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Synopsis IX 

SYNOPSIS 

This book provides a fundamental and thorough coverage of statics for students of 
structural engineering. The methods for structural analyses are explained in detail, based 
on basic static, kinematic and energy methods. 
A whole chapter deals with calculations relating to the deformation of structures, as the 
authors believe that it is a basis for achieving a good understanding of structural 
behaviour. 
Much attention is paid to the practical aspects of the subject and each piece of theoretical 
analysis is followed by worked examples and in conclusion a simple bridge is analysed by 
the various methods that have been presented. 
The finite element method, as an extension of the displacement method, is covered only to 
provide an understanding of computer applications presented using the structural analysis 
program OCEAN, which can be downloaded from the internet (kamen.uni-
mb.si/lak/ocean). 
An innovative approach that enables influence lines to be calculated (using ^-functions 
developed by Bedenik) in much simpler manner than any previously known method is also 
described. 
Basic matrix algebra is given in appendices to provide readers with the necessary tools to 
understand the text. 
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PREFACE 

Structural analysis is a field of engineering that has undergone the greater changes in the 
last few decades. The matrix formulation of structural analysis has provided a bookkeeping 
scheme which makes it possible to deal with structures of a size and complexity which were 
previously too complex to contemplate. 
The use of computers, whose developments were intimately connected with that of matrix 
methods, finally enabled the structural engineer to perform such analyses and apply them to 
the design process to create much more functional, economic and aesthetic structures and 
buildings. 
Matrix algebra has also enabled a structural engineer to model any structure with a finite 
number of degrees of freedom and arrive at a physical model, which comes near to the real 
structure in geometry and in its behaviour. 
The "danger" of all computer analyses lies in the fact that a structural engineer can loose the 
"physical feeling" of the structure. The longhand methods presented in this book should 
help an engineer to distinguish between the critical or less important results of a computer 
analysis. 
A major focus of die book is the numerous worked examples that are related to practical 
applications. These examples will not only provide guidance to students but also provide a 
reference for practicing engineers. 
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1 
Introduction 

Structural analysis is a science, which ensures that structures are safe and fulfill the 
functions for which they were built. Safety requirements must be met so that a structure is 
able to serve its purpose with the minimum of costs. Structural concepts arise from the 
work of engineers from different fields with a common aim that the structure is functional, 
aesthetic and economic. 

Detailed planning of the structure usually comes from several studies made by town 
planners, investors, users, architects and other engineers. In general an architect is 
responsible to the investor and a structural engineer works in collaboration with the 
architect as an equal partner in a project. In some structures such as industrial halls, 
bridges and sports halls, a structural engineer has the main influence on the overall 
structural design and an architect is involved in aesthetic details. 

After the preliminary design of the structure, an approximate analysis of loads and 
stresses in all elements must be carried out including the determination of deformation in 
individual elements as well as in structure as a whole. This preliminary analysis is a check 
to show where and how the structure can be improved and reduced in costs. It is possible 
that the initial design proves to be uneconomic and the structure has to be changed in 
individual elements or as a whole. 

The process of analysis has then to be repeated until the structure as a whole is 
optimal from all points of view, followed by final analysis and dimensioning. The whole 
process can be divided into: 

initial design 
preliminary dimensioning 
optimisation (when necessary, change of individual elements of the structure or 
change of the structure entirely must be made ) 
final analysis and dimensioning. 
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Figure 1.1 : An example of CAD design (top picture) and photograph (bottom picture) 
of the sports stadium in the city of Maribor 
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Sec. 1.1] Types of structures 

Figure 1.2: Idealisation of an arched bridge 

It is obvious that the processes of structural analysis and design are closely related, since 
each change in element dimensions influences the optimal structural shape, weight and 
stiffness. These quantities are known only after the elements have been designed. Thus, 
analysis and design are mutually interacting and the process is called structural analysis. 

1.1 Types of Structures 

Structural analysis deals with a number of different structures: 

Buildings (residential, industrial) 
Bridges 
Underground structures, tunnels 
Industrial structures, power stations, reactor containers 
Planes, missiles 
Vehicles (automobiles, railcars, ships) 
Machines, cranes, elevators, aerials, electricity pylons 

�� �� �� �� �� ��
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Seismic load 
► 

Frame Shear wall Frame 

Figure 1.3: Modelling of a building 

Structures can be divided according to the nature of their components into three main 
classes: 

Linear or uniaxial members: truss elements, beams, columns, arches and their 
combinations. Elements of this type are simple to analyse and are therefore suitable 
for elementary presentation of structural theory. It is possible to idealise even 
complex structures as assemblies of such members. 

Two-dimensional elements such as plates, shells and walls. Although the analysis of 
such elements has been considered as a branch of the theory of elasticity, modern 
computational methods facilitates analysis to any degree of accuracy. 

Three-dimensional elements such as machine parts, pressure vessels, soil and rock 
foundations. Some structural joints must also be included as such elements in a 
detailed stress analysis using the theory of elasticity or plasticity. 

Although there are several computer programs available today, in practice it is common to 
analyse structures using very simple models consisting of linear elements by the 
elementary methods presented in this book. 
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1.2 Loads 

The nature and magnitude of loads must be determined before a structure can be analysed 
though these are only crude approximations in the initial design. The most important loads 
are: 

Dead load (D), which can be exactly determined only after the structure has been 
designed. It is obvious, the smaller the ratio of the dead load to the other loads, the 
more efficient is the structure. Some structures, such as long span bridges, can carry 
dead loads many times higher than live loads. For such structures a shape optimisation 
has to be performed to gain an optimal and efficient structure. 

Live load (L) is the useful load carried by the structure. If it is caused by human 
activities it should be determined by the use of probability theory. Building Codes 
(i.e. Eurocode 1) determine the most unfavourable cases that can occur in a lifetime of 
the structure. In bridges, the live load is moving, and an analysis has to determine the 
most unfavourable position of vehicles using influence lines (covered in Ch. 9). 

Wind, earthquake and aerodynamic forces. Effects of these forces must be calculated 
including dynamic effects as they act in cycles and cause inertia forces in the 
structure. The field of structural dynamics, which is not included in this text, is rapidly 
developing and full dynamic analysis is possible using appropriate computer 
programs. In building frames equivalent static forces are taken into consideration 
although it is known that interaction between a forced vibration and properties of 
structures exist. It is known that a stiffer and heavier structure carries higher dynamic 
forces than a slim and light structure. This has been proved in recent earthquakes, 
where slim and economically reinforced concrete structures underwent only slight 
damage, and oversized and therefore minimally reinforced structures were heavily 
damaged or collapsed. 

Earth pressure, gas and liquid pressures. Earth pressure varies between the extreme 
active and passive cases and is dependant on soil-structure interaction. Gas and liquid 
pressures are well known, controlled and act hydrostatically on a surface. 

Self-strains due to supports settlements, pre-stressing, creep, shrinkage of concrete, 
welding and temperature gradient. 

Beside active loads, a change of length or misfit of structural elements can take place 
causing huge stresses in a structure as a whole or in an individual element. Specification of 
loads is usually included in building codes, but it is the structural engineer who has to find 
the most unfavourable combination of loads, which can also be time dependant as with 
creep or relaxation in pre-stressing steel. 
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Figure 1.4: Viaduct 'Crni Kal' - total length 1067 m 
CAD simulation and Finite element model (Courtesy of Ponting Ltd.) 
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The probability of maximum loads due to several causes ocurring at the same time will 
decrease with the number of loads considered. 

In fact, a loading case of maximum normal force and maximum bending moment 
acting simultaneously is not always critical. The concrete column in Fig. 1.5 is carrying 
both a compressive normal force and a bending moment. It can be observed from the 
interaction curve, that at the same reinforcement ratio at constant bending moment M, by 
increasing the normal force from N¡ to N3 the element goes from the unsafe through to the 
safe and again unsafe condition. 
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Figure 1.5: Interaction curve for a concrete column 

The determination of loads acting on a structure is a complex and difficult task and is 
readily underestimated in practice. 

Loads determined by building codes are approximate only, usually on the safe side, 
and are in general inside ±10% accuracy. 
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Figure 1.6: Mura bridge - CAD simulation (Courtesy of Ponting Ltd. Maribor) 

Figure 1.7: Mura bridge - Finite element model (Courtesy of Ponting Ltd.) 
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1.3 Idealisation and modelling of structures 

Real structures are too complex for an exact analysis, often they have to be modelled by a 
simple models, which are then appropriate for analysis. 

This modelling is a very important task for a structural engineer and requires 
experience and judgement such that the resulting model satisfies the compromise between 
reality and simplicity. All of the examples in this book are only models of real structures. 
The modelling can be viewed from three aspects: 

1.3.1 Geometry and interconnection of structure elements 

As an example we take a three-dimensional space frame. Structural analysis is carried out 
on individual elements of plates, beams and columns, which are in reality connected into a 
three-dimensional space grid. As 3D analysis is complex, we introduce an additional 
simplification and treat individual elements in single planes as plane frames. 

The concrete bridge from Fig. 1.2 is assembled from arch, columns and a deck. The 
modelling for the analysis is done such that elements act individually and independent of 
each other. Such an analysis could be sufficient for the preliminary design and dimensional 
determination. The final design must be carried out on the whole structure and this task 
should not present a significant problem. 

In tall buildings sufficient horizontal stiffness must be assured either by shear walls 
in both directions or by a stiff core (in which elevators and stairs are situated), as shown in 
Fig. 1.3. Such shear walls are usually treated as bending elements under horizontal 
loading, whether this assumption is justified depends on their proportions. 

The consequence of such an idealisation is, that all interconnecting joints are taken 
as points, which of course is not true and it is impossible to calculate stresses at these 
joints. 
On the other hand, when considering plane frames it is assumed, that elements are fully 
clamped to each other, which is not justified when dealing with concrete members if 
insufficient reinforcement is present. 

A similar situation arises in tall buildings in outer spans of continuous plates of 
thickness hp = 14 - 20 cm and walls of thickness ds =14-18 cm where it is not justified to 
consider plates as fully clamped. 

Similar cases occur at the foundation of columns and walls as they interact with the 
footing itself, which rotates under internal forces and is stabilised after a certain time. 
Rotation of the foundation is dependent on the footing and soil stiffness, matters that are 
often unknown. To avoid the problem, we assume that the footing is infinitely stiff and 
deforms as a rigid body, the consequence is a linear soil pressure distribution, which can 
easily be calculated but leads to a conservative design resulting in high bending moments. 

�� �� �� �� �� ��
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_lisl 
Figure 1.8: The bridge at Kozina (Courtesy of Ponting Ltd.) 

Figure 1.9: The finite element model of the bridge at Kozina 
(Courtesy of Ponting Ltd.) 
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11 ^ ^ ^ 
Figure 1.10: The bridge on East Highway, Ljubljana (finite element model) 

(Courtesy of Gradis BP Ltd. Maribor) 

%s* 

* » ϊ β % « 

Figure 1.11: The bridge on East Highway, Ljubljana 
(Courtesy of Gradis BP Ltd.) 
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1.3.2 Element connections and support conditions 

Idealising the joints and support conditions of a structure makes further simplifications. A 
typical example is in truss type structures with the usual simplification of frictionless pins 
connecting members, allowing full rotation of individual bars even when joints are welded 
or elements are continuous over joints. Standard beam connections of steel beams are 
usually considered as simple supports, even though they are capable of resisting 
considerable bending moments. 

Continuous foundation plates must be calculated as elements on an elastic 
foundation. The pressure in reality under the plate could vary from idealised values by up 
to ±700 %. 

Figure 1.12: University sports centre Maribor under construction 
(Design by B. S. Bedenik) 

1.3.3 Material behaviour and stability 

Most engineering materials used in structures possess a linearly elastic range, for which 
Hooke's law holds, but only over a limited range of stresses or specific strains. The 
allowable stresses under service loads are controlled by factors of safety in codes and are 
sufficiently low so that elastic action prevails and linear behaviour is valid. 
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Figure 1.14a shows specific deformations for concrete of different qualities. It can be seen, 
that concrete behaves linearly up to ε =0.1 %, at higher specific strains and related 
stresses the rise is non-linear until the ultimate load is reached at around ε = 0.3 %. 

Figure 1.13: University sports centre Maribor 
(Design and CAD model by B. S. Bedenik 1992) 

In ductile materials, such as mild reinforcement steel (lower curve in Fig 1.14b), continued 
deformation under constant yield stress would reach strains up to ε = 10-15 %. This is 
the reason why such structures are capable of absorbing much more energy when 
overloaded such as under earthquake conditions. On the other hand high strength 
reinforcement exhibits up to 3 times lower specific deformations than mild reinforcement 
steel. 

�� �� �� �� �� ��
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σ[ΜΡα] σίΜΡα] σ[ΜΡα] 

! 2 3 A 100 200 3.5 10 20 

a.) Concrete b.) Reinforcement c.) Reinforcement 
(working range) 

Figure 1.14: Nonlinear material behaviour 

Analysis of simple structures does not require stability analysis, though a concrete column 
having slenderness over λ>50 requires simplified second order analysis according to 
empirical relationship equations which are usually stated in national codes. 

Dealing with more complicated structures will necessitate the use of stability 
theory* and an Euler buckling load determination, which will be dependent on boundary 
conditions on individual elements of the structure or on the structure as a whole. Non­
linear material behaviour and stability of structures is beyond the scope of this book. 

* Petersen: Statik und Stabilitet der Baukonstruktionen, Vieweg, Wiesbaden 1982 
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2 
Definitions and basic concepts 

2.1 Sign conventions 

Throughout this book we will use the Cartesian co-ordinate system of three mutually 
perpendicular axes. Only right-handed systems will be used, which means the following: 

♦♦♦ If two positive axes are chosen, i.e. x and y, the positive direction for the z-axis 
will be that in which a right-handed screw would advance when turned if the 
x-axis is rotated into the y-axis by the shortest way. 

Figure 2.1 : Right-handed co-ordinate systems 

2.2 Forces and moments 

Consider a force F (of magnitude F) in the direction defined by the angles a, ß and y, 
which is enclosed within the x-, y- and z-axes of a Cartesian co-ordinate system. 

Figure 2.2 shows force F, represented in magnitude and direction by a vector, 
which is the main diagonal of a rectangular prism of sides Fx, Fv and F¿. Fx, Fy and Fz are 
projections of F on x-, y- and z-axes and we usually say that Fx, Fy and Fz are components 
of force F in the three co-ordinate directions. From Fig. 2.2: 

�� �� �� �� �� ��
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Fy 

Fx = Feos a 

Fy = Feos ß 

Fz = F-co s y 

Figure 2.2: Force F and its components 

(2.1) 

where cosa, cos ß and cos y are direction cosines of force F and can be denoted by Z, m 
and n respectively: 

/ = cosa 

m = cos ß 

n - cos γ 

(2.2) 

The components F» Fy and Fz completely define the magnitude and direction of force F, 
and can be written in matrix form as: 

F = ■ = fc Fy FJ (2.3) 

In Eqn. (2.3) force F is expressed in matrix form of 3 x 1 order (a three component column 
matrix, which can be further written in transposed form using symbol T), whose elements 
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are the components of force F in the three co-ordinate directions. This matrix is called a 
force vector. 

♦ A force vector has magnitude and direction and can be represented by a 
single straight line in space. 

The components of force F are dependent on magnitude and direction only and are 
independent of the point of action. From Fig. 2.2, if the force acts at any other point than 
at the co-ordinate origin, the components would still be F„ Fy and Fz and given by Eqn. 
(2.1). Dealing with several forces F¡, F2, F}... F„ as shown in Fig. 2.3, the components of 
forces are: 

F,= 
Fxl 

Fn 
At. 

■ F2=-

Fx2 

Ffi 
Fa. 

F.= y« (2.4) 

Figure 2.3: Force vectors 

with Fx! - F¡ ■ cosa¡, Fl2 = F2 ■ coscc2 etc. The resultant of all n forces is a vector sum: 

F, + F2+... + Fn = 
FxI 

Fyi 

Fzl. 

· + ■ 

'Fx2 

F* 
/*> 

■+. . + · 
F 

Fyn 

. tn, 
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Fxl + Fx2+... + Fxn 

Fyl+Fy2+- + Fyn 

Fzl + Fz2+... + Fin 

ΣΡ 
XI 

1F„, 
IF. Zl J 

(2.5) 

The resultant force is zero only, when all three components are zero, which leads to the 
following equation: 

*-" xi 

ZF„, 
ZF 

Zl 

= 0 (2.6) 

Eqn. (2.6) by itself does not ensure that there is no resultant moment. Consider the 
moments produced by force F¡ as from Fig. 2.3. 

The moment of force F¡ about the Jt-axis is equal to the sum of the moments of its 
components Fy and Fz, and the moment of component Fx equals zero, as Fx is parallel to 
the jf-axis. If the force is applied at point A, then: 

Mx = Fzl ■ y, - Fyl ■ z, 

Similarly we can write moments about y- in z-axis: 

Fxi-yi 
(2.7) 

y¡ 

If no moment exists for forces F¡, F2 ... Fn about any of the co-ordinate axis, then the 
following equation must be fulfilled: 

% Fzi ■ y i - Fyi ■ Z¡ ) 

% Fxi ■ Z, - Fzi ■ x¡ ) 

% Fzi ■ xi - Fxi ■ y i ) . 

=o (2.8) 

Eqn. (2.8) is the summation of the vector products 

where the force vector is 

* / ~ \ *'xi *yi *zi J 

The position vector written for the co-ordinate origin is 
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Sec. 2.2] Forces and moments 19 

r¡={0-x¡)(0-y¡)(0-zi)}T={-xi -y, -z,Y 

which can be written in a determinant form: 

F ■ F F ■ 
' χι ' νι ζι 

■o, (2.8a) 

where i, j and k are unit vectors in the x-, y- and z-axis respectively. 

Figure 2.4: Definition of moments 

Let us suppose, that moment M acts on the plane as shown in Fig. 2.4a); the moment is 
shown as a vector perpendicular to the plane with a double arrow. The length of the vector 
represents the magnitude of the moment, the direction is always perpendicular to the plane 
on which the moment is acting and the arrow shows the advance of a right-handed screw if 
turned by the action of the moment. Thus if moment M is reversed, the arrow points in the 
opposite direction as in Fig. 2.4b). 

A moment acting about any co-ordinate axis is positive if the arrow of the vector 
points in the positive direction of that axis. All moments in Fig. 2.5a) are positive and 
those in Fig. 2.5b) are negative. 
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M, 

^ J ? 

a) positive moments b) negative moments 

Figure 2.5: Vector representation of moments 

In case of several moments M¡, M2... M„, shown in Fig. 2.6 as vectors, each moment can 
be represented by its components on a co-ordinate axis as with forces in Fig. 2.2 using 
Eqn. (2.5): 

Mj = 

Mxl 

Myl 

.Mz>. 

■ M2=-

Mx2 

My2 
Mz2, 

■ MR=-

MxR 

MyR 

M#. 

(2.9) 

A/.. 

Figure 2.6: System of moments 

�� �� �� �� �� ��



Sec. 2.2] Forces and moments 21 

The resultant moment of n moments is a vector sum: 

M, + M2+... + Mn = 
'MX; 

Myl 

Mz>. 

■+■ 

MX; 
My2 

Mz2_ 

■+...+■ 

Mxn 

Myn 

Mzn. 

'Mx, + Mx2+... + Mm 

My¡ + My2+... + Myn 

MzI + Mz2+... + Mzn) 

If the resultant moment is zero, then: 

ΣΜΧ 

IM, 

(2.10) 

■ 

mxi 

™yi 
= 0 

or using the summation principle: 

Λ 4, = 0 i = x,y, z 

(2.11) 

Using the principle, where a column matrix in Eqn. (2.5) was called a force vector, the 
column matrices for moment components 

'Mxl 

Myl 
Mzl 

, 
'Mx2 

My2 

Mz2. 

, 
MxR 

MyR 

MzR. 

are called moment vectors. From Figs. 2.1 and 2.4 one can see, that vectors offerees and 
moments can be represented as a straight line in space. 

♦♦♦ Vectors, which can be represented as straight lines, are physical quantities, 
having magnitude and direction. 

Some other physical vectors are velocity and acceleration vectors, which are of course 
well known to the reader. 

Generalised force vector 

Forces F¡, F2 ... Fn and moments M¡, M2 ... Mn, acting on a body (Fig. 2.7), can be 
represented (substituted) by a single force F and a single moment M\ F and M being 
resultants of all forces and moments. From Eqn. (2.6) and (2.11) follows: 
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FR = 

EF 
' X 

ΣΡ 
y 

EF, 

and M R = 
ΣΜΧ 

IM, 
(2.12) 

Figure 2.7: Generalised force 

Both FR and Ms can be denoted by a single letter F: 

F = 
A/, 

EF, 

EFZ 

ΣΜ, 

(2.13) 

and when only one force acts the equation reduces to: 

F = z 
Mx 

(2.13a) 

M, 
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The quantity F in equation (2.13a) is called the generalised force vector or generalised 
force, which is always composed of two vectors: a force and a moment vector and can not 
be represented by a single straight line in spacel 
In one single plane (i.e. x-y plane) the generalised force reduces to: 

M, 
Μλ 

(2.13b) 

As moment Mz is caused by forces Fx and Fy, the generalised force F always refers to a 
certain point and is not independent of the position any more, as is each force or moment 
vector. 

Figure 2.8: A generalised force in a plane 

Consider the case in Fig. 2.8. The generalised force on origin (0, 0) equals: 

F0 = 

F cosa 
F sina 

3Fsina-2Fcosa 
= F 

cosa 
sina 

3 sina-2 cosa 
• = F· 

0.447 
0.894 
1.789 

but at point A produces no moment, therefore: 

F cosa 
F sina 

0 

The procedure as described above is called reduction of a force to the chosen point. 
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2.3 Equilibrium of a body 

Figure 2.9 shows a body under action of n forces and m moments. From Newton's second 
law the following must be true if the body is to be at rest: 

♦ The resultant force must be zero 
♦ The resultant moment (caused by n forces and m moments) must be zero 

Figure 2.9: A body under a system of forces and moments1 

From equations (2.7), (2.9) and (2.12), the necessary and sufficient condition for 
equilibrium is: 

I F , 
I F , 

= 0 (2.14a) 

and 

ÁFil-y¡-Fyl-Zl) 
ÄFxiZi-Fzixi) 
z(Fyrx,-Fxry,) 

· + ■ 

Im,; 
lmyj 

Σηιν 

(2.14b) 

m denotes moments due to its own mass, M denotes moments of a generalised force 
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which is usually written simply as: 

ΣΜ=0 ΣΜ=0 and IM =0 (2.15) 

It should be noted that equations (2.15) are independent of the choice of the coordinate 
system. 

♦♦♦ If a body is in equilibrium, equations (2.14) and (2.15) are satisfied for any 
co-ordinate system and at any origin. 

In two dimensional plane systems that lie for example in the x-y plane, if forces and 
moments act on this plane, the equations reduce to 

IFx=0 IFy=0 and IMz=0 (2.16) 

and the expression IMZ =0 is simply written as IM = 0. 

2.4 Displacements (and rotations) 

Figure 2.10 shows a body in the x-y plane, loaded by force F in the same plane acting at 
point B. Force F will in general cause a displacement at all points of the body, except at 
the points where displacements are suppressed by supports (points 1, 2, 3). 

deformed body 

Figure 2.10: Deformation of a body 

The movement of an arbitrary point (x, y) is denoted by 5 , its components in JC and y 
directions are denoted by « and v; we say therefore that the point moves by δ , exhibiting 
two displacements u and v. 

δ = {uvj (2.17) 
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The column matrix δ is a vector of displacements or displacement vector at point {x, y). It 
has to be noted that the displacement vector δΒ at point B in general does not coincide 
with the direction of force F. The component of the displacement vector δΒ in the 
direction of force F is the corresponding displacement <5F (a deflection under 
gravitational loads). 

SF = BB" = ôBcos<p (2.18) 

In addition to the displacement <5 at any point (x, y) a body will in general rotate at all 
points through a rotation φ ; in plane structures it is the rotation about the z axis, but in a 
three dimensional body we have all three rotations: 

φ = {φχφγφζΥ (2.19) 

Column matrix (2.19) is a rotation vector (vector of rotations). Similarly a displacement 
vector will have three components in space: 

5={uvw}T, (2.20) 

If we combine both displacements and rotations in a single vector δ 

5 = {« v w φχ φγ φζ}τ (2.21) 

then it is called the generalised displacement. 

♦♦♦ A generalised displacement consists of two vectors and can not be represented 
by a single straight line in space! 

Previous discussion on corresponding displacement holds also for three-dimensional 
space, therefore at the generalised force 

{Fx Fy Fz Mx My Mz }T (2.22) 

a generalised displacement is produced that is as follows: 

{»x Vy ™z <Px <Py <Pz Y (2-23) 

The components of the displacement vector are the corresponding displacements to the 
respective forces. In general displacements (u v w) will not be in the same directions as 
forces (Fx Fy Fz) and rotations (φχ φν φζ ) will not be in the same directions as moments 
(MxMyMz). 

�� �� �� �� �� ��



Sec. 2.5] Stresses 27 

2.5 Stresses 

Figure 2.11 shows a prismatic element of constant cross sectional area, loaded by an axial 
force F. Let us imagine that the element is cut in section 1-1 perpendicular to the 
longitudinal axis, such that the lower part of the element is isolated as a free body. 

R = G-A 

Figure 2.11: Element under tension and a free body 

As the free body has to be in equilibrium, it is obvious that in section 1-1 a force σ per 
unit area acts, such that the resultant of all these forces σ (R= σ A) is in equilibrium with 
force F. Hence: 

F 
σ =— 

A 
(2.24) 

The quantity σ is the force per unit area and is called the stress in the element, R is the 
internal force, sometimes called the stress resultant of a . 

Let us consider a three-dimensional body in equilibrium, which is loaded by 
arbitrary forces and moments. Imagine the body is cut by an imaginary plane that divides it 
into two free bodies. 
As both free bodies have to be in equilibrium, an internal force R must exist on the 
imaginary plane, having magnitude, direction and point of action to satisfy equilibrium 
equations. 

In general force R acts on an imaginary plane in an arbitrary direction. Its 
component on the normal to the surface is the normal or axial force Rn and the component 
tangential to the surface is the tangential or shear force Rs. 

A distribution of the force R is usually not uniformly distributed across the surface. 
Let us suppose that on a small area dA a force of magnitude dR acts. The ratio dR/dA is the 
stress at the point, which is at the centre of gravity of area dA. Stress dR/dA has an 
arbitrary direction with regard to the plane. 
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The component of dR/dA at the normal is the normal stress, usually denoted by σ, the 
component of dR/dA at the tangent is the tangential or shear stress, denoted by τ. 

dR/dA 

Figure 2.12: Free body in space 

The stress notation is as follows: 

♦ Normal stresses are denoted by σ. Subscript at σ denotes co-ordinate axis, which 
is a normal to the plane, on which the stress acts. Thus, σχ acts on a plane, 
perpendicular to the Jt-axis, etc. 

♦ Tangential stresses are denoted by τ with two subscripts. The first subscript 
denotes the plane, on which the stress r acts, the second subscript gives the 
direction of the tangential stress. 
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The sign convention is as follows: 

Normal stress is positive if it is tensile; it means that it is directed away from 
the surface (along normal) 
The positive direction of the shear stress is dependent on the positive 
direction of the normal stress at that section. The rule is: if a positive normal 
stress acts in the direction of the positive axis then a shear stress is positive 
if acting in the positive direction of the corresponding axis. 

The sign conventions can be briefly written as: 

♦ // the normal to the plane is in the positive co-ordinate axis direction, then 
the positive normal and shear stresses act in the direction of the 
corresponding positive co-ordinate axis and vice versa. 

>/ 

D' 

*r 
1 
1 

ihz 

ν^ 

i 
D 

''a 

Γ 
1—i 

·*-

pi*y 

σ* , / ' Α 

4—γ' 

A' dy i ' 

¿,^τ 
c' A -f' * iTyz 

ιλ-t 
V 

/a\ 
B· 

dz 

B 

Figure 2.13: Stresses in a parallelepiped 

Consider the equilibrium of the parallelepiped from figure 2.13. Moments about the z-axis 
are caused by the shear forces on planes A 'B'C'D' and ABCD of magnitude ( τ η dydz) 
and by shear forces on planes BB'C'C and AA 'D'D of magnitude ( τ dxdz). 
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If the body is in equilibrium all rotations have to be zero and therefore the sum of all 
moments about the z-axis must be zero: 

( τ^ ·dy ■ dzj■ dx = \ryx dxdzj-dy 

(force) x lever arm = (force) x lever arm 

From the above equation it is clear that: 

rxy = Tyx (2.25) 

From rotations about the x- and ;y-axes in similar manner as above: 

*yz=Tzy a n d T « = T » (2.25a) 

The state of stress on the faces of the parallelepiped, defined by nine components of stress 
tensor 3 x 3, is actually defined by six components only because of the symmetry as shown 
in equations (2.25) and (2.25a). 

σ = {σχσγσζτχγτητζχ] (2.26) 

The column matrix in equation (2.26) is called the stress vector at the point (x, y, z). 
Shear stresses τ^ and Tyx are equal in magnitude and are called complementary shear 

stresses; the same stands for stresses τ ^ and Tzy and for stresses τχζ and TW . 

2.6 Specific deformations (strains) 

Displacements that arise in engineering structures are small under normal loads in 
comparison with the dimensions of the structure; therefore, all the definitions discussed in 
this chapter, are applicable only if the deformations are small. 

2.6.1 Axial deformation (normal strain) 

Let us consider a prismatic bar in figure 2.14. Suppose that for some reason (axial force at 
the end of the bar, increase in temperature) the bar extends from the initial length L to L'. 
The distance between A'B' after deformation is: 

x + u + dv 
■dx—{x + u)=dx du} 

dv 
dx 
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Axial specific deformation or direct specific deformation at point A is defined as: 

Elongation of AB 
ε=- Initial length of AB 

and is hence dimensionless. From figure 2.14: 

ε = -
A'B'-AB 

A~B 

• 3M , 
dx + —-dx 

ax 
-dx 

dx 
du_ 
dx' 

(2.27) 

B 

du , 
dx u+— dx 

A' B' 

+ F=0 

■ x u 
K =*Ξ X 

«c 

¿' 

Figure 2.14: Axial deformation 

and further, if increase (du/dx) is constant over the whole length of the bar: 

ufree end ~ uat sup port _ (L ~ ¿ j — 0 _ L — L 
ε = -

ε = -
L'-L 4L 

(2.28) 

Many structures are built from straight elements of constant cross section (trusses, frames, 
etc.). Axial forces only usually load these elements and the quantity (du/dx) is constant 
over the entire length. Equation (2.28) in such cases represents axial specific deformation 
or axial strain, which is positive under a tensile axial force and negative under a 
compressive axial force. 
Consider now a two-dimensional case as in figure 2.15. The axial strain at a point (x,y) of 
the element depends on the element direction, as εχ is defined as the ratio between the 
elongation and initial length. An increase in length depends on the direction, as it can be 
different in the x and y direction. 
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That is the reason why in two-dimensional (plane) cases we have to use two indexes or 
subscripts. Thus εχ is the axial strain of the element initially in x-direction and εν is the 
axial strain of the element initially in ̂ -direction. 

After deformation from the initial position m¡(x, y) and m2(x+dx, y) the points 
move to m/ and m2 (Figure 2.15). 

m, 

m,(x,y) m2(x+dx,y) 

Figure 2.15: Displacement of a bar in a plane 

According to the definition of strain we have: 

M]™2 ~ ^]^2 

m¡nt2 

It is obvious that the element of length dx not only displaces in x direction by u but may 
rotate about the z axis, which is perpendicular to the paper. A rotation does not have 
influence on the axial strain, which is by definition the ratio between change in length/ 
length. The element length after the deformation is: 

m i tn2 — y 
, au , 

dx + —dx 
ax 

dx 
ox 

' θ ν * 
= ̂ -H2. | . (^^ |J .W + ^j .(dxY 

or if we neglect fourth order quantities: 

m',m'2 =Mdxf +2—-\dxf =dx 
dx 
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If the deformations are small, the above equation can be rearranged by adding a small 
square term as follows: 

m\m'2 =dxJt\ 1+2 
du} (du 
dx +[dxj 

. . . 3«Ί 
= dxU+Yx 

from which we can express the specific strain: 

dx\l + ~\-dx 
m,m7 —m,m-, 1 dx I du Ttj ιιι2 — ni¡iii2 

m¡m2 dx dx 

Similarly we can show that specific strain in the y direction is: 

dv 
£y~dy 

In a three-dimensional body further deformation in the z direction gives: 

dw 
ε>=Τζ 

(2.29a) 

(2.29b) 

(2.29c) 

2.6.2 Shear strains 

Shear strains are determined from figure 2.16, which shows two elements m¡m2 of length 
dx and mim3 of length dy. 

After deformation the points move to a new position mj,m2 in m3 and elements dx and 
dy rotate through angles <p¡ and <p2 . Shear strain is defined as the change in value of the 
angle between elements before and after the deformation. 

Yxy=<Pl+<P2 

From figure 2.16 we can evaluate angle φι : 

dv 

(2.30) 

<p¡ =sin(p¡ = 

dV A 

n'jtn2 

dx 
■dx 

3v 
dx 

dx 

n1m2{l + eJ^) dx(l + ex)' 

�� �� �� �� �� ��



34 Definitions and basic concepts [Ch.2 

du , 
— dy 

u dy 
p ψ H 

m3(x, y+dy) 
o 

dy 

m¡ dx m2(x+dx, y) 

Yxdx 

Figure 2.16: Definition of shear strains 

and if we say that quantity εχ is small in comparison with unity: 

dv 
<Pi = dx 

Similarly for angle φ2 : 

du 

The total shear strain is the sum of both angles: 

dv du 
' *y 

:<Pi+(P2:=^-+ 
dx 9y 

(2.31) 

In a three-dimensional body all three shear strains exist and it is easy to show that: 
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_ dv du 
7xy~Tx+"dy~ 

y =^L + ^L (2.32) 
7yz dy dz 

_ du dw 
Yvt~~ih+~d~x~ 

where u, v and w are the components of the displacement at the point in directions x, y and 
z respectively. 

The above equations show that specific strains are all zero if a rigid body has 
constant displacements u, v and w throughout (note that the rigid body translates only, see 
Ch. 4 on kinematics of a body). They also show that at any point (x, y, z) of a body only 
six independent strains exist, which can be written as a strain vector: 

ε = {ε* Zy £Z ïxy Yyz ΥζχΥ' <2 ·3 3) 

2.7 Stress-strain relations 

In the previous two sections stresses and deformations were discused as being independent 
from each other, since deformations can be caused from factors other than stresses. From 
Hooke's experiments it is known that if a body is subjected to a uniform stress σ χ (Figure 
2.17), it follows the law: 

σχ=Εεχ or ^- = E or εχ=^~ (2.34) 
εχ E 

where E is an experimentally determined constant called modulus of elasticity or Young's 
modulus. Since specific deformations or strains are defined as the ratio change in 
length/initial length and are hence dimensionless it is obvious that E has the same 
dimensions as stress. The proportionality of stress and strain is known as Hooke 's law. 
When dealing with materials, having the same properties in all directions (isotropic 
material), the following will be true: 

^- = E and ^ = £ (2.35) 

If the stress σχ is removed from the block on figure 2.17 then all deformations would 
disappear. Such a material is called a perfectly elastic material. 
Most engineering materials exhibit such a property but to certain level of stresses only, 
which is called the proportional limit of the material and the material in such a condition 
is called a linear elastic material. 
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Figure 2.17: Hooke's law 

Note that under stress σχ there always exist lateral strains in addition to the axial strain 
εχ, which are proportional to strain εχ, but are of opposite sign: 

ε = εζ=-νεχ=-ν—± (2.36) 

The constant v is called Poisson's ratio of the material. It is usually adequate to assume 
that E and v has the same magnitude under tension and compression. 

Suppose the body in Fig. 2.17 is subjected to all three stresses ax , σ y and a z 

simultaneously. If direction x is considered, the stress σχ will cause an axial strain εχ , 
but stresses σ y and cz will also cause negative lateral strains. The total specific 
deformation in x direction is therefore: 

εχ =—--v—Z— V .—L =— px -ν·(σν+σ7)1 x E E £ E y z 

Similarly for other directions: 

(2.37a) 

ε, =-

E 
o7 

E E E 
σ, 

(2.37b) 

(2.37c) 

The above equations completely define the deformation of the body under the normal 
stresses σχ , o y and oz. It is worth remembering that normal stresses produce only 
normal strains (no shear strains). In general it should be noted that: 
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♦ Normal strains εχ, εγ and εζ are functions of stresses σχ> ay and σζ andaré 
independent of shear strains, though they can act simultaneously. 

♦ Shear strains (rotations!) are functions of shear stresses and are independent of 
any normal stresses. 

♦♦♦ Shear strains are dependent on corresponding shear stresses only i.e. y^ is a 
function of Txy only and is independent of shear stresses xyi and xu. 

Shear strains are given by equations: 

T T τ 
v = - Í L y -LE. Y -hi. 
Y*y G /yZ G ÏU G 

(2.38) 

The constant G is the shear modulus of the material. Constants of the material are E, G 
and v and are related by the equation: 

G = -
2-(I+v) 3 

(2.39) 

Poisson's ratio for steel is nearly constant and has the value of approximately 0.30, for 
concrete it varies between 0.12 and 0.20. 
The relation between stresses and strains can be written in matrix form: 

£y 

r*y 

Yzx 

1 

V 

-V 

0 

0 

0 

-V 

1 

- V 

0 

0 

0 

-V 

-V 

1 

0 

0 

0 

0 

0 

0 

2{l + v) 

0 

0 

0 

0 

0 

0 

2{J+V) 

0 

0 

0 

0 

0 

0 

2{l+v) 

Ox 

°y 

<*z 

**y 

Tyz 

T « . 

(2.40) 

or shorter 

The above equation can be inversely tranformed 

or explicitly: 
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lxy 

lyz 

ίτζχ) 

E 
2(l+v\l-2s) 

■ * - v ) 

2v 

2v 

0 

0 

0 

2v 
*-v) 

2v 

0 

0 

0 

2v 

2v 
*-v) 

0 
0 
0 

0 0 

0 0 

0 0 

(;-2v) o 

0 (/-*) 

0 0 

0 

0 

0 

0 

0 

(i-2v)j 

εχ 

ey 

H 

ïxy 

ryz 

7zx 

(2.41) 

Let us consider two special cases: 

a) Plane stress is defined as 

σι=τγζ=τα=0' 

i.e. only stresses ax , a y and Txy exist. Equation (2.40) is reduced to: 

y 
j_ 
E 

1 -v 0 

-v 

0 \ 0 

1 j 0 
k-v) •xy 

(2.42) 

If the Eqn. (2.42) is solved for stresses: 

<*x 

T*y 
O-vf v 

0 

1 

0 

0 

0 

fa) 
(2.43) 

It has to be emphasised that in a state of plane stress εζ is not equal to zero, but is given 
by the equation 

εζ=-
vipx+ay) 
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b) Plane strain is defined as 

i.e. only strains εχ,ε and y exist. Equation (2.41) then reduces to: 

39 

°x 

(l + vXl-2v) 

7-v 

V 

0 

V 

7-v 

i 0 

\ 0 

! 0 

i(7-2v) 
1 2 

Ey 

Y xy 

or if expressed in terms of strains: 

εχ 

ey 

7v. 

1 + v 
E 

"7-v 

-v 

0 

-v \ 

7 - v j 

0 ] 

0 

0 

2 

Gy 

(2.44) 

(2.45) 

Again it has to be emphasised that in a state of plane strain σζ is not equal to zero, but is 
derived from the equation 

and hence 

σζ=ν(σχ+σ}) 

2.8 Discrete element deformations and displacements 

When considering structural elements as discrete elements it is of interest to find the 
overall element deformations and the corresponding joint displacements. 

Under the action of external loads, internal actions and stresses will develop, 
resulting in internal discrete element deformations and in displacements of the whole 
structure. 
Such deformations can be caused by axial forces, bending moments, torsion moments and 
shear forces either separately or in any combination acting simultaneously. 
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2.8.1 Axial deformations 

Tensile stress in the bar at section JC is: 

* A 

Fx 

K 3H 
Ax 

oT 

Figure 2.18: Axial deformation 

According to Hooke's law the axial strain is: 

ε =σ* = F* 
x E EA 

The total axial deformation is derived by integration over the whole length: 

L L 

Ax=jexdx = jj^dx (2.46) 
0 0 

At a constant axial rigidity EA the total deformation is simply: 

4=-&4 (2·47) 
EA 

2.8.2 Shear displacement and deformations 

Consider a member of rectangle cross section B ■ H with shear forces Qy acting in the x-y 
plane. The shearing stresses at an arbitrary distance from neutral axis are: 

T - Q y - S * 

x>~ Lb ' z 

where Iz is the moment of inertia and Sz is the static moment about the neutral axis of 
that portion of the section, lying outside the part for which the shear stress is being 
considered. 
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or A iß: g 
K a , K-

x ax 

Figure 2.19: Shear force 

The shear strain is given by the equation (2.38): 

r*> = G 

The relative displacement in the y direction between two sections is given as: 

dv=- K 
GAr 

•Qy-dx 

The expression G- Ax/ K is called shearing rigidity, K is a factor that depends on the 
shape of the cross section and is given in appendix B. 
The total relative displacement of two end sections is 

/ ; 

4-J*-Jcír·0'· dx (2.48) 

and for constant G, Ax and K is: 

AY = K 
G A, 

■Qv-L (2.49) 

2.8.3 Bending displacements and deformations 

If a member is loaded by two equal bending moments (couples) M z about the z-axis, the 
stress in the x direction in a cross section at a distance y from the neutral axis is given by: 

σ , =■ 
M-y 
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The bending (or flexural) strain is given by: 

= σχ = Mz y 
E El, 

Figure 2.20: Pure bending 

The quantity EIZ is called flexural rigidity. The relative angle of rotation άθ between 
two cross sections is 

ε.-dx M7dx 
y EIz 

and the total rotation between bar ends: 

•.-J-J^r •M, dx 

o o 

which can be explicitly integrated when Elz= constant: 

(2.50) 

z EL 
(2.51) 
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The distance between end tangents from Fig. 2.20 is: 

5 = ]d5 = Ljx.de^^^-± = J^-
E-L· 2EI, 

43 

(2.52) 

2.8.4 Torsion deformations 

-44-

*y 

\ R x 
► ► » 

^dx^ 

Figure 2.21: Torsion loading 

The torsion stress for a circular cross section bar from Fig. 2.21 at a section at a distance r 
from the x axis is: 

τ =-

where Ix is the polar moment of inertia about x axis (given for some cross sections in 
appendix B). 

M-R 
I, 

The shear strain γ is given by 

T MTr 
G G Ir 

I max 
MXR 
Gl, 

where G is the shear modulus of elasticity, and GIX is called the torsional rigidity of the 
element. The relative angle of rotation between two sections is 

άψ - Vmax dx = MX dx 

R G Ir 
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The total relative angle of twist between end sections is 

1 L'M,-dx r , r M tdx φ=ίαφ=)-^Γ ( 2 · 5 3 ) 
o o 

or simplified when GIX is constant over the whole length: 

GIX 

Note: For members with noncircular cross sections, warping may play a significant role. 
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3 
Statically determinate structures 

3.1 Supports and reactions 

A plane structure is considered if it lies in one plane in space as shown in Fig. 3.1. Usually 
loads act in the same plane, but it is not always the case (as in floor plates carrying loads 
normal to its plane). On a plane a movement of a point is defined by three components of a 
displacement in the Cartesian co-ordinate system. 

As already mentioned in Ch. 2, the displacements and forces are conjugate 
quantities which means the following: if the displacement in a direction is zero (i.e. u=0), 
then a force in the same direction must exist ( Fx * 0 ) to prevent that displacement. These 
forces are called reaction forces or simply reactions and will be denoted by symbol R¡ ; R 
will show the direction of the force and index / defines the point of a support. Supports are 
the points on a structure that do not permit rigid body movement, sometimes forces at 
these points will be called constraints. 
Reactions are given by equations: 

XA = kx u 
YB = V V (3.1) 
Mc = K φ, 

as shown in Fig. 3.2; possible displacements u, v and φ depend on the characteristics of 
springs. Constants kx and ky are spring constants having units oîkN/m, which means the 
force required to shorten or extend a spring for a unit of length. 

The constant K is the rotational spring constant of unit kNm, it is a moment which 
produces rotation of an element by an angle of 1 radian. 

Quantities kx, k and K can in practice have different values such that in 

supports both reactions and displacements can occur; such supports are called elastic 
supports. The structural engineer must always assume realistic support conditions, though 
in elementary statics the values of kx , ky and K will either be assumed zero or infinite. 
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If the values of kx, ky and K are zero, then the displacements u, v and φ will occur, 
when kx , k and K are infinite, the reactions will occur at zero displacements. 

Figure 3.1: Plane structures 
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Equation (3.2) relates displacements and forces as conjugate quantities: 

«x*0 
uy*0 
φζΦθ 

■ < = > · 

Rx=0) 
Ry=0 
M,=0 

(3.2) 

2 V W 

U 

Figure 3.2: Elastic supports 

If all three displacements are suppressed we get a fixed or clamped support, as shown in 
Fig. 3.3, where all three displacements at point A are zero (i.e. two displacements and a 
rotation). 

O MA 

R, 

\Ry 

'«Λ=0ΐ 

vA=0 

ΨΑ=0 

· < = > ■ 

Rx*0 

Ry*0 

MA*0 

Figure 3.3: Fixed support 

On the contrary, the displacements at all other points of the structure are possible. 
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At point A in figure 3.3 all three displacements are zero, therefore three 
reaction forces R„ Ry and M¿ must exist as conjugate quantities to suppress 
these displacements. 

3.2 Principle of a free body 

Graphically the equations in the previous section can be represented as the principle of a 
free body. As seen from Ch. 2 there are three equilibrium equations in a plane: 

ZX¡=0 
1Y¡=0 (3.3) 
ΣΜ,. =0, 

which are sufficient to calculate reactions Rx , Ry and M at point A of the cantilever 
structure in Fig. 3.3. It must be stated that the magnitude of these three reactions are such 
that the displacements ua vy and φζ are zero. 

If the rotation at point A is released, therefore φζ & 0 (or because of the conjugate 
properties also M = 0), then at point A only two reactions remain (Rx and Ry) or in general 
one generalised reaction force R of magnitude 

R = JR: 
2 + Rl (3.4) 

and is inclined at an angle of 

a = tan ' 
R 

y- ' (3.5) 

A support with two displacements suppressed (i.e. ux and vy) is called a pin support and is 
shown in Fig. 3.4. In both cases the displacements ux and vy are zero, but the rotation at 
point is possible, as symbolically shown by the circle (hinge). A free body can substitute 
the pin support as shown in Fig. 3.5. 

It is obvious that element AB would at this state rotate around point A under any 
loading (self weight, external forces) and would not be in equilibrium any more. (φζ Φ 0, 
M = 0). 

The third equilibrium equation can not be satisfied any more and the structure 
becomes unstable or a mechanism. (Note: in this state the element AB could be 
additionally supported at point B by at least one reaction force to become stable again). 

As there are in general three possible movements at point A (u, v and φζ) it is 
possible to release any of the displacements (κ or v) but the rotation φζ has to be zero (φζ = 
0). In this way we get a clamped support which is guided in one of the directions (one of 
the displacements u or v is possible). 
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¿ 
A 

«¿=0 
v A =0 
φΛ * 0 

· < = > · 
[***0] 
Ä,*0 

k^oj 
(3.6) 

Figure 3.4: Pin (non-movable) support 

B 

Figure 3.5: Free body of a pin support 

The rotation is in both cases prevented by a spring. If a spring is very stiff we are 
discussing a full clamped condition, but on contrary if a spring is weak and its rotational 
stiffness becomes zero, then we get a roller support, symbolically shown in Fig. 3.6. 

At a roller support only one reaction occurs, which is always perpendicular to the 
possible displacement (i.e. possible is displacement u and reaction Sexists). 

It has to be stated that an effect of a movable support can be achieved by so-called 
swinging supports, i.e. bars, which through hinges connect two elements or rigid bodies. 
In such bars only axial forces can occur which acts as a reaction, the displacement is 
always perpendicular to the bar axis (see Ch. 4 on kinematics). 

�� �� �� �� �� ��



50 Statically determinate structures [Ch. 3 

Rr -A-
WÊBÊM 

'i*A*0] 
vA=0 

9A*0^ 
■ < = > · 

\Rx=0] 
Ry*0 
MA=0 

(3.7) 

Figure 3.6: Roller (movable) support 

The release of the last possible displacement vA enables free movement of a point Λ. Such 
a point can not be supported with reactions but can be a connection point between two 
elements in statically indeterminate structures. 

Let us follow step by step the release of displacement quantities of generalised 
displacement and its influence on reactions in the table bellow: 

Support 

Elastic 

Clamped 

Non-moveable 
(pin support) 

Clamped-movable, 
guided in y direction 

Roller support 
Movable in y direction 

Roller support 
Movable in x direction 

Movable 
Swinging support, 

Rotation about absolute pole 

Displacements 
u * 0 
v * 0 
<p*0 o o 

o 
Il 

II II 
3 

> 
9 

u - 0 
v = 0 
φ * 0 
u = 0 
v * 0 
<p = 0 
u = 0 
v * 0 
φ * 0 
u * 0 
v = 0 
φ*0 o o 

o 
Il 

II 
%

 
3 

>  
9-

Reactions 
X = kx.u 
Y=ky.v 

Μ=Κ.φ 
X 
Y 
M 
X 
Y 

M=0 
X 

Y=0 
M 
X 

Y=0 
M=0 
X=0 

Y 
M=0 

N 
(Axial force in 
swinging bar) 

�� �� �� �� �� ��



Sec. 3.3] Plane truss 51 

3.3 Plane truss 

3.3.1 Introduction 

The truss is one of the major types of engineering structures. It provides both a practical 
and an economical solution to many engineering situations, especially in the design of 
bridges and buildings. 

A truss is a structural system in which, due its construction and configuration, all 
members are subjected only to pure tension or compression forces. If all the members lie 
in one plane and the truss is loaded in that plane, it is referred to as a plane truss. An 
analysis is performed on an idealised structure, which fulfils the following conditions: 

♦ Member connections are made by frictionless hinges orpins 
♦ Members are straight and connected at their extremities only 
♦ Loads are acting at truss joints only (self weight forces are reduced to hinges) 

If all of the above conditions are met then only axial forces occur in members. In practice 
it is difficult to meet all of the above conditions as the elements of tension and 
compressive parts are usually continuous beams and are not connected by hinges and the 
diagonals are often connected to beams by welding or by welded or bolted steel plates. 

The loading causes deformations of the structure, which has to be small if the 
compatibility conditions are to be fulfilled and the basic static analysis can be applied. 

The elements of a truss, which are loaded directly outside joints have to be 
analysed locally as beams carrying shear forces and bending moments at the same time as 
an axial force. Bending moments should never be neglected since, in combination with a 
compressive axial force, induce buckling of bars. 

3.3.2 Modelling of trusses 

The main concern with truss modelling is the kinematic stability. The simplest possible 
kinematically stable truss is a triangular truss. 

A triangle consists of three joints (j) and three elements (m); each additional joint 
requires two additional elements and can be written as 

m-3 = 2- j-6 

î Î (3.8) 
displacements of the basic triangle 

forces in the basic triangle 

Eqn. (3.8) links the number of elements m to the number of joints. If the structure is to be 
in equilibrium, three swinging supports can be added as additional truss elements and Eqn. 
(3.8) transforms into: 

m — 2- j -3 , (3.9) 
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where) means a number of free joints. Eqn. (3.9) assures internal determinacy, if there are 
more than three reactions the structure becomes externally indeterminate with no influence 
on internal determinacy. 
Kinematic stability of trusses is determined by the equation 

/ ' = 2 · j - m-3 (3 reactions included), (3.10a) 

and can be used for externally determined trusses or by a general equation 

f = 2· j -m- p (p = number of suppressed displacements), (3.10b) 

if the condition of internal determinacy from Eqn. (3.9) is met. 

♦ Trusses can be internally or externally indeterminate independent of 
either condition. 

Let us consider basic cases of truss modelling: 

kinematically unstable 
f=2j-m-3 = 8-4-3 = l 
(one degree of freedom) 

kinematically stable, statically determinate 
f=2j-m-3 = 4-l -3 = 0 

kinematically stable, statically determinate 
f=2j-m-3 = 6 -3-3 = 0 

kinematically stable, statically determinate 
f=2j-m-3 = 8-5-3 = 0 

Internally indeterminate truss 
f=2j-m-3 = 8-6-3 = -l 

�� �� �� �� �� ��



Sec. 3.3] Plane truss 

Internally indeterminate truss 
f=2j-m-3 = 10-8-3 = -l 

53 

Reactions in trusses are calculated by a beam analogy, as the reactions are external forces 
and the whole truss can be represented as a rigid body (Figure 3.7). 

Displacements in trusses at roller supports are considerable and much higher than 
in beams and therefore much attention has to be paid to support design and its execution. 

Figure 3.7: Analogy of truss and beam 

Let us calculate the stability of the truss in Fig. 3.7, that is externally in equilibrium with 
three reactions: 

f=2j-m-3 = 2.10-17-3 = 0, 

As f=0 the truss is externally and internally determinate. 

3.3.3 Methods of truss analysis 

The analysis of statically determinate and stable plane trusses can be accomplished by a 
number of relatively easy methods that can contribute to a better understanding of basic 
statics: 
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1. The Graphical Method will be used when a new truss is to be designed and we 
will be looking for all forces in the truss. 

2. The Method of Sections (Ritter's method) is used, when forces in some bars only 
are desirable. 

3. The Method of Joints (projection method) is used in orthogonal systems i.e. if 
two bars are perpendicular to each other at any loading. 

4. The Kinematics Method is the simplest method though the knowledge of 
kinematics is necessary. It is used to calculate forces in individual bars and no 
reaction calculation is necessary (see example in Ch. 4). 

When using the first three methods the structure has to be equilibrated prior to any other 
calculations; the kinematics method requires no reaction force calculation. 

Example 3.1: Calculate all forces in the truss from Fig. 3.8 by graphical and analytical 
methods (F = 50 kN). 

Figure 3.8: Plane truss 

3.3.3.1 Graphical solution (Maxwell's diagram, Cremona's diagram) 

A graphical solution is achieved using a polygon of forces. Reaction directions are 
determined from the fact that a force F can be equilibrated by two components, if all three 
forces meet at the same point. The direction of the reaction at support B is known as the 
displacement is in the x direction. Since the reaction can only be perpendicular to the 
displacement, it has to be in the y direction. The common point at the YB line then 
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determines the direction of the reaction R, which has to act through the support at A. Let us 
draw the polygon of forces in a chosen scale: 

Entire free body 

10 kN 

Figure 3.9: Polygon of forces at equilibrium 

The reaction magnitudes are determined from the polygon of forces (1 cm = 10 kN) and 
are XA = F = 50 kN, YA = 20 kN, YB = -20 kN. As soon as the reactions are found we can 
successively equilibrate joints in which only two unknown forces occur. 

10 kN 

Figure 3.10: Equilibrium at joint / 

The direction of arrows from the polygon determines the nature of the axial force. If a 
force is directed toward the joint, the element is in compression and if it pulls away from 
the joint the element is in tension. As each element by itself is a free body in equilibrium, 
the direction of the axial force has to be reversed on the opposite side of the element. 

We can now proceed to joint 2, where only two forces N3 and N4 are still unknown. 
Joint 3 at this moment can not be solved as there are still three unknown forces N3, N$ and 
N6. 
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N3 
N, N< N, 

N4 N6 Ny 

10 kN 

Figure 3.11: Equilibrium of joints 2, 3, 5 and 6 

At joint 4 forces Ne and Ns equilibrate each other but N7 equals zero. In this way we can 
equilibrate all joints of the structure. The whole procedure can be drawn in a single 
diagram as in Fig. 3.12 (Maxwell's diagram), but the diagram becomes complex and hard 
to follow. 

10 kN 

Figure 3.12: Maxwell's (Cremona's) diagram 
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The magnitudes of axial forces are scaled from the diagram and are as follows: 

N¡=-20kN, N2=-50kN, N3=25kN, N4=35kN, 
N5 = -25 kN, N6 = -20 kN, N7= 0 kN, Ns =-20 kN 
N9=28kN. 

3.3.3.2 Analytical solutions 

Let us at first calculate some basic geometrical relations from Fig. 3.8 

4 
tga = -=>a = 53.13°; since =0.800; cosa =0.600 

tgß=] => ß =45°; sinß =cosß =0.707 

and then equilibrate the structure using the basic equations of equilibrium. 

ΣΜΑ=0 :YB10+F-4 = 0 =» YB=-0.4F = -20kN 

ΣΥ=0 : ΥΛ+Υ„=0 => Y.=W.4F = 20kN lA ^lB 

ΣΧ=0 : XA-F=0 XA =F = 50kN 

Forces in elements 1 and 2, connected at joint 1, can be calculated using the projection 
method based on the principle of a free body. All forces in elements are supposed to act as 
positive tensile forces (i.e. away from a joint): 

* N i 

K> ►** 

ΣX = 0: XA + N2=0 =* N2=-F = -50kN(compression) 

ΣΥ=0: YA+N,=0 => N,= -0.4 F = -20kN (compression) 

Using the projection method we can instantly conclude that force N7 equals zero and that 
forces Nt and Ns are equal in magnitude: 
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N« 

Ny 

-o 
4 

> W S 

ΣΥ =0: N7=0 

lX=0:Nt-N6=0 => N8=N6=-0.5657F = -28.285kN 

Now we proceed to the last unsolved joint 6 (support B): 

*N9 

OAF 

ΣΧ=0: -N8-N9cosß=0 

Nx =-No cosa - -
0.4-Fcosß _-0.4F _ 

sinß tgß 
= -0.4F= -20 kN 

ΣΥ=0: N9sinß =0.4 F => N9 =0.5657-F = 28.285 kN 

The method of joints is most effective when the forces in all the members of the truss are 
to be determined. If, however, the force in only one member or the forces in very few 
members are desired, another method, the method of sections {Ritter's method) is more 
efficient. 
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Figure 3.13: Method of sections (Ritter's method) 

The method of sections is a process of analysing a truss as a series of independent but 
stable sections or free bodies. The structure is cut in a section such that in the section only 
three unknowns occur which can be determined by applying the moment equilibrium 
equation to the point where two unknowns meet (see Fig. 3.13). 

ΣΜ3=0 

-N4.4 + F-4-(0.4-F)-3 = 0 

N 4 =0.7-F= 35.000 kN (Tension) 
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If two unknown forces are parallel then another section has to be chosen or one of the 
forces has to be calculated by any other of the methods. 

Note that no independent check of the computation is available if only one force is 
to be calculated, therefore it is desirable to check calculated forces on a free body applying 
any other point of rotation. 

If there are more than three unknown forces at the section then redundant forces have to be 
calculated by the kinematic method or projection method prior to the application of the 
method of sections. 

3.3.4 Internally indeterminate trusses 

An indeterminate truss is obtained if with a pure triangular truss with f-0 one or more 
elements are added. The method of solution is called Henneberg's method. All redundant 
elements are removed in such a way that the determinate truss remains stable. 

The statically determinate truss is then solved by one of the methods explained 
above. At joints, where redundant elements were removed, we apply pairs of unknown 
forces Xi = J(i - l,n), n being the degree of static indeterminacy. The truss must to be 
solved for each of the redundant forces X¡. 
The deformations of the truss are calculated by equation 

J EA 

and from equations of compatibility, unknown forces X, are calculated. The method of 
superposition is applied to evaluate forces in all members (see example 6.5). 
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3.4 Differential relations on beams 

3.4.1 Undeformed beam 

Let us consider a simply supported beam loaded by the uniform load over the whole span 
of intensity q = qx = constant and a differentially small part of length dx, shown as 
free body in Fig. 3.14: 

x* Λ 
75 

dx 

Q* Sx=qdx 

Nx+ß 
Mx+dMx 

\Q*+dQx 

I Λ I 
Figure 3.14: Simply supported beam 

The equilibrium equation in the x direction is 

ΣΧ =0 : Nx-(Nx + dNx)=0, 

from where dNx = 0, since on length dx no additional force in the x direction exists. 
Consider now equilibrium in the y direction: 

lY=0:Qx-q.dx-(Qx+dQx) = 0 

or 

dQx = -q.dx 

♦♦♦ The change in shear force on the differential region equals the negative 
change in loading on the same region. 
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The equation is divided by dx: 

dQx - = -q (3.11) 
dx 

♦♦♦ The differential of shear force is equal to the negative external loading. 

Consider now the sum of moments about point 2 on the differential body: 

Qx.dx + Mx-(q.dx)—- (Mx+dMx)=0, 

and hence 

dx2 

Qx.dx-q—-dMx=0 

If the deformation is small, quantities of second order (dx2) can be neglected and we are 
considering theory of first order. Equation is simplified to: 

^ = Q, (3.12) 
ax 

♦♦♦ The differential of the bending moment is equal to the shear force. 

If equation (3.12) is differentiated again 

dx2 dx 

♦♦♦ The second derivative of the bending moment is equal to the negative external 
loading. 
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3.4.2 Deformed beam 

Differential relations on beams 63 

R = radius of curvature — = measure of curvature 

Figure 3.15: A beam under pure bending 

The equation for the radius of curvature can be found in any mathematics text book and is 
given by: 

1 
R V^77 

(3.14) 

If the second order quantities are neglected (y2) and the expression under the square root 
equal unity, the theory of first order only is considered: 

1 _d2y 
R~ dx2 (3.15) 

Consider now the basic geometrical relations with regard to a constant curvature 1/R, R 
being measured from the centre of gravity of the cross section: 

Δ* _ dx Ax _ y 
y ~ R dx~ R 

(3.16) 
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Figure 3.16: Deformed differential body 

But as AL/L = E it follows that 

Δχ _ y _ 
~dx~~R~£x 

and after insertion of stresses due to Hook's law: 

σ=εΕ=+Ε 
R 

The stress isa = F / A , which gives the differential force 

dF= — ydA, 
R 

and integrated over the whole cross section gives the total force: 

E 

- T i l · -
dA 

From equilibrium in the x direction, the sum of all forces is zero i.e. ΣΧ = 0. 

E F = -jydA = 0 

(3.17) 

(3.18) 
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From Eqn. (3.18) we can conclude, that equilibrium will take place when the resultant 
force in the x direction vanishes. Eqn. (3.18) also equals zero, when R is infinite, which is 
true when the beam is undeformed. This does not makes sense in our case. 
It follows that the expression 

¡yd4 = 0 

must be true. As the above expression is the static moment about the x axis which is zero 
for a symmetrical cross sections, it then follows that the neutral axis must coincide with 
the centre of gravity of the section. The above statement is true for a simple cross section 
otherwise we have to consider the centre of torsion or shear centre of a cross section. 
The moment equilibrium equation is 

E E dMx =dFy= — ydAy = — y2 dA R R 

which after integration gives the relation to the bending moment 

E 
M, = ~\y2dA (3.19) 

It is known that the expression \y2dA is a second moment of inertia of a cross section /, 

hence: 

, , EI 

M. = — x R => 
i M* d y — = ±_ = i_ 
R El dx2 (3.20) 

and finally 

d2y Mx 

dx2 EI 
(3.21) 

which is a basic differential equation of pure bending also known as the moment-
curvature relation. 

*l* The second derivative of the deflected shape is a bending moment, reduced by 
bending stiffness EI. 

It is now straightforward that further derivation gives shear forces and loads. The third 
derivative of a deflection curve gives the shear force 
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and the fourth derivative of a deflection curve gives external loading: 

If the equation of pure bending is given then after first integration along the beam axis, an 
expression dy/dx arises which of course is a tangent to the deflection curve or rotation. 

It has to be emphasised that loading, shear force and bending moments are 
independent of bending stiffness, but on the other hand, rotations and deflections depend 
on the bending stiffness El. 

Differential relations between loading, shear forces, bending moments, rotations 
and deflections are shown in the following table: 

Loading 

Concentrated force 

Uniform 
Linear 
Parabola* 
Periodic 

Load 
function 

f(x) 
<*"'> 

x° 
x' 
x2 

sin 
cos 

Shear force 

Q(x) 
x° 
x1 

x2 

x3 

-cos 
sin 

Bending 
moment 

M(x) 
x1 

x2 

x3 

x4 

-sin 
-cos 

Rotation 

ΕΙφ 
x2 

x3 

x4 

x} 

cos 
-sin 

Deflection 

Ely 
x3 

x4 

x5 

x6 

sin 
cos 

Concentrated forces and moments are the only loadings where a sudden change occurs in 
functions of shear forces or bending moments. All other loadings produce smooth and 
continuous functions. 

As can be concluded from the above derivation the basic differential relations 
between loading, shear force and bending moment enable easy physical interpretation 
between these quantities. In this way from one known diagram of internal forces another 
two can easily be reconstructed in sense but not in magnitude. The magnitude of such 
quantities can be determined with the application of boundary conditions. 

3.4.3 Integration of a load function 

Let the load function be q(x) = q = constant along the whole length of the simply 
supported beam as shown in Fig. 3.17. From equation (3.11): 

Parabolic loading occurs in pre-stressed beams, as the cable position is a square function of 
longitudinal distance. It will also be used in the deformation determination by Mohr's 
method. 
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dQx ( \ 
-f-=-q\x) 

dx 

jdQx=j-qdx 
Qx=-q-*+Ci 

The constant C¡ is determined from boundary conditions* on the beam i.e. from known 
values for the shear force: 

at x = 0 =* QX=YA 

at x = L => QX=-YB 

Inserting values at x = 0 : 

Qx=-q.0 + C, => Qx=C, => C,=YA 

The constant C] is now inserted into the shear force equation such that: 

Q*=-qx+YA=3Y-qx (3.22) 

Using a direct integration of a load function with the use of known boundary conditions 
we derived the equation of shear forces at any section. It can be seen that shear forces 
changes linearly. 
Now we integrate again: 

-JH Mx= \ \ q - - q x 
\ 

dx + C2 

Mx = qj^_q^ + C2 

Boundary conditions: a t * = 0 => M =0 
at x = L =» M =0 

at x = 0 => C2 =0 

Boundary condition represents a known value at a certain point, usually we choose a 
point where a value of the function is zero. 
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1 Î B T\ 
-* YB 

[Q] 

[M] 

[Έίφ] 

[Ely] 

Figure 3.17: Graphical representation of integration 

The equation for the bending moments is now 

2 2 
(3.23) 

from where values of Mx can be calculated at any point: 

L 
at x = - M = 

q-LL q-Ú „ 3qL2 2 2 => M =— 
2-4 216 32 
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L -, q-LL q-U q-U 
2 * 2-2 2-4 

at x = -
3L .. q-L-3L q q-U 
4 2-4 2 16 

Λί,= 

Integrating the moment equation: 

é2-m~ 
dx 

EI = -Mr 

d(p-EI = -Mx ■ dx = ' q■x2 q-Lx^ 
dx 

φ.α=2^-ΐ±£+€3 

J n . ϊ^ η 
Boundary conditions: at JC = — =* φ = 0 => 0 = -

2 6-8 

C3 = 
_q-L3 

24 

The constant C3 is inserted into equation of rotation: 

_,, qx3 q-Lx2 q-L3 

φ-ΕΙ = - - + -
6 4 24 

and the values of rotation at supports A and B are evaluated: 

qL3 
at x = 0 => φΑ = 

24 EI 

at x = L .±JL 
24 El 

Integrating the rotation: 

Ε1^- = φ 
dx 
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J 6-4 4-3 24 4 

Boundary conditions: at JC = 0 =Φ y = 0 

at x = L =» y=0 , C4=0 

The equation of the deflection curve is: 

. Εί.γ = ΐ1^-ΐ±^ί+ϊ^ (3.25) 
' 24 12 24 

The maximum deflection of a simply supported beam is at the point of zero rotation (as the 
rotation is a derivative of the deflection) that is at x= L/2 : 

5qL4 

384EI y^i^ (3-26) 

3.5 Analysis of determinate beams 

3.5.1 Beams with straight axes 

Example 3.2: Simply supported beam 
Consider the beam from Fig. 3.18, loaded by the uniform load of intensity q, a chosen 
positive side of the beam is marked by a dotted line. The positive side of a beam is an 
arbitrary side but usually it is a bottom side, as under gravitational loads a tension occurs 
at that side. 

9 

—»j& * a* 
y} l >ß 

Figure 3.18: Simply supported beam 

The beam is at first equilibrated. Write down the equilibrium equations on the free body at 
which displacements are prevented by reaction forces XA, YA and YB, which are supposed 
to act in the positive directions of corresponding co-ordinate axes. From the sum of forces 
in the x and y directions: 

IX =0: XA=0 
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ΣΥ=0: YA+YB-q.L = 0 

The third equilibrium equation is needed for the determination of unknowns. The moment 
equation can be written for any point in the structure: 

ΣΜΑ=0: YBL-(q.L)- = 0, 

from which: 

YR = 
qL 

and then from the second equation YA = YB = qL 

Internal forces at an arbitrary section at distance x are determined in a way that the beam is 
cut into two free bodies at the distance x. As originally the beam was at this section 
connected together by internal forces, these internal forces are now applied as external 
forces on the free bodies. 

\SX 

£ *>K 

Internal forces Qx and Mx are now determined from equilibrium equations: 

rA-<¡-x-Qx = o 

YAx-{qx)^-Mx=0 

hence 

Qx = rA-fx 

Μχ = γΑχ-{αχ)--^-χ-^-
x A W I 2 2 2 

As seen from the above equations, the shear forces change linearly while the bending 
moments follow a quadratic parabola. Both functions are now drawn in the diagrams of 
shear forces [Q] and bending moments [M]. 
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The maximum bending moment is at the point where the shear force is zero: 

Y 
Qx=YA-q-X = 0 => Xmax= — 

1 

which is inserted into the equation of bending moments 

Mmax=YAx„ 
ax2 Y2 
1 *max _ ' A 

2 2q 

[Ch. 3 

(3.27) 

(3.28) 

I 

A-
[Q] 

[M] 

Figure 3.19: Diagrams of internal forces 

Example 3.3: Cantilever beam (Fig. 3.20) 

From the sum of forces in the x and y directions 

ΣΧ=0: ΧΑ=0 

ΣΥ=0: YA-qL = 0 YA=qL 

followed by the sum of moments about support A 
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ΣΜΑ=0: MA+(q.L)- = 0 

MA=-(q.L)± = - ^ 
A '* 2 2 

4 

!5r 

> v n w s 

1 i M , 

[Q] 

[M] 

Figure 3.20: Cantilever beam and diagrams of internal forces 

From the equilibrium equations related to the free body, equations of shear forces Qx and 
bending moments Mx are derived 

Qx=-qx M=- qx 

and then drawn as diagrams of shear forces [Q] and bending moments [M] in Fig. 3.20. 
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3.5.2 Beams with bent axes 

Since the given structure is not a horizontal beam as discused earlier, it is necessary to 
introduce a local co-ordinate systems on the inclined parts of the structure. 

Figure 3.21: Beam with bent axis 

From the equilibrium equations all reactions are calculated: XA = -F, YA=0 and MA = 6F. 
The beam is cut and a local co-ordinate system is chosen in such a way that it corresponds 
to the chosen positive side of the beam. 

Nr = F ■ cosa 

QX = F■ since (3.29) 

Mx = F ■ sina ■ x 
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F.sina 
F.cosa 

75 

Figure 3.22: Free body - beam with bent axis 

Diagrams of internal forces are drawn perpendicular to the beam axis as shown in Fig. 
3.23. 

F.sina F.cosa 

[M] [Q] [N] 

Figure 3.23: Diagrams of internal forces 
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3.5.3 Beams with curved axis 

Example 3.3: Three-hinged semicircular arch 

Three-hinged arch is a determinate structure though four reactions occur at the supports 
but an additional independent fourth moment equation can be written for a hinge at point B 
of the arch. 

Figure 3.24: Three-hinged semicircular arch as a free body 

From equilibrium of the entire free body: 

ΣΜΑ=0 : -F-(R + RCOS(P)+YC2R = 0 

v FR(l + cosq>) F , χ 

In the case of φ = π/2 , that is when force F acts in the middle of an arch, so cos(p=0 
and the reaction is Yc = F/2 as expected. 

ΣΥ=0 YA + Yc=F => YA=F-—(l + cos(p)=—(l-cos<p) 

The sum of moments on the free body BC about point B gives: 

ΣΜΒ=0: YcR + XcR-FRcos(p=0 
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Xc=—j-(1-cos9) ' / Ψ^~ 

ΣΧ = 0: XA=-XC= — {l-cosç) 

Internal forces are calculated for the position of force F at φ = 45° : 

a) Free body AB (Figure 3.25a) 

~)B 

F 1 r § \ \ 
—(l-cosf) \ . <pL W 

1 —(l-cosf) 

<PL 

0 
15 
30 
45 
60 
75 
90 

Μφ 

0 
-0.033 FR 
-0.054 FR 
-0.061 FR 
-0.054 FR 
-0.033 FR 

0 

Μφ = — R■ (7 - cosip)· [1 - cosq>L - sin(pL ] 

b.) Free body from point C to force F (Figure 3.25b) 
B 

F 

(^ 1 1 r\^ —(l — ^ostfl) 

1 —(l + cos(p) 

Μφ = —— · [(;+cos(p\ (y - cos<p)- (y -

(pD«p=45° 

0 
5 
10 
20 
30 
40 
45 

COíC>)-SWJ<¡P0J 

Μφ 

0 
-O.OIOFR 
-0.012 FR 
-0.001 FR 
0.041 FR 
0.106 FR 
0.146 FR 
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c) Free body from force F to the point B (Figure 3.25c) 

[Ch. 3 

C F 
M -^(l~cos(?) 

F , , 
— (] + cosq>) 

cpD><p 

45 
50 
60 
70 
80 
90 

Ma 

0.146 FR 
0.12SFR 
0.093 FR 
0.059FR 
0.028 FR 

0 

a=R-(]-cos<pD)-R(]-cos(p)= R-(cos(p-cos(pD) 

F_ 
2 
F 

Μφ = (/ + C0S(p)- Ri]- CO5(j0o)-

(/ -cosç)- R- sin(pD -FR (coscp- cos(pD ) 

The internal forces diagrams are drawn m polar co-ordinates i.e. in the radial direction or 
always perpendicular to the axis. 

�� �� �� �� �� ��



Sec. 3.5] Analysis of determinate beams 79 

Figure 3.26: Moment diagram for a concentrated force F 

Note from Fig. 3.26 that all points of the structure inside the compression line are under 
positive bending moments and outside the compression line under negative bending 
moments (Note: Imagine that if a structure would have a shape of a compression line, then 
no bending moments in a structure would occur). 

Calculate reactions and internal forces for self-weight of the structure, specific 
weight is 200 kg per unit length ( q = 200 kglOms'2 =2 kN/m ). 

Figure 3.27: Three-hinged arch loaded by self-weight 
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Let us at first detennine die differential quantities of length ds and force dF: 

dF = q-Rd<p 

ds = Rd(p 

The total force is given by integration: 

[Ch. 3 

F=\qRd<p = q R-π 

Reactions are determined by summing reactions of dF over the entire body: 

ÍK 

λ_ Ύ, R 
2 2 

π o A ίπ π 
Yc = í-i —(l +cos<)!>)=— R- \d<p + \οο&φάφ 

_ q-R-π 
2 

*A=2¡ i^-^d-cos, 

v q-R π q R } , _ (π ^ 
XA=^~- 2—-]cos<pd(p = qR — 1 

q(R.da) 

Figure 3.28: Three-hinged arch - self-weight free body 
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a.) Shear forces: 

Analysis of determinate beams 

V.2 I 

K f 
q-Rcos(p+—q-Rsinç- \qRdasin(p + Qx =0 

a=0 

Qx=qR 
V2 / 

/ 
COSÇ + φ- | · | · ϋ«< 

(3.30) 

b.) Axial forces: 

1 \qRsin<p + —q-Rcos(p- \q-Rd(pcos(p+Nx =0 
\ ' a=0 

Nx=qR- φ 
2 

π ■cosç-\ 1 \-sirup 

(3.31) 

-0.571 

-0.959 

-1.571 ^Α C ^0.571 

Figure 3.29: Axial and shear forces for self-weight (*qR) 

c.) Bending moments: 

V 2 I 
q-R-R-sinç q-R2 (l-cos<p)+ 

ψ 

+ ¡qRdaR(cosa-cosq>)+Mx=0 
a=0 
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Mx=qR2 j - ( / -JWÇ»)+ ■cosç (3.32) 

-0.057 -0.014 B 

-0.122 

-0.100 

Figure 3.30: Bending moments for self-weight (*qR2) 
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3.6 Statically determined structures in space 

Space structures in general have complicated geometries and the use of vector algebra is 
unavoidable for the determination of internal forces and reactions. In the general case, six 
internal force components act at any section of the member. The calculation can be 
divided into two steps: 

- Geometry calculation and 
- Equilibrium calculation 

3.6.1 Geometry calculation 

At first we have to define the geometry of element axes and the principal section axes at 
which internal forces are required. Consider a member whose axis is defined by the 
parametric equations: 

* = Λ ( Φ ) 

y = f2{<p) (3.33) 

z = fÂ9) 

The unit vectors along the x, y and z axes are denoted by i, j and k. The section on which 
the forces are required is cut and the principal axes are defined by N for the axial (normal) 
force, S for the strong and W for the weak bending axes. The corresponding unit vectors 
are n, s and w (Figure 3.31). 
The unit normal vector is determined by equation: 

n={dx)i+{dy)j + fal· _ (dx)i+{dy)j+(dz)k ( 3 3 4 ) 
ds Jidxf + (dyf +(dzf 

Let us define the principal bending axes. If the strong bending axis is parallel to the xy 
plane (or horizontal, as is the case in gravitational loads), then this axis is normal to the N 
and Z axes, the unit vector is found from equation: 

* = f ^ r (3.35) 
\nxk\ 

or by words: the cross product must be divided by its absolute value to obtain the unit 
vector. The weak bending axis is normal to the N and S and its unit vector is: 

w = nxs (3.36) 
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Since both n and s are unit vectors their cross product is also a unit vector. 

Figure 3.31: Curved beam in space 

3.6.2 Equilibrium 

Consider the free body of Fig. 3.32. Force F is applied at point A and produces a resultant 
force vector FR and resultant moment MR, which can be found from the vector equilibrium 
equations: 

ZF = 0.· F + FR=0 => FR = F 
(3.37) 

ΣΜΒ=0: LxFR + MR=0 => MR=-LxFR, 

L is the lever arm from the point of the force F applied to a chosen point B. 

Axial and shear forces N, Qs and Qw are the components of the resultant force FR along 
the n, s and w axes and can be found by a dot multiplication with corresponding unit 
vectors: 
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N = FRn 

Qs = FRs (3.38) 

Qw=FRw 

Figure 3.32: Definition of axes on a free body 

The torsion and bending moments T, Ms and Mw are the components of the resultant 
moment MR along the corresponding axes: 

T = MRn 

Ms = MRs (3.39) 

Mw = M R ■ w 

When all internal forces are determined, deflections and stresses can be calculated. 
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Example 3.4: Determine all six internal forces along a helicoidal stairs beam due to the 
vertical force F applied at the top of the stairs at point A. 

At first we determine the beam geometry. The helix geometry is given in terms of angle φ 
by the parametric equations: 

x = Rcos<p y = Rsin(p z = — φ (3.40) 
π 

To find the normal unit vector n we need the derivatives of the parametric equations 

dx = -R ■ sin(p ■ d<p 

dy = Rcosçd(p (3.41) 

dz = άφ 
π 

which are inserted into the equation of the normal 
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« = ■ 

- 1 · R- sinç dç + j ■ R- cosç dç + — dç 
π 

R2 ■ sin2 φ ■ d2ç + R2 ■ cos2 φ ■ d2(p + 
rH\2 

\π ι 
■d2ç 

n = -

1 + 
( H Y L 

π-R 

■ i ■ sinç + j ■ cosç + k ■ H 
π-R 

(3.42) 

The denominator depends on helix properties only and will be a constant for a given 
geometry and hence denoted by K. The strong bending axis lies in a horizontal plane and 
can thus be found by a cross product 

nxk=-
K 

i j k 
H 

— sinç cosç π-R 
0 0 1 

1 (■ = —{icosq> + j - sm<i (3.43) 

The absolute value of this product is 

I" x *| = — · (cos2 φ + sin2 <p)= —, 

hence 

nxk 
s = T r = i ■ cosa + j ■ sinm 

\nxk\ Ψ J Ψ 

(3.44) 

and finally the unit vector along the weak axis is in a similar way: 

w=sxn=— 
K 

i 
cosç 

- sinç 

j 
sinç 

cosç 

k 
0 
H 

π-R 

I (. H . . H ,^ 
ι · sinç - j cosç + k 

π-R 
K π-R 

From the equilibrium equations at an arbitrary section the resultant force FR and moment 
MR can be found: 

XF = 0 FR = -kF 
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ΣΜΒ=0 

Statically determinate structures 

=> MR = -LxF 

using the lever arm: 

L = iR-{l- coscp)- j-R- sirup -k φ 

[Ch. 3 

R.(l-cos<p) 

(3.45) 

Figure 3.34: A view from z-axis 

The resultant moment is: 

LxF = MR = 

i j k 
TJ 

R- (l-cosf) Rsinf —φ 
O 

π 
O F 

= ί ·R sinq> ■ F + j■(/?·(;-cos<p))- F + 0■ 

= FR-[i- sirup + j(l- costp^ 

(3.46) 

As the resultant forces FR and MR are determined; using dot products all internal forces 
can be evaluated: 
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N = FRn = 
i f . . H 

-ι ■ sinç j ■ cos K π-R 

0 
0 

-RF 

L HF 

K π-R 
(3 

Qs = FR ■ s = (cosç sinç Ö)· ί-
O 

O 

k-F 
= 0 (3 

^ 1 ( H . H 
o 
o 

■k-F 
(3 

T = MRn = FR- [sinç (l - cosç) O)-
-sinç 
cosç 

H 
π R 

_/_ 
K 

F ■ R ί \ F · R 
T = (- sin2 ç + cosç - cos2 ç)= (/ - cosç) (3 

K K 

The bending moments about the principal strong axis are 

M 5 = MR -s = FR- (sinç 1 - cosç θ)· 
cosç 
sinç 

0 

= FR ■ (sinç ■ cosç + sinç - sinç ■ cosç)= FR ■ sin(¡ 
(3 
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and about the weak axis are: 

M so = MR W = F R- (sirup l-cos(p θ) 
K 

H 
π R 

H 

π-R 

■ sinç 

■costp 

FR H ( . 2 2 \ FH . v 
= \sin (p-cosç + cos φ}= \J-cos(p) 

K K · R K π 

Numerical example: R = 1.20 m, H = 2.70 m, F = 10 kN 

(3.52) 

K=J1 + 
H 

π R 
= 1.230 

Table 3.1: Internai forces in stairs beam 

ψ 
[dag] 

0 
30 
60 
90 

120 
150 
180 

N 
[kN] 
-5.823 
-5.823 
-5.823 
-5.823 
-5.823 
-5.823 
-5.823 

Qw 
[kN] 
-8.130 
-8.130 
-8.130 
-8.130 
-8.130 
-8.130 
-8.130 

T 
[kNm] 

0.000 
-1.307 
-4.878 
-9.756 

-14.634 
-18.605 
-19.512 

Ms 

[kNm] 
0.000 
6.000 

10.392 
12.000 
10.392 

6.000 
0.000 

Mw 

[kNm] 
0.000 
0.936 
3.494 
6.987 

10.481 
13.038 
13.974 
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Kinematics of structures 

4.1 Connections and reactions 

Members of structures are connected to each other through rigid connections or by hinges. 
A hinged connection enables independent rotation of all connected elements but the 
displacement is common to all elements at the joint. If more than two elements are 
connected in a hinge then we have double, triple etc. hinges. 

A rigid connection permits no relative rotation between elements at a common 
displacement and a rigid connection of n elements has (n -1) rigid angles. 

o-

Double hinge Triple hinge 

Figure 4.1: Connections of elements Figure 4.2: Multiple hinges 

A support is a member of the structure that disables a displacement of the structure in at 
least one direction. As the displacement or rotation is disabled it can only be done so by 
reactions at the supports. The supports can be fixed (3 reactions), pinned (2 reactions), 
roller (1 reaction), swinging (1 reaction), guided (2 reactions) or elastic (1-3 reactions). 
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I * . _ 

T 
¡■■»»■■I 

4.2 Stability 

Figure 4.3: Types of supports 

The shape of a structure and its supports has to be chosen in a way that structure is stable. 
If joints of a structure can displace and elements of a structure remain straight then such a 
structure is kinematically unstable or a mechanism and can not be used in practice. 

♦♦♦ If elements deform during joint displacements then a structure is stable. 

Stable 

O rdO. 

Unstable 

I 
Stable Unstable 

Figure 4.4: Stability of structures 
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4.3 Analysis of structural elements 

In the determination of kinematical stability we have to define the number of structural 
members, which can be defined by: 

; joints 
m elements (bars, beams, cables) 
k rigid angles 
p unknowns in supports 

The number of structural members is: 

e = m + k + p (4.1) 

m = 9 
k = 0 
p = 3 

e = 9 + 0 + 3 = 12 

m = 3 
k = 2 
p = 8 

e = 3 + 2 + 8 = !3 

The definition of structural members is not always uniform as can be seen in example a) 
in the picture below, where 3 elements are connected through two rigid angles but in 
example b) one element only is taken with no rigid angles. 

Example 4.1: Determine the number of structural members 
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a) 

[Ch. 4 

m = 3 
k = 2 
p = 6 
e = 3 + 2 + 6 = ll 

b) m = l 
k = 0 
p = 6 
e = l + 0 + 6 = 7 

It can be proved that this virtual inconsistency has no influence on kinematical stability 
determination. 

4.4 Kinematical stability (Geometrical conditions of kinematical stability) 

Consider element ij that translates into a new position i'j' simultaneously rotating through 
angle ψν . 

Figure 4.5: Displacement of an element 

The basic geometric relations are determined from Fig. 4.5: 

=> Xj - x¡ = L¡j ■ cosa¡j 

=» y i - y i = h ■ sinaij 

cosag=-J-
Lij 

y i - y ¡ 
sina¡¡ = — 

(4.2) 

(4.3) 
•j 
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Let the change in length be SLy and the angle change (element rotation) be oa¡j = ψυ . 
Variation of (4.2) and (4.3) gives: 

5{xj-xi)=5{Lijcosai]) 

ôiyj-y^ôiLySinay) (4.4) 

and after derivation: 

öxj - 6x¡ - 8L¡j ■ cosa¡j - Ly ■ oa¡j ■ sina¡j 

óyj - oy¡ = SLy ■ sinay - Ltj ■ δαή ■ cosa¡j 

Define the change in length and angle by joint displacements as follows: 

ÖXj = Uj ÖXj = U¡ 

öyj = vj dy¡ = v¡ 

àaij=Wij 

which can be inserted in equations (4.5): 

Uj - u, = 6Ly ■ cosatj - Ly ■ δψ0 ■ sinay 

Vj - v, = SLy ■ sinay - Ltj ■ Sy/y ■ cosay 

and written in matrix form : 

(4.5) 

Δ«1 _ 
Δ ν | " 

cosay 
sinay 

-Ly sinay 
Lycos ay 

i«v 
[Ψ* 

(4.6) 

The determinant is then calculated: 

det = cos ay ■ Ly + sin ay ■ Ly — Ly 

and solved by unknowns: 

Ly cosay Ly sinay 

- sina¡¡ cosay 
Au 
Δν 

(4.7) 
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or explicitly: 

fcl-
Au ■ cosGCjj + Δν · sinctjj 

- Av ■ sina¡¡ Au ■ cosan 

h 
(4.8) 

The change in length is thus 

oL¡j = {uj - M, )· cos a¡j + (vj - v, )· Jin α„ 

and the change of angle is 

(4.9) 

δαΗ =Ψί] = 
_ (v; - vi)cosaij lpj-u,)-sinaq 

h h 
(4.10) 

Equation (4.9) represents m conditions (m = number of elements) that the elements of a 
structure will deform, but equation (4.10) gives no additional conditions, as a rotation by 
ψη not always means element deformation. 

The rotation of two rigidly connected elements are not independent of each other. 
From Fig. 4.6 we can observe that the sum of angles before and after deformation is the 
same: 

From equation (4.10): 

(4.11) 

*V - Tik = T~ (vk - vi ) c o s aik -~r-(uk- "« ) « " «.* 

-—{VJ- v, jcosay + —(uj - ut jsinccy 
Lik Lik 

(4.12) 

Equation (4.12) equals zero only if two elements remain undeformed, which is obviously 
an additional condition of kinematic stability and can be written for each rigid connection 
k. The influence of support displacements on element deformations is shown in Figs. 3.2 
and 4.3 as an arbitrary support displacement 4,· that can be represented by displacements u 
and v in the following equation: 

Δ; = w, cosß + v¡ ■ sinß (4.13a) 
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Figure 4.6: Rotation of two rigidly connected elements 

If a support rotation of angle ψ is present, the total angle of rotation is: 

Substituting into (4.10): 

(v ¡ - v, )· cosan (u. - M. )· sin<x¡i 
Xi. = θ . -ψυ = θ , -^1—^ ν- + ^—^ 2- (4.13b) 

Equations (4.13a) and (4.13b) relate support rotations and displacements to the 
deformation of an element. The deformation of an element is zero only if the 
displacements at supports are suppressed in a corresponding direction. 
The total number of conditions therefore equals: 

2j = e = m + k+p, (4.14) 

which represents the relation between two possible displacements at joints and quantities 
6S, X, A and Θ, are related to element deformation. 

These conditions are called geometrical conditions of joint displacements. If the 
number of conditions equals the number of all possible displacements (2 displacements 
per joint in plane structures) then these conditions represent sufficient and necessary 
conditions to calculate all deformations ös, τ, A and Θ. 

The system of equations can be solved only if 

detA*0 (4.15) 
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but a body will move without any deformation, only when d\, τ, Δ and Θ are all equal 
to zero. This gives a homogenous system of equations (4.9), (4.12) and (4.13). Such a 
system can only have a non-trivial solution if detA = 0, which is in contradiction with 
equation (4.15). 

♦♦♦ Structures are therefore stable (are under displacements deformed) only if 
conditions from equations (4.14) and (4.15) are met. 

Let us denote by a letter/the degree of kinematic stability: 

f=2j-(m + k + p) 

Clearly there are three possible conditions: 

/ < 0 multiple stable system 
f=0 simply stable system 
f>0 unstable system 

(4.16) 

(4.17) 

Example 4.2: Calculate the stability of the frame structure at the following successive 
release of deformational quantities 

Consider at first the frame from Figure 4.7 with both supports clamped. 

j = 4 
m = 3 
k = 2 
p = 6 

f=24-(3 + 2 + 6) 
f=-3 

or j = 2 
m = l 
k = 0 
p = 6 

f= 22-(1 + 0 + 6) 
f=-3 

Figure 4.7 

As / = -3 the structure has multiple stability. Three quantities are redundant or in statics it 
is 3x statically indeterminate. Three deformational quantities therefore can be released; for 
example in figure 4.7a three moments were released, one in a rigid connection and two at 
the supports. 

j = 4 
m = 3 
k = l 
p = 4 

f=8-3-l-4=0 

or j=3 
m = 2 
k = 0 
p = 4 

f=6-2-4=0 

Figure 4.7a 
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The structure from Fig. 4.7a is simply stable or statically determinate as f=0. If further 
quantities are released (i.e. moment by a hinge in the upper right corner) we obtain (Figure 
4.7b): 

j = 4 
m = 3 
k = 0 
p = 4 

f=8-4-3=l 

Figure 4.7b 

It is obvious that the structure is unstable as / > 1; such structures are kinematically 
unstable or statically over-determined. 

Example 4.3: Plane truss with one diagonal element missing 

Figure 4.8: Unstable truss 

j= 10 m = 16 k = 0 

S =210 -(16 + 3) = 1 

p = 3 

The truss is unstable as the condition from equation 3.10a (f = 2j - m - 3) is not 
fulfilled; from the figure it is obvious that a diagonal in the second field is missing. 
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Example 4.4: Three-hinged frame 

j = 3 m-2 k = 0 p = 4 

f=6-6=0 

[Ch.4 

Ä 1 7 ^ =Ä 
" O " 

Figure 4.9: Instability of a beam 

Though f=0 the beam is unstable because the condition detA*0 is not met, as three 
joints lie on the same straight line. 

Example 4.5: Mixed bridge structure 

Figure 4.10: Mixed bridge structure (pile and beam are not in contact) 

j = 8 m = 10 k = 4 p = 5 

f=16-(10 + 4 + 5) = -3 
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The Structure is 3x statically indeterminate since f =—3, possible redundants could be 
axial forces in cables 6, 7 and 8. 

Example 4.6: Mixed system 

The system from figure 4.11 is multiple stable or 4x statically indeterminate, redundant 
forces are M, Q and N in an arbitrary section of the inner box and moment in the clamped 
support at A. 

j=7 
m = 7 
k = 4 
p = 7 

f=14-(7 + 4 + 7) 
f=-4 

Figure 4.11: Stability of mixed structure 

4.5 Kinematics of rigid bodies 

4.5.1 Degrees of freedom 

Any rigid body lying in plane has three degrees of freedom. The movement of a rigid body 
is defined by three parameters. 

°P x 

Figure 4.12: Rotation of a rigid body 

�� �� �� �� �� ��



102 Kinematics of structures 

Degrees of freedom are determined by the equation 

f=3s-v, 

where: s = number of rigid bodies 
v = number of ties between bodies (single, double,...) 

[Ch.4 

Figure 4.13: Final displacement of a body 

We are interested in the starting and final position of a body only, such a displacement will 
be called a final displacement of a body. If the pole of rotation P lies at infinity then the 
only movement will be a translation of a body. 

Elementary displacement of a body is performed, if the displacements are small 
such that a chord can be substituted by a tangent. 

4? 

Figure 4.14: Elementary displacement of a body 
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Consider now small rotations such that d<p can be substituted by ψ. 

103 

r*Äp= — 
rÁ 

AA=rA-(p in AB=r„<p (4.18) 

4.5.2 Addition of rotations 

A rotation is a vector lying perpendicular to the plane, therefore δφ} and δφ2 are 
parallel vectors, which can be added into a resultant vector. 

Figure 4.15: Line of common rotation 

The pole of a common rotation lies on the same line through poles P¡ and P2. Position of a 
resultant rotation can be determined from a moment equilibrium equation: 

«¡0; · L = φ ■ x 

x = - 1L 
φ,+φ2 

-L 
(4.19) 

where L is the distance between poles P¡ and P2. 

�� �� �� �� �� ��



104 Kinematics of structures [Ch.4 

W 

Ψι 
A 

I*-
\ 

Ψ2 φ 

Figure 4.16: Addition of rotations 

Ψ--

ψ2=ψΐ 

Consider a case of two rotations in the same direction: 

V 

* 

5 
▲ 

K L667 >■ 

x = 3 —1.667 m 
5 + 4 

♦♦♦ If two rotations are in the same direction then the pole of common 
rotation lies on a line between both poles nearer to the greater 
rotation. 

5 

Í 
- 3 > < ^ 

7.5 -H 

X = ■3 = 7.5 m 
5-3 

♦♦♦ If two rotations are in the opposite direction, then the pole of 
common rotation lies on a line through both poles outside both poles 
on the side of the greater rotation. 
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V If two rotations are in the opposite direction and are of the same 
magnitude (a couple), then the pole of common rotation lies at 
infinity. 

4.5.3 Relative rotation of two bodies 

Let the body /. rotate about P¡ by (p¡ and the body //. about P2 by (fr- We are looking for a 
relative or interacting rotation of two bodies. Both bodies /. and //. are now rotated by (p¡ 
about Ph the body /. is in its initial position but the body //. rotated by (fo about P2 and by 
(p¡ about P;. 

Figure 4.17: Relative rotation of two bodies 

φ,2=φ2-φ, 

The position of the relative pole P¡2 is given by the equation: 

Ψ2-Ψ1 

(4.20) 

(4.21) 

Poles Pj and P2 are called absolute poles and will in further text be denoted by Pw and P20 

for consistency. From equation (4.21) it follows that: 

♦ / / rotations <p¡ and (p2 act in the same direction, the relative pole lies outside 
of the absolute poles on the side of the greater rotation 

♦ If rotations φι and ψ2 act in the opposite direction, the relative pole lies 
between both absolute poles on the side of the greater rotation 
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♦ If rotations f¡ and (fe are of the same magnitude and act in the same 
direction, the relative pole lies at infinity 

The relative pole is always related to two rigid bodies, therefore the number of relative 
poles is given by the equation: 

P = 
f->\ 

Kn) 

n(n-l) 
1-2 

(4.22) 

n is the number of rigid bodies. 

4.6 Kinematics of three chained bodies 

Figure 4.18 shows a structure, consisting of three rigid bodies interconnected as a chain by 
relative poles Pn and Ρχ. Degrees of freedom are determined by the equation: 

f=3-s-v = 3-3-2-2 = 5 

The chain (of three rigid bodies) has therefore 5 degrees of freedom. We say that a 
movement, which determined by 5 parameters, has to be prevented if the structure is to 
become stable (/"= 0). 

20 

w 

\ 
Vfa 

^'P¡o 

X 

Figure 4.18: Kinematic chain of three rigid bodies 

The positions of absolute poles of supported bodies are usually known. Bodies ///. and /. 
are immovable at absolute poles P30 and Pw (at each support two displacements are 
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suppressed). If, for instance, a clockwise direction of the rotation <p¡ is chosen, then all 
other parameters can be determined. 

Let us first determine the position of absolute pole P20. As absolute and relative 
poles lie on the same line, pole P2o must lie on the intersection of two lines through P¡o-P¡2 

and P30-P23-
For each of the related bodies a rotation can be calculated using Eqn. (4.21): 

x a 
φ2=— φ,=--φ, 

L-x b 

where a is the distance P¡o-P¡2 and b the distance of P¡2-P2o- The minus sign implies that 
the rotations are of opposite direction if the relative pole lies between the absolute poles. 
Similarly when rotation φ3 is calculated, the quantity c is the distance between poles P20-
P23 and d is the distance P23-P30-

c a c 

The number of relative poles is given by (4.22) 

3(3-1) , 
P-—- - = 3, 

so it is obvious that pole P¡3 is not yet determined. It can be found on the intersection of 
line through PI0 and P30 with the line through PI2 and P23. As we can see, relative pole P¡3 
lies outside of the absolute poles therefore the rotations <p¡ and φ3 are of the same 
direction. 

♦ Practical rule for a pole determination is: two equal indexes from two poles 
are deleted and the remaining indexes determine the new pole. For instance if 
we consider poles Pt2 and P10, index 1 is deleted and the line through both 
poles therefore determines absolute pole P2o-
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4.7 Determination of internal forces by kinematics 

[Ch.4 

The procedure for determining the internal forces (and reactions) by the kinematics 
method is relatively simple and will be shown in the following example. 

Example 4.7: Calculate bending moment in mid-span by the kinematics method. 

12S 
*Λ ζ 

B Ί\ 
YB 

"à'^ç,-U2 

Ρ* 

-^Α 

Figure 4.19: Simple beam 

At the point where a bending moment is desired a rotation is released (a hinge is inserted) 
and a beam becomes unstable or a mechanism of two rigid bodies, which can be only kept 
in place by the application of a moment couple M (internally in equilibrium) at the point. 
Let the rigid body / rotate about the absolute pole Pl0 by a clockwise angle c¡. From the 
figure it can be deduced that rotations q>¡ and «¡̂  are equal in magnitude but in the opposite 
direction. 
The total work done by the moments M and by the force F must be zero if no 
displacements are desired and hence: 

■ Μφι - Μφ2 + F φ,— = 0 
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2M(p, = F(pr-

M = FL 
4 

If the equations are set for a general position of the force F (i.e. at the distance a from the 
leñ support) then only right hand side of the equation changes: 

2 · M ■ φ, = F ■ <p] ■ a 

M = Fa 

We have noticed that no reaction calculation was necessary as in structures in equilibrium 
the work done by reactions is always zero. 
Let us now calculate the same example by the static method: 

ΣΜΛ=0: Y„L = aF 

B L 

M=YB— = L Fa 
2 2 

or from the left 

ΣΜΒ=0: YAL = (L-a)F 

YA = 
L-a 

M=kn.F.k.F. 
L 2 

1' L Λ 

--a = F Ü 
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Example 4.8: Analyse frame structure by the kinematics method 

[Ch.4 

H 
τ—► 

^ _ 
Δ 

Figure 4.20: Frame structure and bending moments diagram 

a) Moment at left corner 
P20 

A 
H 
% ►? 

Pn II. 

NSHHi 
b) Moment at mid-span 

Δ Δ 

& 

H 
τ—► 

Pn -Ίψ 
V* 

I. /* II. 

Δ 

<p,-M-<prh-H=0 
M = Hh 

Note: As absolute pole P20 lies at infinity 
body // moves translatory only. 

(p,a = (p2b 
a 

<P2=T<Pl 
b 

H h-φ, -M <p¡ -Μ φ2=0 
M = »± 

In general: 

M {φ2 +φ,)= H h-φ, 

M = Hh—^— = Hh—ï-
Ψι+φ2 a + b 

Example 4.9: Analysis of arched structure from figure 4.21 by the kinematics method 
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The structure is determinate since 

f=3s-p-v=3-3=0 

and after a hinge insertion it becomes unstable or a mechanism: 

f =3-2-3-2 = 1 

111 

Figure 4.21 : Arch structure 

From basic geometry the rotation φ2 is determined: 

or 
b 3-e 

3-e 
Ψι=—Γ-Ψ2 
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The work done by internal bending moments must equal the work done by the external 
force, which moves distance (e. (fc): 

WM=-M(p,-M<p2 

WF=-Fe(p2 

The total work done is therefore: 

-M ■ ψ] - M ■ φ2 - F ■ e ■ φ2 = 0 

M{(p,+<p2)=-Fe(p2 

from where the bending moment at the point is found: 

M=-Fe—1— 
5-e 

Static method calculation 

Figure 4.22: Disposition of an arched structure 

From the sum of moments about point A the reaction RB is calculated: 

RBr=:F-5 

RR=-F = 0.673F 
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Reaction RB is resolved into X and Y components and reactions Υλ and XA are calculated 
from equilibrium equations in both directions: 

YA = F-0.583 F = 0.417 F 

XA =0.337 F 

Suppose that the arch is semicircular of radius R = 4.00 m, then y ordinate at x = 2.00 m 
equals 3.464 m and the bending moment at* = 2.00 m is therefore: 

M =0.417 2-0.337-3.464 

M =-0.333 F 

By the kinematics method: (e can be measured) 

, 8S77 n7l0 

e = 5 = 0.712m 
2 

2 0 712 
M=F- =0.332-F 

5-0.712 

Example 4.10: Analysis of plane truss in Fig. 4.23 by the kinematics method 

IF 
N N 1 
► <-<> J 

Figure 4.23: Plane truss (element 8 is cut) 

To find the axial force in element 8 it is cut and the truss becomes a kinematic chain of 
two rigid bodies: 

f = 3s-p-v = 6-3-2 = l 

�� �� �� �� �� ��



114 Kinematics of structures [Ch. 4 

As the relative pole lies between absolute poles the rotations are equal and act in the 
opposite direction: 

φ, = -φ2 

The sum of work done by external and internal forces must be zero, therefore: 

N φ, ■b + N-q>2-b + F-q>2-a = 0 

N = -F — 
2b 

Using the static method we have to calculate reactions first and then by the method of 
sections, the force in the element can be found: 

YA-4a=Fa => YA= — 

N-b + F-2-a = 0 

_ 2'a_ F 2a _ Fa 
~~ A'~b~~~l'~~~~2~ï 

Let us calculate the axial force in diagonal 7. The diagonal is cut and the truss becomes a 
mechanism of four bodies as shown in Fig. 4.24: 

Figure 4.24: Plane truss (diagonal 7 is cut) 
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The number of relative poles is 

115 

η·ίμ-ΐ)_4·(4-ΐ)_ι 

2 ~ 2 
P = -^ , = - - — , = 6 

therefore two relative poles Pl4 and P2¡ are still missing, but from the figure it is easy to 
deduce that they lie at infinity and bodies /. and IV. as well as //. and ///. undergo equal 
rotations (ψι = φ4 and (fa = <¡9j), as shown in Fig. 4.25. 

From the basic geometry 

b 
tga = -

(r¡+r4) 
sina = — — 

4a 
r1 + r4-4-a- sina 

and from the sum of work done by external and internal forces we get: 

N Çj-rj+N (p4r4= F φ4α 

N-(r,+r4)=F-a 

~W 

Figure 4.25: Rotation of rigid bodies (exceedingly enlarged) 

The force in diagonal 7 is finally: 

! F 
N = F-

r, +r4 4- sina 
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Basic concepts of structural analysis 

5.1 Superposition of actions and displacements 

Usually we assume that a displacement at a point, caused by a force, is linearly dependent 
on the magnitude of a force. The assumption is based on the proportionality and 
reversibility of stresses and deformations at any small particle of the material, from which 
the structure is made. This phenomenon is called elasticity. 

The assumption of elasticity is not always true as the deflections of a structure can 
significantly change the geometry and thereby change the manner in which potential 
energy is stored in the deflected structure. 

The proportionality between loads F (applied at some point in some particular 
direction) and displacement (at any point in any direction) is assumed and therefore the 
individual effects of several forces can be summed up (method of a superposition). 

If a force acts at a specified point in a specified direction and is increased from zero 
to Fn it would produce a movement of the structure ^ at all points (unless movement is 
prevented by reactions adequate to ensure equilibrium): 

ftl ft 

Therefore a general case must be valid: 

K=fmnFn (5-1) 

as shown in Fig. 5.1. 
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Force at point n 

F +F 

An+4« 

Displacement at point m 
► 

Figure 5.1: Linearity of loads and deformations 

The coefficient fmn in the equation (5.1) is a flexibility influence coefficient, describing a 
relation between force F and displacement A. The first subscript of /„„, denotes the 
direction of a measured deformation and the second subscript denotes the direction of a 
force that caused the deformation. The coefficient is numerically equal but the dimension 
can be different as a force can cause rotation and vice versa. 

Unit force 

Figure 5.2: Direction of a chosen deformation 

Referring to Fig. 5.2 the direction m defines the vertical displacement of point B and n 
defines the direction of a unit force at point C. 
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Figure 5.3: Direction of a chosen deformation 

From Fig. 5.3 the direction m is vertical at point C and n is the direction of unit force at 
point D. 

Unitforce 

Έ5ΪΖ 
' B 

ΊΓ 

Figure 5.4: Gravitational load 

In Fig. 5.4 the beam is loaded at point C, both directions m and n are vertical, which is 
common with gravitational loads. 
If equation (5.1) is valid, then equally 

Δ' = f ■ F' (5.2) 

where A'm represents the deformation caused by a force F'n. The deformations and loads 
may be added since the vector consistency has been maintained: 

Δ +A'=f ■ F + f ■ F' = f (F + F') 
" m " m Jmn 'n^Jmn 'n Jmn V* n n « / 

(5.3) 
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♦♦♦ Forces and displacements may be added or superimposed (method of a 
superposition) 

The displacement and load may be written inversely as 

F„=Km^m (5·4) 

where knm represents the stiffness influence coefficient, which is numerically equal to the 
force in a specified direction n to produce unit displacement at another point in a specified 
direction m, at a condition so that all other displacements are prevented Ά\ that point. 
If this relation is valid then, using the superposition method, equation 

Fn + K = Km ■ Am + Km ' A'm = Km ' (Δ*> + A'm ) (5·5) 

must be valid. Equation (5.5) indicates that the total displacement equals the sum of 
individual displacements caused by forces F„ and F'n . 

It is assumed that the structure is in equilibrium and the effect of reactions is taken 
into account when calculating the stiffness coefficients. 

It has to be emphasised that for any two points there are an infinite number of 
influence coefficients fmn and knm depending on the specified (chosen) directions m and 
n. The number of coefficients may be reduced to as many as needed for the analysis of the 
structure. Note that at different boundary conditions stiffness coefficients change. 

The relationship between the flexibility and stiffness coefficients is of the greatest 
importance in structural analysis, both coefficients are reciprocally related by the equation: 

fmn=J~ (5-6) 
*nm 

5.2 Non-linear behaviour (superposition is not valid) 

The principle of superposition may be used if loads and deflections are linearly dependent, 
which in general relates linear dependence between stresses and strains. 

In some cases, though linearity between stresses and strains is valid, the geometry 
of a structure changes significantly and superposition is not valid for two reasons. Either 
the geometry relations are violated (Case A) or the change alters the way the potential 
energy is stored in the structure (Case B). 

Case A) Figure 5.5 shows an elastic string of zero mass and of length 2L fastened between 
two points. A force of magnitude 2F is applied to the middle of the string. 
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Figure 5.5: Non-linearity of a string 

Because of the symmetry the deflection is vertical only in the direction of the force 2F. 
From equilibrium, at the middle of the string: 

N · cosç = F 

The tension force in the string is: 

F 4û7à2 N= = F 
COSÇ A 

If the elasticity of the string would be such that unit extension would be produced by a 
tensile force k, then 

Δ k k 

or if rearranged 

■ = Δ · 7-[ V^^J (5.7) 

It can be observed that a very small 
the force F, as shown in Fig. 5.6. 

A produces a high rate of increase in A in respect to 
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Figure 5.6: Non-linearity of a displacement with respect to a force 

Case B) The second case is shown in Fig. 5.7, where a simple beam is supported in a way 
that movement at support B is possible and is acted on by a pair of forces H with a slight 
initial eccentricity of e. Potential energy is stored in the structure in two ways: 

1. Direct compression of the beam due to axial force H 
2. Deflection due to constant bending along the whole length 

Figure 5.7: Geometrical non-linearity (buckling) 

Maximal stresses in the beam along axis are: 

„_„*+ι,.4±ΖΪ.« 
max A W A 

\ + A.(e+y)) 
( w y)j 

(5.8) 
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The deflection y obviously depends on the magnitude of horizontal force H, but the 
stresses will not vary linearly even by the linear stress-strain law. 

This example of non-linear behaviour in compression is of great structural 
importance and is called buckling. 

The principle of superposition is valid if all deformations are so small that no 
significant change of the structure occurs, as even small changes in geometry can have a 
considerable influence on structural behaviour. 

5.3 Compatibility 

Deformation of any structure as a result of applied loads arises from the deformation of the 
elements of which it is composed as can be concluded from Fig. 5.7. Deformations are a 
combination of two causes: shortening due to the compressive axial force and from 
bending due to the bending moment. The bending moment gives a compressive stress on 
the concave side of the beam and tensile stress on the convex side of the beam. 
Consider now a simple truss in Fig. 5.8: 

ΊΓ+ 

XA 

ST* 

Figure 5.8: Truss compatibility (Villiot diagram) 

Lengthening of AC 

Shortening ofBC 

Lengthening of AC 

Shortening ofBC 
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At applied load F element AC stretches by AAC and element BC shortens by ABC. The 
new position of point C is found where two arcs with centres at A and C meet having radii 
equal to the lengths of the respective elements. 

As the deformation of elements are assumed small, tangents can be used instead of 
chords to obtain a picture of deformations of satisfactory accuracy. This method is called 
the Villiot diagram of displacements. 

The truss in Fig. 5.9 is internally indeterminate, as from Eqn. (3.9), m - 2j so that 
the number of unknown forces in elements is greater than the number of equations related 
to the joints (m = 7,j = 3 = free joints). As explained earlier the number of support forces 
(4 in our case) has no influence on internal indeterminacy. 

Figure 5.9: Internally indeterminate truss 

The redundant element AD is removed and thus the truss becomes determinate. The 
displacement of point B will be to the right as element AB lengthens and downward due to 
the shortening of element EB. Point D moves to the left due to the shortening of element 
ED and downward as diagonal AD lengthens. 

All these element deformations must occur in such a manner that the structure after 
deformation, remains a compatible whole. 

Therefore the length of AD from Fig. 5.10 must equal the deformed length of 
element AD from the original truss and the compatibility equation can be written as 
equation (5.9): 

Increase of distance AD 
from Fig. 5.10 

Shortening of AD due to 
redundant force Rfrom 

Fie. 5.11 

Increase of distance AD due 
to tensile force from 

Fig.5.9 

(5.9) 
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xE Hf/: c 

Figure 5.10: Determinate truss 

Figure 5.11: Force R restores compatibility 

The redundant force R, which cannot be calculated from equilibrium equations, can thus 
be calculated from the compatibility equation (5.10). 

The use of compatibility will be shown on the Ix indeterminate beam from Fig. 
5.12, where the right hand support is removed as a redundant quantity. 

Load q will produce deflection δ , therefore the beam is loaded by force F, which 
produces deflection δΕ. From compatibility on the original beam the sum of both 
deflections must equal zero. 

The deflection produced by uniform load q is (see Ch.. 6 for deformation 
calculation): 

�� �� �� �� �� ��



Sec. 5.3] 

δ< _qü 
8-EI 

and due to force F 

sF 
FL3 

Compatibility 125 

(5.10a) 

(5.10b) 

B 

A 

1 « 
B 

T 

I· 
i 

Figure 5.12: Compatibility of deflections 

From the compatibility of deflections Sq=SF, force F can be calculated: 

F-L3 q-L4 

3-El ~ 8-El (5.10c) 

F- — qL 
8 

Force F therefore restores the initial state (compatibility) and represents a vertical reaction 
at the right hand support. 
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5.4 Work 

Consider element Aß in Fig. 5.13a loaded by a tensile force F at the free end. The element 
will lengthen by e as can be shown in the force-deformation diagram Fig. 5.13b. 

B B' F 

a) 

Force F 

F, 

Force F 
A 

Displacement e 
► 

complementary work 

work done 

Displacement e 
► 

b) c) 

Figure 5.13: Work done by a force 

The area below the curve is the work done by the force in moving its point of application 
from B to B', and the potential energy accumulated in the element (deformational 
energy, strain energy) is equal to work done: 

U - strain energy = work done = F ■ de (5-11) 

Integration must be carried through the entire range of deformation. The area above the 
curve is the complementary work and is equal to 

je-dF, (5.12) 

or written in an explicit form: 
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C = complementary energy = complementary work done = \e ■ dF (5.13) 
o 

Equations (5.11) and (5.13) are very important in structural analysis though conceptual 
difficulties arise because no physical meaning can be defined for the complementary 
energy. However, if linear behaviour is assured then both energies will be equal as shown 
in Fig. 5.13c. 

5.5 Linearity of load and deformation 

If an elastic body is loaded by a system of forces and is in equilibrium (maintained by 
reaction forces) it will deform. Points of load application (as all other points except 
supports) will move in a general direction, as shown in (Figure 5.14). 

Figure 5.14: A rigid body under system of loads 

If point 1 is the application point of force F¡, then at this point a corresponding 
displacement exists caused by all forces: 

^=fuFx+fn-F2 + fl3-F3+ + fln-Fn (5.14) 

Coefficients fln are flexibility coefficients or displacements in the direction of force F, 
caused by forces F¡, F2 ... Fn. The summation may include all independent forces but not 
the reactions, as they were calculated from applied forces to ensure equilibrium. 
Displacements at other points are: 
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à2=f2]-F,+f22-F2 + f2S-F3+ + f2n ■ Fn 

à3 = f3IF]+f32F2 + f3SF3+ + /,„ · Fn 

Δ„ = fni ■F,+fn2-F2 + fn3'F3+ + /„„ · Fn 

or written in a matrix form: 

(5.15) 

where {\} represents generalised displacement vector (nxl) caused by forces {F} of 
(nxl) and matrix [f] is a flexibility matrix of order (nxn). 
Using equation (3.1) we finally obtain: 

{F}=[kW => {uh^{Fh\f]{F} 

W=\f] 

The various phases of loading and structural behaviour are shown in Fig. 5.15. 

(5.16) 

(5.17) 

F, 

O 

tF 

'™7' /b c 

/ Work 

d 

Δ 
► 

■+A, 

Figure 5.15: A general relation between load and deformation 

Work done by force F/ from Fig. 5.15 is 
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¡Frdà,, (5.18) 

which is the area between the curve Oabcde and the deformation axis; complementary 
work done by the same force is the area between Oabcdf and the load axis: 

JA, ■dF, (5-19) 

It has to be emphasised that on line be, work increases even though force F¡ remains 
unchanged since the area under the curve increases. The work done by force F¡ in this case 
was done on the displacements caused by other forces. 
In general work done by a force is 

Coefficient η1 depends on the shape of load and deflection relation and is 

0 <TJ,<1 

> àt 

Figure 5.16: Linear increase in deformation 

(5.20) 

It is easy to see from Fig. 5.16 that 

and 

-0ed=-F,A 
2 2 ' ^ 

Vj=-
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The linear relation could exist for any other load, therefore the work done is: 

U=LF¡.AI+LF2-42+ + jFnAn=y£Fâ (5.21) 

i 

Later we shall see that the work done at the final position is independent of the way we 
reached that position, as the principle of the conservation of energy requires: 

W=-FTA (5.22) 
2 

The transposition sign is used, as work is a scalar quantity. In general, forces will change 
independently and we will write the total work by the following equation: 

W=n-FTA (5.23) 

A pressure p acting on a small elementary area represents distributed loads (uniform load). 
The stress vector is 

P = {Px Py Pz mx my mzY > 

and the corresponding displacements are: 

δ={ι v w φχ φ φ^ 

In the above equation each coefficient corresponds to the appropriate term in the load 
vector and the work done is: 

F = \pTdA (5.24) 

U=-\pT 8dA (5.25) 

The total work on a structure is therefore: 

Utotal = work done by all forces = — · FT -Δ + -- j ρτ δ dA (5.26) 
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5.6 Strain energy 

In this book, only conservative structural systems will be considered. This implies that all 
work done by external forces on corresponding displacements will be converted into 
kinetic and strain energy and no energy loses will occur. 

According to the principle oí conservation of energy, when a structure is gradually 
loaded, the kinetic energy is zero and the work done by external loads W is equal to the 
strain energy. 

The energy is related to the internal forces and deformations they cause and is 
stored in the structure as a potential energy due to axial forces, bending moments, shearing 
forces and twisting moments (torsion). 

In the special case of elastic structures the potential energy is released in a way that 
the structure returns into its initial position. The potential energy in form of strains in the 
case of elastic structures is given by equation: 

υ=-στε (5.27) 

σ and ε are stress and strain vectors. 
Normally stresses and deformations are expressed by internal forces (axial forces, bending 
moments, shearing forces and torque) and by the displacement vector. Energy in this way 
is given by 

U=-FTe (5.28) 

There will be equality between work done by the applied forces and the strain energy U 
stored in the structure (η =0.5): 

U = work done =V¡%,F¡ Ά +rlj PT ■ 6 ■ dA = energy stored (5.29) 

The same can be written for complementary energy: 

n 
C = complementary work done =(1 ^j^Fj A¡+( 1-η)$ρτ δ dA (5.30) 

i 

5.7 Superposition of strain energies 

Energy is stored in a structure at each application of the load. Therefore it is thought that 
the energy, stored as a result of each load acting separately, could be added to give the 
effect of the loads acting simultaneously as the energy is scalar. 
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There are some exceptions as can be seen from Fig. 5.14 in the region be, point 1 was 
displaced due to the action of other forces but F¡ remained unchanged. The result is 
increase in strain energy as F¡ actually moved and work was done. 

*t* If a system of forces initiate work done by some other forces then simple 
addition of energy is inadmissible. 

Example 5.1: An element is subjected to axial force and torque. The energy stored is from 
two kinds of deformation these being due to axial and shear stresses. Both effects are 
different therefore the energy can simply be added. 

If shear forces, beside torque, acted upon the same member then energy from both 
sources cannot be added as they cause deformations on the same plane. In such cases 
addition of the energies may only be made if effects of all loads on the displacements of 
others is taken into account. 

Example 5.2: The truss in Fig. 5.17 is made of elements of equal cross section and of the 
same material. The structure is symmetric about the vertical line as is the system of loads 
F2 and F3 and no horizontal movement of the structure occurs (no displacement u at the 
point of application of force F¡). Force F¡ causes the displacement, which does not 
correspond to forces F2 or F3. It follows that 

Figure 5.17: Superposition of work done by forces 

»F2+F, =UF2+UFI 
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" F 2 + F 3 = M F 2 + H f 3 

The above conclusions are deducted from the symmetry of the structure but, if the 
structure is not symmetric (Figure 5.17b) then: 

"F 2 + F, ' t "F 2 + "f i ' 

as the application of forces F2 cause displacement corresponding to the direction of the 
force F¡. 

5.8 Reciprocity of influence coefficients 

It has been explained earlier that: 

*♦* fmn ls a flexibility influence coefficient, that is a displacement in the 
direction m caused by a unit force in the direction n 

♦♦♦ knm is a stiffness influence coefficient, that is a force in the direction n 
that causes a unit displacement in the direction m 

F=l 

Figure 5.18: Flexibility 

F Is I] 
Flexibility: fmn = 

Stiffness: knm = 

3 El 3-El 

1 ^3-El 
f L3 
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5.8.1 Betty-Maxwell theorem 

Figure 5.19: Loading of a body by two forces 

Force F2 causes the displacement of point 1 to / ' and of point 2 to 2' together with 
rotations at both points; the displacements in the directions of forces F¡ and F2 are the 
corresponding displacements: 

A12 = S 12 ■ F2 and ¿22 = S72 ■ F2 

If force F] is applied points move to /* and 2* and the corresponding displacements are: 

Ai = fu ■ F, and Δ„ = f„ ■ F, 

Let us first load a body by the force F2, the work done is 

— mF2'^22 -~Z'P2\Î22 F2t' 

and after that by the force F,, which produces work: 

LFráu=LF¡.{fu.Ft) 

but causes the displacement of point of application of force F2, which produces additional 
work: 

F2-A21 = F2-(f2rF,) 
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It is very important to realise that the coefficient ¥2 was omitted as the point 2 moved at 
constant F2. The total work done by the two forces and therefore the strain energy stored 
in the body is: 

U1=~f22-F2+Yfii-Fi2 + f2i-FrF2 (5.31) 

Let us load the body in a reverse order, at first by force F¡, 

j^-Au^-Frifu-F,), 

and then by force F2 

-■F2-A22=-F2-{f22-F2) 

which will displace point 1 as well, thus 

F,-A2=Fr{fl2-F2) 

The total work is: 

U2=\-fn-F?+~f22-F2
2 + fn-FrF2 (5.32) 

According to the principle of conservation of energy, the energies obtain by the different 
ways of loading must be equal, therefore: 

U,=U2 

and finally from Eqns. (5.31) and (5.32): 

f,2=f2, (5-33) 

This is the reciprocal theorem or Betty-Maxwell theorem of reciprocity that can be 
graphically represented as shown in Fig. 5.20. 
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z^: 
"■*·.. L 

B 

ΔΚΛ= Δ Λ 

/^~ χ rB 
7Z\ 

Figure 5.20: Betty-Maxwell theorem 

Theorem: The displacement at point B caused by the force at point A is 
equal to the displacement at point A caused by the equal force at point 
B. 

The consequence of the theorem is that all structural matrices are 
symmetrical 

5.8.2 Stiffness coefficients 

The structure in Fig. 5.21 is in equilibrium such that the work done by reactions is zero. 
Consider points r and s on the structure. 

Figure 5.21: Stiffness coefficients 
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Let us displace point r by a unit displacement in the direction of force R while six forces 
suppress all other displacements at r and s. 

kRR> kR'R< k<pRR· kSR> ks'R and A ^ 

are the influence coefficients valid only for the displacements of r in the direction of force 
R. If the magnitude of the displacements is qR the forces are: 

kRR -iR^gR-qR, kpRR ■ qR at point r 
and 

kSR ■ 1R» kS'R aR> k<psR-iR atP°ints 

In this state the structure is loaded by the displacement qs at point s (all other 
displacements are suppressed). The total work done is 

1 2 1 2 
V i=YkRR<lR+kSRqR<ls+Ykss(ls (5·34) 

and by reverse order of loading by displacements (first qs and then qR) 

1 2 7 2 
U2=^kRR<ÍR+kRS<lR<iS+YkSS<iS (5.35) 

Since U¡ = U2 we get the reciprocity of stiffness coefficients kRS = kSR 

5.8.3 Application of Betty-Maxwell theorem 

In many structures a number of different load conditions are possible. For instance, a 
traffic load moving across a bridge will cause different forces, depending on its location. 
In such cases, the structural engineer must determine that load position which will be 
critical on its effect in terms of the forces on the structure. An influence line (Green's 
function) is a useful tool to accomplish this task. 

Consider the example in Fig. 5.22. Let F be at point x causing a vertical deflection 
δχ and deflection 5C at point C. Using flexibility coefficients: 

Sx=fxx-F (5.36) 

δ€ = fcxF (5.37) 

Suppose that the beam is now loaded at point C by a unit force causing displacements at 
points X and C of fxc and fcc . 
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^x^fxc1 a n d S£=fcc-1 

From the reciprocal theorem: 

fxc = fcx 

¿ST τ^τ\ 

Displacement at C 

Position of F 

Figure 5.22: Displacement of a chosen point caused by a moving load 

♦♦♦ A vertical displacement of any point of the beam caused by unit force at C 
equals a vertical displacement at point C due to a unit load at any other point 
on the beam. 

♦♦♦ Theorem: The deflected shape of a structure caused by a unit force is the 
influence line for deformation corresponding to that unit force. 

Example 5.3: Find the influence line for the deflection of point A. 

At point A a unit force is applied and the deformed shape of the beam is the influence line 
for the deflection of point A (note that real numerical values will be calculated in Ch. 6). 
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[YA]» 

Figure 5.23: Influence line for deflection at A 

5.9 Betti's theorem 

A force system {F} acts at arbitrary point on a structure causing displacements\AP} at all 
points of the structure. The equations may be written in matrix form 

kP}=[f]{F} (5.38) 

where [f] is a flexibility matrix that is symmetrical about a leading diagonal, hence 

[fhlfï 

Some other system of forces {¡2} will cause displacements ^ \ ß j : 

Using a matrix algebra rules 

=teY yj {F}=W IfWhteY M 

we obtain 

{FJM={QJM (5-39) 
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5.10 Mueller-Breslau principle 

5.10.1 The principle 

Figure 5.24: Work done by two force systems 

The structure shown in Fig. 5.24 is in equilibrium so that the work done by the reactions is 
zero. Consider two different load systems applied to the structure in turn. 

In the first system let the load act at point 1 in the direction S, the force F]S causes 
displacements A. The displacements at point 2 are zero as no discontinuity can occur 
(except at point 7). 

First system 

Forces (F) 

Displacements(Ap) 

At point 1 

F,s 

Ais 

0 

Ais· 

0 

Ψι 

At point 2 

F2R 

0 

F2R· 

0 

^2φ 

0 

Now let the second system of forces be obtained by the displacement of point 2 of 
magnitude ö2R in the direction of R but no other displacements are permissible at point 2. 
There is no load at point 1 that moves by δ in all three possible directions. 

Second system 

Forces (Q) 

Displacements (AQ) 

At point 1 

0 

Sis 

0 

Sis· 

0 

δΐφ 

At point 2 

Qm 

SIR 

QIR 

0 

Ô2„ 

0 

The reciprocal Betti's theorem is now applied: 

{FJM=MM 
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[FJS 0 0 F2R F2R, F29\ 

sis 

Ö]S' 

52R 

0 

0 

= b 0 0 Q2R Q2¡( ß 2 J 

dys' 

0 

0 

0 

The application of the corresponding matrix multiplication gives: 

F]S Sls +0d]S +061<p + F2R 52R +0 + 0 = 0 

^2R ' °2R - ~F¡S ' "IS 

which gives the so called transformation equation 

fyo -—r r, "2R IS 
2R 

(5.40) 

The force F2R (at point 2 in the direction of R) as a result of unit force F¡s 

(at point 7 in the direction of 5) can be determined independently using the 
displacement öis , caused by unit displacement of point 2, corresponding to 
force F2R. 

Theorem: The deflected shape of a structure due to the particular unit 
distortion represenst the influence line for the effect corresponding to that 
distortion. 

5.10.2 Application of the principle 

Example 5.4: Determination of a shear force by the Mueller-Breslau principle 

Figure 5.25: Shear force determination at point 2 
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First system 

Forces (F) 

Displacements(Ap) 

At point 1 

0 

u, 
Fy 

v¡ 

0 

Ψι 

At point 2 

N2 

0 

02 

0 

M2 

0 

Second system 

Forces (Q) 

Displacements (Δΰ) 

At point 1 

0 

u, 

0 

Vl 

0 

Ψι 

At point 2 

N2 

0 

Ü2 

V2 

M2 

0 

FY v,+Q2v2=0 

which gives the transformation equation: 

Q2=-^FY 

What does the above equation mean? It says that from three measured quantities the 
fourth quantity can be calculated. Practically it means that if a beam is loaded by a force 
F and two displacements are measured then by the use of the transformation equation, the 
shear force Q2 can be calculated. Let us emphasise again that all deformations have to be 
small in comparison with structure dimensions. 

Example 5.5: Determine the influence line for bending moment at point P 

[MP]v 

-5» 

ç—a—>K b 
< f 

Figure 5.26: Influence line for a bending moment 
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Let us at first determine a bending moment by the static method. If the force is at point P 
the reactions are: 

YAL = lb and YA = - , 

from which the bending moment at P is determined: 

Mp =YA a = (5.41) 

According to the principle described, we have to determine the corresponding unit 
displacement (in this case a unit rotation at P) since we are looking for the bending 
moment. 

M„ 
Ä 

<— -a -- * f c -
L 

b ? 

From geometry: 

Figure 5.27: Mueler-Breslau principle 

tgO- yp 

3V tg<P = I{-b 

yF=a-e 

yP=b<p 

or from equality of y 

b 
(5.42) 
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From the sum of both rotations at the supports: 

[Ch.5 

φ + θ= — θ + θ=1 Ψ b 
7 = 0· 7 + Ü 

b 

or 

7 + a a + b 
(5.43) 

Hence: 

ab ab 
y ρ=αθ = —— = - — , 

a + b L 
(5.44) 

which is the same result as obtained by the static method. The same procedure is used to 
determine the shear force at P. 

"Z\ 

—a -->&-

L 

b 

[QP]V 

Figure 5.28: Mueler-Breslau principle to determine shear force 

*5=i¿ L s a 

b L 
D b 

y p = T 
The above displacements are all unit displacements and can be usefully applied in 
practice. 
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Example 5.6: Consider a continuous beam over four supports 

a) When is YB a maximum? If the load is on spans AB and BC\ 

145 

B 
-zs~ 

C 
— 2 5 *. 

D 
"Z> 

Figure 5.29: A reaction determination by the Mueler-Breslau principle 

b) When is Mc a maximum?If the load is on spans ßCand CD\ 

A B 

1 

C D 

■ ■ ; : ■ . ! 

\/V-
Figure 5.30: A bending moment determination by the Mueler-Breslau principle 

c) When is QE a maximum? If the load is on spans BC and ED or on spans AB and CEI 

A B 
"25" 

C E D 
-Δ- L Ä 

J: 

Figure 5.31: A shear force determination by the Mueler-Breslau principle 

�� �� �� �� �� ��



146 Basic concepts of structural analysis [Ch. 5 

d) ME will be positive and a maximum, if the load is on CD and AB and will be negative, if 
the load is on BC. 

A B C E D 

1 rod 

Figure 5.32: A field moment determination by the Mueler-Breslau principle 

5.11 The principle of virtual work 

A generalized system of forces represented by the vector F will produce both a reaction 
system of forces and an internal stress system denoted by a vector σ. 

The energy stored in the structure in terms of internal stresses and strains will be 
different at any point of the structure and must be expressed as a function of their product 
for each elementary volume of material: 

[/ = / | | σ τ ί / ε | ί / ν (5.45) 

For instance, the total energy in a skeletal structure composed of straight beam elements 
will be derived by integration over the entire cross-section (stresses vary from point to 
point) and subsequently by integration over the entire length of a beam (internal forces 
vary along length of an element). 

The calculation can be simplified if it is noted that external forces produce internal 
actions FN (axial force, shear force and bending moment in a 2D case) at a certain section. 
It is then straightforward to calculate stresses from these internal actions at any section. 

♦♦♦ A load system F will produce reactions and internal forces FN, from which 
stresses σ can be calculated. A structure will change shape as a result of 
displacements, internal displacements and specific strains denoted by A, e 
and ε respectively. 
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A system of concurrent external forces F¡, F2 ... F„, which has a resultant force FR, is 
acting upon a small particle. If a particle moves along by a displacement AR in the 
direction of the force FR, work will be done by all forces. 

If ARis small, so that the directions of forces and their magnitudes remain 
unchanged, then the work done through the corresponding displacements A¡,... , \ is: 

FR-AR = FrA, + F2-A2 + + F„-4 (5.46) 

Now, as the whole system is in equilibrium (FR = 0) 

FrA,+F2-A2 + + F „ - 4 = 0 (5.47) 

or 

*l* Work done on systems in equilibrium is always zero. 

When a system is elastic and in equilibrium equation (5.47) can be written: 

WE=W, (5.49) 

♦♦♦ Work done by external and internal forces is equal. 

Let us imagine that points of a structure move by virtual displacements (these 
displacements must be possible but not necessarily produced) denoted by: 

A Displacements 
Έ Deformations of elements 
ε Specific strains 

Work done by all forces is: 

FT-A=F/-e (5.50) 

If a system remains in equilibrium, energy is stored as deformational energy, given in an 
elemental form: 

| σ Γ ε-diyoí) or ¡στε, 
v 

leading to equation 
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FT A=F,T e = \oT ε* (5.51) 

The above equation is the form in which the principle of virtual work is used in structural 
analysis. The second term ( F ~ë ) includes all internal forces and their corresponding 
displacements (i.e. N, Q and M in 2D cases). 
Consider now a truss structure in which only axial forces occur: 

F ■ ë = ^ F - i n ... number of elements of a structure 
i 

If a bending element is considered (see Ch 2.8.3), the effect of bending is 

IJMdtp 

and a virtual deformation dq> must be integrated at first over the entire length of a beam 
and after that a summation over all elements must be executed. The same procedure must 
be used considering shear forces Q and torque T. 
The influence of a uniform load must be included in the work done by external forces: 

PT A+jpT SdA = FT ε = \στε (5.52) 
v 

The principle of virtual work thus relates two independent systems: 

V system of forces in equilibrium 
F external forces 
σ internal stresses (or internal forces F¡) 

♦♦♦ system of geometrically compatible deformations 
A displacements 
ε specific strains 

XFA = JG-edV (5.53) 
v 

* Transformation for truss elements: 
■N AL r„ AT dV ,F _ r dV 

v v 
\oT.e = \?L.*l = \NAL^- = NAL\^- = NAL = Ne 
I , A L J AL }AL 
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We will remember that one of the systems is always real (the structure for which a solution 
is to be found) and that the other system is virtual. Therefore two possibilities exist: 

♦♦♦ Theorem of virtual forces, in which a system of real displacements and 
deformations is related to virtual forces and stresses 

Σ (Virtual external forces) (Real displacements) = 
= j (Virtual stresses) (Real strains) dV 

♦♦♦ Theorem of virtual displacements, in which a system of real forces and 
stresses is related to virtual displacements and deformations 

Σ (Real external forces) (Virtual displacements) = 
= | (Real stresses) (Virtual strains) dV 

The first equation enables determination of displacements (theorem of unit force) and the 
second equation enables determination of forces (theorem of unit displacement). 

5.12 Application of the principle of virtual work 

In equation 

PT ~K = FT τ = \οΊ ε-dV 

are, as mentioned previously, two systems (system of forces in equilibrium and system of 
compatible deformations). 

If the deformed structure is chosen as a system of displacements then A becomes 
real displacements corresponding to forces, Έ are real element deformations caused by 
internal forces and ε denotes specific strains at all points. 

Let us choose the system of forces in such a way that a unit force acts at a point in 
the direction of the desired displacement. System P is in this case represented by unit force 
only as the work done by the reactive forces equals zero. Let us denote internal forces by 
F¡, they being the consequence of unit force and reactive forces. Let a¡ represent 
resultant stresses in the structure. 

l-A = Fl-e = \aJ-e-dV (5.54) 

Notation of Α,Έ,ε is not necessary any more as these quantities are in this case real and 
finite values, A represents the quantity to be found. Equation (5.54) is valid for all 
geometrically possible cases including temperature loading, creep, shrinkage etc. 

♦♦♦ Equation (5.54) can explicitly be written for all linear elastic 
structures 
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In such structures internal actions can be expressed by axial force N, shear force Q, 
bending moment M and torsion moment T, their corresponding deformations were given in 
Ch. 2 in Eqns. (2.47-2.54). 
If all these deformations are the consequence of unit load, they can be summed up by 

* EA ^ J El ^ J GA 
(5.55) 

and if the temperature influence is taken into account, the total deformation is given in a 
general form 

A = j N,, 
N 

EA 
+ aTT 

Λ Q 
ASG 

M_ 
El 

■ + aT 
Δ7Λ ds, (5.56) 

where Σ denotes summation from all elements and jds the integration along the whole 
length of each of the elements. In many structures elements are of constant cross-section 
over the entire length and the equation can be simplified into: 

^ l ^ — ^ Í M v M d s ^ ^ Í Q v Q d s (5.56a) 

In a three dimensional case there are six internal forces and in addition to the above 
quantities there is an influence of torsional moment given by: 

^iIu-L-dx 
^}GIP 

(5.57) 

The notation is as follows: 

Φ 

Φ 

• 

h 
Nu 
N 
E 
A 
aT 
T 
AT 

Qu 
Q 
As 
G 
Mu 
M 

polar second moment of area 
axial force caused by virtual force F=l 
axial force due to external loading 
modulus of elasticity 
cross-section 
temperature dilatation coefficient 
temperature increase 
temperature gradient between upper on bottom fibre of an 
element 
shear force caused by virtual force F=l 
shear force due to external loading 
shear cross-section 
shear modulus 
bending moment caused by virtual force F = 1 
bending moment due to external loading 
height of a beam 
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Example 5.7: Calculate the deflection at free end of the cantilever beam and show the 
ratio of shear and bending deformation. 

[Q] 

[M] 

Figure 5.33: Diagrams of shear forces and bending moments 

The unit force F = 1 is applied at the free end of the cantilever and the deflection is 
calculated from equation (5.55): 

o 

L 

Q. Q + M . M ] 
ASG El 

{-ι)λ~Ρ1 + {-χ). 
ASG 

■ds 

(-F.x)] 
El 

L 
■dx = j 

0 

f F F-x^ 
As G El 

dx = 

Fx Fx> 
A, G 3EI 

F L FU 
-+-Ac G 3 EI 

From the equation the bending part equals 

FL3 

3EI 

and the shearing part is 

FL 
As G 
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Let us put both deflections into a ratio: 

BH _ _ £ _ _ 
R=Flf_ ASG = FL3 1.2 ' 2{l+v) _ n ] (L_^ 

3EI FL οττΒΗ3 FL ' I f f 
3E v 

12 

From the above equation the shearing part in beams of L/H > 10 is less than 7% and in 
plates of L/H > 30 is less than 1%. As we can see the shearing part of the deflection is 
always less than 10% and is in comparison with the total deflection negligible in practice. 

♦ > Shearing part of the deformation is in engineering practice 
negligible. 

Note: Computer programs take into account all deformations (axial, 
shear, bending), therefore the results of hand calculations differ 
from that calculated by programs. 

Equation (5.55), because of the above reasons, is usually simplified as: 

Δ; = ί EJL.& (5.58) 
' J El 

In the above equation vector A includes both displacements and rotations. If a 
displacement is to be found a virtual force F = 1 will be applied and a virtual moment 
M =■ 1 will be applied when seeking rotations. 
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5.13 Castigliano's theorems 

The total strain energy resulting from a system of forces is 

U=E¡FdA 

In a linear elastic structure subjected to loads F¡...Fn the corresponding deformation is 
given by the equation (5.14): 

A = fu ■ F, + în ■ F2 + fi3 ■ F3 + + //„ · Fn 

The work done by each applied load is 

-XF. . -4 

and therefore the work done by all loads, in this case of three forces, is for the sake of 
simplicity and taking f12 = f21 '■ 

V=^F,ifn ■ Fi +fn ■ Fi +fis ■ F3) + ̂ F2(f21 ■ F] + f22 ■ F2 +f23 ■ F3) 

+ ̂ F3(f3rF, + f32'F2+f33.F3)= (5.59) 

= if„F1
2 +{f22F2

2 +tf33F3
2+f12FrF2 + f23-F2-F3 + f3rF3F! 

The rate at which U increases with F¡ is given by differentiating equation (5.59) with 
respect to F¡ and since the loads are independent variables and the reactions produce no 
work: 

^r = fi,Fl + f12F2 + fl3F3=A1 

which is exactly the corresponding displacement Δ]. The differentiation with respect to 
forces F2 and F3 gives a similar result, hence a general equation can be written 

üH ( 5·6 0 ) 
OF: 

Equation (5.60) is known as Second Castigliano's theorem. 
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♦♦♦ In an elastic system, the partial derivative of the strain energy U in 
respect to any selected force equals the displacement associated with 
this force. 

Since in linear elastic structures strain energy equals complementary energy U = C: 

Equation (5.61) is known as First Castigliano's theorem. 

♦♦♦ In an elastic system, the partial derivative of the strain energy U in 
respect to any selected displacement equals the force associated with 
this displacement. 
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Deformations 

6.1 Integration of a load function 

Example 6.1: An integration of a load function will be shown on a simple cantilever beam 
loaded by an uniform load as in Fig. 6.1. 

We begin from the basic differential relation (Eqn. 3.11) between a uniform load and a 
shear force: 

dQ ( λ 

dQx = -q(x)· dx = -qdx 

Qx=-q x + C, 

A 

<i 

'Ç 

r* Mx 

Ù+N* 

MB 

> , 

rQ* 

Figure 6.1: Cantilever beam and a free body 
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The constant C¡ is determined from boundary conditions for shear force on the beam 
which is zero at the free end: 

at x = 0 => QA=0 = Qx 

0 = -qO + Cj => C,=0 

Qx=-q* (6.1) 

Note: The same result is gained from the boundary condition at support B, that is 
at x = L: -QA = -q-L + C, =*· C,=0 

A relation between shear force and bending moment is given by Eqn. (3.12) from Ch. 3: 

dMr 

dx 

dMx: 

Mx = 

= Q> 

= QX 

-q-

■dx = -q 

x1 ^ 
—+c, 
2 2 

X ■dx 

The boundary condition is: at x = 0 => MA = 0 

02 
0 = -q +C2 => C2=0 

Mx=-q-y (6.2) 

If this equation is integrated, we obtain the expression for rotation: 

EI<p = ¡Mxdx = ¡ 
( ~„2\ „ „5 

qx dx = -^-+C3 

The constant C3 is once more determined from boundary conditions for the beam 
rotations. A rotation equals an angle of the tangent to the deformation line. A rotation is 
therefore zero at the point where the tangent is horizontal or parallel to the *-axis (in this 
example). Furthermore, by the definition of clamped support there is no rotation at that 
point, therefore: 

a t * = L =* φ = 0 that is φΒ = 0 
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6 3 3 6 

.EI.ç = îjL-l^L (6.3) 

Equation (6.3) is a general equation for rotations of a beam that is loaded by a uniform 
load. The maximum rotation is at the free end at x = 0 and has the value of: 

q-L3 

<ρ™=ττ7 ( 6 · 4 ) 

6 EI 

Now we integrate the rotation: 

dx 6 6 6 24 4 

Boundary conditions: the displacement y at support B is suppressed, hence: 

at x= L => y =0 thereforeyB=0 

6 24 4 4 8 

EI.y^ZjLjL-S^L-ZjL) (6.5) 
6 24 8 

The above equation is a general equation of deflection of a beam that is loaded by a 
uniform load. The deflection has a maximum value at x = 0: 

q-L4 

γ-=ΤΈ ( 6 · 6 ) 

L 17 q-L4 

at x = — => y = -
2 3Μ·£7 
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Example 6.2: A cantilever beam is at the free end loaded by the concentrated force F. As 
the load function for a concentrated force is singular at its point of 
application we begin from the moment equation derived from a free body as 
shown in Ch, 3. 

Mx=-Fx 

which gives, after integration 

Fx2 Εΐ.φ = -1—^+ο3 

Boundary condition: at x = L =» φ = 0 =Φ C3 = FL¿ 

Figure 6.2: Cantilever beam loaded by the concentrated force 

El φ = - Fx2 FL2 
(6.7) 

_F ϋ 
<Pmox 2 m 

El y = FÚx Fx3 
+ C¿ 

(6.8) 

Boundary condition: a t * = L => y = 0 C4 = FÜ 
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FL2x F x3 FL3 
EIy = + (6.9) 

The maximum deflection for a cantilever beam that is loaded by the concentrated force at 
its free end is: 

F FU 
y max - 3EI 

Example 6.3: Simple beam loaded by the uniform load of intensity q 

€ 
XT~*¿TA 

I 3 B 

(6.10) 

[Q] 

[M] 

[Ety] 

[Ely] 

Figure 6.3: Simple beam and diagrams 
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The load function is q(x) = q = constant is inserted into familiar equations: 

dQx ( \ 
ax 

Qx=-qx + C, 

The constant C¡ is determined from boundary conditions: 

at x = 0 => QX=YA 

at x = L => Qx = -YB 

Qx=-qx + C, 

[Ch.6 

* / S 
a 
•r 

a 
H 

ß*A- XZ3 
Ti 

B 

Ι*-π—>* 

at x = 0 => Qx=-q0 + C, 

QX=C, => C ; ^ 

<7¿ (6.11) 

By the direct integration of the load function using boundary conditions, the equation of 
shear forces at any section was evaluated. Let us now check if the equation is valid at point 
B. Inserting x = L we get 

Q(L)=:L^-<IL = ~=QB=-YB 
qJL 

2 

The result is indeed the reaction at point B. From Eqn. (6.11) it is obvious that it 
represents a straight line whose derivation is the inclination of the line to the .x-axis and 
from Eqn. (3.11) also the uniform load intensity. 
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Performing the second integration a bending moment is gained: 

M, :J^.|-9.,jfc + C, 

M = 
q-Lx qxi 

+C, 
2 2 

Boundary conditions: at jt = 0 => M =0 

at x = L => M = 0 

161 

at x = 0 => M x = q-LO q-02 

+ C, C2=0 

M = 
q-Lx q-x 

2 2 

Now, if the bending moment is integrated 

d<p 
-EI=-M, 

dx 

EIdq> = -Mxdx = qx q-Lx dx 

(6.12) 

El qx3 q Lx2 , φ=-2 2 + ( 

Using boundary conditions: at je = — => <p = 0 => 0 = — vC3 

C3 = qj¿ 
24 

constant C3 is obtained and after the insertion into the equation of rotation 

EI.9SÎ^-^-L'X3
+ÎJL 

6 4 24 
(6.13) 

a general equation of rotation is evaluated. 
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Calculate now the maximum values: 

at.* = 0 => <pA= q L (6.14) 
ΎΑ 24EI ' 

4L3 
at x = L => <pt - -

24 El 

Now we proceed with the integration of the equation of rotation: 

qx4 q-Lx3 q-L3 x _ y = 2 -2 + 2 + c4 
6-4 4-3 24 4 

Boundary conditions: atjc = 0 => y = 0 
at x = L => y=0, C4 =0 

EI.y = Sl*L-2±£ + 2JLJL (6.15) 
24 12 24 

Equation (6.15) is a basic equation of the deflection line (deformation). The maximum 
deflection is found from the condition of zero rotation (as the rotation is a derivative of 
deformation) at x = L/2: 

5qL4 

y-=WË7 (616) 

6.2 Theorem of unit load (theorem of virtual forces) 

We proceed from the equations from Ch. 5.12, defining the use of principle of virtual 
work for deformation calculation. The equation of a volume integral (5.58) is used 

^ ' El 

M is a bending moment caused by the unit force or unit moment applied at the point and 
in the direction at which the deformation is to be found, M is bending moment caused by 
external loading. 
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6.2.1 Integration of the equation 

163 

Let us at first find the deflection of the cantilever beam at the point A and in the direction 
of the applied force F from Fig. 6.4: 

MM 1 L 1 
' ' El El'o El 

yA = 
FL1 

3EI 

FxJ EL· 
3EI 

A L 

► X 

F.x 
[M] 

JSt 

Figure 6.4: Theorem of unit forces (determination of a deflection) 

The same procedure is used to calculate the rotation at point A (Fig. 6.5), but as the 
rotation is to be found, a unit moment at that point has to be applied: 

9A = I 
LJFx 
o El 

dx = FL" 
2 El 

(6.17) 
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Figure 6.5: Theorem of unit forces (determination of a rotation) 

6.2.2 Tables 

It is useful to calculate integrals of different moment functions explicitly over the entire 
length and write them in the tables that are given in appendices B in tables B.4 and B.5. 

Only the maximum values of bending moments are necessary, denoted by letters 
"j" and "k" for real and virtual moments respectively. It is also obvious that both values 
can be exchanged for each other. For instance, from Fig. 6.4 the real maximum moment is 
j = FL and the virtual moment is k = L. 

In the table B.4 we find two corresponding triangles, in this case in the second row 
and in the second column and read the value of the integral, that will have to be multiplied 
by the length of the integration L: 

I I FI 
EIyA=~jkL = -FLLL = 

A 3 3 3 (6.18) 
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Example 6.4: Calculate the deflection of the simple beam loaded by a uniform load 

1 € 
xT^ZXT 

[M] 

XT~*/5A 

1 
Έ Ϊ B 

-s> 

[M] 

k = M IL 

Figure 6.6: Integration by tables 

From table B.5 row 8 and column 6: 

EIÖ=-jlc(] + aß)L 

EIS =-·^—-(1 + 0.5-0.5)· L 
3 8 4 

Ε1δ = 5qL·4 

384 
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Because of symmetry only half of the beam can be observed, hence from table B.5, row 
77, column 2: 

12 2 12 8 4 384 (6.19) 

χΓ*/Τ< Ύ± B 

[M] 

k = M=-
L 16 

Figure 6.7: Deflection of an arbitrary point 

Calculate the deflection at x= 1/4 (Fig. 6.7). From table B.5, row 8, column 6: 

EI60=-jk(l + aß)L 

" 3 8 16 44 

256-24 2048EI 
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What is the ratio of this deflection against maximum deflection in the middle of the beam? 

δ,, 19 5 19 384 
δ^ 2048 384 2048 5 

■ = 0.71 

6.2.3 Method ofVereshagin 

The equation of virtual work is used for deflection determination: 

FL3 
El δ =\ΜΜ dx = \{F■ x)(x)dx 

°max 
FL3 

3 El 

[M] 

[M] 

Centre of gravity 

MB 

> « 

Figure 6.8: Cantilever deflection by Vereshagin 
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The deformation by the Vereshagin method is calculated as the product between the area 
of the first diagram and the value of the second diagram {under the centre of gravity of 
the first diagram). The diagrams can be interchanged. 

_ . . . FL2 L FL3 

EIo =A y, = = 
n 2 3 6 

or if the diagrams are interchanged: 

„,_ Ú FL FL3 

EIo=A,y = = —— 
1 2 3 6 

The method is even simpler if one of the diagrams has a constant value, as only the area of 
the other diagram is needed for the integral evaluation (Fig. 6.9). 

ΕΙφΑ -J-l, 

<PA = 6EI 

To check the result let us directly integrate both moment functions 

EI<pA = \MMdx J 
o o 2 

^i^L.j.dx^l^iJL 
1 -) A 10 A 

which gives exactly the same result as above calculated by the Vereshagin method. 
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Ms 

m 

Figure 6.9: Rotation at A by the Vereshagin method 

6.3 Mohr's method 

The method is based on differential relations with respect to a beam since successive 
integration of a load function gives shear force, bending moment, rotation and deflection. 

A conjugate beam will be loaded by a moment diagram of an original beam. The 
boundary conditions on a conjugate beam are derived from the equality of shear forces on 
the original beam with rotations on the conjugate beam and on the equality of bending 
moments on the original beam with deflections on the conjugate beam. It means that: 

♦♦♦ Ai the point where the shear force on the original beam equals zero the 
rotation on the conjugate beam must be also zero and vice versa. 

♦ At the point where the bending moment on the original beam equals zero the 
deflection on the conjugate beam must be also zero and vice versa. 
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[Mc]=EIy 

Figure 6.10: A conjugate beam or Mohr's method 

Diagrams of shear forces and bending moments on the conjugate beam or better, their 
values at chosen points, are El-times the values of rotations and displacements on the 
original beam. Therefore, the calculated value is reduced by El to get a real value of 
rotation or displacement at that point. 

Mohr's method will mostly be used for the calculation of maximum values of 
deformation as from the example above, the reaction QAC on the conjugate beam 
represents the maximum rotation and the clamping moment MAC represents the maximum 
deflection. 
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Mohr's method 

Original beam 

ΜΛΓ = 

Figure 6.11 : Deflection of a cantilever beam with a uniform load 

*-i*£-i-*£-"-*- (6 

MAc = S--'L = 2—---L = 2—- = EI-ymex 
4 6 4 8 (6 
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Original beam 

QAC = 
[Qc]=EI<p 

[Mc]=EIy 

384 

Figure 6.12: Mohr's method in a simple beam 

Calculate the maximum deflection of a simple beam loaded by a uniform load (Figure 
6.12). From symmetry it is clear that the maximum deflection is in the middle of the beam 
therefore a bending moment on the conjugate beam at that point will be calculated. The 
total substitution force is: 

2S = 2_ q-ti =q-L3 

3' 8 12 
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therefore the reaction at the support equals 

Since the reactions are known and they equal shear forces at the supports, their values 
reduced by El, represents the rotation at those points: 

qL3 qL3 

ΨΑ=~Ζ7ΤΤ ΨΒ = 24EI ' ° 24EI 

To find the deflection we need to calculate bending moments in the middle of the span: 

t . qL2 L qL3 3 . n 
x 24 2 24 16 

_ qL4 (1 3 ) _ qL4 (8-3)_ 5qL4 

Mxc = 
xt 24 2 16 24 [16 384 

The maximum deflection is the value of the bending moment in the middle reduced by the 
bending stiffness El: 

Mxc _ 5qL4 

y max EI 384EI 

6.4 Deformation of trusses 

Trusses are structures in which only axial forces occur. Therefore for the calculation of 
deformations we use Equation (5.55) 

E ■ A El G A 

and take into account its first part only: 

EA 
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A truss deformation at a chosen point is calculated in three steps: 
1. a truss is loaded by an external load and forces in all elements are calculated 
2. a truss is loaded by a unit force at a point in a chosen direction and forces in all 

elements are calculated 
3. the summation is done over all elements according to the above equation 

F,=l 

Figure 6.13: Plane truss 

As trusses usually consist of several elements it is the best to execute the summation in 
tables as shown in the following example. 

Example 6.5: Calculate the horizontal displacement of joint 6 and vertical displacement of 
joint 3 in the truss from example 3.1 (Figure 6.13). 
The cross-section of all elements is 5 cm2, the material is steel with modulus 
of elasticity £=270 GPa. 

Table 6.1 

Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 
Σ 

L 
[m] 
4.00 
3.00 
5.00 
6.00 
5.00 
3.00 
4.00 
4.00 
5.66 

No 
[kN] 

-20.000 
-50.000 
25.000 
35.000 
-25.000 
-20.000 

0 
-20.000 
28.285 

-

Ni 
[1] 
0 

1.000 
0 
0 
0 

1.000 
0 

1.000 
0 

■ 

N2 

[1] 
0.700 

0 
-0.875 
0.525 
-0.375 
-0.300 

0 
-0.300 
0.424 

-

NoN,L 
[kNm] 

0 
-150.000 

0 
0 
0 

-60.000 
0 

-80.000 
0 

-290.000 

NoN2L 
[kNm] 
-56.000 

0 
-109.375 
110.250 
46.875 
18.000 

0 
24.000 
67.879 
101.629 
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Sec. 6.5] Beams of variable height 

Real displacements have to be reduced by EA, hence: 

-290.000 

175 

u* = 210 106 -5.00 10-4 
= -2.762 10'} m = -2.762 mm 

v = 101.629 ^-0_%8 10~3 m = -0.968 mm 
210 106 -5.00-W4 

Note: If cross-sections are not equal for all elements, the reduction by axial stiffness EA 
has to be performed in the table for each element separately. 

6.5 Beams of variable height 

Consider the cantilever beam from Fig. 6.14. The height is linearly changing from H¡ at 
the free end to H2 at the support. 

Figure 6.14: Cantilever beam of variable height 

Let us at first write a function describing the change of beam height as a function of the 
position along the longitudinal axis 

L 
ΔΗ = H2-H, (6.22) 

and then equations of real and virtual moments: 

M r = F ■ x M = 1 ■ x 
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The function of second moment of area is: 

[Ch.6 

, BHÍ B („ AH ^ 
1 = - = — · H, + x 

12 12 ' L 

= ±.{a.x + bj> 
12 v 

(6.23) 
AH , „ v „ AH 

a = b-H, X = H,+ x 
L ' ' L 

Deformations are calculated by integration using the virtual work method: 

X < M M A \ 

o El o „ B 
Fx2 

12 ' L 

.■äxJ±I-\ 
EB Ό 

H,+ x 
1 L 

V 
■dx: 

12 F 
E B 

/ 

1 
(ΔΗλ 
{ L J 

3 

V 

In H,+ AH 2H, H 

»■+f-> 2ÍH,,f., ';· 

12F ( L 
EB (ΔΗ)[ Κ Η,+ΔΗ 2{H,+ 

--\nH,-2 + -
ΔΗΥ 2 

12F ( L Y 
E B AH 

In 7 + AH 2H, »1 
{ Η,) Η,+ΔΗ 2{Η,+ΔΗΥ 2 

The above equation can be rearranged so as to give a real deflection compared with the 
deflection at constant El: 

A,= FL> 3(H1 

3EI \AH 
In 1 + AH 

H, 
2H, ΗΪ 

Η,+AH 2{Η,+ΔΗΥ 2 

Δ,= F L· 
3EI 

3 f 
■3 IL· 

AH In 1 + AH 
H, 

H, 3 Hj+4-AH 3 
(Η,+ΑΗΥ 2 2 

(6.24) 
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or can be written: 

FL3 

1 3EI 

Beams of variable height 

K=3-
ΔΗ 

In 1 + ΔΗ 
H, 

H, 3H.+4AH 3 
{Η,+ΔΗΥ 

177 

(6.25) 

(6.26) 

Figure 6.15: Deflection of cantilever beam of variable height 

Example 6.6: Calculate the deflection of the cantilever beam of variable height using the 
following data: 

L = 3.00m, F = 25kN 

B = 0.20 m, H, = 0.20 m, H2 = 0.50 m, E = 20 GPa 

* Note: The equation is valid for all ΔΗοΟ 
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EI = E ■ ̂ Η- = 2667.67 kNm2 

12 

FL3 
= 0.084 m 

1 3EI 

AH =0.50-0.20 = 0.30 m 

λ3ί ( ' "H* In , AH) H, 3Η.+4ΑΗ 3 
1 + |+_ i — _ 1 

2 

\ 

( { » , J (H¡+AHf 2 

K = 3- 02_ 
0.3 

In|7 + H,+ . 0.2 30.2+40.3 3 
2 

=0.121 
0.2) (0.2+0.3Y 2 

A = Á,K= 0.084 ■ 0.121 = 0.010 m 

Note: The constant K can be also read from Fig. 6.15 at ratio H2/ H¡ =2.5 . 

6.6 Deformation at pre-stressing 

Example 6.7: Calculate the deformation line for the cantilever beam due to the pre-
stressing force Np 

The equation of eccentricity against the centre of gravity of the cross-section is: 

Hx 
e=- 3L 

(6.27) 

The bending moment at an arbitrary distance x is 

p 3L (6.28) 

and is integrated with the bending moment caused by a unit force used to calculate the 
deflection at the free end resulting from the pre-stressing force Λ .̂ 

δΝΡ = 
1 1 NpH 

EI 3 3 
■L¿=-

NPJLJL 
9EI 

(6.29) 
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As the deflection for uniform load q is 

q 8EI 

from the condition of equal displacements δΝΡ = 6q the force in the pre-stressing cable is 
calculated to have a zero total displacement at the free end. 

NpHL2 ^q.L4 

9EI 8EI 

p 8 H 

(6.30) 

N„ 
fc-
Ψ 

■̂  hi¿i.¿.ifi«>i--«-S··^ 

6w$¡M^Kff(f^ 
¿*\¿á'*¿;-á 

■5:8 

0£íiiieSiSiBSl|BÉf?¡ 

wmmmmsm 
S S ^ ^ . Î T M 

[Mp] 

^ 

[M] 

Figure 6.16: Pre-stressing cable in a straight line 

The force in the cable to produce a total zero displacement is therefore: 

M 9 L I 

p 8 H H 
(6.31) 

A general equation of the deformation line is derived by integration using boundary 
conditions and procedures explained earlier in this book: 
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p 3 L 

EI(p = N-—x2+C3 => x = L p 6L 3 

(6.32) 

= 0:C3=-Nri 
H L 

ΕΙφ = Ν„ x -N„ 
p 6L p 6 

EI.y = N,-Z—x3-N.-Z-±-x + C4 
" 18L " 6 4 

Hi} „ HL2 „ HL2 

C-».—-»,-ir-'',-

( „3 
EIy = NpHL2 x 1 

+— 
•\ 

18L3 6L 9 

The maximum deflection is at x = 0 and is: 

Jmox 
NpHL¿ 

9E1 
(6.33) 

Example 6.8: Calculate the deformation line for the cantilever beam due to the pre-
stressing force NP if the cable line is parabolic along the longitudinal axis 
and its tangent is horizontal at the support 

The basic geometrical relations are given in the equations below and in practice, constant 
n is limited to 0 < n <= 0.4: 

„2_ L2 

n H 

= L ^ - = K,-4y~ Kj=L-4^H (6.34) 

x=K,-4y~ 

The bending moment due to the cable force is: 
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M x =NPn-H-J- = t f V I 

K=-
N„nH 

vz 

ΝρηΉ 

(6.35) 

Figure 6.17: Parabolic cable line 

A general equation of the deformation line is derived by integration using boundary 
conditions: 

EI(p = K-Jx* +C3 andhence: C3=-K--4IF 

EI<p = yK(47-JF) 

EIy = — K-
3 

'jV7-*.VFl+c< 

C4=1-K-4ÏÏ 
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EI.y=l.K{lJ7-x-JU}+-K-4W 
3 [5 5 

(6.36) 

El y 
NnnH - P π ±47-2-x.4ïï+2-4ïï\ 

15 

The maximum deflection is at the free end and is given as: 

2 
Jmax 5EI 

-N-nHU (6.37) 

A comparison between both deflections for cable in a straight line and a parabolic cable 
shows that at the same conditions (n = 1/3) deflections differ by 20 % and it is 
inadmissible to replace a parabola by a straight line. 

Example 6.9: Calculate deflections due to the self weight, pre-stressing, creep of concrete 
and relaxation in the cable for the beam shown in Fig. 6.18. (E = 24 GPa, 
B/H = 0.3/0.5 m, El = 75000 kNnf). 

40kN/m Cable 

8m 

[M] 

0.4H 

Figure 6.18: Pre-stressed beam 

The deflection due to the self-weight is: 

= 5qL4 = 5-40-84 _Q 

~ 384 Elp~ 384-75000 
0285 m, 

which is compared with the permissible deflection given by a Code (usually as LI300 ): 

L 800 y„„„ = = =2.667 cm 
Jperm 3QQ 3QQ 
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The stresses are calculated from the maximum bending moment: 

183 

max g g 

W =
 B_Hi = 0J.(0.5Y=aoi25m3 

M kN 
a™* =± — = ±25600 ^ = ±25.6 MPa 

Mp 

8m 

[M] 

[M] 

M. Mn 

Figure 6.19: Beam under pre-stressing moment 

The cable force will be calculated from the condition that the deflection at mid-span does 
not exceed the maximum allowable deflection. Let the position of the cable be at 0.4H 
under the centre of gravity of the section, hence: 

Mp=Fp-0.4-H = Fp-0.2 

EIy„= — L-Mn=^-Fn0.2 = -^ FnL¿ 

yp 4 ~ 2 "*' 8 'p 40 

FP = 

40 El y 40-75000-2.667-10~2 

8¿ =1250 kN 

Mp = Fp0.2 = 250 kNm 
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The initial deflection due to self-weight q and pre-stressing is: 

y,o = 0.0285 - 0.02667 = 0.0018 m 

Suppose now that after t = 360 days due to the relaxation the cable force falls by 20 %, 
therefore after one year the deformation will be: 

yt¡ = 0.0285 - (i - 0.2)0.02667 = 0.714 cm 

Now we take into account the creep of concrete, which causes the fall in modulus of 
elasticity E by say 40 %, and the total deformation after one year will be approximately 

0.714 . JQ 
y, = = 1.19 cm, 
*h 0.6 

which is still inside the allowable limits. 
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7 
Stiffness and flexibility 

7.1 Coefficients of stiffness for prismatic elements 

A typical element whose jc-axis is lying along the centroidal line of the element and is 
defined as positive in the direction from joint 1 to joint 2 is shown in Fig. 7.1. The y- and 
z-axis complete the right-handed co-ordinate system and are chosen to be the principal 
axes for the element cross-section. It is assumed that the shear centre of the section 
coincides with the centroid and therefore the force applied in any one principal plane 
causes displacements in that plane only. 

Figure 7.1 : Degrees of freedom 
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186 Stiffness and flexibility [Ch. 7 

The displacement vector is: 

{";}={ xi yi Zi Ψχΐ 9yi 9n I 

Μ={χ2 y2 Z2 ψχ2 <Py2 Ψα I 

There are thus 12 possible displacement components; a element has 12 degrees of 
freedom. Each of these possible displacements can be suppressed by a corresponding force 
as shown in Fig. 7.2 and denoted as the force vector: 

{Ft}={N, QY] QZ1 T, MY1 MZ1] 

{F2 }={N2 QY2 QZ2 T2 MY2 MZ2 } 

Figure 7.2: Corresponding forces 

The properties of the element are designated as: 

A 
L 
V 
E 

Cross-section 
Element length 
Poisson 's ratio 
Modulus of elasticity 

Shear modulus 
2·(/+ν) 

�� �� �� �� �� ��



Sec. 7.2] Stiffness matrix of a clamped element (m6) 

The principal second moments of area (in bending) are: 

/ ... Principal second moments of area about y axis 
lz... Principal second moments of area about z axis 

The polar second moment of area should be denoted by lx but is usually written as IP. 

187 

7.2 Stiffness matrix of a clamped element (m6) 

The stiffness coefficients are the actions imposed by a neighbouring body that can be either 
a support or an element if unit displacement occurs at each joint of the element in a 
corresponding direction while all other displacements are kept zero. 

The resulting forces must be in equilibrium and six equations may be drawn up: 

N1 + N2-0 

QYJ+QY2=0 (7.1) 

QZJ+QZ2=O 

Tj+T2=0 

MYI+MY2+QZ1L = 0 

MZI+MZ2-QYIL = 0 

Consider first, displacement x, from Fig. 7.3 below: 

(7.2) 

Figure 7.3: Axial force at joint / 
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From Eqn. (2.47) according to Hooke's law the force that caused the displacement x¡ is 
equal to: 

v E A 

N'=-T'Xl' 
(7.3a) 

hence from Eqn. (7.1): 

E A N2=—rxl (7.3b) 

The displacement at the other end, in a similar manner, gives: 

N2= ——x2 and N,= — x 2 

L· L· 

Displacements x¡ and x2 produce forces in the axial direction only, therefore all other 
forces are zero. 

> 

N, 
-►> 

Figure 7.4: Axial force at joint 2 

As displacements are assumed to be small, the application of rotations φΧ! and φΧ2 will 
produce torsion restraints only, hence: 

, . GIX 

T>=-j-<Pxi 

Τ2=^ΨΧ2 

GIX 

T2=—JL.cpx¡ 

T GIX 
T¡= Lx <Px2 

(7.4) 

The stiffness coefficients involving rotations <pz and φγ as well as displacements y and z 
will be determined using Castigliano's theorem derived in Ch. 5.13. (The reader should 
verify that the use of principle of virtual work leads to the same results). 
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Rotation φζ : The element 1-2 is initially straight and as such is given an end rotation of 
φΖ2 at joint 2. 

A bending moment at an arbitrary section is 

M=-Mzl+QY1x, 

From equilibrium at joint 2 

MZ1+MZ2-QY]L = 0, 

hence: 

M=-MZ2+QY1(L-x) 

(7.5) 

Figure 7.5: Rotation of joint 2 by φΖ2 

The deformational (strain) energy is 

«4 LM2 dx 

o 2EIz 

= ̂ \[M2Z2-2MZ2QYI{L-x)+Q2Y1\L2-2Lx + x2\dx = 
Z 0 
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2 El 
1 XM\2 x-2MZ2 QYrLx + MZ2QYl ■ x2 + Q2

rL2x 

U =■ 
2EU 

-Q¡rL-x2
+Q2

Y1-^\ 

M2
Z2L-MZ2QY1L2+Q¡,~ (7.6) 

Let us find now shear force QYI using Castigliano's theorem: 

dU 
dQ, 

■=yj=0 
Yl 

(7.7) 

0 = -
2EI, 

- M Z 2 L 2 + 2 0 y , y 

QYI = 
3M Z2 

2L 
(7.8) 

dU 
dM = <Pz2 

Z2 

-l—hMz2L-QYrL2]=<pZ2 
2EI7 

Inserting QY1 from Eqn. (7.8) 

2EI, 
2.MZ2L-^^-L = <Pz2 

MZ2- 2-3-
2 

2EU 
ΨΖ2 

MZ2 = 
4EI7 

<PZ2 (7.9) 

The shear force QY! is then 
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3 .. 3 4Elz QYI = ΛίΖ2 = -Y1 2-L Z 2L L 
6E1Z 

L· 

6EIZ 
QYI=—T<PZ2 (7.10) 

From the equilibrium equation (7.2): 

Mzl=QY1L-MZ2=L—-¿Z-(pZ2- 4EIZ 2EIZ 
— ; — 9 z 2 = — : — Ψ ζ 2 

or 

Mz¡ 

MZI 

_2E1Z 

L 

_MZ2 

fZ2 (7.11) 

(7.11a) 

The free body in equilibrium is shown in Fig. 7.6: 

2EI7 ■<Pz2 

Figure 7.6: Element in equilibrium at rotation φΖ2 

Suppose now that the positive side of the element is chosen as the lower side of the beam 
and draw diagrams of bending moments [M] and shear forces [Q]. 
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[M] 

[Q] 

Figure 7.7: Internal forces at rotation φΖ2 

Similar expressions are derived for the rotation φΥ2 about the y-axis, the forces in 
equilibrium are: 

2EIV 
ΨΥ2 

6EIV 

6EIY 
4EIy 

■ΨΥ2 

Figure 7.8: Element in equilibrium under rotation φΥ2 

Displacement y: The element is initially clamped and is given the displacement y2 at 
joint 2 (Fig. 7.9) 

A bending moment at an arbitrary section is 

MZ] + M-QY,x = 0 

M=QY1x-Mzl=-QY2x-Mzl (7.12) 

�� �� �� �� �� ��



Sec. 7.2] Stiffness matrix of a clamped element (m6) 

M n \Q. Y2 

■7) i 
y2 

M: 22 

X 

Figure 7.9: Element loaded by the displacement^ 

which gives the strain energy 

u = LM2-dx_ 1_ \^2 _2 

o 2EIZ 2EI % 
z o 

W2x'+2QY2Mzlx + M2z\dx 

U=-
2EI7 

,2 L3 . „ Λ . , L2 QY2—+2QY2Mzr—+M2zrL3 (7.13) 

The derivative of Mz, gives the rotation φζ1, which is zero due to the boundary 
condition at joint 7: 

dU = 0 = 2MZ1L+QY2L2 
dM zi 

O - 2Mzi (7.14) 

The derivation of QY2 gives 

dU 1 
v2 = dQ: Y2 2 El y 

f ,3 
2QY2—+MZIL2 

£/=-
2EI7 

Q22~- + 2QY2Mzl~ + MzlL3 
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»-ik'""'* -4-+1 
3 

yz=- 6EI7 
M z¡ 

A4 6EIZ 
(7 

The bending moment at the other end is calculated from the equilibrium equation 

MZ2 =-QY2L-MZ1 = _ 

», 6EIZ MZ2=—jr-yt 
L· 

^ L 
i u 6EIz 
L-MZJ=—-r-y2 

(7 

and finally the shear force QY2 from Eqn. (7.14): 

G - = - L = 

12Elz 
QY2=—ZT" ?2 U (7 

As no other force acts in the y direction, the shear force QY1 equilibrates QY2 . 
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+y 
6EI7 

-Ï2 

6EIZ . - - - " -
^ r2 'y2 - ' ' * ' ' 
■ * L — " ( 

Ί ._ ι̂  

r 72£7Z 

^ -

Ï 
K 

J^^ 
-

Λ 

2 

12EIZ 

[M] 

[Q] 

Figure 7.10: Element in equilibrium under displacement^ 

The remaining coefficients (rotations φγ and displacements z) can be determined in a 
similar manner and are written in the stiffness matrix in Fig. 7.11. 

If all elements related to the z direction are crossed out from the equation in Fig. 7.11, we 
get the stiffness matrix which relates forces and displacements for a plane element: 
The above equations may be written in a matrix form 

{F}=[K]{u}, (7.18) 

[K\ is a stiffness matrix of an element, { F } is vector of forces at joints and {u} is a vector 
of displacements at joints. 
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N, 

Or, 
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MZI 

On 

Q72 

T2 

My, 

Γ EA 
L 
0 

0 

0 

0 

0 

EA 
L 

0 

0 

0 

0 

0 

0 

12E!Z 

I3 

0 

0 

0 
6E1Z 
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Figure 7.11: Stiffness matrix of a prismatic element 
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Figure 7.12: A relation between forces and displacements 
for a plane rectangular element (no shear deformation is included) 
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Sec. 7.2] Stiffness matrix of a clamped element (m6) 197 

Equation (7.18) can not be solved for a single element as an element can move without any 
distortions as shown in Fig. 7.13. 

Figure 7.13: Plane truss (NBE = 0) 

Element BE is perpendicular to elements DE and EC, therefore the axial force in element 
BE must be zero, even though forces FB and Fc cause deformation of the whole structure. 

A similar case is on the structure from Fig. 7.14 where an additional force at joint E is 
applied in the direction of the element BE causing the tensile axial force in BE of the same 
magnitude FE irrespective of all other applied forces. 

Figure 7.14: Plane truss (NBE * 0) 
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198 Stiffness and flexibility [Ch.7 

Equation 

{u}=[Kl'{F} (7.19) 

therefore can not be directly solved for one element only. 
An equation similar to Eqn. (7.18) can be written in terms of element distortions, 

i.e. the displacements at joint 2 (joint B in Fig. 7.15) are expressed relative to the 
displacements of joint 1 (Joint A in Fig. 7.15). 
A total distortion may be split into two phases: 

a) A rigid body movement from AB to A'B'. The position is define by the final 
values of displacements at joint A (by x, and y,) 

b) A deformation of A'B' into the final positions A'B". 

As joint A ' is already in its final position, additional displacements at B' are only required 
and will be denoted by element distortions e. 

The vector of element distortions e has, in this plane case, three components ( ex, 
ey , <pz ) but in a general case in space will have six components ( ex, ey , ez, φχ, φν, 
φζ ). Forces on the element due to element distortion e are uniquely related and will in this 
case act at the joint as follows: 

Ψζ =Ψζ2~Ψζι 

y¡ 

A = l 

*i 

—■*?■■-

1 ::v 
B = 2 

B 

« > 

4 A%2 

B 

<PziL 

Figure 7.15: Relative joint displacements 
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Sec. 7.2] Stiffness matrix of a clamped element (m6) 199 

The simplest way to deduce a new stiffness matrix of order 6 x6 is to set all displacements 
at joint .4 to zero. 

N, 

QY2 

QZ2 

M Y2 

M Z 2 j 
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ez 

<Px 
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or simply 

{F}=[K\{e} 

Solving for element deformations gives 

{ehW .{F}=[D\{E}, 

where [D\ is a flexibility matrix of an element. 

[D)= 

2EU 

I 
EA 

υ 

ΰ 

0 

0 

υ 

0 
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3EIZ 

0 

0 

0 

I2 
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L3 

3EIy J 
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0 
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2EIZ 
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0 
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Ely 

(7.20) 

(7.21) 
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200 Stiffness and flexibility [Ch.7 

The terms of flexibility matrix [D] are flexibility influence coefficients. They are the 
displacements which occur at joint 2 if the same joint is loaded by a unit force and all 
displacements at joint 1 are held to zero. Consider the example below: 

?2 = 3EI, 

φ2 = 
2EL· 

y 2 2EI, 

φ2 = 
EI, 

Figure 7.16: Displacement and rotation of an element 

7.3 Stiffness matrix of a clamped-hinged element (ms) 

The stiffness coefficients will be determined by the theorem of unit force considering 
elements in the x-y plane only. 

"&. 

a) Rotation φζ, 

Figure 7.17: Clamped-hinged element 

ΕΙφΖΙ =-MzrlL = —+l— 

MZ1 = 3EI 
<Pzi (7.22) 
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Figure 7.18: Forces induced by the rotation φζ1 

From the equilibrium condition ΣΜ¡ =0: 

QY2L+Mz¡=0 

MZ1 3EI 
QY2= fL = —Jffzi 

3EI 
QYI=-^-<PZI 

b) Displacement y, 
*y 

i*¡ 
y¡ 

fßw 

~^^ 

^£5" v 
Figure 7.19: Deformation of an element under displacement y¡ 
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202 Stiffness and flexibility [Ch.7 

The element is at first displaced by y¡ (dotted line) and then rotated by φζ1 to have a 
horizontal tangent at joint 1 (initially clamped) in the final position. 

3EI y, 3E1 (7.25) 

QY2=—π—y i (7.26) 

3-E-I 
QYJ=+—T1—y¡ (7.27) 
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The same result is derived by the reduction of the whole matrix (of the clamped element 
on both sides) into prime degrees of freedom by partitioning of the matrix 

M-
[Kba)[Kbb\ 

(7.28) 

The reduction is done by unessential degree of freedom that is the rotation at joint 2 

[Kj= 4EU [Kbb\' = 4El7 

[Kc]=[Kj-[Kj\KbbY[Kba] (7.29) 

and after matrix multiplications the same result as previous is obtained. 
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7.4 Stiffness matrix for a truss element (nu) 

203 

Figure 7.20: Degrees of freedom of a truss element 

The stiffness matrix for a truss element consists of terms from Eqns. (7.3a) and (7.3b) only 
and is written in a global co-ordinate system using Eqn. (10.34): 

w-T· 

cos2 a 

s inacosa 

-cos2 a 

- s i n a c o s a 

sinacosa 

sin2 a 
_ j 

- sin · cos 

- sin2 a 

- cos2 a 

- s inacosa 
L 

cos2 a 

sinacosa 

-sin2 a 

- sin2 a 

sinacosa 

sin2 a 

(7.30) 

The reader should note that the matrix is symmetric as expected from Betty-Maxwell's 
theorem derived earlier. 
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8 
The Force Method 
(Method of consistent deformations) 

8.1 A degree of static indeterminacy (DSf) 

A degree of static indeterminacy n can be calculated from a number of equilibrium 
equations E and a number of unknown forces N on a structure by the equation: 

n = N-E, (8.1) 

therefore structures can be classified as: 

n = 0 statically determinate structures 
n>0 statically indeterminate structures 
n <0 unstable structures (mechanisms) 

Each structure consists of j joints and m elements. Joints can be rigid (/?) or pinned (j2) and 
are connected by elements m6, m5, m4 and m3. 
Note that the supports in Fig. 8.1 are not denoted, as the support forces are included in the 
elements connected to supports*. 

Equilibrium equations are set for joints as free bodies so that in rigid joints there 
are three equations and in pinned joint only two equations: 

E = 3- j3+2- j2+3- (m6 +m5+m4 + m3) 

* If several elements are connected to a support, it has to be included into Eq.8.2 but the 
number of suppresed displacements p at that support has to be deduced from the equation 
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Sec. 8.1] A degree of static indeterminacy 205 

Unknown forces appear at element ends where a structure is connected together; the 
number of forces depends on the element type: 

N =6m6 +5m5 +4m4 + 3m3 

A degree of static indeterminacy n (DSI) is therefore: 

n = N-E = 6m6+5m5+4m4+3m3-
-3- j3-2- j 2 - 3 · m6 - 3 ■ m5 - 3 · m4 - 3 ■ m3 = 

= 3m6+2m5 + m4-3- j3-2- j 2 

n = 3(m6- j3) + 2-(m5-j2) + m4 (8.2) 
or 

m3 

h Γ 

m6 

h 
m6 

-fr h 

m6 

ttif. 

m5 

m6 

m5 

h 

m, 

h H> 

m5 

'u.*LÀtlP i * — . M . -■»■V.'ii. »■■lArfJi« 

m5 

m, 

m, 

-Qi h 

η\Λ 

<> 

m, 

Á 

Figure 8.1: Definition of joint and element types 
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206 The Force Method [Ch.8 

As can be seen from Eqn. (8.2) an element m3 has no influence on the degree of 
indeterminacy as it is a basic statically determinate element (i.e. cantilever), which can be 
solved by three basic equilibrium equations. 

Example 8.1: Determine a degree of static indeterminacy for the rigid frame in Fig. 8.2. 

m6 =6, m5 = 0, m4 = 0, j3 = 4, j2 - 0 

n = 3(6-4)+ 2(0-0)+ 0 = 6 

h 

h 

m6 

m6 

m6 

m6 

m6 

m6 

h 

n 

Figure 8.2: Rigid frame - definition of joints and elements 

Example 8.2: Determine the degree of static indeterminacy for a cable stayed bridge 
shown in Fig. 8.3 (Note that the deck and pylon are not connected) 

m6 =3,m5= 1, m4 = 6, j3 = 4, j2 = 1 

The structure is n = 3(3 - 4) + 2(1 - 1) + 6 = 3 times statically indeterminate; redundant 
or unknown forces could be chosen as axial forces in the three out of four cables. 

8.2 Primary structure 

We consider a structure of degree n of static indeterminacy; that is, the number of 
unknown forces exceeds the number of available equilibrium equations by n. The statics 
equations must be supplemented by a number of equations of geometry equal to the degree 
of redundancy n of the structure. In other words, we have to write n additional elasticity or 
deformational equations on the primary structure, which is a statically determinate 
structure. 
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Sec. 8.2] Primary structure 207 

A primary structure is obtained in such a way that an indeterminate structure is 
transformed into determinate structure by removal of n redundant forces, which can be 
reactive forces at supports or internal forces at an arbitrary section. The primary structure 
obtained must be stable, which can be proved as shown in Ch. 4. 

, · . - »«i'ïs 

Figure 8.3: A cable stayed bridge 

8.3 Deformation of primary structure 

Consider the frame in Fig. 8.4a, which is reduced to the primary structure in Fig. 8.4b. 

\ /x 

a) b) 

Figure 8.4: Basic and primary structure 

y& 

χ, 
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208 The Force Method [Ch. 8 

Calculate the deformation of joint k in the direction as shown in Fig. 8.4b. External force F 
causes a deformation at joint k: 

àk0 =i^^-ds (8.3) 

where: M0 bending moments on primary structure caused by external 
load 

Mk bending moments on primary structure caused by unit force 
in the direction of the desired deformation 

Furthermore, unknown forces X¡ and X2 will cause deformations at joint k given by the 
following equations: 

¿u=i^ds (8.4) 

5k2=\^^-ds (8.5) 

Moment M* is as defined above and moments M¡ and M2 are caused by unit forces X¡ = I 
and X2 - 1. Real deformations due to unknown forces X¡ and X2 are: 

X,SkJ and X25k2 

The total deformation at joint k is therefore: 

5k = 5kO + Xlôkl+X
2

ôk2 
If there are n redundante, the equation can be written as: 

5k=ök0 + Í A \ A , (8.6) 
/=/ 

Equation (8.6) means that a deformation can be calculated at any point of the structure, 
hence we can choose n points k and write down n equations. If the deformation ök at all 
these points would be known then all n unknowns X¡ could be calculated. 

8.4 Elasticity equations 

Static indeterminate internal forces and moments X¡ always occur as pairs being in 
equilibrium with each other. These pairs of forces produce no inter-related deformation on 
the whole structure, hence for these points the deformation 5k =0 and the equation (8.6) 
reduces to: 

�� �� �� �� �� ��



Sec. 8.4] Elasticity equations 209 

<5*0+ΣΧ,Λ; =0 (8.7) 
i=7 

Equations (8.7) are elasticity equations of static. The number of these equations exactly 
equals the number of redundants in a structure. 
The coefficients are: 

°~ko deformation at joint k caused by an external load 
5ki deformation at joint k caused by a unit force applied at i 

If bending moments only are taken into account (see Example 5.7) then the coefficients are 
given by: 

δ ¡MjrMi 
ko i E ¡ 

(8.8) 

Sk¡=¡MlJíjL.ds 
k, i EI (8.9) 

Example 8.3: The force method will be outlined step by step in terms of a one-time 
statically indeterminate beam: 

Step 1: Determine the degree of static indeterminacy using Eqn. (8.2) 

73 

T. 
Figure 8.5a: Statically indeterminate beam 

n = 3(m6-j3) + 2(m5-j2) + m4 = 3(0-0) +2(0-0) + 1 = 1 

♦♦♦ Step 2: Evaluate a statically determined stable primary structure. In this example 
clamping moment MA or reaction YB can be released. 
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MA 

1 m 
B 

t 
Figure 8.5b: Primary structure 

Step 3: Calculate the deformation of a primary structure caused by external loads 

_ 1 lqL·2 T,_qL4 LL = -
El 4 2 8EI 

Figure 8.5c: Deformation due to an external load 

Step 4: Calculate the defonnation of a primary structure caused by the redundant 
force X; = 1 

5Bl=—-L(-L)L = -
B' El 3 3EI 
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8.4] Elasticity equations 211 

Figure 8.5d: Deformation due to a redundant force X¡= 1 

Step 5: Using elasticity equation (8.7) calculate the unknown force X¡ such that the 
displacement at joint B is zero. 

δΒ0 

qL4 

8EI 

xr-

+ X/· 

+ x, 

3qL 

δΒ, 

(-

= 0 

3EI 
= 0 

Step 6: Force X¡ becomes an external load on the primary structure, which can be 
solved using basic equilibrium equations. 

MA 

B 

3gL 
8 

Figure 8.5e: Primary structure is loaded by all forces 
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8 8 

ΣΜΑ=0 : MA-qL— + ̂ -L = 0 = A A 2 8 MA = 5È. 
8 

Find the equilibrium for a small part of the beam of length x from the right hand end: 

x 8 2 
n 34L 

Figure 8.5f: Diagrams of bending moments and shear forces 

The maximum bending moment is at the position where the shear force equals zero: 

3L .. 9qL2 
X = - M. 

8 ""** 128 

Final diagrams of bending moments and shear forces are shown in Fig. 8.5f. 

When we need to calculate values at some critical points, we can use the method of 
superposition, i.e. bending moment at joint A is: 

MA =M0+MrX, =—Y+ L"f~—J~ 
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Sec. 8.4] Elasticity equations 213 

Example 8.4: Using the force method solve the structure from Fig. 8.6a, which consists of 
beam BD and two truss elements AD and CD. The beam is clamped at joint B. 

1.200 

1.386 

U40cm 
20 cm 

10 kN 

Figure 8.6a: Mixed structure 

Element data: 

A,=A3=3 cm2 = 310~4 m2 

E,=E3= 200 GPa = 200 ■ 106 kPa 

A2 =800 cm2, I2= 10.67 10'4 m4 

E2 = 25 GPa 

E,A, = 60000 kN E2A2 = 2000000 kN E2l2= 26675 kNm2 

The structure has also two truss elements, which can carry axial forces only, hence the 
work of the axial forces must be taken into account. For ease of understanding, the 
deformation for all three will be calculated separately. 
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7.200 

1.386 

[Ch. 

["l^Ocm 
20 cm 

10 kN 

Figure 8.6b: Primary structure 

Elasticity equations in the direction of redundant forces are ' 

al0+anX¡+a¡2-X2 =■ 

a20+a2¡X, + a22-X2 =■ 

(EA), 

X2L3 
(EA)3 

where the right hand side terms represent elongation or contraction of elements / and 3 
due to axial forces in respective elements and the left hand side terms include all three 
deformations. At first we calculate and draw diagrams of bending moments, shear forces 
and axial forces for external load and redundant forces X¡ and X2. Integration of 
deformations is performed for each influence separately: 

in subsequent text coefficients δ will be denoted by letter a as is usual in mathematical 
textbooks 
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24 

[M0] 
2.4 

[Qo] [No] 

[Μχ] 

7.697 

[Qi] 

0.707 

0.707 

[Ni] 

7.200 

[M2] 

0.500 

[QJ 

0.866 

Figure 8.7: Diagrams of the primary structure 

a) Contribution of bending moments 

a?, = 1 ^ - 2 . 4 - ^ ^ . 2 . 4 = 8.638.10-lu 3(EI)2 3-26675 

a « = _±^0 2.4 = 4.319 ■ 10 ~5 

22 3 ■ 26675 

12 3-26675 

<=(-24)1.69724 = _]22]10^ 
3-26675 
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,f (-24H-1.200)24= 3 

20 3-26675 

b) Contribution of shear forces (shear shape factor for rectangular cross-section K=1.2) 

E 25 
G, s = i = 10.593 GPa 

2 2(1+v) 2(1 + 0.18) 
. A A 800 „ , , . _ ,n-4 2 

A* = — = — = = 666.667 10 m 
s K 1.2 1.2 

(GAS)2 =706200 kN 

?1=-QQ^2A=2^IL.2A=L699.w-e 
11 (GAS)2 706200 

2Q -2^.2.4=0.8496-10-6 
22 706200 

a?2 = (-0-707).0.500_24 = _]201]^ 
12 706200 

α% = 10(-°-707).2.4 = -2.403.10-* 10 706200 

a% = 100-500 -2.4 = 1.699.10^ 20 706200 

c) Contribution of axial forces 

" (EA)¡ 60000 2 106 

= 2.828 lO'5 +6-10'7 = 2.888 ■ 10'5 

aN
22=-tL·. 2.771 + °*™-. 2.4 = 4.619-10~5+9- W'7'=4.709■ 10~5 

60000 2 106 

a^-0J07)^M6)-2.4 = 7.348-10-
2 106 

°w=0 ; a%=0 
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-
Table 8.1 

all*105 

an 
an 
an 
aw 

The eqi 

a2o 

îations are 

11.696 -

-6.155 

-6.155 

9.113 

M 
8.638 
4.318 

-6.108 
122.100 
86.370 

Xi 

\χ2. 

• = · 

Elasticity equations 

Q 
0.16992 
0.08496 

-0.12015 
-2.40300 
1.69900 

124.503 

-88.069 
» 

N 
2.888 
4.709 
0.074 
0.000 
0.000 

Σ 
11.696 
9.112 

-6.154 
-124.503 

88.069 

217 

giving the solution X, = 8.624 kN and X2 = -3.840 kN. 

♦♦♦ If shear forces are neglected 

11.526 -6.034 

-6.034 9.028 

with a solution X, = 8.591 kN and X2 = -3.825 kN. 

*l* If axial forces (inadmissible in this example!) are neglected 

¡XJ 

UJ 
• = ■ 

122.10 

-86.37 

8.638 -6.108 

-6.108 4.318 

122.10 

-86.37 

The above system of equations has no trivial solution as the determinant is 
zero. Practically it means that joint D does not move at all, as the flexibility 
of truss elements was infinite. 

In practice such mixed systems are often solved in a way, that in the matrix of bending 
coefficients, axial flexibility of l/EA is added to the diagonal terms: 

8.638 + 2.888 -6.108 

-6.108 4.318 + 4.709 

x, 

X2. 

122.10 

-86.37 
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giving the solution X¡ = 8.611 kN and X2 = -3.742 kN. The solution is not exact but 
acceptable being within ±2 % . 

Internal forces are calculated using the method of superposition e.g.: 

MB= -24 + 1.697 X, -1.2 X2 = 

= -24 + 1.6978.624 -1.2 (-3.840) = -4.757 kNm 

▲ 6.098 

6.098 

2.772 

3.326 

Figure 8.8: Free body in equilibrium 

Example 8.5: Calculate the structure from example 8.4 using a different primary structure. 
In this case we cut element CD and release the clamping moment (insert 
hinge) at joint B. 

External loading causes axial forces only and a bending moment occurs on the beam due 
toX2=7. 

The influence of shear forces will be neglected, hence: 

1.4142 „ „„ , 1.1 . _ 1.9322 

au=- 60000 
■ 2.771 + -

60000 
• 1.697 + -

a22 =-
0.833d 

60000 
■2.771 + 0.722' 

2 106 
■2.4 + 

2 10° 

1 1.1 
3 26675 

2.4 = 12.51 ■ 10~ 

■ 2.4 = 6.266 lO'5 
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1.4140.833 , , , „ , 1.9320.722 „ , , „ ,„ ΙΛ_5 α,, = 2.777+ - 2.4 = 5.60710 J */2 

a,n =-*io 

60000 

(-20)· 1.414 
60000 

■2.771 + 

2 10° 

17.321 (-1.932) 
2 106 

2.4 = -1.346 10 -3 

tm±m.2J7] + !Z^Lt°W.2.4 = -0.784.10-> 
60000 2 10° 

Wí$" T 

1.200 m 

1.386 m 

40 cm 
20 cm 

10 kN 

Figure 8.9: Primary structure 

12.51 5.607 

5.607 6.266 

134.6 

78.4 

The solution is X, = 8.601 kN and X2 = 4.815 kNm. 
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0. 0. 

2.4 m 

[Mo] [MJ [M2] 

Figure 8.10: Internal forces on the primary structure 

[Ch.8 

0.83: 

In this example redundant force X2 represents the clamping moment at B, other forces are 
determined by the method of superposition: 

Ni = -20 + 1.414 X, + 0.833 X2 = 

-20 + 12.162 + 4.011 = -3.827 kN 

N2 = 17.321 -1.932X, - 0.722X2 = 

17.321 -16.617 - 3.476 = -2.773 kN 

N3 = X, = 8.601 kN 

The reactions are: 

XA = -N,cos30°= 3.8270.866 = 3.314 kN 

YA = -Ni sin30° = 3.8270.5 = 1.914 kN 

XB=-N2 = 2.773 kN 
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Xc= -N3cos45° = -6.082 kN 

Yc=N3sin45° = 6.082 kN 

221 

6.082 (6.098) 
6.082 (6.098) 

4.815(4.757) 

2.773(2.772) 

3.314 (3.326) 

1.914 (1.920) 

Figure 8.11: Free body at equilibrium 
(In brackets are values if shear forces are not neglected) 

The reaction YB is calculated from the sum of forces in the y-direction 

YB=-YA-Yc + ¡0 = 2.004 kN 

and the reaction is the shear force on the beam BD. It is always good practice to check the 
results by an independent equation, e.g. check if the sum of moments about joint B equals 
the clamping moment MB. 

6.0821.22 -102.4 + 3.3141.386 ?= 4.815 

4.810 ?= 4.815 
As seen the error is very small which can result from rounding errors using calculators. 

Example 8.6: Calculation of a simple bridge structure (see Chapter 12) 
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Example 8.7: Calculation of a statically indeterminate truss 

The truss in Fig. 8.12 is two-times statically indeterminate as from the equation 3.10b 

/ = 2j - m -p = 12 - 10 - 4 = -2 

Redundant forces are one of the reactions and one of the elements; hence the truss is 
externally and internally indeterminate. 

3.2=6 m 

Figure 8.12: Statically indeterminate truss 

A statically determinate structure is obtained if support B becomes a roller support 
(reaction XB is removed) and element 6 is cut (axial force N¿ is removed). 

3.2=6 m 

Figure 8.13: Primary structure 

Now all axial forces on the primary structure due to external loads and due to unknown 
forces X¡ = 1 and X2 = 1 are calculated and shown in the table 8.2. 
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Table 8.2 
Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

L(m) 
2.000 
2.828 
2.000 
2.000 
2.828 
2.828 
2.000 
2.000 
2.000 
2.828 

No 
16.667 

-23.570 
-3.333 
13.333 
4.714 

-
-16.667 

0.000 
13.333 

-18.856 

N, 
1.000 
0.000 
0.000 
1.000 
0.000 

-
0.000 
0.000 
1.000 
0.000 

N2 

0 
0 

-0.707 
-0.707 
1.000 
1.000 

-0.707 
-0.707 

0 
0 

The coefficients of the equation of elasticity are calculated using equation 

v NW I 
" {EA), 

and are written in a tabular form in table 8.3, by taking the axial stiffness EA the same for 
all elements: 

Table 8.3 
Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Sum 

an 
2.000 

0 
0 

2.000 
0 
-
0 
0 

2.000 
0 

6.000 

022 

0 
0 

1.000 
1.000 
2.828 
2.828 
1.000 
1.000 

0 
0 

9.657 

an 
0 
0 
0 

-1.414 
0 
-
0 
0 
0 
0 

-1.414 

a¡o 
33.334 

0 
0 

26.667 
0 
-
0 
0 

26.667 
0 

86.667 

Ö20 

0 
0 

4.714 
-18.852 
13.332 

-
23.567 

0 
0 
0 

22.760 

The equations are given in matrix form: 

6.000 -1.414 

-1.414 9.657 

\x'} < w . = . 
-86.667 

-22.760 

and the solution is: X, = -15.536 kN and X2 = -4.632 kN. 
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Final forces in a truss are calculated by a method of a superposition from equation 

Ni=N0 + X!N!+X2N2 

and it is very convenient to evaluate the above equation in tabular form: 

Table 8.4 
Element 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

No 
16.667 

-23.570 
-3.333 
13.333 
4.715 

-
-16.667 

0.000 
13.333 

-18.856 

Ν,Χι 
-15.536 

0.000 
0.000 

-15.536 
0.000 

-
0.000 
0.000 

-15.536 
0.000 

Ν2·Χ2 

0 
0 

3.275 
3.275 

-4.632 
-4.632 
3.275 
3.275 

0 
0 

Νκ 
1.131 

-23.570 
-0.058 
1.072 
0.083 

-4.632 
-13.392 

3.275 
-2.203 

-18.856 

Νκ' 
16.667 

-23.570 
-1.667 
15.000 
2.357 

-2.357 
-15.000 

1.667 
13.333 

-18.856 
*Support B moves horizontally for some reason 

Final axial forces NK are shown in Fig. 8.14. 

J 20kN \h 

r -13.392 ▼ 

15.536 

16.667 
3.2=6 m 

Figure 8.14: Free body and axial forces in the truss 

Note: It has to be emphasised that the horizontal reactions XA = -XB = 15.536 kN, which 
occur at externally indeterminate trusses can be very large. If these forces for any reason 
can not be transmitted to an unmoveable terrain by suitable under-structures, then the 
supports will move and therefore X¡ - 0. Axial forces in the truss are for this reason of 
different values as the elasticity equation is: 

9.657 X2 =-22.760 X2 =-2.357 kN (X,=0!) 

The results for this case are shown in right hand column of Table 8.4. 
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8.5 Special loads 

In many cases, secondary effects such as support displacements, temperature changes and 
pre-strain can be neglected. However, in most cases the engineer must at least evaluate 
their possible magnitudes, instead of allowing for an arbitrary increase in stress, as is often 
done. 
The three major secondary effects, beside loads, that may act on a structure are support 
displacements, temperature changes and pre-strain. 

8.5.1 Support displacements 

In practice structures have displacements under the foundations and foundation rotations 
are usually assumed to be zero. Possible displacements at supports can be u and v, but a 
support may rotate by an angle φ as well: 

R R M 
« = v = <P = ~— (8.10) cx cY L 

A displacement can be dependant or independent on a reaction force. In both cases in the 
elasticity equation 

8ko + ixrSki=0 
¡=i 

On the right hand side of the equation an actual none-zero displacement at support k 
should be considered. 

Example 8.8: Suppose that the support A of the continuous beam from Fig. 8.15 is 
displaced by v = 2 cm {The displacement is independent of the reaction force). 

There is no external loading, hence 8k0 = 0. 

1 _ . . . 250 
ΕΙα,, = — ·5-510 = 

' 3 3 
*irxi+Sk0=-Sk 

X = _ i i - = - J v £ / 

250 
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A 
Δ 

i i 

X¡=1 

5 m 
(L) 

B 
n _ 

B 
— n — 

5 m 
(L) 

C 
Δ 

c 
A 

[Mi] 

Figure 8.15: Continuous beam 
(The displacement is independent of the reaction force) 

Numerical example: The continuous beam from Fig. 8.15 is made of concrete of quality 
C30/36 and has dimensions B/H = 0.2/0.4 m. An external reason causes the displacement 
of 2 cm in the ̂ -direction at the support A. 

ItfJ 3 
E = 32 GPa 1 = -^— = 1.067 ■ 10~3 m4 

12 
El = 34133 kNm2 

X =
 g* =

 3 v E I 
1 a„ 250 Áu 

3 0.02 34133 
250 

= -8.192 kN 

MB=5X,= -40.960 kNm 

The bending moment at support B is negative as the upper fibers of the beam are in 
tension. Let us calculate the stress at support B: 

M 40.960 10' 
W 0.2 0.42 ■ = ±7.68 MPa 

The calculated stress is much higher than the concrete in tension can resist (approximately 
2.5 MPa), therefore the beam has to be reinforced on the upper side over a much longer 
region than would be necessary for static indeterminacy. 
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Example 8.9: Suppose that support A of the continuous beam from Fig. 8.16 is displaced 
as a result of external loading (The displacement is dependent on the reaction force). 

[Mo] 

Ï 
5m 

B 

2.5F 

5m 
C 

L 

X,=l 

F 
ir B 

Δ 
c 
Δ 

[Mi] 

Figure 8.16: Continuous beam 
(The displacement is dependent on the reaction force) 

As an illustration let us first solve the structure when the support does not move at all: 

1 * ς ,η 250 

a,, =—5-510 = 
" 3 3 

a10=-(-2.5-F)-5-5 + -(-2.5-F)-{2.5 + 10)-2.5 = 
3 6 

x, 

= -20.883 ■ F -13.021 ■ F = -33.854 ■ F 

-33.854 F 
250 

3 

= 0.4062-F 

MB=-2.5F + 5X1=-2.5F + 50.4062F = -0.469F 

Now, if the displacement is dependent on the reaction force the equation is: 
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X El 
a,rXj+a10=-^-EI = X, 

CA CA 

Er 
a}1+ — 

■X¡=-aI0 

a10 33.854 F 
Λ, - EI 250 EI 

3 

MK=-2.5F + 5-
33.854 F 

250 34133 
+ 

3 Ci 

"* 1.016 F 

Figure 8.17: Diagram of bending moments (cA=0- <*> ) 

At first we choose an infinite spring cA (support is unmovable), therefore the bending 
moment at B is: 

MR=-2.5F + 5- 33.854 F 
250 34133 

+ 
3 

= -2.5F + 5 
33.854 F 

250 
= -0.469-F 

+ 0 

then cA=100 
kN 

m 
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33 854■F 
MB = -2.5 F + 5■ AA ,,,a3 = -2.101 ■ F 

HOL 3413S 

3 100 

and finally cA = 0, which actually means that support at A was removed. 

A4 „ c F , c 33.854-F „ c F , c 33.854-F 
MR =-2.5- F+ 5———:T77TT = _ 2 . 5 - F + 5 · - — T = -2.5· F B 250 34133 250 

y + 00 
3 0 3 

The last example is a cantilever case of beam AB. 

8.5.2 Temperature loading 

If a structure is subjected to a temperature change the deformation can be calculated by the 
equation (see Ch 5.12): 

8Fl = \NK-arT-ds + \MK'Ot—-d5 (8.11) 

where: 

Average rise in temperature (8.12) 

Temperature gradient (8.13) 
Depth of a beam 
Thermal coefficient of expansion 
aT= 10s /degree (concrete, steel) 

The first part of Eqn. (8.11) arises from Hooke's law, the second part is derived as 
follows. A stress from Hooke's law is calculated 

σ = Εε = Εατ— (8.14) 

and is inserted into the equation for stresses at bending (see Ch. 2.8.3) and a bending 
moment is calculated from; 

M H „ AT 
7 2 Γ 2 

M = EI-Or— (8.15) 
T H 

τ = 
AT 
H 
ατ 

T -
2 

=τ10-

Ά„ 

- ^ 
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£ U n = CCT 
AT 

V:^^% ̂ '^Tf^-^^W^-^^^ 
H 

_& 

Figure 8.18: Thermal loading of a prismatic element 

The term δ£0' is a part of external loading in the equation: 

δ*Ο+ΣΧ;Λ;=0 i,k = l...n 
i=l 

Example 8.10: Calculate bending moments due to unequal heating of the continuous 
plate from Fig. 8.19. 

The bending moments caused by temperature gradient AT on the primary structure are 
given by Eqn. (8.15) and are constant across the whole length: 

M0=ar^-EI 

The coefficients are: 

ILL 
*n 3 2 2 

2L- L L 
2 2 

« /o=T-T- M o- 2 - ¿ = — 
Mn-L2 

The coefficients are inserted into the elasticity equation and X¡ is calculated: 

au X,+a10=0 

X - aio - M o L 6 - 3 M o 
' au 2 ' L3 L 
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3 AT r-r 

— a, El 
L H 

Xi=-Tar — · 

A 
5 m 

B 
5 m 

C 

A B 

\X,=1 

c 

[Mo] 
M0 

Figure 8.19: Continuous plate 

Bending moments are calculated using the method of a superposition: 

AT MA=M0 = -a. El 
A 0 t 

AT _. L 3 AT _r 1 AT _. 
MB=-a. EI+ a. EI=—a, El 

e ' H 2 L ' H 2 ' H 
Consider now a plate thickness of 0.18 m, the width is a band of 7.00 m, positioned at the 
uppermost floor of a building and heated by AT = 30° C. 

El =32-106 ■ 1±£JÊL = 15552 kNm2 

72 

M, = a. EI = W'5 ■ ——15552 = 27.648 kNm 
' H 0.18 

MB = 13.824 kNm 
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27.648 

Inflection point 

27.648 

Figure 8.20: Deflection of a plate and bending moments 

The stresses at joints A and C are 

σ = ± — = ±—¥-— = ±5.12 MPa, 
W 1-0.182 

which is well over the allowable stresses for concrete in tension. 
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8.6 Deformation of statically indeterminate structures 

The procedure is outlined in the following two steps: 

1. Solve an indeterminate system 

pr^Qr-sï 
X, 

αιο + αηΧ,+αΙ2Χ2=0 

α2ο + α2ΐχι+α22·χ2=° 

The solution of the above equations gives unknowns X¡ and X2. Bending moments 
are determined by the method of superposition: 

Mj=Mju+ÍMrX¡ 

2. Calculate the deformation at an arbitrary point k by the equation: 

El-5k=\MrMk-ds, 

where bending moments due to Fk = 1 are: 

ΜΙί=ΜΙΐο + ΣΜ,Χί 

It is obvious that an indeterminate system has to be solved twice; first for external loads 
and then for load F = I, applied at the point where the deflection is desired. 
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Example 8.11; Determine the deflection at point C for the beam in Fig. 8.21. 

[Ch.8 

XA m 

MA 

B 
C Ί\ 

YA 2 m -£S-
2 m 

Figure 8.21: Indeterminate beam 

[Mo] 

[MJ 

X,= l 

Figure 8.22: Primary structure and moments M0 and M, 

2F-2 5 . 
a = -·4- 40F 
*io 2 6 

1 A A A 6 4 

α,, = — ·4·4·4 = — 
" 3 3 

X aioJOF 
a„ 32 
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MA=-2F + 4X,=-

20- F 

Deformation of statically indeterminate structures 

24-F 
32 

235 

Mr=-
32 

-24F 

[MJ 

20F 
32 

Figure 8.23: Final diagram of bending moments MK due to force F 

Now the structure is solved for virtual force F = 1 at point C. The final bending moment 
diagram is shown on Fig. 8.24. 

[MJ 

Figure 8.24: Final diagram of bending moments Μκ due to force F=l 

Deformations are calculated using table B.4: 

El.Sc = iM-M.ds = -Ll°-.4±L.4+L«±.6±L.2 = c J 3 32 32 3 32 32 

= -2.083 ■ F + 2.667 ■ F = 0.583 ■ F 
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δΓ = 0.583 F 
EI 

Let us now see the result if the final diagram of bending moments is integrated with the 
diagram of bending moments on the primary structure caused by unit force, applied at the 
point and in the direction of the desired deflection. 

-0.75 F 

[MJ 

[M] 

Figure 8.25: Final diagram of bending moments 
and diagram of bending moments on the primary structure 

Integration is performed by the Vereshagin's method 

ΕΙΔ = — 0.2917-F =0.583-F, 
2 

and gives exactly the same results as above. This simplified procedure is called the 
reduction statement and is proved in Section 8.7 below. 

8.7 The reduction statement 

Using the principle of virtual displacements a deformation is given by: 

om =J ds 
m J EI 

and is valid for statically determinate and indeterminate structures. Bending moments of 
an indeterminate system are calculated from an elasticity equation 

δΚο+ΣδΚι·Χ^Ο 

and by equation 
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M = M0 + EKrMi 

In a similar manner virtual bending moments are determined by: 

8¡ +Σδ: -Xk=0 
Jo IK K 

M = M0+ZXk-Mk 

If at first virtual bending moments are inserted into the former equation 

5m=l{M0+2XkMk).M± 

8m=¡M0-MJL + Ij(k¡M.Mk.jF 

and then from real moments caused by external loads we obtain: 

5 m = f M 0 M ■± + IXk-i(M0+IXrMi)-Mk-^- = 
EI El 

= \M0M^+IXk\\M0-Mk^i+IXr\MiMk^i 

hence: 

As the right hand part of the above equation is the elasticity equation, which equals zero, it 
follows that: 

K=i^%^- (8.16) 
El 

V The reduction statement states that deformations of an indeterminate system 
can be determined if bending moments of an indeterminate system are 
known and if virtual bending moments of the primary system are known. 
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8.8 Application of the reduction statement 

The method of forces is a useful tool for the analysis of simple structures and gives a 
student a good understanding of structural behaviour through deformation calculations. 
However, there is no independent control of the calculated unknowns, since the 
equilibrium of the whole structure is established using unknowns as external loads. 

The reduction statement offers a simple and effective control of the calculated 
results. A new primary structure is determined which has to be different from the one from 
which unknowns were determined. Using the equation 

5m=\M0M^ 

some arbitrary but known (usually zero) deformation is calculated fulfilling the condition: 

Example 8.12: Solve the rigid frame from Fig. 8.26 and prove the results by the reduction 
statement. 

B 

1/0 WV 

4.0 m, 5El 

3.0 m, El 
I Xc 

Yc 

Figure 8.26: Rigid frame 
(Stiffness of the beam is 5x stiffness of the column) 

�� �� �� �� �� ��



Sec. 8.8] Application of the reduction statement 239 

i lOkN 

m T 
Xl 

3.0 m 

3 [Mi] 

20 

[M0] 

[MJ 

Figure 8.27: Primary structure and bending moments 

a,,= — = 9 
" 3 

143 64 
a„= + 4' -3 =—+48 = 52.267 '22 5 3 

aJ2= —3-4-3 = 18 
2 2 

a10=--{-20)-3-3 = -90 

aon= - ( 20)'2 ■ 3.333-20-3-4 = -253.333 *20 ■ 5 2 

9 18 

18 52.267 

Xl 

* 2 . 

90 

253.333 
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\x, 
j 0.984] 

\4.508\ 

MA =-20+3-0.984+4■ 4.508 = 0.984 kNm 

MR =-20+4-4.508 = -1.968 kNm 

Mc =2-4.508 = 9.016 kNm 

- 4 > 0.984*¡ i * 

a 10 kN 

B 1 C^. 0.984 
4.0 m 

3.0 m 

984 

5.492 

5.492 
[NK] 

T 
4.508 

0.984 

1.968 

9.016 

0.984 

5.492 

0.984 
[QK] 

4.508 

Figure 8.28: Free body diagrams and diagrams of internal forces 

A check of the results using the reduction statement is done in such a way, that a new 
primary structure, which has to be different from the original primary structure, is chosen 
and then a known deformation is calculated (see Fig. 8.29). 
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B 

°7V 
y i 

a 
[M] 

tga = 
4 

a = 36.87' 

cosa = — => r = 3 cosa = 2.4 m 

Figure 8.29: Primary structure used by the reduction statement 

Calculate now the displacement between joints A and C by integration of final moments 
from Fig. 8.28 with virtual moments from Fig. 8.29: 

El 8 = {¿^-3 ■ (-0.984) + - · - · (-2.4) ■ (-1.968) ■ 4 + 

+ --(-2.4)10(l + 0.5)-4 = 
5 6 

= 3.542 +1.260 - 4.800 = 0.02 s 0 

As expected the result is zero and a check by the reduction statement proved that results 
calculated by the force method were correct. 
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9 
The Displacement Method 

9.1 Introduction 

Statically indeterminate structures are solved by the displacement method as if unknown 
displacements and rotations were chosen. From a system of equilibrium equations we 
calculate deformations from which internal forces and reactions are calculated. 

The displacement method is superior to the force method when the number of 
unknown forces exceeds the number of unknown displacements and rotations. 

The concept of stiffness matrix, introduced in Ch. 7, will be used for a structural 
stiffness matrix assembly and it is a foundation for the displacement and later the finite 
element method. 

Two simplified longhand methods will be shown: a classical deformational method 
and a moment distribution method (Cross's method). In the classical deformational 
method a system of equations will be established but contrary to the force method the 
determination of coefficients of the equations is much simpler as they depend on single 
individual elements only. The moment distribution method remains the most powerful tool 
for an engineer without computing equipment and can help in better understanding of 
simple structures. 

At the end of the chapter a new method for influence line determination is 
presented using ψ functions as a further development of well-known ω numbers. 

9.2 Kinematics (deformational) indeterminacy 

Displacements and rotations of joints define a deformational state of a structure; joints can 
be rigid or pinned. 
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Rigid joint 

1 
/ 

1 
1 

1 
1 

"/ 

y,v> 

Pinned joint 

/ 

Figure 9.1: Rigid and pinned joints 

ΊΕ 
Free joint 

/ 

Tied joint 

Figure 9.2: Free and tied joints 

Two displacements u and v and a rotation φ are possible in a rigid joint, whilst only two 
displacements u and v are possible in a pinned joint. We shall distinguish between free and 
tied joints; tied joints are supports in which p¡ rotations (¡o, and pz displacements u, and 
v, can occur. 

Example 9.1: Determination of joints 

Figure 9.3: Determination of joints 

Number of all joints: 6 
Number of tied joints: 3 (1, 3, 5) 
Number of free joints: 3 (2, 4, 6) 

At the supports seven quantities are prescribed, they are: 

uj = vj = φ1 = u3 = Vj = U; = v5 = 0 

If on a structure there are k rigid joints and g pinned joints then the total of all 
deformational quantities is: 

3k + 2g 
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from which p prescribed deformational quantities at supports {p¡ rotations and p2 

displacements) are deduced, hence: 

3k + 2g-p (9.1) 

The above quantities can be divided into unknown rotations 

k -p, 

and into unknown displacements 

2( k + g ) -p2 = 2j - p2, 

where p¡ means the number of suppressed rotations (at supports) and p2 means the number 
of suppressed displacements (at supports), j is the number of all joints. 

Note that the total number of unknowns will not be 3 k + 2 g - p, as some 
displacements are dependant on each other. 

Joints of a structure are interconnected to each other with elements (beams and 
columns); therefore the compatibility equations (4.9) at joints must be applicable: 

uk-Ui vk-v¡ 
A =—- J- = — '- (9.2) 

yk-yj Xk-Xj 

Equation (9.2) relates the deformation A (a rotation of an element) and displacements of 
joints u and v. The number of relations that exist depends on the number of elements in a 
structure, hence the number of deformational quantities is: 

n =3k + 2g-p-m (9.3) 

or if we distinguish between rotations and displacements: 

Unknown rotations: b = k- p, (9.4) 
Unknown displacements: c = 2-k + 2g-p2-m (9.5) 

or c = 2j-p2-m 

A degree of deformational indeterminacy (DDI) is then given by: 

n = b + c (9.6) 
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Examples 9.2: Determination of degree of deformational indeterminacy 

4 

2 

Rotations: 
Displacements: 

b-. 
c -
n ·■ 

m=3 
k=4 
g=o 
p,=2 
P2=4 

=4-2=2 
=24+0-4-3=1 
=2+1=3 

Unknown rotations are φ3 and φ4 , displacement occurs at the top of column 1-3, at the 
same time column 2-4 moves but its displacement is the same as that of column 7-3 
(compatibility condition). 

m = 10 
k = 5 
8 = 3 
P,= l 
P2=4 

Rotations: 

Displacements: 

b=5-l=4 

c = 25 + 23-4-10 = 2 

n=4+2=6 
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m=14 Rotations: 

k=9 b = 9-3 = 6 

Displacements: 

c = 29 + 0-6-14 = -2 

The above examples confirmed that rotations and displacements influence the DDI 
separately as eventual over-determinacy in displacements Δ (c < θ) has no influence on 
the number of unknown joint rotations φ. 

The conclusion comes from the fact that the rotations in the structure can occur 
without any sway movements of the structure. 

The above separation of rotations and displacements will be used in the classical 
longhand deformational method and in Cross's moment distribution method where 
structures will be classified as non-sway (c <=0) and sway (c > 0) structures. 

9.3 Structure stiffness matrix 

The structure stiffness matrix [κ]relates the forces and displacements of a structure 
composed of elements. The force X, at a joint and in the direction i is linearly related 
through the corresponding displacements A¡ by equation: 

X, = ku - Δ, + ki2 ■ A2 + + k¡j ■ Aj + 

{jf}=M-{d} (9.7) 

Each element ktJ of this stiffness matrix is defined as the force that must be applied to the 
complete structure at node i to produce unit displacement at node j , all others are kept 
zero. Consider now one single joint connecting several elements 1,2. ..m. Figure 9.4 shows 
the internal element forces S\m) of element m along node i, as well as their equal and 
opposite reaction forces on the joint. For instance, the i-th force on the m-th element is 

S,H = ¿M. Δ] + kM. A2 + t j«) .Aj+ (9.8) 

where the j extends over all nodes attached to the element. The equilibrium equation for 
the forces in the direction / at the joint is 

ΣΚ^Ο: -Su-Si2-Sim + Fi=0, 

8=0 

Ρι=3 

p2=6 
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from which, inserting Eqn. (9.8), we get 

fe+*»+ +*"+ )-4/+(*/2+*«+ +*.*+ )·42+· 

247 

> i A direction 

Figure 9.4: Joint and element forces 

The structure stiffness coefficient K¡¡ is therefore obtained by superposition of the element 
fr.V" 

m 
(9.10) 

It is essential that each node of the structure be carefully labeled, and that the nodal 
numbering of each element corresponds to that of the structure. The element stiffness 
matrices are then written and superimposed, or assembled. 

Example 9.3: Assemble the stiffness matrix for the structure of the Fig. 9.5 

Element data: 

2 Aj = A3 =3 cm 

A2 = 800 cm¿ 

12 = 10.67 ■ 10~4 m4 

E! = E3 = 200 GPa 

E,A,=60103 kN 

E2A2=210° kN 

E2I2= 26.675 JO3 kNm2 

E, = 25 GPa 
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1.200 

1.386 

| j 40cm 
20 cm 

Figure 9.5: Mixed structure 

Figure 9.6: Degrees of freedom at elements 

First calculate axial and bending stiffness of individual elements: 
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F ■ A kN 
L,=1.697m => ^ - = 35355 — 

L m 

L, = 2.40 m => - ^ - = 833333 — 2 L· m 

£ · 7 = 26.675 kNm2 

FA kN 
L3 = 2.777 m =» =-?- = 27655 — 

L m 

Elements 7 and i are truss elements (two force elements) therefore equation (7.30) is 
applied, element 2 is a beam element and equation (7.11) is used: 

1 2 4 5 
1 17677 -17677\-17677 17677 

w -77677 17677 

-17677 17677 

5 17677 -17677\-17677 17677 

17677 -17677 

17677 -17677 

H= 

833333 

0 

0 

-833333 

0 

0 

0 

23155 

27786 

0 

- 23155 

27786 

0 \ sim. 

27786 \ 

44458 ¡ 
_l 

0 ¡833333 

-27786] 0 23155 

22229 I 0 27786 44458 
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1 10 

H-
16240 9376 \-16240 -9376 

9376 5413 ¡ 9376 ■5413 

-16240 -9376 ¡ 16240 9376 

-9376 -5413 ! 9376 5413 

The structure stiffness matrix (10x10) is obtained by assembling the above element 
stiffness into the locations as indicated by numbering of the rows and columns and by the 
appropriate dotted lines inside the matrix. 

[Kh 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 2 
867250 

-8301 46245 

0 -27786 

-17677 17677 

17677 -17677 

-833333 0 

0 -23155 

0 -27786 

-16240 -9376 

-9376 -5413 

3 4 5 

44458\ 

0 \ 17677 

0 \-17677 17677 

0 \ 0 0 

27786\ 0 0 

22229* 0 0 

0 ! 0 0 

0 \ 0 0 

6 7 8 

sym. 

833333 

0 

0 

0 

0 

23155 

-27786 44458 

0 0 

0 0 

9 10 

16240 

9376 5413 

The physical meaning of these numbers should be clearly understood. For instance 
stiffness KJJ = 867250 is about 20-times the value of K22 = 46245, indicating that the 
horizontal force required to stretch the structure a specified amount horizontally is 20-
times as much as a vertical force at the same point causing the same amount of vertical 
displacement. 

�� �� �� �� �� ��



Sec. 9.4] 

9.4 Matrix formulation 

Matrix formulation 251 

The matrix displacement method is the most powerful of the various methods for structural 
analysis if used in conjunction with appropriate computers. In its generalisation as the 
finite element method it is capable of analysing any solid body though in this text will be 
restricted to the analysis of framed structures. 
The displacement method relates the forces to the displacements by the structure stiffness 
matrix [ê\: 

{*}=[*] W 

At each node (joint) a force and its corresponding displacement exist as conjugate 
quantities. 
For a structure having / degrees of freedom we group together nodes with unknown 
displacements and nodes with known displacements (usually at supports) in a partitioned 
form (Eqn. 9.10): 

wn forces => 

Reactions => 

* « ' 

.*/». 

Ê<÷á Êáâ 

Êâá Êââ 

4,' 

.V 
=* Unknown displacements 

=> Known ( specified ) displacements 

The solution is obtained in two steps: 

from which 

(9.11) 

(9.12) 

Note that the matrix [Kaa] is a square matrix of order ( / x / ) which has to be inverted, 
corresponding to a solution of/simultaneous equations. 

The displacements thus found are then substituted into the remaining equations to 
solve for unknown forces or reactions: 

If all )Äâ } equal zero (support deformations are zero) the equations simplify into: 

Whkaal' frai (9.14) 

(9.15) 

Let us here load the structure at the free joint by the force Fy = -10 kN. 
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7.200 

7.386 

The Displacement Method 

M40cm 
20 cm 

10 kN 

[Ch.9 

Figure 9.7: Application of the load 

0 

-10 

0 

X 

X 
I 70J 

867250 - 8301 0 

-8301 46245 -27786 

0 -27786 44458 

-17677 17677 0 

17677 -17677 0 

- 833333 0 

-23155 27786 

0 -27786 22229 

16240 -9376 0 

-9376 -5413 0 

17677 

-17677 17677 

0 0 833333 

0 0 0 23155 

0 0 0 - 27786 44458 

0 0 0 0 16240 

0 0 0 0 0 9376 5413 

A 
8 

A 

A 
l io. 

Let us emphasise here that the first column contains displacements in the directions 7, 2 
and 7 caused by unit force in the direction 1, the second column displacements due to unit 
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force in the direction 2 and the third column displacements due to unit moment in the 
direction 3. 
Equation (9.14) can now be solved to yield unknown displacements 

and after inserting the known forces we get: 

'867250 -8301 0 

-8301 46245 -27786 

0 -27786 44458 

--/ 

·· 

' 0 

-10 

0 

J i j 

= 10' 

1.156 0.332 0.208 

0.332 34.723 21.702 

0.208 21.702 36.057 

-10 

which gives the solution 

-3.324 10-° m 

-3.472 10-" m 

-2.170 IO'4 rd 

When the displacements are known from equation (ú^}= l/^aJ{Aï} reactions can be 
calculated 
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' * , ' 

* 5 

x6 

x7 

*8 

x9 

^w. 

. := . 

-6.079 

6.079 

2.770 

2.010 

4.824 

3.309 

1.911 

The internal element forces, that is the end forces and moments of elements 1,2 and 3, can 
now be found by applying element stiffness matrices, which are multiplied by 
corresponding displacements. For instance, find internal forces in element 1: 

Nlx } Ã 77677 -17677\-17677 17677' ë\-3.324.10'6 

N2y 

N4x 

-17677 17677 

■17677 17677 

N5y 17677 -17677]-17677 17677 

17677 -17677 

17677 -17677 

■ 3.472.10'4 

0 

0 

6.079 

-6.079 

-6.079 

6.079 

These forces are given in a global co-ordinate system and have to be transformed into the 
local co-ordinate system; in this case it is calculated simply at joint C using equation 
(10.35) with a = -45°: 

Nf 

L^cJ 

cosa Sina 

-sina cosa -6.079 

6.079 0.707 -0.707 

0.707 0.707 

6.079 

-6.079 

8.597 

N,= 8.597 kN. 

It is always good practice to draw a free body in equilibrium to check for global (not only 
of an element) equilibrium as shown in Fig. 9.9. 
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2.770 

3.309 

Figure 9.8: Free body in equilibrium 

The above procedure can be outlined in the following six steps necessary for the 
formulation of the matrix displacement method: 

►►► Step 1: Identify individual elements of the structure. The interconnection 
points between these elements are called joints. 

►►► Step 2: At each joint identify and number the nodes for which forces and 
corresponding displacements exist. Number the nodes with unknown 
displacements first. 

►►► Step 3: Calculate the stiffness matrices for all elements, adhering to the 
numbering established in step 2. 

►►► Step 4: Assemble the structure stiffness matrix by superposition of the element 
stiffness matrices. 

*t* Step 5: Write the matrix equation {X}=[ür]{d}, substitute known values of 
forces and displacements, partition into Eqn. (9.12) and (9.13), solve for 
unknown displacements { \ } and the unknown reactions {zi« j . 

►►► Step 6: Calculate internal element forces by the equation {s}m = [km ]■ {Aj for 
each element separately. 
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9.5 Slope-Deflection method 

9.5.1 Basics 

The general matrix displacement method explained in Ch. 9.4 is suitable for use with 
computers. If axial and shear distortions are neglected a much simpler method appropriate 
for longhand calculations can be derived; it is applicable to planar structures only and is 
called the slope-deflection or classic displacement method. 

The method of nodal numbering will follow the classical notation. The joints of an 
element of length L (Figure 9.9) are designated by letters j and k, elements are loaded by 
end moments Mj and Mk only (therefore end shear forces are opposite), joints can rotate by 
angles q>j and (& and a relative translation between element ends is Ak. 

M> CL Q 
Qj 

L,EI 

Figure 9.9: Slope-deflection method convention 

From a stiffness matrix of a planar element (Equation 7.11) appropriate values are taken 
and written in the following equation 

\MJ] 

w . =. \
Mj] 
kJ 

♦ + 

F kkj ^kk ~ 7 " {kkj +^kk) 

9k (9.16) 

where the first column on the right hand side of the equation represents moments caused 
by external forces and the second column moments due to the end deformations of an 
element. 
For the specific case of a straight prismatic element of length L the rotational end stiffness 
are known 
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<-i,· - «·** H I — 
4 El 

kjk - kkj ~ 
2 El 

(9.17) 

and after insertion into (9.16) we get: 

1 1 
L L 
1 1 
L L 

\MJ] 
UJ 

• =: · \Mj] 
[«j 

+ EI-

F 

Øß 

9k (9.18) 

The sign convention of the fixed-end moments from Fig. 9.10 is: counter-clockwise 
moments on the element ends are positive. Equation (9.18) can be expanded to include 
shear forces at the element ends as: 

Mj 

Mk 

Qj 

Qk\ 

• = · 

M, 

Mk 

Qj 

Qki 

• + 

F 

4EI 
L 

2 El 
L 
6EI 
L2 

6 El 

2EI 
L 

4 El 
L 
6EI 
L2 

6EI 

6EI 
L2 

6EI 
L2 

12EI 
L3 

12EI 
L3 

<Pk 

or explicitly 

», L. \ (4EI 2EI 6EI Ë Ì 
MJ = \Mj)F

 +[—öß +—V« -çÃ^ 

. , (*M \ I 2 E I 4 E I 6 E I Ë 

Mk ={Mk)F+\—9j+—Çk—^-Ak 

n tn \ (6EI 6EI YIEl Ë 

QJ = fel -{-jjT-Vi + - p - · ^ —jr^ 

(9.19) 

(9.20) 

(9.21) 

(9.22) 

Ö*=(öJf 
6EI 6EI 12EI 

{j~*i+-ë-«—-

Equation (9.19) can be written in a matrix form 

{F}={F\+[K]U 

(9.23) 

(9.24) 

�� �� �� �� �� ��



258 The Displacement Method [Ch.9 

{F} is a force vector (final forces at joints), {F}0 is a vector of fixed-end moments and 
shear forces due to the external loads on the element, {u} is a vector of joint 
displacements, [ê] is so called "stiffness matrix of the element type h", that is if the 
element is clamped at both ends. If one end of the element is pinned (element type g) then 
Mk=0 and therefore: 

• Mj · 

Mk=0 
< 

QJ 

e* . 

. = 

3EI 
L 
0 

3EI 
' L2 

3EI 
L2 

3EI 
L2 

0 

3EI 
L3 

3EI 
L3 

The procedure of calculation is as follows: 

►►► Define a geometrically determinate system, that is a system where all rotations öß 
and displacements of elements Ä, are zero and write stiffness relations for each 
element for two types of loads: 

1. External loading on the element 

2. Loading by rotations of both ends and by a relative displacement between 
element ends 

►►► The geometrical (compatibility) relations are satisfied by writing displacements 
common to several elements and by inserting the given support conditions. We have 
to write down 

b = k — pj Equations of joint rotations <p( and 

c = 2k + 2g-p2 -m Equations for element displacements 4, 

♦t* Equilibrium must be satisfied by the equilibrium equation for each rotation and 
displacement separately. Equations are then solved for these displacements. 

►►► The displacements found in previous step are substituted into the slope-deflection 
equations to find the element end forces. All other element forces can then be 
determined by statics. 

Statically the problem is solved when all rotations ö, and displacements 4 are found. As 
the joint rotations are suppressed in step one; external loading causes fixed-end moments 
at the element ends. Fixed-end moments can be determined by the force method (see 
example below) or can be found in Tables B.6 and B.7 for the most common loads. 

<Pj 

J*J 

(9.25) 
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Positive signs of moments were defined earlier, that is a counter-clockwise moment is 
positive. 
Example 9.4: Fixed-end moment for the element of type "g" 

¸ \ 

3FL 

16 

Figure 9.10: Determination of fixed-end moment 

aio = - · 
; FL (L , U - + 2L 2 

5FU 
48 

a n =■ 

*i = 
5 F „ F-L 5-F . - . ( 1 5 

M, = + L = FL\- — + — 
16 A 2 16 2 16 

3FL 
16 

9.5.2 Deformational equations 

The structure is b + c = n times statically indeterminate, hence b equations for rotations of 
joints øé and c equations for the displacements of elements 4 must be written. 

In practice we will distinguish between three cases: 
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►►► Joints can only rotate (non-sway systems c < 0). Only b deformational equations for 
joint rotations <p, must be written. 

♦J* Beside joint rotations, element displacements 4 c a n occur, but they are independent 
of each other (simply sway systems c > 0 , n = b + c deformational equations) 

►►► Displacement of elements 4 ^ dependent of each other (general sway systems 
c > 0 ,n = b + c deformational equations) 

9.5.3 Non-sway systems c < 0 

Example 9.5: Analyse the continuous beam below 

r 
U 

B 

+-
Figure 9.11: Continuous beam 

Static indeterminacy: 

n = 3\m6 - j3)+2 {m5 - j2)+ m4 = 

= 3-(2-0)+2{0-l)+0 = 4 

Kinematics stability: 

f=2v-(n + k + p)=6-(2 + J + 7)=-4 

Deformational indeterminacy: 

n = b + c 

b = k-p,=3-2 = l 

c = 2-(k + g)-p2-e = 2{3 + 0)-5-2 = -l 

As seen, the structure is four times statically indeterminate hence using the force method 
four equations must be solved (i.e. for Xc, Y„ YB and Mc)\ on the contrary the only 
deformational unknown is the rotation öÂ. 
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1. Force-deformation relation (including boundary conditions) 

a.) Element AB 

Fixed-end moments 

Ì'..-ø Ì^-ø 
Slope-deflection equations 

= l^L+, 
( 

MAB=—^-+EI -T<PAB+T-<PBA-6~-
4_ 2_ \ 

MAB=-
FL, ( 

+ EI 0 + —öÂ-0 

or 

MBA=-£-± + EI 0 + —ØÂ-0 

b.) Element BC (no external loading) 

MBC =0+EI 4 > öÂ+0-0 

MCB =0 + EI-
( 2 > 
0 + —<pB-0 

L2 

2. Geometry conditions: 

ØÁÂ = 9CB = ABA = ABC = ° 

= <PBC = <PC 

3. Equilibrium at B: 

ÓÌ Â=0 : MBA + MBC=0 
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f FL, 4- El 
L + 

8 L, 

4- El <pB=0 

FL, + 4E1 

ØÂ =■ 
FL, 1 1 

= 0 

F · Lu Lj ■ L2 

8 4E1 J_ + J_ 32EI L, + L2 

L, L2 

4. End moments calculation; öÂ from above is re-substituted into the equations from 
step 1. 

M AB =Éé +̂ÅÉ.±. 
L, 

<PB 

MAB = 
FL, +ÅÉé.Æ±-.±éÀ±À-=Å-±+1..±ôßé 

32 El L,+L2 8 16 L,+L2 

FL, „ 4 FL, F L,L2 
MBA = '- + E1 ©» = '- + '-—-

BA 8 L, B 8 8 L, + L2 

MBC=EI~-
L2 

F L] Lj ' L2 

ö L2 L, -H L2 

PF 2 F Ll L1L2 
MC8 =El <pB = '- *—— 

IQ 16 L2 L, + L2 

\ÏLI = L2 = L: 

M,= 
5FL 
32 

MRA =-MRr - -'BA BC 
FL 
16 

Mc = 
FL 
32 

The equilibrium is restored on free bodies of individual elements and shear forces as well 
as reactions are calculated, for instance: 

YA=^L 
A 2 L 

(5-FL FL] 19F 
32 16 32 
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5/32 

[M]JCFL 

1/32 

19/32 
i. 

+ 

1 

+ * 

r 
16/32 3/32 

1 [Q]xF 

Figure 9.12: Final diagrams of bending moments and shear forces 

Example 9.6: Solve the non-sway frame structure (El = const.) 

4 m 
X-

4m 

Figure 9.13: Non-sway frame structure 

2 m 

2 m 

At first we shall determine the degree of deformational indeterminacy: 

m=4, k=5, g=0, pi=4, p2=8 

b = k-pj=5-4 = l 

c-2k+2g-p2 -m 

c = 2-5-8~4 = -2 
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c<0 

The structure has one unknown deformational quantity only, hence only one deformational 
equilibrium equation for the rotation at joint C has to be written (the unknown is therefore 
the rotation q>c ). 
The rotation at C is calculated from the condition, that all moments have to be in 
equilibrium: 

feM,.)c=0 

Moments at a particular joint can be caused by external loading, by the rotation of that 
particular joint and by the rotations of neighbouring joints; in the example 9.6 the only 
external loading is force F acting in the middle of element 4. 

_FL F-4 F 
ajo- e - Q - ~ 

14 4 4 4 4 , 
= 6 l Lt Lj Z/2 Lf L4 

I 2 ajk=l— = 0 
i U 

The equilibrium equation is 

from where the rotation at joint C is calculated: 

„, ajo F F EI ■ ©e = —— = = c üjj 2-6 12 

Moments in individual elements are calculated using equations (9.20-9.21) 

2EI 2 F F 

4EI F 

MCA=—<Pc=--

F i. F F 5F 
CE 12 ° 12 2 12 
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M F M - 7F 

M Er = M0 
E 24 12 

2EI 2 F 
MBC = e»,· = 

BC L Yj 2 12 

F_ 
12 

14 4EI F 

MCD = - — 

M DC = 
DC 12 

24 ' + 1 

Figure 9.14: Diagrams of bending moments 

Shear and axial forces are calculated from the equilibrium at each individual element, for 
instance for element 4: 
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5F 
12 3 4 m 

11F 
24 

+ 

ir 

13F 
24 

Figure 9.15: Determination of shear forces 

F_ 
24 c, 

+ 2F 
192 

45F 
4º92 

192 12 

8F 
l2~\ty*192 

45F 
*m. 

4 m 4 m 

F ãñ^ 

: CV2 

ì 
104F 
192 

l\ 

2 m 

2 m 

Figure 9.16: Free body in equilibrium 

9.5.4 Simply sway structures 

If a structure has c element displacements, then beside b equilibrium equations, c 
supplemental equations must be written from the equilibrium of all forces on a free body 
related to the displacement 4, on a particular kinematics chain. 

Simply sway structures are defined as structures at which a displacement of a rigid 
body (i.e. column) is dependant on that particular displacement A, only. 
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The missing c equilibrium equations are derived from the equilibrium of the kinematics 
chain by the method of virtual work. The work of all forces on a chain is calculated and an 
equivalent force is derived causing the same work done, (see the example 9.7). 

5 = qH 

^ O 

-> / / 

Ø I 

~T~ H_ 

H 

" absolute pole 

Figure 9.17: Work done on a kinematics chain 

The work done at the rotation ö of the element about an absolute pole is 

W = F · (H ■ <p)+ S ■ (— ö) = F ■ (H ■ ö)+ ̂ -—ö = H(p(F + ^L) 
4 2 4 8 

W 
FP= — = F + 

qH_ 
8 

hence the diagonal terms of kinematics chain displacements (from Fig 7.11: second row, 
second column) are 

12EI Δ, 

which are in fact equivalent forces on the kinematics chain. The displacement causes 
moments at the other end and therefore the out of diagonal terms are(from Fig 7.11 : sixth 
row, eighth column): 

6EI A at positive y displacement and 

6EI A at positive x displacement 

Note: Considering elements of type "g ", the coefficients 12 and 6 equal 3. 
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Example 9.7: Simple sway frame (F = 10kN,g = 10 kN/m, p = 5 kN/m) 

f« 

Figure 9.18: Two-story frame structure 

Kinematics analysis: 

g=l, k=5, m=6, p,=l, p2=4 

b=5-l=4 

c = 2-5 + 21-4-6 = 2 

The structure is hence b + c =4 + 2=6 times kinematically indeterminate having 
unknown rotations (pc, <pD , öÅ and ø ñ and unknown story displacements A, and A2 . 
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— » 
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! 

Figure 9.19: Kinematics chains 

The matrix form of the equilibrium equations has the following terms: 

aCC aCD aCE 

ar *DD ~ UDF 

aEE aEF 

a FF 

aCl aC2 

*E2 

lF2 

Ë22 

<Pc 

<PD 

<PE 

<PF 

L^2J 

■ =r · 

aco+0 

0 + 0 

aE0+0 

aF0+0 

0 + aw 

0 + a20 

Calculation of equation coefficients gives: 

4 4 4 4 4 4 3 / w l acc = — + — + — = — + — + —= 3.000 
Lj L2 L4 4 6 3 
4 4 3 

aDD =- + - + - = 3.000 DD 3 6 3 

4 4 „ 
J 6 

aFF =2 
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2 
aCD=-7 = 0·333 

aCE = — = 0.667 

2 
anF = — = 0.667 

3 

aEF =- = 0.333 EF 6 

ac,=^j = ~ = 0.375 

aDI =~ = 0.333 
V 

aC2 = aD2 = aE2 = aF2 = —J = ~2= 0667 

12 3 12 3 n^nn au = — + —- = —+ — = 0.299 
L3 L3 43 33 

12 12 12 
a22=-LL + ±L = 2.l± = 0.889 

L3 L5
3 33 

The right hand side (load) coefficients are: 

p-L] 5-42 
aco =—~ = —V2~ aD0=0 

áÅ0=ÉÀ^ = 5-*- = 30 aF0=-ÄJ± = -30 
E0 12 12 F0 12 

The total work done at the displacement of the first story, from Fig. 9.19a, is 

W=pH-+FA 
y 2 

�� �� �� �� �� ��



Sec. 9.5] Slope-Deflection method 

from which the horizontal force is derived by equation 

W pH X = — = -!—+ F = 10 + 10 = 20 
A 2 

271 

hence the load coefficient is 

aI0 = 20 

The same procedure for the displacement of the second story (Figure 9.19b) gives: 

a20=F = 10 

The complete equations are: 

'3.000 0.333 0.667 

3.000 0 

2.000 

Sym. 

. 

0 1 0.375 

0.667 J 0.333 

0.333 j 0 

2.000 \ 0 

j 0.299 

\ ° 

0.667' 

0.667 

0.667 

0.667 

0 

0.889 

<?c 

<PD 

<PE 

<f>F 

à, 

A 

■ = . 

6.667 

0 

-30 

+ 30 

+ 20 

i + ' O . 

Equations are solved for unknown deformations, hence: 

9c 

<PD 

<PE 

<PF 

A 

A. 

-15.538 

-26.305 

-31.009 

9.298 

115.853 

58.915 

Now internal forces on idividual elements from the basic relations on elements can be 
calculated. Note that positive rotations and moments are by convention counterclockwise. 
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For element 1, for which the free body is drawn below, the calculation is as follows. 

öÁ=0 

<Pc 

Ë , 

MAC 

MCA 

QAC 

.QcA . 

■ = ■ 

MAC0 

MCAO 

QACO 

. QcAO . 

■ + 

4 
+— 

2 
+ — 

6 

L] 
6 

2 
+ — 

4 
+ — 

6 

Lì 
6 

6 
+4 

6 

12 

L] 
12 

+ 6.667 

-6.667 

10 

-10 

Ο + 

1 0.5 0.375 

0.5 1 0.375 

-0.375 -0.375 -0.1875 

+0.375 +0.375 +0.1875 

0 

-15.538 

+ 115.853 

MAC 

MCA 

QAC 

OCA. 

. = . 

+6.667 

-6.667 

-10 

-10 

■ + ■ 

+ 35.676 

27.907 

-15.896 

+ 15.896 

- = · 

' 42.343 

21.240 

-25.896 

+ 5.896 

21.240/- C 
■*,( t � 

20 

G 

* 

5.896 

25.896 

42.343 
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All other moments are calculated explicitly (EI=1 !): 

273 

MCD = —ö£+—ö¼ = -(-15.538) + -(-26.305 ) =-19.127 

MDC =—cpc +—öâ = -(-15.538) + -(-26.305) = -22.716 
L2 L2 6 6 

M DB = —öñ+^2-Ä1 = -(-26.305) + -(115.853) = 12.313 
3 A? 

MCE =^-9C+J-9E+^T^2 = ̂ (-15.538) + ̂ (-31.009) + ̂ (58.915) = -2.113 
L4 L·^ ]_,^ 5 5 y 

MEC =—öá + —öÅ +4" 4 2 = -(-15.538) + -(-31.009) + -(58.915) = -12.427 
i"4 L4 Lj j j y 

MDF =—ö0+—öñ + 4 " 4 = -(-26.305)+-(9.298)+-(58.915) = 10.402 

M FD =—(pD+—q>F+-?ô-Ä2=-(-26.305 ) + -( 9.298 ) + -( 58.915) = 34.137 

MEF = MEF0 + — <pE + —(pF =30+ -(-31.009)+-(9.298) = 12.427 
h h 6 6 

MFE=MFEO+—fE+—<pF=-30 + -(-31.009) + -(9.298) = -34.138 
h L6 6 6 

A check of the calculation can be performed at an arbitrary horizontal section; the sum of 
all forces at that section must equal zero: 

? 
F = QEC+QFD 

10 
w 

E 
1 
! 
1 

< ' 
4.837 14.837 

w = -12-427-2113
 +

 34137 + la402 =-4.8467 + 14.8463 = 9.9997 
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A similar check can be done at joints, the sum of all moments must equal zero. Let us 
calculate the maximum positive bending moment on element EF. First, calculate the shear 
force at E: 

YE=QEF=±+
M" + M™=30+

11427-34137 =30-3.618 = 26.382 kN E *EF 2 L 6 

The position of the maximum moment is where shear force equals zero 

QFF 25.382 „ „ a 
= ¥EL = = 2.638 m 

10 

hence 

Mmax=QEFxmax-^^-MEF=22.374 kNm 

12.427 

3 m 

3 m 

Im 

42.343 
6m 

Figure 9.20: Final diagram of bending moments [kNm] 

Structures with general (composed) sway movements should not be solved by this classical 
method as the coefficient determination is rather complicated and requires a complete 
kinematics analysis. 
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9.6 The moment distribution method (Cross's method) 

The method of moment distribution is a numerical application of the displacement method 
in which the desired quantities are determined by a method of successive approximation 
that is suitable for longhand calculations. 
The method is applicable to structures that satisfy the following: 

►►► Plane problem 
►►► Shear deformations can be neglected 
►►► Deformations are small 

Equation {F}= [K\- {U} is written in a form for plane problems where rotations of joints 1 
and 2 are only considered: 

M zi 

M Z2 

K6,6 

K12,6 

Ê6,12 

Ê 12,12 

<Ñæé 

9Æ2. 

(9.26) 

M zi 

M zi 

4EI7 2EI7 

L 
2EI7 

L 
4 El, 

Øæé 

[ØÆ2 

(9.27) 

Loading by a counter-clockwise positive moments causes bending moments in a beam in 
accordance with the convention in the figure below: 

M, Mk 

Due to the above convention the equation is rewritten as: 

Mjk 

M ki 

2EI, 
2 1 

1 2 <Pk 

(9.28) 
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276 The Displacement Method 

From the condition that ø* = 0 both end moments are 

Mit = 4EI 

Mti = 2EI _Mfi 

from which we can see that for prismatic members a carry-over factor is 0.50. 

•9j 

[Ch.9 

(9.29) 

(9.30) 

■sss—k 

Consider now a case when joint B from Fig. 9.21 is loaded by a moment M: 

M (external load) 

Figure 9.21: Distribution of moments 
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The sum of all moments at the rotation of the joint must be zero, hence: 

277 

M =MBA+MBC = 
r4\m\ {4(EI)2' 

ØÂ (9.31) 

M 
(4-(El), ^(EI)^ 

L, L2 

MAB = 
2{El)j _MBA 

MCB = 
2{El)2 _ MBC 

<PB = L2
 T° 2 

M -ÎML.9 -ÎML MBA- - öÂ - M 
L, ' 4{EI)Ì ^-{El); 

L, L2 

(9.32) 

In the majority of structures the modulus of elasticity is the same for all members therefore 
E cancels out: 

LL+LL Ó* 
MBA=M-r=L1- = ^ M = rBAM 

Lj L2 

(9.33) 

The coefficient r is the distribution factor. 

If joint C would be pinned, the equations would become: 

Ì=Ì ÂÁ+Ì ê=±^öÂ +
 3-ø^-ö Â 

MAB = 
2-(El), _ M BA 

3(E')2 

MCB=0 

�� �� �� �� �� ��



278 The Displacement Method [Ch. 9 

and the moment at B on the element adjacent to A is: 

Ì ÂÁ=Ì- Ô-Ô¸ÃÃ-^Ô-Ô¸ÃÃ = Ì- É 

MBC=M- I 

4 (El), 

h 
4 {EI), {3{EI)2 

L, L2 

3 I2 

4 L2 

L+l.h. 
L, 4 L2 

II 

L, 4 L2 

(9.34) 

(9.35) 

The stiffness coefficient for a one-sided pinned element is 0.75 of the value for a fixed 
element and the carry-over factor is zero. 

The moment distribution procedure begins with the moments due to loads on a 
geometrically determinate structure; that is, all joints are prevented from movement by 
fixed-end moments. 

The structure is next gradually released into its final deformed shape by allowing 
one joint at the time to rotate. Each time the joint is released the unbalanced moment on 
the joint is distributed to adjacent elements (whose opposite ends are fixed at this stage) in 
accordance to the distribution factors at that joint. 
A fraction of these moments is carried over to the far end of the elements in accordance 
with the carry-over factors. 

As the joints are successively released the residual unbalanced moments become 
smaller and smaller and finally converges to the correct solution. 

The successful application of the procedure depends on an efficient tabular scheme 
as shown in the following example. 

Example 9.8: Analyse the continuous beam of the Fig. 9.22 by the moment distribution 
method (E = const., lt = 312) 

i,—"Ä h 

.h 
e 7\ 

k ^ *r 6 m 
-> 

Figure 9.22: Continuous beam 
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1. Fixed-end moments: 

Free-span moment: 

M°BC=^f = 4.5-q 

2. Carry-over factors: 

from B to A -> 0.5 

from B to C -» 0 

3. Stiffness: 

_4EIiR 4-3 
L'AB 

kiR=^^- = ^ = 2.4 

_3ElBC_31 
BC I A 

Total stiffness: 

k = 2.4+ 0.5 = 2.9 

4. Distribution coefficients: 

24 rAB= — = 0.83 AB 2 9 

0.5 „ ,„ 

= 0.5 

rBC= — = 0.17 Be 1 9 

�� �� �� �� �� ��



280 

Iteration scheme: 

The Displacement Method [Ch.9 

0.5 

-1.87 

B 0.0 
A 

-1.87 

< 

< 
0.0 

3.74 

0.83 0.17 
+4.50 
-0.77 

▲ 
C\ 

0.0 ' 

-3.74 +3.74 

All reactions and internal forces can be obtained by statics from these end moments and 
the moment and shear forces diagrams are drawn as shown in figure below. 

1.87 3.74 ^ 

' A 5 ~* * B 
3* 

^ 
1.87 \ ^ 

^Ë 
3.623 

4 
1.122 

r^L 

+ 
1 

~ - - - ^ 

S^ + 
2.824 

' S . . i 

2.377 

Figure 9.23: Free bodies and internal force diagrams 
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9.7 Influence lines by the displacement method 
(Using Mueller-Breslau principle) 

Let us recall the theorem by Mueller-Breslau: The deflected shape of a structure due to the 
particular unit distortion represents the influence line for the effect corresponding to that 
distortion. 
The task here is to actually determine the deflected shape due to a unit displacement at the 
point and in the direction of the quantity to be found, which can be calculated by different 
methods. In this text we shall use Mohr's method as derived in Ch. 6.3. 

9.7.1 Determination of ø  functions 

Due to the unit virtual displacement or rotation at a point and in the direction of the 
quantity to be found, bending moments occur on indeterminate structures as shown in 
Figure 9.24, where an element of type "g" (fixed-pinned ends) is considered. 

Ch 

MAL 
f -1 

MAx 
L \ 

' x , 

MAL ' 

L.EI 

! 2 ^ 

1 
1 

t i 

MA 

Conjugate beam 

MAL 

Figure 9.24: Loading of an element by unit displacement 

The equation of bending moments on the conjugate beam due to the bending moment 
loading from the original beam is (see Ch. 6.3): 

^, ÔÔ MAL MAx x x MAL MAX 
El M =— x Ü = — x * 

6 L 2 3 6 6L 
(9.36) 

M, 
6EI 

6E1 

Lx 
L 

(9.37) 

Û-î-î 
3 Ì / Ì M.L2 

6E1 k-ή 
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The terms inside brackets are so called ù  numbers (i.e. ù =  î-î 3) that can be found in 
several books tabulated for different divisions of elements. However, practically in the 
evaluation of these ù  numbers difficulties occur as this term has to be multiplied by a 
coefficient outside brackets dependant on different boundary conditions. 

Due to the above mentioned difficulties a new method has been derived using so 
called ø functions, otherwise based on the preceding method as follows: 

It should be noted that after the solution of an indeterminate structure, the support 
moments differ, since <o numbers relate to fixed-end moments that are for a unit 
displacement 

3EI 3EI 
Mso= —— · A = —— for a fixed-pinned element m5 

Is Is 

Ì ù  = —— · A = —— for a fixed end element m<;, (9.38) 
Is Is 

equation (9.37) is rearranged as follows: 

6 EI Is -6 EI M50 Mso 

øé=0.5-ß£-î3)-£Ü-, (9.39) 
M50 

MA is here the actual moment at the support and M0 is the moment due to a unit 
displacement. 
Equation (9.39) is dimensionless; therefore the basic straight line from the kinematics 
chain can be directly added: 

ø3=î +0.5(î-îÞ-^-  (9.40) 
Mso 

Using the same procedure ø  functions for fixed elements of type "A" can also be 
determined for all possible loads and all ø  functions are given in appendices in tables 
B.1-B.3. 
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Example 9.9: Determine influence lines for the continuous beam from Fig. 9.25 

283 

B /r 7Ã n D 

<e-
8m 8m 

$»<=-
8m 

Figure 9.25: Continuous beams over three spans 

Let us at first determine influence lines for reactions YA and YB (influence lines are the 
same for Yc and YD due to symmetry). 

Perform an unit displacement at A and solve two indeterminate systems for 
unknown rotations öÂ and ö€: 

aBB ØÂ +aBC 9C +aB0 =0 

aCB9B+acc9c+aco =0 

_3El 4EI 7 El 
<2BB —Qrr — ; t"" lBB ~UCC 8 8 

2EI 
iBC 

Û fin = *B0 

8 

3 El 
r2 

3 El 
?2 

3 El 
64 

<t>co=° 

7 2 

2 7 

\ØÂ 0.375 

I o 

<pB =0.0583 ö€ =-0.0167 

From known rotations moments at B and C can be calculated; suppose that the bending 
stiffness El = 10000 kNm2: 
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MBA = -468.75+ ^ - ö „ = -468.75+ 310000 -0.0583 = -250.0 kNm 

3 EI 

MCD =——<Pc = 

L 

3 10000 
8 

-0.0167 = -62.5 kNm 

8m 8m 8m 

Figure 9.26: Diagram of moments due to the displacement of support A 

In a similar way solve for the structure due to the displacement at B; note that only load 
coefficients change: 

áÂà= û 
3-EI 6EI 3EI 

9co=- û 

L2 64 
6EI 6E1 

64 

7 2 

2 7 [Vc\ 

[0.5751 

I 0.750] 

ö B =0.025 ö€ =0.100 

MBA = 468.75 + ̂ -^- ■ öÂ = 562.50 kNm 

3 El 
MCD =±-=—(pc =376.50 kNm 
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376.50 

285 

8m 
562.50 

Î < -
8m 8m 

-><-

Figure 9.27: Diagram of moments due to the displacement of support B 

Let us now determine the influence line for the reaction at support A using ø functions. 

1. Field AB: 

3EI A 3 10000 
Ì-~ý·Ë-: s' ■1 = 468.75 

ê ÌË_ = _250_ = 0533 
Á M 50 468.75 

ø2=1-î -0.5(î -î3 )ÊÁ= 1-1.267î +0.267î3 

2. Field BC: 

.. 6ÅÉ 6 10000 á.7òç Ì60=—Ä = — 1 = 937.50 
L ο 

Êê = Ì± = ^250_ = _á267 

Ìù 937.50 

ÊÃ = 
_ Mc 62.50 __ 

Ì60 ~ 937.50 = 0.067 

Ø13=Ø7+Ø10=(2î-3î2+îß)-ÊÂ+(î-î')-Êá 
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3. Field CD: 

M 3mA = twooo1 = 46875 
L2 82 

KA = MjL=62:50_ = a]33 

M 50 468.75 

ø 4=0.5(2î-3î 2+î 3)ÊÁ 

Calculated values for each field in steps of 0.1 L are drawn in the diagram, which 
represents the influence line for YA (Figure 9.28). 

l 

0.8 

0.6 

0.4 

0.2 

�0.2 -*-

... 

CO IN 00 ^ 
H « ^ (Σ 

00 tu CN 00 Tf 
0) -H CN ·»* 

CO CO <N 00 �<* τ* 
-' t< oi d CN" W 

"i -i CS M 

Figure 9.28: Influence lines for the reaction YA 

Using the same procedure the influence line for the reaction at support B can be 
determined as shown in Fig. 9.29. 

As soon as the influence lines for reactions are determined, influence lines for shear forces 
can be directly constructed from the values of influence lines for reactions. At the point of 
the searched shear force, the reaction influence line is shifted by unit, as shown in Fig. 
9.30 for the distance of 3.2 m from support A in field one and in Fig. 9.31 for a distance of 
12.0 m from support A in field two. 
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1 · 

0.8 � 

U.O ' 

Ü . 4 " 

Ό.Δ * 

0 2 -
( O « 0 1 < i 0 1 ( O C ( 1 0 t ( O I O N 0 0 ' i 1 l 

¹  co t <o 0) 1 « f ts 05 © CM 
~c - H CM CM 

CM 

Figure 9.29: Influence line for the reaction YB 

1 

0.8 

0.6 

0.4 

0.2 

0 

�0.2 

�0.4 

-0.6 

-0.8 

-1 

* j i t -

l l v i- - -. 

■ ' ■ ^ t < - - » 

t 
- % - - - »-

C 0 C M C 0 ' « J ' C 0 « O C M C 0 ' * ( 0 « ) C M C q T J . 
•^ CO TP* (O 05 "-Î CM ^ß "^ N' 05 O CM 

•-i «-i »-< <-* » ¹  CM CM 
CM 

Figure 9.30: Influence line for the shear force Q3j 
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1 ■ 

U.O " 

U.O ' 

U.Z " 

U.Z ■ 

0.4 ■ 

U.O ' 

<i 3 

— ■ — ■ - -

i 

i 1 

i 

c 
P 

4 

i 
a 3 
f S 

a 3 
a 

3 
3 

e 4 
1 0 

3 <* to to 
d 

Figure 9.31: Influence line for the shear force Qn.o 

The influence lines for moments at supports are determined by the use of reaction 
influence lines that are multiplied by an appropriate span between supports, in our case by 
L = 8.00 m. 
Figure 9.32 represents the influence line for the bending moment at support B; first, field 
values of the indeterminate system were subtracted from the basic unit line on the 
kinematics chain AB and the difference was multiplied by the span between supports. In 
the other two fields no kinematic movement occurs, therefore reaction values are simply 
multiplied by the value of span between supports. 

Influence lines for field bending moments at outer fields are again determined from 
reaction influence lines, a value for a chosen point is determined in the following way 
(Figure 9.33): 

►►► First determine the value of the reaction left of the chosen point, in our 
example for a point 3.2 m from the support, the value of reaction is 0.51; 

►►► The moment at that point is the reaction multiplied by the distance( 3.2 m); 
*** All moments right of the chosen point are simply 3.2 times the value of the 

reaction influence line YA, 
►►► All moments left of the chosen point are reaction value 0.51 times the distance 

to the chosen point, from which moments of the indeterminate system has to be 
subtracted. 

As an example calculate the value at a distance 2.4 m: 

(M3.2Ì2.4= 0.512.4 - (0.8-0.749) = 1.173, 
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1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 ! 
0 0 ú à Í 0 0 ' * ß è ! à Í 0 0 ' * º > 

»*1 " H *■« »-4 · - * C^ C"J 

Figure 9.32: Influence line for the support moment Ms.o 

where quantity 0.8 represents the value of the basic line on the kinematics chain, quantity 
0.749 is the value of influence line YA at point 2.4 m from the support. 

2- r 

M=a.b=0.513.2=1.632 

-0.5 -L 

Figure 9.33: Construction of influence line for the field moment M32 
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2 T 

-0.5 ·«-

F= 

º 1 to to cs oo t1 n< 
^ *-· N" oj d <N N 

~i —i »i Ĉ  (N 

Figure 9.34: Influence line for the field moment M3,2 

Influence lines for field bending moments at inner fields are again determined from 
reaction influence lines, a value for a chosen point is determined in the following way 
(Figure 9.35): 

►►► At first determine the value of all reactions left of the chosen point, in our 
example for a point at 11.2 m, they are YB = 0.695 and YA = -0.080; 

►►► The moment at that point is the sum of the reaction times the distance, that is 

3.2 0.695 + 11.2 (-0.080) = 1.327; 

All moments right of the chosen point are simply the sum of multiplication 
between the reaction values left of the chosen point (YB = 0.695 , YA = -0.080) 
and appropriate distances 3.2 and 11.2; 
All moments left of the chosen point are simply the sum of multiplication 
between the reaction values right of the chosen point (Yc - 0.447, YD - -0.064) 
and appropriate distances 4.8 and 72.5; 

MIL2 =0.4474.8 + 12.8(-0.064) = 1.326; 

9.7.2 Evaluation of influence lines 

Influence lines were determined using the Mueller-Breslau principle therefore they 
represent corresponding forces for unit loading. 

A searched value is hence determined if a value for a unit force is multiplied by the 
actual value of the force at that position. If loading is continuous then the intensity of the 
loading is multipied by the area of an influence line under the loading. 
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Figure 9.35: Influence line for the field moment Mt,,2 

Example 9.10: Evaluation of the reaction YA and moment MB for the continuous beam 
from example 9.9 

50 (N 00 ^ 
~i <Þ *f <o 

Figure 9.36: Position of loads for the evaluation of the reaction YA 
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At first we calculate the reaction for a concentrated force: 

(YA)F= 450.23 + 30(-0.05) + 450.023 + 300.015 = 10.335 kN 

For uniform loading we will calculate an approximate value, as the influence line will be 
taken as a parabola (which in general is not true): 

(YA)q = 20(2/3).8(-0.08) + 20.(2/3)80.026 = -5.760 kN 

The total reaction for all loads in Fig. 9.36 is: 

FA = 10.335 - 5.760 = 4.575 kN 
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> — I i-i ~H CSI CN1 

CS 

Figure 9.37: Position of loads for the evaluation of the support moment Mso 

The exact area of influence line can be obtained by the integration of ø  functions in the 
region of loading. Alternatively, as ø  functions are suitable for programming, it is easy to 
calculate values, using a computer, in desirable small steps and to evaluate maximum 
values for different positions of moving loads. 
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Calculate now moment MB at support B for the position of loads from Fig. 9.37. Moment 
for concentrated forces is (measured from the diagram): 

(MB)F= 45 (-0.79+0.13) + 30(-0.52+0.15) = -40.800 kNm 

An approximate value is calculated for uniform load: 

(MB)q=5 (4 (-0.81)72+(2/3) 4 (-0.11)) +5 4.8 (-0.63)72= -17.127 kNm 

The total moment is therefore for the loading in Fig. 9.37: 

MB = -40.050 - 17.133 = -57.927 kNm 
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10 
The Finite Element Method 

10.1 Introduction 

The finite element method is an extension of the matrix displacement method, which has 
been explained in Chapters 9.3 and 9.4 and is applicable to any solid body and not only to 
straight prismatic bars as in the displacement method in Ch. 9. 

The generalisation depends on discretisation of the body into finite elements and on 
feasibility to calculate stiffness matrices for these finite elements. 

10.2 Basic concept 

The basic idea is shown in Fig. 10.1; the body to be analysed is modelled as an assembly 
of finite elements interconnected at specified joints or nodal points. 

In the case of the plane stress body shown in Fig. 10.1, a division (or 
decomposition) into triangular elements is a good choice because of the ease with which 
such elements can simulate irregular boundaries even though triangles have straight edges. 
Elements are interconnected to each other at a joint only; the connection can be done by 
compatible displacements (the force method) or by forces in equilibrium (the displacement 
method). 

A comparison between both methods in Chapters 8 and 9 show that the 
displacement method is superior to the force method, above all because of its convenient 
automatic treatment and is thus applicable to computer applications. In the further text the 
displacement finite element method will be only treated. 

An essential requirement of a numerical method is that of convergence; that is, the 
solution should come closer and closer to the correct one of the prototype structure with 
increasingly finer subdivision into finite elements. The reason for inaccuracy is in the fact 
that elements are interconnected at joints only and not along the common edge. A choice 
of an interpolation function will therefore play a major role in the accuracy of an element. 
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Displacements of common joints are unknown quantities hence a numbering of joints 
should be done in accordance with corresponding displacements at joints. 

Let us now assume that it is possible to determine structural stiffness values or better a 
relation between displacements and corresponding forces (see Ch. 9.2) by the equation: 

{X}=[K].{A} (10.1) 

At each joint, forces and their corresponding displacements will exist as conjugate 
quantities. If a structure has / degrees of freedom then the equations for unknown 
displacements are written first and after that the equations for known displacements 
(usually at supports) in a partitioned form (Eqn. 10.2). 

Unknown displacements 

Known ( specified ) displacements 

Known forces => 

Reactions =» 

xa 

÷â. 

Kaa Êáâ 

Êâá Êââ 

A* 

Äâ 

Common joint 

Finite element 

Figure 10.1: Finite element model 

The solution for the unknown joint displacements and the unknown joint forces is derived 
in two steps: 

{×á}=[Êáá]{Äá}+[Êáâ\\Äâú> 

from where: 

{\HKaai' ({Xa}-fcJM) 

(10.3) 

(10.4) 
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The above equation is inserted into the rest of the equations and the unknown forces 
(reactions) are calculated: 

W=kpJK }+[*«> I M o°·5) 

If all p a } equal zero (at unmovable supports) the equations are simplified as: 

and 

The solution of above equations requires a matrix inversion* of order of unknown 
displacements that can be, in realistic problems, in the order of 10000 or more. It is 
apparent that such problems can be only tackled with a help of adequate computing power. 
Once the reactions and displacements have been calculated it only remains to solve for 
internal stresses and strains by the use of element stiffness matrices. 

10.3 A derivation of the element stiffness matrices 

The principle of a minimum potential energy (ð) is used, satisfying: 

-Equations of elasticity p j = [E\- {å} and 
-Equilibrium equations 

Total potential energy is a sum of work done by internal and external forces: 

n = U-W, (10.8) 

where the internal work done is due to element deformations 

U = \óå 
v 

and the external work due to forces displacements 

"Structural Analysis Package OCEAN, described in Ch. 13, uses for the solution of 
equations the frontal method and not matrix inversion. 
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The total work is hence 

ð = \óô £dV-{Fj{u} (10.9) 
v 

Let us describe strains and element displacements through an interpolation matrix [B] and 
stresses and strains by a matrix of material properties [D] 

£}=[*]·{«,·} (101°) 

M = M - { e } (10.11) 

and insert the above equations into the equation for potential energy: 

K = l{uY[BY[D].[B].dV.{u}-{F}.{u}T (10.12) 

A structure is in equilibrium when the potential energy has the smallest value, a derivation 
to the displacement gives: 

dui 

K = \[Bj[D][B]dV{ui}-{F}=0 (10.13) 

It is obvious that the above equation has the same form as 

{F}=[K]{UI (10.14) 

where a stiffness matrix has a different value: 

[K]=\[BJ [D][B]dV (10.15) 
v 

If we succeed in obtaining the stiffness matrix [ê] for an element, a further procedure is 
exactly the same as with the displacement method. 
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10.4 Stiffness matrix of a prismatic element 

[Ch. 10 

As an example of stiffness matrix derivation we shall derive a stiffness matrix for a 
straight bending prismatic element, which was actually already derived in Ch. 7 by the use 
of Castiglian's theorem. 
A stiffnes matrix formulation from equation (10.15) can be for this element written as: 

[êßöÕ-W-dx, 
where [å] represents virtual strains and [ó] real stresses. 

(10.15a) 

Ä, 

Q 
Ë 

A3 

Figure 10.2: Straight bending prismatic element 

Step 1: To describe the deformed element shape from Fig. 10.2, we assume 
a four-term displacement function 

v = a} +a2 ■ x+a3 -x2 +a4 x3 (10.16) 

As the joint displacements also include end rotations we need the slope, 
which is obtained by differentiation of the assumed displacement function 
and both equations are written in a matrix form: 

dv 2 
ö = — = a2 + 2 ■ a3 · x + 3 ■ a4 ■ x 

dx 

v 

[dxi 

1 x x x 

0 1 2x 3x" 

a, 

a, 

a, 

a 4) 

(10.17) 

(10.18) 

�� �� �� �� �� ��



10.4] Stiffness matrix of a prismatic element 299 

or shorter 

{u(x)}=[N(x)]-b} (10.19) 

The matrix [NJ is a function of position along the beam and is therefore 
called a position or field matrix. 

Step 2: Calculate the joint displacements {À} in terms of the coefficients jpc} for 
all four possible load cases by inserting appropriate co-ordinates of the element 
joints (that is the beam ends) 

4 
Ä2 

A3 

A, 

1 

0 

1 

0 

0 

1 

L 

1 

0 

0 

Û 

2L 

0 

0 

L3 

3L\ 

a, 
a2 

«3 

a4 

or 

ù=Ì-Ì, (10.20) 

where the matrix [A] depends on joint co-ordinates only. 
For the determination of the complete stiffness matrix, the coefficients are 
dependent on all four virtual displacements, applied one at a time: 

M= 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

=[/] 

b}=W {AhW [ihW (10.21) 

A matrix inversion is possible if a matrix is a square matrix; that is, the number of 
coefficients ã÷} must match the number of possible displacements at joints. 
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M" = 
1 
2 
L 
1 

0 
3 

+ —-L2 

2 

0 
1 
L 
1 

L3 

(10.22) 

►►► Step 3: Calculate the internal strains ø}=  [By {M,·} as a function of position. In beams 
under bending these distortions are conveniently represented by the curvature \ö] 
of a beam, which can be obtained from displacements by two successive 
differentiations of Eqn. (10.16): 

■ j O l - i L j - b 0 2 6x][a] 
ax 

or 

b(x)}=[B(x )]■&}, (10.23) 

where the matrix (/?(*)] relates the internal strains {å(.ú/} to the coefficients [a]. 
Insert equation (10.21) into (10.23) 

fax)}=[B(x))[A]-' 

and rewrite for further use as: 

(10.24) 

(10.25) 

►►► Step 4: The internal forces pYx)], which are also functions of position, can be 
represented by bending moments [M(jcj]. The moments are linearly related to the 
curvature through the beam stiffness El (see Eqns. 2.51 and 3.20): 

or from Hook's law 

[ó(÷)]=[è][å(÷)1 (10.26) 

The matrix [D\is in general of complicated form but in our case it is just a scalar 
quantity (bending stiffness) 
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[D]=EI (10.27) 

Equation (10.24) is inserted into (10.27) and a relation between moments due to the 
unit joint displacements is: 

^(×)]=[Ï]·\Â(×)]·[ÁÕ  (10.28) 

♦ Step 5: Now insert equations (10.25) and (10.28) into (10.15a). Since the matrix 
[A\ is not a function of position it can be taken outside the integral: 

L 

We perform the indicated matrix operations, integrate term by term, and finally 
arrive at the result: 

12 6L -12 6L 

6L 4L2 -6L 2L2 

-12 -6L 12 -6L 

6L 21} -6L 4L2 

The result is the same as derived in Ch. 7 in Fig. 7.12, which is not surprising, as 
the result is an exact solution of the beam theory since the displacement function 
{u} was chosen to match the differential beam equation. 

The theory is based on the principle of minimum potential energy and the solution, using 
other elements, should become better as the elements become smaller. 

Let us emphasise that the displacements are exact at joints only, values between 
joints depend on the choice of the displacement function and hence the choice of an 
element in finite element analysis for an analysis of different structures is of the greatest 
importance. 

10.5 Transformations 

We have already shown in Ch. 9 that the displacement method is suitable for computer 
applications but rather difficult for longhand calculations, as the assemblage of individual 
element stiffness into the structure stiffness matrix is rather involved. 

A generality of the method is obtained if a local co-ordinate system of individual 
elements is introduced and before assembling the structurai stiffness matrix all quantities 
are transformed into the global co-ordinate system. 

El W-f 
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We shall consider here a plane system, but the procedure can easily be applied to a general 
space system. 

Figure 10.3: Local co-ordinate system 

The projection of internal forces on global co-ordinate axis gives: 

Fx = N ■ cosa - Q ■ since 

FY = N sina + Q- cosa 

or written in a matrix form: 

éË 

cosa -sina 

+ s in a cosa 

{N} 

Q 

Now we transform forces from global into the local co-ordinate system: 

cosa + sina 

-sina cosa y ) 

(10.31) 

(10.32) 

(10.33) 

ËÌ 

ß [rl· 
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or 
{F}=[THF} 

{F}=[TV {F}=[TY {F} 
(10.34) 

The matrix \Ô] is a transformation matrix, with a crossbar denoting forces given in a local 
co-ordinate system. In the same way local displacements can be transformed into global 
displacements using the following equation: 

rUil*' $}=[T){A} (10.35) 

Example 10.1: For a truss element (pinned at both ends) from Fig. 10.4 calculate the 
stiffness matrix \k\ in the local co-ordinate system, transformation matrix 
[T] and stiffness matrix [ê] of the element in the global co-ordinate 
system. 

Figure 10.4: A truss element 

The stiffness matrix of a truss element is: 
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H-

EA 
L 
0 

EA 
L 
0 

0 

0 
j 

0 

0 

EA 
L 
0 

_ EA 
L 
0 

0 

0 

0 

0 

EA 
L 

' 1 

0 

-1 

0 

0 

0 

0 

0 

-1 

0 

1 

0 

0~ 

0 

0 

0 

The transformation matrix needs to transform two vectors at each end of the element: 

irl 
1/ J-

ë 

0 

0 

ë 

0 

0 

cosa sina é 0 
I 
I 

— sina cosa | 0 
0 0 j cosa sina 

I 
0 0 i -sina cosa 

The stiffness matrix is then obtained by the following procedure: 

{F}= [Tj ■ {F}= [Tj ■ [k].£}= [7f · [*]· [Ã]· {Ä} 

[khlTj [kllThf 

cos2 a 

sina ■ cosa sin2 a 

■ cos2a 

- sina ■ cosa 

- sina ■ cosa 

— sin a 

cos2 a 

sina cosa sin a 

10.6 Structure stiffness matrix 

For the sake of completeness let us repeat the procedure described in Ch. 9.3. The 
structure stiffness matrix [if] relates the forces and displacements of a structure composed 
of elements. The force X, at the joint and in the direction /' is linearly related through the 
corresponding displacements 4 by equation: 

X, = ku ■A,+ki2A2+ + ky -Aj + 

w=w-w (9.7) 

�� �� �� �� �� ��



Sec. 10.6] Structure stiffness matrix 305 

Each element Jt,y of this stiffness matrix is defined as the force that must be applied to the 
complete structure at node i to produce unit displacement at node j , all others are kept 
zero. Consider now one single joint connecting several elements l,2...m. Figure 9.4 shows 
the internal element forces SJmi of element m along node i, as well as their equal and 
opposite reaction forces on the joint. For instance, the i-th force on the m-th element is 

sH = 4m)-4 + 4m • 4 + k$")-Aj+ (9.8) 

where the j extends over all nodes attached to the element. The equilibrium equation for 
the forces in the direction i at the joint is 

IX, =0: - S , . , - S „ - 5 ^ + ^ = 0 , 

from which, inserting Eqn. (9.8), we get 

fe +*;/ + + */? + )-A +(4 + 4 + + *5 + )·4 + . ■ = F: 

> i direction 

Figure 9.4: Joint and element forces 

The structure stiffness coefficient Ky is therefore obtained by the superposition of the 
element stiffness k\-(«). 

*(,=*£+*£+ +*™+...=Ó4") (9.9) 

It is essential that each node of the structure be carefully labeled, and that the nodal 
numbering of each element corresponds to that of the structure. The element stiffness 
matrices are then written and superimposed, or assembled. 

**=*i+*;+ +*;+··■=!*« (») (9.10) 
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10.7 Calculation of strains and stresses 

After the joint displacements {4,} and the reactions {x^ } have been determined by use 
of equations (10.2-10.5), it remains to compute the internal strains and stresses using 
previously derived equations: 

[å(÷)]=[Â(÷)][ÁÀ'[Ä] 

\(T(x)MD][B(x)][Al1.[A] 

Internal forces can now be calculated from stresses and strains using equations derived in 
Ch. 2.8 for truss and beam elements or in a general case, using the theory of elasticity. 
Some applications of the finite element method are presented in chapter 12. 

10.8 Convergence of results 

We have already referred to the fact that the finite element method is a process of 
establishing equilibrium by minimising potential energy of a geometrically compatible 
displacement system. 

>. 'm * 
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\ 

b) Fine mesh c) Exact solution 

Figure 10.5: Convergence of a solution 

For such a system it can be proved that any approximate solution leads to an 
underestimation of the displacements, practically it means that stiffness of individual 
elements are too large. 

This conclusion is true for all elements (Figure 10.5), where the deformational state 
between joints was not described by a function, which is an exact solution to the 
differential equation (plane stress, plane strain, 3D elements). 

The use of area co-ordinates, higher order polynomials and isoparametric functions 
improves element qualities substantially. For instance, a computer program for plate 
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bending PLATE uses 9-noded isoparametric elements having 27 degrees of freedom and a 
program for shear walls calculation S WALL 8-noded isoparametric elements having 16 
degrees of freedom (Figure 10.6). 
Details of these elements are out of scope of this text and the readers interested in this 
subject should find details in specialised books on finite elements. 

a) 9-noded plate element b) 8-noded wall element 
27 degrees of freedom 16 degrees of freedom 

Figure 10.6: Isoparametric elements 

In the application of the finite element method to frame and truss structures (OCEAN, 
modules FRAME, P-TRUSS and S-TRUSS) the interpolation function is an exact solution 
of the differential equation hence the results are exact (at joints) and any further division 
into more elements does not improve results. The subdivision of elements is required in 
influence line calculations or when deformations are required between master joints of the 
structure. 
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Inelastic material behaviour in structures 

It is important to be able to predict the initiation of the inelastic response of materials that 
are subjected to various stress states. The term inelastic is used to define the material 
response in relation to the stress-strain diagram that is non-linear and that retains a 
permanent strain or returns to an unstrained state on complete unloading. The term plastic 
or plasticity is used to describe the inelastic behaviour of a material that retains a 
permanent set on complete unloading. 

The condition for the initiation of yield in ductile metals, such as structural steels, 
is discussed in this chapter. The use of uniaxial stress-strain data and their limitations are 
discussed together with a general description of non-linear material behaviour. 

11.1 The use of uniaxial stress-strain data 

Material properties are usually obtained under uniaxial conditions based on tension or 
compression tests. These tests are normally performed at room temperature in a testing 
machine that has a head speed that is usually below 20 mm/min. Material properties 
determined from such tests are used in the design of structures although, in practice, 
structures may be subjected to temperatures much higher or lower than room temperature 
and at loading rates much higher than that provided by most testing machines. In 
addition, the shape of a structural member may be such that biaxial or triaxial stresses 
arise which can be very different from the uniaxial stress experienced by a test specimen. 

The stress-strain relationship may be greatly affected by the rate at which a load is 
applied. If a normal ductile material is considered, then the stress-strain relationship has 
an elastic range followed by a non-linear inelastic or plastic range. If the loading rate is 
very high, then the magnitude of the inelastic strain that precedes fracture can be reduced 
compared to that from normal load rates that are experienced under test conditions. 
Furthermore, high load rates result in an apparent increase in yield stress and modulus of 
elasticity. The material response is also less ductile under such conditions and, in the case 
of extremely high load rates, the response resembles brittleness. 
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Temperature also has a considerable influence on material behaviour especially when 
combined with high load rates. For example, if structural metals are subjected to very low 
temperatures and very high load rates, then brittle fracture might occur. Thus, the 
selection of materials for applications involving low temperatures and high load rates is 
important if failures are to be avoided. 

If metals are subjected to elevated temperatures, then under constant load, the 
strain may increase until fracture occurs and this condition is known as creep. 

11.2 Non-linear material response 

If a specimen of a particular material is tested under tensile conditions, the shape of the 
stress-strain curve will be dependent on the material. However, if the load is applied and 
slowly removed, certain features of the stress-strain curve are similar for all materials. 

For example, for small loads, the relation between stress and strain is linear. If 
loading is increased to a sufficiently large value, then the relationship between stress and 
strain becomes non-linear. The material response may then be classified as elastic or 
plastic depending on its response to the loading condition as shown in Figs. 11.1(a) and 
11.1(b) respectively. 

Loading 

Loading and 
unloading Unloading 

Permanent strain 

Fig 11.1a: Non-linear elastic response Fig. 11.1 b: Non-linear plastic response 

If the unloading path coincides with the loading path, the process is reversible and the 
material is said to be elastic as in Fig. 11.1a. If, however, the unloading path does not 
follow the loading path, then the behaviour of the material is said to be inelastic as shown 
in Fig. 11.1b. A material that behaves in a plastic manner does not return to an unstrained 
state when the load is released. 

With some materials, the transition from linear elastic response to inelastic 
response may be abrupt or gradual. For an abrupt transition, the change occurs at the 
yield stress, ó y, as shown in Fig. 11.2a. In the case of a gradual transition, the yield 

stress is arbitrarily defined as the stress that corresponds to a given permanent strain, å , , 
where usually es = 0.002. 
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The material stress-strain relationships are idealised for ease of use in calculations. Two 
idealised models are shown in Fig. 11.2. 

l 

ó1 

ay 

I 

OR 

1 

\ 

L 
1 

k ó 

. „ _ „ . _ . ^ 

/ u Loading 

Unloading 
elastic 

J £y £1 £ 

a) 

Note:CT Ëó÷{2ó 

Fig. 11.2: Idealised stress-strain curves 
(a) Elastic - perfectly plastic response (b) Elastic - strained-hardening response 

In the stress-strain relationship given in Fig. 11.2, repeated cycling of the load will lead to 
the yield stress being increased to ó ; , due to a residual stress, óR , being built-up in the 
material. Thus, ó÷ =óã +aR , and provided aR remains less than -ó , the material 
will behave elastically as cycles are repeated. 

If the nominal stress, ó1, exceeds 2oy, then on repeated cycles the material will 
no longer "shake down" to elastic action and permanent plastic deformation will occur 
with each cyclic loading. This is shown in Fig. 11.3. Therefore, 2ó í  is the threshold 
beyond which some plastic action occurs. 
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Oi 

°y 

-°y 

Fig. 11.3: Idealised stress-strain curve for ó /)2ó > 

In the design and analysis of structures, a fundamental issue is the determination of the 
strength of a structure. Of considerable importance are the deformations and stresses that 
occur within the structure. The performance of a structure will depend on its shape and 
size, the properties of the material and the nature of the applied loads. It is also important 
to decide on how the strength of a structure should be defined. 

In order to illustrate some of these issues, a structure may be considered consisting 
of a number of elements. On loading the structure, one of the elements may reach its yield 
stress whilst at the same time other elements may have only reached half of the yield 
stress. A further increase in the load will, therefore, cause yielding in one element, but the 
structure may not fail due to more modest loading on the remaining elements that make up 
the structure, since these elements may not yet have reached their yield point. Once all 
the elements of the structure have reached their yield point, then the structure will not be 
able to cope with any further increase in loading. 

This can be verified by an analysis of the simple structure shown in Fig. 11.4 that 
is loaded at point A with a load W. 

/ Pen nanent 
t 

Elastic range Plastic/tange plastic strain 
K X ? 5»< > 
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The elements in the structure are assumed to be connected to the top support and each 
other with perfect pin joints that permit free rotations. 

K + -»I 

Fig. 11.4: Simple structure 

Assuming that all the elements remain elastic, then the forces in the elements are as 
follows: 

Nj = 2W and N- _ * / 
2 + yf2 "' 2 

and the extension in the elements are: 

Δ,= 
NjL 
EA 

and Ë2=^2 4 

where A - cross-sectional area of the elements. 
This simple analysis is based on linear elastic theory and provides basic data on 

structural deformation and stresses in members. It can easily be seen that the load W on 
the structure can be increased to a level such that the stress in element 7 will go into the 
plastic region but the structure will not fail since the stress in elements 2 will remain in the 
elastic region. 
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11.3 Definition of plastic moments 

Plastic analysis is based on idealised perfect elastoplastic behaviour, as shown in Fig. 11.3. 
The yield point and the limit of stress-strain proportionality are assumed to occur at the 
same point. In the plastic range the stress-strain diagram is assumed to be a horizontal 
line. For most structural materials the strain at the end of the plastic range is 
approximately 12 times the strain at the initiation of yielding. 

Fig. 11.5: Bending stresses under increasing moments 

Consider a beam that is bent as a result of loading, then the maximum stress will occur at 
the outer fibre (Fig. 11.5) and as the bending moment is increased a point will be reached 
when yielding takes place in the region as shown in Fig. 11.5c.The moment associated 
with first yield is called the yield moment, My. As the moment is further increased, 
yielding will progress towards the interior of the beam until the section is fully yielded 
(Fig.l 1.5d). At this point the forces in the section are: 

C = óyAc and T = ayA, 

and since C is equal to Ã, 

M „ =C-z = T-z, 

(11.1) 

(11.2) 

where Ac and A, are the compressive and tensile areas, respectively and C and T the 
resulting compressive and tensile forces, respectively, z is the lever arm between both 
forces. The moment M p associated with yielding over the full depth of the beam is called 
the plastic moment. 
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Example 11.1: Determine the plastic moment of resistance of the I beam section with wide 
flanges HE-M 160 (EuroCode 53-62) shown in Fig 11.6 if the yield stress 
of the material is 340 MPa in tension and in compression. 

* 

+ 

23 

Ί4 

T<-

166 mm 

-r 

180 mm 

JL + Tf 

A 
Fig. 11.6:1 section with wide flanges 

The plastic moment is determined separatelly from the contribution of flanges and the 
web as follows: 

Mp=340103 (0.166 0.023 0.157+ 0.014 0.067 0.067) = 225.172kNm 

The elastic moment is using the moment of resistance W=566 cm3 for I section: 

Me = oy W = 340 ■ 10s ■ 566 ■ 10~* = 192.340 kNm 

from which the shape factor a can be calculated: 

<*pe = -EL-
M. 

225.172 
192.340 

= 1.170 (Ð.3) 

Shape factors can be found in relevant books and vary between 1.12-1.18 for / sections, 
equals 1.27 for a hollow circular section(pipe), 1.5 for a rectangular section and is 1.7 for 
a solid circular section. 
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11.4 Formation of plastic hinges 

315 

C U2 >^ U2 

Fig. 11.7: Formation of plastic hinge 

Consider the simply supported beam shown in Fig. 11.7, which is loaded by a 
concentrated load at the midspan. The moment diagram shows that as the load increases 
beyond the load that first causes yielding, the yielding proceeds towards the centre of the 
beam and also moves outwards.When the fully plastic moment is reached, the load is at its 
ultimate value, which is: 

4M„ 
W„ = p- (11.4) 

When a section of a beam experiences a fully plastic stress, as shown in Fig. 11.7, then we 
say a plastic hinge is formed. Such a plastic hinge has no additional moment resistence. In 
static-determinate structures, the formation of a plastic hinge changes the restraint 
characteristics of the the structure. This results in a redistribution of internal forces 
causing other sections to reach their full strength and develop plastic hinges until the 
structure forms a collapse mechanism. The loading associated with the onset of collapse is 
called the ultimate load. 

For design purposes we define the ratio of the ultimate load or stress to the 
working load or stress as/, thus 

/ = ultimate load 
working load 

(11.5) 
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The plastic design method may result in considerable savings in material and also 
provides a better evaluation of the safety of a structure. 

11.5 Analysis of structures using plastic moments 

There are two methods of analysing beams when using plastic analysis. These are the 
equilibrium (statical) method and the virtual-work (mechanism) method. Plastic analysis 
should satisfy three conditions which are: 

Mechanism condition. The ultimate load is reached when a collapse mechanism 
forms. 
Eqilibrium condition. There is static equilibrium until collapse. 
Plastic-moment condition. The moment must not exceed Mr p · 

1. 

2. 
3. 
The equilibrium method satisfies the first two conditions and is applicable to solving most 
practical problems in structural engineering. It will therefore be described here along with 
some worked examples. The procedure consists of the following steps: 

1. Draw a composite moment diagram such that a mechanism is formed. 
2. Compute the ultimate stress using static equilibrium equations. 
3. Check to see the Mmax is less or equal to Mp . 

50 kN 
■ Ï 100 kN 

D 

B 

k 6 m ^ 

3.4 m 

Fig. 11.8: Portal frame 

To illustrate the method consider the portal frame shown in Fig. 11.8. The frame is 
supported at locations A and B by fixed supports. A central load Fy =100 kN is applied 
at D, the centre of the beam CE and a load Fx = 50 kN at point C. the bending moment 
moment diagram for this structure is shown in Fig. 11.9 where it can be seen that the 
maximum bending moment of 139.253 kNm occurs at E. 
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100 kN 

317 

3.4 m 

Fig. 11.9: Bending moments at initial forces [kNm] 

If M = 225.172 kNm (from Example 11.1) then: 

f=J^=™dR=L6I7 
Mmnr 139.253 

(11.6) 

From this simple analysis it can be seen that the structure is safe. 

80.85 kN 49JI6 

3.4 m 

Fig. 11.10: Bending moments at initial forces times/[kNm] 
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If now the loads are increased by factor/to Fy = 161.7 kN and Fx = 80.85 kN then the 
bending moment diagram changes significantly as shown in Fig. 11.10. The maximum 
bending moment now becomes 225 kNm at point E and therefore/ =i. This means that a 
plastic hinge forms at point E. 

161.7 kN 
80.85 kN 274.878 

■ 

3.4 m 

Fig. 11.11 Plastic hinge formed at E 

The analysis of the structure must now be repeated with a new constraint at point E, this 
restraint being one of a zero restraining moment. The results of this new analysis is shown 
in Fig. 11,11. It can now be seen that Mmax occurs at point D and that/exceeds unity. 
This means that a hinge forms at the midspan of beam CE and a mechanism is formed. 
The structure is now therefore unstable and will collapse as a three chained body (see 
Ch.4) as indicated in Fig. 11.12. 
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3.4 m 

Fig. 11.12 Plastic hinges at D and E - mechanism 

The whole procedure is repeated for the same portal frame except that the supports at A 
and B are clamped. The resulting bending moments are shown in Figs 11.13, 11.14, 11.15 
and 11.16. 

50 kN 25.298 

23.995 

100 kN 
D 

91.919 

90.863 

k 
80.4811 B u 

3.4 m 

6m H 
Fig. 11.13: Bending moments at initial forces [kNm] 

MB 225172 
f = — ^ - = =2.45 

Mmax 91.919 
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122.484 kN 61.991 

3.4 m 

Fig. 11.14 Bending moments at initial forces times/[kNm] 

447.811 
287.198 

Fig. 11.15 Bending moments after first hinge at D [kNm] 

From Fig. 11.15 it is obvious that after first hinge formed at D further hinges will 
immediatelly form at E, B and then at C which will cause the collapse of the structure. 
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12 
A simple bridge analysis 

12.1 Disposition of the structure 

A bridge on a secondary road is bridging a deep valley and is founded in the riverbed on a 
rock; both outside supports are resting on deep piles such that no displacements at the 
supports are possible (see a simulation of an elastic support under column in Ch. 13, 
Fig. 13.6). 

7^ 

141 

Î=2 Ã 

-> x 
26 m 20 m 

Figure 12.1: Static system of the bridge 

12.2 Geometrical properties 

At first we calculate cross-section areas, centres of gravity, second moments of area 
(moments of inertia) for the bridge deck (beam) and for the column: 
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Cross-section: A = 4.80 1.60- 4.20 · 1.00 + 2 ■ 1.20 ■ 0.3 = 4.20 m2 

\.0.30 

1.20 »I m- 4.20 0.30, |< L2° >l 
7.20 

1.00 1.60 

_Y 
º030 

4.80 
-> 

0.80 

Figure 12.2: Cross-section of the beam and column 

The centre of gravity in the z-direction is due to the symmetry at æô = 3.60 m, the centre of 
gravity in the y-direction is calculated from the static moment about the z-axis, which is for 
convenience taken at the bottom of the beam section: 

yT=. 

Aj =7.20 0.30 = 2.16 m2 

A2= 1.30 0.30 = 0.39 m2 

A3= 4.20 0.30 = 1.26 m2 

A = A,+2A2+A3=4.20 m2 

The static moment is the sum of partial static moments: 

Sz =Ajl.45 + 2A2 0.65 + A3 0.15 

Sz = 3.132 + 0.507 + 0.189 = 3.828 m* 

S, 3.828 
yT = —*- = = 0.91 m 
7T A 4.20 

The moment of inertia is calculated using Steiner's statement: 
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l =7.2{0.3y | 2 0.3 {uf ^4.2-{0.3y | 

z 12 12 12 

+ A, ■ (0.54f + 2 · A2 ■ {0.26f + A3 ■ (è. 7tf J* = 

= 0.0162 + 0.10985+0.00945+0.629+0.0527+0.727 = 

= 0.1255 + 1.41 = 1.546 m4 

lz = 1.546 m4 

The self weight of the beam is: 

kN q = Apg=4.2-25 = 105.0 — 
m 

For the column only the moment of inertia about the weak axis is needed 

l r = 4 - 8 ^ =0.204 m4 
12 

A =4.2 0.8 = 3.36 m2, 

and for later purposes let us calculate the ratio between both beam and column stiffnesses: 

K =^ = 7.578 
Ir 

|< l2° > 

w 

ñ.30 4.20 0.30^ 

7.20 
K L2° X 

jOJO 

1.00 
V 

1.60 

10.30 

yT=0.91 

Figure 12.3: Cross-section and centre of gravity 
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12.3 Analysis by the force method 

A degree of static indeterminacy n (DSI) is determined by equation (8.2): 

n = 3(m6 -j3) + 2-(m5 -j2) + m4 

n = 3(l-l) + 2(0-0) + 2 = 2 

To get the primary structure we remove supports at A and C. The loading on the structure 
is self weight only (Fig. 12.4). 

q=105.0kN/m' 

mmmBiÊÊÊmÊÊËÊÈmmm:- ■■:■ -.-1 
X, 

14 m 

B 

D 

26 m 20 m 

Figure 12.4: Primary structure 

V 

35.490 MNm 
21.000 MNm 

14 m 

B 

D 

26 m 

14.490 MNm 

20 m 

Figure 12.5a: Bending moments for external loading 
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[MJ 

^ ^ ^ - ~ " ^ " ^ + 
A ^ ^ ^ 

14 m 

26.0 MNm 

B 

D 
26.0 MNm 

Figure 12.5b: Bending moments for unknown force Xi 

[MJ 

A 

14 m 

26 m 

B 

D 

20.0 MNn 

+ 

+ 

l 

20.0 MNm 

20 m 

Figure 12.5c: Bending moments for unknown force X2 

The equations of compatibility are: 

a1]X1+a12X2+aw =0 

a2] X ; +a22 X2 +a20 =0 

For comparison we will at first calculate the case of equal moments of inertia for beam and 
column, and we will further simplify the calculation with E= 1: 

�� �� �� �� �� ��



326 A simple bridge analysis 

au = - - {26j +26-26 14 = 15323 

a22=--{20f + 20-20-14 = 8267 

an= -26-20 14 = -7280 

ai0 = l°105x .]. x.dx +14.49 (-2(5)· 14 = 

0.105-i?64) 
2-4 

5274 = -5997.01 - 5274 = -11272.0 

a7n =---21-20-20 +14.49-20-14 = 1957 

[Ch. 12 

15323 -7280 \X,\ \ 11272] 

-7280 8267 \[X2\ [-1957] 

Xi = 1.071 MN 

X2 =0.707 MN 

Now real values for moments of inertia are taken into the calculation: 

MM «-J- El 
■ds 

a„ = 9836 a22 = 5769 an = -7280 

aI0 = 5656 a20 = 3923 

10237 -7280 \XA j 6066 | 

-7280 5952 J j x j \-378è\ 

X, =1.082 MN 

X2 =0.689 MN 

Bending moments are calculated by the method of superposition (note values in brackets, 
which stand for equal moments of inertia): 
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MA=0 

M BA= -35.49+26 1.082 = -7.358 (-7.644) MNm 

MBC =-21 + 20 0.689 = -7.220 (-6.860) MNm 

MBD = 14.49-26 1.082 + 20(0.689)=0.138 (0.784) MNm 

Shear forces are calculated from equilibrium on each beam separately: 

QM = °J°L2É.-L35* = U65-0.283 = 1.082 MN 
2 26 

_ 0.105-26 7.358 , , , . „_„, , , .„ , „ . 
QBA = + = 1.365+0.283 = 1.648 MN 

2 26 
0.105-20 7.220 . ... . . . . . „ . , „ , 

QRr = + = 1.050+0.361 = 1.411 MN 
BC 2 20 

J.105-20 + 7J20 
*CB 2 20 
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7.358 MNm J.llOMNm 

3.059 MN 

Figure 12.6: Final diagrams of internal forces (The force method) 

There are no axial forces on the beams as both outside supports are roller supports and that 
is the reason for zero shear forces on the column (X reaction at D equals zero). 
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12.4 Analysis by the displacement method 

Equations (9.4) and (9.5) give a degree of deformational indeterminacy (DDT): 

Unknown rotations: b = k- p, =2-1 = 1 

329 

Unknown displacements: c = 2-k + 2- g - p2 -m = 2-2 — 22-4-3 = 1 
or c = 2- j - p2-m = 2-4 — 4 — 3 = l 

The system is hence a sway system as the structure can displace at the deck level. 

A 
7Ã 

„=? 

74 m 

D 

26 m 20 m 

Figure 12.7: Unknown rotation 

Let us at first analyse the non-sway structure: 

áç·öÂ+áéï=0 

3-7.578 3-7.578 4 
a,, = + + — = 2.297 *u 26 20 14 

10 8 8 8 8 

3« 

º\ 

a,n=-8.8725+5.250 = 3.6225 MNm lio 

-3.6228 , ___ 
B 2.297 
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Now we calculate bending moments due to rotation öÂ : 

Ì ö
ÂÁ =tIL.(pB = 3'7-578 -1.577 = 1.379 MNm 

L, 26 

Mlr =LE..(pR =
3-7-578 .1.577 = 1.793 MNm 

'BC 20 

4- FI 4 
Mfn= - - = - · öÂ = 7.577 = 0.451 MNm ' BD 14 14 

MRA =-8.873+ 1.379 = -7.494 MNm BA 

[Ch. 12 

M », =5.25 + 1.916 = 7.166 MNm BC 

M BD =0.451 MNm 

MDB= ^SS . = 0.226 MNm 

The real structural system is a sway system as c=l. 

ÆÃ 

14 m 

C 

7S' 

D 

26 m 20 m 

Figure 12.8: Displacement at the deck level 

The equations for a sway systems are (see example 9.7): 

aBB øÂ +áÂ1^~ áÂ0 

áßÂøÂ +áßÀÁ = áéï 
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The kinematic chain can move in jc-direction only hence the work done by the external 
loading is zero and aw = 0. 

12 12 
au= — = -^- = 0.004373 

H3 143 

aBI = —Ï— = — 6 ~ - = -0.030612 
B1 H2 142 

2.297 -0.030612 

-0.030612 0.004373 

[ p j [3.62251 

öÂ =1.7393 

Ä = 12.1756 

? FI ? 7 ?7Ä 
MBA = -8.873 + ±-=L.o =-8.873+ 1.7393 = 

BA L, B 26 

MBA=-8.873+ 1.520 = -7.352 MNm 

? Fl ? 7 578 
MBC =5.250+ú-=-·öÂ =5.250+ 1.7393 ■■ 

BC U 20 

MBC =5.250 + 1.977=7.227 MNm 

Ì ÂÏ =4-^·öÂ-6-^.Ë = ± . 1.7393-^12.1756)-

MBD =0.497-0.372 = 0.124 MNm 

"»-*£-9.-%-Ë-{;-'.™-*Ã<çÀ7÷>. 

MDE =0.247-0.372 = -0.124 MNm 
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14 m 

Ìê ] 

7.351 MNm .7.227 MNm 

5.578 MNm 

26 m 

B 

D 

2.258 MNm 

0.124 MNm 

20 m 

Figure 12.9: Final diagram of bending moments (the displacement method) 

A comparison of the results to the force method gives small differences, which is due to 
the inaccuracy of the calculations using a pocket calculator. 

12.5 Analysis by the moment distibution method 

Using this method fix-end and free-span moments are first calculated: 

M°AB=^ = a 1 0 5 ^ =8.873 MNm 
8 8 

w 0 q-L2 0.105 (20f c „c , „ r 
Mgc = ~— = r*—— = 5.25 MNm 8 

q-L 

8 

M„. =-l = -8.873 MNm <BA 

MBC = 

8 

- * · * _ 5.25 MNm 

followed by the stiffness and distribution coefficients calculations: 
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, 3-7.578 ns7. kRA =——— = 0.874 lft4 

kßc -

26 
3-7.578 

20 = 1.137 

kRn= — = 0.286 BD 14 

X k = 0.874 +1.137+0.286 = 2.297 

0.874 
rRA = ——ÔÃ = 0.381 •BA 

fur — ' 'BC 

fun — ' 'BD 

2.297 
1.137 
2.296 
0.286 
2.296 

= 0.495 

= 0.125 

The only free joint to rotate is at B, the moment is distributed according to the distribution 
coefficients and half of its part on column at B is transferred to joint D. 

A 

0.0 

0.0 
A 

-8.873 
+ 1.380 

-7.493 

0.380 

B 

0.495 

0.125 

D 

+0.4 53 

1 
+0.2 

9.5 

26 

+5.250 
+1.793 

" +7.043 

0.0 
fc. c 

0.0 

Figure 12.10: Iteration scheme (non-sway system) 
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The iteration was performed on the non-sway system, which at this moment is not in the 
equilibrium as column bending moments cause a shear force 

M = MBO + MDBJ.453 + 0.226=0049MN 

H 14 

that can only be equalised by additional moments on both ends of the column (as no 
horizontal reactions occur) of magnitude: 

m = MBD + MDB = 0J40 MNm 

2 

A 

0.0 

0.0 
< 

-8.873 
+1.380 

-7.493 

+0.148 

-7.345 

0.380 

B 

0.495 

0.125 

0.5Ì 

D 

+0.4 53 

-0.340 
+0.113 

+0.114 
-0.340 

+0.226 

+5.250 
+1.793 

■ +7.043 

+0.192 

+7.235 

0.0 
te· C 

0.0 

Figure 12.11: Iteration scheme after first iteration (sway system) 

The iterative procedure can be repeated until desirably small differences in the horizontal 
force at the deck level ÄÇ occur. 
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7.345MNm .7.235MNm 

B 
2.256 MNm 

14 m 5.580 MNm 

MK] D 0.114 MNm 

26 m 20 m 

Figure 12.12: Final diagram of bending moments (Cross's method) 
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13 
Computer applications 

13.1 Introduction 

In this chapter we shall consider the finite element computer program OCEAN that was 
used to carry out analyses for examples presented in previous chapters. Some basic but 
important applications from everyday practice are calculated by the use of the finite 
element method. 

13.2 Structural analysis package OCEAN 

13.2.1 Program description 

OCEAN is a computer program for structural analyses running in a unique user-friendly 
graphic environment. It is written in PowerBASIC language consisting of approximately 
46000 statements. 

The structural analysis package OCEAN implements the following subprograms: 
Plate bending (module PLATE), Frame analysis (module FRAME), Space and plane truss 
analysis (modules P-TRUSS and S-TRUSS), Seismic design of shear walled structures 
(module WALL), Plates on columns (module PL-COL) and Shear wall analysis (module 
SWALL). Some of these sub-modules perform instantaneous reinforcement dimensioning 
in accordance with EuroCode 2. The total loads for specified loading cases are combined 
using Code factors by default or by any user defined load factors in the post-processor 
during reinforcement calculations. 

The methods of analysis are completely transparent to the program user as the input 
is entered through the mouse driven pre-processor menu. There is no numerical input; the 
mesh generation is automatic in local co-ordinate systems using a mouse for the generation 
of substructures on the basis of the DXF format databases, created in architectural 3D 
design. 
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The pre- and post-processor modules are mouse driven, using pop-up menus, enabling the 
input data to be given simply by pointing to the specific attributes using geometry 
displayed on the screen. 

OCEAN uses mouse input for data preparation and colour graphics to display 
quantities or their derivatives on isoparametric surfaces inside the microcomputer 
environment OCEAN, which was written in a general form. This enables utilisation of 
different FEM procedures using the same input-output algorithms and utilises some unique 
and innovative features such as: 

• Complete graphic input and output 
• Special frontal method for a solution of simultaneous equations enabling analysis 

of more than one structure at the same time 
• Special algorithm for the solution of non-linear equations in column design 
• Utilisation of optimisation algorithms inside the analysis process 
• Instantaneous reinforcement calculations of concrete structures 
• Ease of use with no need of manuals 
• Some AI implemention at certain levels of an analysis 

OCEAN 
OC.BAT 
OCEAN0.EXE 
OCEAN.EXE 

< )DD 
Ë 

2-D elements 
PLATE 

MORJE.PBC 
RACUN.PBC 
NAP1.PBC 

Polyhedra shells Functions 
S WALL 

SWALL.PBC 
RACUNSW.PBC 
NAPSW.PBC 

WALL 

POTOK.PBC 
STENA.PBC 

GOBA 

GOBA. 
GOBE 
GOBE 
GOBE 
GOBE 
GOBE 
GOBE 

PBC 
SR.PBC 
NA.PBC 
VN.PBC 
PN.PBC 
PR.PBC 
VP-PBC 

RAPAL.PBC 
RACUNRP.PBC 
T1PELE.DAT 

PRPAL.PBC 
RACUNPRP.PBC 
T1PELE.DAT 

OKVIR.PBC 
RACUNOKV.PBC 
BABSTEB.PBC 
STEBER.PRE 

Figure 13.1: Structure of the program and element types 
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As seen from Fig. 13.1 the package includes only one execution module (OCEAN.EXE), 
all other modules are chained files of type PBC (PowerBasic Chain Module), and can be 
called from within any other module of the same chain. 

13.2.2 Structure generation 

A structure is generated by regions, which define part or the whole structure. Regions are 
divided either into finite elements (modules PLATE and SWALL) or into fictitious 
elements; their nodes are connected to form finite elements (modules FRAME, TRUSS 
and WALL). There are two choices of regions (Fig. 13.2): 

►►► An arbitrary quadrilateral 
►►► A region of an arbitrary shape, defined by 8 joints 

a) Arbitrary quadrilateral b) 8-nodded arbitrary shape 

Figure 13.2: Regional joints and division 
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As an example of the generation procedure, generation of the structure from example 3.1 
will be shown. Regional joints are: R1(0, 0), R2(10, 0), R3(10, 4) and R4(0, 4). 

IlijIlllfiSr 

* = : H ! .-i--E-E : . - : -E"=- r -" 

ÌÌ;ÌÌ:Ì:;;::!;::!::::V':' ; m 
ÔiEa.£„, 

ìiQfrr 

ï̂ - —~"i; 

r£t~ 

�"<>— 

— o 
■ ^ 

. r ■ 

...........0 

Cànnect joints { 
O O Ó-

Finish the generation 

Move points 
o o- ! 

-o~ o -

Input loads and supports 
Remove imaginary points 

\ Roller support' 
^Pinned support 

Figure 13.3: Generation procedure 

The generation procedure is in principle the same for all types of structures with the 
exception of modules PLATE and SWALL, where a division in a direction results in finite 
element generation directly. 

Results of the finite element analysis are the same as in longhand calculations in 
truss structures only, frame analysis by finite elements includes work done by moments, 
shear forces and axial forces and are a little different from longhand calculations as shown 
in Fig. 13.4 below. 
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6.079 
(6.098) 

6.079 + 
(6.098) 

2.770 
(2.772) 

3.309 
(3.326) 

1.911 
(1.920) 

Figure 13.4: Free body in equilibrium 
(In brackets are the longhand calculation results) 

Let us calculate the example shown in Fig. 13.5 using module FRAME. Note the 
imaginary points / and 3 in figure 13.5 below. These two points were generated during 
region definition but do not take part in the analysis at all and could well be removed. 

4 

2^ò 
6 

14 m 

< 

12 

26 m 

3 
o 

20 m 
-3<-

Figure 13.5: Nodes of the computer model 
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The geometry and loads were taken from Ch. 11 ; here we present only a part of computer 
listing which should be used by the reader to compare the results from computer and 
longhand analysis. 

P R O G R A M F R A M 
b y B. S . BEDENIK 1999 13:04:02 

Page 1 
02-04-1999 

STRUCTURE : Examplell 

MATERIAL 1 
Cross-section 
Moment of Inertia 
Modulus of elasticity 
Specific weight 

MATERIAL 2 
Cross-section 
Moment of Inertia 
Modulus of elasticity 
Specific weight 

4.200000 m2 
1.546000 m4 
30.000 GPa 
0.000 kN/m3 

3.360000 m2 
0.204000 m4 

30.000 GPa 
0.000 kN/m3 

Displacements 
Joint X 

Direction 
Y Rotation 

-0.002023 0.000000 0.000998 
-0.002023 -0.000423 -0.000289 
-0.002023 0.000000 -0.000265 

Internal 

Elem. 

1 

2 

3 

i 

4 
5 
2 
5 
5 
6 

forces 

A [m2] 

4.2000 

3.3600 

4.2000 

LOAD CASE 

I [m4] 

1.546000 

0.204000 

1.546000 

1 

N [kN] 

0.000 
0.000 

-3049.067 
-3049.067 

-0.000 
-0.000 

Q [kN] 

1086.573 
-1643.427 

0.000 
0.000 

1405.640 
-694.360 

M [kNm] 

0.000 
-7239.101 
-126.305 
126.305 

7112.796 
0.000 

If a support under columns can be displaced under loading for any reason, a computer 
model of an elastic support can be simulated as given in Figure 13.6. The horizontal 
elements are very stiff and hence have the same rotation as the column itself, but the 
simulation columns have stiffness of the soil under the foundation, varying A, L and 
modulus E. 
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Axialforces 

Intermediate elements of 
small stiffness 

Stiff plate 

Small columns 

Pinned supports 

Figure 13.6: A simulation of an elastic support under a column 

13.3 Practical examples of 2D structures 

As mentioned previously, the plate bending module PLATE uses 9-nodded isoparametric 
element with 27 degrees of freedom and shear walls module S WALL uses 8-nodded 
isoparametric element with 16 degrees of freedom (Figure 10.6). Some practical examples 
of analyses using these 2D elements are shown in Figures 13.7-17. 
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Ë 

52 m 

32 ºÉ 

3L 

Figure 13.7: A plan of a house(PLATE) 
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Figure 13.8: House - principle positive bending moments 

�� �� �� �� �� ��



344 Computer applications [Ch. 13 

Figure 13.9: House - principle negative bending moments 
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Figure 13.10: House- envelopes of bending moments in X-direction (kNm) 
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Figure 13.11: House - envelopes of reinforcement in X-direction (cm ) 
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Figure 13.12: Concrete frame (SWALL) 
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Figure 13.13: Concrete frame - displacements at earthquake (SWALL) 
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Figure 13.14: Concrete frame - principle stresses at earthquake (SWALL) 
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Max : 2819.96 KPa Min : -4784.58 

347 

STRUCTURE : EARTHQUAKE AT BOVEC 1998 

Figure 13.15: Concrete frame - stresses ay at earthquake (SWALL) 

Figure 13.16: A bridge column - principle stresses at earthquake (SWALL) 
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axmax= 7.44 MPa (1) 
axmi„=-2.67MPa(2) 

aymax = 5.45MPa (3) 
oymin=-14.77MPa(4) 

Figure 13.17: A bridge column - stresses ó÷ and ay at earthquake (SWALL) 
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Appendix A 
Basics of matrix algebra 

A.l Introduction 

The fundamental concepts of matrix algebra, definitions and matrix manipulations, are 
presented in a concise manner to provide adequate background for understanding the text 
in this book. 

A.2 Definitions 

A matrix is an array of elements which can be written as: 

A„ 

[A]-

Áõ A,2 

¾21 n22 

\nl nm2 

*2„ 

... A_ 

i = ],2,...,m 
j = l,2,..,n ' (A.1) 

where i and j indicate the number of rows and columns in the array, the above matrix is 
thus of order ixj. The coefficients A are the elements which constitute the matrix [A], 
Their locations are determined by their subscripts; for instance, the element Au is in the 

. - »A . i row and in the first column, A2j is in the second row and in the j column. 
If i and j are not equal ( / Ö j ), the matrix is a rectangular matrix, if i = j the matrix is a 
square matrix, i.e.: 
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W= 

'Á,é A12 

Ë21 ç22 

ini Ë/é2 

A 1 

... A Ë2ç 

... A, 

(A.2) 

Elements Au, A22 — Am form the main diagonal of a square matrix. For i = 1 and j > 1, the 
matrix is said to be a row matrix, i.e., 

[A]=[A, A2 ... Aj j = U,..,n 

and a column matrix for i > 1 and j = 1: 

(A.3) 

W-M« 

"A/ 

A2 

Ë. 

s · 

A/ 

A2 

Ë. 

i = l,2,...,m (A.4) 

The diagonal matrix is a square matrix where all off-diagonal elements are zero. A special 
case of a diagonal matrix is unit matrix, symbolised by letter /, where all diagonal 
elements equal unity. 

º 
0 
0 

0 
1 
0 

0 
0 
1 

[/]= 

A matrix is a symmetric matrix if 

Ay = Aß, 

hence all off-diagonal elements are symmetric about the main diagonal, i.e.: 

(A.5) 

[Ah 
3 5 2 1 
5 7 3 2 
2 3 8 4 
12 4 4 

The transpose of a matrix is found by writing Ay elements of [A] as A^ elements of 

[AJ as shown in the example below: 
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If 

[A)= 
17 9 4 
5 5 2 1 
3 7 8 2 

then 

[Af = 

"/ 
7 
9 
4 

5 3 
5 7 
2 8 
I 2 

The transpose of a square symmetric matrix is the matrix itself: 

[ÁÐÁÚ 

Determinants are defined only for square matrices. Thus, for a given square matrix [A], 
the determinant is defined as the number that results on performing the following 
arithmetic operation on [A\ : 

|Ë| = Ó Á Á (j = l,2,...,n) (A.7) 
i-l 

or 

Ç=ÓÁÁ 0 = 1,2 n) (A.8) 

The elements Ay in Eqns. (A.7) and (A.8) are the ith row and / " column elements of the 
matrix [A], Cy are the cofactors corresponding to the and /"column and are 
defined as 

cu=(-iy+'Mij% (A.9) 

where My are the minors of matrix [A], defined as the determinant of the matrix, which 
results after the i'h row and the / " column elements are deleted from the matrix [A\. The 
sign of a cofactor is determined by the odd-even judgement: if the sum of the row and the 
column is even, the cofactor sign is positive and vice versa. Equations (A.7), (A.8) and 
(A.9) are considered by the following example. 

M= 
+5 -1 +8 
-1 +7 -5 
+8 -5 +4 

(A. 10) 
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Let us first apply Eqn. (A.7) and arbitrarily select j = 2: 

3 

r\ = i t Ë'2  ' Ci2 = A12Cl2 + A22C22 + A32C32 

From Eqn. (A.10) column 2 of matrix [AJis: 
A12=-l A22 — 7 A32 — —5, 

For j - 2 equation (A.9) becomes: 

C^f-lt'My (i = 1,2,3), 

therefore: 

CI2=-MI2 

C-«22 — ■ ' " * 22 

C32 = -M32 

[Appendix A 

By definition, the minor M12 of matrix \A\ is the determinant of that matrix after deleting 
the first row and the second column, or: 

[Ml2]= -1 - 5 
+ 8 + 4 

= {-l)-4-{-5)-8 = 36 

likewise 

[M22]= 5 8 
8 4 = 5-4-8-8 = -44 

[M32]= + 5 +8 
-1 - 5 

= 5-(-5)-(-l)-8 = -17, 

hence 

Cn=-36 C22 =-44 C32=17 

and the determinant is: 

\A\ = (-l)(-36)+7(-44)+{-5)-17 = -357 
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Let us present some practical rules: 

a.) If the elements of any row or column have a common factor, b, then the 
following holds true: 

A,, ■ b Al2 ■ b 
A22 

Ëéé 
º27 

A], ■ b A12 

= b- A2I A22 

A21 ■ b A 22. 

An Al2 
A2I A22 

An ■ b A12 ■ b 
A2]b A22b 

= b2-
.A2J 

Al2 

A22_ 

b.) When rows and corresponding columns are interchanged the value of the 
determinant is not altered: 

2 4 
5 6 

2 5 
4 6 = -8 

c.) When two rows (or columns) are interchanged the sign of the determinant is 
changed: 

2 
5 6 

4H 3-B <] 
d.) If two rows (or columns) are identical then the value of the determinant is 

zero. 

e.) If a matrix [A] has any dependant rows or columns, its determinant equals 
zero. In the example below the third column is the sum of the first and second 
column: 

'2 4 6' 
1 = 0 w= 5 6 11 

7 2 9 

or explicitly choosing/' =1 in Eqn. (A.7): 

\A\ = 2 6 11 
2 9 

-4- 7 9\ + 6\7 

= 232-4-{-32)+6(-32)= 

= 64 + 128-192 = 0 
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If the value of the determinant is zero the matrix is said to be a singular matrix. In 
structural analysis it always means that the structure is unstable. 

A.3 Matrix algebra manipulation 

A.3.1 Matrix addition and subtraction 

Two matrices [A]^ and [B]^ can be added (subtracted) by adding (subtracting) each 
element Ay of matrix [A] to the corresponding element By of matrix [B] . 

11 Au U\B,i Â12Ë_\[Áç±Âç) [Áç±Âç)Ë 
21 A22\ [B21 B22\ I(A2,±B2}) (A22±B22) 

or 
[A]±[BMC), 

where Cy in general is given by 

Cy=Ay±By 

(A.11) 

(A. 12) 

(A. 13) 

A.3.2 Matrix multiplication 

Multiplication of two matrices [A^j and [B]^ is performed by multiplying each element 
of row m of [A\XJ by its corresponding elements in column n of \ß\jxk and the products 
summed. Mathematically this can be written as follows: 

[A][Bh[c], 

where an element C^ of [CJ^ is given by: 

k=l 

and j is the number of columns in [A\ or rows in [B\. 

Numerical example: Given are two matrices [A] and [B], 

(A. 14) 

(A.15) 

[Ah 1 2 
5 4 [*]= 2 5 6 

1 2 3 
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Required is product: 

[A][B}=[C] 

Solution: 

º 2 
5 4 

'2 5 6 
1 2 3 = c 

Matrix algebra manipulation 355 

'77 ^"72 ^13 

'27 ^21 ^23 J 

From Eqn. (A. 15) we get elements C«: 

C,.=AuBu + An-B-y, =1-2 + 2-1 = 4 '11 Ëéé "u ß,2 ■ ï 21 

C„ = Á,, ·Â„ + Á„·Â„= 1-5 + 2-2 = 9 -12 º77 °72 72 ' D 2 2 

Cl3 = Au-Bi3 + A12B23=l-6 + 2-3 = 12 

C2]=A2]-BIi+A22B2I=5-2+41 = 14 

C22=A„-Bn + A1„B„=5-5 + 4-2=33 Ë21 "12 º 22 "22 

C23 = A21B]3 + A22B23=5-6 + 4-3 = 42 

Matrix [c] is: 

[C]= 4 9 12 
14 33 42 

Note the following rule: 

Two matrices can be multiplied only if the number of rows in the first 
matrix equals the number of columns in the second matrix (j = r). 

W/w[fi]ra=[c], (A. 16) 

A.3.3 Properties of matrix multiplication 

Associative law 

[DH[A}[B})[C}=[A].([B]-[C]) 

Any element of [DJ is given by: 

DU=1 lArBn,Csi 

(A. 17) 

(A. 18) 

�� �� �� �� �� ��



356 Basics of matrix algebra [Appendix A 

Distributive law 

[D)=[A\([B]+[cihlA).[Bh[Am (A.19) 

Commutative law 

[A][BMB][A] (A.20) 

♦ If both [A] and [B] are symmetric matrices their product in general 
does not yield a symmetric matrix 

*t* If a matrix is multiplied or divided by a scalar quantity, a, it is 
equivalent to multiplying or dividing each element of a matrix by a. 

2 Ã5 41 = [2'5 2'4] \10 è 1 1/ 2J L 2 7 2-2] [14 4\ 

A.4 Matrix inversion 

Consider first a linear equation 

y = ax 

and solving for unknown x we get: 

x = ̂ - = a~'y (A.21) 
a 

Similarly, if x and y represent vectors, the solution is found by matrix inversion [A]~' 
defined as: 

Ì-ÌÌ/] ,  (Á.22) 

which can be accomplished for square matrices only. 

The inversion procedure is as follows: 

Step 1: Form a new matrix of co-factors C{j using Eqn. (A.9;, referred to as 
adj[A] . 

C^i-lft-M, 
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Step 2: Transpose adj [A] and call the result adj [Âf (transposed matrix of 
co-factors). 

Step 3: Calculate the determinant of matrix [A] 

Ç = ÓËÁ ß/ = Ë2  n) 
i=l 

Step 4: Divide adj [AJ by the determinant to obtain the inverted matrix: 

M " ' = ^ (A.23) 

Numerical example 

[A]= 
+5 -1 + 8 
-1 +7 -5 
+8 -5 +4 

Step 1: 

C2I = -M21 

C31 = M3I 

C12 = -M12 

C22 - M 22 

C32 = -M32 

Cl3 = Ml3 

C23 = -M23 

C33 - M33, 

where: 

Mn = 

M21 = 

M31 = 

+7 
-5 

-1 
-5 

- 5 
+ 4 

+ 8 
+ 4 

= 3 MI2 = 

1 +8 
+ 7 -5 

= 36 M22 = 

■■ -51 M32 = 

-1 -5 
+ 8 +4 

+5 +8 
+ 8 +4 

+ 5 +8 
1 -5 

= 36 

= -44 

= -17 

M1S = 

M 23 = 

M 33 = 

-1 
+ 8 

+ 5 
+ 8 

+ 5 
-1 

+ 7 
-5 

-1 
-5 

-1 
+ 7 

= -51 

= -17 

-34 

Hence: 

adj[A]= 
' +3 
-36 
-51 

-36 -51' 
-44 +17 
+ 17 +34 
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Step 2: Transpose matrix adj [A] 

adj[A[ = 
+ 3 -36 -51 

-36 -44 +17 
-51 +17 +34 

Step 3: Calculate determinant |A| = -357 

Step 4: Divide adj [A J by the determinant of matrix [A] 

[ËÉ1 = a d ^ = 1 

-357 

+ 3 -36 -51 
-36 -44 +17 
-51 +17 +34 

w= -0.00840 +0.10084 +0.14286 
+ 0.10084 +0.12325 -0.04762 
+ 0.14286 -0.04762 -0.09524 

Check 

M-M-M/]. 
hence 

+ 5 -1 
-1 +7 
+ 8 -5 

+ 8] 
-5 ■ 
+ 4\ 

+3 -36 -51 
-36 -44 +17 
-51 +17 +34 ■357 

1 0 0 
0 1 0 
0 0 1 

Since the identity matrix is obtained, the result of inversion is correct. 

A.5 A solution of simultaneous equations by matrix inversion 

The use of matrix algebra is of great importance in structural analysis. As the inversion of 
a matrix is done once only and the coefficients are the properties of structure it is easy to 
calculate multiple load cases by changing the right hand side vector only. Suppose that 
equilibrium equations, as shown in Ch. 9, are explicitly written as: 

+5x -y +8z=A 
-x +7y -5z=B 

+ 8x -5y +4z=C 
(A.24) 
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or shorter in matrix form 

[Ë]·{×}={Â}  (Á.25) 

then the unknowns are calculated using the equation: 

{X}=[AI' {B}, (A.26) 

[A\ is the inverted matrix of coefficients, dependent on structural properties only. A 
solution for a general loading is then 

-0.00840 +0.10084 +0.14286 
+ 0.10084 +0.12325 -0.04762 
+ 0.14286 -0.04762 -0.09524 

(A.27) 

and for an arbitrary load vector {B} a direct multiplication gives unknowns {X}. It is 
important in structural analysis to understand that the first column represents a solution for 
unit force A, the second column for unit force B and the third column for unit force C. 

A.6 Matrix partitioning 

In structural analysis problems it is often convenient to partition a matrix into smaller 
submatrices (see Ch. 9.4) in which we group together known values of forces or 
displacements and on the other hand unknown values of displacements and reactions. 
Drawing vertical and horizontal dotted lines, as shown below, represents this descripition. 

[K)= %21 ^ 2 2 

K3I K32 
K41 K42 

Kl3 K,4 

K 23 %24 
K}3 K34 
K43 K44 

or in shorthand matrix notation: 

[K]= K<m Êáâ 
Êâá Êââ 

(A.28) 

Properties of partitioned matrices 

a.) Two partitioned matrices [Aj,^anJ \Â\^ can be added or subtracted in terms 
of their submatrices if and only if both matrices are of the same order and 
partitioned in the same manner. 
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b.) Two partitioned matrices [Â\m„ and [ß\nxq can be multiplied in terms of their 
submatrices if and only if the submatrices of [A] and the corresponding 
submatrices of [B] obey the law of matrix multiplication, hence the 
multiplication of submatrices [Ajr>aand \B\p><q is possible only if p = s. 

Example: 

[A]= 
º 2 
4 5 
7 8 

3 
6 
9 

[B]= 
'3 
1 
4 

5' 
3 
2 

[AllBh 
º 2 
4 5 
7 8 

3 
6 
9 

'3 
1 
4 

5" 
3 
2 

1 2 
4 5 

[7 8} 

W 
[9][4] 

1 2 
4 5 

[7 «]■ 

[2] 

\9\[2] 

The evaluation of all submatrices multiplication gives: 

[A][Bh 
'17 
41 
65 

17' 
47 
77 

Inversion of a partitioned matrix 

The inverse of a partitioned (stiffness) matrix can be obtained in terms of its submatrices 
as a new matrix [DJ, referred to as a flexibility matrix in structural analysis: 

[Dh[KlJ 

or given in a partitioned form 

(A.29) 

Daa Daß 
Dßa Dßß 

K<xa Ê<÷â 
Êâá Êââ 

(Á.30) 

where the submatrices of [D] are given by: 

[Âáá\=ÚÊáá]-[Êáâ]·[Êââ\'\ÊâáÚ (A.31) 
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Ißßfl ]= küß ] - fc/to ]· frac I~' · [Êáâ Ú' (Á.32) 

kp]=-^aa^kß][%] (A.33) 

M="W kjkj (A.34) 

The above procedure is used in the displacement method in Ch. 9, where unknown 
displacements were determined in a simplified manner as the submatrix [Kßß\ equals zero 
due to the zero displacements at the supports. 
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Table B.l: Functions ø  for a fixed-pinned element 

363 

"V 

-^ 

2 

"ψ 
— 

V r j " 

— 

0 
0.2 
0.4 
0.6 
0.8 
1 

M50 = r2 

3EI 
L2 

M 50 
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Table B.2: Functions ø  for a fixed element 
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Table B.3: Functions ø  for a fixed element 
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Table B6: 
Fixed end moments for a fixed element 
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Table B7: 
Fixed end moments for a pinned-fixed element 
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Table B8: Polar moments of inertia 1÷ 
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Table B8: Polar moments of inertia Ix (continued) 
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Table B9; Shear shape factors 
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Table BIO: Areas and centres of gravity 
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beams with curved axis, 76 

Analysis using plastic moments, 317 
Appendix A, 349 
Appendix B, 363 
Arches, three-hinged, 76 
Axial deformations, 40 
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Bending, pure, 41 
Betty-Maxwell theorem, 134, 137, 139 
Bridge analysis, 321 

force method, 324 
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CAD design, 2 
Castigliano's theorems, 153 
Compatibility, 122 
Complementary energy, 126 
Computer applications, 336 

Computer model, 342 
Conjugate beam, 169 
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Convergence of results, 306 
Creep, 178 
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Dead load, 5 
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Deformations, 155 

at pre-stressing, 178 
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Fixed end moment, 368 
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Force method, 204 
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Simultaneous equations, 358 
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