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PREFACE

In the past half century we have seen an explosive growth in the study of chem-
ical reaction dynamics, spurred by advances in both experimental and theoretical
techniques. Chemical processes are now measured on timescales as long as many
years and as short as several femtoseconds, and in environments ranging from high
vacuum isolated encounters to condensed phases at elevated pressures. This large
variety of conditions has lead to the evolution of two branches of theoretical studies.
On one hand, “bare” chemical reactions involving isolated molecular species are
studied with regard to the effect of initial conditions and of molecular parameters
associated with the relevant potential surface(s). On the other, the study of chem-
ical reactions in high-pressure gases and in condensed phases is strongly associated
with the issue of environmental effects. Here the bare chemical process is assumed
to be well understood, and the focus is on the way it is modified by the interaction
with the environment.

It is important to realize that not only does the solvent environment modify the
equilibrium properties and the dynamics of the chemical process, it often changes
the nature of the process and therefore the questions we ask about it. The principal
object in a bimolecular gas phase reaction is the collision process between the
molecules involved. In studying such processes we focus on the relation between
the final states of the products and the initial states of the reactants, averaging
over the latter when needed. Questions of interest include energy flow between
different degrees of freedom, mode selectivity, and yields of different channels.
Such questions could be asked also in condensed phase reactions, however, in
most circumstances the associated observable cannot be directly monitored. Instead
questions concerning the effect of solvent dynamics on the reaction process and
the inter-relations between reaction dynamics and solvation, diffusion and heat
transport become central.

As aparticular example consider photodissociation of iodine I <> I 4+ I that was
studied by many authors in the past 70 years.! In the gas phase, following optical
excitation at wavelength ~500 nm the I, molecule dissociates and this is the end of
the story as far as we are concerned. In solutions the process is much more complex.
The molecular absorption at ~500 nm is first bleached (evidence of depletion of
ground state molecules) but recovers after 100-200 ps. Also some transient state

! For a review see A. L. Harris, J. K. Brown, and C. B. Harris, Ann. Rev. Phys. Chem. 39, 341
(1988).
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Fic. 0.1 A simplified energy level diagram for I, (right), with the processes discussed in the text
(left). (Based on Harris et al. (see footnote 1).)

which absorbs at ~350 nm seems to be formed. Its lifetime strongly depends on
the solvent (60 ps in alkane solvents, 2700 ps (=2.7 ns) in CCly). Transient IR
absorption is also observed and can be assigned to two intermediate species. These
observations can be interpreted in terms of the schematic potential energy diagram
shown in Fig. 0.1 which depicts several electronic states: The ground state X,
bound excited states A and B and a repulsive state that correlates with the ground
state of the dissociated species. A highly excited state corresponding to the ionic
configuration ITI™ is also shown. Note that the energy of the latter will be very
sensitive to the solvent polarity. Also note that these are just a few representative
electronic states of the I, molecule. The ground state absorption, which peaks at
500 nm, corresponds to the X— B transition, which in the low-pressure gas phase
leads to molecular dissociation after crossing to the repulsive state. In solution the
dissociated pair finds itself in a solvent cage, with a finite probability to recombine.
This recombination yields an iodine molecule in the excited A state or in the higher
vibrational levels of the ground X states. These are the intermediates that give rise
to the transient absorption signals.

Several solvent induced relaxation processes are involved in this process:
Diffusion, trapping, geminate recombination, and vibrational relaxation. In addi-
tion, the A— X transition represents the important class of nonadiabatic reactions,
here induced by the solute—solvent interaction. Furthermore, the interaction
between the molecular species and the radiation field, used to initiate and to
monitor the process, is modified by the solvent environment. Other important
solvent induced processes: Diffusion controlled reactions, charge (electron, proton)
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transfer, solvation dynamics, barrier crossing and more, play important roles in other
condensed phase chemical dynamics phenomena.

In modeling such processes our general strategy is to include, to the largest
extent possible, the influence of the environment in the dynamical description of
the system, while avoiding, as much as possible, a specific description of the envir-
onment itself. On the most elementary level this strategy results in the appearance of
phenomenological coefficients, for example dielectric constants, in the forces that
enter the equations of motion. In other cases the equations of motions are modified
more drastically, for example, replacing the fundamental Newton equations by the
phenomenological diffusion law. On more microscopic levels we use tools such as
coarse graining, projections, and stochastic equations of motion.

How much about the environment do we need to know? The answer to this
question depends on the process under study and on the nature of the knowledge
required about this process. A student can go through a full course of chemical
kinetics without ever bringing out the solvent as a participant in the game—all
that is needed is a set of rate coefficients (sometimes called “constants”). When
we start asking questions about the origin of these coefficients and investigate
their dependence on the nature of the solvent and on external parameters such
as temperature and pressure, then some knowledge of the environment becomes
essential.

Timescales are a principle issue in deciding this matter. In fact, the need for
more microscopic theories arises from our ability to follow processes on shorter
timescales. To see how time becomes of essence consider the example shown in
Fig. 0.2 that depicts a dog trying to engage a hamburger. In order to do so it has to
go across a barrier that is made of steps of the following property: When you stand
on a step for more than 1 s the following step drops to the level on which you stand.
The (hungry) dog moves at constant speed but if it runs too fast he will spend less
than one second on each step and will have to work hard to climb the barrier. On the
other hand, moving slowly enough it will find itself walking effortlessly through
a plane.

In this example, the 1 second timescale represents the characteristic relaxation
time of the environment—here the barrier. The dog experiences, when it moves

o =

Fic. 0.2 The hamburger—-dog dilemma as a lesson in the importance of timescales.
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Fic. 0.3 Typical condensed phase molecular timescales in chemistry and biology. (Adapted from
G. R. Fleming and P. G. Wolynes, Physics Today, p. 36, May 1990).

slowly or quickly relative to this timescale, very different interactions with this
environment. A major theme in the study of molecular processes in condensed
phases is to gauge the characteristic molecular times with characteristic times of
the environment. Some important molecular processes and their characteristic times
are shown in Fig. 0.3.

The study of chemical dynamics in condensed phases therefore requires the
understanding of solids, liquids, high-pressure gases, and interfaces between them,
as well as of radiation—matter interaction, relaxation and transport processes in
these environments. Obviously such a broad range of subjects cannot be treated
comprehensively in any single text. Instead, I have undertaken to present several
selected prototype processes in depth, together with enough coverage of the neces-
sary background to make this book self contained. The reader will be directed to
other available texts for more thorough coverage of background subjects.

The subjects covered by this text fall into three categories. The first five chapters
provide background material in quantum dynamics, radiation—matter interaction,
solids and liquids. Many readers will already have this background, but it is my
experience that many others will find at least part of it useful. Chapters 6—12 cover
mainly methodologies although some applications are brought in as examples. In
terms of methodologies this is an intermediate level text, covering needed subjects
from nonequilibrium statistical mechanics in the classical and quantum regime as
well as needed elements from the theory of stochastic processes, however, without
going into advanced subjects such as path integrals, Liouville-space Green functions
or Keldysh nonequilibrium Green functions.
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The third part of this text focuses on several important dynamical processes in
condensed phase molecular systems. These are vibrational relaxation (Chapter 13),
Chemical reactions in the barrier controlled and diffusion controlled regimes
(Chapter 14), solvation dynamics in dielectric environments (Chapter 15), electron
transfer in bulk (Chapter 16), and interfacial (Chapter 17) systems and spectroscopy
(Chapter 18). These subjects pertain to theoretical and experimental developments
of the last half century; some such as single molecule spectroscopy and molecular
conduction—of the last decade.

I have used this material in graduate teaching in several ways. Chapters 2 and 9
are parts of my core course in quantum dynamics. Chapters 6—12 constitute the
bulk of my course on nonequilibrium statistical mechanics and its applications.
Increasingly over the last 15 years I have been using selected parts of Chapters
6—12 with parts from Chapters 13 to 18 in the course “Chemical Dynamics in
Condensed Phases” that I taught at Tel Aviv and Northwestern Universities.

A text of this nature is characterized not only by what it includes but also by
what it does not, and many important phenomena belonging to this vast field were
left out in order to make this book-project finite in length and time. Proton trans-
fer, diffusion in restricted geometries and electromagnetic interactions involving
molecules at interfaces are a few examples. The subject of numerical simulations,
an important tool in the arsenal of methodologies, is not covered as an independent
topic, however, a few specific applications are discussed in the different chapters
of Part 3.
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1

REVIEW OF SOME MATHEMATICAL AND PHYSICAL
SUBJECTS

The lawyers plead in court or draw up briefs,
The generals wage wars, the mariners

Fight with their ancient enemy the wind,
And I keep doing what I am doing here:

Try to learn about the way things are

And set my findings down in Latin verse . ..

Such things as this require a basic course
In fundamentals, and a long approach

By various devious ways, so, all the more,
I need your full attention . . .

Lucretius (c.99—c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968.

This chapter reviews some subjects in mathematics and physics that are used in
different contexts throughout this book. The selection of subjects and the level of
their coverage reflect the author’s perception of what potential users of this text
were exposed to in their earlier studies. Therefore, only brief overview is given of
some subjects while somewhat more comprehensive discussion is given of others.
In neither case can the coverage provided substitute for the actual learning of these
subjects that are covered in detail by many textbooks.

1.1 Mathematical background

1.1.1 Random variables and probability distributions

A random variable is an observable whose repeated determination yields a series
of numerical values (“realizations” of the random variable) that vary from trial to
trial in a way characteristic of the observable. The outcomes of tossing a coin or
throwing a die are familiar examples of discrete random variables. The position ofa
dust particle in air and the lifetime of a light bulb are continuous random variables.
Discrete random variables are characterized by probability distributions; P, denotes
the probability that a realization of the given random variable is #n. Continuous
random variables are associated with probability density functions P(x): P(x1)dx
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denotes the probability that the realization of the variable x will be in the interval
X1 . ..x1+dx. By their nature, probability distributions have to be normalized, that is,

doP=1; /de(x) =1 (1.1)

The jth moments of these distributions are
M= (W) = /dxij(x) or (W)= Zn/P,, (1.2)
n

Obviously, My = 1 and M; is the average value of the corresponding random
variable. In what follows we will focus on the continuous case. The second moment
is usually expressed by the variance,

(8x%) = ((x — (x)?) = My — M} (1.3)

(8xH12 = My — M? (1.4)

is a measure of the spread of the fluctuations about the average M. The generating
function' for the moments of the distribution P(x) is defined as the average

The standard deviation

g(a) = (") = fde(x)eax (1.5)

the name generating function stems from the identity (obtained by expanding e**
inside the integral)

g@) =1+al) + (1/2)a*(x) + -+ (1/n)a" (") + - -- (1.6)

which implies that all moments (x") of P(x) can be obtained from g(«) according to

8}1
(x") = [ g(a)] (1.7)

da” a=0

Following are some examples of frequently encountered probability distributions:
Poisson distribution. This is the discrete distribution

n,—a

ae

Pn) = pr

n=0,1,... (1.8)

! Sometimes referred to also as the characteristic function of the given distribution.
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which is normalized because ), a”/n! = e“. It can be easily verified that
(n) = (8n®) = a (1.9)

Binomial distribution. This is a discrete distribution in finite space: The prob-
ability that the random variable n takes any integer value between 0 and N is
given by

N!pnqN—n
Pn)= ———; =1; =0,1,...,N 1.10

(n) AN ! p+tq n (1.10)
The normalization condition is satisfied by the binomial theorem since
ZnN:O P(n) = (p+¢q)". We discuss properties of this distribution in Section 7.3.3.

Gaussian distribution. The probability density associated with this continuous

distribution is

P(x) = exp(—[(x — %)%/20%)); —00 < X < 00 (1.11)

1
V2ro?
with average and variance

(x) =X, (AX?) = o2 (1.12)
In the limit of zero variance this function approaches a § function (see Section 1.1.5)

P(x) — 5(x — ) (1.13)

Lorentzian distribution. This continuous distribution is defined by

T

P(x):()c_));)/—2+)/2; 00 < X < 00 (1.14)
The average is (x) = X and a § function, §(x — X), is approached as y — 0,
however higher moments of this distribution diverge. This appears to suggest that
such a distribution cannot reasonably describe physical observables, but we will see
that, on the contrary it is, along with the Gaussian distribution quite pervasive in our
discussions, though indeed as a common physical approximation to observations
made near the peak of the distribution. Note that even though the second moment
diverges, y measures the width at half height of this distribution.

A general phenomenon associated with sums of many random variables has
far reaching implications on the random nature of many physical observables. Its
mathematical expression is known as the central limit theorem. Let x1,x2,...,Xy,
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(n > 1) be independent random variables with (x;) = 0 and (xjg) = ajz. Consider
the sum

Xo=x1+x2+---+x, (1.15)

Under certain conditions that may be qualitatively stated by (1) all variables are
alike, that is, there are no few variables that dominate the others, and (2) certain
convergence criteria (see below) are satisfied, the probability distribution function
F(X,) of X, is given by?

FX,) = ! ( an) (1.16)
= €X — .
W P\ 282
where
S,2,=012+o*22+-~—|-crn2 (1.17)

This result is independent of the forms of the probability distributions f;(x;) of the
variables x; provided they satisfy, as stated above, some convergence criteria. A
sufficient (but not absolutely necessary) condition is that all moments [ dx_,-xj’?f ()
of these distributions exist and are of the same order of magnitude.

In applications of these concepts to many particle systems, for example in statist-
ical mechanics, we encounter the need to approximate discrete distributions such as
in Eq. (1.10), in the limit of large values of their arguments by continuous functions.
The Stirling Approximation

NI ~ NVInN=N when N — oo (1.18)
is a very useful tool in such cases.

1.1.2 Constrained extrema

In many applications we need to find the maxima or minima of a given function
f(x1,x2,...,x,) subject to some constraints. These constraints are expressed as
given relationships between the variables that we express by

gr(x1,x2...x,) = 0; k=1,2,...,m (for m constraints) (1.19)

2 If (xj) = aj # 0and 4, = a; +ay + --- + ay then Eq. (1.16) is replaced by F(X,) =
(Suv/27) 7 exp(—(Xn — 42)?/282).
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Such constrained extrema can be found by the Lagrange multipliers method: One
form the “Lagrangian”

L1, ouXn) =f (1o 0Xn) = Y Akgh(XL - -, Xn) (1.20)
k=1

with m unknown constants {A;}. The set of n + m equations

oL oL 0
0x1 a o 0xy, o (1.21)
gl :Oa"': m:0

then yield the extremum points (x1,...,x,) and the associated Lagrange multipli-

ers {Ar}.

1.1.3 Vector and fields
1.1.3.1 Vectors

Our discussion here refers to vectors in three-dimensional Euclidean space, so
vectors are written in one of the equivalent forms a = (ay, az,a3) or (ay, ay,a;).
Two products involving such vectors often appear in our text. The scalar (or dot)
product is

3
a-b=> ab, (1.22)
n=1
and the vector product is
u u u3
axb=-bxa=|a a a (1.23)
by by b

where u;(j = 1,2, 3) are unit vectors in the three cartesian directions and where | |

denotes a determinant. Useful identities involving scalar and vector products are
a-(bxe)=(axb)-c=b-(cxa) (1.24)
ax(bxc)=Db(a-¢)—c(a-b) (1.25)

1.1.3.2 Fields

A field is a quantity that depends on one or more continuous variables. We will
usually think of the coordinates that define a position of space as these variables, and
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the rest of our discussion is done in this language. A scalar field is a map that assigns
ascalarto any position in space. Similarly, a vector field is a map that assigns a vector
to any such position, that is, is a vector function of position. Here we summarize
some definitions and properties of scalar and vector fields.

The gradient, VS, of a scalar function S(r), and the divergence, V - F, and rotor
(curl), V x F, of a vector field F(r) are given in cartesian coordinates by

VS=—u+ —u, +—u, (1.26)
X y

(1.27)

uy uy, u; OF. OF, 0F,  OF,
VxF=|0/ox 0/dy 0/0z =ux< Z——y)—“y< e x)
F, F, F 0x dz

dF, F
+u, (=2 - == (1.28)
ox ay

where uy, u,, u; are again unit vectors in the x,y,z directions. Some identities
involving these objects are

V x (VxF)=V(V-F)— VF (1.29)
V-(SF)=F-VS+SV-F (1.30)
V- (VxF) =0 (1.31)
V x (VS) =0 (1.32)

The Helmholtz theorem states that any vector field F can be written as a sum of its
transverse F and longitudinal F! components

F=F! +Fl (1.33)
which have the properties

V.-Ft=0 (1.34a)
VxFl =0 (1.34b)
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that is, the transverse component has zero divergence while the longitudinal
component has zero curl. Explicit expressions for these components are

1 V' x F(
Fir)= —V x /d%/x—(r) (1.35a)
4 r — 1’|
1 v . F(r'
Flr) = —V/d%’ﬁ (1.35b)
47 r — 1’|

1.1.3.3 Integral relations

Let V'(S) be a volume bounded by a closed surface S. Denote a three-dimensional
volume element by 37 and a surface vector element by dS. dS has the magnitude
of the corresponding surface area and direction along its normal, facing outward.
We sometimes write dS = fid?x where f is an outward normal unit vector. Then
for any vector and scalar functions of position, F(r) and ¢ (r), respectively

/ &*r(V-F) = f dS-F (Gauss’s divergence theorem) (1.36)
4 S

fd3r(V¢) = ?gd&p (1.37)
4 S

/d3r(V x F) = fds x F (1.38)
4 s

In these equations § denotes an integral over the surface S.

Finally, the following theorem concerning the integral in (1.37) is of interest:
Let ¢ (r) be a periodic function in three dimensions, so that ¢ (r) = ¢ (r + R) with
R = ma;+nyay+n3az witha;(j = 1,2, 3) being three vectors that characterize the
three-dimensional periodicity and n; any integers (see Section 4.1). The function is
therefore characterized by its values in one unit cell defined by the three a vectors.
Then the integral (1.37) vanishes if the volume of integration is exactly one unit cell.

To prove this statement consider the integral over a unit cell

() = f ror+r) (1.39)

Vv
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Since ¢ is periodic and the integral is over one period, the result should not depend
on r’. Therefore,

0=V.II)= / BPrvgg@r+r) = / BPrveg+1) = / d*rv¢(r)
14

V 14
(1.40)

which concludes the proof.

1.1.4 Continuity equation for the flow of conserved entities

We will repeatedly encounter in this book processes that involve the flow of con-
served quantities. An easily visualized example is the diffusion of nonreactive
particles, but it should be emphasized at the outset that the motion involved can
be of any type and the moving object(s) do not have to be particles. The essential
ingredient in the following discussion is a conserved entity O whose distribution
in space is described by some time-dependent density function pg(r, f) so that its
amount within some finite volume V' is given by

01 = /d3r,0Q(r, 1) (1.41)

4

The conservation of Q implies that any change in Q(¢) can result only from flow of
Q through the boundary of volume V. Let S be the surface that encloses the volume
V', and dS—a vector surface element whose direction is normal to the surface in the
outward direction. Denote by Jo(r, 7) the flux of O, that is, the amount of Q moving
in the direction of Jo per unit time and per unit area of the surface perpendicular to
Jo. The O conservation law can then be written in the following mathematical form

dQ _ 3 3PQ(1'J) _ .
= /d e = /ds Jo(r,t) (1.42)
%4 N

Using Eq. (1.36) this can be recast as

30 (r, t
/d%% - _/d3rv-JQ (1.43)
V V

which implies, since the volume V' is arbitrary

oo (r, 1
% =-V.J (1.44)
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Equation (1.44), the local form of Eq. (1.42), is the continuity equation for the
conserved Q. Note that in terms of the velocity field v(r,7) = r(r,?) associated
with the O motion we have

Jo(r,1) = v(r,t)po(r,1) (1.45)

It is important to realize that the derivation above does not involve any physics.
It is a mathematical expression of conservation of entities that that can change their
position but are not created or destroyed in time. Also, it is not limited to entities
distributed in space and could be applied to objects moving in other dimensions.
For example, let the function p1(r,v,?) be the particles density in position and
velocity space (i.e. p1(r, v, £)d>rd>v is the number of particles whose position and
velocity are respectively within the volume element > about r and the velocity
element d3v about v). The total number, N = [ d°r [ d>vp(r,v, 1), is fixed. The
change of p; in time can then be described by Eq. (1.44) in the form

api(r,v, 1)

o —Vy - (vo1) — Vy(Vp1) (1.46)

where V, = (d/0x,9/dy,d/0z) is the gradient in position space and V, =
(3/0vy,d/0vy,0/0v;) is the gradient in velocity space. Note that vp is a flux in
position space, while vp is a flux in velocity space.

1.1.5 Delta functions

The delta function® (or: Dirac’s delta function) is a generalized function that is
obtained as a limit when a normalized function ffooo dxf(x) = 1 becomes zero
everywhere except at one point. For example,

L a g L almw
S(x) = all)ngo \/; e or S(x) = igno a2 or
5() = lim S (1.47)

a—>00  TTX

Another way to view this function is as the derivative of the Heaviside step function
(n(x) =0forx < 0and n(x) = 1 for x > 0):

d
8(x) = —-nx) (1.48)
X

® Further reading: http://mathworld.wolfram.com/DeltaFunction.html and references therein.
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In what follows we list a few properties of this function

b £ (x0) ifa<xy<b

/dxf(x)&(x—xo)= 0 if xo <aorxg>>b (1.49)
a (1/2)f(xp) ifxg=aorxy=2>b
3(x —x;)
1) = _ 1.50
Ll JZ /0l (150
where x; are the roots of g(x) = 0, for example,
8(ax) = L(S()c) (1.51)
|al
and
s —a%) = %(S(x—l—a)—i—é(x—a)) (1.52)
a

The derivative of the § function is also a useful concept. It satisfies (from integration
by parts)

[ ar 56— =~ (153
and more generally
™ () — of sin-1)
dxf (x)6V" (x) = — dxa—(S (x) (1.54)
b
Also (from checking integrals involving the two sides)
x8'(x) = —8(x) (1.55)
X8 (x) =0 (1.56)

Since for —m < a < 7 we have

f dx cos(nx)é(x — a) = cos(na) and f dx sin(nx)8(x — a) = sin(na)

(1.57)
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it follows that the Fourier series expansion of the & function is

1
d(x —a) = — + Z cos(na) cos(nx) + sin(na) sin(nx)]
=1

1
=+ Z cos(n(x — a)) (1.58)
Also since
/ dxe™ 8 (x — a) = 'k (1.59)
it follows that
T 1T
S —a) = 5— f dke™h6—a) — e f dke* =@ (1.60)
—00 —00

Extending § functions to two and three dimensions is simple in cartesian coordinates
82(r) = 8()3()
5%(r) = 813 (2)

In spherical coordinates care has to be taken of the integration element. The result is

(1.61)

§2(r) = 5(? (1.62)
3,0 8(r)
£ =2 (1.63)

1.1.6 Complex integration

Integration in the complex plane is a powerful technique for evaluating a certain
class of integrals, including those encountered in the solution of the time-dependent
Schrodinger equation (or other linear initial value problems) by the Laplace trans-
form method (see next subsection). At the core of this technique are the Cauchy
theorem which states that the integral along a closed contour of a function g(z),
which is analytic on the contour and the region enclosed by it, is zero:

%dzg(z) =0 (1.64)
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and the Cauchy integral formula—valid for a function g(z) with the properties
defined above,

%dz& =2mig(a) (1.65)
z—«

where the integration contour surrounds the point z = « at which the integrand has
a simple singularity, and the integration is done in the counter-clockwise direction
(reversing the direction yields the result with opposite sign).

Both the theorem and the integral formula are very useful for many applications:
the Cauchy theorem implies that any integration path can be distorted in the complex
plane as long as the area enclosed between the original and modified path does not
contain any singularities of the integrand. This makes it often possible to modify
integration paths in order to make evaluation easier. The Cauchy integral formula
is often used to evaluate integrals over unclosed path—if the contour can be closed
along a line on which the integral is either zero or easily evaluated. An example is
shown below, where the integral (1.78) is evaluated by this method.

Problem 1.1. Use complex integration to obtain the identity for ¢ > 0

0
1 3 1 fe
— f dwe—ior 1 _ 0 fort <0 (1.66)
2 w — wy + i —je =l fort > ()

—00

In quantum dynamics applications we often encounter this identity in the limit
& — 0. We can rewrite it in the form

o0
1 . 1 .
— / doe™@ — 28 _ippyeiont (1.67)
2 w — wo + ie

—o

where 1(¢) is the step function defined above Eq. (1.48).
Another useful identity is associated with integrals involving the function (w —
wo + ie)~! and a real function f(x). Consider

b b b
flw) (@ —wo)f (@) . €
fdww—woﬂe _fdw(w—wo>2+e2 ’/dw(w—wo)erszf(w)
(1.68)

where the integration is on the real w axis and where a < wy < b. Again we are
interested in the limit ¢ — 0. The imaginary term in (1.68) is easily evaluated
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to be —inmf (wp) by noting that the limiting form of the Lorentzian function that
multiplies f'(w) is a delta-function (see Eq. (1.47)). The real part is identified as

b b
fdwm e PP/da) /(@) (1.69)
w— wy

(@ — w)? + &2
a
Here PP stands for the so-called Cauchy principal part (or principal value) of the
integral about the singular point wg. In general, the Cauchy principal value of a
finite integral of a function f'(x) about a point xo with @ < xo < b is given by

b xXo—& b
PP / dxf (x) = m& / dxf (x) + / dxf (x) (1.70)
a a xXo+é&

We sometimes express the information contained in Eqgs (1.68)—(1.70) and (1.47)
in the concise form

1 e—>0+
—

PP

- — in8(w — w) (1.71)
w—wy+1i¢e w — W

1.1.7 Laplace transform

A function £ (¢) and its Laplace transform f'(z) are related by

o0

f@) = / dte £ (1) (1.72)
0
ooi+&
fly = f dze”'f () (1.73)
27 _
Covite

where ¢ is chosen so that the integration path is to the right of all singularities of
f (2). In particular, if the singularities of / (z) are all on the imaginary axis, € can be
taken arbitrarily small, that is, the limit ¢ — 04 may be considered. We will see
below that this is in fact the situation encountered in solving the time-dependent
Schrodinger equation.

Laplace transforms are useful for initial value problems because of identities
such as

e.¢] o0

/ = [e™fIF +2 f dief () =z @) —ft=0) (174

0 0
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and

i —zt dzf 27 /
fdte =@ -F =0 -=0) (1.75)
0

which are easily verified using integration by parts. As an example consider the
equation

a
== af (1.76)
Taking Laplace transform we get
2f @) —f(0) = —af 2) (1.77)
that is,
e+ioco
f@O=C+o) 0 and f@)=Qmi)7! / dze” (z + ) 11 (0).
B (1.78)

If « is real and positive ¢ can be taken as 0, and evaluating the integral by closing
a counter-clockwise contour on the negative-real half z plane* leads to

f@) =e1(0) (1.79)

1.1.8 The Schwarz inequality

In its simplest form the Schwarz inequality expressed an obvious relation between
the products of magnitudes of two real vectors ¢ and ¢, and their scalar product

Ccic) = €1 - C (1.80)

It is less obvious to show that this inequality holds also for complex vectors,
provided that the scalar product of two complex vectors e and f is defined by
e* - f. The inequality is of the form

lelIf] = |e* - f] (1.81)

* The contour is closed at z — —oo where the integrand is zero. In fact the integrand has to vanish
faster than z~2 as z — —oo because the length of the added path diverges like 22 in that limit.
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Note that in the scalar product e* - f the order is important, that is, e* - f = (f* - e)*.
To prove the inequality (1.81) we start from

(a*e* — b*f*) - (ae — bf) > 0 (1.82)

which holds for any scalars a and b. Using the choice

a=+{* -fle*-f) and b=./(e*-e)f*- e) (1.83)

in Eq. (1.82) leads after some algebra to /(e* - e)(f* - f) > |e* - f|, which implies
(1.81).

Equation (1.80) can be applied also to real functions that can be viewed as
vectors with a continuous ordering index. We can make the identification ¢, =
(cr - )2 = (fdxc2(x)/% k= 1,2and ¢; - ¢ = [ dxei(x)ea(x) to get

2
(/ dxc%(x)) (/ dxc%(x)) > (/ dxcl(x)cz(x)) (1.84)

The same development can be done for Hilbert space vectors. The result is

(WY (le) = [(wp)I (1.85)

where ¥ and ¢ are complex functions so that ({|¢) = f dry*(r)¢ (r). To prove
Eq. (1.85) define a function y(r) = ¥ (r) + A¢ (r) where X is a complex constant.
The following inequality is obviously satisfied

/dry*(r)y(r) >0
This leads to
/dl’i//*(r)llf(r)+k/drl/f*(r)¢(r)+k*/dr¢*(l‘)1//(r)

+ A*A / dre*(1)e(r) > 0 (1.86)
or

(WIY) + AW lg) + A (ply) + A1 (lp) = 0 (1.87)
Now choose

_ @) . Wle) (158

(Dlg)” (9l9)
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and also multiply (1.87) by (¢|¢) to get

(W) (B1d) — (W) > — [ @l) > + [(¥]g) > = 0 (1.89)

which leads to (1.85).

An interesting implication of the Schwarz inequality appears in the relationship
between averages and correlations involving two observables A and B. Let P,
be the probability that the system is in state » and let 4, and B, be the values
of these observables in this state. Then (4?) = Y. P,42, (B?) = Y., P,B2, and
(AB) =), PyA,B,. The Schwarz inequality now implies

(4%)(B*) > (4B)? (1.90)

Indeed, Eq. (1.90) is identical to Eq. (1.80) written in the form (a-a)(b-b) > (a-b)?
where a and b are the vectors a, = /P,Ay; by, = /PnBy.

1.2 Classical mechanics

1.2.1 Classical equations of motion

Time evolution in classical mechanics is described by the Newton equations

o
= —pi
o (1.91)

pi=F =-ViU

r; and p; are the position and momentum vectors of particle i of mass m;, F; is the
force acting on the particle, U is the potential, and V; is the gradient with respect
to the position of this particle. These equations of motion can be obtained from the
Lagrangian

L=K({i) - U(ix)) (1.92)

where K and U are, respectively, the total kinetic and potential energies and {x},
{x} stands for all the position and velocity coordinates. The Lagrange equations of
motion are

d oL 9dL

— — = — (and same for y, z 1.93

dt 0x; ox; ( y,2) ( )
The significance of this form of the Newton equations is its invariance to coordinate
transformation.
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Another useful way to express the Newton equations of motion is in the
Hamiltonian representation. One starts with the generalized momenta

e (1.94)
b= ‘
and define the Hamiltonian according to
H=—| L}, (&) = Y piy (1.95)
J

The mathematical operation done in (1.95) transforms the function L of variables
{x}, {x} to a new function H of the variables {x}, {p}.> The resulting function,
H ({x}, {p}), is the Hamiltonian, which is readily shown to satisfy

H=U+K (1.96)
that is, it is the total energy of the system, and

oH . oH (1.97)
= = p=—7— :
apj J

X
which is the Hamiltonian form of the Newton equations. In a many-particle system
the index j goes over all generalized positions and momenta of all particles.

The specification of all positions and momenta of all particles in the system
defines the dynamical state of the system. Any dynamical variable, that is, a func-
tion of these positions and momenta, can be computed given this state. Dynamical
variables are precursors of macroscopic observables that are defined as suitable
averages over such variables and calculated using the machinery of statistical
mechanics.

1.2.2 Phase space, the classical distribution function, and the Liouville equation

In what follows we will consider an N particle system in Euclidian space. The
classical equations of motion are written in the form

i = M pN — _M (1.98)
opV orN ’

> This type of transformation is called a Legendre transform.
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which describe the time evolution of all coordinates and momenta in the sys-
tem. In these equations r" and p" are the 3N-dimensional vectors of coordinates
and momenta of the N particles. The 6/N-dimensional space whose axes are
these coordinates and momenta is refereed to as the phase space of the sys-
tem. A phase point (rN,p") in this space describes the instantaneous state
of the system. The probability distribution function f(r",p";s) is defined
such that £(rN, p";)drVdp" is the probability at time ¢ that the phase point
will be inside the volume drVdp" in phase space. This implies that in an
ensemble containing a large number A\ of identical systems the number of those
characterized by positions and momenta within the dr"dp”" neighborhood is
NF@N, pV; t)drN dp" . Here and below we use a shorthand notation in which, for
example, dl‘N = dl‘ldl‘z .. .dl‘N = dxldedX3dX4dX5dx6, ey dx3N72dX3N71dX3N
and, (3F /arV) (G /op") = ijl(aF/axj)(aG/apj).

As the system evolves in time according to Eq. (1.98) the distribution function
evolves accordingly. We want to derive an equation of motion for this distribution.
To this end consider first any dynamical variable A(r", p"). Its time evolution is
given by

dA  dA .y dA . A OH  9A 9H

- — ={H, Al =ilLA
dt ord' T op8® T arNopV T apN arV A =1 (1.99)

L =—i{H,}

The second equality in Eq. (1.99) defines the Poisson brackets and L is called the
(classical) Liouville operator. Consider next the ensemble average A(t) = (A),
of the dynamical variable A. This average, a time-dependent observable, can be
expressed in two ways that bring out two different, though equivalent, roles played
by the function A(r", p"). First, it is a function in phase space that gets a distinct
numerical value at each phase point. Its average at time ¢ is therefore given by

A(r) = / dr’ / dp"ra, pV; nAxN, pY) (1.100)

At the same time the value of A at time ¢ is given by AN (), p" () and is
determined uniquely by the initial conditions (r" (0), p" (0)). Therefore,

At) = / dr / ap" 7@, p; 0AC (), p" (1) (1.101)
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An equation of motion for f* can be obtained by equating the time derivatives of
Eqgs (1.100) and (1.101):

N N.
[ [ap D awh g = [ [anrapi0 S

0A o0H 0A 0H

(1.102)

Using integration by parts while assuming that f vanishes at the boundary of phase
space, the right-hand side of (1.102) may be transformed according to

0A 0H 0A 0H
d N d N N N.O _

oH of oH of
= | ar™ | 4oV _ N N 1.103
/ r / P (8rN apN 8pN arN> A p7) ( )

_ / arV / dp (—iLf) A, pY)

Comparing this to the left-hand side of Eq. (1.102) we get
3N
of N, pNny af 0H  of oH
oV = —
o1 i =2
(1.104)

This is the classical Liouville equation. An alternative derivation of this equation
that sheds additional light on the nature of the phase space distribution function
£, p";1) is given in Appendix 1A.

An important attribute of the phase space distribution function f is that it is
globally constant. Let us see first what this statement means mathematically. Using

d 8+,N8+,N8 8+8H8 0H 9 8+'£
_— = — r — _— —_ = — 1
dt ot orN opVy  ar  opNoarV  arNopVN ot
(1.105)
Equation (1.104) implies that
d
Ul =0 (1.106)

dt
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that is, /" has to satisfy the following identity:

£V ©0),pY (0);t =0) =1 @), p" (1); 1) (1.107)

As the ensemble of systems evolves in time, each phase point moves along the
trajectory (r" (), p¥ (¢)). Equation (1.107) states that the density of phase points
appears constant when observed along the trajectory.

Another important outcome of these considerations is the following. The unique-
ness of solutions of the Newton equations of motion implies that phase point
trajectories do not cross. If we follow the motions of phase points that started at a
given volume element in phase space we will therefore see all these points evolving
in time into an equivalent volume element, not necessarily of the same geometrical
shape. The number of points in this new volume is the same as the original one, and
Eq. (1.107) implies that also their density is the same. Therefore, the new volume
(again, not necessarily the shape) is the same as the original one. If we think of this
set of points as molecules of some multidimensional fluid, the nature of the time
evolution implies that this fluid is totally incompressible. Equation (1.107) is the
mathematical expression of this incompressibility property.

1.3 Quantum mechanics

In quantum mechanics the state of a many-particle system is represented by a
wavefunction W (r", ¢), observables correspond to hermitian operators® and results
of measurements are represented by expectation values of these operators,

A) @) = (W, 41w @, 1))

. 1.108
N /drN\If*(rN,t)A‘I'(rN,f) o

When A is substituted with the unity operator, Eq. (1.108) shows that acceptable
wavefunctions should be normalized to 1, that is, (/|) = 1. A central problem is
the calculation of the wavefunction, W (r", ¢), that describes the time-dependent
state of the system. This wavefunction is the solution of the time-dependent

® The hermitian conjugatre of an operator A is the operator A that satisfies
[ erahava = [arta@roayrva

for all ¢ and  in the hilbert state of the system.
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Schrédinger equation

— =——HVY 1.109
at h ( )

where the Hamiltonian A is the operator that corresponds to the energy observable,
and in analogy to Eq. (1.196) is given by

H=K+Ux") (1.110)

In the so-called coordinate representation the potential energy operator U amounts
to a simple product, that is, U @M aN, ) = vaeMw N, ) where U@V) is
the classical potential energy. The kinetic energy operator is given in cartesian
coordinates by

o 2
K=—h sz, f (1.111)

where the Laplacian operator is defined by

L A

—+t—+—
J 2 2 2
8xj 8yj 8Zj

(1.112)

Alternatively Eq. (1.111) can be written in the form
N PN
k = —] = J J 1 . 1 13
Z 2mj Z 2m; ( )

where the momentum vector operator is

Ao o9 0
= —(— — — - | = A/ —1 1.114
Pj i (axj’ayj’az)’ ! ( )

The solution of Eq. (1.109) can be written in the form

V) = Z Y (rN e~ Ent/ (1.115)

where v, and E,, are solutions of the time-independent Schrodinger equation

Hiry = Enrn (1.116)
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Equation (1.116) is an eigenvalue equation, and ¥, and E,, are eigenfunctions and
corresponding eigenvalues of the Hamiltonian. If at time ¢ = 0 the system is in a
state which is one of these eigenfunctions, that is,

vV, r=0) = ¢,@") (1.117)
then its future (and past) evolution is obtained from (1.109) to be
W, 1) =y, )ye Ent/h (1.118)

Equation (1.108) then implies that all observables are constant in time, and the
eigenstates of H thus constitute stationary states of the system.

The set of energy eigenvalues of a given Hamiltonian, that is, the energies that
characterize the stationary states of the corresponding system is called the spectrum
of the Hamiltonian and plays a critical role in both equilibrium and dynamical
properties of the system. Some elementary examples of single particle Hamiltonian
spectra are:

A particle of mass m in a one-dimensional box of infinite depth and width a,

2 h 2.2
g, =& (1.119)
8ma?
A particle of mass m moving in a one-dimensional harmonic potential U (x) =

(1/2)ke?,

1
En:ha)(n—i-z) n=0,1...; w=+k/m (1.120)
A rigid rotator with moment of inertia /,

n(n + 1)h2‘

E, = :
" 21

wy, =2n+1 (1.121)
where w, is the degeneracy of level n. Degeneracy is the number of different
eigenfunctions that have the same eigenenergy.

An important difference between quantum and classical mechanics is that in
classical mechanics stationary states exist at all energies while in quantum mech-
anics of finite systems the spectrum is discrete as shown in the examples above. This
difference disappears when the system becomes large. Even for a single particle
system, the spacings between allowed energy levels become increasingly smaller
as the size of accessible spatial extent of the system increases, as seen, for example,
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in Eq. (1.119) in the limit of large a. This effect is tremendously amplified when
the number of degrees of freedom increases. For example the three-dimensional
analog of (1.119), that is, the spectrum of the Hamiltonian describing a particle in
a three-dimensional infinitely deep rectangular box of side lengths a, b, c is

Qmh)? (n)zc n§ n?

E(ne,ny,nz) = —— ;+—+—Z); nem,n=1,2,...  (1.122)

b2 c2

showing that in any energy interval the number of possible states is much larger
because of the various possibilities to divide the energy among the three degrees
of freedom.

For a many particle system this argument is compounded many times and the
spectrum becomes essentially continuous. In this limit the details of the energy
levels are no longer important. Instead, the density of states pg(E) becomes the
important characteristic of the system spectral properties. pg(E) is defined such
that pg(E)AE is the number of system eigenstates with energy in the interval
E,...,E + AE. For an example of application of this function see, for example,
Section 2.8.2. Note that the density of states function can be defined also for a
system with a dense but discrete spectrum, see Eqs (1.181) and (1.182) below.

1.4 Thermodynamics and statistical mechanics

1.4.1 Thermodynamics

The first law of thermodynamics is a statement of the law of energy conservation.
The change in the system energy when its state changes from A4 to B is written as the
sum of the work W done on the system, and the heat flow Q into the system, during
the process. The mathematical statement of the first law is then

AE=Fp—E =0+ W (1.123)
The differential form of this statement is
dE = TdS — PdQ (1.124)

where S is the system entropy, 7 is the temperature, P is the pressure, and €2 is the
system volume, respectively, and where we have assumed that all the mechanical
work is an expansion against some pressure, that is, d/W = —Pd <. If the material
composition in the system changes during the process a corresponding contribution
to the energy appears and Eq. (1.124) becomes

dE = TdS — PdQ + ) _ ji;dN; (1.125)
J
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where N; is the number of molecules of species j and p; is the chemical potential of
this species. An important observation is that while the energy is a function of the
state of the system, the components of its change, /¥ and O are not—they depend
on the path taken to reach that state. The entropy S is also a function of state; its
difference between two equilibrium states of the system is

B
dQ
AS = (—) (1.126)
A/ T rev

where ();.y denotes a reversible process—a change that is slow relative to the
timescale of molecular relaxation processes, so that at each point along the way the
system can be assumed to be at equilibrium.

When conditions for reversibility are not satisfied, that is, when the transition
from A4 to B is not much slower than the internal system relaxation, the system
cannot be assumed in equilibrium and in particular its temperature may not be well
defined during the process. Still AS = Sp — S4 is well defined as the difference
between entropies of two equilibrium states of the system. The second law of
thermodynamics states that for a nonreversible path between states 4 and B

B
do
AS > | = (1.127)
I

where T is the temperature of the surroundings (that of the system is not well
defined in such an irreversible process).

Finally, the third law of thermodynamics states that the entropy of perfect
crystalline substances vanishes at the absolute zero temperature.

The presentation so far describes an equilibrium system in terms of the extensive
variables (i.e. variables proportional to the size of the system) £, 2, S,{N;;j =
1,...,n}. The intensive (size-independent) variables P, T, {u;;j = 1,...,N} can
be defined according to Eq. (1.125)

oE oE oE
=)o TT eR)g T ey
2,{N} S,{N} 7/ S, QINVEN;

(1.128)

however, the independent variables in this representation are £ (or S), €2 and {N;}
that characterize a closed system.
Other representations are possible. The enthalpy

H =E + PQ (1.129)
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is a function of the independent variables S, P, and {/;}, as can be seen by using
Eq. (1.125) in dH = dE + QdP + Pd2 to get

dH = TdS + QdP + Y _ dN; (1.130)
J

The Helmholtz free energy
F=E-TS (1.131)
similarly satisfies

dF = —SdT — Pd+ ) _ dN; (1.132)
J

This characterizes it as a function of the variables T, €2, and {N;}. The Gibbs free
energy

G=E+PQ—TS (1.133)

is then a function of 7', P, and {N;}. Indeed

dG = —SdT + VdP + ) _ pdN; (1.134)
J

These thermodynamic functions can be shown to satisfy important extremum
principles. The entropy of a closed system (characterized by the variables E, 2, and
{N;}) at equilibrium is maximum in the sense that it is greater than the entropy of any
other closed system characterized by the same extensive variables but with more
internal restrictions. (A restriction can be, for example, a wall dividing the system
and forcing molecules to stay on either one or the other side of it.) The energy
of a closed equilibrium system with given entropy, volume, and particle numbers,
is smaller than that of any similar system that is subjected to additional internal
restrictions. The most useful statements are however those concerning the free
energies. The Helmholtz free energy assumes a minimum value for an equilib-
rium system characterized by a given volume, given particle numbers, and a given
temperature, again compared to similar systems with more imposed restrictions.
Finally, the Gibbs free energy is minimal (in the same sense) for systems with given
temperature, pressure, and particle numbers.

The study of thermodynamics involves the need to navigate in a space of
many-variables, to transform between these variables, and to identify physically
meaningful subspaces. Some mathematical theorems are useful in this respect. The
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Euler theorem concerns the so-called homogeneous functions of order », defined
by the property

FOxy...axy) = A" (x1,...,xN) (1.135)
It states that such functions satisfy

N
ijw o Ger ) (1.136)
=

E)xj

‘We can use this theorem to address extensive functions of extensive variables, which
are obviously homogeneous functions of order 1 in these variables, for example,
the expression

E(AS, A, (AN})) = LE(S, 9, {N;}) (1.137)

just says that all quantities here are proportional to the system size. Using (1.136)
with n = 1 then yields

E=8—+Q— N— 1.138
35 T Yaq +; TN (1.138)

Using (1.128) then leads to
E=TS—PQ+ )Y Ny (1.139)

J
and, from (1.33)
G=> Nu (1.140)
J

Furthermore, since at constant 7 and P (from (1.134))
dG)rp =Y _ pdN; (1.141)
J
it follows, using (1.140) and (1.141) that
Y Nidpjrp =0 (1.142)
J

The result (1.142) is the Gibbs—Duhem equation, the starting point in the derivation
of the equations of chemical equilibria.
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1.4.2 Statistical mechanics

Statistical mechanics is the branch of physical science that studies properties of mac-
roscopic systems from the microscopic starting point. For definiteness we focus on
the dynamics of an N -particle system as our underlying microscopic description. In
classical mechanics the set of coordinates and momenta, (r", p/) represents a state
of the system, and the microscopic representation of observables is provided by the
dynamical variables, A(r", p", ¢). The equivalent quantum mechanical objects are
the quantum state |/) of the system and the associated expectation value 4; = (j |4 I7)

of the operator A that corresponds to the classical variable 4. The corresponding
observables can be thought of as time averages

t

(A), = 1 / dt' At (1.143)

im
t—o00 2t
—t
or as ensemble averages: if we consider an ensemble of N macroscopically identical
systems, the ensemble average is

1 N
(d)e = lim ZI:A]- (1.144)
j=
Obviously the time average (1.143) is useful only for stationary systems, that is,
systems that do not macroscopically evolve in time. The ergodic hypothesis (some-
times called ergodic theorem) assumes that for large stationary systems the two
averages, (1.143) and (1.144) are the same. In what follows we discuss equilibrium
systems, but still focus on ensemble averages that lead to more tractable theoret-
ical descriptions. Time averages are very useful in analyzing results of computer
simulations.

The formulation of statistical mechanics from ensemble averages can take dif-
ferent routes depending on the ensemble used. Our intuition tells us that if we focus
attention on a small (but still macroscopic) part of a large system, say a glass of
water from the Atlantic ocean, its thermodynamic properties will be the same when
open to the rest of the ocean, that is, exchanging energy and matter with the out-
side world, as when closed to it. Three theoretical constructs correspond to these
scenarios. The microcanonical ensemble is a collection of microscopically identical
closed systems characterized by energy, £, volume €2, and number of particles N.
The canonical ensemble is a collection of systems characterized by their volume and
number of particles, and by their temperature; the latter is determined by keeping
open the possibility to exchange energy with a thermal bath of temperature 7. The
grand canonical ensemble is a collection of systems that are in equilibrium and can
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exchange both energy and matter with a bath characterized by a given temperature
T and a chemical potential of the material system, p.

For each of these ensembles of N systems let f; (V) be the fraction of systems
occupying a given microscopic state j. The ensemble probability P; is defined
by P; = limy— o0 fj(N). The macroscopic observable that corresponds to the
dynamical variable A is then

(d)e = PrA; (1.145)
J

In the grand canonical formulation the sum over j should be taken to include also
a sum over number of particles.

1.4.2.1 Microcanonical ensemble

The probability that a system is found in a state of energy E; is given by

P = mS(E—Ej) (1.146)

where pg(E, 2, N) is the density of energy states, the same function that was
discussed at the end of Section 1.3. Its formal definition

pE(E,Q,N) =Y 8(E — Ej(Q,N)) (1.147)
j

insures that P; is normalized and makes it clear that the integral

/, E{E TAE g pE(E, 2, N) gives the number of energy states in the interval between £

and £ + AE. Equation (1.146) expresses a basic postulate of statistical mechanics,
that all microscopic states of the same energy have the same probability.

One thing that should be appreciated about the density of states of a macroscopic
system is how huge it is. For a system of N structureless (i.e. no internal states)
particles of mass m confined to a volume 2 but otherwise moving freely it is
given by’

1 3N/2
pp(E, Q,N) = ( mz) QVEGN/D-L (1.148)
T(N + DIGN/2) \2xr

where ' are gamma-functions (I'(N) = (N — 1)! for an integer N) that for large
N can be evaluated from the Stirling formula (1.18). For a system of linear size

" D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976), Chapter 1.
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I =1cm (Q = P)and energy E = 3NkgT/2 with m = 1072 g, N = 103,
and 7 = 300 K, the dimensionless parameter & = ml*E / (271h2) is ~10*! so that
PE = E—l(1041)3N/2/e(5/2)N1nN ~ 103NE_1.

In the present context pg (E, 2, N) is the microcanonical partition function—a
sum over the un-normalized probabilities. This function is in turn directly related
to the system entropy

S(E,Q2,N) =kpln pg(E,Q,N) (1.149)
where kg is the Boltzmann constant. From (1.125), written in the form
1 P
dS = —dE + —d2 — Zan (1.150)
T T T

it immediately follows that

L _(3nre (1.151)
P _ 811’1,0]_; (1 152)
no_ (e (1.153)

1.4.2.2 Canonical ensemble

For an ensemble of systems that are in equilibrium with an external heat bath of
temperature 7', the probability to find a system in state j of energy E; is given by

Pi=ePE/Q (1.154)
where
OT,QN)=> e PEEN. = (7)™ (1.155)
J
is the canonical partition function. For a macroscopic system the energy spectrum

is continuous and Eq. (1.155) can be rewritten as (setting the energy scale so that
the ground state energy is nonnegative)

0
O(T,Q,N) = / dEpg(E,Q, N)e PECEN) (1.156)
0
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The canonical partition function is found to be most simply related to the Helmholtz
free energy

F=—kgThQ (1.157)
Using (1.132) it follows that
91n 0
S=keT (Z22)  4+hzlnQ (1.158)
0T )y o
a1
p—iyr (2nQ (1.159)
02 )y r
91
M:—kgT( nQ) (1.160)
8N QT

In addition, it follows from Eqs (1.154) and (1.155) that the average energy in the
system is

dlnQ
E= EP =kgT? 1.161
; 7T < oT )N,Q ( )

It is easily verified that that the analog expression for the pressure

or

P:—Zg—épj (1.162)

J

is consistent with Eq. (1.159).

It is important to understand the conceptual difference between the quantities £
and S in Eqs (1.161) and (1.158), and the corresponding quantities in Eq. (1.149). In
the microcanonical case E, S, and the other derived quantities (P, T, i) are unique
numbers. In the canonical case these, except for T which is defined by the external
bath, are ensemble averages. Even T as defined by Eq. (1.151) is not the same as
T in the canonical ensemble. Equation (1.151) defines a temperature for a closed
equilibrium system of a given total energy while as just said, in the canonical
ensemble 7 is determined by the external bath. For macroscopic observations we
often disregard the difference between average quantities that characterize a system
open to its environment and the deterministic values of these parameters in the
equivalent closed system. Note however that fluctuations from the average are
themselves often related to physical observables and should be discussed within
their proper ensemble.



THERMODYNAMICS AND STATISTICAL MECHANICS 33

An interesting microscopic view of the first law of thermodynamics is obtained
from using (1.161) to write

dE =d ) EP; = EdP;+ Y PdE (1.163)
J J J
reversible reversible
heat work

The use of the word “reversible” here is natural: any infinitesimal process is by
definition reversible. The change in the average energy of a system is seen to be
made of a contribution associated with the change in the occupation probability
of different energy states—which is what we associate with changing temperature,
that is, reversible heat exchange with the surrounding, and another contribution in
which these occupation probabilities are fixed but the energies of the state them-
selves change—as will be the case if the volume of the system changed as a result
of mechanical work.

1.4.2.3 Grand-canonical ensemble

For an ensemble of systems that are in contact equilibrium with both heat and
matter reservoirs characterized by a temperature 7 and a chemical potential wu,
respectively, the probability to find a system with N particles and in the energy
level Ejy (R2) is given by

o~ BEN @) —uN)
Py=——— (1.164)

=
=

where the grand-canonical partition function is

E=E(T,Qu = ZZ —BEN (Q) ,puN

(1.165)
— Z O, T,N)AY; 1 =ePr
N=0

Its connection to average thermodynamic observables can be obtained from the
fundamental relationship

PQ=1kgTn E (1.166)
and the identity

d(PQ) = SdT + Pd + Ndu (1.167)
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Together (1.166) and (1.167) imply

a(In E
S=k31na+kBT( (In )) (1.168)
T
_ 3In &
P = kT [ 22 (1.169)
02 )1,
and
) In&
N:kBT(an ) (1.170)
wm Jro

1.4.3 Quantum distributions

The quantum analogs of the phase space distribution function and the Liouville
equation discussed in Section 1.2.2 are the density operator and the quantum
Liouville equation discussed in Chapter 10. Here we mention for future refer-
ence the particularly simple results obtained for equilibrium systems of identical
noninteracting particles. If the particles are distinguishable, for example, atoms
attached to their lattice sites, then the canonical partitions function is, for a system
of N particles

oT.QN) =4"; g=) e’ (1.171)
i

where ¢; is the energy of the single particle state i and ¢ is the single particle
partition function. If the particles are non-distinguishable, we need to account for
the fact that interchanging between them does not produce a new state. In the
high-temperature limit, where the number of energetically accessible states greatly
exceeds the number of particles this leads to

N
q
O(T.Q.N) = 1 (1.172)

Using Eq. (1.161), both Egs (1.171) and (1.172) lead to the same expression for the
average system energy

E=N)> &f (1.173)

where f;, the probability that a molecule occupies the state i, is

fi=ePiq (1.174)
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At low temperature the situation is complicated by the fact that the difference
between distinguishable and indistinguishable particles enters only when they
occupy different states. This leads to different statistics between fermions and
bosons and to the generalization of (1.174) to

1

where u is the chemical potential and where the (4) sign is for fermions while the
(—) is for bosons. u is determined from the condition ), f; = 1. This condition
also implies that when T — oo individual occupation probabilities should approach

zero, which means that 4 — —o0 so that

£ 280 p=leimw) and u iy —kpT In (Z e_’%’) (1.176)

1

1.4.4 Coarse graining

Consider the local density, p(r, ), of particles distributed and moving in space.
We explicitly indicate the position and time dependence of this quantity in order
to express the fact the system may be non-homogeneous and out of equilibrium.
To define the local density we count the number of particles n(r, ¢) in a volume
A2 about position r at time # (for definiteness we may think of a spherical volume
centered about r). The density

28 (r, 1) = n(r, 1)/ AQ (1.177)

is obviously a fluctuating variable that depends on the size of AQ. To define a
meaningful local density A2 should be large relative to the interparticle spacing
and small relative to the scale of inhomogeneities in the local density that we
wish to describe. Alternatively, we can get a meaningful density by averaging the
instantaneous density over predefined time intervals.

We can make these statements more quantitative by defining the dynamical
density variable (see Section 1.2.1) according to

p(r, 1) = p(r, {ri() = Y 8(r —ri(1) (1.178)

where § is the three-dimensional Dirac delta function, r;(¢) is the position of
particle i at time ¢ and the sum is over all particles. This dynamical variable depends
on the positions of all particles in the system and does not depend on their momenta.
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The local density defined in Eq. (1.177) is then given by

1
AQ _ / / )
P (1‘,t)——AQ drp(r’, {ri(H)}) (1.179)
AQ

where the integral is over a volume A about the point r. Furthermore, for an
equilibrium system we could also perform a local time average

1+At)2

1
pAQ’At(r,t)=Kt / ar p2e(r, 1) (1.180)
t—At/2

The processes (1.179) and (1.180) by which we transformed the dynamical variable
p(r, 1) to its “smoother” counterpart p2(r, f) is an example of coarse graining.®

What was achieved by this coarse-graining process? Consider the spatial coarse
graining (1.179). As a function of r, p of Eq. (1.178) varies strongly on a length scale
of the order of a particle size—showing a spike at the position of each particle,’
however variations on these length scales are rarely of interest. Instead we are often
interested in more systematic inhomogeneities that are observed in hydrodynamics
or in electrochemistry, or those that can be probed by light scattering (with typical
length-scale determined by the radiation wavelength). Such variations, without
the irrelevant spiky structure, are fully contained in p¢ provided that the volume
elements AS2 are taken large relative to the inter-particle distance and small relative
to the inhomogeneous features of interest. Clearly, 028 (r) cannot describe the
system structure on a length scale smaller than / ~ (A)!/3, but it provides a
simpler description of those system properties that depend on longer length scales.

Coarse graining in time is similarly useful. It converts a function that is spiky (or
has other irregularities) in time to a function that is smooth on timescales shorter
than A¢, but reproduces the relevant slower variations of'this function. This serves to
achieve a mathematically simpler description of a physical system on the timescale
of interest. The attribute “of interest” may be determined by the experiment—it is

8 Another systematic way to coarse grain a function f (r) is to express it as a truncated version of
its Fourier transform

FC8(r) = / dkf(K)e®T  where (k) = (1/(27)°) / drf(r)e kT
k| <k

where k¢ is some cutoff that filters high k& components out of the coarse-grained function /8 (r).

% In fact, if we were interested on variations on such length scales, we should have replaced the
delta function in Eq. (1.178) by a function that reflects this size, for example, zero outside the volume
A2 occupied by the particle, and (AQ)~! inside this volume.
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often useless to describe a system on a timescale shorter than what is measurable.
Our brain performs such coarse graining when we watch motion pictures, so we
sense a continuously changing picture rather than jumping frames.

It should be noticed that coarse graining is a reduction process: We effectively
reduce the number of random variables used to describe a system. This statement
may appear contradictory at first glance. In (1.179) we convert the function p(r, 7),
Eq. (1.178), which is completely specified by 3N position variables (of N particles)
to the function p2¥(r, ¢) that appears to depend on any point in continuous space.
However, spatial variations in the latter exists only over length scales larger than
(A)!'/3, so the actual number of independent variables in the coarse-grained sys-
tem is of order 2/ A2 where 2 is the system volume. This number is much smaller
than N if (as we usually take) (A2)!/3 is much larger than both molecular size and
intermolecular spacing.

Finally, consider the eigenvalues {£;} of some Hamiltonian H of interest. We
can define the density of states function

p(E) = 8(E - E) (1.181)
J

that has the property that the integral |, 5{ "dEp(E) gives the number of energy

eigenvalues in the interval E,, ..., Ep. When the spectrum of H becomes very
dense it is useful to define a continuous coarse-grained analog of (1.181)

E+(1/2)AE

1
P(E) > / o(E)dE (1.182)
E—(1/2)AE

where AFE is large relative to the spacing between consecutive £js. This coarse-
grained density of states is useful in applications where the spectrum is dense
enough so that AE can be taken small relative to any experimentally meaning-
ful energy interval. In such applications p(£) in (1.181) and (1.182) can be used
interchangeably, and we will use the same notation for both.

The central limit theorem of probability theory (Section 1.1.1) finds its most
useful application in statistical mechanics through applications of the coarse-
graining idea. The coarse-graining procedure essentially amounts to generating
anew “coarse grained” random variable by summing up many random variables in
a certain interval. Indeed the reduction (1.179) amounts to replacing a group of ran-
dom variables (o (r) for all r in the interval A2) by their sum. If this interval is large
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relative to the correlation distance'? between these variables, and if the probability
distribution that governs these variables satisfies the required convergence condi-
tions, then the probability distribution for the coarse-grained variable is Gaussian.
An example is given in Chapter 7 by the derivation of Eq. (7.37).

1.5 Physical observables as random variables

1.5.1 Origin of randomness in physical systems

Classical mechanics is a deterministic theory, in which the time evolution is
uniquely determined for any given initial condition by the Newton equations (1.98).
In quantum mechanics, the physical information associated with a given wave-
function has an inherent probabilistic character, however the wavefunction itself is
uniquely determined, again from any given initial wavefunction, by the Schrédinger
equation (1.109). Nevertheless, many processes in nature appear to involve a ran-
dom component in addition to their systematic evolution. What is the origin of this
random character? There are two answers to this question, both related to the way
we observe physical systems:

1. The initial conditions are not well characterized. This is the usual starting
point of statistical mechanics. While it is true that given the time evolution of a
physical system is uniquely defined by the initial state, a full specification of this
state includes all positions and momenta of all N particles of a classical system or
the full N -particle wavefunction of the quantum system. Realistic initial conditions
are never specified in this way—only a few averaged system properties (e.g. tem-
perature, volume) are given. Even studies of microscopic phenomena start with a
specification of a few coordinates that are judged to be interesting, while the effect
of all others is again specified in terms of macroscopic averages. Repeating the
experiment (or the calculation) under such ill-defined initial conditions amounts
to working with an ensemble of systems characterized by these conditions. The
observables are now random variables that should be averaged over this ensemble.

2. We use a reduced description of the system (or process) of interest. In many
cases, we seek simplified descriptions of physical processes by focusing on a small
subsystem or on a few observables that characterize the process of interest. These
observables can be macroscopic, for example, the energy, pressure, temperature,
etc., or microscopic, for example, the center of mass position, a particular bond
length, or the internal energy of a single molecule. In the reduced space of these
“important” observables, the microscopic influence of the other ~10%3 degrees of

10" The correlation distance reor for p(r) is defined as the distance above which p (r) and p (r +frcer)
are statistically independent (fi is a unit vector in any direction).
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freedom appears as random fluctuations that give these observables an apparently
random character. For example, the energy of an individual molecule behaves as a
random function of time (i.e. a stochastic process) even in a closed system whose
total energy is strictly constant.

1.5.2 Joint probabilities, conditional probabilities, and reduced descriptions

Most readers of this text have been exposed to probability theory concepts
(Section 1.1.1) in an elementary course in statistical thermodynamics. As outlined
in Section 1.2.2, a state of a classical N-particle system is fully characterized by the
6N -dimensional vector (rN,pN) = (ry,r2,...,ry,p1,pP2,...pny) (a point in the
6N -dimensional phase space). A probability density function £ (", p"V) character-
izes the equilibrium state of the system, so that (¥, p™)drN dp" is the probability
to find the system in the neighborhood drN dp” = dry, ..., dpy of the correspond-
ing phase point. In a canonical ensemble of equilibrium systems characterized by
a temperature 7 the function £'(*V, p") is given by

o BHEY pN)

. — —1
fdl’Nfdee—ﬂH(VN,PN)’ B = (kgT) (1.183)

faN,pNy =

where kp is the Boltzmann constant and H is the system Hamiltonian

N

2
H(rN,pN):Z%—I—U(rN) (1.184)
i=1 =

Here pf = p?x + p?y + p?z and U is the potential associated with the inter-particle

interaction. The function £ (", p") is an example of a joint probability density
function (see below). The structure of the Hamiltonian (1.184) implies that / can
be factorized into a term that depends only on the particles’ positions and terms that
depend only on their momenta. This implies, as explained below, that at equilibrium
positions and momenta are statistically independent. In fact, Eqs (1.183) and (1.184)
imply that individual particle momenta are also statistically independent and so are
the different cartesian components of the momenta of each particle.

Let us consider these issues more explicitly. Consider two random variables x
and y. The joint probability density P(x,y) is defined so that P, (x, y)dxdy is the
probability of finding the variable x at x,...,x + dx and y aty,...,y + dy. We
refer by the name reduced description to a description of the system in terms of
partial specification of its state. For example, the probability that the variable x is
at the interval x, . . ., x 4 dx irrespective of the value of y is Pix) (x) = [dyP(x,).

Similarly, P}y) o) = f dxP>(x,y). Note that the functional forms of P {x) and P%y) are
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not necessarily the same. Also note that all these functions satisfy the normalization
conditions

/ dxdyP>(x,y) = / dePY (x) = / avPY () = 1 (1.185)

The two random variables x and y are called independent or uncorrelated if

Py(x,y) = P )Py (v) (1.186)
The conditional probability distribution P(x|y) is defined so that P(x|y)dx is the
probability that the value of x is in the interval x, . . ., x 4+ dx given that the variable
y takes the value y. From this definition it follows that
Pr(x,y) Py(x,y)
Paly) = =220 Poly = = (1.187)
Py () Py (x)
or rather
P(xly)dx - PY ()dy = P(x,y)dxdy (1.188)

The term P(x|y)dx is the probability that if y has a given value then x is in the

range x,...,x + dx. The term Pfy) (»)dy is the probability that y is in the range
V,...,¥ + dy. Their product is the joint probability that x and y have particular
values within their respective intervals.

Problem 1.2. Show that if x and y are independent random variables then P (x|y)
does not depend on y.

Reduced descriptions are not necessarily obtained in terms of the original ran-

dom variables. For example, given the probability density P(x, ) we may want the
probability of the random variable

z=x+4y (1.189)
This is given by
PP (z) = f dxP>(x,z — x) (1.190)

More generally, if z = f(x, ) then

PP (z) = /dx/dy(S(z — f (6, )P (x, ) (1.191)
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1.5.3 Random functions

Consider a set of random variables, x1,x>,...,xy and the associated probabil-
ity density Py (x1,...,xy). Here, the ordering indices » = 1,..., N are integers.
Alternatively, the ordering index may be continuous so that, for example, x(v) is
a random variable for each real v. We say that x(v) is a random function of v: a
random function assigns a random variable to each value of its argument(s). The
corresponding joint probability density P[x(v)] is a functional of this function.

The most common continuous ordering parameters in physics and chemistry
are position and time. For example, the water height in a lake on a windy day is
a random function /4(x, y,t) of the positions x and y in the two-dimensional lake
plane and of the time. For any particular choice, say x1,y1, #; of position and time
h(x1,y1, ) is a random variable in the usual sense that its repeated measurements
(over an ensemble of lakes or in different days with the same wind characteristics)
will yield different results, predictable only in a probabilistic sense.

1.5.4 Correlations

When Eq. (1.186) does not hold, the variables x and y are said to be correlated. In
this case the probability to realize a certain value of x depends on the value realized
by y, as expressed by the conditional probability density P(x|y). When x and y are

not correlated Eqs (1.186) and (1.187) imply that P(x|y) = ng) (x).
The moments of P> (x,y) are defined by integrals such as

(xk) = / dxdykaz(x, y) = / dxkaix)(x)
04 = [ dantpaen) = [ rP o) (1.192)
(yly = / dxdyx"y' P (x, )
Again, if x and y are uncorrelated then
Wity = [P [ el o) = w4 0h)
The difference

kYl — Ry oy (1.193)

therefore measures the correlation between the random variables x and y.
In particular, if x and y are random functions of some variable z, then
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Cyy(21,22) = (x(z1)y(22)) — (x(21))(y(22)) is referred to as the correlation function
of these variables.

Two types of correlation functions are particularly important in the description
of physical and chemical systems:

1. Spatial correlation functions. Consider, for example, the density of liquid
molecules as a function of position, p(r). In macroscopic thermodynamics p(r) is
an ensemble average. However, if we actually count the number of molecules n(r)
in a given volume AV about r, then

o2V (r) = n(x)/AV (1.194)

is arandom variable, and, taken as a function of r, is a random function of position.
It should be emphasized that the random variable defined in this way depends on
the coarse graining (see Section 1.4.3) volume AV, however for the rest of this
section we will suppress the superscript denoting this fact.

In a homogeneous equilibrium system the ensemble average (p(r)) = p is
independent of r, and the difference dp(r) = p(r) — p is a random function
of position that measures local fluctuations from the average density. Obviously
(86p(r)) = 0, while a measure of the magnitude of density fluctuations is given by
(8p%) = (p?) — (p)?. The density—density spatial correlation function measures the
correlation between the random variables 8p(r") and Sp(r”), that is, C(r',r") =
(8p(r")8p(r”)). In a homogeneous system it depends only on the distance r’ — r”,
that is,

Cr',r") = C(r) = (8p()3p(0)) = (5p(0)p(r));  r=1r'—1" (1.195)

and in an isotropic system—only on its absolute value » = |r|. Both (8p%) and C(r)
are measurable and contain important information on the equilibrium system.

Problem 1.3. Show that in a homogeneous system

(Bp)3p (")) = (px)p")) — p*

2. Time correlation functions. If we look at §p(r, ¢) at a given r as a function of
time, its time evolution is an example of a stochastic process (see Chapter 7). In a
given time ¢1 the variables p(r, #1) and §p(r, 1) = p(r, t1) — p are random variables
in the sense that repeated measurements done on different identical systems will
give different realizations for these variables about the average p. Again, for the
random variables x = 8p(r,#’) and y = §p(r,#”) we can look at the correlation
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function (xy). This function

C(r,t, 1"y = (8p(x,!)8p(x,1")) = (p(x, 1) p(r, (")) — p* (1.196)

is the time correlation function. In a stationary system, for example, at equilibrium,
this function depends only on the time difference

c,t,fy=Cw,t); t=1—1" (1.197)

Many time correlation functions are observables and contain important information
on dynamical system properties. We can also study time and space correlation
functions

Cr—r,i—t)=(p,p, i) — p (1.198)

that contain information on the time evolution of the system’s structure.

1.5.5 Diffusion

As a demonstration of the use of the concepts introduced above consider the well
known process of diffusion. Consider a system of diffusing particles and let P(r, ¢)
be the probability density to find a particle in position 7 at time ¢, that is, P(r, £)d>r
is the probability that a particle is in the neighborhood @37 of r at this time. P(r, ¢)
is related to the concentration c(r, t) by a change of normalization

c(r,t) = NP(r,1) (1.199)

where N is the total number of particles. The way by which c(r, t) and P(r, t) evolve
with time is known from experimental observation to be given by the diffusion
equation. In one dimension

2

% = D%P(x, t) (1.200)
This evolution equation demonstrates the way in which a reduced description (see
Section 1.5.1) yields dynamics that is qualitatively different than the fundamental
one: A complete description of the assumed classical system involves the solution of
a huge number of coupled Newton equations for all particles. Focusing on the posi-
tion of one particle and realizing that the ensuing description has to be probabilistic,
we find (in the present case experimentally) that the evolution is fundamentally dif-
ferent. For example, in the absence of external forces the particle position changes
linearly with time, x = vt, while (see below) Eq. (1.200) implies that the mean
square displacement (x?) changes linearly with time. Clearly the reason for this is
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that microscopically, the evolution of the particle position involves multiple colli-
sions with many other particles whose detailed motions do not appear in (1.200).
Consequently, Eq. (1.200) is valid only on timescales long relative to the time
between collisions and on length scales long relative to the mean free path, that is,
it is a coarse-grained description of the particle’s motion.

If the distribution depends on time, so do its moments. Suppose the particle
starts at the origin, x = 0. Its average position at time ¢ is given by

o

(x); = / dxxP(x,t) (1.201)
—00
Therefore,
9tx) —D/d i P(x, 1) (1.202)
ar oz '

Integrating on the right-hand side by parts, using the fact that P and its derivatives
have to vanish at |x| — 0o, leads to'!

o)

5 = 0, that is, (x) = 0 at all times (1.203)

Consider now the second moment
x?); = / dxx>P(x, 1) (1.204)

whose time evolution is given by

r 3%p
—Dfdxx — (1.205)

' To obtain Eqs (1.203) and (1.206) we need to assume that P vanishes as x — oo faster than x2,
Physically this must be so because a particle that starts at x = 0 cannot reach beyond some finite
distance at any finite time if only because its speed cannot exceed the speed of light. Of course, the
diffusion equation does not know the restrictions imposed by the Einstein relativity theory (similarly,
the Maxwell-Boltzmann distribution assigns finite probabilities to find particles with speeds that
exceed the speed of light). The real mathematical reason why P has to vanish faster than x~2 is that in
the equivalent three-dimensional formulation P(r) has to vanish faster than #~2 as r — oo in order
to be normalizable.
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Again, integration by parts of the right-hand side and using the boundary conditions
at infinity, that is,

[ P> i aP i
/dxxz—— |:x2 ] — / dx-2xa—=—2[xP]iooo+2fde:2
x
—00

ax2 g oo
—00 —00
(1.206)
leads to (x?)/dt = 2D, therefore, since (x*)o = 0,
(x*), = 2Dt (1.207)

For three-dimensional diffusion in an isotropic system the motions in the x, y, and z
directions are independent (the equation dP(r,1)/dt = D(3%/dx* + 3%/9y* +
32/9z%)P(r, 1) is separable), so

(), = () + 05+ (2%) = 6Dt (1.208)

This exact solution of the diffusion equation is valid only at long times because
the diffusion equation itself holds for such times. The diffusion coefficient may
therefore be calculated from

D= Jim £ ()~ r(0)?) (1.209)

1.6 Electrostatics

1.6.1 Fundamental equations of electrostatics

Unless otherwise stated, we follow here and elsewhere the electrostatic system of
units. The electric field at position r associated with a distribution of point charges
g; at positions r; in vacuum is given by the Coulomb law

n
(r—r;)
Er) = i 1.210
(r) ;q,|r_ri|3 (1.210)
For a continuous charge distribution p(r) the equivalent expression is
_
£(r) =/dr/p(r’) w-r) (1.211)
r—r/3

Note that taking p to be a distribution of point charges, p(r) = ) ; ¢:6(r — r;),
leads to Eq. (1.210).
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Another expression of the Coulomb law is the Gauss law, which states that the
electric field associated with a charge distribution p (r) satisfies the relationship

fdsé’-n=4n/dr,o(r) (1.212)

S Q

In (1.212) ©2 denotes a volume that is enclosed by the surface S, n is a unit vector ata
surface element ds of S in the outward direction and 9§S is an integral over the surface
S. The Gauss law (1.212) relates the surface-integrated field on the boundary of
a volume to the total net charge inside the volume. Using the divergence theorem
$¢B-nda = [, V- Bdr for any vector field B leads to the differential form of the
Gauss theorem

V.E=dnp (1.213)

The electrostatic potential @ is related to the electrostatic field by

E=-Vo (1.214)
This and Eq. (1.211) imply that
p(r')
®(r) = /dr/|r ] (1.215)

Equations (1.213) and (1.214) together yield
Vid = —4mp (1.216)

which is the Poisson equation. In regions of space in which p = 0 this becomes
the Laplace equation, V>® = 0.

The energy needed to bring a charge g from a position where ® = 0 to a position
with an electrostatic potential ® is ¢®. This can be used to obtain the energy needed
to assemble a charge distribution p(r):

/ /d PP _ 1/dr,0(r)d>(r) (1217)

r —r| 2

Using (1.216) we get

W= —i/dr O (r)V2d(r) (1.218)
8
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and, upon integrating by parts while assuming that & = 0 on the boundary of the
system (e.g. at infinity) this leads to

1 1
W = —/dr|V<I>|2 = —/dr|5(r)|2 (1.219)
8 8
we can thus identify the energy density w in an electrostatic field:
1 2
w(r) = —|E(r)| (1.220)
8

Consider now the electrostatic potential, Eq. (1.215), whose source is a charge
distribution p (r'). Assume that p (') is localized within some small volume whose

center is at rg, and that r is outside this volume and far from r. In this case we can
expand

1 1
~ = , = — (' =19V,
r—r'|  [r—ro— (@' —ro) [r—rol lr — 1ol
(1.221)
Disregarding the higher-order terms and inserting into (1.215) leads to
/ / 1 / / / 1
O(r) = dr p(r) —| | drp()(x —ro) |-V,
Ir — o] Ir — 1o
(1.222)

_ q(ro) d(ro) - (r —rp)
Ir — ro| Ir —ro|3

where g(rg) = [ dr’p(r’) is the net charge aboutrg and d(rg) = [ dr’p(r')(r' —r)
is the net dipole about that point. Higher-order terms will involve higher moments
(multipoles) of the charge distribution p(r), and the resulting expansion is referred
to as the multipole expansion. In the next section this expansion is used as a starting
point of a brief overview of dielectric continua.

1.6.2 Electrostatics in continuous dielectric media

The description of electrostatic phenomena in condensed molecular environments
rests on the observation that charges appear in two kinds. First, molecular electrons
are confined to the molecular volume so that molecules move as neutral polarizable
bodies. Second, free mobile charges (e.g. ions) may exist. In a continuum descrip-
tion the effect of the polarizable background is expressed by the dielectric response
of such environments.

Consider such an infinite environment (in real systems we assume that the effects
of the system boundary can be disregarded). Divide it into small nonoverlapping
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volumes A3r that are large relative to molecular size and consider the electrostatic
potential at point r, taken to be far from the center of all these volumes.'? Using
Eq. (1.222) we can write

/ / / 1
b (r) = fd s U ] p(r)) —r_,-)} Ay

_Z< 9(r;) @), !
Ir—r; Ir —

) (1.223)

l‘j|

where [d rj’. is an integral over the small volume j whose center is at r;, and where
the sum is over all such volumes. For what follows it is convenient to write g(r;) =
p(rj)A3r and d(rj) = P(ljj)A3r where p(r;) and P(r;) are coarse-grained charge
and dipole density. The later is also called polarization. In the continuum limit the
sum over j is replaced by an integral over the system volume.

o [ ) o (252
r | | —r/| Ir —r| Ir—r/|

(1.224)

To obtain the second equality we have integrated by parts using Eq. (1.30). Accord-
ing to (1.224) the electrostatic potential field is seen to arise from two charge
densities: the “regular” p(r) and an additional contribution associated with the
dipole density pp(r) = —V, - P(r). We will refer to p(r) as the external charge
density. This reflects a picture of a dielectric solvent with added ionic charges.

Equation (1.224) together with (1.214) imply that the Poisson equation (1.216)
now takes the form

V.- &E=4n(p+ pp) =4n(p—V - P) (1.225)
that is, the electric field originates not only from the external charges but also
from the polarization. It is convenient to define an additional field, the electric

displacement, which is associated with the external charges only:

V-D =4np, that is, D = € + 47 P (1.226)

12 We disregard the fact that there is at least one volume, that surrounding r, for which this assumption
cannot be made.
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The electric field £ and the electrostatic potential ® continue to have the mean-
ing taught in elementary courses: £ (r)dq is the force experienced by an infinitesimal
charge 5q added at position r, and ® (r)dq is the work to add this charge. (The reason
this statement is formulated with an infinitesimal charge é¢ is that in a dielectric
medium a finite charge g can cause a change in £ and ®.) £, however, has a contri-
bution that arises from the polarization P. The latter, an expression of microscopic
separation of bound positive and negative charges within the molecules, may be
considered as the response of the dielectric system to the external field D. A fun-
damental ingredient of /inear dielectric theory is the assumption that this response
P depends linearly on its cause A, that is,

P(r,t) = /dr//dt/oc(r,r/;t,t’)’D(r/,t’) (1.227)

a is the polarizability tensor. The tensor character of « expresses the fact that the
direction of P can be different from that of D. In an isotropic system the response
is the same in all directions, so P and D are parallel and « = «l where « is a
scalar and I is the unit tensor. In a homogeneous (all positions equivalent) and
stationary (all times equivalent) system, a(r,v’;¢,¢') = a(r — ¥’;¢t — ¢'). The time
dependence of «(r, ¢) reflects the fact that an external field at some position at some
time can cause a response at other positions and times (e.g. a sudden switch-on of
a field in position r can cause a molecular dipole at that position to rotate, thereby
affecting the field seen at a later time at a different place). In many experimental
situations we can approximate a(r — r’; ¢t — ') by a8 (r — r')8 (¢t — ), that is, take
P(r,7) = aD(r, ). This is the case when the time and length scales of interest are
large relative to those that characterize o (r — r’; ¢ — ¢’). We refer to the response in
such cases as local in time and place. A common approximation used for molecular
system is to take o to be local in space but not in time,

ar — vt —1) = a(t — )8 —r) (1.228)

Proceeding for simplicity with a homogeneous and isotropic system and with
local and isotropic response, P = oD, and defining the dielectric constant ¢ from
e =1 — 4, we get from (1.226)

1
E=-D (1.229)
g
From (1.226) it also follows that
e—1
P= E=yxE (1.230)

4
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The linear response coefficient x is called the dielectric susceptibility.

Equivalent expressions can be obtained when describing systems that are homo-
geneous and isotropic but whose response is not local in space and time. This is
done by taking the Fourier transform (r — k,# — w) of

P(r,t) = /dr//dﬂa(r —r';t—1)D,?t) (1.231)
to get
Pk, w) = ak, 0)DKk, w)
£k, ) = ¢ (k, 0)D(K, w) (1.232)
Pk, w) = x(k,w)E(Kk, w)
with

eIk, w) =1 —4drak,w)

x(k,0) = (e(k,w) — 1) /47 (1.233)

Problem 1.4. Show that if the response is local in space but not in time the
equivalent expressions for homogeneous stationary systems are

P(r,t) = / dt'a(r;t — )D(r,t) (1.234)

P(r,w) = a(w)D(r, w)
E(r,w) = ¢ N w)D(r,w) (1.235)
P(r,w) = x(w)&(r, w)

e l(w) =1 —4ra(w)

x (@) = (e(w) — 1) /47 (1.236)

Explain the equality a(w) = limg_. o o (k, w) (and similarly for &(w) and x (w)).

In molecular systems the polarization P results from the individual molecular
dipoles and has two main contributions. One is associated with the average orienta-
tion induced by an external field in the distribution of permanent molecular dipoles.
The other results from the dipoles induced in each individual molecule by the local
electrostatic field. The characteristic timescale associated with the first effect is
that of nuclear orientational relaxation, t,, typically 10~!! s for small molecule
fluids at room temperature. The other effect arises mostly from the distortion of
the molecular electronic charge distribution by the external field, and its typical
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response time 7 is of the order 10~16 s. Accordingly, we can define three dielectric
response constants:

P= (. +0a,)D = oD (1.237)

o, expresses the electronic response (induced dipoles), «;, is associated with the
average orientation induced in the distribution of permanent molecular dipoles, and
o denotes the total response. These contributions can in principle be monitored
experimentally: Immediately following a sudden switch-on of an external field
D, the instantaneous locally averaged induced dipole is zero, however after a time
large relative to 7, but small with respect to 7, the polarization becomes P, = «.D.
Equation (1.237) is satisfied only after a time long relative to t,. Similarly we can
define two dielectric constants, €, and &5 such that £ = ¢ I'Dand P, = [(e, —
1)/47 € are satisfied for t, < t < t, while £ = e, 'D and P = [(e5 — 1)/47]E
hold for ¢ > t,.

Problem 1.5. Show that for ¢ > #, the contribution to the polarization of a
dielectric solvent that arises from the orientation of permanent dipoles is given by

1 1 1
P,,:P—Pez—(———)'D (1.238)
4 \ &, &

Note: The factor Cpekar = (1/¢.) — (1/¢5) is often referred to as the Pekar factor.

1.6.2.1 Electrostatic energy

Equation (1.219) was an expression for the energy in an electrostatic field in
vacuum. How is it modified in a dielectric environment?

Starting from a system with given (position-dependent) electric, electric
displacement, and polarization fields, the change in energy upon adding an
infinitesimal charge distribution 8o (r) is

SW = /drap(r)op(r) (1.239)

The corresponding change in the electric displacement §D satisfies the Poisson
equation V - 8D = 4x8p. Therefore, §W = (4m)~! [ dr ®(r)V - §D. Integrating
by parts, assuming that §p is local so §D — 0 at infinity and using (1.214), yields

1 1
SW = —/dr£-8’1) = —/dr8(£-’D) (1.240)
47 8
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To obtain the second equality we have made the assumption that the dielec-
tric response is linear and local, that is, £r)éD(r) = e@®ET)IEX) =
(1/2)e(r)8(E(r) - £(r)). Now assume that all the buildup of the £ and D fields
in the system results from the added charge. This means that integrating over the
added charge will give the total energy

W = L/drﬁ(r) -D(r) (1.241)
8

Accordingly, the energy density is w(r) = (D(r))?/(8me(r)).

As an application of these results consider the work needed to charge a con-
ducting sphere of radius « in a dielectric environment characterized by a dielectric
constant ¢. Taking the center of the sphere to be at the origin and to carry a charge ¢,
the electric displacement outside the sphere is ¢ /7> and the electric field is ¢/(¢7?).
Equation (1.241) then yields

2 X 2 P 2
1 1
4| gr— = q—/dr— -1 (1.242)
8me r 2e r2  2ea

a a

The energy needed to move a charged sphere from vacuum (¢ = 1) to the interior
of a dielectric medium is therefore,

2
wy =L (1 — l) (1.243)

This is the Born expression for the dielectric solvation energy.

1.6.3 Screening by mobile charges

Next consider the implications of the existence of mobile charge carriers in the
system. These can be ions in an electrolyte solution or in molten salts, electrons in
metals and semiconductors, and electrons and ions in plasmas. For specificity we
consider an ionic solution characterized by bulk densities nﬁ and n2 of positive
and negative ions. The ionic charges are

g+ = zye and qg- = —z_e (1.244)

where e is the absolute value of the electron charge. On a coarse-grained level of
description in which we consider quantities averaged over length scales that contain
many such ions the system is locally electroneutral

pg=n8qs+nPq_=0 (1.245)
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Consider now such a semi-infinite system, confined on one side by an infinite
planar surface, and assume that a given potential ®g is imposed on this surface.
The interior bulk potential is denoted ® 5. Having &5 # @ p implies that the mobile
charges move under the resulting electric field until drift and diffusion balance each
other. The resulting equilibrium densities n and n_ are different from their bulk
values and may depend on the distance from the surface. At issue is the question
how do the electrostatic potential and these ionic densities approach their bulk
values as we go from the surface into the interior of this solution.

In what follows we take that the direction perpendicular to the surface and
pointing into the solution as the positive x direction. At any point the potential
3P (x) = ®(x) — ®p may be found as the solution of the Poisson equation (1.226),
written in the form

328D (x) A7
—a = _?5pq(x) (1.246)

where ¢ is the dielectric constant and where the excess charge p; is given by

8pg(x) = (n1:(x) = nf)qy + (=) = n)g- = ny (g4 +n-(g-  (1.247)

In the second equality we have used Eq. (1.245). The densities n,,_ (x) are related
to their bulk value by the Boltzmann equilibrium relations

ny =nBe Pard® ————5 uB (1 — Bg,8P)

1.248)
-8 kpT (
n_ = nBepa-s0 L0 B g, sy

We continue with the assumption that the conditions for expanding the exponential
Boltzmann factors to linear order as in (1.248) hold, and that the expansion to first
order is valid. Using this together with (1.245) in (1.247) leads to

8pg(x) = —B8Px)(nE 4 + nBq)
= —B8D(InT qy(qy —q-) = —BSP Nz (zy +2-)  (1.249)

We can improve the appearance of this result by symmetrizing it, using
(cf. Eqs (1.244) and (1.245)) nBz, = (1/2)(n8 z + nBz_). We finally get

1
80 (x) = —55(n§z+ + 1Bz )tz +2_)8®(x) (1.250)
Using this in (1.246) leads to

328D
= k25, (1.251)
9x?2
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where

2
5 2me

=T (z4 +z-)(zpnf +2_n%) (1.252)

The solution of (1.251) that satisfies the boundary condition §® (x = 0) = dg—dp
and 6P (x —> 00) = 0is §& = (dg — dp)~**, that is,

®(x) = O + (Pg — Pple™ “* (1.253)

We have found that in an electrolyte solution the potential on the surface approaches
its bulk value on a length scale « ~!, known as the Debye screening length.

The theory outlined above is a takeoff on the Debye Huckel theory of ionic
solvation. In the electrochemistry literature it is known as the Gouy—Chapman
theory. The Debye screening length is seen to depend linearly on +/7 and to decrease
as (Z+l’l§_ +z_n8)~1/2 with increasing ionic densities. For a solution of monovalent

salt, where zy =z_ =1 and nﬁ = nB = uB, this length is given by
_ ksTe \'/?

Typical screening lengths in aqueous ionic solutions are in the range of 10-100 A.
At T = 300 K, and using ¢ = 80 and salt concentration 0.01 M, that is, n ~
6 x 10'8 cm ™3, yields a length of the order ~30 A.

Appendix 1A Derivation of the classical Liouville equation
as a conservation law

Here we describe an alternative derivation of the Liouville equation (1.104) for the
time evolution of the phase space distribution function f ", pN ; ). The derivation
below is based on two observations: First, a change in f reflects only the change in
positions and momenta of particles in the system, that is, of motion of phase points
in phase space, and second, that phase points are conserved, neither created nor
destroyed.

Consider an ensemble of N/ macroscopically identical systems that are repres-
ented by AV points moving in phase space. Consider a given volume v in this space.
The number of systems (phase points) within this volume at time ¢ is

n(t) =N / dp"ar" £ eV (1), p" (1); 1) (1.255)
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and the rate at which it changes is given by

dn af
= = dp" arN == 1.256
di N/ Pty (1.256)

Since phase points are neither created nor destroyed, this rate should be equal to the
rate at which phase points flow into the volume v (negative rate means flowing out
of the volume). The velocity of a phase point, i.e., the rate at which its “position”
in the 6/N-dimensional phase space is changing, is represented by the 6N velocity
vector u = (¥, p"). The flux of phase points at phase-space “position” is Nfu.!3
Therefore,

dn
i —N/fu-dS (1.257)
S

where the integral is over the phase-space surface surrounding the volume v, and
where dS is a surface element vector whose direction is normal to the surface in
the outward direction. Using Gauss theorem to transform the surface integral into
a volume integral we get

dn

— = -N / V- (fwdrdpV (1.258)

(Note that Eq. (1.258)) is the multidimensional analog of Eq. (1.36)). Comparing
to (1.256) and noting that the volume v is arbitrary, we find that

3N

9 y . d .
. =1 . (1.259)
of . of . } {359' 31'7j}
,-; { o o ]; dx;  dpj /

Note that the first line of (1.259) and the way it was derived are analogous to the
derivation of the continuity equation in Section 1.1.4. Equation (1.259) expresses

13 «position” in phase space is the 6N-dimensional point g = (r",p"). Phase point velocity is
u=gq = @ ,[')N ). The flux of moving particles (number of particles going through a unit area
normal to the flux vector per unit time) is given by the product of particle velocity and particle
density, in the present case of u and Nf.
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the fact that the number of points in phase space, that is, systems in our ensemble,
is conserved. In the present case we obtain an additional simplification, noting that
the Hamilton equations (1.98) imply that dx;/0x; + dp;/dp; = 0. Equation (1.259)
then becomes

3N
o _ {af 9H  of aH} (1.260)

ot ax; dp;  dpy 0x;

which is again the Liouville equation. This additional step from (1.259) to (1.260)
expresses the incompressibility property of the “Liouville space fluid” discussed
at the end of Section 1.2.2.



2

QUANTUM DYNAMICS USING THE
TIME-DEPENDENT SCHRODINGER EQUATION

I have taught how everything begins,

The nature of those first particles, their shape,
Their differences, their voluntary course,
Their everlasting motion and the way

Things are created by them...

Lucretius (c.99—c.55 Bcg) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968.

This chapter focuses on the time-dependent Schrédinger equation and its solutions
for several prototype systems. It provides the basis for discussing and understanding
quantum dynamics in condensed phases, however, a full picture can be obtained
only by including also dynamical processes that destroy the quantum mechan-
ical phase. Such a full description of quantum dynamics cannot be handled by
the Schrodinger equation alone; a more general approach based on the quantum
Liouville equation is needed. This important part of the theory of quantum dynamics
is discussed in Chapter 10.

2.1 Formal solutions

Given a system characterized by a Hamiltonian /1, the time-dependent Schrédinger
equation is

A i A

o lhw @.1)

ot 7
For a closed, isolated system H is time independent; time dependence in the
Hamiltonian enters via effect of time-dependent external forces. Here we focus
on the earlier case. Equation (1) is a first-order linear differential equation that can
be solved as an initial value problem. If W (¢#y) is known, a formal solution to Eq. (1)
is given by

W) = U(t, 1)V (to) (2.2)
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where the time evolution operator U is!
(1, 19) = e~ @/MHE—10) 2.3)

A more useful solution for W(7) may be obtained by expanding it in the complete
orthonormal basis of eigenstates of H, {1, }, which satisfy

= Exn (2.4)
Writing
W(to) = ) cnlto)yn  With culto) = (¥ ¥ (10)) 2.5)
we get either from (2.1) or from (2.2) the result

W)=Y cal®)Pn  withe,(t) = e PEI0)¢, (1) (2.6)

Problem 2.1. Show how Eq. (2.6) is obtained from Eq. (2.1) and how it is obtained
from Eq. (2.2)

A solution of the time-dependent Schrodinger equation may be obtained also in
terms of any complete orthonormal basis {¢,}, not necessarily the one that diagon-
alizes the Hamiltonian 4. In this basis the Hamiltonian is represented as a matrix
H,,,, = (¢,|H|¢pn) and the wavefunction W (¢) is written as

V() =) bu()n 2.7)

Inserting (2.7) into (2.1) and using the orthonormality conditions (¢, |dm) = Sum
leads to a set of equations for the b coefficients

dbt" - —% ;Hnmbm 2.8)
or in obvious vector-matrix notation
Dy~ Ly (2.9)
dt h
VIfF x) is an analytical function of x in a given domain that contains the point x = 0, the

function £(4) of an operator A is defined in the same domain by the Taylor expansion FQ@) =
>, (/nHF ™ (x = 0)4" where F™ is the nth derivative of F.
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Problem 2.2.

1. Derive Egs (2.8) and (2.9)
2. Show that the time evolution defined by Eqs (2.2) and (2.3) corresponds
to solving Eqs (2.8) (or equivalently (2.9) with the initial conditions

bu(to) = (¢nl¥ (10)) (2.10)

Problem 2.3. Let W(r.t) be the solution of a 1-particle Schrodinger equation with
the Hamiltonian H = —(4%/2m)V? + V(r), and let p(r,?) = |¥(r,?)|? be the
corresponding probability density. Prove the identity

ap

fi /i
=-V.J = —(V'VV —WVU*) = —Im(P*VW¥) (2.11)
ot 2im m

The first equality in (2.11) has the form of a continuity equation (see
Section 1.1.4) that establishes J as a flux (henceforth referred to as a probability
flux).

2.2  An example: The two-level system

Consider a two-level system whose Hamiltonian is a sum of a “simple” part, Hy,
and a “perturbation” V.

H=Hy+V (2.12)

The eigenfunctions of Hy are |ba), |dp), With the corresponding eigenvalues E,,
Ep. We will interchangeably use the notation (i |f)[j) = (¢i|@|¢j) = O;; for any
operator O. Without loss of generality we may assume that V,, = Vpp = 0
(otherwise we may include the diagonal part of V' in Hyp). In the basis of the functions
|¢.) and |¢p) H is then represented by the matrix

P E Vab
H= <Vbi, Ea; )? Vap = Via = (¢alV1¢5) (2.13)
The coupling elements V;; are in principle complex, and we express them as

Vap = Ve ' Via = Ve (2.14)
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with V" taken real and positive. It should be emphasized that the two-level problem
represented by H is not more difficult to solve than that given by Hy, however, there
are situations where it helps to discuss the problem in terms of both Hamiltonians.
For example, the system may be represented by the Hamiltonian Hy and exists in
the stationary state ¢,, then at some time taken to be ¢t = 0 the perturbation Vs
switched on. A typical question is what is the probability Pp(¢) to find the system
in state b following this switch-on of the perturbation that couples between the two
eigenstates of H.

The simplest approach to solving this problem is to diagonalize the Hamiltonian
H , that is, to find its eigenstates, denoted 14 and 1/_, and eigenvalues £ and £_,
respectively.

Problem 2.4. Show that given P,(t =0) = 1; Pp(t =0) =1 — P,(t = 0) = 0,
then the probability to find the system in state b at time  is given in terms of the
eigenstates and eigenvalues of H by the form

; . 2
Pu(t) = [(dplrs) (Wi lpa) e FPEH L (dpir_) (Y |pa) e~ @/PE-1
2.15)

Diagonalization of H. The functions ¥+ and ¥ and eigenvalues £y and E_
are solutions of the time-independent Schrédinger equation Hy = Evr. They are
found by writing a general solution in the form

V) = calda) + b l9p) (2.16)

which in the basis of |¢,) and |¢p) is represented by the vector (EZ) The

Schrédinger equation in this representation is

E, Vb Cq Ca
() (@) -+() @
The requirement of existence of a nontrivial solution leads to the secular equation
(Ea — E) (Ep — E) = V? (2.18)

which yields two solutions for £, given by

_ Eq+Ep+/(Eq— Ep)2 + 4772
B 2

Ey (2.19)
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The following identities

Eq—E, V. _ V
Vv  E,—E, E,—E_

X (2.20)

where X is real and positive, are also easily verified. The coefficients ¢, and ¢
satisfy

E,—F .
cp = —aTe”?ca (2.21)
For the absolute values we have
c E,— FE
el _Vea Bl 4P =1 (222)
cal 4
Consider first £ = £
XZ
2 2
S — = 2.23
el =10 ol =g (2.23)

The phase factor €7 in (2.21) may be distributed at will between ¢, and ¢, and a
particular choice is expressed by

¥4} = cosfe™"1/2|gy) + sin 0e"/2 ) (2.24)
W) = —sinfe™ 2|y} + cos O/ ?|¢p) (2.24b)
or
Vi) [ cos@  sinf )\ (|pa) e—in/2
<|‘/’> ~ \—sinf cosé |pp) €/? (2.25)
where
0 = arctan X; 0<6<m/2 (2.26)
or
né = 0 1 (2.27)
Sinf = —————; 08 = ————> '
(1+x2)7 (1 +x2)7
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Figure 2.1 The components Cl> and <;2> of a vector expressed in the two systems of

1 2
coordinates 1 and 2 shown are related to each other by the transformation

x2\ [ cosf sin 6\ [x]
5] \—=sinf cosf)\y )
The inverse transformation is

lpa) = (cosO|ry) — sinB|y_))e™/?
lpp) = (sin O]y ) + cosO|yr_))e /2

(2.28a)
(2.28b)

Some readers may note that that Eqs (2.25) and (2.28) constitute a rotation in

two-dimensional space as seen in Fig. 2.1.

Calculating the time evolution. The required time evolution is now obtained

from Eq. (2.15). Using (cf. (2.24) and (2.28))
(@plvr4) = — (Y—|da) = sin(6)e™/?
(fpl¥r—) = (Yri|dpa) = cos(6)e™?
we get
Py(t) = [{p|W (1)) > = ‘sin@cos@(e_iE+’/h — e"'E—t/’i)‘2
and

. . 2
Pu(t) = [{gal ¥ (0))]* = \coszee—’E+f/h + sin? ee-lEff/h( =1-P,

Using Eqgs (2.19), (2.20), and (2.26), Eq. (2.30) can be recast in the form

41Vl [ 9r
5 5 S1In —t
(Ea _Eb) +4 |Vab| 2

Pp(t) =

(2.29)

(2.30)

(2.31)

(2.32)
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where

1
U = 2/ (B — Ep)? + 4V l? (2.33)

is known as the Rabi frequency.

2.3 Time-dependent Hamiltonians

Much of the formal discussion below, as well as the two-level example dis-
cussed above deal with systems and processes characterized by time-independent
Hamiltonians. Many processes of interest, however, are described using time-
dependent Hamiltonians; a familiar example is the semi-classical description of
a system interacting with the radiation field. In this latter case the system-field
interaction can be described by a time-dependent potential, for example,

H=Hy+i-E0 (2.34)

where fi is the dipole moment operator of the system and £ is the electric field
associated with the external time-dependent classical radiation field. The emphasis
here is on the word “external”: The electromagnetic field is taken as an entity outside
the system, affecting the system but not affected by it, and its physical character
is assumed to be described by the classical Maxwell theory. This is of course an
approximation, even if intuitively appealing and quite useful (see Sections 10.5.2
and 18.7). An exact description can be obtained (see Chapter 3) only by taking the
field to be part of the system.

We can formalize this type of approximation in the following way. Consider a
Hamiltonian that describes two interacting systems, 1 and 2. In what follows we
use M1, Ry and M>, R, as shorthand notations for the masses and coordinates of
systems 1 and 2, which are generally many-body systems

H=H+H+ 7R, R)
. 72 S (2.35)
Hy = ———Vi + Vi (Ry); k=1,2
3 AL i (Ric)

In writing (2.35) we have deviated from our standard loose notation that does not
usually mark the difference between a coordinate and the corresponding operator.
For reasons that become clear below we emphasize that Ry, R, are operators, on
equal footings with other operators such as H or V.

Next we assume that the solution of the time-dependent Schrodinger equation
can be written as a simple product of normalized wavefunctions that describe the
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individual systems, that is,

() = V()W (r) (2.36)
where each function W (¢);k = 1,2 satisfies the corresponding Schrodinger
equation

ow A
iha—tk — A0, (2.37)

The time-dependent Schrodinger equation for the overall system is

. ov 0w, 2 2 %
ik \1;2W + \111? = U H\ V) + Vi HoWs + VoW W) (2.38)

Multiplying (2.38) by W3 and integrating over the coordinates of system 2 yields

L [0V A% r 2 7
i = (W= :Hlxyl+lI/1(\D2|H2|\I/2>2+(\If2|V12|‘112>2‘1’1
2

ot
(2.39)

where the subscript & in { ); indicates that the integration is taken over the subspace
of system k (k = 1,2). Using (2.37) with £ = 2 this yields

N P, . s
lhw = _Z_le + V],eff(Rl) \I—’l (2403)

with an effective potential for system 1 given by
Mer(R1) = (R + <\112 ‘f/lz‘ ‘112>2 (2.41a)

similarly, for system 2 we get

W 7 .
iha—tz = (—Z—sz§ + Vz,eff(Rg)) W, (2.40b)

Vaet(R) = V2 (Ry) + <\IJ1 ‘f/lz‘ LIJ1>1 (2.41b)
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The result, Eq. (2.40) is known as the time-dependent mean field or time-dependent
Hartree approximation. In this approximation each system is moving in the average
field of the other system.

At this point the two systems are treated on the quantum level, however if
there is reason to believe that classical mechanics provides a good approximation
for the dynamics of system 2, say, we may replace Eq. (2.40b) by its classical
counterpart

. 1
Ry = ——V1.r(Ry) (2.42)
M,

and at the same time replace (W, |V12|W2); in Eq. (2.41a) by Vlz(ﬁl ; Ry (1)), that is,
the interaction potential is taken to be parametrically dependent on the instantaneous
configuration R; of the classical system. In Vi2(R1; R2(1) Ry is an operator while
R>(?) is a classical quantity. The equation describing the dynamics of system 1

v

h? b s
ih— = (——Vf + V1,eff(R1,R2(f))) v

o1 2M, (2.43)

Vietr (R, Ra(2)) = V1(R1) + Vi2(R1; Ra (1))

together with Eq. (2.42) now describe a set of coupled quantum and classical
equations of motion that can be solved self-consistently: The quantum system 1
moves in a potential that depends on the configuration of the classical system 2,
while the latter moves in an effective potential that is the expectation value of V1a
with the instantaneous wavefunction W1 (¢).

The validity of this mixed quantum-classical scheme is far from obvious, and
important questions regarding its applicability may be raised. For example, does
this coupled system of quantum and classical degrees of freedom conserve the total
energy as it should (the answer is a qualified yes: it may be shown that the sum
of the energy of the classical system and the instantaneous expectation value of
the Hamiltonian of the quantum system is a constant of motion of this dynamics).
Experience shows that in many cases this scheme provides a good approximation,
at least for the short-time dynamics.

A further approximation is possible: There are situations in which we may
have reason to believe that while system 1 is strongly affected by system 2, the
opposite is not so, and the classical dynamics of system 2 may be treated while
disregarding system 1. In this case, R, (¢) is a classical function of time obtained as
the solution of the independent equation Ry = —(1/M>)VV3(R») and Eq. (2.43) is
a Schrodinger equation for system 1 with a time-dependent Hamiltonian, similar
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in spirit to Eq. (2.34). System 2 now became “external” and the issue of energy
conservation is not relevant anymore: we are interested only in the energy of system
1 which is obviously not conserved.

We can intuitively identify possible conditions under which such an approxim-
ation may be useful. The interaction of a system with a radiation field is a familiar
example. If we are interested in the probability that a molecule absorbs a photon
from the radiation field, it feels “right” to assume that the field is not affected by the
loss of a photon, so its dynamics might be described with no regard to the molecule.
Similarly, when a heavy and a light particles exchange a given amount of energy
upon collision, the trajectory of the light particle is changed considerably while the
heavy particle is hardly affected, again a reason to disregard the light particle when
considering the motion of the heavy one. It should be kept in mind, however, that
the success of any approximation may depend on the observable under study. For
example, Eq. (2.34) can be useful for describing absorption or induced emission
by a molecule interacting with the radiation field, but it cannot describe the phe-
nomenon of spontaneous emission. Indeed, the latter process can add a photon to
an empty (no photons or “vacuum”) field, and an approximation that disregards
the effect of the molecule on the field can hardly be expected to describe such a
change in the field state. On the other hand, when favorable conditions exist, this
approximation is very successful in describing short-time phenomena such as the
outcome of single collision events.

2.4 A two-level system in a time-dependent field

As a specific example, consider again the two-level model, but now with a time-
dependent Hamiltonian affected by some external force. There are three frequently
encountered problems of this kind:

1. A two-level system, Eq. (2.13), where Visa periodic function of time, for
example,

V(t) = ji - Eg cos(wt) (2.44)

sothatin Eq. (2.13)is V4, = b, - Eo cos(wt). This is a standard semiclassical
model for describing atoms and molecules in a radiation field that will be
further discussed in Chapter 18.

2. A two-level system, Eq. (2.13), with a coupling that simulates a collision
process, that is, f/(t) = 170f (¢) where f(¢) is a function that has a maximum
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at (say) ¢t = 0 and satisfies f(¢) — 0 as [¢| — oco. Writing ¥ (¢) = c,(t)p, +
cp(D)¢p (see Eq. (2.16)), a typical concern is the values of |c,(f)|> and |c, (1) |?
att — oo given that, say, c,(t — —oo0) = 1 (hence ¢ (t > —00) = 0).2

3. The Landau Zener (LZ) problem:? The two-level Hamiltonian as well as the
basis used to describe it are taken to depend on a parameter R in the form

]:I = 1:10 + f/
Ho = E4(R) |$a) {Bal + Ep(R) |¢9) (¢l (2.45)

V = Vap |¢a) (d6] + Voa 1) (bl

and the parameter R is a known function of time, for example it may cor-
respond to the distance between two molecules colliding with each other. In
this respect this problem is similar to the previous one, however, the follow-
ing detail characterizes the LZ problem: The time dependence is such that at
t = 0(say), where R(t = 0) = R*, the zero order energies are equal, £, = Ep,
while at t — Fo00|E,; — Ep| is much larger than |V,|. In reality the basis
functions ¢,, ¢ as well as the coupling elements V,; can also depend on R,
but this dependence is assumed weak, and is disregarded in what follows.
The question posed is as before: given that at 1 — —oo the system starts at
state ¢,, what is the probability that it will cross into state ¢, at t — oo.

We dwell briefly on the last problem that will be relevant to later discussions. The
picture described above constitutes a semiclassical model for nonadiabatic trans-
itions between two electronic states. In this model R may represent the coordinate(s)
of the nuclear system, while a and b denote two electronic states obtained for each
nuclear configuration by disregarding the nuclear kinetic energy as well as other
residual interactions V' (e.g. spin—orbit coupling). The resulting electronic energies
E,(R) and Ep(R) constitute potential surfaces for the nuclear motions in these elec-
tronic states. (The reader may consult the following section for further discussion of
potential energy surfaces.) These surfaces cross as R = R*,* see Fig. 2.2. The time
dependence of R is depicted in this figure in a way that represents a collision pro-
cess. The motion starts at ¢ — —oo, R — —oo and proceeds to t — 00, R — 00
after going through a configuration R = R* (at time set to be ¢ = 0) in which

% For an example of using such an approach to model collisional transitions in the semiclassical
approximation see F. E. Heidrich, K. R. Wilson, and D. Rapp 1971, J. Chem. Phys., 54, 3885.

3L Landau, 1932, Phyz. Z. Sowjetunion 1, 89; 1932, 2, 46; C. Zener, 1933, Proc. Roy. Soc. A137,
696; 1933, A140, 660; E. C. G. Stueckelberg 1932, Hel. Phys. Acta 5, 369. For an update of recent
development of this subject see H. Nakamura, Nonadiabatic Transitions (World Scientific, Singapore,
2002).

* The subspace defined by R = R* is not necessarily a point, but a lower dimensionality surface.
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E

Fic. 2.2 A schematic description of the LZ problem: Two quantum states and the coupling between
them depend parametrically on a classical variable R. The energies of the zero-order states @ and b
cross at R = R*. The energies obtained by diagonalizing the Hamiltonian at any point R (adiabatic
states) are £1(R) and E> (R).

interaction between the two colliding particles has caused £, and £} to become
equal. The corresponding states ¢, and ¢ are sometime referred to as diabatic.
The exact adiabatic energies £1(R), E2(R) and wavefunctions ¢, ¢, are obtained
by diagonalizing the Hamiltonian at each nuclear configuration R. In the case of a
one-dimensional motion the diagonalized surfaces do not cross (the non-crossing
rule); instead, the approach of the surfaces £1(R) and E3(R) into close proximity
is the avoided crossing seen in Fig. 2.2. In a higher dimensional system crossing
may occur, but only on a lower dimensionality surface.

We already know that when |V,;,| < |E, — Ejp| the transition between states a
and b can be disregarded (see Eq. (2.32)). Thus, the transition probability effect-
ively vanishes at t — Zo00. In particular, if the slopes [(dE,(R)/dR)g+| and
|(dEp(R)/dR)g+| are sufficiently different from each other and if |V,;| is small
enough the transition will be limited to a small neighborhood of R*. (This is an
argument for disregarding the R dependence of V,;(R), ¢, (R), and ¢ (R) by setting
R = R* in these functions.) Outside this neighborhood the effect of the coupling
V.» 1s negligible; the adiabatic and diabatic representations are essentially identical.
Thus, a system that starts at t — —o0 in state a (or equivalently state 1) moves
initially on the potential surface £,(R) (equivalently £ (R)).

The description (not the actual physics) of the subsequent time evolution depends
on the representation used. Because of the coupling V,,;, and/or the time dependence
of R, transitions between states can take place, so that at each point R (or equivalently
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time ¢) the state of the system is a linear combination
YR = Ci®Y1(R) + C2(R)Y2(R) = Ca(R)Pa(R) + Cp(R)pp(R)  (2.46)

with [CI(R)|> + |C2(R)* = 1, |[Ca®)* + |Cp(R)|* = 1, and [C1 (R — —00)|* =
|C4(R = —00)|? = 1. Att — oo (R — o0) the two states are again effectively
noninteracting, the transition process has ended and the transition probabilities
can be determined. As seen in Fig. 2.2, the diabatic state a is in this limit the
same as the adiabatic state 2, so that |C,(R — 00)|*> = |C2(R — oo)|2 represents
the probability P,., to stay in the same diabatic state a but also the probabil-
ity P> to cross into the other adiabatic state. (We sometimes say that hopping
between the two adiabatic potential surfaces occurred with probability P>« 1.) Sim-
ilarly |Cp(R — oo)l2 =|Ci(R — c><>)|2 is the probability Pp., to change diabatic
state but also the probability P;. | to stay on the original adiabatic surface. The
LZ approximate solution to this problem is

27 | Vap |2 }
R=R*

- (2.47)
h|(d/dt)(Eq(R) — Ep(R))]

Pic1 =Ppey=1 —exp{
where the time dependence of the energy spacing between states a and b stems
from their dependence on R. Consequently,

d .
7 Ea(R) = Ep(R)) = R|Fy — Fal (2.48)

where R is the nuclear velocity and F; = —3E; /R is the force on the system when
it moves on the potential surface E;. All quantities are to be evaluated at the crossing
point R = R*.

Two limits of the result (2.47) are particularly simple. In the weak coupling/high
speed limit, 27 | Vab|2 < hR|Fb — F,| we get5

27 | Vab|2 }
R=R*

Plai=Ppeg={—+—"—
1«1 b<«a {hR|Fb—Fa|

(2.49)
The probability to remain on the adiabatic surface 1 is very small in this limit,
and it is more appealing to think of the process as a low probability non-adiabatic
transition between the diabatic states a and b. This case is often referred to as
the non-adiabatic limit of the LZ problem. In the opposite limit (large coupling,
slow motion—adiabatic limit) we get P11 = Pp, = 1, namely, the system
moves adiabatically on a single potential surface.

> In many dimensions R|F, » — Fq| stands for a scalar product of the vectors R and |Fp — Fq4l.
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Diabatic Adiabatic

Fic. 2.3 Motion through the potential-crossing region depicted in the adiabatic representation (right)
and in the diabatic representation (left).

Even though the above discussion of curve crossing dynamics was presented
in terms of a collision process, the same phenomenology applies in other situ-
ations encountered in molecular physics. Figure 2.3 depicts the potential energy
surfaces for the nuclear motion associated with two stable electronic states.
Such states are usually obtained from a level of description (e.g. the Born—
Oppenheimer approximation) that neglects some small coupling terms in the
molecular Hamiltonian. The smallness of the terms neglected is gauged against
the interstate energy spacing, and when this spacing vanishes (at R = R*) the
coupling becomes important. The left and right panels show respectively the dia-
batic and adiabatic picture of this situation. Both pictures show potential energy
surfaces that are obtained from a Born—Oppenheimer approximation—neglecting
the effect of nuclear motion (not to be confused with nuclear position) on the elec-
tronic states and energies, however, the “diabatic” picture is obtained by further
neglecting terms in the electronic Hamiltonian that couple the states on the left and
the right (for a more detailed discussion of this point see Section 2.5). The arrow
indicates the reaction under discussion. When the interaction is small, the diabatic
picture is more convenient; the reaction is regarded as a non-adiabatic transition
a — b. In the opposite limit the adiabatic picture may be more convenient. Indeed,
if the interaction is large enough the splitting between the adiabatic surfaces 1 and
2 is large and transitions between them may be disregarded. At low temperature the
presence of state 2 may be disregarded altogether, and the reaction may be regarded
as a barrier crossing process taking place on the adiabatic potential surface 1.

Reaction rates. Instudying processes of this kind it is often the case that the relevant
observable is not the transition probability (2.47) but the reaction rate. How are
the two connected?
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In the non-adiabatic limit, where the a — b transition probability is small, the
system may oscillate in the reactant well a for a relatively long time, occasionally
passing through the transition point (or lower dimensionality subspace) R*, that is,
through a configuration in which the a — b transition probability may be signific-
ant. We refer to such as passage as an “attempt” to cross over to the product state b.
If we assume that successive crossing attempts are independent of each other, and
if the number of such attempts per unit time is v, then the rate is roughly given by

kpea =VPpey

This is a crude description. As we have seen, the probability Pp., depends on the
crossing speed, and a proper thermal averaging must be taken. We will come back
to these issues in Sections 14.3.5 and 16.2.

2.5 A digression on nuclear potential surfaces

The basis for separating the electronic and nuclear dynamics of, say, a molecular
system is the Born—Oppenheimer (BO) approximation. A system of electrons and
nuclei is described by the Hamiltonian

H = He(r) + AN(R) 4 Ve (1, R)

R . R R R . (2.50)

Hep = Ter + Ve (r); Hy = Tn + I'N(R)
Here ]:Iel is the Hamiltonian of the electronic subsystem, Hn—that of the nuc-
lear subsystem (each a sum of kinetic energy and potential energy operators)
and Ve—n(r, R) is the electrons—nuclei (electrostatic) interaction that depends on
the electronic coordinates r and the nuclear coordinates R. The BO approxima-
tion relies on the large mass difference between electron and nuclei that in turn
implies that electrons move on a much faster timescale than nuclei. Exploring
this viewpoint leads one to look for solutions for eigenstates of H of the form
Yuy(r,R) = ¢,(r,R) X‘Sn) (R), or a linear combination of such products. Here
¢ (r, R) are solutions of the electronic Schrodinger equation in which the nuclear
configuration Ris taken constant

(Het + VN (r, R)$(r, R) = EJ (R)$y(r, R) (2.51)

while XIE") (R) are solutions of the nuclear Schrodinger equation with Eg’) (R)asa
potential

(Tn + W) + ELPR)) XV (R) = Epux ™ (R) (2.52)
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The function £,(R) = 'n(R) + E g') (R) is the adiabatic potential surface for the
nuclear motion when the system is in electronic state n. The wavefunctions ¢, (r, R)
are referred to as the adiabatic electronic wavefunctions and the electronic-nuclear
wavefunctions v, , (r,R) = ¢,(r,R) Xu(") (R) represent vibronic states in the adia-
batic representation. The non-adiabatic coupling between vibronic states stems
from the parametric dependence of the electronic wavefunctions on R. Specifying

for simplicity to a single nuclear coordinate it is given by (for n # n’)

(2 e R)| 1 [, RO) = (0 | @t RO i (v, RO 1RO
__" dRx ™ R x ™ (R) <¢ (r,R) )8—2 b (1 R>>
2M v V! PR T L
" dR W*(R)i (”')(R)< ( R)‘i ( R)> 2.53
Xv 8RXV/ ¢n r, IR ¢n/ r, . ( . )

where the subscripts R and r denote integrations in the nuclear or electronic spaces,
respectively.

Diabatic states are obtained from a similar approach, except that additional term
(or terms) in the Hamiltonian are disregarded in order to adopt a specific physical
picture. For example, suppose we want to describe a process where an electron e
is transferred between two centers of attraction, A and B, of a molecular systems.
We may choose to work in a basis of vibronic states obtained for the e-A system
in the absence of e-B attraction, and for the e-B system in the absence of the e-A
attraction. To get these vibronic states we again use a Born—Oppenheimer pro-
cedure as described above. The potential surfaces for the nuclear motion obtained
in this approximation are the corresponding diabatic potentials. By the nature of
the approximation made, these potentials will correspond to electronic states that
describe an electron localized on A or on B, and electron transfer between centers
A and B implies that the system has crossed from one diabatic potential surface to
the other.

To clarify these general statements lets consider a simple example (Fig. 2.4). A
single electron can move between two identical atoms X, fixed in space. A single
nuclear coordinate is exemplified by the angle 6 of the orientation of a dipole that
represents a solvent molecule.

Consider first the two-center system without the “solvent” dipole. Denote the
ground state of the electron about the isolated left center by ¢r (r) and the equi-
valent ground state about the isolated right center by ¢r(r). ¢ (r) is the electronic
ground state of a Hamiltonian in which the interaction of the electron with the
right center was neglected. Similarly, ¢r (r) corresponds to the Hamiltonian that
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FiG. 2.4 An example that demonstrates the origin of diabatic potential surfaces and the difference

between them and the corresponding adiabatic surfaces. The process is an electron transfer between
the two centers X, witnessed by a nuclear coordinates represented by the orientation 6 of a “solvent
dipole”.

does not contain the electron interaction with the left center. These functions
describe an electron localized about the left center and the right center, respectively.
Suppose also that other electronic states are far higher in energy and can be disreg-
arded. When both centers are present the true ground state is a linear combination
2712 (¢ (r) + ¢r (r)) which describes an electron with equal amplitudes on these
centers.

Next consider the two-center system together with the “solvent.” Let us construct
a Born—Oppenheimer description of the electronic ground state. When only the right
center is present the electronic function ¢r (r, 0) still represents an electron localized
about the right center. The corresponding ground state energy ERr(6) constitutes
a potential surface for the orientational motion of the dipole in the presence of
this center. This surface has a single minimum, attained when the angle 6 is such
that the dipole is oriented toward the negative charge, as shown in the figure.
Similarly ¢y (r, 6) and £ () are the ground electronic state and the corresponding
orientational potential surface when the electron is localized about the left center.
ER(0) and E1 (0) are the two diabatic potential surfaces. In contrast the adiabatic
ground electronic state is the exact ground state of the full Hamiltonian, that is,
2= 12(pp(r,0) + ¢r(r,0)). The corresponding ground state adiabatic potential,
E(0), will have two symmetric minima as a function of 8, reflecting the fact that
the dipole equally prefers to be oriented toward either one of the partial charges on
the two centers.

The first picture above yields two diabatic potential surfaces, each with a min-
imum reflecting the tendency of the dipole to point toward the localized electron.
The second yields the lower adiabatic potential surface—a double minimum poten-
tial. The relationship between these surfaces can be understood by noting that the
most important effect of the residual interaction (i.e. the originally neglected inter-
action of the electron on the left center with the right center and vice versa) on the
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electronic energy is to split the degeneracy at the point 8* when the two diabatic
surfaces cross. This leads to the picture seen in Figs 2.2 and 2.3.

Which representation is “better”? The answer depends on our objective. If this
objective is to find accurate energy levels of a molecular system in order to predicta
molecular spectrum, say, then the adiabatic representation gives us a starting point
closer to our ultimate goal. On the other end, it often happens that a system is initially
prepared in a state which is more closely represented by a diabatic basis as in the
example discussed above, and the ensuing transfer process is investigated. In this
case the diabatic picture provides a more physical description of the transfer process,
though the adiabatic representation remains useful in the strong coupling limit.

2.6 Expressing the time evolution in terms of the Green’s operator

We now return to time-independent Hamiltonians and describe another method for
solving the time-dependent Schrodinger equation. Linear initial value problems
described by time-independent operators are conveniently solved using Laplace
transforms (Section 1.1.7). In Section 1.1.7 we have seen an example where the
equation

% = —af; « real and positive (2.54)
was solved by such a procedure. The solution could be expressed as the inverse
Laplace transform, Eq. (1.78), which could be evaluated for « real and positive by
closing a counter-clockwise contour on the negative-real half plane of z, leading to
the result (1.79). To make the procedure more similar to that used below we repeat
that development in a slightly different form: Define z = —iw, so that dz = —idw.
In terms of the new integration variable w, Eq. (1.78) becomes

| oo+ie |
f = f dwe=' —1(0) (2.55)
Tl w+ i
—00+ie

Closing a clockwise contour in the lower half complex plane along Im(z) — —o0,
leads again to the result (1.79).

Consider now the initial value problem represented by Eq. (2.1) with a given
W (ty = 0). The Laplace transform of Eq. (2.1) is

U (z) — W(0) = %iﬁlxif(z) (2.56)
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which leads to®
- 1

V(z) = ——=W(0 2.57
@) T i (0) (2.57)

The time-dependent solution W (¢) of Eq. (2.1) is obtained from the inverse Laplace
transform of (2.57)

1 00i+-¢ 1
V() = — / dze” ————— W (0) 2.58
2mi z+ (i/hH (29
—o0i+-¢€

with ¢ > 0. Here ¢ may be taken as small as we wish because the eigenvalues
of A are all real and consequently all singularities of the integrand in (2.58) are
on the imaginary z axis. It is again convenient to use the substitution z = —iw,
dz = —idw, which transforms Eq. (2.58) to

1 oo+ie |
V() = —— dwe ™' — W (0)
2
T”fooJris @ H/h

or, changing integration variable according to £ = /i(w — i¢)

o0
PRI
2mi

—00

1
— Y (0); e—0 (2.59)
E—H +i¢e

where ¢ was redefined with an additional factor 4. The ie term in the exponent
can be disregarded in the ¢ —0 limit, however, the corresponding term in the
denominator has to be handled more carefully since the spectrum of A is real.
The time-dependent wavefunction is seen to be essentially a Fourier transform of
the function G(E)¥ (t = 0), where G(E) = (E — H + ie)~ ! is the retarded Green'’s
function (or, rather, Green’s operator). In particular, the probability amplitude for
the system to remain in state W(0) at time 7 is given by the Fourier transform of a

® Throughout this text we use operator expressions such as (z — H)~1 with a scalar z to denote
(zI — B)~! where ] is the unit operator.
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diagonal matrix element of this operator

o0

(W)W (1)) = —ﬁ / dEe  ENGH () (2.60)
Gy (E) = <\p(0)‘+ \p(0)>; e—>0 (2.61)
E—H+ie

Equations (2.59)—(2.61) constitute a formal solution of the time-dependent
Schrodinger equation, expressed in terms of the Green operator. We will later see
how this formal solution can be applied.

2.7 Representations

2.7.1 The Schrodinger and Heisenberg representations

Consider again the time evolution equations (2.1)—(2.3). If Aisan operator repres-
enting a physical observable, the expectation value of this observable at time ¢ is
(A)r = (W(2)]|A|W(¢)). We can express this same quantity differently. Define

vy =0T ()w @) (2.62a)
Au() = UY (AU () (2.62b)

where
U(r) = U(t,0) = e~ @/DA (2.63)

Obviously, Wy is simply W(r = 0) and is by definition time independent.
Equation (2.62) is a unitary transformation on the wavefunctions and the oper-
ators at time . The original representation in which the wavefunctions are time
dependent while the operators are not, is transformed to another representation in
which the operators depend on time while the wavefunctions do not. The original
formulation is referred to as the Schrddinger representation, while the one obtained
using (2.62) is called the Heisenberg representation. We sometimes use the sub-
script S to emphasize the Schrodinger representation nature of a wavefunction or
an operator, that is,

Us() = W(r);  As(t) = Ayt =0) =4 (2.64)

Either representation can be used to describe the time evolution of any observable
quantity. Indeed

A

(A) = (¥(OIA1V (1)) = (Yuldu ()| Yh) (2.65)
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Problem 2.5. Prove this identity.

Note that the invariance of quantum observables under unitary transformations
has enabled us to represent quantum time evolutions either as an evolution of
the wavefunction with the operator fixed, or as an evolution of the operator with
constant wavefunctions. Equation (2.1) describes the time evolution of wavefunc-
tions in the Schrodinger picture. In the Heisenberg picture the wavefunctions do
not evolve in time. Instead we have a time evolution equation for the Heisenberg
operators:

d ~ i
—Ay(t) =

M HEHE) (2.66)

Problem 2.6. Use Egs (2.62)—(2.63) to prove Eq. (2.66)

Equation (2.66) is referred to as the Heisenberg equation of motion. Note that
it should be solved as an initial value problem, given that IaH (t=0) = A.Tn fact,
Eq. (2.62b) can be regarded as the formal solution of the Heisenberg equation (2.66)
in the same way that the expression W (¢) = e~ /PH!y (¢ = 0) is a formal solution
to the Schrédinger equation (2.1).

To end this section we note that the entire time evolution referred to in the above
discussion arises from the Schrodinger equation. In general the operator?l may have
an explicit dependence on time, in which case the transformation to the Heisenberg
representation may again be carried out, however, the resulting Heisenberg equation
is

94w (1)

d ~ i
—An(t) = ”

dt i

[ﬁ,AH(t)] n (2.67)

Problem 2.7. Use the definition ;{H(t) = exp(iI:I t/h);is(t) exp(—iﬁ t/h) to
verify (2.67).

2.7.2 The interaction representation

Obviously, any unitary transformation can be applied to the wavefunctions and
operators and used to our advantage. In particular, for any Hamiltonian that is
written as

H=Hy+V (2.68)
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the interaction representation is defined by the transformation

A1(t) = /DA o= (/M Hot (2.69)

Wi (1) = /WAt gg (1) = /Mt o= (/ALY () (2.70)

Problem 2.8. Show that

(Ws()]4s|Ws (1)) = (Wnldu(0)|Wh) = (V1)) ¥1(1)) (2.71)

The time evolution equations in the interaction representation are easily derived
from these definitions
d4
= = = [, 4] 2.72
il [ 0,41 (2.72)

and
Y _ T it g, — frye—mitng o)
it h
__ %e(i/h)ﬁof e /Mt i/ Mot o~y (o)

- —%%(z)%(z) 2.73)

Equations (2.72) and (2.73) indicate that in the interaction representation the time
evolution of the operators is carried by Hy, while that of the wavefunctions is
determined by the interaction V, or rather by its interaction representation that is
itself a time-dependent operator.

2.7.3 Time-dependent perturbation theory

Equation (2.73) is particularly useful in cases where the time evolution carried by
Hy can be easily evaluated, and the effect of Vis to be determined perturbatively.
Equation (2.73) is a direct route to such a perturbation expansion. We start by
integrating it to get

t

W) = WO - f di ()W) (2.74)
0
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and continue by substituting the same expression (2.74) for Wi(¢1) on the right.
This yields

t

Wi(1) = Wi(0) + (—%) / dn 1 (11) W (0)

0

2 t 1
+ (—%) / dty / diy Vi(t) Vi(t2) Wi (12) (2.75)
0 0

00 N7 t 151 In—1
Wi(1) = 1+Z(—%) fdnfdrz---fdzn%(nﬂ?l(tz)---%(zn) W1 (0)
0 0

(2.76)

Note that the order of the operators V(¢) inside the integrand is important: These
operators do not in general commute with each other because they are associated
with different times. It is seen from Eq. (2.76) that the order is such that operators
associated with later times appear more to the left.

Problem 2.9. Show that Eq. (2.74) is equivalent to the operator identity

t
oA _ i/t _ % / g e~ IE(—1') jr o=/ AT o
0
Problem 2.10. Confirm the following operator identity

p
explBS + R)] = exp(BS) | 1 + / dre S RelHS+R)] (2.78)
0

by multiplying both sides by exp(— BS) and taking derivative with respect to S.
Verity that Eqs (2.78) and (2.77) are equivalent.
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2.8 Quantum dynamics of the free particles

2.8.1 Free particle eigenfunctions

The Hamiltonian of a free particle of mass m is

R n?
H=-—V? (2.79)
2m
and the corresponding time-independent Schrodinger equation is
2mE
V2 = —k2y; K2 = ;"—2 (2.80)

It is convenient to use the set of eigenfunctions normalized in a box of dimensions
(Lx, Ly, L;) with periodic boundary conditions

V(x,y,z) =W +nly,y+nyLy,z+n.L.); n=0,%£1,+2,... (2.81)

A set of such functions is

1 .
IK) =Yg (r) = ﬁe’“; k = (ke, ky, k2)
2
b="Tms m=0El.; j=xys (252)
J
Q=LLL,

with the eigenvalues

K2 k2
Ex = —— (2.83)
2m

These functions constitute an orthonormal set

(k') = / dPrif (0P (r) = S (2.84)
Q
and can be used to express the time evolution of any function W (r,# = 0) that

satisfies the periodic boundary conditions (2.81). Following Egs (2.5) and (2.6)
we get

W) =Y (Yl Wr, 0))e MR/ @y, (2.85)
k
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where

(Vx| ¥(r,0) = % S[ re ® Ty (r, 0) (2.86)

We have seen that the normalization condition fQ a’x|1ﬁ(x)|2 = 1 implies that
free particle wavefunctions vanish everywhere like ¥ (x) ~ Q72 as @ — oo. The
probability |y (x) |2dx to find the particle at position x . . . x+dx vanishes like Q!
in this limit. As such, these functions are by themselves meaningless. We will see
that meaningful physics can be obtained in two scenarios: First, if we think of the
process as undergone by a distribution of NV identical independent particles where
the number N is proportional to the volume £ so that the density p(x) = N|y (x)|?
is finite. We may thus work with the single particle wavefunctions, keeping in mind
that (1) such functions are normalized by ~!/? and (2) that physically meaningful
quantities are obtained by multiplying observables by the total number of particles
to get the single particle density factored in.

Second, several observables are obtained as products of matrix elements that
scale like v (x)? (therefore like 2~!) and the density of states that scales like Q
(Eq. (2.95) or (2.97) below). A well-known example is the golden rule formula
(9.25) for the inverse lifetime of a local state interacting with a continuum. Such
products remain finite and physically meaningful even when Q2 — oo.

Anticipating such scenarios, we use in many applications periodic boundary con-
ditions as a trick to represent infinite systems by taking the periodic box dimensions
to infinity at the end of the calculation. We will see several examples below.

Problem 2.11. Show that if the wavefunction W (r, ¢ = 0) is square-integrable
(i.e. f d3r|\lf(r,t = O)|2 (integral over all space) is finite, so is W (r,?) at any
later time.

Problem 2.12. For the function

1 x?
Consider the expansion in terms of the one-dimensional free particle eigenstates
V) = ) (2.88)
k

Ur(x) = L7V2e%, k= Qn/Lyn; n=0,%£l,... (2.89)
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Explain why this expansion is meaningful only in the limit L >> D. Show that
in this limit

8 D2 /4
ck=< il ) e D (2.90)

2.8.2 Free particle density of states

The density of states concept was introduced in Section 1.3. For any operator
A characterized by the eigenvalue spectrum {a;} we can define a density function
p4(a) such that the number of eigenvalues that satisfy a < a; < a+ Aais py(a)Aa.
Such a density can be introduced for a discrete spectrum

pala) = Z(S(a — a;) (2.91)
J

but it is most useful when the spectrum becomes so dense that either our meas-
urement cannot resolve the individual eigenvalues or we are not interested in
these high resolution details. This is obviously the case for the momentum oper-
ator whose eigenfunctions are the free particle wavefunctions (2.82), in the limit
Ly,Ly,L; — oo.

In what follows we describe one possible way to obtain the density of momentum
states for this problem. Consider Eqgs (2.87)—(2.90). Obviously the identity

P! (2.92)
k

has to be satisfied. Using (2.90) in (2.92) we get

o0
V87D V87D
ZT Zexp[—2D2k2]=¥ / dkexpl—2D** =1 (2.93)
k -0

where the conversion to an integral is suggested by the fact that when Q — oo the
allowed values of the wavevectors k constitute a dense set (cf. Eq. (2.82)). p is the
desired density of states in this set, defined such that p Ak is the number of allowed
states, (k; = 2w/L)n;n = 0,%£1,...) in the interval k... k + Ak. In principle p
could depend on k, but it does not in the present case: this is seen from the fact that
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the spacing 27 /L between allowed values of & is a constant independent of k. On
evaluating the Gaussian integral in (2.93) we can find the explicit expression for p,

L
o =-— (2.94)
2
The same reasoning in three dimensions will yield
LyL,L Q
=—X= = (2.95)

P= "y = @y

This number, multiplied by d3k = dkydk,dk;, is the number of quantum states in the
k-space volume between ky and k, + dk, k, and k,, + dk,, and k, and k, + dk,. The
fact that this result does not depend on k = (ky, k,, k,) implies that the distribution
of free particle eigenstates in k-space is homogeneous.

It is useful also to cast the density of states in other representations, most notably
the energy. We may thus seek a density pg so that the number of states with energy
between E and E+ AFE is pg AE. In one dimension the indicated energy interval cor-
responds to the k-axis interval 26 Y (2m(E + dE) — 2mE) = h~! (2m/E)\/?dE
(the factor 2 comes from the fact that a given interval in £ corresponds to two
intervals in k, for positive and negative values) so that

L 2m‘

=57 @=D (2.96)

PE
We can get the same result from the formal connection prdk = pgdE, which
implies that pr = pi(dE/dk)~". In three dimensions the interval between E
and £ 4+ AE corresponds in k-space to a spherical shell whose surface area is
47k? and width is Ak, where k2 = 2mE/h* and Ak = (dE/dk)"'AE =
7Y (m/(2E))Y/2 AE. This yields

5 2mE; (d=3) (2.97)

Q 2mE 1 ym\1/2 Q m
PE ( >

_ 4 - _ e m
2m)3 XA B2 % A 22 i3

Note that pg is a function of the energy E.

2.8.3 Time evolution of a one-dimensional free particle wavepacket

Consider now the time evolution of a free particle moving in one dimension that
starts at = 0 in the normalized state

Y(x,t =0)

—e)? i
(x — x0) +lpox} (2.98)

= Qrp2)/a P {_ 4D2 7
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We refer to the wavefunction (2.98) in the present context as a wavepacket: It is
a local function in position space that can obviously be expanded in the complete
set of free particle waves (2.82).” Below we see that this function is also localized
in momentum space.

Problem 2.15. Show that for the wavefunction (2.98) the expectation values of
the position and momentum are

o0
(X)1=0 = / dxW* (x,t = 0)xW(x,t = 0) = xp (2.99)
—oo
and
i ad
(P)i=0 = / dxW*(x,t = 0) (—iha—) W(x,t =0) =po (2.100)
x
—0o0
Also show that the position variance associated with this wavefunction is
(@ — ) P)imo = (&) — x5 =D’ 2.101)

and that the momentum variance is

2 hz

(@ — PN )i=0 = (p?) — P} = pios (2.102)

Note that Axg = [((x — (x))?);=0]"/? and Apy = [((p — (p))?)i=0]"/? satisfy
the Heisenberg uncertainty rule as an equality: AxgApo = #i/2. For this reason
we refer to (2.98) as a minimum uncertainty wavepacket.

The expansion of (2.98) in the set of eigenstates 1/ (x) = L~ (/2 ¥ yields

W(x,t=0) = 1 cpe’™ (2.103)
N

7 The periodic boundary conditions are inconsequential here provided that the range in which this
wavefunction is significantly different from zero is far smaller than L.
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where
LT (x — x0)’
X — X _
ck = (Vi | V(x,0)) = W f dx exp [—W —i(k— ko)xj|
—00
(2.104)
where ko = po/A. Evaluating the Fourier transform in (2.104) we get
87 D2\ /4
ck = ( 722 ) exp[—D?(k — ko)? — ixo(k — ko)] (2.105)

This implies that for a particle whose quantum state is (2.98), the probability to
find it with momentum 7k is

8w D
el = = expl—2D%(k — ko)’] (2.106)

Note that Eqs (2.87)—(2.90) represent a special case of these results.
The time evolution that follows from Eq. (2.98) may now be found by using
Eq. (2.85). In one dimension it becomes

1 o
o = 3 gk Qe (2.107)
k

The probability that the system described initially by W (x, ¢ = 0) stays in this initial
state is given by

P(t) = [(W(x,t = 0) | W(x, ) (2.108)
Using Egs (2.103) and (2.107) as well as the one-dimensional version of (2.84)
yields
2

P(t) = (2.109)

Z lex |2 o~ U/DIFK /@m))t
k

Inserting Eq. (2.106) and converting the sum over k to an integral, ) , —
(L/(27)) [ dk finally leads to

2

o0
2 7
Pt = |,/ ZD / dk exp [—’—tkz 2D (k — ko)Z] (2.110)
b4 2m
—o0
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Note that the dependence on L does not appear in any observable calculated
above.

We can also find the time-dependent wavefunction explicitly. Combining
Eqs (2.107), (2.105), and (2.94), and converting again the sum over & to an integral
leads to

l)2 174 . ~hk2
\II(X, t) =\ —= €lk0x0 / dk eXp lk(x —xO) — Dz(k — k0)2 — l_t
271'3 2m
(2.111)

This Gaussian integral can be evaluated in a straightforward way. To get some
physical insight consider the result obtained from the initial wavepacket with xg =
po = ko = 0. In this case (2.111) yields

14 int \ V2 X2
van=(—) (b S 2.112
(> 2) (27r> < +2mD> exp [ 4D2+2iht/m] @112)

that leads to

1/2
W =27 | D? + e / ¢ [ x }
x, = s —_— X _—
4m2D? P 2[D? + B2/ (4m2D?)]

(2.113)

This wavepacket remains at the peak position x = 0, with its width increases
with time according to

9 =00 hit
H [

21/2 112 L 12,2 212\11/
((Ax)“) '/ = [D” 4+ m°t* /(4m“D")] 7mD

(2.114)

2.8.4 The quantum mechanical flux

In a classical system of moving particles the magnitude of the flux vector is the
number of particles going per unit time through a unit area perpendicular to that
vector. If p(r) and v(r) are the density and average speed of particles at point r,
the flux is given by

J(r) = v(r)p(r) (2.115a)

It can be written as a classical dynamical variable, that is, a function of positions
and momenta of all particles in the system, in the form

Iy =" (pj/mj)8(xr — 1)) (2.115b)

J

where the sum is over all particles.
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The quantum analog of this observable should be an operator. To find it we
start for simplicity in one dimension and consider the time-dependent Schrodinger
equation and its complex conjugate

oW i| K 92
R W4TV 2.116
Y h[ a2 TV } (2.116)
ow* i | K 92

= |-V V()W 2.117
ot h|: mo T ) } ( )

Multiply (2.116) by W* and (2.117) by W and add the resulting equations to get

I ih [ 0° 32
Vv — W
a  2m 0x2 0x2

(2.118)

We next integrate this equation between two points, x1 and x,. V*(x, )W (x, t)dx
is the probability at time # to find the particle in x . ..x + dx, hence the integral on
the left yields the rate of change of the probability P1— to find the particle in the
range between x| and x,. We therefore get

X2 X2
dPi - (¢t i 92w RV i 9 oW qw*
LO:’—fd eV Y =l—/dx— vl g

dt 2m ax? 9x2 2m ox ox ox

X1 X1
o oW (v, 1
— ——/dx— Im | W* (x, ) 22 1) (2.119)
m ox 0x
X
This can be integrated to give
dP1— (1)
—Q = J (x1,t) —J (x2,1) (2.120)

where

h [* B‘P(x,t)} h( I g
J(x’t)EZIm W (x,t) —————— =7

wr— — @
ox

- . ) (2.121)

mi
is defined as the probability flux at point x. Note that while J in Eq. (2.115) is a
particle flux, Eq. (2.121) is the probability flux, and should be multiplied by N (in
a system of N noninteracting particles) to give the particle flux.

Equation (2.120) may be recognized as a conservation law: NP1 is the number
of particles in the (x1,x) interval and NJ(x) is the number of particles moving per
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unit time through point x. Equation (2.120) tells us that a change in number of
particles in the x1, ..., x> interval is caused by particles entering or leaving at the
boundaries x1 and x, that is, particles cannot be created or destroyed.

Problem 2.14. Use the results above to prove that at steady state of a one-
dimensional system the flux has to be independent of both position and time.

Note that in our one-dimensional formulation the dimensionality of W is
[length]~!/2 and the flux J has dimensionality of 7~!. The generalization of (2.121)
to more than one dimension is found by repeating the procedure of Eqs (2.116)—
(2.121), with the gradient operator V replacing d/dx everywhere. Equations (2.119)
and (2.120) become

dpzt(t) — ——/d3 (Im [¥* (r, 1) VW (r,1)])

= ——/dsns- [W* (r,0) VW (r,1)] (2.122)

where Q2 here denotes a finite volume whose boundary is the surface S, and
where ny is a unit vector normal to the surface element ds in the outward direction.
In getting the second line of Eq. (2.122) we have used the divergence theorem
(Eq. (1.36)). In fact, the mathematical structure of Eq. (2.122) reflects the fact that
in a closed system the quantum mechanical probability is a globally conserved
quantity (See Section 1.1.4). It also enables us to identify the probability flux: The
second line of (2.122) is the analog of the right-hand side of Eq. (2.120), where the
flux is now defined by the analog of Eq. (2.121).

Jr, 1) = i [tp (r, 1) (VU (r,0) — W(r,0) (VI*(r,0)] (2.123)

In three dimensions W has the dimensionality [length] ~3/2 and the dimension of
flux is [#/2]~!. When multiplied by the total number of particles N, the flux vector
gives the number of particles that cross a unit area normal to its direction per unit
time.

As an example consider the free particle wavefunctions 1 (r) = 4 exp(ik - r)
and Y (r) = A cos(k - r). From Eq. (2.123) it is clear that the flux associated with
Yo is zero. This is true for any wavefunction that is real or can be made real by
multiplication by a position independent phase factor. On the other hand, using
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W=y in (2.123) yields
Ak
J(r) = —|4)? = v|4)? (2.124)
m

The flux is defined up to the constant 4. Taking |4|> = Q~! (a single particle
wavefunction normalized in the volume €2) implies that the relevant observable
is NJ(r), that is, is the particle flux for a system with a total of N particles with
N ~ Q. Sometimes it is convenie