that one useful sufficient condition that guarantees E [Λt] = 1
and E

[
Λ̃t

]
= 1 due to Portenko [96] is: For all t > s,

E

[∫ t

s

∣∣∣σ−1(Xr) b
(
Xr, vr(X[0,r])

)∣∣∣2dr
∣∣∣∣ Fs

]
≤ C(t − s)γ (2.2.37)

for suitable constants C, γ > 0. Note that under the additional hypothesis that σ is
uniformly nondegenerate on Rd, condition (2.2.37) is verified by applying (2.2.16b).
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A feedback control U is called a Markov control if it takes the form Ut = vt(Xt)
for a measurable map v : Rd × [0,∞) → U. On the other hand, if Ut = g(Xt) for a
measurable map g : Rd → U, then U is called a stationary Markov control. By abuse
of terminology, we often refer to the map vt (g) as the Markov (stationary Markov)
control. Existence and uniqueness of strong solutions for nondegenerate diffusions,
under a Markov control was established in [116, 117, 127] for bounded data. This
was subsequently extended to unbounded data under a linear growth assumption
using Euler approximations in [68]. We give a bare sketch of the key steps involved
in its proof.

Theorem 2.2.12 Suppose (2.2.3), (2.2.4) and (2.2.15) hold. Then, under a Markov
control v, (2.2.33) has a pathwise unique strong solution which is a strong Feller
(and therefore strong Markov) process.

Sketch of the proof Suppose for the time being that b and σ are bounded. Extend
the definition of Lv f to functions f in the Sobolev space W 2,p

loc (Rd), p ≥ 2. Fix

T > 0. Let D denote the space of functions g ∈ W 1,2,p
loc

(
[0,T ] × Rd), p ≥ 2, such that

sup0≤t≤T |g(t, x)| grows slower than exp
(
a|x|2) for all a > 0. For 1 ≤ i ≤ d, let ψi be

the unique solution in D [83, chapter 4] to the PDE

∂ψi

∂t
(t, x) +Lvtψi(t, x) = 0 on (0,T ) × Rd , ψi(T, x) = xi .

DefineΨ = [ψ1, . . . , ψd]T : [0,T ]×Rd → Rd. It can be shown that, for each t ∈ [0,T ],
Ψt( · ) ≡ Ψ(t, · ) is a C1-diffeomorphism onto its range. Intuitively (at least for small t)
Ψt can be thought of as a perturbation (homotopy, to be precise) of the identity map.
Setting Yt := Ψt(Xt), t ∈ [0,T ], one can apply Krylov’s technique, which extends the
Itô formula to functions f in the Sobolev space W 2,p

loc (Rd) (henceforth referred to as
the Itô–Krylov formula [78, p. 122]), to show that Y satisfies the stochastic integral
equation

Yt = Y0 +

∫ t

0
(dΨsσ) ◦ Ψ−1

s (Ys) dWs , (2.2.38)

where dΨs and Ψ−1
s are the Jacobian matrix and the inverse map of Ψs, respectively,

and “◦” stands for composition of functions. Arguments analogous to those of The-
orem 2.2.4 using the locally Lipschitz property can be used to show that (2.2.38) has
an a.s. unique strong solution, whence the corresponding claim for X follows from
the fact that {Ψt : t ≥ 0} is a family of C1-diffeomorphisms. To prove the strong
Feller property, let f be a bounded measurable function on Rd. The equation

∂ϕ

∂t
(t, x) +Lvtϕ(t, x) = 0 on (0,T ) × Rd , ϕ(T, x) = f (x) ,

has a unique solution in D and a straightforward application of the Itô–Krylov for-
mula shows that ϕ(t, x) = E

[
f (XT ) | Xt = x

]
. By Sobolev embedding, D ⊂ C(Rd+1)

and thus ϕ(t, · ) is continuous for t ∈ [0,T ]. This establishes the strong Feller
property.
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Suppose now that b and σ are not bounded. We approximate them via truncation by
selecting for each n ∈ N a pair (bn,σn) of continuous bounded functions, which agree
with (b,σ) on Bn, the ball of radius n centered at the origin, and satisfy (2.2.3) and
(2.2.4) for each n ∈ N. Let Xn denote the unique solution of (2.2.33) with parameters
(bn,σn). By Theorem 2.2.2, the first exit time from Bn, satisfies τn ↑ ∞, a.s. By
pathwise uniqueness, we have

P
(
Xn

t∧τn∧τm
= Xm

t∧τn∧τm
, ∀t ∈ [0,T ]

)
= 1 .

Therefore Xn
t∧τn

converges w.p. 1 uniformly on every interval [0,T ] to some X which
satisfies (2.2.33) on [0,T ] for every T > 0. The strong Feller property for unbounded
coefficients follows from [26, theorem 4.1], which moreover asserts that the transi-
tion probabilities have densities which are locally Hölder continuous. �

Theorem 2.2.12 shows that every measurable map v : Rd × [0,∞) → U gives rise
to an admissible control Ut = vt(Xt). Moreover, under this control, X is a Markov
process. As a converse, we have the following theorem which does not require non-
degeneracy.

Theorem 2.2.13 If X in (2.2.33) is a Markov (time-homogeneous Markov) process,
then the process Ut = vt(X[0,t]) may be taken to be a Markov (stationary Markov)
control.

Proof Consider the first claim. For t > s,

E

[∫ t

s
b(Xr,Ur) dr

∣∣∣∣ FX
s

]
= E

[
Xt − Xs

∣∣∣ FX
s

]
= E [Xt − Xs | Xs]

= E

[∫ t

s
b(Xr,Ur) dr

∣∣∣∣ Xs

]
. (2.2.39)

Since for any continuous sample path of X the drift b(Xt,Ut) is bounded over com-
pact time intervals, it follows that as t → s,

1
t − s

∫ t

s
b(Xr,Ur) dr → b(Xs,Us) P-a.s., a.e. in s .

Divide the first and the last terms in (2.2.39) by t − s. Letting t → s and using the
conditional dominated convergence theorem, we obtain

b(Xs,Us) = E [b(Xs,Us) | Xs] P-a.s., a.e. in s ,

where we use the fact that Us is measurable with respect to FX
s . Thus b(Xs,Us) is

also measurable with respect to the σ-field generated by Xs for almost all s, where
the qualification “for almost all s” can be dropped by suitably modifying Us on a
Lebesgue-null set. Then by the measurable selection theorem of [13] there exists a
measurable map v : [0,∞) × Rd → U such that

b(Xs,Us) = b
(
Xs, vs(Xs)

)
.
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This proves the first claim. Now for f ∈ C2
c(Rd), consider Lvt f (x). Then the Markov

process X has the extended generator Lvt . If it is time-homogeneous, Lvt cannot
have an explicit time-dependence. It follows that vt can be replaced by g for some
measurable g : Rd → U in (2.2.34), and hence also in the stochastic differential
equation describing X. �

For the controlled process X, under U ∈ U, we adopt the notation

EU
X0

[
f (X[0,∞))

]
:= E

[
f (X[0,∞)) | X0

]
.

2.3 Relaxed controls

We describe the relaxed control framework, originally introduced for deterministic
control by Young [126]. This entails the following: The spaceU is replaced by P(U),
where, as usual, P(U) denotes the space of probability measures onU endowed with
the Prohorov topology, and bi, 1 ≤ i ≤ d, are replaced by

b̄i(x, v) =
∫
U

bi(x, u)v(du) , x ∈ Rd , v ∈P(U), 1 ≤ i ≤ d .

Note that b̄ inherits the same continuity, linear growth and local Lipschitz (in the first
argument) properties from b. The space P(U), in addition to being compact, is con-
vex when viewed as a subset of the space of finite signed measures on U. One may
view U as the “original” control space and view the passage from U to P(U) as a
“relaxation” of the problem that allows P(U)-valued controls which are analogous
to randomized controls in the discrete time setup. For this to be a valid relaxation
in the optimization theoretic sense, it must, for a start, have the original problem
embedded in it. This it does indeed, for a U-valued control trajectory U can be iden-
tified with the P(U)-valued trajectory δUt , where δq denotes the Dirac measure at
q. Henceforth, “control” means relaxed control, with Dirac measure-valued controls
(which correspond to original U-valued controls) being referred to as precise con-
trols. The class of stationary Markov controls is denoted by Usm, and Usd ⊂ Usm

denotes the subset corresponding to precise controls. The next result, a stochastic
analog of the chattering lemma of Young [126], further confirms that this is indeed
a valid relaxation.

Theorem 2.3.1 Let X, U ∈ U, and W satisfy (2.2.1) on a probability space (Ω,F,P).
There exists a sequence {Un} of admissible precise controls on (Ω,F,P) such that if
{Xn} is the corresponding family of solutions to (2.2.1), then for each T > 0 and
f ∈ C([0,T ] × U), we have∫ T

0

∫
U

f (t, u) Un
t (du) dt →

∫ T

0

∫
U

f (t, u) Ut(du) dt on Ω (2.3.1)

and ∥∥∥Xn − X
∥∥∥H2

T
−−−−→
n→∞

0 ∀T > 0 .
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Proof For each n ≥ 1, let

tn
k := k

T
n
, k = 0, . . . , n ,

In
i := [tn

i−1, t
n
i ) , i = 1, . . . , n .

Also, let {Un
j : j = 1, . . . , jn} be a finite partition of U, satisfying diam(Un

j ) ≤
1
n , and

for each j = 1, . . . , jn, select an arbitrary un
j ∈ Un

j . Define

λn
i j :=

∫
In

i−1

Ut(U
n
j ) dt , i = 2, . . . , n . (2.3.2)

Then
∑

j λ
n
i j =

T
n . For i ≥ 2, subdivide each In

i further into disjoint left-closed right-
open intervals In

i j, each of length λn
i j. Let {Un : n ∈ N} be a sequence of precise

controls defined by

Un
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩δu0 if t ∈ In
1 ,

δun
j

if t ∈ In
i j , i ≥ 2 ,

(2.3.3)

where u0 ∈ U is arbitrarily selected. It follows from (2.3.2) – (2.3.3) that Un
t for

t ∈ In
i , i ≥ 2 is a function of {Ut : t ∈ In

i−1}. Hence Un is non-anticipative.
By the uniform continuity of f on [0,T ] × U, there exists a sequence {εn} ⊂ R,

satisfying εn → 0 as n→ ∞, such that∣∣∣ f (t, u) − f (tn
i , u

n
j )
∣∣∣ < εn ∀(t, u) ∈ In

i × Un
j ,

sup
u∈U

∣∣∣ f (t, u) − f (tn
i−1, u)

∣∣∣ < εn ∀t ∈ In
i ,

(2.3.4)

for all n ∈ N, i = 1, . . . , n, and j = 1, . . . , jn. Let Mf be an upper bound of | f |
on [0,T ] × U. Decomposing the integrals in (2.3.1) and using (2.3.4) in a triangle
inequality, we obtain∣∣∣∣∣∣

∫ T

0

∫
U

f (t, u)Un
t (du) dt −

∫ T

0

∫
U

f (t, u)Ut(du) dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
In

1

f (t, u0) dt

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
In

n

∫
U

f (t, u)Ut(du) dt

∣∣∣∣∣∣
+

n−1∑
i=1

jn∑
j=1

∣∣∣∣∣∣∣
∫
In

(i+1) j

f (t, un
j ) dt −

∫
In

i

∫
Un

j

f (t, u)Ut(du) dt

∣∣∣∣∣∣∣
≤ 2

Mf T

n
+ 2

(n − 1)εnT
n

+

n−1∑
i=1

jn∑
j=1

∣∣∣∣∣∣∣
∫
In

(i+1) j

f (tn
i , u

n
j ) dt −

∫
In

i

∫
Un

j

f (tn
i , u

n
j ) Ut(du) dt

∣∣∣∣∣∣∣ . (2.3.5)

By (2.3.2) and the definition of {In
i j}, the last term in (2.3.5) vanishes identically.

Hence, (2.3.1) follows.
For R > 0, let bR and σR be continuous bounded functions which agree with b and

σ on BR, the ball of radius R centered at the origin, and satisfy (2.2.3) and (2.2.4). Let
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Xn,R denote the unique solution of (2.2.1) with parameters (bR,σR) under the control
Un, satisfying Xn,R

0 = X0. Similarly X∞,R denotes the corresponding solution under
the control U. The solution for (2.2.1) under the unmodified coefficients b and σ, and
control Un is denoted by Xn, n ∈ N∪{∞}. The argument in the proof of Lemma 2.2.5
shows that we can assume without loss of generality that the law of X0 has compact
support. Let

τi
R := inf

{
t > 0 :

∣∣∣Xi,R
t

∣∣∣ > R
}
, i ∈ N ∪ {∞} ,

and

Zi,R
t := I[0,t](τ

i
R ∧ τ∞R ) , i ∈ N , t > 0 .

Argue as in Theorem 2.2.4 to obtain∥∥∥∥(Xn,R − X∞,R
)

Zn,R
T

∥∥∥∥H2
T

≤ KR(T + 2
√

T )
∥∥∥∥(Xn,R − X∞,R

)
Zn,R

T

∥∥∥∥H2
T

+

⎛⎜⎜⎜⎜⎜⎝E ⎡⎢⎢⎢⎢⎢⎣ sup
t∈[0,T ]

∣∣∣∣∣∣
∫ t∧τn

R∧τ
∞
R

0

(
b̄(X∞,R

t ,Un
t ) − b̄(X∞,R

t ,Ut)
)

dt

∣∣∣∣∣∣
2⎤⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎠

1/2

. (2.3.6)

By (2.3.5), it is clear that (2.3.1) holds uniformly over T in a compact set. Thus, by
the dominated convergence theorem, the last term of (2.3.6) goes to zero as n→ ∞,
from which we get that ∥∥∥∥(Xn,R − X∞,R

)
Zn,R

T

∥∥∥∥H2
T

−−−−→
n→∞

0 , (2.3.7)

provided T is small enough that KR(T + 2
√

T ) < 1. However, iterating the same
argument over the interval [T, 2T ], noting also that

∥∥∥Xn,R
T − X∞,R

T

∥∥∥H2
T

can be made

arbitrarily small if n is sufficiently large, it follows that, for any fixed R > 0, (2.3.7)
holds for all T > 0.

Since X0 has compact support, it follows by (2.2.16b) that{
sup
s≤T
|Xn

s |2 : n ∈ N ∪ {∞}
}

are uniformly integrable. Therefore∥∥∥Xn − Xn,RZn,R
T

∥∥∥2

H2
T
≤ 2

∑
i∈{n,∞}

E

[
sup
s≤T
|Xn

s |2 I{τi
R < T }

]
−−−−→
R→∞

0 , (2.3.8)

uniformly in n. Using the triangle inequality∥∥∥Xn − X∞
∥∥∥H2

T
≤

∥∥∥Xn − Xn,RZn,R
T

∥∥∥H2
T
+

∥∥∥X∞ − X∞,RZn,R
T

∥∥∥H2
T

+
∥∥∥(Xn,R − X∞,R

)
Zn,R

T

∥∥∥H2
T
, (2.3.9)

the result follows, since by (2.3.8) the first two terms on the right-hand side of (2.3.9)
can be made arbitrarily small for large R uniformly in n, while, by (2.3.7), the last
term can be made arbitrarily small for large n for any fixed R. �
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The proof of Theorem 2.3.1 suggests a natural topology for the space of trajec-
tories Ut, which we describe next. Let U denote the space of measurable maps
[0,∞) → P(U). Let { fi} be a countable dense set in the unit ball of C(U). Then
{ fi} is a convergence determining class for P(U). Let

αi(t) :=
∫
U

fi(u)Ut(du) , i = 1, 2, . . .

Then αi has measurable paths, and |αi(t)| ≤ 1 for all t ≥ 0. For T > 0, let BT denote
the space of measurable maps [0,T ] → [−1, 1] with the weak∗-topology of L2[0,T ]
relativized to it. Let B denote the space of measurable maps [0,∞)→ [−1, 1] with the
corresponding inductive topology, i.e., the coarsest topology that renders continuous
the map B → BT that maps x ∈ B to its restriction to BT for every T > 0. Let
B∞ = B × B × · · · (countable product) with the product topology.

Next, note that the map ϕ : P(U)→ [−1, 1]∞ defined by

µ �→
(∫

f1 dµ,
∫

f2 dµ, . . .
)

is continuous, one-to-one with a compact domain, and hence is a homeomorphism
onto its range. By abuse of notation, we denote the map U �→ (α1, α2, . . . ) ∈ B∞ also
as ϕ : U → B∞. We relativize the topology of B∞ to ϕ(U ) and topologize U with
the coarsest topology that renders ϕ : U → ϕ(U ) a homeomorphism.

Theorem 2.3.2 The space U is compact and metrizable, hence Polish.

Proof A standard application of the Banach–Alaoglu theorem shows that for each
T , BT is compact. It is clearly metrizable by the metric

dT (x, y) =
∞∑

n=1

2−n

∣∣∣∣∣∣
∫ T

0
eT

n (t)x(t) dt −
∫ T

0
eT

n (t)y(t) dt

∣∣∣∣∣∣ ∧ 1 ,

where {en} is a complete orthonormal basis for L2[0,T ]. Since the topology of B is
defined inductively from those of BT , T > 0, it is easy to see that it is compact. Also,
it is metrizable by the metric

d(x, y) =
∞∑

n=1

2−ndn(xn, yn) ,

where xn and yn are the restrictions of x and y to [0, n], n ≥ 1, respectively. Thus B∞

is also compact metrizable. Therefore it suffices to show that ϕ(U ) is closed in B∞.
Let

ϕ(U ) � αn = (αn
1, α

n
2, . . . )→ α ∈ B∞ .

Fix T > 0. Let n(1) = 1 and define {n(k)} inductively so as to satisfy

∞∑
j=1

2− j max
1≤l<k

∣∣∣∣∣∣
∫ T

0

(
αn(k)

j (t) − α j(t)
)(
αn(l)

j (t) − α j(t)
)

dt

∣∣∣∣∣∣ < 1
k
,
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which is possible because αn
j → α j in B for each j. Denote by ‖ · ‖2,T and 〈 · , · 〉 the

norm and the inner product on L2[0,T ], respectively. Then, for each j ≥ 1,∥∥∥∥∥∥ 1
m

m∑
k=1

αn(k)
j − α j

∥∥∥∥∥∥2

2,T

≤ 4T 2

m
+

2
m2

m∑
i=2

i−1∑
l=1

∣∣∣∣〈αn(i)
j − α j, α

n(l)
j − α j

〉∣∣∣∣
≤ 2T 2

m2

[
2m + 2 j(m − 1)

] −−−−→
m→∞

0 .

Thus

1
m

m∑
k=1

αn(k)
j → α j as m→ ∞ ,

strongly in L2[0,T ], when restricted to [0,T ]. By a diagonal argument, we can extract
a subsequence {m(k)} of {m} such that, for almost all t,

1
m(k)

m(k)∑
l=1

αn(l)
j (t) −−−−→

k→∞
α j(t) , j ≥ 1 . (2.3.10)

Define U(k)
t ∈P(U) by∫

U

fi(u)U(k)
t (du) =

1
m(k)

m(k)∑
j=1

αn(l)
i (t) , i ≥ 1 , k ≥ 1 . (2.3.11)

Since { fi} is dense in the unit ball of C(U), it separates points of P(U) and therefore,
U(k)

t is well-defined for each k. By (2.3.10) – (2.3.11), any limit point Ut of {U(k)
t } in

P(U) must satisfy ∫
U

fi(u)Ut(du) = αi(t) , i ≥ 1 .

Thus α(t) = ϕ(Ut), or in other words, α(t) ∈ ϕ(P(U)) for a.e. t, where the qualifica-
tion “a.e. t” can be dropped by suitably modifying α on a Lebesgue-null set. Define
Ũt := ϕ−1(α(t)). Then α(t) = ϕ(Ũt), implying that α ∈ ϕ(U ). Thus ϕ(U ) is closed
in B∞. �

The following consequence of this topology is frequently useful:

Theorem 2.3.3 If Un → U in U and f ∈ C([0,T ] × U) for some T > 0, then∫ T

0

∫
U

f (t, u)Un
t (du) dt −−−−→

n→∞

∫ T

0

∫
U

f (t, u)Ut(du) dt .

Proof From the foregoing, the claim is clearly true for functions f taking the form
f (t, u) = g(t) fi(u) for some i and some g ∈ C[0,T ]. By the density of { fi} in the unit
ball of C(U), it follows that it is also true for f of the form f (t, u) = g(t) f (u) for
g ∈ C[0,T ], f ∈ C(U) and hence for linear combinations of such functions. By the
Stone–Weierstrass theorem, the latter are dense in C([0,T ]×U), so the claim follows
by a simple approximation argument. �
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We can view the control process U of (2.2.1) as a U -valued random variable.
Using the relaxed control framework permits us to use (2.2.1) or (2.2.33) flexibly.
Therefore, if one is working with the weak formulation, (2.2.1) can be replaced by
(2.2.33) without any loss of generality. Conversely, given a weak solution of (2.2.33),
its replica (in law) can be constructed with given W and X0 on a prescribed (Ω,F,P)
if an augmentation thereof is permitted. The precise forms of these statements are
contained in the next theorem.

Theorem 2.3.4 Let X0, W be prescribed on a probability space (Ω,F,P).

(a) Let U be an admissible control on (Ω,F,P) and X the corresponding strong
solution to (2.2.1). Then on a possibly augmented probability space, X also
satisfies (2.2.1) with U and W replaced by Ũ and W̃, respectively, where W̃ is a
standard Wiener process independent of X0 and Ũ is a feedback control.

(b) Suppose X̂, Ŵ, Û, and X̂0 satisfy (2.2.1) on a probability space (Ω̂, F̂, P̂) with
Ût = f

(
t, X̂[0,t]

)
, a feedback control, and with L (W[0,∞), X0) = L (Ŵ[0,∞), X̂0).

Then by augmenting (Ω,F,P) if necessary, we can construct on it a process X
satisfying (2.2.1) with prescribed W, X0, and a feedback control Ut = f

(
t, X[0,t]

)
,

so that L (X) = L (X̂).

Proof To prove part (a), let { fi} be a countable dense set in the unit ball of C(U) and
define Ũ by ∫

fi dŨt = E

[∫
fi dUt

∣∣∣∣∣ FX
t

]
P -a.s. , t ≥ 0 , i ≥ 1 ,

taking a measurable version thereof. Write

Xt = X0 +

∫ t

0
b(Xs, Ũs) ds + Mt ,

where

Mt =

∫ t

0
σ(Xs) dWs +

∫ t

0

[
b(Xs,Us) − b(Xs, Ũs)

]
ds , t ≥ 0 .

It is easily checked that
(
Mt,F

X
t
)

is a zero mean square-integrable martingale with
quadratic covariation matrix process∫ t

0
σ(Xs)σ

T(Xs) ds , t ≥ 0 .

The representation theorem of Wong [121] then implies that

Mt =

∫ t

0
σ(Xs) dW̃s , t ≥ 0 ,

for a d-dimensional standard Wiener process W̃ defined on a possibly augmented
probability space.

For part (b), let

Q ∈P
(
Rd × C([0,∞);Rd) × C([0,∞);Rd)

)
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denote the law of
(
X̂0, Ŵ[0,∞), X̂[0,∞)

)
. Disintegrate it as

Q(dw1, dw2, dw3) = Q1(dw1, dw2) Q2(dw3 | w1,w2) ,

where

Q1 = L
(
X̂0, Ŵ[0,∞)

)
= L

(
X0,W[0,∞)

)
and Q2 is the regular conditional law of X̂[0,∞) given

(
X̂0, Ŵ[0,∞)

)
, defined Q1-a.s.

Augment Ω to Ω̆ = Ω×C([0,∞);Rd), let F̆ be the product σ-field on Ω̆, and replace
P by P̆, which is defined as follows: For A ∈ F, and B Borel in C([0,∞);Rd),

P̆ (A × B) = E
[
Q2(B | X0,W[0,∞)) IA

]
.

Define X on (Ω̆, F̆, P̆) by

Xt(ω1, ω2) = ω2(t) , t ∈ [0,∞) , (ω1, ω2) ∈ Ω̆ .

The rest is routine. �

Notation 2.3.5 To facilitate the passage to relaxed controls, we adopt the following
notation. For a function g : Rd × U → Rk we let ḡ : Rd ×P(U) → Rk denote its
extension to relaxed controls defined by

ḡ(x, µ) :=
∫
U

g(x, u) µ(du) , µ ∈P(U) . (2.3.12)

A relaxed stationary Markov control v may be viewed as a Borel measurable kernel
on U given Rd, and therefore we adopt the notation v(x) = v(du | x). For any fixed
v ∈ Usm, and g as above, x �→ ḡ

(
x, v(x)

)
is a Borel measurable function. In order to

simplify the notation, treating v as a parameter, we define gv : Rd → Rk by

gv(x) := ḡ
(
x, v(x)

)
=

∫
U

g(x, u) v(du | x) . (2.3.13)

Also, for v ∈ Usm,

Lv := ai j∂i j + bi
v∂i

denotes the extended generator of the diffusion governed by v.

That we can go back and forth between the relaxed control formulation and the
precise control formulation follows from the following corollary.

Corollary 2.3.6 If (X,U) is a solution pair of

Xt = X0 +

∫ t

0
b̄(Xs,Us) ds +

∫ t

0
σ(Xs) dWs ,

with U a relaxed control and Gt := FX,U
t , i.e., the right-continuous completion of the

natural filtration of (X,U), then, on a possibly augmented probability space, there
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exists another pair (X′,U′), where U′ is a U-valued control process, such that if Ũ
is defined by ∫

h(u)Ũt(du) = E
[
h(U′t ) | Gt

] ∀h ∈ C(U) ,

then (X,U) and (X′, Ũ) agree in law.

Proof When t < 0, let Ut = δu0 for some fixed u0 ∈ U. Define Uδ, δ > 0, by∫
U

f (u)Uδ
t (du) =

1
δ

∫ t

t−δ

[∫
U

f (u)Us(du)

]
ds , t ≥ 0 ,

for f in a countable dense subset of C(U). Then Uδ has continuous sample paths
and is Gt-adapted, hence it is progressively measurable with respect to {Gt}. Since
Uδ

t → Ut as δ ↓ 0 for a.e. t, U has a progressively measurable version. Thus without
loss of generality, we take U to be progressively measurable.

We may view Xt = Xt(ω) and Ut = Ut(ω) as random variables on the product
probability space (Ω1,F1, e−tdt × P), with Ω1 := R+ ×Ω and F1 the product σ-field.
Consider the probability space (Ω′ := Ω1 × U,F′,P′) where F′ is the progressively
measurable sub σ-field of the product σ-field and P′ is defined by: P′ restricts to P
under the projection Ω′ �→ Ω and the regular conditional law on U given (t, ω) ∈ Ω1

is Ut(ω). Define on this space the random process U′ by U′t = U′(t, ω, u) = u. By
construction, E

[
f (U′t ) | Gt

]
=

∫
U

f (u)Ut(du) a.s. ∀ f ∈ C(U), and thus we may write

Xt = X0 +

∫ t

0
b(Xs,U

′
s) ds +

∫ t

0
σ(Xs) dW̃s

for a suitably defined Brownian motion W̃ as in Theorem 2.3.4. This proves the
claim. �

2.3.1 Two technical lemmas

We present two useful facts about controlled diffusions.
The first shows that the set of controlled diffusion laws is closed under condition-

ing w.r.t. a stopped σ-field w.r.t. the natural filtration of the controlled process. The
second establishes the tightness of laws under tight initial conditions.

Lemma 2.3.7 Let X be a solution of (2.2.1) with
{
FX

t
}

its natural filtration and τ

an
(
FX

t
)
-stopping time. Then the regular conditional law of X ◦θτ given FX

τ is a.s. the
law of a controlled diffusion of type (2.2.1) on {τ < ∞}.

Proof Since we are working with the weak formulation, Theorem 2.3.4 allows us to
assume without any loss of generality that U is a feedback control, say Ut = vt(X[0,t]),
t ≥ 0, where v : [0,∞) × C([0,∞);Rd) → P(U) is progressively measurable. The
weak formulation of (2.2.1) is equivalent to (2.2.35) for t ≥ s, f ∈ C2

c(Rd), and
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g ∈ Cb
(C([0, s];Rd)

)
. But a.s. on {τ < ∞},

E

[(
f (Xτ+t) − f (Xτ+s) −

∫ t

s
Lvτ+r(X[0,τ+r]) f (Xτ+r) dr

)
g
(
X[τ,τ+s]

) ∣∣∣∣ FX
τ

]
= 0 .

From this observation and [115, p. 33, lemma 3.3], it follows that a.s. on {τ < ∞},
the regular conditional law of {X̃t} = {Xτ+t : t ≥ 0} given FX

τ is the law of a diffusion
as in (2.2.1), controlled by

Ut = ṽt(X̃[0,t]) , t ≥ 0 ,

where ṽt(X̃[0,t]) = vτ+t(X[0,τ+t]) with X[0,τ] being treated as a fixed parameter on the
right-hand side. �

Lemma 2.3.8 Let M0 ∈P(Rd) be tight. Then the laws of the collection

XM0 :=
{
X : (X,U) solves (2.2.1) , L (X0) ∈ M0 , U ∈ U}

are tight in P
(C([0,∞);Rd)

)
.

Proof Since the laws of X0 are in a tight set, for any ε > 0, we can find a compact set
Kε ⊂ Rd such that the probability of {X0 � Kε} does not exceed ε under any of these
laws. Thus we may consider bounded X0 without loss of generality. Consequently,
since by (2.2.16a) all moments are bounded on any interval [0,T ], (2.2.16b) yields

E
[
|Xt − Xs|4

]
≤ K̂(T )(t − s)2 , 0 ≤ s < t ≤ T ,

for some K̂(T ) > 0. As shown in Billingsley [24, p. 95, theorem 12.3] this is sufficient
to guarantee that

sup
X∈XM0

P (wT (X, δ) ≥ ε) −−−→
δ→0

0 ∀ε > 0 ,

where wT denotes the modulus of continuity on [0,T ], i.e.,

wT (X, δ) := sup
|t−s|≤δ

|Xt − Xs| , 0 ≤ s < t ≤ T .

Thus {L (X) : X ∈ XM0 } satisfies the hypotheses of the well-known tightness char-
acterization of P

(C([0,∞);Rd)
)

[24, p. 55, theorem 8.2]. �

Corollary 2.3.9 If M0 ∈ P(Rd) is compact, then the set of laws L (X,U) of the
pairs (X,U) which solve (2.2.1) and satisfy L (X0) ∈ M0 and U ∈ U is also compact.

Proof Since U is compact, Lemma 2.3.8 implies that the laws of (X,U) are tight.
Consider the equivalent statement of the martingale formulation

E

[(
f (Xt) − f (Xs) −

∫ t

s
LUr f (Xr) dr

)
g
(
X[0,s],U[0,s]

)]
= 0

for t > s, f ∈ C2
c(Rd), and g ∈ Cb

(C([0, s];Rd) × Us
)
, where Us denotes the

space of measurable maps [0, s] → P(U), topologized in the same manner as U .
This equation is preserved under convergence in law. The claim then follows by
Lemma 2.3.8. �
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2.3.2 Remarks

We conclude this section with some remarks on the difficulties in replacing σ(x)
by σ(x, u) in (2.2.1) (i.e., introducing explicit control dependence in the diffusion
matrix).

(i) Theorem 2.2.12 established a unique strong solution for a nondegenerate diffu-
sion with Markov controls. Suppose the control also enters σ. Because it is not
reasonable in general to impose more regularity than mere measurability on the
map v : [0,∞)×Rd →P(U) (g : Rd →P(U)) that defines a Markov (stationary
Markov) control, we have to deal with a stochastic differential equation with drift
vector and diffusion matrix that are merely measurable, nothing more. A suitable
existence result for strong solutions to these is unavailable. Weak solutions do
exist in the nondegenerate case [78, pp. 86–91], but their uniqueness is not avail-
able in general [92, 107]. Parenthetically, we mention here that the martingale
problem is well posed for one- and two-dimensional diffusions with bounded
measurable coefficients, provided σ is positive definite on compact subsets of
Rd [115, pp. 192-193].

Furthermore, in the nondegenerate case, if σ does not depend on U, the pro-
cess X has well-behaved transition probability densities (a fact we shall often
use). But if it does and U is Markov but not stationary Markov, this is not guar-
anteed [56].

(ii) In the passage from precise to relaxed controls, the controlled infinitesimal gen-
erator transforms as follows. For f ∈ C2

c(Rd),

Lu f (x) =
∑
i, j

ai j(x, u)
∂2 f

∂xi∂x j
(x) +

∑
i

bi(x, u)
∂ f
∂xi

(x)

gets replaced by

Lv f (x) =
∑
i, j

[∫
U

ai j(x, u)v(du)

]
∂2 f

∂xi∂x j
(x) +

∑
i

b̄i(x, v(x)
) ∂ f
∂xi

(x) ,

and not by

Lv f (x) =
1
2

∑
i, j,k

σ̄ik(x, v(x)
)
σ̄ jk(x, v(x)

) ∂2 f
∂xi∂x j

(x) +
∑

i

b̄i(x, v(x)
) ∂ f
∂xi

(x) ,

with

σ̄
(
x, v(x)

)
=

∫
U

σ(x, u)v(du | x) .

This leads to problems of interpretation. We should note that the corresponding
Hamilton–Jacobi–Bellman equation is fully nonlinear if the control enters in the
diffusion matrix. Even if this were handled analytically, the interpretation of the
stochastic differential equation would still be problematic.
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2.4 A topology for Markov controls

We endow Usm with the topology that renders it a compact metric space. We refer
to it as “the” topology since, as is well known, the topology of a compact Haus-
dorff space has a certain rigidity and cannot be weakened or strengthened without
losing the Hausdorff property or compactness, respectively [105, p. 60]. This can be
accomplished by viewing Usm as a subset of the unit ball of L∞

(
Rd,Ms(U)

)
under

its weak∗-topology, where Ms(U) denotes the space of signed Borel measures on
U under the weak∗-topology. The space L∞

(
Rd,Ms(U)

)
is the dual of L1(Rd,C(U)

)
,

and by the Banach–Alaoglu theorem the unit ball is weak∗-compact. Since the space
of probability measures is closed in Ms(U), it follows that Usm is weak∗-closed in
L∞

(
Rd,Ms(U)

)
, and since it is a subset of the unit ball of the latter, it is weak∗-

compact. Moreover, since L1(Rd,C(U)
)

is separable, the weak∗-topology of its dual
is metrizable. We have the following criterion for convergence in Usm.

Lemma 2.4.1 For vn → v in Usm it is necessary and sufficient that∫
Rd

f (x)
∫
U

g(x, u)vn(du | x) dx −−−−→
n→∞

∫
Rd

f (x)
∫
U

g(x, u)v(du | x) dx

for all f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(Rd × U).

Proof Since f g ∈ L1(Rd,C(U)
)

necessity is a direct consequence of the definition
of the weak∗-topology. Sufficiency also follows since L1(Rd) ∩ L2(Rd) is dense in
L1(Rd). �

Under the topology of Markov controls the solutions to (2.2.1) depend continu-
ously on the control in the following sense:

Theorem 2.4.2 For the class of nondegenerate controlled diffusions, the law of the
controlled process under a stationary Markov control v ∈ Usm and a fixed initial law
ν depends continuously on v.

Proof Without loss of generality we assume ν = δx0 for some x0 ∈ Rd. Suppose
vn → v∞ in Usm. Let Xn, n ∈ N ∪ {∞}, denote the corresponding Markov processes,
with L (Xn

0) = ν, and
{
T (n)

t : t ≥ 0
}

the corresponding transition semigroup. For any

t > s > 0, k ∈ N, f ∈ C2
b(Rd), g ∈ Cb

(
(Rd)k

)
, and set of times {t j : 1 ≤ j ≤ k}

satisfying

0 ≤ t1 < t2 < · · · < tk ≤ s ,

we have

Evn
ν

[(
f (Xn

t ) − T (n)
t−s f (Xn

s )
)

g(Xn
t1 , . . . , Xn

tk )
]
= 0 ,

Evn
ν

[(
f (Xn

t ) − f (Xn
s ) −

∫ t

s
Lvn f

(
Xn

r , vn(Xn
r )
)

dr
)

g(Xn
t1 , . . . , Xn

tk )

]
= 0 .

(2.4.1)

By estimates of parabolic PDEs [62, 83], the collection {T (n)
t−s f : n ∈ N} is equicon-

tinuous, and since it is bounded it is relatively compact in Cb(Rd). By Lemma 2.3.8,
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{L (Xn) : n ∈ N} are tight. On the other hand, {L (Un)}, where

Un := {vn(Xn
t ) : t ≥ 0} ,

are also tight since they take values in a compact space. Dropping to a subsequence
if necessary, we may then suppose that

T (n)
t−s f −−−−→

n→∞
h ∈ Cb(Rd)

and

L (Xn,Un) −−−−→
n→∞

L (X̃, Ũ)

for some h ∈ Cb(Rd) and (X̃, Ũ). Taking the limit in (2.4.1) we obtain

EŨ
ν

[(
f (X̃t) − h(X̃s)

)
g(X̃t1 , . . . , X̃tk )

]
= 0 , (2.4.2a)

EŨ
ν

[(
f (X̃t) − f (X̃s) −

∫ t

s
L f (X̃r, Ũr) dr

)
g(X̃t1 , . . . , X̃tk )

]
= 0 . (2.4.2b)

A standard monotone class argument applied to (2.4.2a) shows that

EŨ
ν

[
f (X̃t)

∣∣∣ FX̃
s

]
= h(X̃s) ,

and thus X̃ is Markov. In turn, (2.4.2b) implies that X̃ is a controlled diffusion with
controlled extended generator L and control Ũ, which by Theorem 2.2.13 may be
taken to be Markov. Also if

{
T̃r,y : y ≥ r ≥ 0

}
denotes the transition semigroup of X̃,

then h = T̃s,t f . That is

T (n)
t−s f −−−−→

n→∞
T̃s,t f . (2.4.3)

By considering a countable convergence determining class of the functions f and
extracting a common subsequence for (2.4.3) by a diagonal argument, we conclude
that (2.4.3) holds for all f ∈ C2

b(Rd), and all s < t. In particular, T̃s,t must be of the
form T̂t−s for a semigroup {T̂t : t ≥ 0}, proving that X̃ is time-homogeneous Markov.

Let pn(t, x, y), n ∈ N, and p̃(t, x, y) denote the transition probability densities for
{Xn} and X̃, respectively. By Bogachev et al. [26, theorem 4.1], {pn(t, x, · )} are locally
bounded and Hölder equicontinuous for any t > 0 and x ∈ Rd. Any limit point then
in C(Rd) must coincide with p̃. By Scheffé’s theorem [25, p. 214]∥∥∥pn(t, x, · ) − p̃(t, x, · )

∥∥∥
L1(Rd)

−−−−→
n→∞

0 .

Thus, for f ∈ C2
c(Rd),∣∣∣∣∣∫

Rd
pn(t, x, y)Lvn f (y) dy −

∫
Rd

p̃(t, x, y)Lv∞ f (y) dy
∣∣∣∣∣

≤ Kf

∥∥∥pn(t, x, · ) − p̃(t, x, · )
∥∥∥

L1(Rd)

+

∣∣∣∣∣∫
Rd

p̃(t, x, y)
(Lvn f (y) − Lv∞ f (y)

)
dy

∣∣∣∣∣ . (2.4.4)
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Since the second term on the right-hand-side of (2.4.4) also converges to 0 as n→ ∞
by Lemma 2.4.1, we may take the limit as n→ ∞ in

T (n)
t f (x) − T (n)

s f (x) =
∫ t

s
T (n)

r Lvn f (x) dr

=

∫ t

s

∫
Rd

pn(r, x, y)Lvn f (y) dy dr ∀ f ∈ C2
c(Rd) ,

to conclude that

T̂t f (x) − T̂s f (x) =
∫ t

s
T̂rLv∞ f (x) dr ∀ f ∈ C2

c(Rd) .

It follows that X̃ is controlled by the Markov control v∞ ∈ Usm, i.e., L (X̃) = L (X∞).
The claim follows. �

Similarly, the class of all Markov controls can be endowed with a compact metric
topology by viewing it as a subset of the unit ball of L∞

(
R × Rd,Ms(U)

)
under its

weak∗-topology, and a counterpart of Theorem 2.4.2 can be proved analogously.
We make frequent use of the following convergence result.

Lemma 2.4.3 Let {vn} ⊂ Usm be a sequence that converges to v ∈ Usm in the
topology of Markov controls, and let ϕn ∈ W 2,p(G), p > d, be a sequence of solutions
of Lvnϕn = hn, n ∈ N, on a bounded open set G ⊂ Rd with a C2 boundary. Suppose
that for some constant M,

∥∥∥ϕn

∥∥∥
W 2,p(G)

≤ M for all n ∈ N, and that hn converges
weakly in Lp(G) for p > 1, to some function h. Then any weak limit ϕ of ϕn in
W 2,p(G) as n→ ∞, satisfies Lvϕ = h in G.

Proof Using the notation defined in (2.3.13), we have

Lvϕ − h = ai j∂i j(ϕ − ϕn) + bi
vn
∂i(ϕ − ϕn) + (bi

v − bi
vn

)∂iϕ − (h − hn) . (2.4.5)

Since p > d, by the compactness of the embedding W 2,p(G) ↪→ C1,r(Ḡ), r < 1 − d
p

(see Theorem A.2.15), we can select a subsequence such that ϕnk → ϕ in C1,r(Ḡ).
Thus bi

vn
∂i(ϕ−ϕn) converges to 0 in L∞(G). By Lemma 2.4.1, and since G is bounded,

(bi
v−bi

vn
)∂iϕ converges weakly to 0, in Lp(G) for any p > 1. The remaining two terms

in (2.4.5) converge weakly to 0 in Lp(G) by hypothesis. Since the left-hand side of
(2.4.5) is independent of n ∈ N, it solves Lvϕ − h = 0. �

2.5 Stability of controlled diffusions

In this section we give a brief account of the recurrence and stability properties of
controlled diffusions. The term domain in Rd refers to a non-empty open connected
subset of the Euclidean space Rd. If D ⊂ Rd is a domain, we denote by τ(D), the first
exit time of the process {Xt} from D,

τ(D) := inf {t > 0 : Xt � D} .
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The open ball centered at the origin in Rd of radius R is denoted by BR and we often
use the abbreviations τR ≡ τ(BR) and τ̆R ≡ τ(Bc

R).
Consider (2.2.1) under a stationary Markov control v ∈ Usm. The controlled pro-

cess is called recurrent relative to a domain D, or D-recurrent, if Pv
x(τ(Dc) < ∞) = 1

for all x ∈ Dc. Otherwise, it is called transient (relative to D). A D-recurrent process
is called positive D-recurrent if Ev

x[τ(Dc)] < ∞ for all x ∈ Dc, otherwise it is called
null D-recurrent. We refer to τ(Dc) as the recurrence time, or the first hitting time of
the domain D.

A controlled process is called (positive) recurrent if it is (positive) D-recurrent
for all bounded domains D ⊂ Rd. For a nondegenerate controlled diffusion the re-
currence properties are independent of the particular domain. Thus a nondegenerate
diffusion is either recurrent or transient (see Lemma 2.6.12), and, as shown later in
Theorem 2.6.10, if it is recurrent, then it is either positive or null recurrent, relative
to all bounded domains.

A control v ∈ Usm is called stable, if the associated diffusion is positive recurrent.
We denote the set of such controls by Ussm, and by Ussd ⊂ Ussm the subset of precise
stable controls.

2.5.1 Stochastic Lyapunov functions

Sufficient conditions for the finiteness of the mean recurrence time can be provided
via stochastic Lyapunov functions. We start with the following lemma.

Lemma 2.5.1 Let D be a bounded C2 domain. If there exist nonnegative ϕ1, ϕ2 in
C2(D̄c) satisfying, for some v ∈ Usm,

Lvϕ1 ≤ −1 ,

Lvϕ2 ≤ −2ϕ1 ,
(2.5.1)

then

Ev
x
[
τ(Dc)

] ≤ ϕ1(x) ,

Ev
x
[
τ(Dc)2] ≤ ϕ2(x)

(2.5.2)

for all x ∈ Dc.

Proof Let τ̂R := τ(Dc) ∧ τR, R > 0. Using Dynkin’s formula we obtain

Ev
x[τ̂R] ≤ ϕ1(x) − Ev

x
[
ϕ1(Xτ̂R )

]
,

and taking limits as R→ ∞, yields Ev
x
[
τ(Dc)

] ≤ ϕ1(x). Similarly,

Ev
x

[∫ τ̂R

0
2ϕ1(Xt) dt

]
≤ ϕ2(x) , (2.5.3)
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and therefore, conditioning at t ∧ τ̂R, we obtain

Ev
x
[
(τ̂R)2] = Ev

x

[∫ ∞

0
2(τ̂R − t) I {t < τ̂R} dt

]
= Ev

x

[∫ ∞

0
2Ev

x

[
(τ̂R − t) I {t < τ̂R}

∣∣∣ FX
t∧τ̂R

]
dt

]
= Ev

x

[∫ ∞

0
2 I {t ∧ τ̂R < τ̂R}Ev

Xt∧τ̂R

[
τ̂R − t ∧ τ̂R

]
dt

]
≤ Ev

x

[∫ ∞

0
2ϕ1(Xt∧τ̂R ) I {t < τ̂R} dt

]
= Ev

x

[∫ τ̂R

0
2ϕ1(Xt) dt

]
. (2.5.4)

Letting R ↑ ∞, and combining (2.5.3) – (2.5.4), we obtain Ev
x
[
τ(Dc)2] ≤ ϕ2(x). �

Remark 2.5.2 It is evident from the proof of Lemma 2.5.1 that if we replace v in
(2.5.1) by some U ∈ U, then (2.5.2) holds for the process controlled under U. Also,
if (2.5.1) holds for all u ∈ U, then (2.5.2) holds uniformly over U ∈ U.

Recall that f ∈ C(X), where X is a topological space, is called inf-compact if the
set {x ∈ X : f (x) ≤ λ} is compact (or empty) for every λ ∈ R.

Stability for controlled diffusions can be characterized with the aid of Lyapunov
equations involving the operator Lu. Consider the following sets of Lyapunov con-
ditions, listed from the weakest to the strongest, each holding for some nonnegative,
inf-compact Lyapunov functionV ∈ C2(Rd):

(L2.1) For some bounded domain D

LuV(x) ≤ −1 ∀(x, u) ∈ Dc × U .

(L2.2) There exists a nonnegative, inf-compact h ∈ C(Rd) and a constant k0 > 0
satisfying

LuV(x) ≤ k0 − h(x) ∀(x, u) ∈ Rd × U .

(L2.3) There exist positive constants k0 and k1 such that

LuV(x) ≤ k0 − 2k1V(x) ∀(x, u) ∈ Rd × U . (2.5.5)

As in the proof of Lemma 2.5.1, condition (L2.1) is sufficient for the finiteness
of the mean recurrence times to D under all U ∈ U. The stronger condition (L2.2)
guarantees the tightness of the mean empirical measures and α-discounted occupa-
tion measures, as the lemma that follows shows. Consequently, by Theorem 1.5.15,
under (L2.2), the controlled diffusion has an invariant probability measure for any
v ∈ Usm.
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Lemma 2.5.3 For ν ∈ P(Rd) and U ∈ U, define the sets of mean empirical
measures

{
ζ̄U
ν,t : t > 0

}
and α-discounted occupation measures

{
ξU
ν,α : α > 0

}
by∫

Rd×U
f dζ̄U

ν,t =
1
t

∫ t

0
EU

ν

[∫
u∈U

f (Xs, u) Us(du)

]
ds ,

and ∫
Rd×U

f dξU
ν,α = α

∫ ∞

0
e−αs EU

ν

[∫
u∈U

f (Xs, u) Us(du)

]
ds , α > 0 ,

for all f ∈ Cb(Rd × U), respectively. Also, we let ζ̄U
x,t := ζ̄U

δx,t
and similarly for ξU

x,α. If
(L2.2) holds, then for any ν ∈P(Rd) and t0 > 0, the families{

ζ̄U
ν,t : t ≥ t0 , U ∈ U} , (2.5.6a){
ξU
ν,α : α > 0 , U ∈ U} (2.5.6b)

are tight. Every accumulation point µ ∈ P(Rd × U) of ζ̄U
ν,t as t → ∞, or of ξU

ν,α as
α ↓ 0 satisfies ∫

Rd
Lu f (x) µ(dx, du) = 0 , ∀ f ∈ C∞c (Rd) . (2.5.7)

Proof It suffices to assume that ν has compact support. With τn(t) := t ∧ τ(Bn),
applying Dynkin’s formula we obtain

EU
x
[V(Xτn(t))

] −V(x) ≤ k0 E
U
x [τn(t)] − EU

x

[∫ τn(t)

0
h(Xs) ds

]
. (2.5.8)

Letting n → ∞ in (2.5.8), using monotone convergence and rearranging terms, we
have that for any ball BR ⊂ Rd,(

min
Bc

R

h

) ∫ t

0
EU

x

[
IBc

R
(Xs)

]
ds ≤

∫ t

0
EU

x [h(Xs)] ds

≤ k0t +V(x) . (2.5.9)

By (2.5.9), integrating with respect to ν,

1
t

∫ t

0
EU

ν

[
IBc

R
(Xs)

]
ds ≤

k0t +
∫
V dν

t minBc
R

h

for all U ∈ U, t > 0 and x ∈ Rd. This implies the tightness of (2.5.6a).
To show tightness of (2.5.6b), let Ṽ(t, x) := αe−αtV(x). Then by Dynkin’s formula

EU
x

[
Ṽ(τn(t), Xτn(t))

]
− αV(x) ≤ αEU

x

[∫ τn(t)

0
e−αs [k0 − h(Xs)] ds

]
− αEU

x

[∫ τn(t)

0
Ṽ(s, Xs) ds

]
,
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and rearranging terms and integrating with respect to ν,

αEU
ν

[∫ τn(t)

0
e−αsh(Xs) ds

]
≤ α

∫
Rd
V(x) ν(dx) + k0 . (2.5.10)

The result follows by taking limits first as n → ∞ and then t → ∞ in (2.5.10), and
repeating the argument in (2.5.9).

To prove the second assertion, by Itô’s formula, we obtain,

1
t

(
EU

ν

[
f (Xt)

] − ∫
Rd

f (x) ν(dx)

)
=

∫
Rd×U

Lu f (x) ζ̄U
ν,t(dx, du) ,

and since (x, u) �→ Lu f (x) is a bounded continuous function, (2.5.7) follows by
taking limits as t → ∞ along a converging subsequence. An analogous argument
applies to the α-discounted occupation measures. �

A probability measure µ satisfying (2.5.7) is called an infinitesimal occupation
measure.

We now turn to the analysis of (L2.3). We need the following definition.

Definition 2.5.4 We say that (2.2.1) is bounded in probability under U ∈ U, if the
family of measures {

PU
x (Xt ∈ · ) : x ∈ K , t > 0

}
is tight for any compact set K.

The Lyapunov condition (L2.3) guarantees that (2.2.1) is bounded in probability
uniformly in U ∈ U, as the following lemma shows.

Lemma 2.5.5 Under (L2.3),

EU
x
[V(Xt)

] ≤ k0

2k1
+V(x)e−2k1t ∀x ∈ Rd , ∀U ∈ U . (2.5.11)

In addition, if Br is a ball in Rd such that

V(x) ≥ 1 +
k0

k1
∀x ∈ Bc

r

and τ̆r := inf{t ≥ 0 : Xt ∈ Br}, then

sup
U∈U
EU

x
[
ek1τ̆r

] ≤ k1

k0 + k1
V(x) ∀x ∈ Bc

r . (2.5.12)

Proof Let R > 0, and τR denote the first exit time of X from BR. Applying Dynkin’s
formula to f (t) = e4k1tV(Xt), and using (2.5.5), we obtain

EU
x
[
f (t ∧ τR)

] −V(x) = EU
x

[∫ t∧τR

0
e4k1 s[4k1V(Xs) +LUsV(Xs)

]
ds

]
≤ EU

x

[∫ t∧τR

0
e4k1 s[k0 + 2k1V(Xs)

]
ds

]
,
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and letting R→ ∞, using Fatou’s lemma, yields

EU
x
[
f (t)

] ≤ V(x) + k0

∫ t

0
e4k1 sds +

∫ t

0
2k1 E

U
x
[
f (s)

]
ds

≤ V(x) +
k0

4k1
e4k1t + 2k1

∫ t

0
EU

x
[
f (s)

]
ds . (2.5.13)

Let

g(t) := V(x) +
k0

4k1
e4k1t.

Applying Gronwall’s lemma to (2.5.13), yields

EU
x
[V(Xt)

] ≤ e−4k1t

[
g(t) + 2k1

∫ t

0
e2k1(t−s)g(s) ds

]
= e−4k1t

[
V(x) +

k0

4k1
e4k1t +V(x)

(
e2k1t − 1

)
+

k0

4k1
e2k1t

(
e2k1t − 1

)]
≤ k0

2k1
+V(x)e−2k1t .

To prove (2.5.12), let BR ⊃ Br ∪ {x}. Applying Dynkin’s formula, we obtain

k0 + k1

k1
EU

x
[
ek1(τ̆r∧τR)] −V(x) ≤ EU

x
[
ek1(τ̆r∧τR)V(Xτ̆r∧τR )

] −V(x)

≤ EU
x

[∫ τ̆r∧τR

0
ek1t(k0 − k1V(Xt)

)
dt

]
≤ 0 .

The result follows by letting R→ ∞. �

It follows by (2.5.12) that all moments of recurrence times to Br are uniformly
bounded. We state this as a corollary.

Corollary 2.5.6 Suppose (L2.3) holds, and let Br be as in Lemma 2.5.5. Then for
any compact set Γ ∈ Rd, we have

sup
U∈U

sup
x∈Γ
EU

x
[
τ̆m

r
]
< ∞ ∀m ≥ 1 .

For a nondegenerate diffusion, the assertion of Corollary 2.5.6 remains true for all
bounded domains D ∈ Rd. This can be shown by employing the technique of the
proof (b)⇒ (a) in Theorem 2.6.10 which appears later on p. 76.

Remark 2.5.7 If instead of holding for all Lu, u ∈ U, (L2.1)–(L2.3) hold for Lv

for some v ∈ Usm, then the controlled diffusion under v is positive D-recurrent, has
tight mean empirical measures, or is bounded in probability, correspondingly.

2.6 Stability of nondegenerate controlled diffusions

In this section the ellipticity condition (2.2.15) is in effect. The analysis uses heavily
the results from uniformly elliptic PDEs in Appendix A. Note that the assumptions
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on (2.2.1) use the parameter KR, while the family of operators L0(γ) in Defini-
tion A.1.1 is parameterized by a function γ. It is clear that assumptions (2.2.3) –
(2.2.4) imply (A.1.1b) and (A.1.1c), while the uniform ellipticity condition (A.1.1a)
is equivalent to (2.2.15). Thus under the assumptions of the model (2.2.1) in the non-
degenerate case, there exists some function γ : (0,∞)→ (0,∞) such that Lv ∈ L0(γ)
for all v ∈ Usm. The estimates of solutions in Appendix A depend on the function γ

which parameterizes the family of operators L0(γ). Therefore, for the class of models
described by any fixed family of parameters {KR : R > 0}, the estimates of solutions
of the associated elliptic PDEs depend only on the domain in Rd that the solution
is defined on. Keeping that in mind, and in the interest of notational economy, in
the rest of this book we refrain from explicitly mentioning the dependence of the
estimates of solutions on KR or γ.

There are two important properties of solutions which are not discussed in Ap-
pendix A. These result from the linear growth condition (2.2.4), which is not imposed
on the family L0(γ). First, as shown in (2.2.20), for any x ∈ Rd,

sup
U∈U
PU

x (τn ≤ t) ↓ 0 , as n ↑ ∞ .

Second, for any bounded domain D, we have

EU
x
[
τ(Dc)

] −−−−→
|x|→∞

∞ ,

uniformly in U ∈ U. In fact a stronger statement can be made. If Xn satisfy (2.2.1)
and |Xn

0 | = n, then

inf
0≤t≤T

|Xn
t |

a.s.−−−−→
n→∞

∞ , (2.6.1)

under any U ∈ U. To prove this under (2.2.4), let ϕ(x) :=
(
1 + |x|4)−1, and

sn = inf {t ≥ 0 : |Xn
t | ≤

√
n
}
.

Then for some constant M > 0, we have |Luϕ(x)| ≤ Mϕ(x) for all u ∈ U, and
applying Dynkin’s formula

EU[
ϕ(Xn

t∧sn )
]
= EU[

ϕ(Xn
0)
]
+ EU

[∫ t∧sn

0
LUtϕ(Xr) dr

]
≤ (1 + n4)−1 + EU

[∫ t

0

∣∣∣LUtϕ(Xr∧sn )
∣∣∣ dr

]
≤ (1 + n4)−1 + M

∫ t

0
EU[

ϕ(Xn
r∧sn )

]
dr . (2.6.2)

By (2.6.2),

1
1 + n2

PU(sn ≤ t) ≤ EU[
ϕ(Xn

t∧sn )
] ≤ eMt

1 + n4
, (2.6.3)
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and hence by (2.6.2) – (2.6.3),

PU
(

inf
0≤t≤T

|Xn
t | ≤

√
n
)
≤ 1 + n2

1 + n4
eMT , (2.6.4)

from which (2.6.1) follows. Note that (2.6.4) also holds under (2.2.32).

2.6.1 Moments of recurrence times

For nondegenerate controlled diffusions sharper characterizations of the mean recur-
rence times are available.

Theorem 2.6.1 Let D ⊂ Rd be a bounded C2 domain, K a compact subset of D,
and v ∈ Usm. Then ϕ1(x) = Ev

x[τ(D)] and ϕ2(x) = Ev
x[τ2(D)] are the unique solutions

in W 2,p(D) ∩W 1,p
0 (D), p ∈ (1,∞), of the Dirichlet problem

Lvϕ1 = −1 in D , ϕ1 = 0 on ∂D ,

Lvϕ2 = −2ϕ1 in D , ϕ2 = 0 on ∂D .
(2.6.5)

Moreover,

(a) τ(D) = τ(D̄) and τ(D̄c) = τ(Dc), PU-a.s., ∀U ∈ U.
(b) There exist positive constants Ck, Ck, k = 1, 2, depending only on D and K, such

that

Ck ≤ E
v
x
[
τk(D)

] ≤ Ck ∀x ∈ K , U ∈ U , k = 1, 2 .

(c) PU
x

(
τ(D) >

C1
4

)
>

C2
1

8C2
for all x ∈ K and U ∈ U.

Proof By Theorem A.2.7, (2.6.5) has a unique solution ϕi ∈ W 2,p(D) ∩ W 1,p
0 (D),

i = 1, 2, for all p ∈ (1,∞). Thus this characterization is standard and can be proved
using Dynkin’s formula as in the proof of Lemma 2.5.1.

To show part (a) let {Dn : n ∈ N} be a decreasing sequence of C2 domains such
that ∩n∈NDn = D̄. Let ϕn be the solution of the Dirichlet problem

max
u∈U
Luϕn = −1 in Dn , ϕn = 0 on ∂Dn ,

and define

ϕ̃n(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ϕn(x) for x ∈ Dn ,

0 for x ∈ Dc
n .

By Theorem A.2.7, ϕ̃n ∈ W 1,p(Rd), p ∈ (1,∞). Also, ϕ̃n is bounded in W 1,p(D1),
uniformly in n ∈ N. Thus, since ϕ̃n is also non-increasing, it converges uniformly to
a continuous function on D1. Consequently ϕn ↓ 0 on ∂D, uniformly in n ∈ N. Then
for all U ∈ U and x ∈ D,

EU
x
[
τ(Dn)

] ≤ EU
x
[
τ(D)

]
+ EU

x
[
ϕn

(
Xτ(D)

)]
,



2.6 Stability of nondegenerate controlled diffusions 67

from which it follows that

EU
x
[
τ(D̄) − τ(D)

] ≤ EU
x
[
τ(Dn) − τ(D)

] ≤ sup
∂D

ϕn −−−−→
n→∞

0 .

Therefore PU
x (τ(D) � τ(D̄)) = 0. Similarly, for any ball BR which contains D̄, we

have PU
x

(
τ(D̄c) ∧ τR � τ(Dc) ∧ τR

)
= 0, and the second assertion follows as well, by

letting R→ ∞.
The constants Ck and Ck in part (b) are guaranteed by Theorems A.2.1 and A.2.12,

respectively. Lastly, for part (c) we use the inequality

P

(
τ >
E τ

4

)
≥ (E τ)2

8E τ2
(2.6.6)

in combination with the bounds in (b). The proof of (2.6.6) is as follows: We decom-
pose E [τ] as dictated by the partition of

R+ =
[
0, Eτ

4

]
∪

(
Eτ
4 , 4Eτ2

Eτ

]
∪

(
4Eτ2

Eτ
,∞

)
,

and use upper bounds on each of the intervals to obtain

E τ ≤ E τ

4
+

4E τ2

E τ
P

(
τ >
E τ

4

)
+ E

[
τ I

{
τ > 4Eτ2

Eτ

}]
≤ E τ

4
+

4E τ2

E τ
P

(
τ >
E τ

4

)
+
E τ

4
.

In this derivation we use also use the inequality(
E
[
τ I

{
τ > 4Eτ2

Eτ

}])2
≤ E τ2 P

(
τ >

4E τ2

E τ

)
≤ E τ2 × E τ2(

4Eτ2

Eτ

)2

=
(E τ)2

16
. �

Remark 2.6.2 Theorem 2.6.1 (a) also holds for nonsmooth domains provided they
satisfy an exterior cone condition [67, p. 203].

Theorem 2.6.3 Let D be a bounded C2 domain, and v ∈ Usm. Then

(i) If g ∈ C(∂D) and h ∈ Lp(D), p ≥ d, then

ϕ(x) = Ev
x
[
g(Xτ(D))

]
+ Ev

x

[∫ τ(D)

0
h(Xt) dt

]
is the unique solution in W 2,p

loc (D) ∩ C(D̄), of the problem Lvϕ = −h in D, and
ϕ = g on ∂D.

(ii) Suppose that for some nonnegative h ∈ L∞loc(Dc),

f (x) := Ev
x

[∫ τ(Dc)

0
h(Xt) dt

]
(2.6.7)
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is finite at some x0 ∈ D̄c. Then f (x) is finite for all x ∈ D̄c and it is the minimal
nonnegative solution in W 2,p

loc (D̄c)∩C(Dc), p > 1, of Lv f = −h in D̄c, and f = 0
on ∂D.

Proof The first part follows by Dynkin’s formula, and uniqueness is guaranteed by
Theorem A.2.7. To prove (ii) let {Rn}, n ≥ 0, be a sequence of radii, diverging to
infinity, with D∪{x0} � B(R0). Set τn = τ

(
BRn

)
and τ̆ = τ(Dc). Let fn be the solution

in W 2,p(BRn \ D̄) ∩W 1,p
0 (BRn \ D̄), p > 1, of the Dirichlet problem

Lv fn = −h on BRn \ D̄ , fn = 0 on ∂BRn ∪ ∂D .

Then

fn(x) = Ev
x

[∫ τ̆∧τn

0
h(Xt) dt

]
, x ∈ BRn \ D̄ .

For each N > 0 the functions ψn+1(x) = fn+1− fn, n ≥ N, areLv-harmonic in BRN \ D̄.
It is also clear that ψn > 0 on BRn \ D̄. Since

fn(x0) ≤ f (x0) < ∞ ,

the series of positive Lv-harmonic functions

n∑
k=N+1

ψk(x) = fn(x) − fN(x) , x ∈ BRN \ D̄ , n > N

is bounded at x0 and in turn, by Theorem A.2.6, it converges uniformly on BRN \ D̄ to
anLv-harmonic function ψ. Let f = ψ+ fN . Then f satisfies (2.6.7) on BRN ∩Dc, and
since N is arbitrary also on D̄c. By the strong maximum principle (Theorem A.2.3)
any nonnegative solution ϕ of Lvϕ = −h on D̄c satisfies ϕ ≥ fn for all n > 0. Thus
ϕ ≥ f . �

Corollary 2.6.4 Let D be a bounded C2 domain, and v ∈ Usm. Suppose that
Ev

x
[
τ2(Dc)

]
< ∞ for some x ∈ Dc. Then

f1(x) := Ev
x
[
τ(Dc)

]
and f2(x) := Ev

x
[
τ2(Dc)

]
are the minimal nonnegative solutions in W 2,p

loc (D̄c) ∩ C(Dc), p > 1, of

Lv f1 = −1 in D̄c , f1 = 0 on ∂D ,

Lv f2 = −2 f1 in D̄c , f2 = 0 on ∂D .
(2.6.8)

Proof If f1 and f2 solve (2.6.8), then by Lemma 2.5.1, Ev
x
[
τk(Dc)

] ≤ fk(x), k = 1, 2,
for all x ∈ Dc. The rest follows as in Theorem 2.6.3 (ii). �
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2.6.2 Invariant probability measures

We give a brief account of the ergodic behavior under stable stationary Markov con-
trols. We show that under v ∈ Ussm the controlled process X has a unique invariant
probability measure. Moreover, employing a method introduced by Hasminskiĭ, we
characterize the invariant probability measure via an embedded Markov chain [70],
and show that it depends continuously on v ∈ Ussm, under the topology of Markov
controls. To this end we proceed by first stating two auxiliary lemmas.

Lemma 2.6.5 Let D1 and D2 be two open balls in Rd, satisfying D1 � D2. Then

0 < inf
x∈D̄1
v∈Usm

Ev
x
[
τ(D2)

] ≤ sup
x∈D̄1
v∈Usm

Ev
x
[
τ(D2)

]
< ∞ , (2.6.9a)

inf
x∈∂D2
v∈Ussm

Ev
x
[
τ(Dc

1)
]
> 0 , (2.6.9b)

sup
x∈∂D2

Ev
x
[
τ(Dc

1)
]
< ∞ ∀v ∈ Ussm , (2.6.9c)

inf
v∈Usm

inf
x∈Γ
Pv

x
(
τ(D2) > τ(Dc

1)
)
> 0 (2.6.9d)

for all compact sets Γ ⊂ D2 \ D̄1.

Proof Let h be the unique solution in W 2,p(D2) ∩W 1,p
0 (D2), p ≥ 2, of

Lvh = −1 in D2 , h = 0 on ∂D2 .

By Dynkin’s formula,

h(x) = Ev
x
[
τ(D2)

] ∀x ∈ D2 .

The positive lower bound in (2.6.9a) follows by Theorem A.2.12, while the finite
upper bound follows from the weak maximum principle of Alexandroff (see Theo-
rem A.2.1 on p. 304). Note also that (2.6.9a) is a special case of Theorem 2.6.1 (b).
To establish (2.6.9b) we select an open ball D3 � D2 and let ϕ be the solution of the
Dirichlet problem

Lvϕ = −1 in D3 \ D̄1 , ϕ = 0 on ∂D1 ∪ ∂D3 .

By Theorem A.2.12,

inf
v∈Usm

(
inf

x∈∂D2

ϕ(x)

)
> 0 ,

and the result follows since Ev
x
[
τ(Dc

1)
]
> ϕ(x).

Let n ∈ N be large enough so that D2 � Bn, and let gn be the solution of the
Dirichlet problem

Lvgn = −1 in Bn \ D̄1 , gn = 0 on ∂Bn ∪ ∂D1 .

If x0 ∈ ∂D2 and v ∈ Ussm, then Ev
x0

[τ(Dc
1)] < ∞. Since

gn(x0) = Ev
x0

[
τ(Dc

1) ∧ τ(Bn)
]
≤ Ev

x0

[
τ(Dc

1)
]
,



70 Controlled Diffusions

by Harnack’s inequality [67, corollary 9.25, p. 250], the increasing sequence of Lv-
harmonic functions fn = gn − g1 is bounded locally in Dc

1, and hence approaches a
limit as n → ∞, which is an Lv-harmonic function on Dc

1. Therefore g = limn→∞ gn

is a bounded function on ∂D2, and by monotone convergence g(x) = Ev
x
[
τ(Dc

1)
]
.

Property (2.6.9c) follows.
Turning to (2.6.9d), let ϕv(x) := Pv

x
(
τ(D2) > τ(Dc

1)
)
. Then ϕv is the unique solution

in W 2,p
loc (D2 \ D̄1) ∩ C(D̄2 \ D1), p > 1 of

Lvϕv = 0 in D2 \ D̄1 , ϕv = 1 on ∂D2 , ϕv = 0 on ∂D1 .

It follows by Theorem A.2.8 and Theorem A.2.15 (1b) that {ϕv : v ∈ Usm} is equicon-
tinuous on D̄2 \ D1. We argue by contradiction. If ϕvn (xn) → 0 as n → ∞ for some
sequences {vn} ⊂ Usm and {xn} ⊂ Γ, then Harnack’s inequality implies that ϕvn → 0
uniformly over any compact subset of D2 \ D̄1, which contradicts the equicontinuity
of {ϕvn }, since ϕvn = 1 on ∂D2. This proves the claim. �

Lemma 2.6.6 Let D1 and D2 be as in Lemma 2.6.5. Let τ̂0 = 0, and for k = 0, 1, . . .
define inductively an increasing sequence of stopping times by

τ̂2k+1 := inf
{
t > τ̂2k : Xt ∈ Dc

2
}
,

τ̂2k+2 := inf
{
t > τ̂2k+1 : Xt ∈ D1

}
.

(2.6.10)

Then τ̂n ↑ ∞, PU
x -a.s. for all U ∈ U.

Proof Let U ∈ U. Since τ̂2n−1 ≤ τ̂2n, PU
x -a.s., it suffices to prove that for some

ε > 0,
∞∑

n=0

I {τ̂2n+1 − τ̂2n > ε} = ∞ PU
x −a.s. (2.6.11)

By Theorem 2.3.4, without loss of generality we may assume that U is a feedback
control. The statement in (2.6.11) is then equivalent to [93, corollary, p. 151]

∞∑
n=0

Pv
x

(
τ̂2n+1 − τ̂2n > ε | FX

τ̂2n

)
= ∞ Pv

x −a.s.

By Lemma 2.3.7 it is therefore enough to show that, for some ε > 0,

inf
U∈U

inf
x∈∂D1

PU
x (τ̂1 > ε) > 0 . (2.6.12)

Since Theorem 2.6.1 (c) implies (2.6.12), the result follows. �

Theorem 2.6.7 With D1, D2 and {τ̂n} as in (2.6.10), the process X̃n := Xτ̂2n , n ≥ 1,
is a ∂D1-valued ergodic Markov chain, under any v ∈ Ussm. Moreover, there exists a
constant δ ∈ (0, 1) (which does not depend on v), such that if P̃v and µ̃v denote the
transition kernel and the stationary distribution of X̃ under v ∈ Ussm, respectively,
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then for all x ∈ ∂D1,∥∥∥P̃(n)
v (x, · ) − µ̃v( · )

∥∥∥
TV
≤ 2δn

1 − δ
∀n ∈ N ,

(1 − δ)P̃v(x, · ) ≤ µ̃v( · ) .
(2.6.13)

Moreover, the map v �→ µ̃v from Ussm to P(∂D1) is continuous in the topology of
Markov controls (see Section 2.4).

Proof The strong Markov property implies that
{
X̃n

}
n∈N is a Markov chain. Let R

be large enough such that D2 � BR. With h ∈ C(∂D1), h ≥ 0, let ψ be the unique
solution in W 2,p

loc

(
BR ∩ D̄c

1

) ∩ C(BR \ D1
)
, p > 1, of the Dirichlet problem

Lvψ = 0 in BR ∩ D̄c
1 ,

ψ = h on ∂D1 ,

ψ = 0 on ∂BR .

Then, for each x ∈ ∂D2, the map h �→ ψ(x) defines a continuous linear functional
on C(∂D1) and by Dynkin’s formula satisfies

ψ(x) = Ev
x
[
h(Xτ(Dc

1)) I
{
τ(Dc

1) < τR
}]
.

Therefore, by the Riesz representation theorem there exists a finite Borel measure
qv

1,R(x, · ) on B(∂D1) such that

ψ(x) =
∫
∂D1

qv
1,R(x, dy)h(y) .

It is evident that for any A ∈ B(∂D1), qv
1,R(x, A) ↑ qv

1(x, A) as R → ∞, and that
qv

1(x, A) = Pv
x(Xτ(Dc

1) ∈ A). Similarly, the analogous Dirichlet problem on D2 yields a
qv

2(x, · ) ∈ P(∂D2), satisfying qv
2(x, A) = Pv

x(Xτ̂1 ∈ A), and by Harnack’s inequality,
there exists a positive constant CH such that, for all x , x′ ∈ ∂D1 and A ∈ B(∂D2),

qv
2(x, A) ≤ CHqv

2(x′, A) . (2.6.14)

Hence, the transition kernel

P̃v(x, · ) =
∫
∂D2

qv
2(x, dy)qv

1(y, · )

of X̃ inherits the Harnack inequality in (2.6.14). Therefore, for any fixed x0 ∈ ∂D1,
we have

P̃v(x, · ) ≥ C−1
H P̃v(x0, · ) ∀x ∈ ∂D1 , (2.6.15)

which implies that P̃v is a contraction under the total variation norm and satisfies∥∥∥∥∥∥
∫
∂D1

(
µ(dx) − µ′(dx)

)
P̃v(x, · )

∥∥∥∥∥∥
TV

≤
(
1 −C−1

H

) ∥∥∥µ − µ′
∥∥∥

TV

for all µ and µ′ in P(∂D1). Thus (2.6.13) holds with δ =
(
1 − C−1

H

)
. Since the fixed

point of the contraction P̃v is unique, the chain is ergodic.
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We first show that the maps v �→ qv
k, k = 1, 2, are uniformly continuous on ∂D2

and ∂D1, respectively. Indeed, as described above,

ϕv(x) =
∫
∂D1

qv
1(x, dy)h(y) , v ∈ Ussm , h ∈ C(∂D1) ,

is the unique bounded solution in W 2,p
loc (D̄c

1) ∩ C(Dc
1) of the problem Lvϕv = 0 in

D̄c
1, and ϕv = h on ∂D1. Suppose vn → v in Ussm as n → ∞. If G is a C2 bounded

domain such that ∂D2 ⊂ G � D̄c
1, then by Lemma 2.4.3 every subsequence of {ϕvn }

contains a further subsequence {ϕn : n ∈ N}, which converges weakly as n → ∞ in
W 2,p(G), p > 1, to some Lv-harmonic function. Since G is arbitrary, this limit yields
a function ϕ̃ ∈ W 2,p

loc (D̄c
1) ∩ C(Dc

1) that satisfies Lvϕ̃ = 0 on D̄c
1 and ϕ̃ = h on ∂D1.

By uniqueness ϕ̃ = ϕv. Since the convergence is uniform on compact sets, we have
sup∂D2

|ϕvn − ϕv| → 0 as n → ∞. This implies that v �→ qv
1 is uniformly continuous

on ∂D2. Similarly, v �→ qv
2 is uniformly continuous on ∂D1. Thus their composition

v �→ P̃v(x, · ) is uniformly continuous on x ∈ ∂D1. On the other hand, if {vn} ⊂ Ussm is
any sequence converging to v ∈ Ussm as n→ ∞, then since P(∂D1) is compact, there
exists a further subsequence also denoted as {vn} along which µ̃vn → µ̃ ∈ P(∂D1).
Thus, by the uniform convergence of∫

∂D1

P̃vn (x, dy) f (y) −−−−→
n→∞

∫
∂D1

P̃v(x, dy) f (y)

for any f ∈ C(∂D1), we obtain

µ̃( · ) = lim
n→∞

µ̃vn ( · ) = lim
n→∞

∫
∂D1

µ̃vn (dx)P̃vn (x, · ) =
∫
∂D1

µ̃(dx)P̃v(x, · ) ,

and by uniqueness µ̃ = µ̃v. Thus v �→ µ̃v from Ussm to P(∂D1) is continuous. �

Remark 2.6.8 Uniqueness of µ̃v also follows from the fact that since ∂D1 is com-
pact, the chain under v ∈ Ussm has a non-empty compact convex setMv ⊂ P(∂D1)
of invariant probability measures, the extreme points of which correspond to ergodic
measures. If µ ∈ Mv, then µ( · ) =

∫
∂D1

µ(dx)P̃v(x, · ), and thus if µ′ is another element
ofMv, we obtain µ ≤ CHµ

′, and vice versa, which implies that µ and µ′ are mutu-
ally absolutely continuous with respect to each other. Since any two distinct ergodic
measures are mutually singular (see Theorem 1.5.5), µ and µ′ must coincide.

The proof of Theorem 2.6.7 shows that P̃v is a contraction on P(∂D1) under the
total variation norm topology. We now exhibit a metric for the weak topology of
P(∂D1) under which P̃v is a contraction, and the contraction constant does not de-
pend on v. This supplies an alternate proof that the unique fixed point µ̃v is continuous
in v.

The Wasserstein metric

ρw(µ1, µ2) := inf
(
E
∣∣∣Ξ1 − Ξ2

∣∣∣2)1/2

,

where the infimum is over all pairs of random variables (Ξ1, Ξ2) with L (Ξi) = µi,
i = 1, 2, is a complete metric on

{
µ ∈P(Rd) :

∫
|x|2µ(dx) < ∞

}
[50, 98]. Define the
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family of bounded Lipschitz metrics {δp : p > 0} on P(∂D1) by

δp(µ, µ′) := sup

{∫
∂D1

f (x)(µ − µ′)(dx) : f ∈ C0,1(∂D1) , Lip( f ) ≤ p

}
,

where “Lip” stands for the Lipschitz constant. It is well known that δ1 is equivalent
to the Wasserstein metric on P(∂D1).

Let P̃v(x, f ) :=
∫
∂D1

P̃v(x, dy) f (y). By (2.6.15), for all f ∈ C(∂D1) we have∣∣∣P̃v(x, f ) − P̃v(y, f )
∣∣∣ ≤ (

1 −C−1
H

)
span( f ) ∀x, y ∈ ∂D1 .

In other words, the map f �→ P̃v( · , f ) is a span contraction. Note that δp remains
unchanged if we restrict the family of f in its definition to

F :=
{
f ∈ C0,1(∂D1) : Lip( f ) ≤ p , min

∂D1

f = 0
}
.

Note also that P̃v( · , f ) is well defined on D1 and satisfies P̃v(x , f ) = Ev
x
[
h f

(
Xτ(D2)

)]
,

where h f (y) = Ev
y
[
f
(
Xτ(Dc

1)
)]

. Thus supx∈D1
P̃v(x, f ) ≤ span( f ) for all f ∈ F , and it

follows by Lemma A.2.5 that for some constant K0,∥∥∥P̃v( · , f )
∥∥∥
W 2,p(D1)

≤ K0 span( f ) ∀v ∈ Ussm , ∀ f ∈ F .

Then, by the compact embedding of W 2,p(D1) ↪→ C1,r(D̄1), for p > d
1−r , we have

Lip
(
P̃v( · , f )

) ≤ C1 span( f ) , f ∈ C(∂D1) , (2.6.16)

for some constant C1 that does not depend on v. Let

M0 := sup
{
span( f ) : f ∈ F

}
< ∞ .

By (2.6.16) and the span contraction property, if we define

pn :=
(
C1M0

)−1(1 −C−1
H

)1−n
, n ∈ N ,

then

Lip
(
P̃n

v( · , f )
)
= Lip

(
P̃v

( · , P̃n−1
v ( · , f )

))
≤ C1 span

(
P̃n−1

v ( · , f )
)

≤ C1

(
1 −C−1

H

)n−1
span( f )

≤ 1
pn

∀ f ∈ F , ∀v ∈ Ussm . (2.6.17)

Therefore, by (2.6.17) and the fact that δp(µ, µ′) = p δ1(µ, µ′) for all p > 0, we obtain

δ1
(
µP̃n

v , µ
′P̃n

v
)
=

1
pn

δpn

(
µP̃n

v , µ
′P̃n

v
)

≤ 1
pn

δ1(µ, µ′) . (2.6.18)
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Define

δ̃(µ, µ′) := sup
v∈Ussm

∞∑
k=0

δ1
(
µP̃k

v, µ
′P̃k

v
)
.

By (2.6.18),

δ̃(µ, µ′) ≤ (1 +C1M0CH) δ1(µ, µ′) .

Since δ̃(µ, µ′) ≥ δ1(µ, µ′), it follows that δ̃ and δ1 are equivalent. On the other hand,

δ̃(µP̃v, µ
′P̃v

)
= δ̃(µ, µ′) − δ1(µ, µ′)

≤
(
1 − (1 +C1M0CH)−1

)
δ̃(µ, µ′) ,

so that P̃v is a contraction relative to δ̃. Therefore, if µ̃v and µ̃v′ are the unique fixed
points of P̃v and P̃v′ , respectively, we obtain

δ̃(µv′ , µv
)
= δ̃(µv′ P̃v′ , µvP̃v

)
≤ δ̃(µv′ P̃v′ , µvP̃v′

)
+ δ̃(µvP̃v′ , µvP̃v

)
≤

(
1 − (1 +C1M0CH)−1

)
δ̃(µv′ , µv

)
+ δ̃(µvP̃v′ , µvP̃v

)
,

which implies that

δ̃(µv′ , µv
) ≤ (1 +C1M0CH) δ̃(µvP̃v′ , µvP̃v

)
. (2.6.19)

Since
{
P̃v( · , f ) : f ∈ F , v ∈ Ussm

}
is a family of uniformly continuous functions

and v �→ P̃v( · , f ) is continuous for each f ∈ F , the continuity of v �→ µ̃v in P(∂D1)
follows by (2.6.19).

Theorem 2.6.9 Let {τ̂n} be as defined in (2.6.10), and let µ̃v denote the unique
stationary probability distribution of {X̃n}, under v ∈ Ussm. Define ηv ∈P(Rd) by

∫
Rd

f dηv =

∫
∂D1
Ev

x

[∫ τ̂2

0
f (Xt) dt

]
µ̃v(dx)∫

∂D1
Ev

x [τ̂2] µ̃v(dx)
, f ∈ Cb(Rd) .

Then ηv is the unique invariant probability measure of X, under v ∈ Ussm.

Proof Define the measure µv by∫
Rd

g(x)µv(dx) =
∫
∂D1

Ev
x

[∫ τ̂2

0
g(Xt) dt

]
µ̃v(dx) ∀g ∈ Cb(Rd) . (2.6.20)

For any s ≥ 0 and f ∈ Cb(Rd), we have

Ev
x

[∫ τ̂2

0
Ev

Xt
[ f (Xs)]dt

]
= Ev

x

[∫ ∞

0
I{t < τ̂2}Ev

x
[
f (Xs+t) | FX

t
]
dt

]
= Ev

x

[∫ ∞

0
Ev

x

[
I{t < τ̂2} f (Xs+t)

∣∣∣ FX
t

]
dt

]
= Ev

x

[∫ τ̂2

0
f (Xs+t) dt

]
. (2.6.21)
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Since µ̃v is the stationary probability distribution of {X̃n}, we obtain∫
∂D1

Ev
x

[∫ s+τ̂2

τ̂2

f (Xt) dt

]
µ̃v(dx) =

∫
∂D1

Ev
x

[
Ev

Xτ̂2

∫ s

0
f (Xt) dt

]
µ̃v(dx)

=

∫
∂D1

Ev
x

[∫ s

0
f (Xt) dt

]
µ̃v(dx) . (2.6.22)

By (2.6.22) and (2.6.20), we have∫
∂D1

Ev
x

[∫ τ̂2

0
f (Xs+t) dt

]
µ̃v(dx) =

∫
∂D1

Ev
x

[∫ s+τ̂2

0
f (Xt) dt −

∫ s

0
f (Xt) dt

]
µ̃v(dx)

=

∫
∂D1

Ev
x

[∫ s+τ̂2

0
f (Xt) dt −

∫ s+τ̂2

τ̂2

f (Xt) dt

]
µ̃v(dx)

=

∫
∂D1

Ev
x

[∫ τ̂2

0
f (Xt) dt

]
µ̃v(dx)

=

∫
Rd

f (x)µv(dx) . (2.6.23)

Thus, first applying (2.6.20) with g(x) := Ev
x
[
f (Xs)

]
, and next (2.6.21) followed by

(2.6.23), we obtain∫
Rd
Ev

x
[
f (Xs)

]
µv(dx) =

∫
∂D1

Ev
x

[∫ τ̂2

0
Ev

Xt

[
f (Xs)

]
dt

]
µ̃v(dx)

=

∫
∂D1

Ev
x

[∫ τ̂2

0
f (Xs+t) dt

]
µ̃v(dx)

=

∫
Rd

f (x)µv(dx) .

Hence, µv is an invariant measure for X, and its normalization ηv := µv

µv(Rd) yields an
invariant probability measure.

By Theorem A.3.5, the resolvent Qα(x, dy) of X controlled by v is equivalent to the
Lebesgue measure m for all x ∈ Rd, and takes the form Qα(x, dy) = qα(x, y)m(dy). If
η1

v and η2
v are two invariant probability measures for X then, for all A ∈ B(Rd),

ηi
v(A) =

∫
A

(∫
Rd

ηi
v(dx)qα(x, y)

)
m(dy) , i = 1, 2 . (2.6.24)

It follows from (2.6.24) that η1
v and η2

v are mutually absolutely continuous with re-
spect to the Lebesgue measure and hence with respect to each other. However, if
η1

v and η2
v are distinct ergodic measures they are singular with respect to each other.

Hence, η1
v = η2

v . �
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We conclude this section with some useful equivalent criteria for stability.

Theorem 2.6.10 For a nondegenerate diffusion the following are equivalent:

(a) v ∈ Usm is stable;

(b) Ev
x[τ(Gc)] < ∞ for some bounded domain G ⊂ Rd and all x ∈ Rd;

(c) Ev
x0

[τ(Gc)] < ∞ for some bounded domain G ⊂ Rd and some x0 ∈ Rd \ Ḡ;

(d) there exists a unique invariant probability measure;

(e) for any g ∈ C(Rd, [0, 1]
)
, satisfying g(0) = 0 and lim|x|→∞ g(x) = 1, there exists

a nonnegative, inf-compact function V ∈ W 2,p
loc (Rd), p ≥ 2, and a constant

� ∈ (0, 1) which solve

LvV(x) + g(x) − � = 0 ; (2.6.25)

(f) there exist a nonnegative, inf-compact functionV ∈ W 2,p
loc (Rd), a constant ε > 0

and a compact set K ⊂ Rd, such that

LvV(x) ≤ −ε ∀x � K . (2.6.26)

Proof We show (c)⇒ (b)⇒ (a)⇒ (d)⇒ (e)⇒ (f)⇒ (c).

(c)⇒ (b): This follows by Theorem 2.6.3 (ii).

(b) ⇒ (a): Let G1 be any bounded domain. Observe that if Ev
x[τ(Gc)] < ∞, then

Ev
x[τ(G̃c)] < ∞ for any domain G̃ � G ∪ G1. Therefore it is enough to show that
Ev

x[τ(Gc)] < ∞ implies Ev
x[τ(Gc

0)] < ∞ for any domain G0 � G. Let D1 and D2

be open balls in Rd such that D2 � D1 � G and define the sequence of stopping
times {τ̂k}, k ∈ N, as in Lemma 2.6.6, and τ̂0 := min {t ≥ 0 : Xt ∈ D1}. By
hypothesis Ev

x[τ̂0] < ∞, and hence by Lemma 2.6.5, Ev
x[τ̂k] < ∞ for all k ∈ N. As in

Lemma 2.6.6, τ̂k ↑ ∞, Pv
x-a.s. Let Q = D2 \ Ḡ0. Then

ϕ(x) = Pv
x(Xτ(Q) ∈ ∂D2) , x ∈ Q

is the unique solution in W 2,p
loc (Q) ∩ C(Q̄), p ≥ 2, of the Dirichlet problem

Lvϕ = 0 in Q ,

ϕ = 0 on ∂G0 ,

ϕ = 1 on ∂D2 .

By the strong maximum principle ϕ cannot have a local maximum in Q. Therefore

p0 := sup
x∈∂D1

Pv
x(Xτ(Q) ∈ ∂D2) < 1 .

By the strong Markov property, for k ∈ N,

Pv
x(τ(Gc

0) > τ̂2k) ≤ p0 P
v
x(τ(Gc

0) > τ̂2k−2) ≤ · · · ≤ pk
0 .
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Thus, for x ∈ ∂D1,

Ev
x[τ(Gc

0)] ≤
∞∑

k=1

Ev
x

[
τ̂2k I

{
τ̂2k−2 < τ(Gc

0) < τ̂2k

}]
= Ev

x[τ̂0] +
∞∑

k=1

k∑
�=1

Ev
x

[
(τ̂2� − τ̂2�−2) I

{
τ̂2k−2 < τ(Gc

0) < τ̂2k

}]
= Ev

x[τ̂0] +
∞∑
�=1

∞∑
k=l

Ev
x

[
(τ̂2� − τ̂2�−2) I

{
τ̂2k−2 < τ(Gc

0) < τ̂2k

}]
= Ev

x[τ̂0] +
∞∑
�=1

Ev
x

[
(τ̂2� − τ̂2�−2) I

{
τ̂2�−2 < τ(Gc

0)
}]

≤ Ev
x[τ̂0] +

∞∑
k=1

pk−1
0 sup

x∈∂D1

Ev
x[τ̂2]

= Ev
x
[
τ(Gc)

]
+

supx∈∂D1
Ev

x[τ̂2]

1 − p0
.

(a)⇒ (d): This follows from Theorem 2.6.9.

(d) ⇒ (e): This is a special case of the HJB equation under the near-monotone
costs analyzed in Section 3.6.

(e)⇒ (f): This follows from the fact that K = {x ∈ Rd : g(x) ≤ � + ε} is compact
for ε > 0 sufficiently small.

(f)⇒ (c): Let G be an open bounded set and BR ⊃ G ∪ {x}. By Dynkin’s theorem,

Ev
x
[V(Xτ(Gc)∧τR )

] −V(x) ≤ −εEv
x[τ(Gc) ∧ τR] .

Taking limits as R→ ∞ and using Fatou’s lemma, we obtain

Ev
x[τ(Gc)] ≤ 1

ε

(
V(x) − inf

Rd
V

)
.

This completes the proof. �

Remark 2.6.11 In (2.6.25) g may be selected so that lim|x|↑∞ g(x) = ∞, provided
it is integrable with respect to the invariant probability measure ηv under v ∈ Ussm, in
which case � =

∫
g dηv and need not be in (0, 1). Similarly (2.6.26) may be replaced

by lim|x|↑∞ LvV(x) = −∞.

2.6.3 A characterization of recurrence

If the diffusion under v ∈ Usm is recurrent, then µv defined in (2.6.20) is a Radon mea-
sure, and hence it is a σ-finite invariant measure. Showing this amounts to proving
that for any compact set K ⊂ Rd, it holds that

Ev
x

[∫ τ̂2

0
IK(Xt) dt

]
< ∞ ∀x ∈ ∂D1 . (2.6.27)
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Since the portion of the integral in (2.6.27) over [0, τ̂1] has clearly finite mean,
(2.6.27) follows from Lemma 2.6.13 below.

As also stated earlier, if a nondegenerate diffusion under v ∈ Usm is D-recurrent
relative to a bounded domain D, then it is recurrent. This is the result of the following
lemma, which also provides a useful characterization.

Lemma 2.6.12 Let D be an open ball in Rd. The process X under v ∈ Usm is D-
recurrent if and only if the Dirichlet problem Lvϕ = 0 in D̄c, ϕ = f on ∂D has a
unique bounded solution ϕ f for all f ∈ C(∂D). Moreover, if X under v ∈ Usm is
D-recurrent for some bounded domain D ⊂ Rd, then it is recurrent.

Proof For a nonnegative f ∈ C(∂D), let ϕ̂ f denote the minimal nonnegative solution
in W 2,p

loc (D̄c) ∩ C(Dc) of the Dirichlet problem Lvϕ = 0 in D̄c, ϕ = f on ∂D. Using
Dynkin’s formula it is straightforward to verify that

ϕ̂ f (x) = Ev
x
[
f (Xτ(Dc)) I {τ(Dc) < ∞}] , x ∈ Dc. (2.6.28)

With 1 denoting the function identically equal to 1, if there exists a unique bounded
solution ϕ f of this Dirichlet problem, then we must have ϕ̂1 = 1, and by (2.6.28),
Pv

x(τ(Dc) < ∞) = 1 for all x ∈ Dc. Suppose there are two distinct such bounded so-
lutions for some f ∈ C(∂D). Their difference is then some nonzero bounded solution
ψ with zero boundary condition, which without loss of generality satisfies |ψ(x)| < 1
for all x ∈ Dc, and ψ(x′) > 0 for some x′ ∈ D̄c. It follows that ϕ1 = 1 − ψ is a
nonnegative solution, with boundary condition f = 1, satisfying ϕ1 (x′) < 1. Hence,
the minimal nonnegative solution satisfies ϕ̂1 (x′) < 1, and it follows by (2.6.28) that
X is transient relative to D.

Next, suppose X is D-recurrent. By arguing as in (b) ⇒ (a) in the proof of The-
orem 2.6.10, it suffices to show that it is also G-recurrent for every bounded C2

domain G � D. Let ϕ̂ be the minimal nonnegative solution of Lvϕ = 0 in Ḡc, ϕ = 1
on ∂G. Suppose ϕ̂ is not constant, otherwise ϕ̂ = 1 and X is G-recurrent. Clearly
ϕ̂ ≤ 1 on Ḡc. Let BR � D such that ϕ̂ � 1 on BR \ D. Choose x̄ ∈ ∂BR such that
ϕ̂(x̄) = min∂BR ϕ̂. By the strong maximum principle min∂D ϕ̂ > ϕ̂(x̄). However since
X is D-recurrent,

ϕ̂(x̄) = Ex̄
[
ϕ̂(Xτ(Dc))

] ≥ min
∂D

ϕ̂ ,

and we reach a contradiction. �

We continue with a useful technical lemma.

Lemma 2.6.13 Let D ⊂ Rd be a bounded domain and G ⊂ Rd a compact set.
Define

ξv
D,G(x) := Ev

x

[∫ τ(Dc)

0
IG(Xt) dt

]
.

Then

(i) sup
v∈Usm

sup
x∈D̄c

ξv
D,G(x) < ∞ ;
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(ii) if X is recurrent under v ∈ Usm, then ξv
D,G is the unique bounded solution in

W 2,p
loc (D̄c) ∩ C(Dc) of the Dirichlet problem Lvξ = −IG in Dc and ξ = 0 on ∂D;

(iii) if U ⊂ Usm is a closed set of controls under which X is recurrent, the map
(v, x) �→ ξv

D,G(x) is continuous onU × D̄c.

Proof Without loss of generality we may suppose that D is a ball centered at the
origin. Let τ̂ := τ(Dc) and define

Zt :=
∫ t

0
IG(Xs) ds , t ≥ 0 .

Select R > 0 such that D ∪G ⊂ BR. Using the strong Markov property, since IG = 0
on Bc

R, we obtain

Ev
x
[
Zτ̂] ≤ sup

x′∈∂BR

Ev
x′
[
Zτ̂] ∀x ∈ Bc

R ,

Ev
x
[
Zτ̂] ≤ Ev

x
[
Zτ̂∧τR ] + sup

x′∈∂BR

Ev
x′
[
Zτ̂] ∀x ∈ BR ∩ Dc .

(2.6.29)

Since, by (2.6.9a),

sup
v∈Usm

sup
x∈BR∩Dc

Ev
x
[
Zτ̂∧τR ] ≤ sup

v∈Usm

sup
x∈BR∩Dc

Ev
x
[
τ̂ ∧ τR

]
< ∞ , (2.6.30)

it suffices by (2.6.29), to exhibit a uniform bound for Ev
x
[
Zτ̂] on ∂BR. Let R′ > R. By

(2.6.9d), for some constant β < 1, we have

sup
v∈Usm

sup
x∈∂BR

Pv
x(τ̂ ≥ τR′ ) < β .

Set τ̂(t) = t ∧ τ̂. By conditioning first at τR′ , and using the fact that IG = 0 on Bc
R and

(2.6.29), we obtain, for x ∈ ∂BR,

Ev
x
[
Zτ̂(t)

]
= Ev

x
[
Zτ̂(t) I {τ̂(t) < τR′ }

]
+ Ev

x
[
Zτ̂(t) I {τ̂(t) ≥ τR′ }

]
≤ Ev

x

[
Zτ̂∧τR′

]
+

(
sup

x∈∂BR

Pv
x(τ̂(t) ≥ τR′ )

) ⎛⎜⎜⎜⎜⎝ sup
x∈∂BR′

Ev
x
[
Zτ̂(t)

]⎞⎟⎟⎟⎟⎠
≤ Ev

x

[
Zτ̂∧τR′

]
+ β sup

x∈∂BR

Ev
x
[
Zτ̂(t)

]
. (2.6.31)

By (2.6.30) and (2.6.31), for all v ∈ Usm,

sup
x∈∂BR

Ev
x
[
Zτ̂(t)

] ≤ (1 − β)−1 sup
x∈∂BR

Ev
x

[
Zτ̂∧τR′

]
≤ (1 − β)−1 sup

v∈Usm

sup
x∈BR′ ∩Dc

Ev
x
[
τ̂ ∧ τR′

]
< ∞ . (2.6.32)

Taking limits as t → ∞ in (2.6.32), using monotone convergence, (i) follows.
Next we prove (ii). With R > 0 such that BR � D, let ϕR be the unique solution in

W 2,p(BR ∩ D̄c) ∩W 1,p
0 (B̄R ∩ Dc), p > 1, of the Dirichlet problem

LvϕR = −IG in BR ∩ D̄c , ϕR = 0 on ∂BR ∪ ∂D .

By Dynkin’s formula, ϕR is dominated by ξv
D,G, and since it is nondecreasing in R, it

converges, uniformly over compact subsets of Rd, to some ϕ ∈ W 2,p
loc (D̄c) ∩ Cb(Dc),
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as R ↑ ∞. The function ϕ solves

Lvϕ = −IG in D̄c , ϕ = 0 on ∂D . (2.6.33)

Since by hypothesis Pv(τ(Dc) < ∞) = 1, an application of Dynkin’s formula yields
ϕ = ξv

D,G. Hence ξv
D,G is a bounded solution of (2.6.33). Suppose ϕ′ is another

bounded solution of (2.6.33). Then ϕ − ϕ′ is Lv-harmonic in D̄c and equals zero on
∂D. By Lemma 2.6.12, ϕ − ϕ′ must be identically zero on Dc. Uniqueness follows.

To show (iii), let vn → v inU. By Lemmas A.2.5 and 2.4.3, every subsequence of
{ξvn

D,G} contains a further subsequence converging weakly in W 2,p(D′), p > 1, over
any bounded domain D′ � D̄c to some ψ satisfying Lvψ = −IG in Dc. By uniqueness
of the solution of the Dirichlet problem this limit must be ξv

D,G, and since convergence
is uniform on compact subsets of D̄c, continuity of (v, x) �→ ξv

D,G(x) follows. �

2.6.4 Infinitesimally invariant probability measures

We start with a key technical lemma. Recall that under v ∈ Usm, X is a strong Feller
process. Denote by T v

t : Cb(Rd)→ Cb(Rd) the operator

T v
t f (x) := Ev

x
[
f (Xt)

]
, t ≥ 0 .

This is the associated transition semigroup with infinitesimal generator Lv, whose
domain in denoted by D(Lv).

Lemma 2.6.14 A probability measure η ∈P(Rd) is invariant for X under v ∈ Usm,
if and only if ∫

Rd
Lv f (x) η(dx) = 0 ∀ f ∈ D(Lv) . (2.6.34)

Proof If η is invariant for X, and X0 has law η, then so does Xt for all t ≥ 0. Then,
for f ∈ D(Lv), using the notation

Ev
η

[
f (Xt)

]
:=

∫
Rd
Ev

x
[
f (Xt)

]
η(dx) ,

we have

0 = Ev
η

[
f (Xt)

] − Ev
η

[
f (X0)

]
= Ev

η

[∫ t

0
Lv f (Xs) ds

]
=

∫ t

0
Ev
η

[Lv f (Xs)
]
ds

= t
∫
Rd
Lv f (x) η(dx) , (2.6.35)

which implies (2.6.34). Now suppose η satisfies (2.6.34). We have

T v
t f (x) − f (x) =

∫ t

0
T v

s
(Lv f

)
(x) ds ∀t ≥ 0 . (2.6.36)
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Note that if f ∈ D(Lv), then T v
s f ∈ D(Lv) for all s ≥ 0. Therefore∫

Rd
Lv(T v

s f )(x) η(dx) = 0 ∀s ≥ 0 , ∀ f ∈ D(Lv) . (2.6.37)

Hence, integrating (2.6.36) with respect to η over Rd, applying Fubini’s theorem, and
using (2.6.37) together with the property

T v
s (Lv f ) = Lv(T v

s f ) ∀ f ∈ D(Lv) ,

we obtain ∫
Rd

T v
t f (x) η(dx) =

∫
Rd

f (x) η(dx) ∀ f ∈ D(Lv) . (2.6.38)

Since Lv is the generator of a strongly continuous semigroup on Cb(Rd), D(Lv) is
dense in Cb(Rd). Thus (2.6.38) holds for all f ∈ Cb(Rd), and it follows that η is an
invariant probability measure for X. �

If an invariant probability measure η is absolutely continuous with respect to the
Lebesgue measure, then its density ψ is a generalized solution to the adjoint equation
given by

(Lv)∗ψ(x) =
d∑

i=1

∂

∂xi

( d∑
j=1

ai j(x)
∂ψ

∂x j
(x) + b̂i

v(x)ψ(x)

)
= 0 , (2.6.39)

where

b̂i
v =

d∑
j=1

∂ai j

∂x j
− bi

v .

A probability measure µ is called infinitesimally invariant for Lv, v ∈ Usm, if∫
Rd
Lv f (x) µ(dx) = 0 ∀ f ∈ C∞c (Rd) ,

which is also denoted as (Lv)∗µ = 0. As we show later in Theorem 5.3.4, which
applies to a more general model, if µ is infinitesimally invariant for Lv, then µ pos-
sesses a density ψ ∈ W 1,p

loc (Rd) for all p > 1 (see also [26]). It is also shown by
Bogachev et al. [27] that there exists an infinitesimally invariant probability measure
for Lv, provided there exists a Lyapunov function V ∈ C2(Rd) satisfying (compare
with Theorem 2.6.10)

lim
|x|→∞

V(x) = ∞ and lim
|x|→∞

LvV(x) = −∞ .

Theorem 2.6.16 below enables us to replace D(Lv) in Lemma 2.6.14 with the
space of functions in C2(Rd) with compact support. Moreover, it asserts that invari-
ant probability measures of nondegenerate positive-recurrent diffusions possess a
density which is in W 1,p

loc (Rd) for all p > 1.
We need the following definition.
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Definition 2.6.15 Let C denote a countable dense subset of C2
0(Rd) with compact

supports, where as usual C2
0(Rd) denotes the Banach space of functions f : Rd → R

that are twice continuously differentiable and they and their derivatives up to second
order vanish at infinity, with the norm

‖ f ‖C2 := sup
x∈Rd

{
| f (x)| +

∑
i

∣∣∣ ∂ f
∂xi

(x)
∣∣∣ +∑

i, j

∣∣∣ ∂2 f
∂xi∂x j

(x)
∣∣∣} .

Theorem 2.6.16 A Borel probability measure η on Rd is an invariant measure for
the process associated with Lv, if and only if∫

Rd
Lv f (x) η(dx) = 0 ∀ f ∈ C . (2.6.40)

Moreover, if η satisfies (2.6.40), then it has a density ψ ∈ W 1,p
loc (Rd) with respect to

the Lebesgue measure and for any R > 0 there exist positive constants k1(v,R) and
k2(v,R) such that

k1(v,R) ≤ ψ(x) ≤ k2(v,R) ∀x ∈ BR . (2.6.41)

Proof Applying Itô’s formula for f ∈ C yields (2.6.35), and necessity follows. Un-
der the linear growth assumption (2.2.4), Proposition 1.10 (c) and Remark 1.11 (i)
in Stannat [109], combined with Theorem 5.3.4, which applies to a more general
model, assert that η has a density and is an invariant measure for the diffusion pro-
cess. The bounds in (2.6.41) are obtained by applying Harnack’s inequality for the
divergence form equation

(Lv)∗ψ = 0 [67, theorem 8.20, p. 199]. �

2.7 The discounted and ergodic control problems

Let c : Rd × U → R be a continuous function bounded from below. In accordance
with the relaxed control framework, we define

c̄(x, v) =
∫
U

c(x, u)v(du) , x ∈ Rd , v ∈P(U) .

The function c serves as the running cost. Before we introduce the ergodic control
problem, we review the infinite horizon discounted control problem and the associ-
ated dynamic programming principle. This plays an important role in developing the
dynamic programming principle for ergodic control, which is obtained from the dis-
counted problem via an asymptotic analysis known as the vanishing discount limit.

We define the infinite horizon α-discounted cost

JU
α (x) := EU

x

[∫ ∞

0
e−αt c̄(Xt,Ut) dt

]
, x ∈ Rd , U ∈ U , (2.7.1)

where α > 0 is called the discount factor. The infinite horizon α-discounted control
problem seeks to minimize (2.7.1) over all U ∈ U. This prompts the definition

Vα(x) := inf
U∈U

JU
α (x)

of the α-discounted value function Vα.
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The following theorem, also known as the principle of optimality, characterizes
the α-discounted control problem.

Theorem 2.7.1 Suppose that JÛ
α (x) < ∞ for each x ∈ Rd for some control Û ∈ U.

Then for each initial law, there exists an optimal U. Also, Vα satisfies the dynamic
programming principle

Vα(x) = min
U∈U
EU

x

[∫ t∧τ

0
e−αsc̄(Xs,Us) ds + e−α(t∧τ)Vα(Xt∧τ)

]
∀t ≥ 0 , (2.7.2)

for all x ∈ Rd and all
(
FX

t
)
-stopping times τ. Moreover, the minimum on the right-

hand side of (2.7.2) is attained at an optimal control.

Proof If c is bounded, then JU
α (x) is a bounded linear functional of the set Ax of laws

L (X,U) corresponding to the solutions of (2.2.1) with X0 = x. Otherwise, consider
the truncation cN = c ∧ N, with N ∈ N. Since lower semicontinuity is preserved
under limits of increasing sequences of such functions, it follows that JU

α (x) is a
lower semicontinuous functional of the law of (X,U), and since the set Ax is compact
by Corollary 2.3.9, the infimum is attained.

Let (X∗,U∗) be an optimal pair with X∗0 = x. By Theorem 2.3.4 we may assume
that U∗ is a feedback control of the form U∗t = f ∗(t, X[0,t]). Then

Vα(x) = EU∗
x

[∫ ∞

0
e−αt c̄

(
X∗t , f ∗(t, X[0,t])

)
dt

]
by definition. Hence, for any

(
FX∗

t
)
-stopping time τ, using Lemma 2.3.7, we obtain

Vα(x) = EU∗
x

[∫ t∧τ

0
e−αsc̄

(
X∗s , f ∗(s, X[0,s])

)
ds

+e−α(t∧τ) EU∗
x

[∫ ∞

t∧τ
e−α(s−t∧τ)c̄

(
X∗s , f ∗(s, X[0,s])

)
ds

∣∣∣∣∣ FX∗
t∧τ

]]
≥ EU∗

x

[∫ t∧τ

0
e−αsc̄

(
X∗s , f ∗(s, X[0,s])

)
ds + e−α(t∧τ)Vα(X∗t∧τ)

]
≥ inf

U∈U
EU

x

[∫ t∧τ

0
e−αsc̄(Xs,Us) ds + e−α(t∧τ)Vα(Xt∧τ)

]
. (2.7.3)

Let (X̃, Ũ) be such that X̃0 = x and Ũ◦θt∧τ is conditionally independent of FX̃
t∧τ given

X̃t∧τ, and optimal for the initial condition X̃t∧τ. That it is possible to construct such a
control follows by arguments similar to those used in the proof of Theorem 2.3.4 (b)
(see also a more general construction in Lemma 6.4.10, p. 238). We have

Vα(x) ≤ EŨ
x

[∫ ∞

0
e−αt c̄(X̃t, Ũt) dt

]
= EŨ

x

[∫ t∧τ

0
e−αsc̄(X̃s, Ũs) ds + e−α(t∧τ)Vα(X̃t∧τ)

]
. (2.7.4)
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Since {Ũs : 0 ≤ s ≤ t ∧ τ} is unconstrained except for the non-anticipativity
requirement, taking the infimum over such controls in (2.7.4) we obtain

Vα(x) ≤ inf
Ũ∈U
EŨ

x

[∫ t∧τ

0
e−αsc̄(X̃s, Ũs) ds + e−α(t∧τ)Vα(X̃t∧τ)

]
. (2.7.5)

By (2.7.3) and (2.7.5) equality must hold and (2.7.2) follows. The last assertion is
then evident by (2.7.3). �

Corollary 2.7.2 (The martingale dynamic programming principle) The process

e−αtVα(Xt) +
∫ t

0
e−αsc̄(Xs,Us) ds , t ≥ 0 ,

is an
(
FX

t
)
-submartingale and it is a martingale if and only if (X,U) is an optimal

pair.

Proof For any a.s. bounded
(
FX

t
)
-stopping time τ, letting t → ∞ in (2.7.2), we

obtain

Vα(x) ≤ EU
x

[∫ τ

0
e−αsc̄(Xs,Us) ds + e−ατVα(Xτ)

]
,

with equality if and only if (X,U) is optimal. The claim follows from a standard
characterization of submartingales and martingales, respectively. �

The first part of Theorem 2.7.1 can be improved to assert the existence of time-
homogeneous Markov control which is optimal, by using a procedure known as
Krylov selection. This is presented in Section 6.7 for a fairly general class of Markov
processes.

The ergodic control problem, in its almost sure (or pathwise) formulation, seeks
to a.s. minimize over all admissible U ∈ U

lim sup
t→∞

1
t

∫ t

0
c̄(Xs,Us) ds . (2.7.6)

A weaker, average formulation seeks to minimize

lim sup
t→∞

1
t

∫ t

0
EU[

c̄(Xs,Us)
]
ds . (2.7.7)

The analysis of the ergodic control problem is closely tied with stability. This is
partly because stability is a desirable property for control systems. In the case of
the average formulation, we seek an admissible control U∗ which attains the infi-
mum of (2.7.7) over U, while at the same time the mean empirical measures

{
ζ̄U∗

x,t
}

are kept tight. Problems where this is not possible are deemed pathological and are
uninteresting. Suppose then that the mean empirical measures are tight under some
U∗ ∈ U. By Lemma 2.5.3, with G0 ⊂ P(Rd × U) denoting the class of infinitesimal
occupation measures defined in (2.5.7), we have

lim inf
t→∞

1
t

∫ t

0
EU

x
[
c̄(Xs,Us)

]
ds ≥ inf

µ∈G0

∫
Rd×U

c(x, u) µ(dx, du) . (2.7.8)
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Clearly, a sufficient condition for U∗ to be optimal with respect to the average crite-
rion, is that limt→∞ ζ̄U∗

x,t → µ∗ ∈ P(Rd × U), and that µ∗ attains the infimum of the
right-hand side of (2.7.8).

At the same time, of special importance is the class of stationary Markov controls
Usm, and in particular its subclass of precise controls Usd because of ease of imple-
mentation. One question that arises then is whether every infinitesimal occupation
measure is attainable as a limit of mean empirical measures as t → ∞ over some
admissible control, and a second question is whether this is also possible if we con-
sider only stationary Markov controls. For nondegenerate diffusions both questions
are answered affirmatively. In fact these questions have already been answered by
Theorem 2.6.16, which we restate in Chapter 3 in a different form. In the degenerate
case, the first question has essentially an affirmative answer, and this is in fact true
for a much more general model which we investigate in Chapter 6.

2.8 Bibliographical note

Section 2.2. An excellent exposition of stochastic calculus and allied topics can be
found in [76]. Some other books on these topics are [102, 103, 74, 87].

Sections 2.3–2.4. Here we follow [28, 29].

Sections 2.5–2.6. These are mostly extensions of results in [69, 70] to the controlled
case.

Section 2.7. An early, albeit a bit dated, exposition of controlled diffusions appears
in [58]. Our exposition is along the lines of [28]. For a more analytic approach, see
[14, 78].
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Nondegenerate Controlled Diffusions

3.1 Introduction

In this chapter, we study controlled diffusions whose infinitesimal generator is locally
uniformly elliptic, in other words, it satisfies (2.2.15). Intuitively, this implies that the
noise (i.e., the driving Wiener process) has d-degrees of freedom, thus affecting all
components in an even manner.

Section 3.2 develops a convex analytic framework, while Section 3.3 introduces
a notion of stability that is uniform over the set of stationary Markov controls.
These results are used in Section 3.4 which studies the existence of an optimal strat-
egy. Section 3.5 reviews the α-discounted control problem. Sections 3.6 and 3.7
are devoted to dynamic programming and existence of solutions to the Hamilton–
Jacobi–Bellman (HJB) equation. The last section specializes to one-dimensional
diffusions.

3.2 Convex analytic properties

In this section we develop a convex analytic framework for the study of nondegen-
erate controlled diffusions. Recall that Usm stands for the class of stationary Markov
controls, and Ussm ⊂ Usm is the subclass of stable controls. We first introduce the con-
cept of ergodic occupation measures which is essentially the class of stationary mean
empirical measures for the joint state and control process under controls in Ussm and
we show that this collection is identical to the class of infinitesimal empirical mea-
sures. Ergodic occupation measures form a closed, convex subset of P(Rd ×U) and
a key result in this section is to establish that its extreme points correspond to the
class of precise controls Ussd. Therefore, for nondegenerate diffusions, the ergodic
control problem may be restricted to this class.
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3.2.1 Ergodic occupation measures

By Theorem 1.5.18 (Birkhoff’s ergodic theorem), if v ∈ Ussm, then

lim
T→∞

1
T

∫ T

0
cv(Xt) dt =

∫
Rd

∫
U

c(x, u)v(du | x) ηv(dx) a.s., (3.2.1)

where cv is as in Notation 2.3.5 on p. 53. This motivates the following definition.

Definition 3.2.1 For v ∈ Ussm let ηv ∈ P(Rd) the associated unique invariant
probability measure. Define the ergodic occupation measure πv ∈P(Rd × U) by

πv(dx, du) = ηv(dx) v(du | x) .

For notational convenience, we often use the abbreviated notation πv = ηv � v. Also,
we denote the set of all ergodic occupation measures by G and the set of associated
invariant probability measures by

H :=
{
η ∈P(Rd) : η � v ∈ G , for some v ∈ Ussm

}
.

Thus, by (3.2.1), the ergodic control problem over Ussm is equivalent to a linear
optimization problem over G . We first give a characterization of G and also show that
it is closed and convex. Then we study the extreme points of G and show that these
correspond to controls in Ussd. This is the basic framework of the convex analytic
approach to the ergodic control problem whose main aim is the existence results
in Section 3.4. First we show that for nondegenerate diffusions every infinitesimal
occupation measure (see p. 63) is an ergodic occupation measure and vice versa.

Lemma 3.2.2 A probability measure π ∈ P(Rd × U) is an ergodic occupation
measure if and only if,∫

Rd×U
Lu f (x) π(dx, du) = 0 ∀ f ∈ C , (3.2.2)

or equivalently, if ∫
Rd
Lv f (x) ηv(dx) = 0 ∀ f ∈ C , (3.2.3)

where v ∈ Usm and ηv ∈P(Rd) correspond to the decomposition π = ηv � v.

Proof This easily follows from Theorem 2.6.16. �

Lemma 3.2.3 The set of ergodic occupation measures G is a closed and convex
subset of P(Rd × U).

Proof If a sequence {πn} in P(Rd × U) satisfies (3.2.2) and converges to π as
n → ∞, then π also satisfies (3.2.2). Hence, G is closed. To show that G is convex,
let πvi = ηvi�vi, i = 1, 2, be two elements of G and δ ∈ (0, 1). Set η = δηv1+(1−δ)ηv2 .
Noting that ηv1 and ηv2 are both absolutely continuous with respect to η we define

v(du | x) := δ
dηv1

dη
(x) v1(du | x) + (1 − δ)

dηv2

dη
(x) v2(du | x) ,
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where
dηvi

dη denotes the Radon–Nikodym derivative. It follows that

η � v = δ (ηv1 � v1) + (1 − δ) (ηv2 � v2) .

Also, for f ∈ C2
b(Rd),

Lv f (x) = δ
dηv1

dη
(x)Lv1 f (x) + (1 − δ)

dηv1

dη
(x)Lv2 f (x) ,

and hence, by (3.2.3),∫
Rd
Lv f dη = δ

∫
Rd
Lv1 f dηv1 + (1 − δ)

∫
Rd
Lv2 f dηv2 = 0 ,

proving that η � v ∈ G . �

3.2.2 Continuity and compactness of invariant measures

We start with some important continuity results.

Lemma 3.2.4 Let K be a compact subset of G . Define

H (K) =
{
η ∈P(Rd) : η � v ∈ K , for some v ∈ Ussm

}
. (3.2.4)

Let ϕ[η] denote the density of η ∈H and define

Φ(K) := {ϕ[η] : η ∈H (K)} . (3.2.5)

Then

(a) for every R > 0 there exists a constant CH = CH(R) such that

ϕ(x) ≤ CHϕ(y) ∀ϕ ∈ Φ(K) , ∀x, y ∈ BR ;

(b) there exists R0 > 0 such that for all R > R0, with |BR| denoting the volume of
BR ⊂ Rd, we have

1
2CH |BR|

≤ inf
BR

ϕ ≤ sup
BR

ϕ ≤ CH

|BR|
∀ϕ ∈ Φ(K) ; (3.2.6)

(c) there exists a constant C1 = C1(R, K) > 0 and a1 > 0 such that

|ϕ(x) − ϕ(y)| ≤ C1|x − y|a1 ∀ϕ ∈ Φ(K) , ∀x, y ∈ BR .

Proof Part (a) is nothing more than Harnack’s inequality for the divergence form
equation in (2.6.39) [67, theorem 8.20, p. 199]. Since, by part (a),

CH inf
BR

ϕ ≥ sup
BR

ϕ ,

choosing R0 large enough so that η(BR0 ) > 1
2 for all η ∈H (K), we obtain

CH |BR| inf
BR

ϕ ≥ |BR| sup
BR

ϕ ≥
∫

BR

ϕ(x) dx >
1
2
,
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and

|BR|
CH

sup
BR

ϕ ≤ |BR| inf
BR

ϕ ≤
∫

BR

ϕ(x) dx < 1 .

The local Hölder continuity in part (c) follows from standard estimates for solutions
of (2.6.39) [67, theorem 8.24, p. 202]. �

Lemma 3.2.5 Let K be a compact subset of G . The set H (K) defined in (3.2.4) is
compact in P(Rd) under the total variation norm topology.

Proof First we show that H (K) is closed in P(Rd). Suppose {ηvn }, n ∈ N, is a
sequence in H (K) converging to η̂ ∈ P(Rd) under the total variation norm. Let
πn = ηvn � vn be the corresponding sequence of ergodic occupation measures in K.
Since K is compact, πn converges along a subsequence, which is also denoted by
{πn}, to some π̂ = ηv̂ � v̂. It follows that ηvn → ηv̂ as n → ∞, and hence η̂ = ηv̂.
By Lemma 3.2.4, the collection Φ(K), defined in (3.2.5), is equibounded and Hölder
equicontinuous on bounded subdomains of Rd. Therefore any sequence inΦ(K) con-
tains a subsequence which converges uniformly on compact sets. Let ϕn → ϕ̂ be
such a convergent sequence in Φ(K) and {ηn} the corresponding invariant probability
measures. Since K is compact, the family H (K) is tight, and hence the associated
densities Φ(K) are uniformly integrable. It follows that {ϕn} converges in L1(Rd) as
well. Therefore

∫
ϕ̂ = 1, ϕ̂ ≥ 0, and for h ∈ Cb(Rd),∫

Rd
h(x)ϕn(x) dx −−−−→

n→∞

∫
Rd

h(x) ϕ̂(x) dx .

This implies ηn → η̂ in P(Rd) and, since ϕn → ϕ̂ in L1(Rd), also in total variation.
Since H (K) is closed in P(Rd), it follows that η̂ ∈ H (K). This completes the
proof. �

For a subset U ⊂ Ussm, let HU and GU denote the set of associated invariant
probability measures and ergodic occupation measures respectively. In the lemma
which follows we show that if HU is tight then the map v �→ ηv from Ū1 to HŪ is
continuous under the total variation norm topology. Since Ū is compact, it follows
that HŪ is compact in the total variation norm topology.

Lemma 3.2.6 LetU ⊂ Ussm and suppose HU is tight. Then

(a) the map v �→ ηv from Ū to HŪ is continuous under the total variation norm
topology of H ;

(b) the map v �→ πv from Ū to GŪ ⊂P(Rd × U) is continuous.

1 As usual, Ū denotes the closure ofU in the topology of Markov controls.
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Proof Let {vn} be a sequence inU which converges (under the topology of Markov
controls) to v∗ ∈ Ū. Then, for all g ∈ Cb(Rd × U) and h ∈ L1(Rd),∫

Rd×U
g(x, u) h(x)

(
vn(du | x) − v∗(du | x)

)
dx −−−−→

n→∞
0 . (3.2.7)

By the tightness assumption and Prohorov’s theorem, HU is relatively compact in
P(Rd), and thus {ηvn } has a limit point η∗ ∈P(Rd). Passing to a subsequence (which
we also denote by {ηvn }) converging to this limit point, we conclude, as in the proof
of Lemma 3.2.5, that ηvn → η∗ in total variation, and that the associated densities
ϕvn → ϕ∗ in L1(Rd) (and also converge uniformly on compact subsets of Rd). Using
the notation for relaxed controls introduced in (2.3.12), let

ḡ
(
x, v(x)

)
:=

∫
U

g(x, u) v(du | x) , v ∈ Usm . (3.2.8)

We use the triangle inequality∣∣∣∣∣∫
Rd

ḡ
(
x, vn(x)

)
ηvn (dx) −

∫
Rd

ḡ
(
x, v∗(x)

)
η∗(dx)

∣∣∣∣∣
≤

∣∣∣∣∣∫
Rd

ḡ
(
x, vn(x)

)(
ϕvn (x) − ϕ∗(x)

)
dx

∣∣∣∣∣
+

∣∣∣∣∣∫
Rd

ḡ
(
x, vn(x)

)
ϕ∗(x) dx −

∫
Rd

ḡ
(
x, v∗(x)

)
ϕ∗(x) dx

∣∣∣∣∣ . (3.2.9)

Since ϕvn → ϕ∗ in L1(Rd), the first term on the right-hand side of (3.2.9) converges
to zero as n→ ∞, and so does the second term by (3.2.7). Hence, by (3.2.9),

0 =
∫
Rd
Lvn f (x) ηvn (dx) −−−−→

n→∞

∫
Rd
Lv∗ f (x) η∗(dx) ∀ f ∈ C ,

implying η∗ = ηv∗ ∈HŪ , by Theorem 2.6.16, and this establishes (a). Since∫
Rd

ḡ
(
x, v(x)

)
ηv(dx) =

∫
Rd×U

g(x, u) πv(dx, du) ,

(3.2.9) also implies (b). �

3.2.3 Extreme points of the set of invariant measures

We now turn to the analysis of the set of extreme points of G . As seen in the proof of
Lemma 3.2.3, if πvi ∈ G , i = 1, 2, 3, satisfy πv1 = δπv2 + (1 − δ) πv3 for some δ > 0,
then with πvi = ηvi � vi, we have

v1 = δ
dηv2

dηv1

v2 + (1 − δ)
dηv3

dηv1

v3 .

Since each ηvi and the Lebesgue measure on Rd are mutually absolutely continuous,

the Radon–Nikodym derivatives
dηvi

dηv1
, i = 2, 3 are positive a.e. in Rd. It follows that if

some pair (vi, v j) agree a.e. on some Borel set A of positive Lebesgue measure, then
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all three vi’s must agree a.e. on A. Note that this also implies that if some pair (vi, v j)
differ a.e. on A then all pairs differ a.e. on A.

Lemma 3.2.7 Let A ⊂ B(Rd) be a bounded set of positive Lebesgue measure.
Suppose v1, v2 ∈ Usm agree on Ac and differ a.e. on A and that for some v0 ∈ Ussm

and γ ∈ B(Rd), satisfying

inf
x∈A

min {γ(x), 1 − γ(x)} ≥ γA > 0 ,

it holds that

v0( · | x) = γ(x) v1( · | x) +
(
1 − γ(x)

)
v2( · | x) .

Then there exist v̂1, v̂2 ∈ Ussm, which agree a.e. on Ac and differ a.e. on A, such that

πv0 =
1
2

(
πv̂1 + πv̂2

)
. (3.2.10)

In particular, πv0 is not an extreme point of G .

Proof Let R > 0 be such that A ⊂ BR. For v0 ∈ Ussm, define

U(v0,R) :=
{
v ∈ Usm : v(x) = v0(x) , if |x| > R

}
.

Since any v ∈ U(v0,R) agrees with v0 on Bc
R, we have

Ev
x
[
τ(Bc

R) I
{
τ(Bc

R) > t
}]
= Ev0

x
[
τ(Bc

R) I
{
τ(Bc

R) > t
}] ∀v ∈ U(v0,R) ,

and it follows from Lemma 3.3.4 (ix), which appears later on p. 97, that U(v0,R) are
uniformly stable. In particular, v1 and v2 are stable. We are going to establish that
there exists δ ∈ (0, 1), and v̂ ∈ U(v0,R) such that

πv0 = δπv1 + (1 − δ) πv̂ .

Then the hypotheses of the lemma imply that v1 � v̂, a.e. on A. Hence, if we select
πv̂1 and πv̂2 as

πv̂1 = δπv1 + (1 − δ) πv0 , πv̂2 = (1 − δ) πv̂ + δπv0 ,

then (3.2.10) holds, and by the remarks in the paragraph before the lemma, v̂1 and v̂2

differ a.e. on A and agree a.e. on Ac. In view of the proof of Lemma 3.2.3, it suffices
to show that

v0( · | x) = δ
dηv1

dη0
(x) v1( · | x) + (1 − δ)

dηv̂

dη0
(x) v̂( · | x) ,

where η0 = δ ηv1 + (1 − δ) ηv̂, or equivalently, expressed in terms of the associated
densities, that

v0( · | x) =
δ ϕv1 (x) v1( · | x) + (1 − δ)ϕv̂(x) v̂( · | x)

δ ϕv1 (x) + (1 − δ)ϕv̂(x)
. (3.2.11)

Since U(v0,R) is closed, it follows by Lemma 3.3.4 (viii) that

K0 :=
{
πv : v ∈ U(v0,R)

}
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is a compact subset of G . Thus, by Lemma 3.2.5, H (K0) is compact in P(Rd),
under the total variation norm topology. Also, by Lemma 3.2.4 (b), for some positive
constants δ and δ,

0 < δ ≤ ϕv(x) ≤ δ for |x| ≤ R , ∀v ∈ U(v0,R) . (3.2.12)

Let

δ =
δ γA

δ γA + δ (1 − γA)
.

For v ∈ U(v0,R), define w by

w( · | x) := v0( · | x) +
δ ϕv1 (x)

(1 − δ)ϕv(x)
(
v0( · | x) − v1( · | x)

)
. (3.2.13)

We claim that w ∈ U(v0,R). To prove the claim, first note that since v1 = v0 on Ac,
(3.2.13) implies that w( · | x) = v0( · | x) for all x ∈ Ac. On the other hand, by (3.2.12),
δϕv(x) ≥ δϕv1 (x) on A for all v ∈ U(v0,R), which implies

δ ϕv1 (x) + (1 − δ)ϕv(x) ≥ δ γ−1
A ϕv1 (x) ∀x ∈ A . (3.2.14)

Moreover, by the hypotheses of the lemma,

v0( · | x) − γAv1( · | x) ≥ γAv2( · | x) ∀x ∈ A . (3.2.15)

Thus, by (3.2.13) – (3.2.15),

w( · | x) ≥
δ ϕv1 (x)

(1 − δ)ϕv(x)
(
γ−1

A v0( · | x) − v1( · | x)
)

≥
δ ϕv1 (x)

(1 − δ)ϕv(x)
v2( · | x)

≥ 0 ∀x ∈ A .

It also follows by (3.2.13) that w(U | x) = 1 for all x ∈ Rd. This finishes the proof
of the claim. Therefore (3.2.13) defines a map ηv �→ ηw on H (K0) which we denote
by G. Since H (K0) is compact in the total variation norm topology and convex,
then if we show that the map G is continuous in the total variation norm topology,
it follows by Schauder’s fixed point theorem that G has a fixed point ηv̂ ∈ H (K0),
and the corresponding v̂ ∈ U(v0,R) satisfies (3.2.11) by construction. Thus in order to
complete the proof it remains to show that the map ηv �→ ηw in (3.2.13) is continuous.
Let {ηvn }, n ∈ N, be a sequence in H (K0), converging to ηv∗ ∈ H (K0), and denote
by wn and w∗ the corresponding elements of U(v0,R) defined by (3.2.13). By the
proof of Lemma 3.2.5, ϕvn → ϕv∗ uniformly on compact sets and also in L1(Rd).
Therefore, by employing (3.2.13), and using the notation in (3.2.8), we deduce that,
for all g ∈ Cb(Rd × U) and h ∈ L1(Rd),∫

Rd
ḡ(x,wn) h(x) dx −−−−→

n→∞

∫
Rd

ḡ(x,w∗) h(x) dx . (3.2.16)
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By (3.2.16), wn → w∗ in U(v0,R). Since H (K0) =H
(
U(v0,R)

)
is compact, then by

Lemma 3.2.6, ηwn → ηw∗ in total variation, and the proof is complete. �

Lemmas 3.2.3 and 3.2.7 yield the following theorem.

Theorem 3.2.8 The set G is closed and convex, and its extreme points correspond
to precise controls v ∈ Ussd.

Proof Suppose πv0 ∈ Ge and v0 � Ussd. Then v0 can be expressed pointwise as a
strict convex combination of some v1 and v2 in Usm which differ on a set of positive
Lebesgue measure. If these are not in Ussm, they can be modified to match v0 outside
some ball of radius R > 0. Thus v0 satisfies the hypotheses of Lemma 3.2.7 and the
result follows. �

Let R̄d denote the one-point compactification of Rd. We view Rd ⊂ R̄d via the
natural imbedding. Similarly, P(Rd ×U) is viewed as a subset of P(R̄d ×U). Let Ḡ

denote the closure of G in P(R̄d ×U). Also, Ge (Ḡe) denote the set of extreme points
of G (Ḡ ).

Lemma 3.2.9 It holds that Ge ⊂ Ḡe and any π ∈ G is the barycenter of a probability
measure supported on Ge.

Proof We first show that Ge ⊂ Ḡe. If not, let π ∈ Ge \ Ḡe. Then π must be a strict
convex combination of two distinct elements of Ḡ , at least one of which must assign
strictly positive probability to {∞} × U. But then π({∞} × U) > 0, a contradiction.
This proves the first part of the lemma. If G is compact, then Ge � ∅ and Ge = Ḡe,
and the proof of the second part follows directly from Choquet’s theorem. If G is not
compact, applying Choquet’s theorem to Ḡ we deduce that Ḡe � ∅ and each π ∈ G

is the barycenter of a probability measure ξ on Ḡe. If ξ(Ḡe \ Ge) > 0, we must have
π({∞} × U) > 0, a contradiction. Thus ξ(Ge) = 1. �

Corollary 3.2.10 If π ∈ G �→
∫

c dπ attains its minimum, then this is attained at
some πv, with v ∈ Ussd.

Proof This follows directly from Theorem 3.2.8 and Lemma 3.2.9. �

Lemma 3.2.11 For each π ∈ Ḡ , there exist π′ ∈ G , π′′ ∈P({∞}×U) and δ ∈ [0, 1]
such that, for all B ∈ B(R̄d × U),

π(B) = δπ′
(
B ∩ (Rd × U)

)
+ (1 − δ) π′′

(
B ∩ ({∞} × U)

)
. (3.2.17)

Proof If π(Rd × U) = 1, then π ∈ G and (3.2.17) holds for δ = 1 and π′ = π. If
π(Rd ×U) = 0 then (3.2.17) holds for δ = 0 and π′′ = π. Suppose π(Rd ×U) ∈ (0, 1).
Set δ = π(Rd × U) and

π′(B) =
π
(
B ∩ (Rd × U)

)
δ

, π′′(B) =
π
(
B ∩ ({∞} × U)

)
1 − δ

. (3.2.18)
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Then (3.2.17) holds for π′ and π′′, as defined in (3.2.18). Let {πn : n ∈ N} ⊂ G be
such that πn → π. By Lemma 3.2.2,∫

Rd×U
Lu f (x) πn(dx, du) = 0 ∀ f ∈ C . (3.2.19)

Letting n→ ∞ in (3.2.19), we obtain∫
Rd×U

Lu f (x) π′(dx, du) = 0 ∀ f ∈ C .

Therefore, by Lemma 3.2.2, π′ ∈ G . �

3.3 Uniform recurrence properties

Recall that v ∈ Usm is called stable if Ev
x[τ(Gc)] < ∞ for all x ∈ Rd, and for all

bounded domains G ⊂ Rd. By Theorem 2.6.9, the process X under a stable control
v has a unique invariant probability measure ηv. We turn our attention to ergodic
properties that are uniform with respect to controls in Ussm.

3.3.1 Uniform boundedness of mean recurrence times

The next theorem establishes a uniform bound for a certain class of functionals of
the controlled process, when Usm = Ussm. Recall the notation introduced in (2.3.13)
on p. 53.

Theorem 3.3.1 Suppose Usm = Ussm and let h ∈ C(Rd × U) be a nonnegative
function. If for some bounded domain D and some x0 ∈ Dc

Ev
x0

[∫ τ(Dc)

0
hv(Xt) dt

]
< ∞ ∀v ∈ Ussm ,

then for any open ball B ⊂ Rd and any compact set Γ ⊂ B̄c, we have

sup
v∈Ussm

sup
x∈Γ
Ev

x

[∫ τ(Bc)

0
hv(Xt) dt

]
< ∞ . (3.3.1)

Proof Set

βv
x[τ] := Ev

x

[∫ τ

0
hv(Xt) dt

]
.

Note that by Theorem 2.6.3 (ii), βv
x[τ(Dc)] is finite for all x ∈ Dc and v ∈ Usm, and

it also follows as in the proof of (b) ⇒ (a) of Theorem 2.6.10 that βv
x[τ(Bc)] < ∞

for any open ball B ⊂ Rd, x ∈ Bc and v ∈ Usm. We argue by contradiction. If (3.3.1)
does not hold, then there exists a sequence {vn} ⊂ Ussm, an open ball B ⊂ Rd, and a
compact set Γ ⊂ B̄c such that supx∈Γ βvn

x [τ(Bc)]→ ∞ as n→ ∞. Then, by Harnack’s
inequality, for all compact sets Γ ⊂ B̄c, it holds that

inf
x∈Γ

βvn
x
[
τ(Bc)

]→ ∞ . (3.3.2)
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Suppose that for some open ball G ⊂ Rd and a compact set K ⊂ Ḡc,

sup
n∈N

inf
x∈K

βvn
x
[
τ(Gc)

]
< ∞ .

It then follows as in the proof of (b)⇒ (a) of Theorem 2.6.10 that

sup
n∈N

inf
x∈Γ

βvn
x
[
τ(Bc)

]
< ∞ ,

which contradicts (3.3.2). Therefore (3.3.2) holds for any open ball B ⊂ Rd and any
compact set Γ ⊂ B̄c.

Fix a ball G0, and let Γ ⊂ Ḡc
0. Select v0 ∈ Ussm such that infx∈Γ βv0

x

[
τ(Gc

0)
]
> 2.

Let G1 be an open ball such that Γ ∪G0 � G1, and satisfying

βv0
x

[
τ(Gc

0)
]
≤ 2 βv0

x

[
τ(Gc

0) ∧ τ(G1)
]

∀x ∈ Γ .

This is always possible since

βv0
x

[
τ(Gc

0) ∧ τR)
]
↑ βv0

x

[
τ(Gc

0)
]

as R→ ∞ ,

uniformly on Γ. Select any open ball G̃1 � G1, and let

p1 := inf
v∈Ussm

inf
x∈Γ
Pv

x
(
τ(G̃1) < τ(Gc

0)
)
. (3.3.3)

By (2.6.9d), p1 > 0. By (3.3.2), we may select v1 ∈ Ussm such that

inf
x∈∂G̃1

βv1
x

[
τ(Gc

1)
]
> 8p−1

1 . (3.3.4)

Define

v̌1(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩v0(x) for x ∈ G1 ,

v1(x) for x ∈ Gc
1 .

It follows by (3.3.3) and (3.3.4) that

inf
x∈Γ

βv̌1
x

[
τ(Gc

0)
]
≥

(
inf
x∈Γ
Pv̌1

x
(
τ(G̃1) < τ(Gc

0)
)) (

inf
x∈∂G̃1

βv1
x

[
τ(Gc

1)
])
≥ 8 . (3.3.5)

Therefore there exists an open ball G2 � G1 satisfying

βv̌1
x

[
τ(Gc

0) ∧ τ(G2)
]
> 4 .

We proceed inductively as follows. Suppose v̌k−1 ∈ Ussm and Gk an open ball in Rd

are such that

βv̌k−1
x

[
τ(Gc

0) ∧ τ(Gk)
]
> 2k .

First pick any open ball G̃k � Gk, and then select vk ∈ Ussm satisfying

inf
x∈∂G̃k

βvk
x
[
τ(Gc

k)
]
> 2k+2

(
inf

v∈Ussm

inf
x∈Γ
Pv

x
(
τ(G̃k) < τ(Gc

0)
))−1

.
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This is always possible by (3.3.2). Proceed by defining the concatenated control

v̌k(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩v̌k−1(x) for x ∈ Gk ,

vk(x) for x ∈ Gc
k .

It follows as in (3.3.5) that

inf
x∈Γ

βv̌k
x

[
τ(Gc

0)
]
> 2k+2 .

Subsequently choose Gk+1 � G̃k such that

inf
x∈Γ

βv̌k
x

[
τ(Gc

0) ∧ τ(Gk+1)
]
>

1
2

inf
x∈Γ

βv̌k
x

[
τ(Gc

0)
]
,

thus yielding

βv̌k
x

[
τ(Gc

0) ∧ τ(Gk+1)
]
> 2k+1 . (3.3.6)

By construction, each v̌k agrees with v̌k−1 on Gk. It is also evident that the sequence
{v̌k} converges to a control v∗ ∈ Ussm, which agrees with v̌k on Gk for each k ≥ 1, and
hence, by (3.3.6),

inf
x∈Γ

βv∗
x

[
τ(Gc

0) ∧ τ(Gk)
]
> 2k ∀k ∈ N .

Thus βv∗
x

[
τ(Gc

0)
]
= ∞, contradicting the original hypothesis. �

Theorem 3.3.1 implies that if Usm = Ussm, then Ev
x[τ(Gc)] is bounded uniformly in

v ∈ Ussm for every fixed non-empty open set G and x ∈ Gc (Theorem 3.3.1). We call
this property uniform positive recurrence.

Now, let D1 � D2 be two fixed open balls in Rd, and let τ̂2 be as defined in
Theorem 2.6.7. Let h ∈ Cb(Rd × U) be a nonnegative function and define

Φv
R(x) := Ev

x

[∫ τ(Dc
1)

0
IBc

R
(Xt) hv(Xt) dt

]
, x ∈ ∂D2 , v ∈ Ussm . (3.3.7)

Choose R0 > 0 such that BR0 � D2. Then, provided R > R0, Φv
R(x) satisfiesLvΦv

R = 0
in BR0 ∩ D̄c

1, and by Harnack’s inequality there exists a constant CH , independent of
v ∈ Ussm, such that Φv

R(x) ≤ CHΦ
v
R(y) for all x, y ∈ ∂D2 and v ∈ Usm. Harnack’s

inequality also holds for the function x �→ Ev
x[τ̂2] on ∂D1 (for this we apply Theo-

rem A.2.13). Also, by Lemma 2.6.5, for some constant C0 > 0, we have

inf
v∈Ussm

inf
x∈∂D2

Ev
x
[
τ(Dc

1)
] ≥ C0 sup

v∈Ussm

sup
x∈∂D1

Ev
x
[
τ(D2)

]
.

Consequently, using these estimates and applying Theorem 2.6.9 with f = hv, we
obtain positive constants k1 and k2, which depend only on D1, D2, and R0, such that,
for all R > R0 and x ∈ ∂D2,

k1

∫
Bc

R×U
h dπv ≤

Φv
R(x)

inf
x∈∂D2

Ev
x
[
τ(Dc

1)
] ≤ k2

∫
Bc

R×U
h dπv ∀v ∈ Ussm . (3.3.8)
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Similarly, applying Theorem 2.6.9 with f = ID1 along with the Harnack inequalities
for the maps x �→ Ev

x
[
τ(Dc

1)
]

on ∂D2 and x �→ Ev
x
[
τ(Dc

2)
]

on ∂D1, there exists positive
constants k3 and k′3, which depend only on D1 and D2, such that

ηv(D1) sup
x∈∂D2

Ev
x
[
τ(Dc

1)
] ≤ k3 inf

x∈∂D1

Ev
x
[
τ(D2)

] ∀v ∈ Ussm ,

ηv(D2) sup
x∈∂D2

Ev
x
[
τ(Dc

1)
] ≥ k′3 sup

x∈∂D1

Ev
x
[
τ(D2)

] ∀v ∈ Ussm .
(3.3.9)

We obtain the following useful variation of Theorem 3.3.1.

Corollary 3.3.2 Suppose Usm = Ussm and that h ∈ C(Rd × U) is integrable with
respect to all π ∈ G . Then supπ∈G

∫
|h| dπ < ∞.

Proof Since by hypothesis
∫
|h| dπv < ∞ for all v ∈ Ussm, (3.3.8) together with

Theorem 3.3.1 imply that Φv
R(x) < ∞ for all v ∈ Ussm, x ∈ ∂D2. Therefore applying

Theorem 3.3.1 once more, we obtain supv∈Ussm
Φv

R(x) < ∞, and the result follows by
the left-hand inequality of (3.3.8). �

3.3.2 Uniform stability

We define uniform stability as follows.

Definition 3.3.3 A collection of stationary Markov controls U ∈ Ussm is called
uniformly stable if the set {ηv : v ∈ U} is tight.

Let U ⊂ Ussm and recall that GU and HU denote the corresponding ergodic oc-
cupation and invariant probability measures, respectively. The following lemma pro-
vides some important equivalences of uniform stability over v ∈ U.

Lemma 3.3.4 Let U be an arbitrary subset of Ussm. The following statements are
equivalent (with h ∈ C(Rd×U;R+) an inf-compact function which is Lipschitz contin-
uous in its first argument, uniformly in the second, and which is common to (i)–(iv)).

(i) For some open ball D ⊂ Rd and some x ∈ D̄c,

sup
v∈U
Ev

x

[∫ τ(Dc)

0
hv(Xt) dt

]
< ∞ .

(ii) For all open balls D ⊂ Rd and compact sets Γ ⊂ Rd,

sup
v∈U

sup
x∈Γ
Ev

x

[∫ τ(Dc)

0
hv(Xt) dt

]
< ∞ .

(iii) A uniform bound holds:

sup
v∈U

∫
Rd×U

h(x, u) πv(dx, du) < ∞ . (3.3.10)
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(iv) Provided U = Usm, there exist a nonnegative, inf-compact V ∈ C2(Rd) and a
constant k0 satisfying

LuV(x) ≤ k0 − h(x, u) ∀(x, u) ∈ Rd × U .

(v) ProvidedU = Usm, for any compact set K ⊂ Rd and t0 > 0, the family of mean
empirical measures {

ζ̄U
x,t : x ∈ K , t ≥ t0 , U ∈ U

}
,

defined in Lemma 2.5.3 on p. 62, is tight.

(vi) HU is tight.

(vii) GU is tight.

(viii) GŪ is compact.

(ix) For some open ball D ⊂ Rd and x ∈ D̄c,
{(

τ(Dc),Pv
x
)

: v ∈ U}
are uniformly

integrable, i.e.,

sup
v∈U
Ev

x
[
τ(Dc) I {τ(Dc) > t}] ↓ 0 as t ↑ ∞ .

(x) The family
{(

τ(Dc),Pv
x
)

: v ∈ U , x ∈ Γ
}

is uniformly integrable for all open
balls D ⊂ Rd and compact sets Γ ⊂ Rd.

Proof It is evident that (ii)⇒ (i) and (x)⇒ (ix). Since U is compact, (vi)⇔ (vii).
By Prohorov’s theorem, (viii)⇒ (vii). With D1 � D2 any two open balls in Rd, we
apply (3.3.8) and (3.3.9). Letting D = D1, (i)⇒ (iii) follows by (3.3.8). It is easy to
show that (iii)⇒ (vii). Therefore, since under (iii) HU is tight, (3.2.6) implies that
infv∈U ηv(D1) > 0. In turn, by (2.6.9a) and (3.3.9),

sup
v∈U

sup
x∈∂D2

Ev
x[τ(Dc

1)] ≤ k3
supv∈U supx∈∂D1

Ev
x
[
τ(D2)

]
infv∈U ηv(D1)

< ∞ . (3.3.11)

Consequently, by applying (3.3.8) and Lemma 2.6.13 (i), (iii) ⇒ (ii) follows. Also,
(iv)⇒ (v) can be demonstrated by using the arguments in the proof of Lemma 2.5.3.
We proceed by proving the implications (vi)⇒ (iii)⇒ (iv)⇒ (i), (ix)⇒ (vii), and
(v)⇒ (viii)⇒ (x).

(vi)⇒ (iii): Let

ĥv(x) :=
(
ηv

(
Bc
|x|
))−1/2

, v ∈ U , x ∈ Rd ,

and define h := infv∈U ĥv. Note that
∫
Rd ĥv dηv = 2. Indeed, since

ηv
({x : ĥv(x) > t}) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩t−2 if t ∈ [1,∞) ,

1 otherwise,

we have ∫
Rd

ĥv(x) ηv(dx) =
∫ ∞

0
ηv

({x : ĥv(x) > t}) dt = 1 +
∫ ∞

1
t−2 dt = 2 .
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Thus (3.3.10) holds. Since HU is tight, supv∈U ηv
(
Bc
|x|
) → 0 as |x| → ∞, and thus h

is inf-compact. Next, we show that h is locally Lipschitz continuous. Let R > 0 and
x, x′ ∈ BR. Then, with g(x) := ηv

(
Bc
|x|
)
,∣∣∣ĥv(x) − ĥv(x′)

∣∣∣ = |g(x) − g(x′)|√
g(x)g(x′)

( √
g(x) +

√
g(x′)

) . (3.3.12)

By (3.2.6), the denominator of (3.3.12) is uniformly bounded away from zero on BR,
while the numerator has the upper bound

(
supBR

ϕv

) ∣∣∣|B|x|| − |B|x′ ||∣∣∣, where ϕv is the

density of ηv. Therefore, by Lemma 3.2.6 and (3.3.12), (x, v) �→ ĥv(x) is continuous
in Rd × Ū and locally Lipschitz in the first argument. Since Ū is compact, local
Lipschitz continuity of h follows.

(iii) ⇒ (iv): We borrow some results from Section 3.5. By Theorem 3.5.3 on
p. 108, the Dirichlet problem

max
u∈U

[Lu fr(x) + h(x, u)
]
= 0 , x ∈ Br \ D̄1 ,

fr
⏐⏐⏐⏐∂D1∩∂Br

= 0

has a solution fr ∈ C2,s(B̄r \ D1), s ∈ (0, 1). Let vr ∈ Usd satisfy Lvr fr(x) + hvr (x) = 0
for all x ∈ Rd. Recall the definition of ξv

D,G in Lemma 2.6.13. Then using (3.3.7) and
(3.3.8), with r > R > R0, and since under the hypothesis of (iii) equation (3.3.11)
holds, we obtain

fr(x) = Evr
x

[∫ τ(Dc
1)∧τr

0
hv(Xt) dt

]
≤

(
sup
BR×U

h
)
ξvr

D1,BR
(x) +Φvr

R (x)

≤
(

sup
BR×U

h
)
ξvr

D1,BR
(x) + k′2

∫
Rd

h dπvr , x ∈ ∂D2 ,

for some constant k′2 > 0 that depends only on D1, D2, and R0. Therefore, by (iii)
and Lemma 2.6.13, fr is bounded above, and since it is monotone in r, it converges
by Lemma 3.5.4, as r → ∞, to someV ∈ C2(Dc

1) satisfying

LuV(x) ≤ −h(x, u) ∀(x, u) ∈ D̄c
1 × U .

It remains to extendV to a smooth function. This can be accomplished, for instance,
by selecting D4 � D3 � D1, and with ψ any smooth function that equals zero on D3

and ψ = 1 on Dc
4, to define Ṽ = ψV on Dc

1 and Ṽ = 0 on D1. Then LuṼ ≤ −h on
Dc

4, for all u ∈ U, and since |LuṼ| is bounded in D̄4, uniformly in u ∈ U, (iv) follows.

(iv)⇒ (i): Let D be an open ball such that h(x, u) ≥ 2k0 for all x ∈ Dc and u ∈ U.
By Dynkin’s formula, for any R > 0 and v ∈ Usm,

Ev
x

[∫ τ(Dc)∧τR

0

(
hv(Xt) − k0

)
dt

]
≤ V(x) ∀x ∈ D̄c. (3.3.13)
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Since h ≤ 2(h − k0) on Dc, the result follows by taking limits as R→ ∞ in (3.3.13).

(ix) ⇒ (vii): Using (3.3.7) and (3.3.8) with h ≡ 1, we obtain, for any t0 ≥ 0 and
R > R0,

πv(Bc
R × U) ≤ k′1 E

v
x

[∫ τ(Dc
1)

0
IBc

R
(Xt) dt

]
≤ k′1t0 P

v
x(τR ≤ t0) + k′1 E

v
x

[
τ(Dc

1) I
{
τ(Dc

1) ≥ t0
}]

, x ∈ ∂D2 ,

for some constant k′1 > 0 that depends only on D1, D2 and R0. By (ix), we can select
t0 large enough so that the second term on the right-hand side is as small as desired,
uniformly in v ∈ U and x ∈ ∂D2. By (2.2.20), for any fixed t0 > 0,

sup
v∈Usm

sup
x∈∂D2

Pv
x(τR ≤ t0) −−−−→

R→∞
0 ,

and (vii) follows.

(v) ⇒ (viii): Since the mean empirical measures are tight, their closure is com-
pact by Prohorov’s theorem. Then, by Lemma 2.5.3, every accumulation point of
a sequence of mean empirical measures is an ergodic occupation measure. Also, if
v ∈ Ussm, then ζ̄v

x,t converges as t → ∞ to πv. Therefore tightness implies that the
set of accumulation points as t → ∞ of sequences of mean empirical measures is
precisely the set of ergodic occupation measures, and hence, being closed, G is com-
pact.

(viii)⇒ (x): Let D = D1 and, without loss of generality, let also Γ = ∂D2. Then
(3.3.8) implies

sup
v∈U

sup
x∈∂D2

Ev
x

[∫ τ(Dc
1)

0
IBc

R
(Xt) dt

]
−−−−→
R→∞

0 . (3.3.14)

Given any sequence {(vn, xn)} ⊂ U × ∂D2 converging to some (v, x) ∈ Ū × ∂D2,
Lemma 2.6.13 (iii) asserts that

Evn
xn

[∫ τ(Dc
1)

0
IBR (Xt) dt

]
−−−−→
n→∞

Ev
x

[∫ τ(Dc
1)

0
IBR (Xt) dt

]
(3.3.15)

for all R such that D2 � BR. By (3.3.14) and (3.3.15), we obtain

Evn
xn

[τ(Dc
1)]→ Ev

x[τ(Dc
1)] as n→ ∞ ,

and (x) follows. �

3.4 Existence of optimal controls

In this section we establish the existence of an optimal control in Ussd.
Based on Theorem 3.2.8 and Lemmas 3.2.9 and 3.2.11 we formulate the ergodic

control problem as a convex program. Note that for v ∈ Ussm and πv = ηv � v,

lim
T→∞

1
T

∫ T

0

∫
U

c(Xs, u) v(du | Xs) ds =
∫
Rd×U

c dπ a.s.
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This suggests the following convex programming problem

minimize
∫
Rd×U

c dπ

over π ∈ G .

For ε ≥ 0, π∗ε ∈ G is called ε-optimal if it satisfies

�∗ := inf
π∈G

∫
Rd×U

c dπ ≤
∫
Rd×U

c dπ∗ε ≤ �∗ + ε .

When ε = 0, we refer to π∗0 ∈ G simply as optimal, and also denote it by π∗.

Lemma 3.4.1 For ε ≥ 0, if there exists an ε-optimal π∗ε ∈ G , then there exists an
ε-optimal π̂∗ε ∈ Ge.

Proof By Lemma 3.2.9, there exists Ψ ∈P(Ge) such that

�∗ ≤
∫
Rd×U

c dπ∗ε =

∫
Ge

(∫
Rd×U

c(x, u) π(dx, du)

)
Ψ (dπ) ≤ �∗ + ε .

Thus, for some π̂∗ε ∈ supp(Ψ ) ⊂ Ge,

�∗ ≤
∫
Rd×U

c dπ̂∗ε ≤ �∗ + ε . �

We now turn to the question of existence of an optimal π∗ ∈ G . In general, this is
not the case as the following counterexample shows. Let c(x) = e−|x|

2
. Then for every

v ∈ Ussm the ergodic cost is positive a.s., while for every unstable Markov control
the ergodic cost equals 0 a.s., thus making the latter optimal. We focus on problems
where stability and optimality are not at odds, and for this reason we impose two al-
ternate sets of hypotheses: (a) a condition on the cost function that penalizes unstable
behavior, and (b) the assumption that all stationary Markov controls are uniformly
stable.

Assumption 3.4.2 The running cost function c is near-monotone, i.e.,

lim inf
|x|→∞

min
u∈U

c(x, u) > �∗ . (3.4.1)

Assumption 3.4.3 The set Usm of stationary Markov controls is uniformly stable
(see Definition 3.3.3).

Remark 3.4.4 It may seem at first that (3.4.1) cannot be verified unless �∗ is known.
However there are two important cases where (3.4.1) always holds. The first is the
case where minu∈U c(x, u) is inf-compact and �∗ < ∞. The second covers problems
in which c(x, u) = c(x) does not depend on u and c(x) < lim|z|→∞ c(z) for all x ∈ Rd.
In particular for d = 1, if c(x, u) is independent of u and is monotonically (strictly)
increasing with |x|, then (3.4.1) holds; hence the terminology near-monotone.

Theorem 3.4.5 Under either Assumption 3.4.2 or 3.4.3, the map π �→
∫

c dπ at-
tains its minimum in G at some π∗ ∈ Ge.
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Proof Note that the map π �→
∫

c dπ is lower semicontinuous. Thus, since under
Assumption 3.4.3, Lemma 3.3.4 asserts that G is compact, this map attains a mini-
mum in G , and hence, by Lemma 3.4.1 in Ge. Note then that there exists a v∗ ∈ Ussd

such that

�∗ =

∫
Rd

cv∗ (x) ηv∗ (dx) . (3.4.2)

Next consider Assumption 3.4.2. Let {πn : n ∈ N} ⊂ G such that
∫

c dπn ↓ �∗.
Viewing G as a subset of P(R̄d × U), select a subsequence of {πn} converging to
some π̂ ∈P(R̄d × U). By Lemma 3.2.11, there exist π′ ∈ G , π′′ ∈P({∞} × U) and
δ ∈ [0, 1] satisfying (3.2.17) for all B ∈ B(R̄d × U). By (3.4.1), there exists R > 0
and ε > 0 such that

inf
u∈U

{
c(x, u) : |x| ≥ R

} ≥ �∗ + ε .

Define a sequence cn : Rd × U→ R, for n ∈ N, by

cn(x, u) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩c(x, u) if |x| < R + n ,

�∗ + ε if |x| ≥ R + n .
(3.4.3)

Observe that the functions cn defined in (3.4.3) are lower semicontinuous. Then, for
any m ∈ N, we obtain by letting cm(∞) = �∗ + ε

�∗ ≥ lim inf
n→∞

∫
cm dπn ≥ δ

∫
cm dπ′ + (1 − δ)(�∗ + ε) . (3.4.4)

Letting m→ ∞ in (3.4.4), we obtain

�∗ ≥ δ

∫
c dπ′ + (1 − δ)(�∗ + ε)

≥ δ�∗ + (1 − δ)(�∗ + ε) .

Thus δ = 1 and
∫

c dπ′ = �∗. By Corollary 3.2.10, there exists v∗ ∈ Ussd such that
(3.4.2) holds. �

We now wish to establish that v∗ ∈ Ussd satisfying (3.4.2) is optimal among all
admissible controls U. For any admissible control U ∈ U we define the process ζU

t

of (random) empirical measures as a P(Rd × U)-valued process satisfying, for all
f ∈ Cb(Rd × U),∫

Rd×U
f dζU

t =
1
t

∫ t

0

∫
U

f (Xs, u)Us(du) ds , t > 0 , (3.4.5)

where X denotes the solution of the diffusion in (2.2.1).
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Lemma 3.4.6 Almost surely, every limit point ζ̂ ∈ P(R̄d × U) as t → ∞, of the
process ζU

t defined in (3.4.5) takes the form

ζ̂ = δζ′ + (1 − δ)ζ′′ , δ ∈ [0, 1] , (3.4.6)

with ζ′ ∈ G and ζ′′({∞} × U) = 1. An identical claim holds for the mean empirical
measures without the need of the qualification “almost surely.”

Proof Clearly ζ̂ can be decomposed as in (3.4.6) for some ζ′ ∈ P(Rd × U). For
f ∈ C , we have

f (Xt) − f (X0)
t

=
1
t

∫ t

0
LUs f (Xs) ds +

1
t

∫ t

0

〈∇ f (Xs),σ(Xs) dWs
〉
. (3.4.7)

Let

Mt :=
∫ t

0

〈∇ f (Xs),σ(Xs) dWs
〉
, t ≥ 0 .

Then Mt is a zero mean, square-integrable martingale with continuous paths, whose
quadratic variation process is given by

〈M〉t =
∫ t

0

∣∣∣σT(Xs)∇ f (Xs)
∣∣∣2 ds , t ≥ 0 .

By a random time change argument, for some suitably defined one-dimensional
Brownian motion B, we obtain

Mt = B
(〈M〉t) , t ≥ 0 .

Let 〈M〉∞ := limt→∞ 〈M〉t. On the set {〈M〉∞ = ∞}, we have

lim
t→∞

B
(〈M〉t)
〈M〉t

= lim
t→∞

B(t)
t
= 0 a.s.,

and since f has compact support, 〈M〉t ∈ O(t), implying that

lim sup
t→∞

〈M〉t
t

< ∞ a.s.

On the other hand, on the set {〈M〉∞ < ∞},

lim
t→∞

B
(〈M〉t)
〈M〉t

< ∞ a.s.

and

lim
t→∞

〈M〉t
t
= 0 a.s.

Therefore, in either case,

lim
t→∞

B
(〈M〉t)

t
= lim

t→∞

B(t)
t
= 0 a.s. (3.4.8)

Equation (3.4.8) implies that the last term in (3.4.7) tends to zero a.s., as n→ ∞. The
left-hand side of (3.4.7) also tends to zero as n→ ∞, since f is bounded. Since C is
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countable, these limits are zero outside a null set, for any f ∈ C . By the definition of
ζU

t , we have

1
t

∫ t

0
LUs f (Xs) ds =

1
t

∫ t

0

∫
U

Lu f (Xs)Us(du) ds =
∫
Rd×U

Lu f (x) ζU
t (dx, du) .

Thus any limit point ζ̂ of {ζU
t } as in (3.4.6) must satisfy, whenever δ > 0,∫

Rd×U
Lu f (x) ζ′(dx, du) = 0 ∀ f ∈ C ,

and thus, by Lemma 3.2.2, ζ′ ∈ G . If δ = 0, ζ′ in (3.4.6) can be arbitrarily se-
lected, so it may be chosen in G . The claim for the mean empirical measures follows
analogously. �

Theorem 3.4.7 Under either Assumption 3.4.2 or Assumption 3.4.3 together with
the added hypothesis that

{
ζU

t : t ≥ 0
}

is a.s. tight in P(Rd × U), we have

lim inf
t→∞

1
t

∫ t

0

∫
U

c(Xs, u)Us(du) ds ≥ min
v∈Ussd

∫
Rd×U

c dπv a.s.

and

lim inf
t→∞

1
t

∫ t

0
EU

x [c(Xs,Us)] ds ≥ min
v∈Ussd

∫
Rd×U

c dπv ,

for any U ∈ U.

Proof Let {ζU
t } be defined by (3.4.5) with U ∈ U. First, suppose Assumption 3.4.2

holds. Consider a sample point such that the result of Lemma 3.4.6 holds, and let ζ̂
be a limit point of ζU

t as t → ∞. Then, for some sequence {t�} such that t� ↑ ∞, we
have ζU

t� → ζ̂. Let {cn : n ∈ N} be the sequence defined in (3.4.3). Then

lim inf
�→∞

∫
Rd×U

c dζU
t� ≥

∫
Rd×U

cn dζ̂

≥ δ

∫
Rd×U

cn dζ′ + (1 − δ)(�∗ + ε) ,

and letting n→ ∞, we obtain

lim inf
�→∞

∫
Rd×U

c dζU
t� ≥ δ

∫
Rd×U

c dζ′ + (1 − δ)(�∗ + ε)

≥ δ �∗ + (1 − δ)(�∗ + ε) .

The analogous inequality holds for the mean empirical measures ζ̄U
x,t. This completes

the first part of the proof. Suppose now Assumption 3.4.3 holds and {ζU
t } are a.s.

tight in P(Rd × U). Decomposing the arbitrary limit point ζ̂ of {ζU
t } as in (3.4.6), it

follows that δ = 1, and the result is immediate, since ζ′ ∈ G . �
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Remark 3.4.8 Note that Theorem 3.4.7 establishes a much stronger optimality of
v∗, viz., the most “pessimistic” pathwise cost under v∗ is no worse than the most
“optimistic” pathwise cost under any other admissible control.

The a.s. tightness of the family {ζU
t }, in the stable case, is guaranteed under the

hypothesis that the hitting times of bounded domains have finite second moments
bounded uniformly over all admissible controls U ∈ U. A Lyapunov condition that
enforces this property is the following.

Assumption 3.4.9 There exist nonnegative V1 and V2 in C2(Rd) which satisfy,
outside some bounded domain D,

LuV1 ≤ −1 , LuV2 ≤ −V1

for all u ∈ U.

It is evident from Lemma 3.3.4 that Assumption 3.4.9 implies uniform stability.
Employing Dynkin’s formula as in the proof of Lemma 2.5.1 shows that the second
moment of τ(Dc) is uniformly bounded over all admissible U ∈ U.

Corollary 3.4.10 Let Assumption 3.4.9 hold. Then G is compact, and for any
bounded domain D and compact set Γ ⊂ Rd,

sup
U∈U

sup
x∈Γ
EU

x
[
τ(Dc)2] < ∞ .

Theorem 3.4.11 Under Assumption 3.4.9, the empirical measures {ζU
t : t ≥ 0} are

tight a.s., under any U ∈ U.

Proof Recall the definition of {τ̂n} in (2.6.10). Since by Assumption 3.4.9,

sup
x∈∂D2

sup
U∈U
EU

x

[∫ τ(Dc
1)

0
V1(Xt) dt

]
< ∞ ,

andV1 is inf-compact, and also inf
x∈∂D2

inf
U∈U
EU

x

[
τ(Dc

1)
]
> 0, it follows that set Ĥ of

η ∈P(Rd) defined by

∫
Rd

f dη =
EU

X0

[∫ τ̂2

0
f (Xt) dt

]
EU

X0

[
τ̂2

] ∀ f ∈ Cb(Rd)

for U ∈ U, and with the law of X0 supported on ∂D1, is tight.
Let { fn} ⊂ C(Rd; [0, 1]) be a collection of maps, satisfying fn(x) = 0 for |x| ≤ n,

and fn(x) = 1 for |x| ≥ n + 1. Then, for any ε > 0, we can find Nε ≥ 1 such that∫
Rd fn dη < ε for all n ≥ Nε and η ∈ Ĥ . By Corollary 3.4.10, we can use the strong

law of large numbers for martingales to conclude that, for all f ∈ Cb(Rd),

1
n

∫ τ̂2n

0
f (Xt) dt − 1

n

n−1∑
m=0

EU
X0

[∫ τ̂2m+2

τ̂2m

f (Xt) dt
∣∣∣∣ FX

τ̂2m

]
a.s.−−→ 0 , (3.4.9)
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and

1
n

(
τ̂2n −

n−1∑
m=0

EU
X0

[
τ̂2m+2 − τ̂2m

∣∣∣ FX
τ̂2m

]) a.s.−−→ 0 . (3.4.10)

Therefore, since EU
X0

[
τ̂2m+2 − τ̂2m

∣∣∣ FX
τ̂2m

]
is bounded away from zero uniformly in

U ∈ U and m ∈ N by Lemma 2.3.7 and Theorem 2.6.1 (b), it follows by (3.4.10)
that lim infn→∞ τ̂2n is bounded away from zero a.s. Hence, subtracting the left-hand
sides of (3.4.9) and (3.4.10) from the numerator and denominator, respectively, of

n−1
∫ τ̂2n

0
fN(Xt) dt

n−1τ̂2n

and taking limits, we obtain

lim sup
n→∞

1
τ̂2n

∫ τ̂2n

0
fN(Xt) dt = lim sup

n→∞

1
n

∫ τ̂2n

0
fN(Xt) dt
τ̂2n

n

= lim sup
n→∞

1
n

∑n−1
m=0 E

U
X0

[∫ τ̂2m+2

τ̂2m
fN(Xt) dt

∣∣∣∣ FX
τ̂2m

]
1
n

∑n−1
m=0 E

U
X0

[
τ̂2m+2 − τ̂2m

∣∣∣ FX
τ̂2m

]
≤ ε a.s., ∀N ≥ Nε .

Let κ(t) denote the number of cycles completed at time t, i.e.,

κ(t) = max {k : t > τ̂2k} .

It is evident that κ(t) ↑ ∞ a.s. as t ↑ ∞. By by Theorem 2.6.1 (b),

sup
m
EU

X0

[
τ̂2m+2 − τ̂2m

∣∣∣ FX
τ̂2m

]
< ∞ a.s.

Therefore, τ̂2m+2−τ̂2m

τ̂2m
→ 0 a.s. by (3.4.10). Using this property together with the fact

that τ̂2κ(t) ≤ t < τ̂2κ(t)+2 we obtain

lim sup
t→∞

1
t

∫ t

0
fN(Xs) ds ≤ lim sup

t→∞

1
τ̂2κ(t)

∫ τ̂2κ(t)+2

0
fN(Xs) ds

≤ lim sup
n→∞

1
τ̂2n

∫ τ̂2n+2

0
fN(Xs) ds

= lim sup
n→∞

1
τ̂2n

∫ τ̂2n

0
fN(Xs) ds

≤ ε ∀N ≥ Nε ,

thus establishing the a.s. tightness of {ζU
t }. �



3.5 The discounted control problem 107

3.5 The discounted control problem

In this section, we study the Hamilton–Jacobi–Bellman (HJB) equation for the dis-
counted problem, which is in turn used to study the ergodic problem via the vanishing
discount limit. In view of Corollary 3.2.10, for the rest of this chapter we work only
with precise controls.

Provided that the cost function is locally Hölder continuous in x, we can obtain
C2 solutions for the HJB equation. In order to avoid keeping track of the Hölder
constants we assume local Lipschitz continuity for c.

Assumption 3.5.1 The cost function c : Rd × U → R+ is continuous and locally
Lipschitz in its first argument uniformly in u ∈ U. More specifically, for some func-
tion Kc : R+ → R+,∣∣∣c(x, u) − c(y, u)

∣∣∣ ≤ Kc(R)|x − y| ∀x, y ∈ BR , ∀u ∈ U ,

and all R > 0. We denote the class of such functions by C.

Let α > 0 be a constant, which we refer to as the discount factor. For an admissible
control U ∈ U, we define the α-discounted cost by

JU
α (x) := EU

x

[∫ ∞

0
e−αt c̄(Xt,Ut) dt

]
,

and we let

Vα(x) := inf
U∈U

JU
α (x) . (3.5.1)

3.5.1 Quasilinear elliptic operators

Hamilton–Jacobi–Bellman equations that are of interest to us involve quasilinear
operators of the form

Sψ(x) := ai j(x) ∂i jψ(x) + inf
u∈U

b̂(x, u, ψ)

b̂(x, u, ψ) := bi(x, u) ∂iψ(x) − λψ(x) + c(x, u) .
(3.5.2)

We suitably parameterize families of quasilinear operators of this form as follows.

Definition 3.5.2 For a nondecreasing function γ : (0,∞) → (0,∞) we denote by
Q(γ) the class of operators of the form (3.5.2), with λ ∈ R+ and whose coefficients
bi and c belong to C(Rd × U), satisfy (A.1.1a) – (A.1.1b), and for all x, y ∈ BR,

max
u∈U

{
max

i

∣∣∣bi(x, u) − bi(y, u)
∣∣∣ + ∣∣∣c(x, u) − c(y, u)

∣∣∣} ≤ γ(R)|x − y|

and

d∑
i, j=1

|ai j(x)| +
d∑

i=1

max
u∈U
|bi(x, u)| +max

u∈U
|c(x, u)| ≤ γ(R) .
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The Dirichlet problem for quasilinear equations is more involved than the linear
case. Here we investigate the existence of solutions to the problem

Sψ(x) = 0 in D , ψ = 0 on ∂D (3.5.3)

for a sufficiently smooth bounded domain D. We follow the approach of Gilbarg and
Trudinger [67, section 11.2], which utilizes the Leray–Schauder fixed point theorem,
to obtain the following result.

Theorem 3.5.3 Let D be a bounded C2,1 domain in Rd. Then the Dirichlet problem
in (3.5.3) has a solution in C2,r(D̄), r ∈ (0, 1) for any S ∈ Q(γ).

Proof Let

S δψ(x) := ai j∂i jψ(x) + δ inf
u∈U

b̂(x, u, ψ) , δ ∈ [0, 1] .

Then according to Gilbarg and Trudinger [67, theorem 11.4, p. 281] it is enough to
show that there exist constants ρ > 0 and M such that any C2,r(D̄) solution of the
family of Dirichlet problems S δψ = 0 in D, ψ = 0 on ∂D, δ ∈ [0, 1], satisfies

‖ψ‖C1,ρ(D̄) < M . (3.5.4)

Suppose ψ is such a solution. Then, for each fixed u, the map

x �→ b̂(x, u, ψ)

belongs to C0,1(D̄). If v : Rd → U is a measurable selector from the minimizer
Arg minu∈U b̂(x, u, ψ), then ψ satisfies the linear problem

Lδψ(x) = −δ c
(
x, v(x)

)
in D , ψ = 0 on ∂D ,

where

Lδψ(x) = ai j(x) ∂i jψ(x) + δ
(
bi(x, v(x)

)
∂iψ(x) − λψ(x)

)
.

Hence L ∈ L(γ) (see Definition A.1.1), and by (A.2.1), ψ satisfies

sup
D

ψ ≤ Ca|D|
1/d sup

D×U
|c| . (3.5.5)

Applying Theorem A.2.7 for the linear problem, with p ≡ 2d, we obtain by (A.2.4)

‖ψ‖W 2,2d(D) ≤ C′0 ‖Lψ‖L2d(D) . (3.5.6)

Since C′0 and the bound in (3.5.5) are independent of ψ, then by combining (3.5.5) –
(3.5.6) and using the compactness of the embedding W 2,2d(D) ↪→ C1,r(D̄), r < 1

2 ,
asserted in Theorem A.2.15 (2b), the estimate in (3.5.4) follows, and the proof is
complete. �

We conclude this section with a useful convergence result.

Lemma 3.5.4 Let D be a bounded C2 domain. Suppose {hn} ⊂ Lp(D), for p > 1,
and {ψn} ⊂ W 2,p(D) are a pair of sequences of functions satisfying the following:
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(a) for some S ∈ Q(γ), Sψn = hn in D for all n ∈ N;

(b) for some constant M, ‖ψn‖W 2,p(D) ≤ M for all n ∈ N;

(c) hn converges in Lp(D) to some function h.

Then there exists ψ ∈ W 2,p(D) and a sequence {nk} ⊂ N such that ψnk → ψ in
W 1,p(D) as k → ∞, and

Sψ = h in D . (3.5.7)

If in addition p > d, then ψnk → ψ in C1,r(D) for any r < 1 − d
p .

If h ∈ C0,ρ(D), for some ρ > 0, then ψ ∈ C2,ρ(D).

Proof By the weak compactness of
{
ϕ : ‖ϕ‖W 2,p(D) ≤ M

}
and the compactness of

the imbedding W 2,p(D) ↪→ W 1,p(D), we can select ψ ∈ W 2,p(D) and {nk} such that
ψnk → ψ, weakly in W 2,p(D) and strongly in W 1,p(D) as k → ∞. The inequality∣∣∣∣inf

u∈U
b̂(x, u, ψ) − inf

u∈U
b̂(x, u, ψ′)

∣∣∣∣ ≤ sup
u∈U

∣∣∣b̂(x, u, ψ) − b̂(x, u, ψ′)
∣∣∣ (3.5.8)

shows that infu∈U b̂( · , u, ψnk ) converges in Lp(D). Since, by weak convergence,∫
D

g(x) ∂i jψnk (x) dx −−−−→
k→∞

∫
D

g(x) ∂i jψ(x) dx

for all g ∈ L
p

p−1 (D) and hn → h in Lp(D), we obtain∫
D

g(x)
(
Sψ(x) − h(x)

)
dx = lim

k→∞

∫
D

g(x)
(
Sψnk (x) − hnk (x)

)
dx

= 0

for all g ∈ L
p

p−1 (D). Thus the pair (ψ, h) satisfies (3.5.7).
If p > d, the compactness of the embedding W 2,p(D) ↪→ C1,r(D̄), r < 1 − d

p ,

allows us to select the subsequence such that ψnk → ψ in C1,r(D̄). The inequality
(3.5.8) shows that infu∈U b̂( · , u, ψnk ) converges uniformly in D, and the inequality∣∣∣∣inf

u∈U
b̂(x, u, ψ) − inf

u∈U
b̂(y, u, ψ)

∣∣∣∣ ≤ sup
u∈U

∣∣∣b̂(x, u, ψ) − b̂(y, u, ψ)
∣∣∣ (3.5.9)

implies that the limit is in C0,r(D).
If h ∈ C0,ρ(D), then by Lemma A.2.10, ψ ∈ W 2,p(D) for all p > 1. Using the

continuity of the embedding W 2,p(D) ↪→ C1,r(D̄) for r ≤ 1 − d
p , and (3.5.9), we

conclude that infu∈U b̂( · , u, ψ) ∈ C0,r for all r < 1. Thus ψ satisfies

ai j∂i jψ ∈ C0,ρ(D) ,

and it follows by Theorem A.2.9 that ψ ∈ C2,ρ(D). �

Remark 3.5.5 If we replace S ∈ Q(γ) with L ∈ L(γ) in Lemma 3.5.4, all the
assertions of the lemma other than the last sentence follow. The proof is identical.
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3.5.2 The HJB equation for the discounted problem

The optimal α-discounted cost Vα can be characterized as a solution of a HJB equa-
tion. This is the subject of the next theorem.

Theorem 3.5.6 Suppose c satisfies Assumption 3.5.1 and is bounded on Rd. Then
Vα defined in (3.5.1) is the unique solution in C2(Rd) ∩ Cb(Rd) of

min
u∈U

[LuVα(x) + c(x, u)
]
= αVα(x) . (3.5.10)

Moreover, v ∈ Usm is α-discounted optimal if and only if v a.e. realizes the pointwise
infimum in (3.5.10), i.e., if and only if

d∑
i=1

bi
v(x)

∂Vα

∂xi
(x) + cv(x) = min

u∈U

⎡⎢⎢⎢⎢⎢⎢⎣ d∑
i=1

bi(x, u)
∂Vα

∂xi
(x) + c(x, u)

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.5.11)

a.e. x ∈ Rd.

Proof For α > 0 and R > 0, consider the Dirichlet problem

min
u∈U

[Luϕ(x) + c(x, u)
]
= αϕ(x) , x ∈ BR ,

ϕ
⏐⏐⏐⏐∂BR

= 0 .
(3.5.12)

By Theorem 3.5.3, (3.5.12) has a solution ϕR ∈ C2,r(B̄R), r ∈ (0, 1). Let vR ∈ Usd

satisfy LvRϕR(x) + cvR (x) = αϕR(x) for all x ∈ Rd. By Lemma A.3.2,

ϕR(x) = EvR
x

[∫ τR

0
e−αtcvR (Xt) dt

]
, x ∈ BR .

On the other hand, for any u ∈ U, LuϕR(x) + c(x, u) ≥ αϕR(x), and this yields

ϕR(x) ≤ EU
x

[∫ τR

0
e−αt c̄(Xt,Ut) dt

]
, x ∈ BR , U ∈ U .

Therefore

ϕR(x) = inf
U∈U
EU

x

[∫ τR

0
e−αt c̄(Xt,Ut) dt

]
, x ∈ BR .

It is clear that ϕR ≤ Vα and that ϕR is nondecreasing in R. If R′ > 2R, Lemma A.2.5
asserts that for any p ∈ (1,∞) there is a constant C0, which is independent of R′,
such that ∥∥∥ϕR′

∥∥∥
W 2,p(BR)

≤ C0

(∥∥∥ϕR′
∥∥∥

Lp(B2R)
+

∥∥∥LvR′ϕR′ − αϕR′
∥∥∥

Lp(B2R)

)
≤ C0

(∥∥∥Vα

∥∥∥
Lp(B2R)

+
∥∥∥cvR′

∥∥∥
Lp(B2R)

)
≤ C0

(∥∥∥Vα

∥∥∥
Lp(B2R)

+ Kc(2R)
∣∣∣B2R

∣∣∣1/p
)
.
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Thus by Lemma 3.5.4, ϕR′ ↑ ψ along a subsequence as R′ → ∞, where ψ ∈ C2,r(BR)
for any r ∈ (0, 1) and satisfies

min
u∈U

[Luψ(x) + c(x, u)
]
= αψ(x) , x ∈ BR . (3.5.13)

Since R was arbitrary, ϕR′ converges on Rd to some ψ ∈ C2(Rd) ∩ Cb(Rd), satisfying
(3.5.13).

Let ṽ ∈ Usd be such that

min
u∈U

[Luψ(x) + c(x, u)
]
= Lṽψ(x) + cṽ(x) a.e. x ∈ Rd . (3.5.14)

For any pair (ψ, ṽ), with ψ ∈ C2(Rd)∩Cb(Rd) satisfying (3.5.13) and ṽ ∈ Usd satisfy-
ing (3.5.14), using Itô’s formula, we obtain

ψ(x) = Eṽ
x

[∫ ∞

0
e−αtcṽ(Xt) dt

]
= inf

U∈U
EU

x

[∫ ∞

0
e−αt c̄(Xt,Ut) dt

]
. (3.5.15)

However, (3.5.15) implies that ψ = Vα and that ṽ is α-discounted optimal. It remains
to show that if v̂ ∈ Usd is α-discounted optimal then it satisfies (3.5.11). Indeed, if
v̂ ∈ Usd is α-discounted optimal then

Vα(x) = Ev̂
x

[∫ ∞

0
e−αtcv̂(Xt) dt

]
.

Therefore, by Corollary A.3.6, Vα satisfies

Lv̂Vα + cv̂ = αVα in Rd . (3.5.16)

Let

h(x) := Lv̂Vα(x) + cv̂(x) −min
u∈U

[LuVα(x) + c(x, u)
]
, x ∈ Rd . (3.5.17)

For R > 0, let v̂′ ∈ Usd be a control that attains the minimum in (3.5.17) in BR, and
agrees with v̂ in Bc

R. By (3.5.16) – (3.5.17), with hR := h IBR ,

Lv̂′Vα − αVα = −cv̂′ − hR in Rd .

We claim that h ∈ L∞(BR). Indeed, since Vα and cv̂ are bounded by Lemma A.2.5
and (3.5.16), it follows that Vα is bounded in W 2,p(BR) for any p ∈ (1,∞). Thus by
the continuity of the embedding W 2,p(BR) ↪→ C1,r(BR) for p > d and r ≤ 1 − d

p
(Theorem A.2.15), ∇Vα is bounded in BR. In turn, by (3.5.17),

h(x) =
d∑

i=1

(
bi

v̂(x) − bi
v̂′(x)

)∂Vα

∂xi
+

(
cv̂(x) − cv̂′ (x)

)
,

and it follows that h is bounded in BR.
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Thus, by Corollary A.3.6,

Vα(x) = Ev̂′
x

[∫ ∞

0
e−αtcv̂′ (Xt) dt

]
+ Ev̂′

x

[∫ ∞

0
e−αthR(Xt) dt

]
≥ Vα(x) +

∫ ∞

0
e−αt Ev̂′

x
[
hR(Xt)

]
dt , x ∈ Rd . (3.5.18)

By Theorem A.3.5 and (3.5.18), we obtain
∥∥∥h

∥∥∥
L1(BR)

= 0. Since R > 0 was arbitrary,

h = 0 a.e. in Rd, and (3.5.17) shows that v̂ satisfies (3.5.11). �

Definition 3.5.7 Let V ∈ C2(Rd). We say that a function v : Rd →P(U) is a mea-
surable selector from the minimizer minu∈U [LuV(x) + c(x, u)] if v is Borel measur-
able and satisfies

LvV(x) + cv(x) = min
u∈U

[LuV(x) + c(x, u)
]
.

In other words, v ∈ Usm. Since the map (x, u) �→ bi(x, u)∂iV(x) + c(x, u) is contin-
uous and locally Lipschitz in its first argument, it is well known that there always
exists such a selector v ∈ Usd and that x �→ bi

v(x)∂iV(x) + cv(x) is locally Lipschitz
continuous.

Remark 3.5.8 If c is not bounded, then Vα still satisfies (3.5.10), provided of course
that Vα is finite. Proceed as in the proof of Theorem 3.5.6. Observe that in estab-
lishing (3.5.13) we did not use the hypothesis that c is bounded. Let v ∈ Usd be a
measurable selector from the minimizer in (3.5.13). Then for any R > 0,

ϕR(x) ≤ Ev
x

[∫ τR

0
e−αtcv(Xt) dt

]
≤ ψ(x) , x ∈ BR . (3.5.19)

Taking limits as R → ∞ in (3.5.19), since ϕR ↑ ψ, we obtain ψ = Jv
α. On the

other hand, since ϕR ≤ Vα, ψ ≤ Vα. Thus ψ = Vα. Since, by the strong maximum
principle, any nonnegative solution ψ of (3.5.13), satisfies ϕR(x) ≤ ψ, it follows that
Vα is the minimal nonnegative solution of (3.5.10). The rest of the conclusions of
Theorem 3.5.6 also hold.

3.6 The HJB equation under a near-monotone assumption

In this section, we study the Hamilton–Jacobi–Bellman (HJB) equation under As-
sumption 3.4.2 and characterize the optimal stationary Markov control in terms of
its solution. For a stable stationary Markov control v, let

�v :=
∫
Rd

cv(x) ηv(dx) ,

where ηv is the unique invariant probability measure corresponding to v, and

�∗ := inf
v∈Ussd

�v . (3.6.1)
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In view of the existence results in Section 3.4, the infimum in (3.6.1) is attained in
Ussd and the minimizing control is optimal.

We follow the vanishing discount approach and derive the HJB equation for the
ergodic criterion by taking the limit of the HJB equation for the discounted crite-
rion as the discount factor approaches zero. The intuition is guided by the fact that,
under the near-monotone assumption, all accumulation points as α ↓ 0 of the α-
discounted occupation measures

{
ξvα

x,α
}
, defined in Lemma 2.5.3, corresponding to

a family {vα : α > 0} ⊂ Usm of α-discounted optimal controls, are optimal er-
godic occupation measures. This of course implies that all accumulation points of
α-discounted optimal stationary Markov controls as α ↓ 0 are stable controls. To
prove this claim, suppose that (µ, v̂) ∈ P(R̄d × U) × Usm is an accumulation point
of

{
(ξvα

x,α, vα) : α ∈ (0, 1)
}

as α ↓ 0. Decomposing µ = δµ′ + (1 − δ)µ′′, with
µ′ ∈P(Rd × U) and µ′′ ∈P({∞} × U), it follows by the near-monotone hypothesis
that δ > 0. Using Itô’s formula, we have

e−αt Evα
x

[
f (Xt)

] − f (x) =
∫ t

0
e−αs Evα

x
[Lvα f (Xs) − α f (Xs)

]
ds ∀ f ∈ C . (3.6.2)

Taking limits in (3.6.2) as t → ∞, we obtain∫
Rd×U

(Lu f (z) − α f (z)
)
ξvα

x,α(dz, du) + α f (x) = 0 ,

and letting α ↓ 0 along the convergent subsequence yields
∫
Lu f (x, u) µ′(dx, du) = 0

for all f ∈ C , which implies that µ′ ∈ G . Therefore
∫

c dµ′ ≥ �∗. At the same
time one can show, using a Tauberian theorem, that lim supα↓0

∫
c dξvα

x,α ≤ �∗, and it
follows as in the proof of Theorem 3.4.5 that δ = 1, thus establishing the claim.

Observe that when the discount factor vanishes, i.e., when α → 0, typically
Vα(x) → ∞ for each x ∈ Rd. For the asymptotic analysis we fix a point, say 0 ∈ Rd,
and define

V̄α(x) := Vα(x) − Vα(0) .

Then, by (3.5.10),

min
u∈U

[
LuV̄α(x) + c(x, u)

]
= αV̄α(x) + αVα(0) . (3.6.3)

Provided the family {V̄α : α > 0} is equicontinuous and uniformly bounded on
compact subsets of Rd and αVα(0) is also bounded for α > 0, taking limits in (3.6.3),
and with V and � denoting the limits of V̄α and αVα(0), respectively, we obtain

min
u∈U

[LuV(x) + c(x, u)
]
= � . (3.6.4)

This equation is referred to as the HJB equation for the ergodic control problem.
This asymptotic analysis is carried out in detail under both Assumptions 3.4.2 and
3.4.3. The scalar � is the optimal cost and a measurable selector from the minimizer
in (3.6.4) yields an optimal control.
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Note that if �v < ∞ for some v ∈ Ussm, then integrating Jv
α with respect to ηv

and using Fubini’s theorem we obtain
∫

Jv
α dηv = α−1�v. It follows that since ηv has

positive density, Jv
α must be a.e. finite, and being continuous, it must be finite at each

x ∈ Rd (see Theorem A.3.7).

3.6.1 Technical results

We proceed with some technical lemmas that play a crucial role in the analysis. For
� > inf

Rd×U
c, define

K(�) :=
{
x ∈ Rd : min

u∈U
c(x, u) ≤ �

}
.

Lemma 3.6.1 Let α > 0. Suppose v ∈ Usm and v̂ ∈ Ussm are such that �v̂ < ∞, and

Jv
α(x) ≤ Jv̂

α(x) ∀x ∈ Rd , (3.6.5a)

�v̂ < lim inf
|x|→∞

min
u∈U

c(x, u) . (3.6.5b)

Then

inf
K(�v̂)

Jv
α = inf

Rd
Jv
α ≤

�v̂

α
.

Proof Since U is compact, the map x �→ minu∈U c(x, u) is continuous. Therefore
K(�v̂) is closed, and by (3.6.5b) it is also bounded, hence compact. In fact, (3.6.5b)
implies thatK(�v̂+ε) is bounded and hence compact for ε > 0 sufficiently small. In-
tegrating both sides of the inequality in (3.6.5a) with respect to ηv̂, and using Fubini’s
theorem, we obtain

inf
Rd

Jv
α ≤ inf

Rd
Jv̂
α ≤

∫
Rd

Jv̂
α(x) ηv̂(dx) =

�v̂

α
. (3.6.6)

Choose ε > 0 such that K(�v̂ + 2ε) is compact and let x′ ∈ Rd \ K(�v̂ + 2ε) be an
arbitrary point. Select R > 0 such that

BR ⊃ K(�v̂ + 2ε) ∪ {x′} ,

and let τ′ = τ
(K c(�v̂ + ε)

)
, and as usual, τR ≡ τ(BR). Applying the strong Markov

property relative to τ′ ∧ τR, letting R→ ∞, and making use of (3.6.6), we obtain

Jv
α(x′) ≥ �v̂ + ε

α
Ev

x′

[
1 − e−ατ′

]
+ Ev

x′

[
e−ατ′

]
inf
Rd

Jv
α

≥ inf
Rd

Jv
α +

ε

α
Ev

x′

[
1 − e−ατ′

]
. (3.6.7)

The inequality

Ev
x′

[
1 − e−ατ′

]
≥

(
1 − e−αC

)
Pv

x′ (τ
′ > C) ,

which is valid for any constant C > 0 together with Theorem 2.6.1 (c) show that
Ev

x′
[
1 − e−ατ′ ] is bounded away from zero in K c(�v̂ + 2ε). Therefore (3.6.6) and

(3.6.7) imply that Jv
α attains its minimum in K(�v̂ + ε) for arbitrarily small ε > 0,

thus completing the proof. �
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Definition 3.6.2 Let κ : (0,∞) → (0,∞) be a positive function that serves as a
parameter. Let Γ(κ,R0), R0 > 0, denote the class of all pairs (ϕ, α), with α ∈ [0, 1]
and ϕ a nonnegative function that belongs to W 2,p

loc (Rd), p ∈ (1,∞), and satisfies

Lvϕ − αϕ = g in Rd ,

inf
BR0

ϕ = inf
Rd

ϕ ,
(3.6.8)

for some v ∈ Usm and g ∈ L∞loc(Rd), such that
∥∥∥g

∥∥∥
L∞(BR)

≤ κ(R) for all R > 0.

Lemma 3.6.3 For each R > R0 and p > 1, there exist constants CΓ(R) and C̃Γ(R, p),
which depend only on d, κ and R0, such that, for all (ϕ, α) ∈ Γ(κ,R0),

osc
B2R

ϕ ≤ CΓ(R)

(
1 + α inf

BR0

ϕ

)
(3.6.9a)

∥∥∥ϕ − ϕ(0)
∥∥∥
W 2,p(BR)

≤ C̃Γ(R, p)

(
1 + α inf

BR0

ϕ

)
. (3.6.9b)

Proof Let (ϕ, α) ∈ Γ(κ,R0) satisfy (3.6.8). By Lemma A.2.10, ϕ ∈ W 2,p
loc (Rd) for all

p > 1. Fix R > R0 and let

g̃ := α
(
g − 2κ(4R)

)
, ϕ̃ := 2κ(4R) + αϕ .

Then g̃ < 0 in B4R, and ϕ̃ satisfies

Lvϕ̃(x) − αϕ̃(x) = g̃(x) in B4R .

We obtain ∥∥∥g̃
∥∥∥

L∞(B4R)
≤ α

(
2κ(4R) +

∥∥∥g
∥∥∥

L∞(B4R)

)
≤ 3α

(
2κ(4R) −

∥∥∥g
∥∥∥

L∞(B4R)

)
≤ 3|B4R|−1

∥∥∥g̃
∥∥∥

L1(B4R)
.

Hence g̃ ∈ K(3, B4R) (see Definition A.2.11). Therefore, by Theorem A.2.13 and
(3.6.8), there exists a constant C̃H such that

sup
B3R

ϕ̃ ≤ C̃H inf
BR

ϕ̃ ,

which implies that

α sup
B3R

ϕ ≤ C̃H

(
2κ(4R) + α inf

BR

ϕ

)
. (3.6.10)

Let ψ ∈ W 2,p
loc (B3R) ∩ C(B̄3R

)
be the solution of the Dirichlet problem

Lvψ = 0 in B3R , ψ = ϕ on ∂B3R .

Then

Lv(ϕ − ψ) = αϕ + g in B3R ,
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and by Theorem A.2.1 and (3.6.10), there exists a constant Ĉa such that

sup
B3R

|ϕ − ψ| ≤ Ĉa
(
1 + αϕ(x̂)

)
, (3.6.11)

where x̂ ∈ BR0 is any point where ϕ attains its infimum. Since ψ is Lv-harmonic in
B3R, it cannot have a minimum in B3R, and as a result the function ψ(x) − ϕ(x̂) is a
nonnegative Lv-harmonic function in B3R. By Harnack’s inequality (Theorem A.2.4)
and (3.6.11), for some constant CH ,

ψ(x) − ϕ(x̂) ≤ CH
(
ψ(x̂) − ϕ(x̂)

)
≤ CHĈa

(
1 + αϕ(x̂)

) ∀x ∈ B2R . (3.6.12)

Thus by (3.6.11) and (3.6.12),

osc
B2R

ϕ ≤ sup
B2R

(ϕ − ψ) + sup
B2R

ψ − ϕ(x̂)

≤ Ĉa(1 +CH)
(
1 + αϕ(x̂)

)
. (3.6.13)

Let ϕ̄ := ϕ − ϕ(0). Then

Lvϕ̄ − αϕ̄ = g + αϕ(0) in B3R .

Applying Lemma A.2.5, with D = B2R and D′ = BR, relative to the operator Lv − α,
we obtain ∥∥∥ϕ̄∥∥∥

W 2,p(BR)
≤ C0

(∥∥∥ϕ̄∥∥∥
Lp(B2R)

+
∥∥∥Lvϕ̄ − αϕ̄

∥∥∥
Lp(B2R)

)
≤ C0

∣∣∣B2R

∣∣∣1/p

(
osc
B2R

ϕ + κ(2R) + αϕ(0)

)
. (3.6.14)

Since

ϕ(0) ≤ osc
BR0

ϕ + inf
BR0

ϕ ,

using (3.6.13) in (3.6.14) yields (3.6.9b). �

Suppose that
{
(ϕn, αn) : n ∈ N} ⊂ Γ(κ,R0) is a sequence satisfying∣∣∣∣inf

BR0

{αnϕn}
∣∣∣∣ ≤ M0 ∀n ∈ N , (3.6.15)

for some M0 ∈ R. Set ϕ̄n = ϕn−ϕn(0). By Lemma 3.6.3, {ϕ̄n} is bounded in W 2,p(BR).
The Sobolev imbedding theorem then implies that {ϕ̄n} contains a subsequence which
converges uniformly on compact subsets of Rd. We combine Lemmas 3.5.4 and 3.6.3
to obtain useful convergence criteria for α-discounted value functions and the asso-
ciated HJB equations.

Lemma 3.6.4 Suppose
{
(ϕn, αn)

}
n∈N ⊂ Γ(κ,R0), for some R0 > 0, satisfies (3.6.15)

for some M0 > 0, and αn → 0 as n → ∞. Moreover, suppose that either of the two
pairs of conditions (A1)–(A2) or (B1)–(B2) hold.
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(A1) Lvϕn − αnϕn = gn in Rd for some v ∈ Usm.

(A2) gn → g in L∞(BR) for every R > 0.

(B1) minu∈U
[Luϕn(x) + cn(x, u)

]
= αnϕn(x) + hn(x), x ∈ Rd.

(B2) cn( · , u) → c( · , u) and hn → h in C0,1(BR) for every R > 0, uniformly over
u ∈ U.

Define ϕ̄n := ϕn − ϕn(0). Then there exists a subsequence
{
ϕ̄kn

}
which converges in

C1,r(BR), r < 1, to some function ψ for every R > 0, and such that αϕkn (0) converges
to some constant � ≤ M0. If (A1) – (A2) hold, then ψ ∈ W 2,p

loc (Rd) for any p ∈ (1,∞),
and satisfies

Lvψ = g + � in Rd . (3.6.16)

On the other hand, under (B1)–(B2), ψ ∈ C2,r
loc(Rd) for any r < 1, and satisfies

min
u∈U

[Luψ(x) + c(x, u)
]
= � + h(x) . (3.6.17)

In either case, we have

inf
BR0

ψ = inf
Rd

ψ ≥ −CΓ(R0)(1 + M0) , (3.6.18)

where CΓ is as in Lemma 3.6.3.

Proof Since

αnϕn(0) ≤ αn osc
BR0

ϕn + αn inf
BR0

ϕn , (3.6.19)

it follows by (3.6.9a) and (3.6.15) that the sequence
{
αnϕn(0)

}
is bounded. Select any

subsequence
{
k̂n

} ⊂ N over which it converges. By (3.6.9a), (3.6.15), and (3.6.19),
the limit does not exceed M0. By (3.6.9b) and the assumptions of the lemma, the
sequence

{
ϕ̄k̂n

}
satisfies the hypotheses of Lemma 3.5.4 on each ball BR (see also

Remark 3.5.5). Convergence over some subsequence
{
kn

} ⊂ {
k̂n

}
, on each bounded

domain, then follows by Lemma 3.5.4 and the limit satisfies (3.6.16) or (3.6.17),
accordingly. The standard diagonal procedure yields convergence in Rd. Next, for
each x ∈ Rd,

ψ(x) = lim
n→∞

ϕ̄kn (x)

≥ − lim sup
n→∞

(
ϕkn (0) − inf

Rd
ϕkn

)
+ lim inf

n→∞

(
ϕkn (x) − inf

Rd
ϕkn

)
≥ − lim sup

n→∞

(
osc
BR0

ϕkn

)
,

and the inequality in (3.6.18) follows by (3.6.9a) and (3.6.15). Lastly, the equality in
(3.6.18) easily follows by taking limits as n→ ∞ in

ψ(x) − inf
BR0

ψ ≥ ψ(x) − ϕ̄kn (x) +
(
ϕkn (x) − inf

BR0

ϕkn

)
+ inf

BR0

(
ϕ̄kn − ψ

)
,
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and utilizing the uniform convergence of ϕkn on BR0 , to obtain

ψ(x) − inf
BR0

ψ ≥ lim inf
n→∞

(
ϕkn (x) − inf

BR0

ϕkn

)
≥ 0 ∀x ∈ Rd ,

thus completing the proof. �

Let vα ∈ Usm be an optimal control for the α-discounted criterion. As we have
shown in Section 3.4, under the near-monotone hypothesis there exists v∗ ∈ Ussd

which is optimal. Clearly Vα = Jvα
α ≤ Jv∗

α for all α > 0. Thus by Lemma 3.6.1,

inf
K(�∗)

Vα = inf
Rd

Vα ≤
�∗

α
∀α > 0 . (3.6.20)

By (3.6.20), Lemma 3.6.3, and the remark in the paragraph preceding Lemma 3.6.4,
it follows that {Vα} is equicontinuous on bounded subsets of Rd, when α lies in a
bounded interval. These properties of the optimal α-discounted cost function under
the near-monotone hypothesis are summarized in the corollary that follows.

Corollary 3.6.5 Under Assumption 3.4.2, (3.6.20) holds. In addition, for any R > 0
and α0 > 0, the family {Vα : α < α0} is equicontinuous on BR and there exists a
constant δ0 = δ0(R) such that

Vα(x) <
�∗

α
+ δ0 ∀x ∈ BR , ∀α ∈ (0, α0) .

3.6.2 The HJB equation

The basic theorem characterizing optimal controls with respect to the ergodic crite-
rion via the HJB equation follows.

Theorem 3.6.6 Let Assumptions 3.4.2 and 3.5.1 hold. There exists V ∈ C2(Rd) and
a constant � ∈ R such that

min
u∈U

[LuV(x) + c(x, u)
]
= � ∀x ∈ Rd , (3.6.21a)

� ≤ �∗ , V(0) = 0 and inf
Rd

V > −∞ . (3.6.21b)

Proof Assume at first that c is bounded in Rd × U. By Theorem 3.5.6, Vα satisfies
(3.5.10). Select R0 such that K(�∗) ⊂ BR0 . By (3.6.20), the hypotheses (B1)–(B2) of
Lemma 3.6.4 are met for any sequence (αn,Vαn ) with αn → 0. Thus there exists a
pair (V, �) satisfying (3.6.21a) – (3.6.21b), and, moreover, V is the uniform limit (in
each bounded domain of Rd) of Vαn − Vαn (0) over some sequence αn → 0, while � is
the corresponding limit of αnVαn (0).

Now drop the assumption that the cost function is bounded. We construct a se-
quence of bounded near-monotone cost functions cn : Rd × U → R+, n ∈ N, as
follows. Let ε0 > 0 satisfy

lim
|x|→∞

min
u∈U

c(x, u) > �∗ + ε0 .
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With d(x, B) denoting the Euclidean distance of the point x ∈ Rd from the set B ⊂ Rd,
and Bn ⊂ Rd denoting the ball of radius n, we define

cn(x, u) =
d(x, Bc

n+1) c(x, u) + d(x, Bn) (�∗ + ε0)

d(x, Bn) + d(x, Bc
n+1)

.

Note that each cn is Lipschitz in x, and by the near-monotone property of c, we have
cn ≤ cn+1 ≤ c for all n larger than some finite n0. In addition, cn → c. Observe also
that cn has a continuous extension in R̄d × U by letting cn(∞) = �∗ + ε0. Let �∗n be
the optimal ergodic cost relative to cn. We first establish that �∗n → �∗ as n → ∞.
Since cn is monotone, �∗n ↑ �̂. Let πn, n ∈ N, denote the ergodic occupation measure
corresponding to an optimal vn ∈ Ussm relative to cn. Let π̂ ∈ P(R̄d × U) be any
limit point of {πn}, and denote again by {πn} a subsequence converging to it. By
Lemma 3.2.11,

π̂ = δ π̂′ + (1 − δ) π̂′′

for some π̂′ ∈ G , π̂′′ ∈ P({∞} × U), and δ ∈ [0, 1]. Since cn ≤ cn+k ≤ c for all
n ≥ n0, we have ∫

R×U
cn dπn+k ≤

∫
R×U

cn+k dπn+k ≤ �∗ . (3.6.22)

Taking limits as k → ∞ in (3.6.22) and using the fact that cn is continuous in R̄d ×U
and πn → π̂ ∈P(R̄d × U), we obtain

δ

∫
R×U

cn dπ̂′ + (1 − δ)(�∗ + ε0) ≤ �̂ ≤ �∗ . (3.6.23)

Next, taking limits in (3.6.23) as n→ ∞, and using monotone convergence,

δ

∫
R×U

c dπ̂′ + (1 − δ)(�∗ + ε0) ≤ �̂ ≤ �∗ . (3.6.24)

Since by the definition of �∗,
∫

c dπ̂′ ≥ �∗, (3.6.24) implies, all at once, that δ = 1,∫
c dπ̂ = �∗ and �̂ = �∗. This concludes the proof that �∗n → �∗.
Continuing, let (Vn, �n) ∈ C2(Rd) be the solution to the HJB equation correspond-

ing to the bounded cost cn, satisfying infRd Vn > −∞ and Vn(0) = 0, which was
constructed in the first part of the proof. By (3.6.18) of Lemma 3.6.4,

inf
BR0

Vn = inf
Rd

Vn ≥ −CΓ(R0)(1 + �∗)

(in fact, Vn attains its infimum in K(�∗)). Also, Vn satisfies assumption (B2) of
Lemma 3.6.4 with α ≡ 0 and hn ≡ �n. Observe that (3.6.15) holds trivially if αn = 0.
Therefore the family {(Vn, 0)} belongs to Γ(κ,R0) and satisfies the hypotheses (B1)–
(B2) of Lemma 3.6.4. Convergence of Vn − Vn(0) (over some subsequence) to a
limit satisfying (3.6.21a) follows. Note that the constant � arises here as a limit point
of {�n}, and hence � ≤ �∗. Also, V is bounded below in Rd by (3.6.18), and thus
(3.6.21b) holds. This completes the proof. �
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Remark 3.6.7 Equation (3.6.21a) is usually referred to as the HJB equation for
the ergodic control problem. Note that (3.6.21a) is under-determined, in the sense
that it is a single equation in two variables, V and �. The function V is called the
cost potential and for an appropriate solution pair (V, �) of (3.6.21a) � is the optimal
ergodic cost �∗, as we show later.

Lemma 3.6.8 Let Assumption 3.4.2 hold. Let (V, �) ∈ C2(Rd) × R be a solution of
(3.6.21a), and suppose that V is bounded below in Rd. Let v ∈ Usm satisfy, a.e. in Rd,

min
u∈U

⎡⎢⎢⎢⎢⎢⎢⎣ d∑
i=1

bi(x, u)
∂V
∂xi

(x) + c(x, u)

⎤⎥⎥⎥⎥⎥⎥⎦ = d∑
i=1

bi
v(x)

∂V
∂xi

(x) + cv(x) . (3.6.25)

Then

(i) v is stable;

(ii) � ≥ �∗;

(iii) if � = �∗, then v is optimal.

Proof Since V satisfies LvV ≤ −ε for some ε > 0 outside some compact set and is
bounded below, Theorem 2.6.10 (f) asserts that v is stable.

By (3.6.21a) and (3.6.25), for R > 0 and |x| < R,

Ev
x
[
V(Xt∧τR )

] − V(x) = Ev
x

[∫ t∧τR

0

[
� − cv(Xs)

]
ds

]
.

Therefore

Ev
x

[∫ t∧τR

0

[
� − cv(Xs)

]
ds

]
≥ inf

y∈Rd
V(y) − V(x) .

Since v is stable, letting R→ ∞, we have

�t − Ev
x

[∫ t

0
cv(Xs) ds

]
≥ inf

y∈Rd
V(y) − V(x) .

Next, dividing by t and letting t → ∞, we obtain

� ≥ lim sup
t→∞

1
t
Ev

x

[∫ t

0
cv(Xs) ds

]
≥

∫
Rd

cv(x) ηv(dx) = �v ≥ �∗ .

Thus, if � = �∗, the third claim follows. �

It follows from Lemma 3.6.8 that �∗ is the smallest value of � for which (3.6.21a)
admits a solution V that is bounded below in Rd. It is also the case that, provided
(V, �) satisfies (3.6.21a) – (3.6.21b), (3.6.25) is a sufficient condition for optimality.
This condition is also necessary, as we prove later. We also show that (3.6.21a) has
a unique solution (V, �∗), such that V is bounded below in Rd. Therefore there exists
a unique solution satisfying (3.6.21a) – (3.6.21b). We need the following stochastic
representation of V .
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Lemma 3.6.9 Let Ũssd :=
{
v ∈ Ussd : �v < ∞}

, and τ̄r = τ(Bc
r), r > 0. Then, under

Assumption 3.4.2,

(a) if (V, �) ∈ C2(Rd) × R is any pair satisfying (3.6.21a) – (3.6.21b), then

V(x) ≥ lim sup
r↓0

inf
v∈Ussd

Ev
x

[∫ τ̄r

0

(
cv(Xt) − �∗

)
dt

]
, x ∈ Rd ; (3.6.26)

(b) if in addition to satisfying (3.6.21a) – (3.6.21b), V is the limit of Vαn − Vαn (0)
over some sequence αn → 0, then

V(x) = lim
r↓0

inf
v∈Ũssd

Ev
x

[∫ τ̄r

0

(
cv(Xt) − �∗

)
dt

]
, x ∈ Rd . (3.6.27)

Proof For x ∈ Rd, choose R > r > 0 such that r < |x| < R. Let v∗ ∈ Usm satisfy
(3.6.25). By (3.6.21b) and Lemma 3.6.8 (ii), � = �∗. Using (3.6.21a) and Dynkin’s
formula, we obtain

V(x) = Ev∗
x

[∫ τ̄r∧τR

0

(
cv∗ (Xt) − �∗

)
dt + V(Xτ̄r ) I{τ̄r < τR}

+ V(XτR ) I{τ̄r ≥ τR}
]
. (3.6.28)

Since by Lemma 3.6.8, v∗ is stable, Ev∗
x [τ̄r] < ∞. In addition, V is bounded below in

Rd. Thus

lim inf
R→∞

Ev∗
x
[
V(XτR ) I{τ̄r ≥ τR}

] ≥ 0 ∀x ∈ Rd .

Hence, letting R→ ∞ in (3.6.28), and using Fatou’s lemma, we obtain

V(x) ≥ Ev∗
x

[∫ τ̄r

0

(
cv∗(Xt) − �∗

)
dt + V(Xτ̄r )

]
≥ inf

v∈Ũssd

Ev
x

[∫ τ̄r

0

(
cv(Xt) − �∗

)
dt

]
+ inf

∂Br

V .

Next, letting r → 0 and using the fact that V(0) = 0, yields

V(x) ≥ lim sup
r↓0

inf
v∈Ũssd

Ev
x

[∫ τ̄r

0

(
cv(Xt) − �∗

)
dt

]
.

Now suppose V = limn→∞
(
Vαn−Vαn (0)

)
. We need to prove the reverse inequality. We

proceed as follows. Let vα ∈ Usd be an α-discounted optimal control. For v ∈ Ũssd,
define the admissible control U ∈ U by

Ut =

⎧⎪⎪⎪⎨⎪⎪⎪⎩v if t ≤ τ̄r ∧ τR ,

vα otherwise.



122 Nondegenerate Controlled Diffusions

Since U is in general sub-optimal for the α-discounted criterion, using the strong
Markov property, we obtain

Vα(x) ≤ EU
x

[∫ ∞

0
e−αtc(Xt,Ut) dt

]

= Ev
x

[∫ τ̄r∧τR

0
e−αtcv(Xt) dt + e−α(τ̄r∧τR)Vα(Xτ̄r∧τR )

]
. (3.6.29)

Since v ∈ Ũssd, we have infRd {αJv
α} ≤ �v < ∞. Hence, by Theorem A.3.7, Jv

α is a.e.
finite. Since Vα ≤ Jv

α, we have, by Remark A.3.8,

Ev
x

[
e−ατR Vα(XτR ) I {τ̄r ≥ τR}

]
≤ Ev

x
[
e−ατR Jv

α(XτR )
] −−−−→

R→∞
0 . (3.6.30)

Decomposing the term e−α(τ̄r∧τR)Vα(Xτ̄r∧τR ) in (3.6.29), then taking limits as R→ ∞
applying (3.6.30), and subtracting Vα(0) from both sides of the inequality, we obtain

Vα(x) − Vα(0) ≤ Ev
x

[∫ τ̄r

0
e−αtcv(Xt) dt + e−ατ̄r Vα(Xτ̄r ) − Vα(0)

]

= Ev
x

[∫ τ̄r

0
e−αt(cv(Xt) − �∗

)
dt

]
+ Ev

x

[
Vα(Xτ̄r ) − Vα(0)

]
+ Ev

x

[
α−1(1 − e−ατ̄r

)[
�∗ − αVα(Xτ̄r )

]]
. (3.6.31)

By Theorem 3.6.6 and Lemma 3.6.8 (ii), we have limα↓0 αVα(0) = � = �∗. Hence

sup
Br

∣∣∣�∗ − αVα

∣∣∣→ 0 as α→ 0

by Lemma 3.6.3. We also have the bound

Ev
x

[
α−1(1 − e−ατ̄r

)] ≤ Ev
x[τ̄r] ∀α > 0 ,

and hence letting α→ 0 along the subsequence {αn} in (3.6.31), yields

V(x) ≤ Ev
x

[∫ τ̄r

0

(
cv(Xt) − �∗

)
dt + V(Xτ̄r )

]
.

Since V(0) = 0,

lim
r↓0

sup
v∈Ũssd

Ev
x
[
V(Xτ̄r

)
] = 0 .

Therefore, we obtain

V(x) ≤ lim inf
r↓0

inf
v∈Ũssd

Ev
x

[∫ τ̄r

0

(
cv(Xt) − �∗

)
dt

]
,

and the proof is complete. �

Lemma 3.6.9 implies, in particular, that Vα − Vα(0) has a unique limit as α → 0.
Next we show that the solution (V, �) of (3.6.21a) which satisfies (3.6.21b) is unique,
and that (3.6.25) is necessary for optimality.
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Theorem 3.6.10 Suppose that Assumptions 3.4.2 and 3.5.1 hold. Then there exists
a unique pair (V, �) in W 2,p

loc (Rd) × R, 1 < p < ∞, satisfying (3.6.21a) – (3.6.21b).
Also, a stable stationary Markov control v is optimal if and only if it satisfies (3.6.25)
a.e.

Proof Suppose (Ṽ , �̃) ∈ W 2,p
loc (Rd)×R, 1 < p < ∞, satisfy (3.6.21a) – (3.6.21b). Let

ṽ be a stationary Markov control satisfying, a.e. in Rd,

min
u∈U

⎡⎢⎢⎢⎢⎢⎢⎣ d∑
i=1

bi(x, u)
∂Ṽ
∂xi

(x) + c(x, u)

⎤⎥⎥⎥⎥⎥⎥⎦ = d∑
i=1

bi
ṽ(x)

∂Ṽ
∂xi

(x) + cṽ(x) . (3.6.32)

By Lemma 3.6.8, ṽ is stable and �̃ = �∗. Let (V, �∗) be the solution pair obtained in
Theorem 3.6.6. By Lemma 3.6.9, Ṽ satisfies (3.6.26), and V satisfies (3.6.27). Thus
V − Ṽ ≤ 0 in Rd. By (3.6.21a), Lṽ(V − Ṽ) ≥ 0. Since V(0) − Ṽ(0) = 0, then by
the strong maximum principle, V = Ṽ a.e. in Rd. This establishes uniqueness. To
complete the proof, it suffices to show that if ṽ ∈ Ussd is optimal, then (3.6.25) holds.
By Corollary 3.6.5, the α-discounted cost Jṽ

α = Vα satisfies

inf
K(�∗)

Jṽ
α = inf

Rd
Jṽ
α ≤

�∗

α
∀α > 0 . (3.6.33)

Thus Jṽ
α is a.e. finite, and Theorem A.3.7 asserts that it is a solution to

Lṽ Jṽ
α + cṽ = αJṽ

α in Rd . (3.6.34)

The hypotheses (A1)–(A2) of Lemma 3.6.4 are clearly satisfied for (Jṽ
α, α). Observe

that (3.6.34) conforms to case (A1) of Lemma 3.6.4 with gn ≡ cṽ. Hence, over some
subsequence {αn},

Jṽ
αn
− Jṽ

αn
(0)→ Ṽ , αnJṽ

αn
(0)→ �̃ ,

and the pair (Ṽ , �̃) ∈ W 2,p
loc (Rd) × Rd, for any p ∈ (1,∞), and satisfies

LṽṼ + cṽ = �̃ in Rd and inf
Rd

Ṽ > −∞ . (3.6.35)

By (3.6.33), �̃ ≤ �∗. Also since Ṽ is bounded below, following the argument in the
proof of Lemma 3.6.8 we obtain �̃ ≥ �ṽ. Thus �̃ = �∗. Now we use the method
in the proof of the second part of Lemma 3.6.9. Replacing Vα and v with Jṽ

α and
ṽ, respectively, in (3.6.29), the inequality becomes equality, and following the same
steps, we obtain

Ṽ(x) = lim
r↓0
Eṽ

x

[∫ τ̄r

0

(
cṽ(Xt) − �∗

)
dt

]
, x ∈ Rd . (3.6.36)

If V denotes the solution obtained in Theorem 3.6.6, then by Lemma 3.6.9 and
(3.6.36), V− Ṽ ≤ 0. Also, by (3.6.21a) and (3.6.35),Lṽ(V− Ṽ) ≥ 0, and we conclude
as earlier that V = Ṽ a.e. in Rd. Thus Ṽ satisfies (3.6.21a) and ṽ satisfies (3.6.32).
This completes the proof. �
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Remark 3.6.11 The restricted (i.e., under the condition � ≤ �∗) uniqueness ob-
tained in Theorem 3.6.10 cannot be improved upon in general. In Section 3.8 we
give an example which exhibits a continuum of solutions of (3.6.21a) for � > �∗.

3.7 The stable case

In this section we study the ergodic control problem in the stable case, i.e., under
the assumption that Usm is uniformly stable. Much of the analysis relies on some
sharp equicontinuity estimates for the resolvents of the process under stable controls
which are obtained in Theorem 3.7.4. Theorem 3.7.6 extends these results even fur-
ther: without assuming that all stationary Markov controls are stable it asserts that
as long as �∗ < ∞, then the family {Vα − Vα(0) : α ∈ (0, 1)} is equicontinuous
and equibounded. One approach to the ergodic control problem is to express the
running cost functional as the difference of two near-monotone functions and then
utilize the results obtained from the study of the near-monotone case [28, 39, 65].
This approach limits the study to bounded running costs. The equicontinuity results
in Theorem 3.7.4 and Theorem 3.7.6 facilitate a direct treatment of the stable case
which extends to unbounded running costs (see Theorems 3.7.11 and 3.7.14).

3.7.1 A lemma on control Lyapunov functions

We consider the following growth assumption on the running cost c.

Assumption 3.7.1 The cost c satisfies

sup
v∈Ussm

∫
Bc

R×U
(1 + c(x, u)) πv(dx, du) −−−−→

R→∞
0 . (3.7.1)

Assumption 3.7.1 simply states that 1 + c is uniformly integrable with respect to
{πv : v ∈ Ussm}. Note that if c ∈ Cb(Rd × U), Lemma 3.3.4 asserts that (3.7.1) is
equivalent to uniform stability of Ussm.

Let h ∈ C(Rd) be a positive function. We denote by O(h) the set of functions
f ∈ C(Rd) having the property

lim sup
|x|→∞

| f (x)|
h(x)

< ∞ , (3.7.2)

and by o(h) the subset of O(h) over which the limit in (3.7.2) is zero. We extend this
definition to functions on C(Rd × U) as follows: For h ∈ C(Rd × U), with h > 0,

g ∈ o(h) ⇐⇒ lim sup
|x|→∞

sup
u∈U

|g(x, u)|
h(x, u)

= 0 ,

and analogously for O(h).
Recall that τ̆r ≡ τ(Bc

r), r > 0, and the definition of C in Assumption A3.5.1 on
p. 107.
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Lemma 3.7.2 There exist a constant k0 > 0, and a pair of nonnegative, inf-compact
functions (V, h) ∈ C2(Rd) × C satisfying 1 + c ∈ o(h) and such that

LuV(x) ≤ k0 − h(x, u) , ∀(x, u) ∈ Rd × U (3.7.3)

if and only if (3.7.1) holds. Moreover,

(i) for any r > 0,

x �→ sup
v∈Ussm

Ev
x

[∫ τ̆r

0

(
1 + cv(Xt)

)
dt

]
∈ o(V) ; (3.7.4)

(ii) if ϕ ∈ o(V), then for any x ∈ Rd,

lim
t→∞

sup
v∈Ussm

1
t
Ev

x
[
ϕ(Xt)

]
= 0 , (3.7.5)

and

lim
R→∞

Ev
x
[
ϕ(Xt∧τR )

]
= Ev

x
[
ϕ(Xt)

] ∀v ∈ Ussm , ∀t ≥ 0 . (3.7.6)

Proof To show sufficiency, let

čv(x) := 1 +
∫
U

c(x, u) v(du | x) , v ∈ Ussm .

A theorem of Abel states that if
∑

n an is a convergent series of positive terms, and if
rn :=

∑
k≥n ak are its remainders, then

∑
n r−λn an converges for all λ ∈ (0, 1). There is

a counterpart of this theorem for integrals. Thus, if we define

ǧ(r) :=

(
sup

v∈Ussm

∫
Bc

r

čv(x) ηv(dx)

)−1/2

, r > 0 ,

it follows by (3.7.1) that∫
Rd

čv(x) ǧβ(|x|) ηv(dx) < ∞ ∀v ∈ Ussm , ∀β ∈ [0, 2) . (3.7.7)

Let

h(x, u) :=
(
1 + c(x, u)

)
ǧ(|x|) .

By (3.7.1), x �→ ǧ(|x|) is inf-compact, and it is straightforward to verify, using an
estimate analogous to (3.3.12), that it is also locally Lipschitz. Adopting the notation
in (2.3.13), we have hv(x) = čv(x) ǧ(|x|). Since by (3.7.7), the function čv(x) ǧβ(|x|),
β ∈ [0, 2), is integrable with respect to ηv for any v ∈ Usm, it follows by Corol-
lary 3.3.2 that the integrals are uniformly bounded, or in other words, that

sup
v∈Ussm

∫
Rd

hv(x) ǧβ(|x|) ηv(dx) < ∞ ∀β ∈ [0, 1) .

It then follows by Lemma 3.3.4 that there exists a nonnegative, inf-compact function
V ∈ C2(Rd) and a constant k0 > 0 which satisfy (3.7.3). To show necessity, suppose
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that (3.7.3) holds. By Lemma 3.3.4, the bound in (3.3.10) holds, and since we have
1 + c ∈ o(h), (3.7.1) follows. Next we prove (i). Define

g̃(r) := min
Bc

r

ǧ(|x|) = min
Bc

r×U

h(x, u)
1 + c(x, u)

, r > 0 .

Since 1 + c ∈ o(h), we obtain g̃(r) → ∞ as r → ∞. With R > 0 large enough so that
x ∈ BR, applying Dynkin’s formula to (3.7.3), we have

Ev
x
[V(Xτ̆r∧τR )

] −V(x) ≤ Ev
x

[∫ τ̆r∧τR

0

[
k0 − hv(Xt)

]
dt

]
(3.7.8)

for all v ∈ Ussm. Therefore

Ev
x

[∫ τ̆r∧τR

0
hv(Xt) dt

]
≤ V(x) + k0 E

v
x[τ̆r ∧ τR] . (3.7.9)

It is straightforward to show that supv∈Ussm
Ev

x[τ̆r] ∈ O(V). Indeed, if R0 > 0 is
large enough such that hv(x) − k0 ≥ 1 for all x ∈ Bc

R0
, then using the strong Markov

property and (3.7.8), we obtain

Ev
x[τ̆r] ≤ Ev

x

[∫ τ̆R0

0

[
hv(Xt) − k0

]
dt

]
+ sup

y∈∂BR0

Ev
y[τ̆r]

≤ V(x) + sup
v∈Ussm

sup
y∈∂BR0

Ev
y[τ̆r]

and the claim follows by Theorem 3.3.1. Therefore, taking limits as R → ∞ in
(3.7.9), we have

sup
v∈Ussm

Ev
x

[∫ τ̆r

0
hv(Xt) dt

]
∈ O(V) . (3.7.10)

For each x ∈ Bc
r and v ∈ Ussm, select the maximal radius ρv(x) satisfying

Ev
x

[∫ τ̆r

0
IBρv(x) (Xt)čv(Xt) dt

]
≤ 1

2
Ev

x

[∫ τ̆r

0
čv(Xt) dt

]
. (3.7.11)

Thus, by (3.7.10) – (3.7.11),

Ev
x

[∫ τ̆r

0
čv(Xt) dt

]
≤ 2Ev

x

[∫ τ̆r

0
IBc

ρv(x)
(Xt)čv(Xt) dt

]
≤ 2

g̃(ρv(x))
Ev

x

[∫ τ̆r

0
IBc

ρv(x)
(Xt)čv(Xt)ǧ(|Xt |) dt

]
≤ 2

g̃(ρv(x))
Ev

x

[∫ τ̆r

0
hv(Xt) dt

]
∈ O

(
V

g̃ ◦ ρv

)
. (3.7.12)

Since for any fixed ball Bρ the function

x �→ sup
v∈Ussm

Ev
x

[∫ τ̆r

0
IBρ

(Xt)čv(Xt) dt

]
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is bounded on Bc
r by Lemma 2.6.13 (i), whereas the function on the left-hand side of

(3.7.12) grows unbounded as |x| → ∞ uniformly in v ∈ Ussm, it follows that

lim inf
|x|→∞

inf
v∈Ussm

ρv(x)→ ∞ .

Therefore, (3.7.4) follows from (3.7.12).
We turn now to part (ii). Applying Itô’s formula and Fatou’s lemma, we obtain

from (3.7.3) that

Ev
x
[V(Xt)

] ≤ k0t +V(x) ∀v ∈ Ussm . (3.7.13)

If ϕ is o(V), then there exists f̌ : R+ → R+ satisfying f̌ (R) → ∞ as R → ∞, such
that

V(x) ≥ |ϕ(x)| f̌ (|x|) .

Define

R(t) := t ∧ inf
{
|x| : |ϕ(x)| ≥

√
t
}
, t ≥ 0 .

Then, by (3.7.13),

Ev
x
[|ϕ(Xt)|

] ≤ Ev
x

[∣∣∣ϕ(Xt)
∣∣∣ IBR(t) (Xt)

]
+
Ev

x
[V(Xt) IBc

R(t)
(Xt)

]
f̌ (R(t))

≤
√

t +
k0t +V(x)

f̌ (R(t))
, (3.7.14)

and taking the supremum over v ∈ Ussm in (3.7.14), then dividing by t, and taking
limits as t → ∞, (3.7.5) follows.

To prove (3.7.6), first write

Ev
x
[
ϕ(Xt∧τR )

]
= Ev

x
[
ϕ(Xt) I{t < τR}

]
+ Ev

x
[
ϕ(XτR ) I{t ≥ τR}

]
. (3.7.15)

By (3.7.3), Ev
x
[V(Xt∧τR )

] ≤ k0t +V(x). Therefore

Ev
x
[
ϕ(XτR ) I{t ≥ τR}

] ≤ [k0t +V(x)] sup
x∈∂BR

ϕ(x)
V(x)

,

and since ϕ ∈ o(V), this shows that the second term on the right-hand side of (3.7.15)
vanishes as R → ∞. Since |ϕ(Xt)| ≤ MV(Xt) for some constant M > 0, Fatou’s
lemma yields

Ev
x
[
ϕ(Xt)

] ≤ lim
R→∞

Ev
x
[
ϕ(Xt) I{t < τR}

]
≤ lim

R→∞
Ev

x
[
ϕ(Xt) I{t < τR}

] ≤ Ev
x
[
ϕ(Xt)

]
,

thus obtaining (3.7.6). �

Following the proof of Lemma 3.7.2, we obtain the following useful corollary:
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Corollary 3.7.3 Suppose v ∈ Ussm and �v < ∞. For some fixed r > 0 define

ϕ(x) := Ev
x

[∫ τ̆r

0

(
1 + cv(Xt)

)
dt

]
, x ∈ Rd .

Then

lim
t→∞

1
t
Ev

x
[
ϕ(Xt)

]
= 0 ∀x ∈ Rd ,

and for any t ≥ 0,

lim
R→∞

Ev
x
[
ϕ(Xt∧τR )

]
= Ev

x
[
ϕ(Xt)

] ∀v ∈ Ussm , ∀x ∈ Rd .

3.7.2 Equicontinuity of resolvents

We next show that, for a stable control v ∈ Ussm, the resolvents Jv
α are bounded in

W 2,p(BR) uniformly in α for any R > 0. Assumption 3.7.1 is not used in these results.

Theorem 3.7.4 There exists a constant C0 depending only on the radius R > 0,
such that, for all v ∈ Ussm and α ∈ (0, 1),∥∥∥Jv

α − Jv
α(0)

∥∥∥
W 2,p(BR)

≤ C0

ηv(B2R)

(
�v

ηv(B2R)
+ sup

B4R×U
c

)
(3.7.16a)

sup
BR

αJv
α ≤ C0

(
�v

ηv(BR)
+ sup

B2R×U
c

)
. (3.7.16b)

Proof Let

τ̂ = inf {t > τ(B2R) : Xt ∈ BR} .

For x ∈ ∂BR, we have

Jv
α(x) = Ev

x

[∫ τ̂

0
e−αtcv(Xt) dt + e−ατ̂Jv

α(Xτ̂)

]
= Ev

x

[∫ τ̂

0
e−αtcv(Xt) dt + Jv

α(Xτ̂) − (1 − e−ατ̂)Jv
α(Xτ̂)

]
. (3.7.17)

Let P̃x(A) = Pv
x(Xτ̂ ∈ A). By Theorem 2.6.7, there exists δ ∈ (0, 1) depending only

on R, such that ∥∥∥P̃x − P̃y

∥∥∥
TV
≤ 2δ ∀x, y ∈ ∂BR .

Therefore ∣∣∣Ev
x
[
Jv
α(Xτ̂)

] − Ev
y
[
Jv
α(Xτ̂)

]∣∣∣ ≤ δ osc
∂BR

Jv
α ∀x, y ∈ ∂BR . (3.7.18)

Thus (3.7.17) and (3.7.18) yield

osc
∂BR

Jv
α ≤

1
1 − δ

sup
x∈∂BR

Ev
x

[∫ τ̂

0
e−αtcv(Xt) dt

]
+

1
1 − δ

sup
x∈∂BR

Ev
x

[(
1 − e−ατ̂)Jv

α(Xτ̂)
]
. (3.7.19)
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Next, we bound the terms on the right-hand side of (3.7.19). First,

Ev
x

[(
1 − e−ατ̂)Jv

α(Xτ̂)
]
≤ Ev

x

[
α−1(1 − e−ατ̂)] sup

x∈∂BR

αJv
α(x)

≤
(
sup
∂BR

αJv
α

)
Ev

x[τ̂] ∀x ∈ ∂BR . (3.7.20)

Let

M(R) := sup
BR×U

c , R > 0 .

By Lemma A.2.10, the function

ϕα =
M(2R)

α
+ Jv

α

is in W 2,p
loc (Rd) for all p > 1 and satisfies

Lvϕα(x) − αϕα(x) = −cv(x) − M(2R) ∀x ∈ B2R , (3.7.21)

and thus

M(2R) ≤
∣∣∣(Lv − α)ϕα(x)

∣∣∣ ≤ 2M(2R) ∀x ∈ B2R . (3.7.22)

By (3.7.22), ∥∥∥(Lv − α)ϕα

∥∥∥
L∞(B2R)

≤ 2|B2R|−1
∥∥∥(Lv − α)ϕα

∥∥∥
L1(B2R)

. (3.7.23)

Hence ϕα ∈ K(2, B2R) (see Definition A.2.11), and by Theorem A.2.13, there exists
a constant C̃H depending only on R, such that

ϕα(x) ≤ C̃Hϕα(y) ∀x , y ∈ BR and α ∈ (0, 1) . (3.7.24)

Integrating with respect to ηv, and using Fubini’s theorem, we obtain∫
Rd

αJv
α(x) ηv(dx) = �v ∀v ∈ Ussm . (3.7.25)

By (3.7.25), infBR {αJv
α} ≤

�v

ηv(BR) , and (3.7.24) yields

sup
BR

αJv
α ≤ C̃H

(
M(2R) +

�v

ηv(BR)

)
, (3.7.26)

thus proving (3.7.16b). On the other hand,

ψα(x) = Ev
x

[∫ τ̂

0
e−αt(M(2R) + cv(Xt)

)
dt

]
also satisfies (3.7.21) – (3.7.23), in B2R, and therefore (3.7.24) holds for ψα. Thus
using the bound

inf
x∈∂BR

Ev
x

[∫ τ̂

0

(
M(2R) + cv(Xt)

)
dt

]
≤ (

M(2R) + �v
)

sup
x∈∂BR

Ev
x[τ̂] ,
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we obtain

sup
x∈∂BR

Ev
x

[∫ τ̂

0
e−αtcv(Xt) dt

]
≤ C̃H

(
M(2R) + �v

)
sup

x∈∂BR

Ev
x[τ̂] . (3.7.27)

By (3.7.19), (3.7.20), (3.7.26) and (3.7.27),

osc
∂BR

Jv
α ≤

2C̃H

1 − δ

(
M(2R) +

�v

ηv(BR)

)
sup

x∈∂BR

Ev
x[τ̂] . (3.7.28)

Applying Theorem A.2.13 to the Lv-superharmonic function x �→ Ev
x[τ̂], we obtain

sup
x∈∂BR

Ev
x[τ̂] ≤ C̃′H inf

x∈∂BR

Ev
x[τ̂] (3.7.29)

for some constant C̃′H > 0. By (2.6.9a), (3.7.29), and the estimate

inf
x∈∂BR

Ev
x[τ̂] ≤ 1

ηv(BR)
sup

x∈∂BR

Ev
x[τ(B2R)] ,

which is obtained from Theorem 2.6.9, we have

sup
x∈∂BR

Ev
x[τ̂] ≤ C̃1

ηv(BR)
(3.7.30)

for some positive constant C̃1 = C̃1(R).
Next, we use the expansion

Jv
α(x) = Ev

x

[∫ τR

0
e−αtcv(Xt) dt + Jv

α(XτR ) − (
1 − e−ατR

)
Jv
α(XτR )

]
∀x ∈ BR ,

together with (3.7.20) to obtain

osc
BR

Jv
α ≤ sup

x∈BR

Ev
x

[∫ τR

0
e−αtcv(Xt) dt

]
+ osc

∂BR

Jv
α +

(
sup
∂BR

αJv
α

)
sup
x∈BR

Ev
x[τR] . (3.7.31)

By Theorem A.2.1, there exists a constant C̃′1 = C̃′1(R) such that Ev
x[τR] ≤ C̃′1 for all

x ∈ BR, and thus the first term on the right-hand side of (3.7.31) can be bounded by

sup
x∈BR

Ev
x

[∫ τR

0
e−αtcv(Xt) dt

]
≤ C̃′1 sup

BR×U
c ∀v ∈ Usm .

For second and third terms on the right-hand side of (3.7.31) we use the bounds in
(3.7.26), (3.7.28) and (3.7.30). Therefore, (3.7.31) yields

osc
BR

Jv
α ≤

C̃2

ηv(BR)

(
M(2R) +

�v

ηv(BR)

)
(3.7.32)

for some constant C̃2 = C̃2(R).
Let ϕ̄α := Jv

α − Jv
α(0). Then

Lvϕ̄α − αϕ̄α = −cv + αJv
α(0) , in B2R .



3.7 The stable case 131

Applying Lemma A.2.5, with D = B2R and D′ = BR, relative to the operator Lv − α,
we obtain, for some positive constant C̃3 = C̃3(R),∥∥∥ϕ̄α

∥∥∥
W 2,p(BR)

≤ C̃3

(∥∥∥ϕ̄α

∥∥∥
Lp(B2R)

+
∥∥∥Lvϕ̄α − αϕ̄α

∥∥∥
Lp(B2R)

)
≤ C̃3

∣∣∣B2R

∣∣∣1/p

(
osc
B2R

Jv
α + M(2R) + sup

B2R

αJv
α

)
,

and the bound in (3.7.16a) follows by (3.7.26) and (3.7.32). �

The bounds in (3.7.16) along with Theorem 3.3.1 imply that if Usm = Ussm, then
as long as �v < ∞ for all v ∈ Usm, the functions Jv

α − Jv
α(0) are bounded in W 2,p(BR)

on any ball BR, uniformly in α and v ∈ Ussm. Next we relax the assumption that
Usm = Ussm. We assume only that �∗ < ∞, and this of course implies that there exists
some v̂ ∈ Ussm such that �v̂ < ∞. We show that the α-discounted value functions {Vα}
are bounded in W 2,p(BR) on any ball BR uniformly in α ∈ (0, 1).

We first need a technical lemma. In this lemma we use the Markov transition
kernel P̃v, for v ∈ Ussm, defined in Theorem 2.6.7, relative to the domains D1 = BR

and D2 = B2R.

Lemma 3.7.5 Let v ∈ Ussm and R > 0 be fixed, and P̃v(x, A) for A ∈ B(∂BR) be the
transition kernel of the Markov chain on ∂BR defined by,

P̃v(x, f ) ≡
∫
∂BR

P̃v(x, dy) f (y) := Ev
x

[
Ev

Xτ2R

[
f (Xτ̆R )

]]
, x ∈ ∂BR ,

for f ∈ C(∂BR). Also let

mα := max
∂BR

Vα and mα := min
∂BR

Vα .

Then there exists a constant δ̃ ∈ (0, 1) depending only on R such that

P̃v(x,Vα) − mα ≤ max
{
1, δ̃

(
mα − mα

)} ∀α ∈ (0, 1) . (3.7.33)

Proof For z ∈ ∂BR and r < R, let B̃r(z) := ∂BR∩Br(z), where Br(z) ⊂ Rd denotes the
ball of radius r centered at z. We first show that for any r > 0 there exists ε = ε(r) > 0
such that

P̃v
(
x, B̃r(z)

)
> ε(r) ∀x, z ∈ ∂BR . (3.7.34)

Since P̃v(x, · ) ≥ C−1
H P̃v(x′, · ) for all x , x′ ∈ ∂BR by (2.6.15), it is enough to prove

(3.7.34) for some fixed x. Let ψz : ∂BR → R+ be a smooth function supported on
B̃r(z) and such that ψz > 0 on B̃r(z) and ‖ψz‖∞ = 1. For z′ � z, the function ψz′ is
simply the translation of ψz on ∂BR. Hence ‖ψz′ − ψz‖∞ → 0 as z′ → z. Consider the
map z �→ P̃v(x, ψz). This is the composition of the following continuous maps:

(i) ∂BR � z �→ ψz ∈ C(∂BR).
(ii) C(∂BR) � f �→ Ev

·
[
f (Xτ̆R )

] ∈ C(B2R) (this is continuous by Lemma 2.6.13 (ii)).
(iii) C(B2R) � g �→ Ev

·
[
g(Xτ2R )

] ∈ C(BR).
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It is clear that P̃v(x, ψz) > 0 for all z ∈ ∂BR, and hence it follows that

min
z∈∂BR

P̃v(x, ψz) > 0 .

On the other hand, P̃v
(
x, B̃r(z)

) ≥ P̃v(x, ψz), so (3.7.34) holds.
If mα − mα < 1, then since P̃v(x,Vα) < mα, (3.7.33) clearly holds. Suppose then

mα − mα ≥ 1. In this case it is enough to show that

P̃v(x,Vα) − mα ≤ δ̃
(
mα − mα

) ∀α ∈ (0, 1) . (3.7.35)

By the linearity of the operator P̃v, equation (3.7.35) can be written in the equivalent
scaled form

P̃v(x, ϕα) ≤ δ̃ ∀α ∈ (0, 1) , where ϕα(x) :=
Vα(x) − mα

mα − mα

.

In this scaling ϕα : ∂BR → [0, 1], and maps onto its range. Note that ϕα satisfies

Lvϕα − αϕα = −
cv − αmα

mα − mα

. (3.7.36)

Also, since αmα ≤ αVα(x) ≤ αJv
α(x) for all x ∈ ∂BR, the term αmα is bounded

uniformly in α ∈ (0, 1) by (3.7.26). By (3.7.36) and Lemma A.2.5 there exists a
constant Ĉ such that ‖ϕα‖W 2,p(BR) ≤ Ĉ for all α ∈ (0, 1). In particular, {ϕα : α ∈ (0, 1)}
is an equi-Lipschitzean family. Hence, since ϕα is onto [0, 1], there exists r0 > 0 such
that

ϕα(x) ≤ 1
2

∀x ∈ B̃r0 (z) , ∀α ∈ (0, 1) ,

for some z ∈ ∂BR which depends on α. Therefore, by (3.7.34) we have

P̃v(x, ϕα) ≤ (1 − ε(r0)) +
1
2
ε(r0)

= 1 − ε(r0)
2
=: δ̃ ,

and the proof is complete. �

As mentioned earlier, the next theorem does not assume Usm = Ussm.

Theorem 3.7.6 Suppose �v̂ < ∞ for some v̂ ∈ Ussm. There exists a constant C̃0 > 0
depending only on the radius R > 0, such that, for all α ∈ (0, 1), we have

∥∥∥Vα − Vα(0)
∥∥∥
W 2,p(BR)

≤ C̃0

ηv̂(B2R)

(
�v̂

ηv̂(B2R)
+ sup

B4R×U
c

)
, (3.7.37a)

sup
BR

αVα ≤ C̃0

(
�v̂

ηv̂(BR)
+ sup

B2R×U
c

)
. (3.7.37b)
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Proof Since Vα ≤ Jv̂
α, (3.7.37b) follows by (3.7.26). To prove (3.7.37a) we define

the admissible control U ∈ U by

Ut =

⎧⎪⎪⎪⎨⎪⎪⎪⎩v̂ if t ≤ τ̂ ,

vα otherwise,

where τ̂ is as in the proof of Theorem 3.7.4, and vα ∈ Usm is an α-discounted optimal
control. Since U is in general sub-optimal for the α-discounted criterion, we have

Vα(x) ≤ Ev̂
x

[∫ τ̂

0
e−αtcv̂(Xt) dt + e−ατ̂Vα(Xτ̂)

]
. (3.7.38)

To simplify the notation, we define

Ψα := sup
x∈∂BR

Ev̂
x

[∫ τ̂

0
e−αtcv̂(Xt)

]
dt + sup

x∈∂BR

Ev̂
x

[(
1 − e−ατ̂)Jv̂

α(Xτ̂)
]
.

We then expand (3.7.38) as in (3.7.17), strengthen the inequality using the fact that
αVα ≤ αJv̂

α, subtract mα from both sides, and employ Lemma 3.7.5 to obtain

Vα(x) − mα ≤ E
v̂
x [Vα(Xτ̂)] − mα + Ψα

≤ max
{
1, δ̃

(
mα − mα

)}
+ Ψα . (3.7.39)

We evaluate (3.7.39) at a point x̂ = x̂(α) ∈ ∂BR such that Vα(x̂) = mα, i.e., where it
attains its maximum, to obtain

mα − mα ≤ max

{
1

δ̃
,
Ψα

1 − δ̃

}
.

The estimates for Ψα derived in the proof of Theorem 3.7.4 provide a bound for
osc∂BR Vα ≡ mα −mα. We combine this with estimates for the other two terms in the
expansion

osc
BR

Vα ≤ sup
x∈BR

Evα
x

[∫ τR

0
e−αtcv̂(Xt) dt

]
+ osc

∂BR

Vα +

(
sup
∂BR

αVα

)
sup
x∈BR

Evα
x [τR]

to obtain a bound for oscBR Vα similar to the one in (3.7.32). Finally, the bound
in (3.7.37a) is obtained by repeating the steps in the last paragraph of the proof of
Theorem 3.7.4. �

3.7.3 The HJB equation in the stable case

We now embark on the study of the HJB equation in the stable case via the vanishing
discount approach. As seen in Theorem 3.4.7, the existence of a stationary Markov
control which is optimal with respect to the pathwise ergodic criterion (2.7.6) re-
quires the tightness of the empirical measures ζU

t defined in (3.4.5). The hypotheses
imposed in this section are weaker than Assumption 3.4.9 which guarantees tight-
ness of the family

{
ζU

t
}

(see Theorem 3.4.11). As a result, in this section we study
optimality with respect to the average formulation of the ergodic criterion in (2.7.7),
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and we agree to call a control U ∈ U average-cost optimal if it attains the minimum
of (2.7.7) over all admissible controls.

On the other hand, uniform stability implies the tightness of the mean empirical
measures

{
ζ̄U

x,t
}

by Lemma 3.3.4, which in turn implies that every limit point of ζ̄U
x,t as

t → ∞ lies in G . Therefore

lim inf
t→∞

1
t

∫ t

0
EU

x
[
c̄(Xs,Us)

]
ds = lim inf

t→∞

∫
Rd×U

c(z, u) ζ̄U
x,t(dz, du)

≥ min
v∈Ussm

∫
Rd×U

c dπv ∀U ∈ U ,

and it follows that, provided Usm is uniformly stable, a stationary Markov control
which is average-cost optimal in the class Ussm is also average-cost optimal over all
admissible controls. It is worth noting that if Usm is uniformly stable, then we obtain
a stronger form of optimality, namely that

�∗ ≤ inf
U∈U

(
lim inf

T→∞

1
T

∫ T

0
EU

x
[
c̄(Xt,Ut)

]
dt

)
. (3.7.40)

We start by showing some fairly general properties of the vanishing discount limit.
We need the following definition.

Definition 3.7.7 Let Ũssm :=
{
v ∈ Ussm : �v < ∞

}
. Define

Ψ v(x; �) := lim
r↓0
Ev

x

[∫ τ̆r

0

(
cv(Xt) − �

)
dt

]
, v ∈ Ũssm ,

Ψ ∗(x; �) := lim inf
r↓0

inf
v∈Ũssm

Ev
x

[∫ τ̆r

0

(
cv(Xt) − �

)
dt

]
,

provided the limits exist and are finite.

In the next lemma we do not assume (3.7.1), nor do we assume that Usm = Ussm.

Lemma 3.7.8 The following hold:

(i) Suppose �∗ < ∞. Then for each sequence αn ↓ 0 there exists a further subse-
quence also denoted as {αn}, a function V ∈ C2(Rd) and a constant � ∈ R such
that, as n→ ∞,

αnVαn (0)→ � and V̄αn := Vαn − Vαn (0)→ V ,

uniformly on compact subsets of Rd. The pair (V, �) satisfies

min
u∈U

[LuV(x) + c(x, u)
]
= � , x ∈ Rd . (3.7.41)

Moreover,

V(x) ≤ Ψ ∗(x; �) , � ≤ �∗ ,

and for any r > 0, we have

V(x) ≥ −�∗ lim sup
α↓0

Evα
x [τ̆r] − sup

Br

V ∀x ∈ Bc
r , (3.7.42)

where {vα : 0 < α < 1} ⊂ Usm is a collection of α-discounted optimal controls.
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(ii) If v̂ ∈ Ussm and �v̂ < ∞, then there exist V̂ ∈ W 2,p
loc (Rd), for any p > 1, and �̂ ∈ R,

satisfying

Lv̂V̂ + cv̂ = �̂ in Rd ,

and such that αJv̂
α(0)→ �̂ and Jv̂

α − Jv̂
α(0)→ V̂, as α ↓ 0, uniformly on compact

subsets of Rd. Moreover,

V̂(x) = Ψ v̂(x; �̂) and �̂ = �v̂ .

Proof By Theorem 3.7.6, αVα(0) are bounded, and V̄α = Vα − Vα(0) are bounded
in W 2,p(BR), p > 1, uniformly in α ∈ (0, 1). Therefore we start with (3.5.10) and
applying Lemma 3.5.4 we deduce that V̄αn converges uniformly on any bounded
domain, along some sequence αn ↓ 0, to V ∈ C2(Rd) satisfying (3.7.41), with �

being the corresponding limit of αnVαn (0).
We first show � ≤ �∗. Let vε ∈ Ussm be an ε-optimal control and select R ≥ 0 large

enough such that ηvε
(
BR

) ≥ 1 − ε. Since Vα ≤ Jvε
α , by integrating with respect to ηvε

and using Fubini’s theorem, we obtain(
inf
BR

Vα

)
ηvε

(
BR

) ≤ ∫
Rd

Vα(x) ηvε (dx) ≤
∫
Rd

Jvε
α (x) ηvε (dx) ≤ �∗ + ε

α
.

Thus

inf
BR

Vα ≤
(�∗ + ε)
α(1 − ε)

,

and since Vα(0) − infBR Vα is bounded uniformly in α ∈ (0, 1), we obtain

� ≤ lim sup
α↓0

αVα(0) ≤ (�∗ + ε)
(1 − ε)

.

Since ε was arbitrary, � ≤ �∗.
Let vα ∈ Usm be an α-discounted optimal control. For v ∈ Ũssm, define the admis-

sible control U ∈ U by

Ut =

⎧⎪⎪⎪⎨⎪⎪⎪⎩v if t ≤ τ̆r ∧ τR ,

vα otherwise.

Since U is in general sub-optimal for the α-discounted criterion, using the strong
Markov property relative to the stopping time τ̆r ∧ τR, we obtain for x ∈ BR \ B̄r,

Vα(x) ≤ EU
x

[∫ ∞

0
e−αt c̄(Xt,Ut) dt

]
= Ev

x

[∫ τ̆r∧τR

0
e−αtcv(Xt) dt + e−α(τ̆r∧τR)Vα(Xτ̆r∧τR )

]
. (3.7.43)

Since v ∈ Ũssm, applying Fubini’s theorem,
∫
Rd αJv

α(x) ηv(dx) = �v < ∞. Hence, Jv
α

is a.e. finite, and by Theorem A.3.7 and Remark A.3.8, since Vα ≤ Jv
α, we have

Ev
x

[
e−ατR Vα(XτR ) I{τ̆r ≥ τR}

]
≤ Ev

x
[
e−ατR Jv

α(XτR )
] −−−−→

R→∞
0 (3.7.44)



136 Nondegenerate Controlled Diffusions

for all v ∈ Ũssm. Decomposing the term e−α(τ̆r∧τR)Vα(Xτ̆r∧τR ) in (3.7.43), then taking
limits as R → ∞, applying (3.7.44) and monotone convergence, and subtracting
Vα(0) from both sides of the inequality, we obtain

V̄α(x) ≤ Ev
x

[∫ τ̆r

0
e−αt[cv(Xt) − αVα(0)

]
dt

]
+ Ev

x

[
e−ατ̆r V̄α(Xτ̆r )

]
(3.7.45)

for all v ∈ Ũssm. We write (3.7.45) in the form

V̄α(x) ≤ Ev
x

[∫ τ̆r

0
e−αtcv(Xt) dt + e−ατ̆r Vα(Xτ̆r ) − Vα(0)

]
= Ev

x

[∫ τ̆r

0
e−αt(cv(Xt) − �

)
dt

]
+ Ev

x

[
Vα(Xτ̆r ) − Vα(0)

]
+ Ev

x

[
α−1(1 − e−ατ̆r

)[
� − αVα(Xτ̆r )

]]
. (3.7.46)

Since |� − αVα(0)| → 0 as α → 0, and Vα − Vα(0) is bounded on compact sets
uniformly in α ∈ (0, 1) by Theorem 3.7.6, we obtain supBr

|� − αVα| → 0 as α → 0.
Also,

Ev
x

[
α−1(1 − e−ατ̆r

)] ≤ Ev
x [τ̆r] .

Thus, letting α→ 0 along the subsequence {αn}, (3.7.46) yields

V(x) ≤ Ev
x

[∫ τ̆r

0

(
cv(Xt) − �

)
dt + V(Xτ̆r )

]
∀v ∈ Ũssm . (3.7.47)

Since V(0) = 0,

lim sup
r↓0

sup
v∈Ũssm

Ev
x
[
V(Xτ̆r

)
] = 0 .

Therefore

V(x) ≤ lim inf
r↓0

inf
v∈Ussm

Ev
x

[∫ τ̆r

0

(
cv(Xt) − �

)
dt

]
.

Thus V(x) ≤ Ψ ∗(x; �). In order to derive the lower bound for V̄ , we let v = vα to
obtain

V̄α(x) = Evα
x

[∫ τ̆r

0
e−αt(cvα (Xt) − �

)
dt

]
+ Evα

x

[
V̄α(Xτ̆r )

]
+ Evα

x

[
α−1(1 − e−ατ̆r

)[
� − αVα(Xτ̆r )

]]
, x ∈ Bc

r . (3.7.48)

It follows by (3.7.48) that

V̄α(x) ≥ −�Evα
x [τ̆r] − sup

Br

V̄α −
(
sup

Br

∣∣∣� − αVα

∣∣∣)Evα
x [τ̆r]

≥ −
(
�∗ + sup

Br

∣∣∣� − αVα

∣∣∣) sup
v∈Ussm

Ev
x [τ̆r] − sup

Br

V̄α ∀x ∈ Bc
r . (3.7.49)
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Taking limits as α→ 0 in (3.7.49) along the convergent subsequence yields (3.7.42).
This completes the proof of (i).

If �v̂ < ∞, then using the bounds in Theorem 3.7.4 along with Lemma 3.5.4 and
Remark 3.5.5 it follows that Jv̂

αn
− Jv̂

αn
(0) and αnJv̂

αn
(0) converge along some sequence

αn → 0 to V̂ and �̂, respectively, satisfying Lv̂V̂ + cv̂ = �̂. Since (3.7.45) and (3.7.46)
hold with equality if we replace Vα with Jv̂

αn
, � with �̂, and v with v̂, letting αn → 0,

we obtain

V̂(x) = Ev̂
x

[∫ τ̆r

0

(
cv̂(Xt) − �̂

)
dt + V̂(Xτ̆r )

]
. (3.7.50)

Taking limits in (3.7.50) as r → 0, yields V̂ = Ψ v̂(x; �̂). By (3.7.50) and Corol-
lary 3.7.3, we have

lim
t→∞

1
t
Ev̂

x
[
V̂(Xt)

]→ 0 .

Therefore, applying Itô’s formula to Lv̂V̂ + cv̂ = �̂, dividing by t, and taking limits
as t → ∞, yields �̂ = �v̂. This completes the proof of (ii). �

Definition 3.7.9 For v ∈ Ũssm, we refer to the function V(x) = Ψ v(x; �v) ∈ W 2,p
loc (Rd)

as the canonical solution of the Poisson equation LvV + cv = �v in Rd.

Theorems 3.7.11 and 3.7.12 below assume (3.7.1). In other words, we assume that
1 + c is uniformly integrable with respect to {πv : v ∈ Ussm}. Note that Assump-
tion 3.7.1 is equivalent to the statement that v �→ �v is a continuous map from Ussm

to R+. Theorem 3.7.12 asserts the uniqueness of the solution of the HJB equation in
a certain class of functions which is defined as follows:

Definition 3.7.10 Let V be the class of nonnegative functionsV ∈ C2(Rd) satisfy-
ing (3.7.3) for some nonnegative, inf-compact function h ∈ C, with 1 + c ∈ o(h). We
denote by o(V ) the class of functions V satisfying V ∈ o(V) for someV ∈ V .

Theorem 3.7.11 Assume (3.7.1) holds. Then the HJB equation

min
u∈U

[LuV(x) + c(x, u)
]
= � , x ∈ Rd , (3.7.51)

admits a solution V∗ ∈ C2(Rd) ∩ o(V ) satisfying V∗(0) = 0, and with � = �∗.
Moreover, if v∗ ∈ Usm satisfies

bi
v∗(x) ∂iV

∗(x) + cv∗ (x) = min
u∈U

[
bi(x, u) ∂iV

∗(x) + c(x, u)
]

a.e., (3.7.52)

then

�v∗ = �∗ = inf
U∈U

lim inf
T→∞

1
T
EU

x

[∫ T

0
c (Xt,Ut) dt

]
. (3.7.53)

Proof The existence of a solution to (3.7.51) in C2(Rd) with � ≤ �∗ is asserted by
Lemma 3.7.8. Combining (3.7.42) and (3.7.47) we obtain

|V(x)| ≤ sup
v∈Ussm

Ev
x

[∫ τ̆r

0

(
cv(Xt) + �∗

)
dt

]
+ sup

Br

V ∀x ∈ Bc
r .
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Hence V ∈ o(V ) by (3.7.4). Suppose v∗ ∈ Usm satisfies (3.7.52). By Dynkin’s for-
mula,

Ev∗
x
[
V(Xt∧τR )

] − V(x) = Ev∗
x

[∫ t∧τR

0
Lv∗V(Xs) ds

]
= Ev∗

x

[∫ t∧τR

0

[
� − cv∗ (Xs)

]
ds

]
. (3.7.54)

Taking limits as R→ ∞ in (3.7.54), by applying (3.7.6) to the left-hand side, decom-
posing the right-hand side as

�Ev∗
x [t ∧ τR] − Ev∗

x

[∫ t∧τR

0
cv∗ (Xs) ds

]
,

and employing monotone convergence, we obtain

Ev∗
x
[
V(Xt)

] − V(x) = Ev∗
x

[∫ t

0

[
� − cv∗(Xs)

]
ds

]
. (3.7.55)

Dividing (3.7.55) by t, letting t → ∞, and applying (3.7.5), we obtain �v∗ = �, which
implies �∗ ≤ �. Since � ≤ �∗, we have equality. One more application of Itô’s formula
to (3.7.51), relative to U ∈ U, yields (3.7.53). �

Concerning uniqueness of solutions to the HJB equation, the following applies:

Theorem 3.7.12 Let V∗ denote the solution of (3.7.51) obtained via the vanishing
discount limit in Theorem 3.7.11. The following hold:

(i) V∗(x) = Ψ ∗(x; �∗) = Ψ v̂(x; �∗), for any average-cost optimal v̂ ∈ Ussm;
(ii) v̂ ∈ Ussm is average-cost optimal if and only if it is a measurable selector from

the minimizer: min
u∈U

[LuV∗(x) + c(x, u)
]
;

(iii) if a pair (Ṽ , �̃) ∈ (C2(Rd) ∩ o(V )
) × R satisfies (3.7.51) and Ṽ(0) = 0, then

(Ṽ , �̃) = (V∗, �∗).

Proof By Lemma 3.7.8 (i), since V∗ is obtained as a limit of V̄αn as αn → 0, we have
V∗ ≤ Ψ ∗(x; �), and by Theorem 3.7.11, � = �∗. Suppose v̂ ∈ Ussm is average-cost
optimal. Let V̂ ∈ W 2,p

loc (Rd), p > 1, be the canonical solution to the Poisson equation
Lv̂V̂ + cv̂ = �v̂ in Rd. By the optimality of v̂, we have �v̂ = �∗. Hence,

Lv̂(V∗ − V̂) ≥ �∗ − �v̂ = 0

and

V∗(x) − V̂(x) ≤ Ψ ∗(x; �∗) − Ψ v̂(x; �∗) ≤ 0 .

Since V∗(0) = V̂(0), the strong maximum principle yields V∗ = V̂ . This completes
the proof of (i) – (ii).

Now suppose (Ṽ , �̃) ∈ (C2(Rd)∩o(V )
)×R is any solution of (3.7.51), and ṽ ∈ Ussm

is an associated measurable selector from the minimizer. We apply Dynkin’s formula
and (3.7.6), since Ṽ ∈ o(V), to obtain (3.7.55) with Ṽ , ṽ, and �̃ replacing V , v∗, and
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�, respectively. Dividing by t, and taking limits as t → ∞, using (3.7.5), we obtain
�ṽ = �̃. Therefore �∗ ≤ �̃. One more application of Itô’s formula to (3.7.51) relative
to an average-cost optimal control v∗ ∈ Usm yields

Ev∗
x
[
Ṽ(Xt)

] − Ṽ(x) ≥ Ev∗
x

[∫ t

0

[
�̃ − cv∗ (Xs)

]
ds

]
. (3.7.56)

Once more, dividing (3.7.56) by t, letting t → ∞, and applying (3.7.5), we obtain
�̃ ≤ �∗. Thus �̃ = �∗. Next we show that Ṽ ≥ Ψ ∗(x; �∗). For x ∈ Rd, choose R > r > 0
such that r < |x| < R. Using (3.7.51) and Dynkin’s formula,

Ṽ(x) = Eṽ
x

[∫ τ̆r∧τR

0

(
cṽ(Xt) − �∗

)
dt + Ṽ(Xτ̆r ) I {τ̆r < τR}

+Ṽ(XτR ) I {τ̆r ≥ τR}
]
. (3.7.57)

By (3.7.8),

Ev
x
[V (

XτR

)
I {τR ≤ τ̆r}

] ≤ k0 E
v
x [τ̆r] +V(x) ∀v ∈ Ussm . (3.7.58)

Since Ṽ ∈ o(V), (3.7.58) implies that

sup
v∈Ussm

Ev
x

[
Ṽ

(
XτR

)
I {τR ≤ τ̆r}

]
−−−−→
R→∞

0 .

Hence, letting R→ ∞ in (3.7.57), and using the monotone convergence theorem and
Fatou’s lemma, we obtain

Ṽ(x) ≥ Eṽ
x

[∫ τ̆r

0

(
cṽ(Xt) − �∗

)
dt + Ṽ(Xτ̆r )

]
≥ inf

v∈Ussm

Ev
x

[∫ τ̆r

0

(
cv(Xt) − �∗

)
dt

]
+ inf

Br

Ṽ .

Next, letting r → 0 and using the fact that Ṽ(0) = 0 yields Ṽ ≥ Ψ ∗(x; �∗). It follows
that V∗ − Ṽ ≤ 0 and Lṽ(V∗ − Ṽ) ≥ 0. Therefore, by the strong maximum principle,
Ṽ = V∗. This completes the proof of (iii). �

Let v ∈ Ũssm and let (V, h) ∈ C2(Rd) × C be a pair of inf-compact functions
satisfying the Lyapunov equation LvV(x) ≤ k0 − hv(x), with k0 ∈ R. Theorem 3.7.12
implies that if c ∈ o(h), then there exists a unique solution V ∈ W 2,p

loc (Rd) ∩ o(V) to
the Poisson equation LvV + cv = �v in Rd, and V agrees with the canonical solution
Ψ v(x; �v) in Definition 3.7.9.

In what follows, we relax Assumption 3.7.1. Provided Usm is uniformly stable and
�v < ∞ for all v ∈ Ussm, we establish the existence of an average-cost optimal control
in Ussm.

Corollary 3.7.13 Suppose that Usm is uniformly stable and that �v < ∞ for all
v ∈ Usm. Then the HJB equation in (3.7.51) admits a solution V∗ ∈ C2(Rd) and
� ∈ R. Moreover, � = �∗, and any v∗ ∈ Usm is average-cost optimal if and only if it
satisfies (3.7.52).
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Proof By Lemma 3.7.8 (i) (which does not use Assumption 3.7.1), we obtain a
solution (V, �) to (3.7.51), via the vanishing discount limit, satisfying � ≤ �∗ and
V(0) = 0. Decomposing V into its positive and negative parts as V = V+ − V− in
(3.7.54), we obtain

−Ev∗
x
[
V−(Xt∧τR )

] − V(x) ≤ �Ev∗
x [t ∧ τR] − Ev∗

x

[∫ t∧τR

0
cv∗ (Xs) ds

]
. (3.7.59)

By uniform stability there exist nonnegative inf-compact functions V ∈ C2(Rd) and
h : Rd → R+, which is locally Lipschitz, and a constant k0 satisfying

max
u∈U
LuV(x) ≤ k0 − h(x) ∀x ∈ Rd .

Since for any fixed r > 0, supv∈Ussm
Ev

x [τ̆r] ∈ o(V), it follows by (3.7.42) that
V− ∈ o(V). Therefore, if v∗ is a measurable selector from the minimizer in (3.7.51),
then by Lemma 3.7.2, we have

lim
R→∞

Ev∗
x
[
V−(Xt∧τR )

]
= Ev∗

x
[
V−(Xt)

]
and

lim
t→∞

1
t
Ev∗

x
[
V−(Xt)

]
= 0 .

Thus, dividing (3.7.59) by t and taking limits, first as R→ ∞ and then as t → ∞, we
obtain

0 ≤ � − lim sup
t→∞

1
t
Ev∗

x

[∫ t

0
cv∗ (Xs) ds

]
.

Hence �v∗ ≤ �, and it follows that � = �∗.
To prove the second assertion, suppose that v̂ ∈ Usm is average-cost optimal in Usm.

Let V̂ = Ψ v̂(x; �v̂) be the canonical solution to the Poisson equation Lv̂V̂ + cv̂ = �v̂.
By optimality �v̂ = �∗. Thus

Lv̂(V∗ − V̂) ≥ �∗ − �v̂ = 0 .

Also, by Lemma 3.7.8,

V∗(x) ≤ Ψ ∗(x; �∗) .

Hence V∗ − V̂ ≤ 0, and since V∗(0) = V̂(0), the strong maximum principle yields
V∗ = V̂ . Thus Lv̂V∗ + cv̂ = �∗, and the proof is complete. �

We can improve the results in Corollary 3.7.13 by relaxing the hypothesis that
Ussm = Ũssm and thus allowing for the existence of stationary Markov controls that
yield infinite average cost. In the proof of the theorem below we use the fact that,
provided G is tight, and therefore also compact, the map v �→ πv from Ussm to G is
continuous by Lemma 3.2.6 (b). It follows that v → �v is lower-semicontinuous and
therefore also inf-compact.
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Theorem 3.7.14 Suppose Usm is uniformly stable. Then the HJB equation (3.7.51)
admits a solution (V∗, �∗) with V∗ ∈ C2(Rd). Moreover, a stationary Markov control
is average-cost optimal if and only if it is a measurable selector from the minimizer

min
u∈U

[
bi(x, u) ∂iV

∗(x) + c(x, u)
]
. (3.7.60)

Proof The existence of an optimal v̂ ∈ Ussm is clear from the remarks in the
paragraph preceding the statement of the theorem. For n ∈ N define the truncated
running cost cn := min {c, n}. Since cn is bounded and Usm is uniformly stable,
Assumption 3.7.1 holds. Hence by Theorem 3.7.11, for each n ∈ N, there exist
(Vn, �n) ∈ C2(Rd) × R+, with Vn(0) = 0 which solve

min
u∈U

[LuVn(x) + cn(x, u)
]
= �n , x ∈ Rd .

The conclusions of Theorem 3.7.12 also hold. It is evident that �n ≤ �∗. Therefore,
since also infv∈Ussm ηv(BR) > 0 for any R > 0 by uniform stability, Theorem 3.7.4
implies that there exists a constant C̃ = C̃(R), such that∥∥∥Vn

∥∥∥
W 2,p(BR)

≤ C̃(R) ∀n ∈ N , ∀R > 0 .

Applying Lemma 3.5.4, we deduce that Vn → V∗ ∈ C2(Rd), uniformly over compact
sets, �n → �, as n → ∞ (over some subsequence), and that (V∗, �) solve (3.7.51) .
Clearly, � ≤ �∗.

On the other hand, by (3.7.42) we have

Vn(x) ≥ −�n sup
v∈Ussm

Ev
x [τ̆r] − sup

Br

Vn ∀x ∈ Bc
r , ∀n ∈ N .

Taking limits as n→ ∞, it follows that V∗ satisfies

V∗(x) ≥ −�∗ sup
v∈Ussm

Ev
x [τ̆r] − sup

Br

V∗ ∀x ∈ Bc
r , ∀n ∈ N ,

and as shown in the proof of Corollary 3.7.13 this implies that � = �∗, and that any
measurable selector from the minimizer of (3.7.60) is average-cost optimal. It is also
straightforward to show that V∗(x) ≤ Ψ ∗(x; �∗). Therefore, any average-cost optimal
stationary Markov control is necessarily a measurable selector from the minimizer
in (3.7.60), as shown in the last paragraph of the proof of Corollary 3.7.13. �

By Lemma 3.7.8, provided �∗ < ∞, there always exists a solution V ∈ C2(Rd)
to the HJB equation (3.7.51) with � < �∗. It also follows from the proof of Corol-
lary 3.7.13 that if

lim inf
t→∞

1
t
Ev∗

x
[
V−(Xt)

]
= 0 ,

where v∗ ∈ Usm satisfies (3.7.52), then � = �∗ and, provided v∗ is stable, it is
average-cost optimal. Conversely, as shown in the last paragraph of the proof of
Corollary 3.7.13, if v∗ ∈ Ussm is average-cost optimal, then it necessarily satisfies
(3.7.52). As a result, we can relax the hypothesis that Usm = Ussm and assert the
following.
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Theorem 3.7.15 Suppose that �∗ < ∞, and that over some sequence {αn} ⊂ (0, 1),
converging to 0 as n → ∞, the functions V̄αn , n ∈ N, are all bounded below by
some constant M0. Then the HJB equation in (3.7.51) admits a solution � = �∗ and
V∗ ∈ C2(Rd), and a stable stationary Markov control v∗ is average-cost optimal if
and only if it satisfies (3.7.52).

Concerning the optimality of the control v∗ ∈ Ussm in Theorem 3.7.15 a standard
application of a Tauberian theorem, which asserts that for all U ∈ U

�v∗ = �∗ = lim sup
n→∞

αnVαn (x)

≤ lim sup
n→∞

αn

∫ ∞

0
e−αnt EU

x [c̄(Xt,Ut)] dt

≤ lim sup
T→∞

1
T

∫ T

0
EU

x [c̄(Xt,Ut)] dt ,

shows that v∗ is in fact average-cost optimal over all U. Compare this with the
stronger form of optimality in (3.7.40) which holds under the hypothesis that Usm

is uniformly stable.

Remark 3.7.16 The hypothesis that the running cost is bounded below can be re-
laxed. If this is the case, we modify Assumption 3.7.1 by replacing c with |c| in the
integral of (3.7.1). Then the conclusions of Theorems 3.7.11 and 3.7.12 continue
to hold. More general statements are also possible. For example, if we require that
c− satisfies Assumption 3.7.1, then the conclusions of Corollary 3.7.13 and Theo-
rem 3.7.14 hold.

3.7.4 The HJB equation under a strong stability condition

We investigate the HJB equation (3.7.51) under the Lyapunov stability condition
(L2.3) on p. 61. We need the following lemma.

Lemma 3.7.17 Let V satisfy (2.5.5). Then for any v ∈ Usm, and any bounded
domain D, ∫

Rd
V(x) ηv(dx) ≤ k0

2k1
, (3.7.61a)

lim
t→∞

1
t
Ev

x
[V(Xt)

]
= 0 ∀x ∈ Rd , (3.7.61b)

and

Ev
x

[∫ τ(Dc)

0
V(Xt) dt

]
∈ O(V) . (3.7.61c)

Proof Dividing (2.5.11) in Lemma 2.5.5 by t and taking limits as t → ∞ yields
(3.7.61b). Also, integrating (2.5.11) over [0, t], dividing by t, and taking limits as
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t → ∞ yields (3.7.61a). With R > 0 large enough so that x ∈ BR, applying Dynkin’s
formula, we obtain

Ev
x
[V(Xτ(Dc)∧τR )

] −V(x) ≤ Ev
x

[∫ τ(Dc)∧τR

0

(
k0 − 2k1V(Xt)

)
dt

]
.

Therefore

Ev
x

[∫ τ(Dc)∧τR

0
V(Xt) dt

]
≤ 1

2k1
V(x) +

k0

2k1
Ev

x[τ(Dc) ∧ τR] . (3.7.62)

It is evident that Ev
x [τ(Dc)] ∈ O(V). Therefore, taking limits as R → ∞ in (3.7.62),

(3.7.61c) follows. �

Suppose that

x �→ max
u∈U

c(x, u) ∈ O(V) .

It follows by Lemma 3.7.17 and Theorems 3.7.11–3.7.12 that the HJB equation
(3.7.51) admits a unique solution V∗ ∈ C2(Rd)∩O(V) and � ∈ R, satisfying V(0) = 0.
Moreover, V∗ has the representation in Theorem 3.7.12 (i) and the necessary and suf-
ficient condition for optimality in Theorem 3.7.12 (ii) holds.

3.7.5 Storage functions

In this section, we point out connections between the foregoing theory and the notion
of storage functions (to be precise, a stochastic counterpart thereof) arising in the
theory of dissipative dynamical systems [120].

Definition 3.7.18 A measurable function V : Rd → R is said to be a storage func-
tion associated with a supply rate function g ∈ C(Rd ×U) if it is bounded from below
and V(Xt)+

∫ t

0
ḡ(Xs,Us) ds, t ≥ 0, is an

(
FX

t
)
-supermartingale for all (X,U) satisfying

(2.2.1).

The storage function need not be unique. For example, we get another by adding
a constant. Suppose that g ∈ C(Rd × U) is such that the map

x �→ inf
t>0

sup
U∈U
EU

x

[∫ t

0
ḡ(Xs,Us) ds

]
is bounded below in Rd. We define

Vg(x) := lim inf
t→∞

sup
U∈U
EU

x

[∫ t

0
ḡ(Xs,Us) ds

]
, x ∈ Rd .

Lemma 3.7.19 If Vg is finite, then it is a storage function.
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Proof For t ≥ 0,

Vg(x) = lim inf
T→∞

sup
U∈U
EU

x

[∫ T

0
ḡ(Xs,Us) ds

]
= lim inf

T→∞
sup
U[0,t]

EU
x

[∫ t

0
ḡ(Xs,Us) ds + sup

Ut+ ·

EU
Xt

[∫ T

t
ḡ(Xs,Us) ds

]]
≥ sup

U[0,t]

EU
x

[∫ t

0
ḡ(Xs,Us) ds + lim inf

T→∞
sup
Ut+ ·

EU
Xt

[∫ T

t
ḡ(Xs,Us) ds

]]
= sup

U∈U
EU

x

[∫ t

0
ḡ(Xs,Us) ds + Vg(Xt)

]
, (3.7.63)

where the second equality in (3.7.63) follows by a standard dynamic programming
argument, and the inequality by Fatou’s lemma. Let 0 ≤ r ≤ t. Since by Lemma 2.3.7
the regular conditional law of (X◦θr,U◦θr) given FX

r is again the law of a pair (X,U)
satisfying (2.2.1) with initial condition Xr, a.s., using (3.7.63) we obtain

EU
x

[∫ t

0
ḡ(Xs,Us) ds + Vg(Xt)

∣∣∣∣∣ FX
r

]
=

∫ r

0
ḡ(Xs,Us) ds

+ EU
Xr

[∫ t

r
ḡ(Xs,Us) ds + Vg(Xt)

]
≤

∫ r

0
ḡ(Xs,Us) ds + Vg(Xr) .

It follows that ∫ t

0
ḡ(Xs,Us) ds + Vg(Xt) , t ≥ 0 ,

is an
(
FX

t
)
-supermartingale. Since also by definition Vg is bounded below, it is a

storage function. �

We now discuss an ergodic control problem which involves maximization of the
average reward. Let h : Rd×U be a nonnegative, continuous function, which is locally
Lipschitz in its first argument uniformly in the second. We wish to maximize over all
admissible U ∈ U the reward

lim inf
t→∞

1
t

∫ t

0
EU[

h̄(Xs,Us)
]
ds . (3.7.64)

Let k∗ denote the supremum of (3.7.64), and suppose k∗ is finite. Under suitable
conditions, this problem has an optimal stationary solution.

Definition 3.7.20 A measurable map ψ : Rd → R is said to be a value function for
the optimal average reward problem in (3.7.64) if for all (X,U) satisfying (2.2.1), the
process

ψ(Xt) +
∫ t

0

[
h̄(Xs,Us) − k∗

]
ds , t ≥ 0 ,
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is an
(
FX

t
)
-supermartingale and is a martingale if and only if (X,U) is an optimal

pair.

Proving a martingale dynamic programming principle amounts to exhibiting a
value function ψ. The following lemmas establish the link with storage functions.

Lemma 3.7.21 If ψ ≥ 0 is as in Definition 3.7.20, then ψ is a storage function for
g = h − k∗.

This is immediate from the definition. Note that if ψ is a value function, so is ψ+C
for any scalar C. In particular, there exists a nonnegative value function whenever
there exists one that is bounded from below.

Going in the other direction, we have

Lemma 3.7.22 If Vg is finite a.e. for g = h − k∗,

Vg(Xt) +
∫ t

0

[
h̄(Xs,Us) − k∗

]
ds , t ≥ 0 , (3.7.65)

is an
(
FX

t
)
-supermartingale for all (X,U) as in (2.2.1). Moreover, provided (X,U) is

a stationary solution and Vg(Xt) is integrable under this stationary law, then (X,U)
is optimal if and only if the process in (3.7.65) is a martingale.

Proof The first claim is immediate. For stationary optimal (X,U),

E
[
Vg(X0)

]
≥

∫ t

0
E
[
h̄(Xs,Us) − k∗

]
ds + E

[
Vg(Xt)

]
.

Hence

0 ≥ E [
h̄(Xs,Us)

] − k∗ .

But since (X,U) is stationary, the corresponding reward

lim sup
T→∞

1
T

∫ T

0
E
[
h̄(Xs,Us)

]
ds

in fact equals E
[
h̄(Xs,Us)

]
. Since it is optimal, this equals k∗, so equality must hold

throughout, which is possible only if

Vg(Xt) +
∫ t

0

[
h̄(Xs,Us) − k∗

]
ds , t ≥ 0 ,

is in fact an
(
FX

t
)
-martingale. The converse easily follows by the same arguments. �

Now suppose that the Lyapunov stability condition (L2.3) on p. 61 holds, and that
h ∈ C (see Assumption A3.5.1) is an inf-compact function which satisfies

x �→ max
u∈U

h(x, u) ∈ O(V) . (3.7.66)

By Corollary 3.3.2,

k∗ := sup
v∈Usm

∫
Rd×U

h(x, u) πv(dx, du) < ∞ . (3.7.67)
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Then by Theorem 3.7.4, for each fixed α > 0, Jv
α is bounded in W 2,p(BR), p > 1,

for each R > 0, uniformly over v ∈ Ussm. Thus we can use Lemma 3.5.4 in the
same manner that we did for the minimization problem to show that the function
Fα(x) := supv∈Ussm

Jv
α(x) satisfies

max
u∈U

[LuFα(x) + h(x, u)
]
= αFα(x) . (3.7.68)

Moreover, Fα is the minimal nonnegative solution of (3.7.68) and v ∈ Usm is optimal
for the maximization problem if and only if it is a measurable selector a.e. from
the maximizer in (3.7.68). On the other hand, again by Theorem 3.7.4, the function
F̄α := Fα −Fα(0) is bounded in W 2,p(BR), p > 1, and x �→ αFα(x) is bounded in BR,
uniformly in α ∈ (0, 1) for any R > 0. Passing to the limit in (3.7.68) as α ↓ 0 along
a subsequence we obtain a solution V ∈ C2(Rd) to the equation

max
u∈U

[LuV(x) + h(x, u)
]
= k (3.7.69)

by Lemma 3.5.4. In this case k ≥ k∗. As in the proof of Lemma 3.7.8, for any r > 0,
we have

F̄α(x) = Evα
x

[∫ τ̆r

0
e−αt(hvα (Xt) − k

)
dt

]
+ Evα

x

[
F̄α(Xτ̆r )

]
+ Evα

x

[
α−1(1 − e−ατ̆r

)[
k − αFα(Xτ̆r )

]]
, x ∈ Bc

r . (3.7.70)

Taking absolute values in (3.7.70), then strengthening the equality to an inequality
and passing to the limit as α→ 0, we obtain∣∣∣V(x)

∣∣∣ ≤ sup
v∈Usm

Ev
x

[∫ τ̆r

0

(
hvα (Xt) + k

)
dt

]
+ sup

Br

V , x ∈ Bc
r . (3.7.71)

Since h ∈ O(V), it follows by (3.7.61c) and (3.7.71) that V ∈ O(V). Thus, following
the method in the proof of Theorems 3.7.11–3.7.12, using (3.7.61b) and (3.7.68),
we verify that completely analogous optimality results hold for the maximization
problem. It is also clear that V is bounded below in Rd. Indeed, one can either repeat
the argument in the proof of Lemma 3.6.1 to show that

Arg min
Rd

Fα ⊂
{
x ∈ Rd : min

u∈U
h(x, u) ≤ k∗

}
,

or choose to argue that if r > 0 is large enough so that minu∈U h(x, u) > k∗ for
x ∈ Bc

r , then the first term on the right-hand side of (3.7.70) is bounded below by the
nonnegative inf-compact function

x �→ inf
v∈Usm

Ev
x

[∫ τ̆r

0
e−t(hv(Xt) − k∗

)
dt

]
for all α ∈ (0, 1), while the other two are bounded uniformly in α ∈ (0, 1). As
a result, V is inf-compact. It follows that V is a storage function with supply rate
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g = h − k∗. Let v∗ be a measurable selector from the maximizer in (3.7.68). Then
since V ∈ O(V), it holds that

∫
V dηv∗ < ∞ by (3.7.68). Let

K0 := lim sup
t→∞

inf
U∈U
EU

x [V(Xt)] .

The constant K0 is finite by (2.5.11). Using these properties and (3.7.69) it easily
follows that Vg is well defined and satisfies

V(x) −
∫

V dηv∗ ≤ Vg(x) ≤ V(x) − K0 , x ∈ Rd . (3.7.72)

Hence Vg ∈ O(V). Let v ∈ Usm be a measurable selector from the minimizer in
(3.7.69). Since for the controlled diffusion under v∗ with X0 = x ∈ Rd the process
V(Xt) is an

(
FX

t
)
-martingale, while Vg(Xt) is an

(
FX

t
)
-supermartingale, it follows that

Mt := V(Xt) − Vg(Xt) is an
(
FX

t
)
-submartingale. Consequently, since it is bounded

by (3.7.72), Mt converges a.s. as t → ∞. Since V(x) − Vg(x) is integrable under the
invariant probability distribution ηv∗ , the limit must be a constant a.e. Therefore V
and Vg differ by a constant a.e. We have proved the following.

Theorem 3.7.23 Let the Lyapunov stability condition (L2.3) hold, and let h ∈ C be
an inf-compact function satisfying (3.7.66). Define k∗ by (3.7.67) and set g = h − k∗.
Then Vg − minRd Vg is a.e. equal to the minimal nonnegative solution in C2(Rd) of
(3.7.69).

3.8 One-dimensional controlled diffusions

In this section we specialize the results of the previous sections to one-dimensional
diffusions. We exhibit explicit solutions for the optimal control when d = 1.

For v ∈ Ussd, let ϕv denote the density of the corresponding invariant probability
measure ηv. Then ϕv is the unique solution of

1
2

(
σ2(x)ϕv(x)

)′′ − (
bv(x)ϕv(x)

)′
= 0 ,

ϕv ≥ 0 ,
∫ ∞

−∞
ϕv(x) dx = 1 .

If we define

βv(x) := exp

(∫ x

0

2bv(y)
σ2(y)

dy

)

Kv :=
∫ ∞

−∞

βv(x)
σ2(x)

dx ,

(3.8.1)

ϕv takes the form

ϕv(x) =
βv(x)

Kvσ2(x)
.

Also, a stationary Markov control v is stable if and only if Kv < ∞.
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Let the cost function c : R×U→ R, satisfy the near-monotone Assumption 3.4.2.
Recall that for v ∈ Ussd,

�v =

∫
R

cv(x) ηv(dx)

and

�∗ = inf
v∈Ussd

�v .

Let v ∈ Ussd and X the corresponding state process. For x0 ∈ R, let

τ̆x0 = inf
{
t ≥ 0 : Xt = x0

}
. (3.8.2)

Lemma 3.8.1 For x < x0,

Ev
x
[
τ̆x0

]
= 2

∫ x0

x

dy
βv(y)

[∫ y

−∞

βv(z)
σ2(z)

dz

]
, (3.8.3)

while for x > x0,

Ev
x
[
τ̆x0

]
= 2

∫ x

x0

dy
βv(y)

[∫ ∞

y

βv(z)
σ2(z)

dz

]
. (3.8.4)

Proof For y0 < x ≤ x0 or x0 ≤ x < y0 let

gy0 (x) := Ev
x

[
τ̆x0 ∧ τ̆y0

]
.

Then gy0 (x) is the unique solution to

1
2σ2(x)g′′y0

(x) + bv(x)g′y0
(x) = −1 ,

gy0 (x0) = gy0 (y0) = 0 .
(3.8.5)

Solving (3.8.5) and letting y0 → −∞ or y0 → ∞, we obtain (3.8.3) or (3.8.4), respec-
tively. �

The HJB equation when d = 1 simplifies to the following second order nonlinear
ordinary differential equation:

1
2σ2(x)V ′′(x) +min

u∈U

[
b(x, u)V ′(x) + c(x, u)

]
= � . (3.8.6)

Let

G :=
{
V ∈ C2(R) : inf

R
V > −∞ , V(0) = 0

}
and

H := G × (−∞, �∗] .

Theorem 3.8.2 Under the near-monotone Assumption 3.4.2, (3.8.6) has a unique
solution (V, �) in the class H. This solution satisfies � = �∗. Moreover, a control
v ∈ Usm is optimal if and only if

bv(x)V ′(x) + cv(x) = min
u∈U

[
b(x, u)V ′(x) + c(x, u)

]
.
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Proof Let v∗ be a stable stationary Markov control which is optimal. With β ≡ βv∗ ,
define

V(x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2
∫ 0

x
dy
β(y)

[∫ y

−∞
β(z)

σ2(z)

(
cv∗(z) − �∗

)
dz

]
if x ≤ 0 ,

2
∫ x

0
dy
β(y)

[∫ ∞
y

β(z)
σ2(z)

(
cv∗(z) − �∗

)
dz

]
if x ≥ 0 .

By direct verification we can show that V ′′ is continuous and satisfies

1
2σ∗(x)V ′′(x) + bv∗(x)V ′(x) + cv∗(x) = �∗ .

Then by the Dynkin formula, with τ̆0 as defined in (3.8.2), V has the stochastic
representation

V(x) = Ev∗
x

[∫ τ̆0

0

[
cv∗ (Xt) − �∗

]
dt

]
. (3.8.7)

Clearly, V(0) = 0. In order to show that V ∈ G it suffices to prove that infR V > −∞.
Choose ε > 0 and Rε > 0 such that

ε < lim inf
|x|→∞

min
u∈U

c(x, u) − �∗ ,

and

ε < min
u∈U

c(x, u) − �∗ , if |x| > Rε .

Let

τ̂ := inf
{
t ≥ 0 : |Xt | ≤ Rε

}
.

Then, for |x| > Rε, by decomposing the integral in (3.8.7) and applying the strong
Markov property, we obtain

V(x) ≥ Ev∗
x

[∫ τ̂

0

[
cv∗ (Xt) − �∗

]
dt

]
+ inf
|x|=Rε

Ev∗
x

[∫ τ̆0

0

[
cv∗ (Xt) − �∗

]
dt

]
. (3.8.8)

Since v∗ is stable, the second term in the right-hand side of (3.8.8) is bounded uni-
formly in x ∈ R. Also, the first term is bounded below by εEv∗

x [τ̂]. Also, for any
T > 0,

Pv∗
x (τ̂ ≤ T ) ≤ Pv∗

x

(
sup

0≤t≤T
|Xt − x|2 ≥ (|x| − Rε

)2
)

≤ CT(|x| − Rε
)2
−−−−→
|x|→∞

0

for some constant CT , thus implying, since T is arbitrary,

lim inf
|x|→∞

Ev∗
x [τ̂] = ∞ .

Therefore V(x)→ ∞ as |x| → ∞, and in particular infR V > −∞. �
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3.8.1 Non-uniqueness of solutions of the HJB equation

We show via an example that under the near-monotone hypothesis the HJB equation
can in general admit multiple solutions (V, �) with V bounded below and � > �∗, even
though the Markov controls that are selectors from the corresponding minimizers are
all stable.

Example 3.8.3 Consider the controlled stochastic differential equation

dXt = Ut dt + dWt , X0 = x ,

where Ut ∈ [−1, 1] is the control variable. Let c(x) = 1 − e−|x| be the running cost
function. Clearly, the near-monotone property holds. The HJB equation (3.8.6), re-
duces to

1
2 V ′′(x) +min

u
{uV ′(x)} + c(x) = � ,

which is equivalent to
1
2 V ′′(x) − |V ′(x)| + c(x) = � . (3.8.9)

Let ĉ be defined by

ĉ(x) = 2
∫ x

−∞
e2(y−x)c(y) dy , x ∈ R .

The following properties can be easily verified:

(i) ĉ(−x) > c(x) > ĉ(x) for all sufficiently large positive x.

(ii) ĉ′(x) = 2[c(x) − ĉ(x)].

(iii) ĉ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1 − 2

3 ex if x ≤ 0 ,

1
3 if x = 0 ,

1 − 2e−x + 4
3 e−2x if x > 0 .

(iv) c
(
log 4

3

)
= ĉ

(
log 4

3

)
. Also, ĉ is strictly decreasing in

(
−∞, log 4

3

)
and satisfies

ĉ > c, and it is strictly increasing in
(
log 4

3 ,∞
)
, satisfying ĉ < c.

(v) lim
|x|→∞

c(x) = lim
|x|→∞

ĉ(x) = 1.

(vi) The function ĉ(x)+ ĉ(−x) has a unique minimum, which is attained at zero, and
this minimum value is 2

3 .

Consider the Markov control v∗(x) = − sign(x). This is a stable control and the
corresponding invariant probability measure is given by

ηv∗(dx) = e−2|x|dx .

Also,

�v∗(dx) =
∫ ∞

−∞
c(x) ηv∗ (dx) = 1

3 ,
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implying that �∗ ≤ 1
3 . Let � �→ ξ� be the map from [1/3, 1) to (−∞, 0], defined by

ĉ(ξ�) = �, i.e.,

ξ� = log
3
2
+ log(1 − �) .

Define

V�(x) := 2
∫ x

−∞
e2|y−ξ� |dy

∫ y

−∞
e−2|z−ξ� |(� − c(z)

)
dz , x ∈ R .

Direct verification shows that V� is C2 and

1
2 V ′′� (x) −

x − ξ�

|x − ξ�|
V ′�(x) + c(x) = � , x ∈ R . (3.8.10)

Also, the derivative of V� evaluates to

V ′�(x) = 2e2|x−ξ� |
∫ x

−∞
e−2|y−ξ� |(� − c(y)

)
dy

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩� − ĉ(x) if x ≤ ξ� ,

e2(x−ξ�)(� − ĉ(−ξ�)
)
+

(
ĉ(−x) − �

)
if x > ξ�

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
3

(
ex − eξ�

)
if x ≤ ξ� ,

4
3 e2xe−ξ�

(
1 − eξ�

)
+

(
ĉ(−x) − �

)
if x > ξ� .

(3.8.11)

We claim that V ′� < 0 in (−∞, ξ�), and V ′� > 0 in (ξ�,∞). It follows by (3.8.11) that
V ′� < 0 in (−∞, ξ�), V ′�(ξ�) = 0 and V ′� > 0 in [− log(1 − �),∞). On the other hand,
since V ′�(ξ�) = 0, decomposing the integral in (3.8.11) we obtain

V ′�(x) = 2e2(x−ξ�)
∫ x

ξ�

e−2(y−ξ�)(� − c(y)
)

dy , ξ� < x < − log(1 − �) .

Since � > c(x) for x ∈ (ξ�,− log(1 − �)), it follows that V ′�(x) > 0 on this interval.
This settles the claim. Therefore, by (3.8.10), we obtain

1
2 V ′′� (x) − |V ′�(x)| + c(x) = � , ∀� ∈ [1/3, 1) , (3.8.12)

and thus the HJB equation (3.8.9) admits a continuum of solution pairs (V�, �), which
satisfy infR V� > −∞, for 1/3 ≤ � < 1. The stationary Markov control corresponding
to the solution pair (V�, �) of the HJB in (3.8.12) is given by v�(x) = − sign(x − ξ�).
The controlled process under v� has invariant probability density ϕ�(x) = e−2|x−ξ� |. A
simple computation shows that∫ ∞

−∞
c(x)ϕ�(x) dx = � − 9

8 (1 − �)(3� − 1) < � , ∀� ∈ (1/3, 1) .

Therefore, if � > 1/3, then V� is not a canonical solution of the Poisson equation
corresponding to the stable control v�, and it holds that

lim
t→∞

E
v�
x
[
V�(Xt)

]
t

= 9
8 (1 − �)(3� − 1) , ∀x ∈ R .
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Now, consider the solution of (3.8.12) corresponding to � = 1
3 . We obtain

V1/3(x) = 2
3

(
e−|x| + |x| − 1

)
.

Therefore V1/3 is integrable with respect to ηv∗ and it follows that

lim
t→∞

Ev∗
x
[
V1/3(Xt)

]
t

= 0 ∀x ∈ R .

An application of Itô’s formula yields

lim
t→∞

1
t
Ev∗

x

[∫ t

0
c(Xs) ds

]
=

1
3
.

We need to show that v∗ is optimal. Let v be any stable Markov control. For an
arbitrary x′ > 0 define

v′(x) =

⎧⎪⎪⎨⎪⎪⎩v(x) if x ∈ (−x′, x′) ,

− sign(x) otherwise.

It is evident by (3.8.1) that Kv′ < Kv, and hence ϕv′ > ϕv on (−x′, x′). As a result
�v′ < �v, which implies that any optimal control equals v∗ a.e. Therefore v∗ is optimal
and �∗ = 1

3 .

3.8.2 The upper envelope of invariant probability measures

Suppose Usm = Ussm. Let v and v be measurable selectors satisfying

v(x) ∈ Arg max
u∈U

{sign(x)b(x, u)}

v(x) = Arg min
u∈U

{sign(x)b(x, u)} .

It follows by (3.8.1), that

βv(x) ≤ βv(x) ≤ βv(x) ∀x ∈ R , ∀v ∈ Usm ,

and as a result

0 < Kv ≤ Kv ≤ Kv < ∞ ∀v ∈ Usm .

Therefore

ϕv(x) ≤ Kv

Kv
ϕv(x) ∀x ∈ R , ∀v ∈ Usm . (3.8.13)

Hence, (3.8.13) implies that the upper envelope of H is a finite measure, in particu-
lar that H is tight.
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3.9 Bibliographical note

Sections 3.2, 3.4 and 3.6. We follow primarily [28] which essentially builds upon
[37, 39]. We extend the results to unbounded data for the controlled diffusion, and
unbounded costs. See also [17] for an example of an unbounded control space.

Sections 3.3 and 3.7. These are based on [4] and [41] with corrections.

Section 3.8. See [15, 16].



4

Various Topics in Nondegenerate Diffusions

4.1 Introduction

This chapter consists of several topics in nondegenerate controlled diffusions. In Sec-
tion 4.2 we study constrained and multi-objective problems. Section 4.3 deals with a
singularly perturbed ergodic control problem involving two time-scales. Section 4.4
gives a brief account of ergodic control in bounded domains and lastly Section 4.5
presents a detailed solution of a problem arising in practice.

4.2 Multi-objective problems

This section is devoted to the study of multi-objective optimal control. We first study
a class of constrained optimal control problems and then continue the analysis for
models endowed with multiple cost criteria.

4.2.1 Optimal control under constraints

The ergodic control problem with constraints can be described as follows. Let

ci : Rd × U→ R+ , 0 ≤ i ≤ � ,

be continuous functions and mi,mi ∈ R+, 1 ≤ i ≤ �, given constants with mi ≤ mi.
The objective here is to minimize ∫

Rd×U
c0 dπ (4.2.1)

over π ∈ G , subject to

mi ≤
∫
Rd×U

ci dπ ≤ mi , 1 ≤ i ≤ � .

Let

H :=

{
π ∈ G : mi ≤

∫
Rd×U

ci dπ ≤ mi , 1 ≤ i ≤ �

}
.
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We assume that H is non-empty. Also, assume that

�0 := inf
π∈H

∫
Rd×U

c0 dπ < ∞ . (4.2.2)

As in the unconstrained problem, we consider two cases.

Assumption 4.2.1 (near-monotone) There are no lower constraints, i.e., mi = 0,
i = 1, . . . , �. Also

lim inf
|x|→∞

min
u∈U

c0(x, u) > �0

lim inf
|x|→∞

min
u∈U

ci(x, u) > mi , i = 1, . . . , � .

Assumption 4.2.2 (stable) G is compact, and H closed, hence also compact.

Lemma 4.2.3 Under either Assumption 4.2.1 or 4.2.2, the minimization problem
(4.2.1) subject to (4.2.2) has a solution in He, the set of extreme points of H.

Proof First note that under either assumption, H is closed and convex. Under As-
sumption 4.2.2 the result follows by compactness of H. Next, consider Assump-
tion 4.2.1. Let {πn} be a sequence in H such that∫

Rd×U
c0 dπn ↓ �0 as n→ ∞ .

Let H̄ be the closure of H in P(R̄d × U). Since H̄ is compact, dropping to a subse-
quence if necessary, we may assume that πn → π̂ ∈ H̄. We write π̂ as

π̂(A) = δπ̂1
(
A ∩ (Rd × U)

)
+ (1 − δ) π̂2

(
A ∩ ({∞} × U)

)
(4.2.3)

for A ∈ B(R̄d × U), where π̂1 ∈ P(Rd × U), π̂2 ∈ P({∞} × U) and δ ∈ [0, 1]. We
first show that δ > 0. Set m0 ≡ �0, and choose ε > 0 and r > 0 such that

min
u∈U

c j(x, u) ≥ mj + ε , for |x| > r , 0 ≤ j ≤ � .

For n ∈ N, let

cn
j (x, u) :=

d(x, Bc
n+1)c j(x, u) + d(x, Bn)(mj + ε)

d(x, Bn) + d(x, Bc
n+1)

, 0 ≤ j ≤ � ,

where, as defined earlier, d(x, A) denotes the Euclidean distance of the point x from
the set A. Observe that, by defining cn

j (∞, u) = mj + ε, it follows that cn
j (x, u) has a

continuous extension on R̄d × U. Thus, for n > r,

mj ≥ lim inf
k→∞

∫
Rd×U

c j dπk

≥ lim
k→∞

∫
R̄d×U

cn
j dπk

= δ

∫
Rd×U

cn
j dπ̂1 + (1 − δ)(mj + ε) . (4.2.4)
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Taking limits in (4.2.4) as n→ ∞, using monotone convergence, we obtain

mj ≥ δ

∫
Rd×U

c j dπ̂1 + (1 − δ)(mj + ε j) , 0 ≤ j ≤ � . (4.2.5)

By (4.2.5), δ > 0, and ∫
c j dπ̂1 ≤ mj , 0 ≤ j ≤ � . (4.2.6)

Since for each compactly supported f ∈ C2
c(Rd),∫

Rd×U
Lu f (x) πn(dx, du) = 0 ∀n ∈ N ,

passing to the limit as n→ ∞, we obtain

δ

∫
Rd×U

Lu f (x) π̂1(dx, du) = 0 ∀ f ∈ C2
c(Rd) .

Since δ > 0, using Lemma 3.2.2 we obtain π̂1 ∈ G . In turn, by (4.2.6), π̂1 ∈ H. This
of course implies that

∫
c0 dπ̂1 ≥ �0. Using (4.2.5) with j = 0, we deduce that δ = 1

and

�0 = m0 =

∫
Rd×U

c0 dπ̂1 ,

to conclude that (4.2.1) attains its minimum in H at π̂ = π̂1. To complete the proof,
we need to show that π̂ is the barycenter of a probability measure supported on He.
By Choquet’s theorem, π̂ ∈ H is the barycenter of a probability measure Ψ on H̄e.
By (4.2.3), since δ = 1, Ψ (H̄e \ He) = 0, or equivalently, Ψ (He) = 1. Hence,

�0 =

∫
Rd×U

c0 dπ̂ =

∫
He

Ψ (dξ)
∫
Rd×U

c0(x, u) ξ(dx, du) . (4.2.7)

Therefore, since ∫
Rd×U

c0 dξ ≥ �0 ∀ξ ∈ He ,

we conclude from (4.2.7) that
∫

c0 dξ̂ = �0 for some ξ̂ ∈ He. �

Next we show that He ⊂ Ge. The intuition behind this somewhat surprising result
is that if π ∈ G is not an extreme point, then, viewed as a subset of the space of finite
signed measures on Rd × U, G is locally of infinite dimension at π. In other words,
G does not have any finite dimensional faces other than its extreme points. Since the
intersection of a finite number of half-spaces has finite co-dimension, there are no
extreme points in H, other than the ones in Ge.
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Lemma 4.2.4 Let π0 in G take the form

π0 =
1
2 (π1 + π2) ,

with π1 , π2 ∈ G , π1 � π2. Then, for any n ∈ N, there exists a one-to-one homomor-
phism h mapping Rn into the space of finite signed measures on Rd × U such that
π0 + h(λ) ∈ G for all

λ ∈ Λn :=

⎧⎪⎪⎨⎪⎪⎩(λ1, . . . , λn) ∈ [−1, 1]n :
n∑

i=1

|λi| ≤ 1

⎫⎪⎪⎬⎪⎪⎭ .

Proof Using the notation introduced in Definition 3.2.1, p. 87, we write πi = ηvi�vi,
i = 0, 1, 2. According to the hypothesis of the lemma, v1 � v2. Therefore there exists
a bounded measurable set A ⊂ Rd such that∥∥∥v1( · | x) − v2( · | x)

∥∥∥
TV

> 0 ∀x ∈ A .

Let {A1, . . . , An} be any partition of A consisting of sets of positive Lebesgue mea-
sure. Define

ṽk
i ( · | x) = vi( · | x) IAk (x) + v0( · | x) IAc

k
(x) , i = 1, 2 , k = 1, . . . , n .

Since

v0( · | x) =
1
2

∑
i=1,2

dηvi

dηv0

(x)vi( · | x) ,

it follows that

v0( · | x) =
1
2

∑
i=1,2

(
IAk (x)

dηvi

dηv0

(x) + IAc
k
(x)

)
ṽk

i ( · | x) , 1 ≤ k ≤ n .

Since, by Lemma 3.2.4 (b),
dηvi

dηv0
, i = 0, 1, is bounded away from zero on bounded

sets in Rd, using Lemma 3.2.7, we conclude that for each k = 1, . . . , n, there exists a
pair (vk

1, v
k
2) of points in Ussm, which agree on Ac

k and differ a.e. on Ak, and such that

πv0 = π0 =
1
2

(
πvk

1
+ πvk

2

)
. (4.2.8)

Define

ξk := 1
2

(
πvk

1
− πvk

2

)
, k = 1, . . . , n ,

h(λ) :=
n∑

k=1

λkξk , λ = (λ1, . . . , λn) ∈ Λn .
(4.2.9)

Note that h(Λn) is a rectangle in the space of signed measures with corner points
(±ξ1, . . . ,±ξn). With ‘co’ denoting the convex hull, it follows that

π0 + h(Λn) = ∆n := co
{
πvk

1
,πvk

2
: 1 ≤ k ≤ n

}
,
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and π0 is in its relative interior. It remains to show that {ξk : 1 ≤ k ≤ n} are linearly
independent. If not, assume without loss of generality that ξ1 =

∑n
k=2 rkξk for some

constants r2, . . . , rn. Let r̂ ∈ R satisfy r̂−1 > max
{
1,

∑n
k=2|rk |

}
. It follows that

π0 + r̂ξ1 ∈ co
{
πvk

1
,πvk

2
: 2 ≤ k ≤ n

}
.

Let v̂ ∈ Usm such that πv̂ = π0 + r̂ξ1. Note that since

πv̂ ∈ co
{
πvk

1
,πvk

2
: 2 ≤ k ≤ n

}
,

then v̂ must agree with v0 on A1. Since r̂ ∈ (0, 1), we obtain πv̂ = r̂ πv1
1
+ (1 − r̂) π0,

and by the remark in the paragraph preceding Lemma 3.2.7 in p. 91, since v̂ agrees
with v0 on A1, then v1

1 should also agree with v0 on A1. In turn, by (4.2.8), v1
1 and v1

2
should agree on A1 which is a contradiction. This completes the proof. �

The next lemma follows from Lemma 4.2.4 and the more general results of Dubins
[48]. We present a simple algebraic proof which is tailored for the particular problem.

Lemma 4.2.5 Let Hi, i = 1, . . . , �, be a collection of half-spaces in the space of
finite signed measures on Rd × U of the form

Hi =
{
ξ : ∫ hi dξ ≤ 0

}
,

and let L

H := G ∩ H1 ∩ · · · ∩ H� .

Then He ⊂ Ge.

Proof Suppose π0 ∈ He \ Ge. Choose n > �, and let {ξ1, . . . , ξn} and h(λ) be as
in (4.2.9). We use the convenient notation 〈hi, ξ j〉 :=

∫
hi dξ j. Since n > �, we can

choose λ ∈ Λn such that
∑n

k=1|λk | = 1 and

n∑
k=1

λk〈h j, ξk〉 = 0 ∀ j ∈ {1, . . . , �} .

Then, for δ ∈ [−1, 1], π(δ) ∈ G defined by

π(δ) := π0 + δ

n∑
k=1

λkξk = π0 + h(δλ)

satisfies 〈h j,π(δ)〉 ≤ 0. Therefore π(δ) ∈ H for δ ∈ [−1, 1], and since π(0) = π0 is in
the relative interior of π([−1, 1]), it follows that π0 � He contradicting the original
hypothesis. �

The existence of a stable stationary Markov optimal control follows directly from
Lemmas 4.2.3–4.2.5.

Theorem 4.2.6 Under either Assumption 4.2.1 or 4.2.2, the constrained problem
(4.2.1) – (4.2.2) has an optimal solution v ∈ Ussd.
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Suppose there is a feasible π for which the constraints are satisfied with strict in-
equality. Then standard Lagrange multiplier theory [88, pp. 216–219] implies that
the constrained problem is equivalent to the unconstrained minimization of the func-
tional

J(π, γ, κ) =
∫

c j dπ +

�∑
1

γi

(∫
ci dπ − mi

)
+

�∑
1

κi

(
mi −

∫
ci dπ

)
, (4.2.10)

when the weights (γ, κ) = {γi, κi , 1 ≤ i ≤ �} are equal to the Lagrange multipli-
ers (γ∗, κ∗) ∈ R2�

+ . Moreover, if we use the optimal value π∗ of π in (4.2.10), then
as a function of (γ, κ), (4.2.10) is maximized over the nonnegative quadrant at the
Lagrange multipliers. In other words, the saddle point property holds:

J(π∗, γ, κ) ≤ J(π∗, γ∗, κ∗) ≤ J(π, γ∗, κ∗) , π ∈ G , (γ, κ) ∈ R2�
+ .

4.2.2 A general multi-objective problem

In Section 4.2.1, we considered the problem of minimizing the ergodic cost of a
functional c0, subject to constraints on the ergodic cost of functionals c1, . . . , c�. In
the traditional multi-objective framework optimality is relative to a chosen partial
ordering in R�+1. Let

ĉ(π) :=

(∫
c0 dπ ,

∫
c1 dπ , . . . ,

∫
c� dπ

)
denote the ergodic cost vector corresponding to π ∈ G , and

W := {ĉ(π) : π ∈ G } .

Note that W is a closed, convex subset of R�+1. Define the partial ordering ≺ on W
by

(x0, x1, . . . , x�) ≺ (y0, y1, . . . , y�)

if xi ≤ yi for all i = 0, 1, . . . , �, with strict inequality for at least one i. We call x∗ ∈ W
a Pareto point if there is no z ∈ W for which z ≺ x∗. Note that a minimizer of
〈λ, x〉 = ∑�

i=0 λi xi over W for any choice of λi > 0, 0 ≤ i ≤ �, is a Pareto point. In
fact, if W is a polytope, then the minimizers{

x̂ ∈ W : ∃λi > 0 , 0 ≤ i ≤ � , min
x∈W
〈λ, x〉 = 〈λ, x̂〉

}
(4.2.11)

include all Pareto points. But, in general, W is not a polytope. In such a case we have
to settle for a weaker result, namely, that the set in (4.2.11) of minimizers is dense in
the set of all Pareto points. This is a consequence of the celebrated Arrow–Barankin–
Blackwell theorem [9].

More generally, we can obtain Pareto points by minimizing a continuous func-
tional U0 : W → R having the property that U0(x) < U0(y) whenever x ≺ y. Such
a functional is called a utility function. The functional x �→ 〈λ, x〉, with λi > 0,
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0 ≤ i ≤ �, is an example of a utility function. Another important example is con-
structed as follows: Let

c∗ =

(
min
π∈G

∫
c0 dπ , min

π∈G

∫
c1 dπ , . . . , min

π∈G

∫
c� dπ

)
.

The vector c∗ ∈ R�+1 is called an ideal point. In general the ideal point c∗ does not
belong to the feasible domain W. Let c̃ be the unique point in W such that

|c∗ − c̃| = min
c∈W
|c∗ − c| .

The point c̃ corresponds to minimization with respect to the utility function U(x) =
|x − c∗| and is a Pareto point, often referred to as the shadow minimum.

Since c̃ ∈ W, there exists a π̃ ∈ G such that

c̃ =

(∫
c0 dπ̃,

∫
c1 dπ̃, . . . ,

∫
c� dπ̃

)
. (4.2.12)

But π̃ may or may not belong to Ge. For simplicity, we assume that ci, i = 0, 1, . . . , �,
are bounded. By Caratheodory’s theorem [101], c̃ can always be expressed as a con-
vex combination of at most � + 2 points of W. On the other hand, it is evident that
any extreme point of W is of the form ĉ(π) for some π ∈ Ge. Consequently c̃ = ĉ(π′)
for some π′ ∈ G that is a convex combination of at most � + 2 points of Ge. In
fact the extreme points of the subset of G satisfying (4.2.12) are in Ge, as shown in
Lemma 4.2.5.

4.3 Singular perturbations in ergodic control

In this section, we consider ergodic control of singularly perturbed diffusions, in
which the singular perturbation parameter ε > 0 is introduced in such a way that the
state variables are decomposed into a group of slow variables that change their values
with rates of order O(1), and a group of fast ones that change their values with rates
of order O( 1

ε
). Our objective is to relate this problem to the ergodic control problem

for the averaged system obtained in the ε → 0 limit, i.e., to prove that the latter
(lower dimensional) problem is a valid approximation to the original problem for
small ε.

Our approach relies on the intuition that for small ε, the time-scales are sufficiently
separated so that the fast component sees the slow component as quasistatic and can
be analyzed, within an approximation error that becomes asymptotically negligible
as ε ↓ 0, by freezing the slow component at a constant value. In turn, the slow
component sees the fast component as quasi-equilibrated and can be analyzed by
averaging out its dynamics with respect to the equilibrium behavior of the latter. We
make this precise in what follows.
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The model is a coupled pair of stochastic differential equations in Rd × Rs given
by

dZε
t = h̄(Zε

t , Xε
t ,Ut) dt + γ(Zε

t ) dBt , (4.3.1a)

dXε
t =

1
ε

b̄(Zε
t , Xε

t ,Ut) dt +
1
√
ε
σ(Zε

t , Xε
t ) dWt . (4.3.1b)

Here h̄ and b̄ are the relaxed versions of drift vector fields h : Rd ×Rs ×U→ Rd and
b : Rd×Rs×U→ Rs, i.e., h̄(z, x, v) =

∫
U

h(z, x, u)v(du), v ∈P(U), and similarly for b̄.
The action set U is a compact metric space. The standard assumptions in Section 2.2
of Lipschitz continuity and affine growth for the drift terms (h, b) and diffusion matrix
diag(γ,σ) are in effect here. Also, B and W are d- and s-dimensional independent
standard Brownian motions, respectively, and the least eigenvalues of γ(z)γT(z) and
a(z, x) := 1

2σ(z, x)σT(z, x) are uniformly bounded away from zero (nondegeneracy
assumption).

As usual, U is a P(U)-valued control process with measurable paths satisfying
the non-anticipativity condition: for t ≥ s, (Bt − Bs,Wt −Ws) is independent of Fs,
the completion of ⋂

s′>s

σ(Zε
r , Xε

r ,Ur, Br,Wr : r ≤ s′) .

As before, we call such U an admissible control, and denote this set as U.
Given a running cost in the form of a continuous map c : Rd×Rs×U→ R+, we set

c̄(z, x, v) =
∫
U

c(z, x, u)v(du). We seek to minimize over all admissible U the ergodic
cost in its average formulation

lim sup
t↑∞

1
t

∫ t

0
E
[
c̄(Zε

s , Xε
s ,Us)

]
ds .

For f ∈ C2(Rs), define Lu
z : C2(Rs)→ C(Rd × Rs × U) by

Lu
z f (x) := tr

(
a(z, x)∇2 f (x)

)
+

〈∇ f (x), b(z, x, u)
〉
, (4.3.2)

and L̂u
ε : C2(Rd × Rs)→ C(Rd × Rs × U) by

L̂u
ε f (z, x) :=

1
2

tr
(
γ(z)γT(z)∇2

z f (z, x)
)
+

〈∇z f (z, x), h(z, x, u)
〉
+

1
ε
Lu

z f (z, x) ,

where ∇y and ∇2
y denote the gradient and the Hessian in the variable y, respectively.

We work with the weak formulation of the above control problem. We also impose
the following conditions, which are in effect throughout unless otherwise stated.

Assumption 4.3.1 We assume the following:

(a) c is locally Lipschitz continuous in (x, z) uniformly in u ∈ U.
(b) c is inf-compact, i.e.,

lim
|(z,x)|→∞

min
u∈U

c(z, x, u) = ∞ . (4.3.3)
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(c) There exists an inf-compact functionV ∈ C2(Rs) and a function g ∈ C(Rd ×Rs)
such that

lim
|x|→∞

g(z, x) = ∞ ,

uniformly in z in compact subsets of Rd, satisfying

Lu
zV(x) ≤ −g(z, x) . (4.3.4)

(d) There exists a constant M∗ > 0 such that for each ε ∈ (0, 1), the average cost for
at least one admissible U does not exceed M∗.

For U ∈ U and ε > 0, define the empirical measures {ζU,ε
t : t > 0}, and the mean

empirical measures {ζ̄U,ε
t : t > 0} by∫

Rd×Rs×U
f dζU,ε

t :=
1
t

∫ t

0
f (Zε

s , Xε
s ,Us) ds ,

∫
Rd×Rs×U

f dζ̄U,ε
t :=

1
t

∫ t

0
EU [

f (Zε
s , Xε

s ,Us)
]

ds

for f ∈ Cb(Rd × Rs × U).
Let

Φε
v(dz, dx, du) := ηεv(dz, dx) v(du | z, x) (4.3.5)

denote the ergodic occupation measure associated with a Markov control v ∈ Ussm

and denote by G ε the set of all ergodic occupation measures Φε
v as v varies over all

stable Markov controls.
The following is immediate from Theorem 3.4.7.

Theorem 4.3.2 Under Assumption 4.3.1 (a), (b) and (d), there exists v∗ε ∈ Ussd such
that if Φε

∗ := Φε
v∗ε

is the corresponding ergodic occupation measure, then, under any
admissible U,

lim inf
t↑∞

∫
c dζU,ε

t ≥
∫

c dΦε
∗ a.s.,

lim inf
t↑∞

∫
c dζ̄U,ε

t ≥
∫

c dΦε
∗ .

4.3.1 The averaged system

We introduce the averaged system and show that the optimal cost for the associated
ergodic control problem serves in general as an asymptotic lower bound for the op-
timal cost for the original problem in the ε ↓ 0 limit. The argument is based on
the tightness of the optimal ergodic occupation measures as ε is reduced to zero,
implying their relative compactness in the Prohorov topology.
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Setting τ = t
ε
, X̄τ = Xε

ετ, Z̄τ = Zε
ετ, Ūτ = Uετ, and W̄τ =

1√
ε
Wετ, (4.3.1b) becomes

dX̄τ = b̄(Z̄τ, X̄τ, Ūτ) dτ + σ(Z̄τ, X̄τ) dW̄τ ,

which does not depend on ε explicitly. We define the associated system

dXz
τ = b̄(z, Xz

τ,Uτ) dτ + σ(z, Xz
τ) dWτ , (4.3.6)

where z ∈ Rs is fixed, W a standard Brownian motion independent of X0, and the ad-
missibility of Ū is defined by: for t > s, Wt−Ws is independent ofGs, the completion
of

⋂
s′>s σ(Xz

r ,Ur,Wr : r ≤ s′). The definition of the associated system is motivated
by the intuition that the fast system may be analyzed by freezing the slow dynamics
as the separation of the time-scales increases with ε ↓ 0.

Remark 4.3.3 Equation (4.3.6) is the relaxed control form of the associated system.
One also has the pre-relaxation form

dXτ = b(z, Xτ,Uτ) dτ + σ(z, Xτ) dWτ , (4.3.7)

which we shall have an occasion to use later.

Let

Gz :=

{
πz ∈P(Rs × U) :

∫
Rs×U
Lu

z f (x) πz(dx, du) = 0 ∀ f ∈ C2
0(Rs)

}
,

where Lu
z is defined in (4.3.2). The next lemma in particular characterizes this as the

set of ergodic occupation measures for the associated system.

Lemma 4.3.4 The class Gz is the set of πz ∈P(Rs × U) taking the form

πz(dx, du) = ηz,v(dx) v(du | x) ,

where ηz,v is the unique invariant distribution of the time-homogeneous diffusion X
given by (4.3.6) when Ut = v(Xt) := v(du | Xt). The set-valued map z �→ Gz is convex
compact-valued and continuous. Moreover, for any compact set K ⊂ Rd, ∪z∈KGz is
compact.

Proof The first claim follows from Lemma 2.6.14. That Gz is convex and closed for
each z ∈ Rd is easily verified from the definition. It is also straightforward to verify
that it is compact-valued and continuous. Let K be a compact set in Rd, and write
πz as πz,v to explicitly denote its dependence on v. Viewing (4.3.7) as a controlled
diffusion with action space K × U, it follows by (4.3.4) and (iv) of Lemma 3.3.4,
that the diffusion is uniformly stable. Consider the set of controls U of the form
ṽ = δz(dz′)v(du | x), z ∈ K. It follows that HU (defined as in Section 3.2 on p. 89) is
tight uniformly in z ∈ K, and since U is closed, Lemma 3.2.6 implies that the map
ṽ �→ πz,v ∈ ∪z′∈KGz′ is continuous. SinceU is compact and the map is onto, the proof
is complete. �
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It follows by Lemma 4.3.4 that the graph {(z,πz) : z ∈ Rs , πz ∈ Gz} is closed and
the set {(z,πz) : z ∈ K , πz ∈ Gz} is compact for any compact set K ⊂ Rs. For µ ∈ Gz,
define

h̃(z, µ) :=
∫
Rs×U

h(z, x, u) µ(dx, du) ,

c̃(z, µ) :=
∫
Rs×U

c(z, x, u) µ(dx, du) .

The averaged system is defined by

dZt = h̃(Zt, µt) dt + γ(Zt) dB̃t , µt ∈ GZt , ∀t ≥ 0 . (4.3.8)

The averaged system corresponds to the slow variables with their dynamics averaged
over the equilibrium behavior of the fast variables. Here Z0 = Zε

0 = z0, ε > 0, B̃ is a
standard Brownian motion in Rd, while µ satisfies µt ∈ GZt and the non-anticipativity
condition: for t ≥ s ≥ 0, B̃t − B̃s is independent of the completion of⋂

s′>s

σ(Zr, B̃r, µr : r ≤ s′) .

We may view µ as the effective control process for the averaged system. By anal-
ogy, we call µ a Markov control if µt = µ(dx, du | Zt) for all t, identified with the
measurable map µ : Rd →P(Rs × U). Call it a stable Markov control if in addition
the resulting time-homogeneous Markov process Z is positive recurrent. In the latter
case, Z has a unique invariant probability distribution ϕµ(dz). Let G denote the set of
the corresponding ergodic occupation measures for the averaged system in (4.3.8).
For ξ ∈ G , we have

ξ(dz, dx, du) := ϕµ(dz) µ(dx, du | z) ,

or equivalently, ξ = ϕµ � µ. Then as before, one has the following characterization.
Define L̃ : C2(Rd)→ C(Rd ×P(Rs × U)

)
by

L̃µ f (z) =
1
2

tr
(
γ(z)γT(z)∇2 f (z)

)
+ 〈∇ f (z), h̃(z, µ)〉 .

Lemma 4.3.5 The set G is the subset of P(Rd×Rs×U) consisting of all ξ = ϕµ�µ
such that µ( · | z) ∈ Gz for all z ∈ Rs and∫

Rs
L̃µ f (z)ϕµ(dz) = 0 ∀ f ∈ C2

0(Rd) .

This again follows from Lemma 2.6.14. The ergodic control problem for the aver-
aged system takes the form: minimize over all admissible µ

lim sup
t↑∞

1
t
E

[∫ t

0
c̃(Zs, µs) ds

]
.

We then obtain the following, in analogy to Theorem 3.4.7.
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Theorem 4.3.6 There exists a stable optimal Markov control µ∗ for the averaged
system such that if ξ∗ = ϕµ∗ � µ∗ is the corresponding ergodic occupation measure,
then for any admissible µ as above

lim inf
t↑∞

1
t

∫ t

0
c̃(Zs, µs) ds ≥

∫
c dξ∗ a.s.,

lim inf
t↑∞

1
t

∫ t

0
Eµ

∗
[c̃(Zs, µs)] ds ≥

∫
c dξ∗.

Let G ∗ denote the set of optimal ergodic occupation measures, i.e.,

G ∗ = Arg min
ξ∈G

∫
c dξ .

If µ is an ergodic occupation measure for the associated system in (4.3.6), i.e., µ ∈ Gz,
we decompose it as µ = µv � v where µv is the unique invariant distribution. In
particular, for an optimal µ∗, we obtain

µ∗(dx, du | z) = µv∗ (dx | z) v∗(du | z, x) . (4.3.9)

Also define ηv via the decomposition

ξ(dz, dx, du) = ηv(dz, dx) v(du | z, x) .

We now consider the limit as ε ↓ 0. Let Φε
∗ be as in Theorem 4.3.2. Then by

Assumption 4.3.1 (d), it follows that sup0<ε<1

∫
c dΦε

∗ ≤ M∗. In turn, by (4.3.3) and
the Chebyshev inequality, it then follows that {Φε

∗ : ε ∈ (0, 1)} is tight. The following
theorem characterizes the limit points of this collection.

Theorem 4.3.7 Any limit point Φ0
∗ of Φε

∗ as ε ↓ 0 lies in G .

Proof Disintegrate Φ0
∗ as

Φ0
∗(dz, dx, du) = ϕ̌(dz) µ̌(dx, du | z) .

With f1 ∈ C2
0(Rd) and f2 ∈ C2

0(Rs), let ε ↓ 0 in the equation ε
∫
L̂u

ε( f1 f2) dΦε
∗ = 0 to

obtain ∫
Rd

f1(z)

[∫
Rs×U
Lu

z f2(x) µ̌(dx, du | z)

]
ϕ̌(dz) = 0 . (4.3.10)

Then as (4.3.10) holds for all f1 ∈ C2
0(Rd), we conclude that for ϕ̌-a.s. z,∫

Rs×U
Lu

z f2(x) µ̌(dx, du | z) = 0 ,

implying that µ̌( · | z) ∈ Gz. The qualification “ϕ̌-a.s.” may be dropped by choosing a
suitable version. Now for f ∈ C2

0(Rd), let ε ↓ 0 in
∫
L̂u

ε f dΦε
∗ = 0 to obtain∫

L̂u
0 f dΦ0

∗ =

∫
Rd
L̃µ̌ f (z) ϕ̌(dz) = 0 . (4.3.11)

By Lemma 4.3.5, (4.3.11) implies that ϕ̌ is the unique stationary distribution ϕµ̌ under
µ̌ for the averaged system. It follows that Φ0

∗ ∈ G . �
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Corollary 4.3.8 lim infε↓0
∫

c dΦε
∗ ≥

∫
c dξ∗.

This shows that the optimal ergodic cost for the averaged system provides an
asymptotic lower bound (as ε ↓ 0) for the optimal ergodic cost of the original prob-
lem. To show that it is in fact a valid approximation, we must replace the “lim inf” by
“lim” in Corollary 4.3.8 and the inequality by an equality. We do so under additional
assumptions in the following sections.

4.3.2 The affine case

We show that in the special case of the control entering the drift in an affine manner
and the running cost being strict convex in the control, we have

lim
ε↓0

∫
c dΦε

∗ =

∫
c dξ∗ .

This crucially depends on the fact that under these conditions, the expression being
minimized over the control parameter in the associated Hamilton–Jacobi–Bellman
equation is strictly convex and therefore the minimizer is unique and continuously
varying with ε.

Assume the following.

Assumption 4.3.9 (i) U is a compact subset of Rm for some m ≥ 1 and for each
(z, x) ∈ Rd+s, h(z, x, · ), b(z, x, · ) are componentwise affine and c(z, x, · ) is strictly
convex.

(ii) |h(z, x, u)| ∈ o(c(z, x, u)
)

and

max
u∈U

c(z, x, u) ∈ o(|g(z, x)|)
with g as in (4.3.4).

(iii) v∗ = v∗(du | z, x) in (4.3.9) is a stable Markov control for (4.3.1) for suffi-
ciently small ε > 0 (say, ε < ε0), and the corresponding stationary distributions
ηεv∗ (dz, dx), ε ∈ (0, ε0), are tight.

The next lemma, which uses only Assumption 4.3.9 (i) and (ii), shows in particular
that v∗ in (4.3.9) is unique. Thus part (iii) of Assumption 4.3.9 is unambiguous.

Lemma 4.3.10 Under Assumption 4.3.9 (i) and (ii), v∗(du | z, x) in (4.3.9) is unique
and continuous in (z, x) ∈ Rd+s. In addition, the corresponding µ∗ in (4.3.9) and the
associated ξ∗ ∈ G ∗ are both unique, or equivalently, G ∗ is a singleton.

Proof By Theorem 3.6.10, a necessary and sufficient condition for the optimality
of µ∗ is that µ∗(z) minimizes the function

µ �→ c̃(z, µ) + 〈∇Ψ(z), h̃(z, µ)〉,

over Gz for a.e. z, where Ψ ∈ C2(Rd) is the value function for the ergodic control
problem for the averaged system. Note that Theorem 3.6.10 proves the existence of
a C2 value function and the associated “verification theorem” for the case when Gz is
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independent of z. Condition (4.3.3) is a special case of near-monotonicity. The mod-
ifications required to handle the more general state-dependent control space needed
here are minor in view of the upper semicontinuity of the set-valued map z �→ Gz

already established. The details are omitted.
We may drop the qualification “for a.e. z” by taking an appropriate version. Now

for fixed z ∈ Rd, consider the ergodic control problem for the associated system
(4.3.7) with cost

lim sup
t↑∞

1
t

∫ t

0
E
[
�z(X̄s,Us)

]
ds ,

where �z ∈ C(Rs × U) is defined by

�z(x, u) := c(z, x, u) + 〈∇Ψ(z), h(z, x, u)〉 .

Since Gz is precisely the set of ergodic occupation measures for the associated sys-
tem, µ∗ is the optimal ergodic occupation measure for the above problem. Note that
for each z, the cost function �z is inf-compact, because of the first half of Assump-
tion 4.3.9 (ii). By Assumption 4.3.9 (ii), 〈∇Ψ(z), h(z, x, u)〉 ∈ o(g) for each z ∈ Rd.
Thus Theorem 3.6.10 can be applied again to this new control problem, in order to
conclude as above that v∗(du | z, x) minimizes

µ �→
∫
Rs

(
�z(x, · ) + 〈∇Ψ̃z(x), b(z, x, · )〉) µ(dx | z) ,

where Ψ̃z ∈ C2(Rs) is the value function for this new ergodic control problem for the
model in (4.3.7). Let

G(z, x, u) := �z(x, u) + 〈∇Ψ̃z(x), b(z, x, u)〉 .

By Theorem 3.6.10, the map (z, x) �→ infu∈U G(z, x, u) is locally Lipschitz contin-
uous, while Assumption 4.3.9 (i) implies that u �→ G(z, x, u) is strictly convex. It
follows that Arg minu∈U G(z, x, u) is a singleton, and is continuous in (z, x) ∈ Rd+s.
In other words, (z, x) �→ v∗ is continuous.

Recall (4.3.9), where µv∗ is the unique stationary distribution for the associated
system under v∗. Uniqueness of µ∗ follows. In turn, ξ∗ = ϕµ∗ � µ∗, where ϕµ∗ is the
unique stationary distribution of the averaged system under µ∗. Thus ξ∗ is unique. �

Remark 4.3.11 Note that v∗(du | z, x) is in fact Dirac for all (z, x) ∈ Rd+s. Also
note that the assumption of affine dependence of h and b on u is crucial in preserving
the strict convexity of the running cost.

Theorem 4.3.12 With v∗ as in (4.3.9), Φε
v∗ defined in (4.3.5) converges to ξ∗ in

P(Rd ×Rs×U) as ε ↓ 0. Moreover, if the function g in Assumption 4.3.9 (ii) satisfies

lim sup
ε↓0

∫
Rd+s

g(z, x) ηεv∗ (dz, dx) < ∞ , (4.3.12)

then

lim
ε↓0

∫
c dΦε

v∗ =

∫
c dξ∗ (4.3.13)
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and

lim
ε↓0

∫
c dΦε

∗ =

∫
c dξ∗ . (4.3.14)

Proof In view of Theorem 4.3.7, (4.3.13) implies (4.3.14). Therefore it suffices to
prove the convergence of Φε

v∗ to ξ∗ and show the validity of (4.3.13).
Suppose that

ηεv∗(dz, dx)→ η̆(dz, dx) = ϕ̆(dz) µ̆(dx | z)

along a subsequence as ε ↓ 0. In view of the continuity of v∗(du | · , · ), we may pass
to the limit along this subsequence in

ε

∫
Rd×Rs

[∫
U

L̂u
ε f (z, x) v∗(du | z, x)

]
ηεv∗(dz, dx) = 0 , f ∈ C2

0(Rd+s) ,

with f = f1 f2, f1 ∈ C2
0(Rd) and f2 ∈ C2

0(Rs), and argue as in Theorem 4.3.7 to obtain∫
Rd×Rs

[∫
U

Lu
z f (z, x) v∗(du | z, x)

]
η̆(dz, dx) = 0 , f ∈ C2

0(Rd+s) .

Hence µ̆(dx | z) is in fact the unique stationary distribution for the associated system
controlled by v∗(du | z, x) (i.e., µ̆(dx | z) = µv∗ (dx | z)) for ϕ̆-a.s. z. The latter
qualification may be dropped by choosing an appropriate version. Recall (4.3.9). Let
ε ↓ 0 in ∫

Rd×Rs

[∫
U

L̂u
ε f (z, x) v∗(du | z, x)

]
ηεv∗(dz, dx) = 0

for f = f1 ∈ C2
0(Rd) (i.e., f is a C2 function of the z variable alone). A similar

argument then yields ∫
Rd
L̃µ∗ f (z) ϕ̆(dz) = 0 , f ∈ C2

0(Rd) .

Thus ϕ̆(dz) is the unique stationary distribution for the averaged system controlled
by the stable Markov control µ∗, i.e., ϕ̆ = ϕµ∗ . Thus

η̆(dz, dx) v∗(du | z, x) = ξ∗(dz, dx, du) ,

implying Φε
v∗ → ξ∗. By (4.3.12) and the second half of Assumption 4.3.9 (ii) there

exists ε0 > 0 such that c is uniformly integrable over {Φε
v∗ } for ε ∈ [0, ε0]. Hence

(4.3.13) holds. �

4.3.3 The general case

We drop part (i) of Assumption 4.3.9, retain part (ii), and modify part (iii) in order
to extend the results of Section 4.3.2 under some technical assumptions. These as-
sumptions basically allow us, given an optimal control for the averaged system, to
approximate the optimal process in law by the ε-indexed processes we start with.
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Define v∗δ(du | z, x), for δ in some interval (0, δ0], by

v∗δ(du | z, x) :=
∫
Rd×Rs

v∗(du | z′, x′) ρδ(z − z′, x − x′) dz′dx′ ,

where ρδ : Rd+s → R+, δ ∈ (0, δ0], are smooth mollifiers supported on a ball of radius
δ, centered at the origin. In what follows,

v∗0(du | z, x) := v∗(du | z, x) ,

and the variables η̂εδ, µ̂δ, ˆ̂µδ, ϕ̂δ, and Φ̂ε
δ introduced below, correspond to v∗ when

δ = 0. Replace Assumption 4.3.9 (iii) by Assumptions 4.3.13–4.3.14 below:

Assumption 4.3.13 The kernel v∗δ(du | z, x) is a stable Markov control for (4.3.1)
for all δ ∈ [0, δ0], and ε ∈ (0, ε0). Moreover, there exists an inf-compact ĝ ∈ C(Rd+s)
satisfying

sup
u∈U

c(z, x, u) ∈ o(|ĝ(z, x)|) , (4.3.15)

such that the stationary distributions ηεv∗δ
of (4.3.1) corresponding to {v∗δ}, denoted by

η̂εδ(dz, dx), 0 < ε < ε0, satisfy

sup
0<ε<ε0

∫
Rd×Rs

ĝ(z, x) η̂εδ(dz, dx) < ∞ ∀δ ∈ [0, δ0] . (4.3.16)

Once again, in view of the nondegeneracy assumption, the transition probabilities
for t > 0 of the time-homogeneous Markov process described by (4.3.6) under the
Markov control v∗δ, δ ∈ [0, δ0], have densities w.r.t. the Lebesgue measure. Therefore
the same applies for the corresponding invariant probability measures µ̂δ := µv∗δ

for
the associated system. Let

ˆ̂µδ(dx, du | z) := µ̂δ(dx | z) v∗δ(du | z, x)

and ϕ̂δ be the unique stationary distribution for (4.3.8) under the Markov control µ̂δ.
Also, for δ ∈ [0, δ0], let

η̂0
δ(dz, dx) := ϕ̂δ(dz) µ̂δ(dx | z)

Φ̂0
δ(dz, dx, du) := η̂0

δ(dz, dx) v∗δ(du | z, x) .

Note that Φ̂0
0 ∈ G ∗. We also assume:

Assumption 4.3.14 The kernel ˆ̂µδ(dx, du | z) is a stable Markov control for (4.3.8)
for δ ∈ [0, δ0], and for ĝ as in Assumption 4.3.13,

sup
δ∈[0,δ0]

∫
Rd×Rs

ĝ(z, x) η̂0
δ(dz, dx) < ∞ . (4.3.17)

Lemma 4.3.15 As (δn, zn)→ (δ, z) in [0, δ∗] × Rd, µ̂δn (dx | zn)→ µ̂δ(dx | z) in total
variation.
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Proof By Assumption 4.3.1 (d), {v∗δ : δ ∈ [0, δ∗] , z ∈ K}, with K a compact subset
of Rd, are uniformly stable controls for the associated system. The continuity of the
map (δ, z) �→ v∗δ( · | z, x), along with Lemma 3.2.6 (a), yield the desired result. �

We also let Φ̂ε
δ ∈P(Rd × Rs × U), δ > 0, denote the ergodic occupation measure

for (4.3.1) under the control v∗δ.

Lemma 4.3.16
∫

c dΦ̂0
δ →

∫
c dΦ̂0

0 as δ ↓ 0, and
∫

c dΦ̂ε
δ →

∫
c dΦ̂0

δ as ε ↓ 0.

Proof By (4.3.3), (4.3.15), (4.3.16), and the Chebyshev inequality,{
η̂εδ : δ ∈ [0, δ0] , ε ∈ [0, ε0]

}
,

and therefore, also {ϕ̂δ : δ ∈ [0, δ0]} are tight. Let ϕ̂ be any limit point of ϕ̂δ as δ ↓ 0.
Since ϕ̂δ is characterized by∫

Rd
L̃µ̂δ f (z) ϕ̂δ(dz) = 0 , f ∈ C2(Rs) , (4.3.18)

then the standard argument based on Harnack’s inequality used in the proofs of Lem-
mas 3.2.4 and 3.2.5 implies that the convergence of ϕ̂δ → ϕ̂ is in fact in total varia-
tion. Now for f ∈ Cb(Rd × Rs × U),∫

U

f (z, x, u) v∗δ(du | z, x) −−−→
δ→0

∫
U

f (z, x, u) v∗0(du | z, x)

a.e. along a subsequence δm ↓ 0. Hence, if we define

f̄ (z, x, v) :=
∫
U

f (z, x, u) v(du | z, x) ,

then by Lemma 4.3.15, along this subsequence,∫
Rs

f̄ (z, x, v∗δ) µ̂δ(dx | z) −−→
δ↓0

∫
Rs

f̄ (z, x, v∗0) µ̂0(dx | z) a.e.,

which in turn leads to∫
Rs×Rd

f̄ (z, x, v∗δ) µ̂δ(dx | z) ϕ̂δ(dz) −−→
δ↓0

∫
Rs×Rd

f̄ (z, x, v∗0) µ̂0(dx | z) ϕ̂(dz) .

In particular, letting δ ↓ 0 along an appropriate subsequence in (4.3.18), we obtain∫
Rd
L̃µ̂0 f (z) ϕ̂(dz) = 0 , f ∈ C2(Rs) ,

i.e., ϕ̂ = ϕ̂0. Thus

Φ̂0
δ = ϕ̂δ(dz) ˆ̂µδ(dx, du | z) −−→

δ↓0
Φ̂0

0 = ϕ̂0(dz) ˆ̂µ0(dx, du | z) .

The convergence Φ̂ε
δ → Φ̂0

δ follows along the same lines. Equations (4.3.15) – (4.3.17)
ensure uniform integrability of c under these measures, which in turn implies the
convergence claimed in the lemma. �

Theorem 4.3.17 limε↓0
∫

c dΦε
∗ =

∫
c dΦ0

∗.
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Proof Fix α > 0 and take δ > 0 small enough such that∣∣∣∣∣∫ c dΦ̂0
δ −

∫
c dΦ̂0

0

∣∣∣∣∣ < α

2
.

Then pick ε > 0 small enough so that∣∣∣∣∣∫ c dΦ̂ε
δ −

∫
c dΦ̂0

δ

∣∣∣∣∣ < α

2
.

Thus

lim sup
ε↓0

∫
c dΦε

∗ ≤ lim sup
ε↓0

∫
c dΦ̂ε

δ

≤
∫

c dΦ̂0
0 + α .

Since α > 0 is arbitrary, the claim follows in view of Corollary 4.3.8. �

Remark 4.3.18 Condition (4.3.3) can be replaced by the weaker requirement

lim
‖z‖→∞

inf
x,u

c(z, x, u) > β∗ := sup
0≤ε<ε0

βε (4.3.19)

for some ε0 > 0, where βε, ε > 0, is the optimal cost for the ergodic control problem
(ε = 0 yields the corresponding condition for the averaged system). This goes exactly
along the lines of Sections 3.4–3.5. Since in particular this presupposes that βε are
uniformly bounded for ε ∈ (0, ε0), in view of Theorem 4.3.7, we may replace the
“sup0≤ε<ε0

” in (4.3.19) by “sup0<ε<ε0
.”

We briefly indicate the corresponding developments when a blanket stability con-
dition is available. We do not assume (4.3.3) or its generalization (4.3.19), but require
that c be bounded from below. Suppose for ε ∈ (0, ε0) there exist a bounded ball
B ⊂ Rd+s and a pair of nonnegative, inf-compact functionsV(i)

ε ∈ C2(Rd+s), i = 1, 2,
satisfying

L̂u
εV(1)

ε (z, x) ≤ −1 ,

L̂u
εV(2)

ε (z, x) ≤ −V(1)
ε (z, x)

(4.3.20)

for all (z, x) ∈ Dc. The Lyapunov condition (4.3.20) is the same as Assumption 3.4.9,
and implies as in Corollary 3.4.10 that the second moments of hitting times of
bounded domains are uniformly bounded over all admissible controls. One can then
argue as in Theorem 3.4.7 to derive Theorem 4.3.2. By Theorem 3.4.11, (4.3.20)
ensures that {µt} remain a.s. tight (so do {µ̄t}) and G is compact. This allows one to
derive Theorem 4.3.2 without the need to use (4.3.3). Conditions similar to (4.3.20)
imposed on (4.3.8) ensure Theorem 4.3.6. Next, for obtaining the counterparts of the
results of Section 4.3.3 for the affine case, assume the additional conditions stipu-
lated in Theorem 3.7.11 to ensure the existence of C2 value functions for the two
ergodic control problems that feature in the proof of Lemma 4.3.10. The rest re-
mains as before. We omit the details as they are straightforward adaptations of the
foregoing.
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4.4 Control over a bounded domain

4.4.1 Controlled diffusions with periodic coefficients

Consider a controlled diffusion governed by (2.2.1), where for each i = 1, . . . , d,
b(x, u), σ(x), and the running cost c(x, u) are periodic in xi with period Ti. The state
space can be viewed as the d-dimensional torus

T := R
d
�∏d

i=1 TiZ
.

Since the state space is compact, it follows by Theorem 1.5.15 that under any control
v ∈ Usm the corresponding process has an invariant probability measure ηv. Since the
diffusion is nondegenerate, this invariant probability measure is unique. Without loss
of generality, we assume that for each i, Ti = 1.

We follow the vanishing discount approach. Let α be the discount factor. As usual,
for U ∈ U, define

JU
α (x) := EU

x

[∫ ∞

0
e−αt c̄(Xt,Ut) dt

]
,

Vα(x) := inf
U∈U

JU
α (x) .

It is evident that Theorem 3.5.6 has the following version in the periodic case:

Theorem 4.4.1 The optimal α-discounted value function Vα is periodic in each
coordinate with period 1 and is the unique solution in C2(Rd) ∩ Cb(Rd) of

min
u∈U

[LuVα(x) + c(x, u)
]
= αVα(x) .

Also, a stationary Markov control v is α-discounted optimal if and only if

d∑
i=1

bi
v(x)

∂Vα

∂xi
(x) + cv(x) = min

u∈U

⎡⎢⎢⎢⎢⎢⎢⎣ d∑
i=1

bi(x, u)
∂Vα

∂xi
(x) + c(x, u)

⎤⎥⎥⎥⎥⎥⎥⎦ a.e. (4.4.1)

Clearly Vα assumes its global minimum at some xα ∈ T. By Lemma 3.6.3, Vα has
bounded oscillation on every ball BR ⊂ Rd uniformly in α > 0. Since it is periodic,
the same applies over Rd. Moreover, by the same lemma,

sup
α>0

∥∥∥V̄α − V̄α(0)
∥∥∥
W 2,p(T)

< ∞ .

Thus, letting α→ 0 and proceeding as in Section 3.6, we obtain the following.

Theorem 4.4.2 There exists a unique pair (V, �) ∈ C2(Rd) × R, such that V(0) = 0
and V is periodic in each coordinate with period 1, satisfying

min
u∈U

[LuV(x) + c(x, u)
]
= � , x ∈ Rd .

Moreover, a stationary Markov control is optimal if and only if

d∑
i=1

bi
v(x)

∂V
∂xi

(x) + cv(x) = min
u∈U

⎡⎢⎢⎢⎢⎢⎢⎣ d∑
i=1

bi(x, u)
∂V
∂xi

(x) + c(x, u)

⎤⎥⎥⎥⎥⎥⎥⎦ a.e. (4.4.2)
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and

� = �∗ := min
v∈Usd

∫
T

cv(x) ηv(dx) .

4.4.2 Controlled reflected diffusions

Let D ⊂ Rd be a bounded domain with C3 boundary ∂D. Let Xt be a D̄-valued
controlled reflected diffusion governed by

dXt = b(Xt,Ut) dt + σ(Xt) dWt − r(Xt) dξt , (4.4.3)

and satisfying the following:

(i) b ∈ C(D̄ × U;Rd), where U is a compact metric space, and is Lipschitz contin-
uous in its first argument.

(ii) σ : D̄→ Rd×d is Lipschitz continuous.
(iii) X0 is prescribed in law, and W is a d-dimensional standard Brownian motion

independent of X0.
(iv) U is a U-valued control process with measurable sample paths satisfying the

following non-anticipativity condition: For t ≥ s, Wt − Ws is independent of
{X0,Ws′ ,Us′ : s′ ≤ s}.

(v) ξ is an R-valued continuous, nondecreasing process (“local time on the bound-
ary”) satisfying

ξt =

∫ t

0
I∂D(Xs) dξs . (4.4.4)

(vi) There exists a C2 function η : Rd → R satisfying

D = {x ∈ Rd : η(x) < 0} , ∂D =
{
x ∈ Rd : η(x) = 0

}
,

and

|∇η| ≥ 1 on ∂D .

(vii) r : D̄ → Rd is a C2 vector field such that, for some δ > 0, r(x) · ∇η(x) ≥ δ for
all x ∈ ∂D.

Under assumptions (i) – (vii), given the joint law of (X0,W,U) there exists a unique
weak solution of (4.4.3) – (4.4.4) [86, 100].

The following theorem characterizing the α-discounted control problem is stan-
dard [61, 77].

Theorem 4.4.3 For any α > 0, the α-discounted optimal cost Vα is the unique
solution in C2(D) ∩ C1(D̄) of

min
u∈U

[LuVα(x) + c(x, u)
]
= αVα(x) ∀x ∈ D ,

r(x) · ∇Vα(x) = 0 ∀x ∈ ∂D .
(4.4.5)
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Moreover, a stationary Markov control v is α-discounted optimal if and only if it
satisfies (4.4.1).

Note that since the state space is compact, the controlled process has an invariant
probability measure ηv for every stationary Markov control v. As in Section 4.4.1,
we have the following:

Theorem 4.4.4 Let x0 ∈ D be fixed. Then there exists a unique pair (V, �∗), with
V ∈ C2(D) ∩ C1(D̄), V(x0) = 0, and �∗ ∈ R, which satisfies the HJB equation:

min
u∈U

[LuV(x) + c(x, u)
]
= �∗ ∀x ∈ D ,

r(x) · ∇V(x) = 0 ∀x ∈ ∂D .
(4.4.6)

Moreover, �∗ is the optimal cost and a stationary Markov control v is optimal if and
only if it satisfies (4.4.2).

Proof For α > 0, let vα be a measurable selector from the minimizer in (4.4.5).
Since under any stationary Markov control the process is ergodic and the diffusion is
nondegenerate, it is straightforward to show that oscD Vα is uniformly bounded over
α ∈ (0, 1). This can be accomplished for example by the technique of the proof of
Theorem 3.7.6. Therefore V̄α := Vα − Vα(0) is bounded, uniformly in α ∈ (0, 1), and
satisfies

Lvα V̄α − αV̄α = −cvα + αVα(0) in D .

Since αVα(0) ≤ maxD̄×U c for all α > 0, by [1, theorem 15.2] we obtain the estimate

‖V̄α‖W 2,p(D) ≤ C0

(
‖V̄α‖Lp(D) + 2 p

√
|D| max

D̄×U
c
)
∀α ∈ (0, 1) ,

for some constant C0. Therefore we can use Lemma 3.5.4, together with the fact that
by Theorem A.2.15 the embedding W 2,p(D) ↪→ C1,r(D̄) is compact for r < 1 − d

p , in
order to take limits along some subsequence αn ↓ 0 in (4.4.5) and derive (4.4.6). �

For related work, see [18, 77, 100]. If the domain D is not smooth, the problem
is quite challenging since the reflection field is oblique, discontinuous, and/or multi-
valued at the boundary points which lack local smoothness. The theory of existence
and uniqueness of strong solutions for PDEs in such domains is not available. For a
treatment of this problem in polyhedral cones using viscosity solutions, see Borkar
and Budhiraja [34].

4.5 An application

We apply the theory developed in this section to the problem of energy-efficient
scheduling over a fading wireless channel. For a given data-arrival rate, the minimum
power required to stabilize the queue can be computed directly from the capacity of
the channel. However, with this minimum power, it is well known from queueing
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theory that the associated queueing delay is unbounded. Excess power needs to be
allocated to stabilize the queue and in this section we deal with the problem of min-
imizing the queueing delay for a time-varying channel with a single queue, subject
to constraints on both the average and peak excess power allocated.

Under the assumption of fast channel variation, i.e., if the channel state changes
much faster than the queueing dynamics, we consider the heavy traffic limit and
associate a monotone cost function with the limiting queue-length process. By sep-
arating the time-scales of the arrival process, the channel process and the queueing
dynamics a heavy traffic limit for the queue length can be obtained in the form of a
reflected diffusion process on R+, given by

dXt = −b
(
Ut

)
dt + σ dWt + dZt , (4.5.1)

where

b(u) =
N∑

j=1

γ jπ ju j .

Here Xt is the queue-length process, and satisfies Xt ≥ 0 for all t ≥ 0, Wt is the
standard Wiener process, σ is a positive constant, and Zt is a nondecreasing process
and grows only at those points t for which Xt = 0. The control variable uj is the power
allocated when the channel is in state j. The process Zt, which ensures that the queue-
length Xt remains nonnegative, is uniquely defined. There are N channel states and
π = (π1, . . . , πN) is their stationary distribution, which is constant at the diffusion
time-scale. The constants γ j can be interpreted as the efficiency of the channel when
in state j.

4.5.1 The optimal control problem for the heavy traffic model

The optimization problem of interest for the non-scaled queueing system is to mini-
mize (pathwise, a.s.) the long-term average queueing length (and thus, from Little’s
law, the mean delay) or more generally, to minimize the long-term average value
of some penalty function c : R+ → R, i.e., subject to a constraint on the average
available power.

It is well known from queueing theory that if only the basic power is allocated,
which matches the service rate to the arrival rate, then the resulting traffic intensity is
equal to 1, and the queueing delay diverges. However, choosing the control U appro-
priately can result in a bounded average queue length. Thus the original optimization
problem transforms to an analogous problem in the limiting system, namely,

minimize lim sup
T→∞

1
T

∫ T

0
c
(
Xt

)
dt a.s.

subject to lim sup
T→∞

1
T

∫ T

0
h
(
Ut

)
dt ≤ p̄ a.s.

(4.5.2)
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where

h(u) = h(u1, . . . , uN) =
N∑

j=1

π ju j .

The control variable u takes values in U :=
[
0, pmax

]N , with pmax denoting the (ex-
cess) peak power, and p̄ denoting the (excess) average power. Naturally, for the con-
straint in (4.5.2) to be nontrivial, p̄ ≤ pmax.

Remark 4.5.1 It is important to note that although the running cost c satisfies the
near-monotone condition in a natural manner (e.g., for the minimization of the queue
length c(x) = x), the constraint in (4.5.2) fails to satisfy Assumption 4.2.1 on p. 155.
Therefore the results in Section 4.2.1 cannot be applied directly to even assert the
existence of a Markov optimal control. In studying this application we intermarry
the rich body of results for nondegenerate diffusions presented in Chapter 3 with the
standard theory of Lagrange multipliers to transform to an equivalent unconstrained
problem that satisfies the near-monotone hypothesis in Section 3.4 and then use the
dynamic programming formulation in Section 3.6 to obtain an explicit solution for a
Markov optimal control.

We first prove the existence of a stationary Markov optimal control, and then show
that this is a channel-state based threshold control. In other words, for each channel
state j, there is a queue-length threshold. The optimal control transmits at peak power
over channel state j only if the queue length exceeds the threshold, and does not
transmit otherwise.

The boundary at 0 imposes restrictions on the domain of the infinitesimal genera-
tor Lu given by

Lu :=
σ2

2
d2

dx2
− b(u)

d
dx

, u ∈ U .

If f is a bounded measurable function onR+, then ϕ(x, t) = Ev
x
[
f
(
Xt

)]
is a generalized

(mild) solution of the problem

∂ϕ

∂t
(x, t) = Lvϕ(x, t) , x ∈ (0,∞) , t > 0 ,

ϕ(x, 0) = f (x) ,
∂ϕ

∂x
(0, t) = 0 .

Itô’s formula can be applied as follows [77, p. 500, lemma 4],[78]: If ϕ ∈ W 2,p
loc (R+)

is a bounded function satisfying dϕ
dx (0) = 0, then, for t ≥ 0,

Ev
x
[
ϕ
(
Xt

)] − ϕ(x) = Ev
x

[∫ t

0
Lvϕ

(
Xt

)
dt

]
.

Moreover, fv is the density of an invariant probability measure µv if and only if it is
a solution of the equation(Lv)∗ fv(x) =

d
dx

(
σ2

2
d fv
dx

(x) + b
(
v(x)

)
fv(x)

)
= 0 . (4.5.3)
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Solving (4.5.3), we deduce that v ∈ Usm is stable if and only if

Av :=
∫ ∞

0
exp

(
− 2

σ2

∫ x

0
b
(
v(y)

)
dy

)
dx < ∞ ,

in which case the solution of (4.5.3) takes the form

fv(x) = A−1
v exp

(
− 2

σ2

∫ x

0
b
(
v(y)

)
dy

)
. (4.5.4)

We work under the assumption that c has the following monotone property:

Assumption 4.5.2 The function c is continuous and is either inf-compact and, if c
is bounded, then it is strictly increasing. In the latter case we define

c∞ := lim
x→∞

c(x) .

The analysis and solution of the optimization problem proceeds as follows: We
first show that optimality is achieved for (4.5.2) relative to the class of stationary
controls. Next, in Section 4.5.3 using the theory of Lagrange multipliers we for-
mulate an equivalent unconstrained optimization problem. We show that an optimal
control for the unconstrained problem can be characterized via the HJB equation.
This accomplishes two tasks. First, it enables us to study the structure of the optimal
controls. Second, we show that this control is optimal among all controls in U. An
analytical solution of the HJB equation is presented in Section 4.5.5.

4.5.2 Existence of optimal stationary controls

A control v ∈ Ussm is called bang-bang, or extreme, if v(x) ∈ {0, pmax}N , for almost all
x ∈ R+. We refer to the class of extreme controls in Ussm as stable extreme controls
and denote it by Use. In this subsection, we show that if the optimization problem in
(4.5.2) is restricted to stationary controls, then there exists v ∈ Use which is optimal.

We take advantage of the fact that the set of power levels U is convex and avoid
transforming the problem to the relaxed control framework. Instead, we view U as
the space of product probability measures on {0, pmax}N . This is simply stating that
for each j, u j may be represented as a convex combination of the “0” power level
and the peak power pmax. In other words, U is viewed as a space of relaxed controls
relative to the discrete control input space {0, pmax}N . This has the following advan-
tage: by showing that optimality is attained in the set of precise controls, we assert
the existence of a control in Use which is optimal.

Let H ⊂ P(R+) denote the set of all invariant probability measures µv of the
process Xt under the controls v ∈ Ussm. Let Ũ := {0, pmax}N . The generic element of
Ũ takes the form ũ = (ũ1, . . . , ũN), with ũi ∈ {0, pmax}, i = 1, . . . , N. There exists a
natural isomorphism between U and the space of product probability measures on
Ũ which we denote by P⊗ (Ũ). This is viewed as follows. Let δp denote the Dirac



178 Various Topics in Nondegenerate Diffusions

probability measure concentrated at p ∈ R+. For u ∈ U, we associate the probability
measure η̃u ∈ P⊗ (Ũ) defined by

η̃u(ũ) :=
N⊗

i=1

[(
1 − ui

pmax

)
δ0(ũi) +

ui

pmax
δpmax (ũi)

]
for ũ ∈ Ũ. Similarly, given v ∈ Ussm we define ηv : R+ → P⊗ (Ũ) and πv ∈P(R+ × Ũ)
by

ηv(x, dũ) := η̃v(x)(dũ) ,

πv(dx, dũ) := µv(dx) ηv(x, dũ) ,

where µv ∈ H is the invariant probability measure of the process under the control
v ∈ Ussm.

Due to the linearity of u �→ h(u), we have the following identity (which we choose
to express as an integral rather than a sum, despite the fact that Ũ is a finite space):

h
(
v(x)

)
=

∫
Ũ

h(ũ) ηv(x, dũ) , v ∈ Ussm .

As a point of clarification, the function h inside this integral is interpreted as the
restriction of h on Ũ. The analogous identity holds for b(u).

In this manner we have defined a model whose input space Ũ is discrete, and
for which the original input space U provides an appropriate convexification. Note
however that U ∼ P⊗(Ũ) is not the input space corresponding to the relaxed controls
based on Ũ. The latter is P(Ũ), which is isomorphic to a 2N-simplex in R2N−1,
whereas P⊗(Ũ) is isomorphic to a cube in RN . We select P⊗(Ũ) as the input space
mainly because it is isomorphic to U. Since there is a one-to-one correspondence
between the extreme points of P⊗ (Ũ) and P(Ũ), had we chosen to use the latter, the
analysis and results would have remained unchanged. Even though we are not using
the standard relaxed control setting, sinceP⊗(Ũ) is closed under convex combinations
and limits, the theory goes through without any essential modifications.

For p̄ ∈ (0, pmax], let

H( p̄) :=

{
π ∈ G :

∫
R+×Ũ

h(ũ) π(dx, dũ) ≤ p̄

}
.

Then H( p̄) is a closed, convex subset of G . It is easy to see that it is also non-empty,
provided p̄ > 0. Indeed, let x′ ∈ R+ and consider the control vx′ defined by

(vx′ )i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩0 if x ≤ x′ ,

pmax if x > x′ ,
i = 1, . . . , N .

Under this control, the diffusion process in (4.5.1) is positive recurrent and its invari-
ant probability measure has a density fx′ which is a solution of (4.5.3). Let

αk :=
2pmax

σ2

k∑
i=1

γiπi , k = 1, . . . , N . (4.5.5)
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The solution of (4.5.3) takes the form

fx′ (x) =
αNe−αN (x−x′)+

1 + αN x′

where (y)+ := max(y, 0). Then∫
R+

h
(
v(x)

)
fx′(x) dx =

pmax

1 + αN x′
,

and it follows that πvx′ ∈ H( p̄), provided

x′ ≥ 1
αN

( pmax

p̄
− 1

)
.

Thus the optimization problem in (4.5.2) when restricted to stationary, stable con-
trols is equivalent to

minimize over π ∈ H( p̄)
∫
R+×Ũ

c(x) π(dx, dũ) . (4.5.6)

We also define

J∗( p̄) := inf
π∈H(p̄)

∫
R+×Ũ

c dπ . (4.5.7)

As mentioned earlier, Assumption 4.2.1 does not hold, and hence the results in
Section 4.2.1 cannot be quoted to assert existence. So we show directly in Theo-
rem 4.5.3 that (4.5.6) attains a minimum in H( p̄), and more specifically that this
minimum is attained in Use.

Theorem 4.5.3 Under Assumption 4.5.2, for any p̄ ∈ (0, pmax], there exists v∗ ∈ Use

such that πv∗ attains the minimum in (4.5.6).

Proof First suppose c is unbounded. Fix p̄ ∈ (0, pmax] and let {πk} be a sequence in
H( p̄) such that

lim
k→∞

∫
R+×Ũ

c dπk → J∗( p̄) . (4.5.8)

Since the running cost c was assumed inf-compact, it follows that the sequence {πk}
is tight in P(R+ × Ũ) and hence some subsequence converges weakly to some π∗ in
P(R+ × Ũ). Clearly, π∗ ∈ G . On the other hand, since h is continuous and bounded,
and πk → π∗, weakly, we obtain∫

R+×Ũ
h dπ∗ = lim

k→∞

∫
R+×Ũ

h dπk ≤ p̄ .

Hence, π∗ ∈ H( p̄). Since the map π �→
∫

c dπ is lower semicontinuous on G , we
obtain ∫

R+×Ũ
c dπ∗ ≤ lim inf

k→∞

∫
R+×Ũ

c dπk = J∗( p̄) ,

and thus π∗ attains the infimum in (4.5.6).
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Now suppose c is bounded. As before, let {πk} be a sequence in G satisfying (4.5.8)
and let π̃ be a limit point of {πk} in Ḡ . Dropping to a subsequence if necessary, we
suppose without changing the notation that πk → π̃ in Ḡ , and we decompose π̃ as

π̃ = δ π̃′ + (1 − δ) π̃′′ ,

with π̃′ ∈ G , π̃′′ ∈P({∞} × Ũ), and δ ∈ [0, 1]. Then on the one hand

δ

∫
R+×Ũ

h dπ̃′ ≤ lim inf
k→∞

∫
R+×Ũ

h dπk ≤ p̄ , (4.5.9)

while on the other, since c has a continuous extension on R̄+,

J∗( p̄) = lim
k→∞

∫
R̄+×Ũ

c dπk

= δ

∫
R+×Ũ

c dπ̃′ + (1 − δ)c∞ .

(4.5.10)

Note that since c is not a constant by Assumption 4.5.2, J∗( p̄) < c∞, and hence, by
(4.5.10), δ > 0. Let ṽ ∈ Ussm be the control associated with π̃′ and fṽ the correspond-
ing density of the invariant probability measure. Let x̂ ∈ R+ have the value

x̂ =
1 − δ

δ fṽ(0)
,

and v∗ ∈ Ussm defined by

v∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩0 if x ≤ x̂ ,

ṽ(x − x̂) otherwise.

The corresponding density is

fv∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩δ fṽ(0) if x ≤ x̂ ,

δ fṽ(x − x̂) otherwise.

By (4.5.9), ∫
R+

h
(
v∗(x)

)
fv∗ (x) dx = δ

∫ ∞

x̂
h
(
v∗(x)

)
fṽ(x − x̂) dx

= δ

∫
R+×Ũ

h dπ̃′

≤ p̄ .

By construction fv∗ (x) ≥ δ fṽ(x) for all x ∈ R+. Hence,∫
R+

c(x)
[
fv∗(x) − δ fṽ(x)

]
dx ≤ (1 − δ)c∞ . (4.5.11)
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By (4.5.10) – (4.5.11),∫
R+

c(x) fv∗ (x) dx ≤ δ

∫
R+

c(x) fṽ(x) dx + (1 − δ)c∞

= J∗( p̄) .

Therefore v∗ ∈ Ussm is optimal for (4.5.6). �

4.5.3 Lagrange multipliers and the HJB equation

In order to study the stationary Markov optimal controls for (4.5.6), we introduce a
parameterized family of unconstrained optimization problems that is equivalent to
the problem in (4.5.2) in the sense that stationary optimal controls for the former
are also optimal for the latter and vice versa. We show that optimal controls for the
unconstrained problem can be derived from the associated HJB equation. Hence, by
studying the HJB equation we characterize the stationary Markov optimal controls in
(4.5.6). We show that these are of a multi-threshold type and this enables us to reduce
the optimal control problem to that of solving a system of N + 1 algebraic equations.
In addition, we show that optimality is achieved over the class of all admissible
controls U, and not only over Usm.

With λ ∈ R+ playing the role of a Lagrange multiplier, we define

L(x, u, p̄, λ) := c(x) + λ
(
h(u) − p̄)

J̃(v, p̄, λ) := lim sup
T→∞

1
T

∫ T

0
L
(
Xt, v(t), p̄, λ

)
dt

J̃∗( p̄, λ) := inf
v∈Ussm

J̃(v, p̄, λ) .

(4.5.12)

The choice of the optimization problem in (4.5.12) is motivated by the fact that
J∗( p̄), defined in (4.5.7), is a convex, decreasing function of p̄. This is rather simple
to establish. Let p̄′, p̄′′ ∈ (0, pmax] and denote by π′, π′′ the corresponding ergodic
occupation measures that achieve the minimum in (4.5.6). Then, for any δ ∈ [0, 1],
π0 := δπ′+ (1−δ) π′′ satisfies

∫
h dπ0 = δ p̄′+ (1−δ) p̄′′, and since π0 is sub-optimal

for the optimization problem in (4.5.6) with power constraint δ p̄′ + (1 − δ) p̄′′, we
have

J∗(δ p̄′ + (1 − δ) p̄′′) ≤
∫

c dπ0 = δJ∗( p̄′) + (1 − δ)J∗( p̄′′) .

A separating hyperplane which is tangent to the graph of the function J∗ at a point(
p̄0, J∗( p̄0)

)
, with p̄0 ∈ (0, pmax], takes the form{

( p̄, J) : J + λ p̄0 ( p̄ − p̄0) = J∗( p̄0)
}

for some λ p̄0 ∈ R+ (see Figure 4.1).
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average power:
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e 
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: J

p̄

J + λp̄0(p̄− p̄0) = J∗( p̄0)

(p0, J
∗(p0))

J∗ + λp̄0p̄0

p
max0

optimal p − J∗(p) curve is convex

c∞

¯ ¯

¯ ¯

Figure 4.1 The separating hyperplane through ( p̄0, J∗( p̄0))

Standard Lagrange multiplier theory yields the following [88, p. 217, theorem 1]:

Theorem 4.5.4 Let p̄0 ∈ (0, pmax]. There exists λp̄0 ∈ R+ such that the minimization
problem in (4.5.6) over H( p̄0) and the problem

minimize
∫
R+×Ũ

L(x, ũ, p̄0, λp̄0 ) π(dx, dũ) over π ∈ G (4.5.13)

attain the same minimum value J∗( p̄0) = J̃∗( p̄0, λ p̄0 ) at some π0 ∈ H( p̄0). In partic-
ular, ∫

R+×Ũ
h(ũ) π0(dx, dũ) = p̄0 .

Characterizing the optimal control via the HJB equation associated with the un-
constrained problem in (4.5.13), is made possible by first showing that under As-
sumption 4.5.2 the cost L(x, u, p̄, λ) is near-monotone and then employing the results
in Sections 3.5–3.6. It is not difficult to show that under Assumption 4.5.2

lim
p̄→0

J∗( p̄) = lim
x→∞

c(x) . (4.5.14)

Indeed, for p̄ ∈ (0, pmax], suppose v ∈ Ussm is such that πv ∈ H( p̄). Letting

γmax := max
i
{γi} ,
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and using (4.5.4) we obtain

p̄ ≥
∫ ∞

0
h
(
v(x)

)
fv(x) dx

≥ γ−1
max

∫ ∞

0
b
(
v(x)

)
fv(x) dx

=
σ2

2γmaxAv
.

Therefore ∫ ∞

0
c(x) fv(x) dx ≥ min

x≥ 1√
p̄

{
c(x)

} ∫ ∞

1√
p̄

fv(x) dx

= min
x≥ 1√

p̄

{
c(x)

} (
1 −

(
Av

√
p̄
)−1

)
≥ min

x≥ 1√
p̄

{
c(x)

} (
1 − 2γmax

σ2

√
p̄

)
.

Hence,

J∗( p̄) ≥ min
x≥ 1√

p̄

{
c(x)

} (
1 − 2γmax

σ2

√
p̄

)
and (4.5.14) follows. We need the following lemma.

Lemma 4.5.5 Let Assumption 4.5.2 hold and suppose c is bounded. Then for any
p̄ ∈ (0, pmax], we have

J∗
(

p̄/2
)
< 1

2

(
J∗( p̄) + c∞

)
.

Proof For p̄ ∈ (0, pmax], let π(p̄) ∈ H( p̄) be an optimal ergodic occupation measure,
i.e., ∫

R+×Ũ
c dπ(p̄) = J∗( p̄) .

Denote by v(p̄) ∈ Ussm the associated optimal control, and let fv( p̄) stand for the density
of the invariant probability measure. Set x̂ = [ fv( p̄) (0)]−1, and define v∗ ∈ Ussm by

v∗(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩0 if x ≤ x̂ ,

v(p̄)(x − x̂) otherwise.

We compute the density of the invariant probability measure as

fv∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fv( p̄) (0)

2 if x ≤ x̂ ,
fv( p̄) (x−x̂)

2 otherwise.

Then ∫
R+

h
(
v∗(x)

)
fv∗(x) dx =

p̄
2
.
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Observe that fv∗(x) ≥ 1
2 fv( p̄) (x) for all x ∈ R+. Hence, since c(x) < c∞ for all x ∈ R+,

we obtain

J∗
(

p̄/2
) − 1

2 J∗( p̄) ≤
∫
R+

c(x)
[
fv∗ (x) − 1

2 fv( p̄) (x)
]
dx

< 1
2 c∞ ,

which yields the desired result. �

We are now ready to establish the near-monotone property of L. First, we introduce
some new notation. For p̄ ∈ (0, pmax], let

Λ( p̄) :=
{
λ ∈ R+ : J∗( p̄′) ≥ J∗( p̄) + λ( p̄ − p̄′) ∀ p̄′ ∈ (0, pmax]

}
,

and

Λ :=
⋃

p̄∈(0,pmax]

Λ( p̄) .

Remark 4.5.6 It follows from the definition of Λ( p̄) that

inf
π∈G

∫
R+×Ũ

[
c(x) + λh(ũ)

]
π(dx, dũ) = J∗( p̄) + λ p̄

for all λ ∈ Λ( p̄). To show this, let π′ ∈ G and set p̄′ :=
∫
R+×Ũ

h(ũ) π′(dx, dũ). Then
for λ ∈ Λ( p̄), we have∫

R+×Ũ

[
c(x) + λh(ũ)

]
π′(dx, dũ) ≥ J∗( p̄′) + λ p̄′ ≥ J∗( p̄) + λ p̄ ,

where the second inequality follows by the definition of Λ( p̄). Conversely,

inf
π∈G

∫
R+×Ũ

[
c(x) + λh(ũ)

]
π(dx, dũ) ≤ inf

π∈H(p̄)

∫
R+×Ũ

[
c(x) + λh(ũ)

]
π(dx, dũ)

≤ J∗( p̄) + λ p̄ .

Also, it is rather straightforward to show that Λ = [0, λ̄) for some λ̄ ∈ R+ ∪ {∞}.

Lemma 4.5.7 Let Assumption 4.5.2 hold. Then, for all p̄ ∈ (0, pmax] and λ ∈ Λ,

lim inf
x→∞

inf
ũ∈Ũ

L(x, ũ, p̄, λ) > J̃∗( p̄, λ) . (4.5.15)

Proof If c is inf-compact, (4.5.15) always follows. Otherwise, fix p̄ ∈ (0, pmax] and
λ ∈ Λ. Let p̄′ ∈ (0, pmax] be such that λ ∈ Λ( p̄′). By the definition of Λ( p̄′), we have

J∗
(

p̄′/2
) ≥ J∗( p̄′) + λ p̄′

2 .

Thus, using Lemma 4.5.5, we obtain

J∗( p̄′) + λ p̄′ < c∞ . (4.5.16)
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The definition of J̃∗( p̄, λ) in (4.5.12) yields

J̃∗( p̄, λ) := inf
π∈G

∫
R+×Ũ

L(x, ũ, p̄, λ) π(dx, dũ)

= −λ p̄ + inf
π∈G

∫
R+×Ũ

(
c(x) + λh(ũ)

)
π(dx, dũ) .

Using this along with (4.5.16) and Remark 4.5.6 (since λ ∈ Λ( p̄′)), we obtain

lim inf
x→∞

inf
ũ∈Ũ

L(x, ũ, p̄, λ) + λ p̄ = lim inf
x→∞

c(x)

> J∗( p̄′) + λ p̄′

= inf
π∈G

∫
R+×Ũ

[
c(x) + λh(ũ)

]
π(dx, dũ)

= J̃∗( p̄, λ) + λ p̄ ,

and the proof is complete. �

4.5.4 The structure of the optimal control

We can characterize optimality via the HJB equation. This is summarized as follows:

Theorem 4.5.8 Let Assumption 4.5.2 hold. Fix p̄ ∈ (0, pmax] and λ p̄ ∈ Λ( p̄). Then
there exists a unique solution pair (V, β), with V ∈ C2(R+) and β ∈ R, to the HJB

min
ũ∈Ũ

[LũV(x) + L(x, ũ, p̄, λ p̄)
]
= β , (4.5.17)

subject to the boundary condition dV
dx (0) = 0, and also satisfying

(a) V(0) = 0;

(b) infx∈R+ V(x) > −∞;

(c) β ≤ J̃∗( p̄, λp̄).

Moreover, if the function v∗ is a measurable selector from the minimizer in (4.5.17),
then v∗ ∈ Use ⊂ Ussm, and v∗ is an optimal control for (4.5.13), or equivalently, for
(4.5.6). Also, β = J̃∗( p̄, λp̄) = J∗( p̄) (the second equality follows by Theorem 4.5.4).

From the results of Section 3.4 it follows that the stationary Markov control v∗ in
Theorem 4.5.8 is optimal among all admissible controls U, and hence is a minimizer
for (4.5.2).

Theorem 4.5.9 Under Assumption 4.5.2, for any p̄ ∈ (0, pmax], there exists v∗ ∈ Use

which attains the minimum in (4.5.2) over all controls in U.

If Λ( p̄) and J∗( p̄) were known, then one could solve (4.5.17) and derive the opti-
mal control. Since this is not the case, we embark on a different approach. We write
(4.5.17) as

min
ũ∈Ũ

[LũV(x) + c(x) + λp̄h(ũ)
]
= β + λ p̄ p̄ . (4.5.18)
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By Theorem 4.5.8, J∗( p̄) is the smallest value of β for which there exists a solution
pair (V, β) to (4.5.17), satisfying (b). This yields the following corollary:

Corollary 4.5.10 Let Assumption 4.5.2 hold. For λ ∈ Λ, consider the HJB equation

min
ũ∈Ũ

[LũV(x) + c(x) + λh(ũ)
]
= � , (4.5.19a)

subject to the boundary condition

dV
dx

(0) = 0 , (4.5.19b)

and define

Qλ :=
{
(V, �) solves (4.5.19) : inf

x∈R+
V(x) > −∞

}
(4.5.20a)

�λ := min
{
� : (V, �) ∈ Qλ

}
. (4.5.20b)

Then

�λ = min
v∈Ussm

∫
R+×Ũ

[
c(x) + λh(ũ)] πv(dx, dũ) . (4.5.21)

Moreover, if p̄ is a point in (0, pmax] such that λ ∈ Λ( p̄), then

�λ = J∗( p̄) + λ p̄ ,

and if v∗λ is a measurable selector of the minimizer in (4.5.19a) with � = �λ, then v∗λ
is a stationary Markov optimal control for (4.5.13).

The minimizer in (4.5.19a) satisfies

min
ũ∈Ũ

[
−b(ũ)

dV
dx
+ λh(ũ)

]
= min

ũ∈Ũ

∑
j

(
λ − γ j

dV
dx

)
π jũ j .

Thus the optimal control v∗λ takes the following simple form: for i = 1, . . . , N and
x ∈ R+,

(v∗λ)i(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩0 if γi
dV
dx (x) < λ ,

pmax if γi
dV
dx (x) ≥ λ .

(4.5.22)

Thus, provided dV
dx is monotone, the optimal control v∗λ is of multi-threshold type,

i.e., for each channel state j, there exists a queue-threshold x̂ j such that, at any time
t, the optimal control transmits at peak power pmax over channel state j, if the queue
length Xt > x̂ j, and does not transmit otherwise.

The following lemma asserts the monotonicity of dV
dx , under the additional assump-

tion that c is nondecreasing.

Lemma 4.5.11 Suppose c is nondecreasing on [0,∞), and Assumption 4.5.2 holds.
Then every (V, �) ∈ Qλ satisfies
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(a) dV
dx is nondecreasing;

(b) if c is unbounded, then dV
dx is unbounded.

Proof Equation (4.5.19a) takes the form

σ2

2
d2V
dx2

(x) =
∑

j

π j pmax

[
γ j

dV
dx

(x) − λ

]+
+ � − c(x) , (4.5.23)

where the initial condition is given by (4.5.19b). Since c is nondecreasing, then by
(4.5.21), � > c(0). We argue by contradiction. Suppose that for some x′ ∈ R+,
d2V
dx2 (x′) = −ε < 0. Let

x′′ = inf
{
x > x′ : d2V

dx2 (x) ≥ 0
}
.

Since d2V
dx2 is continuous by Theorem 4.5.8, it must hold that x′′ > x′. Suppose that

x′′ < ∞. Since d2V
dx2 < 0 on [x′, x′′) and both

[
γ j

dV
dx (x) − λ

]+
and � − c(x) are non-

increasing, (4.5.23) implies that d2V
dx2 (x′′) ≤ d2V

dx2 (x′) < 0. Thus x′′ cannot be finite,

from which it follows that d2V
dx2 (x) ≤ −ε < 0 for all x ∈ [x′,∞), implying that V is

not bounded below and we are led to a contradiction. This proves part (a). If c is not
bounded, then it is clear from (4.5.23) that since dV

dx ≥ 0, we must have dV
dx (x) → ∞

as x→ ∞, and part (b) follows. �

The proof of Lemma 4.5.11 shows that if (V, �) solves (4.5.19), then V is bounded
below, if and only if d2V

dx2 (x) ≥ 0 for all x ∈ R+. Thus Qλ defined in (4.5.20a) has an
alternate characterization given in the following corollary.

Corollary 4.5.12 Suppose the running cost c is nondecreasing on [0,∞) and that
it satisfies Assumption 4.5.2. Then, for all λ ∈ Λ,

Qλ =
{
(V, �) solves (4.5.19) : d2V

dx2 ≥ 0 on R+
}
.

Comparing (4.5.18) and (4.5.19), a classical application of Lagrange duality [88,
p. 224, theorem 1] yields the following:

Lemma 4.5.13 If c satisfies Assumption 4.5.2 and is nondecreasing on [0,∞), then
for any p̄ ∈ (0, pmax] and λp̄ ∈ Λ( p̄), we have

�λ p̄ − λp̄ p̄ = max
λ≥0

{
�λ − λ p̄

}
= J∗( p̄) . (4.5.24)

Moreover, if λ0 attains the maximum in λ �→ �λ − λ p̄, then �λ0 = J∗( p̄) + λ0 p̄, which
implies that λ0 ∈ Λ( p̄).

Proof The first part follows directly from [88, p. 224, theorem 1]. To prove that
λ0 ∈ Λ( p̄), note that since the infimum of

∫
R+×Ũ

c dπ is achieved at some π̄ ∈ H( p̄),
then

inf
π∈G

∫
R+×Ũ

L(x, ũ, p̄, λ0) π(dx, dũ)
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is attained at π̄ and
∫
R+×Ũ

h(ũ) π̄(dx, dũ) = p̄. Let p̄′ be arbitrary and π̄′ attain the

minimum of of π �→
∫
R+×Ũ

c dπ in H( p̄′). We have

J∗( p̄) = inf
π∈G

∫
R+×Ũ

L(x, ũ, p̄, λ0) π(dx, dũ)

≤
∫
R+×Ũ

L(x, ũ, p̄, λ0) π̄′(dx, dũ)

= J∗( p̄′) + λ0( p̄′ − p̄) .

Since this holds for all p̄′ it follows that λ0 ∈ Λ( p̄). �

Remark 4.5.14 Lemma 4.5.13 furnishes a method for solving (4.5.6). This can be
done as follows: With λ viewed as a parameter, we first solve for �λ which is defined
in (4.5.20b). Then, given p̄, we obtain the corresponding value of the Lagrange mul-
tiplier via the maximization in (4.5.24). The optimal control can then be evaluated
using (4.5.22), with λ = λ p̄. Section 4.5.6 contains an example demonstrating this
method.

4.5.5 Solution of the HJB equation

In this section we present an explicit solution of the HJB equation (4.5.19). We deal
only with the case where the cost function c is nondecreasing and inf-compact. How-
ever, the only reason for doing so is in the interest of simplicity and clarity. If c is
bounded the optimal control may have less than N threshold points, but other than the
need to introduce some extra notation, the solution we outline below for unbounded
c holds virtually unchanged for the bounded case. Also, without loss of generality,
we assume that γ1 > · · · > γN > 0.

We parameterize the controls in (4.5.22) by a collection of points

{x̂1, . . . , x̂N} ⊂ R+ .

In other words, if V is the solution (4.5.23), then x̂i is the least positive number such
that dV

dx (x̂i) ≥ γ−1
i . Thus, if we define

X N :=
{
x̂ = (x̂1, . . . , x̂N) ∈ RN

+ : x̂1 < · · · < x̂N
}
,

then for each x̂ ∈X N , there corresponds a multi-threshold control vx̂ of the form

(vx̂)i(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩pmax if x ≥ x̂i ,

0 otherwise ,
1 ≤ i ≤ N . (4.5.25)

To facilitate expressing the solution of (4.5.23), we need to introduce some new
notation. For i = 1, . . . , N, define

π̃i :=
i∑

j=1

πi , γ̃i :=
i∑

j=1

πiγi , Γi :=
γ̃i

γi
− π̃i .
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Note that from (4.5.5), we obtain the identity

αi =
2pmax

σ2
γ̃i , i = 1, . . . , N .

For x, z ∈ R+, with z ≤ x, we define the functions

F0(�, x) := �x −
∫ x

0
c(y) dy ,

and for i = 1, . . . , N,

Fi(�, x, z) := [� + λpmaxΓi]
(
1 − eαi(z−x)

)
− αi

∫ x

z
eαi(z−y)c(y) dy ,

Gi(�, x, z) := � + λpmaxΓi − αi

∫ x

z
eαi(z−y)c(y) dy − eαi(z−x)c(x) .

Using the convention x̂N+1 ≡ ∞, we write the solution of (4.5.23) as

dV
dx

(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

σ2 F0(�, x) if 0 ≤ x < x̂1 ,

2
σ2αi

eαi(x−x̂i)Fi(�, x, x̂i) + λ
γi

if x ∈ [x̂i, x̂i+1) , i ≥ N .
(4.5.26)

In addition, the following boundary conditions are satisfied

F0(�, x̂1) =
λσ2

2γ1
= 0 ,

Fi(�, x̂i+1, x̂i) = λpmaxγ̃ie
αi(x̂i−x̂i+1)

(
1

γi+1
− 1

γi

)
, 1 ≤ i < N .

(4.5.27)

Also, for i = 1, . . . , N, we have

d2V
dx2

(x) =
2
σ2

eαi(x−x̂i)Gi(�, x, x̂i) , x ∈ (x̂i, x̂i+1) .

Since c is monotone, the map

x �→ αi

∫ x

z
eαi(z−y)c(y) dy + eαi(z−x)c(x) (4.5.28)

is nondecreasing. Moreover, using the fact that c is either inf-compact (or strictly
monotone increasing, when bounded), an easy calculation yields

Gi(�, x, z) > lim
x→∞

Gi(�, x, z) . (4.5.29)

Suppose x̂ ∈ X N are the threshold points of a solution (V, �) of (4.5.23). It follows
from (4.5.29) that limx→∞GN(�, x, x̂N) ≥ 0 is a necessary and sufficient condition for
d2V
dx2 (x) ≥ 0, x ∈ (x̂N ,∞). This condition translates to

� + λpmaxΓN − αN

∫ ∞

x̂N

eαN (x̂N−y)c(y) dy ≥ 0 . (4.5.30)
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The arguments in the proof of Lemma 4.5.11 actually show that (4.5.30) is sufficient
for d2V

dx2 to be nonnegative on R+. We sharpen this result by showing in Lemma 4.5.15

below that (4.5.30) implies that d2V
dx2 is strictly positive on R+.

Lemma 4.5.15 Suppose x̂ ∈X N satisfies (4.5.27). If (4.5.30) holds, then � > c(x̂1)
and Gi(�, x, x̂i) > 0 for all x ∈ [x̂i, x̂i+1], i = 0, . . . , N − 1.

Proof We argue by contradiction. If � ≤ c(x̂1), then G1(�, x̂i, x̂i) ≤ 0, hence it is
enough to assume that Gi(�, x, x̂i) ≤ 0 for some x ∈ [x̂i, x̂i+1] and i ∈ {1, . . . , N − 1}.
Then, since (4.5.28) is nondecreasing, we have

Gi(�, x̂i+1, x̂i) ≤ 0 . (4.5.31)

Therefore, since

Fi(�, x, x̂i) = Gi(�, x, x̂i) + eαi(x̂i−x)c(x) − [� + λpmaxΓi]e
αi(x̂i−x) , (4.5.32)

combining (4.5.27) and (4.5.31) – (4.5.32), we obtain

c(x̂i+1) − � − λpmaxΓi ≥ λγ̃i

(
1

γi+1
− 1

γi

)
,

which simplifies to

c(x̂i+1) − � + λpmaxπ̃i ≥ λpmax
γ̃i

γi+1
. (4.5.33)

Since
γ̃i

γi+1
− π̃i =

γ̃i+1

γi+1
− π̃i+1 = Γi+1 ,

(4.5.33) yields

� + λpmaxΓi+1 ≤ c(x̂i+1) . (4.5.34)

Using the monotonicity of x �→ Gi+1(�, x, x̂i+1) together with (4.5.34), we obtain
Gi+1(�, x, x̂i+1) ≤ 0 for all x ∈ [x̂i+1, x̂i+2], and iterating this argument, we conclude
that GN(�, x, x̂N) ≤ 0 for all x ∈ (x̂N ,∞), thus contradicting (4.5.30). �

Combining Corollary 4.5.12 with Lemma 4.5.15, yields the following.

Corollary 4.5.16 Suppose (V, �) satisfies (4.5.26) – (4.5.27) for some x̂ ∈ X N and
λ ∈ Λ. Then (V, �) ∈ Qλ, if and only if (4.5.30) holds.

For λ ∈ Λ, define

Rλ := {� ∈ R+ : (V, �) ∈ Qλ} .

For each � ∈ Rλ, equations (4.5.27) define a map � �→ x̂, which we denote by x̂(�).

Lemma 4.5.17 Let λ ∈ Λ and suppose �0 ∈ Rλ. With �λ as defined in (4.5.20b),
and denoting the left-hand side of (4.5.30) by GN(�,∞, x̂N), the following hold:

(a) if �′ > �0, then �′ ∈ Rλ and GN
(
�′,∞, x̂(�′)

)
> 0;
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(b) if GN
(
�0,∞, x̂(�0)

)
> 0, then �0 > �λ;

(c) Rλ = [�λ,∞), and �λ is the only point in Rλ which satisfies

GN
(
�λ,∞, x̂(�λ)

)
= 0 .

Proof Part (a) follows easily from (4.5.23). Denoting by V0 and V ′ the solutions of
(4.5.23) corresponding to �0 and �′, respectively, a standard argument shows that

d2(V ′ − V0)
dx2

(x) ≥ �′ − �0 > 0 ∀x ∈ R+ ,

implying
dV ′

dx
(x) ≥ dV0

dx
(x) ∀x ∈ R+ . (4.5.35)

Hence, since by the definition of Qλ, V0 is bounded below, the same holds for V ′,
in turn, implying that (V ′, �′) ∈ Qλ. By (4.5.35), we have x̂(�′) ≤ x̂(�0), and since
x̂N �→ GN(�,∞, x̂N) is non-increasing and �′ > �0, we obtain GN

(
�′,∞, x̂(�′)

)
> 0.

To prove (b), write (4.5.27) in the form F̃(�, x̂) = 0, with F̃ : RN+1
+ → RN

+ . The map
F̃ is continuously differentiable and as a result of Lemma 4.5.15 its Jacobian Dx̂F
with respect to x̂ has full rank at

(
�0, x̂(�0)

)
. By the implicit function theorem, there

exists an open neighborhood W(�0) and a continuous map x̂ : W(�0) → R+, such
that F̃

(
�, x̂(�)

)
= 0 for all � ∈ W(�0). Using the continuity of GN , we may shrink

W(�0) so that GN
(
�,∞, x̂(�)

)
> 0 for all � ∈ W(�0). Hence W(�0) ⊂ Rλ, implying

that �0 > �λ.
Part (c) follows directly from (a) and (b). �

Combining Corollary 4.5.10 and Lemma 4.5.15, we obtain the following charac-
terization of the solution to the HJB equation (4.5.19).

Theorem 4.5.18 Let the running cost c be nondecreasing and inf-compact. Then
the threshold points (x̂1, . . . , x̂N) ∈ X N of the stationary Markov optimal con-
trol in (4.5.25) and the optimal value �λ > 0 are the (unique) solution of the set
of N + 1 algebraic equations which is comprised of the equations in (4.5.27) and
GN

(
�λ,∞, x̂(�λ)

)
= 0.

4.5.6 Minimizing the mean delay

We specialize the optimization problem to the case c(x) = x, which corresponds to
minimizing the mean delay.

First consider the case N = 1, letting α ≡ α1 and x̂ ≡ x̂1. Solving (4.5.19) we
obtain

dV
dx

(x) =
2�
σ2

x − x2

σ2
, x ≤ x̂ ,

with

x̂ = � −
√
�2 − λσ2

γ
. (4.5.36)
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Also, for x ≥ x̂,

dV
dx

(x) =
2eα(x−x̂)

σ2α

(
� − x̂ − 1

α

)
+

2
σ2α

(
� − λpmax + x +

1
α

)
.

Therefore, for x > x̂,

d2V
dx2

(x) =
2
σ2

(
� − x̂ − 1

α

)
eα(x−x̂) +

2
σ2α

. (4.5.37)

It follows from (4.5.37) that

�λ = x̂ +
1
α
. (4.5.38)

By (4.5.36) and (4.5.38),

�λ =
√

1
α2 +

λσ2

γ
. (4.5.39)

Let p̄ ∈ (0, pmax] be given. Applying Lemma 4.5.13, we obtain from (4.5.39)

λp̄ =
pmax

2αp̄2
− 1

2αpmax

and

J∗( p̄) =
1

2α

(
pmax

p̄
+

p̄
pmax

)
.

Moreover, the threshold point of the optimal control is given by

x̂ =
1
α

(
pmax

p̄
− 1

)
.

Now consider the case N = 2. We obtain:

dV
dx

(x) =
2�
σ2

x − x2

σ2
, x ≤ x̂1 , (4.5.40a)

dV
dx

(x) =
2

σ2α1

(
� − x̂1 −

1
α1

) [
eα1(x−x̂1) − 1

]
+

2(x − x̂1)
σ2α1

+
λ

γ1
, x̂1 ≤ x < x̂2 , (4.5.40b)

and for x ≥ x̂2,

dV
dx

(x) =
2

σ2α2

(
� − x̂2 −

1
α2
+ λpmaxπ1

γ1 − γ2

γ2

)
× [

eα2(x−x̂2) − 1
]
+

2(x − x̂2)
σ2α2

+
λ

γ2
. (4.5.40c)

Since dV
dx (x̂1) = λ

γ1
, we obtain by (4.5.40a),

x̂1 = � −
√
�2 − λσ2

γ1
. (4.5.41)
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By (4.5.40c), d2V
dx2 (x) ≥ 0 for all x > x̂2, if and only if

� − x̂2 −
1
α2
+ λpmaxπ1

γ1 − γ2

γ2
≥ 0 .

Also, since dV
dx (x̂2) = λ

γ2
, we obtain from (4.5.40b),(

� − x̂1 −
1
α1

) [
eα1(x̂2−x̂1) − 1

]
+ x̂2 − x̂1 =

σ2λα1

2

(
1
γ2
− 1

γ1

)
.

We apply Theorem 4.5.18 to compute the optimal control. Let x̂1(�) be as in (4.5.41)
and

x̂2(�) := x̂1(�) +
√
�2 − λσ2

γ1
− 1

α2
+ λpmaxπ1

γ1 − γ2

γ2
.

Then �λ is the solution of(√
�2 − λσ2

γ1
− 1

α1

)
eα2(x̂2(�)−x̂1(�)) +

(
1
α1
− 1

α2

)
= 0 .

This completely specifies an optimal stationary control.

4.6 Bibliographical note

Section 4.2. This is based on [31, 38].

Section 4.3. This is based on [36].

Section 4.5. This is from [123].
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Controlled Switching Diffusions

In this chapter we extend the results of Chapter 3 to switching diffusions, also re-
ferred to as diffusions with a discrete parameter [108]. A controlled switching diffu-
sion is a typical example of a hybrid system which arises in numerous applications
of systems with multiple modes or failure modes, such as fault tolerant control sys-
tems, multiple target tracking, flexible manufacturing systems etc. The state of the
system at time t is given by a pair

(
Xt,Yt

) ∈ Rd×S, S = {1, 2, . . . , N}. The continuous
component Xt is governed by a controlled diffusion process with a drift vector and
diffusion matrix which depend on the discrete component Yt. Thus Xt switches from
one diffusion path to another as the discrete component Yt jumps from one state to
another. On the other hand, the discrete component Yt is a controlled Markov chain
with a transition matrix depending on the continuous component. The evolution of
the process

(
Xt,Yt

)
is governed by the following equations:

dXt = b(Xt,Yt,Ut) dt + σ(Xt,Yt) dWt ,

P
(
Yt+δt = j

∣∣∣ Yt = i, Xs,Ys, s ≤ t
)
= λ

j
i (Xt,Ut)δt + o(δt), i � j ,

with λ
j
i ≥ 0 for i � j, and

∑N
j=1 λ

j
i = 0.

For the most part we follow the structure of Chapter 3. Virtually all of the results
for a controlled nondegenerate diffusion can be extended to controlled switching
diffusions. From an analytical viewpoint, the study of ergodic control for switching
diffusions relies on the extension of the theory of scalar elliptic equations in non-
divergence form to coupled cooperative elliptic systems of second order. The key
theorems for elliptic systems used in this chapter are summarized in Section 5.2.

5.1 The mathematical model

5.1.1 Construction of a switching diffusion as a Markov process

We construct the controlled switching diffusion Z = (X,Y) as a strong Markov pro-
cess, continuous from the right, in the phase space Rd × S, and action space U, a
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compact metric space, on a probability space (Ω,F,P). For the time being, let u ∈ U
be fixed. Let τ be the first exit time of the discrete component Y from the initial state
Y0 = y. On the set {τ > t} the exit time τ satisfies τ ◦ θt = τ − t. Using this property,
we can verify that for each y ∈ S, the function Qy(t, x, A) = Px,y(τ > t, Xt ∈ A),
A ∈ B(Rd), is a transition function, i.e., a sub-probability kernel that satisfies the
Chapman-Kolmogorov equations. Indeed

Qy(t + s, x, A) = Px,y(τ > t + s, Xt+s ∈ A)

= Ex,y[(IA(Xs) I {τ > s}) ◦ θt]

=

∫
Rd

Qy(t, x, dx′)Ex′,y
[
IA(Xs) I {τ > s}]

=

∫
Rd

Qy(t, x, dx′)Qy(s, x′, A) .

The transition function Qy(t, x, A), indexed by the parameter y, is associated with a
process governed on [0, τ) by the Itô equation:

dXt = b(Xt, y, u) dt + σ(Xt, y) dWt , (5.1.1)

with

b =
[
b1, . . . , bd]T : Rd × S × U→ Rd,

σ =
[
σi j] : Rd × S→ Rd×d .

At the same time, the distribution of τ is specified as follows.

Px,y

(
τ > t

∣∣∣ FX
t

)
= exp

(
−
∫ t

0
λ(Xs, y, u) ds

)
. (5.1.2)

At the jump time τ the transitions of the discrete component Y are governed by a
transition function Q̂(i, j; x, u), having a parametric dependence on (x, u) ∈ Rd × U,
and satisfying Q̂(i, i; x, u) = 0 for all i ∈ S. In other words, we require that the process
satisfies

P
(
Yτ = j

∣∣∣ FZ
τ−

)
= Q̂(Yτ−, j; Xτ, u) , (5.1.3)

where FZ
t is the right-continuous completion of σ{(Xs,Ys) : s ≤ t}. Let p be a

Poisson random measure on R × R+, which is independent of W, with intensity
E
[
p(dξ × dt)

]
= m(dξ) dt, where m denotes the Lebesgue measure on R. Let{

∆i j(x, u) : i � j , i, j ∈ S}
be consecutive, with respect to lexicographic ordering, left closed, right open inter-
vals of the real line, with ∆i j(x, u) having length λ(x, i, u)Q̂(i, j; x, u). Also define the
function g : Rd × S × U × R→ R by

g(x, i, u, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩y − i if ξ ∈ ∆iy(x, u) ,

0 otherwise.
(5.1.4)
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The jump times and transitions in (5.1.2) – (5.1.3) may be realized by the stochastic
integral

dYt =

∫
R

g(Xt,Yt−, u, ξ) p(dξ × dt) . (5.1.5)

Equations (5.1.1) and (5.1.5) describe the process Z.
Let

λ
j
y(x, u) := λ(x, y, u)Q̂(y, j; x, u) , j � y ,

λ
y
y(x, u) := −λ(x, y, u) .

(5.1.6)

By (5.1.6),
∑

j λ
j
y = 0.

5.1.2 The controlled switching diffusion model

We make the following assumptions on the parameters.

Assumption 5.1.1 Let γ : (0,∞)→ (0,∞) be a positive function that plays the role
of a parameter.

(i) On every ball BR the functions b(x, y, u), σi j(x, y) and λ
j
y(x, u) are continuous

and Lipschitz in x, with a Lipschitz constant γ(R) uniformly with respect to u.
(ii) Also b(x, y, u) and σ(x, y) have linear growth in x, that is

|b(x, y, u)| + ‖σ(x, y)‖ ≤ γ(1)
(
1 + |x|) ∀(x, y, u) ∈ Rd × S × U .

(iii) σi j is uniformly elliptic, on every ball BR, i.e., with a := 1
2σσT, we have

d∑
i, j=1

ai j(x, y)ξiξ j ≥ γ−1(R)|ξ|2 ∀(x, y) ∈ BR × S ,

for all ξ = (ξ1, . . . , ξd) ∈ Rd.

Remark 5.1.2 By Assumption 5.1.1 (i), λ j
y are locally bounded. This implies that

there is no accumulation of an infinite time of jumps at the discrete component in any
finite time interval. Indeed, in view of (5.1.2), the number of jumps in any interval
[0, t] is a.s. finite.

The controlled, switching diffusion process constructed in Section 5.1.1 can be
modeled via the following Itô stochastic differential equations.

dXt = b(Xt,Yt,Ut) dt + σ(Xt,Yt) dWt ,

dYt =

∫
R

g(Xt,Yt−,Ut, ξ) p(dξ × dt) ,
(5.1.7)

for t ≥ 0, with g defined in (5.1.4), where

(a) X0 and Y0 are prescribedRd-valued and S-valued random variables, respectively.
(b) W is a d-dimensional standard Wiener process, and p is a Poisson random mea-

sure on R × R+, with intensity m(dz) × dt.
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(c) X0, Y0, W, and p are independent.

(d) U is a U-valued process with measurable sample paths satisfying the non-
anticipativity property that the σ-fields

σ{X0,Y0,Us,Ws, p(A, B) : A ∈ B
(
[0, s]

)
, B ∈ B(R) , s ≤ t},

and

σ
{
Ws −Wt, p(A, B) : A ∈ B

(
[s,∞)

)
, B ∈ B(R) , s ≥ t

}
.

are independent for each t ∈ R.

If (W, p, X0,Y0,U) satisfying (a)–(d) above are given on a prescribed probability
space (Ω,F,P), then, under Assumption 5.1.1, equation (5.1.7) admits an a.s. unique
strong solution with X ∈ C([0,∞);Rd), Y ∈ D([0,∞);S), where D([0,∞);S) is the
space of right-continuous functions on [0,∞) with left limits taking values in S. This
follows readily using the Picard iterations. As also defined in Chapter 2, a control
process U satisfying (d) is called admissible, and the set of all admissible controls is
denoted by U.

Definition 5.1.3 If X(Rd) is a vector space of real functions over Rd, we adopt
the notation X(Rd × S) to indicate the space

(X(Rd)
)N , endowed with the product

topology. For example,

Lp(Rd × S) :=
{
f : Rd × S→ R : f ( · , i) ∈ Lp(Rd) , i ∈ S

}
and similarly we define Ck(Rd ×S), W k,p

loc (Rd ×S), etc. We denote the components of
such a function f , either as fy(x) or f (x, y). If ‖ · ‖X(Rd) is a norm on X(Rd), then the
corresponding norm on X(Rd × S) is defined by

‖ f ‖X(Rd×S) =
∑
y∈S
‖ fy‖X(Rd) .

5.1.3 The extended controlled generator of the Markov semigroup

For ϕ ∈ C2(Rd × S), define Lu and Πu by

(Luϕ)(x, y) :=
d∑

i, j=1

ai j(x, y)
∂2ϕ

∂xi∂x j
(x, y) +

d∑
j=1

b j(x, y, u)
∂ϕ

∂x j
(x, y) , (5.1.8a)

(Πuϕ)(x, y) := −λ(x, y, u)ϕ(x, y) + λ(x, y, u)
∑
j�y

ϕ(x, j)Q̂(y, j; x, u)

= −λy
y(x, u)ϕ(x, y) +

∑
j�y

λ
j
y(x, u)ϕ(x, j) . (5.1.8b)

The last equality in (5.1.8b) follows from (5.1.6).
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Lemma 5.1.4 Let ϕ ∈ C2
c(Rd × S). Then for t > 0,

EUs
z [ϕ(Zt)] − ϕ(z) = Ez

∫ t

0

[
LUsϕ(Zs) + ΠUsϕ(Zs)

]
ds

= Ez

∫ t

0

[
LUsϕ(Zs) +

∑
j∈S

λ
j
Ys

(Xs,Us)ϕ(Zs)
]

ds . (5.1.9)

Proof Let {τ1, . . . , τ�} denote the times of jumps of Y in the interval [0, t], and set
τ0 = 0, and τ�+1 = t. Applying the Itô formula, we obtain, for k = 0, . . . , �,

ϕ(Xτk+1 ,Yτk ) − ϕ(Xτk ,Yτk ) =
∫ τk+1

τk

LUsϕ(Xs,Yτk ) ds

+

∫ τk+1

τk

〈∇ϕ(Xs,Yτk ),σ(Xs,Yτk ) dWs
〉
. (5.1.10)

Adding (5.1.10) over k from 0 to �, we obtain

ϕ(Zt) = ϕ(z) +
∫ t

0
LUsϕ(Zs) ds +

∫ t

0

〈∇ϕ(Zs),σ(Zs) dWs
〉

+

�∑
k=1

[
ϕ(Xτk ,Yτk ) − ϕ(Xτk ,Yτk−)

]
= ϕ(z) +

∫ t

0
LUsϕ(Zs) ds +

∫ t

0

〈∇ϕ(Zs),σ(Zs) dWs
〉

+

∫ t

0

∫
R

[
ϕ
(
Xs,Ys + g(Zs,Us, ξ)

) − ϕ(Zs)
]
p(dξ × dt) . (5.1.11)

Since

Πuϕ(x, y) =
∫
R

[
ϕ
(
x, y + g(x, y, u, ξ)

) − ϕ(x, y)
]
m(dξ) ,

taking expectation in (5.1.11), and using (5.1.6) we obtain (5.1.9). �

Definition 5.1.5 Let ai j
y (x) := ai j(x, y) and bi

y(x, u) := bi(x, y, u). Also for u ∈ U
and ϕ ∈ C2(Rd), we define

Lu
yϕ(x) := ai j

y (x)∂i jϕ(x) + bi
y(x, u)∂iϕ(x) ,

L̃u
yϕ(x) := ai j

y (x)∂i jϕ(x) + bi
y(x, u)∂iϕ(x) + λ

y
y(x, u)ϕ(x) .

The operator Π̃u is defined by

Π̃u f (x, y) :=
∑
j�y

λ
j
y(x, u) f (x, j) , u ∈ U .

Combining the above definitions, for f ∈ C2(Rd × S), we obtain

Au f (x, y) := Lu
y f (x, y) +

∑
j∈S

λ
j
y(x, u) f (x, j)

= L̃u
y f (x, y) + Π̃u f (x, y) , u ∈ U .
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Equivalently, we view the operator Au as acting on functions in C2(Rd)N , and with
Λ denoting the matrix [λ j

i ], we representA as

Au f (x) = Lu f (x) + Λu f (x) , (5.1.12)

where we adopt the natural vector notation for f : Rd × S → RN , i.e., represent it as
f = ( f1, . . . , fN), with fi(x) = f (x, i). In expanded form (5.1.12) is written as

(Au f )k(x) =
(Lu f

)
k(x) +

(
Λu f )k(x)

= Lu
k fk(x) +

∑
j∈S

λ
j
k(x, u) f j(x)

= L̃u
k fk(x) + (Π̃u f )k(x) , k ∈ S , u ∈ U .

We adopt the relaxed control framework, and for v ∈P(U), we define

bv(x, y) :=
∫
U

b(x, y, u)v(du | x, y) , λ
j
y,v(x) :=

∫
U

λ
j
y(x, u)v(du | x, y) ,

and

Av f (x, y) =
∫
U

Au f (x, y) v(du | x, y) . (5.1.13)

We also use the vector notation bv = (b1,v, . . . , bN,v), with by,v(x) := bv(x, y).
All these definitions also hold for f ∈ W 2,p

loc (Rd × S).

Remark 5.1.6 If we vectorize v ∈ Usm by defining vy(du | x) := v(du | x, y), then
v = (v1, . . . vN) ∈ (P(U))N . It is important to note that by,v = by,vy , λ

j
y,v = λ

j
y,vy

for all
j ∈ S, and therefore,

(Av f )k = Lvk

k fk(x) +
∑
j∈S

λ
j
k,vk

(x) f j(x) ∀k ∈ S .

Under a stationary Markov control v ∈ Usm, a direct extension of the results
in [117] shows that (5.1.7) admits a pathwise unique strong solution Z = (X,Y)
which is a Feller process with extended controlled generatorAv (compare with The-
orem 2.2.12). As usual we let Pv : R+×Rd×S→P(Rd×S) denote its transition func-
tion. Also Pv

x,i and Ev
x,i denote the probability measure and the expectation operator,

respectively, on the canonical space, of the process (X,Y) starting at (x, i) ∈ Rd × S.

5.2 Cooperative elliptic systems

The model in (5.1.7) gives rise to the class of elliptic operators in (5.1.13), with
v ∈ Usm appearing as a parameter. These take the form of a coupled (coupling in
the zeroth order term) elliptic system of operators, with coupling coefficients which
are nonnegative (cooperative). In the interest of economy of notation we have intro-
duced a convenient parameterization in Assumption 5.1.1, via the function γ which
suppresses the need for distinct Lipschitz constants and growth bounds. We use the
same parameterization to define a class of elliptic operators as follows.
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Definition 5.2.1 Let γ : (0,∞) → (0,∞) be a positive function that plays the role
of a parameter. We let A(γ) denote the class of operatorsA which take the following
form: with ϕ = (ϕ1, . . . , ϕN) ∈ W 2,p

loc (Rd × S)

(Aϕ)k(x) = L̃kϕk(x) +
∑
j�k

λ
j
k(x)ϕ j(x) , (5.2.1)

and satisfying

(i) L̃k ∈ L(γ) (see Definition A.1.1).
(ii) ‖λ j

k‖L∞(BR) ≤ γ(R), λ j
k ≥ 0 for k � j, and

∑
j λ

j
k ≤ 0.1

Comparing Assumption 5.1.1 to Definition 5.2.1, it is clear that for the model in
(5.1.7), under Assumption 5.1.1, there corresponds a function γ : (0,∞) → (0,∞)
such that Av ∈ A(γ) for all v ∈ Usm. Thus any property which holds uniformly over
solutions involving the operators in A(γ), also holds uniformly over allAv, v ∈ Usm.

The ergodic behavior of Z = (X,Y), depends heavily on the coupling coefficients
{λ j

i }. Recall that a matrix [Mi j] ∈ RN×N is called irreducible provided that for any
pair of non-empty sets I, J which form a partition of S, there exist i0 ∈ I and j0 ∈ J,
such that Mi0 j0 � 0.

Definition 5.2.2 If D ⊂ Rd is a bounded domain and A ∈ A(γ), then with {λ j
i,A}

denoting the coefficients that correspond toA, define

λ̂
j
i,A(D) :=

∥∥∥λ j
i,A

∥∥∥
L1(D)

and let Λ̂A(D) denote the N × N matrix
[
λ̂

j
i,A(D) : i � j

]
.

We say that A ∈ A(γ) is fully coupled in a bounded domain D ⊂ Rd if Λ̂A(D) is
irreducible, and that it is fully coupled if it is fully coupled in some bounded domain
D ⊂ Rd. We also say that a class of elliptic operators A′ ⊂ A(γ) is θ-uniformly fully
coupled in D, with θ > 0 a constant, if for eachA ∈ A′ and any non-empty set I ⊂ S
there exist i0 ∈ I and j0 ∈ Ic such that

λ̂
j0
i0,A(D) ≥ θ .

Definition 5.2.3 Analogously to Definition 5.2.2, with v = (v1, . . . vN) ∈ Usm as a
parameter we let

λ̃
j
i,v(BR) :=

∫
BR

∣∣∣λ j
i

(
x, vi(x)

)∣∣∣ dx , i, j ∈ S ,

and define the matrix

Λ̃v(BR) :=
[
λ̃

j
i,v(BR) : i � j

]
, v = (v1, . . . , vN) ∈ Usm .

We say that the controlled switching diffusion in (5.1.7) is fully coupled in BR if
Λ̃v(BR) is irreducible for all v ∈ Usm. We also say that the controlled switching
diffusion in (5.1.7) is fully coupled if it is fully coupled in some ball BR.

1 Note that this amounts to a more general framework than we need.
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Comparing Definition 5.2.3 to Definition 5.2.2, we note that if (5.1.7) is fully
coupled in BR, then then the collection {Av : v ∈ Usm} is θ-uniformly coupled in BR

for some constant θ > 0. Thus, if (5.1.7) is fully coupled, then there exist R0 > 0,
θ > 0 such that

‖λ j
i,v‖L1(BR0 ) ≥ θMi j(v) , i � j , ∀v ∈ Usm ,

where M(v) ∈ {0, 1}N×N is an irreducible matrix. Note also that the switching diffu-
sion is fully coupled unless there exists a non-empty I ⊂ S such that for each i ∈ I,

min
u∈U

λ
j
i (x, u) = 0 a.e. ∀ j ∈ Ic .

It is rather straightforward to show that since λ
j
i ≥ 0 for i � j, the weak and strong

maximum principles in Theorems A.2.2–A.2.3 hold for the elliptic system in (5.2.1).
An extension of the Alexandroff–Bakelman–Pucci maximum principle for elliptic

systems in the class A is summarized in the following theorem [42].

Theorem 5.2.4 (ABP estimate for elliptic systems) Let D ⊂ Rd be a bounded
domain. There exists a constant CA, depending only on d, N, D, and γ, such that if
ϕ ∈ W 2,d

loc (D × S) ∩ C(D̄ × S) satisfiesAϕ ≥ − f , withA ∈ A(γ), then

sup
D

(
max

i∈S
ϕi

)
≤ sup

∂D

(
max

i∈S
ϕ+i

)
+CA

∥∥∥max
i∈S

f +i
∥∥∥

Ld(D)
.

Moreover, ifAϕ ≤ f , then

− inf
D

(
min
i∈S

ϕi

)
≤ sup

∂D

(
max

i∈S
ϕ−i

)
+CA

∥∥∥max
i∈S

f +i
∥∥∥

Ld(D)
.

It is evident that Lemma A.2.5 and Theorem A.2.9 hold for A ∈ A, since they
hold component-wise.

For a C2 bounded domain D ⊂ Rd, g ∈ C(∂D × S), and f ∈ Lp(D × S), p ≥ d, we
address the Dirichlet problem,

Aϕ = f in D × S , ϕ = g on ∂D × S . (5.2.2)

Consider the sequence of functions {ϕ(n) : n ≥ 0}, defined by f (0) ≡ 0, and inductively
for n > 0, as the solution of

L̃kϕ
(n)
k = fk −

∑
j�k

λ
j
kϕ

(n−1)
j in D ,

ϕ(n)
k = gk on ∂D

for k ∈ S. By the strong maximum principle ϕ(n+1)
k ≥ ϕ(n)

k for all n ≥ 0, and hence,
since Aϕ(n) ≥ f for n ∈ N by Theorem 5.2.4, ϕ(n) is bounded in D × S uniformly
over n ∈ N. By Lemma A.2.5, each component ϕ(n)

k is bounded in W 2,p(D′) for any
subdomain D′ ⊂ D. It is then straightforward to show that ϕ(n) converges to some
ϕ ∈ W 2,p

loc (D × S) uniformly on compact subsets of D × S and that ϕ solves the
Dirichlet problem (5.2.2). By the weak maximum principle this solution is unique.
We have proved the following:
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Theorem 5.2.5 Let D be a bounded C2 domain inRd,A ∈ A(γ), g ∈ C(∂D×S), and
f ∈ Lp(D×S), p ≥ d. Then (5.2.2) has a unique solution ϕ ∈ W 2,p

loc (D×S)∩C(D̄×S).
Moreover, if g ≡ 0, then ϕ ∈ W 2,p(D × S) ∩W 1,p

0 (D × S) and we have the estimate∥∥∥ϕ∥∥∥
W 2,p(D×S) ≤ C′0

∥∥∥ f
∥∥∥

Ld(D×S)

for some constant C′0 = C′0(d, p, D, γ).

In view of Remark 5.1.6 the same approach via approximating solutions can be
followed for the quasilinear problem to obtain the analog of Theorem 3.5.3.

We could also consider Dirichlet problems on D = (D1, . . . , DN) ⊂ Rd × S, where
each Di is a C2 domain in Rd. For the problem to be well-posed the boundary condi-
tion should be placed on ∪kD̄k×S\D. Consider for example a problem with S = {1, 2}
and D a bounded C2 domain in Rd. The function ϕi(x) = Px,i

(
τ(D×S) > τ(Rd × {1}))

is a solution of

L̃1ϕ1 = 0 in D , ϕ1 = 1 on ∂D , ϕ2 = 0 on Rd ,

while ψi(x) = Ex,i [τ(D × {1})] is a solution of

L̃1ψ1 = −1 in D , ψ1 = 0 on ∂D , ψ2 = 0 on D̄ .

Definition 5.2.6 For δ > 0 and D a bounded domain, let K(δ, D) denote the class
of functions f = ( f1, . . . , fN) : D × S → R, with fi ∈ K(δ, D) for all i ∈ S (see
Definition A.2.11).

Theorem 5.2.7 Suppose A′ ⊂ A(γ) is θ-uniformly fully coupled in BR ⊂ Rd. There
exists a constant C̃A = C̃D(d, N, γ,R, θ, δ) such that if ϕ ∈ W 2,p(BR×S)∩W 1,p

0 (BR×S)
satisfiesAϕ = − f in BR × S, ϕ = 0 on ∂BR × S, with f ∈ K(δ, BR) andA ∈ A′, then

inf
BR/2

(
min
i∈S

ϕi

)
≥ C̃A

∑
i∈S

∥∥∥ fi
∥∥∥

L1(BR)
.

Harnack’s inequality for cooperative elliptic systems can be stated as follows [7].

Theorem 5.2.8 (Harnack’s inequality for elliptic systems) Suppose A′ ⊂ A(γ) is θ-
uniformly fully coupled in BR. There exists a constant CH = CH(d, N,R, γ, θ, δ), such
that if ϕ ∈ W 2,d(B2R × S) satisfies Aϕ = − f and ϕ ≥ 0 in B2R, with f ∈ K(δ, B2R)
andA ∈ A′, then

ϕi(x) ≤ CHϕ j(y) ∀x, y ∈ BR , ∀i, j ∈ S .

Theorem 5.2.9 Under a stationary Markov control v ∈ Usm, the solution Z = (X,Y)
to (5.1.7) has a strong Feller resolvent. Moreover, the resolvent kernel is mutually
absolutely continuous with respect to the Lebesgue measure in Rd.

Proof For R > 0 let τR denote the first exit time of Z from BR × S. Consider the
Dirichlet problem

Avϕ = − f in BR , ϕ = 0 on ∂BR . (5.2.3)
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A straightforward application of Dynkin’s formula together with the ABP estimate
(Theorem 5.2.4) for the elliptic system, yields a constant CR satisfying

Ev
x,i

∣∣∣∣∣∣
∫ t∧τR

0
f (Zs) ds

∣∣∣∣∣∣ ≤ CR‖ f ‖Ld(BR×S) ∀ f ∈ Ld(BR × S) .

Thus

f �→
∫ t

0
Ev

x,i

[
f (Zs) I {s < τR}

]
ds

defines a bounded linear functional on Ld(BR ×S). Invoking the Riesz representation
theorem there exists a function gv

R(t, x, i, · ) ∈ L(d+1)/d(BR × S) such that∫ t

0
Ev

x,i

[
f (Zs) I {s < τR}

]
ds =

∫
Rd

∑
k∈S

gv
R(t, x, i, y, k) fk(y) dy . (5.2.4)

Fix f = I{A,k} for A ∈ B(BR) and k ∈ S. Clearly, gv
R is increasing in R to some limit

gv and letting R→ ∞, (5.2.4) yields∫ t

0
Pv(s, x, i, A, k) ds =

∫
A

gv(t, x, i, y, k) dy .

It follows that

Qα(x, i, · , k) = α

∫ ∞

0
e−αtPv(t, x, i, · , k) dt

is absolutely continuous with respect to the Lebesgue measure.
Next, let A be a bounded Borel set in BR0 × S for some R0 > 0, and f n a bounded

sequence of continuous functions such that

lim
n→∞

∑
k∈S

∫
Rd
|IA(x, k) − f n

k (x)| dx = 0 .

In order to simplify the notation we let Pv denote the N × N matrix with elements
Pv

i j(t, x, A) = Pv(t, x, i, Aj, j), where Aj is the jth element of the natural partition of

A ∈ B(Rd × S) as A = ∪ j∈S(Aj, j). Correspondingly, we view IA is an N-vector. Let
Pv

i, · denote the ith row of Pv. Also, for a function g : Rd × S→ R, let |g| := ∑
i∈S|gi|. If

M is a bound for { f n}, then for any R > 0, and with Zs = (Xs,Ys), we have∣∣∣∣∣∫ t

0
Pv

i, ·(s, x, A) ds −
∫ t

0

∫
Rd

Pv
i, ·(s, x, dy) f n(y) ds

∣∣∣∣∣
≤ Ev

x,i

∫ t

0
|IA(Zs) − f n(Zs)| ds

≤ Ev
x,i

∫ t∧τR

0
|IA(Zs) − f n(Zs)| ds + t(1 + M)Pv

x,i(τR < t)

≤ CR

∥∥∥IA − f n
∥∥∥

Ld(BR×S)
+ t(1 + M)Pv

x,i(τR < t) . (5.2.5)
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With x ∈ BR0 and R > R0, we first take limits in (5.2.5) as n → ∞, and then take
limits as R→ ∞. Since

Pv
x,i(τR < t) = Pv

x,i

(
sup
s≤t
|Xs| > R

)
≤ R−2 Ex,i|Xt |2 ,

the right-hand side of (5.2.5) tends to zero uniformly in (x, i) ∈ BR0 × S. Therefore

sup
(x,i)∈BR0×S

∣∣∣∣∣∫ t

0
Pv

i, ·(s, x, A) ds −
∫ t

0

∫
Rd

Pv
i, ·(s, x, dy) f (y) ds

∣∣∣∣∣ −−−−→n→∞
0 ,

thus establishing that x �→
∫ t

0
Pv

i, ·(s, x, A) is the uniform limit of continuous functions
on each ball in Rd, and hence also continuous. Lastly, an application of Dynkin’s
formula to the Dirichlet problem (5.2.3), in combination with Theorems 5.2.4 and
5.2.7, shows that for any Borel set A with positive Lebesgue measure, and any x ∈ Rd,∫ t

0
Pv

i, ·(s, x, A) ds > 0 for some t > 0, and hence Qα(x, i, A) > 0. �

5.3 Recurrence and ergodicity of fully
coupled switching diffusions

In this section we assume that the switching diffusion (5.1.7) is fully coupled in some
ball BR0 .

Definition 5.3.1 For D × J ⊂ Rd × S, we let τ(D × J) denote the first exit time of
(Xt,Yt) from the set D× J. Also, we use the abbreviation τ(D) for τ(D×S). As usual
τ̆ denotes the first recurrence time to a set, i.e.,

τ̆(D × J) := τ
(
(D × J)c) ,

and we use the analogous abbreviation τ̆(D) for τ̆(D × S).

Lemma 5.3.2 Let D1 and D2 be two open balls in Rd, satisfying D1 � D2. Then

0 < inf
(x,i)∈D̄1×S

v∈Usm

Ev
x,i

[
τ(D2)

] ≤ sup
(x,i)∈D̄1×S

v∈Usm

Ev
x,i

[
τ(D2)

]
< ∞ , (5.3.1a)

sup
(x,i)∈∂D2×S

Ev
x,i

[
τ(Dc

1)
]
< ∞ ∀v ∈ Ussm . (5.3.1b)

Proof Let h be the unique solution in W 2,p(D2 × S) ∩W 1,p
0 (D2 × S), p ≥ 1, of

Avh = −1 in D2 × S , h = 0 on ∂D2 × S .

By Dynkin’s formula,

h(x, i) = Ev
x,i

[
τ(D2)

] ∀x ∈ D2 .

The positive lower bound in (5.3.1a) follows by Theorem A.2.12, noting that hi sat-
isfies L̃ihi ≤ −1 on D2.
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Let τi ≡ τ(Rd × {i}). For the upper bound in (5.3.1a), we use

Ev
x,i

[
τ(D2)

]
= Ev

x,i

[
τ(D2) I {τi > τ(D2)}] + Ev

x,i

[
τ(D2) I {τi ≤ τ(D2)}] . (5.3.2)

The first term on the right-hand side of (5.3.2) is dominated by Ev
x,i[τ(D2) ∧ τi],

and therefore, it is bounded by some constant M0. Let ϕ be the unique solution in
W 2,p(D2 × S) ∩W 1,p

0 (D2 × S), p ≥ 1, of the Dirichlet problem

Avϕ = 0 in D2 × {i} ,

ϕ = 1 on ∂D2 × {i} ,

ϕ = 0 on D2 × {i}c .

Then ϕ satisfies L̃v
i ϕi(x) = 0 for x ∈ D2 and i ∈ S, and since ϕi(x) = Pv

x,i

(
τi > τ(D2)

)
,

it follows by the strong maximum principle (and Harnack’s inequality) that for some
ρ ∈ (0, 1),

sup
(x,i)∈D̄2×S

v∈Usm

Pv
x,i

(
τi > τ(D2)

) ≥ ρ .

Hence we write the second term on the right-hand side of (5.3.2) as

Ev
x,i

[
τ(D2) I {τi ≤ τ(D2)}] = Ev

x,i

[
Ev

x,i

[
τ(D2) I {τi ≤ τ(D2)} | Fτi

]]
= Ev

x,i

[
I {τi ≤ τ(D2)}Ev

Xτi ,Yτi

[
τ(D2)

]]
= Pv

x,i

(
τi ≤ τ(D2)

)
sup

(x,i)∈D̄2×S
v∈Usm

Ev
x,i

[
τ(D2)

]
≤ (1 − ρ) sup

(x,i)∈D̄2×S
v∈Usm

Ev
x,i

[
τ(D2)

]
. (5.3.3)

By (5.3.2) – (5.3.3)

sup
(x,i)∈D̄2×S

v∈Usm

Ev
x,i

[
τ(D2)

] ≤ M0 + (1 − ρ) sup
(x,i)∈D̄2×S

v∈Usm

Ev
x,i

[
τ(D2)

]
,

and the result follows since ρ > 0.
Let {Rn : n ∈ N} ⊂ R+ be an increasing, divergent sequence, and let g(n) be the

unique solution in W 2,p((BRn \ D̄1)×S)∩W 1,p
0 ((BRn \ D̄1)×S), p ≥ 1, of the Dirichlet

problem

Avg(n) = −1 in (BRn \ D̄1) × S , g(n) = 0 on (∂BRn ∪ ∂D1) × S .

If x0 ∈ ∂D2 and v ∈ Ussm, then Ev
x0,i

[τ(Dc
1)] < ∞. Since

g(n)
i (x0) = Ev

x0,i

[
τ(Dc

1) ∧ τ(DRn )
] ≤ Ev

x0,i

[
τ(Dc

1)
]
,

by Harnack’s inequality the increasing sequence f (n) = g(n) − g(1) of Av-harmonic
functions is bounded locally in Dc

1 × S, and hence approaches a limit as n → ∞,
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which is anAv-harmonic function on Dc
1×S. Therefore g = limn→∞ g(n) is a bounded

function on ∂D2 × S and clearly gi(x) = Ev
x,i[τ(Dc

1)]. Property (5.3.1b) follows. �

Let D1 and D2 be two open balls in Rd, satisfying D1 � D2. Let τ̂0 = 0 and for
k = 0, 1, . . . , define inductively an increasing sequence of stopping times by

τ̂2k+1 = min {t ≥ τ̂2k : Xt ∈ Dc
2} ,

τ̂2k+2 = min {t ≥ τ̂2k+1 : Xt ∈ D1} .

Invariant measures for switching diffusions are characterized in the same manner
as in Theorems 2.6.7 and 2.6.9. Namely if µ̃ ∈ P(∂D1 × S) denotes the unique
stationary probability distribution of (X̃n, Ỹn) :=

(
X̃τ̂2n , Ỹτ̂2n

)
under v ∈ Ussm, then

η ∈P(Rd × S) defined by

∫
Rd×S

f (x, y) η(dx, dy) =

∫
∂D1×S

Ev
x,y

[∫ τ̂2

0
f (Xt,Yt) dt

]
µ̃(dx, dy)∫

∂D1×S
Ev

x,y
[
τ̂2

]
µ̃(dx, dy)

.

for f ∈ Cb(Rd × S) is the unique invariant probability measure of (X,Y), under
v ∈ Ussm.

It is convenient to use vector notation for measures in P(Rd ×S). Specifically, for
η ∈P(Rd × S), we define the vector-valued measure

 η =
(
η1, . . . , ηN

) ∈P(Rd × S) ,

where ηy( · ) := η( · × {y}) is a sub-probability measure on Rd. Thus, provided the
map f = ( f1, . . . , fN)T : Rd → RN is integrable under  η, we define the pairing 〈 f ,  η〉
by ∫

Rd
〈 f (x),  η(dx)〉 :=

∑
y∈S

∫
Rd

fy(x) ηy(dx)

=

∫
Rd×S

f (x, y) η(dx, dy) .

Invariant probability measures are also characterized as in (2.6.40), namely that
η ∈ P(Rd × S) is an invariant probability measure for the process associated with
Av, if and only if ∫

Rd
〈Av f (x),  η(dx)〉 = 0 ∀ f ∈ C ,

where C is any dense set in
(C2

c(Rd)
)N .

As usual, we use H and G to denote the set of invariant probability measures
and ergodic occupation measures respectively. When convenient, we use the vector
notation  π for π ∈ G . Also, for f : Rd × U → RN , the pairing 〈 f ,  π〉 is analogously
defined by ∫

Rd×U
〈 f (x, u),  π(dx, du)〉 :=

∑
y∈S

∫
Rd×U

fy(x, u) πy(dx, du) .
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The same characterization as in Lemma 3.2.2 applies, and hence the argument in
Lemma 3.2.3 shows that G is a closed and convex subset of P(Rd × S × U).

Regularity of invariant probability measures is the topic of the next section.

5.3.1 Regularity of invariant probability measures

Lemma 5.3.3 Let B be an open ball in Rd and µ a finite Borel measure on B, with
µ(B) > 0, and suppose that µ is singular with respect to the Lebesgue measure. Let ρ
be a nonnegative mollifier supported on the unit ball centered at the origin, and for
ε > 0, define

ρε(x) := ε−dρ
(

x
ε

)
, and ϕε(x) :=

∫
B
ρε(x − y)µ(dy) .

Then, for any p > 1, ∫
B
|ϕε(x)|p dx −−−→

ε→0
∞ .

Proof Since µ is a Borel measure and µ(B) > 0, there exists a compact set K ⊂ B,
with µ(K) > 0, and Lebesgue measure |K| = 0. Let Kε denote the ε-neighborhood of
K, i.e., Kε = {x ∈ B : d(x, K) < ε}, where d denotes Euclidean distance. Define

ϕ̃ε(x) :=
∫

K
ρε(x − y)µ(dy) ,

and note that ϕ̃ε is supported on Kε, and ϕ̃ε ≤ ϕε on B. Let µϕ̃ε
denote the distribution

of ϕ̃ε, i.e.,

µϕ̃ε
(t) =

∣∣∣{x ∈ B : ϕ̃ε(x) > t}
∣∣∣ , t > 0 .

We argue by contradiction. Suppose that for some p > 1,

lim
ε→0

∫
B
|ϕ̃ε(x)|p dx ≤ M < ∞ . (5.3.4)

On the one hand,

µϕ̃ε
(t) ≤ t−p

∫
B
|ϕ̃ε(x)|p dx , (5.3.5)

while on the other µϕ̃ε
≤ |Kε|. Hence, by (5.3.4) – (5.3.5), since |Kε| → 0 as ε → 0,

using dominated convergence

lim
ε→0

∫
B
ϕ̃ε(x) dx = lim

ε→0

∫ ∞

0
µϕ̃ε

(t) dt

≤ M lim
ε→0

∫ ∞

0
(|Kε| ∧ t−p) dt

= 0 . (5.3.6)

However, using Fubini’s theorem, we obtain
∫

B
ϕ̃ε(x) dx = µ(K) > 0 for all ε > 0,

which contradicts (5.3.6). �
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The operatorA takes the form

(Aϕ)k = L̃kϕk +
∑
��k

λ�kϕ�

L̃k = ai j
k ∂i j + bi

k∂i + λk
k ,

with ai j
k locally Lipschitz and the rest of the coefficients are in L∞loc(Rd). Moreover,

λ�k ≥ 0 for k � �, and
∑

� λ
�
k = 0.

If  µ = (µ1, . . . , µN) ∈P(Rd × S), we adopt the notation

〈ϕ(x),  µ(dx)〉 =
N∑

k=1

ϕk(x)µk(dx) .

Theorem 5.3.4 Suppose µ is a Borel probability measure on Rd × S satisfying∫
Rd
〈A f (x),  µ(dx)〉 = 0 ∀ f ∈ C2

c(Rd × S) .

Then the measure µ is absolutely continuous with respect to the Lebesgue measure.
Let Λ̂ ∈ {0, 1}N×N be defined by

Λ̂i j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩0 if i = j or λ j
i = 0 a.e.,

1 otherwise.

Then, provided Λ̂ is an irreducible matrix, ψ is strictly positive on Rd × S.

Proof Let Sµ = {k ∈ S : µk(Rd) > 0}. Decompose µk = βkµ
′
k + (1 − βk)µ′′k , with

µ′k ⊥ m and µ′′k ≺ m, and suppose βk̂ > 0 for some k̂ ∈ Sµ. Select R > 0 large enough
such that µ′

k̂
(BR) > 0, and for ε ∈ (0,R) define

ρ̄ε(x) =
(
e−1 − e−

2R
ε
)−1

ε

∫ 2R

ε

e−
r
ε ρr(x) dr .

With “∗” denoting convolution, since ∂i(h ∗ ρ̄ε) = (∂ih) ∗ ρ̄ε and ρ̄ε is symmetric with
respect to the origin, using Fubini’s theorem, we obtain∫

bi
k(y)∂i( fk ∗ ρ̄ε)(y) µk(dy) =

∫
bi

k(y)

(∫
∂i fk(x)ρ̄ε(y − x) dx

)
µk(dy)

=

∫ (∫
bi

k(y)ρ̄ε(x − y) µk(dy)

)
∂i fk(x) dx .

Thus we can move the mollifier ρ̄ε outside the operators ∂i j and ∂i to obtain∫
Rd
〈A( f ∗ ρ̄ε)(y),  µ(dy)〉 =

∫
Rd
〈Aε f (x),  1Sµ〉 dx = 0 (5.3.7)
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for all f ∈ C2
c(Rd × S), where  1Sµ denotes the function in Rd × S which is equal to 1

on Rd × Sµ and 0 on its complement. The operatorAε in (5.3.7) is given by

(Aε f )k = Lε
k fk +

∑
��k

λ�k,ε f� ,

Lε = ai j
k,ε ∂i j + bi

k,ε ∂i + λk
k,ε ,

where the coefficients ai j
k,ε, bi

k,ε and λ�k,ε of Lε
k are given by

ai j
k,ε(x) :=

∫
Rd

ai j(y)ρ̄ε(x − y)µk(dy) ,

bi
k,ε(x) :=

∫
Rd

bi(y)ρ̄ε(x − y)µk(dy) ,

λ�k,ε(x) :=
∫
Rd

λ�k(y)ρ̄ε(x − y)µk(dy) , � ∈ S .

Define

ψε
k(x) :=

∫
Rd

ρ̄ε(x − y)µk(dy) , k ∈ Sµ ,

and note that ψε
k > 0 for all k ∈ Sµ, on B2R. We let

ãi j
k,ε :=

ai j
k,ε

ψε
k

, b̃i
ε :=

bi
k,ε

ψε
k

, λ̃�k,ε :=
λ�k,ε

ψε
k

, k ∈ Sµ ,

and for k ∈ Sµ, we define

(Ãε f )k := L̃ε
k fk +

∑
��k

λ̃�k,ε f� ,

L̃ε
k := ãi j

k,ε ∂i j + b̃i
k,ε ∂i + λ̃k

k,ε .

Then we write (5.3.7) as∫
Rd
〈ψε(x), Ãε f (x)〉 dx =

∫
Rd
〈(Ãε)∗ ψε(x), f (x)〉 dx = 0 ∀ f ∈ C2

c(B2R × S) ,

which yields
(
(Ãε)∗ ψε)

k = 0 in B2R for all k ∈ S, where

(
(Ãε)∗ ψε)

k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩∂i
(
ãi j

k,ε∂ jψ
ε
k + (∂ jã

i j
k,ε − b̃i

k,ε)ψ
ε
k

)
+

∑
�∈Sµ λ̃

k
�,εψ

ε
�

for k ∈ Sµ ,∑
�∈Sµ λ̃

k
�,εψ

ε
�

for k � Sµ .
(5.3.8)

On B2R, the family
{
(Ãε)∗ : ε ∈ (0, 1)

}
has bounded coefficients (uniformly in ε), and

shares the same ellipticity constant withA∗. Also ãi j
k,ε inherits the Lipschitz constant

of ai j
k . Next, write (5.3.8) for k ∈ Sµ as

L̂ε
kψ

ε
k = −

∑
�∈Sµ
��k

λ̃k
�,εψ

ε
k , (5.3.9)

where L̂ε
k is the divergence form operator

L̂ε
k f := ∂i

(
ãi j

k,ε∂ j f + (∂ jã
i j
k,ε − b̃i

k,ε) f
)
+ λ̃k

k,ε f .
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Since µ is a probability measure, using Fubini’s theorem, we obtain

|BR| inf
BR

ψε
k ≤

∑
k∈Sµ

∫
Rd

ψε
k(x) dx = 1 . (5.3.10)

Since ψε
k is a supersolution for L̂ε

k , i.e., satisfies L̂ε
kψ

ε
k ≤ 0, a standard estimate

[67, theorem 8.18, p. 194] asserts that for all p such that 1 ≤ p < n
n−2 , there exists a

constant Cp, depending on p (and R), such that

‖ψε
k‖Lp(2BR) ≤ Cp inf

BR

ψε
k . (5.3.11)

By (5.3.10) – (5.3.11), ‖ψε
k‖Lp(2BR) ≤ Cp|BR|−1 for all ε > 0, which, in turn, implies

by Lemma 5.3.3 that µ ≺ m for all k ∈ Sµ.
By the strong maximum principle ψk > 0, unless it is identically zero on Rd. Note

that as ε → 0, then ψε
�
→ ψ� and λ̃k

�,ε → λk
� for � ∈ Sµ. Hence, if Sµ � S, (5.3.8)

yields ∑
�∈Sµ

λk
�ψ� = 0 , ∀k � Sµ .

However, this implies that λk
� = 0 for all (�, k) ∈ Sµ × Sc

µ and hence Λ̂ must be
reducible. �

5.4 Existence of an optimal control

Let c : Rd × S × U �→ R be a continuous function bounded from below (without loss
of generality we assume it is nonnegative). As usual, the ergodic control problem
seeks to minimize a.s. over all admissible controls the functional

lim sup
t→∞

1
t

∫ t

0
c̄(Xs,Ys,Us) ds , (5.4.1)

or, in a more restricted sense, the functional

lim sup
t→∞

1
t

∫ t

0
EU [c̄(Xs,Ys,Us)] ds . (5.4.2)

We let �∗ denote the infimum of (5.4.2) over Usm.
The results of Section 3.2 carry over to switching diffusions in a straightforward

manner. Existence of optimal controls can be demonstrated under the assumption of
near-monotonicity, which takes the form

lim inf
|x|→∞

min
u∈U

c(x, y, u) > �∗ ∀y ∈ S , (5.4.3)

or the assumption that G is compact. Under either of these two assumptions, the
infimum of (5.4.1) or (5.4.2) over Usm is attained at some v∗ ∈ Usd. Moreover, �∗ is
the infimum over U of (5.4.2), and under (5.4.3) also the infimum over U of (5.4.1).
In the stable case, i.e., Usm = Ussm, an additional requirement, namely the tightness
of the empirical measures defined in (3.4.5), is needed to assert that �∗ is the infimum
over U of (5.4.1).
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5.5 HJB equations

We assume that c : Rd × S × U is locally Lipschitz continuous in its first argument
uniformly in u ∈ U.

Define

JU
α (x, y) := EU

x,y

[∫ ∞

0
e−αt c̄(Xt,Yt,Ut) dt

]
, U ∈ U

and Vα(x, y) := infU∈U JU
α (x, y). Then by analogy to Theorem 3.5.6, Vα is the mini-

mal nonnegative solution in C2(Rd × S) of

min
u∈U

[AuVα(x, y) + c(x, y, u)
]
= αVα(x, y) , (5.5.1)

and v ∈ Usm is α-discounted optimal if and only if v is a measurable selector from
the minimizer in (5.5.1).

We proceed to derive the HJB equations for the ergodic control problem, via the
vanishing discount method. First, under (5.4.3), Vα attains its infimum in some com-
pact subset of Rd × S for all α > 0 and, moreover, Lemma 3.6.1 holds. Next, the
Harnack inequality in Theorem 5.2.8 permits us to extend Lemma 3.6.3 to switch-
ing diffusions, while the ABP estimate in Theorem 5.2.4 allows us to extend the
convergence results in Lemma 3.6.4 to cooperative elliptic systems. In this manner
Theorem 3.6.6, Lemmas 3.6.8 and 3.6.9, and Theorem 3.6.10 can be extended to
switching diffusions. We summarize these as follows:

Theorem 5.5.1 Suppose (5.4.3) holds. Then

(a) there exists a unique, up to a constant, function V ∈ C2(Rd×S), which is bounded
below in Rd × S, such that

min
u∈U

[AuV(x, y) + c(x, y, u)
]
= � (5.5.2)

holds for some constant � ≤ �∗;
(b) a stationary Markov control is optimal if and only if it is measurable a selector

from the minimizer of (5.5.2).

Turning to the stable case, the results of Theorem 3.7.4 and Theorem 3.7.6 do
hold. We summarize these in the following form.

Theorem 5.5.2 There exist a constant C0 depending only on the radius R > 0 such
that, for all v ∈ Ussm and α ∈ (0, 1),∥∥∥Jv

α − Jv
α(0, 1)

∥∥∥
W 2,p(BR×S)

≤ C0

ηv(B2R × S)
F(R, c, v) ,

sup
BR×S

αJv
α ≤ C0F(R, c, v) ,

(5.5.3)

where

F(R, c, v) :=

(
‖cv‖L∞(B4R×S) +

�v

ηv(B2R × S)

)
.

Moreover, if �v̂ < ∞ for some v̂ ∈ Usm, then (5.5.3) still holds if Jv
α is replaced by Vα.
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Theorem 5.5.2 permits us to use the vanishing discount method to obtain the coun-
terparts of Theorems 3.7.11–3.7.12, Corollary 3.7.13 and Theorems 3.7.14–3.7.15.

5.6 The general case

In this section we relax the assumption that the switching diffusion is fully coupled.
As a result, under a stationary Markov control the process is not necessarily irre-

ducible. We say that j is accessible from i under v ∈ Usm and denote this by i
v
� j,

if there there exist {i1, . . . , ik} ⊂ S such that for some R > 0,

λ̃i1
i,v(BR)λ̃i2

i1,v
(BR) · · · λ̃ j

ik ,v
(BR) > 0 ,

or equivalently if

Pv
x,i

(
τ̆(Rd × { j}) < ∞

)
> 0 .

If i
v
� j and j

v
� i, then we say that i and j communicate and denote it by i

v
� j.

If i communicates with all states that are accessible from it, then we say that i is

S-recurrent, otherwise we call it S-transient. The equivalence classes under
v
� are

referred to as S-communicative classes. An S-recurrent (S-transient) class of states
refers to an S-communicative class of S-recurrent (S-transient) states. We let Rv and
Tv denote the sets of S-recurrent and S-transient states under v ∈ Usm, respectively.

We modify the definition of stability. We say that a control v ∈ Usm is stable if for
any bounded domain D ∈ Rd, Ev

x,i[τDc ] < ∞ for all (x, i) ∈ Rd×S. The set of all stable
controls is denoted by Ussm. Unless A is fully coupled, it is not generally the case
that the switching diffusion is positive recurrent under a stable control. However, it
is straightforward to show that if v ∈ Ussm, then Ev

x,i[τ̆(D×Rv)] < ∞ for any bounded
domain D and all i ∈ S. Indeed, select bounded D2, D1 � D, and note that since
v ∈ Ussm, we have Ev

x,i

[
τ(Dc

1)
]
< ∞. By Harnack’s inequality

inf
(x, j)∈∂D1×S

Px, j
(
τ̆(D × Rv) < τ(D2)

)
> 0 .

The claim then follows as in the proof of Theorem 2.6.10 (b)⇒ (a).
Let nv denote the number of S-recurrent classes under v ∈ Usm and

Rv = Rv
1 ∪ R

v
2 ∪ · · · ∪ R

v
nv

be the partition of Rv into its S-recurrent classes. It is evident that the restriction of
Av to any S-recurrent class Rv

k defines a fully coupled, cooperative elliptic system.
Therefore if v ∈ Ussm, there is a unique probability measure ηk

v in P(Rd ×Rv
k) which

is invariant for the diffusion restricted to Rd × Rv
k. It is also evident that the invariant

measures for the switching diffusion under v are supported on Rd × Rv and take the
form

ηv =
(
λ1η

1
v , λ2η

2
v , . . . , λnvη

nv
v

)
,

where λi ∈ R+ and λ1 + · · · + λnv = 1. The analogous property holds for the ergodic
occupation measures πv. Recall the definition of HU and GU on p. 89, forU ⊂ Ussm.
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Suppose HU is tight. Then one can show that the set-valued map v �→ ηv from Ū
to HŪ is upper semicontinuous under the total variation norm topology, while the
set-valued map v �→ πv from Ū to GŪ is upper semicontinuous in P(Rd × S × U).
This extends Lemma 3.2.6.

Let v ∈ Ussm. Choose an arbitrary jk ∈ Rv
k, k = 1, . . . , nv, and let J denote the

collection of these points, i.e., J = {jk : 1 ≤ k ≤ nv}. With τ̆J denoting as usual the
first recurrence time of the set Rd × J, let

Ĵv
α(x, y) := Ev

x,y
[
Jv
α

(
0,Yτ̆J )

]
.

It is evident that Ĵv
α(x, y) = Jv

α(0, jk) for all y ∈ Rv
k, and that Ĵv

α solves Av Ĵv
α = 0 on

Rd × S. Let

V̄α(x, y) := Jv
α(x, y) − Ĵv

α(x, y) .

Using vector notation, it follows that V̄α satisfies

AvV̄α + cv = αV̄α + αĴv
α .

Moreover, one can show that for any R > 0, the functions V̄α and αĴv
α are bounded in

W 2,p(BR × S), uniformly in α ∈ (0, 1). Taking limits as α → 0 we obtain a solution
pair (V̂v, �v) ∈ (

W 2,p
loc (Rd × S))2 of

AvV̂v + cv = �v ,

Av�v = 0 .

Moreover, the function �v satisfies

�v(x, y) = lim
T→∞

1
T
Ev

x,y

[∫ T

0
c(Xt,Yt,Ut) dt

]
.

The ergodic cost �v is constant on Rd × Rv
k for each recurrent class Rv

k.
Using the same methodology as in Chapter 3, but with some important differences

in technical details, one can show that the HJB equation takes the form

min
u∈U

[AuV(x, y) + c(x, y, u)
]
= �(x, y) ,

min
u∈U

[Au�(x, y)
]
= 0 .

(5.6.1)

The pair of equations in (5.6.1) is analogous to Howard’s equations for finite state
controlled Markov chains [6, 53].

5.7 An example

Suppose there is one machine producing a single commodity. We assume that the
demand rate is a constant d > 0. Let the machine state S t take values in {0, 1}, S t = 0
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or 1, according as the machine is down or functional. We model S t as a continuous
time Markov chain with generator [

−λ0 λ0

λ1 −λ1

]
,

where λ0 and λ1 are positive constants corresponding to the infinitesimal rates of
repair and failure respectively. The inventory Xt is governed by the Itô equation

dXt =
(
Ut − d

)
dt + σ dWt , (5.7.1)

where σ > 0, Ut is the production rate and Wt is a one-dimensional Wiener process
independent of S t. The last term in (5.7.1) can be interpreted as sales return, in-
ventory spoilage, sudden demand fluctuations, etc. A negative value of Xt represents
backlogged demand. The production rate is constrained by

Ut ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩{0} if S t = 0 ,

[0, r] if S t = 1.

The cost function is given by

c(x) =
c+ + c−

2
|x| + c+ − c−

2
x ,

with c+ and c− positive constants, Thus c is near-monotone. We show that a certain
hedging-point Markov control is stable.

The HJB equations in this case are

σ2

2
V ′′0 (x) − dV ′0(x) − λ0V0(x) + λ0V1(x) + c(x) = �

σ2

2
V ′′1 (x) + min

u∈[0,r]

[
(u − d)V ′1(x)

]
+ λ1V0(x) + λ1V1(x) + c(x) = � .

(5.7.2)

The results in this chapter ensure the existence of a C2 solution (V, �∗) of (5.7.2),
where �∗ is the optimal cost. Using the convexity of c, it can be shown that Vi is
convex for each i. Hence, there exists an x∗ such that

V ′1(x) ≤ 0 for x ≤ x∗ ,

V ′1(x) ≥ 0 for x ≥ x∗ .
(5.7.3)

It follows, from (5.7.3), that the value of u which minimizes (u − d)V ′1 is

u =

⎧⎪⎪⎪⎨⎪⎪⎪⎩r if x < x∗ ,

0 if x > x∗.

Since V ′1(x∗) = 0, any u ∈ [0, r] minimizes (u − d)V ′1(x∗). Therefore the action
u ∈ [0, r] can be chosen arbitrarily at x = x∗. To be specific, we let u(x∗) = d, i.e., we
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produce at the level that meets the demand exactly. Thus the following precise stable
Markov control is optimal

v∗(x, 0) = 0, v∗(x, 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
r if x < x∗ ,

d if x = x∗ ,

0 if x > x∗ .

(5.7.4)

Provided that the set of stable precise Markov controls is non-empty, the stability of
the optimal control (5.7.4) follows. We show next that the zero-inventory control v
given by

v(x, 0) = 0, v(x, 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩r if x ≤ 0 ,

0 if x > 0 ,

is stable if and only if

(r − d)
λ1

>
d
λ0

. (5.7.5)

The condition in (5.7.5) is in accord with intuition. Note that λ−1
0 and λ−1

1 are the
mean sojourn times of the chain in states 0 and 1 respectively. In state 0 the mean
inventory depletes at a rate d while in state 1 it builds up at a rate (r − d). Thus,
if (5.7.5) is satisfied, one would expect the zero-inventory control to stabilize the
system.

The density ϕ of the invariant probability measure ηv can be obtained by solving
the adjoint system

(Lv)∗ϕ = 0 , (5.7.6)

subject to

ϕi(x) > 0,
∑

i∈{0,1}

∫
R

ϕi(x) dx = 1 . (5.7.7)

Define

λ̃0 :=
2λ0

σ2
, λ̃1 :=

2λ1

σ2
, d̃ :=

2d
σ2

and r̃ :=
2r
σ2

.

Then (5.7.6) is equivalent to

ϕ′′0 (x) + d̃ϕ′0(x) − λ̃0ϕ0(x) + λ̃1ϕ1(x) = 0

ϕ′′1 (x) + d̃ϕ′1(x) − λ̃1ϕ1(x) + λ̃0ϕ0(x) = 0
for x > 0 ,

ϕ′′0 (x) + d̃ϕ′0(x) − λ̃0ϕ0(x) + λ̃1ϕ1(x) = 0

ϕ′′1 (x) − (r̃ − d̃)ϕ′1(x) − λ̃1ϕ1(x) + λ̃0ϕ0(x) = 0
for x < 0 .

(5.7.8)
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A solution of (5.7.8), subject to the constraint (5.7.7), exists if and only if (5.7.5)
holds and takes the form:

ϕ(x) =

⎛⎜⎜⎜⎜⎜⎜⎝ϕ0(x)

ϕ1(x)

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1

(
λ̃1

λ̃0

)
e−s1 x + a2

( −λ̃1

λ̃1

)
e−s2 x for x ≥ 0 ,

a3

(
λ̃1

−ψ(s3)

)
es3 x + a4

( −λ̃1

ψ(s4)

)
es4 x for x < 0 ,

where

ψ(s) = s2 + d̃s − λ̃0 ,

s1 = d̃ ,

s2 =
d̃
2
+

1
2
[
d̃2 + 4(λ̃0 + λ̃1)

]1/2
,

and s3, s4 are the positive roots of the polynomial

s3 − (r̃ − 2d̃)s2 − [
(r̃ − d̃)d̃ + λ̃0 + λ̃1

]
s +

[
(r̃ − d̃)λ̃0 − d̃λ̃1)

]
,

ordered by 0 < s3 < s4. Also, the coefficients {a1, a2, a3, a4} are given by:

a1 =
1
∆

{ (s4 − s3)s2

λ̃0 + λ̃1
+

s4 + s2

s3 + d̃
− s3 + s2

s4 + d̃

}
,

a2 =
1
∆

(s4 − s3)s2

λ̃0 + λ̃1
,

a3 =
1
∆

s4 + s2

s3 + d̃
,

a4 =
1
∆

s3 + s2

s4 + d̃
,

∆ =
(s4 − s3)(s2 − d̃)

d̃
+

λ̃0 + λ̃1

d̃

{ s4 + s2

s3
− s3 + s2

s4

}
.

Note that if ϕ∗ denotes the density of the invariant probability measure corresponding
to a hedging-point control as in (5.7.4), then

ϕ∗(x) = ϕ(x − x∗) .

Given a convex cost function, the ergodic cost �(x∗) corresponding to such a control
can be readily computed and is a convex function of the threshold value x∗.

5.8 Bibliographical note

This chapter is based on [64, 65] and contains several enhancements.
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Controlled Martingale Problems

6.1 Introduction

In this chapter, we present an abstract treatment of the ergodic control problem in a
very broad framework. Later on the results are specialized to situations like degener-
ate diffusions and partially observed diffusions. The framework is, in fact, applicable
to several other infinite dimensional problems as well, see Section 6.2.1.

In Section 6.2, we formally define a controlled martingale problem. As one might
expect, this extends the martingale characterization of solutions of stochastic differ-
ential equations for diffusions, viz., that for f ∈ C2

b(Rd),

f (Xt) −
∫ t

0
LUs f (Xs) ds , t ≥ 0 ,

is a martingale. We specify the conditions to be satisfied by the candidate controlled
extended generator in this more abstract framework and provide several examples.
In this chapter, we denote the controlled extended generator byA.

In Chapter 3, we repeatedly used the fact that if
∫
A f dπ = 0 for a sufficiently rich

class of functions, then π must be an ergodic occupation measure, i.e., it disintegrates
as π(dx, du) = ηv(dx)v(du | x), where ηv is the unique invariant probability measure
under the relaxed Markov control v(du | x). This fact was proved using the the-
ory of elliptic PDEs at our disposal. Unfortunately this characterization is no longer
straightforward in the more general case we analyze in Section 6.3, forcing us to take
a more convoluted route. As alluded to in Section 1.3, we begin with bounded oper-
ators Ãn constructed from the resolvent ofA, which approximateA. This allows us
to construct a stationary Markov chain Xn with controlled extended generator Ãn and
marginal µ. The process Xn changes states at the click of an exponential clock with
rate n. We establish the tightness of Xn and extract a limiting process X as n → ∞,
that is stationary, with marginal µ, and with controlled extended generatorA.

Another key fact used in Chapter 3 was that the extreme points of ergodic occupa-
tion measures correspond to stable stationary Markov controls. Once again the proof
of this property was facilitated by the theory of elliptic PDEs which ensures the exis-
tence of a density for the invariant probability measure with respect to the Lebesgue
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measure, under any stable stationary Markov control. In the more abstract setup of
this chapter, we see in Section 6.4 that not only is the characterization of extremal
solutions much more difficult, but also the results are weaker. One considers, for a
fixed initial law, equivalence classes of joint state-control processes whose marginals
at time t agree for almost all t. Passing to the compact and convex set of these equiva-
lence classes, one argues that the extremal solutions are Markov. What is still missing
though is a characterization of when the extremal solutions are time-homogeneous
Markov.

Not surprisingly, the existence results for optimal controls in suitable classes
thereof are correspondingly weaker than those in Chapter 3. In Section 6.5 we in-
troduce counterparts of the near-monotonicity and stability conditions of Chapter 3,
and under these we assert the existence of an optimal state-control process that is
either ergodic (but not necessarily Markov), or Markov (but not necessarily station-
ary). The optimal control, however, may be taken to be a stationary Markov control
regardless.

In Section 6.6, we recall the formulation of the ergodic control problem as that
of minimizing a linear functional over the closed convex set of ergodic occupation
measures, and observe that it is an infinite dimensional linear program. An important
spin-off is the dual linear program in function spaces, which is reminiscent of the
maximal subsolution formulation of the HJB equations. Moreover, there is no duality
gap.

In Section 6.7 we present the Krylov selection procedure, originally a scheme for
extracting a Markov family out of non-unique solutions to the martingale problem
for different initial conditions. We recall here this procedure for the infinite horizon
discounted cost. It consists of successive minimization of a countable family of sec-
ondary discounted costs for every initial condition, over the non-empty compact and
convex set of optimal laws. In other words, we successively minimize each of the
sequences of costs over the set of minimizers of the one that precedes it. The family
of costs is chosen so that the intersection of the nested decreasing set of minimizing
laws is a singleton for each initial condition, and the collection of the above laws
constitutes a Markov family.

The level of generality as well as the flavor of our arguments in the early sections
is essentially that of Ethier and Kurtz [55] for the (uncontrolled) martingale problem,
and a good familiarity with Chapters 1–4 of [55] will ease the passage through what
follows.

6.2 The controlled martingale problem

We begin our development of the abstract controlled martingale problem by intro-
ducing some notation. We consider processes taking values in a Polish space E (state
space), which together with its Borel σ-field B(E) forms a measurable space. As
usual, B(E) denotes the space of bounded measurable maps E → R.
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We say that a sequence { fk}k∈N ⊂ B(E) converges to f ∈ B(E) in a bounded and

pointwise sense, and we denote this convergence by fk
bp−→ f , if

sup
k∈N

sup
x∈E
| fk(x)| < ∞ and fk(x) −−−−→

k→∞
f (x) ∀x ∈ E .

A set B ⊂ B(E) is bp-closed if fk ∈ B for all k ∈ N, and fk
bp−→ f together imply

that f ∈ B. Define the bp-closure (C) for C ∈ B(E) to be the smallest bp-closed set
containing C.

Let U and U be as in Section 2.3, and D([0,∞); E) as usual be the space of
r.c.l.l. paths [0,∞) → E, with the Skorohod topology. Recall that U is the space
of measurable maps [0,∞)→P(U) with the coarsest compact metrizable topology
that renders continuous each of the maps

U ∈ U �→
∫ T

0
g(t)

∫
U

h(u)Ut(du) dt

for all T > 0, g ∈ L2[0,T ], and h ∈ Cb(U). A sequence fn inD([0,∞); E) converges
to f if for each T > 0, there exist monotone continuous maps λT

n : [0,T ] → [0,T ]
with λT

n (0) = 0 and λT
n (T ) = T such that

sup
t∈[0,T ]

|λT
n (t) − t| −−−−→

n→∞
0 ,

sup
t∈[0,T ]

d
(
fn(λT

n (t)), f (t)
) −−−−→

n→∞
0 .

This topology is separable and metrizable by a complete metric (the Skorohod met-
ric) which rendersD([0,∞); E) Polish (see p. 3).

Definition 6.2.1 LetA be a linear operator with domain D(A) ⊂ Cb(E) and range
R(A) ⊂ Cb(E × U). Let ν ∈P(E).

An E × U-valued process
{
(Xt,Ut) : 0 ≤ t < ∞}

defined on a probability space
(Ω,F,P) is said to be a solution to the controlled martingale problem for (A ,ν) with
respect to a filtration {Ft : t ≥ 0} if

(i) (X,U) is progressively measurable with respect to {Ft};
(ii) L (X0) = ν;

(iii) for all f ∈ D(A),

f (Xt) −
∫ t

0
A f (Xs,Us) ds

is an (Ft)-martingale.

Correspondingly, an E ×P(U)-valued process (X,U) defined on a probability space
(Ω,F,P) is said to be a solution to the relaxed controlled martingale problem for
(A ,ν) with respect to a filtration {Ft : t ≥ 0} if

(i) (X,U) is progressively measurable with respect to {Ft};
(ii) L (X0) = ν;
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(iii) for all f ∈ D(A),

f (Xt) −
∫ t

0

∫
U

A f (Xs, u)Us(du) ds (6.2.1)

is an (Ft)-martingale.

In most of what follows, {Ft} (assumed to satisfy the usual conditions of complete-
ness and right-continuity) and ν are understood from the context and not mentioned
explicitly. We define an operator Ā : D(A)→ Cb(E ×P(U)) by

Ā f (x, v) =
∫
U

A f (x, u) v(du) , f ∈ D(A) , x ∈ E , v ∈P(U) .

Hence the expression in (6.2.1) can be written as

f (Xt) −
∫ t

0
Ā f (Xs,Us) ds .

We often use the notation Āv f (x) = Ā f (x, v). Then with v ∈ P(U) treated as a
parameter, Āv : D(A)→ Cb(E). Analogous notation is used forA.

We impose the following conditions onA:

(A6.1) There exists a countable set {gk} ⊂ D(A) such that{
(g,Ag) : g ∈ D(A)

} ⊂ bp-closure
{
(gk,Agk) : k ≥ 1

}
.

(A6.2) D(A) is an algebra that separates points in E and contains constant functions.
Furthermore, A1 = 0 where 1 is the constant function identically equal to
one.

(A6.3) For each u ∈ U and x ∈ E, there exists an r.c.l.l. solution to the martingale
problem [55, chapter 4] for (Au, δx), where δx is the Dirac measure at x.

Condition (A6.3) implies that the operator Au is dissipative for all u ∈ U [55,
Proposition 4.3.5, p. 178], i.e.,

‖(λI −Au) f ‖ ≥ λ‖ f ‖ ∀ f ∈ D(Au) , ∀λ > 0 .

6.2.1 Examples

Example 6.2.2 The controlled diffusion governed by (2.2.1). Here A = L, and
D(A) = C2

0(Rd).

Example 6.2.3 Let H be a real, separable Hilbert space and X an H-valued con-
trolled diffusion described by

Xt = X0 +

∫ t

0
b (Xs,Us) ds +

∫ t

0
σ (Xs) dWs , t ≥ 0 ,

where b : H ×U→ H is Lipschitz in its first argument uniformly with respect to the
second, σ : H → L2(H, H) is also Lipschitz, and W is an H-valued cylindrical Wiener
process independent of X0. Here, L2(H, H) denotes the space of Hilbert–Schmidt
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operators on H with the Hilbert–Schmidt norm ‖ · ‖HS. Fix a complete orthonormal
system {ei : i ≥ 1} in L2(H, H) and define Qn : H → Rn by

Qn(x) := (〈x, e1〉, . . . , 〈x, en〉) .

Let

D(A) =
{
f ◦ Qn : f ∈ C2

0(Rn) , n ≥ 1
}
⊂ Cb(H) (6.2.2)

and defineA : D(A)→ Cb(H × U) by

A( f ◦ Qn)(x, u) :=
n∑

i=1

〈b(x, u), ei〉
∂ f
∂yi
◦ Qn(x)

+
1
2

n∑
i, j=1

〈σ∗(x)ei,σ
∗(x)e j〉

∂2 f
∂yi∂y j

◦ Qn(x) .

Example 6.2.4 Let H and H′ be separable Hilbert spaces and let U be the unit
closed ball of H′ with the weak topology. Consider the H-valued controlled stochas-
tic evolution equation (interpreted in the mild sense)

dXt = −LXt dt + (F(Xt) + BUt) dt + dWt ,

where −L is the infinitesimal generator of a differentiable semigroup of contrac-
tions on H such that L−1 is a bounded self-adjoint operator with discrete spectrum,
F : H → H is bounded Lipschitz, B : H′ → H is bounded and linear, W is an H-
valued Wiener process independent of X0 with incremental covariance given by a
trace class operator R, and U is as in Example 6.2.3. Let {ei} denote the unit norm
eigenfunctions of L−1, with {λ−1

i } the corresponding eigenvalues. This is a com-
plete orthonormal system of H. Let D(A) be as in (6.2.2), and define the operator
A : D(A)→ Cb(H × U) by

A( f ◦ Qn)(x, u) :=
n∑

i=1

〈ei, (F(x) + Bu − λi x)〉 ∂ f
∂yi
◦ Qn(x)

+
1
2

n∑
i, j=1

〈ei,Rej〉
∂2 f

∂yi∂y j
◦ Qn(x) .

Example 6.2.5 In case of partially observed diffusions, the measure-valued process
of the conditional law of the state given the observations and its unnormalized coun-
terpart are also examples of controlled martingale problems. These are discussed in
detail in Chapter 8.

6.3 Ergodic occupation measures

Let (X,U) be a stationary solution to the relaxed controlled martingale problem for
A, i.e., a solution to the relaxed controlled martingale problem with the additional
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proviso that the pair (X,U) defines a stationary process. Define the ergodic occupa-
tion measure π ∈P(E × U) by∫

E×U
f dπ = E

[∫
U

f (Xt, u)Ut(du)

]
, f ∈ Cb(E × U) . (6.3.1)

Then for f ∈ D(A) and t > 0,

0 = E
[
f (Xt)

] − E [
f (X0)

]
=

∫ t

0
E
[
Ā f (Xs,Us)

]
ds

= t
∫

E×U
A f dπ ,

implying that ∫
E×U
A f dπ = 0 ∀ f ∈ D(A) . (6.3.2)

The main result in this section is given in Theorem 6.3.6 below, which extends
Lemma 3.2.2 for nondegenerate diffusions to show that (6.3.2) completely charac-
terizes all ergodic occupation measures for the controlled martingale problem. The
proof consists of approximating the operator A by a sequence of operators Ãn, and
using condition (A6.3) to establish that there exists a stationary solution to the con-
trolled martingale problem for (Ãn ,π), i.e., a stationary pair (X,U) that solves the
controlled martingale problem. Note that π = L

(
(Xt,Ut)

)
for all t ≥ 0. Then we

proceed to establish convergence of this solution in probability and use a monotone
class argument to prove that the limit is a solution to the relaxed controlled martin-
gale problem forA.

Definition 6.3.1 We define the following objects:

(i) Define a sequence of operators

Ãn : D(Ãn) := R(I − n−1A)→ Cb(E × U) , n ∈ N ,

by

Ãng = n
[
(I − n−1A)−1 − I

]
g ∀g ∈ R(I − n−1A) .

(ii) Let M ⊂ Cb(E × E × U) denote the linear space of functions of the form

F(x, y, u) =
m∑

i=1

fi(x)gi(y, u) + f (y, u) ,

with fi ∈ Cb(E), gi ∈ D(Ãn) for i = 1, . . . ,m, and f ∈ Cb(E × U).

(iii) Fix n ∈ N. Define a linear functional Λ : M → R by

ΛF =
∫

E×U

⎡⎢⎢⎢⎢⎢⎣ m∑
i=1

fi(x)
[
(I − n−1A)−1gi

]
(x) + f (x, u)

⎤⎥⎥⎥⎥⎥⎦π(dx, du) . (6.3.3)
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Since by (A6.3) A is dissipative, Ãn is a well-defined bounded operator for each
n ∈ N, satisfying, for f ∈ D(A) and fn := (I − n−1A) f ,

‖ fn − f ‖ → 0 and ‖Ãn fn −A f ‖ → 0 as n→ ∞ .

In fact, Ãn fn = A f . Also, if g ∈ D(Ãn), then g = (I − n−1A) f for some f ∈ D(A),
and thus (6.3.2) implies∫

E×U
Ãng dπ =

∫
E×U
A f dπ = 0 ∀n ∈ N .

Lemma 6.3.2 The functional Λ in (6.3.3) is well defined.

Proof Suppose that F admits two different representations,

F =
m∑

i=1

fi(x)gi(y, u) + f (y, u) =
m∑

i=1

f ′i (x)g′i(y, u) + f ′(y, u) .

Then

f ′(y, u) − f (y, u) =
m∑

i=1

(
fi(x)gi(y, u) − f ′i (x)g′i(y, u)

)
, (6.3.4)

in particular f ′ − f ∈ D(Ãn). Thus with Λ′ defined as in (6.3.3) relative to functions
f ′ ∈ Cb(E × U), { f ′i } ⊂ Cb(E) and {g′i } ⊂ D(Ãn),

ΛF − Λ′F =
∫

E×U

[ m∑
i=1

(
fi(x)

[
(I − n−1A)−1gi

]
(x) + f (x, u)

)
− (

f ′i (x)
[
(I − n−1A)−1g′i

]
(x) + f ′(x, u)

)]
π(dx, du) . (6.3.5)

From (6.3.4),[
(I − n−1A)−1 f ′

]
(y) − [

(I − n−1A)−1 f
]
(y)

=

m∑
i=1

(
fi(x)

[
(I − n−1A)−1gi

]
(y) − f ′i (x)

[
(I − n−1A)−1g′i

]
(y)

)
.

In particular,[
(I − n−1A)−1 f ′

]
(x) − [

(I − n−1A)−1 f
]
(x)

=

m∑
i=1

(
fi(x)

[
(I − n−1A)−1gi

]
(x) − f ′i (x)

[
(I − n−1A)−1g′i

]
(x)

)
. (6.3.6)

Thus by (6.3.4) – (6.3.6), with π1 denoting the marginal of π on E,

ΛF − Λ′F =
∫

E
(I − n−1A)−1( f ′ − f ) dπ1 +

∫
E×U

( f − f ′) dπ . (6.3.7)

For h ∈ D(Ãn), h = (I − n−1A)q for some q ∈ D(A). Now,∫
E×U

[
(I − n−1A)q

]
dπ =

∫
E

q dπ1 ∀q ∈ D(A) .
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That is, ∫
E

[
(I − n−1A)−1h

]
dπ1 =

∫
E×U

h dπ ∀h ∈ D(Ãn) . (6.3.8)

Thus the right-hand side of (6.3.7) is zero. �

Next we show that Λ is a positive functional of norm 1. We first need a technical
lemma. For economy of notation we extend the definition of operators to vector-
valued functions in the standard manner. For example, for f = ( f1, . . . , fm) with
fi ∈ D(A), we adopt the streamlined notationAf = (A f1, . . . ,A fm).

Lemma 6.3.3 Let ϕ : Rm → R, m ≥ 1, be convex and continuously differentiable
and fi ∈ D(A), i = 1, . . . ,m, satisfy ϕ(f ) ∈ D(A), where f = ( f1, . . . , fm). Then

Aϕ(f ) ≥ ∇ϕ(f ) · Af .

Proof Let X be an r.c.l.l. solution to the martingale problem for (Au, δx), u ∈ U,
x ∈ E. Then by the convexity of ϕ,

E

[∫ t

0
Auϕ

(
f (Xs)

)
ds

]
= E

[
ϕ
(
f (Xt)

)] − ϕ
(
f (x)

)
≥ ∇ϕ(f (x)

) · (E [f (Xt)] − f (x)
)

= ∇ϕ(f (x)
) · E [∫ t

0
Auf (Xs) ds

]
for t > 0. Divide by t and let t ↓ 0 to conclude the proof. �

Lemma 6.3.4 The functional Λ defined in (6.3.3) satisfies

(a) |ΛF| ≤ ‖F‖;
(b) Λ1 = 1;

(c) ΛF ≥ 0, whenever F ≥ 0.

Proof Let αk =
∥∥∥(I − n−1A)hk

∥∥∥, with hk ∈ D(A) for 1 ≤ k ≤ m, and let ϕ be
a polynomial on Rm that is convex on

∏m
i=1[−αi, αi]. Since D(A) is an algebra, we

have ϕ(h) ∈ D(A). By Lemma 6.3.3,

Aϕ(h) ≥ ∇ϕ(h) · Ah .

Therefore

ϕ
(
(I − n−1A)h

) ≥ ϕ(h) − n−1∇ϕ(h) · Ah

≥ ϕ(h) − n−1Aϕ(h) .

Thus for gi = (I − n−1A)hi ∈ D(Ãn), 1 ≤ i ≤ m,∫
E×U

ϕ(g) dπ ≥
∫

E×U
ϕ
(
(I − n−1A)−1g

)
dπ . (6.3.9)
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Since a convex ϕ : Rm → R can be approximated uniformly on compacts by convex
polynomials, (6.3.9) holds for all convex ϕ. Now let

ϕ(r1, . . . , rm) := sup
x∈E

⎛⎜⎜⎜⎜⎜⎝ m∑
i=1

fi(x)ri

⎞⎟⎟⎟⎟⎟⎠ . (6.3.10)

Then ϕ is convex and using (6.3.9) – (6.3.10), we obtain

ΛF =
∫

E×U

⎡⎢⎢⎢⎢⎢⎣ m∑
i=1

fi(x)
[
(I − n−1A)−1gi

]
(x) + f (x, u)

⎤⎥⎥⎥⎥⎥⎦π(dx, du)

≤
∫

E×U

[
ϕ
(
(I − n−1A)−1g

)
(x) + f (x, u)

]
π(dx, du)

≤
∫

E×U

[
ϕ(g)(x, u) + f (x, u)

]
π(dx, du)

=

∫
E×U

⎡⎢⎢⎢⎢⎢⎣sup
y∈E

⎛⎜⎜⎜⎜⎜⎝ m∑
i=1

fi(y)gi(x, u)

⎞⎟⎟⎟⎟⎟⎠ + f (x, u)

⎤⎥⎥⎥⎥⎥⎦π(dx, du) ≤ ‖F‖ .

Also, −ΛF = Λ(−F) ≤ ‖−F‖ = ‖F‖; so |ΛF| ≤ ‖F‖, proving part (a). Observe that
Λ1 = 1 and for F ≥ 0,

‖F‖ − ΛF = Λ (‖F‖ − F) ≤
∥∥∥(‖F‖ − F)

∥∥∥ ≤ ‖F‖ ,
implying that ΛF ≥ 0. This completes the proof. �

By the Hahn–Banach theorem, Λ extends to a bounded, positive real functional on
Cb(E × E × U), satisfying ‖Λ‖ = 1. Define

Fh(x, y, u) := h(x) , h ∈ Cb(E) ,

F f (x, y, u) := f (y, u) , f ∈ Cb(E × U) .

Note that

ΛFh =

∫
E

h dπ1 and ΛF f =

∫
E×U

f dπ . (6.3.11)

Although the Riesz representation theorem cannot be invoked here since the space
E×E×U is not assumed to be compact, we use Daniell’s theorem to obtain an integral
representation of Λ. This is established as part of the proof of the next lemma.

Lemma 6.3.5 For each π ∈ P(E × U) satisfying (3.6.3), and each n ∈ N, there
exists a stationary solution (Xn,Un) to the martingale problem for (Ãn ,π).

Proof First we show that there exists a ν ∈P(E × E × U) such that

ΛF =
∫

E×E×U
F dν ∀F ∈ Cb(E × E × U) . (6.3.12)

By [94, Theorem II.5.7], there exists a unique finitely additive measure ν on the
Borel field of E × E ×U that satisfies the above. Fix ε > 0. Since E is Polish, we can
choose a compact set K ⊂ E such that

π1(K) ≥ 1 − ε and π(K × U) ≥ 1 − ε .
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Define K̃ = K × K × U. Then

ν(K̃c) ≤ ν(Kc × E × U) + ν(E × Kc × U)

≤ π1(Kc) + π(Kc × U)

≤ 2ε .

Let {Fn : n ∈ N} ⊂ Cb(E×E×U), such that Fn ↓ 0. Then for each δ > 0, {Fn ≥ δ}∩K̃,
n ∈ N, is a decreasing sequence of compact sets with empty intersection. By the finite
intersection property, there exists n0 ≥ 1 such that {Fn ≥ δ} ∩ K̃ = ∅ for all n ≥ n0.
Thus if n ≥ n0, we have

ΛFn =

∫
E×E×U

Fn dν ≤
∫

K̃
Fn dν +

∫
K̃c

Fn dν ≤ δ + 2ε‖F1‖ .

Since this holds for all δ > 0 and ε > 0, we obtain

ΛFn → 0 as n→ ∞ .

By Daniell’s theorem [93, prop. II.7.1], there exists a unique σ-additive measure,
denoted by ν again, on the Borel σ-field B(E × E ×U), satisfying (6.3.12). We may
disintegrate ν as

ν(dx, dy, du) = π1(dx) η(dy, du | x) (6.3.13)

for a measurable η : x ∈ E �→ η(dy, du | x) ∈ P(E × U) [32, pp. 39–40]. Then
for g ∈ D(Ãn) and f ∈ Cb(E), using (6.3.3), (6.3.8) and (6.3.13) we obtain, for
F(x, y, u) := f (x)g(y, u),

ΛF =
∫

E×E×U
f (x)g(y, u) ν(dx, dy, du)

=

∫
E

f (x)

[∫
E×U

g(y, u) η(dy, du | x)

]
π1(dx)

=

∫
E×U

f (x)
[
(I − n−1A)−1g

]
(x) π(dx, du)

=

∫
E

f (x)
[
(I − n−1A)−1g

]
(x) π1(dx) .

Therefore ∫
E×U

g(y, u) η(dy, du | x) =
[
(I − n−1A)−1g

]
(x) π1-a.s. (6.3.14)

Let
{(

Y(k),W(k)
)

: k ≥ 0
}

be a Markov chain on E ×U with initial distribution π and
transition kernel η. Then using (6.3.11), with f = IB for B ∈ B(E ×U), we conclude
that ∫

E
η(x, B) π1(dx) = ν(E × B) = π(B) ∀B ∈ B(E × U) .
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It follows that
(
Y(k),W(k)

)
is a stationary chain. Let Vn a Poisson process with rate

n, and independent of
(
Y(k),W(k)

)
. Define

Xn
t = Y

(
Vn

t
)
, Un

t = W
(
Vn

t
)
, t ≥ 0 .

Let {Fn
t } be the right-continuous completion of the filtration

Gn
t = σ

(
Xn

s ,

∫ b

a
f
(
Un

τ

)
dτ : s ≤ t , 0 ≤ a ≤ b ≤ t , f ∈ Cb(U)

)
.

Direct verification using (6.3.14) shows that for g ∈ D(Ãn),

g
(
Y(k),W(k)

) − k−1∑
j=0

n−1Ãng
(
Y( j),W( j)

)
is a

(
σ
(
Y(i),W(i) : i ≤ k

))
-martingale. It follows as in Ethier and Kurtz [55, pp. 163–

164] that (Xn,Un) is a stationary solution to the martingale problem for (Ãn ,π) for
every n ≥ 1. �

The proof of the theorem that follows is rather lengthy; therefore we split it into
several steps.

Theorem 6.3.6 For each π ∈P(E × U) satisfying∫
E×U
A f dπ = 0 ∀ f ∈ D(A) ,

there exists a stationary solution (X,U) to the relaxed controlled martingale problem
forA such that π is the associated ergodic occupation measure.

Proof Let (Xn,Un) be the stationary solution to the martingale problem for Ãn

constructed in Lemma 6.3.5.

Step 1. We first show that (Xn, δUn ) ⇒ (X,U) for some E ×P(U)-valued process
(X,U).

Let {gm} be the countable collection in condition (A6.1) of Section 6.2. Set

am = ‖gm‖ and Ê =
∞∏

i=1

[−am, am] .

Define g : E → Ê by g(x) = (g1(x), g2(x), . . . ). Since D(A) separates points of E and
vanishes nowhere, so does {gm}. Thus g is one-to-one and continuous. It follows that
g(E) is Borel and g−1 : g(E) → E measurable [94, corollary I.3.3]. Fix an element
e ∈ E and set g−1(x) = e for x � g(E). For f ∈ D(A) and fn = (I − n−1A) f , n ≥ 1,
let

ξn(t) = fn
(
Xn

t
)

and ϕn(t) = Ãn fn
(
Xn

t ,U
n
t
)
, t ≥ 0 , n ≥ 1 .

Then

ξn(t) −
∫ t

0
ϕn(s) ds , t ≥ 0 ,
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is a martingale relative to the natural filtration of (Xn,Un). Recall that ‖ f − fn‖ → 0
and ‖A f − Ãn fn‖ → 0. Hence, we can use [55, theorem 3.9.4, p. 145] to claim that
the laws of f (Xn) are tight and therefore relatively compact in P

(D([0,∞); R)
)
. It

follows that the laws of g(Xn) are relatively compact in

P
(D([0,∞); Ê)

) ≈P
(∏∞

i=1D
(
[0,∞); [−ai, ai]

))
.

Since U is a compact metric space, so is P(U ), by Prohorov’s theorem. As a re-
sult,

{
L (g(Xn), δUn )

}
is relatively compact in P

(D(
[0,∞); Ê

) ×U
)
. Suppose that it

converges to L (Z,U) ∈ P
(D(

[0,∞); Ê
) × U

)
along some subsequence, which is

also denoted by {n}. By Skorohod’s theorem [32, pp. 23–24], we may construct all
these processes (to be precise, their replicas in law) on a suitable probability space
such that

(g(Xn), δUn )→ (Z,U) a.s. inD(
[0,∞); Ê

) ×U .

Since L
(
g(Xn

t )
)
= π1 ◦ g−1 for all t and n, it follows that L (Zt) = π1 ◦ g−1 for all t,

implying that P
(
Zt ∈ g(E)

)
= 1. Let Xt = g−1(Zt

)
, t ≥ 0. Then (Xn, δUn )⇒ (X,U).

Step 2. We now prove that Xn
t → Xt in probability for all t ≥ 0.

Note that

gj
(
Xn

t
)
gk(Xt)→ g j(Xt)gk(Xt) a.s., ∀ j, k ∈ N .

Let H ⊂ Cb(E × E) denote the algebra generated by the family of functions{
h : E × E → R : h(x, y) = gj(x)gk(y) , j, k ∈ N} .

Since {gk} separates points in E, it follows that H separates points in E ×E. Also, for
h ∈ H,

h(Xn
t , Xt)

P−→ h(Xt, Xt) .

Since
{
L (Xn

t , Xt) : n ≥ 1
}

is trivially relatively compact, we can choose, for any
given δ > 0, a compact set K ⊂ E × E such that

P
(
(Xn

t , Xt) ∈ K
) ≥ 1 − δ ∀n ∈ N . (6.3.15)

Let ρ be a complete metric on E. Restrict ρ and H to K and view H as a subset of
C(K) with (K, ρ) a compact metric space. By the Stone–Weierstrass theorem, H is
dense in C(K). Thus we can find {hk} ⊂ H such that

sup
x,y∈K

∣∣∣ρ(x, y) − hk(x, y)
∣∣∣ −−−−→

k→∞
0 . (6.3.16)

Let ε > 0, and define

ρn := ρ(Xn
t , Xt), Gn :=

{
(Xn

t , Xt) ∈ K
}
, n ∈ N .
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Using (6.3.15), we obtain

P (ρn > ε) ≤ P ({ρn > ε} ∩Gn) + δ

≤ P
({∣∣∣ρn − hk(Xn

t , Xt)
∣∣∣ > ε

3

}
∩Gn

)
+ P

({∣∣∣hk(Xn
t , Xt) − hk(Xt, Xt)

∣∣∣ > ε
3

}
∩Gn

)
+ P

({
|hk(Xt, Xt)| > ε

3

}
∩Gn

)
+ δ . (6.3.17)

By (6.3.16) we can choose k such that

sup
x,y∈K

|hk(x, y) − ρ(x, y)| < ε

3
.

In particular supx∈K

∣∣∣hk(x, x)
∣∣∣ < ε

3 . Then (6.3.17) yields

P (ρn > ε) ≤ P
({∣∣∣hk(Xn

t , Xt) − hk(Xt, Xt)
∣∣∣ > ε

3

}
∩Gn

)
+ δ .

Thus

lim sup
n→∞

P
(
ρ(Xn

t , Xt) > ε
) ≤ δ .

Since δ > 0 was arbitrary, the claim follows.

Step 3. It follows that, for h ∈ Cb(E × U),∣∣∣h(Xn
t ,U

n
t
) − h

(
Xt,U

n
t
)∣∣∣ P−−−−→

n→∞
0 ∀t ≥ 0 .

Also, the topology of U implies∫ t

0
h
(
Xs,U

n
s
)

ds→
∫ t

0

∫
U

h(Xs, u)Us(du) ds P−a.s., ∀t ≥ 0 .

Thus ∫ t

0
h
(
Xn

s ,U
n
s
)

ds
P−→

∫ t

0

∫
U

h(Xs, u)Us(du) ds ∀t ≥ 0 .

Let f ∈ D(A), and fn = (I − n−1A) f for n ≥ 1. Also, let hi ∈ Cb(E × U) for
i = 1, . . . ,m. With 0 ≤ t1 < · · · < tm+1 and 0 ≤ δi ≤ ti for 1 ≤ i ≤ m, we have

E

[(
f (Xtm+1 ) − f (Xtm ) −

∫ tm+1

tm

∫
U

A f (Xs, u)Us(du) ds
)
×

m∏
i=1

∫ ti

ti−δi

∫
U

hi(Xti , u)Us(du) ds

]
= lim

n→∞
E

[(
fn
(
Xn

tm+1

) − fn
(
Xn

tm

) − ∫ tm+1

tm

Ãn fn
(
Xn

s ,U
n
s
)

ds
)
×

m∏
i=1

∫ ti

ti−δi

hi
(
Xn

ti ,U
n
s
)

ds

]
= 0 ,
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because the expectation in the middle expression is always zero by the martingale
property of

fn
(
Xn

t
) − ∫ t

0
Ãn fn

(
Xn

s ,U
n
s
)

ds , t ≥ 0 , n ≥ 1 .

By a standard monotone class argument, it follows that (X,U) is a solution to the
relaxed controlled martingale problem for A. Furthermore, since (Xn,Un) are sta-
tionary, so is (X,U), and for t ≥ 0, δ > 0 and h ∈ Cb(E × U),∫ t+δ

t
E

[∫
U

h(Xs, u)Us(du)

]
ds = lim

n→∞

∫ t+δ

t
E
[
h
(
Xn

s ,U
n
s
)]

ds

= δ

∫
h dπ ,

implying (6.3.1) for a.e. t, where the qualification “a.e.” may be dropped by suitably
modifying Ut on a Lebesgue-null set of t. This completes the proof of the theorem.

�

The relaxed control process U in the stationary solution of the relaxed martingale
problem can be taken to be a Markov control, as the following corollary indicates.

Corollary 6.3.7 The relaxed control process U in Theorem 6.3.6 may be taken to
be of the form Ut = v(Xt), t ∈ R, for a measurable v : E →P(U).

Proof Disintegrate π as π(dx, du) = π1(dx)v̂(du | x), and define v : E → P(U) by
v(x) = v̂(du | x), which is unique π1-a.s. We use the symbol u for the generic element
of P(U). Now apply Theorem 6.3.6 to the operator Ā with π̄ ∈ P(E ×P(U)) de-
fined as π̄(dx, du) = π1(dx)δv(x)(du) replacing π. Then by the foregoing there exists
an E ×P(P(U))-valued stationary solution (X, Ū) to the relaxed controlled martin-
gale problem for Ā with respect to some filtration {Ft}, such that

E

[
g(Xt)

∫
P(U)

h(u)Ūt(du)

]
=

∫
E×P(U)

g(x) h(u) π̄(dx, du)

for g ∈ Cb(E), h ∈ C(P(U)), and t ∈ R. Define a P(P(U))-valued stationary
process Ũ by ∫

P(U)
h(u)Ũt(du) = E

[∫
P(U)

h(u)Ūt(du)
∣∣∣∣ FX

t

]
, t ∈ R

for all h in a countable dense subset of C(P(U)), and {FX
t } the natural filtration of X,

i.e., FX
t is the right-continuous completion of σ{Xs : −∞ < s ≤ t}. Then it is easy to

see that (X, Ũ) is a stationary solution to the relaxed controlled martingale problem



6.4 Extremal solutions 231

for Ā, with respect to {FX
t }, satisfying

E

[
g(Xt)

∫
P(U)

h(u)Ũt(du)

]
=

∫
E×P(U)

g(x) h(u) π̄(dx, du)

=

∫
E×P(U)

g(x) h(u) π1(dx) δv(x)(du)

=

∫
E

g(x) h
(
v(x)

)
π1(dx)

= E
[
g(Xt) h

(
v(Xt)

)]
for g ∈ Cb(E), h ∈ C(P(U)), and t ∈ R. Then

E

[∫
P(U)

h(u)Ũt(du)
∣∣∣∣ Xt

]
= h

(
v(Xt)

)
a.s., ∀t ≥ 0 , ∀h ∈ C(P(U)) .

In particular,

E

[∫
P(U)

h2(u)Ũt(du)
∣∣∣∣ Xt

]
= h2(v(Xt)

)
a.s. ∀t ≥ 0 ,

and hence

E

[∫
P(U)

[
h(u) − h

(
v(Xt)

)]2
Ũt(du)

∣∣∣∣ Xt

]
= E

[∫
P(U)

h2(u)Ũt(du)
∣∣∣∣ Xt

]
− 2E

[∫
P(U)

h(u)Ũt(du)
∣∣∣∣ Xt

]
h
(
v(Xt)

)
+ h2(v(Xt)

)
= 0 .

Thus Ũt = δv(Xt) a.s., proving the claim. �

6.4 Extremal solutions

The main result of this section is the following: If we identify the processes (X,U)
whose one-dimensional marginals agree for a.e. t, then the resulting equivalence
classes form a closed, convex set whose extreme points correspond to Markov pro-
cesses X. The idea of the proof is simple. For T > 0 we consider the regular con-
ditional law of X ◦ θT given X[0,T ]. This can be thought of as a three-step process.
First pick an XT according to its law. Then pick X[0,T ] from the set of continuous
functions [0,T ] → E according to its regular conditional law given XT . Finally,
pick X ◦ θT according to its regular conditional law given X[0,T ] and XT , i.e., given
X[0,T ]. Suppose that instead of following the second step we pick a single function
x[0,T ] : Rd → C([0,T ]; E) with xT = XT , measurably depending on XT , and then pick
X ◦ θT according to its regular conditional law given XT and x[0,T ], with the same
functional dependence on the latter as in the above procedure. For each realization
of XT , the first procedure yields a conditional law of X ◦ θT given X[0,T ], which is
a mixture of what one would get in the second procedure. Thus the aforementioned
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equivalence classes in the first case are mixtures of those in the second. What follows
makes this intuition precise.

We consider solutions (X,U) of the relaxed controlled martingale problem for
(A ,ν) with a fixed ν ∈P(E). Let Γν ⊂P

(D([0,∞); E)×U
)

be the set of all laws
L (X,U) such that (X,U) solves the relaxed controlled martingale problem for A,
and satisfies L (X0) = ν. Then L (X,U) ∈ Γν is completely characterized by

E
[
f (X0)

]
=

∫
E

f dν , f ∈ Cb(E) , (6.4.1)

and for 0 ≤ t0 < · · · < tm+1, 0 < δi < ti, 1 ≤ i ≤ m, h1, . . . , hm ∈ Cb(E × U) and
f ∈ D(Ā)

E

[(
f (Xtm+1 ) − f (Xtm ) −

∫ tm+1

tm

Ā f (Xs,Us) ds

)
×

m∏
i=1

∫ ti

ti−δi

∫
U

hi
(
Xti , u

)
Us(du) ds

]
= 0 . (6.4.2)

Since (6.4.1) – (6.4.2) are preserved under convex combinations and limits with re-
spect to the topology of P

(D([0,∞); E) × U
)
, we conclude that Γν is closed and

convex. We make the following additional assumption.

(A6.4) For every η > 0 and T > 0, there exists a compact set Kη,T ⊂ E such that

inf
U
P
(
X(t) ∈ Kη,T , ∀ t ∈ [0,T ]

)
≥ 1 − η .

Lemma 6.4.1 Under (A6.1) – (A6.4), Γν is compact in P
(D([0,∞); E) ×U

)
.

Proof Since U and therefore also P(U ) is compact, it suffices to prove that{
L (X) : L (X,U) ∈ Γν

}
is compact. Note that for each t ≥ 0 and f ∈ D(Ā),

sup
Γν

E

⎡⎢⎢⎢⎢⎢⎣(∫ t

0
‖Ā f (Xs,Us)‖p ds

)1/p
⎤⎥⎥⎥⎥⎥⎦ < ∞ , 1 ≤ p < ∞ .

Hence by [55, theorem 9.4, p. 145],
{
L

(
f (X)

)}
is tight for all f ∈ D(A). It follows

that
{
L

(
g(X)

)
: L (X,U) ∈ Γν

}
, with g as in the proof of Theorem 6.3.6, is tight in

P
(D([0,∞); Ê)

)
. The claim now follows from (A6.4) and [55, theorem 9.1, p. 142]

as in Theorem 6.3.6. �

Let
{
F

X,U
t : t ≥ 0

}
denote the natural filtration of (X,U), and for some t ≥ 0, let Gt

be a sub-σ-field of FX,U
t containing σ(Xt). The following lemma is proved along the

lines of Lemma 2.3.7.

Lemma 6.4.2 The regular conditional law of (X ◦ θt,U ◦ θt) given Gt is a.s. equal
to the law of some (X′,U′) which is a solution to the relaxed controlled martingale
problem for

(A , δXt

)
.
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6.4.1 A technical lemma

This section concerns an important characterization of extreme points of the set of
probability measures on a product space with a given marginal.

Let S 1 and S 2 be Polish spaces with Borel σ-fields S1 and S2, respectively, and
µ ∈P(S 1 × S 2). We disintegrate µ as

µ(ds1, ds2) = µ1(ds1) µ1
2(ds2 | s1) ,

where µ1 ∈P(S 1) and µ1
2 : S 1 →P(S 2) are respectively the marginal on S 1 and the

regular conditional law on S 2, the latter specified µ1-a.s. uniquely. For ξ ∈ P(S 1),
define

Pξ(S 1 × S 2) :=
{
µ ∈P(S 1 × S 2) : µ1 = ξ

}
,

Pδ
ξ (S 1 × S 2) :=

{
µ ∈P(S 1 × S 2) : µ1 = ξ and µ1

2 is µ1-a.s. Dirac
}
.

Lemma 6.4.3 If

µ(dx, dy) = ξ(dx) v(dy | x) ∈Pξ(S 1 × S 2) \Pδ
ξ (S 1 × S 2) ,

then there exist Borel A ⊂ S 1 and f ∈ Cb(S 2) such that ξ(A) > 0 and for all x ∈ A, f
is not a constant v(x)-a.s.

Proof Let { fi} ⊂ Cb(S 2) be a countable set that separates points of S 2. Suppose that
for ξ-a.s. x, fi is v(x)-a.s. a constant for all i. Then v(x) is a Dirac measure for such
x, contradicting the hypothesis µ � Pδ

ξ (S 1 × S 2). Thus there exists a Borel A′ ⊂ S 1

such that ξ(A′) > 0 and for x ∈ A′, fi is not a constant v(x)-a.s. for some i ∈ N. Let

Ai =
{
x ∈ S 1 : fi is not a constant v(x)-a.s.

}
, i ∈ N .

Then Ai is the complement of⋂
k∈N

{
x ∈ S 1 :

∫
gk fi dv(x) =

∫
gk dv(x)

∫
fi dv(x)

}
for {gk} ⊂ Cb(S 2), chosen so that

∫
gk dm1 =

∫
gk dm2 ∀k ∈ N implies m1 = m2 for

any finite signed measures m1,m2 on S 2. Therefore Ai is measurable. We may set
A′ = ∪iAi. Then ξ(A′) > 0 implies that ξ(Ai0 ) > 0 for some i0 and the claim follows
with A = Ai0 , f = fi0 . �

We now come to the main result of this section. For q ∈ P(S 2) and f ∈ Cb(S 2)
let bq be the least number such that

q
({x : f (x) > bq}

) ≤ 1
2 .

Let

A1 = {x : f (x) < bq} , A2 = {x : f (x) > bq} , A3 = {x : f (x) = bq} ,

and δ ∈ [0, 1] such that

q(A1) + δ q(A3) = q(A2) + (1 − δ) q(A3) = 1
2 ,
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setting δ = 0 when q(A3) = 0. Define

α1(q) = 2(IA1 + δIA3 ) q ,

α2(q) = 2(IA2 + (1 − δ)IA3 ) q .

By [49, theorem 2.1], verifying that α1, α2 : P(S 2) → P(S 2) are measurable is
equivalent to verifying that for a Borel A ⊂ S 2, the maps q �→ αi(q)(A), i = 1, 2, are
measurable. Consider, say, i = 1. Then

α1(q)(A) = 2q(A ∩ A1) + 2δq(A ∩ A3) ,

where δ, A1, A3 depend on q through their dependence on bq. It is easy to verify that
b �→ q

(
A ∩ {x : f (x) < b}) and b �→ q

(
A ∩ {x : f (x) = b}) are measurable. Thus it

suffices to prove that q �→ bq is measurable. But for c ∈ R,

{q : bq > c} = {
q : q({x : f (x) > c}) > 1

2

}
,

which is measurable by [49, theorem 2.1]. This establishes the measurability of
α1, α2. Note that

q =
α1(q) + α2(q)

2
.

Lemma 6.4.4 Pδ
ξ (S 1 × S 2) is the set of extreme points of Pξ(S 1 × S 2).

Proof Define

Q :=Pξ(S 1 × S 2) ,

Qδ :=Pδ
ξ (S 1 × S 2) ,

and let Qe stand for the set of extreme points of Q. Let µ(dx, dy) = ξ(dx)v(dy | x),
and suppose µ � Qδ. Pick a Borel A ⊂ S 1 and f ∈ Cb(S 2) as in Lemma 6.4.3. Then
α1(v( · | x)) � α2(v( · | x)) for x ∈ A. Define

µi(dx, dy) = ξ(dx)αi(v(dy | x)) , i = 1, 2 .

Then µ = µ1+µ2

2 , µ1 � µ2, implying µ � Qe. Thus Qe ⊂ Qδ. Conversely, let µ = µ1+µ2

2
for µ ∈ Qδ, µ1 � µ2 in Q. Then it follows from the decomposition

µi(dx, dy) = ξ(dx) vi(dy | x) , i = 1, 2 ,

that v1( · | x) and v2( · | x) must differ for x in a set of strictly positive ξ-measure. For
such x

v( · | x) =
v1( · | x) + v2( · | x)

2

cannot be Dirac, a contradiction. Thus Qδ ⊂ Qe. �
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6.4.2 Marginal classes

Definition 6.4.5 Define an equivalence relation “∼” on Γν by:

L (X,U) ∼ L (X′,U′) ⇐⇒ L (Xt,Ut) = L (X′t ,U
′
t )

for almost all t. The equivalence class under ∼ that contains L (X,U) is denoted
by 〈〈L (X,U)〉〉 and is called a marginal class. Let Γ′ν denote the set of marginal
classes with the quotient topology inherited from Γν. We extend the definition of this
equivalence relation to the spaceMs of finite signed measures on D([0,∞); E) ×U

with weak∗-topology as follows. Two elements of Ms are equivalent if their images
under the map (

x[0,∞), v[0,∞)
)→ (

xt, vt
)

agree a.e. in t ∈ R+.

Remark 6.4.6 Since v is only measurable, the map v[0,∞) → vt needs to be defined
with some care. Recall the identification of v ∈ U with an α = (α1, α2, . . . ) ∈ B∞

from Section 2.3. If t is a Lebesgue point for all αi’s, let

ᾱi(t) = lim
∆→0

1
2∆

∫ t+∆

t−∆
αi(s) ds , i ≥ 1 ,

and set vt = ϕ−1(ᾱ1(t), ᾱ2(t), . . .
)

for ϕ as in Section 2.3. For any other t, set vt equal
to an arbitrary element of P(U). This defines v[0,∞) �→ vt as a measurable map for
t ≥ 0.

The set Γ′ν may now be viewed as a compact, convex subset of M′s, the space of
equivalence classes in Ms under ∼, with the quotient topology. We call the equiv-
alence class 〈〈L (X,U)〉〉 ∈ Γ′ν extremal if it is an extreme point of Γ′ν. It turns out
that every member of an extremal element of Γ′ν is a Markov process. This result is
stated as Theorem 6.4.16 at the end of this section. First, we need to develop some
necessary intermediate results.

Let {hi : i ∈ N} be a countable subset of Cb(E ×P(U)) that separates points of
P(E ×P(U)). For i ∈ N and α ∈ (0,∞) define hi,α : Γν → R by

Γν � L (X,U) �→ E
[∫ ∞

0
e−αthi(Xt,Ut) dt

]
.

This map is constant on marginal classes and therefore may be viewed as a map
Γ′ν → R. The following lemma follows easily from the injectivity of the Laplace
transform on R+ and the choice of {hi}.

Lemma 6.4.7 If µ1, µ2 ∈ Γ′ν satisfy hi,α(µ1) = hi,α(µ2) for all i ∈ N and rational
α > 0, then µ1 = µ2.

For x ∈ E, i ∈ N and positive constants α and ε, we define the subset Hε
i,α(x) of

Γ′δx
× Γ′δx

by

Hε
i,α(x) :=

{
(η1, η2) ∈ Γ′δx

× Γ′δx
: |hi,α(η1) − hi,α(η2)| ≥ ε

}
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and let

Hx :=
⋃

i∈N , α>0 , ε>0

Hε
i,α(x) .

Since Hx remains unchanged if the union in its definition is taken over all positive
rationals α and ε, it follows that it is in fact a countable union. By Lemma 6.4.7, the
set Hx is the complement of the diagonal in Γ′δx

×Γ′δx
. Let ϑ : M′s ×M′s → M′s, denote

the map

ϑ(η1, η2) =
η1 + η2

2
.

It is clear that η ∈ Γ′δx
is extremal if and only if η � ϑ(Hx).

Fix L (X,U) ∈ Γν. Let p(dy | x) denote the regular conditional law of (X,U) given
X0 = x, defined ν-a.s. uniquely. By Lemma 6.4.2, we may assume that p(dy | x) ∈ Γδx

for each x.

Lemma 6.4.8 Suppose that 〈〈p(dy | x)〉〉 is not an extreme point of Γ′δx
for all x in

a set of positive ν-measure. Then there exist a relatively compact set C ⊂ E with
ν(C) > 0, and positive constants i ∈ N and α, ε ∈ Q ∩ (0,∞) such that

〈〈p(dy | x)〉〉 ∈ ϑ(Hε
i,α(x)

) ∀x ∈ C .

Proof By hypothesis,

ν
({

x : 〈〈p(dy | x)〉〉 ∈ ϑ(Hx)
})
> 0 .

Therefore, for some i, α, ε as in the statement of the lemma,

ν
({

x : 〈〈p(dy | x)〉〉 ∈ ϑ(Hε
i,α(x)

)})
> 0 .

Since E is Polish, every probability measure on E is tight by the Oxtoby–Ulam the-
orem [24, theorem 1.4, p. 10] and hence it assigns mass 1 to a countable union of
compact sets. Therefore there exists a relatively compact set

C ⊂ {
x : 〈〈p(dy | x)〉〉 ∈ ϑ(Hε

i,α(x)
)}

which has positive ν-measure. �

Define ∆ ⊂P
(D([0,∞); E) ×U

)
by

∆ :=
⋃
x∈C

Γδx .

The arguments of Lemma 6.4.1 can be adapted to prove that ∆ is compact. We denote
by ∆′ ⊂ M′s the corresponding (compact) set of marginal classes.

Lemma 6.4.9 If 〈〈L (X,U)〉〉 is an extreme point of Γ′ν, then for ν-a.s. x, 〈〈p(dy | x)〉〉
is an extreme point of Γ′δx

.
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Proof Suppose not. Let C ⊂ E, and i, α and ε as in Lemma 6.4.8. Define

G :=
{
(η1, η2) ∈ M′s ×M′s : |hi,α(η1) − hi,α(η2)| ≥ ε

}
.

For x ∈ C, let

Kx :=
{
(η1, η2) ∈ Hε

i,α(x) : 〈〈p(dy | x)〉〉 = η1+η2

2

}
.

By Lemma 6.4.8, Kx � ∅. It is also compact, since it is clearly closed and it is a
subset of Hε

i,α(x) which is compact. Let G′ ⊂ ∆′ × ∆′ be closed, therefore compact.
Note that{

x ∈ C : Kx ∩G′ � ∅
}
=

{
x ∈ C : 〈〈p(dy | x)〉〉 ∈ ϑ(G ∩G′)

}
. (6.4.3)

Since G is closed, G ∩ G′ and thus ϑ(G ∩ G′) is compact. The map x �→ p(dy | x)
is measurable, and therefore, x �→ 〈〈p(dy | x)〉〉 is also measurable. Therefore the set
in (6.4.3) is measurable. From this, we conclude that the map x �→ Kx ⊂ ∆′ × ∆′ is
measurable and therefore weakly measurable in the sense of [118, p. 862], in view of
the remarks in [118, paragraph 5, p. 863]. By [118, theorem 4.1, p. 867], there exists
a measurable map x �→ (〈〈η1x〉〉, 〈〈η2x〉〉) ∈ ∆′ × ∆′ such that

〈〈p(dy | x)〉〉 = η1x + η2x

2

and

|hi,α(η1x) − hi,α(η2x)| ≥ ε .

Define

C+ :=
{
x ∈ B : hi,α(η1x) − hi,α(η2x) ≥ ε

}
,

C− :=
{
x ∈ B : hi,α(η1x) − hi,α(η2x) ≤ −ε} .

Since ν(C) > 0 and C = C+ ∪ C−, it follows that max
(
ν(C+), ν(C−)

)
> 0. Suppose

that ν(C+) > 0 (if not, replace C+ by C−). Define, for i = 1, 2,

η̄ix :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ηix if x ∈ C+ ,

p(dy | x) otherwise,

and

µi(dx, dy) := ν(dx) η̄ix(dy) .

Since ν(C+) > 0, 〈〈µ1〉〉 � 〈〈µ2〉〉. Clearly, 〈〈L (X,U)〉〉 = 〈〈µ1〉〉+〈〈µ2〉〉
2 . Since η̄1x, η̄2x ∈ Γδx

for each x, we have 〈〈µ1〉〉, 〈〈µ2〉〉 ∈ Γ′ν. Thus 〈〈L (X,U)〉〉 is not an extreme point of
Γ′ν. This contradiction establishes the claim. �

Two solutions of the relaxed martingale problem can be concatenated as shown in
the following lemma.
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Lemma 6.4.10 Let (X,U) and (X′,U′) be two solutions to the relaxed controlled
martingale problem forA such that

L (XT ,UT ) = L (X′0,U
′
0) ,

for some T > 0. Then there exists a solution (X̃, Ũ) to the relaxed controlled martin-
gale problem forA such that

L (X̃t, Ũt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩L (Xt,Ut) if t ∈ [0,T ) ,

L (X′t−T ,U
′
t−T ) if t ≥ T .

Proof Let Ω = D([0,∞); E) × U , and B(Ω) its Borel σ-field. Define (X̃, Ũ) to
be the canonical process on

(
Ω,B(Ω)

)
, i.e., (X̃, Ũ) evaluated at ω = (x, y) ∈ Ω is

given by X̃ = x, Ũ = y. Then specifying a probability measure P on (Ω,B(Ω)) is
equivalent to prescribing the law of (X̃, Ũ). Let Π1, Π2 map ω = (x, y) ∈ Ω to its
restriction on [0,T ), [T,∞), respectively. Let L (X̃, Ũ) be such that

L
(
Π1(X̃, Ũ)

)
= L

(
Π1(X,U)

)
,

and the regular conditional law ofΠ2(X̃, Ũ) givenΠ1(X̃, Ũ) is the same as the regular
conditional law of Π2(X̃, Ũ) given (X̃T , ŨT ), which in turn is the same as the regular
conditional law of (X′,U′) given (X′0,U

′
0), prescribed a.s. with respect to

L (X′0,U
′
0) = L (XT ,UT ) = L (X̃T , ŨT ) .

The law L (X̃, Ũ) as defined meets our requirements by construction. �

Definition 6.4.11 We call (X̃, Ũ) defined in Lemma 6.4.10 the T-concatenation of
(X,U) and (X′,U′).

Lemma 6.4.12 Let 〈〈L (X,U)〉〉 be an extreme point of Γ′ν. Then 〈〈L (X◦θT ,U◦θT )〉〉
is an extreme point of Γ′νT

, where νT = L (XT ).

Proof Suppose not. Then there exist a ∈ (0, 1), 〈〈L (Xi,Ui)〉〉 ∈ Γ′νT
, i = 1, 2, such

that

〈〈L (X1,U1)〉〉 � 〈〈L (X2,U2)〉〉

and

〈〈L (X ◦ θT ,U ◦ θT )〉〉 = a〈〈L (X1,U1)〉〉 + (1 − a)〈〈L (X2,U2)〉〉 .

By Lemma 6.4.10 there exists a pair of processes (X̄i, Ūi), i = 1, 2, which are solu-
tions to the relaxed controlled martingale problem forA, such that for i = 1, 2,

L
(
X̄i

t , Ū
i
t
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩L (Xt,Ut) if t ∈ [0,T ] ,

L
(
Xi

t−T ,U
i
t−T

)
if t > T .

Then

〈〈L (X̄1, Ū1)〉〉 � 〈〈L (X̄2, Ū2)〉〉
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in Γ′ν and

〈〈L (X,U)〉〉 = a〈〈L (X̄1, Ū1)〉〉 + (1 − a)〈〈L (X̄2, Ū2)〉〉 ,

contradicting the extremality of 〈〈L (X,U)〉〉. The claim follows. �

Let (S 1,S1) and (S 2,S2) be measurable spaces and f : S 1 → S 2 a measur-
able map. We denote the image of µ ∈ P(S 1) under f by f∗(µ). In other words,
f∗ : P(S 1)→P(S 2) and f∗(µ)(A) = µ

(
f −1(A)

)
for A ∈ S2. Similarly, we denote by

f∗(P) the image of P ⊂P(S 1) under f .
Henceforth, let 〈〈L (X,U)〉〉 be an extreme point of Γ′ν. Fix T > 0, and Let xT

denote the restriction of x to [0,T ]. Define

β : D([0,T ]; E)→ E ×D([0,T ]; E)

by

β(xT ) =
(
x(T ), xT

)
.

We introduce the notation:

µT = L (X[0,T ]) ,

νT = L (XT ) ,

Y = {
γ : E → D([0,T ]; E) : γ is measurable and γ(x)(T ) = x , ∀x ∈ E

}
,

MT = {γ∗(νT ) ∈P
(D([0,T ]; E)

)
: γ ∈ Y}

.

Lemma 6.4.13 µT (respectively, β∗(µT )) is the barycenter of some probability mea-
sure supported on MT (respectively, β∗(MT )).

Proof Concerning µT , the property follows by Lemma 6.4.4 and Choquet’s theorem
(Theorem 1.5.7). The claim for β∗(µT ) follows from the fact that the barycentric
representation is preserved under β∗. �

Let q be any version of the regular conditional law of (X ◦ θT ,U ◦ θT ) given
(XT , X[0,T ]). Then q takes the form

q( · | x, y) ∈P
(D([0,∞); E) ×U

)
, for (x, y) ∈ E ×D([0,T ]; E) .

Let

Ψ =P
(
E ×D([0,T ]; E) × (D([0,∞); E) ×U

))
and set ψ = L

(
XT , X[0,T ], (X ◦ θT ,U ◦ θT )

) ∈ Ψ. Thus ψ takes the form

ψ(dx, dy, dz) = β∗(µT )(dx, dy) q(dz | x, y) .

Let Ψδ ⊂ Ψ be the set of measures ρ of the form

ρ(dx, dy, dz) = νT (dx) δγ(x)(dy) q(dz | x, y)

for some γ ∈ Y, where δγ(x) denotes the Dirac measure at γ(x). By Lemma 6.4.13, ψ
is the barycenter of a probability measure ξ1 on Ψδ.
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Lemma 6.4.14 With ξ1-probability 1, the measure Φ ∈ P
(D([0,∞); E) × U

)
defined by ∫

f (z)Φ(dz) =
�

νT (dx) q
(
dz | x, γ(x)

)
f (z)

for f ∈ Cb
(D([0,∞); E) ×U

)
, is in ΓνT . Furthermore, q

(
dz | x, γ(x)

)
can be chosen

to be in Γδx by choosing an appropriate version.

Proof By Lemma 6.4.2, q(dz | x, y) ∈ Γδx , β∗(µT )-a.s. Hence

q(dz | x, y) ∈ Γδx , νT (dx) δγ(x)(dy)-a.s. for ξ1-a.s. ρ .

The claim follows. �

Denote γ,Φ above as γρ,Φρ to make explicit their dependence on ρ. Recall that
ψ is the barycenter of a probability measure ξ1 on Ψδ.

Lemma 6.4.15 For an extremal L (X,U), and x outside a set of zero νT -measure,

〈〈q(dz | x, γρ(x)
)〉〉 = 〈〈p(dz | x)〉〉 ξ1-a.s. ρ .

Proof Let Φ̄ = L (X ◦ θT ,U ◦ θT ). Then for f ∈ Cb
(D([0,∞); E) ×U

)
,∫

f (z) Φ̄(dz) =
∫ ∫

β∗(µT )(dx, dy) q(dz | x, y) f (z) .

By Lemma 6.4.12, 〈〈Φ̄〉〉 is an extreme point of Γ′νT
. Disintegrate Φ̄ as

Φ̄(dx, dz) = νT (dx) p(dz | x) ,

where p(dz | x) is the regular conditional law of (X ◦ θT ,U ◦ θT ) given XT = x. By
Lemma 6.4.9, 〈〈p(dz | x)〉〉 is an extreme point of Γ′δx

for νT -a.s. x. Then

Φ̄(dx, dz) = νT (dx) p(dz | x)

=

∫
ξ1(dρ) νT (dx) q

(
dz | x, γρ(x)

)
= νT (dx)

∫
ξ1(dρ) q

(
dz | x, γρ(x)

)
,

so that for νT -a.s. x, p(dz | x) is the barycenter of a probability measure on{
q
(
dz | x, γρ(x)

)
: ρ ∈ Ψδ}

and, in turn, 〈〈p(dz | x)〉〉 is the barycenter of a probability measure on{〈〈q(dz | x, γρ(x)
)〉〉 : ρ ∈ Ψδ} .

For x outside a set of zero νT -measure outside which the foregoing properties hold
and 〈〈p(dz | x)〉〉 is extremal in Γ′δx

, we must have

〈〈p(dz | x)〉〉 = 〈〈q(dz | x, γρ(x)
)〉〉

for ξ1-a.s. ρ, thus proving the claim. �
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Theorem 6.4.16 Every representative of an extremal element of Γ′ν is a Markov
process.

Proof Fix t > 0 and let p̂(dz | x) and q̂(dz | x, y) denote the images of p(dz | x) and
q(dz | x, y), respectively, under the map

(x[0,∞), y[0,∞)) ∈ D([0,∞); E) ×U �→ x(t) ∈ E .

By Lemma 6.4.15,

p̂(dz | x) = q̂
(
dz | x, γρ(x)

)
νT -a.s. x , and ξ1-a.s. ρ ,

i.e., the right-hand side is independent of ρ, ξ1-a.s. Thus we have

L
(
XT , X[0,T ], XT+t

)
= β∗(µT )(dx, dy) q̂(dz | x, y)

=

∫
ξ1(dρ) νT (dx) δγρ(x)(dy) q̂

(
dz | x, γρ(x)

)
= νT (dx) η(dy | x) p̂(dz | x) ,

where

η(dy | x) =
∫

ξ1(dρ) δγρ(x)(dy) .

Thus XT+t, X[0,T ] are conditionally independent given XT . Given the arbitrary choice
of T , t, the claim follows. �

6.5 Existence results

We now state and prove an assortment of results concerning the existence of optimal
controls in various classes of controls. These are direct consequences of the theory
so far.

Let c : E × U → R+ be a prescribed running cost function. Transforming into the
relaxed control framework, we define c̄ : E ×P(U)→ R+ ∪ {∞} by

c̄(x, v) =
∫

c(x, u)v(du) ∀(x, v) ∈ E ×P(U) .

Consider the associated ergodic control problem, in the average formulation where
one seeks to minimize

lim sup
t→∞

1
t

∫ t

0
E [c̄(Xs,Us)] ds . (6.5.1)

Note that for (X,U) a stationary solution to the relaxed controlled martingale prob-
lem forA, (6.5.1) takes the form

F(π) :=
∫

E×U
c dπ

for some ergodic occupation measure π. This motivates looking at the optimization
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problem: Minimize F on G , the set of ergodic occupation measures. We assume that
F(π) < ∞ for at least one π ∈ G . Consider the following two alternative conditions:

(A6.5) (near-monotonicity) The map F is inf-compact.

(A6.6) (stability) G is compact.

Remark 6.5.1 If (A6.5) holds, {π : F(π) < ∞} is σ-compact. But by the Baire
category theorem, a Polish space that is not locally compact cannot be σ-compact.
Thus F cannot be everywhere finite. Hence the inclusion of “∞” as a possible value
for c̄(x, v).

The following is immediate:

Lemma 6.5.2 Under (A6.5) or (A6.6), F attains its minimum on G .

As usual, we let �∗ denote this minimum.

Corollary 6.5.3 There exists a stationary solution to the relaxed controlled mar-
tingale problem forA for which the cost is �∗.

Proof Combine Lemma 6.5.2 and Theorem 6.3.6. �

Recall the mean empirical measures ζ̄t ∈P(E × U), t ≥ 0, defined by∫
f dζ̄t =

1
t

∫ t

0
E

[∫
U

f (Xs, u)Us(du)

]
ds , f ∈ Cb(E × U) ,

corresponding to a solution (X,U) of the relaxed controlled martingale problem for
A. We have the following lemma.

Lemma 6.5.4 Under (A6.5),

lim inf
t→∞

1
t

∫ t

0
E [c̄(Xs,Us)] ds ≥ �∗ a.s. (6.5.2)

Proof The left-hand side of (6.5.2) is

lim inf
t→∞

∫
c dζ̄t .

Suppose ζ̄t → ζ̂ ∈ P(E × U) along a subsequence, say, {tn}. Let {gk} be the family
in assumption (A6.1) of Section 6.2. Then

gk(Xt) −
∫ t

0
Āgk(Xs,Us) ds , t ≥ 0 ,

is a martingale and thus

E
[
gk(Xt)

] − E [
gk(X0)

]
=

∫ t

0
E
[
Āgk(Xs,Us)

]
ds .

Divide by t on both sides and let t → ∞ along {tn} to conclude that
∫
Agk dζ̂ = 0,

i.e., ζ̂ ∈ G . Thus

lim inf
n→∞

∫
c dζ̄tn ≥ inf

π∈G

∫
c dπ = �∗ .
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On the other hand, let {tn}, tn ↑ ∞, be such that {ζ̄tn } has no limit point in P(E × U).
Then by (A6.5),

lim
n→∞

∫
c dζ̄tn = ∞ > �∗ ,

which completes the proof. �

Lemma 6.5.5 Under (A6.5), there exists a stationary solution which is optimal for
the ergodic control problem (6.5.1). Under (A6.6), there exists a stationary solution
optimal among all stationary solutions. It is also optimal among all solutions under
the additional assumption that the mean empirical measures {ζ̄t : t ≥ 0} are tight in
P(E × U).

This is essentially contained in the foregoing.

Corollary 6.5.6 In Lemma 6.5.5, “optimal stationary solution” may be replaced
by “optimal ergodic solution.”

Proof Consider the ergodic decomposition of an optimal stationary solution. Then
the law of the latter is the barycenter of a probability measure on the set of laws of
ergodic solutions. The claim then follows by standard arguments. �

Based on the experience with nondegenerate diffusions, we do, however, expect
more, viz., an optimal stationary Markov control, an optimal Markov process, etc.
As a prelude to such results, consider solutions (X,U), (Xi,Ui), 1 ≤ i ≤ m, of the
controlled martingale problem such that

〈〈L (X,U)〉〉 =
m∑

i=1

ai〈〈L (Xi,Ui)〉〉 (6.5.3)

for some {ai} ⊂ (0, 1) with
∑

i ai = 1.

Lemma 6.5.7 If Ut = v(Xt) for some measurable v : E →P(U) and (6.5.3) holds,
then Ui

t = v
(
Xi

t
)

a.s. for 1 ≤ i ≤ m.

Proof For almost all t (i.e., outside a set of zero Lebesgue measure), the following
holds. Let ξi, ξ, ψi, ψ denote the laws of (Xi

t ,U
i
t),

(
Xt,Ut

)
, Xi

t , Xt respectively for
1 ≤ i ≤ m. Disintegrate ξi, ξ as

ξi(dx, du) = ψi(dx) qi(du | x) , 1 ≤ i ≤ m ,

ξ(dx, du) = ψ(dx) δv(x)(du) .

Clearly, ψ =
∑

aiψi. Let

Λi = ai
dψi

dψ
.

Then
∑

iΛi = 1 ψ-a.s., and ξ =
∑

aiξi must disintegrate as

ξ(dx, du) = ψ(dx)
∑

i

Λi(x) qi(du | x) ,
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implying that for ψ-a.s. x, ∑
i

Λi(x) qi(du | x) = δv(x)(du) .

Since a Dirac measure cannot be a convex combination of two or more distinct prob-
ability measures, the claim follows. The qualification “almost all t” can be dropped
by modifying the Ui’s suitably. �

Let (X,U) be a solution to the relaxed controlled martingale problem. By Theo-
rem 6.4.16, 〈〈L (X,U)〉〉 is the barycenter of a probability measure on{〈〈L (X,U)〉〉 : X is a Markov process

}
.

Thus there exists an L (X̄, Ū) ∈ 〈〈L (X,U)〉〉 such that L (X̄, Ū) is the barycenter of
a probability measure Ψ on the set

H =
{
L (X,U) : X is a Markov process

}
.

We may suppose, as in Theorem 2.2.13, that for any L (X̂, Û) ∈ H, Ût = q(X̂t, t) a.s.
for some q : E× [0,∞)→P(U). Suppose Ut = v(Xt), t ≥ 0, as before. Then without
any loss of generality, we may suppose that Ūt = v(X̄t), t ≥ 0.

Lemma 6.5.8 For Ψ -a.s. Φ̂ such that Φ̂ = L (X̂, Û), one has Ût = v(X̂t), Φ̂-a.s. for
almost all t ≥ 0.

Proof Let H̄ denote the closed convex hull of H. Construct the probability measure

ψ(dp, dx, dv) = Ψ (dp) p(dx, dv) ∈P
(
H̄ ×D([0,∞); E) ×U

)
.

Let (ξ, X̃, Ũ) be the canonical random variables on this space. In other words, if

ω = (ω1, ω2, ω3) ∈ H̄ ×D([0,∞); E) ×U ,

then ξ(ω) = ω1, X̃(ω) = ω2 and Ũ(ω) = ω3. For t ≥ 0, we let pt denote the
image of p ∈ P

(D([0,∞); E) ×U
)

under the map (x[0,∞), v[0,∞)) �→ (x[0,∞), vt) (see
Remark 6.4.6). Let

ψt = L
(
ξ, X̃, Ũt

)
= Ψ (dp) pt(dx, du) .

Then for t outside a Lebesgue-null set, the following applies. Since Ψ is supported
on H, by the remarks preceding the statement of this lemma, ψt must disintegrate as

ψt(dp, dx, du) = Ψ (dp)ϕp(dx) δ f (p,x(t),t)(du) ,

where ϕp is the regular conditional law of X̃ given ξ, and f : H×E× [0,∞)→P(U)
is a measurable map. Of course, x(t) is the evaluation of x ∈ D([0,∞); E) at t. Thus
any h ∈ C(P(U)) satisfies

E
[
h(Ũt) | ξ, X̃t

]
= h

(
f (ξ, X̃t, t)

)
a.s.

for almost all t. Let Ān := [An1, . . . , Anmn ], n ≥ 1, be a sequence of finite partitions of
H such that
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(i) Ān+1 refines Ān;
(ii) Ani are Borel with Ψ (Ani) > 0, ∀n, i;

(iii) if σ(Ān) is the σ-field generated by Ān for n ≥ 1, then
∨

n σ(Ān) is the Borel
σ-field of H.

Such a sequence of partitions exists because H is a subset of a Polish space. Let
L (Xi,Ui) be the barycenter of the probability measure

IAni (p)Ψ (dp)

Ψ (Ani)

for 1 ≤ i ≤ mn, which is in H̄ by virtue of the convexity of the latter. Then clearly

〈〈L (X̃, Ũ)〉〉 = 〈〈L (X̄, Ū)〉〉 = 〈〈L (X,U)〉〉

is a convex combination of {〈〈L (Xi,Ui)〉〉 : 1 ≤ i ≤ mn}. By Lemma 6.5.7, Ui
t = v(Xi

t)
a.s. Thus

E
[
h
(
Ũt

) ∣∣∣ X̃ , IAni (ξ) , 1 ≤ i ≤ mn

]
= h

(
v(X̃t)

)
a.s. (6.5.4)

Let n → ∞. By the martingale convergence theorem, the term on the left-hand side
of (6.5.4) converges a.s. Moreover, the limit equals h

(
f (ξ, X̃t, t)

)
a.s. for all t > 0.

Since h ∈ C(P(U)) was arbitrary, we have v
(
X̃t

)
= f (ξ, X̃t, t) a.s. Hence

E
[
h
(
v
(
X̃t

)) | ξ = p
]
= E

[
h
(
f
(
ξ, X̃t, t

)) | ξ = p
]

for Ψ a.s. p. In other words,

v
(
X̂t

)
= f (p, X̂t, t) a.s.

for almost all t and for Ψ -a.s. p = L (X̂, Û). The claim follows. �

Corollary 6.5.9 Suppose that either

(i) (A6.5) holds, or
(ii) (A6.6) holds together with the condition that {ζ̄t, t ≥ 0} ⊂P(E ×U) is tight for

all admissible L (X,U).

Then there exists an optimal L (X,U) such that X is a Markov process, with U a
stationary Markov control.

Proof Suppose we start in Lemma 6.5.8 with L (X,U) equal to the optimal ergodic
solution guaranteed by Corollary 6.5.6, wherein Corollary 6.3.7 allows us to suppose
that Ut = v(Xt) for a measurable v : E →P(U). Under either condition, we have

lim inf
t→∞

1
t

∫ t

0
E
[
c̄
(
X′s,U

′
s
)]

ds ≥ �∗ (6.5.5)

for any admissible L (X′,U′), in particular, those in the support of Ψ . In view of
Lemma 6.5.8 and the fact that

lim
t→∞

1
t

∫ t

0
E [c̄(Xs,Us)] ds = �∗ ,
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by our choice of L (X,U), it follows that the inequality in (6.5.5) must be an equality
for Ψ -a.s. p = L (X′,U′) with U′ = v(X′). The claim follows. �

It should be kept in the mind that the Markov process thus obtained need not be
stationary, not even time-homogeneous.

6.6 The linear programming formulation

The foregoing suggests looking at the infinite dimensional linear program:

minimize
∫

c dµ

subject to µ ≥ 0,
∫

dµ = 1 and∫
A f dµ = 0 ∀ f ∈ D(A) .

To cast this into standard framework, we recall from Anderson and Nash [3] some
facts about infinite dimensional linear programs. Two topological vector spaces X,Y
are said to form a dual pair it there exists a bilinear form 〈 · , · 〉 : X × Y → R such
that the functions x �→ 〈x, y〉 for y ∈ Y (respectively y �→ 〈x, y〉 for x ∈ X) separate
points of X (respectively Y). Endow X with the coarsest topology, denoted σ(X,Y),
required to render continuous the maps x �→ 〈x, y〉, y ∈ Y , and endow Y with the dual
topology. Let C be the positive cone in X and define the dual cone C∗ ⊂ Y by

C∗ =
{
y ∈ Y : 〈x, y〉 ≥ 0 ∀x ∈ C

}
.

Let Z,W be another dual pair of topological vector spaces. Let F : X → Z be a
σ(X,Y)−σ(Z,W)-continuous linear map. Define F∗ : W → X∗, the algebraic dual of
X, by 〈Fx,w〉 = 〈x, F∗w〉, x ∈ X, w ∈ W.

The primal linear programming problem then is

minimize 〈x, c〉 ,
subject to Fx = b , x ∈ C ,

where b ∈ Z, c ∈ Y are prescribed. Let � denote the infimum of 〈x, c〉 subject to these
constraints. The dual problem is

maximize 〈b,w〉 ,
subject to − F∗w + c ∈ C∗ , w ∈ W .

Let �̄ denote the supremum of 〈b,w〉 subject to these constraints. From the theory of
infinite dimensional linear programming [3], one knows that � ≥ �̄. Let

K = {x ∈ C : Fx = b} ,
D = {(Fx, 〈x, c〉) : x ∈ C} .

We shall use the following result from Anderson and Nash [3, p. 53].
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Lemma 6.6.1 If K � ∅, D is closed and x �→ 〈x, c〉 attains its minimum on K, then
�̄ = �.

That is, under the said conditions, there is no duality gap. We assume that there
exists a continuous map h : E → [0,∞) with infE h > 0 and sup(x,u)∈E×U

∣∣∣ c(x,u)
h(x)

∣∣∣ < ∞.
For the problem at hand, X is selected as the subspace ofMs(E×U), the finite signed
measures on E × U, satisfying∫

h(x) |µ(dx, du)| < ∞ ,

and Y as

Y :=

{
f ∈ Cb(E × U) : sup

(x,u)∈E×U

∣∣∣ f (x,u)
h(x)

∣∣∣ < ∞}
.

These form a dual pair under the bilinear form 〈µ, f 〉X,Y =
∫

f dµ. Also, we let
W̄ ≡ D(A), rendered a normed linear space with norm

‖ f ‖ = sup
x∈E
| f (x)| + sup

(x,u)∈E×U
|A f (x, u)| ,

and Z̄ ≡ W̄∗, the space of bounded linear functionals on W̄. Then Z := Z̄ × R and
W := W̄ × R are a dual pair via the bilinear form

〈z,w〉Z,W = 〈z̄, w̄〉Z̄,W̄ + ab ,

where z = (z̄, a), w = (w̄, b). Letting 1 denote the constant function identically equal
to one, define F : X → Z as

Fµ =

(
λµ,

∫
1 dµ

)
,

where λµ ∈ W̄∗ is defined by

〈λµ, f 〉Z̄,W̄ = −
∫
A f dµ , f ∈ W̄ .

The primal problem can now be cast as:

minimize 〈µ, c〉X,Y ,

subject to Fµ = (θ, 1), µ ∈ X ∩M(E × U) ,

where θ is the zero element of Z̄. The dual problem now takes the form:

maximize 〈(θ, 1), ( f , a)〉Z,W = a ,

subject to A f − a + c ≥ 0 , f ∈ D(A) .

Note that � is the optimal ergodic cost. Under either (A6.5) or (A6.6), we then have:

Theorem 6.6.2

� = sup
{
a ∈ R : inf

u∈U

[A f (x, u) + c(x, u)
] ≥ a , f ∈ D(A)

}
.
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Proof Let {µn} ∈ B be such that

Fµn = (λµn , 1)→ (λ̂, 1)

and
∫

c dµn → d ∈ R. Under (A6.5) or (A6.6), {µn} is relatively compact. There-
fore we may let µn → µ along a subsequence, which we also label as {µn}. Then∫
A f dµn →

∫
A f dµ for f ∈ D(A), implying Fµ = (λ̂, 1). Also,

∫
c dµn →

∫
c dµ.

Thus D is closed. The claim now follows from Lemma 6.6.1. �

Theorem 6.6.2 gives a dual characterization of the optimal cost, akin to the maxi-
mal subsolution characterization of the value function for finite horizon or discounted
infinite horizon control problems [84].

6.7 Krylov’s Markov selection

In Section 6.5 we established the existence of an optimal ergodic solution and an
optimal Markov, though possibly time-inhomogeneous, solution, both corresponding
to a stationary Markov relaxed control. In this section we present Krylov’s Markov
selection procedure [115, chapter 12]. Originally intended for extracting a Markov
family of probability measures satisfying a martingale problem in the presence of
non-uniqueness, this procedure was adapted to extract an optimal Markov solution
to degenerate controlled diffusions in Haussmann [72] and El Karoui et al. [54],
following a suggestion of Varadhan. We make use of the Krylov selection later in
Section 8.5. We work under assumptions (A6.1) – (A6.4).

Lemma 6.7.1 Let Γ0 =
{
Γ0(ν) ⊂ Γν : ν ∈P(E)} be such that

(a) Γ0(ν) is compact for all ν ∈P(E).

(b) Γ0 is closed under conditioning at X0: if Φ = L (X,U) ∈ Γ0(ν) then the regular
conditional law of Φ given X0 = x, denoted by Φ(x), is in Γ0(δx) for ν-a.s. x.

(c) If {Φn : n ∈ N} ⊂ Γ0(ν) and {Cn : n ∈ N} ⊂ B(E) is a collection of disjoint sets
with

∑
n ν(Cn) = 1 then

Φ̄ :=
∑

n

∫
Cn

Φn(x) ν(dx) , (6.7.1)

is a member of Γ0(ν).

(d) Γ0 is closed under T-shifts: if Φ = L (X,U) ∈ Γ0(ν) and T > 0, then

ΦT := L (X ◦ θT ,U ◦ θT ) ∈ Γ0(L (XT )) .

(e) Γ0 is closed under T-concatenations: if Φ̆ ∈ Γ0(L (XT )) and Φ and T are as in
part (d), then the T-concatenation of Φ and Φ̆ is in Γ0(ν).
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For a constant β > 0 and f ∈ Cb(E) define

F1(Φ) :=
∫ ∞

0
e−βt EΦ

[
f (Xt)

]
dt ,

Ψ1(ν) := inf
Φ∈Γ0(ν)

F1(Φ) ,

Γ1(ν) :=
{
Φ ∈ Γ0(ν) : F1(Φ) = Ψ1(ν)

}
.

Then Γ1 =
{
Γ1(ν) : ν ∈P(E)} satisfies (a)–(e).

Proof Since Φ �→ F1(Φ) is continuous, it follows that Γ1(ν) is a closed subset of
Γ0(ν), and hence is compact.

We introduce the following notation. We denote Ψ1(δx) and Γi(δx), i = 0, 1, where
δx is the Dirac measure at x, by Ψ1([x]) and Γi([x]), respectively. Note then that
property (b) holds for Γ1 if and only if

Ψ1(ν) =
∫

E
Ψ1([x]) ν(dx) .

It is evident that Ψ1(ν) ≥
∫
Ψ1([x]) ν(dx). To show the converse inequality, for an

arbitrary ε > 0, let Φn = L (Xn,Vn) ∈ Γ0(ν) be such that

F1(Φn) ≤ Ψ1(ν) +
ε

2n
. (6.7.2)

By (b) we can find a set N ⊂ E with ν(N) = 0 such thatΦn(x) ∈ Γ0([x]) for all x � N.
Let

Bn = {x ∈ E : F1(Φn(x)) < Ψ1([x]) + ε} , n ≥ 1 .

Then (6.7.2) implies that ν(Bc
n) < 2−n. Define Cn ⊂ E, n ≥ 1, successively by

C1 = B1 , and Cn = Bn ∩ (∪m<nBm)c , for n > 1 .

Then clearly the sets Cn are disjoint and ν(∪nCn) = ν(∪nBn) = 1. Define Φ̄ by
(6.7.1). Then Φ̄ is the law of a process (X̄, V̄) such that L (X̄0) = ν and for x ∈ Cn,
n ≥ 1, the regular conditional law of (X̄, V̄) given X̄0 = x is Φn(x). By (c), Φ̄ ∈ Γ0(ν).
We obtain

F1(Φ̄) =
∑

n

∫
Cn

F1(Φn(x)) ν(dx)

≤
∑

n

∫
Cn

(Ψ1([x]) + ε) ν(dx)

≤
∫

E
Ψ1([x]) ν(dx) + ε . (6.7.3)

Since ε > 0 was arbitrary, (6.7.3) yields

Ψ1(ν) ≤
∫

E
Ψ1([x]) ν(dx) ,

thus completing the proof that (b) holds for Γ1.
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That (c) holds for Γ1 is evident since, by property (b) which holds for Γ1, we have

F1(Φ̄) =
∑

n

∫
Cn

F1(Φn(x)) ν(dx)

=
∑

n

∫
Cn

Ψ1([x]) ν(dx)

= Ψ1(ν) ,

and therefore Φ̄ ∈ Γ1(ν).
To prove (d) and (e) let Φ = L (X,U) ∈ Γ1(ν). Decompose Ψ(ν) as

Ψ1(ν) = EΦ
[∫ T

0
e−βs f (Xs) ds

]
+

∫ ∞

0
EΦ

[
e−β(T+s) f (XT+s)

]
ds . (6.7.4)

Since by property (d) for Γ0,

ΦT = L (X ◦ θT ,U ◦ θT ) ∈ Γ0(L (XT )) ,

by conditioning at T and using property (b) for Γ0, we obtain∫ ∞

0
EΦ

[
e−β(T+s) f (XT+s)

]
ds = EΦ

[
e−βT EΦ

[∫ ∞

0
e−βs f (XT+s) ds

∣∣∣∣∣ XT

]]
= EΦ

[
e−βT F1

(
ΦT (XT )

)]
. (6.7.5)

By (6.7.4) – (6.7.5), we have

Ψ1(ν) = EΦ
[∫ T

0
e−βs f (Xs) ds

]
+ EΦ

[
e−βT F1

(
ΦT (XT )

)]
. (6.7.6)

Let ν′ := L (XT ) and select any Φ′ = L (X′,U′) ∈ Γ1(ν′). Hence, by definition,

Ψ1(ν′) = F1(Φ′) =
∫ ∞

0
e−βs EΦ

′ [
f (X′s)

]
ds . (6.7.7)

Let (X̃, Ũ) be the T -concatenation of (X,U) and (X′,U′), and set Φ̃ := L (X̃, Ũ). By
property (e) for Γ0, Φ̃ ∈ Γ0(ν). This implies that F1(Φ̃) ≥ Ψ1(ν). Using the definition
of (X̃, Ũ), (6.7.7), and property (b) for Γ1, which was established earlier, we obtain

EΦ̃
[∫ ∞

0
e−βs f (X̃T+s) ds

∣∣∣∣∣ X̃T

]
= Ψ1([X̃T ]) ν′-a.s. (6.7.8)

Therefore, by decomposing F1(Φ̃) as in (6.7.4) and conditioning as in (6.7.5), then
using (6.7.8), we obtain

Ψ1(ν) ≤ F1(Φ̃) = EΦ̃
[∫ T

0
e−βs f (X̃s) ds

]
+

∫ ∞

0
EΦ̃

[
e−β(T+s) f (X̃T+s)

]
ds

= EΦ
[∫ T

0
e−βs f (Xs) ds

]
+ EΦ

[
e−βTΨ1([XT ])

]
. (6.7.9)

Since Ψ1([x]) ≤ F1
(
ΦT (x)

)
, (6.7.6) and (6.7.9) yield

Ψ1([x]) = F1
(
ΦT (x)

)
ν′-a.s., (6.7.10)



6.7 Krylov’s Markov selection 251

and

Ψ1(ν) = F1(Φ̃) = EΦ
[∫ T

0
e−βs f (Xs) ds

]
+ EΦ

[
e−βTΨ1([XT ])

]
. (6.7.11)

By (6.7.10)

Ψ1(ν′) =
∫

E
Ψ1([x]) dν′ =

∫
E

F1
(
ΦT (x)

)
dν′ = F1(ΦT ) ,

which implies property (d) for Γ1, while (6.7.11) implies property (e). �

In the next theorem we use the map κ : N × N→ N defined by

κ(i, j) := 1
2 [(i + j − 1)2 + j − i + 1] , i, j ≥ 1 .

Note that κ is one-to-one and onto.

Theorem 6.7.2 Suppose Γ0 satisfies the hypotheses (a)–(e) in Lemma 6.7.1. Let
{ fi} ⊂ Cb(E) be a countable separating class for P(E) and {β j} be a countable
dense set in (0,∞). We define F� : Γν �→ R, � ∈ N, by

Fκ(i, j)(Φ) :=
∫ ∞

0
e−βit EΦ

[
f j(Xt)

]
dt .

For i = 1, 2, . . . , define inductively

Ψi(ν) := inf
Φ∈Γi−1(ν)

Fi(Φ) ,

Γi(ν) :=
{
Φ ∈ Γi−1(ν) : Fi(Φ) = Ψi(ν)

}
.

Then for any two elements L (X,U) and L (X′,U′) of Γ∞(ν) := ∩iΓ
i(ν) it holds that

L (X) = L (X′). Moreover, X is a time-homogeneous Markov process, and U can be
taken to be of the form Ut = v(Xt), t ≥ 0, for a measurable v : E →P(U).

Proof By Lemma 6.7.1, for fixed ν ∈ P(E), {Γi(ν) : i ≥ 0} is a nested, decreas-
ing family of compact non-empty sets. Therefore Γ∞(ν) � ∅. Clearly, Γ∞ satisfies
(a) – (e) of Lemma 6.7.1. Let L (X,U), L (X′,U′) be two elements of Γ∞(ν). By
Lemma 6.4.7, for bounded measurable f : [0,∞)→ R,∫ ∞

0
e−β j t f (t) dt = 0 ∀ j ∈ N =⇒ f (t) = 0 a.e.

Therefore, since { fm} is a separating class for P(E), X and X′ must have the same
one-dimensional marginals. The same applies to any two elements of Γ∞([x]), x ∈ E.
Define q(x, t, B) := P (Xt ∈ B) for B ∈ B(E) and any L (X,U) ∈ Γ∞([x]). The exact
choice of L (X,U) is immaterial since for any two such elements the marginals of
X agree. Since the map x �→ Γ∞([x]) is upper semicontinuous and compact-valued,
x �→ q(x, t, B) may be selected so as to be measurable. It also follows by proper-
ties (b), (d) and (e) of Lemma 6.7.1 that {q(x, t, · ) : x ∈ E , t ≥ 0} satisfy the
Chapman–Kolmogorov equations. Since properties (b) and (d) hold for Γ∞(ν) then
for L (X,U) ∈ Γ∞(ν) the regular conditional law of Xt+s for s > 0 given FX

t is
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in Γ∞([Xt]). Moreover, since Γ∞([x]) is a singleton, this conditional law is com-
pletely determined by q(x, t, · ). Thus for every L (X,U) ∈ Γ∞(ν), X corresponds
to a Markov process with transition kernel q(x, t, · ). Since the initial law and the
transition kernel completely specify the law of a Markov process, L (X) is uniquely
determined. The last claim follows from Theorem 2.2.13. �

The conclusions of Theorem 6.7.2 can be strengthened. If we modify the hypothe-
ses of Lemma 6.7.1 in analogy to the conditions in Stroock and Varadhan [115,
section 12.2] which concerns the uncontrolled case, the Krylov selection extracts a
strong Markov process.

6.8 Bibliographical note

Sections 6.2–6.3. These sections largely follow [21], drawing upon [23, 112] for
some technical lemmas. See also [110, 81] for analogous results.

Section 6.4. This is based on [30].

Section 6.5. This follows [28, 21, 30].

Section 6.6. This follows [21]. See also [111] for related work.

Section 6.7. For more detailed results on Markov selections we refer the reader to
[115, Chapter 12].
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Degenerate Controlled Diffusions

7.1 Introduction

In this chapter we turn to the study of degenerate controlled diffusions. For the non-
degenerate case the theory is more or less complete. This is not the case if the uni-
form ellipticity hypothesis is dropped. Indeed, the differences between the nonde-
generate and the degenerate cases are rather striking. In the nondegenerate case, the
state process X is strong Feller under a Markov control. This, in turn, facilitates
the study of the ergodic behavior of the process. In contrast, in the degenerate case,
under a Markov control, the Itô stochastic differential equation (2.2.1) is not always
well posed. From an analytical viewpoint, in the nondegenerate case, the HJB equa-
tion is uniformly elliptic and the associated regularity properties benefit its study.
The degenerate case, on the other hand, is approached via a particular class of weak
solutions known as viscosity solutions. This approach does not yield as satisfactory
results as in the case of classical solutions. In fact ergodic control of degenerate dif-
fusions should not be viewed as a single topic, but rather as a class of problems,
which are studied under various hypotheses. We first formulate the problem as a spe-
cial case of a controlled martingale problem and then summarize those results from
Chapter 6 that are useful here. Next, in Section 7.3, we study the HJB equations in
the context of viscosity solutions for a specific class of problems that bears the name
of asymptotically flat diffusions. Then in Section 7.4, we turn our attention to a class
of diffusions which have a partial nondegeneracy property.

7.2 Controlled martingale formulation

The state process X is governed by the Itô stochastic differential equation (2.2.1)
under the hypotheses (i) – (iv) on p. 30. Treating u ∈ U as a parameter, we let L
(= Lu) be the operator defined in (2.2.12) with domain D(L) ⊂ Cb(Rd) and range
R(L) ⊂ Cb(Rd × U). It is simple to verify that (A6.1) – (A6.4) in Chapter 6, p. 220
and p. 232, hold forL. We adopt the relaxed control framework, using the notation b̄,
c̄ and L̄. By Theorem 6.3.6 the set of ergodic occupation measures G ⊂P(Rd × U)
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is characterized by

G =

{
π ∈P(Rd × U) :

∫
Rd×U

Lu f (x) π(dx, du) = 0 ∀ f ∈ D(L)

}
.

Clearly, G is closed. We assume that there exists π ∈ G such that
∫

c dπ < ∞. Let
c ∈ C(Rd × U) be a prescribed running cost function. In this chapter we seek to
minimize over all U ∈ U the average cost

lim sup
t→∞

1
t

∫ t

0
EU[

c̄(Xs,Us)
]
ds . (7.2.1)

Let

�∗ = inf
π∈G

∫
c dπ . (7.2.2)

The existence of an optimal control is guaranteed under either of the following
conditions:

(C7.1) Strong near-monotonicity: the running cost c is inf-compact.
(C7.2) Stability: there exists an inf-compact functionV ∈ C2(Rd,R+) such that the

map (x, u) �→ −LuV(x) is inf-compact.

Note that (C7.1) implies that the sets
{
π ∈ G :

∫
c dπ ≤ k

}
, k ∈ R+, are compact.

Hence hypothesis (A6.5) in Chapter 6 on p. 242 holds. On the other hand, under
(C7.2), Lemma 2.5.3 asserts that the mean empirical measures

{
ζ̄U
ν,t : U ∈ U} are tight

for each ν ∈ P(Rd), and the argument used in the proof of the same lemma shows
that their accumulation points as t → ∞ are in G . Then, in view of Theorem 6.3.6, G
is identical with the the set of accumulation points of the mean empirical measures
as t → ∞, and consequently, G is compact. Thus hypothesis (A6.6) in Chapter 6 on
p. 242 holds. Therefore, from the general results in Chapter 6, we have the following
theorem.

Theorem 7.2.1 Under either (C7.1) or (C7.2), there exists an optimal ergodic pair
(X,U), where U ∈ Usm. Alternatively, there exists an optimal pair (X,U), such that
U ∈ Usm and X is a Markov process.

7.3 Asymptotically flat controlled diffusions

In this section we study the ergodic HJB equation in the framework of viscosity
solutions for a controlled process governed by (2.2.1). In addition to the standard
local Lipschitz and growth assumptions in (2.2.3) and (2.2.4) on p. 31 we assume that
the diffusion matrix σ and the running cost c are Lipschitz continuous in x (uniformly
in u ∈ U for the latter), and we denote their common Lipschitz constant by CLip.
We carry out our program under a stability assumption, which yields asymptotic
flatness.
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We introduce the following notation: for x, z in Rd define

∆zb(x, u) := b(x + z, u) − b(x, u) ,

∆zσ(x) := σ(x + z) − σ(x) ,

ã(x; z) := ∆zσ(x)∆zσ
T(x) .

Assumption 7.3.1 There exist a symmetric positive definite matrix Q and a con-
stant r > 0 such that for x, z ∈ Rd, with z � 0, and u ∈ U,

2∆zb
T(x, u)Qz − |∆zσ

T(x)Qz|2

zTQz
+ tr

(
ã(x; z)Q

) ≤ −r|z|2 . (7.3.1)

The following example shows that Assumption 7.3.1 arises naturally.

Example 7.3.2 Let U = [0, 1]d, b(x, u) = Bx + Du, σ1(x) = x and σi(x) = 0 for all
i � 1. Here B, D are constant d×d matrices where all eigenvalues of B have negative
real part and σ j is the jth column of σ. It is well known that there exists a positive
definite matrix Q such that BTQ + QB = −I [106, theorem 7.11, p. 124]. Using this
property, we can verify that Assumption 7.3.1 holds. Indeed, for z � 0,

2∆zb
T(x, u)Qz−

∣∣∣∆zσ
T(x)Qz

∣∣∣2
zTQz

+ tr
(
ã(x; z)Q

)
= zT(BTQ + QB)z −

(
zTQz

)2

zTQz
+ zTQz

= −|z|2 − zTQz + zTQz

= −|z|2 .

Example 7.3.3 Assumption 7.3.1 allows for certain state-dependent diffusion ma-
trices as in Example 7.3.2. If we assume a constant diffusion matrix σ and additive
control of the form b(x, u) = h(x)− x+ f (u) for some bounded continuous f , asymp-
totic flatness reduces to

〈h(x) − h(y), x − y〉 ≤ β|x − y|2 , x, y ∈ Rd

for some β ∈ (0, 1). This holds, e.g., if h is a contraction or if −h is monotone, i.e.,
〈h(x) − h(y), x − y〉 ≤ 0.

We now establish asymptotic flatness of the flow under Assumption 7.3.1. In the
lemma that follows, the Brownian motion and an admissible control are prescribed
on a probability space, and strong solutions starting from distinct initial conditions
are compared – see Theorem 2.3.4 for a justification.

Lemma 7.3.4 Let U be any admissible relaxed control. Let Xx
t be the correspond-

ing solution with initial condition X0 = x. Then under Assumption 7.3.1 there exist
constants C1 > 0, C2 > 0, which do not depend on U, such that

EU
∣∣∣Xx

t − Xy
t

∣∣∣ ≤ √
‖Q−1‖ ‖Q‖ exp

(
− rt

2‖Q‖

)
|x − y| ∀x, y ∈ Rd . (7.3.2)
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Proof Consider the Lyapunov function

wε(x) =
xTQx(

ε + xTQx
)1/2

, ε > 0 .

For f ∈ C2(Rd) and u ∈ U define

L̃u f (x; z) =
d∑

i=1

∆zb
i(x, u)

∂ f
∂xi

(z) +
1
2

d∑
i, j=1

ãi j(x; z)
∂2 f

∂xi∂x j
(z) .

A simple computation yields,

L̃uwε(x; z) =
ε + 1

2 zTQz(
ε + zTQz

)3/2

[
2∆zb

T(x, u)Qz + tr
(
ã(x; z)Q

)]
−

2ε + 1
2 zTQz(

ε + zTQz
)5/2
|∆zσ

T(x)Qz|2

=
ε + 1

2 zTQz(
ε + zTQz

)3/2

[
2∆zb

T(x, u)Qz − |∆zσ
T(x)Qz|2

zTQz
+ tr

(
ã(x; z)Q

)]

+ ε
ε − 1

2 zTQz(
ε + zTQz

)5/2

|∆zσ
T(x)Qz|2

zTQz
. (7.3.3)

Then using Assumption 7.3.1, and the bound

|∆zσ
T(x)Qz|2

(zTQz)2
≤ C2

Lip ,

where CLip is the Lipschitz constant of σ, (7.3.3) yields

L̃uwε(x; z) ≤ −r
ε + 1

2 zTQz

ε + zTQz

|z|2

zTQz
wε(z) + ε

ε − 1
2 zTQz(

ε + zTQz
)5/2

(zTQz) C2
Lip

≤ − r
2‖Q‖wε(z) +

√
εC2

Lip .

Let τ = inf{t ≥ 0 : Xx+z
t = Xx

t } (possibly +∞). By Dynkin’s formula, and letting
C2 =

r
2‖Q‖ , we obtain

EU[
wε

(
Xx+z

t∧τ − Xx
t∧τ

)] − wε(z) = EU

[∫ t∧τ

0

∫
U

L̃uwε
(
Xx

s ; Xx+z
s − Xz

s
)
Us(du) ds

]
≤ −C2 E

U

[∫ t∧τ

0
wε

(
Xx+z

s − Xx
s
)

ds

]
+
√
εC2

Lipt

≤ −C2

∫ t

0
EU[

wε
(
Xx+z

s∧τ − Xx
s∧τ

)]
ds +

√
εC2

Lipt ,

since, for t ≥ τ, Xx+z
t = Xx

t a.s. by the pathwise uniqueness of the solution of (2.2.1).
Thus by Gronwall’s inequality it follows that for any t ≥ 0,

EU[
wε

(
Xx+z

t − Xx
t
)] ≤ wε(z)e−C2t +

√
εC2

Lip

C2
(1 − e−C2t) . (7.3.4)
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Taking limits as ε → 0 in (7.3.4), and using monotone convergence and the bound
|z|2 ≤ ‖Q−1‖(zTQz), we obtain, with w0(z) := (zTQz)1/2,

EU
∣∣∣Xx+z

t − Xx
t

∣∣∣ ≤ √
‖Q−1‖ EU[

w0
(
Xx+z

t − Xx
t
)]

≤
√
‖Q−1‖ (zTQz)1/2 e−C2t

≤
√
‖Q−1‖ ‖Q‖ e−C2t |z| ,

thus establishing (7.3.2). �

Remark 7.3.5 Property (7.3.2) is known as asymptotic flatness.

A variation of the method in the proof of Lemma 7.3.4 yields the following.

Lemma 7.3.6 Under Assumption 7.3.1 there exist a constant δ > 0 such that, for
any compact set K ⊂ Rd,

sup
t≥0

sup
x∈K

sup
U∈U
EU |Xt |1+δ < ∞ .

Proof Using (7.3.1) with x = 0 we conclude that there exist positive constants r1

and r2 such that

2bT(z, u)Qz − |σ
T(z)Qz|2

zTQz
+ tr

(
a(z)Q

) ≤ −r1|z|2 + r2 ∀z ∈ Rd (7.3.5)

for all u ∈ U. For positive constants ε and δ, we define

wε,δ(x) :=
(
xTQx

)1+δ/2(
ε + xTQx

)1/2
.

Following the method in the proof of Lemma 7.3.4, using (7.3.5), we deduce that
there exist positive constants ε, δ, k0 and k1 such that

Luwε,δ(x) ≤ −k1wε,δ(x) + k0 ∀u ∈ U . (7.3.6)

By Lemma 2.5.5 on p. 63 and (7.3.6),

EU
x
[
wε,δ(Xt)

] ≤ k0

k1
+ wε,δ(x)e−k1t ∀x ∈ Rd , ∀U ∈ U .

The claim follows since |x|1+δ ∈ O(wε,δ). �

Under Assumption 7.3.1, the existence results in Theorem 7.2.1 can be improved,
as the following theorem shows.

Theorem 7.3.7 Suppose Assumption 7.3.1 holds. Then there exists π∗ ∈ G satis-
fying �∗ =

∫
c dπ∗. Let (X∗,U∗) be a stationary relaxed solution to the controlled

martingale problem corresponding to π∗. Then for any initial condition X0, we have

lim
T→∞

1
T

∫ T

0
EU∗ [c̄(Xs,U

∗
s )
]
ds = �∗ . (7.3.7)
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Moreover, for any admissible control U ∈ U and any initial law, the corresponding
solution X of (2.2.1) satisfies

lim inf
T→∞

1
T

∫ T

0
EU[

c̄(Xs,Us)
]
ds ≥ �∗ .

Thus U∗ is optimal for any initial law.

Proof First note that by (7.3.6), Assumption 7.3.1 implies (C7.2). Thus there exists
π∗ ∈ G satisfying �∗ =

∫
c dπ∗. Let (X∗,U∗) be a stationary relaxed solution of the

controlled martingale problem corresponding to π∗. Then if the law of (X∗0,U
∗
0) is

such that

E

[∫
U

f (X∗0, u)U∗0(du)

]
=

∫
Rd×U

f dπ∗ ∀ f ∈ Cb(Rd × U) ,

we obtain

lim
T→∞

1
T

∫ T

0
EU∗ [c̄(X∗s ,U

∗
s )
]
ds =

∫
c dπ∗ = �∗ . (7.3.8)

Now fix the probability space on which the Wiener process W and U∗ are defined, as
in Theorem 2.3.4. By (7.3.2) and (7.3.8), for any solution X under U∗, (7.3.7) holds.
Since (7.3.6) implies that the mean empirical measures are tight, any limit point of
the mean empirical measures is in G by the proof of Lemma 6.5.4. Thus the second
assertion follows. �

7.3.1 The HJB equation

We now study the HJB equation for the ergodic control problem given by

inf
u∈U

[LuV(x) + c(x, u) − �
]
= 0 , (7.3.9)

where V : Rd → R and � is a scalar. Note that (7.3.9) corresponds to precise controls
while the functional in (7.2.1) is defined in the space of relaxed controls. Even though
the results of Section 3.4 which assert optimality in the class of precise stationary
Markov controls are not applicable here, Theorem 2.3.1 on p. 47 does hold and shows
that this relaxation is valid.

Solving the HJB equation means finding a suitable pair (V, �) satisfying (7.3.9)
in an appropriate sense. In Chapter 3 we studied the nondegenerate case. To obtain
analogous results for the degenerate case, we strengthen the regularity assumptions
on the diffusion matrix from Lipschitz continuity to σi j ∈ C2(Rd) ∩ C0,1(Rd), 1 ≤
i, j ≤ d. We introduce the notion of a viscosity solution of (7.3.9).

Definition 7.3.8 The pair (V, �) ∈ C(Rd) × R is said to be a viscosity solution of
(7.3.9) if for any ψ ∈ C2(Rd)

inf
u∈U

[Luψ(x) + c(x, u) − �
] ≥ 0
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at each local maximum x of (V − ψ), and

inf
u∈U

[Luψ(x) + c(x, u) − �
] ≤ 0

at each local minimum x of (V − ψ).

We show that (7.3.9) has a unique viscosity solution in (V, �) ∈ C0,1(Rd) × R,
satisfying V(0) = 0. To this end we follow the traditional vanishing discount method.
Let α > 0. For an admissible control U ∈ U, as usual, let

JU
α (x) = EU

[∫ ∞

0
e−αt c̄(Xt,Ut) dt

∣∣∣∣∣ X0 = x

]
,

and Vα denote the α-discounted value function, i.e.,

Vα(x) = inf
U∈U

JU
α (x) .

Let

Cpol(R
d) :=

{
f ∈ C(Rd) : f ∈ O(1 + |x|m) for some m ∈ N} .

By Lions [85, theorem II.2, pp. 1258–1259], Vα is the unique viscosity solution in
Cpol(Rd) of the HJB equation for the discounted control problem, which takes the
form

inf
u∈U

[LuVα(x) + c(x, u) − αVα(x)
]
= 0 .

Theorem 7.3.9 Under Assumption 7.3.1, there exists a viscosity solution (V, �) in
C0,1(Rd) × R to (7.3.9).

Proof For x, y ∈ Rd, by Lemma 7.3.4 and the Lipschitz continuity of c, we obtain

|Vα(x) − Vα(y)| ≤ sup
U∈U
EU

[∫ ∞

0
e−αt

∣∣∣c̄(Xx
t ,Ut

) − c̄
(
Xy

t ,Ut
)∣∣∣ dt

]
≤ CLip sup

U∈U

∫ ∞

0
e−αt EU

∣∣∣Xx
t − Xy

t

∣∣∣ dt

≤ CLip

√
‖Q−1‖ ‖Q‖

∫ ∞

0
e−αt exp

(
− rt

2‖Q‖

)
|x − y| dt

≤ 2
r

√
‖Q−1‖ ‖Q‖3/2CLip|x − y| . (7.3.10)

Let V̄α(x) = Vα(x)− Vα(0). Then V̄α is the unique viscosity solution in Cpol(Rd) to

inf
u∈U

[LuV̄α(x) + c(x, u) − αV̄α(x) + αVα(0)
]
= 0 .

Let {αn} be a sequence such that αn → 0 as n → ∞. From (7.3.10) it follows, using
the Ascoli–Arzelà theorem, that V̄αn converges to a function V ∈ C(Rd) uniformly on
compact subsets of Rd along some subsequence of {αn}. By Lemma 7.3.6, and the
linear growth of supu c(x, u) implied by its Lipschitz continuity, αVα(0) is bounded
in α. Hence along a suitable subsequence of {αn} (still denoted by {αn} by an abuse of
notation) αnVαn (0) converges to a scalar � as n → ∞. Thus by the stability property
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of the viscosity solution [85, proposition I.3, p. 1241] it follows that the pair (V, �) is
a viscosity solution of (7.3.9). Clearly V(0) = 0 and from (7.3.10) it follows that V
is Lipschitz continuous. �

Theorem 7.3.10 Under Assumption 7.3.1, if (V, �) ∈ C0,1(Rd) × R is a viscosity
solution of (7.3.9), then � = �∗.

Proof Let α > 0. Write (7.3.9), as

inf
u∈U

[
(Lu − α)V(x) + c(x, u) − � + αV(x)

]
= 0 . (7.3.11)

Therefore, by the uniqueness of the viscosity solution of the HJB for the discounted
cost problem [85, theorem II.2, pp. 1258–1259] it follows that

V(x) = inf
U∈U
EU

x

[∫ ∞

0
e−αt[c̄(Xt,Ut) − � + αV(Xt)

]
dt

]
. (7.3.12)

Let π ∈ G . Let (X,U) be the stationary solution of the martingale problem corre-
sponding to π. Fix the probability space on which the Wiener process W and U are
defined and consider the process X with arbitrary initial condition. By (7.3.12), for
any x ∈ Rd,

αV(x) + � ≤ α

∫ ∞

0
e−αt EU

x
[
c̄(Xt,Ut)

]
dt + α2

∫ ∞

0
e−αt EU

x
[
V(Xt)

]
dt .

Letting α→ 0, and using a Tauberian theorem, which asserts that

lim sup
α→0

α

∫ ∞

0
e−αt EU

x
[
c̄(Xt,Ut)

]
dt ≤ lim sup

T→∞

1
T

∫ T

0
EU

x
[
c̄(Xt,Ut)

]
dt ,

we obtain

� ≤
∫

c dπ .

Hence � ≤ �∗. To obtain the reverse inequality, let Uα be an optimal relaxed feedback
control for the cost criterion in (7.3.12). Let FX,Uα

t be the natural filtration of (X,Uα),
i.e., the right-continuous completion of σ(Xs,Uα

s : s ≤ t). Then, since by hypothesis
V has linear growth, it follows from Lemma 7.3.6 that V(Xt) is uniformly integrable
under any U ∈ U, and hence

e−αtV(Xt) +
∫ t

0
e−αs

(
c̄
(
Xs,U

α
s
) − � + αV(Xs)

)
ds

is an
(
F

X,Uα

t
)
-martingale by Corollary 2.7.2. By Lemma 7.3.6 and the Lipschitz con-

tinuity, and therefore the linear growth of c̄ and V , it is uniformly integrable over
α ∈ (0, 1) and t in any compact subset of [0,∞). Since the martingale property is
preserved under convergence in law and uniform integrability, letting α→ 0, we can
argue as in the proof of Corollary 2.3.9 to establish that for some relaxed feedback
control Ū

V(Xt) +
∫ t

0

(
c̄(Xs, Ūs) − �

)
ds
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is an
(
F

X,Ū
t

)
-martingale. Therefore

EŪ

[
V(Xt) +

∫ t

0

(
c̄(Xs, Ūs) − �

)
dt

]
= EŪ [V(X0)] ,

and dividing by t we obtain

1
t
EŪ

x
[
V(Xt)

]
+

1
t

∫ t

0
EŪ

x
[
c̄(Xs, Ūs)

]
ds = � +

1
t
EŪ [V(X0)] . (7.3.13)

Lemma 7.3.6 and the linear growth of V implies t−1 EŪ
x
[
V(Xt)

]→ 0 as t → ∞. Thus
letting t → ∞ in (7.3.13) yields

� = lim
t→∞

1
t

∫ t

0
EŪ[

c̄(Xs, Ūs)
]
ds ≥ �∗ ,

and the proof is complete. �

Theorem 7.3.11 Let Assumption 7.3.1 hold, and suppose (V, �∗) ∈ C0,1(Rd) × R is
a viscosity solution of (7.3.9). Define

Mt := V(Xt) +
∫ t

0

(
c̄(Xs,Us) − �∗

)
ds , t ≥ 0 .

The following hold:

(i) if U ∈ U, then M is an
(
F

X,U
t

)
-submartingale;

(ii) if for some U ∈ U the process M is an
(
F

X,U
t

)
-martingale, then U is optimal;

(iii) if U ∈ U is optimal and the process (X,U) is stationary with

EU

[∫
U

f (Xt, u)Ut(du)

]
=

∫
Rd×U

f dν , ν ∈P(Rd × U) , t ≥ 0 ,

then M is an
(
F

X,U
t

)
-martingale;

(iv) if U is optimal and the process (X,U) is ergodic with L (X0) = µ, then for any
viscosity solution (ψ, �) ∈ C0,1(Rd) × R of (7.3.9), we have � = �∗ and ψ − V is
constant on supp(µ), the support of µ.

Proof (i) Let U ∈ U. By (7.3.11) and Corollary 2.7.2,

e−αtV(Xt) +
∫ t

0
e−αs[c̄(Xs,Us) − �∗ + αV(Xs)

]
ds

is an
(
F

X,U
t

)
-submartingale. Letting α→ 0, (i) follows, since the submartingale

property with respect to the natural filtration is preserved under weak conver-
gence and uniform integrability.

(ii) Since M is an
(
F

X,U
t

)
-martingale under PU , we have

EU
x
[
V(Xt)

]
+

∫ t

0
EU

x
[
c̄(Xs,Us) − �∗

]
ds = V(x) .
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Dividing by t and letting t → ∞, arguing as in the proof of Theorem 7.3.10, we
obtain

lim
t→∞

1
t

∫ t

0
EU

x
[
c̄(Xs,Us)

]
ds = �∗ .

Thus U is optimal.
(iii) By stationarity, EU[Mt] =

∫
V dν. By (i), M is a submartingale. Suppose M is

not a martingale. Then there exists t > s > 0 and A ∈ FX,U
s with PU(A) > 0 such

that

EU[Mt | FX,U
s ] > Ms on A .

Now, ∫
V dν = EU[Mt] = E

U[
EU[Mt | FX,U

s ]
]

= EU[
EU[Mt IA | FX,U

s ]
]
+ EU[

EU[Mt IAc | FX,U
s ]

]
= EU[

IA E
U[Mt | FX,U

s ]
]
+ EU[

IAc EU[Mt | FX,U
s ]

]
> EU[Ms] =

∫
V dν ,

which is a contradiction.
(iv) That � = �∗ is proved in Theorem 7.3.10. Therefore, analogously to (iii),

ψ(Xt) +
∫ t

0

(
c̄(Xs,Us) − �∗

)
ds

is an
(
F

X,U
t

)
-martingale. Hence so is V(Xt) − ψ(Xt). Since it is uniformly inte-

grable, it converges µ-a.s., and since V−ψ is continuous, it must equal a constant
on supp(µ).

�

The following example shows that the viscosity solution of (7.3.9) is not neces-
sarily unique.

Example 7.3.12 With d = 1, let

c(x) =
(x2 − 1)2

(x2 + 1)3/2
, b(x, u) = −(x + u) ,

σ = 0, and U = [−1, 1]. Then the function

V(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x

1

(1 − z)2(1 + z)
(z2 + 1)3/2

dz if x ≥ 1 ,

∫ 1

x

(1 + z)2(1 − z)
(z2 + 1)3/2

dz if x < 1

is a viscosity solution to

min
u∈[−1,1]

[
b(x, u)

dV
dx

(x) + c(x)

]
= 0 , x ∈ R , (7.3.14)
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and so is V(−x). A third viscosity solution to (7.3.14) is given by

1 + sign(x)
2

V(x) +
1 − sign(x)

2
V(−x) , x ∈ R .

All three of these functions are in C1(R), and are therefore also classical solutions.
None of these three pairs differ by a constant, hence they are distinct.

The reason behind the lack of uniqueness in Example 7.3.12 is that the optimal
ergodic occupation measure in not unique. The theorem that follows clarifies this
issue.

Theorem 7.3.13 If the optimal ergodic occupation measure π∗ is unique, then there
is a unique viscosity solution in (V, �∗) ∈ C0,1(Rd) ×R of (7.3.9) satisfying V(0) = 0.

Proof Let (V, �) and (ψ, �′) be two viscosity solutions in C0,1(Rd) × R of (7.3.9),
with V(0) = ψ(0) = 0. By Theorem 7.3.10, � = �′ = �∗. Fix X0 = 0 and let Ū be as
in the proof of Theorem 7.3.10. Then

V(Xt) +
∫ t

0

(
c̄(Xs, Ūs) − �∗

)
ds , t ≥ 0 ,

is a martingale under PŪ . It is also clear from the proof of Theorem 7.3.10 that Ū
is optimal. Thus the associated mean empirical measures (see Lemma 2.5.3, p. 62)
converge to π∗ ∈ G . An argument analogous to the one leading to the martingale
property also shows that

ψ(Xt) +
∫ t

0

(
c̄(Xs, Ūs) − �∗

)
ds , t ≥ 0 ,

is a submartingale. Thus ψ(Xt) − V(Xt) is a submartingale. Since ψ − V has linear
growth, it is uniformly integrable. Hence, it converges a.s. By Theorem 7.3.11 (iv),
it must converge to the constant value C that ψ − V takes on supp(µ∗), where µ∗ is
the marginal of π∗ on Rd. Since ψ(0) − V(0) = 0, the submartingale property leads
to C ≥ 0. Interchanging the roles of V and ψ, and repeating the argument we deduce
C ≤ 0, hence C = 0. Using the submartingale property from an arbitrary initial
condition x ∈ Rd, we deduce that ψ(x)−V(x) ≤ 0, and V(x)−ψ(x) ≤ 0, respectively.
Hence ψ = V . �

7.4 Partially nondegenerate controlled diffusions

7.4.1 Preliminaries

In this section we turn to the problem of ergodic control of a reflecting diffusion in
a compact domain under the condition of partial nondegeneracy, i.e., when its tran-
sition kernel after some time is absolutely continuous with respect to the Lebesgue
measure on a part of the state space. The existence of a value function and a mar-
tingale dynamic programming principle is established by mapping the problem to a
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discrete time control problem. This approach also extends to partially nondegener-
ate diffusions on compact manifolds without boundary. The underlying idea may be
applicable to other problems as well, in so far as it offers a recipe for a passage from
continuous time to discrete time problems and back.

The remainder of this section describes the problem and the key hypothesis of
partial nondegeneracy. Section 7.4.2 reviews the associated discrete time control
problem. Section 7.4.3 uses these results to develop the martingale approach to the
dynamic programming principle for the original problem. Section 7.4.4 considers
problems on the entire domain, while Section 7.4.5 summarizes some further exten-
sions. It also establishes some implications to the problem of existence of optimal
controls.

We state the model in the relaxed control framework. Let D ⊂ Rd for d ≥ 1
be a bounded domain with a smooth boundary ∂D. Let X be a D̄-valued controlled
reflecting diffusion governed by

dXt = b̄(Xt,Ut) dt + σ(Xt) dWt − γ(Xt) dξt , t ≥ 0 . (7.4.1)

In this model

(i) b̄ : D̄×P(U)→ Rd is continuous and Lipschitz in its first argument uniformly
w.r.t. the second.

(ii) σ = [σi j]1≤i, j≤d : D̄→ Rd×d is Lipschitz continuous.
(iii) X0 is prescribed in law.
(iv) W = [W1, . . . ,Wd]T is a d-dimensional standard Brownian motion independent

of X0.
(v) U is a P(U)-valued control process with measurable sample paths satisfy-

ing the non-anticipativity condition that for t ≥ s, Wt − Ws is independent of
{X0,Ws′ ,Us′ : s′ ≤ s}.

(vi) ξ is an R-valued continuous nondecreasing process (“local time on the bound-
ary”) satisfying

ξt =

∫ t

0
I∂D(Xs) dξs . (7.4.2)

(vii) There exists η ∈ C2(Rd) satisfying |∇η| ≥ 1 on ∂D, such that

D =
{
x ∈ Rd : η(x) < 0

}
, ∂D =

{
x ∈ Rd : η(x) = 0

}
,

and

sup
u∈U

〈∇η(x), b(x, u)
〉
< 0 on ∂D , whenever σT(x)∇η(x) = 0 .

(viii) γ : D̄→ Rd is a smooth vector field such that, for some δ > 0,

〈γ(x),∇η(x)〉 ≥ δ > 0 ∀x ∈ ∂D .

Under these assumptions the existence of a unique weak solution of (7.4.1) –
(7.4.2) given the joint law of (X0,W,U) can be established as in [52, 86, 114], which
consider the uncontrolled case. In the controlled case, a solution to (7.4.1) – (7.4.2) is
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a quadruplet (X,U,W, ξ) defined on some probability space such that (X0,W,U) have
the prescribed joint law and (7.4.1) – (7.4.2) hold. Uniqueness of the weak solutions
means that if L (X0,W,U) is specified the law of the solution gets uniquely fixed.
This formulation is equivalent to the usual one in terms of feedback controls, to the
extent that it does not alter the set of attainable laws of X modulo a possible enlarge-
ment of the underlying probability space. This can be argued as in Theorem 2.3.4. In
particular, it should be emphasized that we are not fixing (X0,W,U) as processes on
a fixed probability space, but only in law.

Let m denote the Lebesgue measure on Rd. We work under the following hypoth-
esis:

Assumption 7.4.1 There exist positive constants T and C0 and a non-empty open
set G0 ⊂ D such that, for all x ∈ D̄,

PU(XT ∈ A ∩G0 | X0 = x) ≥ C0m(A ∩G0)

for all Borel A ⊂ D and any choice of U ∈ U.

We refer to Assumption 7.4.1 as the partial nondegeneracy hypothesis. It should
be noted that for unbounded D, this is not a reasonable hypothesis, since the left-hand
side would typically converge to zero as |x| → ∞ for any bounded G0. Therefore
the assumption of boundedness of D is essential here. We do, however, consider an
appropriate extension to the whole space later.

As an example, consider the scalar case with D = (−4R, 4R) for some R > 0.
Let σ(x) = 0 for |x| = 4R and ≥ 1 for |x| ≤ R. Also, let b(x, u) = −2x + u with
u ∈ U = [−R,R]. It is straightforward to verify Assumption 7.4.1 with G0 = (−R,R).
While this example is rather contrived, it does bring out the essential intuition be-
hind the assumption of partial nondegeneracy: that there be a part of the state space,
accessible from anywhere in finite time with positive probability, such that the diffu-
sion is nondegenerate there. This is analogous to the “unichain” condition in Markov
decision processes.

We conclude this section by noting that an immediate consequence of Assump-
tion 7.4.1 is that for any t > 0,

PU
x (XT+t ∈ A ∩G0) = EU

x
[
PU

Xt
(XT ∈ A ∩G0)

]
≥ C0m(A ∩G0) .

7.4.2 The associated discrete time control problem

This section describes an equivalent discrete time control problem. Let T > 0 be as
in Assumption 7.4.1 and set X̃n = XnT , n ≥ 0.

For x ∈ D̄, let Ax ⊂P
(C([0,∞); D̄) ×UT

)
be defined by

Ax :=
{
L

(
X[0,T ],U[0,T ]

)
: X0 = x , (X,U) satisfies (7.4.1)

}
. (7.4.3)

Theorem 7.4.2 The set Ax is compact.
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Proof Let (Xn,Wn,Un, ξn, Xn
0), n ≥ 1, satisfy (7.4.1) – (7.4.2) with Xn

0 = x, on
probability spaces (Ωn,Fn,Pn). Let { fi} be a countable, dense subset of the unit ball
of C(U) and define

αn
i (t) =

∫
U

fi(u) Un
t (du) , t ∈ [0,T ] .

Let B be the unit ball of L∞([0,T ]) with the topology given by the weak topology of
L2([0,T ]) relativized to B. Let E be the countable product of replicas of B with the
product topology. Let

αn = (αn
1, α

n
2, . . . ) .

Obviously the sequence (Xn, αn) is tight in P
(C([0,T ]; D̄)×E

)
. Therefore it contains

some subsequence, also denoted by (Xn, αn), which converges in law to a limit (X, α).
By Skorohod’s theorem we may assume that (Xn, αn : n ≥ 1) and (X, α) are defined
on a common probability space (Ω,F,P) and that this convergence is a.s. on (Ω,F,P).
Argue as in Theorem 2.3.2 to show that

αi(t) =
∫
U

fi(u) Ut(du)

for a P(U)-valued process U. It remains to show that X satisfies (7.4.1) – (7.4.2) for
some W̃, Ũ, ξ̃ on (Ω,F,P). Pick g ∈ C2(D) ∩ C1(D̄) satisfying〈

γ(x),∇g(x)
〉 ≤ −δ1 , x ∈ ∂D ,

for some δ1 > 0. For t ≥ t0 ≥ 0, and h ∈ Cb
(C([0, t0]; D̄);R+

)
, we have

E

[(
g(Xn

t ) − g(Xn
t0 ) −

∫ t

t0

LUn
s g(Xn

s ) ds
)

h
(
Xn

[0,t0]
)] ≥ 0 . (7.4.4)

Since (7.4.4) is preserved under weak convergence, letting n → ∞, it also holds for
(X,U). As in Chapter 2 we can replace U by a feedback Ũ (i.e., Ũ is progressively
measurable w.r.t. the natural filtration of X). Then

g(Xt) −
∫ t

0
LŨs g(Xs) ds

is a submartingale w.r.t. the natural filtration of X. The rest follows by using the sub-
martingale representation result in Stroock and Varadhan [114, theorem 2.5, pp. 165–
166]. �

Lemma 7.4.3 For each x ∈ D̄, Ax is convex and compact, and the set-valued map
x→ Ax is upper semicontinuous (i.e., it has a closed graph).

Proof Note that (7.4.1) – (7.4.2) is completely characterized in law as follows: if
f ∈ C2(D) ∩ C1(D̄) and ht ∈ Cb

(C([0, t]; D̄) ×Ut
)
, t ≥ 0, then for all 0 ≤ s ≤ t,

E

[(
f (Xt) − f (Xs) −

∫ t

s
L̄Ur f (Xr) dr

−
∫ t

s

∂ f
∂γ

(Xr) dξr

)
hs

(
X[0,s],U[0,s]

)]
= 0 (7.4.5)
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and

E

[(
ξ(t) − ξ(s) −

∫ t

s
I∂D(Xr) dξr

)
ht
(
X[0,t],U[0,t]

)]
= 0 . (7.4.6)

A standard monotone class argument shows that (7.4.5) is in fact the martingale for-
mulation of (7.4.1), and (7.4.6) coincides with (7.4.2). Now if (7.4.5) – (7.4.6) hold
under two probability measures, they do so under any convex combination thereof.
It follows that the set of attainable laws of L (X,U, ξ) for X0 = x, and therefore also
the set Ax are convex. By Theorem 7.4.2, Ax is also compact. Consider sequences
xn → x∞ ∈ D̄ and L (Xn,Un) ∈ Axn , n ≥ 1, and suppose without loss of generality
that L (Xn,Un) → L (X∞,U∞). Using the arguments in the proof of Theorem 7.4.2
we can show that L (X∞,U∞) ∈ Ax∞ . Thus the set-valued map x → Ax is upper
semicontinuous. �

Definition 7.4.4 For a pair (X,U) satisfying (7.4.1), with ν = L
(
X[0,t],U[0,t]

)
, and

X0 = x ∈ D̄, we denote by P̃ν
t (x, dy) ∈ P(D̄) the law of Xt for t ≥ 0 parameterized

by the control ν. In particular, if we define

K :=
{
(x,ν) : x ∈ D̄ , ν ∈ Ax

} ⊂ D̄ ×P
(C([0,T ]; D̄) ×UT

)
,

then (x,ν) �→ P̃ν
T (x, dy) maps (x,ν) ∈ K to L (XT ). We define X̃n = XnT , n ≥ 0.

Then {X̃n} is a D̄-valued controlled Markov chain with transition kernel P̃ν
T (x, dy).

Note that by Lemma 7.4.3, K is compact.

For the controlled process X̃, we consider the ergodic control problem of minimiz-
ing

lim sup
n→∞

1
n

n−1∑
m=0

E
[
c̃(X̃m, Z̃m)

]
, (7.4.7)

where Z̃n is an AX̃n
-valued control for n ≥ 0 and the running cost function is c̃ defined

by

c̃(x,ν) :=
1
T
E

[∫ T

0
c̄(Xt,Ut) dt

∣∣∣∣∣ X0 = x

]
, (x,ν) ∈ K ,

where the expectation is with respect to ν = L
(
X[0,T ],U[0,T ]

) ∈ Ax.

Theorem 7.4.5 There exists a unique pair (Ṽ , �̃), Ṽ ∈ C(D̄) and �̃ ∈ R, such that
Ṽ(x0) = 0 for a prescribed x0 ∈ D and

Ṽ(x) + �̃ = min
ν∈Ax

[
c̃(x,ν) +

∫
D̄

P̃ν
T (x, dy)Ṽ(y)

]
∀x ∈ D̄ . (7.4.8)

Moreover,

(i) �̃ is the optimal cost for the ergodic control problem corresponding to (7.4.7),
and,
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(ii) for any measurable selection D̄ � x �→ v(x) ∈ Ax, such that v(x) attains the
minimum on the right-hand side of (7.4.8), the control given by Z̃n = v(X̃n),
n ≥ 0 is optimal for the discrete time ergodic control problem in (7.4.7).

Proof By Assumption 7.4.1, we have∥∥∥P̃ν
T (x, · ) − P̃ν′

T (x′, · )
∥∥∥

TV
≤ 2

(
1 −C0m(G0)

)
(7.4.9)

for all pairs (x,ν), (x′,ν′) ∈ K . It is straightforward to verify using Lemma 7.4.3
that the map T defined by

T f (x) := min
ν∈Ax

[
c̃(x,ν) +

∫
D̄

P̃ν
T (x, dy) f (y)

]
,

maps C(D̄) to itself, and that by (7.4.9) it is a span contraction. Hence if x0 ∈ D̄ is
some fixed point and G is the subspace of C(D̄) consisting of those functions that
vanish at x0, the map T0 f := T f − T f (x0) is also a span contraction on G. Noting
that the span semi-norm is equivalent to the supremum norm on G, since ‖ f ‖∞ ≤
span( f ) ≤ 2‖ f ‖∞ for all f ∈ G, it follows that T0Ṽ = Ṽ for some Ṽ ∈ G. Then Ṽ and
�̃ := T Ṽ(x0) solve (7.4.8). The rest follows from standard results in Markov decision
processes, which can be found in Hernández-Lerma [73, sections 5.1–5.2]. �

Remark 7.4.6 That at least one such measurable selection exists follows from a
standard measurable selection theorem [13].

Lemma 7.4.7 If �∗ denotes the optimal cost for the continuous time ergodic control
problem defined in (7.2.2), then �∗ = �̃.

Proof Fix L (X0). We establish a correspondence between the laws of (X̃, Z̃) and
(X,U). Given a specific L (X,U), let

C([0, nT ]; D̄) ×UnT �
(
X[0,nT ],U[0,nT ]

) �→ vn
(
X[0,nT ],U[0,nT ]

) ∈ AXnT

for n ≥ 0, denote the regular conditional law of{
(Xt,Ut) : t ∈ [nT, (n + 1)T ]

}
,

given
(
X[0,nT ],U[0,nT ]

)
, and let Z̃n = vn

(
X[0,nT ],U[0,nT ]

)
for n ≥ 0. Then (X̃, Z̃) is a

pair of processes conforming to the above description. (Note that Z̃n is not mea-
surable with respect to σ{X̃m, Z̃m−1 : m ≤ n}, but this is permitted as long as it
does not anticipate the future.) It is clear that the ergodic cost (7.4.7) for (X̃, Z̃)
equals the ergodic cost (7.2.1) for (X,U). Thus �̃ ≤ �∗. Conversely, let x �→ v(x)
be a measurable selector from the minimizer on the right-hand side of (7.4.8) and
(X̃, Z̃) with L (X̃0) = L (X0) and Z̃n = v(X̃n), n ≥ 0, be an optimal pair. Con-
struct on the canonical path space C([0,∞); D̄) ×U (with its Borel σ-field) the pro-
cesses (X,U) by the following inductive procedure: Construct (Xt,Ut), t ∈ [0,T ],
such that the regular conditional law of

(
X[0,T ],U[0,T ]

)
given X0 is v(X0). At step n,

n ≥ 1, construct (Xt,Ut), t ∈ [nT, (n + 1)T ] such that the regular conditional law
of

(
X[nT,(n+1)T ],U[nT,(n+1)T ]

)
given

(
X[0,nT ],U[0,nT ]

)
is v(XnT ). This defines (X,U) such
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that the ergodic cost (7.2.1) for (X,U) is the same as the ergodic cost (7.4.7) for
(X̃, Z̃), which is �̃. Thus �∗ ≤ �̃. The claim follows. �

Lemma 7.4.8 For n ≥ 0 define

Mn := Ṽ(X̃n) +
n−1∑
m=0

(
c̃(X̃m, Z̃m) − �̃

)
,

and Fn := σ(X̃m , Z̃m : m ≤ n). Then (Mn,Fn), n ≥ 0, is a submartingale. If it
is a martingale, {Z̃n} is optimal. Conversely if (X̃, Z̃) is an optimal stationary pair,
(Mn,Fn), n ≥ 0, is a martingale.

Proof That (Mn,Fn), n ≥ 0, is a submartingale follows from (7.4.8). If (Mn,Fn) is
a martingale, we have

Ṽ(X̃n) =
(
c̃(X̃n, Z̃n) − �̃

)
+ E

[
Ṽ(Xn+1) | Fn

]
.

Sum over n = 0, 1, . . . , N, take expectations, divide by N and let N → ∞ to verify
that (7.4.7) equals �̃. If the last claim were false, we would have

Ṽ(X̃n) ≤
(
c̃(X̃n, Z̃n) − �̃

)
+ E

[
Ṽ(X̃n+1) | Fn

]
, n ≥ 0 ,

with the inequality being strict with positive probability. Taking expectations and
using stationarity, we observe that (7.4.7) strictly exceeds �̃, a contradiction. �

7.4.3 The dynamic programming principle

In this section, we show that the value function Ṽ of the dynamic programming equa-
tion (7.4.8) for the discrete time control problem also qualifies as the value function
for the continuous time problem. First we show that it suffices to consider stationary
solutions (X,U) of (7.4.2).

Lemma 7.4.9 There exists a stationary pair (X,U) which satisfies (7.4.1) – (7.4.2).
Moreover, any attainable value of (7.4.7) is also attainable by a stationary (X,U).

Proof Let (X,U) be any solution of (7.4.1) – (7.4.2) and define L (Xn,Un) as fol-
lows: For f ∈ Cb

(C([0,∞); D̄) ×U
)
,

E
[
f (Xn,Un)

]
=

1
n

∫ n

0
E
[
f
(
X ◦ θt,U ◦ θt

)]
dt , n ≥ 1 .

Using the fact that the solution measures L (X,U) of (7.4.1) – (7.4.2) are charac-
terized by (7.4.5) – (7.4.6), we argue using the convexity assertion of Lemma 7.4.3
that L (Xn,Un) is also a solution measure for (7.4.1) – (7.4.2) for n ≥ 1. Obviously
{L (Xn,Un) : n ≥ 1} is relatively compact. Using arguments as in the proof of The-
orem 7.4.2, we can show that any limit point thereof is also a solution measure for
(7.4.1) – (7.4.2). Also, for any T > 0 and f as above,

E
[
f (Xn,Un)

] − E [
f (Xn ◦ θT ,U

n ◦ θT )
] −−−−→

n→∞
0 ,
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and thus any limit point of L (Xn,Un) as n→ ∞ is stationary.
The second assertion follows along the lines of the proof of Lemma 6.5.4 on

p. 242. �

Lemma 7.4.10 For t > 0, x ∈ D̄, define

Vt(x) = inf
U∈U
EU

x

[∫ t

0

(
c̄(Xs,Us) − �̃

)
ds + Ṽ(Xt)

]
. (7.4.10)

Then Vt = Ṽ for all t ≥ 0.

Proof Clearly V0 = Ṽ . By (7.4.8), VT = Ṽ . If t ∈ [0,T ), standard dynamic pro-
gramming (DP) arguments show that Vt = VnT+t for all n ≥ 0. Thus, without any loss
of generality, it suffices to consider t ∈ [0,T ]. By standard DP arguments,

Ṽ(x) = inf
U∈U
EU

x

[∫ T−t

0

(
c̄(Xs,Us) − �̃

)
ds + Vt(XT−t)

]
. (7.4.11)

Combining (7.4.10) – (7.4.11), DP arguments again lead to

Vt(x) = inf
U∈U
EU

x

[∫ T

0

(
c̄(Xs,Us) − �̃

)
ds + Vt(XT )

]
.

Note that the solution Ṽ of (7.4.8) is unique up to an additive constant if we drop
the requirement Ṽ(x0) = 0. Thus Vt( · ) = Ṽ( · ) + a(t) for some a(t) ∈ R. From
(7.4.10) – (7.4.11) and standard DP arguments, we then obtain

Ṽ(x) = inf
U∈U
EU

x

[∫ T

0

(
c̄(Xs,Us) − �̃

)
ds + Ṽ(XT )

]
+ a(t) + a(T − t) .

By (7.4.8), we have

a(t) + a(T − t) = 0 , t ∈ [0,T ) . (7.4.12)

For a stationary solution (X,U),

Vt(X0) ≤ EU
X0

[∫ t

0

(
c̄(Xs,Us) − �̃

)
ds + Ṽ(Xt)

]
∀t ≥ 0 .

Taking expectations and using stationarity and the fact that Vt = Ṽ + a(t), yields

a(t) ≤ t
(
E [c̄(Xt,Ut)] − �̃

)
.

Taking the infimum of the right-hand side over all stationary L (X,U), we obtain by
Lemma 7.4.9, a(t) ≤ 0. In view of (7.4.12), we conclude that a(t) = 0 for all t, which
completes the proof. �

We have shown that

Ṽ(x) = inf
U∈U
EU

x

[∫ t

0

(
c̄(Xs,Us) − �∗

)
ds + Ṽ(Xt)

]
, t ≥ 0 . (7.4.13)

The proof of the theorem which follows is exactly analogous to Lemma 7.4.8,
using (7.4.13).



7.4 Partially nondegenerate controlled diffusions 271

Theorem 7.4.11 The family given by(
Ṽ(Xt) +

∫ t

0
(c̄(Xs,Us) − �∗) ds , FX,U

t

)
, t ≥ 0 , (7.4.14)

is a submartingale, and if it is a martingale, then (X,U) is an optimal pair. Con-
versely, if (X,U) is a stationary optimal pair, (7.4.14) is a martingale.

Theorem 7.4.11 constitutes a martingale DP principle in the spirit of Rishel [99]
and Striebel [113]. The next result provides a converse statement.

Theorem 7.4.12 Suppose V ′ ∈ C(D̄) and �′ ∈ R are such that(
V ′(Xt) +

∫ t

0
(c̄(Xs,Us) − �′) ds , FX,U

t

)
, t ≥ 0 ,

is a submartingale under any U ∈ U. Then �′ ≤ �∗. If in addition it is a martingale
for some (X,U), then the latter is optimal and �′ = �∗. Moreover, in this case, V ′ − Ṽ
is constant on the support of L (X0) ∈P(D̄) for any stationary optimal L (X,U).

Proof Let (X,U) be a stationary solution. By the submartingale property,

EU[
V ′(XT )

]
+

∫ T

0

(
EU[

c̄(Xs,Us)
] − �′

)
ds ≥ EU[

V ′(X0)
]
.

By stationarity

�′ ≤ EU[
c̄(Xt,Ut)

]
.

Taking the infimum over all stationary L (X,U) and using Lemma 7.4.9, we obtain
�′ ≤ �∗. If the submartingale is in fact a martingale under some (X,U), we have

EU[
V ′(Xt)

] − EU[
V ′(X0)

]
t

= �′ − 1
t

∫ t

0
EU[

c̄(Xs,Us)
]
ds .

Letting t → ∞, the ergodic cost (7.4.7) for (X,U) is �′. Then we must have �′ = �∗

and (X,U) must be optimal. Finally, if �′ = �∗, it follows that
(
V ′(Xt)− Ṽ(Xt) , F

X,U
t

)
is a bounded submartingale for any stationary optimal L (X,U), and therefore con-
verges a.s., which is only possible if it is constant a.s. with respect to the stationary
distribution. The last claim now follows in view of the continuity of Ṽ and V ′. �

7.4.4 Extension to the whole space

In this section we investigate (2.2.1), assuming that the partial nondegeneracy condi-
tion, Assumption 7.4.1, now holds on a bounded domain G0, which without loss of
generality is assumed C2, and that σ is nonsingular in some bounded domain G � G0.
We also assume that the running cost is bounded and Lipschitz continuous in x uni-
formly in u ∈ U. In order to extend the results of Section 7.3 to the present setup, we
need the following stronger stochastic Lyapunov condition:
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Assumption 7.4.13 There exists a pair of nonnegative, inf-compact functions

V1 ∈ C2(Rd) ∩ Cpol(R
d) and V2 ∈ C2(Rd)

such thatV1 ∈ o(V2), and for some β > 0,

LuV1 ≤ −1 and LuV2 ≤ −βV2 on Gc
0 , ∀u ∈ U .

Lemma 7.4.14 Under Assumption 7.4.13 and provided E [V2(X0)] < ∞, the col-
lection {V1(Xt) : t ≥ 0}, with U ranging over all admissible controls is uniformly
integrable.

Proof By (2.5.11),

EU[V2(Xt)] ≤
k0

β
+ EU[V2(X0)] ∀t ≥ 0 ,

for some k0 > 0. The result follows sinceV1 ∈ o(V2). �

We need the following technical lemma.

Lemma 7.4.15 Under the assumption that σ is nonsingular in G � G0, we have
τ(Gc

0) = τ(Ḡc
0) a.s.

Proof By Lemma 2.3.7, we may consider Xτ(Ḡc
0)+t in place of Xt and condition

on Xτ(Ḡc
0), so as to assume without any loss of generality that X0 = x ∈ ∂G0 (i.e.,

τ(Ḡc
0) = 0). Thus we need to show that τ(Gc

0) = 0 a.s. Since ∂G0 is C2, a C2 local
change of coordinates in a neighborhood of x renders x the origin in Rd and an
open neighborhood B of x intersects ∂G0 in the unit open ball in the hyperplane
{(x1, . . . , xd) : xd = 0}, centered at x (i.e., the origin). X may no longer satisfy (2.2.1),
but locally it is an Itô process with a uniformly nondegenerate diffusion matrix in a
small open neighborhood B ⊂ G. It suffices to show that a.s., the dth component of
this process takes both positive and negative values in a time interval [0, τ(B)∧ε) for
every ε > 0. To see this, first set the drift term to zero for t ∈ (0, ε) by an absolutely
continuous change of measure using the Girsanov formula. The dth component is
now purely a time-changed Brownian motion for t ∈ [0, τ(B)∧ε), for which this fact
is well known. �

Select an open G1 such that G0 � G1 � G. Define {τ̂n} as in Lemma 2.6.6 on
p. 70, with G0 and G1 replacing D0 and D1, respectively. Then by Lemma 2.5.5, {τ̂n}
have all their moments finite and bounded uniformly over U and over initial values
lying in compact subsets of Rd. Let X̃n = Xτ̂2n . As in Section 7.4.2, X̃ is a controlled
Markov chain on ∂G0 with state dependent control space

Ãx :=
{
L

(
Xt∧τ̂2 , Ut∧τ̂2 , t ≥ 0

)
: X0 = x , U ∈ U} , x ∈ ∂G0 .

Lemma 7.4.16 The map ∂G0 � x �→ Ãx is compact, convex-valued and upper
semicontinuous.
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Proof Let (X̂t , Ût) := (Xt∧τ̂2 ,Ut∧τ̂2 ). An element L (X̂, Û) is specified by its mar-
tingale characterization: for all f ∈ C2

b(Rd), g ∈ Cb
(C([0, s];Rd) × U[0,s]

)
, and

0 ≤ s < t, it holds that

E

[(
f (X̂t) − f (X̂s) −

∫ t

s
LUr f (X̂r) dr

)
g
(
X̂[0,s], Û[0,s]

)]
= 0 . (7.4.15)

If two probability measures on P
(C([0,∞);Rd) × U

)
are concentrated on paths

stopped at the corresponding τ̂2, so is their convex combination. Also, (7.4.15) holds
under convex combinations. Hence Ãx is convex. The set of laws L (X,U) with
X0 = x is compact by Corollary 2.3.9. Thus Ãx is tight. Consider a sequence of
solutions (Xn,Un) with Xn

0 = x, n ∈ N, and suppose L (Xn,Un) → L (X∞,U∞). By
Lemma 7.4.15, τ̂2 is an a.s. continuous function of the trajectories, while by Lem-
mas 2.5.1 and 7.4.14 it is uniformly integrable over U ∈ U and initial conditions in
a compact set. Thus applying (7.4.15) with X = Xn, U = Un, n ≥ 1, we can pass
to the limit as n → ∞ to conclude that (7.4.15) holds for L (X∞,U∞). Hence Ãx

is compact. Upper semicontinuity follows by a similar argument by considering a
sequence L (Xn,Un) with Xn

0 = xn ∈ ∂G0, and xn → x∞. �

Let P̃ν(x, dy) denote the controlled transition kernel for X̃, with ν ∈ Ãx.

Lemma 7.4.17 The map (x,ν) �→ P̃ν(x, dy) is continuous.

Proof Suppose (xn,νn) is a sequence converging to (x∞,ν∞) ∈ ∪x∈∂G0 {x} × Ãx

as n → ∞, with (X̃(n), Z̃(n)) denoting the corresponding controlled processes. Thus
X̃(n)

0 = xn and Z̃(n)
0 = νn for all n. Arguing as in Lemma 7.4.16 we conclude that

X̃(n) → X̃(∞) in law. �

Arguments analogous to the proofs of Theorem 7.4.5 and Lemma 7.4.7 show that
there exists Ṽ ∈ C(∂G0), and �̃ ∈ R such that

(i) �̃ is the optimal cost for the control problem that seeks to minimize

lim sup
T→∞

1
T

∫ T

0
EU

x
[
c̄(Xt,Ut)

]
dt ,

or equivalently [104, theorem 1],

lim sup
N→∞

∑N−1
n=0 E

[
c̃(X̃n, Z̃n)

]
∑N−1

n=0 E [τ̂2n+2 − τ̂2n]

over all admissible Z̃, with

c̃(x,ν) := Eν
x

[∫ τ̂2

0
c̄(Xt,Ut) dt

]
,

where the expectation Eν
x is with respect to ν = L

(
Xt∧τ̂2 ,Ut∧τ̂2 , t ≥ 0

) ∈ Ãx.
(ii) Ṽ satisfies [104, theorem 2]

Ṽ(x) = min
ν∈Ãx

[
c̃(x,ν) − �̃β(x,ν) +

∫
∂G0

P̃ν(x, dy)Ṽ(y)

]
, (7.4.16)

where β(x,ν) = Eν
x [τ̂2].
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(iii) �̃ = �∗ [104, theorem 2].

We extend Ṽ to Rd by defining, for x ∈ G0 ∪ Ḡc
0,

V(x) := inf
U∈U

J̃(x,U) ,

J̃(x,U) := EU
x

[∫ τ̃0

0
(c̄(Xs,Us) − �∗) ds + Ṽ(Xτ̃0 )

]
,

(7.4.17)

where τ̃0 := τ(G0 ∪ Ḡc
0). We then have the following lemma.

Lemma 7.4.18 (i) V is continuous and the infimum in (7.4.17) is attained.

(ii) {V(Xt) : t ≥ 0} is uniformly integrable.

Proof Note that V takes the form

V(x) = inf
Ǎx

EU
x

[∫ τ̃0

0
(c̄(Xs,Us) − �∗) ds + Ṽ(Xτ̃0 )

]
,

where

Ǎx :=
{
L

(
Xt∧τ̃0 , Ut∧τ̃0 , t ≥ 0

)
: X0 = x , U ∈ U} , x ∈ Rd .

Arguments directly analogous to the proof of Lemma 7.4.16 show that x �→ Ǎx is
compact, convex-valued and upper semicontinuous. Therefore in order to complete
the proof of the first part of the lemma it remains to show that (x,U) �→ J̃(x,U) is
continuous. Indeed, let (Xn,Un) be a sequence, with Xn

0 = xn, which converges to
(X∞,U∞) in law, while xn → x∞ ∈ Rd as n → ∞. By Lemma 7.4.15, τ̃0 is an a.s.
continuous function of the trajectories. By Assumption 7.4.13,

Lu(V1 +V2) ≤ −1 − βV2 on Gc
0 , ∀u ∈ U .

Moreover, since V1 ∈ o(V2), there exists β0 > 0 such that 1 + βV2 ≥ β0V1 on Gc
0.

Therefore, by Lemma 2.5.1,

EU
x
[
τ̃2

0
] ≤ 2

β0

(V1(x) +V2(x)
) ∀x ∈ Ḡc

0 , ∀U ∈ U ,

and uniform integrability of τ̃0 over U ∈ U and initial conditions in a compact subset
of Ḡc

0 follows. Also, since σ has full rank on G � G0, EU
x
[
τ̃2

0

]
is bounded uniformly

in U ∈ U and x ∈ G0 by Theorem 2.6.1 (b). It follows that τ̃0 is uniformly integrable
over U ∈ U and initial conditions in a compact subset ofRd. Since c is continuous and
bounded and Ṽ ∈ C(∂G0), it easily follows that J̃(xn,Un) → J̃(x,U∞), establishing
the continuity of J̃.

For part (ii), note that Lemma 2.5.1, Assumption 7.4.13 and (7.4.17) imply that
V ∈ O(V1). The result then follows by Lemma 7.4.14. �

Fix X0 = x and consider the admissible control U∗ obtained by patching up the
minimizer in (7.4.17) defined on [0, τ̃0] with the optimal processes on [τ̂2n, τ̂2n+2],
n ≥ 0, obtained from (7.4.16).
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Lemma 7.4.19 Let 0 ≤ s ≤ t be two bounded stopping times. Then, with sn = s∧τ̂2n

and tn = t ∧ τ̂2n+2, we have

EU

[∫ tn

sn

(c̄(Xs,Us) − �∗) ds + V(Xtn )
∣∣∣∣∣ FX,U
sn

]
≥ V(Xsn ) , PU −a.s. , (7.4.18)

for all n ≥ 0 and U ∈ U, with equality when U = U∗.

Proof In view of Lemma 7.4.18, this follows by a standard dynamic programming
argument. �

Taking expectations in (7.4.18) and letting n ↑ ∞, we obtain

EU

[∫ t

s

(c̄(Xs,Us) − �∗) ds + V(Xt)

]
≥ EU [V(Xs)] ,

with equality for U = U∗. It then follows that

Mt := V(Xt) +
∫ t

0

(
c̄(Xs,Us) − �∗

)
ds , t ≥ 0 , (7.4.19)

is an
(
F

X,U
t

)
-submartingale under PU , and it is a martingale for U = U∗. Following

the proof of Theorem 7.3.11 yields the following characterization:

Theorem 7.4.20 Let M be the process in (7.4.19). Then

(i) M is an
(
F

X,U
t

)
-submartingale under PU for all U ∈ U;

(ii) if M is an
(
F

X,U
t

)
-martingale, under some U ∈ U, then U is optimal;

(iii) if (X,U) is stationary optimal, then M is an
(
F

X,U
t

)
-martingale.

Theorem 7.4.21 Suppose σi j ∈ C2(Rd) ∩ C0,1(Rd). Then (V, �∗) in (7.4.17) is the
unique (up to a constant) viscosity solution to (7.3.9) in Cpol(Rd) × R.

Proof For x ∈ Rd let B(x) be an open ball centered at x, such that the family τ(B(x))
is uniformly integrable over {PU

y : y ∈ B(x) ,U ∈ U}. It is always possible to select
such a ball. Indeed if x ∈ G1, and B(x) � G, then uniform integrability follows
from the nondegeneracy hypothesis in G, while if x ∈ Gc

1 and B(x) � Ḡc
0, then

uniform integrability follows from the Lyapunov condition in Assumption 7.4.13.
By Theorem 7.4.20 and a dynamic programming argument

V(y) = min
U∈U
EU

y

[∫ τ(B(x))

0
(c̄(Xs,Us) − �∗) ds + V(Xτ(B(x)))

]
∀y ∈ B(x) .

Treating the expectation on the right-hand side as a cost functional for a control
problem on a bounded domain, it follows that V is the value function and hence is
a viscosity solution of (7.3.9) in B(x) for any x ∈ Rd. Thus (V, �∗) is a viscosity
solution of (7.3.9) on Rd. In view of Lemma 7.4.18 and the polynomial growth of
V1 in Assumption 7.4.13, uniqueness follows as in Theorems 7.3.10 and 7.3.13 upon
noting that the support of the marginal on Rd of any optimal ergodic occupation
measure corresponding to an ergodic (X,U) must contain G0. �
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7.4.5 Extensions and implications

We can extend our approach to the ergodic control problem to various other systems.
For example consider the model in Section 4.4.1 for the controlled diffusion in Rd

with periodic coefficients in the degenerate case

dXt = b̄(Xt,Ut) dt + σ(Xt) dWt . (7.4.20)

For each i = 1, 2, . . . , d, let b(x, · ), σ(x) and c(x, · ) be periodic in xi, with period Ti.
In such a situation the state space Rd is viewed as a d-dimensional torus given by

T := Rd/Πd
i=1(TiZ) .

Since the torus is a compact manifold without boundary, our method can be applied
to treat this problem. In fact our approach is applicable to a wide variety of prob-
lems as long as the passage from continuous time to discrete time problem and back
is feasible and a dynamic programming principle is available for the discrete time
problem.

In the rest of this section, we sketch some implications to the problem of exis-
tence of optimal Markov controls. The experience with discrete state or time ergodic
control would lead us to expect the existence of an optimal (X,U) where X is a time-
homogeneous Markov process and U is a stationary Markov control. This is indeed
possible here, as argued below.

Without loss of generality assume that Ti = 1, i = 1, . . . , d. Let τ0 = 0 and {τn}
be successive jump times of a Poisson process with rate 1, independent of all other
processes under consideration. Let X̂n = Xτn , n ≥ 0, and for x ∈ T,

Âx =
{
L (X,U) : (X,U) satisfies (7.4.1) – (7.4.2) up to an independent

killing time τ which is exponential with parameter 1
}
.

For ξ = L (X,U) ∈ Âx, let p̂(x, ξ; dy) denote the law of Xτ. Then {X̂n} is a controlled
Markov process on T with control space Âx at state x and controlled transition kernel
p̂( · , · ; dy). Assume that that σ is nonsingular in an open subset G0 ⊂ T, and for some
C̃0 > 0, the inequality

P
(
X̂1 ∈ G0 ∩ A

∣∣∣ X̂0 = x
)
≥ C̃0m(G0 ∩ A)

holds for any Borel A ⊂ T. Now we may repeat the arguments of Section 7.4.2
with minor modifications to obtain the following counterpart of (7.4.8): There exists
V̂ ∈ C(T) such that

V̂(x) = min
ξ∈Âx

[
ĉ(x, ξ) − � +

∫
p̂(x, ξ; dy)V̂(y)

]
,

where

ĉ(x, ξ) = E

[∫ τ

0
c̄(Xs,Us) ds

∣∣∣∣ X0 = x

]
,
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the expectation being w.r.t. ξ. Now consider the problem of minimizing

E

[∫ τ

0

(
c̄(Xs,Us) − �

)
ds + V̂(Xτ)

]
, (7.4.21)

where τ is exponential with parameter 1, independent of (X,U). For this problem,
a straightforward adaptation of Krylov’s Markov selection procedure (see Theo-
rem 6.7.2) allows us to obtain a family {Pv

x : x ∈ T} ⊂P
(C([0,∞);T)

)
corresponding

to a control v : T→P(U) such that:

(i) for each x, Pv
x = L (X) for X satisfying (7.4.1) – (7.4.2) with Ut = v(Xt);

(ii) for each x, the law L (X, v) is optimal for the problem of minimizing (7.4.21);

(iii) the set {Pv
x : x ∈ T} is a strong Markov family. In particular, it satisfies the

Chapman–Kolmogorov equations.

It is straightforward to show that for an optimal solution
(
Xt, v(Xt), t ≥ 0

)
as above(

V̂(Xt∧τ) +
∫ t∧τ

0

[
c̄
(
Xs, v(Xs)

) − �
]
ds , FX

t∧τ
)

is a martingale. By concatenating such optimal solutions on [τn, τn+1], n ≥ 0, we
construct a process (X,U) such that(

V̂(Xt) +
∫ t

0

[
c̄
(
Xs, v(Xs)

) − �
]

ds, FX
t

)
is a martingale and (7.4.1) – (7.4.2) holds with Ut = v(Xt) for all t ≥ 0. Arguing as in
Theorem 7.4.12, we conclude that this is an optimal solution.

Theorem 7.4.22 For the controlled diffusion with periodic coefficients in (7.4.20),
under the assumption that σ is not everywhere singular, there exists an optimal time-
homogeneous Markov solution corresponding to a stationary Markov control. This
solution inherits the periodic structure of the problem data.

Theorem 7.4.22 uses only the martingale dynamic programming principle, so it
also applies to the asymptotically flat and partially degenerate (on a bounded set as
well as the whole space) cases studied earlier. Contrast this with the existence results
proved in Sections 6.5 and 7.2 for the ergodic control problem for degenerate diffu-
sions in Rd or more general state spaces. Two kinds of results are available: one can
show the existence of an optimal stationary solution X corresponding to a station-
ary Markov control, but X is not guaranteed to be a Markov process. Alternatively,
one has the existence of an optimal X that is a Markov process with U a stationary
Markov control, but X is not guaranteed to be either a time-homogeneous Markov
process or a stationary process. Thus both results fall short of the ideal. Here, one
is able to get some improvement on the latter insofar as one has an optimal time-
homogeneous Markov process X corresponding to a stationary control, but this X
has not been proven to be stationary.
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7.5 Bibliographical note

Section 7.2. The existence results are based on the corresponding results for the
controlled martingale problem in [21].

Section 7.3. This is based on [11], with some corrections.

Section 7.4. This is based on [40], with several modifications and extensions. For
related work see [8].
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Controlled Diffusions with Partial Observations

8.1 Introduction

In this chapter we study the ergodic control problem for diffusions with partial ob-
servations. The system state is governed by the Itô stochastic differential equation

dXt = b(Xt,Ut) dt + σ(Xt) dWt , t ≥ 0 , (8.1.1)

where b, σ and W are as in Section 2.2. The process X in this context is often referred
to as the signal process and is unavailable for control purposes. Instead one has to
base the control decisions upon a related observations process Y described by

dYt = h(Xt) dt + dW′t , Y0 = 0 ,

where h : Rd → Rm, and W ′ is a standard m-dimensional Wiener process independent
of (W, X0). In the simplest formulation, the controller is required to select a control
process Ut, t ≥ 0, adapted to the natural filtration (i.e., the right-continuous comple-
tion of the σ-fields) generated by Y . These are the so-called strict-sense admissible
controls. We shall expand the class of allowable controls later on. The objective is of
course to minimize the ergodic cost

lim sup
T→∞

1
T
EU

[∫ T

0
c̄(Xt,Ut) dt

]
,

over the strict-sense admissible controls U ∈ U.
It so happens that even for relatively tame cost functionals such as the finite hori-

zon cost, the existence of strict-sense admissible optimal controls remains an open
issue. This has motivated a relaxation of this class to the so-called wide-sense admis-
sible controls within which an existence result can be established [60]. We defer the
definition of this class till after the appropriate machinery has been introduced.

Standard stochastic control methodology suggests that the correct state for this
control problem should be the sufficient statistics given the observed quantities. The
simplest choice at time t in this case (though not unique, as we shall soon see) is
the regular conditional law πt of Xt given the observed quantities {Ys,Us : s ≤ t}.
(Although for strict-sense admissible controls {Us : s ≤ t} is completely specified

                                                                                            
                                              

                                                            



280 Controlled Diffusions with Partial Observations

when {Ys : s ≤ t} is, we mention them separately in view of future relaxation of this
requirement.) Note that π is a P(Rd)-valued process. Its evolution is given by the
equations of nonlinear filtering described in the next section. These express π as a
P(Rd)-valued controlled Markov process controlled by U. While the state space has
now become more complex than the original, the big advantage of this formulation
is that it is now a completely observed control problem, equivalent to the original
partially observed control problem. This separates the two issues of estimation and
control: the equations of nonlinear filtering represent a Bayesian state estimation
scheme, which is followed by the pure control problem of controlling a completely
observed Markov process, viz., the conditional law that is the output of the estimation
scheme. For this reason the equivalent problem of controlling the conditional laws is
called the separated control problem.

In rare cases (this includes the all-important Linear–Quadratic–Gaussian or LQG
problem), one is able to find finite dimensional sufficient statistics. In other words, πt

is characterized completely by finitely many scalar processes. These then serve as an
equivalent state description, reducing the problem to a finite dimensional controlled
diffusion. For the LQG problem, the conditional law in question is Gaussian and
hence completely characterized by the conditional mean and conditional covariance
matrix. The former is described by the finite dimensional linear diffusion described
by the Kalman–Bucy filter, and the latter by the associated (deterministic) Riccati
equation. This should not come as a surprise – recall that when estimating one of
two jointly Gaussian random variables in terms of the other, the best least squares
estimate is the conditional mean, given as an affine function of the observed value of
the latter random variable, and the corresponding conditional variance is determinis-
tic.

We make the following assumptions throughout:

(i) b and σ satisfy (2.2.3) with a uniform Lipschitz constant over Rd.
(ii) b and σ are bounded and σσT is uniformly elliptic.

(iii) h ∈ C2(Rd;Rm) with linear growth for itself and its first and second order partial
derivatives.

(iv) The running cost function c : Rd × U → R is continuous and bounded from
below.

8.2 Controlled nonlinear filters

Let {Ft : t ≥ 0} and {F̄t : t ≥ 0} denote the natural filtrations of (X,Y,U) and (Y,U),
respectively. We may assume that F =

∨
t≥0 Ft, where (Ω,F,P) is the underlying

probability space. We next derive the evolution equation for the probability measure-
valued process π. For this purpose, define

Λ̄t := exp

(
−
∫ t

0
〈h(Xs), dW ′s〉 − 1

2

∫ t

0
|h(Xs)|2ds

)
.
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From our assumptions on b, σ, and h above, it follows by Theorem 2.2.2 that, for
any T > 0,

EU
x

[∫ T

0
|h(Xs)|2ds

]
< ∞ ,

uniformly over U and x in compact subsets of Rd. Then by Portenko’s criterion
(2.2.37) it follows that E [Λ̄t] = 1 for all t ≥ 0, and (Λ̄t,Ft), t ≥ 0, is an expo-
nential martingale. Thus one can consistently define a new probability measure P0

on (Ω,F ) as follows: if Pt,P0t denote the restrictions of P,P0 to (Ω,Ft), then

dP0t

dPt
= Λ̄t .

From the martingale property, it follows that P0t |Fs = P0s for t > s, whence the
definition is consistent. Let E0 denote the expectation operator under P0. By the
Cameron–Martin–Girsanov theorem, it follows that under P0, Y is a Wiener process
independent of (W, X0). One can also verify that

Λt :=
dPt

dP0t
= exp

(∫ t

0
〈h(Xs), dYs〉 − 1

2

∫ t

0
|h(Xs)|2ds

)
.

Furthermore, E0[Λt] = 1 for all t ≥ 0, and (Λt,Ft), t ≥ 0, is an exponential martingale
under P0. This change of measure facilitates our definition of wide-sense admissible
controls.

Definition 8.2.1 We say that U is a wide-sense admissible control if under P0, the
following holds:

(C8.1) Y ◦ θt − Yt is independent of ({Us,Ys : s ≤ t},W, X0).

We let Uws denote the class of wide-sense admissible controls.

That is, the control does not anticipate the future increments of the Wiener process
Y . Note that this includes strict-sense admissible controls. Since the specification of
wide-sense admissible controls is in law, a wide-sense admissible control as above
may be identified with the joint law of (Y,U). That is, the set Uws can be identified
with the set of probability measures on C([0,∞);Rm) × U such that the marginal
on C([0,∞);Rm) is the Wiener measure and (C8.1) holds. Since independence is
preserved under convergence in P(C([0,∞);Rm) × U ), it follows that this set is
closed. Since U is compact and the marginal on C([0,∞);Rm) is fixed as the Wiener
measure, it is also tight and therefore compact. Strict-sense controls correspond to
the situation where the regular conditional law on U given the Wiener trajectory in
C([0,∞);Rm) is Dirac, say δU , with the process U adapted to the natural filtration of
the Wiener process.

From now on we use the notation µ( f ) to denote
∫

f dµ for a function f and
a nonnegative measure µ. Also, let M(Rd) denote the space of finite nonnegative
measures on Rd equipped with the coarsest topology that renders continuous the
maps µ ∈ M(Rd) → µ( f ) for bounded continuous f . This is the same as the weak∗
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topology on the space of finite signed measures relativized to M(Rd). Define the
M(Rd)-valued process p of the so-called unnormalized conditional laws of Xt given
{F̄t : t ≥ 0} by

pt( f ) := E0

[
f (Xt)Λt | F̄t

]
, f ∈ Cb(Rd) .

Thus p0 = π0. By applying Itô’s formula to f (Xt)Λt, taking conditional expectations,
and using the fact that Y is adapted to {F̄t}, one obtains the evolution equation for the
process p:

pt( f ) = π0( f ) +
∫ t

0
ps(LUs f ) ds +

∫ t

0
〈ps( f h), dYs〉 (8.2.1)

for f ∈ C2
b(Rd).1 The evolution equation in (8.2.1) is called the (controlled) Duncan–

Mortensen–Zakai equation and displays p as anM(Rd)-valued Markov process con-
trolled by U. It is a linear stochastic PDE driven by the Wiener process Y when
viewed under P0 (which is usually the case).

Observe that for f ∈ Cb(Rd),

πt( f ) = E
[
f (Xt) | F̄t

]
=
E0

[
f (Xt)Λt | F̄t

]
E0

[
Λt | F̄t

] (8.2.2)

=
pt( f )
pt(1)

, (8.2.3)

where “1” denotes the constant function identically equal to 1. Equation (8.2.2) is
called the Kallianpur–Striebel formula and is an abstract Bayes formula. Equation
(8.2.3) establishes a relationship between p and π and justifies the terminology un-
normalized conditional law for p. Applying the Itô formula to (8.2.3) and organizing
the resulting terms, one obtains the evolution equation for π:

πt( f ) = π0( f ) +
∫ t

0
πs(LUs ( f )) ds +

∫ t

0

〈
πs( f h) − πs( f )πs(h), dIs

〉
, (8.2.4)

for f ∈ C2
b(Rd). Here the products of a scalar and a vector are interpreted as compo-

nentwise products and

It := Yt −
∫ t

0
πs(h) ds

= W ′
t +

∫ t

0

(
h(Xs) − πs(h)

)
ds , t ≥ 0 , (8.2.5)

is the so-called innovations process. Using the second expression in (8.2.5), it is
easily verified that It is an {Ft}-adapted process. Under P, it is a continuous path
zero mean martingale with quadratic variation 〈I〉t = t, t ≥ 0. (The latter is so be-
cause it differs from W ′ by a bounded variation term.) By Levy’s characterization

1 Conditioning inside the stochastic integral is justified by a standard approximation argument using
piecewise constant approximations of the integrand.
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of Wiener processes [19], it follows that it is a Wiener process under P. Thus under
P, (8.2.4) is a stochastic PDE driven by the Wiener process I and displays π as a
P(Rd)-valued controlled Markov process, with control U. This is the (controlled)
Fujisaki–Kallianpur–Kunita equation of nonlinear filtering. It should be mentioned
that, in the uncontrolled case, the innovations process I generates the same filtra-
tion as Y [2]. This is expected from its interpretation as the process that captures
the innovations, or incremental new information from the observations. In fact, for
the discrete time model, the innovations process can be viewed as the output of a
Gram–Schmidt orthonormalization procedure in the space of square-integrable ran-
dom variables applied to the observations process.

The equation

pt(1) = π0(1) +
∫ t

0
〈ps(h), dYs〉

= 1 +
∫ t

0
ps(1)〈πs(h), dYs〉

has the unique solution

pt(1) = exp

(∫ t

0
〈πs(h), dYs〉 −

1
2

∫ t

0
|πs(h)|2ds

)
,

whence

pt( f ) = πt( f ) exp

(∫ t

0
〈πs(h), dYs〉 −

1
2

∫ t

0
|πs(h)|2ds

)
, f ∈ Cb(Rd) . (8.2.6)

This specifies the process p in terms of the process π. Thus the two are interconvert-
ible, qualifying p as an alternative state variable for posing the control problem.

We introduce yet another equivalent process, the Clark–Davis pathwise filter. This
is theM(Rd)-valued process ν defined by

νt( f ) = E0

[
e−〈Yt , h(Xt)〉Λt f (Xt)

∣∣∣∣ F̄t

]
, f ∈ Cb(Rd) .

Then

νt( f ) = pt

(
e−〈Yt ,h( · )〉 f

)
,

pt( f ) = νt

(
e〈Yt ,h( · )〉 f

)
.

(8.2.7)

Thus this is yet another equivalent state variable. In order to derive its evolution
equation, define

L̃U
s f := LUs f − 〈∇ f ,σ(x)σT(x)JT(x)Ys〉 ,

q(x, y, u) := −〈y, J(x)b(x, u) + �(x)〉 − 1
2
|h(x)|2 + 1

2
〈y, J(x)σ(x)σT(x)JT(x)y〉 ,
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where

J := the Jacobian matrix of h ,

Hi := the Hessian matrix of hi , 1 ≤ i ≤ m ,

�i :=
1
2

tr
(
σTHiσ

)
, 1 ≤ i ≤ m ,

� := [�1, . . . , �m]T .

Then using the definition of ν, (8.2.1), and the Kunita–Itô formula for composition
of semimartingales [80, equation (1.2)], it follows that

νt( f ) = π0( f ) +
∫ t

0
νs(L̃

U
s f ) ds +

∫ t

0
νs(q( · ,Ys,Us) f ) ds (8.2.8)

for f ∈ C2
b(Rd). This is the evolution equation for ν, known as the Clark–Davis

pathwise filter. It stands apart from (8.2.1) and (8.2.4) in that it is not a stochastic
PDE, but a deterministic PDE (i.e., a PDE not involving a stochastic integral term)
with trajectories of Y , U featuring as random parameters. Note that

νt( f ) = Ẽ0

[
f (Xt) exp

(∫ t

0
q(Xs,Ys,Us) ds

)]
, f ∈ Cb(Rd), (8.2.9)

where X is the time-inhomogeneous diffusion with extended generator L̃U
s . The latter

is parameterized by the random parameters Y and U. Also, Ẽ0 denotes the expecta-
tion taken over the law of X when Y and U are treated as fixed parameters (we use P̃0

to denote the corresponding probabilities). For b and σ bounded and h ∈ C2
b(Rd), νt,

t > 0, is mutually absolutely continuous w.r.t. the Lebesgue measure on Rd [62]. By
(8.2.3) and (8.2.6), (8.2.7) it follows that πt, pt, νt for t > 0 are mutually absolutely
continuous w.r.t. each other and therefore w.r.t. the Lebesgue measure.

An alternative derivation of (8.2.8) goes as follows:

νt( f ) = pt

(
e−〈Yt ,h( · )〉 f

)
= E0

[
exp

(
−〈Yt, h(Xt)〉 +

∫ t

0
〈h(Xs), dYs〉 −

1
2

∫ t

0
|h(Xs)|2ds

)
f (Xt)

∣∣∣∣ F̄t

]
,

for f ∈ Cb(Rd). Apply the integration by parts formula to
∫ t

0
〈h(Xs), dYs〉 and then

change the measure E0

[
· | F̄t

]
to Ẽ0 (treating Y and U as fixed parameters) to obtain

(8.2.9). Then (8.2.8) follows from (8.2.9) by Itô’s formula. In fact, (8.2.9) is the
Feynman–Kac formula associated with the controlled extended generator L̃U

s and the
potential q.

Concerning the uniqueness of solutions to the evolution equations for π, p and
ν, with prescribed (Y,U), it follows from (8.2.3), (8.2.6) and (8.2.7) that it suffices
to prove uniqueness for any one of them. For the controlled case considered here,
ν appears to be the most convenient. See Haussmann [71] for one such result. For
bounded b and σ, and h in C2

b(Rd), uniqueness follows from standard results for
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the Cauchy problem for parabolic equations [83]. We do not address the uniqueness
issue for unbounded data. See Xiong [124] and references therein for an extensive
account of well-posedness results for uncontrolled nonlinear filters.

The final important fact about these processes that we need is the following con-
version formulas.

Theorem 8.2.2 For f ∈ Cb(Rd × U) and (X,U) as above,

E
[
f (Xt,Ut)

]
= E

[
πt( f ( · ,Ut))

]
= E0

[
pt( f ( · ,Ut))

]
= E0

[
νt

(
f ( · ,Ut)e

〈Yt ,h( · )〉
)]

.

Proof The first and the last equalities are clear. For the second, we have

E
[
πt( f ( · ,Ut))

]
= E0

[
f ( · ,Ut)Λt)

]
= E0

[
pt( f ( · ,Ut))

]
. �

Theorem 8.2.2 allows us to express the ergodic cost in various equivalent ways,
viz.,

lim sup
T→∞

1
T

∫ T

0
E [c(Xt,Ut)] dt = lim sup

T→∞

1
T

∫ T

0
E [πt(c( · ,Ut))] dt

= lim sup
T→∞

1
T

∫ T

0
E0

[
pt(c( · ,Ut))

]
dt

= lim sup
T→∞

1
T

∫ T

0
E0

[
νt

(
c( · ,Ut)e

〈Yt ,h( · )〉
)]

dt .

The three expressions on the right-hand side are convenient for use with π, p, and ν

as the state process with P, P0, and P0 the operative probability measure, respectively.
We shall stick to the first of these possibilities in what follows.

8.3 The separated control problem

Let c̃ : P(Rd) × U→ R be defined by

c̃(π, u) :=
∫
Rd

c(x, u) π(dx) .

Consider the separated control problem of controlling the process π governed by
(8.2.4) so as to minimize the ergodic cost

lim sup
T→∞

1
T

∫ T

0
E [c̃(πt,Ut)] dt (8.3.1)

over all U ∈ Uws.
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We first verify that this is a special instance of the controlled martingale problem
studied in Chapter 6. To this end, let

D(A) =
{

f ∈ Cb(P(Rd)) : f (µ) = g
(∫

f1 dµ, . . . ,
∫

fn dµ
)
∀µ , for some n ≥ 1,

g ∈ C∞c (Rn), and f1, . . . , fn ∈ D(L)
}
,

where L = Lu is as usual, with u ∈ U treated as a parameter. Define the operator
A : D(A)→ Cb(P(Rd) × U) by

A f (µ, u) =
n∑

i=1

∂g
∂xi

(∫
f1 dµ, . . . ,

∫
fn dµ

)
µ(L fi( · , u))

+
1
2

n∑
i, j=1

∂2g
∂xi∂x j

(∫
f1 dµ, . . . ,

∫
fn dµ

)
〈
µ( fih) − µ( fi)µ(h), µ( f jh) − µ( f j)µ(h)

〉
.

Under the hypotheses on the drift and diffusion coefficients of X, the assumptions
(A6.1) – (A6.3) of Chapter 6 on p. 220 do hold for A. We claim that assumption
(A6.4) on p. 232 also holds. To prove this, let f ∈ C2(Rd) be an inf-compact function
with bounded first and second partial derivatives, and let K > 0 be a bound of |Lu f |.
For any T > 0, (8.2.4) yields

sup
t∈[0,T ]

|πt( f )| ≤ K(1 + T ) + sup
t∈[0,T ]

∣∣∣∣∣∣
∫ t

0

〈
ϕs, dIs

〉∣∣∣∣∣∣ ,
where ϕs = πs( f h) − πs( f )πs(h). Thus for any M > 0,

inf
U∈U
PU

(
sup

t∈[0,T ]
|πt( f )| > M

)
≤ inf

U∈U
PU

(
sup

t∈[0,T ]

∣∣∣∣∣∣
∫ t

0

〈
ϕs, dIs

〉∣∣∣∣∣∣ > M + K(1 + T )

)

≤ C(T )
(M + K(1 + T ))2

,

for some constant C(T ). Here, the last inequality follows from (2.2.11) and (2.2.16a)
after a routine calculation. Since

{
µ ∈P(Rd) :

∫
f dµ < M

}
is compact in P(Rd)

for any inf-compact function f and any M > 0, this verifies (A6.4).
Additionally we consider one of the conditions (C7.1) or (C7.2) on p. 254. We

need the following lemma:

Lemma 8.3.1 Let E be a Polish space, and for ξ ∈ P(P(E)), define ξ̄ ∈ P(E)
by:

ξ̄(A) =
∫

P(E)
ν(A) ξ(dν) , A ∈ B(E) .

For B ⊂P(P(E)), define B̄ := {ξ̄ : ξ ∈ B} ⊂P(E). Then B ⊂P(P(E)) is tight if
and only if B̄ ⊂P(E) is tight.
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Proof Suppose B̄ is tight but B is not. By Urysohn’s theorem [20, proposition 7.2,
p. 106] E can be embedded densely and homeomorphically into a compact subset Ē
of the Hilbert cube [0, 1]∞. Let Ψ denote a map that identifies a µ ∈ P(E) with the
µ̄ ∈P(Ē) that assigns zero mass to Ě := Ē − E. Then Ψ is a continuous injection of
P(E) into P(Ē). Since B is not tight, we can find a sequence {ξn} ⊂ B that has no
limit point in P(P(E)). But by the compactness of Ē and therefore of P(Ē), and
in turn of P(P(Ē)), ξn → ξ∗ along a subsequence, for some ξ∗ ∈P(P(Ē)). Then
it must be the case that

ξ∗
({ν ∈P(Ē) : ν(Ě) > 0}) > 0 .

Therefore ξ̄∗(Ě) > 0, contradicting the tightness of B̄, since ξ̄n → ξ̄∗. Thus B must
be tight. Conversely, if B is tight, for any ε > 0, there exists a tight Kε ⊂P(E) such
that ξ(Kε) > 1− ε

2 for all ξ ∈ B. Let Gε be a compact set in E such that ν(Gε) > 1− ε
2

for all ν ∈ Kε, which is possible by the tightness of Kε. Then

ξ̄(Gε) =
∫

P(E)
ν(Gε) ξ(dν)

≥
∫

P(E)
IKε

(ν)ν(Gε) ξ(dν)

≥
(
1 − ε

2

)
ξ(Kε)

≥
(
1 − ε

2

)2

≥ 1 − ε .

Tightness of B̄ follows. �

We use the relaxed control framework as before, thus replacing U by P(U) and
replacing b, c,A and L by b̄, c̄, Ā and L̄, respectively. Let

G :=

{
µ ∈P(P(Rd) × U) :

∫
A f dµ = 0 , ∀ f ∈ D(A)

}
denote the set of all ergodic occupation measures. Note that under a stationary so-
lution (π,U) corresponding to µ ∈ G , (8.3.1) equals

∫
c̃ dµ. We assume that this is

finite for at least one such µ. Let �∗ = infµ∈G
∫

c̃ dµ. The set G is clearly closed and

convex. Under (C7.1),
{
µ ∈ G :

∫
c̃ dµ ≤ k

}
for k ∈ (0,∞) are compact. Thus condi-

tion (A6.5) of Chapter 6 on p. 242 holds. Let (π,U) denote a stationary solution to
the controlled martingale problem for Ā and X the state process in the background.

Define the mean empirical measures {ζ̄t : t > 0} by∫
Rd×U

f dζ̄t :=
1
t

∫ t

0
E
[
πs

(
f ( · ,Us)

)]
ds

=
1
t

∫ t

0
E
[
f (Xs,Us)

]
ds , f ∈ Cb(Rd × U) .

Lemma 8.3.2 Under (C7.2), the family
{
ζ̄t : t ≥ t0

}
is tight for any t0 > 0.

Proof This follows from Lemmas 2.5.3 and 8.3.1. �
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Our main result of this section now follows from the results of Section 6.5.

Theorem 8.3.3 Under either (C7.1) or (C7.2), the partially observed ergodic con-
trol problem has an optimal Markov solution and an optimal ergodic solution.

8.4 Split chain and the pseudo-atom

We next consider the problem of dynamic programming. With this in mind, in this
section we describe the Athreya–Ney–Nummelin split chain and pseudo-atom con-
struction along the lines of [91, chapter 5], adapted to the controlled Markov process
framework. (The original construction is for the uncontrolled case.) This is used in
Section 8.5 to derive the martingale dynamic programming principle for the sepa-
rated control problem. Let E be a Polish space endowed with its Borel σ-field E,
x �→ Ax ⊂ U an upper semicontinuous set-valued map. Suppose {Xn} is a controlled
Markov process on E with an associated control process {Zn}, where Zn takes values
in the compact metric space AXn . Thus

P (Xn+1 ∈ A | Xm,Zm, m ≤ n) = p(Xn,Zn; A) , A ∈ E , ∀n ∈ N .

The (controlled) transition kernel p is said to satisfy a minorization condition if there
exist B ∈ E, δ > 0, and ν ∈P(E) with ν(B) = 1, such that

p(x, u; A) ≥ δν(A) IB(x) ∀A ∈ E . (8.4.1)

Introduce the notation: for A ∈ E, let A0 = A×{0}, A1 = A×{1}. Define E∗ = E×{0, 1}
and for µ ∈P(E), define µ∗ ∈P(E∗) by:

µ∗(A0) = (1 − δ)µ(A ∩ B) + µ(A ∩ Bc) ,

µ∗(A1) = δµ(A ∩ B)

for A ∈ E. For a measurable f : E × U → R, define f ∗ : E∗ × U → R by

f ∗
(
(x, i), u

)
:= f (x, u) ∀x, u .

The split chain is a controlled Markov process {X∗n = (X̂n, in)} on E∗ with the associ-
ated control process {Z∗n} and the transition kernel p̂((x, i), u; dy) defined as follows:
for (x, i) ∈ E∗,

p̂((x, i), u; dy) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
p∗(x, u; dy) if (x, i) ∈ E0 \ B0 ,

1
1−δ

(
p∗(x, u; dy) − δν∗(dy)

)
if (x, i) ∈ B0 ,

ν∗(dy) if (x, i) ∈ E1 .

Likewise, for A ∈ E, the initial law satisfies

P
(
(X̂0, i0) ∈ A0

)
= (1 − δ)P (X0 ∈ A ∩ B) + P (X0 ∈ A ∩ Bc) ,

P
(
(X̂0, i0) ∈ A1

)
= δP (X0 ∈ A ∩ B) .
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Finally, the control process is prescribed in law by

P
(
Z∗n ∈ D | X∗m, Z∗k , m ≤ n, k < n

)
= P

(
Zn ∈ D | Xm, Zk, m ≤ n, k < n

)
.

Intuitively, the dynamics may be described as follows:

(a) If X̂n = x ∈ B, Zn = u, and in = 0, then X̂n+1 = y according to

1
1 − δ

(
p(x, u; dy) − δν(dy)

)
.

Moreover, if y ∈ B, then in+1 = 1 with probability δ. Otherwise, in+1 = 0.

(b) If X̂n = x ∈ B and in = 1, then X̂n+1 = y ∈ B according to ν(dy), and in+1 = 0 or
1 with probability 1 − δ or δ, respectively.

(c) If X̂n = x � B, Zn = u, and in = 0, then X̂n+1 = y according to p(x, u; dy), and
in+1 evolves as in (a).

(d) The set Bc × {1} is never visited.

The key point to note is that a transition out of B × {1} occurs with a probability
distribution independent of x and u. This makes it an atom in the sense of Meyn and
Tweedie [91], albeit a controlled version thereof. Furthermore, if {Xn} is ϕ-irreducible
[91, chapter 4] and ϕ(B) > 0, then ϕ∗(B × {1}) > 0, as can be easily verified. That
is, the atom is accessible in the terminology of ibid. As this is an atom for the split
chain and not for the original chain, it is called a pseudo-atom. The important fact
about the split chain which is valuable to us is the following:

Theorem 8.4.1 The processes {Xn} and {X̂n} agree in law.

Proof For A ∈ E,

P
(
X̂n+1 ∈ A | X̂m, Z∗m, m ≤ n

)
= P

(
X̂n+1 ∈ A | X̂m, Z∗m, m ≤ n, in = 0

)
P
(
in = 0 | X̂m, Z∗m, m ≤ n

)
+ P

(
X̂n+1 ∈ A | X̂m, Z∗m, m ≤ n, in = 1

)
P
(
in = 1 | X̂m, Z∗m, m ≤ n

)
.

If X̂n ∈ B, the right-hand side equals

1
1 − δ

(
p(X̂n,Z

∗
n; A) − δν(A)

) × (1 − δ) + δν(A) = p(X̂n,Z
∗
n; A) .

If X̂n � B, it equals p(X̂n,Z∗n , A) anyway. The claim now follows by a simple induc-
tion using our specification of the laws of X∗0 and {Z∗n}. �

We are interested in the special case when E = Rd and B is open with compact
closure. Let

τ0 := min{n ≥ 0 : Xn ∈ B} .
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Suppose there exist nonnegative inf-compact functions V and g on Rd such that V
is locally bounded, g ≥ 1 on Bc and∫

Rd
p(x, u; dy)V(y) −V(x) ≤ −g(x) ∀x ∈ Bc . (8.4.2)

The implication of (8.4.2) that interests us is:

Lemma 8.4.2 The stopping time τ0 is uniformly integrable over the controls Z and
over all initial conditions X0 = x belonging to any compact subset of Rd.

Proof Let K ⊂ Rd be a compact set. For R > 0, define

T ′R :=
τ0∑

n=1

IBR (Xn) and T ′′R :=
τ0∑

n=1

IBc
R
(Xn) .

By the optional sampling theorem,

EZ
x

⎡⎢⎢⎢⎢⎢⎢⎣τ0∧N∑
n=0

(
V(Xn+1) −

∫
Rd

p(Xn,Zn; dy)V(y)

)⎤⎥⎥⎥⎥⎥⎥⎦ = 0 , N ≥ 1 .

Hence, the Lyapunov condition (8.4.2) implies that

V(x) − EZ
x
[V(Xτ0∧N+1)

]
= EZ

x

⎡⎢⎢⎢⎢⎢⎢⎣τ0∧N∑
n=1

(
V(Xn) −

∫
Rd

p(Xn,Zn; dy)V(y)

)⎤⎥⎥⎥⎥⎥⎥⎦
≥ EZ

x

⎡⎢⎢⎢⎢⎢⎢⎣τ0∧N∑
n=1

g(Xn)

⎤⎥⎥⎥⎥⎥⎥⎦ .
Letting N ↑ ∞ and using Fatou’s lemma, we obtain

EZ
x [τ0] ≤ EZ

x

⎡⎢⎢⎢⎢⎢⎣ τ0∑
n=1

g(Xn)

⎤⎥⎥⎥⎥⎥⎦ ≤ V(x) ∀x ∈ Bc ,

and all admissible Z. Thus

EZ
x
[
T ′′R

] ≤ V(x)
infBc

R
g
,

which implies that for each ε > 0 there exists Rε > 0 such that if R > Rε, then
EZ

x
[
T ′′R

]
< ε, for all admissible Z and x ∈ K. Also, using the strong Markov property

with τ̌R denoting the first exit time from Bc
R, we obtain

EZ
x
[
T ′R

]
= EZ

x

[
EZ

Xτ̌R

[
T ′R

]] ≤ sup
x′∈BR

EZ
x′
[
τ0

] ≤ sup
x′∈BR

V(x′) ,

which implies that for each R > 0, there exists a constant M1(R) > 0 such that
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EZ
x
[
T ′R

] ≤ M1(R), for all admissible Z and x ∈ Rd. On the other hand, we have that

1
2
EZ

x
[
T ′R(T ′R − 1)

]
= E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
T ′R∑

n=1

⎛⎜⎜⎜⎜⎜⎝T ′R − n∑
k=1

IBR (Xk)

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦

= EZ
x

⎡⎢⎢⎢⎢⎢⎣ ∞∑
n=1

⎛⎜⎜⎜⎜⎜⎝T ′R − n∑
k=1

IBR (Xk)

⎞⎟⎟⎟⎟⎟⎠ I {T ′R ≥ n
}⎤⎥⎥⎥⎥⎥⎦

= EZ
x

⎡⎢⎢⎢⎢⎢⎣ ∞∑
n=1

I
{
T ′R ≥ n

}
EZ

x

⎡⎢⎢⎢⎢⎢⎣ τ0∑
k=n+1

IBR (Xk)
∣∣∣∣∣ Fn

⎤⎥⎥⎥⎥⎥⎦⎤⎥⎥⎥⎥⎥⎦
= EZ

x

⎡⎢⎢⎢⎢⎢⎣ ∞∑
n=1

I
{
T ′R ≥ n

}
EZ

Xn

[
T ′R

]⎤⎥⎥⎥⎥⎥⎦
≤ M1(R)EZ

x
[
T ′R

] ≤ M2
1(R) ,

which in turn implies that, if M2(R) := M1(R)
(
1+2M1(R)

)
, then EZ

x
[
(T ′R)2] ≤ M2(R),

for all admissible Z and x ∈ K. Thus, using the Cauchy–Schwartz, Markov and
Chebyshev inequalities, for any R > Rε, we obtain

EZ
x
[
τ0 I{τ0 > 2t}] ≤ EZ

x
[
T ′R I{T ′R > t}] + EZ

x
[
T ′R I{T ′′R > t}] + EZ

x
[
T ′′R

]
≤

√
EZ

x
[
(T ′R)2

]
PZ

x (T ′R > t) +
√
EZ

x
[
(T ′R)2

]
PZ

x (T ′′R > t) + EZ
x
[
T ′′R

]
≤
EZ

x
[
(T ′R)2]
t

+

√
EZ

x
[
(T ′R)2

]
EZ

x
[
T ′′R

]
√

t
+ EZ

x
[
T ′′R

]
<

M2(R)
t
+

√
εM2(R)
√

t
+ ε , ∀x ∈ K ,

for all admissible Z, and the result follows. �

Lemma 8.4.3 Let

τ∗ = min {n ≥ 0 : X∗n ∈ B × {1}} .

Then τ∗ is uniformly integrable over the controls Z∗ and over x belonging to any
compact subset A of Rd.

Proof Let

τ̃0 = min
{
n ≥ 0 : X∗n ∈ B × {0, 1}} ,

τ̃m = min
{
n > τ̃m−1 : X∗n ∈ B × {0, 1}} , m ≥ 1 .

Define

K := sup
x∈B

sup
Z∗
E [τ̃0 | X0 = x] ,
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and let {Fk} denote the natural filtration of (X∗,Z∗). Also, let Ex,i denote the condi-
tional expectation given X∗0 = (x, i). In view of Lemma 8.4.2, without loss of gener-
ality, we suppose that x ∈ B, i.e., Ex,i [τ̂0] = 0. Then, for m0 ∈ N, we have

Ex,i
[
τ∗ I {τ∗ > T }] ≤ ∞∑

m=0

Ex,i
[
τ̃m I {τ∗ = τ̃m} I {τ̃m > T }]

≤
m0∑

m=0

Ex,i [τ̃m I {τ̃m > T }] +
∞∑

m=m0+1

Ex,i
[
τ̃m I {τ∗ = τ̃m}

]
=

m0∑
m=0

Ex,i [τ̃m I {τ̃m > T }] + Ex,i
[
τ̃m0 I

{
τ∗ > τ̃m0

}]
+ Ex,i

⎡⎢⎢⎢⎢⎢⎢⎣ ∞∑
m=m0+1

m−1∑
k=m0

(τ̃k+1 − τ̃k) I {τ∗ = τ̃m}
⎤⎥⎥⎥⎥⎥⎥⎦ . (8.4.3)

Using the filtering property of conditional expectation by conditioning first at Fτ̃k+1

and then at Fτ̃k we obtain

Ex,i
[
τ̃m0 I

{
τ∗ > τ̃m0

}]
= Ex,i

⎡⎢⎢⎢⎢⎢⎢⎣m0−1∑
k=0

(τ̃k+1 − τ̃k) I {τ∗ > τ̃k} I
{
τ∗ > τ̃m0

}⎤⎥⎥⎥⎥⎥⎥⎦
= Ex,i

⎡⎢⎢⎢⎢⎢⎢⎣m0−1∑
k=0

(τ̃k+1 − τ̃k) I {τ∗ > τ̃k}P
(
τ∗ > τ̃m0 | Fτ̃k+1

)⎤⎥⎥⎥⎥⎥⎥⎦
≤

m0−1∑
k=0

(1 − δ)m0−k−1 Ex,i

[
I {τ∗ > τ̃k}E

[
τ̃k+1 − τ̃k | Fτ̃k

]]
≤

m0−1∑
k=0

K(1 − δ)m0−k−1 Px,i (τ∗ > τ̃k)

≤ Km0(1 − δ)m0−1. (8.4.4)

Also,

Ex,i

⎡⎢⎢⎢⎢⎢⎢⎣ ∞∑
m=m0+1

m−1∑
k=m0

(τ̃k+1 − τ̃k) I {τ∗ = τ̃m}
⎤⎥⎥⎥⎥⎥⎥⎦ = Ex,i

⎡⎢⎢⎢⎢⎢⎢⎣ ∞∑
k=m0

∞∑
m=k+1

(τ̃k+1 − τ̃k) I {τ∗ = τ̃m}
⎤⎥⎥⎥⎥⎥⎥⎦

=

∞∑
k=m0

Ex,i

[
E
[
(τ̃k+1 − τ̃k) I {τ∗ > τ̃k} | Fτ̃k

]]
=

∞∑
k=m0

Ex,i

[
I {τ∗ > τ̃k}E

[
τ̃k+1 − τ̃k | Fτ̃k

]]
≤ K

∞∑
k=m0

(1 − δ)k

=
K
δ

(1 − δ)m0 . (8.4.5)
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Using (8.4.4) and (8.4.5) in (8.4.3) we obtain

Ex,i
[
τ∗ I {τ∗ > T }] ≤ m0∑

m=1

Ex,i [τ̃m I {τ̃m > T }] + K

(
m0 +

1 − δ

δ

)
(1 − δ)m0−1 . (8.4.6)

Given ε > 0 we first select m0 = m0(ε) so that the second term on the right-hand side
of (8.4.6) does not exceed ε/2, and then select T large enough so that the first term on
the right-hand side of (8.4.6) has the same bound. Then Ex,i [τ∗ I {τ∗ > T }] ≤ ε, and
the proof is complete. �

Theorem 8.4.4 Under (8.4.2), the process {X∗n} has a unique invariant probability
measure given by

η(A) =
E
[∑τ∗−1

m=0 I{X∗m ∈ A∗}
∣∣∣ X∗0 ∈ B × {1}

]
E
[
τ∗

∣∣∣ X∗0 ∈ B × {1}
] , A ∈ E .

Proof From the strong law of large numbers, for f ∈ Cb(Rd),

lim
N→∞

1
N

N∑
m=0

f ∗(X∗m) = lim
N→∞

1
N

∑N
m=0

∑τ̃m+1−1
n=τ̃m

f ∗(X∗n)
1
N

∑N
m=0(τ̃m+1 − τ̃m)

=
E
[∑τ∗−1

m=0 f ∗(X∗m)
∣∣∣ X∗0 ∈ B × {1}

]
E
[
τ∗

∣∣∣ X∗0 ∈ B × {1}
] .

The claim follows from Theorem 8.4.1. �

8.5 Dynamic programming

In this section we derive a martingale dynamic programming principle for the sepa-
rated ergodic control problem. We make the following additional assumption:

(A8.1) There exist nonnegative inf-compact functions V ∈ C2(Rd) ∩ Cpol(Rd) and
g ∈ C(Rd) such that for some positive constants C and R, we have

LuV(x) ≤ −g(x) +CIBR (x) ∀u ∈ U .

We claim that without loss of generalityV can be assumed to satisfy

lim
t→∞

EU [V(Xt)]
t

= 0 ∀U ∈ U . (8.5.1)

Indeed, let g′ be a nonnegative inf-compact function satisfying g′ ∈ o(g) and V′ be
the minimal nonnegative solution in C2(Bc

R) of maxu∈U LuV′(x) = −g′(x) on Bc
R

and V′ = 0 on ∂BR. Extending the definition of V′ in BR and adding a constant to
make it nonnegative, the resulting function, which is also denoted byV′, is in C2(Rd)
and satisfies, for some constant C′, LuV′(x) ≤ −g′(x) + C′IBR (x) for all u ∈ U. By
Lemma 3.7.2 (i),V′ ∈ o(V). ThereforeV′ ∈ Cpol(Rd). Since (3.7.13) – (3.7.14) used
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in the proof of Lemma 3.7.2 (ii) also hold over any admissible U ∈ U, it follows that
V′ satisfies limt→∞

EU [V′(Xt)]
t = 0 under any U ∈ U. This proves the claim.

Consider the discrete time controlled Markov chain {Xn : n ≥ 0} with associ-
ated state-dependent action spaces Ax defined as in (7.4.3) and the transition kernel
P̃ν(x, dy), defined as in Definition 7.4.4 with t = 1 and D̄ replaced by Rd. Define

ĝ(x) := inf
U∈U
EU

x

[∫ 1

0
g(Xt) dt

]
, x ∈ Rd .

By (2.6.4), it follows that ĝ is inf-compact. Then∫
Rd

P̃ν(x, dy)V(y) −V(x) ≤ −ĝ(x) ∀x ∈ Rd , ∀ν ∈ Ax .

Thus (8.4.2) and therefore also Lemmas 8.4.2 and 8.4.3 hold for {Xn : n ≥ 0}.
Define

P0(Rd) =

{
µ ∈P(Rd) :

∫
|x|mµ(dx) < ∞ , m ∈ N

}
.

This is a closed subset of P(Rd). By Theorem 2.2.2,

E
[
|X0|2m

]
< ∞ =⇒ E

[
|Xt |2m

]
< ∞ ∀t ≥ 0 .

Therefore
∫
|x|2m πt(dx) < ∞ a.s. We assume that E

[
|X0|2m

]
< ∞ for all m ∈ N,

thereby viewing π as a P0(Rd)-valued process.
We use the vanishing discount approach. For simplicity of exposition, we assume

that the running cost function c is bounded. We also assume that it is Lipschitz con-
tinuous. The discounted cost under a U ∈ Uws and initial law π0 takes the form

JU
α (π0) = EU

π0

[∫ ∞

0
e−αt c̄(Xt,Ut) dt

]
,

where α > 0 is the discount factor. Here the explicit dependence on U and π0 is in-
dicated on the expectation operator. Define the associated discounted value function

Vα(π0) = inf
U∈Uws

JU
α (π0) .

The dynamic programming principle for this problem, proved by standard arguments
[28, pp. 121–122], is as follows.

Theorem 8.5.1 (i) For any t > 0,

Vα(π) = inf
U∈Uws

EU

[∫ t

0
e−αs ¯̃c(πs,Us) ds + e−αtVα(πt)

∣∣∣∣∣ π0 = π

]
,

where

¯̃c(π,U) :=
∫
U

[∫
Rd

c(x, u) π(dx)

]
U(du) .

(ii) The process
∫ t

0
e−αs ¯̃c(πs,Us) ds + e−αtVα(πt), t ≥ 0, is a submartingale w.r.t. the

natural filtration of π,U, and is a martingale if and only if U is optimal for the
α-discounted control problem.
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Next we derive a uniform bound for |Vα(π̂) − Vα(π̃)| over α > 0 for any pair
π̂, π̃ ∈P0(Rd). This requires that we be able to construct two processes with different
initial conditions on a common probability space, with the same control process that
is wide-sense admissible for both initial conditions, and optimal for one of them. Let
ξ ∈ Uws. Define

Ω′ = C([0,∞);Rd) × C([0,∞);Rd) × C([0,∞);Rm) ×U × C([0,∞);Rm) × Rd × Rd

and let G denote its product Borel σ-field. For n ≥ 1, let κn denote the Wiener
measure on C([0,∞);Rn). Define a probability measure P′0 on (Ω′,G) by

P′0(db, db′, dy, du, dy′, dx, dx′) = κd(db) κd(db′) ξ(dy, du) κm(dy′)Π(dx, dx′) ,

where Π(dx, dx′) ∈P(Rd ×Rd) satisfies Π(dx,Rd) = π̂(dx) and Π(Rd, dx′) = π̃(dx′).
Let ω′ = (b, b′, y, u, y′, x0, x′0) denote a generic element of Ω′. Define on (Ω′,G,P′0)
the canonical random variables U(ω′) = u ∈ U and

B̂(ω′) = b ∈ C([0,∞);Rd) , B̃(ω′) = b′ ∈ C([0,∞);Rd) ,

Ŷ(ω′) = y ∈ C([0,∞);Rm) , Ỹ(ω′) = y′ ∈ C([0,∞);Rm) ,

X̂0(ω′) = x0 ∈ Rd , X̃0(ω′) = x′0 ∈ R
d .

Henceforth we do not explicitly denote the ω′-dependence, as is customary. Let X̂,
X̃ denote the solutions of (8.1.1) when W is replaced by B̂, B̃ with initial conditions
X̂0, X̃0, respectively. Note that X̂0, X̃0 are not independent. Let Gt denote the right-
continuous completion of

σ
({

B̂s, B̃s, Ŷs, Ỹs,Us : s ≤ t
}
, X̂0, X̃0

)
for t ≥ 0. Then G =

∨
t≥0Gt. Define a new probability measure P′ on (Ω′,G) as

follows: If P′t , P
′
0t denote the restrictions of P, P0, respectively, to Gt, then

dP′t
dP′0t

= exp

(∫ t

0
〈h(X̂s), dŶs〉 +

∫ t

0
〈h(X̃s), dỸs〉 −

1
2

∫ t

0

(∣∣∣h(X̂s)
∣∣∣2 + ∣∣∣h(X̃s)

∣∣∣2) ds

)
.

Then on (Ω′,G,P′), X and X̃ are processes governed by a common control U.

Lemma 8.5.2 The control U is wide-sense admissible for both the processes X̂ and
X̃, with initial laws π̂ and π̃, respectively.

Proof Define probability measures P̂, P̃ on (Ω′,G) by: if P̂t, P̃t denote their
respective restrictions to Gt for t ≥ 0, then

dP̂t

dP′0t

= exp

(∫ t

0
〈h(X̃s), dỸs)〉 −

1
2

∫ t

0
|h(X̃s)|2 ds

)
,

dP̃t

dP′0t

= exp

(∫ t

0
〈h(X̂s), dŶs)〉 −

1
2

∫ t

0
|h(X̂s)|2ds

)
.
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Then

dP′t
dP̂t

= exp

(∫ t

0
〈h(X̂s), dŶs)〉 −

1
2

∫ t

0
|h(X̂s)|2 ds

)
,

dP′t
dP̃t
= exp

(∫ t

0
〈h(X̃s), dỸs)〉 −

1
2

∫ t

0
|h(X̃s)|2ds

)
.

Under P̂, Ŷ is a Brownian motion independent of X̂0, B̂ and for t ≥ 0, Ŷt+ · − Ŷt is
independent of {X̂0, B̂, (Us, Ŷs, s ≤ t)}. Similarly under P̃, Ỹ is a Brownian motion
independent of X̃0, B̃ and for t ≥ 0, Ỹt+ · − Ỹt is independent of {X̃0, B̃, (Us, Ỹs, s ≤ t)}.
The claim follows. �

Let π̂ and π̃ denote the P0(Rd)-valued processes of conditional laws of X̂ and X̃,
respectively, given observations Ŷ , respectively Ỹ , and the control U up to the present
time.

In the foregoing, we choose ξ to be optimal for the discounted cost problem with
initial law π̂. Consider the discrete time process X̄n = (X̃n, X̂n), n ≥ 0. In view of
the nondegeneracy assumption on σ, the minorization condition (8.4.1) holds for X̄
relative to any bounded domain B ∈ Rd × Rd, ν the normalized Lebesgue measure
on B, and a suitable δ > 0.

Let X∗ denote the corresponding split chain and C∗ the pseudo-atom. Define

τ := min {n ≥ 0 : X̄∗n ∈ C∗} ,

the coupling time at the pseudo-atom. By (A8.1), the function V̄ : R2d → R, defined
by V̄(x, y) := V(x) + V(y) also satisfies the same Lyapunov condition relative to
some ball BR, with C, R and g appropriately defined. Therefore, by Lemma 2.5.1,
Ex,y

[
τ(Bc

R)
] ∈ O

(V̄(x, y)
)
. Hence it is integrable with respect to Π ∈P0(R2d). Then

for any T > 0 and ε > 0,

Vα(π̃) − Vα(π̂) ≤ E
[∫ ∞

0
e−αt

(
¯̃c(π̃t,Ut) − ¯̃c(π̂t,Ut)

)
dt

]

= E

[∫ ∞

0
e−αt

(
c̄(X̃t,Ut) − c̄(X̂t,Ut)

)
dt

]

= E

[∫ τ

0
e−αt

(
c̄(X̃t,Ut) − c̄(X̂t,Ut)

)
dt

]

≤ K1

√
T

∫ T

0

(
E |X̂t − X̃t |2

)1/2

dt + K1 E
[
(τ − T )+

]
≤ K2(T )

(
E |X̂0 − X̃0|2

)1/2

+ K1 E
[
(τ − T )+

]
≤ K2(T ) (ρw(π̂, π̃) + ε) + K1 E

[
(τ − T )+

]
, (8.5.2)

where ρw is the Wasserstein metric (see p. 72), K1 is a bound for c and also a common
Lipschitz constant for c, tr(σ) and b in its first argument, and K2(T ) is a continuous
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function of T . In (8.5.2), the first inequality follows from our choice of ξ, the first
equality follows by deconditioning, the second equality follows from the fact that
the conditional laws of (X̂ ◦ θτ ,U ◦ θτ) and (X̃ ◦ θτ ,U ◦ θτ) given Fτ coincide,2

the second inequality from the boundedness and Lipschitz continuity of c, the third
inequality follows from Lemma 2.2.5 and Remark 2.2.6, and the last (fourth) in-
equality follows from the definition of ρw by an appropriate choice of the joint law
Π for the pair (X̂0, X̃0). By interchanging the roles of π̂ and π̃, we get a symmetric
inequality. Combined with the above, it yields

|Vα(π̃) − Vα(π̂)| ≤ K2(T ) (ρw(π̂, π̃) + ε) + K1 E
[
(τ − T )+

]
.

Recall that x �→ supU∈Uws
EU

x [τ] ∈ O(V̄). Hence there exists a constant c > 0 such
that, for any compact set K ⊂ R2d,

sup
U∈Uws

EU
Π

[
(τ − T )+

] ≤ c
∫

Kc
V̄(x)Π(dx) + sup

x∈K
sup

U∈Uws

EU
x
[
(τ − T )+

]
. (8.5.3)

For ε > 0, choose a suitable K to make the first term on the right-hand side of (8.5.3)
less than ε/2. By Lemma 8.4.2, τ is uniformly integrable over all U ∈ Uws and all ini-
tial conditions x = (x̃, x̂) in a compact set. Thus EU

x
[
(τ − T )+

]
can be made less than

ε/2 uniformly over x in compacta and U ∈ Uws, by selecting a sufficiently large T . It
follows that the second term on the right-hand side of (8.5.2) can be made arbitrarily
small by choosing T large enough, uniformly over Π in a compact subset of P(R2d).
Fix π∗ ∈P0(Rd). It follows by (8.5.2), that Vα(π̃) − Vα(π∗) is bounded and equicon-
tinuous with respect to the metric ρw on compact subsets of P(Rd). Since P0(Rd) is
a σ-compact subset of P(Rd), it follows that the family {Vα(π̃) − Vα(π∗) : α ∈ (0, 1)}
is locally bounded and locally equicontinuous in P0(Rd).

It is also clear that the quantity αVα(π∗) is bounded uniformly in α ∈ (0, 1) by the
bound on c. Invoking the Ascoli–Arzelà and the Bolzano–Weierstrass theorems, we
may now drop to a subsequence as α ↓ 0, along which V̄α converges to some V in
C(P0(Rd)) and αV̄α(π∗) converges to a constant � ∈ R. Letting T = 0 in (8.4.6), by
Lemmas 8.4.2 and 8.4.3 we have that Ex,i [τ∗] ∈ O

(
Ex [τ0]

)
. With V as in (A8.1),

let Ṽ(π) :=
∫
V(x) π(dx) for π ∈ P0(Rd). In view of the foregoing, we then have

Vα − Vα(π∗) ∈ O
(Ṽ)

, and hence V ∈ O
(Ṽ)

. In view of (8.5.1), we then have

lim
t→∞

EU [V(πt)]
t

= 0 ∀U ∈ U . (8.5.4)

The following now follows by familiar arguments from Theorem 7.3.11 and Sec-
tions 7.4.3 and 7.4.4.

Theorem 8.5.3 Under (A8.1), the constant � above is uniquely characterized as
the optimal ergodic cost for the ergodic control problem under partial observations
and the pair (V, �) ∈ (C(P0(Rd)

) ∩ O(Ṽ)
) × R satisfies the dynamic programming

2 Here we have to explicitly use the correspondence between the continuous time controlled diffusion
and its discrete time skeleton as spelt out in the proof of Lemma 7.4.7.
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equation

V(π̃) = inf
U∈Uws

EU

[∫ t

0

( ¯̃c(πs,Us) − �
)

ds + V(πt)
∣∣∣∣∣ π0 = π̃

]
, t ≥ 0 . (8.5.5)

In particular, (
V(πt) −

∫ t

0

( ¯̃c(πs,Us) − �
)

ds, F̄t

)
, t ≥ 0 , (8.5.6)

is a submartingale and if it is a martingale, then the pair (π,U) is optimal. In the
converse direction, if (π,U) is a stationary optimal pair, then (8.5.6) is a martingale.
Moreover, if (V ′, �′) ∈ (C(P0(Rd)

) ∩ O(Ṽ)
) × R is another pair satisfying (8.5.5),

then �′ = � and V ′ = V on the support of L (π0) for any stationary optimal (π,U).

In view of Theorem 8.5.3, Theorem 8.3.3 can be improved as follows:

Theorem 8.5.4 Under either (C7.1) or (C7.2), the partially observed ergodic con-
trol problem admits an optimal time-homogeneous Markov, or optimal ergodic solu-
tion.

The strengthening from “Markov” to “time-homogeneous Markov” goes exactly
as in Section 7.4.5.

Remark 8.5.5 Note that the foregoing was carried out under the relaxation of the
original control problem over strict-sense admissible controls to the larger class of
(relaxed) wide-sense admissible controls. To say that this is a valid relaxation, we
need to argue that the infimum of the cost attained over either strict-sense admissible
controls or wide-sense admissible controls is the same. While this is quite standard
for the simpler costs such as finite horizon or infinite horizon discounted costs, it is
far from obvious for the ergodic cost. We first sketch the scenario for the former. Let
(X,U) be an optimal pair where U is wide-sense admissible. Let ε > 0. Argue as in
the proof of Theorem 2.3.1 to obtain a precise control that is constant on intervals
of the type [nT, (n + 1)T ), n ≥ 0, with T > 0, so that the cost, finite horizon or
discounted infinite horizon as the case may be, is within ε of the optimal. However,
this situation can be mapped to a discrete time control problem as in Definition 7.4.4
for which the observation process is {Yn}, where Yn ∈ C([0,T ];Rm) is defined by
Yn := {Yt : t ∈ [nT, (n + 1)T ]} for n ≥ 0. This problem will have an optimal
control that is strict-sense admissible [20]. This control in turn maps into a piecewise
constant strict-sense admissible ε-optimal control for the original continuous time
control problem.

Unfortunately, this argument which mimics that of [59] does not carry automat-
ically over to ergodic control because the ergodic cost is not necessarily a lower
semicontinuous function of the law of (π,U). We can, however, use the dynamic
programming principle in Theorem 8.5.3 to achieve this objective. Let the expecta-
tion on the right-hand side of (8.5.5), i.e.,

EU

[∫ T

0

( ¯̃c(πt,Ut) − �
)

dt + V(πT )
∣∣∣∣∣ π0 = π̃

]
, T ≥ 0 ,
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be viewed as a cost functional for the finite horizon control problem for π over Uws.
Fix ε > 0. As in [59], there exists a strict-sense admissible ε-optimal Us ∈ U for this
problem. Thus

E [V(π0)] ≥ EUs

[∫ T

0

( ¯̃c(πt,Ut) − �
)

dt + V(πT )

]
− ε .

Extend Us to [0,∞) by concatenating such ε-optimal strict-sense admissible seg-
ments on [0, 1], [1, 2], . . . Then

E [V(π0)] ≥ EUs

[∫ n

0

( ¯̃c(πt,Ut) − �
)

dt + V(πn)

]
− εn , n ∈ N .

It is easy to deduce from this and (8.5.4) that

lim sup
T→∞

1
T
EUs

[∫ T

0

¯̃c(πt,Ut) dt

]
≤ � + ε ,

i.e., the strict-sense admissible control Us is ε-optimal for the ergodic cost.
The situation is, however, not as unreasonable as it may seem. For the optimal con-

trol we obtained to be strict-sense admissible, what we need is that the corresponding
controlled nonlinear filter should have a strong solution. This is not easy to come by,
given that the situation is essentially “degenerate.” Nevertheless, the optimal control
is still legitimate in so far as it does not use any information that it should not, such
as the state process. Implicitly, it uses additional randomization of its own to attain
optimality.

8.6 Bibliographical note

Section 8.2. Our treatment of controlled nonlinear filters follows [28, section V.1].
See [124] for an extensive account of filtering theory.

Section 8.3. Here we follow [21].

Section 8.4. This is adapted from [91, chapter 5].

Section 8.5. The treatment of ergodic control with partial observations follows [33,
35] using weaker hypotheses.



Epilogue

We conclude by highlighting a string of issues that still remain open.

1. In the controlled martingale problem with ergodic cost, we obtained existence of
an optimal ergodic process and optimal Markov process separately, but not of an
optimal ergodic Markov process, as one would expect from one’s experience with
the nondegenerate case. This issue still remains open. In particular it is unclear
whether the Krylov selection procedure of Section 6.7, which has been used to
extract an optimal Markov family for the discounted cost problem under nonde-
generacy, can be similarly employed for the ergodic problem. The work in Bhatt
and Borkar [22] claims such a result under very restrictive conditions, but the
proof has a serious flaw.

2. The HJB equation was analyzed in two special cases. The general case remains
open. In particular, experience with discrete state space problems gives some
pointers:

(a) In the multichain case for Markov chains with finite state space S and finite
action space A, a very general dynamic programming equation is available due
to Howard [53], viz.,

V(i) = min
u∈A

[
c(i, u) − �(i) +

∑
j

p( j | i, u)V( j)
]
,

�(i) = min
u∈A

∑
j

p( j | i, u) �( j) ,

for i ∈ S . Here the unknowns are the value function V and the state depen-
dent optimal cost �. An analog of this for the degenerate diffusion case could
formally be written down as

min
u∈U

(LuV(x) + c(x, u) − �(x)
)
= 0 ,

min
u∈U
Lu�(x) = 0 .

This has not been studied.



Epilogue 301

(b) Likewise, the linear programming formulation in terms of ergodic occupation
measures has the following general form for the multichain case, due to Kallen-
berg [75]:

Minimize
∑
i,u

π(i, u)c(i, u)

subject to: ∑
i

π(i, u)p( j | i, u) = π( j, u) ,∑
i,u

π(i, u) = 1 , π(i, u) ≥ 0 , ∀i, u∑
i,u

ξ(i, u)p( j | i, u) −
∑

u

ξ( j, u) =
∑

u

π( j, u) − ν( j) , ∀ j ,

where ν is the initial law of the chain. This too has no counterpart for the
degenerate diffusion case.

3. We have not considered controlled diffusions with the control also appearing in
the diffusion matrix and have given our rationale for doing so. As we commented,
while the associated HJB equation has been studied, at least for the simpler cost
functions (see, e.g., [46]), it is the stochastic differential equation that poses well-
posedness issues. In the nondegenerate case with Markov controls, one has exis-
tence of solutions [78], but not uniqueness [92]. This calls for a good selection
principle.

4. Ergodic control of diffusions with jumps has been reported in [5, 89, 90]. How-
ever, the treatment is far from being complete.

5. Show that the value function for the partially observed problem is a viscosity
solution of the appropriate infinite dimensional HJB equation.

6. The ergodic control problem in the presence of state constraints or singular con-
trols presents a variety of open issues. See Kurtz and Stockbridge [82] for an
important recent development in this direction.

7. In our study of singularly perturbed ergodic control, we did not allow the diffusion
matrix of the slow variable to depend on the fast variable, in order to avoid diffi-
culties akin to item 3 above. This remains open, as does the singularly perturbed
problem in the degenerate case.

8. Controlled reflected diffusions on non-smooth domains. As pointed earlier, if the
domain D is not smooth, the problem is quite challenging.

9. The relative value iteration scheme for controlled Markov chains with ergodic
cost (see Puterman [97, p. 205]) suggests the following continuous time and space
analog:

∂V
∂t

(x, t) = min
u∈U

[LuV(x, t) + c(x, u)
] − V(x0, t) ,

where x0 is a fixed point in the state space. Does V( · , t) converge to a solution of
equation (3.6.4) as t → ∞?





Appendix

Results from Second Order Elliptic Equations

In this appendix we summarize some essential results of strong solutions of sec-
ond order elliptic equations. Standard references are Gilbarg and Trudinger [67] and
Chen and Wu [43]. Good accounts of the interface between stochastic differential
equations and partial differential equations appear in Bass [12], Friedman [63] and
Stroock and Varadhan [115].

A.1 Nondegenerate elliptic operators

The model in (2.2.1) gives rise to a class of elliptic operators, with v ∈ Usm appearing
as a parameter. We adopt the following parameterization.

Definition A.1.1 Let γ : (0,∞) → (0,∞) be a positive function that plays the role
of a parameter. Using the standard summation rule for repeated indices, we denote
by L(γ) the class of operators

L = ai j∂i j + bi∂i − λ ,

with ai j = a ji, λ ≥ 0, and whose coefficients {ai j} are locally Lipschitz and {bi, λ} are
locally bounded and measurable and satisfy, on each ball BR ⊂ Rd,

d∑
i, j=1

ai j(x)ξiξ j ≥ γ−1(R)|ξ|2 ∀x ∈ BR , (A.1.1a)

for all ξ = (ξ1, . . . , ξd) ∈ Rd, and

max
i, j
|ai j(x) − ai j(y)| ≤ γ(R)|x − y| ∀x, y ∈ BR , (A.1.1b)

d∑
i, j=1

∥∥∥ai j
∥∥∥

L∞(BR)
+

d∑
i, j=1

∥∥∥bi
∥∥∥

L∞(BR)
+

∥∥∥λ∥∥∥
L∞(BR)

≤ γ(R) . (A.1.1c)

Also, we let L0(γ) denote the class of operators in L(γ) satisfying λ = 0.
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Remark A.1.2 Note that the linear growth condition is not imposed on the class
L ∈ L(γ). The assumptions in (2.2.4) essentially guarantee that τR ↑ ∞ as R → ∞,
a.s., which we impose separately when needed.

A.2 Elliptic equations

Of fundamental importance in the study of elliptic equations is the following esti-
mate for strong solutions due to Alexandroff, Bakelman and Pucci [67, theorem 9.1,
p. 220].

Theorem A.2.1 Let D ⊂ Rd be a bounded domain. There exists a constant Ca

depending only on d, D, and γ, such that if ψ ∈ W 2,d
loc (D) ∩ C(D̄) satisfies Lψ ≥ f ,

with L ∈ L(γ), then

sup
D

ψ ≤ sup
∂D

ψ+ +Ca

∥∥∥ f
∥∥∥

Ld(D)
. (A.2.1)

When f = 0, Theorem A.2.1 yields generalizations of the classical weak and
strong maximum principles [67, theorems 9.5 and 9.6, p. 225]. These are stated
separately below.

Theorem A.2.2 Let L ∈ L(γ). If ϕ, ψ ∈ W 2,d
loc (D) ∩ C(D̄) satisfy Lϕ = Lψ in a

bounded domain D, and ϕ = ψ on ∂D, then ϕ = ψ in D.

Theorem A.2.3 If ϕ ∈ W 2,d
loc (D) and L ∈ L(γ) satisfy Lϕ ≥ 0 in a bounded domain

D, with λ = 0 (λ > 0), then ϕ cannot attain a maximum (nonnegative maximum) in
D unless it is a constant.

A function ϕ ∈ W 2,d
loc (D) satisfying Lϕ = 0 (Lϕ ≤ 0) in a domain D is called

L-harmonic (L-superharmonic). We also say that ϕ is L(γ)-harmonic in D, if it
L-harmonic for some L ∈ L(γ). As a result of Theorem A.2.3, L0(γ)-harmonic func-
tions cannot attain a maximum nor a minimum in a domain unless they are constant.

Harnack’s inequality plays a central role in the study of harmonic functions. For
strong solutions this result is stated as follows [67, corollary 9.25, p. 250].

Theorem A.2.4 Let D be a domain and K ⊂ D a compact set. There exists a
constant CH depending only on d, D, K and γ, such that if ϕ ∈ W 2,d

loc (D) is L(γ)-
harmonic and nonnegative in D, then

ϕ(x) ≤ CHϕ(y) ∀x, y ∈ K .

If Φ =
{
ϕi : i ∈ I} is a family of nonnegative L(γ)-harmonic functions in a domain

D, which are bounded above at some point x0 ∈ D, i.e., supi∈I ϕi(x0) < M0 for some
M0 ∈ R, then they are necessarily equicontinuous on every compact subset of D.
First, note that by Theorem A.2.4, Φ is dominated on compact subsets of D by the
constant CH M0. To show equicontinuity we use the following well-known a priori
estimate [43, lemma 5.3, p. 48].
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Lemma A.2.5 If ϕ ∈ W 2,p
loc (D) ∩ Lp(D), with p ∈ (1,∞), then for any bounded

subdomain D′ � D we have∥∥∥ϕ∥∥∥
W 2,p(D′)

≤ C0

(∥∥∥ϕ∥∥∥
Lp(D)
+

∥∥∥Lϕ∥∥∥
Lp(D)

)
∀L ∈ L(γ) , (A.2.2)

with the constant C0 depending only on d, D, D′, p, and γ.

Returning to the family Φ and applying Lemma A.2.5 with p ≡ d and D′ � D, we
obtain the estimate ∥∥∥ϕ∥∥∥

W 2,d(D′)
≤ C0CH M0|D′|

1/d ∀ϕ ∈ Φ .

This estimate and the compactness of the embedding W 2,d(D) ↪→ C0,r(D̄), r < 1,
asserted in Theorem A.2.15, imply the equicontinuity of Φ. It is also the case that
the limit of any convergent sequence of nonnegative L-harmonic functions is also
L-harmonic. Indeed, if {ϕn} is a sequence of nonnegative L-harmonic functions in
a domain D and ϕn → ϕ, then since the convergence is uniform on any bounded
subdomain D′ � D, it follows that {ϕn} is a Cauchy sequence in Lp(D) for any
p ∈ (1,∞), and hence by (A.2.2) {ϕn} is also Cauchy in W 2,d(D′′) for any D′′ � D′.
Therefore ϕ ∈ W 2,d

loc (D) and Lϕ = 0 in D.
We summarize these results in the following theorem.

Theorem A.2.6 Let D ⊂ Rd be a domain. Any family of nonnegative L(γ)-harmonic
functions in D, which is bounded at some point of D, is equicontinuous on compact
subsets of D. The limit of any convergent sequence of nonnegative L-harmonic func-
tions in D, with L ∈ L(γ), is L-harmonic. In particular, any monotone sequence of
L-harmonic functions in D which is bounded at some point of D converges uniformly
on compacts to an L-harmonic function.

We turn now to the Dirichlet problem. Let D be a domain in Rd. We seek solutions
to the equation

Lϕ = − f in D , ϕ = g on ∂D . (A.2.3)

The special case g ≡ 0 is called Poisson’s equation for L.
We refer the reader to Gilbarg and Trudinger [67] and Chen and Wu [43] for results

on the existence and uniqueness of solutions of the Dirichlet problem. We summarize
some of these results below.

Theorem A.2.7 Let D be a bounded C2 domain in Rd, L ∈ L(γ), λ ≥ 0, and
f ∈ Lp(D).

(i) If p ∈ (1,∞) and g ≡ 0, then the Dirichlet problem (A.2.3) has a unique solution
ϕ ∈ W 2,p(D) ∩W 1,p

0 (D). Moreover, we have the estimate∥∥∥ϕ∥∥∥
W 2,p(D)

≤ C′0
∥∥∥ f

∥∥∥
Lp(D)

(A.2.4)

for some constant C′0 = C′0(d, p, D, γ).

(ii) If p ≥ d and g ∈ C(∂D), then (A.2.3) has a unique solution ϕ ∈ W 2,p
loc (D)∩C(D̄).

Another useful version of the Dirichlet problem is the following.
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Theorem A.2.8 Let D and L be as in Theorem A.2.7, and p ∈ (1,∞). For each
f ∈ Lp(D) and g ∈ W 2,p(D) there exists a unique ϕ ∈ W 2,p(D) satisfying

ϕ − g ∈ W 1,p
0 (D) and Lϕ = − f in D .

Moreover, the estimate

‖ϕ‖W 2,p(D) ≤ C′0
(‖ f ‖Lp(D) + ‖Lg‖Lp(D) + ‖g‖W 2,p(D)

)
,

holds with the same constant C′0 as in Theorem A.2.7.

When the coefficients of the operator and the data are smooth enough, then classi-
cal solutions are obtained. This property is known as elliptic regularity. We quote a
result from Gilbarg and Trudinger [67, theorem 9.19, p. 243].

Theorem A.2.9 Suppose D is a C2,1 domain, and that the coefficients of L and f
belong to C0,r(D̄), with r ∈ (0, 1). Then any ϕ ∈ W 2,p

loc (D), with p ∈ (1,∞), satisfying
Lϕ = − f in D, L ∈ L(γ), belongs to C2,r(D̄).

Another useful property of solutions of elliptic PDEs that we use quite often is the
following:

Lemma A.2.10 Let D be a bounded C0,1 domain and L ∈ L(γ). If ϕ ∈ W 2,p(D) for
some p ∈ (1,∞), and Lϕ ∈ Lq(D), q > p, then ϕ belongs to W 2,q

loc (D). It follows that
if Lϕ ∈ L∞(D), then ϕ ∈ W 2,q(D) for all q ∈ (1,∞).

In certain places, we employ some specialized results which apply to a class of
L-superharmonic functions, which is defined as follows:

Definition A.2.11 For δ > 0 and D a bounded domain, let K(δ, D) ⊂ L∞(D) denote
the positive convex cone

K(δ, D) :=
{
f ∈ L∞(D) : f ≥ 0 ,

∥∥∥ f
∥∥∥

L∞(D)
≤ δ|D|−1

∥∥∥ f
∥∥∥

L1(D)

}
.

We quote the following theorem from Arapostathis et al. [7].

Theorem A.2.12 There exists a positive constant C̃a = C̃a(d, γ,R, δ) such that if
ϕ ∈ W 2,p

loc (BR) ∩W 1,p
0 (BR) satisfies Lϕ = − f in BR, ϕ = 0 on ∂BR, with f ∈ K(δ, BR)

and L ∈ L(γ), then

inf
BR/2

ϕ ≥ C̃a

∥∥∥ f
∥∥∥

L1(BR)
.

The Harnack inequality has been extended in [7, corollary 2.2] to the class of
superharmonic functions satisfying −Lϕ ∈ K(δ, D).

Theorem A.2.13 Let D be a domain and K ⊂ D a compact set. There exists a
constant C̃H = C̃H(d, D, K, γ, δ), such that if ϕ ∈ W 2,d

loc (D) satisfies Lϕ = − f and
ϕ ≥ 0 in D, with f ∈ K(δ, D) and L ∈ L(γ), then

ϕ(x) ≤ C̃Hϕ(y) ∀x, y ∈ K .
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We summarize some useful embedding results below [43, proposition 1.6, p. 211],
[67, theorem 7.22, p. 167]. We start with a definition.

Definition A.2.14 Let X and Y be Banach spaces, with X ⊂ Y . If, for some constant
C, we have ‖x‖Y ≤ C‖x‖X for all x ∈ X, then we say that X is continuously embedded
in Y and refer to C as the embedding constant. In such a case we write X ↪→ Y . We
say that the embedding is compact if bounded sets in X are precompact in Y .

Theorem A.2.15 For any bounded domain D ⊂ Rd, the following embeddings are
compact.

(1a) for p < d, W 1,p
0 (D) ↪→ Lq(D) for p ≤ q < pd

d−p ;

(1b) for p > d, W 1,p
0 (D) ↪→ C(D̄).

If D is a bounded C0,1 domain and k ∈ N, then

(2a) if kp < d, then W k,p(D) ↪→ Lq(D) is compact for p ≤ q < pd
d−kp and continuous

for p ≤ q ≤ pd
d−kp ;

(2b) if �p > d and � ≤ k, then W k,p(D) ↪→ Ck−�,r(D̄) is compact for r < � − d
p and

continuous for r ≤ � − d
p (r ≤ 1).

In particular, W 2,d(D) ↪→ C0,r(D̄) is compact for r < 1, and W 2,p(D) ↪→ C1,r(D̄) is
compact for p > d and r < 1 − d

p .

A.3 The resolvent

Throughout the section we fix the class L ∈ L0(γ) for some γ : (0,∞)→ (0,∞), and
for a generic L ∈ L0(γ) we let Px and Ex be the associated probability measure and
expectation operator, respectively, for the diffusion process that starts at x ∈ Rd.

Definition A.3.1 We define the λ-resolvent Rλ, for λ ∈ (0,∞), by

Rλ[ f ](x) := Ex

[∫ ∞

0
e−λt f (Xt) dt

]
,

=

∫ ∞

0
e−λtTt f (x) dt , f ∈ L∞(Rd) .

Observe that Rλ[ f ] is also well defined if f is nonnegative and belongs to L∞loc(Rd).
For a bounded domain D, and f ∈ L∞(D), p ∈ (1,∞), we let

RD
λ [ f ](x) := Ex

[∫ τ(D)

0
e−λt f (Xt) dt

]
, x ∈ D .

Suppose f ∈ L∞(Rd). If ψ ∈ W 2,p
loc (Rd) ∩ L∞(Rd), p ∈ (1,∞), is a solution of

Poisson’s equation (in Rd)

Lψ − λψ = − f , (A.3.1)
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then it follows from the Itô–Krylov formula that ψ = Rλ[ f ]. Indeed,

e−λt Ex
[
ψ(Xt)

] − ψ(x) = Ex

[∫ t

0
e−λs(Lψ(Xs) − λψ(Xs)

)
ds

]
. (A.3.2)

Letting t → ∞ in (A.3.2), and using dominated convergence, we obtain

ψ(x) = −Ex

[∫ ∞

0
e−λs(Lψ(Xs) − λψ(Xs)

)
ds

]
,

and the assertion follows by (A.3.1). Conversely, as shown later in Lemma A.3.4,
if Rλ[ f ] ∈ C(Rd), then it is a solution of (A.3.1) in Rd. As a result, if f ∈ L∞(Rd),
then Rλ[ f ], for λ ∈ (0,∞), is the unique bounded solution in Rd of (A.3.1) (see
Corollary A.3.6 below). Concerning resolvents in a bounded domain we have the
following lemma.

Lemma A.3.2 Let D be a bounded C2 domain, f ∈ L∞(D), and λ ∈ [0,∞). Then

ϕ(x) = Ex

[∫ τ(D)

0
e−λt f (Xt) dt

]
, x ∈ D

is the unique solution of Poisson’s equation (A.3.1) in D, ϕ = 0 on ∂D, in the class
W 2,p(D) ∩W 1,p

0 (D), 1 < p < ∞.

Proof By Theorem A.2.7, Poisson’s equation on the domain D has a unique solu-
tion ϕ ∈ W 2,p(D)∩W 1,p

0 (D). Let {Dn} be an increasing sequence of C2 domains with
∪n∈NDn = D. Define sn = τ(Dn). Recall that by Lemma 2.6.5, τ(D) is finite almost
surely. Using the Itô–Krylov formula, we obtain

Ex
[
e−λ(t∧sn)ϕ(Xt∧sn )

] − ϕ(x) = Ex

[∫ t∧sn

0
e−λs(Lϕ(Xs) − λϕ(Xs)

)
ds

]
= −Ex

[∫ t∧sn

0
e−λs f (Xs) ds

]
. (A.3.3)

Let n → ∞ and then t → ∞ in (A.3.3) and use the fact that ϕ = 0 on ∂D to obtain
the result. �

Next, we characterize the solution of the Dirichlet problem

Lψ − λψ = 0 in D , ψ = g on ∂D . (A.3.4)

Lemma A.3.3 Let D be a bounded C2 domain, g ∈ C(∂D), and λ ∈ [0,∞). Then

ψ(x) = Ex
[
e−λτ(D)g(Xτ(D))

]
, x ∈ D

is the unique solution to (A.3.4) in the class W 2,p
loc (D) ∩ C(D̄), p ∈ (1,∞).

Proof By Lemma 2.6.5, τ(D) < ∞ a.s. We use the argument in the proof of
Lemma A.3.2, but let first t → ∞ and then n → ∞ in (A.3.3), to obtain by dom-
inated convergence ψ(x) = Ex

[
e−λτ(D)ϕ(Xτ(D))

]
. Then use the fact that Px(τ(D)) = 0

for x ∈ ∂D. Uniqueness follows by Theorem A.2.7. �
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Lemma A.3.4 Let f ∈ L∞loc(Rd), and λ ∈ (0,∞). If Rλ[ f ] ∈ C(Rd), then it satisfies

L(Rλ[ f ])(x) + f (x) = λRλ[ f ](x) a.e. (A.3.5)

Proof Let R > 0. Using the strong Markov property, decompose Rλ[ f ] as

Rλ[ f ](x) = Ex

[∫ τR

0
e−λt f (Xt) dt

]
+ Ex

[
e−λτRRλ[ f ](XτR )

]
. (A.3.6)

Let ϕ ∈ W 2,p(BR) ∩W 1,p
0 (BR) be the unique solution to Poisson’s equation (A.3.1),

and ψ ∈ W 2,p
loc (BR) ∩ C(B̄R) the unique solution to (A.3.4) with g = Rλ[ f ]. Then,

by Lemma A.3.2, the first term on the right-hand side of (A.3.6) equals ϕ, while by
Lemma A.3.3, the second term on the right-hand side of (A.3.6) equals ψ. Adding
(A.3.1) and (A.3.4) it follows that Rλ[ f ] satisfies (A.3.5) in every ball BR. �

Let λ ∈ (0, 1) and ϕ[ f ] denote the solution of the Dirichlet problem

Lϕ − λϕ = − f on BR , ϕ = 0 on ∂BR ,

for R > 0. By Theorem A.2.1,

sup
BR

∣∣∣ϕ[ f ]
∣∣∣ ≤ Ca

∥∥∥ f
∥∥∥

Ld(BR)
.

It follows that for each x ∈ BR, the map f �→ ϕ[ f ](x) defines a bounded linear
functional on Ld(BR). By the Riesz representation theorem there exists a function
gR(x, · ) ∈ Lq(BR), q = d

d−1 , such that

ϕ[ f ](x) =
∫

BR

gR(x, y) f (y) dy .

The function gR(x, y) is called the Green’s function for BR relative to the operator
L − λ. Now let A be a Borel set in BR and set f = IA. Let

g̃R(x, A) :=
∫

A
gR(x, y) dy .

By the maximum principle, g̃R(x, A) is a nondecreasing (nonnegative) function of R,
and therefore gR(x, · ) is also increasing as a function of R, a.e. Set g = limR→∞ gR.
Using Lemma A.3.2 and (A.3.6), with λ > 0, we obtain, by monotone convergence∫ ∞

0
e−λt Px(Xt ∈ A) dt = lim

R→∞

∫ τR

0
e−λt Px(Xt ∈ A) dt

= lim
R→∞

∫
A

gR(x, y) dy

=

∫
A

g(x, y) dy .

Moreover, by Theorem A.2.12, it holds that

inf
x∈BR/2

∫
A

gR(x, y) dy ≥ C̃a|A|

for some constant C̃a, which is independent of A ∈ B(BR). We have the following
theorem.
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Theorem A.3.5 For λ ∈ (0, 1), and x ∈ Rd define the probability measure Qλ(x, · )
by

Qλ(x, A) := λ

∫ ∞

0
e−λt Px(Xt ∈ A) dt , A ∈ B(Rd) .

For each x ∈ Rd, Qλ(x, · ) is equivalent to the Lebesgue measure, and moreover, there
is a constant Cq = Cq(d, γ,R), such that if qλ(x, · ) denotes its density, then

qλ(x, y) ≥ λCq ∀x ∈ BR , a.e. y ∈ BR .

If f ∈ L∞(Rd), then by the strong Feller property of the resolvent (see Theo-
rem 5.2.9) Rλ[ f ](x) ∈ Cb(Rd). It follows by Lemma A.3.4 that Rλ[ f ] is a solu-
tion for (A.3.1) in Rd. This together with the discussion in the paragraph preceding
Lemma A.3.2 shows the following.

Corollary A.3.6 If f ∈ L∞(Rd), and λ ∈ (0,∞) then Rλ[ f ] is the unique solution
of Poisson’s equation in Rd in the class W 2,p

loc (Rd) ∩ L∞(Rd), p ∈ (1,∞).

Now let f ∈ L∞loc(Rd), f ≥ 0. The next theorem shows that if Rλ[ f ] is finite at
some point in Rd, then it satisfies Poisson’s equation in Rd.

Theorem A.3.7 Suppose f ∈ L∞loc(Rd), f ≥ 0, and Rλ[ f ](x0) < ∞ at some x0 ∈ Rd,

with λ ∈ (0,∞). Then Rλ[ f ] ∈ W 2,p
loc (Rd) for all p ∈ (1,∞) and satisfies (A.3.1) in

Rd.

Proof With τn = τ(Bn), n ∈ N, define

ϕn := Ex

[∫ τn

0
e−λt f (Xt) dt

]
, n ∈ N .

By Lemma A.3.2, ϕn satisfies (A.3.1) in Bn. Since f ∈ L∞(Bn), then ϕn ∈ W 2,p(Bn)
for all p ∈ (1,∞). Let n′ ∈ N and x0 ∈ Bn′ . Observe that ϕ̂k := ϕk+n′ − ϕn′ , k ∈ N,
is an increasing sequence of L-harmonic functions in Bn′ . Since ϕ̂k + ϕn′ ≤ Rλ[ f ]
in Bn′ , this sequence is bounded at x0. Hence by Theorem A.2.6 it converges to an
L-harmonic function ϕ̂. By monotone convergence, since τn → ∞ a.s. (see Re-
mark A.1.2), we obtain

Rλ[ f ](x) = lim
n→∞

ϕn(x)

= lim
k→∞

ϕ̂k(x) + ϕn′ (x)

= ϕ̂(x) + ϕn′ (x) ∀x ∈ Bn′ .

Thus Rλ[ f ] satisfies (A.3.1) in Bn′ for each n′ ∈ N. �

Remark A.3.8 It follows from Theorem A.3.7 and (A.3.6) that if f ∈ L∞loc(Rd),
f ≥ 0, and Rλ[ f ] is finite at some point in Rd, then

Ex
[
e−λτRRλ[ f ](XτR )

] −−−−→
R→∞

0 .
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