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Preface 

The purpose of this text is to provide both professionals and students 
in groundwater hydrology with a practical introduction to the analytic 
element method and the use of elementary analytic solutions in solving 
groundwater flow problems. The design of analytic element models 
requires substantial expertise in engineering mathematics and computer 
programming, and is discussed in Groundwater Mechanics by Strack 
(1989). The current text, however, focuses not on the design of analytic 
element models, but on their use! Consequently, the detailed and often 
involved derivations of the various analytic elements are omitted. Instead, 
the basic concepts behind the method are illustrated by presenting a num- 
ber of elementary analytic solutions and applying them to practical 
groundwater flow problems. In particular, I have set out to promote a 
stepwise approach to groundwater flow modeling, progressively using 
more sophisticated or detailed solutions as insight into the problem grows. 
Where possible, data uncertainties are resolved through hypothesis test- 
ing--by presenting several alternative solutions. This approach is in con- 
trast to the more rigid, but often employed, practice of constructing a 
"best fit model." Although the analytic element method is particularly 
well suited for this stepwise modeling procedure, the concept applies 
equally well to modeling projects carried out with other numerical models; 
see Ward et al. (1987). 

An educational version of the analytic element software GFLOW is 
included with this text. The GFLOW package consists of a data pre- 
processor GAEP and the analytic element model GFLOWl. A set of 
GFLOWl input-data files are provided to allow the reader to reproduce 
the various solutions to groundwater flow problems discussed in this text. 
The relevant data files are identified in the captions of the figures that 
display these solutions. Many of the data files contain instructions for 

• 
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additional experimentation with the problem at hand. Refer to the file 
"readme" on the distribution diskette for installation and operating proce- 
dures for GFLOW. 

The approach to groundwater flow modeling presented in this text 
reflects the influence of my mentors combined with my own experiences in 
teaching and practicing groundwater hydrology. I am particularly grateful 
to the inspiring lectures of Prof. A. Verruijt, Prof. L. Huisman, and Prof. 
G. de Josselin de Jong at the Civil Engineering Department of the 
Technical University Delft, The Netherlands. Dr. P. A. Vermeer at the 
Geotechnical Laboratory of the Civil Engineering Department was the first 
to introduce me to the elegance and power of analytic solutions to ground- 
water flow problems. Prof. Verruijt offered me a research position and 
started my career in academia. Prof. de Josselin de Jong further stimulated 
my interest in analytical solutions until his advisee Dr. O. D. L. Strack 
invited me to Minnesota. There, under contract with the U.S. Army Corps 
of Engineers, I worked on the implementation of his newly conceived ana- 
lytic element method. After completing my Ph.D. studies under Prof. 
Strack, I started to teach and further develop the analytic element method 
at the School of Public and Environmental Affairs of Indiana University. 
The current text evolved from my course "Groundwater Flow Modeling" 
and my groundwater flow consulting experiences. 

I am indebted to many of my students who provided feedback on the 
manuscript, improving its clarity and focus. Specifically, I thank my 
Ph.D. advisees: Dr. S. R. Kraemer, Dr. S. Mitchell-Bruker, Mr. J. 
Wittman, Mr. V. A. Kelson, and Mr. K. Luther, with whom I discussed 
much of the material and its presentation in this text. Mr. V. A. Kelson 
wrote part of the GFLOW software (the preprocessor GAEP) included 
with this text and assisted in preparing one of the case studies in 
Chapter 6. Dr. Lloyd Townley provided valuable feedback on Section 
5.3.7. 

This text has been prepared with the typesetting program TEX, 1 by 
Donald E. Knuth, using the macro I~TF~ by Leslie Lamport. The prepa- 
ration of this manuscript diverted my attention from many other impor- 
tant activities, including spending time with my children, Coraline (14), 
Mart (12), and Charles (10). I could not have.completed this text without 
the unwavering support of my wife, Bieneke, to whom I dedicate this 
work. 

H. M. Haitjema 

1 TE X is a trademark of the American Mathematical Society. 



Chapter 1 

I n t r o d u c t i o n  

The mention of groundwater flow modeling usually evokes images of a model 
grid or element network, depending on whether one is a finite difference or 
finite element modeler. Of course, groundwater flow modeling is nearly syn- 
onymous with computer modeling. Solving groundwater flow problems by 
drawing flownets, or applying conformal mapping techniques, seems an ac- 
tivity of the past (Muskat, 1937; Harr, 1962). The use of computer models 
does not require a background in advanced engineering mathematics, or so 
it is believed. The ingenuity and elegance of classical analytic solutions to 
groundwater flow have been largely replaced by the versatility of numerical 
algorithms and the computational power of the digital computer. Many 
see an advantage here: The hydrologist can now concentrate on ground- 
water hydraulics rather than being distracted by tiresome mathematical 
manipulations. 

The shift from analytical to numerical modeling of groundwater flow is 
also reflected in the current training of groundwater hydrologists. After in- 
troducing such basics as Darcy's law and continuity of flow, the discussions 
quickly focus on the application of numerical models. This emphasis on 
numerical modeling, early on in the training, often deprives the hydrologist 
of the insight in basic groundwater hydraulics that comes from solving ele- 
mentary flow problems analytically. The basic concept of superposition, for 
instance, is undoubtedly taught in every groundwater hydrology course, but 
it is not applied when creating a finite difference or finite element solution. 
The consequences of this single-sided training may be illustrated by the 
following anecdote. Once, the validity of my analytic solution to a regional 
groundwater flow problem, superimposing over a hundred elementary so- 
lutions to the governing differential equation, was called into question by 
a conference attendee who asked: "How can you trust your solution if you 
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have no grid in which to check the water balance?" The critique came from 
a very responsible finite difference modeler who indeed is conscious of the 
need to check the water balance in finite difference models. That analytic 
solutions to the governing differential equation satisfy the water balance 
exactly, however, was forgotten. 

Elementary analytic solutions, such as a well in a uniform flow field or 
areal recharge on an aquifer between two parallel streams, provide much 
insight in the role that various aquifer parameters play in determining the 
groundwater flow patterns. For instance, in many cases of aquifer remedi- 
ation or wellhead protection, the groundwater capture zones for wells can 
be sketched by hand using three points on the capture zone envelope that 
are easily determined from field data. Such a "back of the envelope" cap- 
ture zone estimate is a valuable check on any computer-generated capture 
zone. From a simple one-dimensional solution we learn that, in general, 
groundwater mounding in regional aquifers is proportional to the ratio of 
recharge over transmissivity while it is proportional to the square of the 
average distance between surface waters. There are many more examples 
of how elementary analytic solutions provide important insights in the be- 
havior of groundwater flow. Occasionally, a simple analytic solution will 
suffice to answer the questions for which a numerical model may otherwise 
be employed. In fact, the important step of model selection (Anderson and 
Woessner, 1992) cannot be taken properly without a good insight in the 
basic behavior of the groundwater flow system at hand. Perhaps the best 
way to select a (computer) model is after some simple hand calculations 
(analytic solutions) have been done. 

As with so many things, the pendulum swings back and forth. Cur- 
rently, there is a renewed interest in analytic approaches to groundwater 
flow modeling. Although analytic solutions usually require more severe 
simplifications of the flow system (horizontal aquifer base, uniform conduc- 
tivity, etc.) than numerical solutions do, they also require correspondingly 
fewer input data. The latter feature is attractive because field data ac- 
quisition is time-consuming and expensive, while some parameters remain 
uncertain anyhow (e.g., spatial distributions of hydraulic conductivities and 
recharge rates). For the purpose of wellhead protection, for instance, EPA 
developed the analytical computer model WHPA, which uses conformal 
mapping and imaging techniques to solve basic groundwater flow problems 
(Blandford and Huyakorn, 1990). WHPA is widely used by the drinking- 
water industry to delineate capture zones for their well fields. In 1981 Strack 
introduced the "Analytic Element Method," by which complex regional flow 
problems can be solved by superposition of many (hundreds) analytic so- 
lutions or analytic elements (Strack and Haitjema, 1981a, 1981b). The 
analytic element method combines the elegance and accuracy of analytic 
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solutions with the power of the digital computer in an attempt to get the 
best of both worlds. Although analytic element models are easy to use, 
they are difficult to build; they employ complex analytic solutions, whose 
development requires advanced mathematical skills and whose implementa- 
tion in a computer code requires specialized programming skills. A rigorous 
treatment of these analytic elements and their numerical implementation 
is found in a text by Strack (1989). The current text focuses on the ap- 
plication of the analytic element method, while the theoretical basis for 
the method is presented step by step through a series of analytic solutions 
to elementary flow problems. The theoretical discussions are interspersed 
with computer exercises which demonstrate the concepts by applying them 
to practical problems. 

The approach to groundwater flow modeling promoted in this text is 
that of stepwise modeling and hypothesis testing, instead of finding "the 
best-fit model." More often than not, the enthusiastic groundwater modeler 
loses himself or herself in the overwhelming complexity of the hydrogeology 
and the effort to include it all in the model. The quality of a groundwater 
flow simulation is then measured by the degree of complexity and detail 
of the model and model input data. Variations in aquifer properties and 
recharge rates, transient effects, and transport phenomena are all incorpo- 
rated in the model because they exist, not because they matter. Extensive 
model calibration efforts are directed at finding the conductivity or con- 
ductivities, the aquifer recharge rate or rates, etc. Such a complex model 
becomes a card-house of assumptions; if one assumption is shown to be in 
error, the whole model collapses under the pressure of suspicion. In a step- 
wise modeling procedure, in contrast, we will gradually build up complexity 
and only to the degree necessary. In this way the relative importance of 
the various hydrogeologic parameters is better understood and documented. 
Data uncertainties are dealt with by modeling bounding parameter values 
and assessing their impact in view of the modeling objectives. This hy- 
pothesis testing approach can often replace expensive and time-consuming 
field data acquisition, or at least demonstrate objectively which additional 
field data are of importance for the project. This kind of groundwater flow 
modeling places the responsibility for the outcome of a study entirely with 
the groundwater hydrologist where it belongs! This way the quality of 
the work depends on the expertise of the hydrologist, not on the bells and 
whistles of the software or on the (mechanical) adoption of some established 
modeling protocol. 

The text is subdivided into six chapters, including this introduction. In 
Chapter 2, I review some of the basics of groundwater hydrology, such as 
Darcy's law and conservation of mass, and show how they are combined 
into a governing differential equation. Chapter 3 is devoted to "Dupuit- 
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Forchheimer flow," in most other texts referred to as two-dimensional flow. 
We will discover, however, that the Dupuit-Forchheimer assumption is less 
restrictive than the term "two-dimensional flow" suggests. In fact, as we 
will discover, Dupuit-Forchheimer models can handle most of our mod- 
eling needs. In Chapter 4, we will briefly address three-dimensional flow 
problems. At the end of that chapter I will show how three-dimensional an- 
alytic elements (e.g., a partially penetrating well) can simply be included in 
a Dupuit-Forchheimer model, at least for the case of confined flow. Such a 
hybrid 2D-3D model is computationally very efficient: Complicated three- 
dimensional functions are evaluated only where needed, e.g., near a partially 
penetrating well. In Chapter 5, I formally introduce the analytic element 
method, although for all of our previous computer modeling exercises we 
have already been using the analytic element model GFLOWl .  In that  
chapter I formulate a stepwise modeling approach for which the analytic el- 
ement method is uniquely suited. We also systematically explore the effect 
of more complex conceptual models for instance, when to use three- 
dimensional flow or transient flow, and what is the effect of variations in 
aquifer properties or aquifer recharge. Finally, in Chapter 6, I discuss three 
groundwater flow modeling projects (case studies) to which the analytic 
element method has been applied. 



Chapter 2 

Basic Concepts 

Groundwater is present and in motion in almost all geological formations. 
In some materials, such as clay or rock, movement is very slow as compared 
to the groundwater flowing in sand and gravel formations. Highly fractured 
rock, however, may exhibit groundwater discharges equal to or in excess of 
sand and gravel aquifers. Any geological formation from which water can 
be pumped in "usable quantities" [a few gallons per minute (GPM) or 
more] is, at least according to regulatory agencies, an aquifer worthy of our 
attention. These aquifers comprise our groundwater resource and are the 
subject of the groundwater modeling discussions in this text. 

For most practical engineering purposes, it is sufficient to consider av- 
erage groundwater flow rates and directions. We rarely have to concern 
ourselves with the erratic movement of water on the (microscopic) scale 
of individual pores. With that  stipulation, the movement of groundwater 
is quite accessible to mathematical  descriptions. The governing equations 
for groundwater flow are based on two fundamental principles: Darcy's law 
and conservation of mass. 

2.1 Darcy ' s  Law 

In 1856 the French engineer Darcy conducted a series of experiments on 
the flow of water through columns of sand (Darcy, 1856). Figure 2.1 is a 
copy of the original figure in his report. Water, introduced at the top of the 
iron pipe, is forced downward through a column of sand and exits through 
a faucet at the bottom. Water pressures are monitored by manometers 
connected to the top and the bottom of the sand column. 

Darcy's experiment is schematically represented in Figure 2.2. The wa- 
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Figure 2.1" Darcy's experiment as shown in his paper from 1856. 
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Figure 2.2: Schematic diagram of Darcy's experiment. 

ter levels in the manometers  1 are r and r ILl as measured with respect to 
some horizontal datum. Throughout  this text I will report the dimensions 
of newly introduced properties between square brackets, in which L, T, and 
M stand for length, time, and mass, respectively. 

These water levels r and r are referred to as hydraulic heads, or heads 
for short. The top of the sand column is at z - z2 where the head is r 
while the bot tom is at z - Zl with head r (see Figure 2.2). The difference 
in head ( r  r is the driving force that  moves the water through the 
sand. 

Darcy found the following relationship between the flow rate Q [L3/T] 2 
and the head difference ( r  r 

Q - kA ~b2 - ~b_______~l (2.1) 
z2 - Zl 

where A [L 21 is the cross-s'ectional area of the sand column and z 2 -  zl ILl 
is its length; see Figure 2.2. The parameter  k [L/T] is a proportionality 

1Darcy employed mercury-filled manometers, but translated the rise of mercury into 
water elevations. 

2Dimensions are given between []: L is length, T is time, and M is mass. 
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constant found to be dependent on the type of sand in the apparatus;  it is 
termed the hydraulic conductivity. 

Equation (2.1) may be generalized for use in the analysis of groundwater  
flow. The head distribution in the sand column varies linearly from r to 
r for increasing values of z. This may be understood by applying (2.1) to 
sections of the column. For instance, a manometer  connected to the sand 
column midway between Zl and z2 must exhibit a head midway between 
r and r in order for (2.1) to be valid. Consequently, we may write the 
head as a linear function of z' 

r  - -  r  r  - -  r  
r  = + (2 .2)  

z 2 - -  z 1 z 2  - -  z 1 

The term (r - r - Zl) in (2.1) appears to be the derivative of r  

de r - 4)1 
= ( 2 . 3 )  

dz z2 - -  Zl 

The flow rate Q in (2.1) may be normalized with respect to the cross- 
sectional area A of the sand column, yielding the specific discharge qz = 
- Q / A  [L/T]. The index z indicates that  the specific discharge is parallel to 
the z-direction, while the minus sign indicates that  the flow in Figure 2.2 
occurs in the negative z-direction. Darcy's relationship (2.1) may therefore 
be rewritten as 

qz = -kd'-~r (2.4) 
dz 

Equation (2.4) no longer refers to the specific dimensions or design of 
Darcy's apparatus.  It simply states that  if, in a sand body (aquifer), the 
derivative of the head in z-direction is known, the specific discharge in the 
z-direction follows from (2.4). It seems intuitive that  the result (2.4) holds 
in any direction, including the z- and y-direction of a Cartesian coordinate 
system. All three components of the specific discharge vector in the aquifer 
then follow from 

0! 
qz = - k  

Ox 
0r  

= - k - -  (2 .5)  
Oy 

0r  
qz = - k - -  

Oz 

The partial  derivatives of r y, z) in (2.5) represent the three components 
of the hydraulic gradient. Equation (2.5) may be writ ten in a more compact  
form by use of the indicial notation or tensor notation: 

qi = - k O i r  (i = 1, 2, 3) (2.6) 
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where qi represents the three components of the specific discharge vector 
qx, qy, and qz, while 0i represents the three partial derivatives of r with 
respect to x, y, and z. 

H y d r a u l i c  c o n d u c t i v i t y  va lues  

The hydraulic conductivity values vary widely depending on the geological 
formations. In Table 2.1 approximate ranges for k are given for several 
soil types. The k-value ranges in tables are too broad and too unreliable, 

Table 2.1: Some approximate ranges for k in different soil types. 

soil type 

gravel 
sand and gravel 
coarse sand 
medium sand 
fine sand 
silty sand 
silt 
peat 
sandy clay 
clay 

. . . . . . .  

k in f t /day 

> 

200- 500 
50-  200 
20-  50 
1-  20 
0 . 1 - 1  

0.01- 0.1 
0.001-  0.01 

0.0001- 0.001 
< 0.0001 

. , .  

however, to be used for practical computations. Instead, these values should 
be obtained from so-called "pumping tests" in the field, see Section 3.6.4, 
or f r o m . . ,  groundwater flow modeling, as we will discuss later. I did not 
present any k-values for rock in Table 2.1, since they depend heavily on the 
degree of fracturing of the rock. In fact, it is often questionable whether or 
not flow in a fractured rock aquifer can be described by Darcy's law, which 
brings us to the next issue. 

2 . 1 . 1  T h e  R e p r e s e n t a t i v e  E l e m e n t a r y  V o l u m e  

When rewriting (2.1) in the form of (2.4), it was tacitly assumed that  
Darcy's experiment remains valid on any scale, including on the scale of a 

single point. This is obviously not true. That  single point, for instance, 
may fall inside a sand grain where neither water pressure (or head) nor 
groundwater velocity can be defined. Yet in our mathematical  analyses we 
will pretend that  soil and water form a continuum, so that  we may write 
our relationships for any point in the porous (continuous) medium. This 
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is an acceptable practice, provided that  we do not a t tempt  to make any 
observations at a single point. Our observations of heads and groundwater 
velocities, for example, should be averages over a sufficiently large aquifer 
volume as to allow for proper averaging of these quantities. The smallest 
possible volume acceptable for our observations is called the representative 
elementary volume or RE V. In sand and gravel aquifers the REV may be less 
than a few cubic inches. In fractured rock, however, far larger volumes may 
need to be considered. In some cases, the fractured rock system continues 
to behave discretely even on a regional scale. In those cases the basic 
equations developed in this chapter do not apply. 

2 . 1 . 2  A v e r a g e  G r o u n d w a t e r  V e l o c i t y  

The dimensions of the specific discharge vector are those of a velocity [L/T], 
which has led to the term "Darcy velocity" for qi in (2.6). In fact, in his 
report, Darcy himself referred to it as a velocity. The term, however, is 
misleading and is better avoided! The specific discharge is not a velocity, 
but a discharge rate per unit area. The average groundwater velocity v in 
Darcy's apparatus is 

Q 
v = ~ (2.7) 

nA 

where n is the soil porosity: the fraction of the soil volume occupied by 
pore space. The term nA in (2.7) is thus the cross-sectional area available 
for the discharge rate Q to flow through. Only when there would be no 
soil particles (n = 1) would the specific discharge represent the average 
groundwater flow velocity. The average groundwater velocity vector vi in 
an aquifer is, with Q/A being the specific discharge, 

q' (2.8) V i ~  

2 . 1 . 3  I n t r i n s i c  P e r m e a b i l i t y  

Hubert (1940) pointed out that  the hydraulic conductivity k depends not 
only on the soil type, but also on the density and viscosity of the pore fluid 
which flows through the soil: 

k = n__~ = ~ p g _  ~g (2.9) 
# up u 

where n[L 2] is called the intrinsic permeability or just permeability. The 

other properties in (2.9) are 

"7 [M/L2T 2] is the unit weight of the pore fluid, 
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# [M/LT] is the dynamic viscosity of the pore fluid, 

p [M/L 3] is the density (unit mass) of the pore fluid, 

v [L2/T] is the kinematic viscosity of the pore fluid, and 

g [L/T 2] is the acceleration of gravity. 

The intrinsic permeability concept is popular in the oil industry where the 
simultaneous movement of gas, oil, and water needs to be considered. In the 
context of groundwater flow the intrinsic permeability is usually not used 
except, for instance, when dealing with problems of severe groundwater 
contamination for example, in the case of pure TCE (trichloroethylene) 
sinking to the bottom of an aquifer. For some fluids the values for p and v 
are given in Table 2.2. I added the density and viscosity for air to Table 2.2 

Table 2.2: Density and viscosity values for some fluids and air. 

fluid or gas 

fresh water 
sea water 
gasoline 
crude oil 
TCE (trichloroethylene) 
air 

density p [g/cm 3] 

1.000 
1.025 
0.680 
0.860 
1.464 

1.247 x 10 -9 

kin. viscosity v [cm:~/s] 

0.013 
0.014 
0.005 
0.12 

0.0039 
0.142 x 106 

Acceleration of gravity g is 998.1 cm/s 2. 

so that the hydraulic conductivity may be converted into an air conductivity 
by use of (2.9). This air conductivity is useful in the context of "soil vent- 
ing", a technique for cleaning up the unsaturated zone of a shallow aquifer. 
The subject of modeling air flow through porous media, however, is beyond 
the scope of this text. The interested reader is referred to Johnson et al. 
(1990). 

2 . 1 . 4  L a m i n a r  F l o w  

Darcy's experimental law represents a linear relationship between the hy- 
draulic gradient and the specific discharge vector, indicating laminar flow 
conditions. However, rapid flow through large pore spaces may become 
turbulent, in which case it cannot be described by Darcy's laminar flow 
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law. Such conditions are possible in large fractures in rock or, for instance, 
in coarse gravel formations close to high-capacity wells. 

Va l id i t y  of D a r c y ' s  Law 

The validity of Darcy's law may be verified by calculating the value of a 
dimensionless number used in fluid dynamics: the R e y n o l d s  n u m b e r .  The 
Reynolds number is defined differently depending on the character of the 
flow problem. For flow between two parallel plates, an approximation to 
fracture flow, the Reynolds number may be defined as 

dv 
Re(rock)  -- ~ (2.10) 

v 

where d [L] is the fracture aperture, v the average groundwater velocity in 
the fracture, and u the kinematic viscosity of the groundwater. Laminar 
flow conditions are ensured when 

Re(rock)  < 800 (2.11) 

For flow through sand and gravel aquifers, the Reynolds number may be 
defined as 

Re(soi l )  = Dq  (2.12) 
u 

where D [L] is the average grain diameter and q the specific discharge. 
Laminar flow conditions are ensured when 

Re(soiO < 1 (2.13) 

To illustrate the validity of Darcy's law, consider a sand and gravel aquifer 
with an average grain size of 10 -3 m, a hydraulic conductivity of 10 -2 
m/s,  and a hydraulic gradient of 10 -2. The kinematic viscosity of water is 
approximately 10 -6 m2/s. The specific discharge is the product of hydraulic 
conductivity and hydraulic gradient: q = 10 -2 x 10 -2 = 10 -4 m/s.  With  
these values the Reynolds number becomes [see (2.12)]" 

10 -3 x 10 -4 
- 10 -1 < 1 (2.14) Re(soil)  -- 10_6 

The values just used represent rather extreme conditions of rapid flow in 
a course sand and gravel aquifer, yet the flow is well within the laminar 
range. In most sand and gravel aquifers, laminar flow is ensured. However, 
fractured rock aquifers may frequently exhibit turbulent flow because of 
large fracture apertures. 
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Contaminant Spreading 

The laminar nature of groundwater flow has an important implication re- 
garding the movement of contaminated groundwater. On the macroscopic 
scale, "water particles" tend to move parallel to each other in an orderly 
linear motion, rather than the turbulent mixing that occurs in some rapidly 
flowing surface waters. Consequently, mechanical mixing of clean and con- 
taminated groundwater does not, in general, occur in aquifers! Instead, 
it is molecular diffusion which drives some contaminants from contami- 
nated water to adjacent clean water. This diffusive process is enhanced by 
the irregular nature of flow paths on the scale of the aquifer pores. This 
process is known as microscopic hydrodynamical dispersion (Bear, 1972). 
Aquifer inhomogeneities on a macroscopic scale, such as clay layers or gravel 
pockets, also contribute to contaminant spreading: macroscopic dispersion. 
Contaminant spreading perpendicular to the (average) direction of flow, 
transverse dispersion, is usually small and fairly predictable. Contaminant 
spreading into the direction of flow, longitudinal dispersion, is often orders 
of magnitude larger than transverse dispersion and more difficult to assess. 
Longitudinal dispersion comes about by contaminant movement speeded 
up along preferential pathways (gravel layers) and slowed down through, 
for example, layers of silt or clay. 

Microscopic dispersion by itself is of little practical consequence, but 
macroscopic dispersion may be significant. Macroscopic dispersion can be 
described by a continuum model, the transport equation, provided the ob- 
servations and predictions are made on a sufficiently large scale: the REV 
for the macroscopic dispersive process. The theory and practice of dis- 
persive transport modeling, however, is still the subject of fundamental 
research (Anderson and Woessner, 1992), and is not included in this text. 
For examples of further reading on this matter the reader is referred to 
Javandel et al. (1984), Sudicky (1989), and Strack (1992). 

2 , 1 . 5  P o r e  P r e s s u r e  a n d  H e a d  

It may be noted that Darcy's law has not been formulated in terms of water 
pressures, but in terms of (hydraulic) heads. The concept of a head is more 
useful here than that of a pressure. This may be illustrated with reference 
to Figure 2.2. If the heads r and r in Figure 2.2 are equal, no flow would 
occur through the sand; dr = 0 in (2.4). Yet the water pressure in the 
sand, called pore pressure, at Zl would be larger than the pore pressure 
at z2! This is because of a "hydrostatic pressure distribution" in the sand 
column which is caused by gravity and does not constitute a driving force 
for flow. However, when considering Darcy's law in a horizontal direction 



14 C H A P T E R  2. B A S I C  C O N C E P T S  
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Figure 2.3" Piezometer to measure heads and pore pressure 

(e.g., the x- or y-direction), a zero head gradient does indeed imply a zero 
pressure gradient. 

The relationship between head and pore pressure is i l lustrated in 
Figure 2.3. A pipe is installed in the sa tura ted  zone of an aquifer. The 
open bo t tom of the pipe is located at an elevation Z above some horizontal 
datum: Z is the elevation head. The groundwater  rises in the pipe to an 
elevation r above the datum: the "hydraulic head," or "piezometric head," 
or just  "head." The pipe in Figure 2.3 is also referred to as a piezometer. 
The height r of the water column in the piezometer is called the pressure 
head. It is a direct measure of the pore pressure immediately below the 
piezometer. Heads and pore pressure p are related as follows: 

r = r + Z = p + Z = p--p- + Z (2.15) 
"y pg 

In words" the piezometric head is the sum of the pressure head and the 
elevation head. Rewriting (2.15) yields for the pore pressure 

p = ~r = ~ ( r  z )  = p g ( r  z )  (2.16) 

Darcy's  law can be formulated in terms of the pore pressure p by combining 
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(2.6) and (2.15): 
k 

qi = - - - - O i p -  k53i (2.17) ,,/ 

where 53i is part of the Kronecker Delta 5ij, which is equal to 1 if i = j and 
equal to 0 if i -r j .  Consequently, q~ (i = 3) contains the extra term - k  
which accounts for the hydrostatic pressure distribution when q3 = q~ = 0. 

2 . 1 . 6  A n i s o t r o p i c  H y d r a u l i c  C o n d u c t i v i t y  

Thus far we have tacitly assumed that the hydraulic conductivity is the 
same in all directions: the aquifer is assumed to have an isotropic hydraulic 
conductivity. In reality, however, geological formations are often more per- 
meable in one direction than in another. Many thin, nearly horizontal clay 
layers in a sand and gravel aquifer, for instance, may reduce the vertical 
permeability. Fractured rock may exhibit different permeabilities in differ- 
ent horizontal directions depending on the dominant fracture orientations. 
Under these anisotropic conditions, the specific discharge vector may not be 
co-linear with the hydraulic gradient vector, as was assumed in developing 
(2.5). The general linear relationship between the two vector fields qi and 

0ir is 
qi = - k i j O j r  (i = 1,2, 3 and j = 1, 2, 3) (2.18) 

where summation is implied over the index j.  Throughout this text the 
Einstein summation convention is adopted, summing over those indices 
which occur twice in a multiplication. Equation (2.18) may be written out 
a s  

0r 0r 0r 
o-7 

0r 0r 0r 

= 5 7  - N - 5 - ;  

0r 0r 0r 
o--7 u x  oy 

(2.19) 

The second-order tensor with components ki j  is the hydraulic conductivity 
tensor, which has four components in two dimensions and nine components 
in three dimensions. It is generally accepted that the hydraulic conductivity 
tensor is symmetric: 

ki j  = k j i  (2.20) 

which leads to only three independent components in two dimensions and 
six independent components in three dimensions. Observe from (2.19) that 
a particular component of flow depends not only on the gradient in its own 
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direction, but also on the components of the hydraulic gradient in the other 
coordinate directions. In general, therefore, flow in anisotropic media is not 
co-linear with the hydraulic gradient in that  medium. 

Principal Directions 

The components kij do depend on the choice of the coordinate system. It is 
possible to rotate a coordinate system in such a way that  all components kij 
for which i 5r j are zero. Denoting the coordinate directions of the rotated 
system by ~, ~, and 5 yields for the specific discharges in those directions 

0r 0r 
qe -- - k x z  OYc -- - k l - ~ x  

0r  
- -  - k 2  0 r  (2.21) q ~ = - k ~ 0 ~  -- 

0r 0r 

The directions ~, ~, and 5 are called the principal  directions of the hydraulic 
conductivity tensor, while kl, k2, and k3 are referred to as the principal  
hydraulic conductivit ies.  Observe from (2.21) that  the specific discharge 
vector in a principal direction is again co-linear with the hydraulic gradient. 
In the real world this occurs when the coordinate axes are chosen parallel 
and perpendicular to clay layers in a sand and gravel aquifer or to major 
fracture planes in fractured rock aquifers. In the case of aquifers with 
horizontal clay layers, (2.21) reduces to 

0r 
qz - --kh O---x 

0r (2.22) 
qy -- --kh O--y 

qz = - k v  0 r  
Oz 

where kh is the horizontal hydraulic conductivity, and k. is the vertical 
hydraulic conductivity. 

2.2 Cont inu i ty  of F low 

If the head r  is known throughout an aquifer, the groundwater 
movement can be calculated everywhere by use of (2.6). However, as a 
rule the head distribution is not known, and an additional equation is re- 
quired. This equation is provided by the realization that  no water can 



2.2. C O N T I N U I T Y  OF F L O W  17 

q.(*,.,.+e) 

Az- 

. . . .  ~ .  | . .  q.(.-~, . . . . " i  
q,('"- ~-z2 ") 

...i....:::! q'('''''-e} 
x 

qy(",y+V,.) 

lb- 

Figure 2.4: Continuity of flow. 

spontaneously disappear or appear at a particular point in the aquifer: 
conservation of mass. If we consider water incompressible, conservation of 
mass implies conservation of volume, or for water in motion, continuity of 
flOW. 

We will derive a mathematical  formulation for continuity of flow by 
writing a water balance for a small block of soil and water in an aquifer (see 
Figure 2.4). The sides of the block are parallel to the coordinate directions 
x, y, z, and measure Ax, Ay, and Az, respectively. We consider the specific 
discharge vectors at the centers of all six sides of the block. On each side, 
only one component of the specific discharge vector is pointing into or away 
from the block; the other two components are parallel to the side. For 
instance, the inflow into the block on the side that  is facing us in Figure 2.4 
is only the y-component of the specific discharge vector, the x- and z- 
components being parallel to that  side. We will assume that  the specific 
discharge at the center of a side represents the average for that  entire side, 
an assumption which will be more accurate the smaller the block. Water 
balance for the block means 

total inflow = total outflow 
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o r  

total outflow - total inflow - 0 

which leads to (see Figure 2.4) 

(qx(z+.~--~-,y,z) - qx(x-,~.2 ,u , z ) )AyAz  

- ~-~,~))AxAz + ( q y ( z , y + ~ , z ) -  qy(x,y 2 

+ ( q z ( x , y , z + ~ ) -  q z ( x , y , z - ~ ) ) A x A y  = 0 (2.23) 

The specific discharge vector components are labeled to indicate their po- 
sition on the sides of the block. Both sides of (2.23) are divided by the 
volume of the block, A x A y A z ,  which leads to 

q ~ ( ~ + ~ , ~ , ~ )  - q~(~_,~,~, ,~) 

A x  

qy(x , y+~ , z )  -- qy(z,y-~-~.2 ,z) 
+ Ay 

+ qz(x'u'z+'a~'2~) -- qz(x'u'~-~:~'2) -- 0 (2.24) 
A z  

In the limiting case that  Ax ---, 0, Ay --, 0, and Az -~ 0, the quotients in 
(2.24) become partial  derivatives: 

Oqy Oqz Oq~: ~- + = 0 (2.25) 
o--7- -~y Oz 

The continuity equation (2.25) may also be writ ten in tensor notat ion as 

Oiqi = 0 (2.26) 

2 . 3  L a p l a c e ' s  E q u a t i o n  

The continuity equation may be combined with Darcy's  law to form the ba- 
sic governing differential equation for s teady-state  groundwater  flow. Com- 
bining (2 .25)wi th  (2.5)yields 

o r  

o[ko ] o[ oo I o[ oo] 
0-7 ~ + ~ - k ~  + Z - k ~  : 0 (2.27) 

02r ~_ 02r 02r 
o~----~- ~ + ~z~ = o (2.2s) 

There are several ways of abbreviating (2.28). Using tensor notation: 

OiiO = 0 (2.29) 
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where 0~ symbolizes the second partial derivative and, of course, where the 
repetition of i implies summation. A popular way of writing (2.28) is in 
terms of the so-called "symbolic notation": 

V2r = 0 (2.30) 

where V 2 (pronounced "nabla-second") is called the "operator of Laplace" 
and has the same meaning as 0ii in (2.29). 

The second-order partial differential equation given in (2.28) through 
(2.30) is called the equation of Laplace. The equation is universally used 
in physics to describe phenomena such as the conduction of heat through 
solids, the flow of electricity through conductors, and the diffusion of gases. 
Equation (2.30) is therefore also known as the "diffusion equation." It may 
be confusing, however, to refer to groundwater flow as diffusion. Flow is 
not driven by groundwater "concentration gradients," as in the case of real 
diffusion, but by head gradients. Contaminants in groundwater, however, 
do in part spread under the influence of (contaminant) concentration gra- 
dients, although this influence is small. 

It is not difficult to find general solutions to Laplace's equation. The 
difficulty in applying (2.30) to a real-world groundwater flow problem is 
constructing a particular solution to (2.30) that satisfies the complex set 
of boundary conditions formed by streams, lakes, wetlands, wells, etc. In 
order to accomplish this, we will have to compromise, making simplifying 
assumptions where possible to bring a solution within reach. 
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Chapter 3 

Dupui t  Forchheimer 
Flow 

We have, quite naturally, developed our basic equations for a three- 
dimensional space. Our world is three-dimensional, and so is the flow of 
groundwater. Groundwater flowlines may be curved in both the horizontal 
and vertical plane, as illustrated in Figure 3.1. Water enters the aquifer 
through areal infiltration, resulting from precipitation, and discharges in 
streams and lakes that are connected to the groundwater. The vertical scale 
of the cross-section over the flowline is exaggerated for clarity, a common 
practice in geological sciences. Observe from Figure 3.1 that the groundwa- 
ter flow is predominantly horizontal. This is even more apparent when plot- 
ting the cross-section in Figure 3.1 to scale, which may look like Figure 3.2, 
where a part of the cross-section in Figure 3.1 is depicted. The preceding 
considerations suggest that when following a (fictitious) water particle from 
entry to exit, most of its movement will be horizontal. 

A few years after Darcy's publication, Dupuit (1863) presented regional 
groundwater flow solutions based on the assumption that flowlines are pre- 
dominantly horizontal and velocities do not vary over the aquifer depth. 
Later, Forchheimer (1886) independently suggested the same approxima- 
tion, since then termed the Dupuit-Forchheimer approximation. If flow is 
assumed to be only horizontal, then 

- o  

which leads with Darcy's law (2.5) to 

0r 
- -  = o ( 3 . 2 )  
Oz 

21 
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Figure 3.1: Three-dimensional flowlines in a regional aquifer. The cross- 
section (inset) is taken along the flowline and has an exaggerated vertical 
scale. 

A ~ 

Figure 3.2: Cross-section over flowline plotted to scale. 
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Equations (3.1) and (3.2) represent the traditional interpretation of the 
Dupuit-Forchheimer approximation, reducing three-dimensional flow prob- 
lems to two-dimensional ones. In applying the Dupuit-Forchheimer approx- 
imation, however, only the assumption (3.2) is needed: Heads do not vary 
with depth. Kirkham (1967) showed that (3.2) does not necessarily require 
(3.1), but may also be the result of an infinite vertical hydraulic conduc- 
tivity in the (hypothetical) aquifer, 

qz-  kz-~lim (-kzO~zz)~O (3.3) 
or 

In fact, in as early as 1952, Polubarinova-Kochina presented approxi- 
mate values for qz in a Dupuit-Forchheimer model (Polubarinova-Kochina, 
1962). It took more than 30 years before a complete theory for trac- 
ing three-dimensional streamlines in Dupuit-Forchheimer models was pub- 
lished (Strack, 1984). Comparisons with two-dimensional solutions in the 
vertical plane (Strack, 1984) and fully three-dimensional solutions (Hait- 
jema, 1987a) reveal a surprising accuracy for these approximate streamlines 
for most practical cases of regional flow. 

The Dupuit-Forchheimer approximation, of course, is based on the con- 
dition that the length of a flowline is large as compared to the aquifer 
thickness (see Figures 3.1 and 3.2). This condition is frequently met in 
groundwater flow problems associated with water resources issues. Pro- 
lific aquifers are usually relatively thin, varying in thickness between a few 
feet and one or two hundred feet. Sand and gravel aquifers several hun- 
dred feet thick are an exception, while the distances between streams are 
often measured in miles. Groundwater flow in such aquifers is sometimes 
referred to as shallow flow, a term which may cause confusion, as it may 
equally well occur in deep confined aquifers. In this text we will refer to 
Dupuit-Forchheimer flow whenever we are dealing with flow in aquifers that 
are thin compared to their lateral extent. 

The Dupuit-Forchheimer approximation leads to one of the most dra- 
matic simplifications of real-world groundwater flow problems: reduc- 
ing three-dimensional flow problems to those of two-dimensional hori- 
zontal flow. Although this is usually not stated, all two-dimensional 
horizontal flow models can be interpreted as Dupuit-Forchheimer mod- 
els. The method, however, is not universally acclaimed. Muskat (1937) 
considered many of its applications "questionable" and referred to the 
Dupuit-Forchheimer theory as "untrustworthy." Unfortunately, the power 
of the Dupuit-Forchheimer approximation is often underestimated. Many 
applications of three-dimensional flow models are, in my estimation, 
overkill. In most cases, as we will see later, a Dupuit-Forchheimer model 
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could have done the job, saving resources and cost. 
The remainder of this chapter is devoted to the development of ele- 

mentary solutions to Dupuit-Forchheimer flow. We will start  with one- 
dimensional flow and gradually build up our arsenal of practical solutions, 
forming a basis for modeling real-world groundwater flow problems. In the 
process, we will develop some special mathematical  tools which will enhance 
our problem-solving capabilities. 

3.1 E lementary  Solut ions  

Groundwater hydrologists distinguish between two basic types of flow: con- 
fined flow and unconfined flow. Confined flow occurs in an aquifer which 
is sandwiched between two "impermeable" geological formations, e.g., a 
layer of saturated sand and gravel between two clay layers. The notion 
"impermeable" is relative; it means that  the permeability of the confining 
layers is negligible compared to the aquifer permeability. Such relatively 
impermeable confining layers are called aquicludes, and confined aquifers 
are sometimes referred to as artesian aquifers. We assume that  in a confined 
aquifer the cross-section of the flow regime, the saturated aquifer height, is 
known and independent of the flow. Unconfined aquifers, in contrast, have 
as their upper aquifer boundary the water table, whose position depends on 
the groundwater flow regime and is a priori not known. Most unconfined 
aquifers are shallow aquifers near the soil surface. A sand and gravel for- 
mation may have a confining layer, but still exhibit unconfined flow, simply 
because the water table does not reach the confining layer. 

We will investigate some elementary cases of confined and unconfined 
flow, emphasizing the differences as well as the similarities in flow charac- 
teristics. 

3 . 1 . 1  O n e - D i m e n s i o n a l  C o n f i n e d  F l o w  

In Figure 3.3, some flowlines are shown between two rivers in contact with 
a confined aquifer. The same figure also provides a cross-section over one 
of the flowlines which forms a straight line between the two rivers; hence, 
there is no flow perpendicular to the plane of the cross-section. As a first 
approximation, in solving the regional flow problem, we will consider the 
flow in the cross-section representative for the entire region. In keeping 
with the Dupuit-Forchheimer approximation, we further replace the cross- 
section in Figure 3.3 by the schematic cross-section in Figure 3.4. The 
fully penetrating streams and perfectly horizontal upper and lower aquifer 
boundaries will ensure horizontal flow. 
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F i g u r e  3.3: Cross - sec t ion  over a s t r a igh t  s t r e aml ine  in a confined aquifer  

b e t w e e n  two s t r eams .  
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Figure 3.4: One-dimensional confined flow. 

Our task is to determine the head distribution r in the aquifer, after 
which we can calculate the specific discharge by use of Darcy's law. The 
flow problem in Figure 3.4 reminds us of Darcy's experiment, with the 
column full of sand being horizontal rather than upright. In that case, 
we already know the head distribution from Darcy's experiment" It varies 
linearly between the heads at either end of the column. In terms of the 
parameters in Figure 3.4: 

r  - r  
r  x + r  (3.4) 

L 

It should also be possible to obtain (3.4) by formally solving the governing 
differential equation (2.30). Since there is no flow in the y- and z-directions, 
the partial derivatives of ~ with respect to y and z are zero, so that (2.30) 
reduces to 

d2r 
= 0  (3.5) 

d x  2 

which is Laplace's equation for one-dimensional flow. The general solution 
to (3.5)is 

r  Ax + B (3.6) 

where A and B are constants which must be selected in such a way that 
(3.6) meets the boundary conditions. That (3.6) is indeed a solution to (3.5) 
may be verified by substituting it in (3.5). Differentiating (3.6) once yields 
A. Differentiating it twice, as prescribed by (3.5), implies differentiating 
the constant A, which yields zero, so that (3.5) is indeed satisfied. 
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We still need to resolve the unkown constants A and B. With reference 
to Figure 3.4, the boundary conditions of our groundwater flow problem 
are 

x = 0  r 1 6 2  (3.7) 

x = L r = r  (3.8) 

Substituting the first boundary condition (3.7) into the general solution 
(3.6) yields 

B = r (3.9) 

Solving for A by substituting (3.8) and (3.9) into (3.6) yields 

r  - r  
A = (3.10) 

L 

Substituting the expressions for the constants A and B into the general 
solution (3.6) gives us the particular solution to our problem: 

r  - r  
r = ~ x  + r (3.11) 

L 

which is indeed the linear head distribution we anticipated in (3.4). 
The procedure given by (3.5) through (3.11) is the formal way of solving 

a boundary value problem. In words: First find the general solution to the 
differential equation; next, define the boundary conditions for the problem 
at hand; and finally, resolve the unkown constants in the general solution 
by use of the boundary conditions. The boundary conditions for our one- 
dimensional problem, heads at the streams, were formulated entirely in 
terms of specified heads: a boundary condition of the first kind or Dirichlet 
condition. It appears from (3.11) that  this leads to a solution independent of 
any aquifer parameters, such as hydraulic conductivity or aquifer thickness: 
The head distribution is simply a straight line from r at x = 0 to r at 
X - ' -  L ,  

R u l e  3.1 Solutions to Laplace's equation, subject to Dirichlet conditions, 
are fully determined by these boundary conditions. 

Not all groundwater flow solutions are governed by Laplace's equation, 
however, and not all boundary conditions are Dirichlet conditions. When 
a known amount of water is withdrawn from or infiltrated into the aquifer, 
we speak of a flux specified boundary: a boundary condition of the second 
kind or Neumann condition. Most real world problems have mixed bound- 
ary conditions: a combination of Dirichlet and Neumann conditions. We 
will discuss such mixed boundary-value problems elsewhere in this chap- 
ter, where we will find that  Rule 3.1 may have a significant impact on our 
modeling results. 
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R u l e  3.2 In regions where head-specified boundary conditions are abun- 
dant, e.g., many streams and lakes, the modeled heads are relatively in- 
sensitive to the choice of aquifer parameters (k and H),  but are mostly 
determined by the heads specified at the surface waters. 

The specific discharge q~ in the aquifer is obtained by applying Darcy's 
law to (3.11): 

qx = - k  0r = - k  ~ r  - r = k ~ r  - r (3.12) 

In Darcy's original experiment, a total flow rate for the column Q [L3/T] 
was used; see (2.1). We may also introduce a total flow rate for our one- 
dimensional aquifer by considering the total flow over the aquifer height H 
and over some width of the aquifer measured perpendicular to the plane of 
Figure 3.4. If we select a width of 1 (foot or meter depending on our unit 
system), we may define the discharge in the x-direction Qx [L2/T] as 

~o H Qx - qxdz (3.13) 

In a Dupuit-Forchheimer model, qx does not vary over the aquifer height, 
so that (3.13) reduces to 

Qx "- Hqx (3.14) 

While the head distribution (3.11) depends only on the boundary condi- 
tions, the specific discharge qx also depends on the hydraulic conductivity 
k, see (3.12). Furthermore, the discharge (3.14) depends on the aquifer 
thickness H. 

R u l e  3.3 While groundwater flow solutions may look alike in terms of 
piezometric head surfaces, they may exhibit significantly different discharges 
depending on aquifer parameters. 

Notice that the aquifer porosity does not enter any of our formulas yet. 
Only when calculating average groundwater velocities is the porosity n of 
importance: 

qx 
vx = -- (3.15) 

n 

R u l e  3.4 Steady-state solutions to groundwater flow, in terms of heads and 
discharges, do not depend on the aquifer porosity. Average groundwater 
velocities do. 
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Discharge  Potent ia l  for Confined Flow 

In Dupuit-Forchheimer models, it turns out to be convenient to formulate 
our flow problems in terms of discharges integrated over the aquifer height, 
rather than in terms of specific discharges. Expanding our discussion, for 
a moment, to both x and y dimensions, we introduce the discharge vector 
with components Qx and Q~: 

Qx = Hqx 

Q u -  Hqy 

(3.16) 

We can express Qx and Q~ in terms of r by applying Darcy's law to (3.16)' 

Qx-- Hqx-- H -k-~x 

Qu-- Hqu-- H [-kO~y] 

(3.17) 

Since both k and H are independent of x and y, we can rewrite (3.17) as 

Q y  ~ _ ~  

O[kHr 
Ox 

O[kHr 
Oy 

(3.18) 

We replace the term kHr in (3.18) by a new variable (I), so that 

O~ Q x -  
Ox 

Q y =  
Oy 

(3.19) 

The auxiliary function (I)(x, y) is called the discharge potential: 

- kH r (3.20) 

The product of hydraulic conductivity and aquifer thickness (kH) is often 
referred to as the aquifer transmissivity T" 

T- -  kH (3.21) 
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The use of potentials in conjunction with laminar flow is not new. In 
fact, the entire mathematical framework of solving laminar flow problems 
is often referred to as "potential theory." In general, we have "potential 
flow" if the flow vector field forms the gradient vector field of some scalar 
potential function. This is the case in (3.19), where Qx and Qu are the 
components of the discharge vector field and are equal to the (negative) 
components O#p/Ox and 04p/Oy of the potential gradient vector field. The 
negative sign in (3.19) does not detract from our concept of potential flow, 
as it could easily have been incorporated in the definition of (I). Along 
these lines we could also have called the head r a potential, as it differs 
by only the factor ( - k )  from the formal definition of a potential; see (2.5). 
Bear (1972)called r a "pseudopotential." Hubert (1940)introduced a "fluid 
potential," the acceleration of gravity g [L/T 2] times the head: de. Strack 
(1981a, 1981b) introduced discharge potentials to facilitate the description 
of combined confined and unconfined flow, as well as flow in aquifers with 
horizontal clay laminae (Strack and Haitjema, 1981a, 1981b). In this text 
we will adopt Strack's discharge potential concepts, introducing them step 
by step in the next sections, where we will refer to them as potentials for 
short. 

Laplace's equation may also be written in terms of (I). Multiplying both 
sides in (2.28) through by kH and taking 02r 2 equal to zero yields 

02(I ) 02(1: ) 
+ - 0 (3.22) 

Ox 2 Oy 2 

When (3.19) is substituted into (3.22), we obtain the continuity equation 
in terms of discharges, 

OQ~ OQ~ 
+ = 0 (3.23) 

Ox Oy 

The continuity equation (3.23) can also be obtained by considering inflow 
and outflow for an elementary aquifer section, following a procedure similar 
to the one outlined in Section 2.2. 

For our case of one-dimensional flow, Laplace's equation (3.22) reduces 
to 

d 2 0  
= 0  (3.24) 

dx 2 

There is no difference between solving the original differential equation (3.5) 
in terms of r and solving the new differential equation (3.24) in terms of 
(I). All we have to do is replace r by (I) in the solution (3.11), 

~ 2  - ~ I  
(I) - ~ x  + (I)1 (3.25) 

L 
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The constants O1 and O2 are the potentials at the aquifer boundaries and 
can be calculated using (3.20), 

01 = kHr  ; 02 = kHr (3.26) 

The discharge Qx is obtained by applying Darcy's law in terms of potentials. 
With  (3.19)and (3.25), we get 

dO O2 - O1 O1 - O2 
Q x = . . . .  (3.27) 

dx L L 

The discharge Qx, as given by (3.27), is meaningful to us in physical terms, 
but the potential �9 as given by (3.25) seems a rather abstract quantity. In- 
deed, we cannot measure �9 in the field. We can, however, measure the head 
r Assuming we know the aquifer thickness H and hydraulic conductivity 
k, the head r may be obtained from the potential �9 by inverting (3.20): 

O 
r - (3.28) 

kH 

Equation (3.28) may be applied to �9 for any value of x, so that we can 
calculate r from (3.25) for any value of x. 

At this point there seems to be no advantage in introducing the potential 
O. In fact, in the foregoing analysis it is merely a detour: We had obtained 
r already in (3.1~) without the use of this auxiliary function O. The 
advantages of introducing O, however, will become apparent in the next 
few sections, starting with unconfined flow. 

E x e r c i s e  3.1 The following data are given for the flow problem in 
Figure 3.,4. The aquifer is 2,000 feet long and ~0 feet thick. The hydraulic 
conductivity is 10 ft//day. The water levels in the stream to the left and the 
right of the aquifer are 60 feet and 50 feet above the aquifer base, respec- 
tively. 

(a) Calculate the head r and the discharge Qx at the center of the aquifer 
( x -  L/2) .  Perform your analysis in terms of heads. 

(b) Answer the same questions as under (a), but now perform your anal- 
ysis in terms of discharge potentials. 

( c )  Calculate the discharge Q x  a t  x - 0 and at x = L .  Comment on your 
findings. 

(d) Repeat your calculations for (b), but now use k = 20 f t / day .  
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Figure 3.5' One-dimensional unconfined flow. 

3 . 1 . 2  O n e - D i m e n s i o n a l  U n c o n f i n e d  F l o w  

Assume that  the confining layer in Figure 3.3 is absent. Figure 3.4 would 
then look like Figure 3.5, where the flow domain is bounded below by a 
confining layer and above by the water table. That  upper boundary, the 
water table, is somewhat fuzzy. In reality, there is a transition from dry or 
slightly moist soil near the surface to fully saturated soil below the water 
table. There is groundwater flow in the unsaturated zone above the water 
table; this is referred to as unsaturated flow. In general, however, the unsat- 
urated zone is thin as compared to the saturated zone, while its hydraulic 
conductivity is lower than that  of the saturated zone. Consequently, the 
horizontal unsaturated flow is often negligible when compared to the satu- 
rated flow. In this text we will only deal with flow below the water table: 
saturated flow. The water table itself is defined as the surface where the 
pore pressure is atmospheric, and thus p - 0. It is therefore also called the 
phreatic surface. In the context of solving boundary value problems (our 
steady-state groundwater flow problems), the water table is also referred 
to as a free surface, as its position is not known in advance: It depends on 
the solution to the problem. 

In solving for r in Figure 3.5, we cannot make a direct comparison 
with Darcy's experiment, as we did in the case of confined flow. Instead, we 
will follow the discharge vector and discharge potential approach introduced 
earlier. 
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D i s c h a r g e  P o t e n t i a l  for U n c o n f i n e d  Flow 

The total discharge Q x in the aquifer of Figure 3.5 follows from [see also 
(3.14)1 

Q x - hqz  (3.29) 

where h is the saturated aquifer thickness. However, if we measure the head 
r with respect to the aquifer bottom, as is done in Figure 3.5, the head and 
the aquifer thickness are the same: 

- h (a.3o) 

Consequently, (3.29) becomes 

Qz = Cqz (3.31) 

or, with Darcy's law, 

de] (3.32) O~-- r - k ~  

We want to write Q x as the negative derivative of a discharge potential O, 
similar to (3.19); hence, 

dO 
Q ~ = (3.33) 

dx 

Equations (3.32) and (3.33) are identical when �9 is chosen as 

� 9  �89162 2 (3.34) 

which is readily seen by substituting (3.34) into (3.33)" 

dO d de [ de]  
Qx - dx  = -d-"~ [�89162 = -�89162 = r -k~xx (3.35) 

which is indeed identical to (3.32). 
Equation (3.33) may be generalized for two-dimensional flow to Equa- 

tions (3.19), which were obtained for the case of confined flow. Hence, the 
discharge vector Q i, in terms of potentials, is defined in the same way for 
confined and unconfined flow. The potential O, however, is defined differ- 
ently" Compare (3.34) with (3.20). 

The continuity equation for unconfined flow, in terms of discharges, may 
be obtained by a procedure similar to that outlined in Section 2.2, which 
leads to 

OQ~ OQy 
+ = 0  (3.36) 

Ox Oy 
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which is, of course, the same as for confined flow; see (3.23). Since, for 
both types of flow, the continuity equations in terms of Qi and Darcy's  law 
in terms of (I) are the same, then so are the differential equations in terms 
of (I). We reached an important  conclusion: The differential equations for 
unconfined and confined flow are the same, but then so are their solutions. 
Thus, the solution to the flow problem given in Figure 3.5 is given by (3.25): 

(1) 2 - -  (I) 1 
(I) - -  ~ X  + O 1 (3.37) 

L 

The constants (I) 1 and (I)2 are defined with (3.34) as 

(I)1 = �89162 2 ; (I)2 = �89162 (3.38) 

It is, of course, possible to write the differential equation for unconfined 
flow in terms of the head r Subst i tut ing (3.34) into (3.22) yields 

which reduces to 

02[�89162 2] 02[�89162 2] 
+ = 0 (3.39) 

Ox 2 i)y 2 

02r 2 02r 2 
t = 0 (3.40) 

Ox 2 Oy 2 

This equation was first presented by Forchheimer, and he applied it to a 
variety of problems (Forchheimer, 1930). The solution to the problem in 
Figure 3.5, in terms of the head r is obtained by replacing (I) by r in 
(3.37): 

= ~ x  + r (3.41) 
L 

o r  

, /*22 - . 1  2 r = x + r  1 (3.42) 
V L 

Note that ,  as in the case of confined flow, the solution for r (3.42) does 
not depend on k, but only on the head specified boundary conditions, con- 
sistent with Rule 3.1. The differential equations, and thus the solutions in 
terms of heads are different for confined and unconfined flow conditions; 
compare (3.42) with (3.11). Consequently, in textbooks, these types of flow 
are routinely treated in separate chapters with separate solutions. In order 
to avoid these differences and simplify the t rea tment  of unconfined flow, 
the variable aquifer thickness h in Figure 3.5 is sometimes replaced by an 
average aquifer thickness h. In so doing, the average thickness h takes the 
place of H in confined aquifers, thus approximating unconfined flow by con- 
fined flow solutions. When formulating the problem in terms of discharge 



3.1. E L E M E N T A R Y  SOLUTIONS 35 

potentials, however, there is no need for such an approximation, as there 
is no distinction between confined and unconfined flow! Once boundary 
conditions in terms of heads are "translated" in terms of potentials, the 
same solution applies to flow in confined and unconfined aquifers. 

E x e r c i s e  3.2 The following data are given for the flow problem in 
Figure 3.5. The aquifer is 2,000 feet long. The hydraulic conductivity is 
10 ft//day. The water levels in the stream to the left and the right of the 
aquifer are 60 feet and 50 feet above the aquifer base, respectively. 

(a) Calculate the head r and the discharge Qx at the center of the aquifer 
(x - -  L/2) .  Perform your analysis in terms of heads. 

(b) Answer the same questions as under (a), but now perform your anal- 
ysis in terms of discharge potentials. 

(c) Calculate the discharge Qx at x - 0 and at x = L. Comment on your 
findings. 

(d) Repeat your calculations under (b), but now use k = 20 f t / day .  

3 . 1 . 3  C o m b i n e d  C o n f i n e d  a n d  U n c o n f i n e d  F l o w  

In Figure 3.6, a one-dimensional flow problem is depicted that  is partially 
confined and partially unconfined. The unconfined flow conditions, on the 
right-hand side of the aquifer, are caused by the low water level in the 
stream on the right, being below the upper confining layer. When we 
formulate our problem in terms of heads, two different solutions apply to 
the problem in Figure 3.6. The solution to the confined section follows from 
(3.11) as 

H - e l  
r  ~ X l  + r (0 _< x _< l) (3.43) 

where l is the length of the confined aquifer zone, and where H is the head 
at x = I. The solution for the unconfined zone follows from (3.42) as 

H 2 

V L - l  
~ ( x  - l )  + H 2 (1 <_ x <_ L) (3.44) 

Both solutions (3.43) and (3.44) contain the unknown position (x = l) of 
the interface between confined and unconfined flow. We need an additional 
equation to resolve 1. That  equation is obtained by considering continuity 
of flow across the interface between confined and unconfined flow. Denoting 
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Figure 3.6" 0ne-dimensional combined confined and unconfined flow. 

Qq) and Q(r) as the discharge to the left and to the right of the interface, 
respectively, continuity of flow implies 

O q ) _ q ( r )  (3.45) 

Using Darcy's law, this leads to 

H - k ~ x  -- H - k ~  (3.46) 

After dividing both sides by - k H  and substituting (3.43) and (3.44) in the 
right-hand and left-hand side of (3.47), respectively, we obtain 

H --r 
l 

= _1 (r _ H 2 ) / ( L  _ l) (x = l) (3.47) 

2 V/*~-H~L-z (~ - l )  + H 2 

Since we are evaluating (3.47) at the interface between confined and un- 
confined flow (x -- 1), it reduces to 

which yields for 1 

H - r  r  
= (3.48) 

1 2 H ( L - I )  

I - 2 H L ( H  - r (3.49) 
r  2Hr 4- H 2 

Substitution of (3.49) into (3.43) and (3.44) finally allows us to calculate 
the head for every value of x in the aquifer. 



3.1. E L E M E N T A R Y  S O L U T I O N S  37 

Exerc i se  3.3 The following data are given for  the flow problem in 
Figure 3.6: The aquifer is 2,000 feet long and 50 feet thick. The hydraulic 
conductivi ty  is 10 fee t /day .  The water levels in the stream to the left and 
the right of the aquifer are 60 feet and ~5 feet above the aquifer base, re- 
spectively. 

(a) What  is the posit ion x - l of  the interface between confined and un- 

confined f low? 

(b) What  is head at the center of the aquifer (x - L / 2 ) ?  

(c) What  is the discharge at x - O, x = l, and x - L ? C o m m e n t  on your 
answer. 

Discharge  Potent ia l s  for C o m b i n e d  Conf ined and U n c o n f i n e d  
Flow 

The procedure for solving combined confined and unconfined flow, as out- 
lined earlier, is not attractive. Although it can be done for our case of one- 
dimensional flow, it becomes quite impractical when we are dealing with 
more general two-dimensional flow problems. Imagine the complex shape 
of the interface between unconfined flow near a well field and the confined 
flow elsewhere in the aquifer. Trying to find this complex boundary by 
requiring continuity of flow across it is no small task. 

It is possible, however, to exploit the similarity between the solutions 
for confined and unconfined flow in terms of discharge potentials. The idea 
is to write one solution of the form (3.25) and (3.37) for the flow problem 
in Figure 3.6: 

(I) 2 - -  (I) 1 
(I) = ~ x  + r (3.50) 

L 

The potential (I)1 may be calculated from r with the definition of the 
potential for confined flow (3.26), while (I)2 may be calculated by use of 
(3.38). The difficulty with this approach is that the potential function 
(I)(x) would have different values just to the left and just to the right of the 
interface between confined and unconfined flow. Not to mention that we 
still do not know where that interface is. With (I)(l)(/) and (I)(r)(/) being the 
potentials just left and right of the interface, the jump is 

f fP( l ) (1 )  - ( I ) ( r ) ( / ) -  k g g  - �89 2 ---- �89 2 (3.51) 

where (I)(~)(/) has been evaluated with the potential definition (3.20) for 
confined flow, and (I)(r)(/) has been calculated with the potential definition 
(3.34) for unconfined flow. In order for (3.50) to be useful to us, the po- 
tential function should be continuous everywhere, and thus also across the 
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interface between confined and unconfined flow. Strack (1981a) suggested 
subtracting the constant �89 2 from the earlier definition of the discharge 
potential for confined flow (3.20); see also Strack and Haitjema, (1981a)" 

r = k H r  �89 2 (3.52) 

This modification has no impact on the flow solution, since the discharge 
vector Qi is the negative gradient of the potential. Differentiating (3.52) or 
(3.20) gives the same result (the same discharge); the extra constant van- 
ishes. With (3.52) instead of (3.20), the potential at the interface between 
confined and unconfined flow has the same value, whether we use the defi- 
nition for confined flow (3.52) or for unconfined flow (3.34)' r  �89 2. 
The complete solution to the combined confined and unconfined flow prob- 
lem is defined by (3.50) and the following definitions for r and r 

r = k g r  - �89 2 r = �89162 22 (3.53) 

Note that the solution has been obtained without prior knowledge of the 
location of the interface between confined and unconfined flow! We know 
that the potential is larger than �89 2 in zones of confined flow, while for 
unconfined flow conditions the potential is smaller than �89 2. Hence, by 
comparing the value of r  with the constant �89 2, we know the local 
type of flow. We need to know the local type of flow in order to obtain 
heads from (3.50). Inverting (3.52) and (3.34)yields for r 

r + �89 2 
r = (r >_ �89 2) (3.54) 

kH 

c~ = 12~k (r < �89 2) (3.55) 

The usefulness of discharge potentials is now more evident. Dupui t -  
Forchheimer flow may be solved in terms of these potentials without giving 
consideration to whether the flow conditions in the domain are confined 
or unconfined. All that is needed is knowledge of the flow conditions at 
the aquifer boundaries, the streams in our example, so that the heads can 
be translated into potentials by use of the proper formula. The bound- 
ary or boundaries between confined and unconfined flow may be obtained 
afterward by setting r equal to �89 2. 

Exerc i se  3.4 The following data are given for the flow problem in 
Figure 3.6. The aquifer is 2,000 feet long and 50 feet high. The hydraulic 
conductivity is 10 feet~day. The water levels in the stream to the left and 
the right of the aquifer are 60 feet and ~5 .feet above the aquifer base, re- 
spectively. 
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(a) What is the potential ~p at the center of the aquifer (x = L/2)? Is the 
flow there confined or unconfined? Explain your answer. 

(b) What is head in the center of the aquifer (x = L/2)? 

(c) What is the location (x = l) of the interface between confined and 
unconfined flow? Show your approach. 

3 . 1 . 4  T w o - D i m e n s i o n a l  P o t e n t i a l  F l o w  

While discussing some elementary one-dimensional flow problems we 
introduced, step by step, a potential theory tailored to deal with 
Dupuit-Forchheimer flow in both confined and unconfined aquifers. Next, 
we will briefly summarize our results. 

The total flow, integrated over the aquifer height, is described by the 
discharge vector Q i, and defined as 

qz  = Hqx Qy- Hqy (r > H) (3.56) 

Qx = Cqx Q~ = Cqy (r < H) (3.57) 

where r > H indicates confined flow conditions, while r _ H implies 
unconfined flow conditions. If there is no upper confining layer, H may be 
considered infinite, so that the flow conditions are always unconfined. The 
continuity of flow equation, in terms of Qi, is 

OiQi = 0 (i - 1, 2) (3.58) 

In words: The divergence of the discharge vector is zero. The discharge 
vector Q i is also defined as the negative gradient of a scalar potential O, 

Q~ = - 0 i ~  (3.59) 

The discharge potential is defined differently for confined and for unconfined 
flOW" 

gp-- k H r  �89 2 (r _> H) 

q)= �89162 2 (r < H) 

The head is obtained from the potential by 

+ �89 2 
r  (gp > �89 2) 

kH 

r  ~ (gP <_ �89 2) 

(3.60) 

(3.61) 
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Figure 3.7: Groundwater  flow is normal to equipotentials. 

Combining (3.59) and (3.58) yields the differential equation of Laplace, 

0iiO - 0 (i -- 1,2) 

or, in symbolic notation, 

(3.62) 

V 2 O = 0  (3.63) 

which governs both confined and unconfined flow. 
From here on, we will treat all problems of Dupuit-Forchheimer flow by 

use of the discharge vector and discharge potentials defined here. 

3.1.5 Equipotent ia l s  and Streamlines  

The potential function O(x, y) may be viewed as a surface in three dimen- 
sions with the surface elevation at x and y equal to the value of O(x, y). We 
can draw contours on that  surface for equal values of ~, just as we draw con- 
tours on a topographical map to indicate terrain elevations. Each contour 
is a locus of points with the same value for the potential: an equipotential. 

Groundwater  flow occurs perpendicular or normal to these equipoten- 
tials. This may be understood by use of Figure 3.7, where a section of 
an equipotential is depicted together with the components of the discharge 
vector at a point on the equipotential. The components of the discharge 
vector are with respect to a local s,n coordinate system, with Q8 tangential 
to the equipotential and Q n normal to the equipotential. The discharge 
vector components are, with Darcy's law, 

00 
Qs-- Os 

Q r t  m 
0O 

On 

(3.64) 
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Figure 3.8: Streamlines are normal to equipotentials. 

The derivative of the potential into the direction s, along the equipotential, 
is zero. This follows immediately from the definition of the equipotential, 
along which ~ is constant" 

0~ 
= 0  (3.65) 

Os 

With (3.65) the tangential component Q s along the equipotential vanishes. 
Consequently, the only flow component at a point on an equipotential is 
Qn, which is normal to the equipotential. 

If we follow a (fictitious) water particle through the aquifer, its path will 
cross equipotentials under 900 angles, by virtue of our preceding analysis. 
Under steady-state flow conditions, the pathlines of water particles are 
called streamlines. In Figure 3.8, a few streamlines and equipotentials are 
sketched. Flow, of course, is in the direction of descending potential values, 
as follows from (3.64). Note that  the total amount of water AQ [L3/T] 
that  moves between two streamlines does not change, regardless of whether 
the streamlines converge or diverge. By definition of a streamline, there 
is no water that  can cross a streamline, and hence no water can be added 
to or escape from the domain bounded by two streamlines. Of course, the 
discharge rate will increase when streamlines converge and decrease when 
streamlines diverge. 
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Figure 3.9: Discharge vector tangential to a streamline. 

3 . 1 . 6  T h e  S t r e a m  F u n c t i o n  

The equipotentials in Figure 3.8 can be obtained by calculating (I) at a grid 
of points in the flow domain and using a contouring routine to generate 
the equipotentials. The accuracy of that procedure can be increased at 
will by increasing the density of grid points in the region. The stream- 
lines in Figure 3.8, however, were just sketched in as lines normal to the 
equipotentials. 

It appears that, for groundwater flow problems governed by Laplace's 
equation, there exists a scalar function q2(x,y) which is constant along 
streamlines. This stream function, therefore, can be contoured in the same 
manner as the potential function, yielding streamlines. Just like the poten- 
tial function, this stream function satisfies the equation of Laplace. 

We will first demonstrate the existence of ~. The vector Q i, in 
Figure 3.9, is tangential to a streamline, so that 

dy Qu (3.66) t a n ~ .  = ~ -- , 

dx Qz 

The x and y values of points on the streamline are functions of position 
measured by the curvilinear coordinate s along the streamline. Thus, x and 
y are functions of s, so that (3.66) may be written as 

dy/ds Qy 
= (3.67) 

dx/ds Qz 

o r  
dx dy 

Q ~ =...~ - Q ~ d.~ = 
04~ dx 0(~ dy 

= 0  (3.68) 
Oy ds Ox ds 
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where use has been made of Darcy's law for Qi. The stream function �9 is 
defined as being constant along a streamline" 

dq~ 
= 0 (3.69) 

ds 

Writing the total derivative in (3.69) in terms of partial derivatives yields 

d ~ 0r d x O ff2 d y 
= - - % .  = 0  (3.70) 

ds Ox ds Oy ds 

Comparing (3.68) with (3.70) results in the following fundamental relations: 

0r 0 r  

Ox Oy 

0 ~  0 r  - - % . _ _  
Oy Ox 

(3.71) 

The equations (3.71) are called the Cauchy-Riemann equations. The func- 
tion fit which satisfies (3.71) for a particular potential function (I) is the 
stream function that  belongs to that  potential function. 

Next we will prove that  �9 also satisfies Laplace's equation. It follows 
from (3.71) and Darcy's law that  

O~ O~ QX= 
Ox Oy 

0~ 0if/ 
Q y =  = I 

Oy Ox 

(3.72) 

Applying continuity of flow, OiQi - O, yields 

02~ 02~ 
= (3.73) 

OxOy OyOx 

Equation (3.73) is the mathematical  expression of the single-valuedness of 
the stream function. We know that  the potential function is also single- 
valued! If it were not, we could have more than one value of (I) at a single 
point in the aquifer, implying more than one head or pressure at the same 
point. Clearly, this is not physically possible; thus, 

02~ 02~ 
OxOy = OyOx (3.74) 
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Figure 3.10: The total flow between two streamlines. 

Application of (3.74) to (3.71) leads to Laplace's equation for ~ '  

0iiffJ - 0 (3.75) 

Functions which satisfy the equation of Laplace are called harmonic 
functions. The functions (I) and �9 are related by the Cauchy-Riemann 
equations and are called conjugate harmonic functions. Hence, �9 is a con- 
jugate harmonic function of (I), and vice versa. 

R u l e  3.5 A stream function exists if, and only if, the potential funct ion is 
harmonic ~ that is, it satisfies the equation of Laplace. 

It follows from (3.72) that  the discharge vector can be calculated from 
either the derivatives of (I) or the derivatives of ~. We will use the expression 
of Qi in terms of derivatives of �9 to calculate the amount  of flow between 
two streamlines. Consider the two streamlines depicted in Figure 3.10. The 
total  flow AQ [L3/T] between the two streamlines must cross the lines A B  
and C B ,  parallel to the y- and x-axes, respectively. The flow across A B  is 
obtained by integrating Q x over A B ,  while the flow across C B is obtained 
by integrating Q v over C B" 

A Q  - Q xdy + Q vdx - - -~y dy + 

: ~ A  - -  ~ B  -~- ~ B  - -  ~ C  - -  ~ A  - -  ~Y/~C (3.76) 
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Since the ~ values at A and C are ~1 and ~2, respectively, the total 
discharge AQ becomes 

AQ = ~I/1 - -  ~I/2 (3.77) 

R u l e  3.6 The total flow between two streamlines is equal to the difference 
between the stream function values of these streamlines. 

The orientation of the flow can also be derived from the @ values of the 
streamlines. With reference to Figure 3.10, it is defined by the following 
rule. 

R u l e  3.7 The potential ~ decreases in the direction of flow, while the 
stream function q~ decreases in a direction to the left and normal to the 
direction of flow. 

In other words" The negative gradients of (I) and �9 form a right-hand 
Cartesian coordinate system, with -0i(I) pointing into the direction of flow; 
see Figure 3.10. 

3 . 1 . 7  F l o w  N e t  

Streamlines and equipotentials are often combined into a flow net in such 
a way that  the total flow AQ between successive streamlines is always 
the same and equal to the difference in potential between two successive 
equipotentials. This is accomplished as follows. 

We refer to the directions -0i(I) and -0~I '  in Figure 3.10 as the s- and 
n-directions, respectively. The two negative gradients may then be written 
a s  

dO d~I/ 
- 0~(I) = - 0 ~  . . . .  (3.78) 

ds dn 

Applying the Cauchy-Riemann equations and approximating the deriva- 
tives in (3.78) by "finite differences" yields 

A~ Aq~ 
Q~ "- - = (3.79) 

As An 

The total flow AQ between two streamlines (see Figure 3.11) becomes, with 
(3.79), 

A Q -  A n l q s l -  An IAOI' ' - - IA~[  (3.80) 
As 

If the distance An between streamlines is chosen equal to the distance As 
between equipotentials, (3.80) reduces to 

AQ = [Ar = IA~I (3.81) 
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Figure 3.11: Flow net. 

Therefore, if we plot equipotentials and streamlines in such a manner that  
they form "squares," that  is (on average) the distance As and An are 
the same (see Figure 3.11), the flow in each "flow channel" is the same 
and equal to A~, the difference in the potential between two successive 
equipotentials. 

Flow nets can be constructed graphically, a practice often used in en- 
gineering to obtain solutions to, for example, flow underneath dams. For 
further reading on this matter,  the reader is referred to Harr (1962) and 
Cedergren (1967). The flow nets presented in this text have been generated 
by use of the computer model GFLOW1, which optionally adds stream- 
lines with the same increment in �9 as the increment A r  it uses to plot the 
equipotentials. It is important to note that  flow nets involve the stream 
function, which exists only when q~ satisfies the equation of Laplace; see 
rule 3.5. 

R u l e  3.8 A flow net can be constructed if, and only if, the groundwater 
flow problem is governed by Laplace's equation. 

Next we will present the potential and stream function for some elemen- 
tary flow problems, and illustrate them by plotting some flow nets. 

3 . 1 . 8  R a d i a l  F l o w  t o w a r d  a W e l l  

One of the best-known solutions to two-dimensional groundwater flow is 
that  of flow towards a well. If flow in the aquifer is due to the well alone, 
the flow pattern is radially symmetric, as indicated in Figure 3.12. The 
origin of a radial (r, 0) coordinate system is chosen at the center of the well. 
Because of radial symmetry, there is only flow parallel to the direction r. 



r 

3 .1 .  E L E M E N T A R Y  S O L U T I O N S  47 

Figure 3.12: Radial flow toward a well. 

Applying continuity of flow across a circle of radius r around the well gives 
(see Figure 3.12) 

Q = 27rr(-Q~) (3.82) 

where Q [ L 3 / T ]  is the discharge (pumping rate) of the well, and where 
( - Q r )  is the discharge vector component across the circle per unit length of 
the circle. The negative sign in front of Q r indicates that the flow occurs in 
the negative r-direction; see Figure 3.12. The discharge vector component 
Qr satisfies Darcy's law: 

dO 
Q~ = (3.83) 

d r  

Combining (3.82) and (3.83)yields 

d_~.O = Q (3.84) 
d r  27rr 

The potential �9 is obtained by integrating (3.84) with respect to r: 

J dO / Q 1 Q lnr + Cw (3.85) �9 - -  - - d r  - -  - - -  
d r  21r r 27r 
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where Cw is a constant of integration which may be chosen to satisfy some 
boundary condition. For instance, if at a distance R from the well the 
potential  is given to be @0, 

r = R r = r (3.86) 

we can find Cw by subst i tut ing (3.86) into (3.85), 

r = 2~ In R + Cw (3.87) 

which yields for Cw 

Cw = @0 - 2~ In R (3.88) 

Combining (3.88) with (3.85) gives the potential for a well with discharge 
Q and subject to the boundary condition (3.86); 

Q r 
= In ~ + r (3.89) 

where use has been made of the fundamental  relation In a -  In b - In a/b. 
The potential  ~ depends on r only, as stated at the outset of this deriva- 

tion; hence, all points on a circle with the well at its center have the same 
value for the potential. A well, by itself, generates circular equipotentials 
concentric about the well axis. 

E x e r c i s e  3.5 Prove that Equation (3.89) satisfies the equation of Laplace. 

E x e r c i s e  3.6 Construct a flow net for a well using eight streamlines. 

U n c o n f i n e d  F low  n e a r  t h e  We l l  

The flow conditions in the aquifer may be confined, unconfined, or both, 
as illustrated in Figure 3.13. The water level in the well is assumed to be 
equal to the head in the aquifer just outside the well bore. In reality, this is 
merely an approximation, since close to the well the Dupui t -Forchheimer  
approximation becomes inaccurate. Resistance to vertical flow, resistance 
across the well screen, and turbulent flow conditions just  outside the well 
all contribute to the tendency of the water level in the well to be lower 
than our Dupuit--Forchheimer estimate. Thus, if the Dupuit•  
solution predicts unconfined conditions near the well, the flow in the real 
world is almost certainly unconfined as well. 
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Figure 3.13" Unconfined flow near a well in a confined aquifer. 

We can investigate the flow conditions near the well as follows. Assume 
that  the radius of the well bore is r~. The potential ~ in the aquifer, at 
the well bore, follows from 

- ~ In rw ~w -~- + ~o (3.90) 

The flow conditions near the well are unconfined if Ow < �89 2, where H 
is the aquifer thickness. Assuming, for a moment,  that  this is the case, the 
location ri of the interface between unconfined and confined flow follows 
from 

�89 2 -- Q In ri 2---~ ~+~o (3.91) 

where use has been made of the fact that  at the interface the head is H, so 
that  the potential is �89 2. The radius ri of the unconfined zone is, with 
(3.91), 

21r (~ kH2--r 
r i -  R e Q (3.92) 

If (3.92) yields a value for r~ larger than R, the aquifer is everywhere (rw <_ 
r < R) unconfined. If ri is smaller than rw, the aquifer is everywhere 
confined. 

E x e r c i s e  3.7 The following data are given for the flow problem in 
Figure 3.13: R -  1,000 f ee t ,  r w -  0.5 .foot, H -- 50 f ee t ,  k - -  20 . f t /day ,  
Q - 25,000 f t 3 / d a y ,  and the head at a distance R from the well is r -- 60 
feet above the aquifer base. 

(a) Calculate the (approximate) water level in the well. 
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(b) If  the flow conditions at the well bore are unconfined, calculate the 
position of the interface ri between the unconfined and the confined 
zone. 

(c) Calculate the discharge Q r at three different distances from the well: 
1, 10, and 100 feet.. 

(d) Repeat the calculations under (a) for the following values of rw: 10, 
1, 0.1, and 0 feet .  Explain your answers. 

S t r e a m  F u n c t i o n  for a W e l l  

The streamlines for a well are radials emanating from the center of the well, 
see Figure 3.12. The stream function �9 is given by 

- Q O  (3.93) 
2r  

which is consistent with both Rule 3.6 and Rule 3.7. The angle 0 may also 
be expressed in terms of the coordinates x and y: 

= Q arctan y (3.94) 
27r x 

Some caution is required in evaluating the arctangent in (3.94). Pocket 
calculators usually return values for the arctangent between -7r /2 and 7r/2, 
assuming a positive value for x in (3.94). For negative values of x, the 
following corrections should be made: If y < 0, subtract -Tr; if y > 0, add 
7r. When (3.94) is programmed on a computer, an arctangent function may 
be available with two arguments (x and y), so that  no corrections should 
be necessary. 

B r a n c h  C u t  

The stream function (3.93) exhibits a jump when the principal value of the 
angle 0 jumps from +Tr to -Tr across its branch cut; see Figure 3.14. The 
branch cut of the angle 0 may be chosen differently than in Figure 3.14, but 
will always exhibit a jump of 27r. With the origin of the coordinate system 
at the center of the well, the stream function has the value + Q / 2  just above 
the negative x-axis, and - Q / 2  just below the negative x-axis. Previously, 
however, we featured the single-valuedness of the stream function. The 
reason for the jump in Figure 3.14 is that  at the well itself the divergence 
of the discharge vector is not zero, but equal to the discharge of the well. 
Consequently, Laplace's equation does not apply at the well! The well 
itself, therefore, should not be considered part of the flow domain. This is 
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Figure 3.14: Branch cut in the stream function for a well with discharge Q. 

no problem, since we do not evaluate heads and flow inside the well radius. 
Because the center of the well is a singular point, the stream function is 
many-valued along a line from the well to infinity: the negative x-axis in 
Figure 3.14. As a more physical interpretation of this, we may imagine the 
flow domain (a two-dimensional plane) to be cut open along the negative 
x-axis and around the well, eliminating the well from the flow domain. 
The water that flows toward the well, inside the flow domain, is removed 
through the slit along the negative x-axis. Therefore, there is a (fictitious) 
flow Q, from the well through the slit, toward infinity. In fact, this flow is 
consistent with the behavior of the stream function across the slit, whose 
jump Q suggests a flow in the slit (branch cut) of Q; see Rule 3.6. The 
direction of the flow in the slit is from the well toward infinity, consistent 
with Rule 3.7. 

3 . 1 . 9  P r i n c i p l e  o f  S u p e r p o s i t i o n  

The solution to more than one well can be obtained by simply adding the 
solutions for each individual well. This is a powerful feature of groundwater 
flow solutions and is due to the linear nature of the governing differential 
equation. This is how it works. 

Consider the potential (I)l(X, y) due to well #1  and the potential (I)2 (x, y) 
due to well #2,  in Figure 3.15. The distances from well #1  and well #2  to 
a point P in the flow domain are rl and r2,  respectively. The potential at 
P due to well #1  with discharge Q1 is 

Q1 (3.95) (I)1 = ~ In rl + C1 
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Figure 3.15: Locations of two nearby wells in an aquifer. 
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The potential at P due to well # 2 with discharge Q2 is 

Q2 
~2 - ~ In r2 + C2 (3.96) 

Tile integration constants C1 and C2 are not yet defined at this point. Each 
of the solutions satisfies the equation of Laplace; thus, for q~l, 

0 i~1  - 0 (3.97) 

and for ~2, 
Oiiq~2 - 0 

We can sum the two equations (3.97) and (3.98)" 

(3.98) 

or, because the differential equations are linear in terms of (I) 1 and (I)2, 

O i i ( q ) l  n t- (1)2) - -  0 ( 3 . 1 0 0 )  

Replacing the sum of the potentials ~1 and ~2 by ~, 

1' = r + @2 (3.101) 

0i i r  n t- O i i ~ 2  - -  0 (3.99) 
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yields for (3.100) 
0 ~  = 0 (3.102) 

What  we showed is that  if ~1 and r each satisfy Laplace's equation, 
then so does their sum r In other words: The sum of several groundwater 
flow solutions is also a groundwater flow solution. The last s tatement is not 
always true, as we will see later, but is for now the practical implication of 
the principle of superposition of solutions. 

The solution to the flow problem in Figure 3.15, flow towards two wells, 
is obtained by adding (3.95) and (3.96): 

= Q1 In rl  + Q2 2---~- ~ In r2 + C (3.103) 

where C is the sum of C1 and C2 and may be chosen to satisfy some 
boundary condition, e.g., that  the potential is equal to Go at some reference 
point (xo, y0): 

x = x 0  and y = y 0  ~ = G 0  (3.104) 

The distances rl  and r2 can be written in terms of the Cartesian coordinates 
of the wells and of point P (see Figure 3.15): 

r l  -- V / ( X -  Xl)2  ~_ ( y _  y l ) 2  

(3.105) 

Q.~I In V/(x  - Xl)2  _1._ (y _ y l ) 2  

271" v / (X0 _ X 1)2 _~_ (Y0 -- y l ) 2  

Q2 V/( x - x2)  2 -q-(y - y2) 2 
+-~-  In 

v/( o - + (yo - y2)  
+ G0 (3.106) 

Superposition also applies to the stream function, since Laplace's equa- 
tion in terms of ~ is also linear; see (3.75). The stream function for the 
two wells is 

-- - ~  arctan + ~ arctan 
x Xl 27r x x2 

(3.107) 

A flow net for the two wells is plotted in Figure 3.16, where the dotted 
lines are equipotentials and the solid lines are streamlines. The calculations 

The complete solution, which also satisfies the boundary condition (3.104), 
is 
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Figure 3.16: Equipotentials and streamlines due to superposition of two 
nearby wells. (GFLOWl  data file: probleml.dat)  

necessary to produce Figure 3.16 are laborious and have been carried out 
with the computer model GFLOWl.  The program calculates (I) and �9 at 
a grid of points, evenly distributed over the domain in Figure 3.16, after 
which a contouring routine generates the equipotentials and streamlines 
for specified values of (I) and ~, respectively. The rather thick horizontal 
lines emanating from the wells are an artifact of the contouring routine, 
which cannot handle discontinuous functions. These thick lines, therefore, 
mark the positions of the branch cuts for the wells. The �9 value along a 
streamline is constant, by definition, but .jumps when the streamline crosses 
a branch cut. The jump equals the discharge rate of the well to which the 
branch cut belongs. 

The input data for Figure 3.16 is stored in the file p r o b l e m l . d a t  on the 
distribution diskette included with this text. You may further investigate 
tile concept of superposition by following the instructions included in this 
data file. 

E x e r c i s e  3.8 Try to sketch the b o u n d i n g  s t r e a m l i n e s  that separate the 
c a p t u r e  zones  o.f the two wells in Figure 3.16. 
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Nonlinear Laplace Equation 

The principle of superposition depends, as we have seen, on the linearity 
of the differential equation of Laplace. We have formulated the equation 
of Laplace in terms of discharge potentials, resulting in the same linear 
differential equation for confined and unconfined flow. However, when for- 
mulating Laplace's equation in terms of heads, the differential equation for 
unconfined flow is not linear; see (3.40), which contains r Consequently, 
we cannot superimpose solutions in terms of the head r for the case of 
unconfined flow. The fact that Laplace's equation in terms of discharge 
potentials is always linear, regardless of the flow type, is what makes su- 
perposition of solutions (in terms of (I)) always possible. This is one of the 
incentives to formulate groundwater flow problems in terms of discharge 
potentials rather than heads. 

Rule 3.9 Unconfined flow solutions in terms of heads cannot be superim- 
posed. Solutions in terms of discharge potentials can always be superim- 
posed. 

3 . 1 . 1 0  A W e l l  in  a U n i f o r m  F l o w  F i e l d  

The principle of superposition is, of course, not limited to adding wells. A 
very practical problem, for instance, is that of a well superimposed onto a 
uniform flow field. The potential for a uniform flow Q0 in the x-direction 
is, integrating Darcy's law, 

O = / [ - Q x ] d x  = - / Qodx = - Q o x  + C~ (3.108) 

where Cu is a constant of integration. The stream function for uniform flow 
in the x-direction is 

= -Qoy  (3.109) 

Equation (3.109) satisfies Laplace's equation and generates the proper uni- 
form flow rate in view of Rule 3.6 and Rule 3.7. 

For convenience, we will select the origin of our coordinate system at 
the center of the well; see Figure 3.17. The combined potential for the well 
and the uniform flow field is obtained by adding (3.108) and (3.85): 

(I) = - Q  0x + 2~ In v/x 2 + y 2 + C  (3.110) 

The constant C is the sum of Cu and Cw and may be chosen to satisfy 
some potential at some reference point; see (3.104). 
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Figure 3.17: A well intercepting water from a uniform flow field. (GFLOWl 
data file: problem2.dat) 
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The stream function is obtained by adding (3.94) and (3.109): 

q~ - -Qoy  + ~ arctan yx (3.111) 

The flow net in Figure 3.17 has been generated with G F L O W l  and the 
input data  file problem2.dat. You may further investigate this solution by 
following the instructions included in this data file. 

E x e r c i s e  3.9 For the case of Figure 3.17: 

(a) Determine the ~ value(s) of the bounding streamlines, which delineate 
the capture zone of the well. 

(b) Determine the ~ value(s) of the streamlines along the x-axis. 

Explain your answers. 

3 . 1 . 1 1  C a p t u r i n g  C o n t a m i n a n t  P l u m e s  w i t h  a 

R e c o v e r y  W e l l  

The flow problem depicted in Figure 3.17 is of considerable practical im- 
portance. One of the most common techniques for aquifer restoration is 
the so called "pump and treat" method. Contaminated groundwater, em- 
anating from some "point source," is intercepted by a recovery well, re- 
moved from the aquifer, treated, and discharged in a nearby surface water 
or (sometimes) reinjected into the aquifer. The flow problem depicted in 
Figure 3.17 may be seen as a first approximation to a recovery well system. 
In Figure 3.17 the existing regional flow field is locally approximated by 
uniform flow, and the recovery system is represented by a single well. The 
question is: What  is the minimum discharge rate of the well which will 
still remove all contaminated groundwater? Another way of looking at the 
problem is to find the minimum size of the capture zone that  is still suffi- 
cient to include the entire contaminant plume. By overlaying the capture 
zone of the well over the contaminant plume boundaries, we can determine 
whether or not all contaminated water will be recovered, or if some of it 
will escape (see Figure 3.18). 

The capture zone may be generated by use of a computer model, as 
done in Figure 3.17. It is quite simple, however, to make a fairly accurate 
sketch of the capture zone based on a few simple hand calculations. To do 
so, we will determine three critical measurements of the capture zone: (1) 
the location of the tip downstream from the well, (2) the width opposite 
the well, and (3) the width (infinitely) far upstream from the well. With 
these three measurements, we can make a useful sketch of the capture zone. 
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Figure 3.18: Capturing contaminant plumes with a recovery well. 

Stagnation Point 

The tip of the plume occurs at a point where the "pull" of the well balances 
the uniform flow. At this point there is no groundwater flow: It is called a 
stagnation point. In view of the symmetry in Figure 3.17, we conclude that  
the stagnation point must occur on the x-axis (y = 0), where it is indeed 
visible in Figure 3.17 as the point where the bounding streamlines meet. 
Assume that  the stagnation point occurs at a distance x s from the well. 
We know that Q z is zero at the stagnation point and hence, 

0~ 
Q x =  = 0  (x = x~) (3.112) 

Ox 

so that  with (3.110), 

0@ Q 1 2x = 0  ( x = x s  ; y - 0 )  (3.113) 

where use has been made of the chain rule when differentiating the natural 
logarithm. Equation (3.113) yields for xs 

Q (3.114) 
x~ = 2~-Qo 

W i d t h  of C a p t u r e  Zone  

We will first determine the width of the capture zone opposite the well. 
The �9 value at the stagnation point is zero, as follows from (3.111) by 
substituting the coordinates of the stagnation point (xs, 0). The bounding 
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streamlines, which define the capture zone, share the stagnation point; 
thus, their �9 value is also equal to zero. We select a point P (0, yp) on the 
bounding streamline above the well, see Figure 3.17. Evaluating (3.111) at 
P yields 

- - Q o y p  + -~  arctan Y..Z (3.115) 0 
0 

The arctangent in (3.115) is 7r/2, so that yp becomes 

Q (3.116) 
YP = 4Q o 

The maximum elevation Ymax of the bounding streamline occurs (in- 
finitely) far upstream from the well; see Figure 3.17. With (3.111) and 
X ~ - - C K ) :  

Ymaz (3117) 0 = - Q o y m a x  --]- arctan 
- -  ( :X:) 

The arctangent in (3.117) is 7r, so that ymaz becomes 

Q (3.118) 

The maximum width w of the capture zone, therefore, is 

Q (3.119) W - - -  - -  

Oo 

The result (3.119) might have been anticipated by realizing that far up- 
stream the influence of the well is negligible; the flow is nearly uniform. 
Sufficiently far upstream from the well, the total flow within the capture 
zone approaches wQo. This flow must equal the total well discharge Q; 
hence equation (3.119). 

We found that the width of the capture zone opposite the well is Q/2Qo,  
while the maximum width upstream from the well is Q/Qo.  These mea- 
surements, together with the location of the stagnation point, are indicated 
on Figure 3.19, which may be used as a flash card for pump and treat sys- 
tems. If the aquifer transmissivity and the local hydraulic gradient of the 
ambient groundwater flow are known, Q0 can be calculated and Figure 3.19 
may be used to prepare some first estimates of required pumping rates and 
well locations for a pump and treat system. 

3.1 .12 Well  D o u b l e t  for A i r - C o n d i t i o n i n g  

Air-conditioning systems for large public or corporate buildings often use 
groundwater in their heat exchangers. Groundwater has a rather con- 
stant temperature of approximately 10~ (~ 50~ year around. The used 
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Figure 3.19: Capture zone dimensions of a recovery well in a uniform flow 
field. 

groundwater,  warmed in the heat exchanger, is either discharged in a nearby 
surface water or rein~ected in the aquifer by use of a recharge well. In the 
lat ter  case, it is important  to design the well doublet (combination of dis- 
charge and recharge well) in such a manner  that  recirculation of the warmed 
water is avoided, or at least minimized. 

In Figure 3.20, a flow net is depicted for a well doublet with the dis- 
charge well at ( - d ,  0) and the recharge well at (d, 0). The pumping and 
injection rates are Q and - Q ,  respectively. The potential  function for 
Figure 3.20 is 

~ =  2 ~ l n  rl  - -  + ~o (3.120) 
r2  

or, in terms of Cartesian coordinates, 

= ~ In (x + d) 2 + y2 
(x - d) 2 + y2 + ~0 (3.121) 

The factor 47r in (3.121) results from replacing l n ( r l / r2 ) i n  (3.120) by 
�89 ln(r 2 2 l / r2 ) .  The stream function is 

= arctan Y - arctan 
x + d  x - d  

(3.122) 
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Figure 3.20: Flow due to a discharge well and recharge well of equal 
strength. (GFLOWl file: problem3.dat) 

The flow in Figure 3.20 is due to the wells alone and is steady-state; thus, 
the wells have been operating forever. Under these conditions, there is 
total recirculation! The only cooling of the groundwater is due to heat 
conduction to adjacent geological formations. 

T h e  Effects  of Reg iona l  Flow 

In general, however, there is already flow in the aquifer prior to the instal- 
lation of the well doublet. The recharge well is placed downstream from the 
discharge well in order to reduce recirculation. Approximating the ambient 
flow near the wells by uniform flow, we obtain the following solutions for 
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Q[ 0 - -Qo + ~ (x 

which yields 

the potential and stream function" 

4~ (x + d) 2 + y2 
~P = - Q o x  + In (x - d) 2 + y2 + (I)0 (3.123) 

Q [  ( Y ) ( Y ) ]  (3124) = - Q o y +  arctan x + d  - a r c t a n  x - d  ' 

Flow nets are plotted in Figure 3.21 for three cases: (a) no recirculation 
with two stagnation points between the wells, (b) just no recirculation with 
one stagnation point midway between the wells, and (c) some recirculation 
with two stagnation points on the y-axis midway between the wells. The 
origin of the coordinate system in Figure 3.21, although not indicated, is 
midway between the well and the recharge well, as in Figure 3.20. 

Of practical importance to us are the conditions under which case (b), 
the critical case with just no recirculation, occurs. Specifically, we want 
to know, for a given uniform flow rate, what relationship between well 
discharge and distance between the wells will just prevent recirculation. 
For case (b), the stagnation point occurs at the origin of the coordinate 
system. There is no flow at the stagnation point, so that 

0r  
Q z =  = 0  ( x = y = O )  (3.125) 

Ox 

Setting the derivative of (3.123) with respect to x equal to zero yields 

2 ( x + d )  _ 2 ( x - d )  ] ( x = y = 0 )  (3 126) 
+ d ) 2 + y 2  ( x - d )  2+y2  

Q 
- 1 (3.127) 

~dQo 

Equation (3.127) provides the critical condition for which there is just no 
recirculation. When the factor Q/~dQo is larger than 1, there will be 
recirculation; see Figure 3.21. 

Exercise  3.10 For case (c) in Figure 3.21" 

(a) Calculate the positions yl and Y2 on the y-axis of the stagnation 
points. Hint: You may make use of (3.126) without setting y equal to 
z e r o .  

(b) What is the value of the stream function ~ at each of the stagnation 
points ? 

(c) What is the percentage of water that is being recirculated? 
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i i i ! ~ ~ \ -  _ ~  ~ , . . .  Progdr:c~tGFnLOWl: 

Figure 3.21" Three cases of a well and recharge well in a uniform flow field: 
(a) Q/~rdQo = 0.8, (b) Q/TrdQo - 1, and  (c) Q/~dQo = 2. (Case (b) in 
G F L O W l  file: p rob l em4 .da t )  
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, /  / ]  y~ r2N~, recharge 
I 

Figure 3.22: A well near a stream, approximated by a well near a straight 
equipotential. 

3 . 1 . 1 3  M e t h o d  o f  I m a g e s  

Our groundwater flow solutions so far have not included any realistic bound- 
ary conditions, such as streams or lakes. In a Dupuit-Forchheimer model, 
the heads underneath a stream or lake are given by the water elevation in 
that stream or lake, respectively. When a well is pumped near a stream, 
for instance, the heads along that stream should not be affected. Our basic 
solutions for one or more wells, as formulated earlier, cannot satisfy such 
a constant-head (or constant-potential) condition along streams and lakes. 
In fact, our solutions generate drawdowns everywhere, except at a single 
reference point. 

There is a simple technique (perhaps trick is a better word) to create 
some basic boundary conditions. Adding imaginary wells to our real wells, 
at strategic locations in the flow domain, allows us to generate infinitely long 
straight equipotentials or no-flow boundaries, and circular equipotentials. 

In f in i t e ly  Long  S t r a i g h t  E q u i p o t e n t i a l  B o u n d a r y  

In Figure 3.22 a well is depicted at a distance d from a stream boundary. 
The well should not affect the heads (potentials) along the stream boundary. 
In order to achieve this, in an approximate manner, the stream boundary is 
replaced by a straight line: the y axis in Figure 3.22. Our objective is to let 
the well pump while keeping the potential along the y-axis constant. The 
solution to this problem is already known to us! Review the equipotentials 
plotted in Figure 3.20. Midway between the discharge and recharge well 
there is a vertical straight equipotential: the y-axis. If we would only 
consider the equipotentials to the left of the y-axis, we have the solution 
to our problem of a well near a stream as illustrated in Figure 3.22. In 
using the solution to the well doublet in Figure 3.20, for the problem in 
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Figure 3.22, the recharge well is fictitious, added only as a trick to obtain 
the equipotential conditions along the y-axis. The recharge well is an image 
of the pumping well with respect to the stream boundary. 

The solution to the potential and stream function are given by (3.121) 
and (3.122), respectively. The equipotentials are circles with their centers 
on the x-axis; see Figure 3.20. The equipotential midway between the well 
and the recharge well is a circle with its center infinitely far away on the 
x-axis. Consequently, the equipotential through x = y = 0, the y-axis, is 
an infinitely long straight line. The streamlines are also circles, but with 
their centers on the y-axis. The straight streamline along the x-axis is a 
circle with its center infinitely far away on the y-axis. 

That  all points on the y-axis indeed have the same potential is readily 
seen from Equation (3.120) and Figure 3.22. For all points on the y-axis, the 
distances rl  and r2 are the same. Consequently, the ln(rl/r2) in (3.120) 
becomes In 1, which is zero. Therefore, along the y-axis the potential is 
equal to ~0; the y-axis is an equipotential. 

In Figure 3.23, a flow net is plotted in the flow domain to the left of 
the stream of Figure 3.22; it is the left half of the flow net in Figure 3.20. 
In Figure 3.23, we pretend that  the stream is supplying the water for the 
well. As appears from Figure 3.20, in our mathematical  model, that  water 
is actually coming from the image recharge well. The solution is, of course, 
approximate; the real potential conditions along the stream differ somewhat 
from the ones produced in Figure 3.23. 

3 . 1 . 1 4  A W e l l  n e a r  a P o l l u t e d  S t r e a m  

The only flow in Figure 3.23 is due to the well. In general, however, there is 
some ambient flow, usually toward the stream. The stream in Figure 3.24, 
therefore, is depicted as a receiving stream. The regional groundwater flow 
toward the stream, in the vicinity of the well, is approximated by uniform 
flOW. 

The problem is similar to the one depicted in Figure 3.22, except for the 
addition of uniform flow. The problem resembles that  of the well doublet in 
a uniform flow field discussed before. The potential and stream function are 
given by (3.123) and (3.124), respectively. The flow nets in Figure 3.21 are 
now reinterpreted as those for a well in a uniform flow field near a stream 
(y-axis). Only the left halves of the flow nets in Figure 3.21 are real; the 
other halves occur on the other side of the stream and are fictitious. In 
Figure 3.25, these flow nets are superimposed onto the domain to the left of 
the stream in Figure 3.24. The three cases, reinterpreted for the problem in 
Figure 3.24, are: (a) no water is pumped from the river, (b) critical case of 
no water pumped being from the river, and (c) some water is pumped from 
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F i g u r e  3.23: E q u i p o t e n t i a l s  a n d  s t r e a m l i n e s  for a well  n e a r  a s t r e a m .  
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~l Ill 

Figure 3.24: A well near a polluted stream. 

the river. The solution is approximate, because the straight equipotential in 
combination with the uniform flow neither accurately reflects the ambient 
flow conditions near the stream nor accurately satisfies the actual boundary 
conditions along the stream. 

3 . 1 . 1 5  A W e l l  n e a r  a R o c k  O u t c r o p  

The method of images, used above, employed an image recharge well in 
order to obtain a straight equipotential boundary near a discharge well. 
We will show that when using an image discharge well, a no-flow boundary 
is obtained instead of an equipotential boundary. 

Consider a well near a rock outcrop, as depicted in Figure 3.26. The 
no-flow boundary may also be a sheet piling (with their slots sealed with 
bentonite) or a bentonite "slurry trench." If the boundary is approximated 
by an infinitely long, straight no-flow boundary (y-axis in Figure 3.26), it 
may be modeled by an image pumping well. The potential and stream 
function are 

Q [ (xWd)2t-y 2 (x-d)2Wy 2 ] 
r In (x0+d)  2+y02 • ( z 0 - d )  2+y02 + ~ ~  (3.128) 

and 

~ = 2 ~ [ a r c t a n (  Y ) + a r c t a n (  y ) x + d  x 'd (3.129) 

A flow net for this case is plotted in Figure 3.26. That the well and image 
well indeed create a no-flow boundary along the y-axis is seen from (3.129) 
by substituting x = 0, yielding 

r = arctan +d + arctan y ] -- ~Q--~-[01 -~-(~ --01)]-- Q (3.130) 
- d  J ~ -2 
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Figure 3.25: Three cases of a well near a polluted stream: (a) Q/?rdQo = 
0.8, (b) Q/.rrdQo = 1, arid ( c )  Q / r d Q o  = 2. (Case (b) in  GFLOWl file: 
problern4. dat ) 
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Figure 3.26: A well near a rock outcrop. (GFLOWl data file: prob- 
lem5.dat) 
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The �9 value along the y-axis is constant (Q/2), so that the y-axis is a 
streamline across which there cannot be any flow: The y-axis is a no-flow 
boundary. 

It is possible to mix the equipotential and no-flow boundaries for some 
cases. For instance, a well near an equipotential boundary and a no-flow 
boundary, which are perpendicular, may be provided with images with 
respect to both boundaries. It is also necessary, however, to image the 
image well and image recharge well. For the case where the equipotential 
and no-flow boundary are perpendicular, full symmetry is obtained with a 
total of three images. In most general cases of intersecting equipotential 
and no-flow boundaries, however, the number of images is infinite! It is, of 
course, still possible to create approximate solutions by taking only a finite 
number of images into account. 

Exe rc i se  3.11 Define the image wells and/or image recharge wells .for the 
.following cases: 

(a) A well to the left of the y-axis which is an equipotential boundary, and 
above the x-axis, which is a no-flow boundary. 

(a) A well midway between two parallel equipotential boundaries. 
distance from the well to either boundary is d. 

The 

Indicate in a sketch the position and discharge (+ for pumping and - for 
injection) of the well and its images. Present an approximate solution when 
necessary. You may test your solutions in program GFLOW1. 

3 . 1 . 1 6  A W e l l  n e a r  a C i r c u l a r  L a k e  o r  i n s i d e  a C i r c u l a r  

I s l a n d  

Earlier we have seen that the combination of a well and a recharge well 
generates circular equipotentials with the wells off-center; see Figure 3.20. 
Assume, for a moment, that one of the circles around the recharge well in 
Figure 3.20 is a circular lake. In that case, the recharge well and the equipo- 
tentials inside that circle are fictitious; the recharge well is an image of the 
well with respect to the circular equipotential boundary formed by the lake 
boundary. Another way of interpreting the equipotentials in Figure 3.20 
is to envision the well as being positioned off-center in a circular island, 
the boundary of which is one of the circular equipotentials around the well 
itself. Again the recharge well is now regarded as an image of the well with 
respect to the island boundary. 
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Figure 3.27: Eccentric well inside a circular island�9 

E c c e n t r i c  W e l l  I n s i d e  a C i r c u l a r  I s l a n d  

The latter situation is depicted in Figure 3.27, where the coordinate system 
has been shifted with respect to the one in Figure 3.20: The origin is now 
at the center of the circular island. The radius of the island is R, while the 
well is located at x = x~ and y = 0. The position of the image recharge 
well is at x - R 2 / x w  and y -  0. The potential is given by 

o Olnl,x xw,2  2 R21 
( 

where Go is the potential at the boundary of the circular island. 
We will demonstrate that (3.131) satisfies the condition of a constant 

potential Go at the boundary of the island, where 

x2 + y 2 _  R 2 (3.132) 

First we rewrite (3.131) as follows: 

I 2)R2 ] G -  Q In (x2 + y 2 - 2 x x ~ + x  w 
R~ R4 + Go (3.133) 

4~ (x2 + y2 _ 2 x - - :  + ~)~ 

Substituting (3.132) in (3.133) yields 

2)/~2] Q In (R 2 - 2 x x w + x w  
4---~ (R 2 2x R~ R~ + ~0 --  - - :  + ~)~ 
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Q-~ In 
47r 

R 2 - 2XXw + x w 
- 2XXw + R 2 -4-4Po = 

Q---- In 1 + r  
47r 

~o (3.134) 

The stream function for the well inside the island is 

~ = Q  [ a r c t a n (  Y ) - a r c t a n (  Y ) ] X - X w  x---x, , ,  n2 (3.135) 

W e l l  n e a r  a C i r c u l a r  L a k e  

As discussed, Figure 3.27 can also be interpreted as that of a well outside a 
circular lake, provided that the recharge well is replaced by a well and the 
well inside the circular equipotential (now the lake boundary) becomes a 
recharge well. The solution is the same as in (3.131), except with the well 
and recharge well interchanged: 

I R2 2 ] 
(I)-- O In ( x - ' ~ )  + y 2  x2 w + ~ (3.136) 

4-'-~ (x - xw) 2 + y2 R 2 ] 0 

Similarly, the stream function becomes 

o = [ rct n R2 -- arctan - -  X --X w X-- xw 
(3.137) 

3 . 1 . 1 7  A C i r c u l a r  L a k e  in  a U n i f o r m  F l o w  F i e l d  

Observe that the flow field in the vicinity of the origin in Figure 3.20, 
midway between the well and the recharge well, is nearly uniform. The 
streamlines will straighten further if we move the well and recharge well 
further apart. In order to maintain a certain "uniform" flow rate near the 
origin, we must increase the strength of the well and recharge well propor- 
tionally to their distance from the origin. In the limiting case, where the 
well and recharge well are moved infinitely far apart, while their strengths 
are increased to infinity, the flow field is exactly uniform. We will use this 
"trick" for creating uniform flow to construct a solution to a circular lake 
in a uniform flow field (see also Strack, 1989). 

In Figure 3.28 a circular lake is depicted with a recharge well to the 
left and a discharge well to the right. Each well has an image inside the 
lake to maintain the (circular) equipotential boundary. If the well and 
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Figure 3.28: Creating uniform flow near a circular lake. 

the recharge well are moved farther and farther away from the lake, the 
images are moving closer and closer together�9 In the limit, where the well 
and recharge well are approaching plus and minus infinity, respectively, the 
images coincide at the center of the lake. The well and recharge well are 
located at x = xw and x = -xw,  respectively�9 The potential �9 is, with 
reference to (3.131), 

o  Iln_ 47r R2 2 x2 In + ~0 (3 138) ( ) ( ~)~ x -- x"~ H- y2 x H- ~ H- y2 

We recombine the terms related to the wells and their images: 

I R2 2 1 (xH-)-~')-+Y 2 (X + Xw)2 H-y 2 
- - - Q  In - l n  2 +q~0 (3.139) 

47r ( z  _ 7_ JR~ ) 2 + y2 (z - z~ )2  + Y 

Writing out the quadratic terms yields 

[ R, 1 - Q-~ In x2 H- y2 _+_ 2XXw H- ~R4 - In x2w -F x 2 -F 2 x x w  -F y2 -F ~0 
47r x 2 + y 2  2XXw -t- ~ x2w n t- -- 2 x x w  --t-y2 

which can be rearranged as 

R2 R2+2xx~ 1§ ~+~ ) 
~ -  In In R2/R2_2xxu\ 

1 + x'-~ / ) x 2 + Y 2  
- In 

1 -'t"- x2 + 2xx,~, .~..~2 1 

J x 2 -2xx,~+y 2 1 + x.~ 
+ 0 o  

(3.140) 

(3.141) 
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We are interested in the limiting case where both xw and Q approach 
infinity. We define Q0 as 

Q 
Q0 = lim (3.142) 

Q - - - , ~  7 r X  w 
x w .-.-~ o o  

The logarithms in (3.141) can be written in terms of four logarithms of the 
form ln(1 + e), which can be replaced by e, since we will let xw ---* c~, and 
hence e ~ 0. We write for (3.141) 

Q-~  4-'~ x2 + y2 x2 + ~0 (3.143) 
X w ---~ O 0  

Taking the limit gives 

xR2 ] + O 0  (x 2 + y 2 > R  2) (3 144) 
( I ) - -  - Q 0  x -  x2_+_y2 - �9 

which is the potential for a lake in a uniform flow field. Equation (3.144) 
is, of course, only meaningful outside the lake. 

The conjugate stream function to (3.144) is 

yR2 ] (3.145) 
~ - - Q 0  y +  2 - " ~  x + y  

The terms containing R 2 in (3.144) and (3.145) are the potential and 
stream function, respectively, of a dipole: the mathematical  result of the 
two coinciding images at the lake or island center. In Section 3.7.5 I will 
revisit this function, while the interested reader may also refer to Strack 
(1989). 

E x e r c i s e  3.12 Show that (3.1~):  

(a) yields a constant potential along the lake boundary; 

(b) reduces to the potential for uniform flow when evaluated (infinitely) 
far from the lake; 

(c) is the cowugate harmonic of (3.1~5). 

3 . 1 . 1 8  A m b i e n t  F l o w  F i e l d  n e a r  a W e l l  

Circular lakes are not common, but may serve as approximations to more 
natural  lakes. The solution obtained earlier, however, can be directly ap- 
plied to a non-pumping well in a regional flow field. The well bore takes 
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Figure 3.29: Ambient flow field near a non-pumping well. 

the place of the lake, while the regional flow is approximated by uniform 
flow. Equations (3.144) and (3.145) describe the effect of the (dormant) 
well on the regional flow field, as illustrated by the flow net in Figure 3.29. 
The flow net inside the well is due to the dipole and has been shaded to 
indicate that  it is not part of the flow domain. It appears from Figure 3.29 
that  the effect is quite local; just a few well diameters away from the well, 
the flow becomes nearly uniform again. 

Ambient flow rates have been estimated by releasing a tracer in a well 
and pumping it back after a given time interval (Leap and Kaplan, 1988). 
In order to conduct such experiments, it is necessary to take into account 
the effect of the well on the nearby flow field. Observe that the uniform 
(regional) flow converges toward the well bore and diverges away from the 
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well. The groundwater  discharge rate, just upstream or downstream from 
the well, is in the x-direction and follows from differentiating (3.144) as 

QX= 
0o [ R2 xR22x ] 
Ox = Qo 1 -  x2 + y2 + (x 2 + y2)2 (3.146) 

which becomes, for x -  + R  and y -  0, 

Q~ - 2Q0 (x = + R  ; y - 0) (3.147) 

The discharge rate, and thus also the velocity, near the well is twice tha t  
of the ambient (uniform) flow. Of course, when moving away from the well 
the flow rate will gradually reduce to Q0. 

N e t  Inf low R a t e  of  t h e  Lake 

Our solution for a lake so far does not account for any net inflow into the 
lake or outflow from the lake. Interpreting Figure 3.29 as flow due to a 
circular lake in a uniform flow field, we note that  all water that  enters the 
lake to the left leaves it on the right. In reality, the lake may lose water 
through an outlet stream, evaporation, or both. From the perspective of 
the aquifer, the lake is discharging. A recharging lake may obtain its water 
from a stream which ends in the lake, from overland flow in the surrounding 
watershed, or from both. 

We can account for net inflow in the lake by placing a fictitious well at 
the center of the lake. Since a well, by itself, has circular equipotentials, the 
equipotential conditions on the circular lake boundary are not disturbed. 
The complete solution for ~ becomes 

xR 2 ] Q x 2 + y2 
- - Q 0  x - ~ j  + ~ l n ~ + O 0  (3.148) 

x 2 + y2 47r R 2 

The complete solution for the stream function becomes 

[ = - Q 0  y + 2 2 + arctan y (3.149) 
x + y  x 

where Q is the net discharge rate of the lake, positive for inflow and negative 
for outflow. 

3 . 1 . 1 9  L a r g e - D i a m e t e r  W e l l  

Strictly speaking we should always use (3.148) and (3.149) when dealing 
with a well in a uniform flow field, in order to maintain a constant  po- 
tential (water level) along the well perimeter. However, the well radius is 
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usually very small compared to the scale of the flow regime in which we 
are interested. When R is small, the effect of the dipole term in (3.148) is 
insignificant (Figure 3.29) and may be omitted, as we usually do. In prac- 
tical terms this means that,  in our model, there is a very small gradient 
across the well screen, which might have been corrected by including the 
dipole term, hence using (3.148)instead of (3.110). 

There do exist very large-diameter wells, dug by hand, in shallow 
aquifers. Such wells are useful when the aquifer is very shallow, restricting 
the drawdown and, consequently, the productivity of a conventional well. 
Under these conditions, the water table in a conventional well would quickly 
drop to the aquifer bottom, even for moderate pumping rates. The most 
important  advantage of a large-diameter well is its large storage capacity. 
This allows a pump to run at full capacity for some time, after which it is 
shut down to allow the water level in the well to restore itself. A conven- 
tional well, with little or no storage, may have unacceptably short pumping 
times. A large-diameter well has also a somewhat larger average yield, but 
this may also be achieved by drilling more than one conventional well. 

In Figure 3.30 a flow net is plotted for a large-diameter well in a uniform 
flow field. Because of its large diameter, the flow net has been made with 
(3.148) and (3.149). The flow net inside the well has been erased, because 
it is not part of the flow domain. 

Figure 3.30 may also be interpreted as that  of a circular lake in a uniform 
flow field, whereby the lake receives water from tile aquifer. This water 
leaves the lake through a surface water outlet, evaporation, or both. 

3.2 Areal  Recharge  

In the groundwater  flow problems discussed so far, the water entered the 
aquifer at discrete locations: through a stream, a lake, or a recharge well. 
When introducing regional (uniform) flow, we did not elaborate on the 
source of the groundwater; it came from somewhere far away (mathemat-  
ically speaking, from infinity). Ultimately, all groundwater comes from 
precipitation. Rainwater, for instance, may run off into streams or lakes, 
after which some of it infiltrates into the aquifer ("losing streams"). In 
general, however, most of the precipitation (rain, snow, etc.) infiltrates 
into the soil close to where it hits the surface. Some of this infiltrated 
water is evaporated back into the atmosphere, or taken up by plants and 
then transpirated off into the atmosphere. Combined, these processes are 
called evapotranspiration. Water that  is not evapotranspirated flows down- 
ward through the upper unsaturated zone of the soil (vadose zone) until it 
reaches the (saturated) aquifer. This form of areal recharge is usually the 
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!i 
Figure 3.30: Flow net near a large-diameter well. 
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most important  source for groundwater,  at least when viewed on a regional 
scale. 

Most climates exhibit wet and dry seasons, causing temporal  variations 
in areal recharge. Different soils have different infiltration capacities, caus- 
ing spatial variations in recharge. It is possible, and sometimes necessary, 
to include these variations in our mathemat ical  models. In this section, 
however, we will limit ourselves to steady-state flow, assuming a recharge 
rate that  is constant in time. This constant recharge rate may be seen as 
the yearly average for the region. Since the actual recharge rate varies sea- 
sonally, our groundwater  flow solution will only reflect average conditions; 
hence, summer and winter flow patterns may differ from our s teady-state 
solution. When necessary, we can and will consider recharge rates that  
differ from place to place. 

3 . 2 . 1  P o i s s o n ' s  E q u a t i o n  

Areal recharge causes a vertical downward flow into the aquifer, equal to 
the areal recharge rate. In a Dupuit-Forchheimer model, however, we ei- 
ther ignore vertical flow, or we treat  it in an approximate manner as we 
will discuss at the end of this chapter. Consequently, we cannot prescribe a 
vertical specific discharge along the upper aquifer boundary (the water ta- 
ble). Instead, we will include the areal recharge in the continuity equation, 
which, combined with Darcy's law, will result in a new differential equation 
for Dupui t -Forchheimer  flow: Poisson's equation. 

In Figure 3.31, the inflows and outflows are depicted for an elementary 
aquifer volume of a Dupuit-Forchheimer model. The elementary volume 
is a column of soil and water that  extends over the full sa turated aquifer 
height and has a cross-section that  measures Ax by Ay. The center of the 
column is at the point x, y. The areal recharge rate due to precipitation is 
N [L/T]. The dimensions of N are length over time, because it is a volume 
of water per unit time per unit area. The dimensions of recharge, therefore, 
are the same as those commonly used for rainfall: inches per year. We write 
the continuity of flow equation in the form 

outflow - inflow -- 0 

Combining terms of Qz and Q u yields (see Figure 3.31) 

[Qx(x+~,u)  - Q x ( ~ - ~ , y ) ]  Ay 
+ - + 

- N A x A y  = 0 (3.150) 

We will perform a few operations on (3.150). First, we divide both sides 
by A x A y ,  then we pass through the limit for Ax ~ 0 and /ky ~ 0, and 
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Figure 3.31: Continuity of flow in a Dupuit-Forchheimer model with areal 
recharge. 

finally we bring the term with N to the right-hand side of the equation. 
The result is 

OQx OQ~ 
= N  (3.151) 

Ox Oy 

Combining (3.151) with Darcy's law [see (3.19)] results in the differential 
equation for Dupuit-Forchheimer flow with areal recharge, which is called 
Poisson's equation: 

02r 02(I) 
= - N  (3.152) 

Ox 2 Oy 2 

As we did before, we may abbreviate (3.152) by writing it in index notation 
a s  

0~(I) - -  - g  (3.153) 

with (i - 1, 2). In symbolic notation, it becomes 

V2(I) = - N  (3.154) 

( • b s e r v e  that  the only difference between Laplace's equation and Poisson's 
equation is the term - N  on the right-hand side of the equation; compare 
(3.63) and (3.154). The added term is the "source term" that  recharges the 
aquifer in the Dupuit-Forchheimer model. 
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Figure 3.32" Areal recharge in a three-dimensional model (a) and in a 
Dupuit-Forchheimer model (b). 

Area l  R e c h a r g e  in a T h r e e - D i m e n s i o n a l  M o d e l  

As mentioned before, the actual effect of areal recharge is that of vertical 
downward flow into the aquifer. In a truly three-dimensional model, there- 
fore, the areal recharge is introduced as a Neumann boundary condition, 
prescribing a vertically downward specific discharge along the upper aquifer 
boundary; see Figure 3.32a. In a Dupuit-Forchheimer model, as we have 
seen, the areal recharge is introduced not as a boundary condition, but as 
a source term in the differential equation. This leads to the replacement of 
Laplace's equation by Poisson's equation, see Figure 3.32b. 

R u l e  3.10 In a Dupuit-Forchheimer model, steady-state flow with areal 
recharge is governed by Poisson's equation, while in a three-dimensional 
model, the areal recharge is a boundary condition to Laplace's equation. 

In the next sections we will explore some elementary solutions to Pois- 
son's equation. These solutions will provide us with some insight into the 
effects of areal recharge on regional groundwater flow systems. 

3 . 2 . 2  O n e - D i m e n s i o n a l  F l o w  w i t h  R e c h a r g e  

We will start with a simple example, solving the same one-dimensional 
flow problem as in Section 3.1.2, except now there is an areal recharge 
rate N; see Figure 3.33. Since there is no flow in the y-direction, so that 
02~p/Ox 2 - -  O ,  Poisson's equation reduces to 

d2~ 
= - N  (3.155) 

dx  2 
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Figure  3.33: One-dimensional  unconfined flow with recharge. 

The  general  solution to (3.155) is 

N 
(P -- -:-:--x 2 + A x  + B (3.156) 

2 

where A and B are cons tants  to be selected in such a ma nne r  tha t  the 
b o u n d a r y  condi t ions are satisfied�9 T h a t  (3.156) indeed satisfies Poisson 's  
equat ion  may be verified by subs t i tu t ing  it into (3.155). The  par t icu lar  
solution tha t  satisfies the bounda ry  condit ions in Figure  3.33 (x = 0; �9 = 
(I) 1 and x = L; (I) = 02) is given by 

N (I)2 - -  (I) 1 
- - -  ~ x  + 01 (3.157) ~ =  2 x ( x - L ) +  Z 

At first glance, Equa t ion  (3.157) does not resemble (3.156). They  are the  
same, however, if A and B in (3.156) are chosen as 

N <I>2- ~1 
B - - ( I )  1 (3.158) A=TL+ s 

The  form of (3.157) makes it easy to see tha t  the b o u n d a r y  condi t ions  are 
satisfied. Subs t i tu t ing  x = 0 in (3.157) sets the first two te rms  to zero, 
so tha t  ~ = O1. Subs t i tu t ing  x = L sets the first t e rm in (3.157) equal  
to zero, while the o ther  two terms reduce to 02. Observe tha t  (3.157) is 
equal to the solution wi thout  rainfall (3.37) plus a te rm tha t  represents  the 
cont r ibu t ion  of the recharge, so tha t  

N 
r = - - - - x ( x  -- L)  (3.159) 

2 
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This added term (3.159) satisfies Poisson's equation. Since Equat ion (3.37) 
did already satisfy the boundary  conditions, the added term (Orecha~ge) has 
been wri t ten in such a way that  it does not contribute to the boundaries of 
the aquifer: Orecharge is zero for x - - 0  and for x -- L. 

Super impos ing  Laplace and Poisson Solutions 

The preceding discussion introduces an interesting concept. Apparently, we 
can write a solution to a groundwater  flow problem with areal recharge as 
the sum of two solutions: A solution that  satisfies Laplace's equation, plus 
one that  satisfies Poisson's equation: 

(~ ~ (~ L a p l a c e  -It- ~ P o i s s o n  (3.160) 

where ~Poisson fulfills the role of ~recharge in (3.159). The combined solu- 
tion �9 must satisfy Poisson's equation, as indeed it does" 

V2(I ) V2(I ) V 2 " -  L a p l a c e  -~- ~ P o i s s o n  - -  0 -F" ( - -  N ) = - N (3.161) 

This leads to the following general principle. 

R u l e  3 .11 An existing groundwater flow solution to Laplace's equation 
may be expanded to include areal recharge by adding one particular solution 
to Poisson's equation. The combined solution will then satisfy Poisson's 
equation. 

Water Div ide  

Let us return to the problem depicted in Figure 3.33. It seems that  a 
water divide exists at a distance X d from the left-hand stream boundary. 
Water  tha t  is infiltrating to the left of the water divide is flowing to the 
left and leaves the aquifer through the left-hand stream. Water  which 
infiltrates to the right of the water divide is moving to the right and ends 
up in the r ight-hand stream. At the water divide itself, tile horizontal 
groundwater  velocities are zero, as if a groundwater  particle at that  point 
cannot  decide which way to go. This condition of zero horizontal flow allows 
us to determine the location X d of the water divide as follows. We set Q x 
equal to zero and use Darcy's  law: 

d~ 
Q x =  = 0  (3.162) 

dx 

Thus, at the water divide the derivative of the potential  is zero, which 
means tha t  the derivative of the head r is zero as well. This is also evident 
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Figure 3.34: Groundwater  mounding due to areal recharge. 

from Figure 3.33, where the water table exhibits a horizontal tangent (zero 
slope) at the water divide. Differentiating (3.157) and setting it zero for 
x - X d yields 

NL ~2 - ~ l  
- N x d  + ~ + L = 0 (3.163) 

which results in the following expression for X d" 

L ~2 - ~1 
X d -  -2 + N L  (3.164) 

If the water levels in the two streams are the same, and hence if ~1 = ~2, 
the location of the water divide is Xd -- L / 2 .  The water divide for that  
case occurs midway between the two streams, as intuitively seems right. 
It is possible for X d to assume values smaller than zero or larger than L, 
depending on the values of ~1 and (I)2. In those cases there simply is no 
water divide in the aquifer; all infiltrated rainwater moves to the right if 
X d < 0 or to the left if X d > L .  

Groundwater Mounding 

If we compare the groundwater table in Figure 3.5 with the water table in 
Figure 3.33, we see that  areal recharge raises the groundwater  table, causing 
g r o u n d w a t e r  m o u n d i n g .  The degree of groundwater mounding depends on 
several factors, such as the recharge rate, the aquifer hydraulic conductivity, 
and the distance between the streams. To gain insight into the role of these 
parameters,  we will consider the special case whereby the water levels in 
the two streams are the same: r = 92 = r (see Figure 3.34). With  ~l  
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equal to ~2, the second term on the right-hand side in (3.157) vanishes; 
hence, 

N 
(P = - - - x ( x  - L)  + (~o (3.165) 

2 
The maximum head r occurs midway between the two streams (see 
Figure 3.34) and follows from (3.165) by setting x = 5 / 2 :  

2 N L 2  
� 8 9 1 6 2  �89162 = 8 (3.166) 

where (3.34) has been used to replace the potentials by heads (water table 
elevations). We may rewrite (3.166) as follows" 

N L  2 
�89162 - r162 + r -- (3.167) 

8 

The mounding Ar in the center of the aquifer is Ar - r  r which 
becomes, with (3.167), 

N L  2 
A r  8kq; (3.168) 

where q; is the average head in the aquifer defined by 

_ r + r (3.169) 
2 

We may introduce an average transmissivity T = kq;, with which Equation 
(3.168) becomes 

N L  2 
A r  87 ~ (3.170) 

The mounding appears to be very sensitive to the distance between the 
two streams: It is proportional to L squared! Furthermore, the mounding 
is linearly proportional to the recharge rate N, while it is inversely pro- _ 
portional to the (average) transmissivity T. Although these results were 
obtained for this special case of one-dimensional flow, we may generalize 
our findings to real-world regional settings. The geometry of the streams 
and lakes then take the place of the parameter L in Figure 3.34. This geom- 
etry is always given and does not change. What  is usually not given is the 
average areal recharge rate and the average aquifer transmissivity. During 
groundwater modeling exercises we often try to match modeled heads with 
observed heads. In the presence of areal recharge we could also say that  we 
are trying to match modeled groundwater mounding with observed ground- 
water mounding. We can change the mounding in the model by changing 
either the recharge rate N or the hydraulic conductivity k. As appears from 
(3.170), increasing N has the same effect as decreasing k (thus decreasing 

_ 

T). This leads to the following conclusion: 
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R u l e  3.12 Trying to match modeled groundwater mounding with observed 
groundwater mounding provides insight in the ratio of recharge over trans- 
missivity (N /T) .  By itself, however, it cannot lead to an estimate of either 
one of these parameters individually. 

We will come back to this issue in Chapter  5 when discussing computer  
modeling of regional flow. 

E x e r c i s e  3.13 The following data are given .for the case of Figure 3.33: 
N -- 4 inches/year, k = 30 f-t/day, L = 5,000 ft, r = 35 ft, and r = 30 

ft. 

(a) Calculate the head r at the center of the aquifer. 

(b) Calculate the discharge Qx in the aquifer at: (1) the left-hand stream, 
(2) the center of the aquifer, and (3) the right-hand stream. 

(c) Calculate the position X d o f  the water divide. 

(d) What is the largest value (el)max of the water level in the right-hand 
stream for which there is still a water divide in the aquifer? 

3.2.3 Radia l  Flow with  Recharge  

Another  elementary solution to Poisson's equation is that  of areal recharge 
on a circular island. The problem may seem contrived, but will prove 
useful as a building block for more realistic flow problems. We will derive 
the solution using continuity of flow considerations rather  than integrating 
the differential equation, as we did in Section 3.1.8 for the solution for a 
well. Applying continuity of flow to the problem depicted in Figure 3.35 
leads to the following observation. The total amount  of water per unit time 
that  crosses the circle with radius r in Figure 3.35 is equal to the recharge 
rate N times the surface area of the circle. The discharge vector Qr, across 
the circle, is defined as the amount  of water per unit time per unit length 
of the circle. Consequently, Qr is equal to the total flow across the circle 
divided by the circumference of the circle" 

N r r  2 Nr  
, . ,  

Q r -  27rr 2 (3.171) 

Because of radial symmetry, the potential depends only on the radial dis- 
tance r, so that  with Darcy's law, 

dO 
Q~ = (3.172) 

dr  
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Figure 3.35: Areal recharge on a circular island. 



88 C H A P T E R  3. D U P U I T - F O R C H H E I M E R  F L O W  

, . . ,  . . . .  . = -  . = .  . , , . ,  

i ~ ~Q 

r : . , ' , - . - - - - - r e - - - - ~  , eo  
1 ! " '$ ' 1  

J J 

�9 , = , ,  , �9 , ,  , , , , ,  �9 . . . . . .  , , ,  

Figure 3.36' A well at the center of a circular island with areal recharge. 

As follows from (3.171) and (3.172), the potential ~ can be obtained by 
integrating (3.171) with respect to r, yielding 

N 2 
= r + C (3.173) 

4 

where C is a constant of integration. At the boundary of the island, thus 
for r - R, the head is given: 4~ = r With  this boundary condition (3.173) 
becomes 

�9 = - ~---(r 2 - R 2) + Oo (3.174) 
4 

The maximum value for the potential, and thus also for the water table, 
occurs at the center of the island where r is equal to zero. The groundwater,  
therefore, mounds up like a dome with a water divide at the center of 
the island, see Figure 3.35. For this case of radial flow, the water divide 
is a single point. Previously, when discussing one-dimensional flow (see 
Figure 3.33), the water divide was a line perpendicular to the plane of the 
figure. 

A W e l l  a t  t h e  C e n t e r  of t h e  I s l a n d  

In Figure 3.36, the problem depicted in Figure 3.35 has been expanded by 
adding a well at the center of the island. In Section 3.2.2, we discussed the 
concept of superimposing a solution to Poisson's equation onto a solution 
to Laplace's equation. Applying this concept to the problem in Figure 3.36 
leads to the superposition of (3.174) onto the solution for a well at the 
center of the island without recharge, as given by (3.89), 
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N 2 r 
(I) -- - -~ - ( r  2 - R ) + In ~ -+- (1)o (3.175) 

W a t e r  D i v i d e  

Figure 3.36 exhibits a water divide on either side of the well. In fact, the 
water divide is a concentric circle about the well with radius r d .  This radius 
can be determined by use of the condition that  the horizontal discharge Q r, 
at the water divide, is equal to zero, as was done for the one-dimensional 
flow problem (Section 3.2.2). This leads to the following analysis. Using 
Darcy's law we have 

d~ 
Q~ = = 0 (r = rd) (3.176) 

d r  

Differentiating (3.175) and substituting the result into (3.176) gives 

N r d  Q 1 

2 2~ r d  
= 0  (3.177) 

This yields for the location of the water divide 

IQ 
rd = ~:~V (3.178) 

The result (3.178) could also have been obtained in a more direct manner, 
by inspection of Figure 3.36. Note that  all infiltrated water within the 
circular water divide ends up in the well. The well discharge Q, therefore, 
is equal to the total amount of aquifer recharge that  falls inside the (circular) 
water divide. Mathematically, this means 

Q = N n r ~  (3.179) 

which leads directly to the expression for rd as given by (3.178). 
Just as in the case of one-dimensional flow, there may not always be a 

water divide. If the well pumps more water than is recharged on the entire 
island, the water divide is pushed beyond the island boundary. In practical 
terms, this means that  there is no water divide. The well pumps up all of 
the aquifer recharge plus some water from outside the island. The critical 
case, of course, is when r d just equals R, which is the case when Q = N n R  2. 

3 . 2 . 4  C i r c u l a r  I r r i g a t o r  o r  P e r c o l a t i n g  P o n d  

The solutions to Poisson's equation presented so far are instructive for il- 
lustrating some basic concepts, such as groundwater mounding and water 
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divides. They are, however, of limited practical use. We will rarely en- 
counter parallel streams, much less circular islands. Yet, as we will see, 
we can use the solution (3.174) to construct a useful elementary solution to 
Poisson's equation, which can be combined with other elementary solutions. 

In the upper part of Figure 3.37, a circular recharge area is depicted in 
plan view: a source disc. Inside the area there is a recharge rate N, so that  
the flow in the aquifer underneath the source disc is governed by Poisson's 
equation. Outside the source disc, where there is no areal recharge, the flow 
is governed by Laplace's equation. The recharge area may be thought of as 
belonging to a circular irrigator, the upper cross-section in Figure 3.37, or 
a percolating pond or wetland, the bot tom cross-section. In all cases we as- 
sume that  the recharge rate (percolation rate) is equal to N. The solution to 
the problem in Figure 3.37 needs to satisfy Poisson's equation underneath 
the source disc (r < R) and Laplace's equation on the outside (r > R). 
The solution is given by Strack (1989) and has the following form: 

(I)-- N - R  2 _~_(~2 )+c (~___ ~) 

N R  2 r 
= - - - ~ l n ~ + C  ( r > R )  

(3.180) 

Q ( i ) =  dO_ d i N  1 N d r  -- d r  - ' 4  " ( r 2 -  R2) + C  = - ~ - r  (r <_R) (3.181) 

Calculating Q(O) for the outside solution leads to 

Q,o  do d[NR2 ] 
= = - l n - - + C  - ( r >  R) (3.182) r dr dr 2 R 2r 

The discharge vector at the boundary of the circle is obtained by setting r 

Note that  we are actually dealing with two solutions: one for the inside 
of the source disc, and one for the outside. The inside solution is that  of 
recharge on a circular island; see (3.174). The outside solution, the second 
formula in (3.180), is that  of a recharge well at the center of the source 
disc. The recharge well has an injection rate that  is just equal to the total 
recharge of the source disc. Both solutions exhibit radial flow, and both 
solutions send the same total amount of water across the boundary of the 
source disc. Consequently, the discharge rate Q r is continuous across the 

boundary" Q(i) _ Q(O) (see Figure 3.37). We may verify this continuity 
condition by differentiating both expressions in (3.180) and substi tuting 

r = R. Calculating Q(i) for the inside solution gives 
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Figure 3.37: Plan view and cross-sections of a circular irrigator and pond 
or wetland, respectively. 
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equal to R, which yields 

Q(i) _ Q(O) _ N 
r -~-n ( r -  R) (3.183) 

The inside and outside solution, therefore, fit together  in that  they assure 
continuity of flow across the boundary  of the disc. The two solutions must  
also fit together  by having the same head (or potential)  at the disc bound- 
ary. This is readily verified by subst i tut ing r = R in both expressions in 
(3.180). The potential  at r = R is equal to C, a constant  of integrat ion 
which can be calculated by requiring a part icular head at some reference 
point in the aquifer, as we did when superimposing wells in Section 3.1.9. 

It seems a little awkward to have two solutions for a single flow problem. 
It may be helpful, for that  matter ,  to write these solutions symbolically as 
one solution, as follows: 

ap = N Gp(x ,  y, xo, Yo, R) (3.184) 

W h a t  we did in (3.184) is to write the potential  as the product  of the 
recharge rate N times a coefficient func t ion  Gp. With  reference to (3.180), 
the coefficient function is defined as 

Gp(x, y, ~o, yo, n )  = 
1 -~ [(~ - x 0 )  ~ + (~  - ~0 )  ~ _ n 2] 

a p ( ~ , y , ~ o ,  yo, n )  = 

n 2 (~ - ~o)~ + ( y -  yo) 2 
- ~  in 

4 R 2 

(v~(~-~o)~+(~-yo) ~ _< R) 

(x/(~-~o)~+(y-yo) ~- _> R) 

(3.185) 

where the radial distance r has been expressed in terms of the point x, y, 
at which the potential  is calculated, and the center of the disc x0, y0. In 
the second formula of (3.185), we also used the basic relation In a - �89 In a 2. 
The coefficient function G p is now "hiding" the two different solutions for 
inside and outside the circular area. Imagine this function programmed in 
Fortran: We would have one function subprogram Gp with the arguments  
listed in (3.184). Inside the function subprogram, a test would be conducted 
to determine whether  the point x, y is inside or outside the disc. Based on 
the outcome of that  test, the function subprogram would select one of the 
two expressions in (3.185). For us, the user, it looks as if we have just  one 
function Gp which represents a pond, a wetland, or a circular irrigator. 
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Figure 3.38: Flownet for a well near a pond and a stream. ( G F L O W l  data  
file: problem6.dat)  

3 . 2 . 5  W e l l  n e a r  a P o n d  a n d  a S t r e a m  

The preceding elementary solution can be combined with other, previously 
obtained, solutions. In Figure 3.38, a flow net is plotted for a well near a 
pond and a stream. There is also a regional uniform flow rate Q0 toward 
the stream. The well and the pond both have images with respect to the 
s t ream boundary in order to obtain an equipotential condition along the 
stream. The solution for the flow problem depicted in Figure 3.38 is 

) 2 + ( y _ y ~ ) ~  

47r (x + Xw 

+ g  [Cp(~, y, ~0, y0, R) - C~(x, y , - ~ o ,  y0, n)] + ~0 (3.186) 
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The second function Gp in (3.186) is the image of the pond with respect 
to the stream boundary: the y-axis in Figure 3.38. Since we only consider 
points x, y to the left of the stream, we will always be outside the image 
pond! Consequently, we will always be using the second formula in (3.185) 
for the image pond. Hence, we might also have written 

= Q-~ In (x - xw) 2 + (y - y w )  2 _ Qox 

N R 2 (x + x0) 2 + (y - y0) 2 
+ N G p ( x ,  y, xo, yo, R) + ~ In 

4 R 2 
+r  (3.187) 

Equation (3.187) is essentially the same as (3.186), except that  in (3.187) 
we recognized the fact that we are always using a well to represent the 
image pond. 

You may have noticed that the flow net in Figure 3.38 is incomplete: 
there are no streamlines underneath the pond, just equipotentials. The 
reason for this is not that  there are no streamlines there, but that  the 
stream funct ion,  used to generate them, does not exist underneath the pond. 

This is a consequence of Rule 3.5, which says that the stream function ex- 
ists only if the potential function satisfies the equation of Laplace. Un- 
derneath the pond, therefore, where the governing differential equation is 
Poisson's equation, the stream function does not exist. Yet when the data 
file "problem6.dat" is run to reproduce Figure 3.38, red (stream)lines do 
appear underneath the pond. The reason for this is that the flow problem in 
Figure 3.38 does include solutions to Laplace's equation (well, image well, 
and image pond) which do generate ~-values underneath the pond. The 
contouring routine, which produces the streamlines, does not distinguish 
between these and the legitimate ~-values outside the pond. In producing 
Figure 3.38, therefore, the "streamlines" underneath the pond have been 
erased. 

3 . 2 . 6  T r a c i n g  S t r e a m l i n e s  

Although the stream function may not exist underneath the pond, stream- 
lines do exist, of course. It is just that we do not have a (valid) stream 
function to generate them. Next we will discuss an alternative way to deter- 
mine streamlines, a procedure for which we do not need a stream function. 
In Figure 3.39, a streamline section is depicted with two points defined on 

1 
the streamline: x~ and 2 .  The points may be defined either in two dimen- 
sions (i = 1,2) or in three dimensions (i = 1,2,3). Associated with each 
of these points is a residence t ime t l and t2, respectively. The residence 
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t2 

o'....'f f./,/ zi + d z i ~  

Figure 3.39: Tracing streamlines. 

time is the time it takes a water particle to move from its entry point in 
1 2 . 

the aquifer to the location in question: point x~ or xi m Figure 3.39. Con- 
sequently, in view of the direction of flow in Figure 3.39, the residence time 
t2 is larger than the residence time t l. Our objective is to find successive 
points xi along the streamline. The computational procedure for tracing a 
streamline will be explained with reference to Figure 3.39. 

1 
Assume we know the location x~ on the streamline and want to deter- 

mine the location 2 .  We may calculate 2i by use of the following definite 
integral: 

2 

2 1 fxl zi xi--xi  + dxi (3.188) 
i 

where dx~ is an infinitesimal vector along the streamline; see Figure 3.39. 
We may rewrite the integral in (3.188) in terms of residence times as 

1 ~tf 2 dxi dt (3.189) 2i--x i + dt 

The term dx~:/dt is the definition of the groundwater flow velocity v~, so 
that (3.189) may also be written as 

2 1 jftf 2 x i=xi  + vidt (3.190) 

As appears from (3.190), tracing streamlines is accomplished by integrating 
the velocity of a groundwater particle with respect to its residence time. 
The integration can be carried out analytically, but only for a few trivial 



96 C H A P T E R  3. D U P U I T - F O R C H H E I M E R  F L O W  

cases. In general, when streamlines are traced in groundwater  flow models, 
(3.190) will have to be integrated numerically. 

3 . 2 . 7  T r a v e l  T i m e s  

The concept of a residence time or travel time (which is the same) should not 
be confused with real time. In other words, the fact that  there are residence 
times associated with our groundwater flow solutions does not mean that  
our solutions are time-dependent: We are still only talking about steady- 
state groundwater  flow. The function of residence time in (3.190) is that  of 
a parameter  with which we measure distance along a streamline, in much 
the same way as light-years are used to measure distances between celestial 
bodies. On the other hand, following that  analogy, if a star is 100 light- 
years away from us, the light from that  star has traveled for a time period 
of 100 years before it arrived at our location. Similarly, if the residence 
time or travel time of a water particle is 100 years, then that  particle has 
traveled for a period of 100 years through the aquifer before arriving at its 
current position. 

Travel times are important  in the context of groundwater  pollution. 
Short travel times, on the order of a few days or months, imply that  con- 
taminants  are moving quickly through the aquifer with little time to decay, 
volatilize, or otherwise be reduced in concentration. When travel times 
of contaminants  are in the order of several years or decades, as is not 
uncommon, then there is substantial "response time" to intercept the con- 
taminants.  Furthermore, because of the long travel time, the contaminant  
concentrations may have been substantially reduced by adsorption to the 
soil, and by physical, chemical, and biological degradation processes. 

Program G F L O W l  supports the computat ion of travel times along 
streamlines by plotting markers on the streamlines at specified travel time 
intervals. For instance, if the travel time interval is specified to be one 
year, the total travel time (in years) of a water particle traveling along a 
streamline can be found by simply counting the number of markers on that  
streamline. 

E x e r c i s e  3.14 Following the instructions in the file problem6.dat,  trace 
some streamlines inside and outside the pond in Figure 3.38. Plot markers 
.for residence times using several different time intervals. 

3 . 2 . 8  W e l l h e a d  P r o t e c t i o n  

Drinking-water companies, which use groundwater  as a resource, employ 
high-capacity wells that  are usually clustered in one or more well fields. 
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Groundwater  flow pat terns  in and near these well fields are of interest from 
the perspective of wellhead protection. Under the U.S. Environmental  Pro- 
tection Agency's wellhead protection program, drinking-water companies 
must develop a plan to protect  the integrity of the groundwater  entering 
their product ion wells. These plans call for land use restrictions based on 
the capture zones of the wells in combination with groundwater  travel times 
within these capture  zones (USEPA, 1987). The capture  zone of a well is 
defined as the domain under which part  or all of the groundwater  ends up 
in the well. Consequently, land use restrictions may apply to parts of these 
capture  zones. For instance, in zones where the groundwater  reaches a well 
within one or two years, land use control is more urgent than in other parts  
of a capture  zone, where the travel times are one or more decades. Ground- 
water modeling is usually the only practical way to delineate these capture  
zones and est imate the groundwater  travel times in them. 

In Figure 3.40, the capture  zones and some travel time isochrones are 
depicted for a fictitious well field intercepting water from a uniform flow 
field. As observed from Figure 3.40, there may be more than one capture  
zone belonging to a single well. For instance, the most downstream well in 
Figure 3.40 has a capture  zone that  is split up into two subzones, one above 
and one below the capture  zone of the center well. The lower subzone, in 
turn, is also broken up into two zones, located above and below the most 
upst ream well, respectively. The example well field has only three wells, 
real world well fields may have more wells, resulting in even more complex 
capture zone patterns.  

Isochrones of travel times are lines from which all water particles travel 
to the well in an equal amount  of time. The capture zones and isochrones 
in Figure 3.40 have been generated with EPA's well-head protection code 
W h A E M  (Well-head Analytic Element Model). The code automatical ly 
generates the capture  zones and isochrones based on a few simple user 
instructions. 

In Figure 3.41, the same setting as depicted in Figure 3.40 has been 
modeled with G F L O W l .  Unlike WhAEM,  GFLOW1 does not suppor t  
special routines to automatical ly generate capture zones and isochrones 
of travel times. Instead of the solid line isochrones in Figure 3.40, in 
Figure 3.41 sets of streamlines have been plot ted using markers to indi- 
cate travel time intervals. These streamlines have been traced backwards 
in time star t ing at the wells. The marker pat terns  mark the positions of 
the travel time isochrones, as indicated in Figure 3.41. The markers are 
a l ternat ing dashes or triangles which are oriented perpendicular  to a line 
from the well to the marker. In this manner  it is easier to decide which 
markers belong to which well. 

The capture  zones in Figure 3.41 are not sharply defined, they may 
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Figure 3.40: Capture  zones and isochrones for a well field in a uni- 
form regional flow field as produced by USEPA's  program W HAEM.  The 
isochrones are labeled in years. 
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be delineated with greater accuracy by tracing additional streamlines in 
between tile streamlines that currently bound neighboring capture zones. 
Keep in mind, however, that the capture zones in both Figure 3.40 and 
Figure 3.41 are obtained by use of average pumping rates for the wells and 
under steady-state groundwater flow conditions. In reality, the various wells 
are rarely pumped at these average rates. Instead, a particular well may be 
pumped to capacity for several months, after which it is switched off for a 
few months. Combined with seasonal variations in recharge, this will cause 
the actual capture zones to vary in time, particularly near the wellfield. The 
precision in the delineation of the capture zones in Figure 3.40, therefore, 
is of only relative practical value. In Chapter 5 we will revisit this issue 
when comparing transient and steady-state flow solutions. 

E x e r c i s e  3.15 Following the instructions in file problemT.dat, recreate 
the travel-time capture zones in Figure 3.~1 by starting streamlines from 
cursor-selected points. Also create new tavel-time capture zones by chang- 
ing the direction o/ the uniform flow field. 

3.3 Multiple Aquifers 

Real-world aquifers rarely resemble the nice homogeneous sand boxes we 
sketched in the previous sections. Aquifers are defined by geological forma- 
tions, and they inherit all their complexity. Geological formations are often 
stratified, which means that  they are composed of roughly horizontal layers 
of both low- and high-permeability soils or rocks. Even if we speak about 
a sand and gravel aquifer, we are probably still dealing with a stratified 
aquifer. When drilling a well in such an aquifer, we usually encounter dif- 
ferent layers of sand and gravel, whose conductivities may differ by several 
factors. Yet, as we will see in Section 3.4, for most practical purposes we 
may still treat them as single homogeneous aquifers. Even drilling through 
some occasional clay does not automatically imply that  our single-aquifer 
representation will be unreasonable. For instance, if an aquifer is mostly 
sandy with some small horizontal clay lenses, its hydraulic behavior will 
be quite similar to that  of our homogeneous sand boxes; see Figure 3.42a. 
On the other hand, if the clay layer or layers show up in all borings in 
the area, we may really be dealing with multiple aquifers rather than one 
single aquifer. These clay layers may be locally permeable, leaking water 
from one aquifer into another. They may also be locally absent, connecting 
the adjacent aquifers and making them act (locally) as one single aquifer; 
see Figure 3.42b. 

It is important  to point out that  the situation depicted in Figure 3.42b 
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Figure 3.41: Isochrones for a well field in a uniform flow. The  isochrones 
are labeled in years. ( G F L O W 1  file: p roblem7.da t )  
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Figure 3.42' A single aquifer with small clay lenses (a), and multiple 
aquifers separated by discontinuous or locally leaky clay layers (b). 

does not automatically require a three-dimensional groundwater flow 
model. If the distances between interconnections or leakage areas are 
large as compared to the thicknesses of the aquifers, we can still apply 
the Dupuit-Forchheimer approximation to each of the individual aquifers. 
This leads to multi-aquifer Dupuit-Forchheimer models, which are often 
referred to as multi layer models or quasi three-dimensional models. Many 
numerical models support multiple layers. At the time of this writing, there 
is only one operational analytic element model designed to solve multiple 
aquifer flow: MLAEM (Multi-Layer Analytic Element Model). The code 
has been written by Strack and applied to several large scale projects (e.g., 
de Lange, 1991). 

The description of flow in such interconnected multiple-aquifer systems 
is exceedingly complicated. It requires detailed knowledge about the sep- 
arating clay layers: Where are they absent, and if leaking, what are their 
spatially varying resistances to (vertical) flow? Groundwater flow mod- 
eling under these conditions is difficult. The hydrologist must deal with 
many uncertain parameters and try to match modeled piezometric head 
surfaces with observed heads in several aquifers simultaneously. In many 
cases piezometric head data are not even available for all aquifers (or are 
insufficient). 

In this section, we will try to gain some insight into multiple aquifer 
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Figure 3.43: Flow in an aquifer with a discontinuous aquiclude. 

flow by considering two interconnected aquifers, which locally act as one 
aquifer, while they are elsewhere fully separated. Hence, the clay layer 
is either present and impermeable, or it is absent: We do not consider 
leakage through the clay layer. We will introduce a new potential function, 
the comprehensive potential, in order to facilitate the description of flow in 
these dual aquifer systems. 

3 . 3 . 1  T h e  C o m p r e h e n s i v e  P o t e n t i a l  

Strack (1981a, 1981b) introduced the concept of a comprehensive potential 
to solve flow in aquifers with clay laminae. The technique was first ap- 
plied to the dual aquifer system near the Tennessee-Tombigbee Waterway 
(Strack and Haitjema, 1981a, 1981b). 

We will explain the comprehensive potential concept with reference to 
Figure 3.43, which exhibits two zones: a single aquifer zone and a dual 
aquifer zone. In the dual aquifer zone, we distinguish between an upper 
and a lower aquifer, separated by an impervious clay layer. The heads in 
both the upper and lower aquifer are measured with respect to the base of 
the lower aquifer. At the edge of the clay layer, the heads in the upper, 
lower and single aquifer zone are the same: 

u l 

r162  r (3.191) 

Similarly, at the clay layer edge, the vectorial sum of the discharge vectors 
in the upper and lower must equal the discharge vector in the single aquifer 
zone: 

u 1 

qi  + Q i -  Qi (at clay layer edge) (3.192) 
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Equation (3.192) is simply a statement of continuity of flow. The discharge 
potential in the single aquifer zone is given by (3.34), 

(I) = �89162 2 (3.193) 

The discharge potential for the lower aquifer is given by (3.60) as 

l l l 
~= k g  r 1 8 9  2 (r  H) 

(3.194) 

l l 2 l 

(I)= �89 r (r H) 

where the second equation applies to unconfined conditions in the lower 
aquifer (not depicted in Figure 3.43). The discharge potential for the upper 
aquifer is defined as 

U ~t 

(I)- � 8 9 1 6 2  2 (3.195) 

This is a new potential definition, whose validity may be verified by applying 
Darcy's law, 

U 

u 0(I) _ ~ 0 r  _ ~' 
Q~= Ox~ �89162 H)~-~x.~ q~(r H) (3196) 

U 

where r - H  is the saturated aquifer thickness of the upper aquifer, so that  
U U 

indeed Q~= q~(r - H ) .  In writing (3.195), we have ignored the thickness of 
the clay layer. We have also tacitly assumed that the hydraulic conductivity 
in the upper and lower aquifer are the same. These restrictions are not 
necessary, but are applied here to simplify our expressions. 

C o m p r e h e n s i v e  F l o w  

We introduce the concept of comprehensive flow in the dual aquifer zone, 
which states that 

u l 

Q~ -Q~ + Q~ (3.197) 

In words, the comprehensive discharge vector is the vectorial sum of the 
discharge vectors in the upper and lower aquifer. We may also envision 
comprehensive flow as the discharge vector that would occur in a hypothet- 
ical single aquifer that  replaces the dual aquifer system. Expression (3.197) 
leads, with Darcy's law, to the relation 

u l 

0(I) 0(I) 0(I) 
- t (3.198) 

Ox~ Ox~ Ox~ 
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or, integrated, 
u l 

- ~  + ~ (3.199) 

give or take a constant of integration. The potential ~ in (3.199) is called 
the comprehensive  potential. Its (negative) derivative is the comprehensive 
discharge vector in the dual aquifer zone. 

Observe from (3.192) that (3.197) also holds at the clay layer edge, 
whereby Q i is the discharge vector in the single aquifer. Consequently, 
(3.198) must also hold at the clay layer edge, with Oep/Oxi equal to the 
derivative of the potential (3.193) in the single aquifer zone. If (3.198) 
holds at the clay layer edge, so must (3.199), so that  the comprehensive 
potential must equal the single aquifer potential at the clay layer edge, 
except perhaps for a constant of integration. We may verify this by setting 
(a.19a) to  the sum of (3.194) and (3.195), and setting all heads equal 
to r (we are at the clay layer edge): 

lkCe2 -- � 8 9 1 6 2  2 + k H C e - - } k H  2 

- - - -  "}kr 2e - kHOe + "} kH2  + kHCe  - "} k H 2  -- 7kCe~ 2 (3.200) 

Indeed, at the clay layer edge, the comprehensive potential for the dual 
aquifer zone equals the single aquifer potential. As it appears, no additional 
constant of integration is needed in (3.199). 

The comprehensive potential offers an interesting perspective. If we can 
translate all boundary conditions for a dual aquifer flow problem in terms 
of this comprehensive potential, we can construct a solution in terms of 
this potential as if we deal with a single homogeneous aquifer, completely 
ignoring the clay layers. This solution will be the complete groundwater 
flow solution in single aquifer zones, where the clay layer is really absent! In 
these single aquifer zones we can calculate heads by inverting (3.193), while 
we can calculate the discharge vector by differentiating the comprehensive 
potential. In zones where the clay layer is present, however, we are not yet 
done! The head obtained from the comprehensive potential is neither the 
upper nor the lower head, although, as we will see later on, it is not without 
physical meaning either. The derivative of the comprehensive potential, as 
we have already seen, also has a physical meaning: It is the sum of the 
upper and lower discharge vectors in the dual aquifer zone. In order to 
illustrate the use of the comprehensive potential, we will apply it to some 
elementary groundwater flow problems. 

3.3.2 O n e - D i m e n s i o n a l  Dua l  Aquifer  Flow 

The setting in Figure 3.44 is similar to the one in Figure 3.33, except for 
the clay layer which protrudes into the aquifer over a distance x~. The 



3.3. MULTIPLE AQ UIFERS 105 

- T - , -  - - ~ ,  - - " - - ~ , , ,  : . . . .  / f , - - - - , , - - . . ,  
~1" ! ,, / 

�9 " ~  X r  . . . .  ~ ." 

L ~: 

Figure 3.44: One-dimensional flow in an aquifer with a clay layer. 

aquifer underneath the clay layer has a thickness H, while the thickness of 
the clay layer itself is ignored. We have two boundary conditions: 

z - O  r 1 6 2  

x - - L  r 1 6 2  

(3.201) 

The first step in our solution procedure is to determine the comprehensive 
potential  O(x) in the aquifer�9 To that  end, we need to reformulate the 
boundary conditions (3.201) in terms of comprehensive potentials. For 
the r ight-hand boundary (x = L), this is easily done; the comprehensive 
potential  is equal to the single aquifer potential, so that  

1 2 ~ 2 -  ~kr (3.202) 

The situation on the left-hand boundary requires some thought�9 Both the 
lower and the upper aquifer have the same head r at x = 0. We are, in 
fact, at the left-hand edge of the clay layer! Thus, we may consider the 
aquifer at x = 0 a single aquifer zone (of zero extent), just as we consider 
the point xe (at the other edge) to be part of the single aquifer zone to its 
right. If we are in a single aquifer zone, at x = 0, then the comprehensive 
potential  at that  point is equal to the single aquifer potential; hence, 

~1 = �89162 2 (3.203) 
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Exerc i se  3.16 Demonstrate that the same result would have been obtained 
by using (3.19~) and (3.195) to calculate the potentials in the lower and 
upper aquifer, respectively, and then calculate the comprehensive potential 
by use of (3.199). 

Once the boundary conditions are known in terms of r we can (for now) 
forget about the clay layer! The solution is the same as for a homogeneous 
unconfined aquifer with areal recharge and is given by (3.157), 

N 0 2  - -  r  
. . . .  x + r (3.204) r  2 x ( x  L ) +  L 

The comprehensive potential in (3.204) is also the single aquifer potential 
in the single aquifer zone (Xe < x < L)" To the right of the clay layer, we 
are done! 

What  is left is to solve the flow problem in the upper and lower aquifer, 
u l 

and thus find r and r First, we need the boundary conditions for both the 
upper and lower aquifers. We already have the boundary conditions on the 

u l 
left-hand side: x = 0; r162  r Because of (3.204), we now also have the 
boundary conditions on the right-hand side of the upper and lower aquifer! 
The head ee at the clay layer edge can be calculated from 

1 2 r  (3.205) 
r  k 

where r is calculated by substituting x = xe into (3.204). The solution 
for the lower aquifer is that for one-dimensional flow in a confined aquifer 
(no recharge)[see (3.25)], 

l l 

r  ~ X - + - - - "  O1 (0  _< x _< xe) (3.206) 
X e  

Similarly, we may obtain the solution for the upper potential, which is 
that for one-dimensional flow in an unconfined aquifer with recharge [see 
(3.204)], 

i t  I t  

u N C e  - r  u 
r  - - - x ( x  - xe) + x+ 01 (0 <_ x < x~) (3.207) 

2 X e - -  

In fact, it is not even necessary to solve both the upper and lower potentials 
from scratch. Once we obtained, for instance, the potential for the lower 
aquifer (3.206), we could have written for the upper aquifer 

u l 
r ( x ) =  r  r (x) (0 _ x _< xe) (3.208) 



3.3. MULTIPLE AQ UIFERS 107 

f 1 i . l  1 l 

- ~ i ~ m l l l m ~ m l l l l l l ~ ~  ~ 

, ~ '~ ~ l ~  

q ~ l ,  1 u ! u ] 
, r  I 1 !r ( ~ ' , 
i / ~ . . f  7 h i /  i ' 1  i i ~ f i l l ) i l l  I : ' f  i ' I  I I ] 1  I i t  ~ I' 

: ' " X e  ~ .  : 

L ~" ,, ..... , , , , ,  

' :1 1 

t ~  

I / ' / / / / / - o  Q 

i �9 . 

Figure 3.45" Unconfined flow conditions in the lower aquifer near the clay 
layer edge. 

using the definition of the comprehensive potential (3.199). Both potentials 
on the right-hand side of (3.208) can be calculated using (3.204) and (3.206), 

U 

respectively, so that ~ (x) is known for all values of x without using (3.207). 

U n c o n f i n e d  Flow C o n d i t i o n s  in t h e  Lower  Aqui fe r  

In Figure 3.44 tile flow conditions in the lower aquifer are depicted as ev- 
erywhere confined. Depending on the parameters of the problem, however, 
the head at the clay layer edge may be below the clay layer, as illustrated 
in Figure 3.45. At the clay layer edge, in Figure 3.45, the head in the lower 
aquifer equals the head in the single aquifer, but these heads do not equal 
the head in the upper aquifer. Hence, the condition (3.191) is not valid! 
The head in the upper aquifer is "perched up" by the clay layer to at least 
the height of the clay layer. In reality, there is a strong curvature of the 
streamlines toward the clay layer, with water from the upper aquifer per- 
colating downward into the lower or single aquifer; see inset in Figure 3.45. 
There is significant resistance to vertical flow just before the water starts 
percolating over the edge. Consequently, our Dupuit-Forchheimer solution 
in the upper aquifer is not too reliable near the edge. Neither do we know 
exactly what boundary condition we must select at that point. For simplic- 
ity, we will assume that the water table in tile upper aquifer just touches 
the clay layer edge, leading to the following boundary conditions: 

u l 

4)e-- H Ce = Ce (3.209) 
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Continuity of flow must still apply, of course, so that  (3.192) still holds. We 
will demonstrate that  at the clay layer edge the comprehensive potential as 
defined by (3.199) is still equal to the single aquifer potential (3.193), 

u l 2 
1 2 2 ~kr e = �89162 - H )  + �89 Ce = -}k(H - H) 2 -t- � 89162  2 = � 89162  (3.210) 

The upper potential in (3.210) is zero, while the lower (unconfined) poten- 
tial equals the single aquifer potential: Indeed, the comprehensive potential 
equals the single aquifer potential at the clay layer edge. When solving for 
the comprehensive potential, therefore, it is not necessary to know the flow 
conditions at the clay layer edge in advance. However, when solving for the 
upper potential, we should realize that the upper head can never be lower 
than the clay layer elevation, so that  if at the clay layer edge Ce < H, the 

U 

head in the upper aquifer is r H. 

E x e r c i s e  3.17 The following data are given .for the case of one- 
dimensional flow in an aquifer with a clay layer, like the one depicted in 
Figure 3 . ~  or Figure 3.~5: 
L = 5000 ft, xe = 3000 ft, H = 50 ft, r = 60 ft, r = 30 ft, N = 0.002 
f t /day,  and k = 10 f t /day. 

(a) What is the head at the edge of the clay layer (x = x~)? 

(b) What is the discharge rate Q x at the right-hand aquifer boundary 
( ~ = n ) ?  

u l 

(c) What are the discharge rates Q z and Q z in the upper and lower 
aquifer, respectively, at the left-hand aquifer boundary (x = 0)? 

(d) Answer the questions (a), (b), and (c) for the case that N = 0 f t /day.  

The advantage of the comprehensive potential formulation is signifi- 
cant. Without  it, the dual aquifer system in Figure 3.44, for example, 
must be broken up into three individual aquifers: the upper, lower, and 
single aquifer. Next, we would have to solve the flow problem in these 
three aquifers separately, for which we need boundary conditions. At x = 0 
and x = L, these boundary conditions are known, but at the clay layer edge 
(x = x~), the boundary condition (head) is not known! Assuming saturated 
conditions in the lower aquifer, we can state that  all three aquifers have the 
same head ~ at x = z~. We may solve the three flow problems in terms of 
this, as yet unknown, head 4~e, and then use continuity of flow across the 
clay layer edge to resolve 4~. If we find that  r is smaller than the clay 
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Figure 3.46' An abandoned well screened in two aquifers. 

layer elevation H, the solution is in error. We have to redo our solutions by 
U 

setting Ce-- H, which leads directly to the solution for the upper aquifer. 
Then we can solve the lower and single aquifer problems with the, as yet 
unknown, head Ce at x = x~, and resolve Ce by use of continuity of flow 
across the clay layer edge. 

Such a procedure may be doable for simple cases of one-dimensional 
flow. It is quite hopeless for two-dimensional flow cases where the clay lenses 
may be arbitrarily shaped. In contrast, by solving the flow problem first 
in terms of the comprehensive potential, we immediately have the solution 
in all single aquifer zones. Consequently, we also immediately have the 
head along all clay layer edges, without the need to apply continuity of flow 
conditions across those boundaries. The solution procedures for the upper 
and lower aquifers then are straightforward. 

3 . 3 . 3  T h e  A b a n d o n e d  W e l l  

An important  case of multiple aquifer flow is that  due to a well screened in 
more than one aquifer. Even if the well is not in use (not pumping), it still 
serves as a shortcut between aquifers. 

In Figure 3.46, an abandoned well is depicted with its well screen con- 
necting two aquifers. At a distance R from the well, the heads in the upper 

u l 

and lower aquifer are r and r respectively. Let us assume, for simplicity, 
that  there are no other flow features in the aquifer beyond the (abandoned) 
well. The question is, what happens at the well? What  is the water level 
in the well, and what, if any, is the flow in the well? We do know, of 
course, that  there is no net flow from the well in other words, no water 
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is removed from the aquifer system! 
We follow the same approach as we did for the one-dimensional problem: 

first solve for the comprehensive potential. At a distance R from the well 
we can calculate the comprehensive potential: 

u l u l 

G0 =Go + G0 = �89162 - H )  2 + kH r -�89 kH2 (3.211) 

The well in Figure 3.46 is not pumping and, as was given, there are no 
other flow features in the aquifer. Thus, the comprehensive potential  in the 
aquifer is constant and equal to (3.211): G(x, y) = G0. The comprehensive 
potential  at the well, therefore, is also equal to (3.211), 

G ~ = G o  (3.212) 

We may argue that  the well bore actually creates a (very small) single 
aquifer zone. Just as we imagined the left-hand stream in Figure 3.44 to 
create an infinitely small single aquifer zone at x - 0, so does the well 
create an infinitely small single aquifer zone at the well perimeter r = rw. 
Consequently, the water level in the well is equal to the comprehensive head 
at the well perimeter, which is 

Cw = - (3.213) 

This comprehensive head has a value somewhere in between the upper and 
u l 

lower aquifer heads r and r Wi th  the upper aquifer head higher than 
the lower aquifer head in Figure 3.46, the well is "pumping" in the upper 
aquifer and "injecting" water in the lower aquifer. The potential  in the 
upper aquifer, therefore, has the form 

2 ~  r u G-- In ~ +  Go (3.214) 

while the potential  in the lower aquifer is 

l Q r l 
G= _ m  l n - - +  Go (3.215) 

27r R 

The discharge rate Q in both expressions is the same; it is the extraction 
rate in the upper aquifer and the injection rate in the lower aquifer. Q can 
be calculated from either (3.214) or (3.215). Using (3.214), 

I t  ~t 

Q = (r - r (3.216) 
In ~ 

R 
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U 

where ~ is the potential in the upper aquifer at the well perimeter and 
follows from 

~w= �89162 - H) 2 (3.217) 

where r is given by (3.213). 

E x e r c i s e  3.18 The following data are given for the problem in Figure 3.~6: 
u l 

r 90 ft, r = 80 ft, R = 5000 f-t, H -- 50 ft, rw = 0.5 ft, and k -- 30 
friday. 

(a) What is the head Cw at the well? 

(b) What is the discharge rate Q in the well? 

(c) Show that (3.21~) and (3.215) satisfy the comprehensive potential 
(3.211). 

The situation depicted in Figure 3.46 is an extreme case whereby different 
geological formations are completely separated, except for the well bore. 
Since without  the well the upper aquifer would have had a consistently 
higher water table, the "inactive" well leaks water from the upper into the 
lower aquifer. Most aquifers do exhibit some form of aquifer stratification, 
with different heads in different strata. A well which is screened across 
these s t ra ta  will cause a "short circuit" and, when not pumping, moves 
water from some strata  into others. In recharge areas, thus usually away 
from surface waters, an abandoned well will "pump" water from higher 
s t ra ta  into deeper aquifer zones. In discharge areas, thus near receiving 
streams or lakes, the flow in the well is reversed; water from deeper zones 
is discharged into the upper portions of the aquifer. A well does not have 
to be abandoned for this to happen: The same exchange of water occurs 
in wells that  are temporarily not in use, such as domestic wells between 
pumping periods. 

This short-circuiting of multiple aquifer wells has major implications 
in terms of contaminant  transport .  Imagine that  the upper aquifer in 
Figure 3.46 is contaminated, while the lower aquifer is still clean, as is 
not uncommon. Wells that  are screened in both aquifers may function as 
contaminant  sources for the lower aquifer. If the flow directions in the 
lower aquifer are different from those in the upper aquifer, contaminants 
may move in unexpected directions, suggesting major contaminant  spread- 
ing. For this reason, nowadays wells are limited (by law) to be screened in 
only one aquifer. In addition, separating clay layers, which are penetrated 
during well construction, must be sealed off. These seals are often created 
by pumping bentonite (a swelling clay) into the annular space between the 
well casing and the clay formation. 
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We have learned something else from this problem: The head in the 
well depicted in Figure 3.46 is equal to the comprehensive head. This leads 
to the following general rule: 

R u l e  3.13 The comprehensive head at a point in a multiple aquifer system 
is equal to the water level in a fictitious (non-pumping) well that penetrates 
all aquifers at that point. 

With this rule, some physical meaning is given to the comprehensive head 
r derived from the comprehensive potential ~ outside single aquifer zones. 

A q u i f e r s  w i t h  D i f f e r e n t  H y d r a u l i c  C o n d u c t i v i t i e s  

The upper and lower aquifer in Figure 3.46 may have different hydraulic 
u l 

conductivities" k and k, respectively. The expressions for the upper aquifer 
and lower aquifer potentials then become (see Strack, 1981a) 

-- �89 k ( r  2 (3.218) 

/ / / i l l 2  ! gp - k g r 1 8 9  k ( r  

(3.219) 

l l 1 2  l 

-- �89 kr (c~< H) 

The comprehensive potential at the well, assuming confined conditions ev- 
erywhere, is 

u u l l l 

-- �89 k ( r  2+ k g r - �89 k g 2 (3.220) 

or, in terms of the head Cw at the well, 

u l l H2 
: �89 k (r - H)2+ k Hew - �89 k (3.221) 

The head Cw may be calculated from (3.221) by substituting (3.220) for ~. 

E x e r c i s e  3.19 The following data are given for the problem in Figure 3.46: 
u l u 

~b0:75 ft, 4~0= 20 .ft, R -- 5000 ft, H -- 50 ft, rw -- 0.5 ft, k-- 20 f r iday 
l 

and k= 50 friday. 

(a) What is the comprehensive potential at the well (in f t 3 / d a y ) ?  

(b) Assuming that the head Cw at the well is below the clay layer, what is 
the expression for the comprehensive potential in terms of Cw ? 

(c) What is the head Cw at the well? 

(d) What is the discharge rate Q in the well? 
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Figure 3.47: Well in the upper aquifer near a circular opening in the clay 
layer. 

3 . 3 . 4  W e l l  n e a r  a C i r c u l a r  O p e n i n g  in  a C l a y  L a y e r  

A well which is screened in only one aquifer may still affect the flow in 
overlying or underlying aquifers through (nearby) connections. In such a 
case, the well may be expected to draw water from more than one aquifer, 
as we will illustrate. 

In Figure 3.47, a well is depicted near a circular opening in the (imper- 
meable) clay layer between an upper and lower aquifer. The well is screened 
in the upper aquifer only. The upper and lower aquifers have hydraulic con- 

u l 

ductivities k and k, respectively, and are continuous across the opening in 
the clay layer. This causes the single aquifer zone to have two layers with 
two different hydraulic conductivities; see Figure 3.47. We will assume that  

u l 

the difference between k and k is small enough that we can treat the flow in 
the clay layer opening as Dupuit-Forchheimer flow. In practice, this means 

u l 

that/~: and k need to be within the same order of magnitude (a difference of 
less than a factor 10). The flow conditions in both aquifers remain confined 
with tile solid and dashed curves in Figure 3.47, representing the piezo- 
metric head in the upper and lower aquifers, respectively. The discharge 
potentials in the upper and lower aquifer are defined as 

u u u u  l l l l 

(P--kHr r162 (3.222) 

Since we do not anticipate unconfined flow conditions, the constant - �89  2 
[see, e.g., (3.219)] has been left off. Prior to pumping, the heads in both 
~nlfifers are the same and equal to 00. The origin of our coordinate system is 
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chosen as the center of the circular opening in the clay layer. At a reference 
point x = L and y = 0, the heads in both aquifers remain unaffected during 
pumping, whereby 

u l 

r 1 6 2 1 6 2  ( x = L  ; y = 0 )  (3.223) 

The well is located in the upper aquifer at x = -d ,  y = 0. The radius of 
the opening in the clay layer is R, whereby R < d. 

As before, we first determine the comprehensive potential. The only 
flow feature in the aquifer system is the well. In terms of the comprehensive 
potential ~, it does not matter that the well pumps in the upper aquifer 
only; hence, ~ is 

= Q l n ( X + d )  2 + y 2  
4-7 (n + d) 2 + ~o (3.224) 

which satisfies the boundary condition at the reference point, see (3.223). 
Expression (3.224) is the complete solution in the single aquifer zone, and 
thus inside the circular opening. The head inside the opening follows from 
(3.224) with 

u l u u  I I  

=r + r (kH + kH)r (3.225) 

With (3.224) and (3.225), we can calculate the head distribution along the 
perimeter of the opening in the clay layer, and thus along the boundary 
of the upper and lower aquifers. This head distribution, however, is not a 
simple one. In general, we would proceed with a numerical solution - -  for 
instance, by use of GFLOWl.  For this special case of a circular opening, it 
is possible to arrive at a (simple) closed-form analytic solution by use of a 
"trick." This is how. 

The same head distribution along the clay layer edge as obtained from 
(3.224) may be obtained from 

R 2 

~ - -  Q-~ln )2 
47r (L + d  

2d:) 
R 2 + r (3.226) 

which represents a well inside the opening. That (3.226) and (3.224) indeed 
generate the same potential along tile circular boundary of the opening 
in the clay layer may be verified by substituting x 2 + y2 = R 2 into both 
(3.224) and (3.226). The equivalence of the two potentials along the circular 
boundary may also be understood from an earlier analysis. Expression 
(3.226) represents an image of the well with respect to the circle, as was 
done in Section 3.1.16. In (3.136), the image recharge well was used to 
maintain equipotential conditions along the circle. Therefore, the image 
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recharge well counteracted the well. In other words, as much as the well 
lowered the potential at a particular point along the circle, the recharge well 
raised it by that same amount! Consequently, along the circular boundary, 
the effects of the well and the image recharge well are equal but opposite. 
If we replace the image recharge well by a well, the effects of the well arid 
the image well will be the same: Equations (3.224) and (3.226) generate 
the same potential along the circle. Note, however, that (3.226) does not  
satisfy the boundary condition (3.223) at the reference point! 

Exerc ise  3.20 Prove mathematical ly  that (3.22~) and (3.226) yield the 
same potential at x 2 -4- y2 __ R 2. 

l 
Next we will solve the potential ~ for the lower aquifer. The circular 
boundary of the opening in the clay layer also forms an internal boundary 
for the lower aquifer. The head distribution along this boundary is obtained 
from 

r = (x 2 + y 2 =  R 2) (3.227) 
u u  I I  

k H  + kH  

where ~ is obtained from (3.226) and use is made of the definition of the 
comprehensive potential: 

u l u u  l l u u  l l 

- -~  + ~ - - k g  r  k g  r = (kH + k g ) r  (3.228) 

l 
The potential ~I, along the boundary is, with (3.222) and (3.227), 

( ii ) l k H  ~=  �9 (x 2 A - y 2 :  R 2) (3.229) 
u u  I I  

k H  + k H  

Replacing r by (3.226) yields 

l 
~ =  

z I ( z  + __~_)2 + 

k H  In + ~0 
u I l (L + d) 2 

k H  + k H  
(x2 + y2= R 2) (3.230) 

The solution (3.230) has been constructed to satisfy the boundary condition 
along the circular opening in the clay layer. However, (3.230) does not 
satisfy the boundary condition at the reference point, since (3.226) did 
not, either. We need another "trick" to adjust the lower potential at the 
reference point, while at the same time the potentials along the circular 
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opening generated by (3.230) must not be disturbed. The solution to our 
problem is to add a well at the center of the circular opening, as follows: 

~ =  
47r 

Q R2 . d 2 ) (z + ~ ) 2  + ~j2 

In (L + d) 2 " ~  
flQ ( x 2 + y 2 )  l 

+ ~ In + ~o R 2 

(~2 + .,2 > R2) 

where a is the factor in front of the potential in (3.230), 

(3.231) 

l l 
kH 

c~ - (3.232) uu l l  
kH + kH 

and where fl is chosen in such a way that  the potential  at the reference 
l 

point is ~0, which is the case for 

In cR+aR 

- ~ 1~ ~ (a.2aa) 

The condition (x2+ y2 _ R2) in (3.23o) has been relaxed to (x2+  y2 _> R 2) 
l 

in (3.231), since the potential ~ satisfies all boundary conditions in the 
lower aquifer and is, therefore, valid in the entire lower aquifer. 

The solution in the upper aquifer simply follows from the definition of 
the comprehensive potential, 

u t 2 R 2 ,~= ,I ,-  ,I, (~2 + v _> ) (3.234) 

There is no real need to pursue the solution for the upper aquifer any 
u 

further; values for ~ can be calculated at any point in the aquifer using 
(3.234) with (3.226) and (3.231). For illustrative purposes, however, we 

u 

will write an explicit expression for ~ by subst i tut ing (3.226) and (3.231) 
into (3.234), so that  

u Q In (x + d) 2 + y2 aQ In 
= 47r ( L + d )  2 - 47r ( L + d )  2 R 2 

- fl---~Q In + (I)0 (x 2 + y2 > R 2) (3.235) 
47r R:  

E x e r c i s e  3.21 Demonstrate that (3.235) satisfies the boundary conditions 
along the circular opening in the clay layer and at the reference point x = L 

and y = O. 

Flow nets for the upper and lower aquifer are depicted in Figure 3.48. The 



3.3. MULTIPLE AQ UIFERS 117 

flow net for the single aquifer zone, the circular opening, is shown as part 
of the flow net for both the upper and the lower aquifer, respectively. The 
equipotentials are continuous at the clay layer edge (circle), which is a con- 
sequence of the single-valuedness of the head. However, the streamlines do 
not line up at the boundary of the circular opening, because they represent 
flow "channels" in three different aquifer zones. Observe that the well in the 
upper aquifer obtains part of its water from the lower aquifer by drawing 
it through the opening in the clay layer. 

U n c o n f i n e d  F low C o n d i t i o n s  

We limited ourselves to confined flow conditions in order to facilitate the 
analytical solution presented here. If flow conditions had been (partly) un- 
confined, all potentials would not have been linear functions of the head, 
preventing the operation in (3.228) and, with it, the successive steps to 
arrive at the potentials for the upper and the lower aquifers. Under such 
circumstances, however, it is still possible to arrive at an approximate so- 

u 
lution to the problem by introducing an average value for H along the clay 
layer boundary. This may be obtained by averaging the head along the cir- 
cular boundary. With this average upper aquifer thickness, we may adopt 
the potential definitions (3.222) along the opening and use (3.228) through 
(3.235) to obtain approximate solutions for the upper and lower potentials. 

l u 

However, as a result of our approximation of r and r at the circular open- 
ing (when conditions are unconfined), we are not satisfying the boundary 
conditions along the circular opening exactly! 

3 . 3 . 5  W a t e r  Q u a l i t y  S a m p l i n g  in  a D o m e s t i c  W e l l  

The concepts of comprehensive flow and a comprehensive potential need 
not be limited to only two aquifers, of course. Some aquifers exhibit many 
permeable strata separated by nearly impervious layers. A good example of 
such an aquifer is a shale aquifer, which allows horizontal water movement 
along so-called bedding planes, but has a substantial resistance to vertical 
groundwater movement. These aquifers are usually not very productive, 
making them unsuitable for high-capacity industrial or city wells. For do- 
mestic water usage, however, the shale aquifer may be adequate, provided 
the well is constructed to tap several bedding planes at the same time. 

In a sense, the domestic well in a shale aquifer is a multiple aquifer well, 
causing a short circuit between aquifers as discussed in Section 3.3.3. In 
most situations, the heads in the upper aquifers (bedding planes) will be 
somewhat larger than in deeper aquifers, unless the well is near a discharge 
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Figure 3.48' Flow in the upper and lower aquifer toward a well in tile upper 
aquifer. (GFLOWl file: problem8.dat) 
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Figure 3.49: Multiple aquifer flow near a well during pumping (a) and when 
the pump is off (b). 

area (stream or lake). Since domestic wells are pumped intermittently, 
there is the potential for downward flow in the well between pumping cycles 
(see Figure 3.495). If the upper aquifer(s) are contaminated, contaminant 
movement into the lower aquifers will occur. Whether or not this leads to 
a further spreading of contaminants depends on the average discharge of 
the well in relation to the intensity of flow from higher aquifers into deeper 
aquifers when the pump is off. Once the pump is switched on, the flow 
in all aquifers will be toward the well, see Figure 3.49a. If the downward 
flow is moderate, the contaminants flowing into the lower aquifers may be 
pumped back completely by the well. This potential periodic contaminant 
movement from higher aquifer s trata into lower ones can have a significant 
impact on the water quality of the well. This may be illustrated by the 
following hypothetical example. 

For computational convenience, we will simplify the situation in 
Figure 3.49 by considering five aquifers which will always remain confined, 
unlike what is depicted in Figure 3.49. The aquifers have constant trans- 

i i 
missivities denoted by k H, where i = 1, 2, 3, 4, 5. The well has a pumping 
rate Q and a radius r~. At a distance R from the well, the heads in the five 

i 

aquifers are constant and equal to r where i = 1, 2, 3, 4, 5. It is given that  
the upper aquifer is contaminated with a contaminant concentration C1. 
During pumping, the well water is a mixture of water coming from all five 
aquifers. If only the uppermost aquifer is contaminated, the concentration 
of contaminants in the well effluent is much smaller than C1. In between 
pumping periods, there may be flow from the upper aquifers into the deeper 
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i 

aquifers, depending on the values of the heads r If this is the case, the 
contaminant  concentration in the well may be significantly higher when the 
pump is off than when the pump is running. We will illustrate this with a 
numerical example. 

i i 
Consider the following data: k= 10 f t /day and H = 5 ft for i = 

i 

1, 2, 3, 4, 5; r = 40, 39, 38, 37, 36 ft for i - 1, 2, 3, 4, 5, respectively; R = 5000 
ft; r~ = 0.25 ft; Q = 10 GPM (1925.28 ft3/day). 

This leads to the following potentials in the aquifers at a distance R 
from the well: 

i i i i 

�9 o=kHr  - 2000, 1950, 1900, 1850, and 1 8 0 0 ~  
ft 3 

(3.236) 
day 

for i = 1, 2, 3, 4, 5, respectively. 
We first consider the situation with the pump off. For simplicity, we will 

assume that  when the well is shut off or turned on, steady-state conditions 
will be reached instantly. Although this is not really true, the assumption 
is a first approximation to the problem and will still provide us with insight 
into the consequences of cyclic pumping on the quality of the well water. 

If the pump is off, there is no net flow in the aquifer system, so that  the 
comprehensive potential at the well is 

5 ~ ft 3 
(I)w = (I)0 = 9500 day (3.237) 

i - - 1  

The head at the well can be obtained from [see also (3.225)] 

I) w 
r  ~ i = 3 8 f t  (3.238) 

E i ~ l  kH 

If we compare the head in the well with those in the aquifers at a distance R 
from the well, it becomes clear that  the upper two aquifers are discharging 
water into the well, and the lower two aquifers are being recharged by the 
well, while the middle aquifer has no flow. Note that  while the pump is off, 
the well is "pumping" or "injecting" in four of the five aquifers. We denote 

i 
the discharge rates for the aquifers as Q0 and calculate them as follows: 

i 

Q0-- 

i i i 

2~ kH ( r  r 
In ~ R 

f t  3 
= 63.44, 31.72, 0, -31.72,  and -63 .44  

day 
(3.239) 
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for i - 1, 2, 3, 4, 5, respectively. These discharge rates add up to zero, so 
that  there is indeed no comprehensive flow. Given some time, the concen- 
tration Co in the well becomes 

1 

QoC1 
C 0 -  1 2 = 0.666C1 (3.240) 

Q o + Q o  

Equation (3.240) provides the ultimate concentration in the well with the 
pump off. But what is the concentration in the well if it is pumping? With  
the pump on, the comprehensive potential at the well is 

rw ft 3 
O~ - In -~- + Oo - 6465.39 day (3.241) 

The head at the well becomes 

I) w 
r - = 25.86 ft (3.242) 

1 

i 
Each aquifer is five feet thick (H-- 5) so that  the top of the upper aquifer 
is 25 ft above the base of the lower aquifer (the datum for the heads). 
Consequently, as appears from (3.242), the flow conditions in all aquifers 
remain confined (again contrary to what is depicted in Figure 3.49). The 

i 
contributions to the well discharge of the five aquifers are denoted by Q 
with i - 1, 2, 3, 4, 5 and are calculated as follows: 

i i i i 

2~ kH (r - r ft 3 
Q= - 448.50, 416.78, 385.06, 353.33, and 321.61 

In ~ day R 

(3.243) 
for i - 1, 2, 3, 4, 5, respectively. The concentration in the well, after some 
time of pumping, will approach the following value: 

1 

Q C 1  
C = ~ = 0.233 C1 (3.244) 

5 
~=1 O 

The concentration of contaminants in the well, during pumping, drops to 
35~ of the concentration in the well with the pump off; compare (3.240) and 
(3.244). Of course, these changes do not occur abruptly. When the pump 
stops, it will take time for the steady-state discharges (3.239) to occur, and 
for the concentration (3.240) to be realized. Conversely, when the pump 
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is being restarted, some contaminated water that was infiltrated into the 
deeper aquifers will be pumped back, keeping the concentration initially 
above the one calculated in (3.244). The actual time-dependent behavior 
of the contaminant concentration in the well will depend on many factors, 
including aquifer properties and pumping regimes. 

The preceding calculations demonstrate a mechanism for "self cleaning" 
of the well during pumping. This has important consequences for water 
sampling protocols applied to domestic wells. Currently, when sampling 
monitoring wells, it is customary to remove about four to five well volumes 
of water before a sample is taken. The reason for this is that  stagnant water 
in the monitoring well may have a contaminant concentration that  is not 
representative for the aquifer. For instance, volatile organic compounds 
(VOCs) may have decreased in the well water due to long exposure to 
the air, causing many of the VOCs to volatilize and leave the well water. 
The same sampling protocol is often applied to domestic wells. In stratified 
aquifers, however, the well water may not be truly stagnant, as we have seen, 
but may move contaminants from higher aquifers into lower aquifers while 
the pump is off. The resulting initially high contaminant concentrations 
may be missed if the well is pumped extensively before samples are taken. 

To test this concept in the field, a domestic well in Bridgewater, New 
Jersey, was sampled three times: after one-half, two, and four well volumes 
of water were removed. The respective contaminant (chloroform) concen- 
trations were 85, 65, and 57 ppb (Haitjema, 1987c). The contaminant 
concentration obtained according to protocol (obtained from the last sam- 
ple) was 33% less than what was there initially! Of course, the occupants of 
the residence served by the well do not discard four well volumes of water 
every time the pump starts. Consequently, they are exposed to the full 
range of concentrations found during this experiment. 

3.4 Heterogeneous Aquifers 

In the previous section we discussed geological stratigraphies that  caused 
hydraulic separation of different horizontal permeable strata: multiple 
aquifers (see Figure 3.42b). Multiple aquifers, in general, exhibit different 
heads in different aquifers, and thus at different depths. If the low perme- 
able formations are isolated lenses, as in Figure 3.42a, they may cause some 
increased resistance to vertical flow, but may not translate into significant 
vertical differences in head. With or without the clay layers in Figure 3.42a, 
it is likely that  the hydraulic conductivity in real-world aquifers varies with 
depth, while the head does not, at least not significantly. 

The hydraulic conductivity may also vary regionally. For instance, a 
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stream in a regional till aquifer (mixtures of sandy clay and silt) may be 
surrounded by a sand and gravel zone, called a channel deposit or alluvium 
if deposited by the stream and outwash if resulting from glaciers. The sand 
and gravel zone may be an order of magnitude more conductive than the till. 
The hydraulic conductivity may also vary on a more local scale, because 
of clay and silt inclusions in a predominantly sand and gravel aquifer, or 
gravel pockets in a till aquifer. 

In this section we will discuss some consequences of these different 
types of aquifer inhomogeneities. In all cases we will assume that  the 
Dupuit-Forchheimer assumption remains valid: The head does not vary 
with depth. 

3 . 4 . 1  R e d u c e d  V e r t i c a l  H y d r a u l i c  C o n d u c t i v i t y  

A reduction in vertical hydraulic conductivity may be the result of many 
clay lenses in a sand and gravel aquifer, as illustrated in Figure 3.42a, or 
may occur in fractured rock aquifers where flow occurs predominantly in 
horizontal bedding planes interconnected locally by vertical fractures. When 
viewed on a large enough scale, the many discrete heterogeneities may be 
blended into a continuum: a homogeneous anisotropic aquifer. In the case 
of reduced vertical hydraulic conductivity, the principal directions of the 
hydraulic conductivity tensor are in the horizontal and vertical directions, 
respectively [see (2.22)], 

0r 
qx -- --kh Ox 

qy = --kh 0.~r 
Oy 

0r 
qz = - k v  

(3.245) 

with the vertical hydraulic conductivity kv smaller than the horizontal hy- 
draulic conductivity kh: 

kv < kh (3.246) 

The condition (3.246) does not encourage the adoption of the 
Dupuit-Forchheimer assumption, which implies that  the vertical hydraulic 
conductivity is infinite (Kirkham,1967)! Next we will investigate the effect 
of a reduction of the vertical hydraulic conductivity on the validity of the 
Dupuit-Forchheimer assumption. 

Continuing with the three-dimensional description of flow, we substitute 
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(3.245) in the continuity equation (2.25)' 

Oqx ~-0% +--Oqz = O(--kh-~-~) + Ou + = 0  (3.247) 
O---S- ~ Oz Ox Oy Oz 

which becomes 
02r 0 2 r  02r 

k~ ~ + ~ + kv Oz---z : 0 (3.24s) 

the differential equation for three-dimensional anisotropic flow with kh and 
kv as the principal hydraulic conductivities. 

T r a n s f o r m a t i o n  into  an I s o t r o p i c  F low D o m a i n  

To obtain a solution to (3.248), it is convenient to transform the actual flow 
domain (coordinates x, y, z) into a fictitious domain with coordinates 2, ~, 
and 2. We use the following transformation: 

- ~ ~ : ~ z - , / = - ~  (3.249) 
Vkh 

with which (3.248) becomes 

02r 02r 02r 
02 ----~ + 0 -~  + ~ - 0 (3.250) 

which is Laplace's equation for a homogeneous isotropic aquifer. That  
(3.250) and (3.248) are indeed equivalent may be verified by substituting 
(3.249) into (3.250). We write (3.250), by use of the chain rule, as 

0 2 r  2 0 2 r  2 0 2 r  2 
0~ ~ + ~  ~ + ~ z ~  ~ = 0  (a.251) 

The derivatives of x, y, and z with respect to 2, ~, and 5, respectively, are 
obtained from (3.249)" 

Oy Oz ~k~h h Ox = 1 - - =  1 -- (3.252) 
0~ 0~ 

so that (3.251) becomes 

02r 02r 02r kv 

i)x 2 + ~ + Oz 2 kh = 0  (3.253) 

which is the same as (3.248), as asserted. 
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Figure 3.50: Real (a) and transformed (b) flow domain of an aquifer with 
a low vertical hydraulic conductivity. 

The groundwater flow problem may be solved in the x,  y,  2 - d o m a i n ,  
_ 

where the aquifer has a thickness H'  

- ~ / k h  H 
H = Vk--v-~ (3.254) 

The isotropic hydraulic conductivity k in the transformed domain is 

= v/k k  (3.255) 

T h e  expression for k may be understood from a simple thought experi- 
ment. Assume a horizontal discharge Q x = H qx in the aquifer depicted 
in Figure 3.50a. The horizontal discharge in the transformed domain, 
Figure 3.50b, must be the same for reasons of continuity of flow: 

d~D ~ D  
Q x  - - k h H  v---L-~ -- - k H  :--T--~ (3.256) 

Ox 0"2 

which is true with (3.254) and (3.255) and in view of (3.252). 
Equipotential and streamlines obtained in the transformed domain are 

transformed back into the actual x,y,  z flow domain. It is noted that  
equipotentials and streamlines which are perpendicular to each other in 
the isotropic (transformed) domain are, in general, no longer perpendic- 
ular in the actual flow domain. In order to obtain solutions to flow in 
anisotropic aquifers, transformation rules are required for both Dirichlet- 
and Neumann-type boundary conditions, but a discussion of these rules is 
outside the scope of this text. For further reading refer to Hart (1962), Ver- 
rijt (1970), and Strack (1989). It suffices here to state that  equipotentials 
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and streamlines in the actual domain remain equipotentials and streamlines 
in the transformed domain. 

In Figure 3.50, both the actual and the transformed domain are depicted 
for the case that  the vertical hydraulic conductivity is 10 times the horizon- 
tal hydraulic conductivity. The aquifer height in the transformed domain is 
V/kh/kv = v/ l /0 .1  = 3.162 times as large as in the actual domain. In the 
beginning of this chapter, I reasoned that if the aquifer thickness is small 
with respect to the lateral distance between boundary conditions (streams, 
lakes, wells, etc.), the Dupuit-Forchheimer assumption may be adopted. As 
is seen from Figure 3.50, the effect of reducing the vertical hydraulic con- 
ductivity is the same as that  of increasing the aquifer height. Consequently, 
in order to use the Dupuit-Forchheimer assumption in aquifers with a re- 
duced vertical hydraulic conductivity, larger distances between boundary 
conditions are required. In Section 5.3.4, I will show that,  in order for 
the Dupuit-Forchheimer assumption to be valid in isotropic aquifers, the 
minimum distance between boundary conditions must be about two times 
the saturated aquifer thickness. Under conditions of decreased vertical hy- 
draulic conductivity, this rule of thumb applies to the aquifer thickness in 
the transformed domain, which leads to the following rule for the actual 
domain. 

R u l e  3.14 In order for the Dupuit-Forchheimer assumption to be valid 
in an aquifer with a reduced vertical hydraulic conductivity, the min imum 
distance between boundary conditions must be 2V/kh/kv times the saturated 
aquifer thickness. 

Before we leave the subject of anisotropy, a word of caution. The occur- 
rence of many clay laminae in an aquifer is often modeled by introducing 
anisotropy. However, not all groundwater flow characteristics are equally 
well represented in the anisotropic continuum model. Discontinuous clay 
laminae may create locally perched water table conditions and locally dis- 
crete downward pathways for groundwater, which are different from the 
water tables and flow paths in the continuum model where we assumed 
uniform vertical resistance. Consequently, whereas the anisotropic model 
may be a fair representation for the average flow conditions on a regional 
scale, it may fail to represent local groundwater pathways and associated 
travel times. 

3 . 4 . 2  A q u i f e r  S t r a t i f i c a t i o n  

In Section 3.3.4, we discussed a single aquifer zone, the circular opening 
in the clay layer, which consisted of two different strata with two different 
hydraulic conductivities. Aquifers quite often consist of layers of different 
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Figure 3.51" Hydraulic conductivity varies with depth (a) and a stratified 
aquifer (b). 

geologic formations, and thus different hydraulic conductivities. Girinski 
(1946) introduced a potential function for Dupuit-Forchheimer flow in an 
aquifer with a continuously varying vertical hydraulic conductivity k(z) (see 
Figure 3.51a): 

h r 

- J0 k ( z ) ( r  z)dz (3.257) 

where h is the saturated aquifer thickness. The integral in (3.257) may 
be evaluated for the case of a finite number of horizontal aquifer strata. 
We will perform the integration for the case where the aquifer consists of 
only two layers, as depicted in Figure 3.51b. We will break the integral in 
(3.257) up into two integrals, one for each layer, and replace the saturated 
thickness h by the head r 

/0 _ 
(~ - -  k, 1 ( r  z)dz + k2 (r z)dz = - � 8 9  1 ( r  z ) 2 l ~  1 - � 8 9 1 6 2  - -  z ]zl 

1 

(3.258) 
which yields, after some elementary algebra, 

= k l C Z l -  �89 2 + �89162 Zl) 2 (3.259) 

Equation (3.259) is the same as (3.220) if H is replaced by zl, r is re- 
u l 

placed by r and k and k are replaced by kl and k2, respectively. The 
Girinski potential, therefore, is the "comprehensive potential" for a strati- 
fied aquifer. Similar expressions may be developed for aquifers with more 
than two strata. Following Strack (1989), the comprehensive potential for 
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confined flow in an aquifer with m strata is 

m 

O -  E [ T i ( r  bi)- �89 bi) 2] (r ~ bin+l) (3.260) 
i-1 

where bi is the elevation of the base of the ith stratum and bm+l is the 
elevation of the aquifer top. The transmissivity Ti is given by 

Ti -- ki(bi+l - bi) (3.261) 

The total transmissivity for the confined aquifer is 

m 

T - E T~ (3.262) 
i--1 

The flow conditions are just confined when the head r equals the upper 
aquifer boundary, which yields the potential 

m 

r - ~ [T~(b~+~ - b , ) -  ~k,(b~+~ - b,) :] ( ,  - b ~ + l )  
i--1 

(3.263) 
For confined flow conditions, the head r can be calculated from the potential 
�9 using 

r 1 6 2  
r = bm+l + (O > Oc) (3.264) 

T 
Unconfined flow conditions occur when the head r is lower than the aquifer 
top bm+l. The head may be just below the aquifer top or below the base 
of one or more of the upper aquifer strata. If the head is just equal to the 
base of layer n, the potential On becomes 

n--1 
�9 ~ - ~ [T~(b~ - b~) - ~k,(b,+~ - b~) ~] ( ,  - b~) 

i=1 
(3.265) 

If the head is above the base bn but below the base bn+l, the comprehensive 
potential for unconfined flow becomes 

n--1 

O-- E T i ( O - b n )  + O n + � 8 9 1 6 2  2 (bn <_ r <_ bn+l) (3.266) 
i--1 

The head r follows from inverting (3.266): 

~ / ( T , ~ _ ~ )  2 2 ( r  r  Tn-1 ~- + 
kn "k,~" k,~ 

(r _~ r ~ r 
(3.267) 
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For a more complete discussion of the potential fimctions for stratified 
aquifers and their relation to Girinski potentials, refer to Strack (1989). 
The potentials for a stratified aquifer are implemented in two commercially 
available analytic element models, SLAEMS 1 (arbitrary number of layers) 
and TWODAN 2 (two layers), and in the public domain code SLWL (Strack, 
1989). These codes are useful in areas where aquifer stratification manifests 
itself by a number of distinct layers that occur throughout the model area. 
Often, however, aquifer stratification varies spatially, making it difficult 
to correlate the various permeable strata encountered in different borings. 
Under these conditions it is still possible to model groundwater flow in a 
single layer (single aquifer) model, provided a weighted average is used for 
the hydraulic conductivity. In Figure 3.52a an aquifer with five strata  is 
depicted. The hydraulic conductivities and layer thicknesses are denoted 
by kl through k5 and H1 through H5, respectively. The average hydraulic 
conductivity k follows from 

i=1 kiHi (3.268) 
Ei5=l Hi 

The homogeneous aquifer representation, Figure 3.52b, will provide piezo- 
metric head surfaces and discharge rates similar to those of the stratified 
aquifer in Figure 3.52a. This may be understood by interpreting the po- 
tential function for the homogeneous model aquifer as the comprehensive 
potential for the actual stratified aquifer. In fact, under confined flow condi- 
tions, the homogeneous aquifer may be given the exact same transmissivity 
as the stratified aquifer, and the resulting piezometric head surfaces will be 
identical for both aquifers. In Chapter 5, Section 5.3.5, however, we will 
see that  under unconfined flow conditions, some differences do occur in the 
piezometric head surfaces, particularly in areas of large drawdowns. 

V a r i a t i o n s  in q~ a n d  v~ over  t h e  Aqu i f e r  H e i g h t  

The specific discharge in the stratified aquifer is not constant over the 
aquifer height, as in the homogeneous model aquifer, but depends on the 
aquifer s t ratum in which we consider the flow. Under Dupuit-Forchheimer 
conditions, variations in specific discharge will be proportional to variations 
in the hydraulic conductivity between the different strata. For instance, in 

3 
layer number 3, the specific discharge qi is 

3 k 3 
q~= -~-- qi (3.269) 

1SLAEMS is a t r a d e m a r k  of Strack Consulting, Inc. 
2 T W O D A N  is a t r ademark  of Fi t t s  Software, Inc. 
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Figure 3.52: Replacing a stratified aquifer (a) by a homogeneous aquifer 
(b). 

where qi is the specific discharge in the homogeneous model aquifer; see 
Figure 3.52. This may lead to significant variations in the specific discharge, 
as hydraulic conductivity between strata may vary by as much as a factor 
of 10. It is mentioned that for variations in hydraulic conductivity in excess 
of a factor of 10, the Dupuit-Forchheimer assumption becomes suspect. In 
that  case it will be necessary to treat the aquifer as a multi-aquifer system 
with leaky separating layers. 

The groundwater flow velocities in the various layers will vary in the 
same manner as the specific discharge, unless there are different porosities 
in the layers. In that  case, the velocities may vary less or more than the 
specific discharges, depending on the porosities involved. For instance, the 

3 
velocity v3i in layer 3 is qi /n3, where n3 is the porosity in layer 3. Expressed 
in terms of the velocity vi in the homogeneous model aquifer, 

3 n 
v i -  - - v i  (3.270) 

n 3  

where n is the porosity in the homogeneous aquifer. 

In summary, replacing a stratified aquifer by a homogeneous aquifer will 
have little effect on the piezometric head surface or discharge vector field 
none under confined, and some under unconfined, flow conditions. However, 
the specific discharges and velocities in the various aquifer strata, and thus 
at different depths, may differ by several factors from the "average" values 
obtained from the homogeneous aquifer model. 
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3.4.3 R e g i o n a l  Var ia t ions  in Transmis s iv i ty  

A different type of aquifer heterogeneity results from lateral variations in 
aquifer thickness and/or  hydraulic conductivity. These conditions may oc- 
cur both on the regional and the local scale. On the regional scale, changes 
in hydraulic conductivity are often seen near streams, where highly perme- 
able "channel deposits" (alluvium) are embedded in more moderately per- 
meable regional aquifer material. Moreover, these alluvial stream channels 
may also incise the bedrock, resulting in an increased aquifer thickness, 
and thus increased transmissivity. On the local scale, hydraulic conduc- 
tivity variations may be due to gravel pockets in a sandy aquifer or clay 
inclusions in a sandy or gravely aquifer. In addition, there may also be 
local variations in aquifer thickness. 

In this section we will look at some solutions for regions with differ- 
ent hydraulic conductivities. Variations in aquifer thickness will not be 
explicitly addressed, but their effect on the transmissivity can often be ap- 
proximated by changing the hydraulic conductivity instead of the aquifer 
thickness, resulting in the same variation in the transmissivity. For a dis- 
cussion of how to model these variations in aquifer thickness explicitly, 
reference is made to Strack (1989). 

T h e  J u m p  in t h e  D i s c h a r g e  Potential 

In Figure 3.53, part of an aquifer is shown in plan view with two different 
hydraulic conductivities separated by an abrupt interface. The hydraulic 
conductivities to the left and right of the interface are kl and k2 ,  respec- 
tively. The solution to the flow problem in Figure 3.53 must satisfy two 
conditions at the interface: (1) the head must be continuous across the 
interface, and (2) there must be continuity of flow across the interface. The 
continuity of flow requirement is self-evident, while the continuity of the 
piezometric head follows from the physical necessity of a single pore pres- 
sure at any one point in the aquifer, and hence also at the interface between 
the two hydraulic conductivities in Figure 3.53. The continuity of the head 
does not imply continuity of the potential function. Denoting the potential 
just to the left of the interface by O1 and that  just to the right by O2, we 
observe the following jump AO across the interface: 

A(I)  - -  (I)l - (I)2 - -  � 8 9 1 6 2  2 - � 8 9 1 6 2  2 = ( k l  - k 2 ) � 8 9 1 6 2  2 (3.271) 

which may be written as 

k l  - k2 
/k(I) - -  ~ ~ 1  (3.272) 

k l  
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/ 

Figure 3.53: Discontinuous hydraulic conductivity. 

or 

kl - k2 
A~I, = ~ ' ~ 2  (3.273) 

k2 

A similar analysis for confined flow conditions leads to the same result, 
(3.272) or (3.273). As it appears, the condition of a continuous head at 
the interface translates into the requirement of a jump in the discharge 
potential as defined by (3.272) or (3.273). Solutions to flow in aquifers 
with zones of different hydraulic conductivities, therefore, are obtained by 
generating a jump in the potential ~ that satisfies (3.272) or (3.273). 

Exerc i se  3.22 Show that the jump in the discharge potential across an 
interface between two different hydraulic conductivities in a confined aquifer 
is also defined by (3.272) or (3.273). 

3 . 4 . 4  A W e l l  o p p o s i t e  a S t r a i g h t  I n h o m o g e n e i t y  

B o u n d a r y  

There exist a few exact analytic solutions to flow in all aquifer with 
zones of different hydraulic conductivity. A classical example is shown 
in Figure 3.54, where a well is located at a distance d from a straight in- 
finitely long interface between two zones of different hydraulic conductivity. 
The solution consists of two parts: the potential r y) in the left-hand 
domain where the well occurs, and the potential O2(x, y) on the other side 
of the interface. The solutions are available in textbooks on potential flow, 
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Figure 3.54: Well opposite a straight infinitely lorig iiiterface between two 
zones of different hydraulic coiidiictivity. (GFLOW1 file: problern9.tiat) 
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e.g., Kellogg (I929), aiid are i n  terms of our  parameters: 

The two poteiitials (3.274) and (3.275) must satisfy t,he two coiiditioris 
discussed earlier: the jump  iii  the potciitial, e.g., (3.273), and coiitiiiiiity 
of flow across z = 0. Siibtracting (3.275) from (3.274), for a point at  the 
interface ( x  = 0) ,  yields 

which reduces to 

Equation (3.277) may be written as 

which is iritieed equal  to (3.273), as asserted. 
The continuity of flow condition at :I: = 0 implies 

Substituting (3.274) and (3.275) into (3.279) gives 

(3.279) 

(3.280) 
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which becomes, after we set x = 0 and divide through by Q/4~, 

kl - k2 11 2xw _ 2k2 2xw 

J kl + k2 x~ + y2 kl + k2 x~ + y 
(3.281) 

This is indeed true; hence, the continuity of flow requirement is also satis- 
fied. 

The piezometric contours in Figure 3.54 have been generated by running 
G F L O W l  twice, once for the solution to the left of the interface and once 
for the right-hand-side solution. In practice, as for the case of a well near 
a no-flow boundary, the interface does not have to be infinitely long and 
straight in order to make use of the foregoing solutions. They will provide 
a good approximation if, for instance, the well is near the boundary of an 
alluvial channel, which can be locally approximated by a straight line. 

E x e r c i s e  3.23 Demonstrate that (3.27~) reduces to the solution for a well 
near a straight equipotential for the limiting case that k2 becomes infinitely 
large (k2 ---* oc) and to the solution for a well near a rock outcrop by setting 
k2 - -0 .  

E x e r c i s e  3 .24 Change the hydraulic conductivity contrast in the problem 
depicted in Figure 3.5~ by.following the instructions in the file problem9.dat 
provided on the distribution diskette. 

3 . 4 . 5  A C i r c u l a r  I n h o m o g e n e i t y  i n  a U n i f o r m  F l o w  

F i e l d  

In Section 3.1.17, we developed a solution for a circular lake in a uniform 
flow field. In the context of Dupuit-Forchheimer flow, the circular lake 
may be viewed as a cylinder, extending over the aquifer height, with an 
infinite hydraulic conductivity. In fact, in Figure 3.30, we used the circular 
lake solution to simulate a large-diameter well, which is indeed a cylinder 
in the aquifer without aquifer material  and thus with an infinite hydraulic 
conductivity. 

It appears that  the solution for a lake in a uniform flow field is a special 
case of a circular inhomogeneity with arbi trary interior hydraulic conduc- 
tivity; see Carslaw and Jaeger (1959). The solution is formulated in terms 
of an inside and outside potential (I)i and (I)o, respectively: 

2ki 
(I)i(x, y) -- - Q 0  x + (I)~(0, 0) (x 2 + y2 <_ R 2) (3.282) 

ko + k~ 
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and 

ko - ki xR  2 ] ko 
- + ~(o,o) (x2+y2>R2) �9 o(~,y) -Qo ~+ko+k~x2+y2j  ~ 

(3.283) 
where ki and ko are the inside and outside hydraulic conductivity, respec- 
tively, and where (I)i(0, 0) is the inside potential at the center of the circle 
which serves as the origin of the x, y coordinate system. The stream func- 
tion for the inside and outside domain are 

2ki q'~(~, y ) - - Q o  y (~2+ y2 _< R2) (3.284) 
ko + ki 

and 

k o -  ki yR 2 ] 
t~o(X, Y) -- - Q o  y - ko + ki x 2 + y2 (x2 + y2 >_ R 2) (3.285) 

Observe that  the inside potential (3.282) represents horizontal uniform flow, 
regardless of the difference between k~. and ko, which may also be seen from 
the inside stream function (3.284). Also notice that the expressions (3.283) 
and (3.285) reduce to (3.144) and (3.145), respectively, for the limiting case 
that the inside hydraulic conductivity becomes infinitely large (ki ---* oo). 

E x e r c i s e  3.25 Demonstrate that both the head and the flow across the 
circular inhomogeneity boundary are continuous. Note: Continuity of the 
head implies that r = ki/koaPo along the circular boundary, while continu- 
ity of flow implies that the stream function is continuous along the circular 
boundary. Explain why. 

In Figure 3.55, streamlines are presented for various contrasts in the inside 
and outside hydraulic conductivity. Notice that the effects on the flow 
regime are local: The flow field is nearly uniform again at a distance of 
about two times the inhomogeneity diameter away from the inhomogeneity. 
This was also observed for the extreme case of an infinite interior hydraulic 
conductivity, see Figure 3.30. We will revisit this issue in Chapter 5, where 
we will model inhomogeneities of arbitrary shape. 

3 . 4 . 6  A W e l l  a t  t h e  C e n t e r  o f  a C i r c u l a r  S l u r r y  T r e n c h  

Some aquifer inhomogeneities are manmade. For instance, in a t tempts  to 
contain groundwater contamination, a slurry wall may be installed around 
the contaminated aquifer zone. A slurry wall or slurry trench is a trench- 
like excavation backfilled with a bentonite clay (slurry) to create a low 
permeable wall. Often the slurry wall solution is combined with a pump 
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Figure 3.55' Circular inhomogeneities in a horizontal uniform flow field. 
The hydraulic conductivities inside and outside the circle are ki and ko, 
respectively. 



138 C H A P T E R  3. D U P U I T - F O R C H H E I M E R  F L O W  

d 

o~ ,~.~: .2 2 : - / /  
~--d ---)-;./I" 

,,.lb f ' l  ." 

- II , I .' ,, ". .-" 

' " - - , : . - - ' r  . . . .  " . . . . .  _i, ) 
�9 ~ ' L ~- i  

Figure 3.56: Well at the center of a circular slurry wall. 

and treat system to clean up the aquifer and further ensure contaminant  
containment�9 Next we will analyze a simplified system of a slurry wall in 
combination with a recovery well. 

In Figure 3�9 both the plan view and a cross-section of a well at the 
center of a circular slurry wall are depicted. The aquifer inside the slurry 
wall is assumed to be contaminated. The slurry wall is not impervious, but 
has a conductivity k and a thickness d; see Figure 3�9 The radius of the 
slurry wall is R. Assuming radial flow, we provide two solutions, one for 
the aquifer outside the slurry wall, 

O(r) = In ~- @ (I) L (r > R + d ; L > R) (3.286) 

and one for the aquifer inside the slurry wall, 

A O  + OL (r < R ; L > R)  (3.287) 
r ~(~) = 1~ 7 - 

where A r  is the difference in the potential in the aquifer just outside the 
wall, ~o, and just inside the wall, Oi: 

A~  = ~ o -  ~i (3.288) 

where 
2 (3.289) �9 o -  ~kr ~ -  �89162 

Neither of these potentials are a priori known. The problem can be solved, 
however, by writing an expression for the difference in the potentials just 
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inside the slurry wall as opposed to those in the aquifer on either side of 
the slurry wall' 

~ i - -  2-~ln R - R +--'---~, + Do (3.290) 

where r is the potential just inside the slurry wall on the well side, and 
where ~o is the potential just inside the slurry wall near the outer interface 
between bentonite and aquifer (see the inset in Figure 3.56)" 

~o = �89162 ~ _  �89162 (3.291) 

Expression (3.290) may be seen as that of the potential ~i at a well of 
radius R and known potential Do at radius R + d, whereby the "aquifer" is 
the slurry wall. This leads to a difference A~: 

A@ - (~o-  @i (3.292) 

or, in terms of the potentials in the aquifer on either side of the slurry wall, 

AD = =-k A(~ (3.293) 
k 

which becomes, with (3.290), 

_ ( d )  A D - -  k Q  l n R + d - -  k Q In 1 +  (3.294) 

Assuming that the thickness d of the slurry wall is small compared to its 
radius R, hence d/R << 1, expression (3.294) reduces to 

Q dk 
A D -  27r R/r (3.295) 

where use has been made of l im~01n(1 + e) = e. 
introduce a resistance c for the slurry wall defined as 

It is convenient to 

d 

k 

The resistance c has the dimension of time. The solution in the aquifer 
enclosed by the slurry wall is finally written in the form 

L R + DL (r < R ; L  > R) (3.297) 

Observe that (3.297) reduces to that of a well in an infinite homogeneous 
aquifer for the case that the resistance c becomes zero, and hence when 



140 C H A P T E R  3. D U P U I T - F O R C H H E I M E R  F L O W  

there is no slurry wall. Both terms between the square brackets in (3.297) 
are negative; hence, tile term k c / R  contributes to the drawdowns inside the 
slurry wall. This is intuitively right: The more effective the slurry wall (the 
higher its resistance c), the lower the drawdowns, or, given the drawdowns, 
the lower the pumping rate Q. 

Exerc i se  3.26 Calculate the max imum possible well discharge Q when the 
following data are given: k = 10 -4 m / s ,  k = 10 -7 m / s ,  L = 1,000 m, 
R =  100 m, d =  1 m, rw = 0 . 2  m, and CL = 6  rn. The max imum possible 
pumping rate is defined as the rate by which the head at the well (radius rw) 
is just  one meter above the aquifer bottom.: Cw = 1 m. Assume unconfined 
flow conditions. 

Exerc i se  3.27 Solve the same problem as in Exercise 3.26, but now as- 
sume an average areal recharge rate of N = 0.002 . f t /day  on the aquifer 
inside the slurry wall (not outside the slurry wall). What might be the 
purpose of artificial recharge on the area inside the slurry wall? 

3.5 A p p r o x i m a t e  Vert ical  Flow 

As mentioned at the beginning of this chapter, the traditional interpretation 
of the Dupuit-Forchheimer approximation is that vertical flow is ignored, 
which leads to vertical equipotential surfaces: 

0r 
- - = 0  (3.298) 
Oz 

Yet ignoring vertical flow is conceptually troublesome when we consider 
areal infiltration due to precipitation or leakage into an adjacent aquifer. 
In unconfined aquifers, the phreatic surface (upper aquifer boundary) is 
curved, also implying vertical flow in the aquifer. Clearly, water must be 
moving in a vertical direction, even though the condition (3.298) suggests 
otherwise. This apparent paradox in Dupuit-Forchheimer models was ad- 
dressed by Kirkham (1967), who suggested viewing Dupuit-Forchheimer 
flow as occurring in aquifers with an infinite vertical hydraulic conductiv- 
ity. In such a model, vertical flow can occur without a vertical gradient in 
the hydraulic conductivity, as expressed by (3.3)" 

q z =  lim ( - k z  0 r  k~-~ ~z  :/- 0 (3.299) 
Or / Oz--.o 

In 1952 the Russian mathematician Polubarinova-Kochina showed in her 
book Theory of Ground Water Movement  how approximate vertical flow 
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components can be calculated in Dupuit-Forchheimer models as a re- 
sult of the curving phreatic surface. Her book was translated into En- 
glish by de Wiest (Polubarinova-Kochina, 1962). In 1984, Strack pub- 
lished a comprehensive theory of estimating three-dimensional streamlines 
in Dupuit-Forchheimer models (Strack, 1984). His expressions for qz in- 
clude both the effects of the curvature of the phreatic surface and the effects 
of areal recharge and leakage. Comparisons with exact two-dimensional so- 
lutions in the vertical plane (Strack, 1984) and complete three-dimensional 
solutions (Haitjema, 1987a) demonstrate a surprising accuracy of the ap- 
proximate three-dimensional streamlines for many practical cases. In fact, 
as we will see in Section 5.3.4, the approximate three-dimensional stream- 
lines are often more realistic than the piezometric head distributions ob- 
tained from Dupuit-Forchheimer models. 

The implications are significant. One of the most persuasive arguments 
for the use of a three-dimensional groundwater flow model is the need for 
a description of flow paths in three dimensions. This is particularly impor- 
tant when dealing with point-source groundwater contamination. However, 
if three-dimensional flow patterns can be adequately approximated using a 
Dupuit-Forchheimer model, then there may be little advantage in imple- 
menting a full blown three-dimensional model. This is only true, of course, 
when the prerequisite for adopting the Dupuit-Forchheimer assumption is 
met: The distance between boundary conditions must be large as compared 
to the saturated thickness of the aquifer. See also Rule 3.14. 

Next, I will present an abbreviated version of the theory of approxi- 
mate three-dimensional streamlines in Dupuit-Forchheimer models. For a 
comprehensive treatise, refer to Strack (1984, 1989). Comparisons with 
complete three-dimensional flow solutions are deferred to Chapter 5. 

3.5.1 Vert ica l  Flow from Cont inu i ty  Cons idera t ions  

The vertical component of flow qz cannot be obtained from Darcy's law, 
as is evident from (3.299). Instead, we will estimate qz from continuity 
considerations. In a three-dimensional flow regime, continuity of (steady- 
state) flow implies that the divergence of the specific discharge vector is 
zero, see (2.25): 

Oqz Oqy Oqz = 0 (3.300) 
Ox +'-~y + Oz 

which gives us an expression for the derivative of qz: 

i)qz [ Oqx Oqy 1 
Oz = - -  ( 3 . 3 0 1 )  
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Continui ty  of flow in a Dupui t -Forchhe imer  model is [see (3.151)], 

OQy 0 0 
OQx t = ~ ( h q x )  + (hqy) = g (3.302) 
Ox Oy Ox ~y 

where h is the sa tu ra ted  aquifer thickness, and N the areal recharge rate. 

C o n f i n e d  F low C o n d i t i o n s  

At first we will assume tha t  h = H is constant ,  so tha t  (3.302) becomes 

Oqy N 
Oqx § = - -  (3.303) 
Ox Oy H 

which, subs t i tu ted  in (3.301), yields 

Oqz N 
= (3.304) 

0z H 

Integrat ion of (3.304) results in an expression for qz" 

N N 
qz -- - - - d z  -- - - - z  + C (3.305) 

H H 

There  is no vertical flow at the aquifer bot tom,  z = 0, so tha t  the cons tant  
in (3 .305)is  zero: 

N 
qz = - - - z  (3.306) 

H 

The  vertical flow in a Dupui t -Forchhe imer  model of a confined aquifer 
seems to vary linearly between qz = - N  at the aquifer top and qz = 0 at 
the aquifer bot tom;  see Figure 3.57. 

U n c o n f i n e d  F l o w  C o n d i t i o n s  

Under  unconfined flow conditions, h is not constant  in (3.302). Applying 
the chain rule to (3.302) yields 

Oh Oqx Oh Oqy 
--oxq~ + h - ~  + --oyq~ + h Oy -- N (3.307) 

which may be reorganized as 

- N (3.308) 
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Figure 3.57: Vertical flow in a confined Dupuit-Forchheimer model due to 
areal recharge. 

Using (3.301) and switching to index notation gives for the derivative of qz 

oq~ _ ! [o,h q~ - N ]  
Oz - h 

(i = 1, 2) (3.309) 

which, integrated over the saturated aquifer height, results in the following 
expression for qz: 

Z 
q~ = -; [q~o~h - N]  (~ - i,2) (a.ai0) 

With h being equal to the piezometric head r when measured with respect 
to the aquifer bottom, and using the discharge vector Qi, expression (3.310) 
may also be written as 

Z 

qz = "~ 
Q' ] - ~ 0 ~ r  - N (i = 1, 2) (3 .311)  

The first term between the square brackets in (3.311) is due to the curving 
phreatic surface and was also found by Polubarinova-Kochina (1962). The 
analysis may be expanded to include leakage through the aquifer bottom 
Nb o u t  of a deeper aquifer. If the leakage rate Nb is known, the following 
general expression for qz is obtained (see Strack, 1984, 1989): 

z [Q.00 ] 
q z =  -~ -r Os N t -  Nb + Nb (3.312) 

arhere s is measured along the streamline in the horizontal plane and where 
~rt is the infiltration at the aquifer top. The total areal infiltration in the 
tquifer, therefore, is N = Nt + Nb; see Figure 3.58. 
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Figure 3.58: Vertical flow in an unconfined Dupuit-Forchheimer model due 
to areal recharge and leakage through the aquifer bottom. 

In GFLOWl,  streamline tracing is routinely done in three dimensions 
using (3.312). In Figure 3.59, the same flow problem is depicted as in 
Figure 3.38. Three streamlines have been traced starting from the left 
boundary of Figure 3.59, passing underneath the circular recharge area, and 
ending at the well. The tick marks on the left-hand side of the streamlines, 
underneath the circular recharge area, indicate the depth of the streamline. 
Each tick mark signals a depth increase of 5 (e.g., feet). Since the stream- 
lines started at the aquifer top (elevation 50), the successive tick marks 
indicate elevations of 45, 40, 35, etc. Notice that the tick marks are most 
closely spaced at the upstream end of the recharge area, where the hori- 
zontal velocities are smaller than they are further downstream toward the 
well. Consequently, the streamlines descend more steeply into the aquifer 
on the upstream side than on the downstream side of the recharge area. 

Exerc i se  3.28 Refer to the instructions in the data file problel0.dat, in- 
cluded on the distribution diskette, .for further experimentation with three- 
dimensional streamlines in GFLOW1. 

Next we will illustrate the concept of three-dimensional streamlines in 
Dupuit-Forchheimer models for a few simple flow cases. 

3 . 5 . 2  A W e l l  in  a D u a l  A q u i f e r  n e a r  a P o l l u t e d  S t r e a m  

In Figure 3.60, a cross-section is depicted over an aquifer between two par- 
allel streams. The stream on the left-hand side is polluted. The aquifer on 
the right-hand side is separated into an upper and lower aquifer by an im- 
permeable (thin) clay layer. A domestic well is present in the upper aquifer. 
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Figure 3.59: Streamlines with tick marks indicating their vertical elevation. 
Each tick mark indicates a depth increment of 5. (GFLOWl data file: 
problel0.dat) 



146 C H A P T E R  3. D U P U I T - F O R C H H E I M E R  F L O W  

! i z  " " " " z  �9 ' ' ' , .:1:.. . .  : . . , ' -  . / . . . .~ i> p= / : ~ _ r 

�9 - n ~-. 

Figure 3.60: A well in a dual aquifer near a polluted stream. 

Although the well is intermittently pumping small amounts of water, we 
will ignore its effect on the groundwater flow regime. This allows us to treat 
the flow in the aquifers as one-dimensional Dupuit-Forchheimer flow. 

Of interest is whether or not the well in the upper aquifer receives 
polluted water from the stream on the left? To begin with, only in cases 
where the groundwater movement is everywhere to the right, and hence 
when there is no groundwater divide in the aquifer, will polluted stream 
water enter the aquifer and potentially pollute the well. In that  event, the 
question may also be phrased as follows: Will a streamline emanating at 
the saturated aquifer top at the left-hand stream end up above or below 
the clay layer (see Figure 3.60)? If that  critical streamline ends up above 
the clay layer, some polluted stream water will enter the upper aquifer and 
pollute the well. 

The vertical position of the streamline at any point (for any x) in the 
aquifer may be obtained directly from continuity of flow considerations, 
thus bypassing the use of (3.312), as follows. The discharge Q~ is writ ten 
as the sum of two discharges, 

t b 

q~ =Q~ + Q~ (3.313) 

t b 

where Q x and Q x are the discharges above and underneath the streamline, 
respectively. The elevation z of the streamline follows from 

b 

z zqx Qx 
= Cq~ Q~ (3.314) 

where use is made of the fact that  in a Dupuit-Forchheimer model, qz is 
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constant over the aquifer height (provided tile aquifer is not stratified). The 
discharge Qx is obtained by differentiating the comprehensive potential 
[see (3.204)], 

N 02 - -  ( I ) l  
. . . .  x + (I) 1 (3.315) �9 -- 2 x ( x  L ) +  

L 

so that  
0(I) N L (I) 1 - -  (I) 2 

Q~ = = N x  - ~ + (3.316) 
Ox 2 L 

b 

The discharge Q x follows from 

b t 

Q z -  Q x -  Q x -  Qx - N x  (3.317) 

The last term ( N x )  in (3.317) equals the recharge that  entered the aquifer 
between the left-hand stream (x - 0) and the point x; see Figure 3.60. 
Combining (3.314) through (3.317) yields for z 

[ Nx ] 
z -  r 1 -  (3.318) 

+ 

The well will become polluted if, for x - 1 in (3.318), z becomes larger than 
H. 

E x e r c i s e  3.29 A n s w e r  the quest ion whether  or not  the well receives any 

c o n t a m i n a n t s  f r o m  the s tream when the fo l lowing data are given: c~1 - 50 
.ft, r - 30 .ft, H -- 22 .ft, L -- 2000 .ft, l - -  1000 / t ,  k -  10 . f t / d a y ,  and 
N -- 2 x 10 -3 . f t / d a y .  

The preceding problem may be seen as a simplified version of the prob- 
lem of pollutants passing underneath a partially penetrating well. The clay 
layer in Figure 3.60 was needed in order to maintain Dupuit-Forchheimer 
conditions near the well. It has been tacitly assumed, therefore, that  the 
well is screened over the entire upper aquifer. Without  the clay layer, a 
complete three-dimensional solution would be required in order to answer 
the question whether the pollutants would enter the partially penetrat ing 
well or pass underneath. We will discuss such a solution in Chapter 4. 

3 . 5 . 3  C o n t a m i n a n t  C o n c e n t r a t i o n  i n  a W e l l  

Three-dimensional streamline tracing can be used not only to determine 
whether or not a well will become polluted, but also to what extent. Con- 
sider the situation depicted in Figure 3.61. Streamlines emanating from the 
rear and front of the contaminated area will arrive at different elevations at 
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Figure 3.61: Contaminant  plume intercepting a well. 

the well. They form the bounding streamlines of the contaminant  plume in 
the vertical plane, ignoring diffusion (dispersion) of the contaminants  across 
streamlines. We can calculate these elevations by tracing three-dimensional 
streamlines using (3.312), e.g., using GFLOW1. Comparing the thickness d 
of the contaminant  plume near the well with the total sa tura ted thickness 
Cw at the well allows us to estimate the contaminant  concentration in the 
well. For the case of a conservative tracer, a compound which does not 
adsorb to the soil or (partly) disappear due to physical or (bio)chemical 
processes, the concentration Cw in the well is simply 

d 
- -  ~ C 0  (3.319) C~ r 

where Co is the concentration of the water that  leaches through the con- 
taminated  area into the aquifer. 

If we are indeed dealing with a conservative tracer, there is a more direct 
way to est imate the concentration Cw at the well. If the areal recharge rate 
is N, Cw follows from a simple mass balance consideration: 

AN 
Cw = ~ C 0  (3.320) Q 

where A is the contaminated area that  contributes to the well, N is the 
areal recharge rate, and Q is the total well discharge. Simple mass bal- 
ance computat ions such as these are often useful to est imate the impact of 
groundwater  contamination on a receptor. Contaminant  decay due to voli- 
talization, radioactive decay, or (bio)chemical reactions will lead to lower 
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actual concentrations, thus making the mass balance approach a conserva- 
tive one when trying to estimate maximum possible concentrations. 

3.6  T r a n s i e n t  F l o w  

So far we have only concerned ourselves with steady-state flow, without 
much justification. Groundwater flow is nearly always transient; for in- 
stance, varying recharge rates tend to make groundwater levels rise in the 
winter and drop in the summer. There are also manmade transient effects: 
Intermittent pum'ping of large industrial or public water supply wells, or the 
addition of extra wells, results in groundwater flow patterns that change 
over time. Consequently, our steady-state solutions must be interpreted 
as long-term average conditions. The piezometric head surfaces of these 
steady-state solutions, therefore, are unlikely to match observed piezomet- 
ric heads at any one time. This has significant implications for so-called 
model calibration procedures, an issue we will discuss in more detail in 
Chapter 5. 

Modeling transient groundwater flow is far more involved than steady- 
state flow modeling. It requires more sophisticated models and, most of all, 
many more field data. These additional data include the storage capacity of 
the aquifer (which may vary over the model area) as model input data, and 
time series of piezometric heads, distributed over the model area, for model 
calibration purposes. To avoid these complications, we will limit ourselves, 
when possible, to the modeling of average conditions: steady-state flow. 
Moreover, even when transient groundwater flow modeling is called for, it 
is good practice to start with steady-state modeling before attempting to 
include any transient effects. 

In this section, and in Chapter 5, we will pay limited attention to tran- 
sient flow with the objective of understanding its relative importance. Next 
we will derive the governing differential equation for transient groundwater 
flow, present the well-known solution of Theis for a well that starts pump- 
ing, and apply the results to the evaluation of pumping tests. We will also 
compare the effects of periodic pumping in a confined and an unconfined 
aquifer. 

3 . 6 . 1  T h e  B o u s s i n e s q  E q u a t i o n  

To obtain the differential equation for transient flow, we have to revisit 
the concept of continuity of flow. In Figure 3.62, an elementary volume in 
an unconfined aquifer is depicted. The elementary volume is a rectangu- 
lar column centered at the point x, y and with its sides parallel to the x- 
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Figure 3.62" Continuity of transient flow in an unconfined aquifer. 

and y-axes. The widths of the sides are Ax and Ay, respectively, while 
the height of the column is r Actually, the height of the column varies 
in time due to transient flow conditions. In Figure 3.62, the height is de- 
picted at times t and t + At: r and r respectively. The 
total discharges that enter or leave the column through the four sides are 
indicated in Figure 3.62. Note that in addition to labeling these discharge 
vector components according to their position, I have also labeled them as 
occurring at time t. During the times t and t + At, the groundwater table in 
Figure 3.62 rises, increasing the saturated aquifer thickness and thus allow- 
ing more water to enter the column during that time period than what is 
leaving the column: Water is being stored in the aquifer. In words: Inflow 
equals outflow plus storage during the time interval At. To translate this 
continuity concept in mathematical terms, I am rewriting the continuity 
statement as 

outflow- inflow -- - storage + recharge 

vhere the inflow term has been broken up into inflow through the sides of 
he column and areal recharge on the top of the column. Writing this out 
n terms of the parameters indicated in Figure 3.62, we get 

[ q x ( x + - ~ , y , t )  - q x ( x -  2~-~,y,t) ] A y / k t  

+ [Qy(~,y+~-~-2,t) - Qu(~,u-~,t)]  A x A t  

=-n[r  + N A x A y A t  (3.321) 

quation (3.321) is written in terms of volumes of water [L 3] that enter, 
ave, or are stored in the aquifer colu.mn during the time step At. The 
orage term in (3.321) (first term on the third line) is the volume of the 
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aquifer between the groundwater table at time t and at time t + At mul- 
tiplied by the porosity n. Hence, the storage term as written in (3.321) 
represents the total volume of groundwater stored in the upper part of the 
aquifer column, between the phreatic surfaces at time t and t + At. 

Dividing both sides of (3.321) by the factor A x A y A t  leads to the fol- 
lowing finite difference expression: 

Q~(~+~,~,~)- O~(~-~,~,~) 

O y (~,y+ ~ , ~) - 0 ~ (~ ,~-  ~,~) 
Ay 

r r 
= - n  At + g (3.322) 

After we take the limit for Ax ---. 0, Ay ~ 0 and At ~ 0, the continuity 
equation becomes 

oQ~ OQ~ or 
§ = - n ~  + g (3.323) 

Ox Oy Ot 
Substi tut ing Darcy's law (3.20) into (3.323) yields 

0r 
V2(I ) - n ~  - N (3.324) 

Ot 
which is known as the Boussinesq equation. Since we are dealing with 
unconfined flow conditions, ~ contains r which makes the differential 
equation nonlinear in terms of r Writing (3.324) in terms of �9 does not 
help, since the right-hand side would then contain the square root of ~; 
the equation remains nonlinear. When we solve (3.324) numerically, e.g., 
using the finite difference method, its nonlinear character poses no obstacle, 
but only a few analytic solutions to (3.324) are known (Boussinesq, 1904; 
Aravin and Numerov, 1965). 

Equation (3.324) may be approximated by a linear equation which is 
easier to solve. I will write (3.324) in terms of ~, which involves the term 
O~lOt: 

OO -- 0(�89162 --- Ck O---f-~- (3.325) 
Ot Ot Ot 

Combining (3.325) and (3.324) yields 

V2 ~ _ n 0O N (3.326) 
kr Ot 

The differential equation can now be linearized by replacing the factor n /kr  
by n/kr  where ~ is constant" 

V2q)_ S_ 0~ N (3.327) 
kr Ot 
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I have also replaced the porosity n by the storage coefficient S, which is di- 
mensionless. The latter substitution is important ,  since the aquifer porosity 
tends to overestimate the actual available storage. The reason for this is 
that  some of the pore space may already contain water prior to becoming 
saturated (rising groundwater table) or, when the water table drops, not 
all water may be drained at once from the now unsaturated zone. We may 
write S as 

S -  ne <_ n (3.328) 

where n~ stands for effective porosity, which is usually smaller than the 
total aquifer porosity n. It is customary to use a specific storage coefficient 
Ss, defined as 

S 
S~ = -- (3.329) 

r 

with which (3.327) becomes 

V2 ~ _ S~ 0O N (3.330) 
k Ot 

C o n f i n e d  A q u i f e r s  

In confined aquifers, storage is accomplished by expanding the aquifer and 
compressing the groundwater. As you can imagine, these effects are small 
compared to the storage due to variations in the water table (thus, aquifer 
thickness) in unconfined aquifers. As a result, the storage coefficient S in 
(3.327) or the specific storage coefficient Ss in (3.33o) is often several orders 
of magnitude smaller for confined aquifers than for unconfined aquifers. For 
confined flow, Ss is given by 

S~ -- "f~(mv + n / K ~ )  (3.331) 

where rnv is the "coefficient of volume compressibility" of the aquifer ma- 
terial, and where 7w and Kw are the unit weight and "bulk modulus" for 
the groundwater,  respectively. 

The unit weight and bulk modulus of pure water at 4~ are: 7~ - 10 
[kN/m 3] and g ~  = 2.3 x 109 [kN/m2]. The bulk modulus for groundwater  
may have a somewhat lower value due to dissolved gases. Some typical 
values for the volume compressibility my are given below (after Freeze, 
1979). 
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Soil type 

clay 
sand 
gravel 
jointed rock 
sound rock 

my in m2/kN 

10-3 10-5 
10"-4_ 10-6 
10 -5_  10-7 
10 -5_  10-7 
10-6 10-s 

The derivation of (3.331) requires knowledge of some basic concepts from 
soil mechanics, in particular Terzaghi's theory of one-dimensional consoli- 
dation. The following assumptions underly (3.331)" 

The aquifer deforms only in the vertical direction (one-dimensional 
consolidation). 

�9 The deformations are small, leaving the hydraulic conductivity and 
porosity unaltered. 

�9 The aquifer behaves linearly elastic. 

�9 The total vertical stresses in the aquifer remain the same. 

These assumptions appear reasonable for most cases of transient confined 
flOW. 

The differential equation (3.330) is the same for both confined and un- 
confined flow. For confined flow, however, the differential equation (3.330) 
is linear by nature, since the specific storage coefficient Ss does not depend 
on r compare (3.329) and (3.331). The recharge term N, for confined flow, 
either is due to leakage through the confining layers or is equal to zero when 
the aquifer is bounded by aquicludes. 

3 . 6 . 2  T h e i s '  S o l u t i o n  f o r  a W e l l  

Equation (3.330) is commonly known as the diffusion equation, for which 
various solutions can be found in the literature; see, for instance, Carslaw 
and Jaeger (1959). In 1935, Charles V. Theis published a paper in which he 
applied the solution for transient heat conduction due to an instantaneous 
line source to the case of flow toward a well that starts pumping at some 
time to (Theis, 1935). His classic paper opened the way to meaningful 
calculations of transient groundwater flow. Theis' solution, for instance, 
forms the basis for the evaluation of pumping tests used to determine aquifer 
parameters, as we will discuss elsewhere in this section. 
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In terms of the discharge potential @, Theis'  solution is, assuming no 
recharge [N = 0 in (3.330)], 

�9 = + (t > to) (3 .332)  
47r 

where r is the radial distance from the well, ~0 the initial potential  at t ime 
to, and where u is defined as 

Ssr 2 
u = (3.333) 

4k(t-t0) 

The function E1 in (3.332) is a form of the so-called exponential  integral 
function: 

C--~ 
--  d~ (3.334) 

J~ 
In many groundwater textbooks, the integral (3.334) is referred to as the 
"well function" W(u).  With  that  notation (3.332), looks like 

ap(,.,t)- -Q- - -W(u)+  ~o (t > to) (3.335) 
47r 

V e r i f i c a t i o n  o f  T h e i s '  S o l u t i o n  

The solution (3.332) may be obtained from the diffusion equation by use 
of Laplace transformations (see, e.g., Carslaw and Jaeger, 1959). We will 
omit this derivation, but instead demonstrate  that  (3.332) satisfies the dif- 
ferential equation (3.330), the boundary condition at the well with radius 

T1/), 
0~ Q 

Q~ - = (r = rw ; t  > to) (3.336) 
Or 27rrw 

and the initial condition in the aquifer, 

= ~0 (r > 0 ; t  <_ to) (3.337) 

To verify that  (3.332) satisfies the differential equation, we rewrite 
(3.330) in terms of cylindrical coordinates (see, e.g., Korn and Korn, 1968): 

02~ 1 0~  Ss 0~ 
0r 2 + = (3.338) r Or k Ot 

where N is assumed zero. We will demonstra te  the validity of (3.332) by 
subst i tut ing it in (3.338). To do this we will need the first and second 
derivative of E1 with respect to r. The first derivative is 

OEl (u) 0 f ~  e-~ e -~ Ou 
= ~ ~ d ~  = (3.339) 

Or Or Ju ~ u Or 
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where use is made of Leibnitz's rule for the differentiation of integrals, 

OX J fl (x) 

f f2(x) OF 
r(y, )dy = 

afl(x) OX 
i ) f 2  i ) f l  (3.340) 

~ d  y + F (.f 2, x ) "-~x - F ( f l , x ) "-~x 

With F a function of ~ only (y = ~) and f2 being a constant (f2 = ee), only 
the last term of (3.34O) remains, which yields (3.339). By use of (3.333), 
expression (3.339) becomes 

O E l ( U )  __ e - ~  2 S s r  __ 2 e - "  (3.341) 
Or u 4 k ( t -  to )  r 

The second derivative of E1 with respect to r becomes 

e - u  0U C--u e--u  0 2 E l ( u )  = 2 - - - -  + 2 - -  = (4u + 2) (3.342) 
Or 2 r Or r 2 r 2 

The derivative of E1 with respect to t becomes 

O E 1  e - u  Ou e - u  
= = (3.343) 

Ot u Ot t - to 

Substi tuting (3.332) into the differential equation (3.338), using (3.341) 
through (3.343), yields 

Q e - '~ e - u  ~ S s  Q e - ' *  
47r r 2 (4u + 2 ) +  Q 2  - (3.344) 

r k 47r t - to 

I divide both sides of the equation by - Q / T r r  2 and combine the two terms 
on the left-hand side: 

Ss r2 
- , , -  (3 ) u e  - e = u e  .345 

4 k ( t - t o )  

so that  (3.338) is indeed satisfied, as asserted. 
Next we need to verify the boundary condition (3.336). The discharge 

Q r at the well screen (r = rw) follows from 

Qr(r,,,t) - 0O = Q e-U~ (3.346) 
Or 27rrw 

where u w  is defined as 

(3.347) 
u~o = 4 k ( t  - to )  

Expression (3.346) differs from the required boundary condition (3.336) by 
the factor e -"w. As is seen from (3.347), the parameter u~o depends on 
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time, and hence the inflow into the well varies with time. However, since 
2 is small in (3.347), the factor e -u~ in (3.346) is nearly 1, except for very ' r  w 

small times ( t -  to): 

e 
Q~(~)  ~ (u~ << 1) (3.348) 

271"/" w 

Strictly speaking, therefore, the boundary condition (3.336) is only exactly 
met when rw becomes vanishingly small (r~ ~ 0). In practice, the well 
radius is usually sufficiently small for (3.348) to be true. 

Finally, we need to verify the initial condition (3.337). When t is less 
than to, Theis' solution does not apply, which means that  the potential 
is equal to the initial value (I)0. When t is equal to to, the parameter u 
becomes infinitely large, so that for El: 

l i m E l ( u ) =  lim E l ( u ) =  d ~ - - 0  
t ~ to  u ~cx~ 

(3.349) 

With E1 becoming zero, Theis' solution reduces to the constant potential 
(I)0; see (3.332). This completes the verification of Theis' solution. 

N u m e r i c a l  E v a l u a t i o n  of E1 

The exponential integral function E1 is a tabulated function, similar to the 
logarithmic function, for instance. Below a listing of a Basic subprogram 
is provided for approximating the function El(u):  

500 REM 

510 REM function El(u) 

520 REM 

530 u2=u*u 

540 u3=u2*u 

550 u4=u3*u 

560 if u-.5 GOTO 610 

570 u5=u4*u 

580 El=-.57721566#+.99999193#,u-.24991055#,u2+5.519968e-O2,u3 

590 El=Ei-9.Z6004e-O3,u4+l.O7857e-O3,u5-LOG(u) 

600 RETURN 

610 El=u4+8.573328740i#,u3+18.059016973#,u2 

615 El=El+8.6347608925#,u+.2677737343# 
620 u1=u4+9.5733223454#,u3+25.6329561486#,u2 
625 u l=u l+21.0996530827#,u+3.958496228# 
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Figure 3.63' Comparison b e t w e e n - E l ( u )  and (ln u + 7). 

630 u0=0 
640 i f  u>500 GOT0 660 
650 u0=EXP (-u)  
660 E l : E l / ( u * u l )  *u0 
670 RETURN 

In Figure 3.63, I plotted the function - E l  (u) together with the function 
(ln u + 7), where 7 is Euler's constant: 

7 = 0.57721566 (3.350) 

Note that  for small values of u, less than 0.1, the two functions become 
nearly equal, 

E1 (~) ~ - ( in  ~ + 7) (u << 1) (3.351) 

Hence, close to the well (small r) or after sufficient time has elapsed since 
the onset of pumping (large t - to), the exponential integral function may 
be approximated by a logarithm plus Euler's constant. Cooper and Jacob 
(1946) used this approximation to develop an approximate method for the 
evaluation of pumping tests. 
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Figure 3.64: Comparison of a linear with a nonlinear finite difference solu- 
tion for flow toward a well in an unconfined aquifer. (After Haitjema and 
Strack, 1983). 

N o n l i n e a r  Effects  

I mentioned that  the nonlinear character of the Boussinesq equation poses 
little difficulty when we seek numerical solutions, but requires linearization 
of the differential equation to facilitate analytical solutions, such as Theis' 
solution. In order to gain some insight in the importance of this nonlinear 
effect, I have solved the problem of flow towards a well that  starts pumping 
at time to, the problem for which Theis' solution was developed, by use of 
finite differences for both the linearized equation (3.330) and for the original 
Boussinesq equation (3.324). The results are plotted in Figure 3.64 in terms 
of the following dimensionless parameters: 

(b = r ,~ = r_L" ~.= __kt (3.352) 
r r r 

where r is the initial head in the aquifer and where k is the aquifer hy- 
draulic conductivity. In generating the linear solution, I defined the specific 
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storage coefficient Ss as 
S 

Ss = - -  (3.353) 
r 

The following data  were used in Figure 3.64: The well discharge Q = 
1.5kr 2, the well radius rw = 2r the grid spacing Ar -- 0.2r and the 
t ime step At = 0.001r The well radius rw is unusually large in order 
to allow for large pumping rates and thus large drawdowns in the aquifer. 
Since the finite difference solution for the linear case is a numerical version 
of Theis'  solution, the well discharge is not constant,  but given by (3.346). 
Wha t  is different from Theis'  solution in Figure 3.64 is that  the head was 
kept constant  (equal to r at a distance 10x/~r from the well axis. 

It appears that  the nonlinear effects are fairly small, even though the 
drawdowns are large; hence, the head r differs significantly from the initial 
head r used in (3.353) to linearize the differential equation. 

S u p e r p o s i t i o n  in  S p a c e  a n d  T i m e  

Since the differential equation (3.330) is linear in terms of ~, we can 
apply the principle of superposition. Wi th  reference to Figure 3.20 and 
Figure 3.22, we may write the potential due to a "transient" well near a 
s t ream with the use of an image "transient" recharge well: 

r  
4-~-[El(u2)-  El(u1)] + (I)0 (3.354) 

where ul and u2 are defined as 

+ d) 2 + - d) 2 + y2} 
ul = u2 = (3.355) 

4k(t-to) 4k(t-to) 

For a sufficiently large t ime period since the onset of pumping, both u l and 
u2 become very small, so that  the approximation (3.351) may be used: 

= Q---[In Ul - - In  u2] + ~o (t ~ c~) (3.356) 
4~ 

The term -y in (3.351) cancels out in (3.356). Using (3.355), we may rewrite 
(3.356) as 

O = ~ ln [Ss{(x + d)2 + y2} 4k(t - to) ] + r  (3.357) 
4 k ( t  - to)  - + y 2 }  

which reduces to the s teady-state  solution (3.121), 

Q In (x + d) 2 + y2 
- - -  + r (3.358) 

4~ (x -- d) 2 + y2 
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The solution to transient flow for a well near a s tream (straight equipoten- 
tial boundary) as given by (3.354) with (3.355) converges to a s teady-state  
solution for long pumping times of the well. Under these s teady-state  con- 
ditions, the well is receiving all its water from the s tream (the recharge 
well in our imaging scenario). Without  this nearby boundary condition, 
however, the Theis'  solution will never converge to a s teady-state  solu- 
tion. The well in Theis' solution (3.332) is obtaining all its water  from 
storage in the aquifer and will never come to equilibrium with a surface 
water feature supplying the water to the well, as in the preceding example. 
Consequently, when evaluating Theis'  solution for increasingly large times, 
the drawdowns in the aquifer will continue to increase. This will result 
in negative potentials in the vicinity of the well (thus negative heads), a 
clearly nonsensical solution. Some consultants use a "hundred day pumping 
scenario" for Theis'  solution to predict long-term (read steady-state)  draw- 
downs. There is no basis for such a procedure, and it should be expected 
to produce arbi t rary results. 

R u l e  3.15 Theis' solution, by itself, is fundamentally unsuitable to produce 
steady-state drawdowns. For very large times, the aquifer will everywhere 
be pumped dry. 

E x e r c i s e  3.30 Investigate the behavior of Theis' solution by calculating 
the discharge potential ~w at the well for various times since the onset of 
pumping. Use the following data: Q = 50,000 .ft3/day ; k = 50 f t / d a y  ; 
r = 50 .ft ; rw = 0.5 .ft; and Ss = 0.002. Calculate Ow for the following 
times: 1 , 10,  100 and 1,000 days. You may use the Basic function subpro- 
gram listed in this section or program GFLOW1 (see also file proble11.dat 
on the distribution diskette). Compare your results with a steady-state so- 
lution assuming the head remains at r at a distance of 5,000 .ft from the 
well. 

Theis' solution may also be superimposed in time. For instance, consider 
the case of a well that  starts pumping at time to and is switched off at a 
later time t l. The solution to that  problem can be writ ten in terms of two 
solutions, one between time to and time t l, 

(g a 
(I) = - ~--2--E1(~ ) + (I)0 (to _< t < t l)  (3.359) 

4~ 

and one for times larger than t l, 

47r 
(t _ tl) (3.360) 
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Figure 3.65' Pumping scenario for an industrial well. 

0 1 
where u and u are given by 

0 S s r  2 1 S s r  2 
u= u= (3.361) 

4 k ( t - t o )  4 k ( t - t l )  

The second Theis'  solution in (3.360) is a recharge well with the same 
pumping rate as the original well and in the same location. Thus, at time 
t l (and thereafter) the pumping well is "extinguished" by a recharge well 
of the same strength. 

E x e r c i s e  3.31 Demonstrate that after a sufficiently long time (t ---, oo) 
the potential in the aquifer is restored to its initial value (Do for all values 
o f  7". 

3 . 6 . 3  P e r i o d i c  P u m p i n g  

In s teady-state  groundwater  models, wells are pumping continuously at an 
average rate. In reality, this is rarely the case. Some industrial wells, for 
instance, may only pump during working hours. In Figure 3.65, a pump- 
ing scenario is depicted for a hypothetical well. Starting at time zero, the 
s teady-state  average pumping rate is replaced by daily pumping periods 
of eight hours followed by 16 hours with the pump off. On average, the 
pumping rate is <), the same as that  prior to time zero. The well is located 
at a distance d from a stream. The piezometric contours in Figure 3.66 
are produced with G F L O W l  for the case of confined flow conditions. The 
confined aquifer has a thickness H and an initial head r measured with 
respect to the aquifer base. The data  used in producing Figure 3.66 are 
k = 100 f t /day  ; S = 0.001 ; r = 100 ft ; H = 50 ft ; Q = 100,000 
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f t3/day ; d = 500 ft, and rw = 0.5 ft. 

For the case of unconfined flow, Figure 3.67, all da ta  are the same ex- 
cept that  the aquifer thickness equals the piezometric head and the storage 
coefficient is much larger: S = 0.2. G F L O W l  requires the storage coeffi- 
cient S as input, which is given above. The specific storage coefficient is: 
Ss = S / H  = 2 x 10 -5 ft -1 for the confined case and Ss = S / r  = 2 x 10 -3 
ft -1 for the unconfined case. 

The contour plots for time = 0 days in Figures 3.66 and 3.67 are due 
to the steady-state pumping Q prior to the periodic pumping. At times 
5 days and 6 days the pump has just been off for a period of 16 hours, 
while at time 5.3 days we are close to the end of an eight-hour pumping 
period; see Figure 3.65. Consequently, the well has created a significant 
"cone of depression" in the third diagram from the top in Figure 3.66 and 
Figure 3.67, where the time is 5.3 days, while the drawdowns are much 
smaller in the diagrams for times 5 and 6 days. In fact, in Figure 3.66 the 
heads have been restored to within one foot of the initial head (100 ft), so 
that  only one contour is plotted in these diagrams: the 100 ft contour along 
the stream on the right-hand side. 

Comparing the piezometric contour plots in Figures 3.66 and 3.67, it 
appears that  the transient effects in the confined aquifer are much more 
pronounced than in the unconfined aquifer. The t ime-dependent  effects in 
the confined aquifer are felt farther from the well and cause larger variations 
in the head than for the case of unconfined flow. In fact, when compared to 
each other, the effects of start ing or stopping pumpage are almost instan- 
taneous in a confined aquifer. Our s teady-state  modeling, therefore, seems 
more reasonable in unconfined aquifers than in confined aquifers. We will 
explore this issue further in Section 5.3.7. 

E x e r c i s e  3.32 Further explore the issue of periodic pumping by following 
the instructions in the file proble l l .da t  provided on the distribution diskette. 

3 . 6 . 4  P u m p i n g  T e s t  

Theis'  solution is widely used in the evaluation of pumping tests. These 
tests are of limited duration, varying between one and three days, so that  
Theis'  solution does not lead to unrealistic drawdowns, see Exercise 3.30. 
The purpose of the pumping test is to compare calculated drawdowns with 
observed drawdowns in an a t tempt  to determine the transmissivity T and 
specific storage coefficient S s for the aquifer. 

For the case of confined flow, we can obtain the drawdown r - r at 
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Figure 3.66: Transient piezometric head contours of a periodically pumped 
well near a stream. Groundwater flow conditions are confined. (GFLOWl  
file: problel 1.dat) 
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Figure 3.67: Transient piezometric head contours of a periodically 
pumped well near a stream. Groundwater  flow conditions are unconfined. 
(GFLOW1 file: proble l l .da t )  
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time t and distance r from the well, from (3.332) as 

Q 
qS0-- r = El(U) 

4~'T 

The time interval t - t o  is related to u [see (3.333)], 

(3.362) 

Ssr 2 1 
t - to = (3.363) 

4k u 

I am rewriting the identities (3.362) and (3.363) by taking the logarithm of 
both sides of the equations: 

and 

Q 
log(Co - r - log ~ + log El (u)  (3.364) 

Ss r2 1 
l o g ( t -  to) = log + l o g -  (3.365) 

4k u 

The function El(u) is plotted versus 1/u on so-called double logarithmic 
paper; hence, we are actually plotting the logarithms of these parameters.  
The resulting curve is called a type curve for Theis' solution. Next we plot 
the observed drawdown r - r at a certain distance r from the well (hence 
in a particular piezometer) versus time t -  to, also on double logarithmic 
paper. 

If the drawdowns in the aquifer behave according to our theory, they 
should produce curves of the same shape. However, these curves are shifted 
along both the horizontal and vertical axes; see Figure 3.68. The shift along 
the horizontal axis follows from (3.365) and is equal to log(Ssr2/4k), while 
the shift along the vertical axis follows from (3.364) and is log(Q/47rT). 
Placing the two graphs on top of each other in such a manner that  the 
measured drawdowns (data points) match the type curve, and measuring 
the horizontal and vertical shifts, allows us to determine the transmissivity 
T and specific storage coefficient Ss. The determination of these parameters  
may be facilitated by selecting a convenient"match point" on the plane of 
the type curve: the point 1/u = 1 and El (u)  = 1. Projecting this match 
point onto the axes of the field data  graph yields directly the shift factors 
mentioned earlier, as the logarithms of E1 and 1/u in (3.364) and (3.365) 
become zero. The projection of the match point on the t - to axis yields 
t l - t o ,  while the projection on the r 1 6 2  axis yields r 1 6 2  see Figure 3.68. 
The transmissivity then follows from (3.364) with log El (u)  = log 1 = 0, 

Q 
T = (3.366) 

47r(r - r 
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Figure 3.68: Comparing observed drawdowns with a type curve based on 
Theis' solution. 

while the specific storage coefficient follows from (3.365) with log 1 / u  - 

log 1 - O, 

Ss - - 4 k ( t l  - to) (3.367) 
2 T 

The hydraulic conductivity k in (3.367) follows from (3.366) by dividing the 
transmissivity T by the average aquifer thickness. The aquifer thickness is 
usually determined separately from drilling records (well logs). 

P u m p i n g  Tes t s  u n d e r  C o m p l e x  H y d r o g e o l o g i c a l  C o n d i t i o n s  

Theis' solution is only accurate in confined aquifers which do not receive 
water from or lose water to other aquifers through leakage. Even in non- 
leaky unconfined aquifers, Theis' solution is an approximation, not only 
because of the linearization of the differential equation, but also because 
the storage coefficient depends on the unsaturated conditions in the aquifer 
zone above the groundwater table; see Neumann (1975). Different analytic 
solutions have been developed for aquifers under different flow conditions. 
These solutions are used to evaluate pumping tests by essentially the same 
graphical method as discussed earlier, but using different type curves. The 
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reader is referred to other textbooks for a thorough discussion of the vari- 
ous pumping test evaluation techniques, e.g., Freeze and Cherry (1979) and 
Davis and DeWiest (1966). 

I m p e r f e c t  P u m p i n g  Tests  

Frequently, the conditions under which pumping tests are conducted are 
less than ideal. Sometimes a technical problem arises which interrupts the 
pumping for a few hours. In other cases, a nearby high-capacity well is 
pumped intermittently, potentially influencing the observed drawdowns in 
the piezometers. Under these conditions, it may be better not to rely on 
the curve matching procedure outlined earlier, but to simulate the actual 
pumping test scenario, complete with pumping interruptions and nearby 
pumping, on a computer. GFLOWl supports Theis' solution, and the 
program may be used to superimpose "transient wells" in both time and 
space to carry out such a pumping test simulation. The aquifer parameters 
are then estimated by a trial-and-error procedure, at tempting to match 
computed drawdowns in the piezometers with those observed. 

3.7 Complex Potential Theory 

Although we considered vertical flow in our Dupuit-Forchheimer models, 
the governing differential equations are two-dimensional in nature: describ- 
ing horizontal flow. We developed solutions to three different differen- 
tial equations: Laplace's equation (3.63), Poisson's equation (3.153), and 
Boussinesq's equation (3.324). In Chapter 5 we will solve regional ground- 
water flow problems by combining many (hundreds) of elementary solutions 
to these differential equations: the analytic element method. It appears 
that the vast majority of analytic elements that constitute our model are 
solutions to Laplace's equation. In Section 3.1.6, we learned that if the 
discharge potential (I) satisfies Laplace's equation, and hence is a harmonic 
function, there also exists a conjugate harmonic function: the stream func- 
tion �9 . In this section we will see that both the potential function and 
stream function can be combined into one complex potential function f/. 
By solving our problems in terms of this complex potential function, we hit 
two birds with one stone: We are getting both (I) and �9 for essentially the 
same effort as solving for (I) alone. 

In the sections that follow, we will very briefly review the basics of 
complex numbers and complex functions. Next I will present the complex 
potential for some elementary solutions to Laplace's equation. The theory 
in this section is relevant to the mathematical description of the analytic el- 
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Figure 3.69: A point in a complex plane. 

ements and their implementation in G F L O W l  as outlined in Sections 5.1.2 
through 5.1.5. The reader who is only interested in the application of the 
analytic element method may safely skip this section. Conversely, for a 
more thorough treatment of the theory of complex variables and complex 
potential theory the reader is referred to, for example, Churchill (1960), 
Nehari (1952), and Von Koppenfels and Stallmann (1959). For an exten- 
sive treatise on the application of complex potential theory to the field of 
groundwater flow, reference is made to Strack (1989). 

3 . 7 . 1  C o m p l e x  N u m b e r s  

The point P in the two-dimensional plane of Figure 3.69 is defined by the 
Cartesian coordinates (x, y) or by the polar coordinates (r, 0). The point 
P may also be defined by the complex variable z, whereby 

z - x -4- i y  (3.368) 

The coordinates x and y are referred to as the r e a l  and i m a g i n a r y  parts of 
the complex number z, respectively: 

x -  ~(z) y -  ~(z) (3.369) 

The x-axis and the y-axis of the complex plane are referred to as the r e a l  

a x i s  and i m a g i n a r y  a x i s ,  respectively. The symbol i is defined as 

i -  v / ' l  or i 2 -  - 1  (3.370) 

With reference to Figure 3.69, I rewrite (3.368) in terms of the distance r 
and angle 0" 

z = r(cos 0 + i sin 0) (3.371) 
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Figure 3.70" Mult ipl icat ion by i represents  a clockwise coordinate  sys tem 
rota t ion  over an angle of ~/2 .  

which may be rewri t ten,  using Taylor series expansions for the sine and the 
cosine (e.g. Strack, 1989), as 

z - r e i~ (3.372) 

The  dis tance r between the origin and the point P is called the m o d u l u s  of 
z, wr i t ten  as Izl, and the angle ~ is called the a r g u m e n t  of z and is wr i t ten  
as arg(z) .  Associated with every complex number  z is its c o n j u g a t e  2: 

5 - x - i y  (3.373) 

which may be in terpre ted  as the image of point P with respect  to the real 
axis (x-axis); see Figure 3.69. The modulus  of z is then defined by 

I z l -  = + (3.374) 

where use has been made  of i 2 - - 1 .  

Mult ipl icat ion of z by i may be in terpre ted as a clockwise rota t ion of 
the coordinate  system over an angle of ~/2:  

i z = i x  + i 2 ~ / -  - y  + i x  (3.375) 

In te rms of the new x,~j-coordinates we have .~ - - y  and ~ - x, see 
Figure 3.70. Division by i is carried out as follows: 

z ~,z i z  
i i i 2 - - i z  (3.376) 
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We have performed some algebraic operations on complex variables, such 
as multiplication and division by i and the multiplication of the two com- 
plex variables z and 2,; see (3.374). In general, multiplication of complex 
numbers is most conveniently done by representing them in the form of 
polar coordinates [see (3.372)]: 

Z l Z 2 -  Izllei~176 - IZl l l z21e  i(~176 (3.377) 

Addition of complex numbers simply implies addition of their real and 
imaginary parts: 

Zl -~- Z2 -- (Xl + X2) "~- i(Yl + Y2) (3.378) 

3 . 7 . 2  C o m p l e x  P o t e n t i a l  a n d  D i s c h a r g e  F u n c t i o n  

At the beginning of this section I mentioned that solutions to Laplace's 
equation (in two dimensions) can be formulated in terms of a complex 
potential function: 

a ( z )  = eo(z) z = x + iy (3.379) 

gt is a function of the complex variable z and has a real and an imaginary 
part: the discharge potential q) and the stream function ~, respectively. 
Both ~ and �9 are real functions which each depend on z, and hence on 
x and y. Expression (3.379) involves four  real variables: x, y, ~, and 
�9 . Written in the form of (3.379), however, it involves only two complex 
variables: gt and z. 

That there indeed exists a class of functions of the form (3.379), whose 
real and imaginary parts are the discharge potential and stream function 
for a groundwater flow problem, is not immediately obvious. In fact, not all 
complex functions do only those that are continuous and differentiable. 
These restrictions on gt seem reasonable, as we already know that they 
apply to the real functions ~ and ~, except perhaps in some isolated points 
(singularities). 

Continuity of the complex function ft is conditional on the existence of 
the following limit: 

lim a ( z ) =  f~0 (3.380) 
Z-- -*  Z 0 

whereby the value of ft0 is independent of the path followed in the complex 
plane; see Figure 3.71. 
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Figure 3.71: ~ is continuous near zo. 

v 

Analytic Functions 

The derivative of the complex function ~ is defined as 

a(z)-a(zo) 
= lim (3.381) 

z---*zo Z ~ Z 0 

The derivative (3.381) is only meaningful if its value is independent of 
the path along which z approaches zo. A differentiation path is not an 
issue for real functions of one variable. For complex functions, however, 
differentiability requires that  both (3.380) and (3.381) be path-independent.  

Complex functions that  are differentiable are called analytic functions. 
If ~t is indeed analytic, we should be able to differentiate it in two different 
ways, e.g., by letting z approach zo along a path parallel to the x-axis or 
by letting z approach zo along a path parallel to the y-axis, and still obtain 
the same result. Let 's see what restrictions this places on �9 and ~,  the real 
and imaginary part  of f~. 

Differentiating f~ along a path parallel to the x-axis yields 

~'(zo) = lim (O(x 'Y~ - O(xo, yo) + i 
x---*xo \ X m X O  

0r O~ 
= Oz + i o x  

�9 (~, yo)~ -~o- V(~o, yo) ) 

(3.382) 

Differentiating ~ along a path parallel to the y-axis yields 

~t'(zo) = lira (O(x~  - O(xo, yo) + i 
~-~yo \ i (y - yo) 

O~ O~ 
= i 

Oy Oy 

�9 (~o,i~y) -_ ~(xO,yo) yo) ) 

(3.383) 
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where use has been made of (3.376). Since the derivatives (3.382) and 
(3.383) must yield the same value, their real and imaginary parts must be 
the same, which yields the Cauchy-Riemann equations (3.71)' 

O t~ 0 '~ 
m 

Ox -- Oy 

0 ~  0O 
= t 

Oy Ox 

(3.384) 

This is the link between our groundwater flow solutions and (analytic) com- 
plex functions. We found in Section 3.1.6 that  groundwater flow problems 
governed by the (two-dimensional) equation of Laplace have a discharge po- 
tential and stream function which satisfy the Cauchy-Riemann conditions: 
They are conjugate harmonic functions. As it appears, complex analytic 
functions have a real and imaginary part which also satisfy the Cauchy- 
Riemann conditions. Consequently, it must be possible to represent the 
discharge potential and stream function for a groundwater flow problem, 
governed by Laplace's equation, as the real and imaginary part of a complex 
potential function. 

As an example of an analytic function, consider ~t = z 2. The real and 
imaginary parts of gt are 

f~ - ~ + it~ - (x  + iy )  2 - x 2 - y2 + 2 i x y  (3.385) 

so that  ~ and ~ are 

(I) - -  x 2 - -  y 2  t~ = 2 x y  (3.386) 

This leads to the following partial derivatives for �9 and ~" 

00  0O 0~  0 ~  
= 2x = - 2 y  = 2y = 2x (3.387) 

Ox Oy Ox Oy 

which indeed satisfy the Cauchy-Riemann equations (3.384). 
The derivative ft'(z) becomes, with (3.382) and (3.387), 

00  0tI/ 
= 2 x  + = 2z  ( 3 . 3 8 8 )  

Observe that  the result 2z in (3.388) is the same as if we had treated the 
function z 2 as a real function and applied the rules for differentiation for real 
functions to it. This is indeed universally true. All rules for differentiating 
real functions also apply to differentiating complex functions. 
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E x e r c i s e  3.33 D e m o n s t r a t e  that the fo l lowing f u n c t i o n s  are analytic" 

(a) In z 

(b) e z 

(c) sin z and cos z 

(d) sinh z and cosh z 

D e m o n s t r a t e  that  the fo l lowing f u n c t i o n s  are not  analytic" 

LzL 

(b) 2, 

The  Discharge  Funct ion  

Analogous to the definition of the discharge vector as the negative derivative 
of the real potential function (I), there exists a discharge f u n c t i o n  which is 
the negative derivative of the complex potential function ~: 

d~ 
W = (3.389) 

dz 

The discharge function W has as its real and imaginary part the components 
of the discharge vector, 

0~  0~ 
W = + i = Q x - iQu (3.390) 

Ox Oy 

Note that  the imaginary part of W is equal to the negative discharge vector 
component Q u" .~(W) -- -Qu .  It is possible to write the discharge vector 
as a complex variable as follows" 

d~ 
Qz  + iQu - w - dz (3.391) 

In GFLOW1, all analytic elements that satisfy Laplace's equation are 
written in terms of the complex potential ~, and their contribution to the 
discharge vector is evaluated by use of the discharge function W. Some 
analytic elements satisfy Laplace's equation in one domain and Poisson's 
equation in another, for instance, the source disc in Section 3.2.4. Such 
an analytic element is represented by both a complex potential function 
and a real potential function, depending on the location of the point in 
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question. For instance, ,inside the boundary of the sink disc, the solution is 
formulated in terms of a real discharge potential only, while outside the sink 
disc, a complex potential function is being used to calculate its contribution 
to both ~ and ~. 

Next we will present the complex potential for a few elementary func- 
tions. 

3 . 7 . 3  C o m p l e x  P o t e n t i a l  f o r  a W e l l  a n d  a V o r t e x  

The complex potential for a well is given by 

f~(z) = Q ln(z - z~) + C (3.392) 

where zw is the location of the well in the complex plane (see Figure 3.72a), 
and where z is the location of the point at which f~ is being calculated. The 
integration constant is in principle a complex number, but we may select 
the imaginary part ~ equal to zero, because it does not have to match any 
boundary conditions. Consequently, C in (3.392) is a real constant. In 
order to separate (3.392) into its real and imaginary parts, it is convenient 
to write it in terms of polar coordinates' 

Q 
(Iz - z~le i~ + c - ~ (ln ]z - zwl + iO) f l (z ) -  2--g In (3.393) 

The real part of ~2 is the discharge potential (3.85): 

Q In r r = I z -  z~l (3.394) 

The imaginary part of f~ is the stream function (3.93): 

- ~ ( ~ ) -  Q O  (3.395) 
2~ 

V o r t e x  

In Figure 3.72a the streamlines and equipotentials are sketched for a well. 
In Figure 3.72b the streamlines and equipotentials in Figure 3.72a have 
been interchanged! The radials are now equipotentials, and the circles have 
become streamlines. The flow pattern in Figure 3.72b is that  of a vortex at 
z~. The solution for a vortex, it seems, may be obtained by calling the dis- 
charge potential for a well the stream function and vice versa. Exchanging 

and qJ may be accomplished by dividing the complex potential function 
for a well by i: 

F / -  Q-~ ln(z - z0) + C (3.396) 
27ri 
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Figure 3.72' Complex potential for a vortex (b) obtained by interchanging 
the real and imaginary part for the complex potential for a well (a). 

where z0 is the location of the vortex. Separating the real and imaginary 
part of (3.396) yields the discharge potential and stream function for a 
vortex, 

~(~) - ~ 0  + c �9 - ~(~)  - - ~ , ~ z  - z01 (3.397) O 

The vortex may be used to model flow on one side of a stream near 
a waterfall. The vortex would be positioned at the waterfall and creates 
circular flow from the upstream section of the stream to the downstream 
section. However, since the vortex creates flow that  keeps rotating around 
the point z0, it cannot properly represent the flow in the aquifer on both 
sides of the stream. Consequently, a vortex is not a useful analytic element, 
since it cannot be used in the interior of a flow domain, like a well or a line 
sink. The vortex function, therefore, is not implemented in GFLOWl .  

3 . 7 . 4  A W e l l  i n  a U n i f o r m  F l o w  F i e l d  

The complex potential for a uniform flow field of strength Qo [L2/T] is 
given by 

= - Q o z e  - i~  + C (3.398) 

where c~ is the orientation of the uniform flow as indicated in Figure 3.73. 
In order to separate (3.398) into its real and imaginary part, it is convenient 
to write the exponential term exp(-ic~) in terms of Cartesian coordinates. 
This yields for (3.398) 

gt - - Q o ( x  + iy)(cos a - i sin c~) + C (3.399) 
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Figure 3.73" Orientat ion of a uniform flow field. 

so that  the discharge potential  and stream function become 

= - q 0 ( x  cos c~ + y s ina )  �9 = - Q o ( y  cosc~ - x s ina )  (3.400) 

For illustrative purposes I will derive the discharge vector in several different 
ways. Applying Darcy's law to (3.400)' 

0 ~  0r 
Qx = = Qocos~  Qy = = Qo sinc~ (3.401) 

Ox Oy 

Using the Cauchy-Riemann equations (3.384)" 

0 ~  0 ~  
O x  = - Oy = O o c o s a  O~ = 0x = Q o s i n a  (3.402) 

Using the discharge function (3.390)' 

q ~  - ~ ( W )  qy  - - ~ ( w )  (3.403) 

The discharge function W is obtained by differentiating (3.398), 

d~  _ d - i a  - ~  (3.404) 
W (z )  --  d z  -- - d--; ( - Q o z e  ) = Q o e  

Combining (3.403) and (3.404)yields 

Q ~ = Q o cos a Q y - Q o sin a (3.405) 

Of course, we carl superimpose complex potential  functions just  as we 
super imposed discharge potentials and stream functions. A well in a uni- 
form flow field has the complex potential  

= ~ ln(z - zw)  - Q o z e  - i ~  + C (3.406) f~ 
LTr 
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Figure 3.74: A point sink and point source pair at zero distance and with 
infinite discharge form a dipole. 

3 . 7 . 5  A C i r c u l a r  L a k e  in  a U n i f o r m  F l o w  F i e l d  

As a last example I will present the complex potential function for a circu- 
lar lake in a uniform flow field. In Section 3.1.17, I derived the discharge 
potential for a circular lake in a uniform flow field by moving a point sink 
and a point source in opposite directions to infinity, which caused their 
images inside the circular lake to coincide at the center of the lake; see 
Figure 3.28. Since the discharges of the sink and source were chosen in- 
versely proportional to the distance of their images, the overlapping image 
sink and source did not neutralize each other; instead we were left with a 
new kind of singularity: the dipole. 

C o m p l e x  Potent ia l  for a D ipo le  

A dipole with orientation a is obtained by moving a point sink and point 
source towards each other along a line with orientation c~ (see Figure 3.74), 
while increasing their discharge in inverse proportion to their distance. This 
leads to the following expression for the complex potential for the dipole: 

Q6 ln(z - (z0 - ~ e i ~ ) ) -  ln(z - (z0 + ~ei~)) 
(3.407) gt lim 

~-~o 2~ 6 

Q---.cx) 

where 5 is the distance between the sink and the source. Introducing Az0 
a s  

A z o -  6e i'~ (3.408) 
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and defining 

I rewrite (3.407) in the form 

lim Q5 = s (3.409) 
ti---. 0 

Q---~oo 

= seia lim ln(z - (zo - ~zo))2 - l n ( z  - (zo + ~_za))2 (3.410) 
2 r  Azo --~o Azo 

which is the definition for the negative derivative of the logar i thm with 
respect to z0: 

s ei~ ( d ln(z - zo)) (3.411) 
~ - -  ~ -d zo  

o r  
8 ~i(~ 

= (3.412) 
2~ z - z o  

C o m p l e x  P o t e n t i a l  for  a C i r c u l a r  L a k e  in a U n i f o r m  F l o w  F i e l d  

Wi th  (3.412), it is relatively easy to rewrite the expressions for (I) and 
[see (3.148) and (3.149)] for a circular lake in a uniform flow field in terms 
of a complex potential:  

- - Q o  z - + In + (I) (3.413) z ~ o 

where the center is at the origin of the complex plane (z0 = 0) and where 
the lake has a radius R and net discharge (extract ion rate) Q. 

E x e r c i s e  3 .34  Write the real and imaginary part of (3.413) and compare 
them with the discharge potential and stream function given by (3.148) and 
(3.1~9), respectively. 



Chapter  4 

T h r e e - D i m e n s i o n a l  F l o w  

At the beginning of Chapter 3, I argued that, in general, regional flow 
can be adequately described by adopting the Dupuit-Forchheimer approxi- 
mation. This approximation reduces a three-dimensional groundwater flow 
problem to a two-dimensional one (horizontal flow), although in Section 3.5 
we expanded the Dupuit-Forchheimer solution by introducing approximate 
vertical flow. The question, of course, is: When are we dealing with re- 

gional flow, and when not? Or, more to the point, when can we use 
the Dupuit-Forchheimer approximation, and when do we need a complete 
three-dimensional description of flow? Some groundwater hydrologists have 
expressed reservations regarding the Dupuit-Forchheimer approximation 
(e.g., Muskat, 1937). Faced with the reality of a complex three-dimensional 
geology, they intuitively reach for three-dimensional mathematical descrip- 
tions (models), considering the inadequacy of the Dupuit-Forchheimer ap- 
proximation self-evident. 

In some cases the need for three-dimensional solutions is obvious, 
for instance, when tracing streamlines in the immediate vicinity of a par- 
tially penetrating well, or when modeling upconing of salt or brackish water 
underneath a partially penetrating well. The local three-dimensional geom- 
etry and importance of resistance to vertical flow, in these cases, render the 
Dupuit-Forchheimer approximation useless. In order to judge under which 
circumstances a complete three-dimensional solution to groundwater flow is 
called for, and when a Dupuit-Forchheimer approximation will do, we must 
compare solutions obtained in both manners. Such an analysis is presented 
in Section 5.3.4; see also Haitjema (1987a). 

In this chapter I will briefly introduce three-dimensional solutions to two 
flow features: a partially penetrating well and a three-dimensional version 
of the sink disc, which are both implemented in program GFLOWl.  These 
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three-dimensional functions are significantly more complicated than their 
two-dimensional counterparts (well and sink disc) discussed in Chapter 3. A 
particularly complicating factor is the need to satisfy the no-flow conditions 
at the aquifer bottom and the aquifer top. For confined flow conditions, this 
implies satisfying no-flow conditions along two parallel horizontal planes. 
For unconfined flow conditions, the upper aquifer boundary is the a priori 
unknown phreatic surface, adding yet another complexity. 

A complete derivation of the three-dimensional potential functions for a 
partially penetrating well and sink disc would require a thorough treatment 
of three-dimensional potential theory, which is well beyond the scope of this 
text. Instead, I will present some basic equations followed by a mostly con- 
ceptual discussion of the three-dimensional flow features implemented in 
program GFLOW1. Of particular interest is the concept of combined two- 
and three-dimensional flow modeling, as discussed at the end of this chap- 
ter. This selective use of three-dimensional solutions, inside an otherwise 
two-dimensional flow model, is of significant practical value: It limits (com- 
plicated) three-dimensional flow descriptions to those areas where they are 
relevant: near the three-dimensional flow features themselves. 

4.1 Basic Equations 

The governing differential equation for steady-state three-dimensional 
groundwater flow, Laplace's equation, is written in symbolic and index 
notation as [see (2.29) and (2.30)] 

V2r - Oiir - 0 (i = 1,2,3) (4.1) 

Throughout this chapter Einstein's summation convention is implied; 
hence, (4.1) may be written out as [see (2.28)] 

02r 02r 02r 
0x-"-~" + ~ + ~ - 0 (4.2) 

where Xl, x2, and x3 represent the three Cartesian coordinate directions 
x, y, and z. It is convenient to introduce a specific discharge potential (P, 
defined as 

= k~ (4.3) 

where k is the aquifer hydraulic conductivity. The specific discharge vector 
q~ follows from Darcy's law, 

0~ 
qi = = -0 iO  (i - 1, 2, 3) (4.4) 

Oxi 
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z~ j 
3 i~ p~ 

r l  

Figure 4.1: Radial flow towards a point sink. 

where 0i is shorthand for O/Oxi. The units of the specific discharge potential 
are [L2/T], as opposed to the discharge potential used in Chapter  3, whose 
units are length cubed over time. Throughout  this chapter we will use r to 
represent the specific discharge potential as defined by (4.3), which should 
not be confused with the definitions for (I) in Chapter  3. 

4 . 1 . 1  T h e  P o i n t  S i n k  

The simplest and best-known solution to the three-dimensional equation of 
Laplace is the solution for a point sink in an infinite domain. Consider the 
point sink with discharge Q at a point in space defined by the vector pi; 
see Figure 4.1. The potential due to the point sink will be evaluated at a 
point defined by the vector x i. The relative position of the point sink with 
respect to the point xi is defined by the vector ri, such that  

r~ = x~ - p~ (4.5) 

As observed from Figure 4.1, the vector ri points from the point sink toward 
x~. The specific discharge vector qi at xi points toward the point sink and 
is therefore parallel to the vector r~, but points in opposite direction. We 
will consider the flow across a sphere with radius r around pi. Because 
of spherical symmetry,  the specific discharge vector q~ at any point on the 
sphere is normal to the sphere, while its magnitude q is constant over the 
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sphere. Since the specific discharge is defined as the amount  of flow per 
unit area, q is obtained by dividing the total discharge of the point sink by 
the area of the sphere: 

Q 

q -  47rr 2 (4.6) 

In this chapter I will denote the length of a vector by its symbol without 
the index. For example, in (4.6), q is the length of qi and r is the length 
ri. The lengths q and r are defined as 

q=4  (4.7) 

r = x / 7 ~  (4.8) 

It appears from (4.6) that  q is a function of r alone. Hence, with reference 
to (4.4) one may write 

dO 
q = q r =  (4.9) 

dr 

The potential �9 is found by integrating (4.9) with (4.6), 

Q 1  
= 

47rr 

whereby the constant of integration has been omitted. The potential (4.10) 
is known as Newton's  potential. The location pi of the point sink is a singular 
point for the potential and should be excluded from the flow domain. The 
specific discharge vector qi, with components with respect to a Cartesian 
coordinate system, is obtained with (4 .4)and  (4.10)as 

Q 0 (1)_ (4.11) 
qi = 47r Oxi r 

The derivative of 1/r  with respect to xi is evaluated as follows: 

0 (_1~ __ 0 -1/2 (r k)-3/22rj_rjO (4.12) \ r /  ( jrj) = -�89 
Oxi 

Note the use of d u m m y  indices, k to define the scalar product rkr k of the 
vector ri, and j to define the derivative of this scalar product: 2rjOirj. As a 
general rule, the same index cannot occur more than twice in a single term 
(multiplication of vectors and scalars). A single occurrence of an index 
implies a vector, while using an index twice implies a scalar. In (4.12) the 
indices k and j are "summed out": They define scalar products, while the 
single occurrence of the index i indicates that  the right-hand side is a vector 
(as is the left-hand side). If an equation involves vectors, as in (4.12), the 
"free index" on either side must be the same i for the case of (4.12). 
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The derivative of rj  with respect to xi becomes, by use of (4.5), 

0 0 
rj = ( x j - p j ) = S i j  (4.13) 

Oxi 

where 5ij is the Kronecker Delta, defined as 

5ij = 1 ( i =  j)  

5ij - - 0  (i :/: j )  

(4.14) 

Combining (4.11) through (4.14) yields for the specific discharge vector due 
to a point sink 

Q ri 
qi = 47r r 3 (4.15) 

E x e r c i s e  4.1 Demonstrate that Newton's potential 1/r  satisfies the equa- 
tion of Laplace. Hint: realize that 5ii = 1 + 1 + 1 = 3! 

4 . 1 . 2  M e t h o d  o f  I m a g e s  

The point sink itself is of limited practical value when modeling three- 
dimensional groundwater  flow in aquifers. First of all, the point sink in 
Figure 4.1 is located in an infinite domain, while an aquifer is bounded by 
an aquifer base and aquifer top across which no flow occurs. Furthermore,  
a point sink does not resemble any real-world flow feature, but distribu- 
tions of point sinks over line elements or surfaces may be used to simulate 
flow toward, for example, a partially penetrat ing well and a lake bot tom, 
respectively. We will discuss these distributions of point sinks in the next 
section. Here we will first address the problem of satisfying the no-flow 
conditions along the aquifer base and top. 

P o i n t  S ink  a b o v e  an I m p e r v i o u s  P l a n e  

In Figure 4.2 a point sink is located at a distance d above an impervious 
plane: the aquifer base. For now we will consider an infinite flow domain 
above the aquifer base, and hence no aquifer top. The no-flow condition 
along the aquifer base may be obtained by use of an image point sink, in 
the same manner  in which we simulated a no-flow boundary opposite a well 
in two-dimensions; see Figure 3.26 in Section 3.1.15. The solution for the 
point sink above the aquifer base is obtained by use of (4.10): 

o  (11) - +  (4.16) 
4~ r 
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~) d63i 

3 ._,o._ 

Figure 4.2: A point sink above an impervious plane. 

where r is given by (4.8) with (4.5), and where ~ is given by (see Figure 4.2) 

= V / ( x i -  Pi nc 2 d ~ 3 i ) ( x i -  P i n  t- 2d~3i) 

where the components 63i of the Kronecker Delta serve as a unit vector 
normal to the plane in Figure 4.2. It follows from symmetry that  no flow 
occurs across the plane x3 = 0 in Figure 4.2, as for the two-dimensional 
case depicted in Figure 3.26. 

Point  Sink b e t w e e n  Two Horizonta l  I m p e r v i o u s  P lanes  

In Figure 4.3, the point sink is located between two horizontal impervious 
planes. The planes are a distance H apart, and the point sink is located 
at a distance d above the lower plane. The situation in Figure 4.3 may be 
interpreted as a point sink located inside a confined aquifer. In order to 
obtain no-flow conditions along both planes, images will be needed with 
respect to both planes. However, in order to obtain symmetry with respect 
to both planes (needed to create no-flow conditions along both planes), an 
infinite number of images is required. 

Calculating the contribution to q~ of an infinite number of point sinks is, 
of course, impossible. To approximate this infinite series of point sinks, we 
mac replace those point sinks that are sufficiently remote from the aquifer 
by semi-infinite line sinks (in three dimensions), see Bischoff (1981) and 
Haitjema (1982). In Figure 4.3, these line sinks are the vertical lines above 
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Figure 4.3" Point sink between two horizontal no-flow boundaries. 
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and below the last "image aquifer" with arrow heads pointing to +ee  and 
-oe ,  respectively. By redistributing the discharges of the point sinks over 
a line, we are making use of St. Venant's principle (see Knowles, 1965), 
which states that  the precise geometry of a flow feature becomes less im- 
portant with its distance. For the case of Figure 4.3, the flow generated by 
remote point sinks is nearly equal to the flow generated by a (semi-infinite) 
line sink with the same total discharge as the point sinks it replaces. St. 
Venant's principle applied to groundwater flow issues is further discussed 
in Section 5.3.8. 

Two vertical semi-infinite line sinks are needed to replace remote image 
point sinks; see Figure 4.3. The semi-infinite line sink pair in Figure 4.3 
may be obtained by subtracting a finite line sink from an infinite (vertical) 
line sink. The latter infinite vertical line sink is simply a well in a horizontal 
plane; the point in the horizontal plane that  represents the well is a ver- 
tical infinitely long line in three-dimensional space. The specific discharge 
potential ~ for a semi-infinite line sink pair is written as 

[~--~ - ~1 ln U + V - 2h I (4.18) 
�9 = a  lnp-~ 4~ u + v + 2 h  

where a [L2/T] is the "sink density" along the semi-infinite line sinks, p 
is the horizontal distance from the line sinks, h is the distance from the 
aquifer base to the start of the semi-infinite line sinks, and u and v are 
the distances from the start of the semi-infinite line sink above and below 
the aquifer base, respectively; see Figure 4.3. The first term in (4.18) is an 
infinite vertical line sink which equals a well in two-dimensions, [compare 
(3.85)], whereby the discharge Q [L3/T] has been replaced by a discharge 
per unit length of the well axis (line sink) a [L2/T]. The second term in 
(4.18) is the potential due to a line source of length 2h, the dotted line 
in Figure 4.3, which nullifies the midsection of the infinite line sink and 
thus creates two semi-infinite line sinks. The potential function for a three- 
dimensional line sink is well known in the literature, e.g., Duschek and 
Hochrainer (1970) and Haitjema (1982, 1985). The sink density a in (4.18) 
equals the point sink discharge divided by the aquifer height: 

Q (419) O "  ~ ~ �9 

H 

The potential for the point sink in a confined aquifer may be written as  [11 /1 - + - +  + -~ 
47r r ~ r-~,) ~ , )  

n- -1  

1 u + v - 2 h ]  
2 In p In 
H H u + v + 2 h  

1 1}  

(4.20) 
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Figure 4.4' Position of image point sinks. 

where r(n) and ~(n) are defined as [see Figure 4.4] 

r(n)  = V/(Xi + d53i + 2nH63i)(xi  + d53i + 2nH63i) 

r -- V/(Xi - d53i + 2nH53i)(xi  - d53i + 2nH53i) 

(4.21) 

and where h is defined as 

h = (2M + 1)H (4.22) 

The distances u and v are the lengths of the vectors ui and vi, which are 
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defined as [see Figure 4.3] 

ui = x i -  h63i vi -- x i  + h53i (4.23) 

In writing (4.20) through (4.23), the origin of the coordinate axis was lo- 
cated on the aquifer base underneath the point sink; see Figure 4.3. In 
(4.20) 4M + 1 images are evaluated explicitly, while the remainder of the 
images are replaced by two semi-infinite line sinks. The images and semi- 
infinite line sinks are fully symmetric with respect to the aquifer base, while 
the symmetry with respect to the aquifer top can be improved arbitrarily 
by increasing M, and thus by evaluating more image point sinks explicitly. 

4.2 T h r e e - D i m e n s i o n a l  C o n f i n e d  F l o w  

In the previous section we introduced the concept of three-dimensional flow 
in a confined aquifer for the case of flow towards a point sink. As mentioned, 
the point sink itself is of little practical interest, but by distributing it along 
line elements or over surfaces, we may model flow to, e.g., a partially pen- 
etrating well and a lake bottom, respectively. The mathematics of these 
s ingu lar i t y  d i s t r ibu t ions  along line elements or over surfaces is quite in- 
volved and outside the scope of this text. Instead, I will discuss the use 
of line s inks  to model a partially penetrating well conceptually, without 
deriving the associated mathematical algorithms. Next I will present a 
three-dimensional version of the sink disc which may be used to model a 
shallow pond. 

4 . 2 . 1  T h e  P a r t i a l l y  P e n e t r a t i n g  W e l l  

In Figure 4.5, a well is depicted which is screened over only part of the 
confined aquifer: a partially penetrating well. Muskat (1937) modeled the 
flow towards such a well by distributing point sinks along the well axis. 
He created a line s ink  by distributing an infinite number of point sinks 
along the well axis, while keeping their total discharge equal to some finite 
constant: the pumping rate of the well. Muskat pointed out that the sink 
density distribution along the line sink must increase near the ends in order 
to approximate a constant head along the well perimeter (well screen). 
Polubarinova-Kochina (1962) suggested the use of a singular sink density 
distribution a along the line sink (well axis) of the form 

a0h 
a ( A ) -  ( -1  _< A < +1) (4.24) 

V/( I -  Ah)(.l + Ah) 
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Figure 4.5" A partially penetrating well in a confined aquifer. 
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Figure 4.6" Sink density distribution along the axis of the well. 

where Ah is the distance from the center of the line sink to a point on the 
line sink: It is positive when the point is above the center, and negative 
when the point is below the center. The total length of the well screen is 
2h. Haitjema and Kraemer (1988) combined this strength distribution with 
a linear one to allow for different inflow rates near the top and bottom of 
the well, as may result from asymmetric positioning of the well screen in 
the aquifer (see Figure 4.6): 

a ( A ) -  a0 a l ( 1 -  A) a2(1 + A) 
+ + (4.25) 

V/(1 _ ~)(1 + A) 2 2 

The specific discharge potential at a point xi for the sink distribution 
(4.25) along the well axis may be writen as (see Haitjema and Kraemer, 

1988) 

�9 ( x i ) -  aoA(xi)+ alF(Xi)+ a2G(xi) (4.26) 
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where 

h 
h ( x , )  : 

F(xi )  = 1 -  - - ~ j  ln u + v + 2h + h (4.27) 

u + v + 2 h  h 

The vector ti points from the center of the well axis pi to xi; hence, 

ti = xi - pi (4.28) 

The parameters  u and v are the lengths of the vectors ui and vi which point 
from the top and bot tom of the well screen to the point xi, respectively: 

ui = t i -  hi vi = ti + hi (4.29) 

The function K(k )  is the complete elliptic integral of the first kind with 
modulus k, which is defined as (Hait jema and Kraemer,  1988) 

k2--  ~v h2 1 -  2h (4.30) 

The specific discharge potential (4.26) does not yet include the effect of 
the two confining aquifer boundaries, the aquifer bot tom and top. This is 
accomplished by imaging the line sink along the well axis with respect to 
both aquifer boundaries. As in the case of the point sink in the previous 
section, remote images are replaced by semi-infinite line sinks. 

In Figure 4.7, a cross-section over the equipotential surfaces near a par- 
tially penetrat ing well is depicted, together with some streamlines. Ob- 
serve that  the streamlines become nearly horizontal at some distance from 
the well. The strenght parameters  a0, a l ,  and a2 for this case are 53.67, 
166.4647, and 164.91 ft2/day, respectively. The difference in al  and a2 
reflects the asymmetric  placement of the well in the aquifer. The s trength 
parameters  are found in the CHECK module of G F L O W l  by typing LIST 
PPWELL.  These strength parameters  have been obtained by requiring the 
same head at three control points at the well screen: one at the center of 
the well, and the other two at a small distance from the top and bot tom 
of the well, respectively. For a head-specified, partially penetra t ing well, 
this leads to three equations in terms of the three s trength parameters.  A 
fourth equation is needed to define the head at a reference point at some 
distance from the well. If the pumping rate of the well is specified, as is the 
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case in Figure 4.7, the conditions required along tile well screen are that  the 
difference in the head between two successive control points is zero, which 
leads to only two equations. A third equation follows from requiring that  
the total well discharge be equal to the specified pumping rate. The total 
well discharge Q is found by integrating the strength (4.25) along the well 
axis, which yields (Haitjema and Kraemer, 1988) 

Q --- h ( T r 0 .  0 --[- 0-1 .-[- 0-2) (4.31) 

In Figure 4.8, a close-up of the piezometric contours near the well screen 
is shown. Note that  the equipotential surface near the end of the well screen 
is rounded, approximating the equipotential conditions along the rectangu- 
lar well screen. In reality, however, the well screen is often surrounded by 
a gravel pack which will not exhibit the rectangular bottom depicted in 
Figure 4.8. In fact, the rounded shape of the equipotential near the well 
bot tom is probably a more realistic representation of the interface between 
the gravel pack and the aquifer than the suggested rectangular shape of the 
well layout in Figure 4.8. In any case, these inaccuracies are insignificant 
in practice. The importance of the singular strength distribution (0.0 in 
(4.25)) increases with increasing well radius. In fact, for the extreme case 
that  the well radius becomes zero, 0.0 also becomes zero (Haitjema and 
Kraemer, 1988). 

E x e r c i s e  4.2 Experiment with the length of the well screen and the position 
of the well relative to the aquifer bottom and top by modifying the data 
file proble41.dat. For each case plot piezometric contours and trace some 
streamlines. Also inspect the difference in the strength parameters a l and 

0.2. 

E x e r c i s e  4.3 Experiment with different well diameters by modifying the 
file proble41.dat. Notice how the value o /ao  increases relative to al and 
a2 with increasing well diameter. 

4 . 2 . 2  T h e  S i n k  D i s c  

In Figure 4.9, a cross-section over an aquifer underneath a lake is depicted. 
The lake is thought of as percolating water through a silty (low-permeable) 
zone above the otherwise confined aquifer. Earlier, in Section 3.2.4, we dealt 
with a similar situation when we discussed a circular irrigator or percolating 
pond. In that  case, a Dupuit-Forchheimer solution was presented for a sink 
disc. Here I present the three-dimensional form of the sink disc, which is a 
(point) sink distribution over a horizontal disc. 
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Figure 4.7: Piezometric contours and streamlines in a cross-section over 
a partially penetrating well in a confined aquifer. (GFLOWl  data  file 
p roble41  .da t )  

Figure 4.8: Close-up of piezometric contours near the well screen. 
(GFLOW1 data file p r o b l e 4 1 . d a t )  
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Figure 4.9: Lake infiltrating water in a confined aquifer. 

The specific discharge potential ~ at the point xi for the sink disc of 
radius R and sink density s is given by Haitjema (1987a)" 

s [ 2 ( t 2 - R  2) K ( k ) _ 2 V / t 2 + R 2 + 2 7 R E ( k ) + , q i e i w  ] 
~(~':) = ~ ~/t2 + R2 + 2~n 

(4.32) 
where the vector ti points from the center of the disc toward the point 
xi, and where T~ is the projection of ti onto the plane of the disc; see 
Figure 4.10. The vector ~i is perpendicular to tile disc and defined by 

t ~ -  r~ + 71i (4.33) 

The vector e~ is a unit vector normal to the plane of the disc which defines 
the orientation of the disc. The functions K (k) and E (k) are the complete 
elliptic integrals of the first and second kind, respectively; see Byrd and 
Friedman (1971). The modulus k is defined by (Haitjema, 1987a): 

k2 = 4 7 R  (4.34) 
t 2 + R 2 ~ 2 T R  

The function w is the solid angle subtended by the disc at the point xi and 
is given by Haitjema (1987a)' 

[- ] ~ 2rlici T RH(c~2 k ) -  K ( k )  + w (T :fi R) 
w = v/t 2 + R  2 + 2 T R  r + R  ' 

(4.35) 
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3 

Figure 4.10: Three-dimensional sink disc. 
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0 
where the constant w is defined as 

0 
02 - -  o n) 
0 
w - +2~r ( 'r/ie~/~- +1, ~ < R) (4.36) 
0 
w = -27r ( ' q i e ~ / ' q - - 1 ,  T < R)  

The term qie~/r/ switches from +1 to - 1  when the point xi  moves from 
above the plane to below the plane, respectively. The c o m p l e m e n t a r y  mod- 

ulus k ~ is defined by k 12 - 1 -  k 2, while c~ 2 is defined as (Haitjema, 1987a)' 

2 4 T R  
= (4.37) 

a 72 + R 2 + 2TR 

The specific discharge potential presented earlier does not yet include 
the effects of the upper and lower aquifer boundaries. As with the point 
sink and partially penetrat ing well, these no-flow boundaries are satisfied 
by introducing images with respect to the aquifer top and bottom. Remote 
image discs are replaced by semi-infinite line sinks, whereby the sink density 
of these image discs are redistributed over the line sink. 

In Figure 4.11, piezometric contours and some streamlines are shown in 
a cross-section through the axis of a source disc at the top of a confined 
aquifer. A source disc is simply a sink disc with a negative sink density. 
Since the sink disc is the only feature in the aquifer, the flow is radially 
symmetric about the center of the disc. 

In Figure 4.12, both a sink disc and a source disc are present. The discs 
have equal but opposite discharge rates and are placed inside the aquifer, 
away from the aquifer boundaries. The cross-section is made through the 
axes of both discs. As in Figure 4.11, there are no other flow features in 
the aquifer. 

4 .3  C o m b i n e d  T w o -  a n d  T h r e e - D i m e n s i o n a l  

F l o w  

Three-dimensional functions are mathematically complex and require far 
more computat ional  effort than their two-dimensional counterparts: Com- 
pare, for example, the partially penetrating well functions (4.26) through 
(4.30) with the two-dimensional version for a fully penetrating well, which 
is a simple logarithm [see (3.85)]. The functions for a partially penetrat ing 
well in a confined aquifer are, in fact, even more involved than is exhibited 
by (4.26) through (4.30), since images and remote semi-infinite line sinks 
must be added, see the analysis for the point sink in a confined aquifer in 
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Figure 4.11: Piezometric contours and streamlines near a source disc at the 
aquifer top. (GFLOW1 data  file proble42.dat) 
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Figure 4.12" Piezometric contours and streamlines near a source disc and 
a sink disc in a confined aquifer. ( G F L O W l  data  file proble43.dat) 
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Section 4.1.1. Numerical techniques also experience substantial computa- 
tional limitations when applied to three-dimensional flow. Consequently, 
three-dimensional groundwater flow modeling is often confined to relatively 
small areas surrounding the three-dimensional features of interest. At the 
same time, however, as we will see in Chapter 5, hydrological features 
(streams and lakes) that  are rather remote from the area of interest can- 
not be ignored. To resolve this dilemma, Ward et al. (1987) suggested a 
"telescopic mesh refinement modeling approach" to the groundwater flow 
problem near the Chem-Dyne hazardous waste site in southwestern Ohio. 
The authors used three different groundwater models (finite difference mod- 
els) for three different scales: the "regional scale," the "local scale," and 
the "site scale." The regional-scale two-dimensional (Dupuit-Forchheimer) 
model included remote hydrological features. The local-scale model ob- 
tained its conditions along the grid boundary from the regional model, 
while the site-scale model, in turn, received its boundary conditions from 
the local-scale model. Detailed three-dimensional modeling was reserved for 
the site scale in order to keep memory requirements and computation times 
manageable. It appears possible, however, to make the transition from re- 
gional Dupuit-Forchheimer flow to local three-dimensional flow within a 
single model, at least for the case of confined flow. 

In Chapter 5 I will generalize the procedure of superposition of elemen- 
tary solutions, employed in Chapter 3 (e.g., a well and a pond in a uniform 
flow field near a stream or lake boundary), into the analytic element method. 
Instead of using images to incorporate stream or lake boundaries, as we did 
in Chapter 3, within the framework of the analytic element method we 
are modeling these features explicitly, by use of line sinks in two dimen- 
sions. Haitjema (1985) showed that  under confined flow conditions, two- 
and three-dimensional solutions (analytic elements) can be superimposed 
to form a single analytic element model. This is possible if we realize that  
the two-dimensional solutions to flow in a confined aquifer are a subset 
of the three-dimensional solutions in that aquifer. Consequently, as for the 
three-dimensional solutions, the two-dimensional (Dupuit-Forchheimer) so- 
lutions can also be written in terms of the discharge potential (4.3) which 
satisfies Laplace's equation in three dimensions. The two-dimensional and 
three-dimensional solutions in a confined aquifer, therefore, can simply be 
superimposed. This is quite attractive, since three-dimensional analytic 
elements can simply be added to a Dupuit-Forchheimer model instead of 
replacing the Dupuit-Forchheimer model by a three-dimensional model, as 
was done by Ward et al. (1987). In general, three-dimensional features are 
only needed locally, in the area of interest (in Ward's case, the Chem-Dyne 
hazardous waste site). The majority of flow features in the model, there- 
fore, will be represented by the much simpler two-dimensional solutions. 
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Figure 4.13" Switching from three-dimensional functions near the partially 
penetrating well to a Dupuit-Forchheimer solution remote from the well. 

For instance, when modeling a well field in a regional setting of streams, 
the partially penetrating wells will generate three-dimensional flow only in 
the immediate vicinity of the well field, so that the streams and their trib- 
utaries away from the well field can still be modeled by two-dimensional 
line sinks. 

This hybrid two- and three-dimensional model can be made even more 
efficient by exploiting the fact that three-dimensional flow features in a 
confined aquifer tend to generate two-dimensional horizontal flow at some 
distance away from the feature. For instance, in Figure 4.7, we see that at 
a distance of about two times the aquifer thickness, the streamlines become 
nearly horizontal and the equipotential surfaces become almost vertical. In 
other words, sufficiently far from the partially penetrating well, the flow 
patterns become indistinguishable from those due to a fully penetrating 
well. In mathematical terms, remote from the partially penetrating well 
the three-dimensional functions for the well and its images can be replaced 
by the two-dimensional solution for a fully penetrating well: 

Q 
= ~ In r (4.38) 

27rH 

In GFLOWl,  therefore, the partially penetrating well and three- 
dimensional sink disc are both represented by three-dimensional functions 
and by two-dimensional functions. Within a distance of, say, four times 
the aquifer thickness from the element, the three-dimensional functions are 
evaluated, while outside that zone the two-dimensional functions are being 
used; see Figure 4.13. In this manner, three-dimensional functions are eval- 
uated very selectively, only in the immediate vicinity of a three-dimensional 
feature and then only the function for that feature. All other elements in 
the aquifer are treated as being two-dimensional, including remote three- 
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Figure 4.14: Flow near a partially penetrating well and a two-dimensional 
pond function. (GFLOWl  data file proble44.dat) 

dimensional elements. 

4 . 3 . 1  P a r t i a l l y  P e n e t r a t i n g  W e l l  n e a r  a S h a l l o w  P o n d  

To illustrate the concept of combined two- and three-dimensional flow mod- 
eling, the problem of a partially penetrating well near a shallow pond is 
solved. In Figure 4.14, I combined the partially penetrating well with a 
two-dimensional representation of the pond as given in Section 3.2.4 by 
(3.184) through (3.185). In addition to the pond, there is also a uniform 
flow field with flow from left to right in Figure 4.14. Note that  in the 
cross-section over the well and the pond, the streamlines underneath the 
pond are not perpendicular to the equipotentials. This is a consequence 
of modeling the pond by use of a Dupuit-Forchheimer solution by which 
the vertical flow is calculated in an approximate manner, as outlined in 
Section 3.5. In contrast, the streamlines near the well are perpendicular to 
the equipotentials, because the well is modeled by truly three-dimensional 
functions. 

In Figure 4.15, the well is closer to the pond and the pond is smaller 
than in Figure 4.14: The radius of the pond is half the aquifer thickness. 
Because of this, I modeled the pond as a three-dimensional sink disc. As 



200 CHAPTER 4. THREE-DIMENSIONAL F L O W  

in the case of Figure 4.14, there is a uniform flow from left to right in 
Figure 4.15. This time the streamlines are everywhere perpendicular to 
the equipotentials, since only fully three-dimensional functions are being 
used. 

In Figure 4.14 I purposely chose to model the pond by use of a two- 
dimensional sink disc as derived in Chapter 3. I did this because the disc 
was large as compared to the aquifer thickness and I was content with get- 
ting truly three-dimensional flow patterns only near the well. However, 
the three-dimensional representation of the partially penetrating well in 
Figure 4.14 occurs only within a distance of four times the aquifer thick- 
ness from the well axis. For instance, underneath and to the right of the 
pond in Figure 4.14, the heads and flows are calculated by two-dimensional 
functions only. This switch from three- to two-dimensional functions (and 
vice versa) is made automatically in GFLOW1. In Figure 4.15 I decided to 
model the pond by a three-dimensional sink disc because it was small com- 
pared to the aquifer thickness and because the well was nearby; I wanted 
fully three-dimensional flow patterns both near the well and underneath the 
pond. However, here, too, GFLOWl switches from three-dimensional func- 
tions to two-dimensional ones when we get away from the three-dimensional 
feature itself. For instance, at some distance to the left of the pond, out- 
side Figure 4.15, heads and flows would be evaluated by a two-dimensional 
function for the well and a three-dimensional function for the pond. When 
we move even farther away from the pond and the well, the heads and 
flows are calculated by two-dimensional functions for both the well and 
the pond, even though both have been defined as three-dimensional fea- 
tures in GFLOW1. When we consider an entire regional model, it becomes 
clear that in most locations two-dimensional functions would be evaluated, 
even though several three-dimensional flow features may be included in 
the model. Consequently, the combined two- and three-dimensional model 
is nearly as efficient as a purely two-dimensional (Dupuit-Forchheimer) 
model. 
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Figure 4.15" Flow near a partially penetrating well and a three-dimensional 
pond function. (GFLOWl data file proble45.dat) 
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Chapter  5 

Analytic Element 
Modeling 

In the preceding chapters we have been building the theoretical framework 
for a mathematical description of groundwater flow. In the process we 
solved numerous practical problems, using what we just learned. However, 
most of these groundwater flow problems were severe abstractions from the 
real world. A recharge area or aquifer inhomogeneity, for instance, was 
taken to be circular, and the problem of a well near a stream was approx- 
imated by modeling a well opposite an infinitely long equipotential line. 
Although many of our solutions serve useful educational purposes, they are 
not very convincing representations of groundwater flow in regional aquifers 
with, among others, complex stream networks, wetlands, and varying areal 
recharge rates and transmissivities. It is true that there exist many more 
analytic solutions to groundwater flow than are presented in this text, and 
some of them are very ingenious. By themselves, however, they all share 
the limitation of a relatively simple hydrogeological setting. 

In view of these limitations, and because of the widespread availability 
of digital computers, almost all groundwater flow problems nowadays are 
solved by use of numerical methods. The most popular approach, at least 
in the U.S., is the finite difference method. This method is conceptually 
very simple: The model area is overlain by a rectangular model grid and 
the differential equation is replaced by a set of finite difference equations in 
terms of the piezometric heads at the nodes of the model grid. The resulting 
set of linear algebraic equations is solved iteratively on a computer. 

Another popular technique is the finite element method. The concept 
behind this method is to subdivide the flow domain into a network of el- 
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ements, in each of which a basic solution to groundwater flow is sought, 
e.g., uniform flow in triangular elements. Using a minimization of energy 
principle, all basic solutions are chosen in such a manner that  together they 
form an approximation to the actual groundwater flow solution. Although 
the basic solution in each element satisfies the original differential equation, 
no continuity of flow is guaranteed across elements. Consequently, neither 
finite difference solutions (where the differential equation is approximated) 
nor finite element solutions satisfy regional continuity of flow automati-  
cally. In fact, a check on continuity of flow is often used to determine 
whether or not the numerical procedure converged to a valid solution. An- 
other drawback of these traditional numerical methods is the fact that  the 
groundwater flow solution is defined in terms of heads at grid nodes or 
element nodes alone. Anywhere else the heads must be estimated by inter- 
polation. This is of particular concern when determining streamlines. The 
lack of a continuously defined piezometric head surface (or velocity vector 
field) may result in inaccurate streamline traces. In the context of model- 
ing contaminant transport, these inaccuracies may contribute to numerical 
dispersion. Numerical dispersion can be minimized by refining the grid or 
element network, but this increases the computational effort. It is neces- 
sary, therefore, to balance the grid or element resolution against the size 
of the model domain in order to arrive at a computationally manageable 
model. These shortcomings are usually accepted in view of the versatility of 
the finite difference or finite element method. They can readily be applied 
to nonlinear differential equations and can easily accommodate aquifer in- 
homogeneities. The finite difference and finite element methods, and their 
application, are extensively discussed in textbooks, e.g., Bear and Verruijt 
(1987) and Anderson and Woessner (1992). 

In this text we will continue to build on the analytic solutions devel- 
oped in Chapters 3 and 4, rather than abandon them in the face of complex 
hydrogeology. We will address complex boundary conditions and inhomo- 
geneous aquifers by combining many (several hundred) elementary analytic 
solutions: The analytic elements. This analytic element method provides a 
composite analytic solution to a regional flow problem which satisfies the 
differential equation everywhere: Continuity of flow is guaranteed. The 
heads and groundwater flow velocities are defined at any point in the flow 
domain; hence, there will not be numerical dispersion resulting from in- 
accurate groundwater flow velocities. Operationally, the analytic element 
method also offers advantages over tile finite difference and finite element 
method. No design considerations for a model grid or element network are 
needed; instead, tile hydrogeologist can input hydrological and geological 
features directly into the model. The absence of a model grid or element 
network also eliminates the compromise between model resolution and size 
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of the model area. The analytic element method, therefore, is relatively 
insensitive to scale. 

In this chapter I will introduce the basics behind the analytic element 
method, introduce an elementary analytic element code GFLOW1, and dis- 
cuss the modeling of regional groundwater flow problems by use of the an- 
alytic element method. You will discover that there is an almost seamless 
transition from the "hand calculations" employed in Chapter 3 to com- 
puter modeling of progressively more complex problems. In fact, I strongly 
recommend this procedure: First solve one or more very simple conceptu- 
alizations by hand, and then use the results to design an effective computer 
modeling strategy. At the very least, one should use simple hand calcu- 
lations to verify whether or not the computer output is reasonable. The 
desirability of accompanying computer modeling by simple hand calcula- 
tions, by the way, is not specific to the analytic element method; it applies 
to all numerical modeling techniques. 

5.1 T h e  A n a l y t i c  E l e m e n t  M e t h o d  

The analytic element method was developed at the end of the 1970s by Otto 
Strack at the University of Minnesota (Strack and Haitjema, 1981a, 1981b). 
At that  time we were involved in a project for the U.S. Army Corps of Engi- 
neers to model the environmental impact of the "divide cut section" of the 
new Tennessee-Tombigbee Waterway (Strack et al., 1980). The size of the 
model area and the desired resolution of the groundwater flow solution made 
the application of traditional numerical methods impractical. Strack devel- 
oped the comprehensive potential concept (see Section 3.3.1) to deal with 
the dual aquifer situation in the area: the upper, unconfined Eutaw aquifer 
and the lower, confined Gordo aquifer. He also conceived of what is now 
known as the analytic element method by proposing to superimpose hun- 
dreds of line sinks to represent the surface water boundary conditions and 
using line doublet strings to include aquifer inhomogeneities. Especially for 
this project, I wrote the first analytic element program SYLENS (SteadY 
state flow with LENSes), which is a dual-layer Dupuit-Forchheimer model. 
Since that  time, both the computer technology and the analytic element 
method have significantly advanced. SYLENS is no longer in operation, 
but has been superseded by several new analytic element codes. 

Next I will discuss the basics of the analytic element method as im- 
plemented in the elementary program GFLOWl.  These discussions are 
mostly conceptual in nature, with the exception of Section 5.1.2 through 
Section 5.1.5, where some mathematical  backgrounds are provided. Yet 
even in those sections, I have limited the mathematics to a level that  is just 
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enough to understand the theoretical framework of the analytic element 
method. The many mathemat ical  details needed to implement the analytic 
elements in a computer  program are outside the scope of this text, but are 
found in Strack (1989). In fact, the reader who is only interested in the 
application of the analytic element method may safely skip Sections 5.1.2 
through 5.1.5. 

5 . 1 . 1  Representing Hydrogeological Features by 
Analytic Elements 

The regional groundwater flow regime interacts with available surface wa- 
ters, responds to areal recharge due to precipitation, and is influenced by 
variations in aquifer properties. We will model these effects by use of line 
sinks, areal sinks, and line doublets, respectively. I will first discuss the use 
of these analytic elements conceptually; the associated mathemat ics  will be 
discussed later on in separate sections. 

In Figure 5.1, a section of a topographic map is shown. On that  map we 
find all surface waters in the area: streams and their tributaries, ditches, 
lakes, and wetlands. The average surface water elevations can be est imated 
from the topographic map by looking for the intersections of topographic 
contour lines with the streams. On the original map, the topographic con- 
tour lines are thin brown lines with contour intervals of 5 or 10 feet (consult 
the legend on your map). In between the intersections of contour lines with 
streams, the surface water elevation may be est imated by interpolation. 
The surface water elevations obtained in this manner  are, admittedly,  not 
very precise, but for now we will accept them as adequate for our regional 
model. 

It is noted that  some surface waters are represented by solid blue lines, 
while others are drawn by dash-dot  lines. The solid line streams are so- 
called perennial streams which flow year-round, while the dash-dot  streams 
are ephemeral streams which flow intermittently. Some ephemeral s treams 
flow during most of the winter and spring, while others flow only briefly 
after a rainstorm. The perennial streams, and to some extent the longer- 
flowing ephemeral streams, receive groundwater  which sustains their flow: 
baseflow. Streams that  flow only briefly after a rainstorm are unlikely to 
influence the regional groundwater  flow system in any significant way. In 
Section 5.2 we will discuss this interaction between surface water flow and 
groundwater  flow in more detail. For now we will assume that  any surface 
water feature which we include in the model will be fully connected to 
the regional flow system. Under the Dupui t -Forchheimer  assumption, the 
head in tile aquifer underneath a stream is simply equal to tile water level 
in that  stream. This head is maintained by the s tream either by allowing 
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groundwater to enter the stream or by infiltrating water from the stream 
into the aquifer. Particularly in view of the potential need to infiltrate 
stream water, we should be cautious not to include ephemeral streams, 
unless we know that they flow most of the time (are nearly perennial). 

R e p r e s e n t i n g  Sur face  W a t e r s  

For the purpose of the modeling, we will break up the streams and their 
tributaries into many segments. Each segment, on average, may either re- 
ceive groundwater (a gaining stream segment) or recharge the groundwater 
(a losing stream segment). In the model, we will represent each stream 
segment by a line sink which has a positive sink density when the stream 
is gaining, and a negative sink density when the stream is losing. A line 
sink may be viewed as a distribution of wells over a line element, as we 
will see in Section 5.1.2. In Figure 5.2, a layout of these line sinks is de- 
picted which represents the surface waters in Figure 5.1. Note that the 
ephemeral streams (dash-dot lines) have not been included in the line sink 
network. Line sinks are also used to represent lakes, by approximating the 
lake boundary by a polygon of line sinks. Some of the lakes are repre- 
sented by a circle: a sink disc, as discussed in Chapter 3. These sink discs 
will model groundwater seepage into the lake or, in case of a negative sink 
density, will let the lake recharge the aquifer. 

B o u n d e d  ve r sus  U n b o u n d e d  M o d e l  A r e a  

Observe that the streams near the center of the map are broken up into 
smaller segments than those that occur near the map boundaries. We 
call the area of a higher data resolution, inside the dotted rectangle in 
Figure 5.2, the nearfield and the surrounding area the farfield. The nearfield 
is the area of interest for our modeling, the farfield serves as a "boundary" 
for that  area. The analytic element method does not have a "model bound- 
ary" like the boundary of a finite difference grid or finite element network. 
This is actually an advantage! It is very tempting to limit the finite dif- 
ference grid to the dotted area in Figure 5.2 and specify observed piezo- 
metric heads (from piezometers or domestic wells) at the boundaries of the 
model grid. The incentive for this is that the relatively small area can be 
represented by a fine grid (high resolution) without undue computational 
effort. However, the specified conditions on the grid boundary will signif- 
icantly influence the groundwater flow solution in the model area. Where 
observed piezometric heads should only be used for assessing the validity 
of the modeling results, they are now also used to force (read bias) the 
model to reproduce what is observed. A better modeling approach would 
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Figure 5.1" Topographic map of model area. 
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Figure 5.2: Analyt ic  element layout for the surface water  features on the 
topographic  map. The  dot ted  rectangle is the nearfield (area of interest).  
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be to overlay the entire domain in Figure 5.2, nearfield plus farfield, with 
a finite difference grid. The surface waters in the farfield will then ensure 
proper (natural) boundary conditions surrounding the nearfield. The speci- 
fied conditions on the remote grid boundary are now irrelevant; they do not 
influence the solution in the nearfield. Since the analytic element method 
does not have a (grid) boundary, the inclusion of farfield features becomes 
an automatic necessity. 

Including Aquifer Inhomogeneities 

On a regional scale we may anticipate different aquifer properties in differ- 
ent areas. For instance, near streams one often encounters so-called channel 
deposits, zones around the stream with relatively coarse sand and gravel. 
Data on different aquifer thicknesses and hydraulic conductivities are, in 
general, not as easily obtained as the locations and water levels of sur- 
face waters. Surface geological maps and well logs, with a description of 
the geological formations penetrated by the well, are the primary sources 
for determining aquifer inhomogeneities. But determining the various hy- 
draulic conductivities is still no simple task. When modeling groundwater  
flow on a regional scale, however, it is probably not necessary to deal with 
the many local aquifer inhomogeneities, but in the area of interest major 
zones of different aquifer properties should be included. A more detailed 
discussion on this and related issues is found in Section 5.3.3. In Figure 5.2 
a dashed polygon is depicted (in tile nearfield) which defines an area of a 
higher hydraulic conductivity than the surrounding aquifer. The polygon 
sides are so-called line doublets, which generate a jump in the discharge po- 
tential across the polygon side. The jump is chosen to satisfy the condition 
(3.272) discussed in Section 3.4.3, while the line doublet function itself pre- 
serves continuity of flow across the polygon side. The mathematical  form 
of the line doublet is discussed below in Section 5.1.3. 

Solving the Flow P r o b l e m  

We introduced line sinks and sink discs to represent surface water features 
and line doublets to define a zone of different hydraulic conductivity in 
Figure 5.2. However, up to now, the line sinks and sink discs have unknown 
sink densities. It is impractical, to say the least, to a t tempt  to determine 
the groundwater inflow rates or aquifer recharge rates of the surface waters 
in the model area. We also have not discussed how to generate the proper 
jump in the potential with the line doublets in Figure 5.2. As for the line 
sinks and sink discs, we will not a t tempt  to specify the sink densities (infil- 
tration or exfiltration rates), but will specify the average surface water level 
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Figure 5.3" Line sink as a distribution of wells over a line element (a) for 
the limiting case of an infinite number of wells with a finite total discharge 
(b). 

for each line sink or sink disc and let the program sort out the appropriate 
sink densities. These sink densities (line sink strengths) will be chosen in 
such a manner  that  the piezometric head in the aquifer underneath each 
line sink matches the specified water level for that  line sink. This match 
will be achieved at only one particular point on each line sink: the control 
point. In Figure 5.2 some of these control points are indicated by crosses at 
the centers of the line sinks. By forcing the heads equal to surface water el- 
evations, we are treating these surface water features as Dirichlet boundary 
conditions for the groundwater  flow regime. 

When dealing with inhomogeneities, we will only specify the inside and 
outside hydraulic conductivity of the dashed zone in Figure 5.2 and let the 
program adjust the line doublet strengths to create the proper jump in the 
discharge potential. We will discuss this in more detail in Sections 5.1.3 
and 5.1.5. 

5 . 1 . 2  T h e  L i n e  S i n k  

The line sink function is well known in potential theory, e.g., Kellog (1929). 
An extensive discussion on the topic is found in Strack (1989). Here I 
will provide a brief mathemat ica l  derivation of the line sink function and 
illustrate its effect on the groundwater  flow regime. 

In Figure 5.3a I present the line sink conceptually as a finite number 
of wells evenly distributed over a line element between the points Zl and 
z2. A real line sink is obtained if the number of wells in Figure 5.3a is 
infinitely large, while their total discharge remains finite: equal to the total 
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extraction rate of the line sink. The mathemat ica l  analysis is best carried 
out in terms of complex variables. The complex potential  gtls for M wells 
along the line element is 

M  n(z - ( 5 . 1 )  

i=1 

where Q(i) is the discharge rate of the i th well. On average we want the 
line sink to have a discharge rate of a cubic feet per day per foot length of 
the line sink. If the well at (i represents a section A1 of the line sink, we 
can write for Q(i) 

Q (i) - A l a  (5.2) 

with which I can rewrite (5.1) in the form 

M 
(7 

i--1 
(5.3) 

If we represent the line sink by an infinite number of wells, hence M ---, cc 
and Al ---, 0, the sum in (5.2) is replaced by an integral 

~0 L (7 ~ l s  -- -~--~ l n ( z  - ( ) d l  (5.4) 

It would be helpful if the integral in (5.4) could be writ ten as a complex 
integral in terms of the parameter  (. To achieve this I introduce, with 
reference to Figure 5.3b, the infinitesimal complex variable d(" 

d ( -  A l e  ia (5.5) 

where a is the angle between the line sink and the positive x-axis. Wi th  
(5.5), I rewrite (5.4) as 

(7 --is f z  z2 ills -- ~ - e  ln(z - ( )d (  (5.6) 
1 

The integral in (5.6) is of the form f In x d x  - x In x - x ,  so that  the complex 
potential  for the line sink becomes 

(7 --is 
~ l s  : - - e  [(Z -- Z l ) l n ( z -  z l ) -  (z -- z 2 ) l n ( z  - z 2 ) +  ( Z l -  z2)] (5.7) 

2~ 
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B e h a v i o r  o f  t h e  S t r e a m  F u n c t i o n  

The line sink extracts  a total  of oL [fta/day] from the aquifer, consequently 
it should generate  a branch cut in the s tream function ~ just  as a well does; 
see Figure 3.14 in Section 3.1.6. To illustrate the behavior of the s t ream 
function, while avoiding unnecessary algebra, I select the line sink along 
the x-axis: yl = y2 = 0 and a = 0. Furthermore,  we are interested in the 
behavior of ~ along the element, and thus along the x-axis: y = 0. Wi th  
these simplifications, the s tream function ~ becomes 

= a { ~ z , }  
Or 

= 2rr~{(x - -  X l ) ( l n  Ix  - -  X l l  q- iO1) 

o" 
= 2 ~  [(~ - ~ ) o ~  - (x - ~2)o2]  (5.s) 

where 01 and 02 are the arguments  of the complex variables z - z l  and z - z 2 ,  
respectively. I will distinguish between stream function values on the "plus 
side" of the x-axis, ~+ ,  and on the "minus side," ~ - .  The arguments  01 
and 02 have values of +rr, - rr ,  or 0, depending on the location of x relative 
to xl and x2. This leads to the following values of ~ +  along the x-axis: 

- -  2 7  [(X - -  X l ) ( T r  ) - -  ( x  - -  x 2 ) ( T r ) ]  = 2 

�9 + - ~ ~ ( ~ - ~ )  ( ~ < ~ < ~ 2 )  
- -  2 7  [(X - -  X l ) ( O  ) - -  (X - -  x 2 ) ( ' / r ) ]  - -  2 - -  - -  

~ +  _ a 
- 2rr [(x - x l ) ( 0 ) -  (x - x2)(0)] = 0 (x > x2) (5.9) 

On the minus side of the x-axis we have 

~I/-- - -  271" [(X - -  X l ) ( - - 7 1 "  ) - -  (X - -  X 2 ) ( - - 7 I ' ) ]  - -  2 (X < X l )  

~ -  - 2 ~  [ ( ~ -  ~ ) ( 0 ) -  ( ~ -  ~ 2 ) ( - ~ ) ]  - 2 ( ~  < ~ < ~2)  
o" 

~ -  -- 2-7 [(x - Xl)(0) - (x - x 2 ) ( 0 ) ] -  0 (x > x2) (5.10) 

The  values for ~ +  and ~ -  have been plotted in Figure 5.4a. The jump 
a ( x 2  -- Xl) ,  which extends from the line sink to minus infinity, represents 
the total  discharge a L of the line sink and forms a branch cut in the flow 
domain,  like the branch cut for the well in Figure 3.14. From Xl to x2 the 
jump in �9 decreases linearly to zero, consistent with a constant  inflow rate 
along the line sink. 
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Figure 5.4" Branch cut in stream function due to a line sink along the x-axis 
(a) and outside the x-axis (b). 

The preceding analysis can be generalized for a line sink outside the x- 
axis, see Figure 5.4b. The branch cut appears to extend towards infinity in 
the direction of the line sink. Strack (1989) maps the line sink function onto 
a reference plane, where the line sink falls on the real axis between - 1  and 
1. He also presents a "farfield expansion" for the line sink function which 
makes it more suitable for numerical evaluation. These analyses are outside 
the scope of this text, but have been implemented in program G F L O W l .  

In Figure 5.5, the flow net near a line sink is shown. The branch cut 
in the stream function is clearly visible as a thick black line where contour 
lines of different q values are bunched up. Observe that  the potential  
is not constant along the line sink, but has a minimum at the line sink 
center. Consequently, in stringing together line sinks to model a s tream (see 
Figure 5.2), the head underneath the stream will not exactly represent the 
water elevation at all points along the stream, but will oscillate somewhat  
between the control points where the head has been forced equal to the 
stream elevation. 

Distributed Singularities 

You may notice from Figure 5.5 that  the potential is "regular" everywhere 
along the line sink; it does not become infinite as at the center of a well. 
This is not immediately obvious from (5.7), since for z = Zl or z -= z2 one of 
the logarithms has an argument of zero, and thus is singular (ln 0 = - c~ ) .  
However, the combination ( z -  z l ) l n ( z -  zl) or ( z -  z 2 ) l n ( z -  z2) is not 
singular, since limx~0 x In x "-- 0. This is a peculiar result: The potential  of 
the well function itself is singular, but if the well is distr ibuted (integrated) 
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Figure 5.5: Flow net near a line sink. 

over a line element, a function is obtained that is regular everywhere. Most 
analytic elements are "distributed singularities." In fact, the first paper 
about the analytic element method does not refer to analytic elements, but 
distributed singularities (Strack and Haitjema, 1981a, 1981b). Not all dis- 
tributed singularities have potentials that  are regular everywhere, and even 
if they do, the derivatives of the potential may still contain singularities. 
For instance, it may be shown that  the derivative of (5.7) is singular at Zl 

and z2, resulting in infinite inflow velocities into the ends of the line sink. 
This implies that  streamline tracing in GFLOWl  cannot be done too close 
to the line sink end points. 

5 . 1 . 3  T h e  L i n e  D o u b l e t  

A line doublet is often referred to in the literature as a double layer, which 
means that  it is a double singularity distribution (two layers of singular- 
ities): see, e.g., Kellogg (1929). Conceptually, the line doublet is a line 
sink and a line source that  are moved infinitely close together, while their 
discharge and recharge rates are kept equal but increased to an infinitely 
large value; see Figure 5.6a. 

I will derive a "constant strength" line doublet by carrying out this 
limiting procedure using the line sink function developed in Section 5.1.2. 
To that  end I am writing (5.7) symbolically as 

~z~=~h~(z,~o,L,~) ( 5 . 1 1 )  

where the coefficient function Azs is defined as 

e. 

hz~  = 2 ~  [ (z  - Z l ) l n ( z  - Z l )  - ( z  - z 2 ) l n ( z  - z2 )  + (z~ - z2 ) ]  ( 5 . 1 2 )  
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Figure 5.6: Line doublet formed by a line sink and line source pair (a) for 
the limiting case of zero distance d and infinite strength a (b). 

with 
L ia L 

Zl --  Z 0 -  T e  Z2 -- ZO + ~ e  ~ (5.13) 

and where zo is the center of the line sink; see Figure 5.6b. The complex 
potential ~ld for a line doublet is obtained for the limiting case where the 
distance d between the line sink and line source in Figure 5.6a goes to zero, 
while the discharge a becomes infinitely large: 

ad [Az~(z,zo+~,L,~) -- Az~(~,zo-~,L,,~) ] 
lira d 

(7" '+00  

(5.14) 

where Azo is defined as 

Azo = de i(a+~) -- ide ia (5.15) 

The line doublet strength s is defined as 

s - -  l i m  a d  
d - - * O  

0 " - - ~  O 0  

(5.16) 

Combining (5.14) through (5.16) yields 

ise 7,a 
~ld -- l im 

2~" Azo---*0 
[ Azs(z,zo+ ~-e-~ ,L,~) - Azs(z,~o_ ~-e-~ ,L,,) ] 

Azo 
(5.17) 

which becomes 
ise ia d 

flZd = - -h l~ (z , zo , / , - )  
27r dzo 

(5.18) 
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or with (5.12) and applying the chain rule, 

is[  
~td = ~ ~-~-Zl{(Z-- Z l ) l n ( z -  Zl) } dz_..~l 

dzo 
is 

-- 2--~ [-  ln(z - Zl) + ln(z - z2)] 

/ { ( z  - z2)ln(z - z2)} dzoJ dz2 
(5.19) 

where use has been made of d z l / d z o  -= d z 2 / d z o  -- 1; see Figure 5.6b. The 
complex potential for a constant strength line doublet is finally written as 

is ( z - z 2 )  
- In (5.20) 

z z 1 

We will investigate the behavior of both the real and imaginary part of 
(5.20). The real part yields the discharge potential ~td, 

Z - -  Z 2 

Z Z 1 
+-i(02--01))} ~Id 

(5.21) 

(5.22) 

- ~ { ~ t d } - - ~  ~ In 

8 

= 2-7(Ol - 

The imaginary part yields the stream function ~td, 

~ t a -  ~{f~ta} = ~ l n  z Zl 

The stream function is continuous, but the potential function exhibits a 
jump across the line doublet, which may be seen as follows. The angle 
between the lines from z to Zl, and z to z2 is equal to ( 6 2 -  01), as can 
be seen from Figure 5.7 (a). If the point z approaches the line element 
from above, the "+ side" in Figure 5.6a, the angle (62 - 6 1 )  becomes +Tr. 
Conversely, if the point z approaches the line element from below, the " -  
side" in Figure 5.6a, the angle ( 6 2 -  61) becomes -Tr. Hence, in view of 
(5.21) the potential along the "+ side" of the line doublet is -s/2,  while 
the potential on the " -  side" is +s/2, see Figure 5.6b. The total jump in 
the potential across the line doublet, therefore, is equal to the line doublet 
strength s. 

U s i n g  Line D o u b l e t s  to  M o d e l  an I n h o m o g e n e i t y  

A closed string of line doublets may be used to model a domain with a 
different hydraulic conductivity than the regional conductivity. I will illus- 
trate this by use of a simple example. 

Consider the triangular area depicted in Figure 5.8. The hydraulic con- 
ductivity is k on the outside and kl on the inside. The head in the aquifer 
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Figure 5.7: The angle (02- 01) jUlI lpS a c r o s s  the line doublet (a), and thus 
the discharge potential r jumps across the line doublet (b). 
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Figure 5.8' Triangular inhomogeneity in an aquifer with a constant head. 
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is everywhere the same' r - r As a result, the discharge potential jumps 
across the sides of the triangle from ~o to ~1, see (3.273)' 

k l - k  
AO - ~1 - Go = ~ ~ 0  (5.23) 

k 

where G0 is defined as G0 - �89162 2. We will generate the jump AO by 
placing line doublets on the triangle sides, each with a s trength equal to 
the jump in the potential: 

s -  AO (5.24) 

The discharge potential  everywhere in the flow domain is equal to the po- 
tential G0 plus the contribution of the three line doublets: 

z 2 2 3  Z Zl] 
- ~{~-s In ~ + In ~ + In } + (I)o (5.25) 

z - -  z 1 z - -  z 2 z - -  z 3 

which becomes 

8 
(I) - -  2"'~" [ ( 0 1  - -  0 2 )  n t- ( 0 2  - -  0 3 )  -+- ( 0 3  - -  01  ) ] - [ ' -  (I)0 ( 5 . 2 6 )  

In Figure 5.9 the angles in (5.26) are indicated for both cases, z is outside 
the triangle and z is inside the triangle. As is seen from Figure 5.9, the 
three angles due to the three line doublets cancel each other out when z is 
outside the triangle, while they add up to 27r when z is located inside the 
triangle. Consequently, with reference to (5.26) the potential �9 becomes 

- - ~ 0  (z outside the triangle) (5.27) 

and 

(I) - -  8 -~- (I) 0 = ~ 1  - -  (I)0 -~- (I)0 - -  (I)1 

where use is made of (5.24) with (5.23). 

(z inside the triangle) (5.2s) 

Line Doublets  with Varying Strength 

The preceding example nicely illustrates how line doublets are used to 
model domains of different hydraulic conductivity. However, the example 
is of little practical value. In reality there will almost always be flow in the 
aquifer, which leads to varying potentials along the boundary of an inho- 
mogeneity. These varying potentials imply a variation in the jump Aq), see 
(5.23), and thus a varying line doublet strength, see (5.24). The constant 
s trength line doublets (5.20) are unsuitable to handle such variations in AO. 
Strack (1989) presents an analysis for varying strength line doublets based 
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Figure 5.9: Outside the triangle the angles cancel each other out, while on 
the inside they add up to 27r. 

on singular Cauchy integrals. His analysis leads to a generic formulation of 
singularity distributions which include both line sinks and line doublets of 
higher-order strength. The functions are mapped onto a dimensionless ref- 
erence plane and accompanied by so-called farfield expansions to facilitate 
numerical evaluation. 

In GFLOW1 line doublets are used with a parabolic strength distribu- 
tion. For the triangle in Figure 5.8, this implies that  a varying jump along 
the triangle sides can be met exactly at six different points: at the corners 
of the triangle and at the centers of the sides. In between these points, the 
.jump is approximated by the parabolically varying strength s. The mathe- 
matical development of these higher-order functions is outside the scope of 
this text. The interested reader is referred to Haitjema and Strack (1981b) 
and Strack (1989). The computation of the doublet strength parameters at 
the nodes and centers of line doublets that define an inhomogeneity will be 
discussed in Section 5.1.5. 

5 . 1 . 4  T h e  A r e a l  S i n k  

In Section 3.2.4 an areal source distribution with a circular boundary (sink 
disc) was used to model a circular irrigator or a percolating pond. We may 
also use this source disc to introduce areal recharge due to precipitation in 
a model area, simply placing a large source disc over the model domain. 
However, recharge rates may vary spatially, requiring the application of 
areal source distributions of arbitrary shape. For instance, consider an 
outwash plane in an otherwise till environment. The till may only allow 
a limited recharge rate of perhaps 2 inches per year, while the sandy and 
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gravely outwash may allow more than 20 inches per year of precipitation 
to recharge the aquifer. Next we will generalize the solution for the source 
disc in Section 3.2.4 to an areal sink with an arbitrary boundary and with 
an arbitrary sink density distribution. 

I rewrite (3.180) in terms of the sink density A rather than the source 
density (percolation rate) N: 

~ ( ~ ) _  A 2 
~ ( ~  - / ~  ) +  c (~</~) 

( i ) ( o )_  AR 2 r 
In + C  (r > R) 

2 

(5.29) 

This gives, for (3.181) plus (3.182), 

Q(i) _ d~b _ d [ A 2 ] A 
r - dr -i ( ~ - R  )+C - - -Tr  (r<R) 

Q(O) d~ d [ ~R~ ~R ] ~R2 
= = l n - - + C  - ( ~ >  R) 

dr  dr  2 2r 

(5.30) 

Two expressions for the discharge potential are used, ~(i) inside the sink 
disc (r < R) and ~(o) outside (r > R). The potential ~(~) is a solution to 
Poisson's equation, 

V2~ (i) = A (5.31) 

while the outside potential ~(o) satisfies Laplace's equation: 

V20 (~ = 0  (5.32) 

This is what makes the sink disc work: Inside we have an exfiltration rate 
A, while outside there is no areal exfiltration or infiltration. However, we 
cannot select any arbitrary solution to (5.31) and (5.32). We need to make 
sure that the potential function is continuous across the disc boundary and 
that continuity of flow is maintained across that boundary. The choices 
for ~(i) and ~(o) in (5.29) accomplish this, as may be seen by substituting 
r = R in (5.29) and in (5.30). 

We succeeded in finding two suitable potentials r and ~(o) because 
of the radial symmetry of the problem: a sink disc. In Figure 5.10, an ar- 
bitrarily shaped areal sink is depicted with a varying sink density A(x, y). 
For the case of Figure 5.10, the choices for r and ~(o) are less obvious. 
Strack (1989) suggested selecting any suitable function r that satisfies 
(5.31) and simply setting ~(0) equal to zero. These choices obviously violate 
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V2O = 0  

Figure 5.10: Areal sink with arbitrary boundaries and sink density )~(x, y). 

both continuity of the potential and continuity of flow across the boundary 
B of the areal sink. In terms of the complex potential ~, both O and 
will jump across the boundary B, requiring additional measures. The jump 
in ~ may be eliminated by use of a suitably chosen sink distribution along 
B, while the jump in �9 may be compensated by a suitably chosen dou- 
blet distribution along B. Observe from Figures 5.4 and 5.7 that  line sinks 
and line doublets indeed generate jumps in �9 and ~, respectively. Strack 
(1989) shows how an arbitrarily shaped areal sink may be approximated 
by a polygon which sides are higher-order line sinks and line doublets to 
eliminate the jump in both ~ and �9 across the polygon boundary. The 
analysis is quite involved, including conformal mapping and series expan- 
sions to facilitate proper numerical evaluation of the analytical functions. 
Although this is implemented in GFLOWl ,  the interested reader is referred 
to [Strack (1989) for further mathematical  details. 

Adding Recharge to Inhomogeneities 

As mentioned, changes in areal recharge may occur between a relatively 
permeable outwash, alluvium, or channel deposits near streams and the 
surrounding lower permeable till. In fact, a domain with a different hy- 
draulic conductivity usually also exhibits a different recharge rate because 
of precipitation, at least for the case of unconfined aquifers. The bound- 
aries between these higher permeable zones and the lower permeable till 
are already included in the model by doublet strings. A line doublet with 
a real strength parameter creates a jump in the potential. This jump is se- 
lected in such a manner as to create a continuous head across the boundary 
between two different hydraulic conductivities, see Section 3.4.3. However, 
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we may add a second component to the strength parameter to create an 
additional jump to compensate for the jump caused by �9 (i). Also, when the 
line doublet is given an imaginary strength parameter it will create a jump 
in ~! This may be seen from (5.20) through (5.22) by substituting for s the 
imaginary value - i s .  The expressions for Old and ~Id in (5.21) and (5.22) 
will thus be interchanged, causing a jump in ~ due to the branch cut of 
(01-02) in (5.21). Consequently, the line doublets already in place to model 
the jump in k can also be used to model a jump in recharge. This is ac- 
complished with virtually no extra computational effort. The line doublet 
functions are evaluated anyhow to deal with the discontinuous hydraulic 
conductivity. All we do is modify the strength parameters to also account 
for the discontinuity in the recharge rate. The mathematical  details of this 
procedure are to be found in the GFLOW User's Manual (Haitjema and 
Kelson, 1994). 

5 . 1 . 5  S o l v i n g  f o r  U n k n o w n  S t r e n g t h  P a r a m e t e r s  

At the end of Section 5.1.1, under the subheading "Solving the flow prob- 
lem," I explained that  the line sink strengths and line doublet strengths 
would be sorted out by GFLOW1. All we do is specify the water levels 
in streams and lakes and specify the hydraulic conductivity inside aquifer 
inhomogeneities. This solution procedure leads to a system of algebraic 
equations which is solved for the as yet unknown line sink and line doublet 
strengths. Here is how it works. 

In Figure 5.2, crosses are placed at the center of some of the line sinks 
that  represent the streams and lakes in the model area. These crosses 
indicate the location of control points. Each line sink has one control point 
at its center (although this is not indicated for all line sinks in Figure 5.2). 
At each of these control points, the modeler specifies the surface water 
elevation in the stream. For now we will assume that the surface water is 
in full contact with the aquifer, which implies that  the head in the aquifer 
at a control point is the same as the surface water level at that point. 
Expressed in terms of discharge potentials I write for the potential at the 
i th control point, due to n line sinks, 

Oi -- alFlsi ,1 + a2Flsi,2 + a3Flsi,3 + .... anFlsi ,n  + C (5.33) 

which is a symbolic way of writing the contributions of all the line sinks to 
the potential at the i th control point. The function Flsi , j  is the coefficient 
function of the j th line sink evaluated at the center of the ith line sink. 
The function Flsi , j  is the real part of the complex potential (5.7)" 
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Flsi,j 
I --i~j = ~{-~-~e~ [ ( z i -  (z i ) j ) ln(zi -  (Zl)j) 

- ( z i -  ( z 2 ) j ) l n ( z i -  (z2)j) + ((zl)j  - (z2)j)]} (5.34) 

where z~ are the complex coordinates of the i th control point, (Zl) j and (z2)j 
are the begin and end points of the j th line sink, and aj is the orientation 
of the j th line sink. Note that  the coefficient function is the potential due 
to the line sink with strength 1. Thus ajFlsi , j  is the potential of the line 
sink with its actual strength aj. 

R e f e r e n c e  P o i n t  

In writing (5.33) I did not account for any feature other than line sinks. 
Assuming that  to be the case for now, (5.33) exhibits n unknown line sink 
strengths aj (j -- 1, n) and the unknown constant of integration C. How- 
ever, I can only write n equations of the form (5.33) for the control points 
at the n line sinks. This leaves us short one equation: The one for the 
integration constant C. We have no other option than to dream up some 
additional condition in order to obtain an extra equation. In most ana- 
lytic element models this is done by introduction of a reference point at 
which a reference head is specified. It is important  to realize that  this is 
a totally arbitrary condition forced upon us by mathematical  necessity: to 
get enough equations to solve all of our unknowns. Novice analytic element 
modelers are invariably confused by this mystical reference point, and often 
make a poor choice for this point and its associated head..Since this point 
is introduced for mathematical  purposes, and not for hydrological reasons, 
we should select it in such a manner that  it does not influence the modeling 
results in the nearfield. The reference point should be placed far away, out- 
side the farfield features, and given a "neutral" head: approximately the 
average head in the model domain. In so doing, the reference point choice 
causes relatively flat hydraulic gradients outside our farfield, which makes 
it easier for the farfield features to "protect" the nearfield. If the reference 
head is chosen relatively high, a lot of groundwater will move toward the 
model area (the model area becomes a regional sink). Conversely, if the 
reference head is chosen relatively low, the model area acts as a regional 
source, providing a lot of water that  flows to infinity. However, when suf- 
ficient farfield features are included in the model, these variations in the 
reference head will not influence the nearfield solution. This is, in fact, a 
good test for a proper model design: Vary the reference head and verify 
that  the nearfield remains unaffected. On no occasion should the reference 
point be chosen inside the analytic elements, let alone inside the nearfield! 
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Matrix Equations 

The resulting n + 1 equations can be written in matrix form: 

a i j x j  = bi ( i -  1, n + 1) and (j -- 1, n + 1) (5.35) 

where the coe f f i c ien t  m a t r i x  ai j  is defined as 

ai j  -- F l s i , j  

a i j  - -  1.0 

( i - -  1, n + l )  and ( j -  1, n) 

( i =  1 , n + l )  and (j = n + l )  

(5.36) 

where the (n + 1)th control point is the reference point. The s o l u t i o n  vec tor  

xj is defined as 

x j  -- a j  (j  = 1, n)  

X n + l  - -  C 

(5.37) 

and the k n o w n  vec to r  bi is defined as 

bi -- (~i (i - 1, n)  

bn+l -- dPref 

(5.38) 

where dPre f is the potential at the reference point. 
The matrix equations can be solved by standard solution procedures, 

e.g., matrix decomposition and back substitution (Forsythe et al., 1977) or 
transpose elimination (Wassyng, 1982). 

Including Inhomogeneities 

Line doublets are used around domains with different hydraulic conductiv- 
ity; see Section 5.1.3. The strength s of the line doublet is equal to the 
jump in the discharge potential across the inhomogeneity boundary, (5.24), 
while the jump in the potential can be expressed in terms of the potential 
at the boundary by (5.23). This leads to the following matrix equation at 
a control point on a line doublet: 

kl - k kl - k 
si  -- ~ ( ~ i  "- 

k k 
[ s lF ld i ,1  + s2Fld i ,2  + ... + a l F l s i , 1  + ... + C] 

(5.39) 
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where kl is the conductivity of the domain bounded by the ith line doublet 
and where F l d i , j  are the line doublet coefficient functions, similar to those 
the line sinks. Expression (5.39) may be rewritten as 

k 
: s l F l d i , 1  + s2Fld i ,2  -t-... -t- a l F l s i , 1  + ... + C (5.40) si k l  - k 

o r  

0 = s l F l d i , l + s 2 F l d i , 2 + . . . + s i [ F l d i , i - ~  
k 

kl  - k ] + ' ' ' + a l F l s i ' l + ' ' ' + C  (5.41) 

The matrix equations (5.41) are added to those for the line sinks, whereby 
the latter equations also involve the terms with F l d  due to the line doublets. 
The known vector elements for equations at the line doublet control points 
are zero, compare (5.41) with (5.33) and (5.38). In GFLOW1 line doublets 
are used with a parabolic strength distribution which is continuous from one 
line doublet to the other. For a closed string of line doublets this results in 
two strength parameters per line doublet, also requiring two control points 
per line doublet. These control points are chosen at the vertices of the 
polygon and at the centers of the line doublets. 

A d d i n g  O t h e r  E l e m e n t s  

The matrix equations may be further expanded by including areal sinks 
with a specified head and wells with a specified head, which yields equations 
similar to those for the line sinks. More sophisticated analytic elements 
may lead to different kind of matrix equations, but are outside the scope 
of this text; refer to Strack (1989). In Section 5.2.3, we will discuss line 
sinks and areal sinks with a specified resistance between the surface water 
and the aquifer. As we will see, this leads to nonlinear equations with 
matrix coefficients which depend on the solution. Such a nonlinear set 
of equations is solved iteratively, adjusting matrix coefficients from one 
solution to another. 

In addition to all analytic elements with unknown strength parame- 
ters there are also elements whose strengths are known for instance, 
wells with a given pumping rate and areal recharge due to precipitation. 
These elements must be added to the matrix equations, but do not generate 
equations for themselves. Although these elements in principle occur on the 
right-hand side of, e.g., (5.33) and (5.41), they are moved to the left-hand 
side of these equations and end up in the known vector. For the equations 
due to the line sinks, head-specified wells, and head-specified areal sinks, 

b i -  O i -  (Okno~,~)~ (5.42) 
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For the equations due to the line doublets, 

bi = -((I)kno~)i  (5.43) 

where ((Pkno~,~)i represents the contribution to the potential of all analytic 
elements with known strength at the ith control point. 

In GFLOW1, when solving surface water and groundwater conjunc- 
tively (see Section 5.2.4), strength parameters of line sinks that are part 
of a stream network may be prescribed by the surface water solution. In 
that  case, the equation for that line sink is removed from the matrix and 
its contribution is incorporated in Oknown. During subsequent iterations 
between surface water solutions and groundwater solutions, the number of 
equations may vary as line sinks are removed from and reintroduced into 
the coefficient matrix. 

5 . 1 . 6  G e n e r a t i n g  N u m e r i c a l  a n d  G r a p h i c a l  O u t p u t  

Once the unknown strength parameters have been solved, the potential can 
be calculated at any point in the aquifer by superposition of all analytic 
elements: 

O(x, y) = E aiFls(z,y),i + E siFld(x,y),i + .... + C (5.44) 

where Fls(x,y),i and Fld(x,y),i are the coefficient functions for the ith line 
sink and line doublet, respectively, evaluated at the point (x, y). Expression 
(5.44) is not completely written out; additional analytic elements (e.g., wells 
and areal sinks) are implied by the dots in (5.44). 

In general, the potential (I) is not referred to when modeling groundwater 
flow with analytic element models. The user enters heads at control points, 
and the program reports back heads at any point (x, y) in the aquifer. All 
conversions from heads to potentials and back are handled internally in the 
program, completely transparent to the user. The head r is calculated from 
(5.44) by use of (3.61), 

O + � 8 9  2 
r = (~ > �89 2) 

kH 

r = V ~  ((I) _< �89 2) 

(5.45) 

In analytic element models, the heads may be specified with respect to 
any horizontal datum, usually mean sea level (MSL). The user must also 
specify the elevation of the aquifer base b with respect to the same datum. 
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In the program these "user heads," which I will denote here by r are 
converted to "model heads," r in the preceding expression, by subtract ing 
the elevation of the aquifer base: 

r = r - b (5.46) 

All heads r referred to in this text are "model heads"! Input  and output  
in GFLOW1,  however, is done exclusively in "user heads" r 

The discharge vector Q i is obtained by differentiating q); see (3.59). 
In analytic element models this is accomplished by superposition of the 
derivative functions of all analytic elements: 

with 
OFls OFld 

' -- Fld'  i = (i -- 1, 2) (5.48) F l s i - -  Oxi Oxi 

The specific discharge vector qi (i = 1,2, 3) is obtained from (5.47) and 
( 3 . 3 1 2 ) .  

Qi 
q~ = - -  ( i = 1 , 2 )  

h 

zEQ  ] 
q3 = ~ -~l O i h -  N t -  Nb + Nb ( i =  1,2) 

(5.49) 

whereby n is the "effective porosity." The porosity entered in GFLOW1 is 
used only to calculate average groundwater flow velocities and should be 
interpreted as an effective porosity. 

where h is the saturated aquifer thickness, Nt the recharge at the aquifer 
top, and Nb the leakage into the aquifer at the aquifer bottom. Only 
strength-specified sink discs in GFLOW1 may be given both a bot tom and 
a top strength, which translate into - N b  and - N t ,  respectively. In zones 
of confined flow, the saturated aquifer thickness is constant,  h = H, so 
that  the first term inside the brackets for q3 vanishes (OiH - -  0 ) .  In zones 
of unconfined flow the saturated aquifer thickness may be replaced by the 
(model) head r as obtained from (5.45). 

The average groundwater flow velocities vi (i - 1,2, 3) are obtained 
from (5.49)' 

qi 
vi = --  (i - 1, 2, 3) (5.50) 

n 
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Generating C o n t o u r  P l o t s  

A customary way of presenting piezometric head distributions in aquifers is 
by the use of contour plots, whereby each contour represents a line of equal 
head, just  as topographical contours represent terrain elevations. Most ex- 
isting contouring software is based on interpolation of function values in 
a rectangular grid (or irregular grid) of points where the function values 
are given. This fits quite naturally with the numerical groundwater models 
which provide heads at the grid points of their model grid (finite differ- 
ences) or at the element corners or collocation points of elements (finite 
elements). Analytic element models do not employ a grid or element net- 
work to generate heads or discharges. In an analytic element model, the 
head or discharge can be calculated at any point, not just on grid points. 
To facilitate contouring of, for example, heads, however, a grid of points is 
introduced at which the heads are calculated by (5.45) with (5.44). This 
grid of values is then handed to a contouring routine to generate a contour 
plot. 

There is a fundamental  difference between contour plots generated in an 
analytic element model and those generated in a finite difference or finite 
element model. After a solution is obtained in the analytic element model, 
a grid can be generated at any scale and with any resolution (number of grid 
points per unit area). Since the solution is analytic, zooming in on a smaller 
area and using a higher-resolution grid provides meaningful detail. In finite 
difference or finite element models, however, only one grid is available: the 
model grid. The resolution of the solution is limited by the resolution of 
this model grid; it is not possible (or at least not meaningful) to zoom in 
on a smaller area for more detail. 

Tracing Streamlines 

In Section 3.2.6 it was explained how streamline tracing is accomplished by 
integrating the velocity vector [see (3.190)]: 

xi=xi  + vidt (5.51) 

where l i  and 2 are two successive points on a streamline, and where t l 
and t2 are the associated residence times for a water particle traveling along 
that  streamline. In G F L O W l  this integration is carried out numerically by 
use of a predictor-corrector method. The procedure works as follows. At 

1 2 
the point xli, the velocity v~ is calculated and a first est imate of xi is made 
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Vi  
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Figure 5.11" Predictor-corrector method for integrating the velocity vector 
along a streamline. 

by stepping over a distance As into the direction of flow [see Figure 5.11]" 

1 
(~)~ =1 +Av_~ (5.52) 

1 
v 

1 1 
where v is the magnitude of the velocity vector at xi, 

1 V//x L 1 (i 1 2 3) ( 5 . 53 )  V--- i X i  - -  ~ , 

The value of As implies a particular choice for the time step At, but there 
2 

is no need to calculate it at this point. Next the velocity vi is calculated at 

the point (~i)1. A new more representative velocity is obtained by taking 
1 

the average of the velocities at xi and (~i)1' 

1 2 
v i  �9 v i  

v~ = (5 .54)  
2 

The final estimate of the point 2 then follows from 

2 1 v i  
Xi----X i - - ~ - i s - -  

v 
(5.55) 

where v is the magnitude of the velocity vector vi: 

v -  ~ ( i -  1,2,3) (5.56) 
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The residence time increment At follows from 

A s  
= ( 5 . 5 7 )  

v 

Note that  the integration has been carried out in three dimensions. 
Most of our streamline traces, however, will be plotted in the horizontal 
plane. In G F L O W l  tick marks can be added to indicated the depth of the 
streamline in the aquifer, relative to the starting point. 

D i s c o n t i n u i t i e s  in t h e  Ve loc i ty  F ie ld  

The predictor--corrector method just outlined assumes a continuous velocity 
field. However, the velocity field is discontinuous across line sinks and line 
doublets, where both the direction and magnitude of the velocity vector may 

1 
jump. Consequently, the velocities vi and 2, when evaluated at different 
sides of the line sink or line doublet, may differ significantly, which leads 
to a meaningless value for vi from (5.54). During streamline tracing this 
may result in path lines that  oscillate near line sinks or line doublets. To 
avoid this, G F L O W l  monitors when an intersection with a line sink or 
line doublet occurs and replaces the predictor-corrector procedure with 
Euler's method to calculate a step across that  feature. In terms of the 

foregoing analysis this implies using (x2~)1, from (5.52) as the next point on 
1 

the streamline and calculating At from (5.57) with v replaced by v. 

5.2 The  P r o g r a m  G F L O W l  

Most of the computer graphics in this text has been produced by 
the analytic element model GFLOWl ,  a single-layer, steady-state 
Dupuit-Forchheimer model which supports some transient and three- 
dimensional flow features. The three-dimensional features are a partially 
penetrating well and a three-dimensional version of the sink disc function, 
which are embedded in the otherwise two-dimensional Dupuit-Forchheimer 
model as outlined in Section 4.3. The model is particularly suitable for solv- 
ing regional groundwater flow problems, including average (steady-state) 
stream flow. The stream and groundwater flow problems are solved con- 
junctively, whereby the groundwater solution dictates base flow, while the 
stream flow solution may limit the groundwater recharge rate of losing 
stream sections (Mitchell-Bruker and Haitjema,1995). Some general pro- 
gram features, the groundwater surface water interactions, and an example 
run are discussed in this section. 
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5 . 2 . 1  M a i n  P r o g r a m  F e a t u r e s  

GFLOWl  supports the following analytic elements: 

�9 Steady-state wells (2D). 

�9 Transient wells (Theis' solution). 

�9 Partially penetrating wells (3D). 

�9 Line sinks (drains, streams, lakes). 

�9 Sink discs (ponds, areal recharge, wetlands). 

�9 Three-dimensional sink discs (3D versions of two-dimensional sink 
discs). 

�9 Inhomogeneities (regions with different hydraulic conductivity, poros- 
ity, and recharge). 

GFLOW1 supports interactive graphics, which means that graphics is 
used within the program, and data can be obtained and changed by point- 
ing a cursor on a feature and giving a command. On-screen editing is 
supported in the modules for wells, line sinks, sink discs, and inhomogene- 
ity domains. Different colors and line types are used to distinguish between 
features. Graphical output includes flow nets and contour plots of heads, 
potentials, the stream function, and the absolute value of the discharge 
vector. Streamline tracing is supported with markers for travel time and 
streamline depth. Errors in boundary conditions and in observed heads at 
(observation) wells may be represented graphically, whereby line thickness 
and marker size are proportional to the error. 

Finally, GFLOWl supports many numerical input and output options, 
among which are spreadsheet files with both surface water and groundwater 
data along streams. The educational version of GFLOWl  (provided with 
this text) does not support hard-copy output of graphics, except for the 
option to make screen dumps using the DOS "graphics" program. 

5 . 2 . 2  P r o g r a m  O r g a n i z a t i o n  

GFLOW1 is modular in the sense that different program functions are han- 
dled in different program modules, each with their own command menu. In 
Figure 5.12 a diagram is presented of the main structure of GFLOW1. The 
available modules in GFLOW1 are shown in Figure 5.12 in boxes connected 
to the MAIN PROGRAM box. When typing a module name, the user 
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AQUIFER ~~-- : 

MAP 

TITLE (title) --- 

WELL 
_ .  

LINESINK 

isINKD"ISC ~ 
GENEITY 

, , ,  

HEAD (x,y,[z]) 

POTENTIAL (x,y,[z]) 

DISCHARGE (x,y,[z]) 

SPECIFIC (x,y,[z]) _ ~  

VELOCITY (x,y,[z]) 

>GFLOW 

ar 

Z 

STOP 

DATA (filename) 

SAVE (filename) 

LOAD (filename) 

VIEW (filename.ext) 

SOLVE [groundwater] [i] 

~_ J_SOLVE (conjunctive) (i) 

CHECK ] 

--~ LAYOUT 

_._{ 

[, 

GRiD 

PLOT 

TRACE 

~ DOS 

Figure 5.12" Program organization of GFLOWl. 
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leaves the MAIN PROGRAM, enters the module, and remains in the mod- 
ule until the command return is typed. In addition to entering modules, the 
user may also initiate commands which are part of the MAIN PROGRAM 
itself. These commands are the ones not emboxed in Figure 5.12. After 
such a command is executed, the user is still in the MAIN PROGRAM. 
A command may have one or more parameters, indicated in Figure 5.12 
between parentheses. An argument between square brackets is optional; if 
it is omitted a default value is used. 

A brief explanation of the modules and commands shown in Figure 5.12 
is provided in Figure 5.13, whereby they are grouped by function. There 
are six main functions: input and output (IO) to disk, input of general data, 
input of analytic elements, generating and checking a solution, producing 
numerical output, and producing graphical output. These functions are not 
strictly separated; for instance, graphics and file IO is supported in most 
analytic element modules. 

C o m m a n d  M e n u s  

Program GFLOW1 is "command driven" in combination with command 
menus. A fully "menu driven" program allows the user to "point and shoot" 
to initiate commands and to type data in data boxes. The advantage of 
a menu driven program is that the user is prompted for every response, 
making program operation easy at first. However, when the user becomes 
proficient in the use of the program, the (graphical) menu interface gets 
in the way; you have to step through many options and menus before the 
desired action occurs. In addition, most data input in GFLOW1 is best 
done in "batch mode." rather than interactively from the keyboard or by 
use of a mouse. Such a batch input option requires a command structure. In 
an at tempt to gain the best of both worlds, GFLOWl  employs commands 
in combination with a command menu. The command menu displays the 
available commands with their current parameters and options. The format 
of the command menu reflexes the syntax of the commands. The command 
menu is automatically displayed in all modules. A brief explanation of the 
commands in the MAIN PROGRAM is shown in Figure 5.13. 

5 . 2 . 3  R e s i s t a n c e  t o  S u r f a c e  W a t e r  I n f l o w  a n d  O u t f l o w  

As explained in Section 5.1.5, the unknown strength parameters of line 
sinks and sink discs are solved for by requiring a specified head at a control 
point on that element. Under the Dupuit-Forchheimer condition, however, 
this implies that the head in the aquifer underneath the stream or lake is 
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......................... IS modules .......................................... 

SWITCH Reassign logical units for input or output. 

SAVE (filename) Save solution in binary form on disc (extensions .SOL). 

LOAD (filename) Load solution from disc (extensions .SOL). 

DATA (filename) Write input data file (.dat) based on current data in program. 

VIEW (fnmu.ext) View ASCII file on dlJk (e.g. input data or error file). 

AOUIFER 

MAP 

TITLE (title) 

GENERAL INPUT DATA modules 

Aquifer background data i.e. hydraulic co~ductlvit7, porosity, 

aquifer thickness, uniform flay, and a reference point. 

Add background map to the layout. 

IG character title included in output files. 

WELL 

PPWELL 

TWELL 

SINKDISC 

SD3D 

LINESINK 

INHOI4OGENEITY 

ANALYTIC ELEMENT modules 

Steady state veils (2D). 

Partially penetrating wells (3D). 

Transient wells (2D). 

Circular areal slnk distributions (2D). 

Circular areal sink d i s t r i b u t i o n s  (]D). 

Line sinks to model streams (2D). 

Areas of different permeability, recharge, and porosity. 

SOLVE [GROUNDWATER] I l l  

SOLVE BASEFLOW 

SOLVE CONJUNCTIVE Ill 

CHECK 

SOLUTION modules 

Solve groundwater flow problem using i iterations 

(default: i-I). 

Solve baJeflow (surface water) problem 

Solve groundwater and surface water conjunctively 

using i iterations (default: i.0) 

Check boundary conditions and piezometers. 

......................... NUMERICAL OUTPUT modules ............................ 

HEAD (x)(y)[z] Prints head at specified coordinates. 

POTENTIAL (x)(y)[z] Prints potential at specified coordinates. 

OMEGA (x)(7) Prints the complex potential (disch.pot. , stream function) 

DISCHARGE (x)(y) Prints discharge vector camp. at specified coordinates 

SPECIFIC (x)(7) [z| Prints spec. disch, vector camp. at specified coordinates. 

VELOCITY (x)(7) [z] Prints velocity vector camp. at specified coordinates. 

LAYOUT 

GRID 

PLOT 

CURSOR 

TRACE 

GRAPHICAL OUTPUT modules ............................ 

Plot layout of hydrological features. 

Set up grid for plotting (2D/3D). 

Contour plots of heads, potentials, stream function, flownet, 

and absolute value of the discharge vector. (2D/3D). 

Brings up layout and cursor to retrieve data (heads, etc.). 

Tracing streamlines (2D/3D). 

DOS 

STOP 

Escape to DOS, t~e EXIT to return to return to GFLOW1. 

Exit program to DOS, teminates progrsn execution. 

Figure 5.13" Printout of the command summary file: gfsum.hlp. 
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Figure 5.14" A stream with (a) and without (b) resistance to flow between 
aquifer and stream. 

identical to the water level in the stream or lake. Restricting our discus- 
sion to streams for a moment, this is may be true in a sandy to gravelly 
environment, where the stream has a relatively clean sandy bot tom in di- 
rect contact with the aquifer. In a till environment (mixtures of sand, silt 
and clay), however, there is likely to be some resistance to flow between 
the aquifer and the stream. This resistance may be due to a silt layer 
on the bot tom of the stream, a silty clayey soil layer between stream bot- 
tom and aquifer, or both. The stream may, generally speaking, be in a 
till environment, but still in full contact with the aquifer (no resistance) 
if it is surrounded by a sandy or gravely outwash or "channel deposits"; 
see Figure 5.14. The same holds for lakes or wetlands. Depending on the 
geological conditions there may be substantial resistance to flow between 
aquifer and lake. This resistance may also be due to, or enhanced by, silt 
and organic deposits on the lake bottom. 

In order to incorporate the situation depicted in Figure 5.14a the fol- 
lowing boundary condition is considered at a stream or lake with resistance: 

Ca -- r  
= ( 5 . 5 s )  

where qz [L/T/ is the groundwater inflow per unit area into the surface 
water, and where Ca and r are the head in the aquifer and water level 
in the stream, respectively. The parameter c [T] is the resistance to flow, 
defined as 

5 
,: = - ( 5 . 5 9 )  

kc 

where 5 and kc are the thickness and hydraulic conductivity of the clay 
or silt layer, respectively. When dealing with sink discs, the groundwater  
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inflow rate qz is equal to the strength parameter s [L/T] of the sink disc, 
so that  with (5.58), 

s - Ca - Cs (5.60) 
c 

Streams are modeled by line sinks which have no width, only a length. 
The groundwater inflow rate into the line sink is a [L2/T], which is the 
inflow rate per area [L/T] multiplied by the width w [L] of the stream. 
Consequently, Equation (5.58) becomes, in terms of a, 

r 1 6 2  (5.61) O ' - - W ~  

The conditions (5.60) and (5.61) are used to replace the specified head 
conditions discussed in Section 5.1.5. We will illustrate this for the case 
of line sinks. First we express (5.61) in terms of discharge potentials. For 
confined flow conditions we multiply both sides in (5.61) by the aquifer 
transmissivity k H, which gives 

kHc 
k H r  a (5.62) 

w 

o r  

k H C a -  �89 2 ( k H C s -  �89 2) kHc 
w 

so that  
kHc 

Os = O a -  ~ a  (Ca > H) (5.64) 
w 

For unconfined flow conditions we multiply both sides of (5.61) by �89162 + 
Cs), resulting in 

�89162 2 k o2 
= (5.65) 

w 

which gives 

k~a+r 
O s = O a -  ~ a  (Ca < H) (5.66) 

w 

The potential in the aquifer may be expressed in terms of the strength 
parameters a times coefficient functions F of all analytic elements in the 
flow domain, see (5.34). Writing only the contributions of the line sinks, 
the i th equation (at the i th line sink) becomes 

khc 
( O s ) i -  ajFij - - - a i  + . . .  (5.67) 

w 
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Figure 5.15: Percolating stream. 

where summation is implied over j,  and where h is defined with reference 
to (5.64) and (5.66)as 

h--  H (Oa > �89 2) h =  Ca + r (~ < �89 ) 
- 2 a 

(5.6s) 
For the case of unconfined flow, this results in a matrix coefficient for ai 
which depends on the a priori unknown head r 

m i i -  F i i -  ~ a i  (i no sum) (5.69) 

Consequently, the set of equations becomes nonlinear and has to be solved 
iteratively! 

The analysis for the sink disc function is similar and may be obtained 
from (5.62) through (5.69) by leaving off the width w and replacing a by 
s. The sink disc functions, too, under unconfined flow conditions, give rise 
to nonlinear equations. 

P e r c o l a t i n g  Sur face  W a t e r s  

The condition (5.58) does not apply to the extreme case in which the head 
Ca in the aquifer drops below the resistance layer, creating unsaturated flow 
conditions in the aquifer underneath the stream or lake; see Figure 5.15. In 
order to deal with the situation in Figure 5.15 we will make two assump- 
tions: (1) the resistance layer (silt/clay) remains saturated, and (2) the 
pore pressure just underneath the resistance layer is atmospheric (p = 0). 
Under these conditions the outflow rate (-qz)  from the stream follows from 

d 
qz = - r > d) (5.70) 

C 
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where d is tile depth of the bot tom of the resistance layer measured from 
the water table in the stream; see Figure 5.15. After a solution is obtained, 
using equations of the form (5.67), GFLOW1 checks for the condition il- 
lustrated in Figure 5.15, eliminates the relevant equation from the matrix, 
and calculates a (= qzw) from (5.70)instead.  

When the resistance layer in Figure 5.15 is absent, so that  the stream 
is in direct contact with the aquifer material, the flow rate out of a losing 
stream is limited by assuming that  it cannot exceed tile saturated hydraulic 
conductivity of the aquifer. In so doing, we ignore the water depth in the 
s tream (incipient ponding) and assume atmospheric pressure between the 
s tream bot tom and the water table in the aquifer. If, after a groundwater  
solution is obtained, GFLOW1 detects a line sink with a negative strength 
in excess of the allowable percolation rate ( - a / w  > k), the relevant equa- 
tion is eliminated from the matrix and the strength of the line sink is set 
to 

a = - w k  (5.71) 

This limit on the infiltration capacity of a line sink is invoked only if the line 
sink has a width larger than zero. When line sinks in G F L O W l  are given 
a zero width, they will extract  or infiltrate as much water as necessary to 
meet the specified head condition at their control points. Line sinks used in 
the farfield are best given a zero width. Line sinks used in the nearfield are 
best given an appropriate  width, and preferably a resistance and resistance 
layer depth. 

A similar procedure is followed for infiltrating sink discs that  have a zero 
resistance. Percolating sink discs have a strength s which is set equal to 
- k .  Sink discs, of course, have no width parameter,  so that  for percolating 
sink discs, incipient ponding is alwavs assumed. If sink discs are used to 
model wetlands, this may be a reasonable assumption. Lakes or reservoirs, 
however, are best modeled with line sinks along their perimeter, instead of 
using sink discs. 

5 . 2 . 4  C o n j u n c t i v e  S u r f a c e  W a t e r  a n d  G r o u n d w a t e r  

F l o w  

So far, whenever a line sink or sink disc recharges the aquifer we assumed 
that  the necessary volume of surface water is available to realize the calcu- 
lated infiltration rate. In reality, however, available stream flow is often a 
limiting factor on the aquifer recharge rate of a losing, ~ and certainly of a 
percolating, stream. For instance, the condition illustrated in Figure 5.15 is 
most likely to occur in the head waters of smaller tributaries. It is question- 
able if sufficient s tream flow is available in these stream reaches to sustain 
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the recharge rate calculated with (5.70). Mitchell-Bruker (1993) pioneered 
a strategy to include steady-state stream flow calculations in analytic ele- 
ment models in order to arrive at more realistic boundary conditions. A 
brief discussion of the implementation in GFLOWl follows. 

Stream flow, in general, is thought of as consisting of two components: 
base flow (groundwater inflow) and overland flow. The term overland flow 
suggests that this part of the stream flow is due to water which runs off over 
the terrain surface and through little gullies during a rainstorm (so called 
Hortonian overland flow). Hortonian overland flow, however, is very short- 
lived; it occurs only during and shortly after a rainstorm event: storm flow. 
Traditional techniques to distinguish between base flow and overland flow 
(hydrograph separation) yield overland flow rates which are much more sus- 
tained and larger than can be explained by Hortonian overland flow alone. 
The precise nature of overland flow is still the subject of debate and re- 
search. Depending on topographical, geological, and ecological conditions, 
we envision a combination of the following mechanisms for overland flow: 
Hortonian overland flow, unsaturated groundwater flow near streams and 
tributaries ("bank storage"), and saturated groundwater flow in aquifers 
perched above the regional aquifer. 

In GFLOWl we distinguish between three different stream flow compo- 
nents. 

�9 Base flow: groundwater inflow from the regional aquifer 

�9 Overland flow: all stream flow which is not base flow or storm flow 

�9 Head water inflow: stream flow entering the head water of a stream 
in the model and coming from upstream reaches not included in the 
model. 

The overland flow and the head water inflow are specified as input data. 
The base flow is calculated during the conjunctive groundwater and surface 
water solution procedure in GFLOWl.  In order to perform these base flow 
calculations, line sinks which are used to model streams and tributaries 
are organized into stream networks. Starting at the head waters, the pro- 
gram accumulates the groundwater inflow due to each line sink, which is 
the line sink strength a times the line sink length. Any specified head wa- 
ter inflow is accounted for by adding it to the base flow of the head water 
stream section (line sink). After the initial base flow calculations, the pro- 
gram scans the stream network to correct for two cases of over-infiltration. 
First, the base flow can become negative because of losing stream reaches. 
If the stream flow, the sum of the calculated base flow and the specified 
head-water and overland flow, is locally negative, the line sink strength a 
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is adjusted to make the stream flow zero, rather than negative. The second 
case of over-infiltration may arise from the process of alternating groundwa- 
ter solutions and surface water solutions. If during a surface water solution 
some line sinks have been given a limited negative strength (recharge rate), 
then they are no longer included in the matrix during the groundwater 
solution procedure. Yet, the new groundwater solution may have changed 
the conditions at some of these stream reaches so that the recharge rate, 
dictated by available stream flow, is now in excess of what would occur 
under the new groundwater flow conditions. In such a case, (5.58) is used 
to correct the line sink strength, and that line sink is included again in 
the next groundwater flow solution. Alternatively, the stream section may 
have been given a recharge rate (in a previous iteration) that is too small 
in view of the current stream flow availability. In that case the infiltration 
rate is corrected upward and the stream flow adjusted accordingly. 

When during successive solutions no further corrections in stream flow 
occur, and the boundary conditions of the groundwater flow problem are 
sufficiently approximated, the solution procedure is completed. 

5 . 2 . 5  E x a m p l e  R u n  

To illustrate the operation of program GFLOW1 a fictitious flow problem 
is solved. The input data file for this demonstration is demo.dat and is pro- 
vided with GFLOWl.  What  follows is a brief discussion of some graphical 
output. 

The layout of analytic elements and background map features for this 
problem is plotted in Figure 5.16. The dashed lines (long dashes) in 
Figure 5.16 represent some streams and their tributaries. The lines are 
dashed to indicate that the line sink strengths are zero, and hence no solu- 
tion has been produced yet. The solid line polygon around a section of the 
stream in the center of the plot represents an area with a different (larger) 
hydraulic conductivity and areal recharge rate than the regional values. 
The large circle, over most of the domain, is a sink disc with a negative 
discharge rate used to model regional recharge due to precipitation. The 
remaining lines (short dashes) are background map features, representing 
some roads, outlining a city boundary (near center of the plot), and indi- 
cating the boundary of so-called "channel deposits" surrounding the stream 
that runs through the center of the plot. On a color screen, different col- 
ors are used to distinguish between the various analytic elements and map 
features. The streams near the center, the nearfield, are represented by 
more line sinks than those near the perimeter of the domain depicted in 
Figure 5.16, the farfield. 

After the problem is solved, contours of piezometric heads may be plot- 
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Figure 5.16: Layout of arialytic elements arid backgroririd map features for 
the demonstration problem. GFLOWl file: derno.dat 
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Figure 5.17: Piezometric contours for the problem in file demo.dat, regu- 
lar layout (left-hand figure) and line thickness proportional to stream flow 
(right-hand figure). 

ted, the dotted lines in Figure 5.17. The domain plotted in Figure 5.17 is 
considered part of the nearfield. Observe that the head waters of Potts 
Ditch's tributaries are dashed; they try to recharge the aquifer, but do not 
have the stream flow to support that  recharge. Consequently, both the 
stream flow and the line sink strength parameters are zero. To interpret 
the zero stream flow in the model, remember that  our solution is steady- 
state, and hence the dashed stream sections probably represent ephemeral 
streams, flowing only during times of high precipitation. 

In the right-hand plot of Figure 5.17, a graphical representation of the 
stream flows is provided, whereby the line thickness of the stream is pro- 
portional to the stream flow rate. The numerical values for the heads and 
the stream flows in Figure 5.17 can be obtained from the graphics screen 
in the line sink module of G F L O W l  by use of a cursor and appropriate key 
strokes. 

G F L O W l  together with an accompanying data preprocessor GAEP 
(Geographic Analytic Element Preprocessor)is called CFLOW. You may 
install GFLOW on a 386 or 486SX based PC with a math-coprocessor or 
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on a 486DX based PC. You need at least 4Mb of RAM and about 3Mb 
of disk space. To install the program, type A:INSTALL and follow the 
instructions on screen. In order to become familiar with GFLOWl ,  both 
with its capabilities and operation, you may copy the file gfintro.ps, lo- 
cated in the \gflow\doc subdirectory, to a PostScript I printer or copy the 
file gfintro.txt to a non-PostScript printer. You may also print the various 
data files (proble*.dat) in the \gflow\demo directory. Many of these files 
contain instructions pertinent to their use. The most elaborate instructions 
are found in the file probleml.dat ,  with additional instructions in succes- 
sive files (problem2.dat, etc.) as other program features are being used. 
Together with gfintro.ps these files may serve as a tutorial for the use of 
GFLOWl .  

5.3 Basic Modeling Concepts 

Although gaining in popularity, groundwater flow modeling is not univer- 
sally acclaimed. Many groundwater modeling projects, and their outcome, 
are received with a healthy amount of skepticism, and for good reason. Not 
seldom does the groundwater modeler appear to be a hobbyist absorbed 
by computer hardware and software and with an unshakable belief in the 
numbers or graphics produced by "the model." Similarly, some clients un- 
wisely accept the authority of the computer and take the modeling results 
as absolute. Not everybody, however, is equally impressed. Many ground- 
water hydrologists, painfully aware of the complexity of the problem, fail to 
see how a computer program, provided with some crude and often unreli- 
able data, can accurately describe the real world. Modeling "successes" are 
well documented, but failures are suspiciously absent from the literature. 
Mary Anderson (1983) critically addressed the often blind and unwarranted 
belief in groundwater models in an editorial in Ground Water: "The Em- 
peror Has No Clothes." Konikow (1986) documented the dismal predictive 
performance of groundwater models dealing with contaminant transport.  
Some groundwater consultants are still hesitant to engage in groundwater 
modeling; it is known to be costly and potentially controversial. 

Is groundwater flow modeling a sham? Let's hope not! The real ques- 
tion is, how can we use groundwater flow modeling in a productive and 
responsible way, improving the quality of our study and reducing its cost? 
To this end, we will redefine the role of groundwater modeling in solving 
groundwater flow problems. We will break with the classical project struc- 
ture: (1) l i terature  review, (2) field data collection, (3) data analysis, and 
(4) "construction of the model." Here, the modeling seems the purpose of 

1postScript is a trademark of Adobe Systems, Inc. 
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the study, while it should be one of the means. Instead, we will learn how 
to use groundwater modeling during all phases of the project, even during 
proposal development. We will discuss how to design simplified concep- 
tual models of a real-world problem, and explore the validity of various 
simplifications. 

5 . 3 . 1  P u r p o s e  o f  M o d e l i n g  

The first and critically important step in any modeling effort is the defi- 
nition of its purpose. Groundwater flow modeling can be done for a wide 
variety of reasons, each requiring different modeling strategies and often 
different models. Some possible modeling objectives follow, listed in order 
of increasing complexity: 

1. Illustration of known groundwater flow principles 

2. Determination of aquifer parameters 

3. Determination of geohydrological conditions 

4. Determination of groundwater flow history 

5. Prediction of future groundwater flow patterns 

6. Prediction of future contaminant movement 

7. Basic research on flow or transport phenomena 

The modeling performed in Chapter 3 can be classified under (1): illustra- 
tion of known groundwater flow principles. Since we are only concerned 
with principles, relatively simple models can handle the job. In contrast, 
when a flow or transport phenomenon is not yet fully understood, com- 
plex models are needed, since we cannot simplify what we do not (yet) 
understand. With complex we are referring to the use of either complex al- 
gorithms or many parameters, or both. Application of groundwater models 
to basic research, therefore, often requires specially designed (or modified) 
models which may need a supercomputer to run. 

Many consultants reach for the most "powerful" (read most complex) 
model when engaging in a modeling project. The argument goes as follows. 
The aquifer is stratified and laterally heterogeneous, the flow is three- 
dimensional and transient, there is dispersion, adsorption, volatilization, 
decay, bio-degradation, etc., etc ... .  Therefore, the more of these features 
are represented in the model, the more credible the modeling results are 
(and thus the more credible we are). The argument seems logical and self- 
evident, but is seriously flawed! The use of many input parameters during 



246 C H A P T E R  5. A N A L Y T I C  E L E M E N T  M O D E L I N G  

research (objective 7) is only manageable, because they do not have to be 
related to a specific field site. Instead, these parameters are chosen arbi- 
trarily and varied one by one to study their impact on the flow or t ransport  
problem under investigation. For a consultant, however, who is studying a 
particular site, multi-parameter models may pose serious data-acquisition 
problems, escalating project cost and delaying project completion. Worst 
of all, the added time, effort, and cost often fail to pay off as data un- 
certainty leads to questionable model input and thus questionable model 
output ("garbage in = garbage out"). 

A consultant who selects a model based on its many features, as if 
buying a car that  is "loaded," fails to act on the first requirement of every 
modeling project: A well-defined purpose. This purpose may be a single 
item out of the list just presented, a combination of some of these items, or 
something else. The purpose of the modeling exercise plays an important  
role in model selection, as may be illustrated by an example. 

In designing a "pump and treat system," the consultant may use model- 
ing to assist in determining the average hydraulic conductivity, the possible 
directions and magnitudes of the ambient flow, and finally the opt imum lo- 
cation(s) and discharge(s) of the recovery wells (objectives 2 through 6). 
Transport phenomena, such as dispersion and decay, are of little impor- 
tance when designing a pump and treat system. Although dispersion may 
widen the contaminant plume somewhat beyond the average groundwater 
streamlines, locally that is a small effect which usually falls within the data 
uncertainties. It can easily be accounted for by a moderate over-design 
of the system. Transient and three-dimensional flow may or may not be 
important  factors, depending on local circumstances; the same holds for 
aquifer heterogeneities. But even if such complexities need to be taken 
into account, initial basic modeling of steady-state flow in a homogeneous 
aquifer will still prove to be a valuable first step toward a more detailed 
study. 

In the next sections we will concern ourselves with the important  ques- 
tion of which phenomena to include in our modeling, and which to ignore. 
We will make these decisions based on field observations in combination 
with modeling. 

5 . 3 . 2  S t e p w i s e  M o d e l i n g  

The availability of field data is the main bottleneck for most groundwater 
studies. Uncertainties about the geology, aquifer parameters, impacts of 
surface waters, etc., compromise the design of a reliable conceptual model. 
Consequently, groundwater flow modelers have the tendency to demand 
ever more field data before feeling confident to engage in groundwater flow 
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modeling. This has traditionally led to costly data acquisition programs 
and long delays in producing results. In fact, every time new field data 
becomes available, the modeler is confronted with new complexities, which 
tend to lead to .. .  new data requests. Under this scenario, modeling is 
often declared unrealistic because "there is not enough data" available. 

There is a different way of looking at this dilemma. If truly large 
amounts of field data are collected and analyzed, many of the groundwater 
flow questions may be answered in the process; there may not be any reason 
left for modeling! The answers, however, have come at great expense. A 
better and more cost-effective approach is to perform modeling early on in 
the project, prior to and concurrently with field data collection. In fact: 

R u l e  5.1 Instead of collecting field data to guide modeling, modeling should 
be used to guide field data collection. 

Under this scenario, groundwater modeling is performed from the very be- 
ginning of the project, using what limited data is available. This initial 
groundwater modeling is used to increase the efficiency of field data col- 
lection, ensuring the right data are collected in the right place, and avoid- 
ing redundant or irrelevant data acquisition. The fewer data available at 
the outset of a project, the more potential benefit may come from (early) 
groundwater flow modeling. Taken to the extreme, this thinking leads to 
an interesting conclusion: 

R u l e  5.2 The value of groundwater flow modeling is inversely proportional 
to the availability of data. 

The suggested interactive modeling and data acquisition process is schemat- 
ically represented in Figure 5.18 and compared to the traditional approach. 

The traditional approach (left-hand flow chart) is phased in four logi- 
cal steps, each being completed before the next one is started. However, 
to minimize the risk of insutficient data during the modeling phase, data 
acquisition is often overdone. A frequent problem of the traditional ap- 
proach is that many data are not used, while critical data are still lacking 
to successfully complete the modeling. 

The stepwise modeling approach (right-hand flow chart) is designed to 
optimize the use of (expensive) data. The initial modeling is performed 
by use of basic data that are readily available from topographical and geo- 
logical maps, and existing regional studies. Where necessary, model input 
parameters are estimated, while various values may be used in the model 
in order to assess their relative importance (sensitivity testing). Based 
on these initial modeling results, a data acquisition program is developed. 
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Figure 5.18: Traditional modeling and stepwise modeling. 

Data acquisition may imply actual measurements in the field, extraction of 
data from existing maps and reports, or both. The new data are used to 
refine the (conceptual) model. The analysis of subsequent modeling results 
may lead to a reinterpretation of existing data, which in turn may lead 
directly to an improved (refined) model, or may require additional data 
collection before the model can be refined; see Figure 5.18. The process is 
repeated until satisfactory results are obtained. 

It is important, during this process, to keep the modeling objective(s) 
in mind. Rather than trying to produce a perfect match between observed 
and modeled piezometric heads, for instance, the modeler should verify if 
sufficient insight into the flow problem is obtained to answer the question(s) 
that led to the study. For example, consider the following situation. 

A study is performed to assess whether or n o t  a particular well, near 
a documented contaminant spill, may become polluted. No pumping test 
has been conducted, leaving much uncertainty about the aquifer hydraulic 
conductivity. Several modeling runs are performed with different values 
for the regional hydraulic conductivity. Comparing modeled piezometric 
head distributions with observed heads does not lead to a single value for 
the hydraulic conductivity. If the heads compare well with observations in 
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one area, they appear to be in error elsewhere. Additional data collection 
may improve the modeling results for instance, by spatially varying 
the aquifer recharge and hydraulic conductivity. However, all modeling 
runs suggest that the contaminant plume will comfortably miss the well. 
The uncertainties in the data, therefore, are irrelevant, and further data 
collection or modeling is not justified. 

5 . 3 . 3  D e s i g n i n g  C o n c e p t u a l  M o d e l s  

Our computer models, whether simple or complex, are mathematical rep- 
resentations of conceptual models. A conceptual model may be defined as 
follows: 

R u l e  5.3 A conceptual groundwater flow model is a simplification of a real- 
world groundwater problem such that (1) it captures the essential features 
of the real-world problem and (2) it can be described mathematically. 

Condition (2) needs little explanation: The sole purpose of our simplifi- 
cation is to make the problem fit one of our mathematical models (e.g., 
computer models). Condition (1) is the difficult one. When is a conceptual 
model an acceptable simplification of reality? The design of a conceptual 
model is not a simple, straightforward procedure, and it is certainly not 
objective! In this phase of the modeling exercise, we have to rely on the 
expertise and judgment of the groundwater hydrologist. Groundwater flow 
modeling, therefore, has often been termed an art instead of a science. Of 
course, it is both. The groundwater modeler must combine his technical 
knowledge with his personal creativity to come to a successful modeling 
project, much like an architect or engineer comes to a successful design. 
And just like the architect and engineer, the groundwater modeler (not the 
model) is solely responsible for the project outcome. Incidentally, some at- 
tempts are being made to exercise quality control by certifying groundwater 
flow models. This is, for reasons outlined earlier, just as futile as certifying 
the pencils, erasers, and drawing boards of architects and engineers. 

There are four important ingredients that go into the design of a con- 
ceptual model: 

1. Familiarity with capabilities (and limitations) of available models 

2. Insight into the regional and local geology 

3. Well-defined modeling objective(s) 

4. Good understanding of hydraulics 
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First some comments on the choice of a mathematical  (computer) model. 
It is generally accepted that the logical sequence of events is first the design 
of a conceptual model and then the choice of a mathematical  (computer) 
model that  fits this conceptual model. In fact, designing a conceptual model 
with a particular computer model in mind is seen as improper: A biased 
reversed procedure to favor some subjective model preference. However, 
there is more to a computer model than the conceptual models to which it 
fits. Reliability, operational efficiency, and simply the modeler's familiarity 
with the software are important factors in selecting a model. Therefore, 
as long as the conceptual model captures the essential real-world features, 
defined with the modeling objective(s) in mind, the use of simple and op- 
erationally convenient software is justified, even smart. Besides, if initial 
results indicate that the model is inadequate, they still form a nice first step 
toward a more comprehensive modeling effort, using a more sophisticated 
model. 

Insight into the geology (item 2) is basic to any modeling effort. There 
are many questions to be asked. Which geologic formations constitute 
our aquifer'? Do we have one or more aquifers? Are they interconnected? 
Which formations act as aquitards (low permeability) or aquicludes (no 
permeability)? How to translate the geology into a conceptual model de- 
pends, in part, on the modeling purpose (item 3). For instance, if we are 
interested in piezometric heads and flow patterns oil a regional scale, many 
individual but interconnected aquifers may be combined into one homoge- 
neous aquifer. On the other hand, if we seek to model local contaminant 
movement, the various aquifer strata and their interconnections may need 
to be represented explicitly in the conceptual model. How lumping together 
different geological formations affects regional or local modeling results re- 
quires a good understanding of hydraulics (item 4). 

Examples 

The design of conceptual models can best be illustrated with a few simple 
examples. In Figure 5.19 a cross-section is depicted over a hypothetical 
real-world aquifer system together with its conceptual model. Keep in 
mind that all cross-sections have an exaggerated vertical scale! The real 
world situation exhibits, from top to bottom, a silty, clayey till interspersed 
with sand lenses and locally interrupted by a silty sand. Below the till we 
find various sand and gravel formations with some isolated clay lenses. The 
rock that  underlies these formations is partially fractured, mostly at the 
top with fewer tighter fractures deeper in the rock formation. 

The conceptual model represents the sand and gravel formations, to- 
gether with the upper (fractured) portions of the rock, as one homogeneous 
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Figure 5.19: Cross-section over real-world aquifer system and its conceptual 
model. 
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confined aquifer with a horizontal impermeable bottom and a horizontal 
upper aquitard. The clay lenses and variations in sand or gravel contents 
are ignored. The aquifer recharge, which in the real-world system varies in 
time and in space, is replaced by an average recharge rate that is constant 
in both time and space. 

There are three reasons for the simplification depicted in Figure 5.19: 

1. The detailed geological information depicted in Figure 5.19 is simply 
not available, certainly not on a regional scale. 

2. Even if such data were available, it is undoable to represent every 
clay lens, sand lens, gravel pocket, etc., in a mathematical model, 
particularly on a regional scale. 

3. On a regional scale, the piezometric head distributions (and thus flow 
patterns) for the two conceptualizations in Figure 5.19 are virtually 
indistinguishable. 

The truth of the last statement is not self-evident, but may be under- 
stood from the concept of a representative elementary volume (REV). In 
Section 2.1 we argued that tile complex flow patterns oil the scale of indi- 
vidual soil pores can be replaced by average flows on a scale at or beyond 
the REV. We may also think of an REV at or beyond which the complex 
flow patterns in the real world aquifer can be replaced by the average flow 
patterns in the conceptual model; see Figure 5.19. Strictly speaking, the 
scale of the REV must be determined experimentally, but in practice it is 
often based on intuition. 

Another example is given in Figure 5.20, where part of a surface geolog- 
ical map is reproduced. Some of the streams are surrounded by depositions 
of sand and gravel referred to as channel deposits, alluvium, or outwash, 
depending on the geological formation process. In many cases the channel 
deposits extend down to the aquifer base (bedrock); see inset in Figure 5.20. 
The channel deposits have a significantly higher conductivity than the sur- 
rounding till aquifer. When modeling flow on a regional scale, the scale of 
Figure 5.20, the higher hydraulic conductivity of the channel deposits may 
be ignored, using a single average hydraulic conductivity for the sand and 
silt layers in the till. At that scale the channel deposits, however, do affect 
the way the streams are represented in tile conceptual model. The streams 
without channel deposits are given a resistance to inflow or outflow, while 
the streams with channel deposits are represented in the model without any 
resistance; see Figure 5.14. 

The situation is different when modeling flow on a more local scale. 
For instance, imagine there is a well field in the outwash aquifer (chan- 
nel deposits) north of the town Greenfield, inside the circle in Figure 5.20. 
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Figure 5.20" Regional flow modeling using an average hydraulic conduc- 
tivity. Streams with channel deposits are given no resistance to inflow or 
outflow. 
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Figure 5.21: Including the channel deposits for local flow modeling. 
(GFLOW1 file: proble51.dat) 

When modeling the flow due to the well field, the difference in conductivity 
between the outwash or channel deposits and the till should be included 
explicitly. The channel deposit boundaries on both sides of the river are 
modeled in GFLOW1 by an inhomogeneity area (string of line doublets) 
with an increased hydraulic conductivity and areal recharge rate on the 
inside. To illustrate this, a close-up of the analytic element layout and 
background map in Figure 5.16 is shown in Figure 5.21. The dashed lines 
represent roads, a city outline, and the outwash or channel deposit bound- 
aries on either side of the river in the center of Figure 5.21. Only a portion 
of the channel deposits are modeled by the inhomogeneity area: The re- 
maining channel deposits, away from the area of interest (city and well), are 
treated in the same way as in the regional model: connecting the stream 
to the aquifer with little or no resistance. The adequacy of this limited 
representation of the channel deposits is readily tested by extending the 
inhomogeneity in the model farther along the river and veri .fying that  it 
does not indeed affect the solution in the area of interest. 

R u l e  5.4 In a regional scale model, highly permeable channel deposits near 



5.3. B A S I C  M O D E L I N G  C O N C E P T S  255 

streams are incorporated by giving little or no resistance to those streams. 
On a local scale, the channel deposits need to be incorporated explicitly as 

an area of higher conductivity. 

Exactly what can and cannot be ignored in a conceptual model is not 
always intuitive. It requires modeling experience to design useful and re- 
sponsible conceptual models, maintaining essential features while ignoring 
secondary effects. It may be necessary to test the adequacy of a concep- 
tual model by comparing the modeling results of conceptual models with 
different complexity, which is the subject of the remainder of this section. 

Exe rc i se  5.1 Test the adequacy of the extent of the inhomogeneity area 
in Figure 5.21 by following the instructions in the data file proble51.dat 
included on the distribution diskette. 

5 . 3 . 4  D u p u i t - F o r c h h e i m e r  v e r s u s  T h r e e - D i m e n s i o n a l  

F l o w  

The flow patterns in, for instance, Figure 5.19 are clearly three-dimensional, 
which suggests the need for a three-dimensional flow model. Yet, in Chap- 
ter 3 I argued that regional groundwater flow in aquifers that are thin 
relative to their lateral extent may be treated as Dupuit-Forchheimer flow; 
see Figure 3.1 and Figure 3.2. The question then is, when do we consider 
the aquifer thin relative to its lateral extent? In fact, what really matters 
is the thickness of the aquifer compared to the distance between bound- 
ary conditions (streams, lakes, etc.). To gain insight in this issue we will 
compare some three-dimensional flow solutions with Dupuit-Forchheimer 
solutions. 

P a r t i a l l y  P e n e t r a t i n g  Wells  

In Figure 3.20 in Section 3.1.12 we investigated the flow from a recharge 
well toward a discharge well. Both wells were fully penetrating wells re- 
sulting in Dupuit-Forchheimer flow. In Figure 5.22, the fully penetrating 
wells are replaced by partially penetrating wells. The three-dimensional 
solution for a partially penetrating well in a confined aquifer is discussed in 
Section 4.2.1. The pumping and injection rate for the wells in Figure 5.22 
is 50 GPM. The wells are screened from 15 feet above the aquifer bottom to 
15 feet below the aquifer top, and are 200 feet apart. The aquifer is 50 feet 
thick and has a hydraulic conductivity of 10 ft/day. In Figure 5.22 piezo- 
metric contours are plotted along the aquifer top and in a cross-section over 
the wells. In the cross-section, the piezometric contours in the immediate 
vicinity of the well are omitted, since they are too close together for the scale 
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Figure 5.22: Piezometric contours in plan view and cross-section for a par- 
tially penetrating well doublet. Tile plan view is taken along the upper 
aquifer boundary. The dotted contours are from a Dupuit-Forchheimer 
solution. (GFLOW1 file: proble52.dat) 
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of Figure 5.22; they would obscure the position of the well screen. The dot- 
ted lines in the plan view contour plot represent the Dupuit-Forchheimer 
solution (presented earlier in Figure 3.20). 

It is observed from Figure 5.22 that the three-dimensional effects are 
very local: They are limited to a zone that extends one to two times the 
aquifer thickness out from each well. Replacing a partially penetrating 
well by a fully penetrating well, therefore, is of little consequence for the 
groundwater flow solution on a regional scale. The effect is significant, 
however, in the immediate vicinity of the well. For instance, for the case 
of Figure 5.22, the head in the partially penetrating pumping well is 81.72 
feet, while the head is 88.56 feet if the wells would be fully penetrating. As 
it seems, drawdowns in pumping wells in a Dupuit-Forchheimer model tend 
to be underestimated. Unfortunately, the Dupuit-Forchheimer solution is 
not conservative in this case: We may overestimate the pumping capacity 
of wells when considering allowable drawdowns in these wells. We should 
also become cautious when interpreting pumping test data obtained from 
piezometers that are relatively close to the well, where heads may vary with 
depth, a fact not accounted for in most pumping test evaluation methods. 

E x e r c i s e  5.2 Try several different well configurations to study the three- 
dimensional effects of partially penetrating wells by following the instruc- 
tions in the data file proble52.dat included on the distribution diskette. 

Recharge Zones 

Groundwater recharge areas, by their nature, must exhibit vertical compo- 
nents of flow. In fact, at a water divide there is only vertical flow. Conse- 
quently, some hydrologists are uncertain about using Dupuit-Forchheimer 
approximations in the presence of local or regional recharge. The au- 
thor compared three-dimensional solutions to circular recharge areas with 
Dupuit-Forchheimer solutions (Haitjema, 1987a). What follows is a sum- 
mary of the results presented in that paper. 

The first problem is that of a circular recharge area (percolating pond) at 
the center of a circular island, the conceptual model of which is presented in 
Figure 5.23. The problem is somewhat contrived, but useful for testing the 
validity of the Dupuit-Forchheimer assumption under conditions of local 
recharge. The recharge area is modeled by a source disc of constant strength 
located at the aquifer top. The three-dimensional solution for a sink or 
a source disc is discussed in Section 4.2.2. The two no-flow boundaries 
(aquifer top and bottom) are included by use of images and semi-infinite 
line sources to approximate remote images, as was done for the partially 
penetrating well; see Section 4.2.1. For more details on the mathematics of 
this problem, refer to Haitjema (1987a). 
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Figure 5.23 �9 Percolating pond (circular recharge area) at the center of a 
circular island. (GFLOW1 file: proble53.dat) (After Haitjema, 1987a.) 

In Figure 5.24, cross-sections through the equipotential surfaces near 
the pond are presented for three different radii of the pond: R = 0.5H, R = 
3H, and R = 6H, where H is the aquifer thickness. The solid lines are verti- 
cal sections through the three-dimensional equipotential surfaces, while the 
dotted lines are sections through the corresponding Dupuit-Forchheimer 
surfaces. The actual equipotential surfaces are obtained by revolving the 
solid or dotted lines around the axis of the pond, the left-hand boundary of 
Figure 5.24. The equipotential surfaces are labeled in terms of the dimen- 
sionless property k r  where k is the aquifer hydraulic conductivity, r 
is the piezometric head, and a is the infiltration rate of the pond. The head 
at a distance L from the center of the pond is constant and equal to r 
For the case of Figure 5.24, it is given that  L / H  = 100, and r  = 1. 

Observe that  for all three cases the three-dimensional and 
Dupuit-Forchheimer solutions start to coincide at approximately one 
aquifer thickness away from the boundary of the pond. This localized 
three-dimensional effect is consistent with what we saw in Figure 5.22 for 
the case of partially penetrating wells. Also note that  when the size of the 
recharge area increases, the Dupuit-Forchheimer solution becomes more 
acceptable u n d e r n e a t h  the recharge area as well. However, at the center of 
the pond, where there is a water divide, the flow is purely vertical, and the 
Dupuit-Forchheimer solution fails regardless of the size of the pond. 

In Figure 5.25, truly three-dimensional streamlines are compared with 
approximate three-dimensional streamlines in the Dupuit-Forchheimer 
model. The calculation of these approximate three-dimensional stream- 
lines is discussed in Section 3.5. The length of each streamline reflects the 
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Figure 5.24: Cross-section over piezometric surfaces for ponds of three dif- 
ferent radii. The solid lines represent the three-dimensional solution and the 
dotted lines represent the Dupuit-Forchheimer solution. (After Haitjema, 
1987a.) 
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Figure 5.25: Streamlines for tile three ponds. Tile solid lines represent 
truly three-dimensional streamlines, while the dotted lines are approximate 
streamlines in the Dupuit-Forchheimer model. (After Haitjema, 1987a.) 
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Figure 5.26: Cross-section over streamlines for a pond in a uniform flow 
field. The solid lines represent truly three-dimensional streamlines, while 
the dotted lines are approximate streamlines in the Dupuit-Forchheimer 
model. (After Haitjema, 1987a.) 

same residence time for a water particle that  travels along that  streamline. 
This residence time is reported in Figure 5.25 by the dimensionless property 
at/nil,  where t is the residence time and where n is the effective aquifer 
porosity. Only for the small recharge area (R/H = 0.5) are there significant 
discrepancies, and then mostly underneath or near the pond. For tile case 
of R/H = 6, the differences between the approximate and exact streamlines 
are nearly indistinguishable on the scale of Figure 5.25. 

So far we have considered radially symmetric flow, rarely encountered 
ill reality. A nonr-radially symmetric solution is obtained by placing the 
recharge area in a regional uniform flow field. Tile Dupuit--Forchheimer 
solution to this problem is discussed ill Section 3.2.4. 

Ill Figure 5.26, a cross-section is presented over the streamlines in tile 
plane through the center of the pond parallel to tt~e uniform flow direction. 
Two cases are considered in Figure 5.26: A pond with a radius equal to 
the aquifer thickness, and a pond with a radius equal to five times the 
aquifer thickness. The uniform flow rate Q0 in Figure 5.26 is given by 
the dimensionless property 2Qo/(aR) = 1, which is the special case for 
which the Dupuit  Forchheimer solution exhibits a stagnation point at the 
upst ream boundary of tile pond. 

Plan views of streamlines, emanat ing at tile pond outside this symmetry  
plane, are presented in Figure 5.27. The upper half of tile figure is for the 
pond with radius R = H, while the lower half is for the case with radius 
R = 5H. Therefore, the scales for the two tmlves are different. The tick 
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Figure 5.27: Pla~i view of streariiliries errlariatirig from the poiid b o t t o m  
Upper half for pond with radius 12 I ! ,  bottom half for pond with radius 
R = 5 H .  (After Haitjerna, 1987s.) 
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marks on the streamlines indicate the depth of the streamline with respect 
to the aquifer top. Each subsequent tick mark indicates a depth increase 
of 0.1H. The solid lines are the truly three-dimensional streamlines, while 
the dotted ones are the Dupuit-Forchheimer streamlines. 

If the water in the pond were polluted, it would create a three- 
dimensional plume of contaminants in the aquifer. A cross-section over that 
plume, taken a pond diameter away from the center of the pond, is plotted 
in the right-hand part of Figure 5.27. The solid lines in the cross-section 
reflect the boundary of the plume resulting from the three-dimensional flow 
patterns, ignoring diffusion and dispersion. The dotted lines represent the 
boundary of the plume in the Dupuit-Forchheimer model. 

For the large diameter pond, bottom half of Figure 5.27, the dis- 
crepancies between the truly three-dimensional flow patterns and the 
Dupuit-Forchheimer flow patterns are slight. The differences are more sig- 
nificant for the smaller pond (upper half of Figure 5.27). Particularly, the 
contaminant plume is wider near the top of the aquifer than predicted by 
the Dupuit-Forchheimer solution. Unfortunately, the Dupuit-Forchheimer 
solution is not conservative for this case: It underestimates the true width 
of the plume. 

Overall, it seems that the Dupuit-Forchheimer approximation is accept- 
able, except if the size of the recharge area is of the same order as the aquifer 
thickness or smaller, or when considering the flow near stagnation points un- 
derneath the recharge area (center of the pond in Figure 5.24 and upstream 
boundary of the pond in Figure 5.26). When considering areal recharge due 
to rainfall, the "recharge area" is the entire flow domain, which is usually 
orders of magnitude larger than the aquifer thickness. Under these condi- 
tions both the piezometric head surfaces as well as the streamlines can be 
approximated quite well with a Dupuit-Forchheimer model. 

Exe rc i s e  5.3 Combine uniform flow, a three-dimensional pond, and a par- 
tially penetrating well in one problem, by following the instructions in the 
data file proble53.dat included on the distribution diskette. 

T o t h ' s  S o l u t i o n  to  R e g i o n a l  F low 

The preceding conclusion, establishing the adequacy of the Dupuit-  
Forchheimer solution for regional flow, seems at odds with classical work 
by Toth (1963). Toth studied regional groundwater flow in relatively deep 
homogeneous aquifers. He assumed that the upper aquifer boundary, the 
groundwater table, would be a subdued copy of the topography, and pre- 
sented an analytic solution to the boundary value problem in Figure 5.28. 
All sides of the domain are no-flow boundaries, except for the upper bound- 
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Figure 5.28: Boundary conditions for Toth's analytical solution to approx- 
imate regional flow. 

ary, at which a piezometric head distribution is imposed that is derived 
from a hummocky topography. The vertical no-flow boundaries represent 
symmetry planes for a flow problem that extends well beyond the aquifer 
section depicted in Figure 5.28. The oscillating piezometric head is applied 
to the horizontal upper boundary of the rectangular flow domain. Since 
the aquifer thickness H is large as compared to the piezometric head (wa- 
ter table) fluctuations, the conceptual model in Figure 5.28 is an acceptable 
representation of the intended unconfined flow problem. 

The analytic solution produces equipotential surfaces (lines in the 
two-dimensional cross-section) which are reproduced in Figure 5.29. The 
streamlines in Figure 5.29 are sketched in as lines perpendicular to the 
equipotentials. The flow patterns exhibit local shallow flow systems as well 
as large-scale, deeper flow systems. Toth carried out his analyses for var- 
ious aquifer configurations and concluded that regional flow is, in general, 
characterized by three types of flow: regional, intermediate, and local flow 
systems (see Figure 5.30). Vertical flow is apparent in all of these sys- 
tems, regardless of the scale. Others have expanded on this work (Freeze 
and Witherspoon, 1967), and it is generally accepted as defining the ba- 
sic concepts of "regional flow" (Freeze and Cherry, 1979). The diagram 
in Figure 5.30, therefore, is largely responsible for the perception that ver- 
tical flow plays an important role in regional groundwater flow systems, 
seemingly discrediting the Dupuit-Forchheimer approximation to regional 
flOW. 
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Figure 5.29: Equipotentials and streamlines in a deep regional aquifer as 
presented by Toth. (After Toth, 1963.) 

Figure 5.30: Toth's perception of regional, intermediate, and local flow. 
(After Toth, 1963.) 
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Figure 5.31: Recharge distribution for Toth's solution to regional flow for 
the case of k = 0.06 ft/day. (After Mitchell-Bruker, 1993.) 

There are, however, three underlying assumptions in Toth's work which 
make it unsuitable for application to the type of groundwater flow systems 
we are concentrating on in this text: Usable aquifers from a water resources 
perspective. These assumptions are: 

1. The depth and lateral extent of the aquifer are of the same order of 
magnitude. 

2. The water table is controlled by the topography. 

3. The aquifer hydraulic conductivity is relatively low. 

The last assumption, a low hydraulic conductivity, is not explicitly stated 
in Toth's work, but appears necessary in order to allow for the solution pre- 
sented in Figure 5.29 (see Mitchell-Bruker, 1993). Mitchell-Bruker (1993) 
showed that the aquifer recharge rate for Toth's solution oscillates in phase 
with the water table and the topography; see Figure 5.31. It is positive 
at topographical highs and negative at topographical lows. The extreme 
recharge rates can only be realized, however, for a relatively low aquifer 
::ydraulic conductivity, less than 0.1 feet per day. For larger hydraulic con- 
ductivities, the recharge rate would exceed the available (average yearly) 
rainfall. An aquifer with such a low hydraulic conductivity is usually of 
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Figure 5.32: Low permeable aquifer with a topography controlled water 
table (a) and highly permeable aquifer with a recharge controlled water 
table (b). 

little interest as a groundwater resource; it is not a "usable aquifer" from 
a regulatory perspective. 

The difference between regional flow in a low permeable aquifer (say 
< l f t /day)  versus that  in a highly permeable aquifer (say > 10ft/day) is 
illustrated in Figure 5.32. The only difference between the aquifers in Fig- 
ures 5.32a and b is the hydraulic conductivity. If the potential recharge 
rate Np could be infiltrated into the low permeable aquifer, the resulting 
water table would be the dashed line; see Figure 5.32a. The actual wa- 
ter table, however, is controlled by the topography, leading to a varying 
actual recharge rate Na, which is positive at topographical highs and neg- 
ative at topographical lows. The negative recharge rates (discharges) in 
the low permeable soils are in most areas small enough to be removed by 
evapotranspiration, rather than forming perennial surface waters. 

In Figure 5.32b, where the hydraulic conductivity is high, the water 
table due to the potential recharge rate Np remains below the terrain sur- 
face. In this case the actual recharge rate Na equals the potential recharge 
r a t e  Np. Discharge of the relatively high infiltration rate Np occurs mostly 
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Figure 5.33: Regional, intermediate, and local flow occurring in different 
aquifers, each exhibiting Dupuit-Forchheimer flow. 

in perennial or ephemeral surface waters, two streams and a wetland in 
Figure 5.32b. 

R u l e  5.5 In low permeable aquifers (clayey till), the groundwater table 
may closely follow the topography, while in highly permeable aquifers (sand 
and gravel) it is controlled by areal recharge and the presence of surface 
waters. 

When discussing regional flow, therefore, it is important  to distinguish 
between the "usable aquifers," which are relatively permeable and shal- 
low, and the deep aquifer basins which on average have a relatively low 
permeability. In a general sense, however, Toth's concepts of regional, 
intermediate, and local flow remain valid for the case of stacked highly 
permeable aquifers. The different flow systems, however, will usually oc- 
cur in different aquifers, as illustrated in Figure 5.33. The upper shallow 
aquifer in Figure 5.33 exhibits local flow. The aquifer below that  supports 
mostly intermediate flow, while further down flow occurs only between ma- 
jor streams on a large regional scale. Each of the aquifers, however, exhibits 
Dupuit-Forchheimer flow. Flow systems like the one in Figure 5.33 can be 
modeled effectively by multi-aquifer models, which are also called quasi 
three-dimensional models. 

A last comment on topographically controlled water tables. A highly 
permeable regional aquifer may be overlain by a less permeable till forma- 
tion. In such formations many local perched groundwater flow systems may 
occur. This is illustrated in Figure 5.34, where the till is envisioned as a 
mixture of silt and fine sand with many clay lenses. Shallow piezometers 
will tap these perched groundwater flow systems; see Figure 5.34. These 
many perched water tables may be mistaken for the regional groundwater 
table, which has lead to the widespread belief that the concept of topogra- 
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Figure 5.34: Perched water tables controlled by topography and regional 
piezometric surface controlled by recharge and surface waters. 

phy controlled water tables is universally true. However, the actual regional 
"water table" (more accurately: piezometric surface), which is exhibited in 
deeper piezometers (Figure 5.34), does not follow the topography, but is 
controlled by the areal recharge and the presence of surface waters, as in 
Figure 5.32b. 

C o n c l u s i o n  

Three-dimensional effects appear to be significant only within one or two 
aquifer thicknesses from a three-dimensional feature (Figure 5.22). If the 
three-dimensional feature is a recharge area that is many times the aquifer 
thickness in size, three-dimensional effects are only significant within one 
or two aquifer thicknesses from a stagnation point, and only when it occurs 
underneath that area (Figure 5.26). Consequently, in highly permeable re- 
gional aquifers, with surface waters being many aquifer thicknesses apart, 
groundwater flow can be adequately described with a Dupuit-Forchheimer 
model. When the distance between boundary conditions is close compared 
to the aquifer thickness, however, a three-dimensional solution may be 
needed (see Figure 5.29). 

5 . 3 . 5  H o m o g e n e o u s  v e r s u s  H e t e r o g e n e o u s  A q u i f e r s  

Homogeneous aquifers do not exist, period. Even aquifers that consist of 
seemingly uniform sand will show both stratification and lateral variations 
in composition, which will cause the hydraulic conductivity to vary in all 
directions. The geological processes that created the subsurface formations 
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which make up our aquifers and separating aquitards or aquicludes are ex- 
tremely varied. Some parts of an aquifer are wind-blown deposits; others 
are settlements of slow- or fast-flowing surface waters. Advancing and re- 
treating glaciers, changing riverbeds, etc., all contribute to variations in 
aquifer materials and structure, which in turn result in significant changes 
in hydraulic conductivity, often of several factors. 

In Section 5.3.3 I discussed the impracticality of trying to represent the 
actual complex geology in our mathematical  models. I justified the schema- 
tization illustrated in Figure 5.19 by pointing out that  we generally lack the 
field data to recreate reality in full detail, and even if we could, it would be 
impractical to implement it all in a mathematical  model. Most importantly, 
I argued in Section 5.3.3 that  there is little need to include all aquifer in- 
homogeneities, since their impact on the piezometric head distribution is 
negligible, at least on a regional scale. And herein lies the catch! Locally, 
aquifer heterogeneities will definitely manifest themselves, so at what scale 
can we ignore them'? 

In this section we will take a closer look at the impact of variations 
in conductivity on our groundwater flow solutions. I will distinguish be- 
tween two kinds of aquifer heterogeneities: vertical variations in conductiv- 
ity (aquifer stratification) and lateral variations in conductivity. 

Stratified Aquifers 

In Section 3.4.2 we learned that vertical variations in hydraulic conductivity 
can be incorporated in a Dupuit-Forchheimer model by use of Girinski 
(1946) potentials. For stratified aquifers, which contain layers with different 
but constant hydraulic conductivity, a set of discharge potentials can be 
defined, one for each layer, which, added together, form the comprehensive 
discharge potential for the stratified aquifer; see Section 3.4.2. 

Under confined flow conditions, the piezometric head distribution will 
be the same, regardless of whether we represent the aquifer as stratified 
or homogeneous, provided that  the homogeneous aquifer has an average 
hydraulic conductivity as defined by (3.268): 

k = EiS=l kiHi (5.72) 

E i= 1 H i  

where kiHi is the transmissivity of the ith layer. In unconfined aquifers, 
however, the piezometric head distributions in homogeneous and stratified 
aquifers differ. In Figure 5.35, the flow problem of Figure 3.16 has been 
reproduced, except that the discharges of tile two wells have been increased 
and the aquifer height has been raised from 50 ft to 60 ft in order to create 
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larger drawdowns near the wells. The aquifer in Figure 5.35 has two layers: 
a 40-foot thick layer with a hydraulic conductivity of 70 f t /day and above 
that  a 20-foot thick layer with a hydraulic conductivity of 10 ft/day. If 
fully saturated, the transmissivity of the aquifer is 40 x 70 + 20 x 10 - 3000 
ft2/day. The dotted piezometric contour lines in Figure 5.35 are produced 
by G F L O W l  in a homogeneous aquifer 60 feet thick and with a hydraulic 
conductivity of 50 ft /day, which results in the same transmissivity as for the 
stratified aquifer (60 x 50 - 3000 ft2/day), provided the aquifer is fully sat- 
urated. The solid contour lines in Figure 5.35 are produced by SLAEMS 2, 
which includes the stratification discussed earlier. The differences between 
the piezometric head distributions in GFLOWl  and SLAEMS are the re- 
sult of different transmissivities in the two models due to unconfined flow 
conditions. The dropping water table near the wells reduces the saturated 
thickness and thus the transmissivity. In the homogeneous aquifer, the 
transmissivity is reduced proportionally to the reduction in saturated thick- 
ness. In the stratified aquifer, however, the upper 20 feet of the aquifer has 
a relatively low hydraulic conductivity, resulting in only a small reduction 
in transmissivity when the water table is lowered in that zone. Only when 
the water table is lowered into the bottom 40 feet of the aquifer, where 
the hydraulic conductivity is 70 ft/day, does the transmissivity reduction 
become more significant. 

In Figure 5.36 the same situation is depicted as in Figure 5.35, except 
that  the aquifer in Figure 5.36 has six layers each 10 feet thick, and with 
hydraulic conductivities of, from bottom to top, 10, 80, 10, 110, 30, and 
60 f t /day,  respectively. This stratification represents the maximum con- 
trast in hydraulic conductivities (10/110) that  should be a t tempted in a 
Dupuit-Forchheimer model. In fact, it is advisable to keep the contrast in 
conductivities below a factor of 10. When larger differences in hydraulic 
conductivities are encountered, the strata should be modeled as multiple 
aquifers. The transmissivity for the aquifer, when fully saturated, equals 
3000 ft2/day. Again, the solid lines are the piezometric contours in the 
stratified aquifer, while the dotted lines represent the contours in the homo- 
geneous aquifer using the same average hydraulic conductivity of 50 ft /day. 
Notice, that  the differences between the head distributions are much less 
for this case of six layers than for the two-layer case; compare Figure 5.35 
with Figure 5.36. The largest differences occur near the wells, where the 
drawdowns are the largest. 

It seems that  aquifer stratification in unconfined aquifers does affect the 
piezometric head distributions, in particular where large drawdowns occur. 
However, when the stratification is sufficiently random, and when the av- 

2SLAEMS is a trademark of Strack Consulting, Inc. 
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Figure 5.35: Head contours near two wells in a homogeneous aquifer (dotted 
lines) and in a stratified aquifer (solid lines) with two layers. 

Figure 5.36: Head contours near two wells in a homogeneous aquifer (dotted 
lines) and in a stratified aquifer (solid lines) with six layers. 
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erage transmissivity in the homogeneous aquifer is chosen sufficiently close 
to the (average) transmissivity of the stratified aquifer, the homogeneous 
aquifer representation will yield fairly accurate solutions in terms of the 
piezometric head, and thus in terms of the discharges. 

R u l e  5.6 When solving for piezometric heads, aquifer stratification may be 
ignored as long as the groundwater flow is confined. Under unconfined flow 
conditions, however, ignoring stratification will lead to some differences in 
piezometric heads, mostly in areas of large drawdowns. 

Uncerta inty  in Groundwater  Flow Velocit ies 

As explained in Section 3.4.2, the specific discharge at a particular location 
is directly proportional to the hydraulic conductivity in each stratum, and 
hence varies with depth (see Figure 3.52). Consequently, the groundwater 
velocity will also vary with depth. Furthermore, the groundwater flow 
velocity is also inversely proportional to the porosity, which is also likely to 
be different for each stratum. 

R u l e  5.7 Both the specific discharges and the groundwater flow velocities 
are significantly different in stratified aquifers and in homogeneous aquifers. 
This is true even if the transmissivities of both aquifers are the same. 

A consistent uniform stratification, throughout the model domain, is 
unlikely to occur. Often times, the stratifications observed in different 
bore holes correlate poorly, so that water particles traveling at a particular 
elevation in the aquifer will encounter formations of different hydraulic con- 
ductivity and porosity. In view of the often nearly random distribution of 
the hydraulic conductivities, it is difficult, if not impossible, to determine 
groundwater flow velocities accurately. Our homogeneous aquifer represen- 
tation provides us with an average value at ally point in tile aquifer, but 
that velocity is probably not representative of the actual velocity at that 
point. 

Lateral Inhomogene i t i e s  

The flow patterns in Figure 3.55 in Section 3.4.5 suggest that the effect of a 
lateral inhomogeneity oil an existing flow field is rather local. However, that 
conclusion is based on only a single circular inhomogeneity in an originally 
uniform flow field. What  will be the effect of several arbitrarily shaped 
inhomogeneities? 

In the left-hand diagram of Figure 5.37, I reproduced Figure 3.17 in 
Section 3.1.10, except I moved the reference point from its position at the 
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Figure 5.37: Well in a uniform flow field in a homogeneous aquifer (left) 
and in a heterogeneous aquifer (right). 

well (see data file problem2.dat) to a distance of 1000 feet to the left of the 
well. In Figure 5.37, 20 streamlines were started at the left hand side of 
the flow domain. The streamline starting positions are spaced uniformly 
along the domain boundary and do not form a flow net (streamlines and 
equipotentials do not form squares) like that in Figure 3.17, as is apparent 
from Figure 5.37. In the right-hand diagram of Figure 5.37, four arbitrarily 
shaped domains have been added with hydraulic conductivities in the range 
of 5 to 150 ft/day. The background hydraulic conductivity is 50 ft /day,  the 
same as in the left-hand diagram. One of the inhomogeneities is positioned 
in such a manner that  it contains the well. 

As may be observed from Figure 5.37, the streamlines and equipoten- 
tials in the inhomogeneous aquifer are irregular, but exhibit the same trend 
as those in the homogeneous aquifer. For instance, if on average the hy- 
draulic conductivity in a heterogeneous aquifer is the same as in a homoge- 
neous aquifer, then the average capture zone width will be the same in both 
aquifers, although locally they may differ. The capture zone boundaries in 
Figure 5.37 occur inside the streamline channels that  are marked with a 
"b" at the left-hand boundary of the flow domain. The irregular piezomet- 
ric contour lines on the right in Figure 5.37 resemble those obtained from 
field data, while the smooth regular contours on the left in Figure 5.37 are 
typical of our idealized conceptual models. 

The abrupt changes in hydraulic conductivity in Figure 5.37 are an ar- 
tifact of the mathematical  functions used to model lateral inhomogeneities. 
In reality, the boundaries between the inhomogeneities may be fuzzy, ex- 
hibiting more gradual transitions in hydraulic conductivity. Although this 
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Figure 5.38' Transmissivity of unconfined aquifer depends on the elevation 
of the aquifer bottom. 

would affect the shape of the streamlines and piezometric contours to some 
degree, the solution as presented in Figure 5.37 does not distract from the 
essential effect of lateral inhomogeneities: causing irregular contour lines 
and streamlines. 

V a r i a t i o n s  in Aqu i fe r  Th icknes s  and  E l e v a t i o n  of t h e  Aqu i fe r  

B o t t o m  

Variations in aquifer thickness have an effect similar to that of variations in 
hydraulic conductivity, since both affect the t ransmis s i v i t y  of the aquifer. 
For the case of confined flow, the aquifer transmissivity T is defined as 
T = k H.  Consequently, variations in aquifer thickness H have the same 
effect on the streamlines and equipotentials as variations in the hydraulic 
conductivity k. In unconfined aquifers, the transmissivity is defined as 
T = kh ,  where h is the saturated aquifer thickness. In Figure 5.38, it is 
shown to depend both on the head r and aquifer bottom elevation Zb. In 

GFLOW1 Zb is constant, but the effect of local variations in Zb may be 
approximated by varying the hydraulic conductivity k instead. In general, 
local variations in the elevation of the aquifer bottom are much smaller than 
variations in hydraulic conductivity, resulting in effects on the streamlines 
and equipotentials less dramatic than those exhibited in Figure 5.37. 

A sloping aquifer bottom, however, may lead to more significant varia- 
tions in transmissivity that have a regional trend rather than being local 
and random. The impact on the streamlines a~d equipotentials is, there- 
fore, more regional in nature, contrary to the local effects exhibited in 
Figure 5.37. In GFLOW1 the effect of a sloping aquifer bottom may be ap- 
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proximated by a stepwise adjustment of the hydraulic conductivity, using 
nested inhomogeneity domains. 

The effects of lateral inhomogeneities may be summarized as follows: 

R u l e  5.8 Lateral variations in transmissivity cause irregular streamlines 
and piezometric contours. The general trend of the .flow patterns, however, 
is the same as for a homogeneous aquifer, provided the inhomogeneities are 
small compared to the size of the model domain. 

I n v e r s e  P r o b l e m  

The inhomogeneities in Figure 5.37 are fictitious. Rarely are field data 
available to characterize the aquifer in such detail. Some computer pro- 
grams will solve for hydraulic conductivities based on specified (observed) 
piezometric contours; these codes solve the so-called inverse problem. Math- 
ematically, the problem is ill-posed (Freeze and Cherry, 1979) and can easily 
lead to non-unique solutions. Furthermore, we are not always certain about 
our "observations," either. Irregular contour lines based on observed piezo- 
metric heads should not be taken as absolute, whether they were hand- 
sketched by a hydrologist or produced "objectively" by statistical proce- 
dures, e.g., kriging (De Marsily, 1986). Different well screen elevations, 
transient effects, measurement error all can influence the observed heads 
and thus the "observed piezometric contours." In any case, solving the in- 
verse problem is difficult, requires many field data, and is still the subject 
of basic research. 

Most consultants will not have the resources to responsibly address the 
inverse problem. It may be safer, therefore, to include only those inhomo- 
geneities which are well documented, e.g., channel deposits near streams, 
rock outcrops, and simply be aware that, for instance, the solution depicted 
on the left in Figure 5.37 may in actuality be more like the one shown to its 
right. It is a good practice to experiment with a few strategically positioned 
inhomogeneities, in order to assess their potential impact on the ground- 
water flow regime. Any uncertainties arising from such experiments should 
be included in the conclusions of the study. Not only is such a procedure 
good engineering practice, it is also very educational. 

5 . 3 . 6  U n i f o r m  v e r s u s  V a r y i n g  A q u i f e r  R e c h a r g e  

Just as there are no homogeneous aquifers, there are also no aquifers 
with a spatially and temporally constant recharge due to precipitation. 
In Section 3.2 we accounted for areal recharge (infiltration due to precipi- 
tation) by introducing a source term (N) to the governing differential equa- 
tion; see (3.154). For convenience, N was assumed constant in space and 
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time, but in reality it depends on both. The effects of temporal  variations 
in aquifer recharge will be discussed separately in the next section. For 
now, we will only consider spatial variations: 

N = N (x, y) (5.73) 

There are a variety of factors that  cause local differences in aquifer recharge, 
among which are the following: 

�9 Soil conditions: Sandy soils have a larger infiltration capacity than 
clayey soils. 

Topographic relief: Steep slopes exhibit more surface runoff and less 
infiltration than moderately sloping terrain. 

�9 Vegetation: A dense foliage intercepts and evapotranspirates much of 
the precipitation, leaving less for aquifer recharge. 

�9 Density of stream network: 
crease overland runoff. 

Many streams and tributaries may in- 

Although we may understand the effect of each of these factors individually, 
at least in a qualitative sense, it is less clear how they work in combination. 
At a few research sites, scientists have determined local infiltration rates 
experimentally by use of lysimeters. A lysimeter is a rectangular container 
(often made of concrete) without a lid that  is dug into the ground with 
its rim flush with the soil surface. The container is filled with the same 
soil as in the surrounding area, and the vegetation inside and outside the 
container (lysimeter) is the same. At all times the groundwater level inside 
the lysimeter is kept the same as on the outside. By keeping track of the 
volume of water that  needs to be added or removed from the lysimeter and 
the amount  of precipitation in the area, a detailed water balance is obtained 
which gives accurate information on evapotranspiration and groundwater 
recharge rates; see Pelton (1961) and Dunne and Leopold (1978). Of course, 
for most groundwater  flow modeling studies these data are not available, 
certainly not throughout  the entire model domain. At best we have some 
estimate of the average recharge rate for the area, which we may then use 
as the basis for estimating local recharge values by considering the factors 
just listed. 

Estimating a Regional  Average Recharge Rate 

The water balance concept just discussed may be applied to an entire wa- 
tershed, using average precipitation and average stream flow data for the 
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area. In this manner, average areal recharge rates for the entire water- 
shed can be estimated from average base flow rates in the stream network. 
Stream flow data are obtained from a USGS gauging station downstream 
from the watershed, assuming one is available, while hydrograph separation 
techniques can be used to obtain average base flow, e.g., Kim and Hawkins 
(1989). 

In Section 3.2 1 demonstrated that groundwater mounding in an aquifer, 
given a particular set of head-specified boundary conditions, is dependent 
on the ratio N/T,  where N is the recharge rate and T the (average) aquifer 
transmissivity. Hence, comparisons of modeled with observed piezometric 
head distributions may yield an estimate for NIT. If N has been deter- 
mined separately, e.g., from a base flow analysis, the average transmissivity 
in the (ground)watershed is found. Alternatively, if the average transmis- 
sivity in the watershed is known, e.g., from pumping tests, the modeled 
NIT ratio provides us with an estimate of the areal recharge rate N. 

Effects of Spatially Varying Recharge 

It is good practice to start a modeling project with a uniform recharge 
rate over the entire model area. A simple way of introducing this uniform 
recharge rate in GFLOWl  is to position a sink disc with a negative strength 
(making it a source disc) over the model area, see Figure 5.16 and the file 
demo.dat. Occasionally, a contrast in areal recharge is obvious and may 
be introduced at the outset of the modeling. For instance, consider the 
channel deposits surrounding the river in the center of Figure 5.16. These 
sandy to gravelly soils form relatively flat flood planes near the river and 
infiltrate significantly more water than the more clayey soils in the rest of 
the watershed. In the data file demo.dat, the inhomogeneity area that  mod- 
els the nearfield portion of the channel deposits has been given an "added 
exfiltration rate" o f - 0 . 0 0 1  ft /day, equal to the regional value defined by 
the big sink disc (see Figure 5.16 and the file demo.dat). Consequently, the 
channel deposits in the near field have been given twice the surrounding 
regional recharge rate. 

During later stages of the modeling, when more insight in the geohydrol- 
ogy is obtained, it may be desirable to further refine the recharge distribu- 
tion. In G F L O W l  this may be done by introducing inhomogeneity domains 
with the same hydraulic conductivity as the surrounding domain (and hence 
no jump in the conductivity), but with an "added exfiltration rate." How- 
ever, before engaging in extensive efforts to vary the areal recharge in the 
model, it is advisable to first assess the importance of these refinements in 
view of the modeling objectives. Variations in recharge rates will certainly 
influence the groundwater flow patterns locally, on the scale at which these 
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Figure 5.39: Regional piezometric contours for uniform recharge (left) and 
for varying recharge (right). (GFLOW1 data file proble54.dat) 

variations are applied. On a larger scale, however, these recharge variations 
may become less important. Even when the actual recharge variations are 
unknown (which is the rule rather than the exception), some conceptual 
modeling of hypothetical recharge variations may help in deciding whether 
further refinements are necessary or not. 

To illustrate this, I distributed 12 sink discs in the nearfield of the 
groundwater flow problem defined by the data file demo.dat; see the right- 
hand diagram in Figure 5.39. Half of the sink discs have been given a 
negative recharge rate, equal to the regional rate defined by the big sink 
disc depicted in Figure 5.16, and the other half was given the same recharge 
rate as the regional average. Consequently, underneath half of the discs the 
recharge is zero, while underneath the other half the recharge is double the 
regional value. In this way the total recharge has not been altered by the 
sink discs, but the distribution of recharge has been changed drastically 
and abruptly. As may be seen from Figure 5.39, on a regional scale, the 
general trend of the piezometric contours remains the same, although there 
are some differences. In Figure 5.40, a close-up is shown of the area in 
which the recharge is varied. On this local scale, the piezometric contours 
are more clearly affected by the recharge variations! 

The recharge variations generated by the 12 sink discs do not, of course, 
represent some real-world situation. They are just an example of conceptual 
modeling to determine the possible effects of spatial variations in recharge. 
Depending on the purpose and scale of the modeling, different conceptual- 
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Figure 5.40: Local piezometric contours for uniform recharge (left) and for 
varying recharge (right). (GFLOW1 data file proble54.dat) 

izations of recharge variations may have to be tested. Based on the results, 
additional refinements in recharge distribution may be called for, or the 
current (uniform) distribution may suffice. As for the example depicted 
in Figure 5.40, it seems that  near the river, on the right-hand side of the 
contour plots, not much has changed as a result of the recharge variations. 
However, more to the left, near the water divide, both the heads and the 
directions of flow are noticeably affected. 

5 . 3 . 7  T r a n s i e n t  v e r s u s  S t e a d y - S t a t e  F l o w  

With the exception of Section 3.6, all our groundwater flow modeling dis- 
cussions have focused on steady-state flow, which rarely, if ever, occurs 
in nature. Precipitation, for instance, is far from constant over the year. 
In temperate climate regions in the U.S., most of the precipitation takes 
place during the winter, while the summers are relatively dry. The resulting 
aquifer recharge often peaks in the early spring and reaches a seasonal low in 
the late summer or early fall. These variations in precipitation and aquifer 
recharge cause variations in stream flow (and surface water elevations) and 
generate seasonal variations in piezometric heads. 

So what is the rationale for steady-state groundwater flow modeling? It 
is usually argued that steady-state solutions represent average conditions 
for the year, or for several years. However, there are (at least) two con- 
cerns with our steady-state modeling of transient flow systems. In the first 
place, observed piezometric heads are not equal to steady-state heads, but, 
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depending on the t ime of measurement,  may be larger or smaller. This, 
of course, greatly complicates our calibration efforts. In comparing model 
heads with observed heads, we have to allow for these transient variations 
in field data,  about which we may or may not have any information. A 
second problem is how to interpret our model predictions. Flow pat terns 
and piezometric heads reflect average conditions, but how meaningful are 
they in view of the actual transient flow patterns and heads? 

In order to gain some insight into these issues, we will investigate which 
factors (parameters)  are determining transient effects and in what way. In 
doing so we may distinguish between two types of transient problems: 

1. Initial boundary-value problems. 

2. Periodic responses 
recharge variations. 

to periodic forcing functions, e.g., seasonal 

Init ial  B o u n d a r y  Value  P r o b l e m s  

An example of a solution to an initial boundary-value problem is Theis'  
solution (3.332) discussed in Section 3.6.2: 

(~(r,t)--QEl(u)-+-(I)0 (t > to) (5.74) 
47r 

Theis'  solution provides the response to a well which starts  pumping at a 
t ime to. Theis'  solution depends on the dimensionless parameter  u, defined 
by (3.333), and rewrit ten here in the form 

Sr  2 
4u = (5.75) 

T(t - to)  

where Ss has been replaced by S/r [see (3.329)], and where T = kS is 
the (average) aquifer transmissivity. Tile dimensionless parameter  S is 
the aquifer storage coefficient, and tile parameter  r represents the average 
sa tura ted aquifer thickness. For the case of confined flow, 4) is equal to the 
aquifer height H. In addition to the factor (5.75), Theis' solution, like any 
other solution to an initial boundary-value problem, depends oil the initial 
conditions for the case of our transient well, the constant potential O0 in 
(5.74). In fact, for small times since the onset of pumping, the heads and 
flow pat terns  in the aquifer are dominated by the initial conditions, except 
in the immediate  vicinity of the well [small r in (5.75))]. Wha t  consti tutes 
a small t ime is defined by the dimensionless factor 4u. When t is small, u 
is large and the exponential integral E1 vanishes (see Figure 3.63), so that  
tile initial condition Oo is all that  remains. 



282 C H A P T E R  5. A N A L Y T I C  E L E M E N T  MODELING 

This dependency on initial conditions requires much additional data: 
initial heads throughout the aquifer. Be aware that it is not acceptable to 
use observed piezometric heads as initial conditions for the model! Such 
a procedure would not lead to a meaningful model calibration, because 
the solution would mostly depend on these observed heads rather than on 
the boundary conditions and aquifer parameters. Instead, one should use 
the heads obtained from a steady-state model, which has been properly 
calibrated, as the initial conditions for a transient initial boundary-value 
problem; see Anderson and Woessner (1992) and Franke et al. (1987). 

R u l e  5.9 Initial conditions should be derived from modeled steady state- 
heads, not from observed heads. 

Periodic Solutions 

Townley (1995) published a set of closed-form analytic solutions to flow in 
one-dimensional and radial aquifers subjected to periodic forcing functions. 
Instead of solving an initial value problem, he assumed that  the solution 
is already periodic, thus bypassing the problem of selecting initial condi- 
tions. Moreover, these periodic solutions are just as sensitive to the bound- 
ary conditions as steady-state solutions (see Townley, 1995), which makes 
them suitable for model calibration. The periodic forcing functions con- 
sidered by Townley include Dirichlet and Cauchy boundary conditions (see 
Section 5.3.8) with sinusoidal head variations in time, and aquifer recharge 
which varies sinusoidally in time. Although seasonal water table variations 
in streams and lakes or seasonal recharge variations are not exactly sinu- 
soidal, and although our aquifers are usually not one-dimensional or radial 
in shape, these solutions may still provide us with valuable insight in the 
transient response of aquifers to such seasonal forcing functions. 

Bounding Steady-State  Solutions 

A common procedure to assess the possible (extreme) effects of seasonal 
recharge variations on the groundwater flow patterns is to compare two dif- 
ferent steady-state solutions: one with the maximum (monthly) recharge 
rate and one with the minimum (monthly) recharge rate. If these solu- 
tions are not too different from each other, our steady-state solution with a 
yearly average recharge rate is assumed adequate. However, if significantly 
different solutions are obtained, it becomes less clear how to interpret the 
average steady-state solution. The same strategy may be applied to sea- 
sonal variations in surface water elevations. In evaluating these "bound- 
ing" steady-state solutions, the question arises: How close will the actual 
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Figure 5.41" Periodic response of a one-dimensional aquifer subjected to 
periodic head variations at x - L. 

transient heads and discharges in the aquifer come to these steady-state 
extremes? 

Next I summarize the results of two of the example problems solved by 
Townley: flow in a one-dimensional aquifer (1) due to periodic variations 
in the head at the aquifer boundary, and (2) due to periodic recharge vari- 
ations. These periodic solutions are compared to steady-state solutions for 
extreme heads at the boundary or extreme recharge rates. The objective 
of this comparison is to gain insight into the parameters that  control these 
transient effects, and to assess when our bounding steady-state solutions 
are useful and when not. 

P e r i o d i c  V a r i a t i o n s  in H e a d  a t  t h e  A q u i f e r  B o u n d a r y  

In Figure 5.41, a cross-section is depicted over a one-dimensional aquifer of 
length L and hydraulic conductivity k. The left-hand boundary is a no-flow 
boundary, while the right-hand boundary is head-specified with eL(t): 

~)L(t) -: CLO -~- ACL  COS(Wt -~ 0p) (5.76) 

where eL0 and ACL are the average head and head amplitude at the bound- 
ary x -- L, respectively. The argument of the cosine defines the period and 
phase of the head fluctuations: 

27r 
w = - -  (5.77) 

P 

where P [days] is the period. For seasonal fluctuations, P = 365 [days]. The 
phase angle Op defines when the maximum head occurs e.g., for Op = O, 
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the maximum head occurs at t = 0, 365, 730, etc., while for/~p - ' -  -1r /2 the 
maximum head occurs at t = 91.25,456.25,821.25, etc. Townley simplified 
the mathematics by combining information on both the magnitude and 
phase of the periodic head variations in a single complex variable. The 
head r  in the aquifer is then written as 

,(x, t) - ,o(x) + ~{(,(~)~'~} (5.78) 
where r is the average head in the aquifer at point x, and where the real 
part of the complex quantity in (5.78) represents the local periodic variation 
of the head with respect to r The complex variable ~ p  is defined as 

(~(~) = r + ~(x) (5.79) 

where the amplitude Ar of the head variations is given by 

(5.80) 

and where the phase angle Op(X) is given by 

{'(~) } Op(X)-  arg{(p(X)} = arctan - ~  (5.8~) 

At the boundary x = L, the complex head variation is prescribed: (p(L) = 
(pL; see Figure 5.41. 

Townley (1995) developed two governing differential equations. One, for 
the average head r is simply the Laplace or Poisson equation in terms 
of the head r rather than in terms of the discharge potential as developed 
in Chapter 3. The second differential equation is for the complex variable 
(p(x), which is given below without derivation: 

d2(P (5.82) T d.x2 -- iwS(p 

where S is tile storage coefficient for the aquifer. The solution to (5.82), 
subject to tile boundary conditions 

d~p(O) 
= 0 and (p(L) -- (pL (5.83) 

dx 

is given by (Townley, 1995) 

cosh (bx / L) ) 
~p : ~pL cosh(b) 

(5.84) 



5.3. BASIC MODELING CONCEPTS 285 

where the complex constant b is given by 

SL 2 
52= 2 7 r i ~  (5.85) 

TP 
The complete solution is defined by (5.78) with (5.84)" 

{ ( c o s h ( b x / L ) )  iwt} 
r t) - -  CLO -Jr- ~. (pL cosh(b) e (5.86) 

Observe from (5.86) and (5.85) that the transient periodic solution depends 
on the factor SL2/Tp, which is quite similar to the factor 4u for Theis' 
solution; as defined in (5.75). The aquifer length L takes the place of the 
distance r from the well, and the period P replaces the time (t - to) since 
the onset of pumping. 

For this simple case, the steady-state solution is a constant head in the 
aquifer equal to tile head at the boundary x - L. In order to compare 
the transient solution (5.86) to the bounding steady-state solutions (corre- 
sponding to the maximum and minimum head at x - L), the amplitude 
I(p(X)l of the head in the aquifer is compared to the amplitude I(pLI of the 
head at x = L. This comparison is represented graphically in Figure 5.42, 
where I(pl/I(pLI is plotted versus x/L for various values of SL2/Tp. The 
ratio I(p]/I(pLI follows from (5.86) as 

I(p(X)[ cosh(bx/L) 
= ( 5 . 8 7 )  

I(pLI cosh(b) 

At ally point ill the aquifer, we call calculate the phase angle Op of the 
periodic head variations from (5.81) with (5.84), 

0v(~) = arg{(v(z)} (5.88) 

Townley (1995) presents the phase lag AOp, the difference between the phase 
angle Op(x) and the phase angle of the prescribed head fluctuations at 
x- -L:  

~P { c~ } 
A0p = arg{(p} - arg{(pL} -- arg{ (---~L } -- arg 

Following Townley (1995) the phase lag A0v may be expressed in terms of 
a fraction A of the period P, whereby A is defined as 

- 1 AOp (0 < AO v < 7r) 
27r ~ 

AO v 
A = 27r (-Tr <_ AOp _< 0) (5.90) 
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Figure 5.42: Transient head extremes as a fraction of steady-state head 
extremes in a one-dimensional aquifer subjected to periodic head variations 
at x = L. (After Townley, 1995.) 1 

The phase lag time is then defined as AP. In Figure 5.43, tile phase lag 
parameter  A has been plotted versus x/L for various values of the factor 
SL2/Tp. 

The aquifer inflow QL is defined as 

QL=~{Tpe ~t} (5.91) 

where the complex parameter ")'p represents both the magnitude and the 
phase of the aquifer inflow variations at x = L. "),p is given as (Townley, 
1995) 

~/p ---- T (pL b t anh(b)  (5.92) 
L 

or, in dimensionless form, 

"~pL 
- b tanh(b) (5.93) 

(pT 

In Figure 5.44, the dimensionless inf low ~)L, defined as 

QL -- ~ {'~pLeiwt } (5.94) 
(pT 

is plotted versus x/L for various values of SL2/Tp. 

1 Figures 5.42 through 5.44 and Figures 5.47 and 5.48 are reprinted from Advances in 
Water Resources, 18(3), Lloyd Townley, "The Response of Aquifers to Periodic Forcing", 
pp 125-  146, Copyright 1995, with kind permission from Elsevier Science Ltd, The 
Boulevard, Langford Lane, Kidlington OX5 1GB, UK. 
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Figure 5.43" Phase lag ~, between the head in the aquifer and the head 
at the boundary,  in a one-dimensional aquifer subjected to periodic head 
variations at x = L. (After Townley, 1995.) 
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Figure 5.44: Dimensionless aquifer inflow ~)L at x - L as a function of time 
for the case of a periodic head at x - L. (After Townley, 1995.) 
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Figure 5.45: Periodic response of a one-dimensional aquifer subjected to 
periodic recharge variations. 

Periodic Recharge Variations 

In Figure 5.45, an unconfined aquifer is depicted, with a no-flow boundary 
at x - 0 and a constant head eL at x = L. The recharge N on the aquifer 
varies periodically as 

N (t) = No + ~ {upe iwt} (5.95) 

where No is the yearly average recharge, and where the complex parameter  
up represents both the ampli tude and phase of the recharge variations. The 
differential equation in terms of the complex head variation (p and the 
complex recharge variation up is (Townley, 1995) 

Td2(p 
dz 2 = i w S ( p -  up (5.96) 

The solution for (p is (Townley, 1995) 

cosh (bx / L ) ] 
Up 1 - (5.97) 

(P = iwS cosh(b) 

The head r for the s teady-state  solution is a quadrat ic  function in x 
[see (3.165)], which satisfies the no-flow condition (d r  = O) at x -- 0 
and the prescribed head (PL at x = L' 

N o  2 x 2 C0(x) = ~-~(L - ) (5.98) 
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Figure 5.46: Transient head extremes as a fraction of steady-state head 
extremes in a one-dimensional aquifer subjected to periodic recharge vari- 
ations. 

I define Ar as half the difference in head between the steady-state 
solution with a maximum recharge rate (g0 + IVpl) and with a minimum 
recharge rate ( N o -  ]vpl). This yields, by use of (5.98), 

A r  ) -- IvPlL------~2[1 -(x/L) 2] (5 .99)  
2T 

In Figure 5.46, the ratio I(p]/IAr has been plotted versus x / L  for 
various values of S L 2 / T p .  

In Figure 5.47, the dimensionless phase lag parameter A for this case 
has been plotted versus x / L  for various values of S L 2 / T P .  

The transient discharge (outflow) at the aquifer boundary x = L is 
compared to the bounding steady-state outflows as follows. If the tran- 
sient recharge variations would lead to instantaneous steady flow (storage 
coefficient equal to zero), the outflow Q LO at x = L would be 

Q o(t) = NoL + 

which is simply the total recharge that falls on the aquifer. 
transient outflow Q L is given by (see Townley, 1995) 

QL(t) : NoL + ~ ppL b 

(5. oo) 

The actual 
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Figure 5.47: Phase lag A, between the head in the aquifer and the recharge, 
in a one-dimensional aquifer subjected to periodic recharge variations. (Af- 
ter Townley, 1995.) 

In Figure 5.48, the actual transient outflow Q L is compared to the instan- 
taneous outflow Q L0 by plotting the dimensionless parameter t~L, 

} 1 . . . .  e i w t  = ~R e (5.102) 
L = ~R upL " b 

versus x / L  for various values of S L 2 / T p .  

I n t e r p r e t a t i o n  of R e s u l t s  

The diagrams in Figures 5.42 through 5.44 and 5.46 through 5.48 exhibit 
a consistent pattern when distinguishing between small and large values of 
S L 2 / T p .  "Small values" are defined as S L 2 / T p  << 1 and "large values" 
as SL2/Tp >> I. 

Let's first review the results for small values of the factor SL2/Tp. It 
appears from Figure 5.42 and Figure 5.46 that the extreme heads under 
transient conditions approach those obtained from the bounding steady- 
state solutions. Also, for small values of SL2/TP, the head variations 
in the aquifer are more or less in phase with the head variations at the 
boundary; see Figures 5.43 and 5.47. Finally, for the case of Figure 5.41, 
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Figure 5.48: Dimensionless aquifer outflow l~} L at x -- L as a function of 
time for the case of periodic recharge (After Townley, 1995). 

the inflow at the aquifer boundary (x = L) is small (see Figure 5.44), 
which compares well with the steady-state solution for that  case: no flow 
in the aquifer. For the case of Figure 5.45, the outflow from the aquifer, 
for small values of SL2/Tp, seems to be nearly equal to and in phase with 
the bounding steady-state solutions (assuming instantaneous steady flow 
for different recharge values); see Figure 5.48. In other words, for small 
values of SL2/Tp, the bounding steady-state solutions are a reasonable 
approximation of the extremes of the transient conditions in this aquifer. 

This is not true for large values of the factor SL2/Tp! As may be seen 
from Figure 5.42, the head variations imposed at the aquifer boundary die 
out further into the aquifer. From Figure 5.43, we learn that  there is also 
considerable phase lag between the head variations at the boundary and 
those at a particular point in the aquifer. And finally, for the case of 
Figure 5.41, we find that  for large values of SL2/Tp there is, at times, 
some inflow and outflow at the aquifer boundary, while the steady-state 
solution predicts none; see Figure 5.44. Similar observations are made for 
the case of varying recharge. It appears from Figure 5.46 that  for large 
values of SL2/Tp, the head variations inside the aquifer are small when 
compared to those due to the bounding steady-state solutions. There is 
again considerable phase lag (see Figure 5.47), while the aquifer outflow 
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is small when compared to the bounding steady-state flows and lags the 
recharge variations (see Figure 5.48). 

In summary, when the factor SL2/Tp is large, the bounding steady- 
state solutions do not provide much information about the actual (tran- 
sient) extreme heads and discharges in the aquifer! The only thing that  
may be said is that  the heads in the aquifer will always remain below the 
extreme steady-state heads; in fact, they may not change at all in significant 
parts of the aquifer. On the other hand, for small values of SL2/Tp, the 
bounding steady-state solutions appear to be reasonable approximations of 
the extreme transient heads and discharges. 

P r a c t i c a l  Va lues  for SL2/Tp 

The diagrams presented earlier do not directly apply to the general case of 
two-dimensional flow. However, if the aquifer length L is interpreted as half 
the average distance between surface water features in the model domain, 
tile trends exhibited in these diagrams may be assumed representative for 
our (2D) models. This possibility of generalization is also suggested by 
the observation that  radially symmetric versions of the foregoing problems 
show trends very similar to those discussed earlier; see Townley (1995). 

In view of this it is interesting to look at the ranges of values which the 
factor SL2/Tp may assume in practice. Limiting ourselves to seasonal vari- 
ations, the period is 1 year: P = 365 [days]. The storage coetficient S may 
vary considerably depending on flow conditions: In unconfined aquifers, S 
is on the order of S = 0.1, while in confined aquifers, S may well be as low 
as S = 0.001. Aquifer transmissivities may also vary considerably. Deep 
permeable aquifers, e.g., channel deposits near a river, may have a transmis- 
sivity in the order of T = 500,000 [ft2/day], while shallow till aquifers may 
have a transmissivity as low as T = 100 [ft2/day]. For the purpose of es- 
t imating extreme values for SL2/Tp, I will assume that  the half-distance 
L between boundary conditions varies between 500 and 5,000 [ft]. The 
numbers cited here do not, of course, span all possible values for these pa- 
rameters, but are introduced here merely to gain some insight in the range of 
values we may encounter for the factor SL2/Tp. Combining these param- 
eter values in such a manner that  the smallest possible value for SL2/TP 
is obtained, we get SL2/Tp = 0.001 x 5002/(500,000 x 365) = 0.00000137. 
Similarly, a maximum for SL2/Tp is obtained by the following parameter  
combination: SL2/Tp = 0.1 x 5, 0002/(100 x 365) = 68.5. The largest 
values are going to be found in unconfined aquifers with a low transmis- 
sivity and distant boundary conditions. For the case of unconfined flow, I 
calculated three more values for SL:/TP, using L = 3,650 [ft] and three 
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different values for the transmissivity" 

SL 2 0.1 x 3,6502 
m 

T P 36,500 x 365 
=0 .1  

SL2 0.1 x 3,6502 
= = 1.0 

TP  3650 x 365 

SL2 0.1 x3,6502 
= = 10.0 

T P 365 x 365 

When t he  same parameter values are applied to a confined aquifer, thus 
reducing S to 0.001, all values for S L 2 / T p  become equal or less than 0.1. 
In general terms, therefore, we may conclude that medium or low permeable 
unconfined aquifers exhibit local transient effects that cannot readily be 
approximated by bounding steady-state solutions. On the other hand, we 
find that" 

R u l e  5.10 Highly permeable unconfined aquifers and most confined 
aquifers will exhibit "summer conditions" and "winter conditions" that may 
be approximated by steady-state solutions using recharge rates and surface 
water levels observed in the summer and the winter, respectively. 

5.3.8 Accuracy in Representing Boundary Conditions 

Boundary conditions are a mathematical necessity for our groundwater 
flow problems. A "well defined" (in the mathematical sense) steady-state 
groundwater flow problem is defined by its governing differential equation 
and a complete set of boundary conditions. In potential theory, one dis- 
tinguishes between three fundamental boundary value problems (see Bear, 
1972): 

1. Dirichlet boundary value problem or boundary value problem of the 
first kind: The head is specified along the boundary of the flow do- 
main. 

2. Neumann boundary value problem or boundary value problem, of the 
second kind: The flux is specified along the boundary of the flow 
domain. 

3. Cauchy boundary value problem or boundary value problem o.f the third 
kind: Both the head and the flux are specified along the domain 
boundary in some linear combination. 
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We speak of a mixed boundary value problem if Dirichlet conditions apply 
over part of the boundary and Neumann conditions apply over the remain- 
ing part. Examples of Dirichlet boundaries are streams and lakes that  are 
fully connected to the aquifer. An example of a Neumann boundary is a 
discharge-specified well. In three-dimensional flow models, areal recharge 
due to precipitation is also a Neumann boundary condition, while in a 
Dupuit-Forchheimer model, the recharge is introduced as a source term in 
the differential equation (see Figure 3.32) and is not considered a boundary 
condition in the mathematical  sense. An example of a Cauchy boundary is 
a surface water feature with resistance to flow between the surface water 
body and the aquifer; see Section 5.2.3. 

Hydrologica l  Versus Mode l  Boundaries  

The mathematical  boundary conditions may or may not always coincide 
with hydrological boundaries. For instance, finite difference grids must end 
somewhere, forming a finite model domain. The same is true for the fi- 
nite element and the classical boundary element method. When the grid 
boundary is chosen to coincide with a hydrological boundary (river, lake, 
rock outcrop, etc.), the mathematical  and hydrological boundaries coin- 
cide. However, it is not always practical to extend the grid to a hydrolog- 
ical boundary, in which case the specified heads or specified fluxes along 
the grid boundary form a mathematical  boundary condition, but do not 
represent a hydrological boundary. This may result in an incorrect repre- 
sentation of the flow system, even though the problem is mathematical ly 
well-defined. On the other hand, if such an "artificial boundary" is remote 
from the area of interest, it may have little impact on the outcome of our 
modeling. I discussed this mat ter  before under the subheading "Bounded 
versus Unbounded Model Area" in Section 5.1.1; see also Figure 5.2. In this 
context it is important  to note that a groundwater divide, as observed from 
piezometric contours, is not a hydrological boundary. Changes in model pa- 
rameters, e.g., areal recharge, and pumping rates of wells, etc., may shift the 
water divide, but will not change, for instance, the no-flow boundary con- 
ditions along a rock outcrop. Hence, the rock outcrop is a true hydrological 
(no-flow) boundary, while the water divide is not. In other words, the water 
divide as determined from observed piezometric heads should not be used 
as a Neumann boundary condition, just as the observed piezometric heads 
themselves should not be used as Dirichlet boundary conditions. Instead, 
these observations should be reserved for model calibration purposes. 

R u l e  5.11 Observed groundwater divides may be used for model calibra- 
tion, but should not be used as a model boundary (no-flow boundary). 
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E r r o r s  in B o u n d a r y  C o n d i t i o n s  

Rule 3.1 in Section 3.1.1 states that  "Solutions to Laplace's equation, sub- 
ject to Dirichlet boundary conditions, are fully determined by these bound- 
ary conditions." This rule emphasizes the dominant role of head-specified 
boundary conditions on our groundwater flow solutions, even though in 
practice we are often dealing with Poisson's equation (areal recharge) and 
have a mixed boundary-value problem (e.g., including discharge-specified 
wells). For Dirichlet boundary-value problems, governed by Laplace's equa- 
tion, there is another useful theorem: the maximum modulus theorem. In 
terms of our groundwater  flow problems, this theorem leads to the following 
rule: 

R u l e  5.12 I f  there is no areal recharge (or leakage), both the min imum 
and max imum head in a domain occur at its boundaries, provided there are 
only head-specified boundaries. 

For a more detailed discussion and proof of tile maximum modulus theorem, 
refer to Strack (1989). Rule 5.12 also implies that  errors made in specify- 
ing the heads at the boundaries are not amplified in the interior of the flow 
domain. In other words, the maximum errors in the modeled heads are 
to be found at the boundaries. However, most of our problems are mixed 
boundary-value problems and are governed by Poisson's equation. Conse- 
quently, we cannot absolutely rely on the fact that  the maximum errors 
occur at the model boundaries, although errors in boundary conditions will 
still dominate  our model accuracy. 

In representing hydrological boundaries, such as streams or lakes, in a 
groundwater  flow model, we tend to make various kinds of errors: 

1. Inaccurate representation of the surface water elevations. 

2. Inaccurate representation of the stream or lake geometries. 

3. Inaccurate representation of the surface water and groundwater  in- 
teraction along the streams or at the lakes. 

Start ing with surface water elevations, how do we determine them? In most 
cases we are relying on topographic maps, usually by marking the intersec- 
tions of topographic contour lines with a stream. Water levels in between 
those markers are est imated by interpolation. These water levels are ap- 
proximate because of the limited contour resolution of the topographic map 
and because the actual water levels fluctuate in time based on stream flow 
conditions. Occasionally, in the area of interest, the modeler may possess 
more accurate da ta  from direct field measurements.  No mat ter  how accu- 
rate our measurements,  however, we remain confronted with the difficulty of 
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t ranslat ing transient surface water elevations into boundary  conditions for 
our s teady-state  model. It is important ,  therefore, to make an assessment 
of the possible error in the specified water levels and to keep these errors in 
mind when interpreting the modeling results. If these potential  errors are 
of concern, the modeler may generate model solutions for both a low and a 
high est imate of the surface water elevations. In this manner  a good insighl 
is obtained into the importance of these potential  errors; see Section 5.3.7. 
If it is not possible to improve on the surface water elevations, a choice of 
elevations may be used which appears conservative in view of the modeling 
objectives. 

The second source of errors is an inaccurate representat ion of surface 
water geometries, for example, not including all s t ream meanders  in the 
model. In GFLOW1 we are approximat ing streams by strings of straight- 
line elements: Line sinks. Lakes may be modeled by use of sink discs or by 
distr ibuting line sinks around its perimeter.  The more line sinks we use, the 
more accurately we are representing the stream or lake geometry. Modeling 
a stream or lake in high resolution has two advantages: 

1. The geometry of the surface water is more accurately represented. 

2. Tile variations of groundwater  extraction or surface water infiltration 
are modeled more accurately. 

We will discuss both these issues separately. 

St.  Venant~s  P r i n c i p l e  

Errors in representing the geometry of a feature have only local impli- 
cations. This may be illustrated by comparing the piezometric contours 
for a well and ~ line sink which have the same total discharge rate; see 
Figure 5.49. As expected, the piezometric contours near the well differ sig- 
nificantly from those near the line sink. However, farther away from these 
features the piezometric contours start  to look alike. For instance, the con- 
tour lines marked 58.0 in Figure 5.49 are nearly equal for both the well 
and the line sink. The fact that  the geometry of a feature has only a local 
effect is known as St. Venant's principle and originates from the theory of 
elasticity (Knowles, 1965). Of course, the total discharges must be equal 
(20,000 in Figure 5.49) in order for the well and line sink to behave the 
same at a distance. 

G r o u n d w a t e r  Inflow or Out f low a long  S t r e a m s  

As a rule, the groundwater  inflow or outflow will vary along a stream. To 
account for this in our analytic element model, we have to vary the s t rength  
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Figure 5.49: Comparing piezometric contours for a well and a line sink of 
equal total discharge. 

distribution of the line sinks that  represent the stream. In GFLOW1 each 
line sink has its own strength which is constant over the line sink. Con- 
sequently, the strength distribution along a stream is modeled as a step 
function that  approximates the actual (gradual) changes in infiltration or 
exfiltration along that  stream. Of course, the more line sinks are used 
to represent a section of a stream, the better  the approximation. In the 
area of interest, the nearfield, a proper representation of both the stream 
geometry and groundwater  inflow or outflow distribution is more ilnpor- 
tant  than in the farfield. In Figure 5.50, the analytic element layout of 
the nearfield for the problem ill file demo.dat  and some of the surrounding 
farfield are depicted. The figure represents a hard copy from the graph- 
ics screen produced by the cursor option in the inhomogeneity module of 
G F L O W l .  The closed contour (solid line) near the center of tile figure 
represents the doublet string with which the channel deposits surrounding 
the river are modeled. The star-shaped markers indicate the vertices of the 
polygon, except for the marker near the center of the polygon, which is a 
high-capacity well. The tick marks on the line sink strings, which are used 
to model the various streams and their tributaries, indicate the line sink 
end points. 

Tile remote streams, near the left and right edges of Figure 5.50, are 
represented by fairly large line sinks: the farfield features. Tile streams 
and tr ibutaries near the area of interest are represented by more and thus 
shorter line sinks: the nearfield features. Note that  close to the well and 
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Figure 5.50: More and smaller line sinks and line doublets in area of complex 
flow; near well and intersection of stream with channel deposits. 

the nearby intersection of a stream (Potts Ditch) with the inhomogeneity 
domain, both the inhomogeneity boundary and the streams are modeled in 
higher resolution. This is done in anticipation of the significant variations 
in groundwater inflow in the streams due to the (high-capacity) well. Also, 
the relatively large variations in the head (and thus potential) in this area 
require a highly variable doublet density, and thus more and shorter line 
doublets. The increased number of line sinks and line doublets near the well 
in Figure 5.50 is not so much aimed at improving the representation of the 
geometry (the streams and inhomogeneity boundary are nearly straight), 
but serves mostly to allow the strength distributions of the line sinks and 
line doublets to adjust more accurately to the complex flow conditions in 
the area. In the farfield, on the other hand, it is often acceptable to use 
long line sinks to roughly represent the farfield streams, ignoring meanders; 
see also Figure 5.16. 

R e s i s t a n c e  E l e m e n t s  

In a strict implementation of streams and lakes in a Dupuit-Forchheimer 
model, the water level in the stream or lake should be set equal to the head 
in the aquifer underneath it; they form Dirichlet boundary conditions. This 
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follows from the basic premise of the Dupuit-Forchheimer assumption that  
resistance to vertical flow is zero: The head is constant from the stream 
bot tom (aquifer top) down to the aquifer bottom. In reality, however, 
there is often significant resistance to flow between the stream bed and the 
aquifer. This resistance may be due to silty or clayey sediments on tile 
s tream or lake bottom, or it may be tile result of the fact that  the stream 
or lake does not fully penetrate  a till layer (mixture of sand and clay) that  
may overlie the regional aquifer. In Section 5.2.3, I discussed in some detail 
how the resistance to surface water inflow and outflow is implemented in 
G F L O W l .  Line sinks are given three parameters  to define the surface water 
and groundwater  interactions: 

1. Resistance c [days] of the soil between the river bot tom and the 
aquifer. 

2. Width  w [ft] of the stream bottom. 

3. Depth d [ft] of the bot tom of the resistance layer below the surface 
water level C s in the stream. 

With  reference to Figure 5.14, the resistance c is defined by (5.59) as the 
thickness 5 of the resistance layer divided by the hydraulic conductivity kc 
of the resistance layer: c = 5/kc. These resistance elements are an example 
of Cauchy boundary conditions whereby the specified flux and head are 
related by (5.60) or (5.61). In some texts they are referred to as "head- 
dependent flow boundaries" (e.g., Anderson and Woessner, 1992). When 
the head in the aquifer Ca drops below the bot tom of the resistance layer, 
which occurs when 

Ca < C s -  d (5.103) 

the stream or lake becomes a percolating feature; see Figure 5.14. The 
depth parameter  d is illustrated in Figure 5.15. When the condition in 
(5.103) occurs, the stream section forms a Neumann boundary condition. 

These resistance elements allow for a much more realistic representation 
of surface water boundary conditions than the Dirichlet conditions that  are 
consistent with the Dupui t -Forchheimer  model. Variations in stream re- 
sistance influence the distribution of groundwater inflow over the streams 
in the model area. For instance, in Figure 5.51, piezometric contours are 
shown in part  of the nearfield of the problem in the file demo.dat.  In the 
left-hand figure, the tr ibutaries to Potts Ditch have the same width (w = 10 
ft) and resistance (c- -  10 days) as Potts Ditch itself. In the right-hand di- 
agram the width of the tributaries has been reduced to w = 2 ft, while the 
resistance has been increased to c = 100 days. The latter situation may be 
considered more consistent with the lower stream order of the tr ibutaries 
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Figure 5.51: Tributaries to Potts Ditch modeled as wide, well-connected 
streams (left) and modeled as narrow, poorly connected streams (right). 

as compared to Potts Ditch itself. As a result of the increased resistance 
and decreased stream width, the heads near the headwaters of the trib- 
utaries have become lower (see contours with elevation 286.0 and 274.0). 
Farther downstream along the tributaries, however, the head has become 
higher (see contours with elevations 284.0 through 276.0). Apparently, these 
downstream sections are groundwater discharge zones with reduced inflow 
into the stream due to increased resistance and decreased width. Alter- 
natively, the headwaters are infiltrating and the increased resistance and 
decreased stream width have reduced the infiltration rate. This brings up 
another issue: Do these headwaters have enough stream flow to support 
the computed infiltration rates? 

Including Surface Water Availability 

The groundwater flow solutions depicted in Figure 5.51 have been gener- 
ated by use of the "solve" command in GFLOWl,  rather than the "solve 
conjunctive" command. Consequently, the availability of stream flow, nec- 
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essary to sustain the infiltration rates in the tributaries to Potts Ditch, was 
not considered in Figure 5.51. When stream flow and groundwater  flow 
are solved conjunctively, the head waters of the tributaries fall dry and do 
not infiltrate any water into the aquifer; see Figure 5.17. As a result, the 
piezometric heads drop even more. 

Dirichlet c o n d i t i o n s  in t h e  fa r f ie ld  

As appears from this example, resistances, stream width, and surface water 
availability may significantly influence the groundwater flow solution. In 
order for these sophisticated boundary conditions to function properly, the 
adjacent streams and lakes must be adequately represented in the model. In 
other words, resistance elements and stream networks should only be used 
in the nearfield, never in the farfield/ The main function of the farfield 
elements is to control the heads remote from the area of interest in order to 
avoid unrealistic groundwater  movement to or from the nearfield. Farfield 
elements, therefore, may not behave in a hydrologically meaningful way; 
they may infiltrate or extract  unrealistic amounts of water in order to con- 
trol the (farfield) heads. Using resistance elements or stream networks in 
the farfield will give unpredictable and meaningless results, and they will 
fail to control the heads. I recommended applying only Dirichlet boundary 
conditions in the farfield: using line sinks that  are not part  of a s tream 
network and that  have a width and resistance equal to zero. In this man- 
ner we are certain that  the heads in the farfield will match those defined, 
regardless of the required line sink strengths. 

5.3 .9  F ie ld  D a t a  R e q u i r e m e n t s  

In the previous section I discussed the use of resistance elements and con- 
junctive surface water and groundwater  flow solutions in an effort to im- 
prove on the realism of our modeling. However, these resistance elements 
require three extra  da ta  items in addition to a surface water level: a resis- 
tance parameter ,  a s tream width, and a resistance layer depth. To obtain 
reliable values (field data)  for these parameters  is no simple task. In fact, 
to obtain reliable values for any model parameter  is a challenge. Field data  
acquisition is the number one problem of any modeling project; it frustrates 
every modeler. Even basic data,  such as a regional average for the hydraulic 
conductivity and areal recharge rate due to precipitation, are often difficult 
to come by. And we are only talking about steady-state groundwater  flow 
modeling. Wha t  if transient effects are to be included, or t ransport?  Before 
even star t ing a groundwater  modeling project, we should be prepared to 
deal with one sure thing: a chronic shortage of field data. 
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Groundwater flow modelers usually develop a shopping list of data 
needs. Anderson and Woessner (1992) presented such a list, which they 
adapted from Moore (1979). Their data "requirements" are subdivided 
into two groups: data defining the physical framework (first five items in 
the list below) and data defining the hydrogeologic framework of the mod- 
eling (last six items). 

1. Geologic maps and cross-sections showing the areal and vertical extent 
and boundaries of the system. 

2. Topographic maps showing the surface water bodies and divides. 

. Contour maps showing the elevation of the base of the aquifer and 
confining beds. 

4. Isopach maps showing the thickness of aquifers and confining beds. 

5. Maps showing the extent and thickness of stream and lake sediments. 

6. Water table and potentiometric maps for all aquifers. 

7. Hydrographs of groundwater head and surface water levels and dis- 
charge rates. 

8. Maps and cross-sections showing the hydraulic conductivity and/or  
transmissivity distribution. 

9. Maps and cross-sections showing the storage properties of the aquifers 
and confining beds. 

10. Hydraulic conductivity and their distribution for stream and lake sed- 
iments. 

11. Spatial and temporal distribution of rates of evapotranspira- 
tion, groundwater recharge, surface water-groundwater interaction, 
groundwater pumping, and natural groundwater discharge. 

The preceding list is a literal transcription of Anderson and Woessner's 
(1992) Table 3.1, except I changed map to maps for the first two items. It 
is truly a wish list. Save for items (1) and (2), the geologic and topographic 
maps, the listed data are unlikely to be readily available. Even the avail- 
able geological cross-sections are often on a scale that  is insufficient for a 
full definition of the local stratigraphy in the model area. Acquiring all of 
the listed data requires extensive efforts, including drilling, hydrogeologic 
testing, data interpretation, and map preparation. Such activities are occa- 
sionally undertaken as part of a multiyear (and multidollar) water resource 
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planning project (e.g., Patrick et al., 1989 and de Lange, 1991). Most con- 
sultants, however, do not have the resources to assemble all of these data 
prior to starting a groundwater modeling project. So now what'? 

In Section 5.3.2 I suggested a "stepwise" modeling procedure aimed at 
overcoming these almost inherent data shortages. Instead of abandoning 
groundwater flow modeling attempts because of a lack of data, I turned 
the problem around by offering conceptual groundwater flow modeling as 
an alternative to field data. For instance, consider the following approach. 
Assume that we are not certain whether or not a particular stream is in 
contact with the regional aquifer, so we model it both ways. If either way 
the solution in the area of interest is not significantly affected, why worry? If 
it does affect our solution, then we ask ourselves if a comparison of modeled 
heads with observed heads suggests which solution is more realistic, stream 
included or excluded? If the role of the stream appears important and 
modeling does not resolve the issue, we demonstrated the importance of this 
data and, perhaps, justified the expense of additional data acquisition. This 
approach of hypothesis testing may resolve many data uncertainties, and 
identify which data are indispensable in view of our modeling objectives. 

First assembling all or most of the data in the above list and then 
implementing it all at once in a computer model represents the traditional 
left-hand flow chart in Figure 5.18. Even if all these detailed data are 
available, there is an argument against using them all at once. Starting 
with a simple groundwater model, using regional averages of the data, and 
making stepwise increases in the model complexity make the hydrologist 
experience the relative importance of the data in view of the modeling 
objectives. Stepwise modeling implies that initial modeling runs employ 
a uniform hydraulic conductivity, even though some insight may exist into 
conductivity variations. Similarly, model runs with a uniform areal recharge 
rate should precede runs with any spatial variations in recharge. Even 
though cyclic pumping may be locally important, initial runs should use 
steady-state wells with the average pumping rate. And so on. This stepwise 
approach also applies to issues of multiple aquifers. 

Dealing with Multiple Aquifers 

When interpreting geological data, it is important to realize that different 
geologic units may be hydraulically connected to form a single hydrostrati- 
graphic unit: a single aquifer. Even when locally some separating strata are 
present, the unit may regionally still behave as one aquifer. Under these cir- 
cumstances, the model solution yields comprehensive heads and discharges, 
see Section 3.3.1. The meaning of these heads or discharges depends on 
the local hydrogeologic conditions. In areas where the separating strata are 



304 C H A P T E R  5. A N A L Y T I C  E L E M E N T  M O D E L I N G  

absent or form little resistance to flow, the modeled heads can be compared 
directly with those observed. In areas where the separating strata  are con- 
sistently present, the different aquifer s trata will exhibit different heads. 
The modeled (comprehensive) head will then form a weighted average of 
the individual heads in the various aquifer strata: 

}~ T~r (5.104) 
r ET~ 

where Ti and r are the transmissivity and head of the ith aquifer, re- 
spectively (see also Section 3.3.5). If the area of interest is near a major 
stream, the channel deposits may well form a single aquifer zone embedded 
in the otherwise multiple aquifer environment. The single aquifer (compre- 
hensive) model may be adequate for this case, provided we are careful in 
defining streams and lakes in the regional multiple aquifer domain. In mul- 
tiple aquifer zones, smaller streams or lakes may only be connected to the 
uppermost aquifer. This may be accounted for by giving some resistance 
to the line sink strings or sink discs that represent these surface waters. In 
other cases, however, our area of interest is really a dual or multiple aquifer 
zone, in which case a multi-aquifer (quasi three-dimensional) model should 
be used. In the case of only two aquifers, G F L O W l  may be used to solve the 
upper and lower aquifer problem separately in the area of interest. In doing 
so, the comprehensive solution may be used to define Dirichlet boundary 
conditions along the perimeter of the dual aquifer zone (clay layer edge). 
However, if changes in boundary conditions are made which influence the 
comprehensive solution near these boundaries, the comprehensive, upper, 
and lower aquifer solutions need to be adjusted. Using a single aquifer 
model, like GFLOW1, for dual aquifer modeling leads to an iterative pro- 
cess: solving the comprehensive problem, solving the flow in the individual 
aquifers, resolving the comprehensive problem, etc. 

K e e p  it S imp le  

Our models are foremost educational in nature. They educate the hydrolo- 
gist regarding the behavior of a groundwater flow system, or they educate 
the client, the judge, or the jury regarding the consequences of some past 
or future actioD_. In verbal or written presentations, we all accept the basic 
rule that  if you can say it with few and simple words, do so! More people 
will listen, and they will more readily understand. The same is true for 
groundwater flow models (or transport models). 

R u l e  5.13 The simpler the model, the easier it is to interpret its results. 
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This is no invitation to oversimplify! For instance, giving detailed predic- 
tions regarding future or past contaminant concentrations, based on nothing 
more than groundwater travel time predictions in a homogeneous aquifer, is 
unwarranted. However, using a relatively simple flow model to demonstrate 
the possibility or impossibility that a contaminant reached a certain recep- 
tor may be quite appropriate. It is the task of the hydrologist to develop 
a model that has just enough realism to address the model objective(s), 
no more and no less. A stepwise modeling approach can accomplish this. 
It also avoids unnecessary field data acquisition, thus reducing field data 
needs. 
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Chapter 6 

Field Applications 

In the previous chapter, basic modeling concepts were discussed, organized 
by topic. Often the issues raised can only be fully appreciated in the context 
of a particular project where they manifest themselves. In this chapter, a 
number of field applications are discussed that integrate many of the con- 
cepts discussed in Chapter 5. In presenting these applications I am focusing 
on modeling approaches and concepts rather than the specific merits of the 
project or outcome of the study. As mentioned in Section 5.3.3 on the de- 
sign of conceptual models, each groundwater hydrologist will take his or 
her own approach to a study. Each designs somewhat different conceptual 
models and uses different software, if any at all. Therefore, my approach 
to each of the case studies in this Chapter should be seen as an example of 
the application of the analytic element method; it is not the only way to 
solve the problem. 

The modeling discussed here was carried out with several different com- 
puter programs. The first case study has been conducted by use of both 
the educational and professional version of GFLOW and with the finite 
difference model MODFLOW. 1 The data files for the educational version 
are supplied on the distribution diskette for further experimentation by 
the reader. The second case study has been conducted with the propri- 
etary code SLAEM, 2 which is a single-layer analytic element model like 
GFLOWl.  The last case study has been conducted with the professional 
version of GFLOW, 3 which is also a proprietary code. 

1Developed by the USGS (McDonald and Harbaugh, 1988). 
2Trademark of Strack Consulting, Inc. 
3Trademark of Haitjema Software, LLC 
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6.1 W e l l h e a d  P r o t e c t i o n  

Established by the 1986 Amendments to the Federal Safe Drinking Water 
Act, EPA's "Wellhead Protection Program" requires the states to imple- 
ment regulations aimed at protecting the groundwater resource used for the 
production of drinking water. Specifically, for each public supply well or 
well field the following measures must be taken: 

�9 Delineate a wellhead protection area (WHPA). 

�9 Identify potential sources of contamination in the WHPA. 

�9 Establish management approaches to protect the groundwater in the 
WHPA. 

�9 Develop a contingency plan for contamination events. 

�9 Develop programs for public education and participation. 

A WHPA is usually defined as the capture zone of the well or well field 
bounded by isochrones of groundwater travel time. Typically several "time 
of travel capture zones" are delineated: one for short travel times (between 
one to three years) and one or two for larger travel times, e.g., 5 or 10 
years. A five-year time of travel capture zone, for instance, is a surface area 
around the well or well field underneath which groundwater will reach the 
wells within five years. The delineation of these capture zones is not easily 
done by direct field measurements. Instead, groundwater flow modeling is 
currently considered the best method for delineating these capture zones. 

Next I will discuss the delineation of a WHPA for the well field of the 
city of Vincennes, Indiana. The other aspects of the wellhead protection 
program (source identification, management approaches, etc.) are outside 
the scope of this text. Part of the following discussions were adapted from 
a class project report submitted to me by Mr. Carl Schoedel, while the ex- 
tended GFLOW and MODFLOW modeling were carried out by Mr. Victor 
Kelson. 

6 . 1 . 1  H y d r o g e o l o g y  n e a r  V i n c e n n e s  

The city of Vincennes is located in the Wabash river lowlands in Knox 
County, Indiana; see Figure 6.1. These lowlands are characterized by filled- 
in valleys forming a glacial outwash aquifer consisting of coarse sand and 
fine gravel directly resting on the underlying bedrock. The saturated aquifer 
thickness generally ranges between 60 to 80 feet. The U.S. Geological Sur- 
vey (USGS) estimates an average hydraulic conductivity of 355 f t /day for 
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most of the aquifer (Shedlock, 1980). Along the eastern and western borders 
of the outwash, near the bedrock hills, the aquifer interlaces with zones of 
lower hydraulic conductivity; see Figure 6.2. The elevation of the bedrock 
underneath the outwash varies between 320 and 340 [ft MSL], and is ap- 
proximately 340 [ft MSL] near the well field, which is located near the river 
just south of Vincennes; see Figure 6.1. 

6 . 1 . 2  R e g i o n a l  M o d e l  

The regional groundwater flow model has been set up by use of a digital 
hydrography map (vincenne.dm) loaded into the Geographical Analytic El- 
ement Preprocessor (GAEP). A hard copy of tile GAEP screen, showing 
part of the hydrography map near Vincennnes, is presented in Figure 6.3. 
The map is used as the basis for creating line sink strings to model the 
Wabash River and other streams and tributaries in the area. In addition 
to representing these hydrological boundaries, GAEP introduces regional 
aquifer parameters. These parameters (aquifer base, hydraulic conduc- 
tivity, porosity, areal recharge rate, etc.) have been estimated from the 
available field data using an earlier USGS study by Shedlock (1980), and 
by consulting the USDA Soil Survey of Knox County, Indiana (SCS, 1981). 
This resulted in the use of the following parameter ranges for the regional 
modeling: 

�9 Hydraulic conductivity in the outwash aquifer ranges between 250 
and 450 ft/day, while in the sandstone outcrops it ranges between 10 
and 115 ft/day. 

�9 Recharge rates in the outwash range between 10 and 25 inches/year, 
while in the sandstone outcrops it ranges between 1 and 3 inches/year. 

�9 Porosity ranges between 0.1 and 0.3. 

�9 The aquifer base (bedrock surface) is modeled as being at 340 ft above 
mean sea level. 

�9 Pumping rates between 2 and 5 MGD were used to simulate current 
pumping conditions. 
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Figure 6.1: Vincennes located near the Wabash River in Knox County, 
Indiana. (After Shedlock, 1980.) 

Figure 6.2: Cross-section over the outwash and sandstone aquifer near Vin- 
cennes. (After Shedlock, 1980.) 
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Modeling Approach 

The modeling activities consist of the following steps: 

1. Set up a simple local model to get a first rough estimate of the capture 
zone. 

2. Formulate hydrological issues to be resolved based on the preliminary 
model. 

3. Set up a more detailed regional model to address these hydrological 
issues. 

4. Locally refine the modeling to assess the interaction between the 
Wabash River and the well field. 

5. Generate capture zones and isochrones for a range of model parame- 
ters. 

6. Construct composite time of travel capture zones to serve as WHPAs. 

Steps 1 through 4 are designed to obtain as good an insight in tim hy- 
drology near the well field as available data permits. Following the stepwise 
modeling approach outlined in Section 5.3.2, the modeling itself is used to 
formulate the most important hydrological issues and determine to which 
parameters the capture zones are most sensitive. The remaining uncertain- 
ties in hydrological parameters are dealt with by generating capture zones 
for extreme values (step 5) and incorporating them in the final WHPA (step 
6). 

Preliminary Capture Zone Estimate 

Before setting up a complete regional groundwater flow model, a simple 
local flow model was created based on the concept of a well in a uniform 
flow field; see Section 3.1.10. For this purpose, the well field with seven 
wells has been represented by a single well (pumping center). The effect 
of the nearby Wabash river is approximated by use of an image well. The 
intensity Q0 = 23 ft2/day of the uniform flow was estimated from field data; 
using piezometric heads from USGS observations on January 23 through 25, 
1978 (Shedlock, 1980), an estimated hydraulic conductivity of 355 ft/day, 
and an average aquifer thickness of 80 ft. The aquifer porosity was set 
at 20%. The resulting capture zone and time markers for one year travel 
times are shown in Figure 6.4. The capture zone in this and all subsequent 
figures has been created by back-tracing 10 streamlines along the aquifer 
bottom, starting from the well. The capture zone envelope may be slightly 
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Figure 6.4: Preliminary capture zone using a "well in uniform flow" model. 
Arrowheads mark one-year groundwater travel time intervals. (GFLOWl  
data  file vincprem.dat) 

wider than suggested by the streamlines in Figure 6.4, as may be seen by 
releasing more streamlines (e.g., 20). The arrowheads on the streamlines 
point into the direction of flow and are spaced at a one-year groundwater 
travel time interval. The image well is visible across from the Wabash 
River boundary, and two bedrock outcrops are displayed but not included 
in the modeling: "Bunker Hill," a dome-shaped sandstone outcrop inside 
the outwash aquifer, and the sandstone outcrop that  forms the eastern 
outwash border. 

This preliminary model raises various hydrogeological questions: 

1. Will tile capture zone stop at the Wabash River? 

2. Will the capture zone be deflected by Bunker Hill? 

3. What  will be the effect of the (lower permeable) sandstone aquifer to 
the west of the outwash? 

4. Will nearby ditches affect the capture zones'? 

5. What  will be the effect of different assumptions on conductivity, 
aquifer thickness, recharge, and porosity'? 

Different choices for the aquifer transmissivity will change the uniform 
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flow rate Q0 and make the capture zone proportionally wider or smaller; 
see Figure 3.19. You may visualize this by increasing or decreasing the 
uniform flow rate in vincprem.dat before switching it into GFLOWl  and 
tracing streamlines. Note that vincprem.dat already contains the com- 
mands to solve, to grid, and to set the contour levels and trace parameters. 
However, before back-tracing streamlines, do not forget to set the starting 
elevations near the aquifer bottom (e.g., H = 340 in graphics mode in the 
trace module). Changes in porosity will not affect the capture zone shape, 
but will move the isochrones closer to or further away from the well (try 
this in GFLOWl).  Although our preliminary model may give some insight 
into the effects of different aquifer parameters (issue 5), the issues raised 
here can only be properly addressed by a more complete modeling effort, 
including the surface waters in the area, recharge due to precipitation, and 
areas of different hydraulic conductivity. 

Regional Model 

Using GAEP, farfield and nearfield surface water features have been intro- 
duced together with a sink disk (with negative strength) to model areal 
recharge due to precipitation; see the solid lines in Figure 6.5. The dotted 
polygons in Figure 6.5 are inhomogeneities created in GFLOWl  (using the 
cursor option in the inhomogeneity module). The sandstone outcrop to 
the east of the well field is a surrogate for the transition from outwash to 
sandstone which occurs all along the Wabash River, both to the east and 
to the west. To the west, across the river from the well field, that transition 
in hydraulic conductivity has been omitted altogether, while to the east a 
low permeable zone has been introduced to model part of the transition 
closest to the well field. This limited implementation of the transition from 
outwash to sandstone was necessitated by the limit on the number of an- 
alytic elements supported by the educational version of GFLOWl.  Later, 
we will revisit this issue and model the outwash more realistically in the 
professional version of GFLOW1. 

The data file vinc01.dat for Figure 6.5 has been read into GFLOWl 
and a "solve" command without parameters is issued; no iterations are 
necessary since no resistances have (yet) been given to any of the surface 
water features. In Figure 6.6, piezometric contours and streamline traces 
are shown in a subdomain of Figure 6.5 near the well field. There are 
several obvious problems with this model run: 

1. The well field gets all its water from a small (unnamed) ditch that 
is a branch of "City Ditch"; no water is obtained from the Wabash 
River. This is a highly unlikely situation, particularly in view of tile 
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Figure 6.5: Layout of analytic elements near Vincennes, Indiaria. 
(GFLOW1 data  file vinc0l.dat) 
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fact that  the Wabash River is known to lose water near the well field 
(Shedlock, 1980). 

2. The unnamed ditch near the well field is infiltrating over 6 cfs (cubic 
feet per second) to accommodate the demand of the well field, while 
there is no known source of water for the ditch to keep up this flow 
rate year-around. 

3. The head waters of a stream to the south of Vincennes infiltrates large 
amounts of water in the sandstone aquifer (see circular contours at the 
line sink just above the logo). The nearby line doublet that models 
the jump in hydraulic conductivity from the sandstone to the outwash 
also shows irregular contours, suggesting that the line doublet does 
not maintain continuity of the head in that area. These problem areas 
are marked with ??? in Figure 6.6. 

These unrealistic modeling results are due in part to the fact that no resis- 
tance between these small ditches or head waters of streams and the aquifer 
has been introduced. 

In Figure 6.7, piezometric head contours and streamlines are depicted 
for the same area as in Figure 6.6. This time the ditches and head waters 
of streams in the nearfield have been given a resistance of 10 days (City 
Ditch has a resistance of 20 days). These values have been estimated from 
local soil conditions; see also Section 5.2.3. Details on the width, depth, 
and resistance parameters of the various surface waters may be found in the 
input data file vinc02.dat; you may also load the file in GFLOWl  and use 
the cursor option in the line sink module to point at line sinks and get their 
properties by pressing < Enter  >. Instead of the ditch supplying all water 
for the well field, some water is now coming from the Wabash River, while 
the rest is captured from the regional flow toward the Wabash River. Also 
note that the line doublets that model the transition between the sandstone 
and the outwash are now performing well; there are no irregular contours 
like those in Figure 6.6. Still, both the ditch near the well field and Oliphant 
Ditch, as well as the head waters near the logo, are infiltrating water at 
the maximum rate allowed by the underlying soil; they are "percolating" 
(see also Section 5.2.3). These percolating conditions are not apparent 
from Figure 6.7, but may be seen on screen in GFLOWl by selecting the 
"highlight percolating" option in the line sink module. 

A third data file, vinc03.dat, has been created by reading vinc02.dat 
into GAEP and changing the line sink strings that represent the ditches 
and streams in the nearfield into "stream" features (properties option in the 
element module of GAEP). The file vinc03.dat has been "switched" into 
GFLOWl  and a "solve conjunctive 5" command has been given to create 
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Figure 6.6: Initial model run with no resistances on surface waters. Ditches 
and head waters of s treams are infiltrating unreasonable amounts  of water. 
(GFLOW1 data  file vinc01.dat) 

....... �9 '.....i ........ ~ ............. 1w~-b-o.s-~ .... ............. ~J..:;::..:::....;......--.......- i "..>".....-".:.-..:- 

- . . , / / . . . -  ...... . ........... .....-~ ....... ......... " ~  ....k",;~-.,,..~~~"/..-.,."~<~,,<~,,o,,~.,. 
y / :  :::::: .......... .,,.......,.:.,.,,, ... 

t""//,-'... "':.:,,.. ::.:: ~~ i i J t \t,,-~..................\......- .... / ........ ":":',.:-."::::...:,,~,.,,,,~, , . . . ,  

�9 " / /  :'t eSucot ionol  

Figure 6.7: Model run with resistances added to ditches and streams. The 
Wabash  River supplies some water to the well field. ( G F L O W l  da ta  file 
vinc02.dat) 



318 CHAPTER 6. FIELD APPLIC ATIO N S  

a conjunctive surface water and groundwater flow solution. The resulting 
piezometric contours and streamlines are depicted in Figure 6.8. Note that  
both the ditch near the well field and Oliphant Ditch, as well as the head 
waters near the logo, are now dashed! Dashed line sinks have no water to 
infiltrate and are removed from the groundwater flow solution. This latter 
refinement has changed the solution only marginally; compare Figure 6.8 
and Figure 6.7. In Figure 6.9, modeled heads and observed heads have 
been compared by using the "plot piezometer" option in the check module 
of GFLOWl .  The piezometer file used for this comparison is usgspz.dat, 
which contains a selection of the water level observations made on January 
23 through 25, 1978 by the USGS (Shedlock, 1980). The differences in 
the modeled heads and observed heads may be partly due to differences 
in stream levels, pumping rates, and recharge rates at the time of the ob- 
servations and those used in the model. Consequently, we cannot expect 
a perfect match. Instead these comparisons are used to establish reason- 
able parameter ranges for the model, while the effect of different parameter 
choices on the capture zone is the subject of our modeling exercise. 
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Figure 6.8: Model run with ditches and nearfield streams represented as 
"stream" features. Dashed lines represent line sinks that have no water to 
infiltrate. (GFLOWl  data file vinc03.dat) 
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Figure 6.9" Comparison in GFLOW1 of model heads and heads measured 
by the USGS (Shedlock, 1980). 
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6 . 1 . 3  U s i n g  P a r t i a l l y  P e n e t r a t i n g  W e l l s  in  G F L O W 1  

Our modeling effort to this point has been restricted by tile 100-equation 
limit imposed by the educational version of GFLOWl.  This resulted in a 
limited farfield representation and a contrived representation of the tran- 
sition in hydraulic conductivity between the outwash and the surround- 
ing sandstone aquifer, the sandstone outcrop to the east of the river in 
Figure 6.5. 

Another limitation of our modeling is the use of a Dupuit-Forchheimer 
model, while the well field is rather close to the river, suggesting the need for 
three-dimensional flow modeling. Although we can introduce a resistance 
between the river and the aquifer, which represents the resistance due to 
a sediment layer on the river bottom, we do not know what additional 
resistance may be introduced by vertical components of flow near the river 
and the wells. This vertical resistance to flow is not accounted for in the 
Dupuit-Forchheimer solution. 

In Figure 6.10, an analytic element layout and piezometric contours are 
shown (in a subdomain near Vincennes) of a more complete GFLOW1 
model for the Vincennes area, which is solved by the professional version 
of GFLOWl .  The analytic element representations and aquifer parameter 
choices for this model differ somewhat from those in the earlier runs with 
the educational version, since the two models were constructed by two 
different modelers. Note that the outwash in Figure 6.10 is represented by a 
higher permeable domain on both sides of the Wabash River, rather than by 
the (artificial) sandstone outcrop depicted in Figure 6.5. The piezometric 
contours in the sandstone are omitted in Figure 6.10 to avoid clutter. The 
well field in Figure 6.10 is modeled by seven partially penetrating wells with 
their screens extending from the aquifer bottom to 10 ft above the aquifer 
bottom. A total discharge of 3.5 MGD has been distributed over these 
wells based on historic records. In Figures 6.11 and 6.12, piezometric head 
contours are depicted near the aquifer top and bottom, respectively, in a 
close-up near the well field and the river. The piezometric contours near 
the aquifer top (Figure 6.11) and aquifer bottom (Figure 6.12) differ only 
in the immediate vicinity of the wells (hardly noticeable on the scale of the 
figures). 

The well field modeled with these seven partially penetrating wells ob- 
tains 36.1% of its water from the river, as opposed to 36.3% for the case 
of seven fully penetrating wells. The latter modeling, with the seven fully 
penetrating wells, is not presented here. In the earlier model with the edu- 
cational version of GFLOW1 (data file vinc03.dat), the well field was repre- 
sented by a single well which obtained 34.9% of its water from the Wabash 
River. In general, therefore, the extended G F L O W l  solution yields results 
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Figure 6.10" Extended analytic element layout and piezometric contours 
for the professional version of GFLOWl with seven partially penetrating 
wells representing the well field. 
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that are not substantially different from those obtained from the simpler 
model with the educational version of GFLOW1; also compare Figure 6.10 
with Figure 6.8. 
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Figure 6.11: Piezometric contours near the aquifer top in a close-up of the 
seven partially penetrating wells near the Wabash River. 
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Figure 6.12: Piezometric contours near the aquifer bottom in a close-up of 
the seven partially penetrating wells near the Wabash River. 
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Figure 6.13: Finite difference grid in subdomain of the model area. Repro- 
duced from GAEP's  graphics screen. 

6 . 1 . 4  T h r e e - D i m e n s i o n a l  F l o w  w i t h  M O D F L O W  

The preceding application of partially penetrating wells is not exact, since it 
should only be used in a confined aquifer (see Section 4.2.1), while the flow 
in the outwash is unconfined. Moreover, in GFLO Wl ,  only these partially, 
penetrat ing wells were treated as three-dimensional features; all other fea- 
tures (including the Wabash River) were represented by two-dimensional 
functions. To further investigate the issue of three-dimensional flow be- 
tween the well field and The Wabash River, a fully three-dimensional MOD- 
FLOW solution is constructed for an area in the immediate vicinity of the 
well field and the Wabash River. This MODFLOW model is extracted from 
the GFLOW1 solution as follows. 

In Figure 6.13, a reproduction of the graphics screen in GAEP is shown 
with a finite difference grid superimposed on an area near the well field 
and the Wabash River. GAEP writes a GFLOW1 script file which uses 
the "extract" command in GFLOW1 to extract all relevant model data  for 
the grid, such as stream locations, resistances, conductivities, and porosi- 
ties. The boundaries of the grid in Figure 6.13 are defined as Dirichlet 
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boundaries with specified heads obtained from the G F L O W l  solution. A 
special converter program combines a GAEP and G F L O W l  grid output  
file in a MODFLOW-compat ib le  input data  file. The latter file has been 
imported into MODELCAD 4 to change the two-dimensional grid into a 
three-dimensional grid with eight grid layers equally spaced over the aquifer 
height. Piezometric contours near the aquifer top and aquifer bot tom are 
shown in Figure 6.14. These M O D F L O W  solutions appear nearly identical 
to those from G F L O W l ;  compare with Figures 6.11 and 6.12. Note that  
the domain for the MODLOW solution is somewhat different in size and ro- 
ta ted slightly as compared to that  for the GFLOW1 solution. The amount 
of water that  the wells obtain from the river in the M O D F L O W  model is 
34.6~ which is for all practical purposes the same as was predicted by 
GFLOW1 (36.1%) 

Both GFLOW1 and M O D F L O W  solutions, so far, assume an isotropic 
hydraulic conductivity, which may result in an underestimation of the re- 
sistance to vertical flow. In Figure 6.15, piezometric contours are presented 
near the top and bot tom of the aquifer for the case of a vertical hydraulic 
conductivity that  is 10 times less than the horizontal permeability. 

In Figure 6.16, contours of equal leakage rates underneath the Wabash 
River are presented for the isotropic and anisotropic case. The values on the 
contours have units of f t /day.  All water that  is leaked from the Wabash 
River in these diagrams ends up in the well field. The amount of water 
that  the wells obtain from the river for this anisotropic case is somewhat 
less than for the isotropic case: 33.1% of the total well field discharge, as 
opposed to 34.6%. 

Resistance Layer 

The three-dimensional modeling, whether with GFLOW1 or with MOD- 
FLOW, does not yield substantially different results than does the 
Dupui t -Forchheimer  (two-dimensional) modeling. In all cases, the well 
field receives a little over one-third of its discharge from the Wabash River. 
Even the anisotropic case, with a vertical conductivity 10 times lower, made 
little difference. The question arises: When would we see major differences 
between a Dupuit-Forchheimer solution and a three-dimensional solution? 
To force that  issue, imagine a silty clay layer 10 feet thick with a hydraulic 
conductivity of 0.1 f t /day that  occurs at an elevation midway between the 
top of the well screen and the bot tom of the Wabash River. A M O D F L O W  
solution for that  case is presented in Figure 6.17, where piezometric con- 
tours are depicted near the top and bot tom of the aquifer. This time there 

4Trademark of Geraghty and Miller. 
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Figure 6.14: Piezometric contours near the aquifer top (left) and near the 
aquifer bottom (right) due to MODFLOW with seven partially penetrating 
wells in an isotropic aquifer. 
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Figure 6.15: Piezometric contours near the aquifer top (left) and near the 
aquifer bottom (right) due to MODFLOW with seven partially penetrating 
wells in an anisotropic aquifer. Tile vertical hydraulic conductivity is 10 
times less than the horizontal conductivity. 
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are clearly differences between the shallow and deep heads. For the case of 
Figure 6.17, the well field receives only 0.9% of its water from the Wabash 
River. Keep in mind, however, that this is a hypothetical case; there is no 
evidence of such a resistance layer in the Vincennes area. 

It seems that the Dupuit-Forchheimer solution performs adequately, 
even though at first glance the wells are quite close to the river, suggest- 
ing the need for three-dimensional flow modeling. The extended GFLOW 
model did also not lead to substantially different results than were obtained 
earlier with the educational version. In view of this, we will continue our 
modeling with the educational version. 
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F i g u r e  6.17: P i e z o m e t r i c  c o n t o u r s  n e a r  t h e  aqu i f e r  t o p  ( left)  a n d  n e a r  t h e  
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in t h e  aqui fe r .  
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Table 6.1: Effects of model parameters  on the capture  zone. 

Paramete r  

k = 250 
k = 450 
n = 0 . 1  
n = 0 . 3  
N =  10 
N = 25 
Q = 2  

Q = 5  

Data  file 

vinc04.dat 
vinc05.dat 
vinc06.dat 
vinc07.dat 
vinc08.dat 
vinc09.dat 
v incl0 .dat  
vinc11.dat 

Effect on capture zone 

slightly shorter and wider 
slightly longer and shorter 
much longer 
much shorter 
much wider, slightly shorter 
slightly narrower and longer 
much narrower, slightly shorter  
much wider, slightly longer 

6 . 1 . 5  C a p t u r e  Z o n e s  f o r  B o u n d i n g  P a r a m e t e r  V a l u e s  

There  is uncertainty about  the value of many hydrogeological parameters ,  
such as hydraulic conductivity, porosity, areal recharge rates, resistances 
between surface waters and the aquifer, etc. The model run in Figure 6.8 
has been conducted with the following parameters  (see data  file vinc03.dat): 

�9 Aquifer base: base = 340 ft MSL. 

�9 Hydraulic conductivity of the outwash: k = 355 f t /day.  

�9 Hydraulic conductivity of the sandstone outcrops: 25 f t /day.  

�9 Recharge rate on outwash: N = 20 inches/year (0.004566 f t /day) .  

�9 Recharge rate on sandstone outcrops: 
ft/d~y). 

2 inches/year (0.0004566 

�9 Porosity: n = 0.2. 

�9 Pumping  rate of well field: Q = 3.5 MGD (467,852 f ta/day).  

�9 No resistance between The Wabash River and the aquifer (c = 0 
days). 

For each of these parameters ,  a lower and upper  bound were chosen to 
assess the impact  on the capture zone and isochrones. These parameter  
choices have been based on field data  and model calibration results. The 
runs and their results are summarized in Table 6.1, in which the effects on 
the capture  zone are compared to the one depicted in Figure 6.8 
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The capture zones for the parameter choices in the table are presented in 
Figures 6.18 through 6.25. We learned from the MODFLOW analysis with 
a resistance layer between the well screens and the river that such resistance 
may significantly affect the contribution of the river to the well field. In 
Figure 6.26, a capture zone is shown for the case that the resistance between 
the Wabash River and the aquifer is 1 day.  This results in a widening of the 
capture zone, while inspection of the line sinks that represent the Wabash 
River reveals that only 0.7o-/o of the well field discharge comes from the 
river, which is about the same as for the case of the resistance layer in 
MODFLOW (which had also a 1 day resistance). The interaction between 
the river and the aquifer (and well field) appears quite important and may 
warrant additional field data collection. 

Another uncertainty arises from the presence of the low permeable 
zones: Bunker Hill and the sandstone outcrop to the east. Instead of ex- 
perimenting with the conductivities and recharge rates for these sandstone 
outcrops, a model run was conducted by which these inhomogeneities were 
removed altogether. The resulting capture zone is depicted in Figure 6.27 
and is narrower and substantially longer than the one in Figure 6.8. 
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Figure 6.18: Capture zone for hydraulic conductivity in the outwash of 
k = 250 ft/day. (GFLOWl file vinc04.dat) 

Figure 6.19: Capture zone for hydraulic conductivity in the outwash of 
k = 450 ft/day. (GFLOWl file vinc05.dat) 
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Figure 6.20: Capture zone for porosity in the outwash of n = 0.1. 
(GFLOW1 file vinc06.dat) 

Figure 6.21: Capture zone for porosity in the outwash of n = 0.3. 
( G F L O W l  file vinc07.dat) 
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Figure 6.22: Capture zone for aquifer recharge in the outwash of N = 10 
inches/year. (GFLOW1 file vinc08.dat) 

Figure 6.23: Capture zone for aquifer recharge in the outwash of N = 25 
inches/year. (GFLOW1 file vinc09.dat) 



334 CHAPTER 6. FIELD APPLICATIONS  

Figure 6.24: Capture zone for pumping rate of Q = 2 MGD. (GFLOWl 
file vincl0.dat) 

Figure 6.25: Capture zone for pumping rate of Q = 5 MGD. (GFLOWl  
file vincl l .dat)  
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Figure 6.26: Capture zone for resistance of Wabash river of c = 1 days. 
(GFLOWl file vincl2.dat) 

Figure 6.27: Capture zone for the case of no inhomogeneities, hence no 
sandstone outcrops. (GFLOWl file vincl3.dat) 
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6 . 1 . 6  E s t a b l i s h i n g  W e l l h e a d  P r o t e c t i o n  A r e a s  

As pointed out before, we cannot accurately match the observed heads and 
. I  

modeled heads, so that we cannot decide on a single set of hydrogeological 
parameters. Instead, the modeling results presented in Figure 6.18 through 
Figure 6.27, representing a range of parameter values, are used to create 
a composite capture zone (see Figure 6.28), which may serve as the basis 
for defining well head protection areas (WHPA). This composite capture 
zone is quite conservative, and may be "narrowed down" by making more 
particular choices for the various parameter values presented in Table 6.1. 

A c t u a l  C o n t a m i n a n t  Trave l  T i m e s  

All isochrones for travel times reflect average groundwater travel times in 
a homogeneous aquifer under steady-state conditions. The actual travel 
time may be quite different. First of all, aquifers tend to exhibit stratifica- 
tion with layers that  are more and less permeable than average. Ground- 
water moving in higher-permeability strata will arrive at the well earlier 
than predicted by our modeling. Variations in porosity will have similar 
effects on the actual groundwater travel times, with a lower porosity re- 
sulting in reduced travel times. The steady-state nature of our modeling 
is another concern. There are in general significant seasonal variations in 
aquifer recharge and pumping regimes. These transient effects may average 
out when moving farther from the well, where groundwater travel times 
are in the range of 5 to 10 years. Near the well, however, within a one- 
year isochrone, conditions may be significantly different during the summer 
than during the winter. In other words, the one-year time of travel capture 
zone is a questionable concept and may not be suitable for defining well 
head protection areas (WHPAs). Finally, contaminants may be retarded 
by adsorption to the aquifer material. This retardation effect depends on 
the contaminant in question and on the nature of the aquifer material. For- 
tunately, retardation increases the contaminant travel time, so that  from 
this perspective the use of groundwater travel times is conservative for well 
head protection purposes. 

6.2  F a t e  of  C o n t a m i n a n t s  

The objective of the previous groundwater flow modeling study was to 
assess the consequences of groundwater contamination before it happens. 
Unfortunately, this proactive approach is not always possible. Numerous 
cases of documented groundwater pollution are currently under investiga- 
tion and/or  remediation. In some cases, contaminants have traveled off site 
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Figure 6.28" Composite time of travel capture zone with 2-, 5-, and 10-year 
isochrones for the Vincennes well field. 
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and have been detected in receptors, e.g., domestic wells. In other cases, 
the contaminants are known to have entered the aquifer, but it is not clear 
in which direction they are moving and how fast. 

Next I will discuss a regional groundwater flow modeling study aimed 
at assessing the potential fate of contaminants released from the Four 
County Landfill in Fulton County, Indiana. The following summary of 
that study has been adapted from the journal article "Modeling Regional 
Ground-Water Flow in Fulton County, Indiana: Using the Analytic Ele- 
ment Method" (Haitjema, 1992b). 

6 . 2 . 1  E n v i r o n m e n t a l  I m p a c t  o f  t h e  F o u r  C o u n t y  

L a n d f i l l  

In 1972, the Four County Landfill in Fulton County, Indiana (Figure 6.29) 
started to accept solid and liquid waste. Its controversial life as a hazardous 
waste landfill, in almost perpetual conflict with local citizens and both state 
and federal agencies, ended in early 1989 when a federal judge closed the 
landfill and fined its owner and operator. Closure was brought about both 
by a lack of compliance with regulations and by environmental concerns 
regarding the location and engineering design of the landfill. An important 
aspect of the environmental concerns is the threat that the landfill poses to 
the underlying regional aquifer, even though at the time no major off-site 
contamination of that aquifer had been demonstrated. 

The author was retained by attorneys representing local citizens, who 
were concerned with the environmental consequences of the landfill, were 
plaintiffs in a civil suit against the owner and operator of the landfill, or 
both. The groundwater flow study was to be of limited scope, in order 
to control costs, while still of sufficient technical merit to answer some 
questions left unanswered by previous hydrogeological studies. These ques- 
tions included: conflicting piezometric contour maps, different estimates of 
the aquifer transmissivity, and uncertainties about potential off-site move- 
ment of contaminants. To control costs, it was decided to avoid additional 
field data collection, but instead maximize the use of existing data through 
groundwater flow modeling. Data limitations were often dealt with using a 
hypothesis testing approach in combination with conservative assumptions 
regarding unknown data. 

P r e v i o u s  S t u d i e s  

In 1985 ATEC Associates, Inc., retained by the owner and operator of 
the landfill, Environmental Waste Control, Inc. (EWC), performed water 
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Figure 6.29: Four County Landfill (FCL) in Fulton County, Indiana. The 
area shown is approximately 20 by 25 miles and is included in the ground- 
water modeling. The dashed rectangle indicates the largest study area of 
previous studies. (After Haitjema, 1992b.) 
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quality tests on water samples from on-site monitoring wells. No evidence 
was found for a contaminant plume moving off-site (Weaver, 1985). 

Dames & Moore, also retained by EWC, used slug tests to estimate 
the hydraulic conductivity of the sediments underneath the landfill and ob- 
tained values ranging from 0.017 ft/day to 12.2 ft/day (Hosfeld, 1987). In 
addition, detailed piezometric contour plots were presented for the landfill 
property, showing a mysterious "trough"-like feature. The Indiana Depart- 
ment of Environmental Management (IDEM), reevaluating the same data, 
did not report this "trough" (Autio, 1988). These conflicting conclusions 
about the local groundwater movements left the important question of po- 
tential off-site contaminant movement unanswered. 

A local newspaper, The Sentinel, featured a scientific study, paid for by 
the paper, of the geohydrology near the FCL (Melbardis and Hall, 1987). 
Melbardis and Hall used both surface water elevations from topographic 
maps and static water level data of domestic wells, as reported by well 
drillers, to construct a regional piezometric contour map; see Figure 6.30a. 
Their contour map shows a steep groundwater gradient across the landfill 
at variance with observations on-site, where levels differ less than 1 foot 
(Hosfeld, 1987). Based on the map of Melbardis and Hall, groundwater 
underneath the landfill flows in a northeasterly direction. Melbardis and 
Hall also estimate, from literature, the hydraulic conductivity of the sand 
and gravel formations that make up the regional aquifer to be 250 ft/day, an 
order of magnitude higher than the highest conductivity reported by Dames 
& Moore. Assuming contaminants would be released to the regional aquifer, 
they estimate a total travel time from the landfill to the Tippecanoe River 
of 15 years. 

In 1988 the USGS published its own hydrogeological study by Greeman 
(1988). His piezometric contour map, Figure 6.30b is based exclusively on 
well data and differs significantly from the one published by Melbardis and 
Hall, Figure 6.30a. Greeman's map exhibits a water divide south of the 
FCL. 

Only two of the five studies include hydrogeologic information outside 
the landfill property itself, and none of the studies attempts to explain the 
observed piezometric contour patterns, leaving many questions unanswered. 
The two regional studies (Melbardis and Hall, 1987, and Greeman, 1988) 
yield different and contradictory piezometric surfaces. The steep gradients 
across the landfill observed by Melbardis and Hall are not found by Greeman 
and cannot be explained by the available geological and hydrological data. 
The low hydraulic conductivities and confusing groundwater gradients on- 
site ("trough") reported by Dames & Moore are not confirmed by other 
studies. 
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Figure 6.30: Piezometric contours [ft MSL] presented by Melbardis and Hall 
(1987) (a) and presented by Greeman (1988) (b). The domain of the plots 
is the dashed rectangle in the previous figure. (After Haitjema, 1992b.) 
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Geological Conditions 

There is little controversy about the complex geological conditions in the 
area. Following the suggestions of Greeman (1988), the sediments may be 
grouped into two different units: (1) an upper till unit containing sand and 
gravel deposits and (2) a lower sand and gravel outwash with some discon- 
tinuous clay layers. The lower sand and gravel unit is the primary source of 
groundwater for domestic, public, and industrial use. Wells are generally 
less than 150 feet deep and yield from 5 to 1,000 GPM (Hosfeld, 1987). 
The sand and gravel deposits in the till may or may not be interconnected, 
depending on local presence or absence of separating clay layers, but insuf- 
ficient data are available to draw a detailed stratigraphic map (Greeman, 
1988). Consequently, the lower aquifer may locally exhibit different piezo- 
metric heads at different depths. Similarly, some perched aquifers are found 
in the upper till unit, isolating some wetlands and creeks from the lower 
regional aquifer. 

6 . 2 . 2  M o d e l i n g  A p p r o a c h  

One of the major concerns for modeling the groundwater flow regime near 
the landfill is the complexity of the geology, which often exhibits more 
than one aquifer unit with depth. The extent of these aquifers, their hy- 
draulic conductivity, thickness, and connectivity to other aquifer units vary 
spatially and are mostly unknown. In view of these data limitations, any 
a t tempt  to use a multi-aquifer groundwater flow model seems futile. In 
order to keep the modeling manageable, a single layer Dupuit-Forchheimer 
model was used: SLAEM (Single Layer Analytic Element Model), which is 
similar in design to GFLOWl.  By using a single layer model, a comprehen- 
sive flow solution was obtained; hence, all heads are to be interpreted as 
"comprehensive heads." In single aquifer zones these comprehensive model 
heads should compare directly with those measured in the field. However, 
in multi-aquifer zones the observed heads may be higher or lower than the 
model heads, depending on the s tratum in which the head has been mea- 
sured. For the present study, domestic wells have been grouped into three 
categories related to their screen location: shallow, medium, and deep. 
In recharge areas, remote from streams or lakes, the heads in the shallow 
wells are expected to exceed the comprehensive head, while the heads in 
the deeper wells are expected to be lower than the comprehensive head. In 
discharge areas, near streams or lakes, this trend is expected to be reversed. 
The model head (comprehensive head) would equal an observed head if the 
well would penetrate (and be connected to) all strata; see Rule 3.13. In 
principle, when the locations of well screens and the locations of all aquifer 
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s t ra ta  as well as their transmissivities are accurately known, the heads in 
the various s t ra ta  can be derived from the comprehensive head (potential); 
see Section 3.4.2. However, these detailed data  are seldom known, and 
certainly not in the region depicted in Figure 6.31, so that  no quantita- 
tive comparisons are possible between modeled heads and observed heads, 
except in single aquifer domains where they should match. 

Data Preparation 

Nine USGS 7.5-minute topographic maps, covering an area of approxi- 
mately five hundred (500) square miles surrounding the FCL, were taped 
together. The main streams and lakes were approximated by strings of 
straight line elements or quadrilaterals, respectively, which were traced on 
acetate overlays. SLAEM, unlike G F L O W l ,  uses quadrilateral surface sinks 
to model lakes. In GFLOW1 we would either use a sink disc or place line 
sinks around the lake boundary. The latter option is better, since it more 
accurately models the constant water table in the lake and the tendency of 
the lake to take most of the water out of the aquifer near its boundaries. 
At the center of each element, the surface water elevation was est imated 
from the topographic map and writ ten near the element on the acetate. In 
addition, major landmarks (roads, towns, etc.) in the area near the FCL 
were traced on the acetate for spatial orientation of the results. All data  
collected on the acetates were digitized by placing each overlay on a data  
tablet with a 20 x 17 inch working area, which produced two ASCII data  files 
(.DAT files). The first file, fcl.dat, contains all hydrologic data,  including 
an est imate of the regional hydraulic conductivity and the areal groundwa- 
ter recharge rate. The second file, fclmap.dat, contains the landmark data  
serving as a background for plots of piezometric contours or streamlines. 
A map of the hydrologic features (solid lines) and the digitized landmarks 
(dash-dot  lines) is presented in Figure 6.31, which covers the same area 
as depicted in Figure 6.29. The solid line elements in Figure 6.31 are line 
sinks which represent Mill Creek, the Tippecanoe River, and its major trib- 
utaries. Some of the lines are interrupted because of digitizing errors. These 
gaps are of no consequence for the regional groundwater  flow solution, and 
are too remote from the FCL site to be of any concern there. At the cen- 
ter of each line sink, the approximate water level in the creek or river, as 
obtained from the topographic map, is assigned to the line sink. 

In the present modeling, the rivers and creeks have been assumed to 
be in complete contact with the aquifer. If the streams are only in par- 
tial contact with the aquifer, they should have been represented by line 
sinks with a bot tom resistance; see Section 5.2.3. Whether  or not a trib- 
utary is connected to the regional aquifer system determines whether or 
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Figure 6.31: Layout of hydrological features (solid lines) and landmarks 
(dash-dot lines) in the area depicted in Figure 6.29. The + signs refer 
to domestic wells with static water levels [ft MSL] as indicated. (After 
Haitjema, 1992b.) 

not it is included in the modeling. That  decision is based in part on the 
sparse geological data from nearby well logs and in part on trial runs, by 
which modeled piezometric heads were compared to the heads in the wells 
(Figure 6.31), both for the case with and for the case without the tributary. 
In addition, the inflow or outflow rates of the tributaries, as predicted by 
the model, were reviewed. When they seemed unrealistically high, it was 
seen as another indication of poor connection to the regional aquifer. The 
domestic well locations (+ signs in Figure 6.31) are labeled with "s," "m," 
or "d," for shallow, medium, or deep wells, respectively. The static water 
levels indicated in Figure 6.31 are measured with respect to mean sea level 
(msl). 
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Regional Hydraulic Conductivity 

The first modeling objective was to gain insight into the regional trans- 
missivity of the aquifer. The conceptual model of the area was that of an 
aquifer with its base (no-flow boundary) at elevation 560 feet above MSL 
and an upper aquifer boundary at elevation 720 feet above MSL. This con- 
ceptualization is realistic near the FCL, but becomes a lesser approximation 
away from the landfill site. Depending on the modeled piezometric surface, 
the aquifer will be locally confined or unconfined. Groundwater mound- 
ing between streams is proportional to the ratio of N/T; see Rule 3.12. If 
the recharge rate N is known, the transmissivity may be found by varying 
the conductivity in the model and comparing the groundwater mounding 
with observations. Based on information from a water resources study by 
the "Governor's Water Resources Commission" (Clark, 1980), groundwater 
recharge rates in Fulton County may be in the range of 6 to 7 inches/year. 
I chose a conservative recharge rate of 4 inches/year (average in the State 
of Indiana) to avoid overestimating the hydraulic conductivity and thus 
overestimating the risk for groundwater contamination due to the FCL. 

In Figures 6.32 through 6.34, three contour plots are depicted for three 
different values of the regional hydraulic conductivity: 20 ft/day, 40 ft/day, 
and 60 ft/day, respectively. 

Superimposed on the contour plots are some water level observations 
from domestic wells, see also Figure 6.31. When comparing the observed 
water levels with the calculated levels (contours), it is important to realize 
that the observed levels are from different depths. In general, the shallower 
heads should be above the model heads, while the deeper heads should be 
lower than the modeled heads. 

Where there are few surface water features to control the ground- 
water levels, the piezometric heads are most sensitive to changes in hy- 
draulic conductivity. The calculated heads in the lower right-hand corner 
of Figure 6.32, for instance, are consistently higher than those observed in 
domestic wells, regardless of well depth. The piezometric contour that runs 
across the landfill (Figure 6.32) represents a head of 735 feet, at least 5 
feet higher than those observed in monitoring wells on site, around 729 feet 
(Hosfeld, 1987). More realistic heads result from the assumed hydraulic 
conductivities of 40 ft /day and 60 ft /day (Figures 6.33 and 6.34, respec- 
tively). For this study I adopted the lower, more conservative hydraulic 
conductivity of 40 ft/day, which also produced the most realistic piezo- 
metric heads at the landfill site. This hydraulic conductivity, however, is 
merely a regional average and may (will) vary with location and depth. 
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Figure 6.32: Regional piezometric contours [ft MSL] for 4 inches/year 
recharge and a hydraulic conductivity of 20 ft/day. (After Haitjema, 
19925.) 



6.2. FATE OF CONTAMINANTS 347 

Figure 6.33: Regional piezometric contours [ft MSL] for 4 inches/year 
recharge and a hydraulic conductivity of 40 ft/day. (After Haitjema, 
1992b.) 
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Figure 6.34: Regional piezometric contours [ft MSL] for 4 inches/year 
recharge and a hydraulic conductivity of 60 ft/day. (After Haitjema, 
19925.) 
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A r e a  of I n t e r e s t  

The scale of Figures 6.32 through 6.34 is inappropriate for studying the 
fate of possible contaminant releases at the landfill. A close-up of the area 
surrounding the landfill is plotted in Figure 6.35. Tile area depicted in 
Figure 6.35 is the same as the area shown in Figure 6.30. 

When comparing Figure 6.35 with Figure 6.30a it becomes evident that  
the contours in the latter figure represent, at least in part, perched water 
table conditions, rather than the regional groundwater regime. The steep 
gradient across the landfill, therefore, is an artifact of combining water 
levels from perched groundwater systems (swamps to the south and west 
of the landfill) with water levels from the regional system (wells on and 
surrounding the site). 

The contours observed by Greeman (1988), which are based exclusively 
on well data, are in far better agreement with the calculated levels; compare 
Figure 6.35 with Figure 6.30b. Although the contours differ in shape and 
location, both the observed and calculated contours exhibit a water divide 
south of the landfill. For both observed and calculated data, the regional 
groundwater flow direction at the landfill is toward the north-northeast.  
This is true regardless of the assumed hydraulic conductivity in the region, 
(Figures 6.32 through 6.34). 

6 . 2 . 3  S u r f a c e  W a t e r  a n d  G r o u n d w a t e r  I n t e r a c t i o n  

The modeling results in Figures 6.32 through 6.35 have been obtained after 
several input data refinements based on comparisons of modeling results 
with field data and in part based on inspection of the modeling results 
themselves. For instance, several of the surface water features in the area 
are not in direct contact with the regional flow system, which became evi- 
dent after the water levels in the wetlands south and west of the landfill were 
compared with those found in wells. It also appears that King Lake and its 
outlet east of the landfill do not control the heads in the regional aquifer. 
This is demonstrated by a model run in which little resistance to flow is as- 
sumed between King Lake and the regional flow system. In Figure 6.36, the 
vertical resistance to flow between the lake and the aquifer is set to 1 day, 
as opposed to 500 days in Figure 6.35. Using this lower resistance causes 
King Lake to have a greater impact on the regional flow system, raising the 
calculated heads at the landfill above those observed and rotating the flow 
to the northwest, while field observation show it to be to the northeast. 
Moreover, for this assumption, the surface sink that  represents King Lake 
has an infiltration rate of 0.114757 ft/day, which translates into an annual 
infiltration rate of more than 500 inches/year. This seems unrealistically 
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Figure 6.35: Close-up of piezometric contours near the landfill. Area shown 
is the same as depicted in Figure 6.30. (After Haitjema, 1992b.) 

Figure 6.36: Assuming King Lake is in direct contact with the regional 
aquifer changes heads and flow directions underneath the FCL. (After Hait- 
jema, 1992b.) 
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high, in view of both the lake's limited watershed size and the fact tha t  
it has an outlet to the Tippecanoe River. Because of the latter, some of 
the water from the watershed is flowing directly into the Tippecanoe River 
rather than infiltrating into the regional aquifer. The infiltration rate of 
King Lake, for the case of Figure 6.35, where the lake is given 500 days 
resistance, is 56 inches/year. The latter infiltration rate may still be too 
high, but seems possible both from a water balance perspective and in view 
of its effect on the regional groundwater flow regime. Similar analyses have 
been conducted for other surface water features in the landfill area, often 
resulting in adjustments of their resistance to infiltration, or sometimes 
their removal from the data set. 

6 . 2 . 4  P o t e n t i a l  Of f -S i t e  C o n t a m i n a n t  M o v e m e n t  

The degree of connection between tile various aquifer s trata varies in the 
region. For instance, a domestic well .just north of the Tippecanoe River 
and just west of State Road 17 exhibits artesian conditions with a head in 
the deeper formations standing more than 5 feet above the water level in the 
Tippecanoe River. At the landfill site, however, static water levels at differ- 
ent depths are usually within a few tenths of a foot of each other (Hosfeld, 
1987), and in close agreement with the comprehensive head in the model. 
This is characteristic of a single aquifer zone, indicating a good connection 
between the various strata on site. The landfill is located on a topographic 
high, while surrounding water levels in the upper till are well above the 
levels in the regional aquifer; see Melbardis and Hall's contour map in 
Figure 6.30a. Consequently, there is a potential for downward movement 
of contaminated groundwater from the upper till into the regional aquifer. 
Similarly, landfill leachate may move into the regional aquifer. 

If contaminants would reach the rather permeable sand and gravel for- 
mations underneath the landfill a relatively rapid northeasterly movement 
may follow. The aquifer thickness at the FCL is approximately 160 feet, 
with an average hydraulic conductivity of 40 ft/day, which results in a 
transmissivity of 6,400 ft2/day. The geologic formations underneath the 
landfill consist of various formations with various hydraulic conductivities. 
Using literature values for the low permeable silt and sandy silt formations, 
it is estimated that  the available sand and gravel zones, on average, have 
a conductivity of approximately 160 ft/day. This estimate is based on the 
following assumptions: 60 feet of silt with a conductivity of 0.1 ft/day, 60 
feet of fine sand with a conductivity of 1 ft/day, and 40 feet of sand and 
gravel with a conductivity of 158.35 ft/day, yielding a total transmissivity 
of 6,400 ft 2/day. 

The regional pathlines for groundwater that passes underneath the FCL 
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are depicted in Figure 6.37. The tick marks indicate travel times based 
on the average sand and gravel conductivity of 160 ft/day, and a poros- 
ity of 20%. No dispersion or retardation effects have been included in 
Figure 6.37. Assuming advective transport, nonreactive contaminants may 
reach the Tippecanoe River in about 15 years. Incidentally, this result is 
consistent with that  reported by Melbardis and Hall, who used observed 
groundwater gradients northeast of the FCL and conductivities obtained 
from the literature (Melbardis and Hall, 1987). Of course, some fraction 
of the contaminants will move in lower permeable strata, and some types 
of contaminants will be retarded by adsorption to the aquifer material, re- 
sulting in much longer residence times. On the other hand, the transport  
through sand and gravel zones may still be subject to so-called "hydro- 
dynamical dispersion," whose longitudinal component (dispersion into the 
direction of average groundwater flow) may further speed up the arival of 
the contaminants front at a down flow receptor, ultimately the Tippecanoe 
River. A more accurate assessment of the actual travel times of contami- 
nants released from the landfill requires the acquisition of many more data 
and much more sophisticated transport modeling, both of which were out- 
side the scope of this study. 

The pathlines in Figure 6.37 represent average groundwater movement. 
Groundwater flow directions may vary somewhat with depth, causing con- 
taminants to move beyond the pathlines that  are depicted in Figure 6.37. 

6 . 2 . 5  C o n c l u s i o n s  

A number of questions regarding the environmental impact of the FCL have 
been answered by the described modeling. Aquifer hydraulic conductivities 
were demonstrated to be an order of magnitude higher than predicted by 
FCL consultants. Regional flow directions are north-northeast regardless of 
any uncertainties in hydrogeological parameters. The aquifers underneath 
the FCL appeared to be well connected, and groundwater travel times from 
the landfill to the Tippecanoe River may be as short as 15 years. 

6.3  D r a w d o w n  P r e d i c t i o n s  

Groundwater contamination is not the only motivation for groundwa- 
ter modeling, although currently it is probably the most prominent one. 
Groundwater availability has traditionally been the objective of many 
groundwater modeling studies, although more so in arid climates than in 
the temparate  Midwest. Yet even in areas of abundant groundwater re- 
sources, the installation of new high-capacity wells may locally cause some 
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Figure 6.37: Groundwater pathlines from landfill to river through gravel 
zones with k - 160 ft/day. Tick marks indicate intervals of travel times of 
1 year. (After Haitjema, 1992b.) 
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concern. 

6 . 3 . 1  M i s h a w a k a  W e l l  F i e l d  

In 1992 the Indiana Department of Environmental Management (IDEM) 
requested the author to conduct an "Environmental Impact Study of the 
Gumwood Road well field near Mishawaka, Indiana" (Haitjema, 1992a). 
The reason for this study was citizens' complaints about alleged adverse 
impacts of a new well field for the city of Mishawaka. Specifically, the citi- 
zens complained about (1) drawdowns that affected the operation of their 
own drinking water wells, (2) increased staining due to iron and manganese 
oxides, and (3) the fear of diversion of known or suspected groundwater con- 
tamination that would affect their wells. None of these issues are explicitly 
addressed under the current permitting regulations, and hence neither the 
city nor the regulatory agencies had investigated these issues prior to the 
complaints. 

Next I will summarize the modeling approach used in that study and 
documented in a report to IDEM (Haitjema, 1992a). In doing so I will only 
address issue (1), the drawdowns in the domestic wells. 

P r e v i o u s  S tud ie s  

The first study of the Gumwood Road well field was conducted before instal- 
lation of any production wells. Its focus, among others, was on establishing 
the transmissivity of the aquifer(s) underneath the well field site and pre- 
dicting long-term drawdowns near the proposed well field (Annable, 1988). 
Tile average hydraulic conductivity at the well field site was estimated at 
about 300 ft/day, assuming a saturated aquifer height of 124 feet. Draw- 
down predictions were presented for full-capacity pumping as well as for 
expected average pumping. These drawdowns, based on 5500 GPM pump- 
ing capacity, vary from a maximum of 10 feet near the well field to about 
2 to 3 feet further away in the residential areas surrounding the well field. 

My own earlier study (Haitjema, 1989) focused on potential drawdowns 
and the risks of diverting contaminants from known or suspected sources 
toward nearby domestic wells. I concluded that hydraulic conductivities 
in the upper aquifer, at the proposed well field site, may be substantially 
lower than predicted by the first study: A value of 100 ft /day was suggested. 
But even assuming that the hydraulic conductivity is 300 ft/day, I predicted 
drawdowns which are substantially higher than those reported by Annable 
(1988): 18 to 20 feet, as opposed to 7 to 10 feet. I did stress the fact that a 
significant uncertainty remains about the actual hydraulic conductivities in 
tile area (even after both studies) and recommended a long-term pumping 
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test. Fears of the citizens that the AMOCO site at Granger or the nearby 
Douglas Road dump site could cause pollution of domestic wells near the 
well field were disproven. I also pointed out that water quality analyses of 
the production wells are not representative of the water quality in nearby 
domestic wells. Contaminants will reach domestic wells earlier than the 
production wells, and they will be less diluted in the well. Hence, public 
supply wells are no early warning system for domestic wells. 

Under the supervision of the Indiana Department of Natural Resources 
(IDNR), the recommended long-duration pumping test was conducted 
(Barnhart and Annable, 1990). The analyses of transient responses in 
the various piezometers showed significant scatter: T values ranging be- 
tween 146,115 GPD/f t  (~ 20,000 ft2/day) and 730,575 GPD/ft  (~ 100,000 
ft2/day), which illustrates the heterogeneous nature of the aquifer (Hait- 
jema, 1989). The so-called distance drawdown analyses show more consis- 
tent results and form the basis for the reported 200,000 GPD/ft  average 
regional transmissivity. This translates into a hydraulic conductivity of 216 
ft/day (using an aquifer thickness of 124 feet). 

A technical report regarding the impact on nearby Juday Creek of pro- 
posed detention basins (Limno-Tech, 1991) offered two valuable analyses 
regarding Juday Creek: (1) stream flow measurements at different loca- 
tions along the creek and (2) temperature measurements in the stream and 
in the sediments indicating where the creek is discharging or recharging 
groundwater. Since Juday Creek is the nearest surface water feature to the 
well field, these data are useful in assessing the regional (groundwater) hy- 
drology. These analyses were later published in the peer-reviewed literature 
(Silliman and Booth, 1993). 

Finally, at the time of this study, the USGS had just started a geohydro- 
logical study of the St. Joseph River basin, which includes the Gumwood 
Road well field. Some preliminary data from this study have been incorpo- 
rated in the present analysis. 

Hydrogeological Conditions 

The Gumwood Road well field is located in the glacial outwash north and 
east of the St. ,Joseph River near South Bend and Mishawaka, Indiana; 
see Figure 6.38. These thick sand and gravel formations are a highly pro- 
ductive groundwater resource. Locally, the sand and gravel formations are 
interspersed with clay layers, locally forming dual or multi-aquifer systems, 
while regionally they act as one aquifer. Underneath the Gumwood Road 
well field there exists both a single and a dual aquifer zone (Annable, 1988), 
with a single aquifer domain underneath the northern part of the site and a 
dual aquifer system underneath the southern part. As a result of these local 
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Figure 6.38: Gumwood Road well field in the glacial outwash north and 
east of the St. Joseph River. (Adapted from Peters, 1987.) 

complexities, the pumping test results on site showed substantial scatter in 
predicted transmissivities and storage coefficients (Annable, 1988; Barnhart  
and Annable, 1990). The transmissivity for the single aquifer domain was 
estimated at 300,000 GPD/f t  (40,110 ft2/day). The combined transmissiv- 
ities for the dual aquifer zone were close to this, 260,000 GPD/f t  (34,762 
ft2/day). Based on a saturated thickness of 124 feet on site, these trans- 
missivities translate into hydraulic conductivities of 323 and 280 ft/day, 
respectively. These results were obtained from a 48-hour pumping test, 
which suffered from two shortcomings. To begin with, the heterogeneous 
aquifer conditions complicate the data analysis by use of Jacob's method, 
which is based on homogeneous aquifer conditions. Secondly, the water 
pumped from the aquifer was not piped out of the area, but was discharged 
on site, thus potentially causing aquifer recharge not accounted for in the 
pumping test analysis. 

The best estimate for the hydraulic conductivity in the immediate area 
of the well field, so far, comes from the distance drawdown analysis based 
on the most recent pumping test (Barnhart  and Annable, 1990) and is 
about 216 ft/day. This value comes from the suggested transmissivity of 
200,000 GPD/f t  and the reported aquifer thickness (on site) of 124 feet. 
The evaluations of transient aquifer responses remains very inconclusive in 
view of the large variations in piezometer responses. 
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Figure 6.39: Modeled and observed piezometric heads for 15 inches/year 
recharge and a hydraulic conductivity of 100 ft/day. 

6 . 3 . 2  R e g i o n a l  H y d r a u l i c  C o n d u c t i v i t y  

Regional groundwater flow modeling may be used to obtain an estimate 
of a regionally average transmissivity or, with known aquifer thickness, 
hydraulic conductivity. Here, three steady-state computer simulations 
are presented using GFLOW1. Each simulation uses the same recharge 
rate, N = 15 inches/year, while the hydraulic conductivity k is varied: 
in Figure 6.39, k = 100 ft/day; in Figure 6.40, k = 150 ft/day; and in 
Figure 6.41, k = 200 ft/day. The dotted lines represent contours of equal 
groundwater elevations or equal piezometric heads. The solid lines repre- 
sent hydrological features, such as the St. Joseph River, and Juday Creek, 
while dashed lines represent landmarks, such as roads and city outlines. 
The small square star-like symbols represent high-capacity wells in the 
area which are included in the modeling with their average pumping ca- 
pacity as reported to the IDNR. The plus signs indicate the locations of 
USGS monitoring wells with groundwater levels written above them in feet 
above mean sea level (msl). The groundwater levels in the wells were mea- 
sured on different dates between January 25, 1991, and February 16, 1992. 
These observed levels are printed between angular brackets in Figure 6.39 
through Figure 6.41, where the slash indicates a range of values, which were 
observed at different dates or at different depth. 
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Figure 6.40: Modeled and observed piezometric heads for 15 inches/year 
recharge and a hydraulic conductivity of 150 ft/day. 

Figure 6.41: Modeled and observed piezometric heads for 15 inches/year 
recharge and a hydraulic conductivity of 200 ft/day. 
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In none of the three figures is an exact match seen between modeled 
and observed heads. Nor should this be expected: The model is a se- 
vere simplification of reality, which does not recognize different heads at 
different depths or at different times of the year. In comparing observed 
heads with modeled heads, therefore, one should look for general trends 
rather than local matches. It appears that the contours in Figure 6.40 are 
generally in better agreement with observed heads than in the other two 
figures. The contours in Figure 6.39 are generally higher than the observed 
heads, while the contours in Figure 6.41 are generally lower than observed. 
Consequently, the ratio of N/k = 15inches/year 10Oft/day seems most realistic. 

In Figures 6.42 through 6.44, contour plots are presented for different 
values of the hydraulic conductivity k, but the same ratio of N/k. The con- 
ductivities vary from 100 f t /day to 300 ft/day, while there is little difference 
in the piezometric contour levels. This illustrates the dependence of ground- 
water mounding on the factor N/k; see Rule 3.12 in Section 3.2.2. Only in 
areas where there is substantial pumpage do lower conductivities lead to 
larger drawdowns, and thus lower heads. This may be seen, for instance, by 
comparing the steep cone of depression near the high-capacity well in the 
lower left part of Figure 6.42 (upper figure) with the much weaker cone of 
depression for that  well in Figure 6.44. A consequence of the similarity (in 
general) between the piezometric contours in Figures 6.42 through 6.44 is 
that  steady-state groundwater modeling alone will not provide the average 
aquifer conductivity, unless a good estimate of the average recharge rate 
due to precipitation is available. 

6 . 3 . 3  M o d e l i n g  B a s e f l o w  in  J u d a y  C r e e k  

The recharge uncertainty may be resolved by applying GFLOWI ' s  conjunc- 
tive streamflow and groundwater flow option to Juday Creek, which is the 
surface water feature nearest to the well field. This option is invoked by 
use of the "properties" command in GAEP, changing the representation 
of Juday Creek from a string of line sinks into a stream. By comparing 
predicted base flow with observed stream flows, an additional calibration 
tool is obtained to select the proper N/k ratio from the cases presented 
in Figures 6.42 through 6.44. The Limno-Tech report (Limno-Tech, 1991) 
contains both stream flow measurements at various locations along Juday 
Creek and an analysis of temperatures of stream water and water in the 
stream sediments. The latter temperature measurements indicate where 
the stream is discharging or recharging tim grouIldwater; see Figure 6.45. 
Where the temperatures in the sediments and the stream are close to each 
other in Figure 6.45, aquifer recharge is implied. Elsewhere the stream is 
receiving water from the regional aquifer. These data may be compared 



360 CHAPTER 6. FIELD APPLICATIONS  

Figure 6.42: Modeled and observed piezometric heads for 10 inches/year 
recharge and a hydraulic conductivity of 100 ft/day (upper figure) and for 
15 inches/year recharge and a hydraulic conductivity of 150 ft/day (lower 
figure). 
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Figure 6.43: Modeled and observed piezometric heads for 20 inches/year 
recharge and a hydraulic conductivity of 200 ft/day (upper figure) and for 
24 inches/year recharge and a hydraulic conductivity of 240 ft/day (lower 
figure). 
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Figure 6.44: Modeled and observed piezometric heads for 26 inches/year 
recharge and a hydraulic conductivity of 260 ft/day (upper figure) and for 
30 inches/year recharge and a hydraulic conductivity of 300 ft/day (lower 
figure). 
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Figure 6.45" Temperature distribution in Juday Creek water and sediments. 
(After Silliman and Booth, 1993.) 

to the modeling results where line sinks with negative sink densities are 
recharging the aquifer, while positive sink densities indicate groundwater 
inflow. 

In Figures 6.46 and 6.47, modeled base flow distributions along Juday 
Creek are presented together with observed spring and summer flows. The 
modeled flow rate is printed next to the gauging station (marked by an 
asterisk) above the creek. Below the creek, near the gauging station, the 
observed low flow and high flow values are given. The cases presented 
in the two figures correspond to those presented in Figures 6.42 through 
6.44. It appears from Figures 6.46 and 6.47 that the most likely regional 
conductivity is somewhere between k = 200 and 240 ft/day. This result 
is in good agreement with the distance-drawdown analyses of the latest 
pumping test (Barnhart and Annable, 1990). The conductivities of 200 and 
240 ft/day imply areal recharge rates of 20 and 24 inches/year, respectively; 
see Figure 6.43. In addition, I compared recharging stream sections in the 
model (using the "highlight recharge" feature in the line sink module of 
GFLOWl)  with the temperature distribution in Figure 6.45. Although 
not shown here, there was general agreement for the modeling runs with 
hydraulic conductivities between 200 and 240 ft/day. 
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Figure 6.46: Modeled (above creek) and observed (below creek) stream 
flows (cfs) along Juday Creek for the case of k= 100, 150 and 200 ft/day 
(from top to bottom). 
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Figure 6.47: Modeled (above creek) and observed (below creek) stream 
flows (cfs) along Juday Creek for the case of k= 240, 260 and 300 ft/day 
(from top to bottom). 
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Figure 6.48: Pumping schedule of well #13 and well #14. 

6 . 3 . 4  M o d e l i n g  O n e - Y e a r  D r a w d o w n s  in  D o m e s t i c  

W e l l s  

At the time of this study, two production wells had been pumping for 
about one year. A simulation of the drawdowns caused by these wells 
offers yet another opportunity to assess the hydraulic conductivity near the 
Gumwood Road well field. The IDNR has regularly performed water level 
measurements in a network of domestic wells near the Gumwood Road well 
field. Drawdowns observed in domestic wells will be compared to simulated 
drawdowns using different aquifer parameters. 

To isolate the effects from the well field from seasonal variations, I chose 
two sets of observations at approximately the same time of the year, but a 
year apart. These measurements were made on February 5, 1991, and on 
January 23, 1992. Assuming that, on these dates, the water levels would 
have been the same without the presence of the well field, the observed 
differences may be considered drawdowns due to the well field. 

In Figures 6.49 through 6.52, drawdown predictions are presented for 
the period from February 5, 1991, to January 23, 1992, using a simulation 
of the pumping schedule of wells #13 and #14  presented in Figure 6.48, 
and using four different hydraulic conductivities (k = 150, 200, 240, and 
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260 ft/day) in combination with two different (phreatic) storage coefficients 
(Sp = 0.1 and 0.2). The dotted lines in the figure are lines of (predicted) 
equal drawdown, while the numbers between angular brackets above the 
plus signs represent the observed drawdowns in the domestic wells. The 
storage coefficient of Sp = 0.1 resulted from the pumping test (Barnhart 
and Annable, 1990), while I added the storage coefficient of Sp = 0.2 as an 
estimated upper bound (equal to the expected porosity). It appears that 
the hydraulic conductivity of 150 feet per day systematically over predicts 
drawdowns; see Figure 6.49. On the other hand, the hydraulic conductivity 
of 260 feet per day tends to underpredict the observed drawdowns, at least 
close to the well field; see Figure 6.52. 

The transient modeling just presented does not recognize the presence 
of Juday Creek. Some additional modeling was performed to estimate the 
effect of Juday Creek by introducing image transient wells, imaged with re- 
spect to Juday Creek. The latter modeling suggested that the drawdowns 
in Figures 6.49 through 6.52 may be overestimated by 0.1 to 0.15 feet, a 
rather insignificant amount. The most likely hydraulic conductivity, there- 
fore, is somewhere in between 200 and 240 feet per day; see Figures 6.50 
and 6.51. 

The drawdown simulations just discussed, may be interpreted as a 
pumping test with a duration of one year. This pumping test, however, 
cannot be interpreted in the classical way (e.g. by Theis' method) because 
of the irregular pumping scenario; see Figure 6.48. The simulations that 
have been presented here, however, circumvent the use of Theis' method 
for this case. 

All methods used to estimate aquifer characteristics are approximate 
and suffer from simpli .lying assumptions and uncertainties in observations. 
However, the latest pumping test results (Barnhart and Annable, 1990), 
the steady-state regional computer modeling, baseflow modeling in Juday 
Creek, and the transient drawdown simulations, all suggest a hydraulic 
conductivity value somewhere between 200 and 240 feet per day. It is 
important to realize that this result is a regional average, which seems 
applicable to the Gumwood Road well field area. Elsewhere, away from the 
well field, however, aquifer characteristics may differ. 

6 . 3 . 5  P r e d i c t i n g  L o n g - T e r m  D r a w d o w n s  

The most direct impact of the well field oil the nearby domestic wells is 
the potential for reducing the water levels in these wells, and consequently 
reducing the productivity of these wells or even drying them up. Occa- 
sionally, long-term drawdown predictions are attempted by substituting a 
long pumping period (e.g., 100 days) in Theis' formula (e.g., Annable, 1988, 
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Figure 6.49: Simulated drawdown contours between 2/5/91 and 1/23/92 
and observed drawdowns at domestic wells. Hydraulic conductivity is as- 
sumed to be 150 ft/day with a storage coefficient of 0.1 (upper figure) and 
0.2 (lower figure). 
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Figure 6.50: Simulated drawdown contours between 2/5/91 and 1/23/92 
and observed drawdowns at domestic wells. Hydraulic conductivity is as- 
sumed to be 200 ft/day with a storage coefficient of 0.1 (upper figure) and 
0.2 (lower figure). 
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Figure 6.51" Simulated drawdown contours between 2/5/91 and 1/23/92 
and observed drawdowns at domestic wells. Hydraulic conductivity is as- 
sumed to be 240 ft/day with a storage coefficient of 0.1 (upper figure) and 
0.2 (lower figure). 
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Figure 6.52" Simulated drawdown contours between 2/5/91 and 1/23/92 
and observed drawdowns at domestic wells. Hydraulic conductivity is as- 
sumed to be 260 ft/day with a storage coefficient of 0.1 (upper figure) and 
0.2 (lower figure). 
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and Barnhart and Annable, 1990). However, Theis' solution is based on tile 
assumption that all water that flows toward the well is released from stor- 
age freed up by lowering the water table in the aquifer. Consequently, 
when Theis' solution is used for very large times, very large drawdowns 
are obtained. In the extreme, when the pumping time is infinity, Theis' 
solution would predict infinitely large drawdowns. In physical terms, one 
could say that the Theis' solution will completely drain the aquifer if given 
enough pumping time; see Rule 3.15 in Section 3.6.2. This is not an error 
in the formula, but a fundamental limitation of the mathematical model 
represented by that formula. In reality, drawdowns are limited by nearby 
(and later on more remote) hydrological features responding to the pump- 
ing. For instance, a nearby stream or lake will receive less groundwater 
during pumping of the well than it did before the well was pumped. Only a 
regional groundwater model which includes these features can account for 
these changes in "boundary conditions" (responses of streams, lakes, etc.). 
Thus, only a steady-state regional groundwater flow model can (theoreti- 
cally) predict long-term drawdowns; Theis' formula cannot! 

In Figure 6.53, long-term drawdown predictions are presented for max- 
imum pumpage of all four wells (total of 4,750 GPM), and for hydraulic 
conductivities of both 200 and 240 feet per day. The contours represent 
lines of equal drawdown. The predicted contours have been obtained by 
steady-state regional groundwater flow modeling, comparing piezometric 
heads in modeling runs with and without the production wells. The draw- 
down contours have been produced by use of the MINUSGRID option in 
the grid module of GFLOW1, subtracting two grids with heads calculated 
with and without pumping, repectively. 

The drawdowns in Figure 6.53 are based on pumping all four wells con- 
tinuously at full capacity. However, common practice is to pump a well 
field below its installed capacity; see Figure 6.48. The anticipated pump- 
ing scenario is an average pumping at about 40% of capacity and winter 
and summer pumpage that is approximately 10% lower and higher, respec- 
tively. In Figure 6.54, predicted drawdowns are presented at the end of the 
summer (upper figure) and at the end of the winter (lower figure). The 
implementation in GFLOW1 is as follows. The average pumpage of 40~ is 
modeled by steady-state wells, while the summer and winter pumpages are 
modeled by adding and subtracting 10% pumpages using Theis' solution. 
Thus, total pumpage is 30~ during six winter months and 50% during six 
summer months. The drawdowns presented in Figure 6.54 are after 4.5 and 
5 years of transient pumping, respectively. Drawdowns in previous sum- 
mers and winters (in the model) differ little, so the results in Figure 6.54 
may be seen as representative for long-term pumpage. 

A brief comment on the technique by which Figure 6.54 has been ob- 
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Figure 6.53: Predicted long-term drawdowns near the Gumwood Road well 
field. Continuous pumping at 4,750 GPM. Hydraulic conductivity of 200 
ft/day (upper figure) and 240 ft/day (lower figure). 
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tained. Previously, I argued that  the Theis' solution is unsuitable for long- 
term drawdown predictions, and yet I did use the Theis' solution in produc- 
ing Figure 6.54. Consequently, one might expect a violation of the specified 
conditions along the surface waters in the area. Two factors reduce these 
errors, however. First of all the average pumping is modeled by use of 
a steady-state well, to which the conditions along the surface waters are 
correctly adjusted by the program; see also Figure 3.65 in Section 3.6.3. 
Secondly, the cyclic transient influences on the nearest surface waters, part 
of Juday Creek south of the well field, are limited by image transient wells 

images with respect to Juday Creek. A check on the errors induced 
near Juday Creek show that they are generally smaller than 1 foot. The 
resulting errors at the domestic wells are still smaller: Perhaps a few tenths 
of a foot. 

It is possible to operate the well field at only 50~ of its total capacity, 
while still operating all wells at full capacity for the six summer months. To 
assess the impact of such a (theoretical) scenario, I modeled several years of 
six months of no pumping (winter) followed by six months of full pumping 
(summer). In Figure 6.55, drawdowns are presented after 4.5 years (end of 
winter) and 5 years (end of summer) since the onset of this cyclic pumping 
scenario. Prior to this cyclic pumping scenario, all wells were assumed to 
pump continuously at 50% capacity. 

S u m m a r y  

A range of possible regional (average) hydraulic conductivities has been es- 
tablished, between 200 and 240 f t / day ,  and their influence on the long-term 
drawdowns has been assessed. Drawdown predictions have been presented 
for selected wells near the well field which are being monitored by the IDNR. 
The predictions are based on several different pumping scenarios, with in- 
creased pumping during the summer and decreased pumping during the 
winter. The 50%-30% pumping scenario shows drawdowns in the domestic 
wells which range from 5 to 8 feet at the end of the summer. The 100~ 
pumping scenario shows drawdowns in the domestic wells which range from 
8 to 16 feet at the end of the summer. 



6.3. DRAWDOWN PREDICTIONS 375 

Figure 6.54: End-of-summer drawdowns (upper figure) and end-of-winter 
drawdowns (lower figure) resulting from 30% winter pumpage and 50% 
summer pumpage. The hydraulic conductivity is 240 ft /day and the storage 
coefficient Sp = 0.1. 
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Figure 6.55: End-of-summer drawdowns (upper figure) and end-of-winter 
drawdowns (lower figure) resulting from 0% winter pumpage and 100% 
summer pumpage. The hydraulic conductivity is 240 ft/day and the storage 
coefficient is Sp= 0.1. 
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A 

Abandoned well, 109 
Adsorption, 96, 245, 336, 352 
Air-conditioning, wel l  doublet 

for, 59 
Ambient flow, 59, 61,246 
Ambient flow near a well, 74-78 
Analytic element 

method, 4, 167, 168, 204-- 
215, 307 

model, 4, 101,224, 227, 231, 
296 

Analytic function, 171 
Anisotropy, 123, 326-328 
Approximate vertical flow, 140 
Aquiclude, 24, 102, 153 
Aquifer 

base (bottom), 31, 33, 35, 77, 
143, 227, 228, 255, 275, 
299, 314, 323, 326 

multiple, 99, 109, 111, 112, 
117, 122,271,303, 304 

parameters, 2, 27, 153, 167, 
245, 246, 309, 366 

remediation, 2 
stratification, 111, 126, 269- 

271,273, 336 
system, 102,250, 343 
thickness (height), 23, 24, 28, 

29, 33, 79, 103, 126, 129, 
131, 150 

Aquitard, 250, 252, 270 
Area of interest, 209, 210, 294, 

295, 297, 301,304 
Areal 

infiltration, 21, 140 
recharge, 77, 79, 81, 83, 84, 

88, 141, 143, 150, 206, 
220, 222, 268, 278 

Average groundwater flow veloci- 
ties, 10, 12, 28, 228 

B 

Baseflow, 206, 367 
Basic, 156, 160 
Bio-degradation, 96, 245 
Biochemical reactions, 148 
Boundary 

artificial, 294 
flux-specified, 27, 293, 294 
grid, 197, 207, 210, 294 
head-specified, 28, 278, 295 
hydrological, 294, 309 
mixed, 27, 294 
no-flow, 64, 67, 135, 183, 

185, 195, 257, 263, 288, 
294, 345 

value problem, 27, 32, 263, 
293 

Bounded model area, 207 
Bounding 

parameter values, 3 
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steady-state solutions, 282- 
293 

streamline, 57, 59, 148 
Boussinesq equation, 149, 151, 

158 
Bulk modulus for groundwater, 

152 

C 

Calibration, model, 3, 149, 282, 
294, 329, 359 

Capture zone, 2, 57-59, 97336 
Cartesian coordinates, 8, 45, 168, 

180 
Cauchy boundary, 282, 293 
Cauchy integral, 220 
Cauchy-Riemann equations, 43, 

172 
Channel deposits, 123, 131, 210, 

236, 276, 292 
Circular 

boundary, see Boundary, cir- 
cular, 114, 220 

equipotential, 48, 70, 72, 76 
inhomogeneity, 135, 273 
irrigator or pond, 90, 191, 

220 
island, 70, 86, 87, 257 
lake, 70, 76, 135, 177 
opening in clay layer, 113 -~ 

117 
slurry wall, 138-140 

Clay layer edge, 102-117, 304 
Coefficient 

function, 92, 215, 226, 237 
matrix, 225 
of compressibility, 152 
specific storage, 152, 159, 

162 

storage, 152, 162, 281, 356 
Combined confined and uncon- 

fined flow, 30, 36, 37 
Combined two- and three- 

dimensional flow, 180, 
199 

Command menus, 234 
Command summary, 235 
Complementary modulus, 195 
Complex 

conjugate, 169 
discharge function, 173 
function, 167 
numbers, 168 

Complex potential for 
a dipole, 177 
a line doublet, 216 
a line sink, 212 
a uniform flow field, 175 
a vortex, 174 
a well, 174 
circular lake in uniform flow, 

177 
Comprehensive flow, 103, 117, 

342 
Comprehensive |lead, 110, 112, 

342 
Comprehensive potential, 102 

104, 108, 110, 117 
Computational effort, 195, 204, 

207, 223 
Computationally efficient, 4 
Computer 

program (code, model), 
2, 46, 54, 244, 250, 276, 
307 

Concentration, contaminant, 19, 
96, 119-149, 305 

Conceptual model, 4, 245-257, 
264, 307 

Confined aquifer, 24 
Confined flow, 24 
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Conformal mapping, 1,222 
Conjugate harmonic function, 44, 

167 
Conjunctive surface water and 

groundwater, 227, 301 
Constant of integration, 48, 55, 

88, 182, 224 
Contaminant 

movement, 13, 119, 340 
plume, 57, 148, 246, 263, 340 
spreading, 111 
transport, 111,204, 244 

Continuity of flow, 1, 17, 35, 47, 
79, 86, 103, 108, 109, 
125, 204 

Contour plot, 162, 229, 257, 280, 
340 

Control points, 190, 211, 223, 
224, 239 

D 

Darcy's law, 5, 9, 34, 47, 141, 180 
Darcy's law in terms of poten- 

tials, 31 
Darcy's law, validity of, 12 
Data 

acquisition, 2, 247, 301 
interpretation, 302 
limitations, 342 

Data, field, 2, 149, 244, 246, 276, 
281,303 

Data, input, 2, 54, 57, 149, 241, 
311 

Datum, 7, 14, 121,227 
Density 

doublet, 298 
fluid, 10 
sink, 186, 188, 189, 193, 207, 

221 

Diffusion, 13, 19, 148, 263 
Dipole, 74, 177 
Dirichlet conditions, 27, 125, 211, 

282, 294, 301 
Disc 

sink (2D), 200,211,221,238, 
278, 343 

sink (3D), 193, 198 
source (2D), 90, 173, 257 
source (3D), 195, 196 

Discharge 
function, see Complex, dis- 

charge function 
rate, 10, 41, 54, 76, 90, 108, 

195,241,296 
vector, 30, 32, 39, 103, 130, 

173, 228 
Discharge potential for 

combined unconfined and 
confined flow, 37 

comprehensive flow, 103 
confined flow, 29, 38 
lower aquifer, 103 
unconfined flow, 33 
upper aquifer, 103, 113 

Discharge potential, jump in, 132, 
211,225 

Discontinuity in the recharge 
rate, 223 

Dispersion, 13, 148, 204, 245, 352 
Distributed singularities, 215 
Divide, water, 83, 88, 89, 146, 

257, 294, 340 
Domestic well, 111,122, 144, 207, 

338-351,354-374 
Drawdown, 64, 77, 129, 140, 159, 

162, 166, 257, 354-374 
Dual aquifer, 102, 108, 205, 304, 

355 
Dupuit-Forchheimer assumption, 

4, 23, 123, 126, 257 
Dynamic viscosity, 11 
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E 

Eccentric well inside a circular is- 
land, 71 

Edge, clay layer, s e e  Clay layer 
edge 

Effective porosity, 152, 228 
Efficiency, operational, 250 
Einstein summation convention, 

15, 180 
Elementary solution (problem), 

1-3, 24, 46, 81, 86, 167, 
204 

Elementary volume, 79, 149 
Elementary volume, representa- 

tive, 10, 252 
Elevation head, 14 
Elliptic integral, 190, 193 
Environmental impact, 205, 352 
Ephemeral stream, 206, 243, 268 
Equipotentials, 40, 45, 46, 53, 125 
Error 

in boundary conditions, 295 
in measurements, 276 

Euler's constant, 157 
Euler's method, 231 
Evapotranspiration, 77, 267, 302 
Example run, 241 
Expansion, farfield, 214 
Expansion, series, 169, 222 
Exponential integral, 156 

F 

Farfield expansion, s e e  Expan- 
sion, farfield 

Fate of contaminants, 338 
Finite difference method, 1, 151, 

158, 204, 229, 307 

Finite element method, 1, 203, 
204, 294 

Flow net, 45, 53, 65, 67, 93, 117, 
214 

Fortran, 92 
Four County Landfill, 338 
Fracture flow, 12 
Fractured rock, 5, 10, 16, 123 
Free surface, 32 
Function 

analytic, s e e  Analytic func- 
tion 

coefficient, s e e  Coefficient, 
function 

complex, s e e  Complex, func- 
tion 

potential, s e e  Discharge po- 
tential for 

stream, s e e  Stream function 

G 

GAEP, 243, 309, 314, 316, 359 
General solution, 19, 27 
GFLOW, 223, 243, 307, 327 
GFLOWl, 4, 46, 54, 96, 144, 179, 

205, 231-244 
Girinski potentials, 127, 270 
Governing differential equation, 

1-3, 18, 26, 51, 94, 149, 
167, 180, 276, 284, 293 

Gradient, hydraulic, s e e  Hy- 
draulic gradient 

Graphics, 231,234, 243,297, 314, 
324 

Grid module, 372 
Grid points for contouring, 42, 54, 

229, 372 
Grid resolution, 204, 207, 229 
Grid spacing, 159 
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Grid, finite difference, 207, 210, 
294, 324 

Grid, model, see  Model grid 
Groundwater divide, see  Water 

divide 

H 

Harmonic function, 167 
Hazardous waste, 197, 338 
Head gradient, 14, 19 
Head specified boundary condi- 

tions, 34 
Head water inflow, 240 
Heterogeneity, 131 
Hydraulic conductivity, 8 
Hydraulic conductivity tensor, 15 
Hydraulic gradient, 8, 11, 16, 59, 

224 
Hydraulic head, 7 
Hydrodynamical dispersion, 13, 

352 
Hydrography, 309 

Image 
discharge well (2D), 67 
line sink (3D), 190 
point sink (3D), 183 
poud (2D), 94 
recharge well (2D), 65, 312 
sink disc (3D), 257 
transient well, 159, 367 
with respect to a circular 

equipotential, 70,  1 7 7  

Images replaced by semi-infinite 
line sinks (3D), 190 

Images, infinite series of, 184 

Images, method of (2D), 64 
Images, method of (3D), 183 
Imaginary part, 168 
Imaginary strength parameter, 

223 
Impermeable formation (layer), 

24, 113, 144, 252 
Infiltration due to precipitation, 

79, 276 
Infiltration, resistance to, 300, 

351 
Inhomogeneity 

boundary, 219, 298 
circular, see  Circular, inho- 

mogeneity 
domain (area), 232,254, 276, 

298 
lateral, 273 
module, 297, 314 

Initial condition, 154, 281 
Injection well, see  Recharge well 
Interaction, surface water- 

groundwater, 206, 295, 
302 

Interactive graphics, 232 
Interactive modeling, 247 
Interconnected aquifers, 101,123, 

250 
Interface between confined and 

unconfined flow, 35 
Interface between dif- 

ferent hydraulic conduc- 
tivity zones, 131 

Intrinsic permeability, 10 
Inverse problem, 276 
Island, circular, see  Circular, is- 

land 
Isochrones of travel time, 97, 308, 

329 
Isotropic hydraulic conductivity 

(aquifer), 15, 124, 325, 
326, 328 
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Iterations, 227, 241,314 

Juday Creek, 355 
Jump 

in the angle 0, 50 
in the areal recharge, 223 
in the conductivity, 223, 278, 

316 
in the potential, s e e  Dis- 

charge potential, jump 
in 

in the stream function, 54, 
222 

in the velocity vector, 231 

K 

Kinematic viscosity, 11 
Known vector, 225,226 
Kriging, 276 

L 

Lake bottom, 183, 236, 299 
Lake boundary, 70, 74, 76, 197, 

207, 343 
Lake in uniform flow, 72 
Lake, circular, s e e  Circular, lake 
Laminar flow, 11, 12, 30 
Landfill, 338 
Laplace transformations, 154 
Laplace, equation of, 18, 19, 40, 

42, 44, 53, 55, 80, 83, 
167, 180, 181, 295 

Laplace, operator of, 19 
Large-diameter wells, 77 

Lateral inhomogeneity, s e e  Inho- 
mogeneity, lateral 

Leakage, 101, 102, 140, 141, 143, 
228, 295, 325, 328 

Leibnitz's rule, 155 
Line doublet, 205, 210, 215, 217 
Line doublet with varying 

strength, 219 
Line sink (2D), 175, 206, 210, 211 
Line sink (3D), 184, 188 
Local flow, 254, 264, 268, 312 
Long-term drawdowns, 160, 354 

M 

Macroscopic dispersion, 13 
Many-valued, 51 
Mass balance, 148 
Matrix 

coefficient, 226, 238 
equations, 225, 226 

Maximum modulus theorem, 295 
Microscopic dispersion, 13 
Mishawaka well field, 354 
Mixed boundary conditions, see 

Boundary, mixed 
MLAEM, 101 
Model 

analytic element, s e e  Ana- 
lytic element model 

conceptual, s e e  Conceptual 
model 

mathematical, 65, 79, 249, 
270, 372 

multi-aquifer, 101, 268, 304, 
342 

selection, 2, 246 
three-dimensional, 81, 141, 

197 
Model grid, 203, 229 
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MODELCAD, 325 
Modeling 

approach, 4, 207, 247, 305, 
307, 354 

conceptual, 279 
objective, 3, 245, 278, 296, 

345 
stepwise, 3, 248, 305 
traditional, 248 

Models 
numerical, 1, 101 
quasi three-dimensional, 101, 

268, 304 
MODFLOW, 307, 308, 324, 325, 

328 
Modulus (of complex variable), 

169 
Modulus (of elliptic integral), 

190, 19;3 
Mounding, groundwater, 2, 84, 

89, 278, 345 
Multi-aquifer model, s e e  Model, 

multi-aquifer 
Multiple aquifers, s e e  Aquifers, 

multiple 

N 

Nearfield, 207, 224, 241,301 
Neumann conditions, 27, 81, 125, 

294, 299 
Node, 203, 220 
Nonlinear differential equation, 

151, 204 
Nonlinear effects, 158, 159 
Nonlinear matr ix  equation, 226, 

238 
Numerical dispersion, 204 
Numerical methods, 203-205 

O 

Opening in separating layer, 113 
Operator of Laplace, s e e  Laplace, 

operator of 
Outwash, 123, 220, 236, 254, 308 
Overland flow, 76, 240 

P 

Parameters 

aquifer, see Aquifer, param- 
eters 

command, 234 
hydro(geo)logical, 312, 329, 

336, 352 
input, 246 

model, 294, 312, 329 
strength, 190, 220, 227, 234 

Partial derivative, 8, 19, 43, 172 

Partially penetrating well, 4, 147, 
179, 188, 195, 231, 250, 
320 

Particular solution, 10, 27 
Path  line, groundwater,  231 
Perched aquifer, 107, 240, 268, 

342 
Perched water table, 126, 268, 

349 
Percolating 

lake, 191 
pond, 90 
sink disc, 239 
stream, 239, 299 

Perennial streams, 206, 267, 268 
Periodic 

forcing function, 281 
head variations, 284 
pumping, 149 
recharge solutions, 282 
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recharge variations, 288 
response, 283 

Permeability, s e e  Intrinsic perme- 
ability 

Phreatic storage, 367 
Phreatic surface, 32, 140 
Piezometer, 14, 165, 167, 207 
Piezometer file, 318 
Piezometer, plot, 318 
Piezometric head~ 14 

Piezometric head contours, 164, 
229 

Piezometric head surface, 129 
Piezometric head, modeled, 101, 

248 
Piezometric head, observed, 207, 

248, 276, 280, 294, 357 
Plume of contaminants, s e e  Con- 

taminant plume 
Point sink, 181 
Poisson's equation, 79, 81, 83, 86, 

173, 221,295 
Polluted stream, 67 
Polygon 

areal sink bounded by a, 222 
inhomogeneity bounded by 

as 210~ ;314 
lake bounded by a, 207 
of line doublets, 210 

Pond, s e e  Circular irrigator or 
pond 

Pore pressure, 13, 14, 131,238 
Porosity, 10, 28, 130, 153, 273, 

312,314, 352 
Porosity, effective, s e e  Effective 

porosity 
Potential 

discharge, s e e  Discharge po- 
tential 

flow, 30 
fluid, 30 
pseudo-, 30 

specific discharge, s e e  Spe- 
cific discharge potential 

theory, 30 
Predictions 

drawdown, 354, 366, 374 
model, 13, 281 

Predictor-corrector method, 229, 
231 

Preferential pathways, 13 
Preprocessor, s e e  GAEP 
Pressure head, 14 
Principal directions of conductiv- 

ity tensor, 16 
Principal hydraulic conductivi- 

ties, 16 
Program 

converter, 325 
features, 231,244 
GFLOWl, s e e  GFLOW1 
installation, 244 
modules, 232 
organization, 232 
SYLENS, s e e  SYLENS 
wellhead protection, 308 
WhAEM, s e e  WhAEM 

Pump and treat system, 57, 138, 
246 

Pumping 
cycles, 119 
rate, 47, 59, 7 7 ,  99, 140, 161, 

226, 294 
schedule, 366 
test, 9, 149, 153, 157, 167, 

257, 355, 367 
Purpose of the modeling, 245 

Q 

Quality control, 249 
Quality, water, 119, 340, 355 
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Quasi three-dimensional models, 
s e e  Models, quasi three- 
dimensional 

R 

Radial coordinates, 46 
Radial flow, 88, 90, 138 
Radial symmetry, 46, 86, 195, 

221,261,292 
Radius 

of a lake, 178 
of a slurry wall, 138 
of a transient well, 154 
of a well, 49 
of an island, 71 

Rainfall, 79, 82, 263, 266 
Real axis, 168 
Real part, 174, 217, 223, 284 
Recharge due to precipitation, 

241,276, 294 
Recharge well, 60, 64, 70, 72, 7 7 ,  

114, 159 
Recharge, adding to inhomo- 

geneities, 222 
Recharge, areal, s e e  Areal 

recharge 
Reference head, 224 
Reference point, 53, 64, 92, 114, 

115, 190, 224, 273 
Reference point choice, 224 
Regional flow, 2, 23, 57, 98, 179, 

263, 264, 349 
Representative elementary vol- 

ume, s e e  Elementary 
volume, representative 

Residence time, 94, 96, 126, 231, 
232, 308, 336, 352 

Resistance to vertical flow, 107, 
122,349 

REV, s e e  Elementary 
representative 

Reynolds number, 12 

volume, 

Saturated zone, 14, 32 
Scale, exaggerated vertical, 22, 

250 
Scale, local, 123, 131, 197, 252, 

279 
Scale, regional, 10, 79, 126, 210, 

268 
Semi-infinite line sink, 184, 186, 

195 
Sensitivity testing, 247 
Series expansion, s e e  Expansion, 

series 
Shallow 

aquifer, 11, 24, 77, 268, 292 
flow, 23, 264 
pond, 188, 199 
well, 342, 344 

Single aquifer zone, 99, 103, 104, 
304, 355 

Single-valued function, 43, 117 
Singular Cauchy integral, s e e  

Cauchy integral 
Singular point, 51 
Singularity, 177 
Singularity distribution, 188, 215 
Sink disc (2D), 174 
Sink disc (3D), 188 
SLAEM, 307, 342,343 
SLAEMS, 129, 271 
Slurry trench (wall), 67, 136-140 
Specific discharge, 8 
Specific discharge potential, 181, 

195 
for a partially penetrating 

well, 189 
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for a point sink, 182 
for a semi-infinite line sink 

pair, 186 
for a sink disc (3D), 193 

Specific discharge vector, 8, 10, 
11, 15, 29, 79, 129, 180, 
228 

for a point sink, 181 
Specific storage coefficient, s e e  

Coefficient, specific stor- 
age 

Specified head, s e e  Head specified 
boundary conditions 

Spreadsheet, 232 
Stagnation point, 58, 261 
Steady-state versus transient 

flow, 280 
Steady-state, bounding so- 

lutions, s e e  Bounding 
steady-state solutions 

Steady-state, rationale for 
flow, 280 

Stepwise modeling, s e e  Modeling, 
stepwise 

Storage coefficient, s e e  Coeffi- 
cient, storage 

Stratification, s e e  Aquifer strati- 
fication 

Stream flow availability, 300 
Stream flow components, 240 
Stream flow in Juday Creek, 355 
Stream flow modeling, 231 
Stream flow, graphical represen- 

tation of, 243 
Stream function, 42, 43, 94, 167 

behavior of, 213 
for a circular inhomogeneity 

in a uniform flow field, 
136 

for a circular lake in a uni- 
form flow field, 74 

for a line doublet, 217 

for a line sink, 214 
for a well, 50 
for a well and a recharge well, 

6O 
for a well in uniform flow, 57 
for a well inside a circular is- 

land, 72 
for a well near a no-flow 

boundary, 67 
for a well, recharge well and 

uniform flow, 62 
for uniform flow, 55 
superposition of, 53 

Streamline, 25, 41 
Streamlines, approximate three- 

dimensional, 141 
Strength parameters, s e e  Param- 

eters, strength 
Summation convention, s e e  Ein- 

stein summation con- 
vention 

Superimposing Laplace and Pois- 
son solutions, 83 

Superposition principle, 1, 2, 53, 
55, 159, 197, 227, 228 

SYLENS, 205 
System of equations, s e e  Matrix 

equations 
System, aquifer, s e e  Aquifer sys- 

tem 

T 

Taylor series, s e e  Expansion, se- 
ries 

Telescopic mesh refinement, 197 
Tennessee-Tombigbee Waterway, 

102, 205 
Tensor, s e e  Hydraulic conductiv- 

ity tensor 
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Theis' solution, 149, 281,367 
Thickness, aquifer, see  Aquifer 

thickness 
Three-dimensional flow embed- 

ded in Dupuit- 
Forchheimer model, 231 

Tick marks 
for line sink strings, 297 
for streamline depth, 144, 

263 
for travel times, 352 

Time step, 159, 230 
Topography controlled water ta- 

ble, 266 
Toth's solution to regional flow, 

263 
Tracing streamlines, 95, 144, 147, 

179, 215 
Tracing streamlines backward in 

time, 312 
Transformation, coordinate, 124 
Transient flow, 149, 281 
Transient well, 167, 281,367 
Transmissivity, 29, 85, 128, 162, 

237, 304, 345 
Transport, 

s e e  Contaminant trans- 
port 

Travel time, s e e  Residence time 
Trial-and-error, 167 
Two-dimensional potential flow, 

39 
TWODAN, 129 

U 

U.S. Army Corps of Engineers, 
205 

U.S. Environmental Protection 
Agency, 97 

U.S. Geological Survey, 308 
Unbounded model area, 207, 294 
Uncertainty in data, 246, 248, 

329, 354, 359 
Unconfined aquifer, 24 
Unconfined flow, 24 
Uniform flow, see  Stream func- 

tion for uniform flow 
Uniform flow, approximating re- 

gional flow by, 57 
Unknown strength parameters, 

226 
Unsaturated flow, 32, 238 
Unsaturated zone, 11, 32 
User's manual, 223 

V 

Vadose zone, 77 
Validity 

of Darcy's law, s ee  Darcy's 
law, validity of 

of Dupuit-Forchheimer as- 
sumption, 123, 126 

of model simplifications, 245 
of model solution, 204, 207 

Variation in 
aquifer properties, 4, 206 
aquifer thickness, 131,275 
areal recharge, 79,  277, 279, 

280 
elevation of aquifer bottom, 

275 
head, 162, 280, 282 
hydraulic conductivity, 129, 

270 
potential jump, 219 
reference head, 224 
stream flow, 280 
transmissivity, 131 
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water table, 152, 282 
Velocity, s e e  Average groundwa- 

ter flow velocities 
Velocity vector, 10, 204, 229, 230 
Verification of Theis' solution, 

156 
Vertical component of flow, 141 
Vertical flow, s e e  Approximate 

vertical flow 
Vertical hydraulic conductivity, 

15, 16, 123, 325 
Vertical hydraulic conductivity, 

infinite, 23, 123 
Vertical resistance to flow, s e e  

Resistance to vertical 
flow 

Vincennes well field, 308 
Viscosity, dynamic, s e e  Dynamic 

viscosity 
Viscosity, kinematic, s e e  Kine- 

matic viscosity 
Volitalization, 148 
Vortex, s e e  Complex potential for 

a vortex 

W 

Water table, 24, 32 
Well, 46 

at the center of a circular 
slurry trench, 136 

contaminant concentration 
in a, 147 

domestic, 117, 340, 355 
doublet, 59 
driller, 340 
field, 97, 252, 308, 354 
function, 154 
in a uniform flow field, 56 
near a circular lake, 70 

near a circular opening in a 
clay layer, 113 

near a rock outcrop, 67 
near a stream, 64 
recovery, 57 
unconfined flow near, 49 

Wellhead protection, 97, 308 
WHPA, 2, 308, 336 
Width of capture zone, 58 
WhAEM, 97 
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